
[1]

www.allitebooks.com

http://www.allitebooks.org

Blend for Visual Studio 2012
by Example Beginner's Guide

Leverage the power of Blend to create, modify, and reuse
applications and components for Windows using a practical,
hands-on guide

Abhishek Shukla

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Blend for Visual Studio 2012 by Example Beginner's Guide

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1230715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-388-2

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Abhishek Shukla

Reviewers

Nicholas Armstrong

Mattias Cibien

Alexey Tcherniak

Acquisition Editor

Kevin Colaco

Content Development Editor

Athira Laji

Technical Editors

Vijin Boricha

Humera Shaikh

Copy Editor

Sarang Chari

Project Coordinator

Bijal Patel

Proofreader

Safis Editing

Indexer

Monica Ajmera Mehta

Production Coordinator

Conidon Miranda

Cover Work

Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Abhishek Shukla is a tech lead at Cognizant, Milwaukee, US, and completed his MS in
software engineering. Over the years, he has worked with multiple technologies, mostly
on the Microsoft platform, and has designed an application for Windows, web, and mobile
devices. The biggest project of his career until now has been a banking product named
Finacle Advizor (http://www.infosys.com/finacle/solutions/Pages/Advizor.
aspx), and he wrote the first lines of code for the product. Thereafter, he has been part
of multiple projects based on WPF, Silverlight, ASP.NET, HTML5, and JavaScript. Abhishek
enjoys designing and developing applications with cutting-edge technologies and delivering
products and applications that have seamless integration with people and processes for
optimal results.

He blogs at http://www.abhishekshukla.com.

The organizations he's worked for include Infosys, Bengaluru, India; Sapient, Noida, India;
and Cognizant, Milwaukee, US.

This book would never have been possible without the unending support
and love of my wife, Easha. Most of the work that I did for this book was
done on weekends, nights, vacations, and at other times inconvenient to
my family. I want to thank my parents for always helping me follow my
ambitions throughout my life, especially my mother, who always spoke only
positive things about my work.

I would also like to thank Packt Publishing for showing faith in me and
giving me the opportunity to write this book. I would also like to thank
everyone who took time out of their busy lives and provided reviews and
feedback on the book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Nicholas Armstrong is a software developer and technology enthusiast currently living in
Waterloo, Ontario. A graduate in computer engineering at the University of Waterloo (BASc
and MASc), Nicholas is currently VP Engineering at Pravala Networks, a start-up focused on
improving multinetwork experiences on mobile devices and connected vehicles. Nicholas
has traveled throughout Asia and North America to interact with mobile operators, OEMs,
automotive suppliers, and other technology companies.

Nicholas's development interests include user experience, interface design,
high-performance web applications, and web services. His recent work has focused on
delivering high-performance web services to drive mobile clients and web applications
on a large scale and single-page web applications built on top of these services. Over the
course of his career, Nicholas has worked extensively with Node.js, Android, WPF, SQL, and
.NET and has experience in numerous other languages, platforms, tools, and environments.

Learn more about Nicholas at nicholasarmstrong.com.

Mattias Cibien is a C# programmer with a passion for .NET technologies. After graduation,
he started working for a company in Milan (Italy) that specialized in Microsoft technologies.
After 2 years, he moved on to work for a famous Italian web company.

His primary skills are in C# (WPF, WCF, and MVC), but he has also worked on other
technologies, such as C++. His main interest is in 3D technologies, such as Microsoft XNA
(MonoGame right now), DirectX, and OpenGL. To know more about Mattias, visit http://
mattiascibien.net.

I'd like to thank Packt Publishing for letting me review my first book, my
wife for supporting me and my passions, and the guys from the university
with whom I started doing serious programming.

www.allitebooks.com

http://nicholasarmstrong.com
http://www.allitebooks.org

Alexey Tcherniak is a UI/UX designer and a frontend developer with broad experience in
creating desktop, web, and mobile applications. He has been working in the IT industry for
over 15 years.

After spending several years building websites and creating graphic arts, his focus shifted
to UI/UX design, and currently, he is specializing mainly in .NET-based desktop and mobile
applications. He uses C#/XAML to design and develop WPF projects, taking on every project
with enthusiasm. Also, Alexey is still a graphics designer, creating icons and illustrations for
commercial and free use.

Today, he lives a digital nomad's life and enjoys traveling Europe with his wife and two
wonderful children, remotely serving businesses from all over the world. You can find
out more about the projects he has participated in at www.alexeytcherniak.com.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
�� Fully searchable across every book published by Packt

�� Copy and paste, print, and bookmark content

�� On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface	 vii

Chapter 1: Getting Started with Blend	 1
Blend for Visual Studio 2012	 1
Downloading Blend	 2
Time for action – installing Microsoft Blend	 3
Creating your first application in Blend	 4
Time for action – creating a project in Blend using an existing template	 5
The fundamental pieces of the Blend IDE	 6

The tools panel	 8
Time for action – adding TextBlock	 10
Time for action – adding text to TextBlock	 13

Brushes	 13
The solid color brush	 14

Time for action – changing the color of the text	 15
The gradient brush	 15

Time for action – changing the background color of the grid	 16
Linear and radial gradients	 18
The tile brush	 18

Time for action – changing the background of the grid	 18
Time for action – running the application	 19
Time for action – integrating the project into Visual Studio	 20
Using help and documentation	 21
Summary	 22

Chapter 2: Layout Panels	 23
Grid	 24
Time for action – creating a Run window using grid	 25
Canvas	 32
Time for action – using canvas	 32

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

StackPanel	 33
Time for action – using StackPanel	 34
Other layout containers	 35
Building user interfaces	 36
Summary	 37

Chapter 3: Working with XAML	 39
The basics of XAML	 40
Time for action – taking a look at XAML code	 41
Time for action – adding other namespaces in XAML	 42
Naming elements	 43
The code-behind class	 44
Time for action – using a named element in a code-behind class	 44

Default properties	 45
Expressing properties as attributes	 45

Time for action – adding elements in XAML by hand-coding	 45
Non-attribute syntax	 46

Time for action – defining the gradient for the grid	 46
Comments in XAML	 47
Styles in XAML	 47

Defining a style	 47
Time for action – defining a style in XAML	 48

Using a style	 48
Time for action – using a style in XAML	 48

Where to go from here	 49
Summary	 50

Chapter 4: Styles and Templates	 51
Creating and using styles	 51
An introduction to styles	 52
Time for action – creating a resource	 53
The resource dictionary	 55
Simple styles	 56

Creating a simple styled control	 56
Changing colors	 58
Changing styles	 58
Changing control templates	 59

Style specification	 59
Specifying TargetType of a style	 60
Specifying the key for a style	 60

Application skinning	 61
Time for action – creating resource dictionaries	 62
Templates	 64

Table of Contents

[iii]

Editing the template	 64
Time for action – editing the template	 64

Merged dictionaries	 67
Summary	 68

Chapter 5: Behaviors and States in Blend	 69
An introduction to behavior objects	 69
Adding built-in behaviors	 70

Types of built-in behaviors	 70
Time for action – adding a storyboard	 70

Conditional behaviors	 73
Data state behaviors	 74
Motion behaviors	 74

Visual states	 76
Visual State Manager	 76
Time for action – modifying with visual states	 77
Summary	 83

Chapter 6: Understanding Animation and Storyboards	 85
Understanding the animation service	 86
Storyboards	 86
Time for action – adding the storyboard	 87

Timelines	 90
Timeline recording	 90
Properties	 91
Animation workspace	 91

Time for action – switching workspaces	 91
Keyframe	 92

Time for action – using keyframes	 93
Translation and rotation animation	 94

Time for action – using transforms	 94
Animation recording symbol	 96
Keyframe editing	 96
The Timeline zoom feature	 97
Storyboard properties	 97

XAML for the storyboard	 98
Transition between keyframes	 101
Easing functions	 101

Time for action – using easing functions	 101
KeySpline	 104

Summary	 105

Table of Contents

[iv]

Chapter 7: Understanding DataBinding	 107
Understanding dependency properties	 107
Understanding the attached property	 108
An introduction to DataBinding	 109

DataBinding modes	 109
The DataBinding model	 110
DataBinding properties to control	 110

Time for action - DataBinding to one's own property	 111
DataBinding control to control	 114

Time for action – DataBinding to properties of a different control	 114
Using DataSource	 117

Time for action – DataBinding to DataSource as a collection	 117
Time for action – DataBinding the background with SelectedValue	 122

Summary	 123

Chapter 8: Vector Graphics	 125
An introduction to vector graphics	 125

Raster graphics	 126
Vector graphics	 126

Time for action – zooming in to a WPF control	 126
Shapes	 129
Time for action – adding a shape	 129
Importing graphics	 130
Time for action – importing graphics	 130
The Line, Pen, and Pencil tools	 132

Line	 132
Pen	 132

Time for action – creating a shape using Pen	 132
Pencil	 134

Paths	 134
Time for action – modifying a Path	 134
BitmapScalingMode	 137
DPI awareness	 138
Summary	 139

Chapter 9: User Controls and Custom Controls	 141
User control or custom control – which to use and when	 142
Understanding and creating a user control	 143
Time for action – creating a user control that selects the background color	 144
Time for action – adding event handlers	 146

Table of Contents

[v]

Time for action – adding a user control in a window	 148
Understanding and creating custom controls	 150
Time for action – creating a custom control	 150
Summary	 155

Chapter 10: Creating Windows Phone Apps	 157
Installing Windows Phone SDK	 158
An introduction to Windows Phone	 158
Guidelines for Windows Phone applications	 160
Understanding Windows Phone Emulator	 160
Time for action – Windows Phone Emulator	 160
Creating a Windows Phone application	 162
Time for action – creating a Windows Phone application	 162
Exploring the Device panel	 170
Testing the application before submitting to the store	 172
Time for action – testing our application	 172
Submitting our application to the store	 176
Time for action – submitting the application	 176
Summary	 177

Chapter 11: Creating Windows 8 Store Apps	 179
Templates	 180
Creating Windows Store apps with XAML and C#	 181
Time for action – creating a Windows 8 Store app	 181
Submitting your app to Windows Store	 184
Time for action – submitting the app to Windows Store	 185

Stages of app submission	 190
Summary	 192

Appendix: Pop Quiz Answers	 193

Index	 197

Preface

[vii]

Preface
Creating applications with compelling graphics has been one of the main goals of client
applications, and with the arrival of WPF, Silverlight, and HTML5, it is much easier than ever
before to create interactive and rich user interfaces. These technologies make use of the
computational and graphical power of computers.

This book is a hands-on guide that provides you with a number of clear, step-by-step exercises
that will help you take advantage of the real power of Blend in creating WPF, Silverlight,
and HTML5 applications. It will give you a good grounding in creating Windows, web, and
Windows Phone applications. You will learn about the various tools and techniques that are
available in Blend and the different types of applications that we can create using Blend.

By the end of the book, you will be well aware of all the major concepts in Blend and will
also be able to develop Windows, web, and Windows Phone applications. You will also be
aware of the various capabilities that are available in Blend out of the box.

What this book covers
Chapter 1, Getting Started with Blend, familiarizes you with the Blend integrated
development environment. You will see the various tools provided by Blend and
also have a look at how the various panels in Blend are structured.

Chapter 2, Layout Panels, helps you understand the various layout panels provided in
the WPF and Silverlight frameworks and how the content is managed in these layouts.

Chapter 3, Working with XAML, shows you what XAML is and how you can make use of
it in your applications. You will see how XAML helps you work with Blend faster and more
efficiently.

Preface

[viii]

Chapter 4, Styles and Templates, teaches you what styles and templates are and how you
can create, modify, and reuse them in Blend.

Chapter 5, Behaviors and States in Blend, shows you how you can attach behaviors and
actions to elements and how you can use visual states in your applications.

Chapter 6, Understanding Animation and Storyboards, shows you how to create animations
in Blend, modify them, and use them in your applications. This chapter also covers how you
can create and design storyboards in Blend.

Chapter 7, Understanding DataBinding, covers DataBinding and how it works.

Chapter 8, Vector Graphics, provides you with the understanding of vector graphics and
has a look at how it's different from normal graphics. You will see how you can create
vector graphics and advantages of using it.

Chapter 9, User Controls and Custom Controls, teaches you what user controls and custom
controls are and how you can create and reuse them.

Chapter 10, Creating Windows Phone Apps, shows you how you can design and develop
Windows Phone applications from Blend itself.

Chapter 11, Creating Windows 8 Store Apps, shows you how you can design and develop
Windows 8 Store applications from Blend itself.

Chapter 12, Prototyping Using SketchFlow, a bonus chapter, looks at what SketchFlow is
about and how it helps you in prototyping designs and getting quick and usable feedback.
You can download it from https://www.packtpub.com/sites/default/files/
downloads/3882OT_Chapter12.pdf.

What you need for this book
You just need a PC with Windows 8 or above and Microsoft Visual Studio 2012.

Who this book is for
This book is aimed at developers and designers who are new to Blend and looking to learn
Blend, not just practically, but also conceptually. This book does not assume any knowledge
about Blend on the part of developers; however, some experience in design or development
might be useful in understanding the concepts faster, but this book explains everything very
simply so that you are able to understand everything with little or no effort.

Preface

[ix]

Sections
In this book, you will find several headings that appear frequently (Time for action,
What just happened?, Pop quiz, and Have a go hero).

To give clear instructions on how to complete a procedure or task, we use these sections
as follows:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation to ensure they make sense, so they are
followed with these sections:

What just happened?
This section explains the working of the tasks or instructions that you have just completed.

You will also find some other learning aids in the book, for example:

Pop quiz – heading
These are short multiple-choice questions intended to help you test your own
understanding.

Have a go hero – heading
These are practical challenges that give you ideas to experiment with what you have learned.

Conventions
You will also find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Add the
name of the application to HelloWorld."

Preface

[x]

A block of code is set as follows:

 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition Height="2*"/>
 <RowDefinition Height="1.5*"/>
 </Grid.RowDefinitions>

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Run the installer and make
sure you select Blend for Visual Studio in the optional features."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

[xi]

Downloading the example code
You can download the example code files from your account at http://www.packtpub.
com for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from: https://www.packtpub.com/sites/default/files/
downloads/3882OT_Graphic Bundle.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with the
location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

www.allitebooks.com

http://www.allitebooks.org

Preface

[xii]

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

[1]

Getting Started with Blend

Blend is a full-featured professional design tool used to create engaging and
sophisticated user interfaces for .NET applications with minimal or no code.
Whether you are a developer or a designer, Blend offers you capabilities to
decrease the delivery time of your .NET applications.

This book is for Blend beginners. In this chapter, we will cover the following topics:

�� How to download and install blend

�� Set up the default environment for application development using Blend

�� Various tools and panels available in the latest version

�� Develop the "Hello World" application using Blend

Blend for Visual Studio 2012
If you are a designer, you could design the visuals using Blend, and Blend will generate
the XAML code for it behind the scenes that could be used by the developer. If you are a
developer, you still code the XAML by hand as in Visual Studio, but you could also utilize the
simple designing capabilities offered by Blend to do your job more efficiently and effectively.
This book will teach you how to work with Blend using hands-on examples.

1

Getting Started with Blend

[2]

We can develop the following types of applications using Blend:

�� Windows Presentation Foundation (WPF): We can design the next generation of
Windows client applications utilizing the hardware capabilities of client machines.
WPF applications can be both standalone applications as well as browser-hosted
applications.

�� Silverlight: This is a cross-browser, cross-platform implementation of the .NET
framework created to deliver next-generation, rich, interactive media and content
over the Web and to develop browser-hosted Rich Internet Applications (RIAs).
Silverlight applications can run in browsers as well as in applications.

�� Windows Phone apps: We could design the applications for Windows Phones.
We will have a look these in Chapter 10, Creating Windows Phone Apps.

�� WPF/Silverlight Prototypes: We could prototype the application before working
on the final design of the application. We will have a look at these in detail in
bonus chapter.

�� Windows Store apps: Design Metro style applications using XAML or HTML5
and CSS3. We will have a look these in detail in Chapter 11, Creating Windows 8
Store Apps.

WPF and Silverlight share a set of features, but their runtime stacks are different. WPF uses
the full .NET framework and runs on Common Language Runtime (CLR), whereas Silverlight
uses the full .NET framework but executes on the browser-hosted version of CLR.

Downloading Blend
You can buy the full version of Visual Studio at http://www.microsoft.com/
visualstudio/eng/buy. You can even download the free express edition at http://
www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx to
give it a test run.

If you are a student, then you can take advantage of the DreamSpark program from
Microsoft at https://www.dreamspark.com/Student/Software-Catalog.aspx.

You can also buy MSDN subscription, which offers you the most complete library of Microsoft
products and services at http://www.visualstudio.com/en-us/products/msdn-
subscriptions-vs.

Before you buy or download any version of Visual Studio, you need to decide which types of
applications you will develop. To develop all the applications described in this book, we need
Visual Studio 2012 Premium or Ultimate. The following is the combination of the various
versions of Visual Studio and operating systems and the applications we can develop on them:

Chapter 1

[3]

Visual Studio 2012 Update 4 Windows 7 Windows 8

Professional WPF and Silverlight WPF, Silverlight and Windows
Store

Premium WPF, Silverlight, and
SketchFlow

WPF, Silverlight, SketchFlow,
Windows Phone and Windows
Store

Ultimate WPF, Silverlight, and
SketchFlow

WPF, Silverlight, SketchFlow,
Windows Phone and Windows
Store

At the time of writing this book, Blend is available with Visual Studio 2012 only after applying
Update 4. You need to download this update from http://www.microsoft.com/en-in/
download/details.aspx?id=39305 and install it to use Blend.

Time for action – installing Microsoft Blend
Once you have downloaded Visual Studio, you need to install it as follows:

1.	 Run the installer and make sure you select Blend for Visual Studio in the optional
features (if not selected by default), as shown here:

Getting Started with Blend

[4]

What just happened?
Having installed Visual Studio on our computer, we can see that we have Blend for Visual
Studio 2012 along with Visual Studio 2012 in the Start menu. In Windows 7, we can see it in
All Programs | Microsoft Visual Studio 2012, and in Windows 8, we can see it in Apps under
Microsoft Visual Studio 2012. This is shown in the following image:

Creating your first application in Blend
Blend is not a tool for designers who want to use it like Photoshop but is for the task
of designing applications. Blend provides simple drag-and-drop options to design the
application and a pretty extensive Properties panel to customize all the components used.
Blend helps us design the complete application, and the output of Blend is ready to use
XAML.

XAML (pronounced "zammel") is an XML-based markup language aimed at defining elements
in the user interface of a .NET application. It is the language behind the visual presentation
of an application that we develop in Blend just as HTML is the language behind the visual
presentation of a web page. We will have a look at XAML in detail in Chapter 3, Working
with XAML.

Chapter 1

[5]

Time for action – creating a project in Blend using an existing
template

Let's create a Silverlight application in Blend:

1.	 Now, as we have installed Blend, let's go ahead and launch it.

2.	 If you are on Windows 7, then, from the Start menu, go to All Programs | Microsoft
Visual Studio 2012 | Blend for Visual Studio 2012, and, if you are on Windows
8, then you need to go to Apps | Microsoft Visual Studio 2012 | Blend for Visual
Studio 2012.

3.	 We will see the startup screen. Once you have created one or more projects, the
screen also shows a list of recent projects for easy access. Go ahead and click on
New Project.

4.	 Once we do that, we can see that we have multiple templates available to create
different applications in Blend. We can also create new projects in Blend by
navigating to File | New Project in Blend. The following screenshot shows this:

5.	 Select Silverlight in the left panel and Silverlight Application in the right panel.
Then, add the name of the application to HelloWorld. Go ahead and select a
location for the project code to reside in. Then, select Visual C# as the language
and 5.0 as the version and click on OK. When we select the individual project on
the right panel, you will see the type of application you will create just as we are
creating a cross-platform web application here.

Getting Started with Blend

[6]

What just happened?
We will see that just after creating the project, the blank Blend integrated development
environment (IDE) gets filled with multiple panels.

The fundamental pieces of the Blend IDE
We will now navigate through Blend and take a look at the various pieces. We will also see
how and where we can find the things you would need to do a specific job. This screenshot
represents various pieces of Blend:

We will explore the pieces of Blend in the following list:

�� The Art board: This (highlighted as 1) is where we can see the current design we are
working on. It will update as we keep changing the design. Above the art board, we
can see the name of the document (MainPage.xaml) that we are currently working
on. We can open multiple documents in different tabs and navigate between them.

�� Open documents: This is highlighted as 2. When we click on the white downward
arrow icon in the top-right corner of the art board, we can see the files that are
currently open in this project. It is helpful to navigate through them if the list of
open files becomes too long to fit in a single row on the screen, as shown here:

Chapter 1

[7]

�� The Assets panel: This is highlighted as 3. In the top-left corner, we see the Assets
panel. This is the place where we have a list of all the controls, styles, media,
behaviors, and effects that we could add. We could select the element we want
to use or even search for it. We could add the element to the art board by simply
grabbing that element and dragging it to the workspace and start working with it.
We could also add them to the art board by double-clicking on the element.

�� The Objects and Timeline panel: This is highlighted as 4. We can see the Objects
and Timeline panel below the Projects panel. This panel shows the complete
hierarchy of elements in the document that we are working on. We can select the
objects that we want to modify.

�� The Projects panel: This is highlighted as 5. Alongside the Assets panel, we also
see the Projects panel. If we click on it, it will show the project we are working on
currently. This is the place from where we can view all files of the currently open
project. The first item in this panel is a search box where we can search for a project
file. This is shown in the following screenshot:

Getting Started with Blend

[8]

The tools panel
On the extreme left, we can see the tools panel. In this panel, we have the set of common
elements that are used to create the UI of our applications. Some of these tools panel items
have multi buttons (the ones with a little triangle alongside them). These are the buttons
that have multiple functions. So, if we move the mouse cursor to the text icon, as shown in
the following image, and press and hold the mouse's left button, we can see the multiple
text controls available in the tools panel. If we simply click on the text button, it is the
same as selecting the default text control or the last selected text control. There might be a
slight difference between the tools that are available in a Silverlight application and a WPF
application. The following screenshot shows this:

This is the place where we will get the building blocks of our application. The toolbox can be
divided into nine sections:

�� Selection tools: This section is highlighted as 1. These tools allow us to select
objects:

�� Selection: The black arrow is the selection tool to select any object

�� Direct selection: The white arrow is known as the direct selection tool,
which is used to select nested objects and paths

Chapter 1

[9]

�� View tools: This section is highlighted as 2. These tools are used to pan, zoom,
and orbit the camera on the art board. The camera orbit tool is not available in a
Silverlight project:

�� Pan: This is used to position the art board in the workspace area. We can
double-click on the pan icon to center the art board in the workspace
available for the art board.

�� Zoom: This is used to see the different views of the art board and objects.
We can double-click on the zoom icon to resize the current document to its
actual size (100 percent zoom).

�� Camera orbit: This is used to position the camera face for a 3D object.

�� Brush tools: This section is highlighted as 3. These tools are used to work with the
various visual attributes, such as foreground, background, and so on. The brush
tools are as follows:

�� Eyedropper: This allows us to select our color of choice by clicking on any
element inside Blend or even elsewhere

�� Paint bucket: This allows us fill an area with a brush

�� Gradient: This tool helps us to add the gradient effect to the control

�� Path tools: This section is highlighted as 4. The pen and pencil tools are both path
tools:

�� Pencil: This provides the option to create freeform graphics

�� Pen: This provides an easier way to draw complex shapes

�� Shape tools: This section is highlighted as 5. The rectangle, ellipse, and line are used
to draw the respective shapes onto the art board.

�� Layout panels: This section is highlighted as 6. These are the various layout panels
that help us to design the layout structure of the application screen.

�� Text controls: This section is highlighted as 7. Text controls allow us to display text to
the user or take text input from the users.

�� Common controls: This section is highlighted as 8. These are the various input
controls available in WPF/Silverlight and are the ones that are most used while
developing an application. The other controls can be accessed using the Assets
toolbar menu described next.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Blend

[10]

�� Assets: This toolbar menu is highlighted as 9. This is the place where we can find all
the controls:

�� UI components: These include button, label, textbox, menu, and listbox,
among others and are referred to as controls

�� Styles: This is a group of property settings that determines how a control
will appear

�� Effects: This is an easy-to-use API to create a graphical effect

�� Behaviors: These are reusable code packages that can be added to any
object and then fine-tuned by changing their properties

Styles, effects, and behaviors allow us to enhance the controls and add more interactivity.
We will have a look at each of these in detail in later chapters.

Time for action – adding TextBlock
Let's add TextBlock to the art board.

