BUILD
APIS
YOU

WON'T

HATE

Everyone and their dog wants an API, so you

should probably learn how to build one.

PHILIP STURGEON

http://www.allitebooks.org

Build APIs You Won’t Hate

Everyone and their dog wants an API, so you should probably learn
how to build them.

Phil Sturgeon
This book is for sale at http://leanpub.com/build-apis-you-wont-hate

This version was published on 2015-08-12

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with
the Lean Publishing process. Lean Publishing is the act of publishing an
in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction
once you do.

©2013 - 2015 Phil Sturgeon

[vww allitebooks.cond

http://leanpub.com/build-apis-you-wont-hate
http://leanpub.com
http://leanpub.com/manifesto
http://www.allitebooks.org

Tweet This Book!

Please help Phil Sturgeon by spreading the word about this book on
Twitter!

The suggested tweet for this book is:

[just bought @philsturgeon’s book about APIs, because he said if I didn’t
he would hurt me: http://apisyouwonthate.com

The suggested hashtag for this book is #apisyouwonthate.

Find out what other people are saying about the book by clicking on this
link to search for this hashtag on Twitter:

https://twitter.com/search?q=#apisyouwonthate

[vww allitebooks.cond

http://twitter.com
https://twitter.com/search?q=%23apisyouwonthate
https://twitter.com/search?q=%23apisyouwonthate
http://www.allitebooks.org

A huge thank you to all the developers and other folks who built the
technologies this book talks about.

I'would also like to thank everyone who bought an early copy of this book on
LeanPub. 2014 was a really messed up year for me, and those book sales kept
me going, and kept me motivated to finish the book on time.

Without you, I would be much further away from getting my boat.

[vww allitebooks.cond

http://www.allitebooks.org

Contents

Introduction i
SampleCode ii
1. Useful Database Seeding 1
1.1 Introduction. 1
1.2 Introduction to Database Seeding 1
1.3 BuildingSeeders 3
1.4 Thatisaboutit, 6
1.5 SecondaryData 7
1.6 Whentorunthis? 11
2. Planning and Creating Endpoints 12
2.1 Functional Requirements 12
2.2 EndpointTheory 15
2.3 Planning Endpoints 21
3. Input and Qutput Theory 24
3.1 Introduction. 24
3.2 Requests L 24
3.3 Responses 26
3.4 Supporting Formats 27
3.5 Content Structure 32
4. Status Codes, Errorsand Messages 38
4.1 Introduction. 38
4.2 HTTPStatusCodes v it i . 38
4.3 Error Codes and Error Messages 40
4.4 ErrororErrors 43
4.5 Standards for Error Responses 43

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

4.6 Common?Pitfalls 45
5. Endpoint Testing 47
5.1 Introduction. 47
5.2 Concepts&Tools, 47
5.3 Setup e e 48
5.4 Initialise 49
5.5 Features 50
5.6 SCENATIOS i e e e e 50
5.7 PreppingBehat 53
5.8 RunningBehat 53
6. OQutputtingData, 55
6.1 Introduction. 55
6.2 TheDirect Approach 56
6.3 Transformationswith Fractal 60
6.4 Hiding SchemaUpdates 66
6.5 OutputtingErrors. 66
6.6 TestingthisOutput. 70
6.7 Homework. e 72
7. DataRelationships 73
7.1 Introduction. 73
7.2 Subresources 74
7.3 ForeignKeyArrays, 75
7.4 Compound Documents (aka Sideloading) 76
7.5 Embedded Documents (aka Nesting) 77
7.6 Summary 84
8. Debugging 85
8.1 Introduction. 85
8.2 Command-line Debugging 85
8.3 BrowserDebugging. 86
8.4 Network Debugging 91
9. Authentication 96
9.1 Introduction. 96
9.2 When is Authentication Useful? 96
9.3 Different Approaches to Authentication. 97

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

9.4 Implementing an OAuth2.0Server 107
9.5 Where the OAuth 2.0 ServerLives 108
9.6 Understanding OAuth 2.0 GrantTypes. 109
10Pagination 114
10.1 Introduction 114
10.2 Paginators 115
10.3 Offsetsand Cursors v v v v v v v v i 119
11.Documentation 124
11.1 Introduction. 124
11.2 Types of Documentation 124
11.3 PickingaTool 126
11.4 Setting up API Blueprintand Aglio 127
11.5 Learning API BlueprintSyntax 129
11.6 FurtherReading 139
12.HATEOAS e 140
12.1 Introduction 140
12.2 Content Negotiation 140
12.3 Hypermedia Controls 144
13.APIVersioning 153
13.1 Introduction 153
13.2 Different Approaches to API Versioning 154
13.3 AskYourUsers e 168
Conclusion e 169
FurtherReading 171
APIWebResources e 171
Non-APIBooks 171

[vww allitebooks.cond

http://www.allitebooks.org

Introduction

A lot of articles and tutorials talk about REST and with a varying level of
accuracy. Some claim that certain things are more RESTful than others
whilst actually having very little to do with REST. The word REST has been
so utterly misused for the last seven or eight years that it actually means
nothing anymore, and a large chunk of the API development community
has moved to terms like Hypermedia API to represent what was intended
by the original meaning of REST before it was utterly ruined. This book
will not get too hung up on these politics. It will mostly outline the pros
and cons of various approaches, only giving you the “one true way” when
the other approaches are all patently awful (like SOAP and XML-RPC).

Whilst trying to learn about API development, [found most resources out
there to be horribly lacking or specifically aimed at one single framework.
Many tutorials and books use apples and pears examples that are not con-
crete enough, or talk like listing /users and /users/1 are the only endpoints
you will ever need. Between 2012 and 2014, [worked for a company called
Kapture where my primary function was to inherit, rebuild, maintain and
further develop a fairly large API with many different endpoints exposing
a lot of different use cases.

This book will discuss the theory of designing and building APIs in any
language or framework. This theory will be applied in examples built
mostly in PHP, with some Ruby and Python too. The book will not be too
code-heavy regardless, since reading code is no fun.

By the end of this book, you will have built an API that can create, read,
update, delete things, handle searching, and do everything else a good
Hypermedia API needs to do.

i

[vww allitebooks.cond

http://www.allitebooks.org

Sample Code

This book covers both theory which is applicable to any language, and
it covers concrete examples using source code written in PHP. PHP was
selected mostly because it had to be written in something, but all content
is applicable to any language.

The code can be downloaded in a few ways.

a) You can clone it:
$ git clone https://github.com/philsturgeon/build-apis-you-wont-hate.git
b) Browse around it:
https://github.com/philsturgeon/build-apis-you-wont-hate
c) Download it as a .zip file:
http://bit.ly/apisyouwonthate-zip
The book assumes a few things in relation to this same code.

1. You have PHP 5.4 available.

2. Youare ok playing with Laravel 4, even if you have no experience with
it.

3. You place the contents in ~/apisyouwonthate.

If you put the sample code somewhere else, then update the path in the
examples.

i

[vww allitebooks.cond

http://www.allitebooks.org

1. Useful Database Seeding

1.1 Introduction

The first step to creating any sort of application is creating the database.
Whether you are using some sort of relational platform, MongoDB, Riak,
or whatever, you will need a vague idea of how your data is going to be
stored.

For relational databases it is very likely you will start off your planning
with an entity-relationship diagram. For document based databases such
as MongoDB, CouchDB or ElasticSearch, you will just let your application
magically build a schema. Either way, you need to create a plan - even if it
is on a napkin. This book will assume a traditional relational database is
storing your data, but the principles are easily adapted for NoSQL systems
too.

This chapter assumes you have already got a database designed and built.
This chapter skips the “planning a database” section, because there are
plenty of other books on that already.

1.2 Introduction to Database Seeding

With a database schema designed and implemented, the next step is
to store some data. Instead of entering your real data, it is far easier
to use “dummy data” to test if the schema is appropriate for your API
application. This brings the added benefit of letting you ditch the database
and try again without worrying about maintaining the data.

The process of populating a database is known as “seeding”.
This data could be:

- test users
« content entries with a bunch of comments

1

[vww allitebooks.cond

http://www.allitebooks.org

Useful Database Seeding 2

- fake locations available for check-in

- fake notifications to display in an iPhone app (one of each type)

- credit-card payments at various stages of processing - with some
complete, some half done and some super-fraudulent looking ones

The process of creating seeding scripts means you can avoid wasting
time creating them manually over and over again. Ultimately, the more
processes you can automate during the development of your API, the more
time you have to consider the intricacies of your applications, which need
much more consideration.

Dummy data is necessary for realistic acceptance testing, getting free-
lancers/new hires up to speed with useful content, keeping real customer
data private to those outside your company, and avoiding the temptation
to copy live data over to your development environments.

Why is using production data in development bad?

Have you ever been writing a script that sends out emails and used some
dummy copy while you’re building it? Ever used some cheeky words
in that content? Ever accidentally sent that email out to 10,000 real
customers email addresses? Ever been fired for losing a company over
£200,0007

I haven’t, but I know a guy that has been. Don’t be that guy.

What data should you use?

Garbage! Use absolute nonsense for your development database, but non-
sense of the correct data type, size, and format. That can be done with a
fun little library called Faker! by Francois Zaninotto? which is a wonderful
little library that can essentially bullshit for Queen and country.

'https://github.com/fzaninotto/Faker
2https://twitter.com/francoisz/

https://github.com/fzaninotto/Faker
https://twitter.com/francoisz/
https://github.com/fzaninotto/Faker
https://twitter.com/francoisz/

W 0 N O U M W N

e T = e T
a b W N H OO

Useful Database Seeding 3

1.3 Building Seeders

Kapture, the company I previously worked for, used the Laravel frame-
work, which has Database Seeding? baked in. This is essentially a tarted
up CLI task, which almost any modern PHP framework will have (or bloody
well should), so the principles are applicable to all.

Break your database seeders down into logical groupings. This does not
need to be “one seeder-per-table”, but it can be. Sometimes your data
needs to be built at the same time as other types of data. For example,
users are created in the same seeder as their settings, OAuth tokens, and
friendship data is made. Putting that into multiple seeders purely to keep
things tidy would complicate your seeders and slow things down a lot, so
maybe consider combining them.

In this chapter [will use a check-in application as an example. The appli-
cation handles “users” and tracks their “check-ins” into “merchants”
(or “venues”). “Merchants” also provide “campaigns” (or “opportuni-
ties”).

So, this is a simplified version of the user seeder, ignoring the Laravel-
specific structure. If you are using Laravel, just shove this in your run () method.

Creating a user with Faker and Eloquent ORM

$faker = Faker\Factory::create();
for ($i = 0; $i < Config::get('seeding.users'); S$i++) {

Suser = User::create([
"name' => $faker->name,
'email' => $faker->email,
'active' => $i === 0 ? true : S$faker->boolean,
'gender' => $faker->randomElement(['male', 'female', 'other']l),
'timezone' => $faker->numberBetween(-10, 10),
'birthday' => $faker->dateTimeBetween('-40 years', '-18 years'),

'location' => $faker->boolean ? "{$faker->city}, {$faker->state}" : null,

'had_feedback_email' => s$faker->boolean,
'sync_name_bio' => $faker->boolean,
'bio' => $faker->sentence(100),

3http://laravel.com/docs/migrations#database-seeding

http://laravel.com/docs/migrations#database-seeding
http://laravel.com/docs/migrations#database-seeding

16
17

10

Useful Database Seeding 4

DR

What do we have here? Let’s go through this one section at a time:
$faker = Faker\Factory::create();

An instance of Faker, our bullshit artist for-hire.

for ($7 = 0; $i < Config::get('seeding.users'); $i++) {

We are going to want a certain number of users, but you should have a few
less on development than you do on testing or staging to save time.

Suser = User::create([
"name' => $faker->name,
'email' => $faker->email,

Make a random name and random email. There is no need to define the
pool of random data it uses, because IT’S MAGIC!

'active' => $i === 0 ? true : $faker->boolean,

Ok I lied, our garbage is not 100% random. We want user number 1 to be
active for tests later on.

'gender' => $faker->randomElement(['male', 'female', 'other']),

Gender equality is important.

'timezone' => $faker->numberBetween(-10, 10),

11

13

14
15

16

Useful Database Seeding 5

Our original developer decided that saving time zones as an integer was a
clever thing to do.

9 Store Time zones, Not Offsets

Did you know that some time zones are not complete hours?
Did you know that Nepal is UTC/GMT +05:45? Did you know that
Chatham Island (New Zealand) goes from UTC/GMT +12:45 to
UTC/GMT +13:45 in their local summer? Did you know that some
places add 30 minutes when in daylight savings time? Don’t use
integers as timestamps. Most major programming languages
(PHP included) implement the IANA% time zone database,
which is an industry standard. If you store America/New_York OT
Asia/Khandyga then the offset and daylight savings time can be
automatically calculated.

'birthday' => S$faker->dateTimeBetween('-40 years', '-18 years'),
Users of all of our target age demographic.

'location' => $faker->boolean ? "{$faker->city}, {$faker->state}" : null,

Give us a city name and a state name. This works fine with loads of
countries, which is cool.

'had_feedback_email' => $faker->boolean,
'sync_name_bio' => $faker->boolean,

Some user flags are not as important, so set them to be true or false at
random.

'bio' => $faker->sentence(100),

Make a sentence with 100 characters in it.

4http://www.iana.org/time-zones

http://www.iana.org/time-zones
http://www.iana.org/time-zones

W 0 N O UM W N

W W W NNNDNNNNNNNNKRRERERIERLERLERRR B
N B ©® O 0 ~N~0 U~ WNRFROWOOL-NOOWMNWNR O

Useful Database Seeding 6

1.4 That is about it

You will end up making a lot of these files, and you will want to populate
pretty much every table you have with data. You will also want to tell
your Database Seeder to wipe all the tables that will be populated. Do this
globally right at the start of the process. Do not wipe tables at the top of
each seeder, or content in that table from other seeders will be deleted.

Example of an overall system in Laravel

class DatabaseSeeder extends Seeder
{
public function run()
{
if (App::environment() === 'production') {
exit('I just stopped you getting fired. Love Phil');

// Disable mass-assignment protection with Laravel
Eloquent: :unguard();

$tables = [
'locations',
'merchants',
'opps’,
'opps_Tlocations',
'moments’,
'rewards’,
'users',
'oauth_sessions',
'notifications',
'favorites',
'settings',
'friendships',
'"impressions',

1;

foreach (Stables as Stable) {
DB::table($table)->truncate();

$this->call('MerchantTableSeeder');

33
34
35
36
37
38

O 0 N o U bd W N

=
(o}

Useful Database Seeding 7

$this->call('PlaceTableSeeder');
$this->call('UserTableSeeder');
$this->call('OppTableSeeder');
$this->call('MomentTableSeeder');

This wipes everything, then runs other seeder classes to do their thing.

q& Foreign Keys
It can be difficult to wipe a database when foreign keys con-
straints are enforced, so in that scenario your seeder should
fUN DB::statement('SET FOREIGN_KEY_CHECKS=0;'); before the
truncation of the tables and DB::statement('SET FOREIGN_KEY_-
CHECKS=1;'); afterwards to enable the checks again.

1.5 Secondary Data

As I said, it is quite likely that you will need to insert data that relates
to itself. To do this, work out which data will be primary (like users). In
the case of a check-in system you will also probably consider “venues” or
“merchants”, depending on the nomenclature of your system.

For this example, I will show how to create “merchants”, then attach
“opportunities”, which are essentially “campaigns”.

Primary Seeder for the Merchant Table

<?php

class MerchantTableSeeder extends Seeder

{

/**

* Run the database seeds.
*

* @return void

*/

public function run()

11
12
13
14
15
16
17
18
19
20
21
22
23
24

O 00 N O U bd W N

NN NNNNRRBRRBRR B B B B2
0 d WN RGO N UuH»WNRO

Useful Database Seeding

{
$faker = Faker\Factory::create();
// Create however many merchants
for ($i = 0; $1 < Config::get('seeding.merchants'); $i++) {
Merchant::create([
'name’ => S$faker->company,
'website' => S$faker->url,
'phone’ => S$faker->phoneNumber,
'description' => $faker->text(200),
s
}
1

Primary Seeder for the Opp Table

<?php

use Carbon\Carbon;
use Kapture\CategoryFinder;

class OppTableSeeder extends Seeder
{
protected $categoryFinder;
protected Splaces;

public function __construct(CategoryFinder $finder, Place $places)
{

$this->categoryFinder = $finder;

$this->places = $places;

protected $imageArray = [
'http://example.com/images/examplel.jpg',
'http://example.com/images/example2.jpg',
'http://example.com/images/example3.jpg',
'http://example.com/images/example4.jpg',
'http://example.com/images/example5.jpg',
1;

public function run()

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

Useful Database Seeding 9

$faker = Faker\Factory::create();
foreach (Merchant::all() as $merchant) {

// Create however many opps for this merchant
foreach (range(l, rand(2, 4)) as $i) {

// There are three types of image to add
$image = Image::create([
'name' => "{$merchant->name} Image #{S$i}",
'url' => $faker->randomElement($this->imageArray),

s

// Start it immediately and make it last for 2 months
$starts = Carbon::now();

// We need to definitely have at least one we are 1in control of
if (31 === 1) {

// Have ONE that ends really soon

$ends = Carbon::now()->addDays(2);

$teaser = 'Something about cheese';

} else {
$ends = Carbon: :now()->addDays(60);
$teaser = S$faker->sentence(rand(3, 5));

$category = $this->categoryFinder->setRandom()->getOne();

$opp = Opp::create([

"name’' => $faker->sentence(rand(3, 5)),
'teaser' => Steaser,

'details' => $faker->paragraph(3),

'starts' => S$starts->format('Y-m-d H:i:s'),
'ends' => Sends->format('Y-m-d H:i:s'),
'category_id' => Scategory->1id,

'merchant_id' => S$merchant->1id,

'published’ => true,

D;

// Attach an image to the opp
Sopp->images()->attach($image, [

69
70
71
72
73
74
75
76

41

43
44

46
47
48
49
50

66

Useful Database Seeding 10

'published' => true
IDN
}

echo "Created $1 Opps for $merchant->name \n";

This might look a little crazy, and it is certainly a mixture of lazy-static
ORM usage in the controller and some dependency injection, but these
seeders have not received a large amount of love. They definitely do their
job, and could always be cleaner, but here are the basics:

foreach (Merchant::all() as $merchant) {

Loop through all merchants.

// Create however many opps for this merchant
foreach (range(l, rand(2, 4)) as $i) {

Create between 1 and 4 opportunities for a merchant.

// There are three types of image to add
$image = Image::create([
"name' => '"{$Smerchant->name} Image #{S$i}",
'url' => $faker->randomElement($this->imageArray),

D;

Add an image from our array of example images on S3, or our website
somewhere. The more the merrier.

$category = $this->categoryFinder->setRandom()->getOne();

['will talk more about finders in a later chapter, but for now, just know this
is a convenient way of getting a single random category back.

The rest should all be relatively obvious.

If you are using Laravel, you can run the above commands on the com-
mand line with: $ php artisan db:seed. The Rails equivalent is hilariously
similar: $ rake db:seed.

Useful Database Seeding 11

1.6 When to run this?

Database seeds are often run both manually and automatically, depending
on what is going on.

For example, if you have just added a new endpoint with new data, you
will want to let your teammates know to pull the latest code, run the
migrations and run the seed.

This is also great when a freelancer comes in to do some work, or a new
developer starts up, or your iPhone dev wants to get some data to use. In
all these instances, that command just needs to be run on the command
line.

This is also occasionally run manually on the staging server and automat-
ically on the Jenkins testing server when we deploy new builds of the API.

[vww allitebooks.cond

http://www.allitebooks.org

2. Planning and Creating Endpoints

With your database planned and full of fake but useful data it is time to
plan what your endpoints are going to look like. An endpoint is simply a
URL. When you go to http://example.com/foo/bar that is an endpoint and
you can simply call it /foo/bar because the domain will be the same for all
of them.

The first step is to work out the requirements of an API, then we can
move onto some theory and finally see the theory implemented in some
examples.

2.1 Functional Requirements

Try thinking of everything your API will need to handle. Thiswill initially be
a list of CRUD (create, read, update, delete) endpoints for your resources.
Talk to your mobile app developer, your JS front-end people, or just talk
to yourself if you are the only developer on the project.

Definitely talk to your customers or “the business” (they are the cus-
tomers) and get them to help you think of functionality too, but they will
probably not know what an endpoint is.

When you have a relatively extensive list the next step is to make a simple
list of “actions”. This is very much like planning a PHP class. You first
write up pseudo-code referencing the classes and methods like they exist,
right? TDD (Test Driven Development)? If not, that is how you should do
it, or Chris Hartjes! will find you, and he will kill you.

[will go ahead with the check-in application, introduced in the previous
chapter, to show how these principles can be put in practice.

If T have a “places” resource in mind, I need to list out with just bullet
points what it will do:

'http://grumpy-learning.com/

12

http://grumpy-learning.com/
http://grumpy-learning.com/

Planning and Creating Endpoints 13

Places
- Create
- Read
- Update
- Delete

That is fairly obvious. Who will be able to view these places and who will
be able to create and edit them is, for now, irrelevant in our planning
stages. This API will get much smarter with the ideas of user-context and

permissions at a later date. For now, just list all the things that need to be
done.

A paginate-able list of places is also a requirement, so get that down:

Places

- Create
- Read

- Update
- Delete
- List

The API will need to offer the ability to search places by location too, but
that is not a brand new endpoint. If the API was built with SOAP or XML-
RPC, you would create a getPlacesByLatAndLon method to hit in the URL,
but this isn’t SOAP - thankfully. The list method will handle that with a
few parameters, so why not shove them in as a note for later:

Places

- Create

- Read

- Update

- Delete

- List (lat, lon, distance or box)

Adding a few parameters as a reminder, at this stage, is cool, but lets
not worry about adding too much. For example, Create and Update are
complicated, so adding every single field would be a mess.

Planning and Creating Endpoints 14

Update is more than just updating the specific Places fields in a places
SQL table. Update can do all sorts of cool stuff. If you need to “favorite” a
Place, just send is_favorite to that endpoint and you’ve favorited it. More
on that later, just remember that not every single action requires its own
endpoint.

Places will also need to have an image uploaded via the API. In this
example, we are only going to accept one image for a place and a new
image overrides the old, so add “Image” to the list. Otherwise you’d add
“Images” to the list:

Places

- Create

- Read

- Update

- Delete

- List (lat, lon, distance or box)
- Image

A complete API action plan might look like this:

Categories
- Create
- List

Checkins
- Create
- Read

- Update
- Delete
- List

- Image

Opps
- Create
- Read

- Update

Planning and Creating Endpoints 15

- Delete

- List

- Image

- Checkins

Places

- Create

- Read

- Update

- Delete

- List (lat, lon, distance or box)
- Image

Users

- Create

- Read

- Update

- Delete

- List (active, suspended)
- Image

- Favorites

- Checkins

- Followers

That might not contain everything, but it seems like a fairly solid start
to our APL. It is certainly going to take long enough to write all that, so if
somebody thinks of something else they can just make an Issue.

Moving on.

2.2 Endpoint Theory

Turning this action plan into actual endpoints requires knowing a little
theory on RESTful APIs and best practices for naming conventions. There
are no right answers here, but some approaches have fewer cons than
others. Iwill try to push you in the direction I have found to be most useful,
and highlight the pros and cons of each.

Planning and Creating Endpoints

GET Resources

16

* GET /resources - Some paginated list of stuff, in some logical default
order, for that specific data.
* GET /resources/X — Just entity X. That can be an ID, hash, slug,
username, etc., as long as it’s unique to one “resource”.
* GET /resources/X,Y,z - The client wants multiple things, so give them
multiple things.

It can be hard to pick between subresource URLs or embedded data.
Embedded data can be rather difficult to pull off so that will be saved for
Chapter 7: Embedding Data. For now the answer is “just subresources”,
but eventually the answer will be “both”. This is how subresources look:

* GET /places/X/checkins — Find all the checkins for a specific place.
* GET /users/X/checkins - Find all the checkins for a specific user.
* GET /users/X/checkins/y - Find a specific checkin for a specific user.

The latter is questionable and not something I have ever personally done.
At that point, I would prefer to simply use /checkins/X.

A

Auto-Increment is the Devil

In these examples X and Y can be an auto-incrementing ID as
many developers will assume. One important factor with auto-
incrementing ID’s is that anyone with access to your API will
know exactly how many resources you have, which might not be
a statistic you want your competitors to have.

Consumers could also write a script which hits /users/1, then
/users/2 and /users/3, etc., scraping all data as it goes. Sure they
could probably do that from the “list” endpoints anyway, but
not all resources should have a “get all” approach.