1.	 Left-click and hold the text tool icon until we see the popup to select one of the text
controls.

2.	 Select TextBlock by clicking on it.

3.	 Move the mouse to the art board, press the mouse's left button down, and, without
releasing the mouse button, drag the mouse diagonally to create TextBlock. The
following screenshot shows this:

Chapter 1

[11]

4.	 Once we do that, we can see multiple things. The first thing that we notice is that we
have the Properties panel filled with various options to configure TextBlock. Before
we move on, let's take a look at the Properties panel in detail:

�� 1: This shows Name and Type of the element selected.

�� 2: This allows us to sort the properties by Name, Source, or Category.

�� 3: This allows us to select the Fill, Background, and Stroke brushes for
geometry elements, such as Rectangle, Ellipse, and Path, and BorderBrush,
Foreground, and Background for elements inherited from UIElements,
such as TextBlock, Button, and so on.

�� 4: This is used to select the solid and gradient brushes.

�� 5: This is used to select the color of choice by moving this slider.

�� 6: Here, the three sections show initial, current, and last color respectively.

Getting Started with Blend

[12]

�� 7: Eyedropper can be used to select any color within Blend or outside Blend.
Different eyedroppers are available depending on where the solid and
gradient brushes are selected.

�� 8: This allows us to switch between events and properties available for the
selected element.

�� 9: This allows us to search and reach the properties faster.

�� 10: This is used to switch between no brush, solid brush, gradient brush, tile
brush, and brush resource.

�� 11: This shows the color resources available.

�� 12: This shows the RGB equivalent values (0–255) of the selected color. RGB
values can also be set here.

�� 13: This shows the alpha value and could also be set.

�� 14: This is used to convert colors to resources.

�� 15: This shows and edits the hex equivalent value of the selected color.

�� 16: This shows the gradient slider, along with the various gradient stops.

�� 17: This shows the other properties available for the element.

5.	 Also, you will notice that, in the Objects and Timeline panel, we have a new element
named TextBlock below LayoutRoot.

6.	 We can rename the control from the Objects and TimeLine panel.

7.	 Also, a small * sign appears with the MainPage.xaml filename in the projects
panel. This means that we have made some modifications in the file, but the
changes are not yet saved.

What just happened?
We added our first element to the panel, and that is TextBlock. Similarly, we can add any
number of controls we want to the panel.

Chapter 1

[13]

Time for action – adding text to TextBlock
We can see that the default text in TextBlock is selected. Perform the following steps to add
text to TextBlock:

1.	 Let's type Hello World inside TextBlock and press the Esc key. We can see that we
come out of TextBlock. If we need to go back into editing mode, we should double-
click TextBlock.

2.	 In the tools panel, we see two different kinds of arrow buttons. One of them is the
selection arrow (black arrow), and the other one is the direct selection arrow (white
arrow). The selection arrow helps us select the element and make changes in the
sizing of the element, whereas the direct selection arrow helps us make changes in
the positioning of the element. So, click on any of these selection arrows and then
on the textbox in the art board, and it will select the properties of TextBlock in the
Properties panel. We can now configure the various properties of TextBlock , such
as the foreground color, visibility, height, width, alignment, text font, and so on.

What just happened?
We modified the text inside TextBlock.

Brushes
A brush paints an area with its output, and different brushes have different output. A brush
can be used to describe the fill of a shape, foreground of a text, or background of a control.
We can define these brushes using a solid color or a complex set of patterns and images.
Most of the visual objects allow us to specify the brush to paint them. The following is a list
of common controls, with their properties, on which we can use a brush:

Class Brush properties

Border BorderBrush and Background

Control BorderBrush and Background

Panel Background

Pen Brush

Shape Fill and Stroke

TextBlock Background and Foreground

We have the following types of brushes.

Getting Started with Blend

[14]

The solid color brush
Solid color brush paints an area with a solid color. We can specify Solid color brush for a
control in multiple ways. The following screenshot represents the options available with
Solid color brush:

These options are discussed further in the following numbered list:

�� 1: The color editor allows us to select the color by dragging around the circular
marker

�� 2: We can specify the alpha, blue, green, and red channels for the color

�� 3: We can specify the hex value of the color

When we set the color using any one of these ways, the other two values
are automatically updated to reflect that change as well.

Chapter 1

[15]

Time for action – changing the color of the text
Let's assign a color to the text we are displaying:

1.	 Select TextBlock by clicking on it, and then, on the Properties panel, select
Foreground. When we do that, Editor becomes visible.

2.	 Click on the solid color brush and move the circular marker to a shade of green. You
can set the values of the red, green, and blue channels as well.

What just happened?
We just changed the color of the text of TextBlock to solid color brush.

The gradient brush
The gradient brush provides us with the option to specify a sequence of colors for our
element. We use GradientStop objects to specify the colors in the gradient and their
positions. We could have any number (a minimum of two) of GradientStop with the same
color or a different color in GradientBrush.

Getting Started with Blend

[16]

Time for action – changing the background color of the grid
Let's change the background color of the grid:

1.	 Select LayoutRoot and then, on the Properties panel, select Background. When
we do that, Editor becomes visible.

2.	 Click on the gradient brush. When we do that, we get to see the default gradient
brush offered by Blend. It has two gradient stops: one at offset 0 (Black) and one at
offset 100 (white). The following screenshot shows this:

3.	 When we move the mouse over these gradient stops, we see the color of the stop
and the position of the gradient stop on the gradient slider. The following screenshot
shows this:

Chapter 1

[17]

4.	 Move the white gradient stop to the center by clicking and dragging it, and then
add a new gradient stop at the end of the gradient slider by clicking on the gradient
slider. Now, change the color of this gradient stop to black. The following screenshot
depicts this:

5.	 When we slide these markers, we can see the gradient shift along with that. To
remove a marker, we can either click on a marker and press the delete key or drag
the gradient stop off the bottom of the gradient slider.

What just happened?
We just changed the color of the background of the grid to the gradient brush.

Getting Started with Blend

[18]

Linear and radial gradients
Our gradient brush could be linear or radial. The one that we see here is the linear gradient
brush, which blends two or more colors across a line, that is, the gradient axis. The radial
gradient brush blends two or more colors across a circle. The following screenshot shows
this:

The tile brush
The tile brush paints an area with a repeating image or pattern. We can create a tile brush
from an image brush, drawing brush, or visual brush. Here, we will use an image brush to
paint an area using an image.

Time for action – changing the background of the grid
Let's change the background of the grid using an image brush:

1.	 Select LayoutRoot, and then, on the Properties panel, select Background. When we
do that, the editor becomes visible.

2.	 Click on the tile brush. When we do that, we see that the background of the grid is
reset and we have the option to select the stretch and source of the image.

3.	 Click on the Browse button next to ImageSource, and browse and select an image
we want to use for the image brush for the background of the grid. This sequence of
steps is shown here:

Chapter 1

[19]

What just happened?
We just changed the color of the background of the grid to the image brush

Time for action – running the application
Let's run the application that we developed:

1.	 In the Project menu, click on Run Project. Alternatively, we can use F5 or Ctrl + F5.

2.	 When we perform any of these actions, we can see the project being built and then
our application in the default web browser. The following screenshot shows this:

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Blend

[20]

We see a browser because we are running a Silverlight application. If we were
running a WPF application, then we would see a window.

What just happened?
We just ran the application for the first time.

Time for action – integrating the project into Visual Studio
1.	 Right-click on the solution file, and select Edit in Visual Studio. It will open the same

project in Visual Studio 2012. Now, open MainPage.xaml:

2.	 Go back to Blend, change the foreground color of TextBlock to red, and save the
changes.

3.	 Go to Visual Studio, and you will see a prompt. This shows that the files that we
have been working on have been modified in Blend and we need to reload it to work
with the updated version.

4.	 The same thing would happen if we edited a file in Visual Studio and saved it. Blend
will prompt us to reload the file to start working with the latest version of the file.

What just happened?
We had a look at the integration of Blend into Visual Studio, and when we change and save
one or more files in any of the IDEs, we will be notified of the changes in the other.

Chapter 1

[21]

Using help and documentation
We can navigate to help from the Help menu or by pressing F1:

Pressing F1 will lead us to contextual help, which will open Design Windows Store apps
using Blend for Microsoft Visual Studio. Ctrl + F1 will allow us to manage the help content
installed on the local machine. The following screenshot shows this:

Getting Started with Blend

[22]

Have a go hero
Drag and drop more controls onto the art board. Change their various properties, and run
the application.

Pop quiz
Q1. How to run a project in Blend?

1.	 F4 or Ctrl + F4.

2.	 F5 or Ctrl + F5.

3.	 F6.

4.	 F8.

Summary
We installed Blend for Visual Studio 2012 and created the "Hello World" application using
Blend. You specifically learned about the versions of Blend 2012 available, Blend IDE layout,
and project templates available in Blend. You also saw how to create a project in Blend, use
the brush tool, and run a project in Blend.

Now that we have the basics of Blend ready to create an application, we will look into
layouts and controls in the next chapter.

[23]

Layout Panels

A good tool is one that offers a combination of great controls and makes it easy
to bring them together to build an amazing user interface.

In Chapter 1, Getting Started with Blend, we installed Blend and familiarized ourselves with
the Blend IDE. In this chapter, we will take a look at the various layout panels.

Layout panels, including the one shown in the following screenshot, are components
that control the rendering of their children, including the size, dimensions, position, and
arrangement of their child content. All panels support the sizing and positioning properties
of FrameworkElement. The FrameworkElement class provides the set of properties,
events, and methods for WPF elements, and all the panels derive from FrameworkElement.

There are primarily five panels available in WPF:

�� Grid: This is represented by in the tools panel. It arranges its child controls in a
flexible layout of rows and columns forming a grid.

�� Canvas: This is represented by in the tools panel. It arranges its child controls
according to absolute x and y coordinates from the top-left corner of the canvas.

�� StackPanel: This is represented by in the tools panel. It arranges its child controls
in a single line, which is oriented (or stacked) horizontally or vertically.

�� WrapPanel: This is represented by in the tools panel. It arranges its child controls
in a sequence from left to right and from top to bottom. When it runs out of room at
the far end of the panel, it wraps the content to the next line.

�� DockPanel: This is represented by in the tools panel. It arranges its child controls
so that they dock one edge of the panel.

2

Layout Panels

[24]

Only the Grid, Canvas, StackPanel, and ScrollViewer panels are available in a
Silverlight project.

Let's have a look at each of them in detail.

Grid
The grid layout panel arranges its child controls in a tabular structure of rows and columns.
The grid layout panel allows us to position and style elements easily. This layout panel helps
us in structuring our application in the form of a row-and-column layout format.

We have added a few controls in the grid layout panel to make it look like the run command
available in Windows. Here's how it looks:

Grid has three major properties: RowDefinitions, ColumnDefinitions, and
ShowGridLines. The RowDefinitions property is a collection of RowDefinition. Each
RowDefinition becomes a row in the grid layout. The ColumnDefinitions property
represents a collection of ColumnDefinition. Each ColumnDefinition becomes a
column in the grid layout. The ShowGridLines property represents whether grid lines of
a Grid panel are visible or not. In the preceding image, we have five ColumnDefinitions
and four RowDefinitions, and ShowGridLines is true.

Chapter 2

[25]

When we don't explicitly define any rows or columns, even then the grid
layout has RowDefinition and ColumnDefinition. This takes up the
entire space inside the grid layout in one cell.

When we place more than one element in the same cell, they might end up
overlapping as the grid inherently does not have any mechanism to stack or
queue items.

Time for action – creating a Run window using grid
Let's now use the Grid panel to create a Run window similar to the one present in Windows:

1.	 Create a new WPF project and name it Chapter02.

2.	 Right-click on the project name and select Add New Item…. Add a new window
to the project and name it GridLayout.xaml. This is shown in the following
screenshot:

3.	 Hover the mouse just above the grid area, and you will notice the vertical yellow
line that appears with a header. This represents the column that will be added to
the grid layout if we click on the grid layout. We will see a similar yellow line, but
horizontal, when we move the mouse just left of the grid area. This represents the
row that will be added to the grid layout if we click on the grid layout.

Layout Panels

[26]

4.	 Add four columns and three rows to the grid layout, as shown in the following
image:

While adding columns, if the divider does not land up where we want it, then we
can hover the mouse above the column divider, and the cursor will change to show
the column divider to be moved. Also, when we hover the mouse just above the
grid area within a column, we will have multiple options to change the width of the
column as a ratio using *, define a fixed width using pixels, or set the width to Auto.
This will change the width according to the content of that column. This is discussed
further in the following list:

�� Star: This specifies the width of the column relative to the other columns.
For example, if we specify the width of column 1 as 1* and then the width
of column 2 as 2*, then column 2 will have twice the width compared
to column 1. And, when we specify the width of a column as *, then it
occupies the remaining horizontal space inside the grid layout.

�� Pixel: This fixes the width of the column to be the same as the specified
pixels.

Chapter 2

[27]

�� Auto: This adjusts the width of the column according to the content of the
column. The following set of screenshots shows this:

5.	 Select LayoutRoot from the Objects and Timeline panel, and, in the Properties
panel, set Height and Width of the grid layout as 450 and 175 respectively. This will
make the grid layout match the size of the run command.

6.	 Also, set HorizontalAlignment and VerticalAlignment to left and top respectively,
and this will place the grid layout in the top-left corner of the window. The following
screenshot shows this:

7.	 After defining the grid layout's row and columns, we will add some content in the
grid layout.

Layout Panels

[28]

8.	 Go to the text icon in the tools panel and press the left button of the mouse for a
few milliseconds and we will see the flyout menu to select the text tool.

9.	 Select the TextBlock option and draw TextBlock in the grid layout by moving the
mouse to the first column and then pressing the left button of the mouse and
dragging the mouse without releasing the mouse button. Then, release the mouse
once TextBlock of the desired size is created. The following screenshot shows this:

10.	Select the TextBlock option, move to the Properties panel, and make sure that we
have Row and Column set to 0 and 1 respectively.

11.	Also, we have RowSpan set to 1 and ColumnSpan set to 4. RowSpan specifies the
number of rows the element will take, and ColumnSpan specifies the number of
columns the element will take.

12.	Also, set HorizontalAlignment and VerticalAlignment to stretch so that it takes up
the space completely. This is depicted in the following screenshot:

Chapter 2

[29]

13.	With TextBlock selected in the Properties panel, set the text of TextBlock to Type
the name of a program, folder, document, or Internet resource, and Windows will
open it for you. This is shown in the following screenshot:

14.	Now, let's create TextBlock in the first row and zeroth column. Also, we will change
the text of TextBlock to Open:

15.	Now, we will go back to the tools panel and select TextBox, this time from the text
controls, and add it to the first column and first row of the grid layout. Then, we
will change the ColumnSpan property of TextBox to span through four columns.
We will also change the Background brush of TextBox to a shade of gray. This is
incorporated in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Layout Panels

[30]

16.	From the tools panel, we will now select buttons and add a button in each of the
second, third, and fourth columns of the third row:

17.	Select each of the buttons one by one, and change the text of the buttons to Ok,
Cancel, and Browse…, and the GridLayout window will look similar to the run
command of the window:

What just happened?
We just created a window with grid as LayoutRoot. We arranged the elements in the flexible
tabular layout available from the grid.

When a grid layout resizes, the controls placed in the cells formed by the rows and columns
of the grid layout resize along with the grid layout if the height and width of the element
is set to auto. So, if you are looking for a behavior in which you want your child controls to
resize according to the space available in the cell in which they are placed, then the grid
layout is certainly one of your options. The controls in the cell would resize, but the values
to which the margin property is set are not changed. A control can be placed in a specific
cell of the grid layout by setting the Grid.Column and Grid.Row properties available to an
element when it is placed inside the grid layout.

Chapter 2

[31]

We see that the height and width of the line are specified by a number followed by *. This
means we are not specifying a fixed width or height as we always do; we are specifying the
height and width as a ratio. So, the height of the four rows will be in the ratio 1:1:2:1.5.
We can also specify a fixed height, and, if we don't specify any height, then the height of
the five columns will be in the ratio 1:2:2:2:2. This discussion is encapsulated in the
following code:

<Grid x:Name="LayoutRoot" Width="450" Height="175"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Background="White">
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition Height="2*"/>
 <RowDefinition Height="1.5*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition Width="2*"/>
 <ColumnDefinition Width="2*"/>
 <ColumnDefinition Width="2*"/>
 <ColumnDefinition Width="2*"/>
 </Grid.ColumnDefinitions>
</Grid>

Downloading the example code

You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Have a go hero
Whenever you add rows or columns to your grid layout, make sure that the ShowGridLines
property of the grid layout is either not set or set to false. This will ensure that the border
between the rows and columns will be invisible at runtime. If you want these to be visible at
runtime, go ahead and set ShowGridLines = true.

Layout Panels

[32]

Canvas
The canvas layout panel is another commonly used layout control. As opposed to a grid
layout, a canvas layout has no columns or rows, and all controls must be absolutely
positioned—provided as offsets from the edges of the canvas layout. But, the elements can
still overlap inside the canvas layout as in the case of the grid layout. This means that we can
specify the position of an element on the canvas by specifying the top, left, right, and bottom
properties of the element. These properties specify the position of the element from the
top, left, right, and bottom walls of the canvas layout respectively. The canvas layout is the
only layout that allows you to have an absolute coordinate for each object.

Time for action – using canvas
Let's use the same example that we used in the last section:

1.	 Right-click on LayoutRoot (grid) and select Change Layout Type | Canvas. This
feature is provided by Blend to easily switch between the various layout types. The
following screenshot shows this:

We will notice a few things about the layout:

�� The gridlines disappear from the layout

�� When we select any of the controls, we would notice the left and top
properties (as opposed to the Grid.Row and Grid.Column properties in
the grid layout). The following screenshot shows this:

Chapter 2

[33]

2.	 We can also achieve the same positioning that we have using margins instead
of using Canvas properties or a combination of both. For example, let's set the
Canvas.Left and Canvas.Top values of the Ok button to 0 and the Margin.
Left and Margin.Top values to the values that were set for left and top. This
is what Blend does when we switch the layout from canvas to grid, to keep the
element positioning same. The following screenshot shows this:

3.	 If we want to reposition any of the elements, we simply select and drag them, and
Blend automatically changes the Canvas.Top and Canvas.Left properties.

What just happened?
We changed LayoutRoot in the window from grid to canvas and saw the different positioning
patterns followed by the two layout panels.

StackPanel
StackPanel is used to stack elements one after another either vertically or horizontally.

Layout Panels

[34]

Time for action – using StackPanel
We will add a few buttons to StackPanel and learn how StackPanel works:

1.	 To see how it works, let's go ahead and add a new window to our project, and
let's name it StackPanelLayout.xaml. Go to the Assets panel and search for
StackPanel. Then, drag and drop it onto LayoutRoot.

2.	 Now, search for the buttons in the Assets panel, and drop three of them onto
StackPanel. You will see that, as you add these buttons onto StackPanel, they are
added vertically one after another. You can set a height, width, and color for these
buttons. Make sure that your code looks similar to the one shown in the following
screenshot:

3.	 We can also arrange the elements with StackPanel horizontally by setting the
Orientation property of StackPanel to Horizontal, as shown here:

Chapter 2

[35]

What just happened?
We saw how StackPanel behaves and how we can use it. We also had a look at the
orientation property of the StackPanel.

Other layout containers
Apart from the layout panel that we just talked about, there are other layout containers as
well that affect the arrangement of elements in them. However, these containers are not
optimized to support complex UI scenarios as the primary layout panels do. The following
are the various other layout containers:

�� WrapPanel: A WrapPanel layout control is similar to a StackPanel layout control, but
it allows elements to be placed on multiple lines. When an element overflows off
the edge of the panel, it will not be clipped, but instead will be wrapped to the next
line. This arrangement of elements could be from left to right or top to bottom. Just
like StackPanel, the WrapPanel also provides the option to set the orientation as
horizontal or vertical.

� DockPanel: DockPanel could be used to describe the overall layout of a simple user
interface. DockPanel arranges its children so that each of them fills a particular edge
of the panel. If multiple children are docked to the same edge, they simply stack
up against that edge in order. This provides an easy docking of elements to the left,
right, top, bottom, or centre of the panel. The dock side of an element is defined by
the attached property DockPanel.Dock. To fill the remaining space of the panel,
we make the LastChildFill property, of the panel, to true.

Layout Panels

[36]

�� Border: This is represented by in the tools panel. It draws the border or
background (or both) around its element. A border layout container can contain only
one child element; however, that child element can be a layout panel as well.

�� Popup: This is represented by in the tools panel. It is a window that appears in
front of all the other content of the application.

�� ScrollViewer: This is represented by in the tools panel. It allows the scrolling of
its child. However, the child of ScrollViewer can be a panel that scrolls other child
elements. We can control scrollbars to be visible, not visible, or automatically visible.

�� UniformGrid: This is represented by in the tools panel. It arranges its child
elements within equal grid regions. It is not an extension of the Grid panel but more
of a tiling layout container as it creates equal spacing between each element that it
contains, based on the specified rows and columns.

�� ViewBox: This is represented by in the tools panel. It scales its child element. It
can contain only a single element as its child; however, we can place a layout panel
with multiple child elements inside it to scale multiple elements.

Building user interfaces
By now, you must have got some idea about the integrated development environment of
Expression Blend. You should have a fair idea of a few of the panels available to us to create
our user interface and applications and where and how you can find the required control.

Blend provides us with the capability to design and develop a rich user experience. Blend is
a great tool because it allows us to build the user interface without coding or knowledge of
XAML.

Generally, to build user interfaces, we use one or more of the layout controls to structure
our page and application. Then, we place the various in-built controls and custom controls
to make up the user interface of our application. In the next chapters of this book, we will
create various applications and put the various capabilities of Blend to test.

Chapter 2

[37]

Pop quiz
Q1. How can we show the border lines of the grid layout?

1.	 ShowGridLines = "True".

2.	 GridLine = "True".

3.	 NoGridLines = "False".

4.	 ShowGridLine = "True".

Q2. What are the various layout panels in WPF?

1.	 StackPanel & Grid.

2.	 Canvas.

3.	 DockPanel & Wrap Panel.

4.	 All.

Summary
In this chapter, we looked at various layout panels, including Grid, Canvas, StackPanel,
WrapPanel, DockPanel, and ViewBox.

In the next chapter, we will take a look at XAML and help you understand how it works.

[39]

Working with XAML

XAML is also known as Extensible Application Markup Language. XAML is a
generic language like XML and can be used for multiple purposes and in the
WPF and Silverlight applications. XAML is majorly used to declaratively design
user interfaces.

In the previous chapter, we had a look at the various layout controls and at how to use them
in our application. In this chapter, we will have a look at the following topics:

�� The fundamentals of XAML

�� The use of XAML for applications in Blend

An important point to note here is that almost everything that we can do using XAML can
also be done using C#. The following is the XAML and C# code to accomplish the same task
of adding a rectangle within a canvas. In the XAML code, a canvas is created and an instance
of a rectangle is created, which is placed inside the canvas:

�� XAML code: In the following code, we declare the Rectangle element within
Canvas, and that makes the Rectangle element the child of Canvas. The
hierarchy of the elements defines the parent-child relationship of the elements.
When we declare an element in XAML, it is the same as initializing it with a default
constructor, and when we set an attribute in XAML, it is equivalent to setting the
same property or event handler in code. In the following code, we set the various
properties of Rectangle, such as Height, Width, and so on:

<Canvas>
 <Rectangle Height="100" Width="250" Fill="AliceBlue"
 StrokeThickness="5" Stroke="Black" />
</Canvas>

3

www.allitebooks.com

http://www.allitebooks.org

Working with XAML

[40]

�� C# code: We created Canvas and Rectangle. Then, we set a few properties of the
Rectangle element and then placed Rectangle inside Canvas:

Canvas layoutRoot = new Canvas();
Rectangle rectangle = new Rectangle();

rectangle.Height = 100;
rectangle.Width = 250;
rectangle.Fill = Brushes.AliceBlue;
rectangle.StrokeThickness = 5;
rectangle.Stroke = Brushes.Black;

layoutRoot.Children.Add(rectangle);

AddChild(layoutRoot);

We can clearly see why XAML is the preferred choice to define UI elements—XAML code
is shorter, more readable, and has all the advantages that a declarative language provides.
Another major advantage of working with XAML rather than C# is instant design feedback.
As we type XAML code, we see the changes on the art board instantly. Whereas in the case
of C#, we have to run the application to see the changes. Thanks to XAML, the process of
creating a UI is now more like visual design than code development.

When we drag and drop an element or draw an element on the art board, Blend generates
XAML in the background. This is helpful as we do not need to hand-code XAML as we would
have to when working with text-editing tools.