Instead a unique identifier is often a good idea. A universal
unique identifier (UUID) seems like a logical thing to do: ram-
sey\uuid for PHP?, uuid for Ruby3, uuid in Python 2.5+4.

https://github.com/ramsey/uuid
3https://rubygems.org/gems/uuid
“http://docs.python.org/2/library/uuid.html

https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://rubygems.org/gems/uuid
http://docs.python.org/2/library/uuid.html
https://github.com/ramsey/uuid
https://rubygems.org/gems/uuid
http://docs.python.org/2/library/uuid.html

Planning and Creating Endpoints 17

DELETE Resources

Want to delete things? Easy:

* DELETE /places/X — Delete a single place.

* DELETE /places/X,Y,z — Delete a bunch of places.

* DELETE /places — This is a potentially dangerous endpoint that could
be skipped, as it should delete all places.

* DELETE /places/X/image — Delete the image for a place, or:

* DELETE /places/X/images — If you chose to have multiple images this
would remove all of them.

POST vs PUT: FIGHT!

What about creating and updating? This is where it gets almost religious.
There are lots of people who will try to pair the HTTP POST or HTTP PUT
verb (verb, i.e. an HTTP method) to a specific CRUD action and always
only ever do that one action with that one verb. That sucks and is not
productive or functionally scalable.

Generally speaking, PUT is used if you know the entire URL beforehand
and the action is idempotent. Idempotent is a fancy word for “can do it
over and over again without causing different results”.

For example, create could be a PUT if you are creating one image for a place.
If you were to do this:

PUT /places/1/image HTTP/1.1
Host: example.com
Content-Type: image/jpeg

That would be a perfect example of when to use a puT because you already
know the entire URL (/places/1/image) and you can do it time and time
again.

The API at Kapture used a PoST to /checkins to create the metadata for that
new check-in, then returned the URL for us to PUT the image to. You could
try checking in multiple times and it would not matter because none of
those processes would be complete, but POSTing multiple times is not

Planning and Creating Endpoints 18

idempotent because each checkin is different. PUT is idempotent because
you are uploading that image to the full URL and you can do it over and
over again if you like (for instance, because the upload failed and it has to
try again).

So, if you have multiple images for places, maybe you could use the
following:

POST /places/X/images

Then multiple attempts would be different images. If you know you are
only going to have one image and a new attempt is an override, then the
following would be ideal:

PUT /places/X/image
Another example could be user settings:

* POST /me/settings — I would expect this to allow me to POST specific
fields one at a time, not force me to send the entire body of settings.
* PUT /me/settings — Send me ALL the settings.

It’s a tricky difference, but do not try and tie an HTTP Method to one CRUD
action only.

Plural, Singular or Both?

Some developers decide to make all endpoints singular, but I take issue
with this. Given /user/1 and /user, which user is that last one returning?
Is it “me”? What about /place? It returns multiple? Confusing.

I know it can be tempting to create /user/1 and /users because the two
endpoints do different things, right? I started off down this route (#pun)
originally, but in my experience, this convention grows badly. Sure it
works with the example of “users”, but what about those fun English
words that create exceptions like /opportunity/1 which when pluralised
becomes /opportunities. Gross.

[pick plural for everything as it is the most obvious:

a b W N

Planning and Creating Endpoints 19

+ /places - “If Irun a GET on that, [will get a collection of places”
+ /places/45 - “Pretty sure I am just talking about place 45”
- /places/45,28 - “Ahh, places 45 and 28, got it”

Another solid reason for using plural consistently is that it allows for
consistently named subresources:

* /places

* /places/45

* /places/45/checkins

* /places/45/checkins/91
* /checkins/91

Consistency is key.

Verb or Noun?

Traditionally APIs would consist of a series of endpoints that described
actions:

POST /SendUserMessage HTTP/1.1
example.com
Content-Type: application/x-www-form-urlencoded

id=5&message=Hello!

As you might have already gathered, this is not how things are done with
REST.

Some API developers consider the following approach to be more RESTful
because it uses a subresource:

a b W N

a b W N =

Planning and Creating Endpoints 20

POST /users/5/send-message HTTP/1.1
example.com
Content-Type: application/json

{ "message" : "Hello!" }

Nope, because that is still using a verb in the URL. A verb is an action -
a doing term - and our API only needs one verb - the HTTP Method. All
other verbs need to stay out of the URL.

A noun is a place or a thing. Resources are things, and a URL becomes the
place on the Internet where a thing lives.

This example would be drastically more RESTful:

POST /users/5/messages HTTP/1.1
example.com
Content-Type: application/json

{ "message" : "Hello!" }

Perfect! We are creating a new message that belongs to a user. The best
part about keeping it nice and RESTful like this is that other HTTP actions
can be made to the identical URL:

* GET /users/philsturgeon/messages
* PATCH /users/philsturgeon/messages/xdWRwerG
* DELETE /users/philsturgeon/messages/xdWRwerG

This is all much easier to document and much easier to understand for
both humans and software which is “RESTfully aware.”

If, like a freelance client I consulted, you need to send multiple messages
to multiple users (potentially hundreds of thousands) you could even
make messages its own endpoint and send the messages in batches of a
few hundred:

© o N o b W N

e R
A WN R O

Planning and Creating Endpoints 21

POST /messages HTTP/1.1
example.com
Content-Type: application/json

{
"user" : { "id" : 10 },
"message" : "Hello!"
3
{
"user" : { "username" : "philsturgeon" },
"message" : "Hello!"
}

It would look incredibly similar to create the data as it would to retrieve
the data, which is intentional.

2.3 Planning Endpoints

Controllers

You need to list events, venues, users and categories? Easy. One controller
for each type of resource:

- CategoriesController
- EventsController

« UsersController

« VenuesController

Everything should be a resource, and each resource needs a controller.

Later on we will look at some things that are not resources. Subresources
can sometimes just be a method. For example, profile and settings are a
subresource of users, so maybe they can go in Userscontroller. These rules
are flexible.

[vww allitebooks.cond

http://www.allitebooks.org

Planning and Creating Endpoints 22

Routes

Try to avoid the temptation to screw around with magic routing conven-
tions>, it is best to just write them manually. I will keep going with the
previous examples and show the process of turning the action plan into
routes using Laravel syntax, because why not:

Action Endpoint Route
Create POST /users Route: :post('users',
'UsersController@create');
Read GET /users/X Route::get('users/{id}"',
'UsersController@show');
ldeate PUT /users/X Route::put('users/{id}"',
'UsersController@update');
Delete DELETE /users/X Route::delete('users/{id}"',
'UsersController@delete');
List GET /users Route::get('users',
'UsersController@list');
Inlage PUT /users/X/image Route::put('users/{id}/image’,

. 'UsersController@uploadImage');
Favorites GET /users/X/favorites Route::get('users/{id}/favorites',

. 'UsersController@favorites');
CheckinS GET /users/X/checkins Route::get('users/{user_id}/checkins',

'CheckinsController@index');

There are a few things in here worth considering.

1. Favorites go to the usercontroller because favorites are only ever
relevant to the user.

2. Checkins go to the checkinController because we might already have
a checkin controller handling /checkins and the logic is basically
identical. We will know if there is a user_id param in the URL if our
router is nice enough to let us know, so we can use that to make it
user specific if needs be.

They are rather complex concerns, but are examples of things you can be
thinking about at this point. You want to avoid having multiple endpoints
doing painfully similar things with copy and paste logic because:

>https://philsturgeon.uk/blog/2013/07/beware-the-route-to-evil

https://philsturgeon.uk/blog/2013/07/beware-the-route-to-evil
https://philsturgeon.uk/blog/2013/07/beware-the-route-to-evil
https://philsturgeon.uk/blog/2013/07/beware-the-route-to-evil

Planning and Creating Endpoints 23

1. PHP Copy/Paste Detector® will be angry.

2. Your iPhone developer will be mad that different endpoints provide
the same resource, but in a slightly different format, therefore con-
fusing RestKit.

3. Itis boring and “ain’t nobody got time for that!”

Methods

When you have listed all of the routes you will need for your application,
go and make the corresponding controller methods. Make them all empty
and have one of them return "oh hai!";, and check the output. GET /places
for example should oh hai! in the browser.

You just wrote an API.

Shttps://github.com/sebastianbergmann/phpcpd

https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd

o b~ W N

3. Input and Output Theory

3.1 Introduction

Now that we have a good idea of how endpoints work, the next glass of
theory to swallow down is “input” and “output”. This is the easiest of all,
as it’s really just HTTP “requests” and “responses”. This is the same as
AJAX or anything else.

If you have ever been forced to work with SOAP, you will know all about
WSDLs. If you know what they are, be happy you no longer need them. If
you do not know what a WSDL is, then be happy you never have to learn.
SOAP was the worst.

Input is purely an HTTP request, and there are multiple parts to this.

3.2 Requests

GET /places?lat=40.759211&lon=-73.984638 HTTP/1.1
Host: api.example.com

This is a very simple GeT request. We can see the URL path being requested
is /places with a query string of 1at=46.759211&l0n=-73.984638. The HTTP
version in use is HTTP/1.1; the host name is defined. This is essentially
what your browser does when you go to any website - rather boring I’m
sure.

POST /moments/1/gift HTTP/1.1

Host: api.example.com

Authorization: Bearer vr5HmMkz1xKE70W1ly4MibiJUusZwZC25NOVBEx3BD1
Content-Type: application/json

{ "user_id" : 2 }

24

O 00 N O U M W N

e =
AW N RO

W 0 N O U1 M W N

e e =
a N W N RO

Input and Output Theory 25

Here we make a POST request with an “HTTP body”. The content-Type
header points out we are sending JSON and the blank line above the JSON
separates the “HTTP headers” from the “HTTP body”. HTTP really is
amazingly simple. This is all you need to do for anything, and you can do
all of this with an HTTP client in whatever programming language you feel
like using this week:

Using PHP and the Guzzle HTTP library to make an HTTP Request

use Guzzle\Http\Client;

Sheaders = [
'Authorization' => 'Bearer vr5HmMkz1xKE70W1ly4MibiJUusZwZC25NOVBEx3BD1',
'Content-Type' => 'application/json',

15

Spayload = [
'user_id' => 2

15

// Create a client and provide a base URL
sclient = new Client('http://api.example.com');

Sreq = Sclient->post('/moments/1/gift', Sheaders, json_encode(Spayload));

Using Python and the Requests HTTP library to make an HTTP Request

import json
import requests

headers = {
'Authorization': 'Bearer vr5HmMkzlxKE70W1ly4MibiJUusZwZC25NOVBEx3BD1',
'Content-Type': 'application/json',

}

payload = {
'user_id': 2

}

req = requests.post(
'http://api.example.com/moments/1/gift',
data=json.dumps(payload),
headers=headers

W 00 N O U M W N

NN DNNNNRERREBRRB R R R B
g A WN R OGO ®wNOOUuNWNKR O

Input and Output Theory 26

It’s all the same. Define your headers, define the body in an appropriate
format, and send it on its way. Then you get a response; so let’s talk about
that.

3.3 Responses

Much the same as an HTTP Request, your HTTP Response is going to end
up as plain text (unless you’re using SSL, but shut up, we aren’t there yet).

Example HTTP response containing a JSON body

HTTP/1.1 200 OK

Server: nginx

Content-Type: application/json

Connection: close

X-Powered-By: PHP/5.5.5-1+debphp.org~quantal+2
Cache-Control: no-cache, private

Date: Fri, 22 Nov 2013 16:37:57 GMT
Transfer-Encoding: Identity

' "id":"1690",

"is_gift":true,

"user": {
"1'd"il,
"name":"Theron Weissnat",
"bio":"Occaecati excepturi magni odio distinctio dolores.",
"gender":"female",
"picture_url":"https:\/\/cdn.example.com/foo.png",
"timezone":-1,
"birthday":"1989-09-17 16:27:36",
"status'":"available",
"created_at":"2013-11-22 16:37:57",
"redeem_by":"2013-12-22 16:37:57"

We can spot some fairly obvious things here. 200 ok is a standard no-
issues-here-buddy response. We have a content-Type again, and the API
is pointing out that caching this is not ok. The x-powered-By header is also

Input and Output Theory 27

a nice little reminder that I should switch expose_php = 0n t0 expose_php =
off in php.ini. Oops.

This is essentially the majority of how an API works. Just like learning a
programming language, you will always come across new functions and
utilities that will improve the RESTful-ness of your API. [will point out a
bunch of them as we go, but just like the levenshtein()! function in PHP,
there will be HTTP Headers that you had no idea existed popping up that
will make you think, “How the shit did I not notice that?”.

3.4 Supporting Formats

Picking what formats to support is hard, but there are a few easy wins to
make early on.

No Form Data

PHP developers always try to do something that literally nobody else does,
and that is to send form data to the API using the application/x-www-form-
urlencoded content type.

This content type is one of the few ways that browsers send data via a
form when you use HTTP POST, and PHP will take that data, slice it up, and
make it available in $_posT. Because of this convenient feature, many PHP
developers will make their API send data that way. Later they wonder why
sending data with PUT is “different” and wonder why there is no $_pruT in
PHP.

Urf.

$_GET and $_posT do not have the 1:1 relationship with HTTP GET and
HTTP POST as their names might suggest. $_GET just contains query string
content regardless of the HTTP method. $_prosT contains the values of the
HTTP Body if it was in the right format, and the content-Type header is
application/x-www-form-urlencoded. An HTTP POST item could still have a
query string, and that would still be in $_ceT. Some PHP frameworks kill
off $_ceT data in an HTTP POST request, which further exaggerates this 1:1
relationship between the superglobal and the method.

'http://php.net/manual/en/function.levenshtein.php

http://php.net/manual/en/function.levenshtein.php
http://php.net/manual/en/function.levenshtein.php

W 0 N O Ul M W N

[T
N R o

Input and Output Theory 28

Knowing that PHP has some silly names for things, we can move on and
completely ignore $_posT. Pour one out in the ground, because it is dead to
you.

Why? So many reasons, including the fact that once again everything in
application/x—www—form—urlencodediSEiStrh]g.

foo=something&bar=1&baz=0

Yeah, you have to use 1 or e because bar=true would be string("true") on
the server-side. Data types are important, so let’s not just throw them
out the window for the sake of “easy access to our data”. That argument
is also moronic as something like Input::json('foo') is possible in most
decent PHP frameworks. Even without it, you just have to use file_get_-
contents('php://input') to read the HTTP body yourself.

php://input on < PHP 5.6

In versions of PHP prior to 5.6 the input stream would empty
after first read. Basically, if you tried to read the HTTP body
twice, the second attempt would fail. This has been fixed in PHP
5.6.0 so feel free to hit it as many times as you like.

POST /checkins HTTP/1.1

Host: api.example.com

Authorization: Bearer vr5HmMkzlxKE70W1ly4MibiJUusZwZC25NOVBEx3BD1
Content-Type: application/json

{
"checkin": {
"place_id" : 1,
"message'": "This is a bunch of text.",
"with_friends": [1, 2, 3, 4, 5]
}
}

This is a perfectly valid HTTP body for a checkin. You know what they are
saying. You know who the user is from their auth token. You know who
they are with and you get the benefit of having it wrapped up in a single

0 N o b W N

© 0 N o U bd W N

I = T
N R o

Input and Output Theory 29

checkin key for simple documentation, and, easy “You sent a checkin
object to the user settings page, muppet.” responses.

That same request using form data is a mess.

POST /checkins HTTP/1.1

Host: api.example.com

Authorization: Bearer vr5HmMkz1lxKE70W1ly4MibiJUusZwZC25NOVBEx3BD1
Content-Type: application/x-www-form-urlencoded

checkin[place_id]=1&checkin[message]=This is a bunch of text&checkin[with_friends][]=\
1&checkin[with_friends] []=2&checkin[with_friends] []=3&checkin[with_friends][]=4&check\

in[with_friends][]=5

This makes me upset and angry. Do not do it in your API.
Finally, do not try to be clever by mixing JSON with form data:

POST /checkins HTTP/1.1

Host: api.example.com

Authorization: Bearer vr5HmMkz1xKE70W1ly4MibiJUusZwZC25NOVBEx3BD1
Content-Type: application/x-www-form-urlencoded

json="{
\"checkin\": {
\"place_id\" : 1,
\"message\": \"This is a bunch of text.\",
\"with_friends\": [1, 2, 3, 4, 5]

}ll

Who is the developer trying to impress with stuff like that? It is insanity,
and anyone who tries this needs to have their badge and gun revoked.

Developers do this because they still want “easy access” to their JSON, but
do not know how to read it from the HTTP Body correctly.

Sending proper JSON data is rather simple in most server-side languages
as demonstrated at the start of this chapter, but JavaScript can be a little
different. If you are working with frameworks, like Backbone, Ember]S
and Angular]S, then they will most likely be handling their data interac-
tions with your API in JSON already.

If you need to do this manually, you can use jQuery’s $.ajax() method:

~N o b~ W

W 00 N O U M W N

Input and Output Theory 30

S.ajax({
type: "POST",
url: url,
data: { foo : "bar" 3},
success: success,
dataType: "json"

s

This is a very manual approach, which may be too time consuming, so
jQuery has another solution. The $.serializeArray() method? can turn
values from all matched elements into a JSON string for you to then send
to the APL.

JSON and XML

Any modern APl you interact with will support JSON unless it is a financial
services API, or the developer is a moron - probably both to be fair.
Sometimes they will support XML too. XML used to be the popular format
for data transfer with both SOAP and XML-RPC (duh). XML is, however,
a nasty-ass disgusting mess of tags, and the file-size of an XML file
containing the same data as a JSON file is often much larger.

Beyond purely the size of the data being stored, XML is horribly bad at
storing type. That might not worry a PHP developer all that much as PHP
is not really any better when it comes to type, but look at this:

"place": {
"id" 1,
"name": "This 1is a bunch of text.",
"is_true": false,
"maybe": null,
"empty_string": ""

That response in XML:

*http://api.jquery.com/serializearray/

http://api.jquery.com/serializearray/
http://api.jquery.com/serializearray/

© o N o b W N

o b~ W N

Input and Output Theory 31

<places>
<place>
<id>1</14d>,
<name>This 1is a bunch of text.</name>
<is_true>0</is_true>
<maybe />
<empty_string />
</place>
</places>

Basically, in XML, everything is considered a string, meaning integers,
booleans, and nulls can be confused. Both maybe and empty_string have the
same value, because there is no way to denote a null value either. Gross.

Now, the XML-savvy among you will be wondering why I am not using
attributes to simplify it? Well, this XML structure is a typical “auto-
generated” chunk of XML converted from an array in the same way that
JSON is built - but this of course ignores attributes and does not allow
for all the specific structure that your average XML consumer will almost
certainly demand.

If you want to start using attributes for some bits of data but not others,
then your conversion logic becomes INSANELY complicated. How would
we build something like this?

<places>
<place id="1" ds_true="1">
<name>This 1is a bunch of text.</name>
<empty_string />
</place>
</places>

The answer is that unless you seek specific fields, try to guess that an
“id” is probably an attribute, etc., then there is no programmatic way in
your API to take the same array and make JSON and XML. Instead, you
realistically need to use a “view” (from the MVC pattern) to represent
this data, just like you would with HTML, or work with XML generation
in a more OOP way. Either way, it is an abomination, and I refuse to work
in those conditions. Luckily, nobody at Kapture wanted XML, so I did not
have to rage quit back to England.

[vww allitebooks.cond

http://www.allitebooks.org

o b~ W N =

Input and Output Theory 32

If your team is on the fence about XML, and you are not required by the
business to use it, then skip it. It can be fun to show off your API switching
formats and supporting all sorts of stuff (and we will get to that later on)
but XML is a complication many APIs do not require these days.

Work out which format(s) you actually need, and stick to those. Sure Flickr
supports lolcat as input and output, but they have a much bigger team,
and that was probably the result of a hack project in which the develop-
ment team were only paid with cold pizza. JSON is fine. If you have a lot of
Ruby cool kids around, then you will probably want to output YAML too,
which is as easy to generate as JSON in most cases.

3.5 Content Structure

This is a tough topic and there is no right answer. Whether you use
Ember]S, RestKit, or any other framework with knowledge of REST, you
will find somebody annoyed that the data is not in their specific preferred
format. There are a lot of factors, and I will simply explain them all and
let you know where I landed.

JSON-API
There is one recommended format on JSON-API3, which maybe you all just

want to use. It suggests that both single resources and resource collections
should both be inside a plural key.

{

"posts": [{
ll—id”: lllll’
"title": "Rails is Omakase"
1]
1
Pros

- Consistent response - It always has the same structure

3http://jsonapi.org/format/

http://jsonapi.org/format/
http://jsonapi.org/format/

Input and Output Theory 33
Cons

- Some RESTful/Data utilities freak about having single responses in
an array

- Potentially confusing to humans

Ember]S (EmberData) used to have a rough time with JSON-API out of the
box, but the Ember]S team and the JSON-API people have worked together
to improve the situation. Rails and AngularJS also have a lot of people
focusing on JSON-API as a centralized standard too, but it is not always
perfect.

JSON-API is a wonderful resource with a lot of great ideas, but it strikes
me as over complicated in multiple areas. It is also (in April 2015) still
not v1.0.0 final. RC versions are released with breaking changes every few
months, and this can be a huge problem for those with previous versions
already implemented and live.

0 Update 2015-05-29: JSON-API v1.0

To little fanfare, JSON-API vi.0 has finally been released.
It has solved a few of problems in previous RC versions. As
predicted, the switch to vi.0 created more than a few problems
for developers of APIs who had already implemented earlier
versions.

Luckily, at Ride, we were not requiring the
application/vnd.api+json mime type, which means we can
use this as a switch. If nothing is provided, we know it’s our
old API clients and default to JSON-API vi.0 RC2, but if that
header is provided we can use a different adapter and serialize
to JSON-API v1.0 final. A bit of a hack, but it works, and we do
not have to implement versioning to do it.

Twitter-style

Ask for one user get one user:

A W N

W 0 N O Ul M W N

=
(o}

Input and Output Theory 34

{
"name": "Hulk Hogan",
"id": "100002"

Ask for a collection of things, get a collection of things:

[
{
"name": "Hulk Hogan",
"id": "100002"
3
{

"name": "Mick Foley",
"id": "100003"

Pros

- Minimalistic response
- Almost every framework/utility can comprehend it

Cons
- No space for pagination or other metadata

This is potentially a reasonable solution if you will never use pagination
or metadata.

Facebook-style

Ask for one user get one user:

A WN

© 0 N o b~ W N

[= N
N RO

Input and Output Theory 35

{
"name": "Hulk Hogan",
"id": "100002"

}

Ask for a collection of things, get a collection of things, but namespaced:

{
"data": [
{
"name": "Hulk Hogan",
"id": "100002"
3
{
"name": "Mick Foley",
"id": "100003"
}
]
}
Pros
- Space for pagination and other metadata in collection
- Simplistic response even with the extra namespace
Cons

- Single items still can only have metadata by embedding it in the item
resource

By placing the collection into the "data" namespace, you can easily add
other content next to it, which relates to the response, but is not part of
the list of resources at all. Counts, links, etc., can all go here (more on this
later). It also means when you embed other nested relationships you can
include a »data” element for them and even include metadata for those
embedded relationships. More on that later too.

The only potential “con” left with Facebook is that the single resources
are not namespaced, meaning that adding any sort of metadata would

o b~ W N R

O 0w N o b~ W N

I
N R o

Input and Output Theory 36

pollute the global namespace - something which PHP developers are
against after a decade of flagrantly doing so.

So the final output example (and the one which I used at Kapture for v4)
is the following.

Much Namespace, Nice Output

Namespace the resource:

{
"data": {
"name": "Phil Sturgeon",
"jd": "511501255"
}
}

Namespace the collection:

{
"data": [
{
"name'": "Hulk Hogan",
"id": "100002"
1,
{
"name": "Mick Foley",
"id": "100003"
}
]
}

This is close to the JSON-API response. It has the benefits of the Facebook
approach, and is just like Twitter, but everything is namespaced. Some
folks (including me in the past) will suggest that you should change "data"
to "users", but when you start to nest your data, you want to keep that
special name for the name of the relationship. For example:

© o N o b W N

e R
A WN R O

Input and Output Theory 37

{
"data": {
"name": "Hulk Hogan",
"id": "100002"
"comments": {
"data": [
{
"id": 123423
"text": "Sorry I said those inappropriate things!"
}
]
}
}
}

So here we can see the benefits of keeping the root scope generic. We
know that a user is being returned, because we are requesting a user,
and when comments are being returned we wrap that in a "data" item so
that pagination, or links, can be added to that nested data too. This is the
structure I will be testing against and using for examples, but it is only a
simple tweak between any of these structures.

We will get to links, relationships, compound documents, pagination,
etc., in later chapters, but for now forget about it. All you want to worry
about is your response, which consists of this chunk of data or an error.

4. Status Codes, Errors and Messages

4.1 Introduction

If a valid request comes in for data, you show data. If creating something
on the APIwith valid data, you show the created object. If something goes
wrong, however, you want to let people know what is wrong using two
simultaneous approaches:

1. HTTP status codes
2. Custom error codes and messages

4.2 HTTP Status Codes

Status codes are used in all responses and have a number from 260 to 507 -
with plenty of gaps in between — and each has a message and a definition.
Most server-side languages, frameworks, etc., default to 200 ok.

Status codes are grouped into a few different categories:
2xx is all about success

Whatever the client tried to do was successful up to the point that the
response was sent. Keep in mind that a status like 202 Accepted does not
say anything about the actual result, it only indicates that a request was
accepted and is being processed asynchronously.

3xx is all about redirection

These are all about sending the calling application somewhere else for the
actual resource. The best known of these are the 363 see other and the 301
Moved Permanently, which are used a lot on the web to redirect a browser to
another URL.

4xx is all about client errors

38

Status Codes, Errors and Messages 39

With these status codes, we indicate that the client has done something
invalid and needs to fix the request before resending it.

5xx is all about service errors

With these status codes, we indicate that something went wrong in the
service. For example, a database connection failed. Typically, a client
application can retry the request. The server can even specify when the
client is allowed to retry the command using a Retry-After HTTP header.

Using HTTP status codes in a REST service' — Maurice de Beijer

For a more complete list of HTTP status codes and their definitions the
REST & WOA Wiki? has an extensive list of them.

Arguments between developers will continue for the rest of time over the
exact appropriate code to use in any given situation, but these are the
status codes the API used at Kapture:

* 200 - Generic everything is OK

- 201 - Created something OK

+ 202 - Accepted but is being processed async (for a video means
encoding, for an image means resizing, etc.)

- 400 - Bad Request (should really be for invalid syntax, but some folks
use for validation)

+ 401 - Unauthorized (no current user and there should be)

+ 403 - The current user is forbidden from accessing this data

+ 404 - That URLis not avalid route, or the item resource does not exist

+ 405 - Method Not Allowed (your framework will probably do this for
you)

+ 410 - Data has been deleted, deactivated, suspended, etc.

- 500 - Something unexpected happened, and it is the APIs fault

- 503 - APl is not here right now, please try again later

It can be tempting to try and squeeze as many error codes in as you can,
but I would advise you to try and keep it simple. You won’t unlock any
achievement badges for using them all.

'http://www.develop.com/httpstatuscodesrest
2http://restpatterns.org/HTTP_Status_Codes

http://www.develop.com/httpstatuscodesrest
http://restpatterns.org/HTTP_Status_Codes
http://www.develop.com/httpstatuscodesrest
http://restpatterns.org/HTTP_Status_Codes

~N o oA W N

Status Codes, Errors and Messages 40

Most 5xx issues will likely happen under odd architecture or server related
issues that are nothing to do with your API. For example, if PHP-FPM
segfaults behind Nginx (502), if your Amazon Elastic Load Balancer has
no healthy instances (503), or if your disk drive fills up with cat gifs (507).

4.3 Error Codes and Error Messages

Error codes are usually strings or integers that act as a unique index to
a corresponding human-readable error message with more information
about what is going wrong. That sounds a lot like HTTP status codes, but
these errors are about application specific things that may or may not
have anything to do with HTTP specific responses.

Some folks will try to use HTTP status codes exclusively and skip using
error codes because they do not like the idea of making their own error
codes or having to document them, but this is not a scalable approach.
There will be some situations where the same endpoint could easily return
the same status code for more than one different condition. The status
codes are there to merely hint at the category of error relying on the actual
error code and error message provided in the HTTP response to include
more information in case the client is interested.

For example, an issue with the access token will always result in the
user not being recognized. An uninterested client would simply say “User
could not get in” while a more interested client would probably prefer to
offer suggestions via messages in their own webapp/iPhone app interface.

{
"error": {
"type'": "OAuthException",
"message": "Session has expired at unix time 1385243766.
The current unix time is 1385848532."
}
}

Humans can understand that nicely enough, but Facebook used to lack
error codes, making it rather hard for computers to understand the prob-
lem. They have added them since the first edition of this book, but before

W 00 N O U M W N

Status Codes, Errors and Messages 41

that you would find yourself doing substring matching on the message
text, which is lunacy.

Foursquare is not a bad example of using both, but they place an emphasis
on tying their errors to a status code.

https://developer.foursquare.com/overview/responses

Twitter does a great job of having HTTP status codes documented and
having specific error codes for other issues too. Some are tied to HTTP
status codes, which is fine, but many are not. Some are also tied to the
same status code, highlighting the issues raised above.

https://dev.twitter.com/docs/error-codes-responses

Code Text Description
161 You are unable to follow more Corresponds with HTTP 403 -
people at this time thrown when a user cannot

follow another user due to some

. kind of limit
179 Sorry, you are not authorized to Corresponds with HTTP 403 -

see this status thrown when a Tweet cannot be
viewed by the authenticating
user, usually due to the tweet’s
author having protected their
tweets.

Programmatically Detecting Error Codes

You can use error codes to make an application respond intelligently to
failure of something as basic as a posted Twitter status.

Using Python to catch exceptions and react to the Twitter error code

try:
api.PostUpdates(body['text'])

except twitter.TwitterError, exc:
skip_codes = [

Page does not exist
34,

[vww allitebooks.cond

https://developer.foursquare.com/overview/responses
https://dev.twitter.com/docs/error-codes-responses
http://www.allitebooks.org

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

W 0 N O U1 M W N

S
N B ©

Status Codes, Errors and Messages 42

You cannot send messages to users who are not following you
150,

Sent too many
TODO Make this requeue with a dekal somehow
151

error_code = exc.__getitem__(0)[0]['code']

If the error code is one of those listed before, let’s just end here
if error_code 1in skip_codes:
message.reject()

else:
Rate limit exceeded? Might be worth taking a nap before we requeue
if error_code == 88:
time.sleep(10)

message.requeue()

Compare this sort of logic with the Facebook example from when they
lacked error codes:

Using Python to analyse Facebook error strings as no codes exist

except facebook.GraphAPIError, e:
phrases = ['expired', 'session has been invalidated']
for phrase in phrases:
If the token has expired then lets knock it out so we don't try again
if e.message.find(phrase) > 0:
log.info("Deactivating Token %s", user['token_id'])

self._deactivate_token(user['token_id'])

log.error("-- Unknown Facebook Error", exec_info=True)

If they change their error messages then this might stop working, which
would be a problem. Codes that do not change are a much more sensible
way to go about this.

O 0 N o U bd W N

W 0 N O U1 M W N

Status Codes, Errors and Messages

43

If Facebook added codes and documentation links to GraphAPI error responses.

{
"error": {
"type": "OAuthException",
"code": "ERR-01234",
"message": "Session has expired at unix time 1385243766.
1385848532."
"href": "http://example.com/docs/errors/#ERR-01234"
}
}

The current unix time s\

4.4 Error or Errors

When returning errors, [always used to return just one error. In the case
of validation I would return them one at a time as an easy way to exit out
of a controller. Thinking about it this was probably just laziness.

Afterbeing forced to work with the JSON-API standard, the use of multiple

errors started to feel more natural.

If Facebook returned multiple errors in a list for GraphAPI responses.

{
"errors": [{
"type'": "OAuthException",
"code": "ERR-01234",
"message": "Session has expired at unix time 1385243766.
1385848532."
"href": "http://example.com/docs/errors/#ERR-01234"
H
}

The current unix time s\

4.5 Standards for Error Responses

So far, this chapter has used entirely home-grown formats for errors. It is
incredibly common, even with the most popular APIs to build completely
arbitrary error formats, so I wanted to teach you the theory before forcing

you to read complicated standards.

Status Codes, Errors and Messages 44

There are two popular standards that cover error reporting, which are both
fairly similar, but sadly still in draft at time of writing.

JSON-API

JSON-API is discussed in a few sections of this book and is a standard
outlining the general format of requests and responses in JSON when
working with HTTP APIs. It has a section on errors, which I quite like.

The following is an excerpt from the JSON-API standard at time of writing.
An error object MAY have the following members:

- "id" - A unique identifier for this particular occurrence of

the problem.
« "href" - A URI that MAY yield further details about this

particular occurrence of the problem.
+ "status" - The HTTP status code applicable to this problem,

expressed as a string value.
- "code" - An application-specific error code, expressed as a

string value.
+ "title" - A short, human-readable summary of the prob-

lem. It SHOULD NOT change from occurrence to occurrence

of the problem, except for purposes of localization.
- "detail" - A human-readable explanation specific to this

occurrence of the problem.
+ "links" - Associated resources, which can be dereferenced

from the request document.
- "path" - The relative path to the relevant attribute within

the associated resource(s). Only appropriate for problems
that apply to a single resource or type of resource.

Additional members MAY be specified within error objects.

When constructing your API error responses, you pretty much just need
to make an array with items that looks a bit like this:

3http://jsonapi.org/format/#errors

http://jsonapi.org/format/#errors
http://jsonapi.org/format/#errors

© o N o b W N

Status Codes, Errors and Messages 45

{
"errors": [{
"code": "ERR-01234",
"title": "OAuth Exception",

"details": "Session has expired at unix time 1385243766. The current unix time s\

1385848532.",
"href": "http://example.com/docs/errors/#ERR-01234"

3]
}

See how that Facebook example has been slightly tweaked to follow the
standard? Nice and easy.

Problem Details for HTTP APIs

This is currently a draft REC4, which at the time of writing was on Draft 7.

The goal of this RFC is to define a “problem detail”, like we have been
doing throughout this chapter, but in a standard way (to avoid inventing
new formats for each and every HTTP API). It is being headed up by Mark
Nottingham.

Mark wrote a tutorial about problem details>, which will explain the
standard a little better.

If you are interested in implementing this standard then there are tools
to make it easy:

- crell/api-problem® for PHP

4.6 Common Pitfalls

200 OK and Error Code

If you return an HTTP status code of 200 with an error code, then Chuck
Norris will roundhouse your door in, destroy your computer, instantly

4http://tools.ietf.org/html/draft-nottingham-http-problem
>https://www.mnot.net/blog/2013/05/15/http_problem
Shttps://github.com/Crell/ApiProblem

http://tools.ietf.org/html/draft-nottingham-http-problem
https://www.mnot.net/blog/2013/05/15/http_problem
https://github.com/Crell/ApiProblem
http://tools.ietf.org/html/draft-nottingham-http-problem
https://www.mnot.net/blog/2013/05/15/http_problem
https://github.com/Crell/ApiProblem

Status Codes, Errors and Messages 46

35-pass wipe your backups, cancel your Dropbox account, and block you
from GitHub. HTTP 4xx or 5xx codes alert the client that something bad
happened, and error codes provide specifics of the exact issue if the client
is interested.

Non-Existent, Gone, or Hiding?

404 is drastically overused in APIs. People use it for “never existed”, “no
longer exists”, “youcan’t view it” and “itis deactivated”, which is way too

vague. That can be split up into 404, 403 and 410 but this is still vague.

If you get a 403, this could be because the requesting user is not in the
correct group to see the requested content. Should the client suggest you
upgrade your account somehow? Are you not friends with the user whose
content you are trying to view? Should the client suggest you add them as
a friend?

A 410 on a resource could be due to a user deleting that entire piece of
content, or it could be down to the user deleting their entire account.

In all of these situations, the ideal solution is to complement the HTTP
status code with an error code, which can be whatever you want as long as
they are unique within your API and documented somewhere.

Do not do what Google does — supply a list of error codes while having
other error codes that are not documented anywhere — because if I see
that, I will come for you.

5. Endpoint Testing

5.1 Introduction

You might be sitting there thinking, “This escalated quickly, I’m not ready
for testing!” but this is essentially the point. You have to set up your tests
as early as possible so you actually bother using them, otherwise they
become the next thing that just never gets done. Have no fear. Testing an
API is not only easy, it is actually really quite fun.

5.2 Concepts & Tools

With an API, there are a few things to test, but the most basic idea is,
“when Irequest this URL, I want to see a foo resource”, and “when I throw
this JSON at the API, it should a) accept it or b) freak out.”

This can be done in several ways, and a lot of people will instantly try to
unit test it, but that quickly becomes a nightmare. While you might think
just writing a bit of code with your favourite HTTP client is simple, if you
have over 50 endpoints and want to do multiple checks per endpoint, you
end up with a mess of code which can become hard to maintain, especially
if your favourite HTTP client releases a major version with a brand new
interface.

The more code you have in your tests, the higher the chances of your tests
being rubbish, which means you won’t run them. Bad tests also run the
risk of false positives, which are super dangerous as they lead you into
thinking your code actually works when it does not.

One very simplistic approach will be to use a BDD (Behaviour Driven
Development) tool. A very popular BDD tool is Cucumber?, and this is
considered by many to be a Ruby tool. It can in fact be used for Python,
PHP, and probably a whole bevy of other languages but some of the

'http://cukes.info/

47

http://cukes.info/
http://cukes.info/

Endpoint Testing 48

integrations can be tricky. For the PHP users here, we will be using Behat,
which is pretty much the same thing, along with Gherkin? (the same
DSL (Domain-Specific Language) that Cucumber uses, so all of us are on
basically the same page.)

The outline of this chapter will be to show how to set up and use the
BDD tool Behat, talk through the various moving parts, then show you
a working example in our source code inside a Laravel sample app. You
can build your own tests in your own language, or in any framework, but
just go along with this PHP example to see a basic working - even if you
personally prefer another language. Go on. It won’t bite.

5.3 Setup

As a PHP developer, you simply need to install Behat, which can be done
with Composer3. It is fair to assume that if you are using any sort of
modern PHP framework, you are already familiar with Composer, so we
can skip boring the non-PHP developers by getting too stuck into it.

Assuming that Composer is installed globally# in your system, to install
Behat run:

Install Behat globally with Composer

$ composer global require "behat/behat ~2.5"

Make sure ~/.composer/vendor/bin/ is added to your $PATH and you should
be good to go.

If you are a Ruby user, you have the ease of simply running $ gem install
cucumber, Or shove it in your Gemfile.

Google should help you with Python.

The rest of this chapter is going to stick purely to PHP for the sake of
simplicity, and others can just use the equivalent commands as we go.

http://docs.behat.org/guides/1.gherkin.html
3https://getcomposer.org/
4https://getcomposer.org/doc/oo—intro.md#globally

http://docs.behat.org/guides/1.gherkin.html
https://getcomposer.org/
https://getcomposer.org/doc/00-intro.md#globally
http://docs.behat.org/guides/1.gherkin.html
https://getcomposer.org/
https://getcomposer.org/doc/00-intro.md#globally

Endpoint Testing 49

5.4 Initialise

These Behat tests will live in a tests folder, but it may need to coexist with
other unit tests or other types of test. For this reason, I like to put them
in a subfolder called tests/behat.

I have provided an example of a simple Behat test suite in the sample code
that lives inside the app/ folder. This is done mainly because it is a good
place to put your tests and Laravel already has a tests folder, but if you are
using any other framework you can put these tests anywhere you please.

So, go to the app folder:
$ cd ~/apisyouwonthate/chapter5/app

The folder structure and basic Behat setup has already been run with the
following commands, so you can skip this step:

$ mkdir -p tests/behat && cd tests/behat
$ behat --1init

This will have the following output:

+d features - place your x.feature files here
+d features/bootstrap - place bootstrap scripts and static files here
+f features/bootstrap/FeatureContext.php - place your feature related code here

The output here outlines the structure of files it has created. Everything
lives inside the features/ folder, and this will be where your Behat tests
will go. The features/bootstrap/ folder contains only one file at this point,
which is FeatureContext.php.

The default version of this file is a little bare, so this sample code contains
a beefed up one, which will be used throughout this chapter.

Endpoint Testing 50

5.5 Features

Features are a way to group your various tests together. Personally, I keep
things fairly simple and consider each resource and subresource to be its
own Behat feature.

Looking at our users example from Chapter 2: Planning and Creating
Endpoints:

Action Endpoint Feature

Create POST /users features/users.feature

Read GET Jusers/X features/users.feature

Update PUT /users/X features/users.feature

Delete DELETE /users/X features/users.feature

List GET /users features/users.feature

Image PUT /users/X/image features/users-image.feature
Favorites GET /users/X/favorites features/users-favorites.feature
Checkins GET /users/X/checkins features/users-checkins.feature

So, anything to do with /users and /users/x would be the same, but maybe
/users/X/checkins becomes a new feature because we are talking about
something else.

You can use that convention, or try something else, but this grows pretty
well without having a bazillion files to sift through.

5.6 Scenarios

Gherkin uses “scenarios” as its core structure and they each contain
“steps”. In a unit testing world the scenarios would be their own test_-
foo () methods, and the steps would be assertions.

These features and scenarios line up with the action plan created in
Chapter 2. Each RESTful resource in that action plan needs at least one
feature, and because each action has an endpoint we need at least one
scenario for each action.

Too much jargon? Time for an example:

Endpoint Testing 51

Feature: Places

1

2

3 Scenario: Finding a specific place

4 When I request "GET /places/1"

5 Then I get a "200" response

6 And scope into the "data" property
7

8

9

And the properties exist:
nmmnn

id
10 name
11 lat
12 lon
13 addressl
14 address2
15 city
16 state
17 zip
18 website
19 phone
20 i
21 And the "id" property 1is an integer
22
23 Scenario: Listing all places is not possible
24 When I request "GET /places"
25 Then I get a "400" response
26
27 Scenario: Searching non-existent places
28 When I request "GET /places?q=c800e42c377881f8ae509cf9a516d4eb59&lat=1&lon=1"
29 Then I get a "200" response
30 And the "data" property contains 0 +items
31
32 Scenario: Searching places with filters
33 When I request "GET /places?lat=40.76855&lon=-73.9945&q=cheese"
34 Then I get a "200" response
35 And the '"pagination" property is an object
36 And the "data" property 1is an array
37 And scope 1into the first "data" property
38 And the properties exist:
39 e
40 id
41 name
42 lat
43 lon

vww allitebooks.conl

http://www.allitebooks.org

44
45
46
47
48
49
50
51
52

~N o0 o~ W N

Endpoint Testing 52

addressl
address2
city
state
zip
website
phone

And reset scope

This uses some custom rules that have been defined in the file Featurecon-
text.php. More on that shortly.

The “feature file” is called places. feature and has four scenarios. One to
find a specific place, another to show that listing all places is not allowed
(400 means bad input, you should specify 1at and 1on), and two more to
test how well searching works.

Try to think up the guard clauses that the endpoints will need, then make
a scenario for each of those.

For example, if the endpoint requires 1at and lon as query string parame-
ters, try omitting them and testing that to ensure the error message and
status codes are correct.

If an input is expecting a boolean value, but a string is provided? Maybe
that should be a test too:

Scenario: Wrong Arguments for user follow
Given I have the payload:

{"is_following": "foo"}

When I request "PUT /users/1"
Then I get a "400" response

Want to be sure your controllers can handle weird requests with a 404
instead of freaking out and going all 500 Internal Error? There is another
test:

A WN =

Endpoint Testing 53

Scenario: Try to find an invalid moments
When I request "GET /moments/nope'
Then I get a "404" response

Sure there is no actual code yet, but you can write all of these tests based
off of nothing but your action plan and your routes. You should use what
you know about the output content structure from Chapter 3 to plan what
output you expect to see.

Then all you need to do is... you know... build your entire API.

5.7 Prepping Behat

You are probably wondering how you actually run these tests, because
Behat involves making HTTP requests, and you’ve just been writing text-
files. Well, the class in FeatureContext.php handles all of that and a lot
more, but first we need to configure Behat so we know what the hostname
is going to be for these requests.

$ vim app/tests/behat/behat-dev.yml
In this file put in something along the lines of:

default:
context:
parameters:
base_url: http://localhost:8000

If you have virtual hosts set up on your machine then use those, and if
you are running a local web server on a different port, then obviously you
can use that too. That value could be http://localhost:4000 O http://dev-
api.example.com, it does not matter.

5.8 Running Behat

This is the easiest bit:

Endpoint Testing 54

$ behat -c tests/behat/behat-dev.yml

Running this from the sample application should return a lot of green
lights, because I have gone to the effort of writing a few very basic feature
tests against a few very simple endpoints that return data from a SQLite
database.

Once you have that running, I recommend you try and make some tests
in your own applications along the same sort of lines. While we will have
sample code to play with for many chapters, I strongly suggest you try to
test your own API (brand new or existing) too, as this is the most value
you could get from the book.

Test. TEST. TEST YOUR APPLICATIONS.

Test Driven Development

Writing tests first is also a great way to go. Now that you have an under-
standing of your action plan, what the endpoints should be, and what their
output should look like, you should be fine to build out tests against them
even if they do not exist.

Running the tests will show you that everything is broken of course, so
you’ll just go through and build and test the endpoints one at a time. This
sounds hard, but you just CANNOT afford to mess about with testing on
an APL.

Doing this first will save you a shit-ton of hard work down the road. [have
the scars to prove it.

O 0 N o U bd W N

L e R e
o N oo o0 W N O

6. Outputting Data

6.1 Introduction

In Chapter 3: Input and Output Theory we looked at the theory of the
output structure and the pros and cons for various different formats.
The rest of this book assumes you have picked your favourite, and it
assumes that favourite is my favourite. This does not matter all that
much, but doing everything for everyone would be an exercise in futility
and boredom.

The aim of this chapter is to help you build out your controller endpoints.
Assuming you have written tests for these endpoints before they exist,
we can now fill up a few of those tests with green lights (instead of the
omnishambles of errors and fails you are most likely facing).

This example shows a list of places:

{
"data": [
{
"id": 2,
"name": "Videology",
"lat": 40.713857,
"lon": -73.961936,
"created_at": "2013-04-02"
3
{
"id": 1,
"name": "Barcade",
"lat": 40.712017,
"lon": -73.950995,
"created_at": "2012-09-23"
}
]
}

Here is just the one place:

55

© o N o b W N

O 00 N O U M W N

e I e S e T
~N o b W N FE O

Outputting Data 56

{
"data": [
"id": 2,
"name'": "Videology",
"lat": 40.713857,
"lon": -73.961936,
"created_at": "2013-04-02"
]
}
6.2 The Direct Approach

The first thing that every developer tries to do is take their favourite ORM,
ODM, DataMapper, or Query Builder, pull up a query, then wang that result
directly into the output.

Dangerously bad example of passing data from the database directly as output

<?php
class PlaceController extends ApiController
{
public function show($id)
{
return json_encode([
'data' => Place::find($id)->toArray(),
s
1
public function +index()
{
return json_encode([
'data' => Place::all()->toArray(),
I
}

This is the absolute worst idea you could have for enough reasons for me
to fill up a chapter on its own, but I will try to keep it to just a section.

Outputting Data 57

g ORMs in Controllers

Your controller should definitely not have this sort of ORM/-
Query Builder logic scattered around the methods. This is done
to keep the example to one class.

Performance: If you return “all” items, the API will be fine during devel-
opment, but suck when you have a thousand records in that table... or a
million.

Display: PHP’s popular SQL extensions all type cast all data coming out
of a query as a string. So if you have a MySQL “boolean” field (generally
this is a tinyint(1) field with a value of e or 1) it will display in the JSON
output as a string with a value of "e" or "1", which is lunacy. If you’re
using PostgreSQL, it is even worse. The value directly output by PHP’s
PostgreSQL driver is "f" or "t". Your mobile developers won’t like it one
bit, and anyone looking at your public APIis going to immediately consider
this an amateur API. You want true Or false as an actual JSON boolean, not
a numeric string or a char (1).

Security: Outputting all fields can lead to API clients (users of all sorts)
being able to view your users passwords, see sensitive information like
email addresses for businesses involved (venues, partners, events, etc.),
gain access to secret keys and tokens generally not allowed. If you leak
your forgotten password tokens for example, then you’re going to have
an extremely bad time; it is as bad as leaking the password itself.

Some ORM’s have a “hidden” option to hide specific fields from being
output. If you can promise that you and every single other developer on
your team (now, next year and for the entire lifetime of this application)
will remember about that, then congratulations, you could also achieve
world peace with a team that focused.

Stability: If you change the name of a database field, or modify your
MongoDB document, or change the statuses available for a field between
v3 and v4, then your API will continue to behave perfectly, but all of your
iPhone users are going to have busted crashing applications — and it is
your fault. You will promise yourself that you will avoid changing things,
but you absolutely will. Change happens.

So, next, our theoretical developer friend will try hardcoding the output.