Generally, the order of attaching properties and event handlers is performed
based on the order in which they are defined in the object element. However,
this should not matter, ideally, because, as per the design guidelines, the
classes should allow properties and event handlers to be specified in any order.

Wherever we create a UI, we should use XAML, and whatever relates to data
should be processed in code. XAML is great for UIs that may have logic, but
XAML is not intended to process data, which should be prepared in code and
posted to the UI for displaying purposes. It is data processing that XAML is not
designed for.

The basics of XAML
Each element in XAML maps to an instance of a .NET class, and the name of the element is
exactly the same as the class. For example, the <Button> element in XAML is an instruction
to create an instance of the Button class. XAML specifications define the rules to map the
namespaces, types, events, and properties of object-oriented languages to XML namespaces.

Chapter 3

[41]

Time for action – taking a look at XAML code
Perform the following steps and take a look at the XAML namespaces after creating a WPF
application:

1.	 Let's create a new WPF project in Expression Blend and name it Chapter03.

2.	 In Blend, open MainWindow.xaml, and click on the split-view option so that we can
see both the design view as well as the XAML view. The following screenshot shows
this:

3.	 You will also notice that a grid is present under the window and there is no element
above the window, which means that Window is the root element for the current
document. We see this in XAML, and we will also see multiple attributes set on
Window:

<Window x:Class="Chapter03.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx
 /2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">

�� We can see in the preceding code that the XAML file has a root element.
For a XAML document to be valid, there should be one and only one root
element. Generally, we have a window, page, or user control as the root
element. Other root elements that are used are ResourceDictionary
for dictionaries and Application for application definition.

�� The Window element also contains a few attributes, including a class name
and two XML namespaces. The three properties (Title, Height, and
Width) define the caption of the window and default size of the window.
The class name, as you might have guessed, defines the class name of the
window. The xmlns attribute is a reserved attribute in the world of XML
to declare namespaces.

Working with XAML

[42]

�� There are two namespaces specified in MainWindow.xaml by default.
XAML relies on XML namespaces such as these to understand the elements.

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

http://schemas.microsoft.com/winfx/2006/xaml/
presentation is is the default namespace. The default namespace allows
us to add elements to the page without specifying any prefix. So, all other
namespaces defined must have a unique prefix for reference. For example,
the namespace http://schemas.microsoft.com/winfx/2006/xaml
is defined with the prefix :x. The prefix that is mapped to the schema
allows us to reference this namespace just using the prefix instead of the
full-schema namespace.

�� XML namespaces don't have a one-to-one mapping with .NET namespaces.
WPF types are spread across multiple namespaces, and one-to-one
mapping would be rather cumbersome. So, when we refer to the
presentation, various namespaces, such as System.Windows and System.
Windows.Controls, are included.

�� All the elements and their attributes defined in MainPage.xaml should
be defined in at least one of the schemas mentioned in the root element
of XAML; otherwise, the XAML document will be invalid, and there is no
guarantee that the compiler will understand and continue.

�� When we add Rectangle in XAML, we expect Rectangle and its
attributes to be part of the default schema:

<Rectangle x:Name="someRectangle" Fill="AliceBlue"/>

What just happened?
We had a look at the XAML namespaces that we use when we create a WPF application.

Time for action – adding other namespaces in XAML
In this section, we will add another namespace apart from the default namespace:

1.	 We can use any other namespace in XAML as well. To do that, we need to declare
the XML namespaces the schemas of which we want to adhere to. The syntax to do
that is as follows:

xmlns:Prefix = "clr-namespace:Namespace;assembly=AssemblyName"

Chapter 3

[43]

Prefix is the XML prefix we want to use in our XAML to represent that
namespace. For example, the XAML namespace uses the :x prefix.

Namespace is the fully qualified .NET namespace.

AssemblyName is the assembly where the type is declared, and this
assembly could be the current project assembly or a referenced assembly.

2.	 Open the XAML view of MainWindow.xaml if it is not already open, and add the
following line of code after the reference to xmlns:x. With this reference, we can
access the types in the system namespace using the system prefix:

xmlns:system="clr-namespace:System;assembly=mscorlib"
To create an instance of an object we would have to use this
namespace prefix as
<system:Double></system:Double>

3.	 We can access the types defined in the current assembly by referencing the
namespace of the current project:

xmlns:local="clr-namespace:Chapter03"

To create an instance of an object we would have to use this
namespace prefix as

<local:MyObj></local:MyObj>

What just happened?
We saw how we can add more namespaces in XAML apart from the ones present by default
and how we can use them to create objects.

Naming elements
In XAML, it is not mandatory to add a name to every element, but we might want to name
some of the XAML elements that we want to access in the code or XAML. We can change
properties or attach the event handler to, or detach it from, elements on the fly.

Working with XAML

[44]

We can set the name property by hand-coding in XAML or setting it in the properties
window. This is shown in the following screenshot:

The code-behind class
The x:Class attribute in XAML references the code-behind class for XAML. You would
notice the x:, which means that the Class attribute comes from the XAML namespace,
as discussed earlier. The value of the attribute references the MainWindow class in the
Chapter03 namespace. If we go to the MainWindow.xaml.cs file, we can see the partial
class defined there. The code-behind class is where we can put C# (or VB) code for the
implementation of event handlers and other application logic. As we discussed earlier,
it is technically possible to create all of the XAML elements in code, but that bypasses
the advantages of having XAML.

So, as these two are partial classes, they are compiled into one class. So, as C# and XAML
are equivalent and both these are partial classes, they are compiled into the same IL.

Time for action – using a named element in a code-behind class
1.	 Go to MainWindow.xaml.cs and change the background of the LayoutRoot grid

to Green:

public MainWindow()
{
 InitializeComponent();
 LayoutRoot.Background = Brushes.Green;
}

2.	 Run the application; you will see that the background color of the grid is green.

What just happened?
We accessed the element defined in XAML by its name.

Chapter 3

[45]

Default properties
The content of a XAML element is the value that we can simply put between the tags
without any specific references. For example, we can set the content of a button as follows:

<Button Content="Some text" /> or <Button > Some text </Button>

The default properties are specified in the help file. So, all we need to do is
press F1 on any of our controls to see what the value is.

Expressing properties as attributes
We can express the properties of an element as an XML attribute.

Time for action – adding elements in XAML by hand-coding
In this section, instead of dragging and dropping controls, we will add XAML code:

1.	 Move MainWindow.xaml to XAML and add the code shown here to add
TextBlock and three buttons in Grid:

<Grid x:Name="LayoutRoot">
<TextBlock Text="00:00" Height="170" Margin="49,32,38,116"
Width="429" FontSize="48"/>
 <Button Content="Start" Height="50" Margin="49,220,342,49"
 Width="125"/>
 <Button Content="Stop" Height="50" Margin="203,220,188,49"
 Width="125"/>
 <Button Content="Reset" Height="50" Margin="353,220,38,49"
 Width="125"/>
</Grid>

Working with XAML

[46]

2.	 We set a few properties for each of the elements. The property types of the various
properties are also mentioned. These are the .NET types to which the type converter
would convert them:

�� Content: This is the content displayed onscreen. This property is of the
Object type.

�� Height: This is the height of the button. This property is of the Double type.

�� Width: This is the width of the button. This property is of the Double type.

�� Margin: This is the amount of space outside the control, that is, between
the edge of the control and its container. This property is of the Thickness
type.

�� Text: This is the text displayed onscreen. This property is of the String type.

�� FontSize: This is the size of the font of the text. This property is of the
Double type.

What just happened?
We added elements in XAML with properties as XML attributes.

Non-attribute syntax
We will define a gradient background for the grid, which is a complex property. We already
had a look at the LinearGradient brush in Chapter 1, Getting Started with Blend, and
that is what we will use here. Notice that the code in the next section sets the background
property of the grid using a different type converter this time. Instead of a string-to-brush
converter, the LinearGradientBrush to brush type converter would be used.

Time for action – defining the gradient for the grid
1.	 Add the following code inside the grid.

2.	 We have specified two gradient stops. The first one is black and the second one is a
shade of green.

3.	 We have specified the starting point of LinearGradientBrush as the top-left
corner and the ending point as the bottom-right corner, so we will see a diagonal
gradient:

<Grid x:Name="LayoutRoot">
 <Grid.Background>
 <LinearGradientBrush EndPoint="1,1" StartPoint="0,0">
 <GradientStop Color="Black"/>

Chapter 3

[47]

 <GradientStop Color="#FF27EC07" Offset="1"/>
 </LinearGradientBrush>
 </Grid.Background>

The following is the output of the preceding code:

Comments in XAML
Using <!-- --> tags, we can add comments in XAML just as we add comments in XML.
Comments are really useful when we have complex XAML with lots of elements and complex
layouts:

<!-- TextBlock to show the timer -->

Styles in XAML
We would like all the buttons in our application to look the same, and we can achieve this
using styles. Here, we will just see how styles can be defined and used in XAML, but we will
have a look at styles in detail in Chapter 4, Styles and Templates.

Defining a style
We will define a style as a static resource in the window. We will go through resources in
detail in Chapter 4, Styles and Templates. We can move all the properties we define for each
button to that style.

Working with XAML

[48]

Time for action – defining a style in XAML
Add a new <Window.Resources> tag in XAML, and then add the code for the style, as
shown here:

<Window.Resources>
 <Style TargetType="Button" x:Key="MyButtonStyle">
 <Setter Property="Height" Value="50" />
 <Setter Property="Width" Value="125" />
 <Setter Property="Margin" Value="0,10" />
 <Setter Property="FontSize" Value="18"/>
 <Setter Property="FontWeight" Value="Bold" />
 <Setter Property="Background" Value="Black" />
 <Setter Property="Foreground" Value="Green" />
 </Style>
</Window.Resources>

We defined a few properties on style that are worth noting:

�� TargetType: This property specifies the type of element to which we will apply this
style. In our case, it is Button.

�� x:Key: This is the unique key to reference the style within the window.

�� Setter: The setter elements contain the property name and value.

What just happened
We defined a style for a button in the window.

Using a style
Let's use the style that we defined in the previous section. All UI controls have a style
property (from the FrameworkElement base class).

Time for action – using a style in XAML
1.	 To use a style, we have to set the style property of the element as shown in the

following code. Add the same style code to all the buttons:

�� We set the style property using curly braces ({}) because we are using
another element.

�� StaticResource denotes that we are using another resource.

Chapter 3

[49]

�� MyButtonStyle is the key to refer to the style. The following code
encapsulates the style properties:

<Button x:Name="BtnStart" Content="Start"
Grid.Row="1" Grid.Column="0"
Style="{StaticResource MyButtonStyle}"/>

The following is the output of the preceding code:

What just happened?
We used a style defined for a button.

Where to go from here
This chapter gave a brief overview of XAML, which helps you to start designing your
applications in Expression Blend. However, if you wish know more about XAML, you could
visit the following MSDN links and go through the various XAML specifications and details:

�� XAML in Silverlight: http://msdn.microsoft.com/en-us/library/
cc189054(v=vs.95).aspx

� XAML in WPF: http://msdn.microsoft.com/en-us/library/

www.allitebooks.com

http://msdn.microsoft.com/en-us/library/cc189054(v=vs.95).aspx
http://msdn.microsoft.com/en-us/library/cc189054(v=vs.95).aspx
http://msdn.microsoft.com/en-us/library/
http://www.allitebooks.org

Working with XAML

[50]

Pop quiz
Q1. How can we find out the default property of a control?

1.	 F1.

2.	 F2.

3.	 F3.

4.	 F4.

Q1. Is it possible to create a custom type converter?

1.	 Yes.

2.	 No.

Summary
We had a look at the basics of XAML, including namespaces, elements, and properties.
With this introduction, you can now hand-edit XAML, where necessary, and this will allow
you to tweak the output of Expression Blend or even hand-code an entire UI if you are
more comfortable with that.

In the next chapter, we will have a look at styles and templates.

Chapter 4

[51]

4
Styles and Templates

A style is a group of property settings that determines how a control will
appear. We see styles in almost all of the applications. In WPF and Silverlight,
styles are nothing more than collections of property setters, and, most
commonly, these properties will be the ones that relate to the appearance of
the objects.

In the previous chapter, we talked about XAML, and now, in this chapter, we will have a look
at styles and templates.

In any type of application, styles bring consistency across the whole application. We can
very easily create new styles, modify the existing ones, or create a style based on the
built-in styles.

Creating and using styles
We can design the user interfaces for our application with Blend using the default or system
controls. We can style these controls to our liking and make them behave the way we want
using styles and templates in WPF and Silverlight.

A style, in simple terms, can be a set of property values that can be shared across multiple
instances of the same or different elements. Using a style, we can do the following:

�� Modify the default values of the properties of an element, such as specifying the
background, height, width, and so on

�� Specify a default behavior of the element, such as defining a trigger so that when
the mouse enters the element, the background color of the element changes

Styles and Templates

[52]

A style looks somewhat similar to the following code; we will have a look in detail at how we
can create, modify, and use styles in this chapter:

<Style x:Key="ButtonStyle1" TargetType="{x:Type Control}">
 <Style.Setters>
 <Setter Property="Height" Value="50"/>
 <Setter Property="Width" Value="200"/>
 <Setter Property="Background" Value="Green"/>
 <Setter Property="Foreground" Value="White"/>
 </Style.Setters>
</Style>

An introduction to styles
A resource is a reusable value. It can be a brush, a gradient, or even an animation. It is a
markup extension that could have a key (not mandatory). The key is the item used to access
a resource at the markup or code level. We could apply a resource to a single element, such
as a button, everything in a window, or the entire application, depending on the scope at
which the resource is defined. We can define a resource at:

�� The application level: The resource is accessible to the elements in the application

�� The document level: The resource is accessible to all the elements in the window,
page, or user control

�� The element level: The resource is accessible only to that element and its
child elements

WPF looks for the resource first at the element level, then at the parent level, and finally, at
the application level. It is a good practice to have a unique key defined for each resource;
however, if the key is not unique, then the first resource encountered with the key is used.

There are two types of resources:

�� Static resources: These resources are retrieved once and then used for the lifetime
of the resource.

�� Dynamic resources: These resources are retrieved every time they are used.
Dynamic resources are loaded every time the resource changes and also track the
changes in the resource at runtime. Dynamic resources are not loaded until they are
used. A dynamic resource does not need to be defined before referencing.

Chapter 4

[53]

Time for action – creating a resource
1.	 Add a new window to the project and name it ResourceSample.xaml.

2.	 After you click on OK, select Rectangle from the Tools panel, and draw a rectangle
onto the art board. This is shown in the following screenshot:

3.	 Now, add Fill to the rectangle from the Properties panel, as shown here:

Styles and Templates

[54]

4.	 Click on the white square at the end of the Fill property and select Convert to New
Resource…. This is shown in the following screenshot:

5.	 This will present us with an option to create a new resource. We will select the
scope of the resource as Application, name the resource FillGreen, and click
on OK. The following screenshot depicts this:

Chapter 4

[55]

6.	 Now, if we take a look at the Brush resources available to us, we will see that the
new resource we created is also available to us, as shown here:

What just happened?
We created a resource in Blend.

The resource dictionary
A resource dictionary is a collection of all the resources (styles, templates, animations,
and so on) that can be used within the application. Resource dictionaries can be merged.
Resources can't be merged.

We will work with a resource dictionary later in the chapter.

Styles and Templates

[56]

Simple styles
Simple styles are available in Blend for a set of common system controls (button, label, and
so on). The reason why Blend provides this functionality is that it helps users who have little
or no knowledge of WPF styles and templates and who might break the functionality of the
controls while modifying the control. This set of resources could be sufficient in certain cases
to give a unique look and feel to our application.

Note: We cannot apply multiple styles to a
single element.

Creating a simple styled control
We can access Simple Styles in the Assets panel by clicking on Simple Styles in the Styles
category. To use these styles, we simply need to drag and drop the simple style onto the
art board, and an instance of the control is created and the style is applied to it. This is
illustrated in much detail in the following screenshot:

Chapter 4

[57]

Let's drag and drop SimpleButton onto the art board. When we do that, a couple of things
will happen:

�� An instance of the button control is added onto the art board with a simple
style (obviously).

�� A resource dictionary (Simple Styles.xaml) is added to the project that contains
the styles for all the simple styles, so all the resources are available under the
Resources panel. This is shown in the following screenshot:

Styles and Templates

[58]

Changing colors
We can change the colors used by the styles. To do that, we need to click on the down arrow
next to the color resource in the Resources panel and select the brush we want.

Making a change to a style is different than making a change to a control
as changing a style changes every instance of the control to which the style
is applied, whereas changing a control only applies the changes to the
changed control.

Changing styles
We use style in Blend to specify the properties that are used as defaults by the control on
which the style is applied. The properties affect the appearance of the controls. To change
any of the simple styles in our resources, we need to click on the Edit resource button next
to the simple style that we want to edit. Take a look at the following screenshot that shows
this in detail:

Chapter 4

[59]

Changing control templates
The control template defines the appearance of the control. To change a control template,
click on Edit resource as before, move to the Objects and Timeline panel, right-click the style
element, move to Edit Template, and click on Edit Current. This step is shown in intricate
detail in the following screenshot:

We can apply these styles and templates to other controls of the same or inherited type
as well.

Style specification
The behavior of a style may be different depending on the properties we define in the style.

Styles and Templates

[60]

Specifying TargetType of a style
TargetType specifies the type of the element on which the style is targeted. This type
of specification is generally used in places where we want all the instances of a particular
element to pick the styles by default. In this type of specification, we specify a style with
a type rather than a key so that it applies to all the elements of a particular type. We have
already seen this in action in the preceding section, where we defined the button style with
the scope to apply to all. We defined a style with TargetType as Button, and the buttons
defined in the application will have style applied to them automatically. The following code
shows this:

<Style TargetType="Button">
 Or
<Style TargetType="{x:Type Button}">

There is no difference between these two as WPF internal conversion converts Button to
System.Type, which is a button, and, hence, is equivalent to specifying x:Type Button.
But it is recommended that you use the explicit specification (x:Type).

This approach works because the style will generate a self-key and use the target type that
we have specified as a key (-*+).

Specifying the key for a style
We can specify the key for a style so that it can be explicitly referenced in the elements
to apply the style. When we define a style with a key, that style will not be applied to
the elements by default. Along with the key, we also need to specify TargetType of the
element we want to apply the style to. This will allow us to set the properties specific to that
element rather than setting the generic properties of the FrameworkElement class. The
FrameworkElement class is the base class from which all the elements inherit. This is amply
illustrated in the following code and depicted well in the screenshot that follows the code:

<Grid>
 <Grid.Resources>
 <Style x:Key="ButtonStyle1" TargetType="{x:Type Button}">
 <Style.Setters>
 <Setter Property="Height" Value="50"/>

Chapter 4

[61]

 <Setter Property="Width" Value="200"/>
 <Setter Property="Background" Value="Green"/>
 <Setter Property="Foreground" Value="White"/>
 <Setter Property="HorizontalAlignment" Value="Center"/>
 <Setter Property="VerticalAlignment" Value="Center"/>
 </Style.Setters>
 </Style>
 </Grid.Resources>

 <Button Content="Button" Style="{StaticResource ButtonStyle1}" />
 <Button Content="Button" />
</Grid>

Application skinning
Application skinning refers to changing the visual appearance and behavior of the UI
elements in our application. Multiple resources can be stored in a resource dictionary file
and then added to multiple projects. By doing this, we can define in a resource dictionary
a theme for our application by storing color resources, styles, and templates for common
controls. We can have multiple resource dictionaries for the application, and we can choose
one dictionary to have a particular style for the application. We can load the styles we want
to apply from the merged dictionary collection. We can provide skinning at runtime by
loading these dictionaries at runtime.

Styles and Templates

[62]

Time for action – creating resource dictionaries
1.	 Let's drag and drop a button onto the art board. Now right-click on Button, and then

click on Edit Template | Edit a Copy…. This is shown in the following screenshot:

Once we do that, we will see a new window opened that has the option to provide
a name for the style resource we are creating and also the option to select the
location where this style resource will be placed. However, the resource dictionary
section is disabled because there is no resource dictionary present at this moment.

2.	 So, we will go ahead and create a new resource dictionary by clicking on
the New button next to Resource dictionary. This is precisely shown in the
following screenshot:

Chapter 4

[63]

3.	 Once we do that, we have an option to provide a name for the resource dictionary.
Once we click on OK, we move back to the Create Style Resource screen. This action
is described in the following screenshot:

4.	 Once we click on OK on the Create Style Resource screen, we see that we have
moved to ResourceDictionary1.xaml. And we are editing Button Template.
This is encapsulated in this screenshot:

Styles and Templates

[64]

Templates
A template defines the hierarchy of the elements as well as their styles in a control. Using
templates, we can modify the structure of the control to which the template is applied. We
have two types of templates available in WPF and Silverlight that are as follows:

�� The control template: It defines the appearance and structure of the control. For
example, we can define the control template of a button to look like a circle but still
have its click and other behaviors unaltered.

�� The data template: This template specifies a group of characteristics for how
data should be displayed. This template is particularly useful when you bind
ItemsControl, such as ListBox, to an entire collection. We will have a look at data
templates in Chapter 9, User Controls and Custom Controls.

Editing the template
Templates are defined as a way to reuse the structure of objects or elements. We can also
add behaviors to a template; this is explained in detail in Chapter 5, Behaviors and States in
Blend. Templates are resources and can be defined at the application, window, or element
level just as in the case of any other resource. Wherever we use the template, a new copy of
the template is generated. So, actually, a template behaves like a factory that creates a copy
of the UI tree wherever it is used. This is really useful when we do DataBinding or control
customization. Once we have created a template, we have the option to modify the template
as well.

Time for action – editing the template
To edit the template of a button, perform the following steps:

1.	 To edit the template of a button, we need to right-click on the button and
select Edit Template | Edit Current. This action is described in great detail in the
following screenshot:

Chapter 4

[65]

2.	 We will see the components of the template. We also notice that the presentation
of the button is made up of a border with a content presenter in it.

3.	 Change Layout Type from Border to Grid and rename Border to LayoutGrid. This
is shown in the following screenshot:

4.	 Go to the Assets panel, search for Ellipse, and select and drag Ellipse in the grid
above contentPresenter. This is depicted in the following screenshot:

Styles and Templates

[66]

5.	 Select LayoutGrid in the Objects and Timeline panel and Reset the
Background property in the Property panel. This is amply conveyed to you
by the following screenshot:

6.	 Select Ellipse in the Objects and Timeline panel, and then change the
following properties:

�� Set Height and Width of Ellipse to auto

�� Set HorizontalAlignment and VerticalAlignment of Ellipse to Center

�� Set Fill of Ellipse to a shade of green

Chapter 4

[67]

7.	 Now, when we look at the button, it doesn't look similar to what it looked like
before. The following screenshot shows the button as it looks like now:

8.	 Now, this template is present in ResourceDictionary1.xaml and available at
the application level. This is the default template applied to every button unless we
specify otherwise since we did not assign a key to the template.

What just happened?
We edited a template and then used it with a Button instance.

Merged dictionaries
If we move our focus back to resource dictionaries, we will see that we can have multiple
resource dictionaries that can be merged to provide a themed application. Here is a snapshot
of the App.xaml file after the creation of ResourceDictionary1.xaml:

Using ResourceDictionaries, we can provide skinning to an application and use the
resources from ResourceDictionary in our application.

Styles and Templates

[68]

One important point to note about resource dictionaries is that we can have multiple
resources with the same key in different resource dictionaries. When the system is looking
for a particular resource in the resource dictionaries, it stops the search at the moment it
encounters the first instance of that resource. This may be the reason why a style does not
behave the way we expect it to.

An error will be raised if StaticResource is not found anywhere
in the application.

Pop quiz
Q1. How do I apply a style to only one button?

1.	 <Style TargetType="{x:Type Button}" x:Key="AButtonStyle"> </
Style>.

2.	 Style TargetType="{x:Type Button}"> </Style>.

3.	 <Style x:Key="AButtonStyle"> </Style>.

Summary
In this chapter, we had a look at customizing the look of a control using styles and templates.

[69]

Behaviors and States in Blend

Behaviors are reusable code packages that can be added to any object and then
fine-tuned by changing their properties. They let us capture, and play with,
events in our XAML without the need to write any code.

In the previous chapter, we had a look at styles and templates in Blend and saw how we
could create, modify, and use styles and templates. In this chapter, we will have a look at the
following topics:

�� Behaviors

�� Visual states

�� Visual State Manager

An introduction to behavior objects
We can add interactivity to applications in many ways, and behaviors are one of them.
By using behaviors, we can move out of the limited scope of storyboards and design our
applications to respond to users using behaviors available with Blend. We can record the
behavior of an object in XAML and then start, play, or pause it. Using behavior, we can
modify how the element inherently behaves and how it responds to user actions.