W 00 N O U M W N

W W WWwwWwwWwwwNNNNNNNNRNNRRER-RI-BRRBRB R R B
N0 DM WNROOOOWNOOOWOD_WNROOOOONOWDDMWNIERO

Outputting Data 58

Laborious example of type casting and formatting data for output

<?php
class PlaceController extends ApiController
{
public function show($id)
{
$place = Place::find($id);
return json_encode([
'data' => [
'qd! => (int) $place->1id,
"name’ => S$place->name,
'lat! => (float) $place->lat,
'"lon' => (float) S$place->1lon,
'created_at' => (string) S$place->created_at,
1,
IDH
}
public function index()
{
$places = [];
foreach (Place::all() as S$place) {
$places[] = [
'qd! => (int) $place->1id,
'name’ => S$place->name,
'lat! => (float) $place->lat,
'"lon' => (float) $place->lon,
'created_at' => (string) $place->created_at,
13
}
return json_encode([
'data' => $places,
s
}

Thanks to specifying exactly what fields to return in the JSON array, the
security issues are taken care of. The type casting of various fields turn

W 00 N O U M W N

W NNNNNNDNNNNNKRRRRBRRRR R B
©® © O N O U h WNRFERWOOL-NO O NWNR O

Outputting Data 59

numeric strings into integers, coordinates into floats, and that pesky
carbon (DateTime) object from Laravel into a string, instead of letting the
object turn itself into an array.

The only issue this has not taken care of from the above example is
performance, but that is a job for pagination, which will be covered in
Chapter 10: Pagination.

A new issue has, however, been created. It should be a fairly obvious one;
this is icky. Our theoretical developer now tries something else.

Considerably better approach to formatting data for output

<?php
class PlaceController extends ApiController
{
public function show($id)
{
$place = Place::find($id);
return json_encode([
'data' => S$this->transformPlaceToJson($place),
DN
}
public function +index()
{
$places = [1;
foreach (Place::all() as S$Splace) {
$places[] = $this->transformPlaceToJson(Splace);
}
return json_encode([
'data' => $places,
IDH
}
private function transformPlaceToJson(Place $place)
{
return [
'id’ => (int) $place->id,
"name’ => $place->name,

'"lat’ => (float) S$Splace->lat,

31
32
33
34
35

Outputting Data 60

'lon' => (float) $place->1lon,
'created_at' => (string) $place->created_at,

13

Certainly much better, but what if a different controller wants to show
a place at any point? You could theoretically move all of these transform
methods to a new class or shove them in the ApiController, but that would
just be odd.

Really, you want to make (what I have come to call) “transformers”,
partially because the name is awesome and because that is what they are
doing — transforming data from the format it was stored as in the data
store into something ready to be converted into JSON, or whatever else,
with a bit more structure than just dumping out whatever your DB driver
happened to give you.

[built a component to do this called Fractal’, because PHP did not seem to
have anything that would let me do this. Other languages have great so-
lutions for this already. Some call it “data marshaling” or “serialization”,
but it is all achieving roughly the same goal: take potentially complicated
data from a range of stores and turn it into a consistent output.

- Marshmallow? - Python

- ActiveModel Serializers3 - Built for Rails API, which will be part of
Rails 4.2

- Roar# - Ruby, but not limited to Rails or ActiveModel

6.3 Transformations with Fractal

With Fractal, transformers are created as either a callback, or an instance
of an object implementing TransformerAbstract. They do exactly the job
that our transformplaceToJson() method did, but they live on their own,

'http://fractal.thephpleague.com/
http://marshmallow.readthedocs.org/
3https://github.com/rails-api/active_model_serializers
“https://github.com/apotonick/roar

http://fractal.thephpleague.com/
http://marshmallow.readthedocs.org/
https://github.com/rails-api/active_model_serializers
https://github.com/apotonick/roar
http://fractal.thephpleague.com/
http://marshmallow.readthedocs.org/
https://github.com/rails-api/active_model_serializers
https://github.com/apotonick/roar

A W N R

Outputting Data 61

are easily unit testable (if that floats your boat), and remove a lot of
presentation clutter from the controller.

Fractal does a lot more than that, which will be explored later on, but
it covers concerns with transformation perfectly, removes the security,
stability, and display concerns addressed earlier.

That is the end of theory in this book. We will now be working with code.
Open up the Sample Code ZIP file, or head to the GitHub repo®, and extract
it somewhere useful.

$ cd chapter6

$ composer tdnstall

$ php artisan serve

Laravel development server started on http://localhost:8000

Open your browser and go to http://localhost:8000/places. There you’ll
see a list of places looking like this:

>https://github.com/philsturgeon/build-apis-you-wont-hate

[vww allitebooks.cond

https://github.com/philsturgeon/build-apis-you-wont-hate
https://github.com/philsturgeon/build-apis-you-wont-hate
http://www.allitebooks.org

Outputting Data

{

- embeds:
"checkins"

1s
- data:

- {

e

[

62

[

id: 1,

name: "Mireille Rodriguez",

lat: -84.147236,

lon: 49.254065,

addressl: "12106 Omari Wells Apt.
address2: ""

city: "East Romanberg",

state: "VT",

zip: 20129,
"http://www.torpdibbert.com/",
"(029)331-0729x4259"

website:
phone:

id: 2,
name:
lat:
lon:

"Dr. Judd Goodwin",
-5.56932,
-50.95633,
addressl: "9060 Harvey Lodge Suite 527",
address2: "",
city: "New Lea",
state: "AK",
zip: 18211,
website: "http://emard.com/",
phone: " (193)893-3463x099"

Fractal default JSON structure using the JSONView extension for Chrome

This is a Laravel application, but only because it has migrations and
seeding and I like it. This is made up of a few bits of PHP that would work
in any framework, and the approach works in any language.

- composer.json - Added an autoloadable folder using PSR-0 allowing
my own code to be loaded

- app/controllers/ApiController.php - Insanely simple base controller
for wrapping responses

- app/controllers/PlaceController.php - Grab some data and pass it
to the Apicontroller

Other than defining some basic GET routes in app/routes.php that is basi-

W 0 N O Ul M W N

T e R T o
~N o U b W N RFE O

O 0 N o U bd W N

=
(o}

Outputting Data 63

cally all that is being done.

The pPlaceController looks like this:

Example of a controller using Fractal to output data

<?php
use App\Transformer\PlaceTransformer;

class PlaceController extends ApiController

{
public function +index()
{
$places = Place::take(10)->get();
return $this->respondwWithCollection(Splaces, new PlaceTransformer);
}
public function show($id)
{
$place = Place::find($id);
return $this->respondwWithItem($place, new PlaceTransformer);
}
}

The “raw data” (happens to be an ORM model but could be anything) is
sent back with the appropriate convenience method, and a transformer
instance is provided too. These respondwithCollection() and respondwith-
Item() methods come from Apicontroller and their job is just to create
Fractal instances without exposing as many classes to interact with.

The PlaceTransformer looks like this:

<?php namespace App\Transformer;

use Place;
use League\Fractal\TransformerAbstract;

class PlaceTransformer extends TransformerAbstract

{

[**
* Turn this item object into a generic array
*

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

O 0 N o U bhd W N

=
= ©

12
13
14
15
16
17

Outputting Data 64

* @return array

*/
public function transform(Place $place)
{
return [
'id! => (int) $place->id,
"name’ => $place->name,
'lat’ => (float) $place->lat,
'lon' => (float) $place->lon,
'address1’ => $place->addressl,
'address2' => $place->address2,
'city' => $place->city,
'state' => $place->state,
'zip' => $place->zip,
'website' => $place->website,
"phone’ => $place->phone,
13
}
}
Simple.

The ApiController is kept super simple at this point too:

Simple ApiController for basic responses using Fractal

<?php

use League\Fractal\Resource\Collection;
use League\Fractal\Resource\Item;

use League\Fractal\Manager;

use Illuminate\Routing\Controller;

class ApiController extends Controller

{
protected S$statusCode = 2003

public function __construct(Manager $fractal)

{
$this->fractal = $fractal;

public function getStatusCode()

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51

Outputting Data 65

{
return $this->statusCode;
}
public function setStatusCode(SstatusCode)
{
$this->statusCode = $statusCode;
return $this;
}
protected function respondWithItem($item, Scallback)
{
$resource = new Item($item, Scallback);
$rootScope = $this->fractal->createData($resource);
return $this->respondWithArray($rootScope->toArray());
}
protected function respondWithCollection(Scollection, $callback)
{
$resource = new Collection(S$collection, $callback);
$rootScope = $this->fractal->createData($resource);
return $this->respondWithArray($rootScope->toArray());
}
protected function respondWithArray(array S$Sarray, array Sheaders = [])
{
return Response::json($array, $this->statusCode, $headers);
}

The method respondwithArray () takes a general array to convert into JSON,
which will prove useful with errors. Other than that, everything you
return will be a Fractal Item, or a Collection.

Outputting Data 66

6.4 Hiding Schema Updates

Schema updates happen and they can be hard to avoid. If the change in
question is simply a renamed field, then this is insanely easy to handle:

Before
'website' => $place->website,
After

'website' => S$place->url,

By changing the right (our internal data structure) and keeping the left
the same (the external field name), we maintain control over the outside
stability for the client applications.

Sometimes it is a status change, a new status being added, or the change
is fairly drastic and the statuses all change, but the old API version is still
expecting the old ones. Maybe someone changed “available” to “active”
to be consistent with the other tables because the original developer was
as consistent and logical as a rabid ferret.

Before
'status' => $place->status,
After
'status' => $place->status === 'available' ? 'active' : $place->status,

Gross, but useful.
6.5 Outputting Errors

Exactly how to output errors is something I am still toying with myself.
The current front runner is adding convenience methods to the Apicon-
troller, which handle global routes with a constant as the code and an
HTTP error code set with an optional message in case [want to override
the message.

W 0 N O U1 M W N

A DA W W W W W W WWWWNNNNDNDNNNDNDNNDNNERERRFERRRBERRRFRRE
H © W 0 N o U WNEFEF OO O OWNOO OGP~ WNRO OOWGSNOOOUGPMWNREOO

Outputting Data

Simple error codes and responses added to ApiController

67

<?php

/7

class ApiController extends Controller

{

/1

const CODE_WRONG_ARGS = 'GEN-FUBARGS';
const CODE_NOT_FOUND = 'GEN-LIKETHEWIND';
const CODE_INTERNAL_ERROR = 'GEN-AAAGGH';
const CODE_UNAUTHORIZED = 'GEN-MAYBGTFO';
const CODE_FORBIDDEN = 'GEN-GTFO';

//
protected function respondWithError($message, $errorCode)
{
if ($this->statusCode === 200) {
trigger_error(
"You better have a really good reason for erroring on a 200...",
E_USER_WARNING
)3
}
return S$this->respondwWithArray ([
'error' => [
'code' => $errorCode,
'http_code' => S$this->statusCode,
'message' => S$Smessage,
]
s
}
/**

* Generates a Response with a 403 HTTP header and a given
*

* @return Response
*/
public function errorForbidden(Smessage = 'Forbidden')

{

message.

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

Outputting Data 68

return Sthis->setStatusCode(403)
->respondWithError(Smessage, self::CODE_FORBIDDEN);

[**
* Generates a Response with a 500 HTTP header and a given message.
*
* @return Response
*/
public function errorInternalError($message = 'Internal Error')

{
return S$this->setStatusCode(500)
->respondWithError ($message, self::CODE_INTERNAL_ERROR);

[**
* Generates a Response with a 404 HTTP header and a given message.
*
* @return Response
*/
public function errorNotFound($message = 'Resource Not Found')
{
return Sthis->setStatusCode (404)
->respondWithError(Smessage, self::CODE_NOT_FOUND);

[**
* Generates a Response with a 401 HTTP header and a given message.
*
* @return Response
*/
public function errorUnauthorized($message = 'Unauthorized')
{
return $Sthis->setStatusCode(401)
->respondWithError ($message, self::CODE_UNAUTHORIZED);

[*x

* Generates a Response with a 400 HTTP header and a given message.
*

* @return Response

*/

public function errorWrongArgs($message = 'Wrong Arguments')

85
86
87
88
89

W 0 N O UM W N

N NN NNRERRRERRRB R B B B
A W N RO OOWW-NO®OUWUAMANWNKRO

Outputting Data 69

return $this->setStatusCode(400)
->respondWithError ($message, self::CODE_WRONG_ARGS);

This basically allows for generic error messages to be returned in your
controller without having to think too much about the specifics.

Controller using Fractal, combined with a simple error response

<?php
use App\Transformer\PlaceTransformer;

class PlaceController extends ApiController

{
public function +index()
{
$places = Place::take(10)->get();
return $this->respondwWithCollection(Splaces, new PlaceTransformer);
}
public function show($id)
{
$place = Place::find($id);
if (! $Splace) {
return Sthis->errorNotFound(
'Did you just invent an ID and try loading a place?'
)s
}
return $this->respondWithItem($place, new PlaceTransformer);
}
}

Other “Place” specific errors could go directly into the PlaceController
as methods just like these, with their own constants in the controller,
picking a statusCode in the method, or relying on one as an argument.

W 00 N O U M W N

NN NNNNNNRERRERRRB B B B B
N~ 0 00N WNR OO ®NOUNWNRO

28
29
30
31
32
33
34
35
36

Outputting Data 70

6.6 Testing this Output

You have already seen how to test your endpoints using the Gherkin
syntax in Chapter 5: Endpoint Testing, so we can apply that testing logic
to this output:

Feature: Places

Scenario: Listing places without search criteria is not possible
When I request "GET /places"
Then I get a "400" response

Scenario: Finding a specific place
When I request "GET /places/1"
Then I get a "200" response
And scope into the "data" property

And the properties exist:
nmmon
id
name
lat
lon
addressl
address2
city
state
zip
website
phone
created_at

And the '"id" property dis an integer

Scenario: Searching non-existent place
When I request "GET /places?q=c800e42c377881f8ae509cf9a516d4eb59&lat=1&lon=1"
Then I get a "200" response
And the "data" property contains 0 items

Scenario: Searching places with filters
When I request "GET /places?lat=40.76855&lon=-73.9945&g=cheese"
Then I get a "200" response

37
38
39
40
41
42
43
a4
45
46
47
48
49
50
51
52
53
54

Outputting Data 71

And the "data" property is an array
And scope 1into the first "data" property

And the properties exist:
mmnn

id

name

lat

lon
addressl
address2
city
state
zip
website
phone
created_at

And reset scope

This is again using the FeatureContext.php provided in the sample code,
which makes it really easy to test output. We are again assuming that
all output is in a "data" element, which is either an object (when one
resource has been requested), or an array of objects (multiple resources
or a collection have been requested).

When you are searching for data, you want to ensure that a query not
finding any data does not explode. This can be down to your controller
processing on output and failing because what should be an array is nutt,
or because some PHP collection class is missing methods, etc. This is why
we perform the search with a hardcoded invalid search term and then
check that it returns an empty collection:

"data": []

The line And the "data" property contains 0 items Will cover this. Then we
can search for valid terms, knowing that our database seeder has made
sure at least one Place has the keyword “cheese” in the name. Using the
line And scope into the first "data" property the scope changes to be

Outputting Data 72

inside the first data item returned, and the properties can be checked for
existence too. If no data, or required fields are missing, this test will fail.

6.7 Homework

Your homework is to take apart the sample application, fit it into your
API, and try to build valid output for as many of your GET endpoints as
possible. Check the data types and make sure the array structure is output
in the expected fashion using the test example above.

With valid output covered and basic errors covered, what is next? The most
complicated part of API generation, which at some point every developer
has to try and work out: embedding/nesting resources, or making “rela-
tionships”.

7. Data Relationships

7.1 Introduction

If you have ever worked with relational databases, the chances are you
understand relationships. Users have comments. Authors have one or
many books. Books belong to a publisher. Southerners have one or more
teeth. Whatever the example, relationships are incredibly important to
any application and therefore an API too.

Relationships for your API output do not need to be directly mapped to
database relationships. If your database relationships are built properly,
relationships will often be similar, but your output might have extra
dynamic relationships that are not defined by a JOIN, and might not
necessarily include every possible database relationship.

Put more eloquently:

REST components communicate by transferring a represen-
tation of a resource in a format matching one of an evolving
set of standard data types, selected dynamically based on the
capabilities or desires of the recipient and the nature of the
resource. Whether the representation is in the same format as
the raw source, or is derived from the source, remains hidden
behind the interface. - Roy Fielding!

This explanation highlights an important factor: the output has to be
based on the “desires of the recipient”. There are many popular ap-
proaches to designing relationships, but many of them do not satisfy the
“desires of the recipient”. Still, I will cover the popular approaches with
their pros and cons.

'http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2

73

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2

Data Relationships 74

7.2 Subresources

One very simplistic way to approach related data is to offer up new URLs
for your API consumers to digest. This was covered lightly in Chapter 2:
Planning and Creating Endpoints and is a perfectly valid approach.

If an API has places as a resource and wants to allow access to a places
check-ins, an endpoint could be made to handle exactly that:

/places/X/checkins

The downside here is that if you have already requested GET /places/x,
then fetching the check-ins will require an extra HTTP request. Imagine a
mobile app that wants to get all places in an area and put them on a map,
then allow a user to browse through them. If the place search happens as
one request, then the /places/X/checkins is executed each time the user
clicks on a place, forcing the user to do a lot of unnecessary waiting. This
is known as 1 + n, meaning the work done is increased by an extra one
request for each ptlace you look up.

That also assumes the only related data is check-ins. At Kapture, our API
also had merchant, images, current_campaign and previous_campaigns to look
up. Using “subresources” would only mean that four extra HTTP requests
per place need to happen, whichis1 + 4n.

If 50 places were returned, and each time the related data had to be loaded,
assuming the app user looked through all 50 places, there would be 1
initial request to get 50 results. Each of those results would require 4 more
requests, meaning: 1 + (50 x 4) = 251. 251 HTTP requests happening
(even assuming they are asynchronous) is just unnecessary, and going
over HTTP on a mobile is the slowest things you can do. Even with caching,
depending on the data set, it could still be 251 requests.

Some API developers try to avoid going over HTTP too many times by
shoving as much data as possible into one request, so when you call the
/places endpoint you automatically get checkins, current_opps, merchants
and images. Unfortunately, shoving all of the information into the re-
sponse (whether or not the client has indicated any interest in it) means
waiting for huge file downloads full of irrelevant data! Even with GZIP

© 0 N o U bd W N

Data Relationships 75

compression enabled on the web server, downloading something you do
not need is obviously not desirable, and can be avoided. This can mean
major performance gains on mobile, and minor gains over a slow network,
or weak Wi-Fi for desktop or tablets.

The trade-off here is between downloading enough data to avoid making
the user wait for subsequent loads and downloading too much data to
make them wait for the initial load is hard. An API needs the flexibility,
and making subresources the only way to load related data is restrictive
for the API consumer.

7.3 Foreign Key Arrays

Another approach to related data is to provide an array of foreign keys in
the output. To use the JSON-API? standard as an example; if a post has
multiple comments, the /posts endpoint might contain the following:

{

"post": {
"qd": 1,
"title": "Progressive Enhancement is Dead",
"_links": {
llcommentsll: [Hlll’ ll2||]

}
}
}

Here you still end up with n + 1 requests, but at least you can take those
IDs and make a grouped request like /comments/1,2 Or /comments?ids=1,2 tO
reduce how many HTTP requests are being made.

Back to the places example. If you have 50 places returned and need 4 extra
pieces of data, you could iterate through the 50, map which items expect
what pieces of data, request all unique pieces of data, and only end up with
1 + 4 = 5 HTTP requests instead of 251.

The downside is that the API consumer has to stitch all of that data
together, which could be a lot of work for a large dataset.

*http://jsonapi.org/

http://jsonapi.org/
http://jsonapi.org/

O 00 N O Ul M W N

N S T e i T
H © O 00 N O U M W N O

Data Relationships 76

7.4 Compound Documents (aka Sideloading)

Instead of just putting the foreign keys into the resource, you can take
things a step further and sideload the data, which is also recommended
by JSON-API.

Compound documents contain multiple collections to allow for
sideloading of related objects. Side-loading is desirable when
nested representation of related objects would result in poten-
tially expensive repetition. For example, given a list of 50 com-
ments by only 3 authors, a nested representation would include
50 author objects where a sideloaded representation would con-
tain only 3 author objects. — Source: canvas.instructure.com3

If we look at a collection of posts following the example from the section
titled “Foreign Key Arrays,” an API might show a response like this:

{
"posts": [{
"qdre "1,
"title": "Awesome API Book",
" _links": {
"comments": ["1", "2"]
}, {
"qdre m2ny
"title": "But Really That API Book",
"_Tinks": {
"comments": ["3"]
}
H,
" _Tinked": {
"comments": [
{
"qd": 1"
"message": "Great book",
"created_at": "2014-08-23T18:20:03Z"
1,
{

3https://canvas.instructure.com/doc/api/file.compound_documents.html

https://canvas.instructure.com/doc/api/file.compound_documents.html
https://canvas.instructure.com/doc/api/file.compound_documents.html

22
23
24
25
26
27
28
29
30
31
32
33

Data Relationships 77

H-idll: Hzll
"message": "I lolled",
"created_at": "2014-08-24T20:04:01Z"

},

{
"qdr: 3"
"message": "Ugh JSON-API...",
"created_at": "2014-08-29T14:01:13Z"

}

]
}
}

Just like with the foreign key array approach, the client will have to do a
lot of stitching together to map which comment belongs to which post.
The datais all there, but getting it into a format for easy iteration could be
a PITA.

That said, it will avoid duplicating the same item multiple times. While
a comment would likely only be on a single post, if you were to include user
information, the same user could show up multiple times as a commenter
if they are active, or even as a commenter and a post author.

7.5 Embedded Documents (aka Nesting)

Instead of flattening the entire response to top level collections and losing
the obvious context of the data, embedding data leaves it in the structure
a client would expect.

This approach was used for the last two versions of the API at Kapture,
and I used it on a few other APIs. It offers the most flexibility for the API
consumer; it can reduce HTTP requests or reduce download size depending
on what the consumer wants.

An API consumer could call the endpoint with the following query string
parameter:

/places?include=checkins,merchant

This would alert Fractal (if properly configured) to include the checkins for
that place, and the merchant data in the response inside the place resource:

© o N o b W N

WNNNNNNNNNNERRHRRRBR B B B B
© © O N O U A WNKFOWOWOW-NOUW N WNR

Data Relationships 78

{
"data": [
{
"qd": 2,
"name": "Videology",
"lat": 40.713857,
"lon": -73.961936,
"created_at": "2013-04-02",
"checkins" : [
/] ...
]J
"merchant" : {
/] ...
}
1,
{
"qd": 1,
"name": "Barcade",
"lat": 40.712017,
"lon": -73.950995,
"created_at": "2012-09-23",
"checkins" : [
/] ...
1,
"merchant" : {
/] ...
}
}
]
1

Some systems (like Facebook, or any API using Fractal) will let you nest
those embeds with dot notation:

E.g:/places?include=checkins,merchant,current_opp.ﬁmages

Embedding with Fractal

Picking back up from chapter 6, your transformer at this point is mainly
just giving you a method to handle array conversion from your data
source to a simple array. Fractal can, however, include resources and
collections too. Continuing the theme of users, places, and check-ins,

W 0 N O U~ W N

W W W WwWwwwwwNNNNNNNNRNNERR-ERI-BRRBRRR R
© N0 U DdWNROOO-NOOUDIIWNEROOOONOUWUDIWNIERO

Data Relationships 79

the userTransformer might have a check-ins list to see a users check-in
history.

UserTransformer using Fractal

<?php namespace App\Transformer;

use User;

use League\Fractal\TransformerAbstract;

class UserTransformer extends TransformerAbstract

{
protected SavailableEmbeds = [
'checkins'
13
/**

* Turn this ditem object into a generic array
*

* @return array

*/
public function transform(User S$user)
{
return [
'id! => (int) S$Suser->id,
"name' => $Suser->name,
'bio! => $user->bio,
'gender’ => Suser->gender,
'"location' => Suser->location,
'"birthday' => $user->birthday,
'joined' => (string) $user->created_at,
13
1
[**

* Embed Checkins
*

* @return League\Fractal\Resource\Collection
*/
public function embedCheckins(User Suser)

{

$checkins = $user->checkins;

39
40
41
42

W 00 N O U M W N

W NNNNNNNNDNNNERERERRBRIRBRR R B B
©® ©W O N o D WNROOOLWNO UM WNR

Data Relationships 80

return $this->collection($checkins, new CheckinTransformer);

The checkinTransformer can then accept a user and a place. There is no
benefit to requesting the user in this context, because we know that
already, but asking for the place would return information about the
location that is being checked into.