Storyboards are containers to hold animation information. We will have a look
at storyboards in detail in Chapter 6, Understanding Animation and Storyboards.

5

Behaviors and States in Blend

[70]

Adding built-in behaviors
There are multiple built-in behaviors available in Blend that can be used simply by dragging
and dropping onto the element on which we want the behavior. Some behaviors work upon
simply dragging and dropping, while others would require property modifications before
they can be enabled.

Types of built-in behaviors
There are the following types of built-in behaviors:

�� Animation behaviors: We can apply these behaviors to a storyboard or to a
transition animation so that it appears smooth.

�� Conditional behaviors: We can use conditional behaviors to link an action to an
event, the condition of which evaluates to true. We can apply these conditions by
modifying properties in the Properties panel.

�� Data behaviors: We can use these behaviors to interact with data in multiple ways—
adding and modifying properties using a data store, firing different actions based on
changes in the data store, and applying visual state changes based on the data store.

�� Motion behaviors: We can use these behaviors to allow users to control the
movement of elements onscreen. The motion behaviors available in WPF are
MouseDragElementBehavior and TranslateZoomRotateBehavior. We will
have a look at these later in the chapter.

Animation behaviors
These are the behaviors that we can apply to an animation for it to appear smoother.

Time for action – adding a storyboard
Let's use built-in behaviors. We will make use of the same project that we created in the last
chapter and add behaviors to it. Navigate to Chapter5\Before\Chapter05 in the code
bundle of this book.

ControlStoryboardAction

Perform the following steps to use the ControlStoryboardAction behavior:

1.	 Go to the Assets panel and select Behaviors.

2.	 We can see the list of available behaviors. We will have a look at a few of these in
detail, and the others should be obvious after that.

Chapter 5

[71]

3.	 Select the ControlStoryboardAction behavior and drag it onto the ball. The
following is the output of these actions:

Once we have added the behavior to the ball, we see a couple of things.

4.	 We see the Objects and Timeline panel, and, when we expand the ellipse, we can
see that a ControlStoryboardAction behavior is added to the ellipse.

5.	 We see some changes in the Properties panel as it now displays the various options
to configure the ControlStoryboardAction behavior we just added. The following
screenshot shows this:

Behaviors and States in Blend

[72]

A few of the options available to configure are as follows:

�� The first option that we see is SourceName. This is the property that lets us select
the element, the events of which would trigger the storyboard. This element could
be same as the element that has the storyboard, or it could be any other element.
When we click on the … (browse) button, Blend will show a popup to select the
elements, the events of which we could use as a trigger to perform operations on
the storyboard. Alternatively, if we click on the circular icon before the browse
button, Blend lets us choose the element from the art board just by clicking on it.
This is shown by the following screenshot:

�� The next item that we see is SourceObject. This is actually used for DataBinding. If
we click the circular button, we can choose the data source; otherwise, we could
click on the database button to configure the DataBinding for EventTrigger.

�� The next option that we see lets us select EventName on which we want our
storyboard action to be performed. This will contain a list of events that are
available for the source element we selected, including base class events. The
following screenshot shows this:

Chapter 5

[73]

�� The next option that we see is Condition. This is the place where we can add certain
conditions that match the DataBinding.

�� In the next section, we find the various options to control the storyboard. Also, we
have the option to enable or disable the behavior by checking or unchecking the
IsEnabled checkbox.

FluidMoveBehavior

This type of behavior is particularly useful when we want to smoothly move an element
from one position to another. The Properties panel of FluidMovePanel looks as shown in
the next screenshot. We can set the time limit for the behavior, easing functions, and so on.
We could also configure it to say whether the behavior is applicable to the element itself or
its children. This type of behavior is useful in situations where we are adding or removing
elements from a panel or changing the position of an element.

FluidMoveSetTagBehavior

This behavior is generally used to write information to a data store that is used by
FluidMoveBehavior.

Conditional behaviors
The following are the different types of conditional behaviors:

�� CallMethodAction: We can use this behavior to call a method on DataContext
of an element when an event occurs

�� ChangePropertyAction: We can use this behavior to change the property of an
object

Behaviors and States in Blend

[74]

�� ControlStoryboardAction: We can use this behavior to control the state of a
storyboard by specifying various actions, such as play, pause, or stopped

�� GoToStateAction: We can use this behavior to enable or show a particular visual
state

�� HyperlinkAction: We can use this action to browse through a website address

�� InvokeCommandAction: We can use this behavior to invoke a command that is
available in the data source

�� LaunchUriOrFileAction: We can use this behavior to browse through a website
or launch an application

�� PlaySoundAction: We can use this behavior to play a sound file

�� RemoveElementAction: We can use this behavior to remove an element from the
logical tree

�� SetDataStoreValueAction: We can use this behavior to automatically adjust the
values of our data store at runtime

Data state behaviors
The following are the different types of data state behaviors:

�� CallMethodAction: We can use this behavior to call a method on DataContext
of an element when an event occurs.

�� DataStateBehavior: We can use this behavior to change the visual of an object
based on the state of the data that it is bound to. The data state evaluates to true or
false, which determines whether the element goes to that state or not.

�� FuildMoveSetTagBehavor: This behavior is generally used to write information
to a data store that is used by the FluidMoveBehavior.

�� InvokeCommandAction: We can use this behavior to invoke a command that is
available in the data source.

�� SetDataStoreValueAction: We can use this behavior to automatically adjust the
values of our data store at runtime.

Motion behaviors
We can use motion behaviors to affect the movements of elements onscreen.

MouseDragElementBehavior

We can use this behavior to enable the user to drag the element within or outside
the bounds of the application. To see this behavior in action, we need to disable the
ControlStoryboardAction behavior. We can do that by unchecking the IsEnabled
checkbox in the properties of ControlStoryboardAction.

Chapter 5

[75]

TranslateZoomRotateBehavior

This behavior is available only to touchscreens. We can use this behavior to
translate, rotate, and scale an element. From the Assets panel, select and drag
MouseDragElementBehavior onto the ball. This is shown in the following screenshot:

Once we do that, we can see a set of properties, as shown in the following screenshot.
The important property to note here is ConstrainToParentBounds. If this property is
enabled, we will not be able to drag the element outside the boundaries of the element's
parent, which, in this case, is the grid layout.

Behaviors and States in Blend

[76]

Visual states
For predefined visual states in the inbuilt controls, there already exists a mechanism to
switch states. For visual states that we create on our own, we will have to provide the logic
to switch the visual states. We can define a different visual appearance for each visual state
our controls can have. These controls can be user control, window, page, control template,
or any of their subclasses, such as button.

Visual states are grouped into state groups, which are instances of VisualStateGroup. In
each state group, it is mandatory to have a default state. A state group contains any visual
states that are part of the same logical category, and that cannot be displayed at the same
time, whereas the states contained in one group are independent of the states of other
groups. This gives us the flexibility of applying any state present in different state groups at
any point in time. The only thing that we need to be careful of is the states we are applying
at the same time, multiple states should not try to change the same property of an object
at the same time. This conflict is detected by Blend within a state group and is notified by
displaying a warning icon next to the conflicting state.

The following are the three stages in designing visual states:

�� Static stage: This is the stage in which we design the various visual states that we
want our control to be in. In this stage, we do not think about anything else, such as
the transition between these states.

�� Transitions stage: At this stage, we can add transition effects between visual states.
We can also configure the various easing effects that are available.

�� Dynamic stage: This is the stage in which we can have in-state animations. These are
the animations that we add within a state action.

Visual State Manager
Visual State Manager, as its name implies, helps us manage the visual states of controls.
It is a simple and powerful means to provide state transitions to controls, while hiding a
lot of the animation mechanisms from them. Visual State Manager helps us define the
appearance of a control based on the user interaction. Every control has predefined states,
and Visual State Manager manages the logic of transitioning between these predefined
states. It also allows us to specify the states of various controls. We can have a look at
the VisualStateManager class in detail at http://msdn.microsoft.com/en-us/
library/system.windows.visualstatemanager(v=vs.110).aspx.

http://msdn.microsoft.com/en-us/library/system.windows.visualstatemanager(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.windows.visualstatemanager(v=vs.110).aspx

Chapter 5

[77]

Time for action – modifying with visual states
A button in WPF has default visual states, and we see these different visual states when
we interact with the button by clicking on it or by hovering the mouse over it. We will
modify these states, add a new state, and see the transition between these states on user
interaction.

1.	 Create a new project in Blend and name it VSMDemo. Add a button to the art board.
Now right-click on the button, navigate to Edit Template | Edit a Copy…, and you
would see a dialog box prompting you to give a name to this resource. Give a name
and click on Ok. The following screenshot shows this:

Behaviors and States in Blend

[78]

2.	 Select the States panel, and you will see the default states of the button. There are
three default states:

�� CommonStates

Normal: This is the state of the button when no interaction is happening
with the button.

MouseOver: This is the state when the mouse rolls over the button

Pressed: This is the state when the button is clicked on

Disabled: This is the state when the button is disabled

�� FocusStates

Unfocused: This is the state when the button is not in focus

Focused: This is the state when the button is in focus

�� ValidationStates

InvalidFocused: This is the state when the button is focused and the
validation fails

InvalidUnfocused: This is the state when the validation fails and the button
is not in focus

Valid: This is the state when the validation passes

Chapter 5

[79]

The state groups are mutually exclusive groups of states that a control can be
in at the same time. As in the preceding sample, the button could be in the
Normal and Unfocused states, but it cannot be in the Normal and MouseOver
states at the same time.

3.	 The state group for the button already exists, but, if we are not satisfied with the
default, we can add a new state group by clicking on the Add state group button.
This is shown in the following screenshot:

4.	 Let's edit the Normal visual state. Select Normal under CommonStates and then
select border in the Objects and Timeline panel. Notice the red indicator stating
Normal state recording is on. This indicates that the changes that we are making
to the Normal state are being recorded. We can toggle it between on and off by
clicking on the red indicator. We will change Background of the button for this state.
To do this, we would need to reset Template Binding of Background by clicking
on the square next to the Background property and selecting Reset. The following
screenshot shows this:

Behaviors and States in Blend

[80]

5.	 Change the background color of the border to a shade of blue, as shown in the
following screenshot:

6.	 Similarly, change the background color of the border of the mouseover visual state
now to a shade of green.

7.	 We could also add new states by clicking on the Add state button:

8.	 Now, let's add a transition effect to between the state changes. Click on Transition
Effect for CommonStates and select Wipe. The following screenshot shows this:

Chapter 5

[81]

9.	 We will apply an Easing Effect cubic out to make the transition between states
smooth, as shown in the following screenshot:

Behaviors and States in Blend

[82]

10.	 If we run the application now, we notice that the state changes are happening
instantaneously. We can configure this transition to be smoother by changing the
transition duration from 0 sec to 0.5 sec, as shown in the following screenshot:

11.	 Now, run the application. When we move the mouse over the button, we should
see the transition from blue to green, as shown in the following image:

12.	 When we have a look at the XAML code for visual states, we can see
VisualStateGroup as CommonStates. We can also see that we have set the
Background property of the border panel for the Normal and MouseOver states.
This is shown in the following XAML code:

Chapter 5

[83]

What just happened?
We saw the various visual states present in button and modified a couple of them, and
those changes are in effect. We also added the transition effect and the easing effect to the
common states button. We can add similar or different behaviors to any element.

Have a go hero
Add more property changes in the state, such as font size, gradient background, and so
on, to the home button, and add different states to the other buttons as well. Also, apply
different transition effects to the visual states.

Pop quiz
Q1. Can an element be in multiple states at the same time?

1.	 Yes, if each of these multiple states belong to different state groups.

2.	 Yes, if each of these multiple states belong to same state groups.

3.	 Yes and these multiple states could belong to same or different state groups.

4.	 No.

Q2. Is it possible to default the visual states of a control?

1.	 Yes but cannot be done through Blend.

2.	 Yes and can be done through Blend.

3.	 Yes but requires advanced coding skills.

4.	 Not possible.

Summary
In this chapter, we had a look at the various panels and controls, including behaviors,
visual states, and Visual State Manager.

In the next chapter, we will have a look at storyboards and animations.

Chapter 6

[85]

6
Understanding Animation

and Storyboards

Animations create the illusion of a scene by changing a series of different
images, and the brain perceives it as a scene.

In the previous chapter, we talked about XAML—how we declare various elements in XAML
and how we could assign various properties.

In this chapter, we will cover the following topics:

�� Animations

�� Storyboards

There are two popular animation techniques that are generally used. One is frame-based
animation and the other is time-based animation.

In frame-based animation, the animation that we create is cut into frames and displayed
one frame at a time. In a film, the camera does this by recording many photographs (frames)
per second, and, when it is played back, it feels like a moving picture. The computer works
in a similar way except that the frames can be further apart in time and the computer will
animate and interpolate any changes in between. The problem with such kinds of animations
is that they become resource intensive when they run.

Animations in WPF and Silverlight are based on keyframes (time-based animation), where
we define the start and end points of a visual transition, and the framework interpolates the
property changes over time and displays the animation in our application. We will talk about
keyframes in detail further on in the chapter.

Understanding Animation and Storyboards

[86]

Understanding the animation service
Let's create a project, and, along the way, we will talk more about animation. Create a new
WPF application and name it Chapter06. We will start off by creating a simple animation of
a ball moving from left to right onscreen. Go over to the Assets panel, select Ellipse, draw a
circle on the screen, and give it a background color, as shown in the following screenshot:

Storyboards
Storyboards are containers to hold animation information. In the storyboard, we specify
keyframes on a timeline to mark property changes, such as color, size, and so on, as
we are creating the animation, run the animation storyboard to see how it works, and
make adjustments. We can also control when, where, and how our storyboards run. The
storyboard will determine the state of objects at any time during the animation. The
storyboard doesn't change the base value of the property. It saves the current value and
shows the animation for the specified duration. Then, it either restores the initial value or
holds a specific value until the storyboard is removed. Any property of an object can be a
target in the storyboard.

We can find more details about the storyboard class at http://msdn.microsoft.com/
en-us/library/system.windows.media.animation.storyboard.aspx.

Chapter 6

[87]

We can also create animations programmatically in code-behind files.
This topic is beyond the scope of this book, but we can find more
details at http://msdn.microsoft.com/en-us/
library/.

Time for action – adding the storyboard
1. Go over to the Objects and Timeline panel and click on the + button in the top-right

corner of the panel, as shown in the following screenshot. This will add a storyboard
into our application.

2. Once we click on the + button to add a storyboard, we will see a popup that asks us
to either specify the name of the storyboard or apply the storyboard to all instances
of the element. As we do not want to apply this storyboard to all ellipses, so we will
change the name of the storyboard to MoveBall. This is the name that will be used
to reference the storyboard in XAML as well as code. The storyboards are resources
as evident in the title of the Storyboard Resource popup. The next screenshot
shows this. So, just like any resources, storyboards could be reused and are available
in the resources section of the Blend IDE. However, animations are very tightly
coupled with the elements, so, generally, it is not useful to store the animation at
application level unless we are using the same element at multiple places in the
application for animations.

http://msdn.microsoft.com/en-us/library/
http://msdn.microsoft.com/en-us/library/

Understanding Animation and Storyboards

[88]

What just happened?
When we click on OK, we see a screen similar to the one shown here. This is also known as
animation workspace and is the place where we could design our animation.

In the Objects and Timeline panel, Blend contains a storyboard picker control, from which
we can search and select a storyboard in our project. This picker shows us the list of the
available storyboards that we can open. This is demonstrated in the following screenshot:

Chapter 6

[89]

We can test the storyboard at the design time itself without having to run the application.
When we select a storyboard, we see the playback controls on the Objects and Timeline
panel. Let's go through them one by one from left to right:

�� First frame: This moves the playhead to the first frame of the animation

�� Previous frame: This moves the playhead to the previous frame

�� Play: This plays the animation from the current point in time, that is, from the
current position of the playhead

�� Next frame: This moves the playhead to the next frame

�� Last frame: This moves the playhead to the last frame

After selecting the storyboard, if we right-click on the animation name, we see multiple
options in a popup. Each option in the popup is described in the following list:

�� New: This creates a new storyboard and asks for a name for it

�� Duplicate: This creates a new storyboard that is the same as the existing one

�� Reverse: This reverses the sequence and keyframes of the existing storyboard

�� Delete: This deletes the selected storyboard

�� Rename: This provides us with the option to rename the storyboard

�� Close: This closes the animation view and storyboard

We can control storyboards using triggers (discussed later in the chapter).

Understanding Animation and Storyboards

[90]

Timelines
Animations in Blend are composed of timelines recorded on keyframes that represent the
timing of property changes. Timelines provide a structure to the animation sequence in our
application. We can think of the timeline as a layer on which the property changes of the
objects are applied. The three sections of a timeline are depicted in the following screenshot:

�� We can see the timeline inside the Objects and Timeline panel. At the top of the
Timeline panel, we can see the various controls to play and seek the animation
we are designing. The play button is enabled once we have added at least one
animation timeframe.

�� In the second section, we see the current playhead position, which was
0:00.000 when we created the storyboard. Also, the other two options next to
this playhead position are snapping options. The format of the time displayed is
MM:SS:xxx (minutes, seconds, milliseconds) of the currently selected point.

�� The third section that we see shows the visual representation of the playhead
position, and we can drag it to the position we want.

Timeline recording
The center section displays the position of the objects at the current playhead position.
The red border that we see alongside the art board shows that the timeline recording is on
and any property changes that we make to the object will be recorded at the time marked
by the playhead. Once we are done editing the storyboard, we can turn off the timeline
recording by clicking on the top-left portion of the recording area. Also, just below the
Objects and Timeline label, we can see that the storyboard we are working with is selected
and has a red icon next to it that shows we are in the recording mode.

Chapter 6

[91]

Properties
The right section is the Properties panel, which we use to specify the properties of the
objects, but the difference here is that the properties that we change will be recorded
as keyframes.

Animation workspace
The animation workspace allows more space to work with the animation by positioning the
various panels.

Time for action – switching workspaces
When we press Ctrl + F11, Blend toggles between the design workspace and the animation
workspace. In the animation workspace, we have more space to work with animation. This is
shown in the following screenshot:

Understanding Animation and Storyboards

[92]

What just happened?
We just switched workspaces, from the design workspace to the animation workspace.
When we press Ctrl + F11 again, we will move back to the design workspace.

Keyframe
A keyframe in an animation sets a specific state of an object. A sequence of keyframes
defines the movement that we see, and the position of a keyframe defines the movement
timing. The first keyframe defines the starting of the animation and the next one determines
how it's going to proceed. By changing the surrounding keyframes, we can change the
starting or ending point of the transition, depending on whether the keyframe is before or
after the transition.

For example, we can set a keyframe at the 0-second mark, record the position of the ball in
the top-left corner of the art board, and then set a keyframe at the 1-second mark to record
the position of the same ball in the bottom-right corner of the art board. Now, the animation
will move the ball from the top-left corner to the bottom-right corner in 1 second.

When we run any storyboard animation, the WPF framework interpolates the property
changes over the designated period of time and then displays the results in our application.
We can use these keyframes and the storyboard to change any property of the object, and
these properties can be visible or invisible.

There are four types of keyframes in Blend:

�� Object-level keyframes: These keyframes apply to the whole object (such as an
ellipse or rectangle) or to the object that contains multiple objects (such as a grid or
canvas). In the latter case, when we expand the object node, we can see the individual
elements on which we have recorded the keyframe. As we can see in the image, we
have set the keyframe on the ellipse. To record such a keyframe, we can click on an
object, such as an ellipse or rectangle, and click on the Record Keyframe button.

�� Compound keyframes: These keyframes imply that the property has child properties
being animated. To record such a keyframe, while still in the recording mode, change
any of the compound properties of the object and link the translation and the
keyframe will be automatically created.

�� Simple keyframes: These keyframes represent the property change of a single
property. As illustrated in the screenshot, the X and Y properties are simple
keyframes. To record such a keyframe, while still in the recording mode, change
any of the simple properties of the object, and the keyframe will be automatically
created.

Chapter 6

[93]

�� Implicit keyframes: These keyframes are present when we move from one animation
to another and the second animation does not have a keyframe at the 0-second
mark. Blend animates the change from the last known value of the property to the
first keyframe of the second animation. This last known value is known as the implicit
keyframe even when this is the value between two keyframes in the first animation.

Knowledge about keyframes is useful while we are developing animations. There are times
when we do not need to see the details of all the properties being animated and work better
and faster with object-level keyframes and compound keyframes to modify a large group of
properties at the same time with a single selection.

Time for action – using keyframes
Let us add a keyframe:

1.	 Select the ellipse and click on the Record Keyframe button, as shown in the next
image. This will record the current state of the selected object. So, when we click on
the Record Keyframe button, make sure that we select only relevant objects just as
we selected the ellipse here.

2.	 A keyframe is responsible for changing the properties of an object. Once we click

on the Record Keyframe button, we can see a white mark in front of the ellipse
object as it is the object that was selected when we clicked on Record Keyframe. So,
this keyframe has the value of all the properties of ellipse at the 0 sec mark. This
is shown by the following screenshot:

What just happened?
We just added a keyframe that will be in the initial state for the animation to start.

Understanding Animation and Storyboards

[94]

Translation and rotation animation
Let's now add some transformation to the ball so that our animation looks more realistic.

Time for action – using transforms
Perform the following steps to add some transformation to the ball:

1.	 Now, move the playhead in the Timeline panel from the current position, that
is, 0, to 1. Click on and drag the ellipse to the bottom-right corner of the art board.
When we drag the ellipse, we will notice a few changes:

�� The play button is now enabled. When we click on it, we can see the

animation playing. And, we see a highlighted white mark of the
playhead in front of the ellipse. So, this keyframe saves all the properties
of the ellipse at the 1 sec mark.

�� We also see a series of dots connecting the original position of the ellipse to
the new position. This actually depicts the path that the ellipse will follow
when the animation happens. This is shown in the following screenshot:

2.	 The animation that we have created moves the ball from the top-left corner to
the bottom-right corner of our art board. When we go to the Transform section in
the Properties panel with the ellipse, we see the multiple transforms available to
apply to an element. The first one is the Translate transform, which specifies the
position of the element using the TranslateX and TranslateY properties. In the
following image, we can see the TranslateX and TranslateY properties at the 0
sec and 1 sec marks. This means that, in 1 sec, the ellipse will move 400 pixels to
the right and 200 pixels toward the bottom.

Chapter 6

[95]

3.	 The next transform that we have is Rotate. We can also add rotation animation to
the ball. To do that, move the playhead to the 1 sec mark if it is not already there.
Then, move the Transform section in the Properties panel if it is not already there.
Select rotate transform and change the rotation angle from o to 180. By doing this,
we have specified that, at the 1 sec mark, the ellipse should rotate by 180, but the
animation engine of Blend will take care of rotating the ellipse by 180 degrees over
the time period of 1 sec. Now, if we play the animation, we would see that the ball
will translate as well as rotate. The following screenshot shows this:

What just happened?
We just added translate as well as rotate transformations on the ball.

Have a go hero
Add multiple transformations to the ellipse and see their effects.

Understanding Animation and Storyboards

[96]

Animation recording symbol
We also notice that, while working with animation, we see a red circle on the object that we
are animating, and that we can expand the ellipse to see details of the animations. This will
show the various transforms we have applied and the times at which these transformations
have been applied. The following screenshot shows this:

Keyframe editing
Another cool technique that we can use while working with animations is extending or
shrinking the time for one or more keyframes. We can either select the keyframe/s we want
to move to a different time or move the complete span by clicking on and dragging on the
gray area (known as the timeframe). If we want to extend the time for a keyframe, we will
need to click on and drag the blue area at the end of the timeframe (the gray area). This
discussion is encapsulated by the following screenshot:

Chapter 6

[97]

The Timeline zoom feature
Another feature that comes in handy at times is the Timeline zoom feature; this comes in
handy when we are working with very short timespans. Timeline zoom is available at the
bottom of the timeline. We could just click on it and enter the zoom value that we want for
the Timeline panel. So, it will show even smaller time intervals to work with. The following
screenshot depicts this:

Storyboard properties
Now let's select the storyboard that we just created. When we do that, we can see a few
properties in the Properties panel of the storyboard, as shown in the following screenshot:

Understanding Animation and Storyboards

[98]

The properties in the Properties panel of the storyboard are described here:

�� AutoReverse: This will play the animation in the reverse direction once the
animation finishes.

�� RepeatBehavior: This will repeat the animation a specified number of times. The
options that we see here are 1x, 2x, 3x, and Forever. x represents the number of
times an animation will run. We can also set RepeatBehavior for the number of
times we want the behavior repeated by editing it manually. We can also specify the
time for which we want to run the animation. The following are the two formats in
which we can specify the amount of time for which we want the animation to run:

�� hours:minutes:seconds

�� days.hours:minutes:seconds.fractionalSeconds

The following screenshots capture the essence of the preceding paragraph:

Now, when we run the animation after selecting these behaviors, we will see these
properties in action by ourselves.

XAML for the storyboard
In the previous section, we saw how we can create a simple animation, and we used the
Blend designing interface to do that. Now, let's take look at the XAML code generated by
Blend in the background and see how we can tweak that to make changes. The following is
the XAML code generated:

<Window.Resources>
 <Storyboard x:Key="MoveBall" RepeatBehavior="00:00:15"
 AutoReverse="False">

Chapter 6

[99]

 <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="
 (UIElement.RenderTransform).(TransformGroup.Children)[3].
 (TranslateTransform.X)" Storyboard.TargetName="ellipse">
 <EasingDoubleKeyFrame KeyTime="0" Value="0"/>
 <EasingDoubleKeyFrame KeyTime="0:0:2" Value="400"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="
 (UIElement.RenderTransform).(TransformGroup.Children)[3].
 (TranslateTransform.Y)" Storyboard.TargetName="ellipse">
 <EasingDoubleKeyFrame KeyTime="0" Value="0"/>
 <EasingDoubleKeyFrame KeyTime="0:0:2" Value="200">
 <EasingDoubleKeyFrame.EasingFunction>
 <BounceEase EasingMode="EaseOut"/>
 </EasingDoubleKeyFrame.EasingFunction>
 </EasingDoubleKeyFrame>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="
 (UIElement.RenderTransform).(TransformGroup.Children)[2].
 (RotateTransform.Angle)" Storyboard.TargetName="ellipse">
 <EasingDoubleKeyFrame KeyTime="0" Value="0"/>
 <EasingDoubleKeyFrame KeyTime="0:0:2" Value="180"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
</Window.Resources>
<Window.Triggers>
 <EventTrigger RoutedEvent="FrameworkElement.Loaded">
 <BeginStoryboard Storyboard="{StaticResource MoveBall}"/>
 </EventTrigger>
</Window.Triggers>

There are a few points to note:

�� The storyboard is placed in the Window.Resources tag. This means that this
storyboard is accessible to all the elements inside this window. The other places to
place this storyboard are:

�� Inside the element itself that we are animating; this will make sure that this
storyboard is accessible only to that element

�� App.xaml or resource dictionary is the other place, which will make the
storyboard available to all the objects and elements in the application

�� Then, we see that the storyboard has key (MoveBall), which we specified while
creating our storyboard.

Understanding Animation and Storyboards

[100]

�� Then, we see sections of DoubleAnimationUsingKeyFrames. These are
sections that are used to perform the animation as these are places where all the
information about the animation is stored. DoubleAnimationUsingKeyFrames is
created when we deal with double values. The animation type that we are dealing
with should match the storage type. Multiple types of animations are available
in Blend, such as ColorAnimation to change colors, ThicknessAnimation
for changing thickness, and so on. You can find more information on the
types of animations at http://msdn.microsoft.com/en-us/library/
cc189038(v=vs.95).aspx#animation_types.

�� In the first instance of DoubleAnimationUsingKeyFrames,
TargetProperty is TranslateTransform.X. TranslateTransform
is used to move an element from one position to another. The X and
Y properties are used to move an element toward the x and y axes.
TranslateTransform.X specifies how much the ellipse will move in the
horizontal direction. We can also see the time that will be taken to move,
which is specified as the KeyTime property, and the amount that it will move
is specified using the Value property of EasingDoubleKeyFrame.

�� In the second instance of DoubleAnimationUsingKeyFrames,
TargetProperty is TranslateTransform.Y, and this specifies how
much the ellipse will move in the vertical direction. We can also see the
time that will be taken to move is specified as the KeyTime property, and
the amount by which it will move is specified using the Value property of
EasingDoubleKeyFrame. EasingDoubleKeyFrame associates an easing
function with DoubleAnimationUsingKeyFrame as, in the preceding
animation, we have added the BounceEase easing function.

�� The third instance of DoubleAnimationUsingKeyFrames specifies the
rotation details, and we can see that the target property in this case is
RotateTransform.Angle, and that its value will change to 180 in
1 second.

�� Below the Window.Resources section, we can see the Window.Trigger section,
which specifies at what event this animation will start. Currently, the storyboard is
configured to start at the Loaded event. So, if we run this application, as soon as the
load is complete, the animation will start.

So, we have figured out that storyboards are made up of structures called keyframes, and
that these structures can be changed by specifying the time, property, and value.

Chapter 6

[101]

Transition between keyframes
Using keyframe interpolation, we can define how property changes will animate between
the two keyframes. We can modify the keyframe interpolation by doing the following:

�� Selecting the predefined ease in or ease out values

�� Visually modifying the KeySpline graph

�� Using a predefined EasingFunction (complex KeySpline graph)

Easing functions
Easing functions allow us to apply custom mathematical formulas to your animations. Easing
effects in Blend can give effects like the ball slowing down or the ball moving faster (using
easing functions such as circle, cubic, and so on), or, when a ball falls, we can add bounces
(using easing functions such as bounce, elastic, and so on).

Time for action – using easing functions
Let us switch back to the design view. Expand the ellipse as shown in the image following
image. Select the Translation section in it. When we do that in the Properties panel, we see
something called EasingFunction selected as none. Go ahead and select the keyframe at
the 1 sec mark in front of Translation.Y. We will see something like the following:

Understanding Animation and Storyboards

[102]

We can see and take note of a few things:

�� We see the current value of Translation.Y as 201.25, that is, the Y position of
the rectangle at the 1 sec mark.

�� We see EasingFunction selected as None, which means that the translation will
be linear.

�� Easing functions specify the interpolation that the object will go through while
moving from one keyframe to another. When we expand the EasingFunction
dropdown, we will see a number of instances of EasingFunction:

EasingFunction is divided into three types:

�� In: This applies the easing effect to the beginning of the keyframe.

�� Out: This inverts the formula applied to the interpolation. That means that the
easing effect is not applied to the end, but starts from the end and moves toward
the beginning.

�� InOut: The easing effect starts in a straight manner, and half of the animation
is inverted.

Chapter 6

[103]

Select the Bounce Out transform. So, this will bounce the ellipse before it reaches its final
value. After selecting this effect, we also see some additional properties that we could
configure. They are the number of bounces and the bounciness of the object. Different
easing effects have different configurable options. This is shown in the following screenshot:

Also, if we go back and select the ellipse in the Objects and Timeline panel, we will see the
new path of the ellipse shown by dots, as shown in the following screenshot:

If we play the animation or run the animation, we will see that the ball is bouncing rather
than just moving in a straight line.

Understanding Animation and Storyboards

[104]

KeySpline
Next to the EasingFunction button, we can also see the KeySpline button, which could help
us achieve a finer level of easing effects in our animation. So, we can either create our own
KeySpline or use EasingFunction, which is a predefined form of KeySpline. If we click
on the KeySpline button, we will see something like the following:

The horizontal axis depicts the length of animation that has been executed and the
vertical axis represents the time passed. The straight line from the bottom-left corner
to the top-right corner specifies that the animation will proceed linearly through time.
However, we can change that by dragging the yellow circles around.

In the following image, the first setting makes the animation go faster initially and slow down
later, and the second image shows the animation proceeding slowly initially and going fast later:

What just happened?
We just added an easing function and modified KeySpline for an animation.

Have a go hero – using different easing effects
Go ahead and try different easing effects in the animation and see how they behave.

Chapter 6

[105]

Pop quiz
Q.1 How do WPF and Silverlight do the animation?

1.	 Adding and removing properties from the control

2.	 Adding properties to controls

3.	 Removing properties from control

4.	 Changing property values of controls

Q.2 How can we have the animation to run continuously repeatedly?

1.	 Set the RepeatBehavior of the animation to 1x.

2.	 Set the RepeatBehavior of the animation to Forever.

3.	 Set the RepeatBehavior of the animation to 2x.

4.	 Set the RepeatBehavior of the animation to 3x.

Summary
In this chapter, we had a look at how we can create storyboards and animation in Blend. In
the next chapter, we will have a look at user controls and custom controls.

[107]

Understanding DataBinding

DataBinding is one of the most important services offered by WPF. DataBinding
is used to connect the user interface to the information to be displayed (data
model) and the user interface back to the data model. The data source can
be properties of data from the database, XML, or other elements (including
graphical elements). DataBinding is the core of the styling, animation,
storyboard, and behaviors, and the basis of DataBinding are dependency
properties.

In the previous chapter, we had a look at animations and storyboards. We had a look at
different ways to create animations and use them in our application. This chapter will cover
the following topics:

�� Dependency properties

�� DataBinding

�� Using XML and local storage

Understanding dependency properties
A dependency property is a like a normal CLR property, the value of which we can get and
set. The only difference between the CLR property and dependency property is that the
value of the dependency property is inherited down the visual tree and it implements the
INotifyPropertyChanged interface for change notifications. All WPF entities have access
to dependency properties as they are backed by the WPF property system. The advantage of
using a dependency property is that the dependency property could dynamically derive its
value from other inputs, such as animations, styles, behaviors, storyboards, and resources.

7

Understanding DataBinding

[108]

The ultimate goal of a dependency property is to manage the state, but dependency
properties are registered with the dependency property framework, and the underlying
property value is determined by the dependency property framework based on rules defined
by the property registration.

The class that we use to create a dependency property inherits from the dependency
object. DependencyObject is a dictionary that stores the local values of the dependency
properties. The key of the dictionary item is the key defined with the dependency property.
When we access a dependency property over its .NET property wrapper, it internally calls
GetValue(DependencyProperty) to access the value. This method resolves the value
using a value resolution strategy. If a local value is available, it reads it directly from the
dictionary. If no value is set, it goes up the logical tree and searches for an inherited value.
If no value is found, it takes the default value defined in the property metadata.

More details about the dependency object can be found at http://
msdn.microsoft.com/en-us/library/system.
windows.dependencyobject(v=vs.110).aspx.

Understanding the attached property
An attached property is used as a type of global property that can be set to any object.
In WPF and Silverlight, an attached property is defined as a specialized form of the
dependency property that does not have the conventional wrapper property as we
created in the previous section.

The purpose of an attached property is to allow the child elements to set the value of the
property that actually belongs to their parent. For example, we have set the Canvas.Top
or Canvas.Left properties in child controls even when these properties actually belong
to Canvas:

<Canvas>
 <Button Canvas.Top="100" Canvas.Left="100">Click Me</Button>
</Canvas>

Chapter 7

[109]

An introduction to DataBinding
Typically, DataBinding establishes the link between two objects (generally between the UI
and business logic of an application) so that one object is updated when the other object is
changed. Generally, the changes in the source object are reflected onto the target object.
However, DataBinding also provides the capability to update the source from the target or
both the source and target to update each other.

The data provides the notifications so that when the data changes its value, the elements
that are bound to the data reflect changes automatically. DataBinding can also work in the
opposite direction, that is, if the value of a UI element changes, the data bound to that
element also automatically updates to reflect the change. For example, if the user edits the
value in a TextBlock element, the underlying text data automatically updates and reflects
the changes. This helps us in creating user interfaces that can be populated with minimal
code. This also helps us in separating the UI for the code logic.

DependencyProperty has all the plumbing for DataBinding built-in. If you bind
something to DependencyProperty, it will notify when it changes. So, for DataBinding
to exist, we need DependencyProperty. The target property of a DataBinding should be
DependencyProperty.

DataBinding modes
There are multiple modes available for DataBinding, and these modes are based on the
direction of the flow of data. There are five modes in which we can set the DataBinding flow:

�� OneWay: This DataBinding mode binds the data from the source to the target.
This mode is also referred to as read-only as only the source can update the target
automatically.

�� TwoWay: This DataBinding mode binds the data from the source to the target as
well as vice versa. This mode is also referred to as read-write as the source can
update the target automatically and vice versa.

�� OneWayToSource: This is the reverse of the OneWay mode and binds the data from
target to the source. This mode is also referred to as write-only as only the target
can update the source automatically.

�� OneTime: This is the type of DataBinding from the source towards the target, but
the property value is set only at the time of initialization and not updated after that.

�� Default: This mode sets the default DataBinding mode, which is generally one-way
or two-way depending upon the type of element.

Understanding DataBinding

[110]

The DataBinding model
Each and every kind of DataBinding follows the same model. DataBinding has a target, and
the target has to be an element in the user interface. As illustrated in the following image,
binding acts as the glue between the binding source and binding target:

Each binding has four components as shown in the preceding image. These components are
the binding source, binding target, and binding target property and a path to the binding
source value so that it can be used.

There are a few restrictions for DataBinding to work. They are as follows:

�� To keep the source and target properties updated and synchronized, we need
to implement the INotifyPropertyChanged interface, which has a single
PropertyChanged event. More details on INotifyPropertyChanged can
be found at http://msdn.microsoft.com/en-us/library/system.
componentmodel.inotifypropertychanged(v=vs.110).aspx.

�� The target property has to be DependencyProperty or a CLR object that has
implemented INotifyPropertyChanged. Mostly the UI element properties are
dependency properties, and they support DataBinding by default as they implement
the INotifyPropertyChanged interface.

Once DataBinding is set up, all the synchronization work is done by
DataBinding. When DataBinding fails, it does so silently (a debug message
is written, and, with tracing, a detailed explanation of the failure to bind is
provided) and the default value is sent.

DataBinding properties to control
We will bind one property of the control to another property of the same control.

Chapter 7

[111]

Time for action - DataBinding to one's own property
In this section, we will DataBind one property of the Rectangle shape to another one as
follows:

1.	 Create a new project in Blend and name it Chapter07. Drag and drop a Rectangle
shape onto the art board. This is shown in the following screenshot:

2.	 Now, we will go ahead and DataBind the Height property of the rectangle to itself.
The way to assign the source property in DataBinding is to assign the source of the
property and the property path. To do that, move to the Properties panel, left-click
on the small white rectangle next to the Height property, and then select Create
Data Binding…. This is shown in the following screenshot:

Understanding DataBinding

[112]

3.	 Now, select the binding type as RelativeSource Self as we want to bind the rectangle
with a property of its own. We will see a list of properties that the Height property
can be bound to. Select Width: (Double) and click on OK. The following screenshot
encapsulates this discussion:

4.	 Once we do that, we will see that the Height property is set to 250 as its value
now comes from the Width property, which is set to 250. We also see a yellow
rectangle across the Height selection option, and it implies that we cannot set this
value directly and that this value will come from DataBinding. This is depicted in the
following screenshot:

Chapter 7

[113]

The RelativeSource property could also be used to set the source to an
ancestor of a specific type. The source could be set to the first ancestor of the
type or the nth ancestor of the type.

Using RelativeSource, we could also set the source to
TemplatedParent. We talked about TemplatedParent in Chapter 4,
Styles and Templates.

The source could also be set to the previous data item in the data-bound
collection.

5.	 Switch to XAML, and we will see the syntax for DataBinding. We have specified the
value for the Height property, which is within the curly braces. We can see that
the Height target property is set to a binding instance with PropertyPath as the
Width property and RelativeSource as the self, which means that we are binding
it to the same element. The RelativeSource property allows us to specify the source
element from its relationship with the target rather than using the source element's
name. The following code exemplifies this:

<Grid x:Name="LayoutRoot">
 <Rectangle Fill="#FFF4F4F5"
 Height="{Binding Width, RelativeSource={RelativeSource
 Self}}"
 Width="250" Margin="347,81,0,0" Stroke="Black"
 VerticalAlignment="Top"
 HorizontalAlignment="Left"/>
</Grid>

What just happened?
We did a DataBinding of the height of the rectangle to the width of the same element itself.

DataBinding makes it easy to display data on the user interface. If we need to
display multiple items in the list, instead of adding an item one by one in code
or in XAML, we could simply bind the element with a list of items.

Understanding DataBinding

[114]

Have a go hero
Try different combinations of DataBinding and see different types of properties work with
Height.

DataBinding control to control
We will now see how we can bind the properties of one control to another control. The
DataBinding infrastructure is quite versatile; it not only gives us the ability to bind the
controls to properties but directly with the properties of other controls as well.

Time for action – DataBinding to properties of a different control
Perform the following steps to bind data to properties of a different control:

1.	 Drag and drop a rectangle from the art board onto the MainPage.xaml and move
to the Properties panel.

2.	 Left click on the small, white rectangle next to the RectangleBackground property,
and then select Bind To Element…. The following screenshot shows this:

Chapter 7

[115]

3.	 Now, go ahead and select the grid, as shown in the following screenshot:

We will now see the set of options using which we can select the property, binding mode,
source updated mode, and default value of the binding:

1.	 Let's bind the Background property of the grid to RectangleProperty, and let's
then select Binding Direction as OneWay, as shown in the following screenshot:

Understanding DataBinding

[116]

2.	 Let's change the Background property of the grid, and it will also change the
background of the user control as we selected Binding Direction as OneWay. This is
shown in the following screenshot:

TwoWay binding is generally used in places where we want to pass the user
input from the target element and present data back from the source.

3.	 The XAML code for RectangleBackground would look somewhat like the
following; we have specified the name of the element that we are using as the
source of DataBinding:

Rectangle Fill="{Binding Background, ElementName=grid}"

What just happened?
We just performed DataBinding of the grid and Rectangle. We have bound the Fill
property of the Rectangle, to the Background property of the grid, and whenever we
change the Background property of the grid, RectangleBackground will also change.

Chapter 7

[117]

Using DataSource
You have learned how to DataBind with one property at a time. The framework also provides
us with the capability of DataBinding to DataSource like a collection as well. This type of
DataBinding is applicable to ItemControls, such as ListBox, ComboBox, ListView, and so on.
We need to set ItemSource and ItemsTemplate of these controls, and we can see the values
of the collection populated in these controls.

ListBox, ComboBox, and ListView are ItemControls present in WPF that are
useful when showing a collection of items. More details on ItemControls can
be found at https://msdn.microsoft.com/en-us/library/
system.windows.controls.itemscontrol(v=vs.110).aspx.

Time for action – DataBinding to DataSource as a collection
Blend provides us with the capability to create DataSource for our application:

1.	 To create DataSource, let's move to the Data panel, which is alongside the
Properties and Resources panel, as shown in the following screenshot:

2.	 Click on the Create sample data icon, as shown here:

Understanding DataBinding

[118]

3.	 Once we do that, we will see the option to create New Sample Data…, Import
Sample Data from XML…, and Create Sample Data from Class…. To create Create
Sample Data from Class…, all we need to do is select the class that we want to
import data from, and the same is the case with Import Sample Data from XML….
All we need to do select the XML file from which we need to import the data.
However, we will have a look at Importing Sample Data from XML… in the next
section. For now, just go ahead and select New Sample Data…, as shown in the
following screenshot:

4.	 We now see a popup in which we can name DataSource and also select the scope of
DataSource, which can be a whole project or just the document. Apart from this, we
see the Enable sample data when the application is running option. We will select
this option so that we can see the data even when the application is running. The
following screenshot depicts this:

Chapter 7

[119]

5.	 When we click on OK, we see something like the following in the Data panel. Right
click on Property2, delete it, and rename Property1 to ColorName, as shown here:

6.	 Now, click on the abc icon next to the property name, and you will find multiple
options to set those values. We will select Type of the property as String and
Format of the property as Colors. This will create a sample collection of colors
in the background that we will use. This is depicted here:

Understanding DataBinding

[120]

7.	 Now, go to the Assets panel, add ListBox on the art board, and rename it
myListBox. This is encapsulated in the following screenshot:

8.	 Now, go back to the Data panel, select Collection, and drag it onto ListBox that we
just added, as shown here:

9.	 When we do that, we see a couple of things. ListBox is a list of color codes, and we
see an orange rectangle across ColorsCollection as it is bound to data now. The
following screenshot shows this:

Chapter 7

[121]

What just happened?
We just bound the data of the DataSource collection to ListBox.

To better understand what is going on in the background, let's have a look at the XAML code.
There are a few interesting things to note that Blend has done for us in the background:

�� In Windows.Resources, it added DataTemplate for ListBox. DataTemplate is useful
to show the same kind of data over and over or show the same data at multiple
instances. In this case, DataTemplate simply contains TextBlock inside StackPanel to
show the code of the color being displayed.

�� DataTemplate is assigned a key, which is used in ListBox to assign it as ItemTemplate
for ListBox. This is how items of ListBox will be displayed.

�� We also see that Blend has specified ItemsSource of ListBox as a collection, which is
the same collection we bind to the ListBox.

There is also a target property named as items, but it is not a dependency
property, so we have used ItemsSource instead. If we use the Items
property, we would not be able to use features of dependency properties
like dynamic updates.

�� The last but actually the most important thing to note here is DataContext, which is
set on the grid. DataContext is set as a whole DataSource ColorsCollection. With the
use of data context, we can hook up multiple controls to share the same source for
DataBinding. The data context is a property of the grid. If the source property is not
set in DataBinding, then control looks for DataContext. But there is no DataContext
for ListBox, but for the grid. DataContext is an inherited property, and it flows
down to the descendants, so TextBlocks inherits the data context from the grid.
This DataContext becomes the implicit source of these bindings, and the bindings
just specify the path. The following code demonstrates the usage of the concepts
discussed here:

<Window.Resources>
 <local:ColorConverter x:Key="converter" />
 <DataTemplate x:Key="ItemTemplate">
 <StackPanel>
 <TextBlock Text="{Binding ColorName}"/>
 </StackPanel>
 </DataTemplate>
</Window.Resources>
<Grid x:Name="grid"
 DataContext="{Binding Source={StaticResource
ColorsCollection}}">

Understanding DataBinding

[122]

 <ListBox Name="myListBox" HorizontalAlignment="Left"
SelectionMode="Extended" Width="200"
ItemTemplate="{DynamicResource
 ItemTemplate}" ItemsSource="{Binding Collection}" />
 <Rectangle HorizontalAlignment="Left" Margin="491,57,0,0"
VerticalAlignment="Top" Fill="{Binding Background,
ElementName=grid,
 Mode=TwoWay}">
 </Rectangle>
</Grid>

Time for action – DataBinding the background with
SelectedValue

Let's go ahead and DataBind the Background property of the grid to a selected value of
ListBox so that whenever we change the selection, the background of the grid will change:

1.	 To do that, we will need to add the following code to the grid control. Here, we are
specifying that we are binding to the ColorName property of SelectedValue, and
the element we are binding to is myListBox. Also, we need to specify the value
converter, which will convert a string value to color. Here's how we can do this:

Fill="{Binding SelectedValue.ColorName, Converter={StaticResource
converter}, ElementName=myListBox}"

2.	 Now, when we run the application, we will see that as we change the selected value
in ListBox, the background color of the grid changes as well. This is shown in the
following screenshot:

Chapter 7

[123]

What just happened?
We DataBinded the background color property of the grid to the selected value property
of ListBox.

Pop quiz
Q1. How many modes are there for DataBinding?

1.	 3.

2.	 4.

3.	 5.

4.	 6.

Q2. Is it possible to use a property of a control as a DataSource?

1.	 Yes, as long as it is a dependency property.

2.	 Yes, as long as it is a CLR property which implements INotifyPropertyChanged.

3.	 Yes, as long as it is a dependency property or a CLR property which implements
INotifyPropertyChanged.

4.	 Yes we can use any property.

Summary
In this chapter, we looked in detail at what DataBinding is and how it works. We had a look
at the ways in which we can do DataBinding in our application. We also had a look at various
kinds of DataSource that we can use for DataBinding.

In the next chapter, we will have a look at vector graphics and try to understand how
they work.

[125]

8
Vector Graphics

The applications that we design and develop end up running on diverse devices
with different screen sizes, resolutions, and pixel densities. While developing
our applications, we need to carefully consider the target devices for our
application. Vector graphics allows us to create graphics that work on screens
of multiple resolutions without loss of quality.

In the previous chapter, we had a look at DataBinding. In this chapter, we will have a look at
the following topics:

�� Raster and vector graphics

�� Shapes

�� Pen, Pencil, and Path

An introduction to vector graphics
When we are designing our applications, we generally use two types of graphics assets: raster
graphics (pixel-based graphics) and vector graphics (mathematical function-based graphics).

Vector Graphics

[126]

Raster graphics
By raster graphics, we mean images composed of pixels. A pixel is a dot that is the smallest
controllable element onscreen and is the basic unit of display for a raster graphic. The issue
with raster graphics is that, when scaling happens (the number of pixels in the source image
and the number of pixels used to display it), the graphic does not look good. The following
is a Windows logo, the original resolution of which is 62 x 62 pixels, but when we scale it up,
we see that the image becomes pixelated.