CheckinTransformer using Fractal

<?php namespace App\Transformer;

use Checkin;
use League\Fractal\TransformerAbstract;

class CheckinTransformer extends TransformerAbstract

{
[**x
* List of resources possible to embed via this processor

*

* @var array

*/

protected SavailableEmbeds = [
'place’,
'user',

1

[**x

* Turn this item object into a generic array
*

* @return array

*/
public function transform(Checkin $checkin)
{
return [
'Hd! => (dint) S$checkin->1id,
'created_at' => (string) $checkin->created_at,
15
}

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

W 00 N O U M W N

Data Relationships 81

[*x
* Embed Place
*

* @return League\Fractal\Resource\Item
*/
public function embedPlace(Checkin $checkin)

{

$place = Scheckin->place;

return $this->item($Splace, new PlaceTransformer);

/**
* Embed User
*

* @return League\Fractal\Resource\Item

*/
public function embedUser (Checkin $checkin)
{
$user = Scheckin->user;
return $this->item(Suser, new UserTransformer);
}

These examples happen to be using the lazy loading functionality of an
ORM for $user->checkins and $checkin->place, but there is no reason that
eager loading could not also be used by inspecting the $_GET['include'] list
of requested scopes. Something like this can easily go in your controller
constructor somewhere in the base controller, or something:

Example of user input dictating which Eloquent ORM (Laravel) relationships to eager load

SrequestedEmbeds = Input::get('include'); // ['checkins', 'place'] or just ['place']

// Left is relationship names. Right is include names.
// Avoids exposing relationships and whatever not directly set
$SpossibleRelationships = [

'checkins' => 'checkins',

'venue' => 'place',

15

10
11
12
13
14
15

W 0 N O U M W N

e e
o A WN RO

Data Relationships 82

// Check for potential ORM relationships, and convert from generic "include" names
SeagerLoad = array_keys(array_intersect($possibleRelationships, $requestedEmbeds));

Sbooks = Book::with($eagerLoad)->get();

// do the usual fractal stuff

Having the following code somewhere in the ApiController, Or in your
bootstrap, will make this all work:

class ApiController

{
/] ...
public function __construct(Manager $fractal)
{
$this->fractal = S$fractal;
// Are we going to try and include data?
if (Input::get('include')) {
$this->fractal->parseIncludes(Input::get('include'));
}
}
/] ...
}

That is how you would do things in Laravel at least.

Embedding with Rails

The Rails lot are big fans of their ActiveRecord package, and most suggest
using it to embed data. The specific part is in the Serializaton::to_json
Documentation4.

To include associations, use blog.to_json(:include => :posts).

4http://apidock.com/rails/ActiveRecord/Serialization/to_json

http://apidock.com/rails/ActiveRecord/Serialization/to_json
http://apidock.com/rails/ActiveRecord/Serialization/to_json
http://apidock.com/rails/ActiveRecord/Serialization/to_json

W 0 N O U~ W N

e eI
w N = O

O 0w N o Ut bd W NN

=
(o}

W 0 N O UM W N

R
N B ©

Data Relationships 83

"id": 1, "name": "Konata Izumi", "age": 16,
"created_at": "2006/08/01", "awesome": true,
"posts": [{

"qid": 1,

"author_id": 1,

"title": "Welcome to the weblog"
b q

"qd": 2,

author_id: 1,

"title": "So I was thinking"
H

Second level and higher order associations work as well:

blog.to_json(:include => {
:posts => {
:include => {
:comments => {
:only => :body
}
},
tonly => :title
}
b

Alittle more complicated, but you get more control over what is returned:

{
"qd": 1,
"name": "Konata Izumi",
"age": 16,

"created_at": "2006/08/01",
"awesome": true,
"posts": [{
"comments": [{
"body": "1st post!"
Ao
"body": "Second!"
,

13
14
15
16
17

19
20
21

Data Relationships 84

"title": "Welcome to the weblog"

1,
{
"comments": [{
"body": "Don't think too hard"
,
"title": "So I was thinking"
1

}

This will work well, assuming everything is represented as ActiveRecord,
which who knows, it might be.

7.6 Summary

The most important thing here is that an API has some way to include
related data. Regardless of whether sideloading or embedding is the ap-
proach used, it is important to pick one.

One area that may affect your decision is using a JavaScript framework like
Ember]JS. In theory, an API should not concern itself with implementation
specific details such as which JavaScript framework is being used, but if
that Ember]S platform is a requirement of the business, then picking a
compatible data structure known to work with it might be key.

At the time of writing, Ember]JS (or more specifically EmberData) requires
a specific sideloading approach, which might cause a headache for other
consumers of your API. This is changing over time as Ember]S leans more
towards JSON-API, but until JSON-API settles on v1.0 final they cannot be
expected to maintain perfect support for the adapter.

Fractal will make your decision less important since using Serializers>
allows you to switch between the two types rather easily. Later on in
the book, we will talk about looking at MIME types and responding with
different data, so it would not be difficult to use different headers for dif-
ferent data structures i.e., one custom output maybe using the embedded
approach, and one JSON-API with sideloaded data.

>http://fractal.thephpleague.com/serializers/

http://fractal.thephpleague.com/serializers/
http://fractal.thephpleague.com/serializers/

8. Debugging

8.1 Introduction

Debugging is the art of working out why something is broken, which can
be pretty difficult in an APIL. In much of web development, you are simply
looking at what is output to the page, overusing var_dump(), or checking
the browsers console for JavaScript errors.

Working with an API, you are mostly just working with requests and
responses, but you need to initiate these requests in a repeatable way,
often with full control over all of the HTTP headers, body content, etc.

There are a few methods you can utilize for debugging:

- Command-line debugging
- Browser debugging
+ Network debugging

8.2 Command-line Debugging

Debugging via the command-line by using tools like curlis a great option
for some. They tout the benefits of being able to do it from inside a net-
work firewall. Certainly this can be an option for debugging live servers,
but for development purposes (which is what we are doing here), using
curlis just a lot of commands to remember for no reason.

$ curl -X POST http://localhost/places/fg345d/checkins --data @payload.json

It is not the most complicated way to initiate a request, but it is not the
easiest. You will need to update that payload.json every time, or have a
bunch of JSON in the CLI, and that can be really messy with multi-line
payloads.

85

Debugging 86

The CLI is a pain in the backside when you have a lot of endpoints with
lots of potential values. Please, if you take yourself, your API, or your job
as a developer seriously, do not do this.

8.3 Browser Debugging

Working in the browser is a great way to do things, and developers are
fairly used to it. Sadly, most browsers can only really handle GeT and posT
requests by default, and a RESTful API requires puT, DELETE, PATCH, etc., t0o.
A well built RESTful API will also require the use of HTTP headers, which
can be difficult to manipulate in a browser, as they are built to handle all
of that for you.

HTTP Clients

Called a “HTTP client” or “REST client” interchangeably, these bits of
software help perfectly with the job this book sets out to achieve: building
nontrivial APIs. They allow you to format your HTTP request through
a convenient GUI, choosing the HTTP verb, adding headers, entering a
body, etc., then present the HTTP response to you with formatting or in
source view if you prefer. Many of these GUIs will let you save common
requests or build “collections” much like a set of bookmarks, but for your
endpoints, and with all the correct headers and values.

These clients exist for Windows, OS X and Linux, but one that has really
stood out to me is the Chrome extension called Postman'.

'http://getpostman.com/

http://getpostman.com/
http://getpostman.com/

Debugging 87

806 /2(a)e\(m (@

€ cC L on mem/index.htmi o0
omai @ Noonvonments

hitp/dev.api kaptu.relmerchants/5 Normal =%

(3 Mo apiXaptu remoffiends tp://dov-api kaptu. re/places/27include=curent_opp.pre | GET 4| GURLpaams | @ Headess @

(G0 hto/idev. api kaptu.re/moments

(53 hitp/idev.api Kaptu.relmelrewards m | T m

— Body T 200 0k (3 590 me
751 hitp/dev.api kaptu relmoments

(G0 http/dev.apiKaptu rlmoments/632/image Protty | Raw Proview | w | 2b |[JSON | xmL

(G0 htp/idev.api kaptu.relopps

(G5 hitp1dev.api kaptu.relopps/searchlat=
40.7641&lon=-73.9866&q=bamboo

(G htipi/dev.api kaptu.restats
ttpidev.api keptu relusers/1,23

T3] http:/idev.oauth kaptu.relrefresh

hitp://dev.cauth.kaptu.re/
(G htip/dev.api kaptu.relfavorites/moments

(EEXEE3 hito/dev.api kaptu.reffavorites/moments/31

2013-12-20 20:51:49
se

Postman HTTP Client, showing a collection and a successful JSON response

I have a collection, which almost mirrors my Behat tests, and have at least
one for each endpoint, some with more.

Using Postman, I can develop “in the browser”, see errors easily, keep
changing things and click “send” for as long as I have to to make it
work. When I expect it to work, I run the Behat scenario that covers the
endpoint, and see if the tests are green. If Behat fails and the errors are
not enough to resolve the problem, I then simply go back to Postman and
try again.

Repeat until the endpoint “works” and passes the test.

Debug Panel

The approach above works fine if the problem is one that you can see.
Anything to do with a slow page return, silent fails, unexpected results,
etc., needs more information, and to do that you probably need another
extension.

- RailsPanel?® - Chrome-only DevTool panel with logging and profiling
for Ruby on Rails (RailsCasts Video3)

*https://github.com/dejan/rails_panel
3http://railscasts.com/episodes/402-better-errors-railspanel view=asciicast

https://github.com/dejan/rails_panel
http://railscasts.com/episodes/402-better-errors-railspanel?view=asciicast
https://github.com/dejan/rails_panel
http://railscasts.com/episodes/402-better-errors-railspanel?view=asciicast

Debugging 88

- Clockwork# - Chrome DevTool panel and standalone web app with
logging and profiling for PHP

-+ Chrome Logger> - Chrome Logger only for Python, PHP, Ruby, Node,
.NET, CF and Go

The first two are very similar and are the most feature filled, but the latter
covers basic logging for a wider selection of languages.

Sure these examples are mostly Chrome, there are probably alternatives,
but either way there is no harm in having Chrome as your development
browser and continue to use your favourite for general browsing.

e & 8o =

<« C [localhost:8000/users?embed=checkins.place

m architecto velit qui ut optie e

st ut ut labore sed voluptate fugit voluptates tempore vitae
est minima commodi delectus ut deserunt 5

quasi quas iusto mollitia quae

oluptatem qui consectetur guam ut laborio omnis sit eligendi

atibus nobis et mollitia voluptatum quae aut id in officia dign o8 ui speriam

odio ea nihil eius reprehenderit dolor fuga hic praesentium aut ad voluptatem totam est neque aut
nis magni sunt qui sed blanditiis iste qui in vero quidem ut.”,

= %

3]

@, Elements Network Sources Timeline Profiles Resources Audits Console | Clockwork |

Path
Controller Method | Seatus Request Timeline | Log Database Cookies Session

Database
fuserstembeds=checkins.place Timeline 183ams 2568 ms Duration Description
Usercontroller@index

2340 ms Total execution time.

645 ms Application initialisation.

Time
at

120 ms Framework booting

O 1694 ms Framework running.

1477 ms Router dispatch.

1399 ms Controller running.

Clockwork showing the Laravel timeline in Chromium Browser

This timeline can be useful for working out where things are slowing
down. Define your own events to see where the time is going.

Seeing logs in this panel is another benefit, and it helps keep you from
switching back to the console all the time to catch the output of your logs
via tail -f. Certainly you should be in the command line anyway, but
constantly hitting Alt+Tab can cause distractions which slow you down.

“https://github.com/itsgoingd/clockwork-chrome
Shttp://craig.is/writing/chrome-logger

https://github.com/itsgoingd/clockwork-chrome
http://craig.is/writing/chrome-logger
https://github.com/itsgoingd/clockwork-chrome
http://craig.is/writing/chrome-logger

W 00 N O U M W N

W W W wWwwwwNNNNNNNNNNRRRRRRRB R B B2
O G d WN R OOWNO UM WNIREOOONOOWMWNRO

Debugging 89

For those of you who normally debug with var_dump() or breakpoints, you
could simply use Clockwork/RailsPanel/Chrome Logger to do it and see
it in the panel, leaving your output untouched and avoiding tricky setup
with IDE or other GUI programs.

CheckinTransformer using Fractal, with added Logging

<?php namespace App\Transformer;

use Checkin;
use Log;

use League\Fractal\TransformerAbstract;

class CheckinTransformer extends TransformerAbstract

{
/**
* List of resources possible to embed via this processor

*

* @var array

*/
protected SavailableEmbeds = [
'place’,
'user',
15
[*x

* Turn this item object into a generic array
*

* @return array

*/
public function transform(Checkin $checkin)
{
return [
'Hd! => (dint) S$checkin->1id,
'created_at' => (string) $checkin->created_at,
1
}
[**

* Embed Place
*

* @return League\Fractal\Resource\Item

37
38
39
40
41
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

$place = Scheckin->place;

* Embed User

$checkin->user;

public function embedPlace(Checkin S$checkin)

* @return League\Fractal\Resource\Item

public function embedUser (Checkin $checkin)

Log::info("Embedding place-{$place->id} into checkin-{Scheckin->id}");

return Sthis->item($place, new PlaceTransformer);

Log::info("Embedding user-{$user->id} into checkin-{$Scheckin->id}");

return S$this->item($user, new UserTransformer);

That will look a little something like this:

Time

Controller Method | Sttus | oo oce Request Timeline Log | Database Cookies Session

Juserstembed=checkins.place oo 563 ms [0 VN Level Message

UserController@index 6ms
15:51:31 info Embedding place-1 into checkin-1
155131 info Embedding place-3 into checkin-69
15:551:31 info Embedding place-4 into checkin-111
155131 info Embedding place-5 into checkin-156
15:551:31 info Embedding place-9 into checkin-279
15:51:31 info Embedding place-10 into checkin-306
15:551:31 info Embedding place-12 Into checkin-370
15:51:31 info Embedding place-21 into checkin-676
155131 Info Embedding place-24 Into checkin-780

Clockwork showing the Log in Chromium Browser

You can log arrays and objects too:

Debugging 91

Time Level

Clockwork showing the Log in Chromium Browser

If logging something cannot help you with a problem, you need to log
more things. Eventually you will work it out.

8.4 Network Debugging

The previously mentioned approaches to debugging are very much about
being in control: create arequest and see what happens with the response.
Sometimes you need to debug what is happening to your API when the
requests are not completely in control. If your iPhone developer comes
over and says “the API is broken”, it can be hard to work out why.

If you know exactly what endpoint is being hit and what the error is
(because the iPhone dev is pointing to some debug data on his XCode
screen), then maybe you can fix it, but often you will need more insight
before you can recreate a bug. Maybe it is not even a request you can
recreate easily (or at all), like anything to do with upload images as a puT
after getting them from the camera, or multiple requests that the iPhone
app is executing in order using data from the previous requests.

Whatever the reason, sometimes you need to debug network activity to
find out what is actually happening by spying on the request and getting
the response.

Charles

If these are non-production errors that you want to debug against your
local API and development iOS devices (aka the old iPhone you have not
sold on eBay yet), then a great application is Charles®.

6http://www.charlesproxy.com/

http://www.charlesproxy.com/
http://www.charlesproxy.com/

Debugging

92

Charles essentially acts as an HTTP proxy, which means stuff comes in,
stuff goes out, and Charles can show you what that was. Beyond that, it
can rewrite headers and even let you modify the content of the request or

response if you want.

To set the basics of this up, you first need to know the internal network of

your machine.

800 Network
[« >][showal] (a
Location: | Automatic =
Wi-Fi e W FL (I
Connected Status: Connected | Turn Wi-Fi Off |

@ Ethernet @;@

Not Connected

Display Ethernet g &
® forcomected - &P

FireWire
o Not Connected

® Display FireWire
Not Connected

iPhone USB
™ Bluetooth PAN
Not Connected

Thund...t Bridge 4
® vt Conneazd 4P

+[- [ger

Wi-Fi is connected to RD37S and has the IP
address 192.168.1.3.

Network Name: | RD97S

[| Ask to join new networks
Known networks will be joined automatically.
If na known netwarks are available, you will
have to manually select a network.

[V Show Wi-Fi status in menu bar | Advanced... | |_':f’w

| Assistme.. | | Revert | | Apply |

Network Settings on Mac OS X, showing local IP

On your mobile device you will need to enable an HTTP Proxy. Enter your
computer’s local IP in the Proxy Server Address field, and select port 8888

- the default Charles port.

Debugging

93
£ Wi-Fi RD97S
HTTP PROXY
Server 192.168.1.3
Port 8889

Authentication

Sample Charles HTTP Proxy settings on i0S7

This will forward all web traffic to Charles, which (if it is running) will
forward it on to its location.

As pointless as that might sound, the power comes in the options Charles
has to offer. If we are intending to allow web traffic from our mobile device
to the APl on our development environment, at this point, we are half way.

A

Local vs. “Remote”

To allow Laravel (PHP’s) built in server to access this connection
on OS X, you must start the server using the network address
shown in the sharing section of system preferences.

Choose Apple menu > System Preferences, and then click Shar-
ing. Below “Computer Name” you will see an address followed
by “.local”.

To start the server simply use:

$ php artisan serve --host="Phils-MacBook-Air.local"

I personally have Charles pointing to a Vagrant box, running on
its own IP address with its own virtual host enabled. This is not
something that the book will cover, but is certainly something
you should look into doing.

In order to make dev-api.example.com mean something on your mobile
device, you need to enter a “Map Remote” rule in Charles.

Debugging 94

Modify the request location to map one remote location to another.
¥ Enable Map Remote

From To
o dev-: I dev-;

8006 Edit Mapping

Map From

Protocol.
Host: | dev-api.example.com
Port:
Path:

Import Query:

T

COWECTREEHE ..,
——

Protocol.

Host: | dev-api.example.com
Port:

Path:

Query:

To map from a path an rect t end the path with a
*.To map an enti

B Cancel |[_ OK |

Screenshot of Charles on 0S X mapping dev-api.example.com

As explained above, Charles acts as a “man-in-the-middle”, rerouting
traffic based on your rules. By saying dev-api.example.com should be routed
to dev-api.example.com on your machine, you have given that hostname,
meaning on your mobile devices (or anything else talking to Charles on
that port).

Now — so long as you are able to get a build of your mobile application
pointing to dev-api.example.com — you will be able to click around the
application, seeing requests and responses with all of the headers and
values as you go.

Debugging 95

o fdev-api

G . o s e TV s s e pcrang

Charles showing results for Kapture

You might not find yourself using Charles every day, or for a long time.
At the start your HTTP Clients may be enough to debug problems, but
having it available is certainly going to help you out at some point. Keep
it in mind.

Wireshark? is also handy for Linux/OS X users, and Fiddler® is fun for
Windows users.

"https://www.wireshark.org/
8http://www.telerik.com/fiddler

https://www.wireshark.org/
http://www.telerik.com/fiddler
https://www.wireshark.org/
http://www.telerik.com/fiddler

9. Authentication

9.1 Introduction

Understanding authentication for an API can be one of the largest hurdles
for many developers, partially because there are a lot of different meth-
ods, but mostly because none of them are anything like authentication in
an average web app.

When building an admin dashboard, CMS, blog, etc., it is widely accepted
as standard behavior to use sessions with a data store such as cookies,
Memcache, Redis, Mongo, or some SQL platform. Regardless of the data
store, sessions are used so that once logged in, the browser remembers
who the user is. To log in, the user is presented with a form in HTML
showing two fields: one for the username and/or email address of the
user, and one for the password. Once the end-user closes the browser or
is inactive for a certain period of time, they will be forgotten.

This is the standard way to handle logins for the vast majority of sites built
with a server-side language, but it is not how you handle authentication
for an API at all.

In this chapter, we will look at some of the most popular authentication
methods, and explain some pros and cons of each.

9.2 When is Authentication Useful?

Authentication allows APIs to track users, give endpoints user context
(“find all of my posts”), limit users’ access to various endpoints, filter
data, or even throttle and deactivate accounts. This is all very useful for
many APIs, but some may never need to implement authentication.

Read-only APIs

If your API is entirely read-only and the data is not sensitive, then you can
just make it available and not worry about authentication. This is perfectly

96

Authentication 97

acceptable.

There is the concern that people could be attacking your API with DDoS
attacks (flooding your API with an unreasonable number of requests with
malicious intent). Using some form of authentication would limit the
vectors of attack. To get a response from the API, they would need to
be a valid user, and therefore the user’s account could be throttled or
deactivated if malicious activity was detected.

This does not entirely negate DDoS attacks, but it can help your API do less
work as the request will terminate much sooner if an invalid user is found.
So if DDoS issues are still a concern, with or without authentication,
then use a self-improving firewall or implement other security barriers.
Generally speaking, having anyone spamming any of your servers is
not ideal, so this may certainly be a stronger move than implementing
authentication purely to avoid these attacks.

Either way, you could quite easily release your API without authentication
then implement piecemeal later on.

Internal APIs

If your API runs over a private network or is locked down with firewall
rules and you do not require user context for your API, then you could
probably skip authentication.

One concern with just leaving all the security up to the network is that,
if the network is breached, then hackers would be able to do rather a lot
of damage. However, if hackers are ‘all up in your networks’, then you
probably have a lot of security issues already.

Keep it in mind.
9.3 Different Approaches to Authentication

Approach #1: Basic Authentication

The first approach that many developers go to is HTTP Basic, which is
most like the standard username/password approach they have grown to

Authentication 98

know and love, but instead implemented on the HTTP Request level and
respected by the browser.

Here is what Wikipedia has to say:

HTTP Basic authentication (BA) implementation is the simplest
technique for enforcing access controls to web resources be-
cause it doesn’t require cookies, session identifier and login
pages. Rather, HTTP Basic authentication uses static, standard
HTTP headers which means that no handshakes have to be done
in anticipation. - Source: Wikipedia®

Pros

- Easy to implement
- Easy to understand
- Works in the browser and any other HTTP client

Cons

« Is ludicrously insecure over HTTP

- Is fairly insecure over HTTPS

- Passwords can be stored by the browser, meaning a honeypot of user
data is sitting around waiting to be gobbled up

Browsers Storing Passwords

With Chrome not even protecting these plain text passwords with a
master password, you really are leaving your users wide open to attack
if you let HTTP Basic be an option.

Elliott Kember publicly outed Chrome on this?. The Guardian cared3. Sir
Tim Berners-Lee cared4. Google didn’t>.

'http://en.wikipedia.org/wiki/Basic_access_authentication

http://blog.elliottkember.com/chromes-insane-password-security-strategy

3http://www.theguardian.com/technology/2013/aug/07/google-chrome-password-security-
flawINTCMP=SRCH

“https://twitter.com/timberners_lee/status/364839351651274752

>https://news.ycombinator.com/item?id=6166886

http://en.wikipedia.org/wiki/Basic_access_authentication
http://blog.elliottkember.com/chromes-insane-password-security-strategy
http://www.theguardian.com/technology/2013/aug/07/google-chrome-password-security-flaw?INTCMP=SRCH
https://twitter.com/timberners_lee/status/364839351651274752
https://twitter.com/timberners_lee/status/364839351651274752
https://news.ycombinator.com/item?id=6166886
http://en.wikipedia.org/wiki/Basic_access_authentication
http://blog.elliottkember.com/chromes-insane-password-security-strategy
http://www.theguardian.com/technology/2013/aug/07/google-chrome-password-security-flaw?INTCMP=SRCH
http://www.theguardian.com/technology/2013/aug/07/google-chrome-password-security-flaw?INTCMP=SRCH
https://twitter.com/timberners_lee/status/364839351651274752
https://news.ycombinator.com/item?id=6166886

Authentication 99

More plain text Woe

Another security issue with Basic authentication is that it is ludicrously
insecure when running over HTTP.

In the example provided by Wikipedia, a header will be placed in the HTTP
request that looks like this:

Authorization: Basic QWxhZGRpbjpvcGVulHNIc2FtZQ==

If a request is made that goes over the wire (such as a JS based API request
from a user sitting in a coffee shop), then that request could easily be
intercepted. Taking that header as an example, it is insanely simple to
find the username and password.

S php -a
php > echo base64_decode('QWxhZGRpbjpvcGVUIHNTc2FtZQ==");
Aladdin:open sesame

This is no more or less secure than a HTML login form, but is certainly not
secure enough for any API with sensitive data.

Using SSL improves the concerns greatly, but as the password is sent in
every single HTTP request, there is still the potential for cracking it. At
this point, though, somebody has to really want to get in.

HTTP Basic Auth may be a good fit for a relatively unimportant internal
API, which needs some basic protection and needs to be implemented
quickly, but certainly is not any good for anything that handles money,
air traffic, or nuclear weapons.

Approach #2: Digest Authentication

Digest is an approach to authentication similar to Basic, but is designed
to improve on the security concerns.

Instead of transmitting passwords in plain text, it will calculate a MD5
hash and send that. Unlike the Base64-based passwords used in the basic
auth, MDs5 is a one-way hash meaning you cannot simply take the hash
and calculate the original password without trying out a lot of different
combinations.

Authentication 100

HA1=MD5(A1) = MD5(username:realm:password) HA2 = MD5(A2)
= MD5(method:digestURI) response = MD5(HA1:nonce:HA2)

The nonce is a unique number, which can contain (but should not be only)
a timestamp. This helps to avoid replay attacks as the same hash will not
be usable later on.

Pros

- Password is not transmitted in plain text

+ The use of nonce helps negate rainbow table attacks
- Generally speaking, more secure than basic auth

- Easier to implement than some approaches

Cons

- Harder than basic auth to implement well

- Easy to implement badly

- Still insecure over HTTP

- Just like basic auth, passwords can still be stored by the browser
« Uses MD5

MDs... 4...3... 2... 1... HACKED

MDs5 is well accepted by many people today to be extremely crackable in
most scenarios. Digest authentication has not improved since its creation
in 1993. While the calculation process should help negate many of these
issues, a lousy implementation of digest authentication will be open to
some weird attack vectors that will remain unknown until after the fact.

Digest is certainly more secure than basic. It is great over SSL - definitely
a good choice for an internal API if you have more time to spend im-
plementing - but it still requires the username and password to be sent
repeatedly, meaning it is potentially hackable if the hacker has enough
encrypted requests available to process.

Authentication 101

Approach #3: OAuth 1.0a

Not quite as popular these days, OAuth 1.0a was a big player on the web-
based authentication scene and used by services such as Dropbox, Flickr,
Twitter, Google, LinkedIn and Tumblr. Since then, most have moved over
to OAuth 2, which we will discuss next. The two are very different beasts
and should not be conflated.

OAuth provides a method for clients to access server resources
on behalf of a resource owner (such as a different client or an
end-user). It also provides a process for end-users to authorize
third-party access to their server resources without sharing
their credentials (typically, a username and password pair),
using user-agent redirections. — Source: Wikipedia®

Previously, we looked at authentication technologies that were essen-
tially built into the browser, and were not particularly flexible in their
usages. OAuth 1.0 was a great way for services such as social networks
to implement web-based HTML login forms that looked the same as any
other login form (were branded with logos, color schemes, etc) but could
then send you back to the third party website for all sorts of awesome
integration purposes.

For example, when Twitter swapped from HTTP Basic integration to OAuth
1.0 it meant that instead of third-parties (iPhone apps, other websites,
CMSs, whatever) asking end-users to enter their username and password
(which would be saved somewhere in plain text), the third party could
redirect the user to the Twitter website, get them to log in, and have them
come back to their service to save a special token, instead of saving a
password. OAuth 1.0a called these tokens an ‘OAuth Token’ and an ‘OAuth
Token Secret’.

OAuth 1.0a was built to be very secure even when not running over SSL.
That meant, of course, that it was incredibly complicated, having to set
up signatures of which there were a few different algorithms, including
HMAC-SHA1 and RSA-SHAL1, or just plaintext. That got a bit tricky when
trying to write client code, as you had to make sure you supported the right

Shttp://en.wikipedia.org/wiki/OAuth

http://en.wikipedia.org/wiki/OAuth
http://en.wikipedia.org/wiki/OAuth

© 0 N o U bd W N

e o S =
w N = O

Authentication 102

signature algorithm, and most of the PHP implementations out there
(including my old Codelgniter library) did not support them all.

An average OAuth 1.0a signed HTTP request would look a little something
like this:

POST /moments/1/gift HTTP/1.1
api.example.com

OAuth realm="http://sp.example.com/",
oauth_consumer_key="0685bd91847jfhq22",
oauth_token="ad180jjd733klru7",
oauth_signature_method="HMAC-SHA1",
oauth_signature="w0JI0O9A2W5mFwDgiDvZbTSMK%2FPY%3D",
oauth_timestamp="137131200",
oauth_nonce="4572616e48616d6d65724c61686176",
oauth_version="1.0"
Content-Type: application/json

{ "user_id" : 2 }

Ouch.

Another complication was that there were different implementations:
two-legged (“proper” and “not proper”) and three-legged. This is in-
credibly confusing, so Iwill let Mashape explain in the OAuth Bible: OAuth
Flows?.

There was also xAuth (which is still OAuth 1.0a), designed for mobile
and desktop applications that do not have easy access to a browser. It is
much easier for a web application to spawn a popup with JavaScript, or to
redirect a user, than it is for a mobile app. This made it a much handier
way to get OAuth Tokens than the other implementations.

In the end, if you got the OAuth Token and Secret, you would place the
OAuth Token in the request as a header and use the secret to sign the
signature, which would encrypt the request and make the whole thing
nice and secure. If you can shove SSL on top of that, then you have got
yourself a very secure setup - except for the fact that tokens would stay
the same once created, so over time their security could be compromised.

"https://github.com/Mashape/mashape-oauth/blob/028860c/FLOWS.md#oauth-10a-one-
legged

https://github.com/Mashape/mashape-oauth/blob/028860c/FLOWS.md#oauth-10a-one-legged
https://github.com/Mashape/mashape-oauth/blob/028860c/FLOWS.md#oauth-10a-one-legged
https://github.com/Mashape/mashape-oauth/blob/028860c/FLOWS.md#oauth-10a-one-legged
https://github.com/Mashape/mashape-oauth/blob/028860c/FLOWS.md#oauth-10a-one-legged

Authentication 103

Somebody could recover the data from a laptop you sold them on eBay,
or a potential hacker could packet sniff enough traffic signed with your
signature to eventually programmatically guess the token and secret.

Pros

- Super secure, even without SSL

- Does not send username/password in every request (plain text or
hashed)

- Stops third party applications wanting or storing your username and
password

-+ An attacker gaining an OAuth Token and even a Secret should still
never be able to change your password, meaning you should be safe
from account hijack

Cons

- Rather complicated to interact with, even if you have a well built
client library. PHP never really had one, but The League of Extraor-
dinary Packages® has recently built a decent one?

+ Limited number of ways to grant access. xAuth and Two/Three-
legged flows ended up being rather restrictive

- Tokens never changed, so security was essentially just a matter of
how long and how much you used the service

OAuth 1.0a would be a great technology to implement if you were building
awebsite with a public user-based API... and you were building it in 2009-
2010. Now, probably not.

Approach #4: OAuth 2.0

OAuth 2 dropped the secret token, so users are simply getting an access
token now. It also dropped signature encryption. This was seen by many
as a massive step backwards in security, but it was actually rather a wise
move. The OAuth 1.0a spec made SSL optional, but OAuth 2.0 requires

8http://thephpleague.corn/
https://github.com/thephpleague/oauthi-client

http://thephpleague.com/
http://thephpleague.com/
https://github.com/thephpleague/oauth1-client
http://thephpleague.com/
https://github.com/thephpleague/oauth1-client

o b~ W N R

Authentication 104

it. Relying on SSL to handle the encryption of the request is logical and
drastically improves the implementation.

Even a basic GET request in OAuth 1.0a was horrendous as you would
always need to set up your consumers, signatures, etc., but with OAuth
2.0 you can simply do this:

file_get_contents('https://graph.facebook.com/me?access_token=vr5HmMkzIxKE7OW1ly4Mi');

Or, as we saw back in chapter 3, you can usually pass access tokens to the
server as an HTTP request header:

POST /moments/1/gift HTTP/1.1
api.example.com
Bearer vr5HmMkz1xKE70W1ly4Mi
Content-Type: application/json

{ "user_id" : 2 }

That looks a little easier to work with than OAuth 1.0a, right?

9 Headers vs. URL

You should always try to use the Authorization header to send
your tokens whenever possible. The query-string is secured
when using SSL, but unless they are intentionally blocked then
access tokens could start turning up in server logs and various
other places. Also, browsers will store the full URL (including
query-string) in history. This could easily compromise the in-
tegrity of users security if their computer is stolen or if a sibling
decides to play a prank.

“Short”-life Tokens

As discussed, OAuth 1.0a also uses the same tokens essentially forever.
OAuth 2.0’s access tokens will (can) expire after an arbitrary period of
time, which is defined by the OAuth server. When you request an access
token, you will usually be provided with a refresh token and an expiry offset,
which is the number of seconds until the token expires. Some servers send

Authentication 105

you a unix time at which it expires. Folks like to do things different for
some reason, but if you know what to look out for it is not so bad.

Using the expire time you know when your access token will not be valid,
so you can proactively create a CRON job that refreshes the access tokens,
or you can wrap your HTTP requests in an exception handler that looks for
a ‘Not Authorized’ error and then refreshes them as the OAuth 2.0 spec
recommends.

This extra “access tokens expire and you have to refresh them” step
initially seems confusing and annoying, especially when you are used
to “once I have this token it works forever”. However, it is much more
secure. OAuth 1.0a stopped you handing out your username and password
by essentially giving you another username and password (the token and
the secret), which worked for one specific client. Any good network admin
will tell you that you should regularly change your password (at least once
every month), and OAuth is no different as the more you use the same
password/token the greater your chance of somebody finding out what it
is.

Grant Types

One further massive benefit OAuth 2.0 provides over OAuth 1.0a is the
ability to have multiple (even custom) grant types. Grant types are essen-
tially a “mode” in which the OAuth 2.0 server will run, expecting different
inputs and maybe providing different outputs. With this flexibility, you
can create some amazing implementations.

The most common OAuth 2.0 Grant Type that a user will be familiar with
is authorization_code, Which is a very OAuth 1.0a-like flow.

A client web app creates a link to the OAuth Server of the service they
would like to log into (e.g. Facebook), and the user logs in. Facebook
redirects the user back to the client web app’s ‘Callback URL’ with a
?code=F00 variable in the query string. The web app then takes that code
and makes a second request to Facebook (usually a posT, but sometimes a
GeT depending on which popular API you look at) and Facebook then offers
up an access token in the response. Some other popular APIs, like Google
Apps, then provide expires and a refresh token too.

This is just one approach and there are more. Due to this flexibility, OAuth
2.0 is good for pretty much any scenario when authenticating an API, be it

Authentication 106

a basic username password login on a single-page JavaScript app, a CRON
job that has no database access, or a full blown user-redirect flow between
different websites. The flexibility of custom grant types allows absolutely
anything to be done.

More on this in the ‘Understanding OAuth 2.0 Grant Types’ section below.
Erin Hammer

Often, I am asked why anyone would still use OAuth 2.0 after Erin Ham-
mer (lead author and editor of the OAuth 2.0 standard) withdrew his name
from the specification'. It certainly sent a ripple through the Internet,
but I personally disagree wholeheartedly with the issues he raised.

1. OAuth 2.0 is less secure if you do not use SSL/TSL. Correct. So use
them.

2. People have implemented OAuth 2.0 badly (looking at you Face-
book/Google/most providers), but when implemented well it is lovely.
Use a pre-built standard compliant implementation.

3. He thinks refresh tokens are annoying, but I think they are great.

His departure from the project is no major loss. I am sure the IETF are
bikeshedding hard, but after using both for years, am much happier with
OAuth 2.0 and really wish Twitter would get on with a full upgrade so I
never have to use OAuth 1.0a again.

Generally speaking, OAuth 2.0 is a good fit for a huge majority of situations,
provided you use SSL and implement a well-tested existing solution
for your OAuth 2.0 Server. Trying to do this yourself can be incredibly
hard and may well lead to you getting super-hacked. Even Facebook have
trouble here to this day because they rolled their own solution based on a
really early draft of the specification.

Other Approaches

- OpenlD - https://openid.net/
- Hawk - https://github.com/hueniverse/hawk
- Oz - https://github.com/hueniverse/oz

%http://hueniverse.com/2012/07/26/0oauth-2-0-and- the-road-to-hell/
Yhttps://dev.twitter.com/discussions/397

http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell/
http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell/
https://dev.twitter.com/discussions/397
http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell/
https://dev.twitter.com/discussions/397

Authentication 107

9.4 Implementing an OAuth 2.0 Server

Implementation by hand of an OAuth 2.0 server - or any of these au-
thentication methods for that matter - can be very difficult. This chapter,
aimed to explain the pros, cons, and use cases for each, and implemen-
tation, is sadly out of its scope. Here are a few existing implementations
that you could look into using.

PHP Implementations

One implementation stands out above the rest in PHP land, and not just
because it is written by a friend of mine, Alex Bilbie'?. He has studied both
OAuth specs religiously and over the years has built some great tools for
them, which I have used many times.

In his last job at the University of Lincoln, he was using OAuth for all
sorts of cool things. He then received a huge amount of funding for
a research project to build awesome open-source code for improving
authentication and interoperability. That project resulted in a few great
packages, including the PHP OAuth 2.0 Server!3. It has a bridge-package
for Laravel, which makes it trivial to implement.

There is another PHP OAuth 2.0 server implementation!4 that has been
around for roughly the same amount of time and is also of great quality.
The two approaches are a little different but both implement the full spec,
so have a click around and see which you prefer.

Python Implementations

There are two implementations for Python that look fairly good. One is
oauth2lib®, which is a fork of pyoauth2'¢. The original authors gave up,
then the new ones had to rename it, or something like that.

2http://alexbilbie.com/
Bhttp://oauth2.thephpleague.com/
4http://bshaffer.github.io/oauth2-server- php-docs/
Bhttps://github.com/NateFerrero/oauth2lib
16https://github.corn/StartTheShift/pyoauthz

http://alexbilbie.com/
http://oauth2.thephpleague.com/
http://bshaffer.github.io/oauth2-server-php-docs/
https://github.com/NateFerrero/oauth2lib
https://github.com/StartTheShift/pyoauth2
http://alexbilbie.com/
http://oauth2.thephpleague.com/
http://bshaffer.github.io/oauth2-server-php-docs/
https://github.com/NateFerrero/oauth2lib
https://github.com/StartTheShift/pyoauth2

Authentication 108

Another is python-oauth2'’, which was developed by SimpleGeo, a great
geo-location/place SaaS. This has since been bought out and shut down
and was last committed to around two years ago. Maybe somebody needs
to take that one over too.

Ruby Implementations

For an API I worked on after Kapture, we had a Rails codebase and imple-
mented Doorkeeper'® with great success. Doorkeeper supports the main
grant types, has great documentation and is being actively developed by
a very responsive team of contributors. It also documents some simple
integration for Devise - a popular user / authentication system for Rails.

There is also a Rack module named Rack::OAuth2::Server'?. I have no ex-
perience using it, but it seems actively developed and has documentation
to implement into Rails, Sinatra and Padrino.

9.5 Where the OAuth 2.0 Server Lives

Many assume that the OAuth 2.0 server should be part of their API server.
While it certainly could, it definitely does not need to be.

An OAuth server usually has aweb interface, which has HTML forms, form
validation, and all sorts of static resources like images, CSS, JavaScript,
etc. That makes it more fitting with a general website. If your APl and web-
site are different servers, then the OAuth server would be more suitably
placed on the website.

That said, it is better to keep all of these things seperate and autonomous,
since if you decide to build a new version of your website in Angular]S
instead of server-side code it would be a pain to have to switch your OAuth
server implementation too. If the OAuth server is on its own server, or at
very least its own code base, then you do not have this concern.

The only thing your API needs to do is look for an access token (as a header
or query string parameter), then hit whichever data store (SQL database,

7https://github.com/simplegeo/python-oauth2
Bhttps://github.com/doorkeeper-gem/doorkeeper
Yhttps://github.com/assaf/rack-oauth2-server

https://github.com/simplegeo/python-oauth2
https://github.com/doorkeeper-gem/doorkeeper
https://github.com/assaf/rack-oauth2-server
https://github.com/simplegeo/python-oauth2
https://github.com/doorkeeper-gem/doorkeeper
https://github.com/assaf/rack-oauth2-server

Authentication 109

Mongo, etc.) contains the access tokens. Check it is valid (in the DB and
not expired), then grab whichever user is tied to it, and pull that record
for use throughout the API code.

None of that is complicated, so trying to tie the API server and OAuth
server together in the same application code base out of some misplaced
perception of belonging is just not required.

9.6 Understanding OAuth 2.0 Grant Types
The four grant types discussed in the specification are:

Authorization Code

“Authorization code” is the full user flow with redirects discussed earlier
in the chapter.

This is most useful if you have multiple sites (like a network of sites
for games, movies, books, etc.), or just want to share logins with other
partners. This is also the grant type you will most likely use to log users
into Facebook or Google.

Section 4.1 in the spec?°

Refresh Token

“Refresh tokens” are supported by most popular OAuth 2.0 providers.
Basically, you notice that your old access token does not work anymore
when you receive an HTTP 401 status code, so you request a new one using
your refresh token. The OAuth 2.0 server will then either give you a new
access token, or the server will refuse. At that point, you will have to
send your user an email saying, “your account is no longer connected
to Example.com, please click here to reconnect”. This is not common,
and usually means that the user has disconnected access for that account
anyway, so a manual request is literally the only option.

This sounds like a bit of a runaround, but it is quite simple and has a few
advantages.

2Ohttp://tools.ietf.org/html/rfc6749#section-4.1

http://tools.ietf.org/html/rfc6749#section-4.1
http://tools.ietf.org/html/rfc6749#section-4.1

Authentication 110

Basically, if you are using the same access token over and over again
forever then there is a fairly strong chance of somebody finding it. There
are an array of reasons for this, from the site not implementing SSL, the
site getting hacked, the sys admins accidentally exposing some of their
access logs, or, more likely, the access token being stored in the browser.

Storing the access token in the browser is fine if the access token is
going to expire soon, as it means the hacker has a very short window of
opportunity to do anything if they find it. If they get the current access
token then fine, but if there is a five minute expiry then getting that token
would be much more difficult, and would probably require the hacker to
be physically on the device you were using, or SSHing in - at which point
you have much greater concerns.

Not all APIs will expire their access tokens, so some do live forever.
Normally they either last forever, or they will give you an expiry time and
expect you to refresh them. One exception to that is Facebook, who do
neither. Facebook’s whole approach is that they want you to be forced to
send a user back to facebook.com 0on a login.

It is frustrating that once again Facebook have decided to flagrantly
disregard the OAuth 2.0 spec to suit their own needs, hurting the user flow
and confusing developers in the process. Working with these popular APIs
youwill notice alot of things like this that wind you up, but the differences
are much less problematic if they are not even slightly OAuth 2.0 based.
At least they have some common ground.

Section 6 in the spec?!

Client Credentials

Client credentials can be useful for saying:
[am an application, you know that I am an application because
here are my client_id and client_secret values. Let me in now

please.

This is useful for CRON jobs, worker processes, daemons or any other
sort of background process. The application will not have any context of

*http://tools.ietf.org/html/rfc6749#section-6

http://tools.ietf.org/html/rfc6749#section-6
http://tools.ietf.org/html/rfc6749#section-6

Authentication 111

a user, but it will be able to interact with your API. They have an access
token which they will keep on using, and if it happens to expire then the
background process will know how to refresh it.

Twitter, as mentioned, have been OAuth 1.0a only for years, but they
added an OAuth 2.0 endpoint which would accept client_credentials as
the only grant type. Their documentation?? explains further.

This is handy for public crawling of tags or public tweets, but is not able to
handle posting statuses or anything that relates to a user. This is a handy
compromise for now, and hopefully is a sign that they intend to roll out
support for more grant types in the future.

Section 2.3.1in the spec?®3

Password (user credentials)

User Credentials are possibly the easiest way to get an access token for
a user. This skips the whole redirect flow that ‘Authentication Code’
provides, and the user peace-of-mind that comes with it, but does offer
simplicity. If Twitter had offered User Credentials OAuth 2.0 login as a
replacement for HTTP Basic, then the ‘Twitter Authpocolypse’ a few years
ago would have been far less drastic.

All you need to do is provide a username and password to the OAuth
2.0 server, and it gives you back an access token (and of course maybe
a refresh token). Simple.

An example of this being extremely useful is creating a single page ap-
plication with AngularJS/Ember]S/Whatever]JS and wanting to provide a
login. Clearly redirecting users around would be unnecessary because they
are already on “your site”, and the login box can be already styled however
you like.

The trouble is, if you try to do all of this in JavaScript code, you run into a
problem. You need to send the client_id and client_secret along with the
username and password, but if you are using JavaScript then putting your
client_secret into the JavaScript means it is readable in the browser.

HACK HACK HACK!

22https://dev.twitter.com/docs/auth/application-only-auth
Bhttp://tools.ietf.org/html/rfc6749#section-2.3.1

https://dev.twitter.com/docs/auth/application-only-auth
http://tools.ietf.org/html/rfc6749#section-2.3.1
https://dev.twitter.com/docs/auth/application-only-auth
http://tools.ietf.org/html/rfc6749#section-2.3.1

O 00 N o U bd W N

[e R S T T = e
®@ O o N O U b W N K O

Authentication 112

Do not do that.

[t is easily avoidable; simply make a proxy script that will take a username
and password as POST items, then pass them onto the OAuth 2.0 server
with the client_id and client_secret too, both of which probably come
from some secret config file on the server.

Basic access token proxy script written in Python using Flask

import requests

from flask import Flask

app = Flask(__name__)

@app.route('/proxy/access_token', methods=['POST'])
def access_token():

payload = {
'grant_type': 'password',
'client_id': 'foo',
'client_secret': 'bar',

'username': request.form['username'],
'password': request.form['password']

r = requests.post('https://oauth.example.com/', data=payload)

return r.json(), r.status_code

That is all that needs to be done. Take whatever it gives you, pass it onto
the server, and pass the response back. This keeps the secret information
secret and still lets you do everything else in the browser.

Section 4.3 in the spec?4
Custom Grant Types

At Kapture, we created a social grant, where a user would provide a
string matching "facebook" Or "twitter" and an access_token (with maybe a

24http://tools.ietf.org/html/rfc6749#section-4.3

http://tools.ietf.org/html/rfc6749#section-4.3
http://tools.ietf.org/html/rfc6749#section-4.3

Authentication 113

access_token_secret for OAuth 1.0a providers like Twitter) and that would
do the following:

1. Grab the user’s data

2. Find out if they are a Kapture user, and if not create a Kapture user
record

3. Create an access token, refresh token, etc. to give that user access

That gave us a completely seamless instant sign-up or log in experience
for our iPhone application, and let our admin panel AND merchant dash-
board use the exact same OAuth 2.0 server to handle logins for everyone.
Very handy for our iPhone app and meant that we could roll the same
functionality out to a potential Android app and web-based versions too.

If you can think of it, you can make a custom grant type for it. Grant access
to any users that provide you with a URL of an image, which contains a
photograph of a car which happens to be yellow. Whatever.

10. Pagination

10.1 Introduction

Pagination is one of those words that means something very specific to
many developers, but it generally means:

The sequence of numbers assigned to pages in a book or peri-
odical.

There are a few ways to achieve pagination, but when talking in terms of
an API it means:

Any way you want to go about splitting up your data into multi-
ple HTTP requests, for the sake of limiting HTTP Response size.

There are a few reasons for doing this:

1. Downloading more stuff takes longer

2. Your database might not be happy about trying to return 100,000
records in one go

3. Presentation logic iterating over 100,000 records is no fun

As you can probably tell, 100,000 is an arbitrary number. An API could
have endpoints like /places with over a million records, or check-ins
which could be unlimited. While developing an API, many people forget
about this, and while ten or a hundred records will display quite quickly
during development, infinity is considerably slower. Data grows expo-
nentially.

A good API will allow the client to request the number of items it would
like returned per HTTP request. Some developers try to be smart and use
custom HTTP headers for this, but this is literally what the query string is
for.

114

Pagination 115
/placesinumber=12

Some use number, limit, per_page or whatever. I always think limit only
really makes sense because SQL users are used to it and an API is not SQL,
so personally I use number.

9 Define a Maximum
When you take the limit/number parameter from the client, you
absolutely have to set an upper bound on that number, make
sureitisover 0 and dependingon the data source you might want
to make sure it is an integer as decimal places could have some
interesting effects.

10.2 Paginators

I stole the word “paginator” from Laravel, which uses a paginator class
for a very specific type of pagination. It is not the most efficient form of
pagination by any means, but it is rather easy to understand and works
fine on relatively small data sets.

How do Paginators Work

One approach to pagination is to count how many records there are for
a specific item. So, if we count how many places there are, there will
probably be some sort of SQL query like this:

SELECT count(x) as "total FROM “places’

When the answer to that query comes back as 1eee, the following code will
be executed:

a b W N

O 00 N O U bd W N

[= S =
w N = o

Pagination 116

<?php

Stotal = count_all_the_places();

Spage = isset($_GET['page']) ? (int) $_GET['page'] : 1;
Sper_page = isset($_GET['number']) ? (int) S_GET['number'] : 20;
$Spage_count = ceil($total / Sper_page);

With that basic maths taken care of, we know how many pages there
are in total, and have rounded it up with ceil(). This is a PHP function
equivalent of Math.round(), which rounds it up to the nearest integer. If
$total iS 1000, then $page_count will be 83.333. Obviously nobody wants to
go to page 83.333, so round that up to page 84.

Using these variables, an API can output some simple metadata that goes
next to the main data namespace:

"data": [

:l,
"pagination":{
"total":1000,
"count":12,
"per_page":12,
"current_page":1,
"total_pages":84,
"next_url":"/places?page=2&number=12"

The names of items in this pagination example are purely based on what
Kapture’s iPhone developer suggested at the time, but should portray the
intent.

You basically give the client enough information to do maths itself, if that
is something it wants to do, or you let them ingest basic HTTP links too.

Counting lots of Data is Hard

The main trouble with this method is the SELECT count(x) that is required
to find out the total, which can be a very expensive request.