We could use vector graphics for all the graphics in the application,
but, if you still need to use raster graphics, it's recommended that you
include images of the highest-supported resolution so that the scaling
up of images does not cause pixelation.

Vector graphics
The resolution of computer monitors is improving, and the applications that we develop still
have to look great on devices with different resolutions. Vector graphics allows us to do this
because vector graphics uses geometrical functions to display these illustrations as opposed
to pixels used to display bitmaps. The output device does not need to make any effort when
the scaling happens because the geometrical functions are used to do the scaling. We could
use points, lines, curves, paths, and shapes to create vector illustrations.

Time for action – zooming in to a WPF control
1.	 Create a new WPF application and name it Chapter08. Now, drag and drop a

button onto the art board and give it some style, as shown here:

Chapter 8

[127]

2.	 Now, go to the Projects tab, rename MainWindow.xaml to ButtonZoom.xaml,
and press ctrl + shift +s to save all the documents that we modified. Now drag and
drop a slider control onto the bottom of the grid. With the slider selected, move to
the Properties panel and change the minimum and maximum values of the slider to
1 and 5 respectively.

3.	 We will now data-bind these values to the ScaleX and ScaleY properties of the
button. The ScaleX property sets how much the object is stretched or shrunk on the
x axis and the ScaleY property sets how much the object is stretched or shrunk on
the y axis. Let's go ahead and select the button, move to the transform section in
the properties section, and select scale, as shown in the following screenshot:

4.	 Click on the small square next to the value of x and select Bind to Element…. This is
shown in the following screenshot:

Vector Graphics

[128]

5.	 Select the slider control, and we will see a popup that asks us to select the property
of the slider with which we want to bind the scale property of the button. We will
see multiple options there. For now, we will just use the OneWay option. This is
shown in the following screenshot. Do the same thing for ScaleY as well.

What just happened?
Both the ScaleX and ScaleY properties of the button are now bound to the value of the slider,
and now when we run the application and move the slider, we will see that the button scales
up and down, but there is no difference in the quality of the button graphics. We have seen
that WPF controls use vector graphics to render themselves.

One of the good practices to follow when designing applications targeted
at multiple screens is to have a minimum resolution to start with. It helps
in defining the baseline for the content structuring of the application.
Generally, 1024 x 768 is the resolution that is used as the minimum
baseline for many applications. If we do not have a minimum resolution
requirement for our application, then the application layout could
truncate or even break in some scenarios.

Chapter 8

[129]

Shapes
When creating the design for our application, we might need to create elements with
different shapes, sizes, and colors. We could draw these shapes on the art board, and any
shape that we draw on the art board becomes an object. We can draw a shape by selecting
either a rectangle or an ellipse from the toolbox, moving to the art board, and dragging the
mouse from one point to the other point. These shapes are vector objects.

Time for action – adding a shape
Move to the Projects panel, right click on the project, and select add new item. Select
UserControl and name it ShapesDemo.xaml. Go to the Assets panel and click on the
rectangle. Now, move to the art board, press the mouse's left button, and while the mouse's
left button is still pressed, drag the mouse across the art board to draw a rectangle.

We now have a shape that we just drew, and we can resize it by grabbing one of the eight
tiny squares present in the four corners of the rectangle and at the center of each of the
sides of the rectangle. Also, we can hover the mouse over one of the squares present in the
top-left corner of the rectangle and the mouse pointer will change to a + sign. Then, we can
use this to change the corner radius of the rectangle. This is shown in the following diagram:

If we press the Shift key and then move the radius handle, it would modify the individual
radii and not both x and y.

The XAML code for the rectangle shape would look similar to the following code:

<Rectangle Height="173" Width="308" RadiusY="32.5" RadiusX="32.5"/>

We can modify RadiusX and RadiusY in XAML as well.

The various other shapes that are available in Blend include Ellipse, Line, Path, Polygon,
and Polyline. These objects help us create different shapes. More details on these shapes
can be found at https://msdn.microsoft.com/en-us/library/vstudio/System.
Windows.Shapes(v=vs.100).aspx.

https://msdn.microsoft.com/en-us/library/vstudio/System.Windows.Shapes(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/vstudio/System.Windows.Shapes(v=vs.100).aspx

Vector Graphics

[130]

What just happened?
We just created a shape, resized it, and then changed the corner radius of that shape.

Importing graphics
We can import Adobe Illustrator files (.ai), Adobe Flash XML Graphics files (.fxg), or Adobe
Photoshop files (.psd). These files are imported into the currently open document. While
importing Adobe files, we have the option to view and select the layers we want to import.
The features of these files are imported in the following formats:

�� Layers: Blend imports each layer as an individual object acting as a layout container.
Blend keeps the name of the layer the same as in the Adobe file, but we have the
option to change it.

�� Text: Text could be imported as bitmap images or editable objects.

�� Vectors: Vector objects can be imported as Path object or images.

�� Gradient: Linear and radial gradients are imported as editable, and any other fill is
rasterized. Color stops and opacity stops are imported as gradient stops in the fill
and OpacityMask properties respectively.

�� Patterns: Any patterns are imported as image brushes.

Time for action – importing graphics
We use Photoshop for the import. To import a .psd file, navigate to File | Import | Import
Adobe Photoshop File… and select the .psd file provided in the sample code or any of your
own .psd files. This is shown in the following screenshot:

Chapter 8

[131]

When we do that, we will see the option to import the selected layers or one compatible,
merged image of the entire design. Make sure Check all layers to import is selected and that
all the layers are selected as well. This is encapsulated in the following screenshot:

Once the file is imported, we will see a Canvas as the root element, the name of which
is the same as the imported file. The graphics on the art board is not made up of XAML
elements, which we can also see in the Objects and Timeline panel. This is depicted in
the following screenshot:

Vector Graphics

[132]

What just happened?
We have imported graphics, the elements of which are now converted into XAML elements,
so we can use and modify these objects according to our requirements.

The Line, Pen, and Pencil tools
We can draw paths using the line, pen, and pencil objects.

Line
The Line tool is the simplest tool available to create a path. Using the Line tool, we can draw
a path between two points.

Pen
With the line object, we only have the option to draw a straight line. The maximum that we
can do is apply different kinds of transforms on the line object, such as rotate, skew, scale,
and so on. If we want to draw a shape in one flow, a more useful tool will be Pen. The two
most used properties of Pen are brush and thickness. We can also use the end cap style
when we are using the line as a directional arrow.

Time for action – creating a shape using Pen
1.	 Select the pen object from the toolbox. Now, click anywhere on the art board, and

then click on another point; that will draw a line. The first point that we click on the
art board with the Pen tool selected is the starting point of the drawing. Thereafter,
any point that we click on creates a line between the last point and the new point.
If we click and, without releasing the mouse button, drag the point, then it would
create a curve, and the more we drag, the steeper will be the angle of the curve.
This is shown in the following image:

2.	 Now, wherever we click on the art board, a new line will be formed with the last
clicked point as the start point and current clicked point as the end point. So, let's
start clicking at points so that we start forming a path shaped as a star. This is shown
in the preceding image.

Chapter 8

[133]

3.	 Let's continue adding points onto the art board so that we create a path in the form
of a star. We can finish this path formed using the Pen tool either by clicking on the
first point or by selecting from the toolbar.

4.	 Don't worry if we are not able to create the shape at first go. We can select any of
the points that we created and move them around so as to get the desired shape.

5.	 The XAML code for the star shape we created would look somewhat as shown here.
It produces a path with the points. The Data property of a Path object defines the
shape's geometry. The following is the aforementioned XAML code:

<Path Data="M264,98 L225,186 124.33333,196.33333 211,244
178.50028,342.00043 262.50018,286.00033 344.5001,340.50043
322.00012,244.50026 400.50004,194.00017 304.66667,182 z"
Fill="#FFBF2E20" HorizontalAlignment="Left" Height="246"
Margin="172.833,96,0,0" Stretch="Fill" Stroke="#FFC70E0E"
StrokeThickness="2" VerticalAlignment="Top" Width="278.167"/>

6.	 We can use either StreamGeometry or PathGeometry when we describe Path. These
are the two mini-languages that are used to define geometric paths.

7.	 In the preceding code, we have used StreamGeometry. StreamGeometry is a
lightweight alternative to PathGeometry as it does not support DataBinding,
animation, or modification.

8.	 PathGeometry represents a complex curve that can be composed of arcs, curves,
and shapes. We could represent the above path in PathGeometry as follows.

<Path Fill="#FFBF2E20" HorizontalAlignment="Left" Height="246"
Margin="172.833,96,0,0" Stretch="Fill" Stroke="#FFC70E0E"
StrokeThickness="2" VerticalAlignment="Top" Width="278.167">
 <Path.Data>
 <PathGeometry Data="M264,98 L225,186 124.33333,196.33333
 211,244 178.50028,342.00043 262.50018,286.00033
 344.5001,340.50043 322.00012,244.50026 400.50004,194.00017
 304.66667,182 z">
 <Path.Data>
</Path>

Vector Graphics

[134]

We should use StreamGeometry when we don't need to modify the path
after creating it and use PathGeometry when we need to modify the path.
More information on this can be found at https://msdn.microsoft.
com/en-us/library/ms751808(v=vs.100).aspx.

What just happened?
We created a star-shaped path using the Pen tool. Also, we modified the path to reach the
end goal of our shape.

Pencil
So, we just created shapes that were composed of lines; however, if we want to create a
freeform shape or drawing, then the Pencil tool is our friend.

We can draw any freeform path using the Pencil tool just like we would draw on any drawing
board. When we draw a shape using a Pencil, a Path is produced.

Paths
Paths are vector objects made up of a series of curves and lines. Paths are the most versatile
vector objects available in WPF and Silverlight as using them, we can create any shape,
drawing, or graphic using paths.

Working with shapes and shape operations might not provide the level of control or
granularity that we might want in our design, but using Paths, we have much more
control over the design that we are making.

Time for action – modifying a Path
1.	 Click on the Login button on the Login screen that we imported from the .psd file.

Follow the steps specified in the following image:

https://msdn.microsoft.com/en-us/library/ms751808(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/ms751808(v=vs.100).aspx

Chapter 8

[135]

2.	 Select the Login1 path with the Direct Selection tool already selected.

3.	 Select four of the eight points by pressing the Ctrl key and clicking the mouse button.

4.	 Press Delete to delete the four points.

5.	 Drag the point in the top-right corner to the center.

6.	 Drag the bottom-right point to the center.

7.	 Drag the left-hand side point to the center.

8.	 Drag the right-hand side point to the center.

In this case, we wanted the segment to adjust (a segment is a line or arc
between two points) in length, so we made the point move around, but
if we wanted the segment to stay the same in size and shape and just
change its placement, then we could even move only the segment.

9.	 Press the Alt key, press and hold the mouse's left-hand side button on the left-hand
side point, and drag it a little upward. When we do this, we see that the Bezier
handle associated with that point is displayed.

10.	Press the Alt key, press and hold the mouse's left button on the right-hand side
point, and drag it a little upward. Once the Bezier handles are visible, we can
select and move them too. When we move one Bezier handle, the opposite one
also moves along with it so that the curve stays smooth. If we want to move only
one Bezier handle, we could do that by pressing the Alt key and then moving the
individual Bezier handle.

Vector Graphics

[136]

11.	Click outside the Login path.

12.	With the Pen tool selected, we can remove a point by simply clicking on it and also
add a new point by clicking anywhere on the existing path. In the following image,
you can see that when we do a mouseover on an existing point, we see a small - icon
and the + icon when we hover the mouse anywhere else on the path. This is shown
in the following image:

13.	When we see the cross sign, it means that no changes will be made to any existing
path but a new point will be created. This is shown in the following image:

14.	To remove the Bezier curve from a point, we need to press the Alt key and then
click on the point. As we can see in the following image, when we do a mouseover
on a point while pressing the Alt key, we see that the mouse cursor changes. This is
shown in the following image:

Chapter 8

[137]

15.	We can also bend a segment by pressing Alt, clicking on the segment, and then
moving it. Straighten the segment using Alt + Click. The following is the output of
this step:

16.	The XAML code for this button would be a path that would look similar to the
following; we have a path with multiple data points:

<Path x:Name="Login1" Data="F1 M125.00075,0.02538874
C125.00075,0.02538874 242.11804,5.4829142 242.55902,29.754374
243,54.025834 143.86706,55.983359 126.05902,55.754374
126.05902,55.754374 -0.49752824,61.024619 0.0014717614,29.525056
0.50047176,-1.974507 125.00075,0.02538874 125.00075,0.02538874
z" Fill="#FF0F6C36" Height="56.086" Canvas.Left="207.5" Canvas.
Top="357.974" Width="242.56"/>

What just happened?
We modified the path, which was in the shape of a rectangle, into an ellipse. We also saw
how we can add and remove points and arcs.

BitmapScalingMode
In WPF 4.0, Microsoft has changed the default quality of the images from high quality to
low quality to improve the performance of the applications. So, if we want the image to
be displayed in high quality, then we would set the BitmapScalingMode property on the
image in XAML as shown here:

<Image RenderOptions.BitmapScalingMode="HighQuality" />

The various values that could be set as BitmapScalingMode and their details can be
found at http://msdn.microsoft.com/en-us/library/system.windows.media.
bitmapscalingmode(v=vs.110).aspx.

http://msdn.microsoft.com/en-us/library/system.windows.media.bitmapscalingmode(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.bitmapscalingmode(v=vs.110).aspx

Vector Graphics

[138]

DPI awareness
Writing a DPI–aware application is the key to making a UI look consistent across a wide
variety of DPI display settings. An application that is not DPI aware but is running on a
high-DPI display, or across monitors of different DPIs, will be scaled by the system to the
appropriate size so that it is still usable but can suffer from visual artifacts, including incorrect
scaling of UI elements, clipped text, and blurriness. By making our applications DPI aware,
we can present our application's UI in a predictable manner.

There are three categories that our applications would fall in depending on the DPI
awareness of the application:

�� Not DPI–aware applications: These applications always render at the lowest
desktop DPI, that is, 96 DPI. This class of applications is unaware of different system
DPIs. Desktop Window Manager (DWM) virtualizes and scales these applications to
account for high DPI.

�� System–DPI-aware applications: These applications are considered DPI aware
and render at the system DPI to avoid being scaled. These applications do so on a
system-DPI level rather than the per-monitor-DPI level because they cannot respond
to dynamic changes in DPI during a single session. System–DPI aware applications
render optimally on the primary display, and DWM does not scale and virtualize
them. However, if the user moves the application to a display with a higher or lower
DPI than that of the primary screen, DWM scales it up or down.

�� Per-monitor–DPI-aware Applications: These applications dynamically scale up or
down when a user changes the DPI or moves the application between monitors that
have different DPIs. These applications always render crisply and at the correct size
for a given display. DWM does not scale and virtualizes this class of applications.

The recommended set of DPI settings and minimum resolutions to consider when testing DPI
awareness levels is shown in the following table:

DPI setting Minimum resolution

96 (100%) 1024 x 720

120 (125%) 1280 x 960

144 (150%) 1536 x 1080

192 (200%) 2048 x 1440

More details on developing DPI-aware applications can be found at http://msdn.
microsoft.com/en-us/library/windows/desktop/dn469266%28v=vs.85%29.aspx.

http://msdn.microsoft.com/en-us/library/windows/desktop/dn469266%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dn469266%28v=vs.85%29.aspx

Chapter 8

[139]

Pop quiz
Q1. What are the different shapes available in WPF?

1.	 Ellipse & Rectangle.

2.	 Line & Path.

3.	 Polygon & Polyline.

4.	 All.

Q2. Which tool can I use to draw a path?

1.	 Pen.

2.	 Pencil.

3.	 Both.

Summary
In this chapter, we looked into the details of the graphics tools and elements in WPF and
Silverlight. We used various vector tools available in Blend and created graphics.

In the next chapter, we will take a look at user controls and custom controls, how they work,
and how we can use them well in our applications.

[141]

9
User Controls and Custom Controls

In Windows Presentation Foundation, controls are based on the concept of
composition, meaning we can add almost any control as the content of other
controls. User controls allow us to create a reusable group of controls and
partition the application into smaller, reusable blocks.

Custom controls are extensions of existing controls with additional properties or
behaviors. The custom control gets its look from the control template defined.
The custom control can also have a custom behavior.

In the previous chapter, we had a look at vector graphics, paths, geometry, and shapes.

In this chapter, we will have a look at the following topics:

�� User controls

�� Custom controls

User controls and custom controls can encapsulate a portion of the UI and behavior
and allow us to create maintainable and reusable controls. We can use multiple instances
of a user or custom control inside the same window. The major usability of these controls
lies in reuse; however, these could also come in handy when multiple people work on the
same project.

User Controls and Custom Controls

[142]

Custom Controls derive from the Control class or any of it subclasses. UserControls
derive from the UserControl class, which derives from ContentControl, which in
turn derives from Control. So, technically, all user controls are custom controls.

User control or custom control – which to use and when
Understanding user controls and custom controls and how to create them is good, but we
also need to know when and where to use them. There is no rule of thumb, but there are
certain guidelines that we could follow to determine which control to use. Before we decide
to create a control, we should ask the following questions to ourselves:

�� Is the same capability provided by an existing control? – This might save you the
effort of developing a new control altogether

�� Why do I need this control? – This will help you in determining the functionality of
the control

�� Can I achieve the same functionality by changing the style of the control? – This
might trim down the amount of work you need to do in developing the control

�� Who are the end users of the control? – This will help you in streamlining the
requirements of the control

�� Is there a control that provides a part of the functionality? – This will help us in
determining the base class of the control and also give a starting point to develop
the control

Chapter 9

[143]

�� Can this be achieved by combining existing controls? – This will help you determine
which user control or custom control you need to build

User control Custom control

This is used where a control that is composed of a
collection of controls is needed.

This is used when an already existing control
needs to be customized and extended

This cannot be styled/templated, but the controls
that it contains can be styled/templated

This can be styled/templated.

This might not provide seamless, look-less
behavior as it is a collection of controls and they
might not look perfect together.

This could provide seamless, look-less
behavior.

Easier to design as user control is derived
from ContentControl, and have
ContentTemplate, but doesn't have
ControlTemplate.

This is comparatively complex to design. These
controls derive from the Control class,
have ControlTemplate and don't have
ContentTemplate.

Example: Background color selector Example: Switch control

The differences mentioned in the preceding table will help you choose between user controls
and custom controls. We will use the preceding table and questions when developing user
controls and custom controls.

Understanding and creating a user control
A user control can contain a layout control, which, in turn, can contain any number of
controls, resources, and animation timelines. A user control has its own code-behind file. A
user control is a whole unit in itself and is reusable. We generally create user controls when
we need a reusable control composed of several other controls.

We want a control that allows the user to select the background of the application. So, we
will ask ourselves a few questions:

�� Is the same capability provided by an existing control? – No

�� Why do I need this control? – To allow the user to choose a color at runtime

�� Can I achieve the same functionality by changing the style of the control? – No

�� Who are the end users of the control? – All application users

�� Is there a control that provides a part of the functionality? – No

�� Can this be achieved by combining existing controls? – Yes

User Controls and Custom Controls

[144]

Time for action – creating a user control that selects the
background color

To create a user control that selects the background color, perform the following steps:

1.	 Open Blend, create a new WPF project, and name it Chapter09. In the Projects
and Timeline panel, right-click on the project and select Add New Item. Select
UserControl and name it SetRGBUserControl.xaml. We append UserControl to
the name of user controls as a convention followed in WPF applications.

2.	 Right-click on LayoutRoot and select Change Layout Type | Canvas, as shown in the
following screenshot:

3.	 We will design a user control to set the RGB (red, green, and blue) values of the
color we want. Drag and drop three TextBlock objects and three TextBox objects
onto Canvas. Resize and reposition them as shown in the following screenshot:

Chapter 9

[145]

4.	 Change the text of TextBlock objects to Red, Blue, and Green. Change the text of
TextBox objects to 255. Rename the TextBox objects to TextBoxRed, TextBoxGreen,
and TextBoxBlue. Here's the XAML code to help you:

<Canvas x:Name="LayoutRoot" Background="White">
 <TextBox x:Name="TextBoxRed" Height="22" Canvas.Left="60.5"
 TextWrapping="Wrap" Text="255" Canvas.Top="9" Width="132"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 HorizontalContentAlignment="Center"
 VerticalContentAlignment="Center" TextAlignment="Center"
 TextChanged="TextBoxRed_TextChanged"/>

 <TextBox x:Name="TextBoxGreen" Height="19" Canvas.Left="60.5"
 TextWrapping="Wrap" Text="255" Canvas.Top="78" Width="132"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 HorizontalContentAlignment="Center"
 VerticalContentAlignment="Center"
 TextChanged="TextBoxGreen_TextChanged"/>

 <TextBox x:Name="TextBoxBlue" Height="20" Canvas.Left="60.5"
 TextWrapping="Wrap" Text="255" Canvas.Top="147.5" Width="132"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 HorizontalContentAlignment="Center"
 VerticalContentAlignment="Center" TextAlignment="Center"
 TextChanged="TextBoxBlue_TextChanged"/>

 <TextBlock Height="22" Canvas.Left="7" TextWrapping="Wrap"
 Text="Red" Canvas.Top="9" Width="97"
HorizontalAlignment="Center"
 VerticalAlignment="Center"/>

 <TextBlock Height="19" Canvas.Left="7" TextWrapping="Wrap"
 Text="Green" Canvas.Top="78" Width="97"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"/>

 <TextBlock Height="20" Canvas.Left="7" TextWrapping="Wrap"
 Text="Blue" Canvas.Top="147.5" Width="97"
 HorizontalAlignment="Center" VerticalAlignment="Center"/>
</Canvas>

You might have noticed that the names that we added to the controls are represented as
x:Name attribute. This uniquely identifies object elements for access to the instantiated
object from code-behind or general code. We need to add a name to the control when we
want to access the control in the code-behind.

x:Name="TextBoxRed"

User Controls and Custom Controls

[146]

What just happened?
We have created the user interface to assign the RGB values. In a while, we will see this user
interface in action.

Time for action – adding event handlers
The user interface that we created in the previous section does not have any behavior. We
need to do some work to make it interactive. Select TextBlockRed and, in the Properties
panel, click on the Event handlers section. This opens up the list of events available for the
TextBox object. This is shown in the following screenshot:

Move down to the TextChanged event and double-click in the empty TextBox next to it.
We will be taken to the code-behind page of the XAML. We will see that an event handler
has been added to the TextChanged event of TextBoxRed. Repeat the steps to add event
handlers to the other two TextBox objects TextChanged events as well. The following
screenshot depicts this:

Chapter 9

[147]

Now, add the code in these event handlers to change the fill of the rectangle as a
combination of the red, green, and blue values mentioned in the TextBox objects. To that, we
will add a method to change the fill of the rectangle and call that method from TextChanged
event handlers. This is shown in the following code:

private void TextBoxRed_TextChanged(object sender,
TextChangedEventArgs e)
{ SetBackground(); }
private void TextBoxGreen_TextChanged(object sender,
TextChangedEventArgs e)
{ SetBackground (); }
private void TextBoxBlue_TextChanged(object sender,
System.Windows.Controls.TextChangedEventArgs e)
{ SetBackground (); }
private void SetBackground ()
{
 byte redColor, greenColor, blueColor;
 if (Byte.TryParse(TextBoxRed.Text, out redColor)
 && Byte.TryParse(TextBoxGreen.Text, out greenColor)
 && Byte.TryParse(TextBoxBlue.Text, out blueColor))
 {
 LayoutRoot.Background = new
 SolidColorBrush(Color.FromArgb(255,

User Controls and Custom Controls

[148]

 redColor, greenColor, blueColor));
 }
 }
}

Let's run the application and, as we change the values of Red, Green, or Blue, we will see
that the fill of the rectangle also varies. This is shown in the following screenshot:

What just happened?
We have added event handlers to catch the TextChanged event on these TextBox objects,
and, whenever the text changes, we recalculate the fill color of the background.

Time for action – adding a user control in a window
We could add user control in a window, page, or another user control. To add
SetRGBUserControl to MainWindow, simply open MainWindow from the Projects panel. Then,
Open Assets and Search for SetRGBUserControl. This is shown in the following screenshot:

Chapter 9

[149]

Drag and drop the user control onto the art board. This will add a copy of
SetRGBUserControl to the grid layout of MainWindow.xaml. We can also add the user
control by dragging and dropping the user control onto the Objects and Timeline panel
as well.

Run the application and we can see the user control as part of MainWindow, and when we
change the values in the textboxes, the color of the rectangle changes. This is shown in the
following screenshot:

When we look at the XAML code for MainWindow.xaml, we can see a namespace
declaration added. The namespace refers the current Chapter09 and has an alias local.
SetRGBUserControl is available in this namespace, and we need to reference it in the XAML
code to create an instance of SetRGBUserControl. This is encapsulated in the following
screenshot:

User Controls and Custom Controls

[150]

What just happened?
We have added a user control to MainWindow.