Pagination 117

The first thing to mind will be caching. Sure, you can cache the count,
or even prepopulate the request. In many cases you certainly could, but
you have to consider that most endpoints will have multiple query string
parameters to customise the data returned.

/places?merchant=X

That means you will now have a single cache for every count of places by
each specific merchant. That could also be cached or prepopulated, but
when it comes to geo data you have no chance:

/places?lat=42.2345&1o0n=1.234

Unfortuntately, the chances of having multiple people request the exact
same set of coordinates regularly enough to make a cache worthwhile is
unlikely, especially as those coordinates point to a remote, mountainous
region of Spain.

Prepopulation for those results also seems highly unlikely. If you have
literally millions of places then trying to count all places for somebody
in Spain is just silly. Indexes can help. Slicing your data into geographic
buckets and pulling it together with some clever trickery can help. Gen-
erally speaking though, using this sort of pagination introduces big data
problems to what can be potentially small data setups, especially when
you have filtering options.

This is not bad (and I have used it myself for plenty of APIs), but you
definitely need to keep this sort of thing in mind.

Moving Goal Posts

Another tricky issue with the count-everything-then-pick-which-page-
number approach is that if a new item is added between HTTP requests,
the same content can show up twice.

Imagine the scenario, where the number per page is set to 2, places are
ordered by name, and the values are hip bars in Brooklyn, NY:

- Page1

Pagination 118

— Barcade

— Pickle Shack
- Page 2

- Videology

If the client requests Page 1, then they will see the first two results. While
the results for Page 1 are being displayed to the end user, some hip new
bar opens up with the name “Lucky Dog” and joins the platform.

Now the data set looks like this:

+ Page1
— Barcade
— Lucky Dog
- Page 2
— Pickle Shack
- Videology

If the client does not refresh Page 1 (which most would not do for the sake
of speed) then “Pickle Shack” is going to show up twice, and “Lucky Dog”
will not be on the list at all.

Using Paginators with Fractal

Thisisarather specific example, requiring Laravel’s Eloquent and Pagina-
tion packages, and Fractal!. If you are not using any of those things then
you can skip it and just use some simple maths like the example JSON
above. Otherwise, follow on:

'http://fractal.thephpleague.com/

http://fractal.thephpleague.com/
http://fractal.thephpleague.com/

© o N o b W N

[
= ©

© 0 N o U bd wWw N =

[
= ©

Pagination 119

<?php

use Acme\Model\Place;

use Acme\Transformer\PlaceTransformer;

use League\Fractal\Resource\Collection;

use League\Fractal\Pagination\IlluminatePaginatorAdapter;

$paginator = Place::findNearbyPlaces($lat, $lon)->paginate();
$places = $paginator->getCollection();

Sresource = new Collection(Splaces, new PlaceTransformer);
$resource->setPaginator(new IlluminatePaginatorAdapter ($paginator));

10.3 Offsets and Cursors

Another common pagination method the use of “cursors”, sometimes
called “markers”. A cursor is usually a unique identifier, or an offset, so
that the API can just request more data.

If there is more data to be found, the API will return that data. If there is
not more data, then either an error (404) or an empty collection will be
returned.

0 Empty is not Missing
I personally advise against a 404 because the URL is not tech-

nically wrong, there is simply no data to be returned in the
collection so an empty collection makes more sense.

To try the same example:

"data": [

1,
"pagination":{
"cursors":{
"after":12,
"next_url":"/places?cursor=12&number=12"

Pagination 120

This JSON has been returned after requesting the first 12 records. 1-12
were all available and, for the sake of example, were all auto-increment
integers. Therefore, in this example, if we would like the content that is
after 12, then the records having ID from 13 to 24 would be on the next

page.
While this provides a very simplified explanation, generally speaking
using IDs is a tricky idea. A specific record can move from one category

to another, or could be deactivated, or all sorts of things. You can use IDs,
but it is generally considered best practice to use an offset instead.

Using an offset is simple. Regardless of your IDs — auto-incrementing,
UUID, etc. — you simply put 12 in there and say “I would like 12 records,
with an offset of 12”, instead of saying “I would like records after id=12".

Obscuring Cursors

Facebook sometimes use cursors to obscure actual IDs, but sometimes use
them for “cursor based offsets”. Regardless of what the cursor actually is,
your user should never really care, so obfuscating it seems like a good idea.

1,
"paging": {
"cursors":
"after"

"before":

Facebook Graph API using Cursors

How did Facebook get "NQ="and "m@=="as values? Well, they are intention-
ally odd looking as you are not meant to know what they are. A cursor is
an opaque value which you can pass to the pagination system to get more
information, so it could be 1, 6, 10, 120332435 or Tuesday and it would not
matter.

Don Gilbert? let me know that in the example of Facebook they just Base64
encode their cursors:

*http://dongilbert.net/

http://dongilbert.net/
http://dongilbert.net/

a b W N

W 00 N O U M W N

[= S =
w N = o

Pagination 121

php > var_dump(base64_decode('NQ="));
string(2) "5"

php > var_dump(base64_decode('MQ=="))};
string(1) "1"

Obfuscating the values is not done for security but, I assume, to avoid
people trying to do maths on the values. Ignorance is bliss in this scenario,
as somebody doing maths on an offset-based paginated result might end
up using the same calculation on a primary key integer. If everything is
an opaque cursor or marker then nobody can do that.

Extra Requests = Sadness

This approach is not favoured by some client developers, as they do not
like the idea of having to make extra HTTP requests to find out that there
is no data. However, this seems like the only realistic way to achieve a
performant pagination system for large data. Even with a “pages” system,
if there is only one record on the last page and that record (or any other
in any page) is removed, then the last page will be empty anyway. Every
pagination system needs to respond to an empty collection.

Using Cursors with Fractal

Again this is a rather specific example, but should portray the concept.

<?php

use Acme\Model\Place;

use Acme\Transformer\PlaceTransformer;
use League\Fractal\Cursor\Cursor;

use League\Fractal\Resource\Collection;

Scurrent = dsset($_GET['cursor']) ? (int) base64_decode($_GET['cursor']) : 03
Sper_page = isset($_GET['number']) ? (int) S$_GET['number'] : 20;

Splaces = Place::findNearbyPlaces($lat, $lon)
->Timit($per_page)
->skip(Scurrent)
—>get();

14
15
16
17
18
19
20

Pagination 122

$Snext = base64_encode((string) (S$current + $per_page));
Scursor = new Cursor(S$current, $next, $places->count());

Sresource = new Collection($Splaces, new PlaceTransformer);
Sresource->setCursor($cursor);

This will take the current cursor, use it as an offset, then work out the
base64 version and convert it. There is a bit of work to do in this example
because the Cursor class is intentionally vague. Instead of using an offset
it could be a specific ID and you use it for an SQL wHERE id > x clause, but
better not.

Pagination with the Link Header

The Link header is one not often used, but was introduced in RFC 59883 for
just this sort of thing.

Example showing GitHub’s use of the Link header in an HTTP response

<https://api.github.com/user/repos?page=3&per_page=100>; rel="next",
<https://api.github.com/user/repos?page=50&per_page=100>; rel="last"

I have never used this and am dubious. Some argue that pagination is
metadata, and metadata should be kept out of the response.

Inserting pagination data into the API response in a 'pagination' names-
pace is very common and has been my go-to solution for years. I would
slotit next to the 'data' namespace, and that makes it very easy for clients
who a) cannot read those HTTP headers and b) do not know to look there.

That said, using the Link header can help you avoid the need to wrap your
collections in a namespace at all. This might be something that interests
you, as through developing Fractal I ran into many developers who hate
using a namespace for their collections.

The final advantage to mention would be that the Link is standard. Parsing
it is going to be 100% the same for each API, and will not expect the client
to work out if the link is contained in uri, url, href or something else.

3http://tools.ietf.org/html/rfc5988#page-6

http://tools.ietf.org/html/rfc5988#page-6
http://tools.ietf.org/html/rfc5988#page-6

Pagination 123

Every API should choose its approach to pagination itself. Using this
specific header does not make it “more RESTful” regardless of how many
people seem to think that is the case. It just makes it more “HTTPish”
than defining your own pagination metadata.

11. Documentation

11.1 Introduction

Regardless of whether you decide to keep an API private or release it to
the general public, documentation is incredibly important.

In the very early stages of development, some API developers will rely
solely on a Postman collection (discussed in Chapter 8: Debugging) to be
a sufficient source of documentation for their API. This may be the case,
but as soon as the API is in use by more people than just the one developer
with their one collection, this quickly becomes a nightmare.

Even if the API is in use internally, without a single source of regularly
updated documentation for your API, you will be answering nonstop
questions from anyone using it.

If the API is public then... well, without documentation nobody will use
your API at all; which could drastically affect the successes of your com-
pany. Integration with services via an API is a very important factor for
many companies these days, from startups to huge corporations, so do
not go through the trouble of building something amazing only to have it
completely ignored due to a lack of documentation.

11.2 Types of Documentation

There should be a few different types of documentation:

API Reference

The “API Reference” is sometimes referred to as “Endpoint Reference”.
This is essentially a list of all endpoints (and their associated HTTP Meth-
ods), descriptions of what they do and a list of all arguments that can
be passed, with descriptions about what values work and in what format
those values could be. That is a lot of work, but it can be made easier with
some tools. More on that later.

124

Documentation 125

Sample Code

“Sample Code” is generally just a case of building one or two libraries or
code packages in different languages, documenting their API with tools
like phpDocumentor?, and showing lots of common scenarios covering
the basics of how that code works. Examples could include “Search venues
by name” and “Create a check-in with a photograph”. These examples
reduce the mental barrier for a developer because they can see concrete
examples in a language familiar to them, instead of being forced to think
in terms of HTTP requests.

Despite your own personal preferences, please, for the love of every god
in the world, make your sample code look as good as you can in each
language. Words cannot express how frustrating it is when some Ruby
developer smashes out some awful PHP code - because they are bad with
PHP - and passes that off as a finished product.

Regardless of the language, most sample code should look very similar.
This has the benefit of letting users switch between languages without
having to learn a new code package from scratch. PHP, Ruby and Python
all have blocks or callbacks, objects and hashes, support variadics and
have some concept of namespaces. One day, PHP will also support named
parameters. One day.

Guides or Tutorials

This is the easiest of the lot. Take a subject like “Authentication” and
talk through it like a blog post. Images, diagrams, code examples of the
libraries handling various situations in one or multiple languages using
tabs, etc. Some people show examples using command line curl, but that
can get pretty nasty as curl is not exactly known for being an interface full
of sugar.

A great example of a set of tutorials is the SoundCloud API?. Their “Using
the API” page is a central resource which links to the API Reference, for
those who want to get their hands dirty; it also contains simple scenarios
like ‘Uploading Audio Files’ in multiple languages.

'http://phpdoc.org/
2http://developers.soundcloud.com/docs/api/guide

http://phpdoc.org/
http://developers.soundcloud.com/docs/api/guide
http://phpdoc.org/
http://developers.soundcloud.com/docs/api/guide

Documentation 126

Uploading Audio Files

To upload a sound, send a POST request to the /tracks endpoint. This is done with one
of our SDKs using the post method and passing information about the track being
uploaded.

Tracks uploaded with the API may not be larger than 500MB.

Ruby Python PHP JavaScript
require 'soundcloud"

create a client object with access token
client = Soundcloud.new(:access_token => 'YOUR_ACCESS_TOKEN')

upload an audio file
track = client.post('/tracks', :track => {
:title => 'This is my sound',
:asset_data => File.new('file.mp3', 'rb")
b

print track link
puts track.permalink_url

SoundCloud API Documentation - “Using the API”

If you check out the examples here, Ruby, Python and PHP all look nearly
identical (although I am not sure what happened to JavaScript).

Writing these guides takes a bit of time, but that time will be given back
in buckets, saving you answering the same questions over and over again.
The other time saver is for when future you forgets how things work in
three months, or you come back from a holiday rather frazzled and need a
tutorial to guide you through how things work. The amount of times I have
Google searched a problem and found a blog I have written a few months
ago answering it... it happens.

There are plenty of great tools around for static text-based documentation
like this. Generally any Markdown -> HTML static site generator works
well; Sculpin3 (PHP), Jekyll4 (Ruby) and Hyde> (Python) all do this as well
as each other.

11.3 Picking a Tool

There are no doubt multiple tools out there for generating your API/End-
point documentation. Some recommend a system called Swagger®, which
is a great looking tool and works with a huge array of languages. Sadly, to
me it seems to be somewhat of a black art.

3https://sculpin.io
4https://github.com/jekyll/jekyll
>http://ringce.com/hyde
6https://helloreverb.corn/developers/swagger

https://sculpin.io
https://github.com/jekyll/jekyll
http://ringce.com/hyde
https://helloreverb.com/developers/swagger
https://sculpin.io
https://github.com/jekyll/jekyll
http://ringce.com/hyde
https://helloreverb.com/developers/swagger

1

Documentation 127

Swagger defines a specification and various language or framework spe-
cificimplementations come up with their own solution. For PHP, the way
you go about this is through a rather confusing (and poorly documented)
set of annotations with strange names. Furthermore, it requires you to
distribute these annotations throughout a large chunk of your applica-
tion, including data mapper style models, which you might not even have.
It wanted property level annotations, and neither my models or Fractal
transformers have properties, so this was a wild and wacky way to try and
work.

Another tool called API Blueprint? takes care of this nicely. A company
called Apiary® released this tool as open-source, and as their entire com-
pany is about API generation, it seems like rather a good fit.

11.4 Setting up API Blueprint and Aglio

API Blueprint has a very easy to understand set of Getting Started instruc-
tions?, which has a series of approaches to creating your documentation
with various languages and tool combinations. They are working on a Ruby
utility and .NET seems to be covered. Sublime Text has a plugin'®, but by
far the easiest is the command-line executable called Aglio!!.

There is one caveat — this tool uses Node]JS. That sounds like a blocker
to some but it should not be. Only the command-line utility requires
Node]JS, much like some command-line tools require Ruby or Python.
Install Node]JS and move along to the next bit.

Step 1: Install NodeJS

If you are using OSX then Homebrew!? makes this very easy:

S brew install node

"http://apiary.io/blueprint

8http://apiary.io

http://apiblueprint.org/#get-started
9https://github.com/apiaryio/api-blueprint-sublime-plugin
"https://github.com/danielgtaylor/aglio

2http://brew.sh

http://apiary.io/blueprint
http://apiary.io
http://apiblueprint.org/#get-started
http://apiblueprint.org/#get-started
https://github.com/apiaryio/api-blueprint-sublime-plugin
https://github.com/danielgtaylor/aglio
http://brew.sh
http://apiary.io/blueprint
http://apiary.io
http://apiblueprint.org/#get-started
https://github.com/apiaryio/api-blueprint-sublime-plugin
https://github.com/danielgtaylor/aglio
http://brew.sh

Documentation 128

Otherwise the NodeJS'? website has instructions for your operating sys-
tem.

Step 2: Install Aglio

Install this utility as a command-line executable:
$ npm install -g aglio

The -¢ switch installs the utility globally, instead of just into the current
folder.

Step 3: Generate Example Docs with Aglio

The sample code for the book includes the Aglio example Markdown file
that will help toillustrate how easy it is to generate documentation HTML:

$ cd ~/apisyouwonthate/chapterll/aglio-example
$ aglio -i example.md -o index.html

Step 4: Generate HTML and Open in Browser

Create some sort of web server (XAMPP, WAMP, MAMP, Pow, shove it on
FTP or whatever) and view the contents. This book has used PHP as an
example before, so let us continue that trend:

$ php -S localhost:8001

Now browse to that address in your favourite browser and you should see
some very attractive sample output.

Bhttp://nodejs.org

http://nodejs.org
http://nodejs.org

Documentation

& c localhost:8001

Notes
=NotelList

©Get Notes

©Create New Note
=Note

©GetNote

Updatea Note

A Deletea Note

Users.

© User List

Tags

©GET /tags

©Getonetag

https://api.mywebsite.com

API Title

Markdown formatted description.

Subtitle

Also Markdown formatted. Thi tomatic* 2 g~ hooray!

“A quote from another time and place”

Another paragraph. Code sample:

some code with no highlighting:

Foo bar baz

Notes

Group description (also with Markdown)
NOTELIST
Notelist description

Example output of Aglio generated HTML

Looks amazing, right?

Step 5: Find a Plugin

129

Writing Markdown then switching over to the terminal and running a
command can be a tricky workflow, so try and find a plugin for an editor
you like which can help. If you use Atom'4 then there is an Atom plugin'>

you can use, but there are doubtless other options available.

11.5 Learning API Blueprint Syntax

To make the output reflect your API documentation, the Markdown source
files will need updating. While they are generally just Markdown, there is

a specific format to this, known as “API Blueprint format 1A”.

Go to the following location and open up example.md:

4https://atom.io/

Bhttps://atom.io/packages/api-blueprint-preview

https://atom.io/
https://atom.io/packages/api-blueprint-preview
https://atom.io/
https://atom.io/packages/api-blueprint-preview

W 00 N O U M W N

W NNNNNMNNNNNERRRRRR R B 2 B
©® ©W O N o D WNROOOLWNO UM WNR

Documentation 130

$ cd ~/apisyouwonthate/chapterll/place-example

The rest of this section will walk through this example.md and explain what
various parts mean.

Metadata

This is simple. The API title, URL, introduction, etc. is just some Mark-
down:

Very start of an API Blueprint markdown file, showing metadata

FORMAT: 1A
HOST: https://api.example.com

FakeSquare API

This is documentation for the theoretical check-in app API that has been built
throughout the book [Build APIs You Won't Hate].

[Build APIs You Won't Hate]: https://leanpub.com/build-apis-you-wont-hate
Authorization

This could be anything, but it seems like a good place
to explain how access tokens work.

Most endpoints in the FakeSquare API will require the "Authorization’ HTTP header.

*http
Authorization: bearer vr5HmMkz1xKE7OW1ly4MibiJUusZwZC25NOVBEx3BD1

Failing to do so will cause the following error:

“json
{
"error" : {
"code" : "GEN-MAYBGTFO",
"http_code" : 401,
"message" : "Unauthorized"

}

31
32
33
34
35

Documentation 131

Or something. This is mostly just an introduction, so provide links to tutorial
sections elsewhere on your site.

Avery quick and easy introduction showing the name of the API (FakeSquare
API) and a basic example of how to authenticate a request with our API.

Resource Groups

To keep this simple but also cover a lot of different usages, we will
take examples from the action plan in Chapter 2: Planning and Creating
Endpoints for Places, and document them in API Blueprint syntax.

Places

- Create

- Read

- Update

- Delete

- List (lat, lon, distance or box)
- Image

Using the same logic in chapter 2 as we used to outline the user endpoints,
we can assume these endpoints:

Action Endpoint

Create POST /places

Read GET /places/X
Update PUT /places/X
Delete DELETE /places/X
List GET /places

Image PUT /places/X/image

Everything at or below the /places level is considered a “Resource Group”
by API Blueprint, so our new example will only have one group.

W 00 N O U M W N K

[O S
w N = o

Documentation 132

Group Places
Search and manage places.

That first line has the reserved keyword Group that will be removed from
output. The pPlaces is the name of the group. The line below is an optional
description for humans.

In a real API you would have more groups. Users, Check-1ins, Posts, etc.

Resources

API Blueprint accepts multiple resource sections per group section, and
considers /places, /places/X and /places/x/1image to be different resources.
You probably consider /places to be more of a collection of resources, and
consider /places/X/image to be a subresource, but API Blueprint considers
them all “Resources”.

Not a problem. Simply make some h2 tags using the ## prefix:

Example outline of multiple ‘Resource Sections’.

Place List [/places{?lat}{&lon}{&distance}{&box}{&number}{&page}]

Create new place [/places]

Places [/places/{id}]
Manage an existing place.

Place Images [/places/{id}/image]
Places can have an 1image associated with them, which will act as a cover photo
or photograph.

Here we have four “Resource Sections”, each for a different resource. The
one oddity here is that there are two entries for /places. The reasoning
here is that each “Resource Group” has its own “URI Template”. No two
groups can have the same template (two with /places would error) and
if you want to document parameters then you need to put them in the
template.

W 00 N O U M W N

N NN R B R B R BB R R
N B © O 0o N OO0 1 A W N O

Documentation 133

It seems odd, but just go with it.

1. One resource section for listing (with the filter/query/search param-
eters listed)

2. One resource section for creating a new item on a collection

One resource section for a single item

4. One resource section for each and every subresource your API may
have on an item

W

Resource Actions

Actions are what you would expect them to be - the actions outlined in
the action plan.

You can spot an action in two ways. Firstly due to the h3 header (###) and
secondly by the trailing [6eT] HTTP verb notation.

Example of the ‘Place List’ resource using API Blueprint Markdown

Place List [/places{?lat}{&lon}{&distance}{&box}{&number}{&page}]
Get places [GET]
Locate places close to a certain set of coordinates, or provide a box of coordinates \

to search within.

+ Parameters

+ lat (optional, number, '40.7641°) ... Latitude to search near, with any accuracy

+ lon (optional, number, "-73.9866°) ... Longitude to search near, with any accur\
acy

+ distance = 10" (optional, number, "20°) ... The radius size in miles to search\

for from lat and lon coordinates

+ box (optional, string, '40.7641,-73.9866,40.7243,-73.9841") ... Top left latitu\
de, top left longitude, bottom right latitude, bottom right longitude

+ number (optional, integer, "15°) ... The number of results to return per page

+ page = '1° (optional, integer, '15°) ... Which page of the result data to return

+ Response 200 (application/json)

"data": [

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Documentation 134

{
"qid": 2,
"name": "Videology",
"lat": 40.713857,
"lon": -73.961936,
"created_at": "2013-04-02"
},
{
"qd": 1,
"name'": "Barcade",
"lat": 40.712017,
"lon": -73.950995,
"created_at": "2012-09-23"
}

This is the first resource section, now filled out. It lists the available
parameters for the URL with a very special syntax:

+ <parameter name>: ‘<example value>' (<type> | enum[<type>], required | optional)
- <description>

<additional description>

+ Default: “<default value>"

+ Members
+ '<enumeration value 1>' - <enumeration description 1>
+ '<enumeration value 2> - <enumeration description 2>
+ '<enumeration value N>' - <enumeration description N>

Our example has used slightly shorter syntax and skipped the additional
description and enum values, but it takes advantage of much of the first
line.

+ lat: "40.7641° (number, optional) - Latitude to search near, with any accuracy

This explains that the field is numeric, it is optional, and shows an
example value of 40.7641.

Documentation 135

+ page: '1° (integer, optional) - Which page of the result data to return
+ Default: "15°

Similar, but this time a default value has been added which in the case of
pagination will probably be 1.

The rest of this action section is responses.

Show an example response for a specific content type.

+ Response 200 (application/json)

{ ...}

This says that you can expect a 200 status, which will be content-Type:
application/json and shows an example of the body content.

Now if we run Aglio again and serve it up through a web server:

$ aglio -i example.md -o index.html
$ php -S localhost:8001

136

Documentation

Places

Search and manage places.

PLACELIST
E /places{?lat}{&1on}{&distance}{&box}{&number){&page} getplaces
Locate places close to a certain set of coordinates, or provide a box of coordinates to search within.
Parameters
lat number (optional)
Latitude to search near, with any accuracy
lon number (optional)
Longitude to search near, with any accuracy
distance number (optional) Default: 10
Theradius size in miles to search for from lat and lon coordinates
box string (optional)
Top left latitude, top left longitude, bottom right |atitude, bottom right longitude
number integer (optional)
The number of results to return per page
page integer (optional) Default:1
Which page of the result data to return
Toggle

Response 220

Headers
Content-Type: application/json
Body

{

"data": [

"id": 2,
"name”: “"Videology”,
"lat":

"lon": .
"created_at": "2013-04-02"

nigr; 1,
"name": “"Barcade”,

created_at”: "2012-99-23"

Example output of Aglio generated HTML

How amazing is that for such a little amount of Markdown? Doing all of
that manually would certainly not be any fun.

Requests

Documenting the request content and offering examples is, of course, one
of the most important parts of any API documentation and API Blueprint

does not disappoint.

W 0 N O UM W N

W W W WNNMNNNNNRNNNREERERRRRRB R 2 B
W N R ®© O 0 ~N 0 udh WNRK OOWW-NO UM WNR

Documentation 137

API Blueprint will allow you to create multiple request examples for an
action. Looking at the Place Images resource will outline how this is done:

Example of the ‘Place Images’ resource.

Place Images [/places/{id}/image]

Places can have an image associated with them, which will act as a cover photo
or photograph.

+ Parameters

+ id (integer, required) - The unique identifier of a place

Set place image [PUT]
Assign a new image or replace the existing image for a place.