Understanding and creating custom controls
We would generally create a custom control when we need functionality that is not provided
completely by any existing control, and, by extending the current control, we could achieve
that functionality. So, we will ask ourselves a few questions.

�� Is the same capability provided by an existing control? – No

�� Why do I need this control? – To visually show the user the current state of
the control

�� Can I achieve the same functionality by changing the style of the control and not the
behavior? – No

�� Is there a control that provides a part of the functionality? – Yes. ToggleButton

�� Can this be achieved by combining existing controls? – No

Time for action – creating a custom control
Perform the following steps to create a custom control

1.	 Right-click on the project name, Chapter09, in the Projects panel and select
Edit in Visual Studio. It is easier to create a custom control in Visual Studio as
it provides a built-in template to create custom controls. This is shown in the
following screenshot:

2.	 In Visual Studio, right-click on the project name, Chapter09, in Solution Explorer
and select Add New Item….

Chapter 9

[151]

3.	 Select CustomControl (WPF) in the Add New Item window, and name it
SwitchCustomControl.cs, as shown in the following screenshot:

4.	 When we click on Add, a new class appears that inherits from Control. Along
with this, the following screenshot also shows the initial steps to define the custom
control and use it.

User Controls and Custom Controls

[152]

We can accomplish the same in Blend by adding a class and
adding the code to it.

5.	 For each control, we should specify the rules of behavior of the control. We had
a look at templates in Chapter 4, Styles and Templates. Here, we want to change
the appearance of ToggleButton on checking and unchecking. We can do this by
calling GetTemplateChild to apply this change. This change can be used to show
any user-defined template. This is shown in the following code:

public class SwitchCustomControl : Control
{
 static ToggleButton SwitchButton;

 public override void OnApplyTemplate()
 {
 base.OnApplyTemplate();

 if (Template == null) return;

SwitchButton = GetTemplateChild("SwitchTemplate") as ToggleButton;

if (SwitchButton == null) return;

// Detach event handlers on Checked and Unchecked event
SwitchButton.Checked -= SwitchClick_Checked;
SwitchButton.Unchecked -= SwitchButton_Unchecked;

// Attach event handlers on Checked and Unchecked event
 SwitchButton.Checked += SwitchClick_Checked;
 SwitchButton.Unchecked += SwitchButton_Unchecked;
}
static void SwitchButton_Unchecked(object sender, RoutedEventArgs
e)
{
 SwitchButton.Background = new SolidColorBrush(Colors.Red);
 SwitchButton.Content = "Off";
}
void SwitchClick_Checked(object sender, RoutedEventArgs e)
{
 SwitchButton.Background = new
 SolidColorBrush(Colors.Green);
 SwitchButton.Content = "On";
}
}

Chapter 9

[153]

6.	 We have overriden the OnApplyTemplate method of the FrameworkElement
class. This is the method that is called before the element is displayed. In this
method, we have applied SwitchTemplate and also added event handlers
for checked and unchecked events. In these event handlers, we have set the
background and text of ToggleButton.

7.	 We will add a path so that it looks like a push button. We discussed creating
Path and ControlTemplate in the previous chapters. The XAML code will look
somewhat similar to the following code:

<ToggleButton x:Name="SwitchTemplate" Background="Green"
Content="On" IsChecked="True" RenderTransformOrigin="0.5,0.5">
 <ToggleButton.Template>
 <ControlTemplate>
 <Viewbox Stretch="Uniform">
 <Canvas Height="75" Width="100">
 <Rectangle Canvas.Left="0" Width="40" Height="40"
 Fill="{TemplateBinding Background}"
 Stroke="{TemplateBinding BorderBrush}"
 StrokeThickness="0.5"
 RadiusX="10" RadiusY="10"/>
 <TextBlock Height="15" Width="30" Canvas.Left="10"
 Canvas.Top="10" Text="{Binding Path=Content,
 RelativeSource={RelativeSource TemplatedParent}}">
 </TextBlock>
 </Canvas>
 </Viewbox>
 </ControlTemplate>
</ToggleButton.Template>
</ToggleButton>

8.	 We created a control with the look and feel that we want. We will now use this
XAML as the template for our custom control. ControlTemplate will make sure
that the control looks the way we want it to look. The following code encapsulates
this discussion:

<local:SwitchCustomControl x:Name="myControl">
 <local:SwitchCustomControl.Template >
 <ControlTemplate>
 <ToggleButton x:Name="SwitchTemplate">

 </ToggleButton>
 </ControlTemplate>
 </local:SwitchCustomControl.Template>
 </local:SwitchCustomControl>

User Controls and Custom Controls

[154]

9.	 Right-click on this custom control in the Projects panel and select startup:

10.	 If we check the Objects and Timeline panel, we will see that SwitchCustomControl
is added to ViewBox, as shown in the following screenshot:

11.	When we run the application and click on the button, we see the background and
content changing, as shown in the following screenshot:

Chapter 9

[155]

12.	Also, now if we go to the Assets panel and search for SwitchCustomControl, we will
be able to see it and simply use it by dragging and dropping it onto the art board.
This is shown in the following screenshot:

What just happened?
We extended ToggleButton to create our custom control and also added behavior that will
be visible when we click ToggleButton. We modified ToggleButton to look different and
explicitly display the checked and unchecked states as On and Off respectively.

Pop quiz
Q1. What is a user control?

1.	 UserControl is a built-in Panel Control.

2.	 UserControl is a Shape Control.

3.	 UserControl is the same as Custom control.

4.	 UserControl wraps existing controls into a single reusable group.

Summary
In this chapter, we took a look at user controls and custom controls. In the next chapter, we
will take a look at creating Windows Phone applications.

Chapter 10

[157]

10
Creating Windows Phone Apps

One of the more popular forms of coding in recent times is developing apps
(applications) that run on mobile devices, such as phones and tablets. Everyone
using a smart phone is probably using one or more popular apps on a daily
basis. In this chapter, we will create apps that will run on Windows Phone.

In this chapter, we will create a Windows Phone application from start to finish and submit it
to the Windows Phone Store. This chapter will cover the following topics:

�� Installing Windows Phone SDK

�� Windows Phone introduction

�� Creating and running a Windows Phone app

�� Understanding Windows Phone Emulator

�� Testing the application for store submission

�� Submitting the app to the store

Creating Windows Phone Apps

[158]

Installing Windows Phone SDK
To develop Windows Phone 8 applications, we need to install the Windows Phone 8 SDK. The
following are the system requirements to run Windows Phone 8 SDK:

Operating System Windows 8 64-bit (x64) client versions

Hardware 8 GB of free disk space

4 GB of RAM

64-bit (x64) motherboard

Windows Phone Emulator Windows 8 Pro or higher (for Hyper-V) and Second Level
Address Translation (SLAT)

The SDK is freely available at http://dev.windowsphone.com/en-us/downloadsdk.
Download SDK 8.0 because, using that, we can develop an application for both Windows
Phone 7.5 and Windows Phone 8 devices. If you already have a paid version of Visual
Studio 2012, then the SDK will download and install the tools required for Windows Phone
development. If you do not have Visual Studio 2012 installed, then the SDK will install Visual
Studio 2012 Express for Window Phone.

An introduction to Windows Phone
The Windows Phone platform is different from the Windows platform. The first and foremost
thing to keep in mind is that the Windows Phone platform has a smaller screen size, limited
processing speed, and limited memory as compared to a computer, so our applications
need to be designed to work efficiently within these limitations. The following is a list of
capabilities and features that are available in Windows Phone applications:

�� Tiles: A tile is a representation of an app on the screen. When you tap on a tile, the
corresponding app is launched. The tile can have static content, such as an image
or a graphic, or could have regularly changing content. This changing content could
also be real-time information from the app.

�� Toast notifications: Toast notifications allow the app to send messages to the
user that are shown as pop-up notifications at the top of the screen. These toast
notifications happen when the user is not in the app or is in another app.

�� Lock screen: This screen is displayed when the device is locked. The app can still
show the tile (when pinned), but it has to be a text-only version.

�� Location: The location feature available on the phone allows the developer to query
the current location of the phone.

Chapter 10

[159]

�� Maps and Navigation: The map allows the user to see the maps of locations and
also see navigation directions to locations.

�� Speech: Using the speech feature, we could command Windows Phone to perform
various tasks, such as phone calls, texts, web search, and so on. More information
on the speech feature can be found at http://www.windowsphone.com/en-us/
how-to/wp8/apps/use-speech-on-my-phone.

�� Wallet: The Windows Phone wallet can digitally save user credit cards,
memberships, coupons, and so on, which could be used for purchases. More
information on the wallet feature can be found at http://www.windowsphone.
com/en-US/How-to/wp8/apps/wallet.

�� Camera and Photos: The camera allows the user to capture photos and videos and
can be accessed using the Photos and Videos application.

�� Permanent back button: Windows Phone has a permanent back button that
takes the user back to the immediate previous state. For example, if you are in an
application, the back button might take you to the previous screen if you are on a
second or further screen or out of the application if the user is on the first screen.
This can be a nice addition to bring up a "pause menu" in games.

�� Accelerometer: The accelerometer determines the direction of movement of the
device. The accelerometer's sensor detects the force of gravity and other forces
applied to the device that result in the movement of the device. This information is
available via the Motion API (https://msdn.microsoft.com/en-us/library/
windows/apps/microsoft.devices.sensors.motion(v=vs.105).aspx).
The API removes the gravity component from the device's acceleration, so the user
is able to determine the current acceleration vector of the device. More information
on getting data from the compass can be found at https://msdn.microsoft.
com/en-us/library/windows/apps/ff431810(v=vs.105).aspx.

�� Compass: The compass determines the angle of rotation of the device as compared
to the earth's magnetic north pole. This sensor might not be available on all
Windows Phone devices, so we should check for the sensor's availability before
trying to get value from it. More information on getting data from the compass can
be found at https://msdn.microsoft.com/en-us/library/windows/apps/
hh202974(v=vs.105).aspx.

�� Gyroscope: The gyroscope determines the velocity of the device across each axis. The
values from the gyroscope can be used to determine the orientation of the device in
space. The gyroscope, however, does not determine the rotational angle of the device.
This sensor might not be available on all Windows Phone devices, so we should check
for the sensor's availability before trying to get value from it. More information on
getting data from the gyroscope can be found at https://msdn.microsoft.com/
en-us/library/windows/apps/hh202943(v=vs.105).aspx.

Creating Windows Phone Apps

[160]

Guidelines for Windows Phone applications
Microsoft has a complete set of design guidelines to design and develop Windows Phone
applications. These provide guidelines from designing to conceptualizing the application.
These design guidelines can be found at https://msdn.microsoft.com/en-us/
library/windows/apps/hh202915(v=vs.105).aspx.

Understanding Windows Phone Emulator
The SDK also installs Windows Phone Emulator, which is a virtual machine running in a
Hyper-V environment. This virtual machine runs the Windows Phone operating system in a
phone-like window to run and test applications. The emulator provides us with a virtualized
environment to run, debug, and test our applications. The important thing to note about
the emulator is that it runs the applications with performance comparable to a real phone
(mostly lower-end models). Microsoft, however, recommends the testing of applications on
real devices before we submit those applications to the store. It's because emulators are
imperfect (it doesn't have all the features available in a phone), and it is not uncommon to
see differences between emulators (virtual machines) and real devices.

We can connect to the network from the emulator. The emulator behaves just like a
physical device that is on the network (including the IP address). This networking feature
is available by default. We can test almost all the features in the emulator apart from the
following features:

�� Compass

�� Gyroscope

�� Vibration controller

�� Brightness

Time for action – Windows Phone Emulator
Now, let's see a few major capabilities of the emulator. We have three buttons available
at the bottom of the emulator just as we would have on a phone. We do not have the
side buttons of the phone available, but we can access them with keyboard function
keys. The mapping is available at http://msdn.microsoft.com/en-us/library/
windowsphone/develop/ff754352(v=vs.105).aspx. We can toggle between the
onscreen keyboard and the actual hardware keyboard by pressing Pause/Break.

The first button that we see is the back button with a backward-facing arrow that always
performs the back action. It does not matter whether we are inside or outside an
application. To check the major capabilities of the emulator, perform the following steps:

Chapter 10

[161]

1.	 Let's click on the second button, which is the Windows button on the emulator.

That will take us to the home page of the emulator. Here, we will see the live tiles as
we would on Windows Phone. We have the calendar, pictures, music, games, and
so on. If we are developing applications using these components, we can test them
within the emulator as well. At the start page of Windows Phone where our pinned
applications are visible.

2.	 Now, if we swipe right by pressing the mouse's left button and dragging it to the left-
hand side, then we will see the next screen has all the apps that are installed on the
phone.

3.	 When we scroll down, we will find settings, which is the place where we can change
the settings of this emulator. We can change the theme, assign ringtones, and turn
the location on and off. Basically, we can make the most of the settings that we can
on an actual device.

4.	 The third button that we see is the search button, which turns us to the Bing search
page, which is more like a pivot application. If you swipe right by pressing the
mouse's left button and dragging it to the left-hand side you can see the next screen.

5.	 Along with the emulator, we also see a fly-out menu. From this fly-out menu, we
can perform the following actions on the emulator, as shown in the screenshot that
follows these points:

�� Close

�� Minimize

�� Rotate counterclockwise and clockwise

�� Change size and zoom

Creating Windows Phone Apps

[162]

What just happened?
We had a look at Windows Phone Emulator and the various features available in the
emulator that allow us to run and test applications.

It is a good idea to keep the emulator running while working on the app; this
will save you time by not restarting the emulator again and again, and Blend
will automatically connect to the running instance of the emulator.

Creating a Windows Phone application
We will now create a Windows Phone application from the available templates. We will
create a fun SoundBoard application. We will start off by adding one sound file and one
button that plays the sound on being tapped.

Time for action – creating a Windows Phone application
Perform the following steps to create a Windows Phone application:

1.	 Start Blend and select New Project and Windows Phone in the project type in
the left-hand side panel. Once we do that, we will see multiple types of available
templates to create the Windows Phone App.

2.	 Select Windows Phone App. We can choose between OS versions here, which
are 7.1 or 8.0. We will go ahead with 8.0 this time as that is the highest version
supported by Visual Studio 2012. This is shown in the following screenshot:

Chapter 10

[163]

3.	 Once we click on OK, a new project is created, and, in the center, we see a phone-
shaped art board that helps us imagine how the application will look on an actual
device. Also, in the Assets panel, we see the controls available for the Windows Phone
application. You can also notice that the screens for these apps are known as pages as
evident from the name MainPage.xaml, which we can see in the Projects panel.

4.	 We can also see in the Objects and Timeline panel that we have TitlePanel
(StackPanel) and ContentPanel (grid) added by default. In TitlePanel, we have
two TextBlock objects, which show the application name and the page name.
ContentPanel is where we put the main content for the page. This is depicted
in the following screenshot:

Creating Windows Phone Apps

[164]

5.	 Add Button in the ContentPanel grid, and then change the content of the button
to Punch as we will make this button play the punch sound on being clicked. The
following screenshot illustrates this:

6.	 From the Assets panel, add MediaElement to the ContentPanel grid. This discussion
is encapsulated in the following screenshot:

7.	 Create new folder in the Assets folder and rename it to Audio. Then, include the
audio files (.wav) available along with the code of this chapter. The following
screenshot shows this:

Chapter 10

[165]

8.	 Select MediaElement from the Objects and Timeline panel, and then move to the
Properties panel. Add name MyMediaElement to MediaElement, uncheck AutoPlay
(we will play the sound on the button being clicked), select Source as Punch.wav,
and change Volume to 1. The following screenshot illustrates this point aptly:

Creating Windows Phone Apps

[166]

9.	 Also, move to event handlers for the button and double-click in front of the click
event to generate an event handler:

10.	 In this event handler, we will add the code to play the audio file. Add the following
code in the Button_Click handler:

private void Button_Click(object sender, System.Windows.
RoutedEventArgs e)
{
 this.MyMediaElement.Play();
}

11.	Once we press F5, we will see that the application is running in a phone-like
container. This is called Windows Phone Emulator. It is a virtual machine running
a full Windows Phone 8 operating system. When we click on the Punch button, it
will simulate the touch action on the emulator, and we will hear the punch audio
playing. This is shown in the following screenshot:

12.	 In the Objects and Timeline panel, right-click on ContentPanel and select Change
Layout Type | StackPanel. This will help us add multiple buttons easily.

Chapter 10

[167]

13.	Right-click on Button in ContentPanel, select Copy, right-click on ContentPanel, and
then select Paste. Repeat this four more times so that we have five buttons in total
in ContentPanel. This is aptly illustrated in the following screenshot:

14.	Rename the buttons' text to Gun, Knock, Slap, and Whip, respectively. Add
an event handler for the click event of each of the buttons as we did for the
Punch button.

15.	Add the following code to MainPage.xaml.cs. This code will accept the URI
of the audio file, load the audio file into MyMediaElement, and, once the audio
file is loaded, MyMediaElement will play the file. This is encapsulated in the
following code:

public MainPage()
{
 InitializeComponent();
 MyMediaElement.MediaOpened += MyMediaElementMediaOpened;
}

// Set the audio file as the source of MediaElement
// Add Event Handler for MediaOpened event
// This event is fired when file is opened after validation
private void SetAndPlay(string soundFileUrl)
{
 MyMediaElement.Source = new Uri(soundFileUrl,
 UriKind.Relative);
}

// Play the audio once it validated and opened
private void MyMediaElementMediaOpened(object sender,
RoutedEventArgs e)
{
 MyMediaElement.Play();
}

Creating Windows Phone Apps

[168]

16.	 Now on each the button clicks we will pass the address of the audio files respectively:

// Call method to play Gun sound
private void ButtonClick(object sender, RoutedEventArgs e)
{
 SetAndPlay("/Assets/Audio/Gun.wav");
}

// Call method to play Knock sound
private void ButtonClick1(object sender, RoutedEventArgs e)
{
 SetAndPlay("/Assets/Audio/Knock.wav");
}

// Call method to play Punch sound
private void ButtonClick2(object sender, RoutedEventArgs e)
{
 SetAndPlay("/Assets/Audio/Punch.wav");
}

// Call method to play Slap sound
private void ButtonClick3(object sender, RoutedEventArgs e)
{
 SetAndPlay("/Assets/Audio/Slap.wav");
}

// Call method to play Whip sound
private void ButtonClick4(object sender, RoutedEventArgs e)
{
 SetAndPlay("/Assets/Audio/Whip.wav");
}

Chapter 10

[169]

17.	Now, when we run the application, we will hear different audios depending on the
button we clicked. Take a look at the following screenshot that depicts this:

What just happened?
We created our first Windows Phone application and ran it on the emulator. You will notice
that the emulator looks a lot like an actual phone. We will have a look at the emulator in
detail in the next section.

Creating Windows Phone Apps

[170]

Exploring the Device panel
The Device panel is exclusive to Windows Phone applications. There are multiple settings
available to preview the changes we are making to the application. When we move to the
Device tab, which is available along with the Projects tab at the top, we see something
similar to the following screenshots:

The options in the preceding screenshot are explained in the following points:

�� Orientation: We can set the orientation to design the application in either the
landscape orientation or the portrait orientation.

�� Display: We can select the different resolutions and different aspect ratios and check
how the application looks in that.

�� Theme: We can choose from the dark and light themes as available on the phone
and verify how the color scheme looks.

�� Accent: We can choose the accent to be one of the various colors available. When
the accent color is changed by the user of the application, the changed color is
reflected at the places where we have used Windows Phone's built-in styles. As
illustrated in the following screenshots, we have assigned the foreground color of
page name to PhoneAccentColor. Now, when we change Accent color to Crimson,
the foreground color of page name changes as well.

Chapter 10

[171]

�� Show chrome: This setting enables or disables the chrome UI of the phone.

�� Clip to display: This resizes the data content to fit the app's viewing area.

�� Deploy target: This is the only runtime setting available. This allows us to deploy our
application to a real device or different versions of the emulator. The second option
in the list, Emulator WVGA 512 MB, runs our application in a memory-constrained
environment. We can use this option to verify our apps for lower-configuration
devices. The WVGA (800 x 480), WXGA (1280 x 768), and 720p (1280 x 720)
emulators allow us to test our applications on the various possible resolutions of
Windows Phone devices. You should test your application on all the resolutions to
make sure that the app looks good on all the phones. This point is illustrated in the
following screenshot:

Creating Windows Phone Apps

[172]

Testing the application before submitting to the store
Once we have created our application, we will need to test the app using Store Test Kit
before submitting it to the store.

Time for action – testing our application
Perform the following steps to test your application:

1.	 Before we try to submit the app to the store, we need to do the compliance testing
of the application. Store test kit can help us with that. Open the project in Visual
Studio, and then, from the menu, select Project | Open Store Test Kit. The following
screenshot shows this:

2.	 This will open Store Test Kit. You will find three options on the left-hand side—
Application Details, Automated Tests, and Manual Tests. Select Automated Tests
and click on Run Tests. This is illustrated in the following screenshot:

Chapter 10

[173]

3.	 You will see an error stating that the tests will expect a release version of the
XAP package.

4.	 To fix this error, in the toolbar, select the drop-down list next to the Run button and
select Release. Then rebuild the project. This is shown in the following screenshot:

5.	 Now, click on Run Tests again, and this time, we will see that the tests run, but two
of them fail because we have not provided the appropriate icon and screenshots for
the application.

6.	 You could either provide your icon and screenshot for the application or use
the ones provided with this chapter. We need to add the icon and screenshot in
Application Details. We need to provide a 300 x 300 application tile. We also need
to provide at least one screenshot for each of the resolutions, that is: 480 x 800
(WVGA), 768 x 1280 (WXGA), and 720 x 1280 (720P). Take a look at the following
screenshot that shows this:

7.	 Now, when we rerun Automated Tests, we will see that all the tests pass.

Creating Windows Phone Apps

[174]

8.	 Also, on the Automated Tests tab, we see the Application Analysis button. This
execution will add a new .sap file, which is a blank performance log file that
captures data about the performance of your app as it runs. The log file will then be
pored over and reported on to let you know how well it runs in certain situations.
Click on Start Windows Phone Application Analysis.

9.	 You will see a new screen with multiple types of data that we could collect for
reporting as illustrated in the following screenshot. You can find more details about
this at http://msdn.microsoft.com/en-us/library/windowsphone/
develop/jj215908(v=vs.105).aspx.

Chapter 10

[175]

10.	When we click on the Start Session (App will start) link, the application will load in
the emulator, and we will see the monitoring message in Visual Studio. During this
time, we can perform all the intended and expected scenarios in the application.
This is depicted in the following screenshot:

11.	When we click on the End Session link, we see a report similar to the following
screenshot. This report helps us in analyzing the readiness of the application for
the store.

Creating Windows Phone Apps

[176]

Submitting our application to the store
Once we have created and tested our application, the time comes to submit this application
to the store to share it or to make money. This is a multiday process, and it might take
multiple attempts to be successful.

Time for action – submitting the application
Perform the following steps to submit the application:

1.	 The first thing that we need to do to submit the app is create a developer account at
http://developer.windowsphone.com.

2.	 Once that is done, go to https://dev.windowsphone.com/join to buy the
developer subscription. There is a onetime fee of $19 to register as an individual
app developer.

3.	 Follow the steps mentioned at https://dev.windowsphone.com/register to
make the payment and get a developer subscription.

4.	 To test your application on a Windows Phone device, your phone needs to be
registered at the developer centre and unlocked using the developer unlock tool.

5.	 Once you have a valid subscription, submit the application, and then you will see a
screen similar to the one shown here. Just follow the steps to submit the application.
Some of the steps may be optional depending on the type of application and whether
it's a free app or not.

Chapter 10

[177]

6.	 Before you submit the app to the store, go through the instructions mentioned at
http://msdn.microsoft.com/en-US/library/windowsphone/develop/
hh184843(v=vs.105).aspx. This will help you in reducing the app rejections.

7.	 You can also find more information about the submission process at http://
msdn.microsoft.com/en-US/library/windowsphone/help/
jj206729(v=vs.105).aspx.

What just happened?
We submitted our application to the store by following the guidelines laid out by Microsoft
to submit applications.

Pop quiz
Q1. What are the various display modes supported by Windows Phone?

1.	 WXGA.

2.	 WVGA.

3.	 720p.

4.	 All.

Q2. Can we have live tiles for the application in Window Phone?

1.	 No.

2.	 Yes.

Q3. Can we take screenshots from Windows Phone Emulator?

1.	 Yes.

2.	 No.

Summary
In this chapter, we created different types of Windows Phone applications, used an emulator,
and submitted the app to the store.

In the next chapter, we will take a look at creating Windows Store applications.

Chapter 11

[179]

11
Creating Windows 8 Store Apps

Apps are at the core of the Windows 8 experience. Windows 8 is installed on
millions of devices, and the apps we create can reach hundreds of markets
worldwide. Windows 8 apps can work on different devices, such as desktops,
laptops, tablets, all-in-ones, and so on. We will see how to develop and submit
a Windows app.

In the previous chapter, we had a look at creating, running, and submitting Windows Phone
apps. In this chapter, we will cover the following topics:

�� Different templates available for Windows 8 Store apps

�� Creating and running a Windows 8 Store app

�� Submitting the Windows Store app

We can develop Windows 8 Store applications only on a Windows 8 (or higher) system. So,
that being said, in order to run samples of these chapters and get hands-on, we will need a
Windows 8 system.

Creating Windows 8 Store Apps

[180]

Templates
We could either create an XAML or HTML Windows Store application. In this book, we will
talk about XAML applications. When we create a new project in Blend for Visual Studio 2012
and select the XAML Windows Store application in the left-hand side panel, we will have the
following five templates to select from:

�� Blank App (XAML): This is a project with nothing in it.

�� Class Library (Windows Store apps): A class library for Windows Store apps lets us
create a managed class library that can be used and reused in Windows Store apps
and Windows Runtime Components.

�� Grid App (XAML): The Grid App template is a great way to start a Windows Store
app that you can customize to enable users to browse through categories to find
content in which they will want to fully immerse themselves. Examples include
shopping apps, news apps, and photo or video apps.

�� Split App (XAML): The Split App template is a great way to start creating a Windows
Store app that you can customize to enable users to view a list of items and item
details in a two-column view, where users might want to switch quickly between
items and where the list might be updated dynamically. Examples include a
newsreader, a sports scores app, or an e-mail app.

�� Windows Runtime Component: We can use this template to create dlls (class
libraries) that can be used by any Windows Store application regardless of the
language in which the application is written in:

Chapter 11

[181]

Creating Windows Store apps with XAML and C#
In this section, we will have a look at how we can create a Windows 8 Store application using
XAML and C#. We will create an application similar to the Windows Phone application that
we created in the previous chapter.

Time for action – creating a Windows 8 Store app
To create a Windows 8 Store app, perform the following steps:

1.	 Create a new project, select XAML (Windows Store) in the left-hand side panel, and
select Blank App (XAML) in the right-hand side panel.

2.	 Once we click on OK, we will see a screen similar to the following screenshot.
Except for the center area, the rest of the screen looks quite similar to the screens
that we have seen in the previous chapters of the book. This template provides
the infrastructure to create XAML Windows 8 Store apps.

Creating Windows 8 Store Apps

[182]

3.	 Add StackPanel in Grid by selecting StackPanel from the Assets panel and dropping
it onto the grid. This is depicted in the following screenshot:

4.	 Add five buttons and one MyMediaElement in StackPanel and name them as shown
in the following image:

5.	 Create a new folder in the Assets folder and rename it to Audio. Then, include the
audio files (.wav) available along with the code of this chapter.

Chapter 11

[183]

6.	 Select BtnPunch, move to the Events panel, and double-click in front of the Click
event to add an event handler to the Click event. Do the same for the remaining
buttons as well. This is shown in the following screenshot:

7.	 Add the following code to the code-behind file to handle click events on the buttons:

private void BtnGun_Click(object sender, RoutedEventArgs e)
{ SetAndPlay("/Assets/Audio/Gun.wav"); }

private void BtnKnock_Click(object sender, RoutedEventArgs e)
{ SetAndPlay("/Assets/Audio/Knock.wav"); }

private void BtnPunch_Click(object sender, RoutedEventArgs e)
{ SetAndPlay("/Assets/Audio/Punch.wav"); }

private void BtnSlap_Click(object sender, RoutedEventArgs e)
{ SetAndPlay("/Assets/Audio/Slap.wav"); }

private void BtnWhip_Click(object sender, RoutedEventArgs e)
{ SetAndPlay("/Assets/Audio/Whip.wav"); }

private void SetAndPlay(string soundFileUrl)
{ MyMediaElement.Source = new Uri(this.BaseUri, soundFileUrl); }

private void MyMediaElementMediaOpened(object sender,
RoutedEventArgs e)
{ MyMediaElement.Play(); }

Creating Windows 8 Store Apps

[184]

8.	 Now, when we run the application, we see a fullscreen SoundBoard application,
which is shown in the following screenshot:

Have a go hero
Because of the limited content that can be put into this book, we cannot cover all the types
of templates that are available to create XAML Windows 8 Store applications. However, we
recommend that you go ahead and try to create applications based on the various templates
that are available.

Submitting your app to Windows Store
Once we are done with our application, we need to submit the application to the store.
The store is located at https://dev.windows.com/en-us/dashboard. Once you
have signed up for a developer account, you will be able to submit the application. While
submitting the application, we need to provide details about the application. There are two
ways to submit the application.

Chapter 11

[185]

Time for action – submitting the app to Windows Store
Before we submit the application to the store, we need to perform the following steps:

1.	 Capture the application's screenshots—we can do that by running the application on
a simulator and capturing the screenshots.

2.	 Create the application package by right-clicking on the project name in Visual Studio
and select Create App Packages…. The following screenshot depicts this step:

3.	 We will be asked whether we want to create packages to submit to Windows Store
or not. Select Yes and click Sign In. Enter your Windows Store credentials and
proceed. This step is shown in ample detail by the following screenshot:

Creating Windows 8 Store Apps

[186]

4.	 Go to Windows Store and reserve a name for the application if you haven't already
done that. The following screenshot shows you how:

Chapter 11

[187]

5.	 Once we have reserved a name for the app, it will autopopulate in the window.
To move further, we need to select the app and click on Next, as shown in the
following screenshot:

Creating Windows 8 Store Apps

[188]

6.	 Keep the default settings and click on Create, as depicted in the following screenshot:

Chapter 11

[189]

7.	 Once the app packages are created, we will see the following window that allows us
to verify the application for certification using Launch Windows App Certification
Kit. This is shown in great detail in the following screenshot:

8.	 Make sure that the app certification kit passes all tests.

9.	 Before we upload the app packages we just created, we need to provide the
information required for that.

Creating Windows 8 Store Apps

[190]

What just happened?
We had a look at the steps to submit our app to Windows Store.

Stages of app submission
Once we have submitted the application, our application goes through various stages. Here's
a quick look at what is happening behind the scenes during each of these stages:

1.	 Preprocessing: This is where the application will be checked to make sure that it
has all of the appropriate details that are needed to publish your app. This includes
checking the status of the developer account, and, if the app has a purchase price
or any in-app offers, it is ensured that the Windows Store team has all of the
paperwork in a file so that the developer can be paid.

2.	 Security tests: The application is checked for viruses and malware.

3.	 Technical compliance: Windows App Certification Kit is used to check that the
app complies with the technical policies. These are exactly the same technical
certification assessments that are included in the SDK and that can be run locally
before the developer uploads their package.

4.	 Content compliance: The testers take a look at the app to check that the contents
comply with the content policies. Since there are real people looking at the app, this
process can take longer than the other steps.

5.	 Release: This stage goes by very quickly unless the developer has specified a publish
date in the future.

6.	 Signing and publishing: In this final step, the packages you submitted with a trusted
certificate must match the technical details of the developer account. This provides
customers with the assurance that the app is certified by Windows Store and hasn't
been tampered with. Then, app packages are published to the store, along with
all of the other data that will be visible in the app listing page so that millions of
Windows 8 users will be able to find, acquire, and enjoy the app.

We can check the current stage of the application from the
dashboard at https://appdev.microsoft.com/
storeportals.

Chapter 11

[191]

Also, before you submit the application, do not forget to go through
the application certification requirements at http://msdn.
microsoft.com/en-us/library/windows/apps/
hh694083.aspx.

Creating Windows 8 Store Apps

[192]

Pop quiz
Q1. How can we distribute a Windows app?

1.	 We can distribute it through Windows 8 Store.

2.	 We can host it on a web server.

3.	 We can distribute it through CD/DVD.

4.	 We can put it on the network drive.

Q2. Can we take screenshots from a simulator?

1.	 Yes.

2.	 No.

Summary
In this chapter, we created different types of Windows 8 Store applications, used a simulator,
and submitted the app to the store.

[193]

Pop Quiz Answers

Chapter 1, Getting Started with Blend

Pop quiz

Q1 2

Chapter 2, Layout Panels
Pop quiz

Q1 1

Q2 4

Chapter 3, Working with XAML
Pop quiz

Q1 1

Q2 1

Pop Quiz Answers

[194]

Chapter 4, Styles and Templates
Pop quiz

Q1 1

Chapter 5, Behaviors and States in Blend
Pop quiz

Q1 1

Q2 2

Chapter 6, Understanding Animation
and Storyboards
Pop quiz

Q1 4

Q2 2

Chapter 7, Understanding DataBinding
Pop quiz

Q1 3

Q2 3

Appendix

[195]

Chapter 8, Vector Graphics
Pop quiz

Q1 4

Q2 3

Chapter 9, User Controls and Custom Controls
Pop quiz

Q1 4

Chapter 10, Creating Windows Phone Apps
Pop quiz

Q1 4

Q2 2

Q3 1

Chapter 11, Creating Windows 8 Store Apps
Pop quiz

Q1 1

Q2 1

Pop Quiz Answers

[196]

Chapter 12, Prototyping Using SketchFlow
Pop quiz

Q1 1

Q2 1

Q3 1

Note that Chapter 12, Prototyping Using SketchFlow, is available online
at https://www.packtpub.com/sites/default/files/
downloads/3882OT_Chapter12.pdf.

[197]

Index
A
animation

frame-based animation 85
recording symbol 96
rotation animation 94
service 86
time-based animation 85

animation behaviors
about 70
ControlStoryboardAction 70-72
FluidMoveBehavior 73
FluidMoveSetTagBehavior 73
storyboard, adding 70

animation workspace
about 88-91
switching 91

app
submission, stages 190, 191
submission, URL 191
submitting, to Windows Store 184-189
URL 190

application
creating, in Blend 4
executing 19
integrating, into Visual Studio 20
Silverlight application, creating 5, 6
submitting, to store 176, 177
testing 172-175

application skinning
about 61
resource dictionaries, creating 62, 63

Art board 6
Assets

Behaviors 10
Effects 10
Styles 10
UI components 10

Assets panel 7
attached property 108

B
behavior objects 69
BitmapScalingMode

about 137
URL 137

Blend
about 1
application, creating 4-6
downloading 2, 3
for Visual Studio 2012 1, 2
installing 3

Blend IDE
about 6
Art board 6
Assets panel 7
Object and Timeline panel 7
Open documents 6
Projects panel 7
tools panel 8, 9

brushes
about 13
gradient brush 15-17
properties 13

[198]

solid color brush 14, 15
tile brush 18, 19

Brush tools
Eyedropper 9
Gradient 9
Paint bucket 9

built-in behaviors
adding 70
animation behaviors 70
conditional behaviors 70
data behaviors 70
motion behaviors 70
types 70

C
C#

code 40
used, for creating Windows Store apps 181

canvas
about 32
using 32, 33

code-behind class
about 44
named element, using 44

Common controls 9
Common Language Runtime (CLR) 2
compound keyframes 92
conditional behaviors

about 70-73
CallMethodAction 73
ChangePropertyAction 73
ControlStoryboardAction 74
GoToStateAction 74
HyperlinkAction 74
InvokeCommandAction 74
LaunchUriOrFileAction 74
PlaySoundAction 74
RemoveElementAction 74
SetDataStoreValueAction 74

custom control
about 150
creating 150-155
versus user control 142, 143

D
data behaviors 70
DataBinding

about 107-109
background, with SelectedValue 122
control to control 114
properties to control 110
to DataSource, as collection 117-121
to ones own property 111-113
to properties, of different control 114-116

DataBinding model 110
DataBinding, modes

about 109
Default 109
OneTime 109
OneWay 109
OneWayToSource 109
TwoWay 109

DataSource
DataBinding to, as collection 117-120
using 117

data state behaviors
about 74
CallMethodAction 74
DataStateBehavior 74
FuildMoveSetTagBehavor 74
InvokeCommandAction 74
SetDataStoreValueAction 74

default properties 45
dependency object

URL 108
dependency properties 107, 108
Device panel

about 170
Accent option 170
Clip to display option 171
Deploy target option 171
Display option 170
Orientation option 170
Show chrome option 171
Theme option 170

documentation
using 21, 22

[199]

DPI awareness
Not DPI-aware applications 138
Per-monitor-DPI-aware Applications 138
System-DPI-aware applications 138
URL 138

DreamSpark program
URL 2

dynamic stage 76

E
easing functions

about 101-103
types 102
using 101

elements
adding in XAML, by hand-coding 45, 46

Extensible Application Markup Language. See
XAML

F
frame-based animation 85

G
gradient brush

about 15
background color of grid, modifying 16, 17
linear gradient brush 18
radial gradient brush 18

graphics
importing 130-132

grid layout
about 24
used, for creating Run window 25-31

H
help menu

using 21

I
implicit keyframes 93
INotifyPropertyChanged

URL 110
integrated development environment (IDE) 6

ItemControls
URL 117

K
keyframe

about 92
compound keyframes 92
editing 96
implicit keyframes 93
object-level keyframes 92
simple keyframes 92
using 93

KeySpline 104

L
layout containers

about 35
border 36
popup 36
ScrollViewer 36
UniformGrid 36
ViewBox 36

Layout panels 9
linear gradient brush 18
Line tool 132

M
merged dictionaries 67
motion behaviors

about 70, 74
MouseDragElementBehavior 74
TranslateZoomRotateBehavior 75

MSDN subscription
URL 2

N
namespace

adding, in XAML 42, 43
naming elements

about 43
in code-behind class 44

non-attribute syntax
about 46
gradient, defining for grid 46

[200]

O
Object and Timeline panel 7
object-level keyframes 92
Open documents 6

P
panels

canvas 23
DockPanel 23
grid 23
StackPanel 23
WrapPanel 23

Paths
about 134
modifying 134-136

Path tools
Pen 9
Pencil 9

Pencil tool 134
Pen tool

about 132
used, for creating shape 132, 133

Projects panel 7
properties

expressing, as attributes 45
Properties panel 91

R
radial gradient brush 18
raster graphics 126
resource dictionaries

about 55
creating 62, 63

resources
application level 52
creating 53-55
document level 52
dynamic resources 52
element level 52
static resources 52

Rich Internet Applications (RIAs) 2

S
SelectedValue

used, for DataBinding background 122
Selection tools

Direct selection 8
Selection 8

shapes
about 129
adding 129
creating, Pen tool used 132, 133
URL 129

Shape tools 9
Silverlight 2
simple styles

about 56
changing 58
colors, changing 58
control templates, changing 59
simple styled control, creating 56

solid color brush
about 14
options 14
text color, modifying 15

StackPanel
about 33
using 34, 35

static stage 76
store

application, submitting 176, 177
storyboards

about 86, 87
adding 87-89
properties 97, 98
URL 86
XAML 98-100

styles
about 52
creating 51
defining 47
defining, in XAML 48, 49
key, specifying 60
specification 59
TargetType, specifying 60
using 48-51

[201]

T
templates

about 64, 180
Blank App (XAML) 180
Class Library (Windows Store apps) 180
control template 64
data template 64
editing 64-67
Grid App (XAML) 180
Split App (XAML) 180
Windows Runtime Component 180

Text controls 9
tile brush

about 18
background of grid, modifying 18

time-based animation. See keyframe
timelines

about 90
recording 90

Timeline zoom feature 97
tools panel

about 8
assets 10
Assets 10
Brush tools 9
Common controls 9
Layout panels 9
Path tools 9
Selection tools 8
Shape tools 9
text, adding to TextBlock 13
TextBlock, adding 10-12
Text controls 9
View tools 9

transforms
using 94

transition
between keyframes 101

transitions stage 76

U
user control

adding, in window 148-150
creating 143

creating, that selects background
color 144, 145

event handlers, adding 146-148
versus custom controls 142, 143

user interfaces
building 36

V
vector graphics

about 125, 126
WPF control, zooming in to 126-128

View tools
Camera orbit 9
Pan 9
Zoom 9

Visual State Manager
about 76
modifying, with visual states 77-83
URL 76

visual states
about 76
dynamic stage 76
static stage 76
transition stage 76

Visual Studio
application, integrating 20
URL 2

Visual Studio 2012
with Blend 1, 2

W
Windows 8 Store app

creating 181-184
Windows Phone

about 158
application, creating 162-169
application, guidelines 160
developer, URL 176
features 158, 159
Windows Phone SDK, installing 158
Windows Phone SDK, URL 158

Windows Phone Emulator
about 160
features 160-162
URL 160

[202]

Windows Phone, features
accelerometer 159
accelerometer, URL 159
camera and photos 159
compass 159
compass, URL 159
gyroscope 159
gyroscope, URL 159
location 158
lock screen 158
maps and navigation 159
permanent back button 159
speech, URL 159
tiles 158
toast notifications 158
wallet, URL 159

Windows Presentation Foundation (WPF) 2
Windows Store

apps creating, C# used 181
apps creating, XAML used 181
app, submitting to 184-189
URL 184

WPF
panels 23

X
XAML

about 39
basics 40
code 39-42
comments 47
elements, adding by hand-coding 45, 46
for storyboard 98-100
in Silverlight, URL 49
in WPF, URL 49
namespaces, adding 42, 43
style, defining 48
styles 47
used, for creating Windows Store apps 181

Thank you for buying

Blend for Visual Studio 2012
by Example Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.PacktPub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss it
first before writing a formal book proposal, then please contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft Visio 2013 Business Process
Diagramming and Validation
ISBN: 978-1-78217-800-2 Paperback:416 pages

Explore Visio Professional 2013 and improve your business
information through structured diagrams and custom
validation rules

1.	 Optimize your business information visualization
by mastering out-of-the-box structured diagram
functionality with features like basic and
cross-functional flowcharts.

2.	 Create and analyze custom validation rules
for structured diagrams using Visio 2013
Professional.

3.	 Get to grips with the validation logic for
business process diagramming with Visio 2013
Professional with the provided Rules Tools
add-on.

Visual Studio 2012 Cookbook
ISBN: 978-1-84968-652-5 Paperback: 272 pages

50 simple but incredibly effective recipes to immediately
get you working with the exciting features of Visual
Studio 2012

1.	 Take advantage of all of the new features of Visual
Studio 2012, no matter what your programming
language specialty is!

2.	 Get to grips with Windows 8 Store App
development, .NET 4.5, asynchronous coding and
new team development changes in this book and
e-book.

3.	 A concise and practical First Look Cookbook to
immediately get you coding with Visual Studio 2012.

Please check www.PacktPub.com for information on our titles

Visual Studio 2012 and .NET 4.5 Expert
Development Cookbook
ISBN: 978-1-84968-670-9 Paperback: 380 pages

Over 40 recipes for successfully mixing the powerful
capabilities of .NET 4.5 and Visual Studio 2012

1.	 Step-by-step instructions to learn the power of
.NET development with Visual Studio 2012.

2.	 Filled with examples that clearly illustrate how to
integrate with the technologies and frameworks
of your choice.

3.	 Each sample demonstrates key conceptsto build
your knowledge of the architecture in a practical
and incremental way.

Microsoft Silverlight 5 and Windows
Azure Enterprise Integration
ISBN: 978-1-84968-312-8 Paperback: 304 pages

A step-by-step guide to creating and running scalable
Silverlight Enterprise Applications on the Windows
Azure platform

1.	 This book and e-book details how enterprise
Silverlight applications can be written to take
advantage of the key features of Windows Azure
to create scalable applications.

2.	 Provides an overview of the Windows Azure
platform and how the different technologies can
be integrated within your enterprise application.

3.	 Examines ways that distributed asynchronous
systems can be created to allow scalable processing.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Blend
	Blend for Visual Studio 2012
	Downloading Blend
	Time for action – installing Microsoft Blend
	Creating your first application in Blend
	Time for action – creating a project in Blend using an existing template
	The fundamental pieces of the Blend IDE
	The tools panel

	Time for action – adding TextBlock
	Time for action – adding text to TextBlock
	Brushes
	The solid color brush

	Time for action – changing the color of the text
	The gradient brush

	Time for action – changing the background of the grid
	Linear and radial gradients
	The tile brush

	Time for action – changing the background of the grid
	Time for action – running the application
	Time for action – integrating the project into Visual Studio
	Using help and documentation
	Summary

	Chapter 2: Layout Panels
	Grid
	Time for action – creating a Run window using grid
	Canvas
	Time for action – using canvas
	StackPanel
	Time for action – using StackPanel
	Other layout containers
	Building user interfaces
	Summary

	Chapter 3: Working with XAML
	The basics of XAML
	Time for action – taking a look at XAML code
	Time for action – adding other namespaces in XAML
	Naming elements
	The code-behind class
	Time for action – using a named element in a code-behind class
	Default properties
	Expressing properties as attributes

	Time for action – adding elements in XAML by hand-coding
	Non-attribute syntax

	Time for action – defining the gradient for the grid
	Comments in XAML
	Styles in XAML
	Defining a style

	Time for action – defining style in XAML
	Using a style

	Time for action – defining style in XAML
	Where to go from here
	Summary

	Chapter 4: Styles and Templates
	Creating and using styles
	An introduction to styles
	Time for action – creating a resource
	The resource dictionary
	Simple styles
	Creating a simple styled control
	Changing colors
	Changing styles
	Changing control templates

	Style specification
	Specifying TargetType of a style
	Specifying the key for a style

	Application skinning
	Time for action – creating resource dictionaries
	Templates
	Editing the template
	Time for action – editing the template
	Merged dictionaries

	Summary

	Chapter 5: Behaviors and States in Blend
	An introduction to behavior objects
	Adding built-in behaviors
	Types of built-in behaviors

	Time for action – adding a storyboard
	Conditional behaviors
	Data state behaviors
	Motion behaviors

	Visual states
	Visual State Manager
	Time for action – modifying with visual states
	Summary

	Chapter 6: Understanding Animation
and Storyboards
	Understanding the animation service
	Storyboards
	Time for action – adding the storyboard
	Timelines
	Timeline recording
	Properties
	Animation workspace

	Time for action – switching workspaces
	Keyframe

	Time for action – using keyframes
	Translation and rotation animation

	Time for action – using transforms
	Animation recording symbol
	Keyframe editing
	The Timeline zoom feature
	Storyboard properties

	XAML for the storyboard
	Transition between keyframes
	Easing functions

	Time for action – using easing functions
	KeySpline

	Summary

	Chapter 7: Understanding DataBinding
	Understanding dependency properties
	Understanding the attached property
	An introduction to DataBinding
	DataBinding modes
	The DataBinding model
	DataBinding properties to control

	Time for action - DataBinding to one's own property
	DataBinding control to control

	Time for action – DataBinding to properties of a different control
	Using DataSource

	Time for action – DataBinding to DataSource as a collection
	Time for action – DataBinding the background with SelectedValue
	Summary

	Chapter 8: Vector Graphics
	An introduction to vector graphics
	Raster graphics
	Vector graphics

	Time for action – zooming in to a WPF control
	Shapes
	Time for action – adding a shape
	Importing graphics
	Time for action – importing graphics
	The Line, Pen, and Pencil tools
	Line
	Pen

	Time for action – creating a shape using a Pen
	Pencil

	Paths
	Time for action – modifying a Path
	BitmapScalingMode
	DPI awareness
	Summary

	Chapter 9: User Controls and Custom Controls
	User control or custom control – which to use and when
	Understanding and creating a user control
	Time for action – creating a user control that selects the background color
	Time for action – adding event handlers
	Time for action – adding a user control in a window
	Understanding and creating custom controls
	Time for action – creating a custom control
	Summary

	Chapter 10: Creating Windows Phone Apps
	Installing Windows Phone SDK
	An introduction to Windows Phone
	Guidelines for Windows Phone applications
	Understanding Windows Phone Emulator
	Time for action – Windows Phone Emulator
	Creating a Windows Phone application
	Time for action – creating a Windows Phone application
	Exploring the Device panel
	Testing the application before submitting to the store
	Time for action – testing our application
	Submitting our application to the store
	Time for action – submitting the application
	Summary

	Chapter 11: Creating Windows 8 Store Apps
	Templates
	Creating Windows Store apps with XAML and C#
	Time for action – creating a Windows 8 Store app
	Submitting your app to Windows Store
	Time for action – submitting the app to Windows Store
	Stages of app submission

	Summary

	Appendix: Pop Quiz Answers
	Index