+ Request (image/gif)
+ Headers
Authorization: Bearer {access token}
+ Body
<raw source of gif file>
+ Request (image/jpeg)
+ Headers
Authorization: Bearer {access token}
+ Body
<raw source of jpeg file>
+ Request (image/png)

+ Headers

Authorization: Bearer {access token}
+ Body

<raw source of png file>

Here the <raw source of png file> stuffisjust plain-text - because pasting
in the contents of an actual PNG file would not look great - but you can use
JSON or anything else.

Documentation 138

Having multiple request examples can be very important if you are unfor-
tunate enough to be documenting an API which supports more than one
input format, like JSON and XML for instance.

Responses

Each endpoint in your API will have one or more different responses.
There will probably be one or more 20xs, some 40xs, and maybe a few
50xS t0o.

An action response section with multiple error responses.

+ Response 400 (application/json)

{
"error" : {
"code": "GEN-FUBARGS",
"http_code" : 400,
"message": "Content-Type must be image/png, image/jpg or image/gif"
}
}

+ Response 404 (application/json)

{
"error" : {
"code" : "GEN-LIKETHEWIND",
"http_code" : 404,
"message" : "Resource Not Found"
}
}

A tricky thing here is that while your API might return a 4ee code for
multiple reasons, API Blueprint will not be happy about having multiple
responses listed with the same HTTP code.

This is only thrown in as a warning, and may only be related to Aglio
and not API Blueprint itself, as the documentation seems to display fine.
Either put multiple body examples next to each other or add multiple
response items with the same code and ignore the warnings.

Documentation 139

11.6 Further Reading

The example.md file provided contains more examples than highlighted in
this chapter.

There is more to learn on the API Blueprint repository®®, including more
examples'?. Their wiki has extensive documentation of the API Blueprint
Format syntax'® too.

Between this chapter and those articles, you should be documenting your
own APIs within no time.

®https://github.com/apiaryio/api-blueprint
7https://github.com/apiaryio/api-blueprint/tree/master/examples
18https://github.corn/apiaryio/api—blueprint/wiki/API— Blueprint-Roadmap

https://github.com/apiaryio/api-blueprint
https://github.com/apiaryio/api-blueprint/tree/master/examples
https://github.com/apiaryio/api-blueprint/tree/master/examples
https://github.com/apiaryio/api-blueprint/wiki/API-Blueprint-Roadmap
https://github.com/apiaryio/api-blueprint/wiki/API-Blueprint-Roadmap
https://github.com/apiaryio/api-blueprint
https://github.com/apiaryio/api-blueprint/tree/master/examples
https://github.com/apiaryio/api-blueprint/wiki/API-Blueprint-Roadmap

12. HATEOAS

12.1 Introduction

HATEOAS is a tricky subject to explain, but it is actually rather simple.
It stands for Hypermedia as the Engine of Application State, and is pro-
nounced as either hat-ee-os, hate 0-A-S or hate-ee-ohs; the latter of which
sounds a little like a cereal for API developers.

However you want to try and say it, it basically means two things for your
API:

1. Content negotiation
2. Hypermedia controls

In my experience, content negotiation is one of the first things many
API developers implement. When building my Codelgniter Rest-Server
extension, it was the first feature I added, because hey, it is fun! Changing
the Accept header and seeing the content-Type header in the response
switch from JSON to XML or CSV is great, and also super easy to do.

12.2 Content Negotiation

Some self-proclaimed RESTful APIs (Twitter, you are to blame for this)
handle content negotiation with file extensions. Their URLs often look
like:

* /statuses/show.json?id=210462857140252672
* /statuses/show.xml?id=210462857140252672

This is a bit of a misuse of the concept of a resource and forces users to
know not only that the endpoint show exists, but that they must pick a
content type extension and that the id parameter must be used.

140

W 00 N O U M W N

[e S N T i e
®@ O 0o N O U b W NN RFE O

HATEOAS

A good API would simply have /statuses/210462857140252672. This has the
dual benefit of letting the API respond with a default content type, or
respecting the Accept header and either outputting the request content
type or spitting out a 415 status code if the API does not support it. The
second benefit is that the consumer does not need to know about 2id-=.

URIs are not supposed to be a bunch of folders and file names and an API
is not a list of JSON files or XML files. They are a list of resources that can
be represented in different formats depending on the Accept header, and

nothing else.

A simple example of content negotiation requesting JSON

GET /places HTTP/1.1
Host: localhost:8000
Accept: application/json

A response would then contain JSON if the API supports JSON as an output

format.

A shortened example of the HTTP response with JSON data

HTTP/1.1 200 OK
Host: localhost:8000

Connection:

"data":
{

i

close

C

"Hid": 1,

"name": "Mireille Rodriguez",
"lat": -84.147236,

"lon": 49.254065,

"addressl1l": '"12106 Omari Wells Apt.

"address2": "",

"city": "East Romanberg",
"state": "VT",

"zip": 20129,

801",

"website": "http://www.torpdibbert.com/",

"phone'": " (029)331-0729x4259"

21
22

W 00 N O U M W N

T T T R R
©® © o N O Ul A WN R

HATEOAS 142

Most popular APIs will support JSON by default, or maybe only JSON as
our sample app has done so far. This is not realistic, but has been done
throughout the book so far, mainly for the sake of simplicity.

XML is still a tricky one to do as you need to require view files, and that is
out of scope of this chapter.

YAML, however, is rather easy to achieve, so we can see how content
negotiation works with a little change to our app.

Check ~/apisyouwonthate/chapter12/ for the updated sample app.

The main change other than including the Symfony YAML component!
was to simply update the respondwithArray() method to check the Accept
header and react accordingly.

Updated respondWithArray() method with accept header detection

protected function respondWithArray(array Sarray, array $headers = [])

{

// You will probably want to do something intelligent with charset if provided.
// This chapter just dignores everything and takes the main MIME type value

$mimeParts = (array) explode(';', Input::server ('HTTP_ACCEPT'));
$mimeType = strtolower ($mimeParts[0]);

switch ($mimeType) {
case 'application/json':
ScontentType = 'application/json';
Scontent = json_encode(Sarray);
break;

case 'application/x-yaml':
ScontentType = 'application/x-yaml';
Sdumper = new YamlDumper();
Scontent = $dumper->dump(Sarray, 2);
break;

'http://symfony.com/doc/current/components/yaml/introduction.html

http://symfony.com/doc/current/components/yaml/introduction.html
http://symfony.com/doc/current/components/yaml/introduction.html

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

W 0 N O UM W N

HATEOAS 143

default:
ScontentType = 'application/json';

Scontent = json_encode([
'error' =>

I =

'code' => static::CODE_INVALID_MIME_TYPE,

'http_code' => 406,

'message' => sprintf('Content of type %s 1is not supported.', $mim\
eType),

D;

Sresponse = Response::make(Scontent, $this->statusCode, $headers);
$Sresponse->header ('Content-Type', $contentType);

return $response;

Very basic, but now if we try a different MIME type we can expect a
different result:

An HTTP request specifying the preferred response MIME type

GET /places HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml

The response will be in YAML.

A shortened example of the HTTP response with YAML data

HTTP/1.1 200 OK
Host: localhost:8000
Connection: close

data:
- { id: 1, name: 'Mireille Rodriguez', lat: -84.147236, lon: 49.254065, addressl:\
'12106 Omari Wells Apt. 801', address2: '', city: 'East Romanberg', state: VT, zip: \
20129, website: 'http://www.torpdibbert.com/', phone: (029)331-0729x4259 }

Making these requests programmatically is simple.

W 0 N O U M W N

HATEOAS 144

Using PHP and the Guzzle package to request a different response type
use GuzzleHttp\Client;

Sclient = new Client(['base_url' => 'http://localhost:8000']);
Sresponse = $client->get('/places', [
'headers' => ['Accept' => 'application/x-yaml']

s

Sresponse->getBody(); // YAML, ready to be parsed

This is not the end of the conversation for content negotiation as there
is more to talk about with vendor-based MIME types for resources, which
can also be versioned. To keep this chapter on point, that discussion will
happen in Chapter 13: API Versioning.

12.3 Hypermedia Controls

The second part of HATEOAS, however, is drastically underused, and is the
last step in making your API technically a RESTful API.

BUT/IT:S NOT
“RESTful* IFYOU..

Batman provides a standard response to often futile bucket remark “But it’s not RESTful if you...”
Credit to Troy Hunt (@troyhunt)

While you often hear complaints like “but that is not RESTful!” from
people about silly things, this is one instance where they are completely
right. Roy Fielding says that without hypermedia controls an API is not
RESTful?, writing back in 2008. People have been ignoring that ever since,
and the last estimate was that 74% of APIs claiming to be “RESTful” do not
actually use hypermedia.

*http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

HATEOAS 145

RESTful Nirvana

There is something floating around the REST/Hypermedia community
called the Richardson Maturity Model3, written about here by Martin
Fowler%4 but originally invented by Leonard Richardson>. It covers what
he considers to be ‘the four levels of REST’:

1. “The Swamp of POX.” You’re using HTTP to make RPC

calls. HTTP is only really used as a tunnel.

2. Resources. Rather than making every call to a service end-
point, you have multiple endpoints that are used to repre-
sent resources, and you’re talking to them. This is the very
beginnings of supporting REST.

3. HTTP Verbs. This is the level that something like Rails
gives you out of the box: You interact with these Resources
using HTTP verbs, rather than always using POST.

4. Hypermedia Controls. HATEOAS. You’re 100% REST com-
pliant.

- Source: Steve Klabnik, “Haters gonna HATEOAS”®

Some dispute this model because, as Roy says, unless you have hyperme-
dia then it is not REST. The model is good as long as you understand that
steps 1, 2 and 3 are still “not REST” and step 4 is “REST”.

So, what are hypermedia controls? They are just links to other content,
relationships, and further actions. These allow a consumer to browse
around the API, discovering actions as it goes.

Basically, your data needs to have “hyperlinks”, which you have probably
been using in your HTML output for years. I said early on in the book that
REST is just using the same conventions as the actual Internet, instead
of inventing new ones, so it makes sense that linking to other resources
should be the same in an API as it is in a web page.

The general underlying theme of hypermedia is that an API should be able
to make perfect sense to an API client application and the human looking

3http://martinfowler.com/articles/richardsonMaturityModel.html
4http://martinfowler.com/

Shttp://www.crummy.com/

6http://tirnelessrepo.com/haters— gonna-hateoas

http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/
http://martinfowler.com/
http://www.crummy.com/
http://timelessrepo.com/haters-gonna-hateoas
http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/
http://www.crummy.com/
http://timelessrepo.com/haters-gonna-hateoas

© o N o b W N

e T i =
a b W N O

HATEOAS 146

at the responses, entirely without having to hunt through documentation
to work out what is going on.

Small HATEOAS concepts have been sneakily sprinkled throughout this
book, from suggesting error codes be combined with human readable
error messages and documentation links, to helping the client application
avoid maths when interacting with pagination. The underlying theme is
always to make controls such as next, previous (or any other sort of related
interaction) clearly obvious to either a human or a computer.

Understanding Hypermedia Controls

This is the easiest part of building a RESTful API, so I am going to try really
hard not to leave this section at “just add links mate” (my normal advice
for anyone asking about HATEOAS).

Our usual data is output in such a way that only represents one or more
resources. By itself, this one piece of data is an island, completely cut off
from the rest of the API. The only way to continue interacting with the API
is for the developer to read the documentation and understand what data
can be related, and to discover where that data might live. This is far from
ideal.

To tie one place to the related resources, subresources or collections is
easy.

"data": [
"id": 1,
"name": "Mireille Rodriguez",
"lat": -84.147236,
"lon": 49.254065,
"address1": "12106 Omari Wells Apt. 801",

"address2": "",

"city": "East Romanberg",

"state": "VT",

"zip": 20129,

"website": "http://www.torpdibbert.com/",
"phone": "(029)331-0729x4259",

"links": [

{

16
17
18
19
20
21
22
23
24
25
26
27
28
29

HATEOAS

"rel": "self",
"uri": "/places/2"
1,
{
"rel": "place.checkins",
"uri": "/places/2/checkins"
},
{
"rel": "place.image",
"uri": "/places/2/image"
}

147

Here are three simple entries, with the first linking to itself. They all
contain a uri (Universal Resource Indicator) and a rel (Relationship).

i

URI vs. URL

The acronym “URI” is often used to refer to only content after
the protocol, hostname and port (meaning URI is the path,
extension and query string), whilst “URL” is used to describe
the full address. While this is not strictly true, it is perpetuated
by many software projects such as Codelgniter. Wikipedia’ and
the W3% say a bunch of conflicting things, but I feel like a URI
is easily described as being simply any sort of identifier for the
location of a resource on the Internet.

A URI can be partial, or absolute. URL is considered by some to
be a completely non-existent term, but this book uses URL to
describe an absolute URI, which is what you see in the address
bar. Rightly or wrongly. Got it?

Some people scoff at the self relationship suggesting that it is pointless.

While you certainly know what URL you just called, that URL is not always
going to match up with the self URI. For example, if you just created a
place resource, you will have called posT /places, and that is not what
you would want to call again to get updated information on the same

"http://wikipedia.org/wiki/Uniform_Resource_Identifier
8http://www.w3.org/TR/uri—clarification/

http://wikipedia.org/wiki/Uniform_Resource_Identifier
http://www.w3.org/TR/uri-clarification/
http://wikipedia.org/wiki/Uniform_Resource_Identifier
http://www.w3.org/TR/uri-clarification/

© 0w N o U bd W N

HATEOAS 148

resource. Regardless of the context, outputting a place always needs to
have a self relationship, and that self should not just output whatever is
in the address bar. Basically put, the self relationship points to where the
resource lives, not the current address.

As for the other rel items, they are links to subresources that contain
related information. The content of the tags can be anything you like,
just keep it consistent throughout. The convention used in this example
is to namespace relationships so that they are unique. Two different types
of resources could have a checkins relationship (eg: users and places), so
keeping them unique could be of benefit for the sake of documentation at
least. Maybe you would prefer to remove the namespace, but that is up to
you.

Those custom relationships have fairly unique names, but for more generic
relationships you can consider using the Registry of Link Relations® de-
fined by the IANA, which is used by Atom (RFC 4287'°) and plenty of other
things.

Creating Hypermedia Controls

This is literally a case of shoving some links into your data output. How-
ever you chose to do that, it can be part of your “transformation” or
“presentation” layer.

If you are using the PHP component Fractal - which has been used as an
example throughout the book - then you can simply do the following:

PlaceTransformer with links included in the response data.

public function transform(Place $place)

{
return [

'id! => (int) $place->id,
'"name’ => $place->name,

'lat! => (float) $place->lat,
'lon' => (float) $place->lon,
'address1' => $place->addressl,
'address2' => S$place->address2,

“http://www.iana.org/assignments/link-relations/link-relations.xhtml
%http://atompub.org/rfc4287.html

http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://atompub.org/rfc4287.html
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://atompub.org/rfc4287.html

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

HATEOAS 149

'city! => $place->city,
'state' => S$place->state,
'zip' => $place->zip,
'website' => $place->website,
'phone’ => S$place->phone,
'links' => [

[
'rel' => 'self',
'uri' => '"/places/'.splace->1id,

'rel' => 'place.checkins',
'uri' => '/places/'.$place->id.'/checkins',

'rel' => 'place.image',
'uri' => '/places/'.$place->id."'/image"',

1,
1;

People try to get smarter and have various relationships based on their
$_SERVER settings or based on their ORM relationships, but all of that is just
going to cause you problems. If you have these transformers then you only
need to write this lot out once. This then avoids exposing any database
logic and keeps your code readable and understandable.

Once you have input these links, other people need to know how to
interact with them. You might think, “surely I should put GeT or puT in
there so people know what to do”. Wrong. They are links to resources,
not actions. An image exists for a place, and we can either blindly assume
we can make certain actions on it, or we can ask our API what actions are
available and cache the result.

Discovering Resources Programmatically

Taking a shortened example from earlier on in this chapter, we can expect
to see output like this:

© o N o b W N

e T R e T T =
© 0 N o b W N BHEH O

A W N

HATEOAS 150

{
"data": [
"links": [
{
"rel": "self",
"uri": "/places/2"
3
{
"rel": "place.checkins",
"uri": "/places/2/checkins"
3
{
"rel": "place.image",
"uri": "/places/2/image"
}
]
]
}

We can assume that a GeT will work on both the self and the place.checkins
endpoints, but what else can we do with them? Beyond that, what on Earth
do we do with the place.image endpoint?

HTTP has us covered here with a simple and effective verb that has so far
not been discussed: oPTIONS.

An HTTP request using the OPTIONS verb

OPTIONS /places/2/checkins HTTP/1.1
Host: localhost:8000

The response to the previous HTTP request

HTTP/1.1 200 OK
Host: localhost:8000
Connection: close
Allow: GET,HEAD,POST

By inspecting the Allow header, we as humans (or programmatically as an
API client application), can work out what options are available to us on

o b~ W N

HATEOAS 151

any given endpoint. This is what JavaScript is often doing in your browser
for AJAX requests and you might not even know it.

Doing this programmatically is pretty easy too, and most HTTP clients
in any given language will let you make an opTIONS call just as easily as
making a GeT or posT call. If your HTTP client does not let you do this, then
change your HTTP client.

Making an OPTIONS HTTP request using PHP and the Guzzle package

use GuzzleHttp\Client;

Sclient = new Client(['base_url' => 'http://localhost:8000']);

Sresponse = $client->options('/places/2/checkins');

Smethods = array_walk('trim', explode(',', $response->getHeader ('Accept'));
var_dump ($methods); // Outputs: ['GET', 'HEAD', 'POST']

So in this instance, we know that we can get a list of check-ins for a place
using GeT and we can add to them by making a post HTTP request to that
URL. We can also do a Heap check, which is the same as a GeT but skips
the HTTP body. You will probably need to handle this differently in your
application, but this is handy for checking if a resource or collection exists
without having to download the entire body content (i.e: just look for a 2e0
OT Q 404).

It might seem a little nuts to take this extra step to interact with an
API, but really it should be considered much easier than hunting for
documentation. Think about it: trying to find that little “Developers” link
on the website, then navigating to the documentation for the correct API
(because they are so cool they have about three), then wondering if you
have the right version... not fun. Compare that to a programmatically
self-documenting API, which can grow, change and expand over time,
rename URLs and... well that is a real win. Trust me.

If you know that an API follows RESTful principles then you should be con-
fident that it follows HATEOAS because advertising it as RESTful without
following HATEOAS is a big stinking lie. Sadly, most of the popular APIs
out there are big stinking liars.

GitHub responds with a 500, Reddit with 501 Not Implemented,
Google maps with 405 Method Not Allowed. You get the idea.

HATEOAS 152

I’ve tried many others, and the results are usually similar.
Sometimes it yields something identical to a GET response.
None of these are right.

— Source: Zac Stewart, “The HTTP OPTIONS method and poten-
tial for self-describing RESTful APIs”!

If you are building your own API, then you can easily do this yourself and
your clients know that you know how to build a decent API.

And that, is about all there is for HATEOAS. You should now know enough
to go out and build up an API that in theory you won’t hate. Sadly, you will
probably need to build a new version within a few months regardless, so
for that we will now take a look at API versioning.

"http://zacstewart.com/2012/04/14/http-options-method.html

http://zacstewart.com/2012/04/14/http-options-method.html
http://zacstewart.com/2012/04/14/http-options-method.html
http://zacstewart.com/2012/04/14/http-options-method.html

13. API Versioning

13.1 Introduction

Once you have built your wonderful new API, at some point it will need to
be replaced or have new features added. Sadly, there is no real consensus
on what approach is the best, but instead there are pros and cons to each
approach.

The general advice you will find most experts giving is this: try to limit
change as much as possible. That is a very fair statement to make, but
also seems like a bit of a cop out. Regardless of how well planned your
API is, your business requirements will likely be what forces you to make
substantial changes eventually.

This can be a killer in the startup world, where things are considerably
less structured. Kapture started off with “opportunities” which became
“photo opps” and ended up being called “campaigns”. You can laugh at
that and say it will never happen to you, but it will. When you are least
expecting it, business requirements will come at you like a wet mackerel
to the face. When that happens, API versioning is often the only solution.

Sure, you could say that your API needs to maintain backward
compatibility, but that is not very realistic when you are reusing
your API properly across your product line. To demonstrate fur-
ther, let us say you have 30 applications (and maybe a handful
of external companies using the API), all of which are relying on
the “customer” REST resource. Your choices now are:

1. Keep it backward compatible (and lose the million dollar
sale because you could not implement cool feature X)

2. Change all 30 applications simultaneously to handle the
new data (you likely do not have enough resource to do this
and deliver on time)

153

API Versioning 154

3. Make the change, breaking the apps you do not have time
to upgrade, but get the sale. (Of course, you will fix the
remaining apps in the future, right?)
- Source: Jeremy Highley, “Versioning and Types in REST/HTTP
API Resources”?

13.2 Different Approaches to API Versioning

As has been done in several other chapters, this chapter will outline sev-
eral different approaches and list their pros and cons. In other chapters,
the final suggestion is generally implied to be a “better” solution, but in
this chapter they are all compromises. Some are technically RESTful but
incredibly complicated to implement; they are also complicated for your
users. This means you have to put some real thought into the approach.

Throughout this chapter will be references to various popular services
with public APIs and the type of API versioning they use. Credit goes
to Tim Wood for compiling an extensive list in “How are REST APIs
versioned?”2, which will be used for reference in this chapter.

Approach #1: URI
Throwing a version number in the URI is a very common practice amongst
popular public APIs.

Essentially, all you do here is put a ‘v1’ or ‘1’ in the URL, so that the next
version can be easily changed.

https://api.example.com/v1/places

Due to being so prolific throughout various public APIs, this is often the
first approach API developers take when building their own. It is by far
the easiest and it does the job.

Twitter has two versions, ‘/1/’ and ‘/1.1/’, both of which were live at the
time of writing. This gives developers a chance to update any code that is

'http://thereisnorightway.blogspot.com.tr/2011/02/versioning-and-types-in-resthttp-
api.html
*http://www.lexicalscope.com/blog/2012/03/12/how-are-rest-apis-versioned/

http://thereisnorightway.blogspot.com.tr/2011/02/versioning-and-types-in-resthttp-api.html
http://thereisnorightway.blogspot.com.tr/2011/02/versioning-and-types-in-resthttp-api.html
http://www.lexicalscope.com/blog/2012/03/12/how-are-rest-apis-versioned/
http://www.lexicalscope.com/blog/2012/03/12/how-are-rest-apis-versioned/
http://thereisnorightway.blogspot.com.tr/2011/02/versioning-and-types-in-resthttp-api.html
http://thereisnorightway.blogspot.com.tr/2011/02/versioning-and-types-in-resthttp-api.html
http://www.lexicalscope.com/blog/2012/03/12/how-are-rest-apis-versioned/

API Versioning 155

referencing the old endpoints, so they can use the new ones. Most APIs
would have called it ‘/2/’, but since it was not a drastic change, perhaps
they wanted a more subtle number.

Some say that URI versioning allows for a more copy-and-paste-friendly
URL than other approaches (many of which involve HTTP headers) and
this is supposedly better for support.

That might be true in some ways but is not totally accurate. No REST/Hy-
permedia API is ever going to be entirely copy-and-paste-friendly be-
cause there will always be headers involved: cache-Control, Accept, Content-
Type, Authorization, etc. Trying to make an entire API request fit in a URL
just seems like a fool’s errand.

While the copy-paste argument is simply a lack of a positive, this ver-
sioning approach does have some potentially frustrating downsides.

The first thing people will say is that it is not technically RESTful. If you
care about breaking this REST rule or not is up to you, but Roy Fielding
says that placing the version in the URL like this basically makes your API
into a RPC API instead.

Ro’y,T.‘ Fielding

The reason to make a real REST APl is to
get evolvability ... a "v1" is a middle finger
to your API customers, indicating
RPC/HTTP (not REST)

Roy says: “v1 is a middle finger to your API customers, indicating RPC/HTTP (not REST)”

His mention of “evolvability” is fundamental to the concept of REST. A
resource is meant to be more like a permalink. This permalink (the URL)
should never change. Over time you can hit that permalink with different
version headers, or request different representations of JSON, or XML, or
whatever you like, but it will always be the same URL.

API Versioning 156

If the Internet is built around linking together and those links are chang-
ing all the time then, well, things break. This might not be something you
are too concerned about - especially if the API is internal - but it can be
hugely annoying for others.

For example, if you store the URL of an endpoint in your database for later
reference, it might look like this:

https://api.example.com/vi/places/213

One day, you get an email from example.com stating that their vi1 API is
going to be deprecated in three months, and you need to start using the
v2 API as soon as you can.

If you update your code to match the updated format with whatever new
or renamed fields the new version may contain, then great, your new code
will be ready to work with the new API version and you can start saving the
new URL when you enter the record in your database. That works for new
records, but you cannot leave the old records in there referencing the old
APIv1URL.

So what do you do? One solution would be to string replace the old URL
and hope the new URL is right:

https://api.example.com/v2/places/213

That might have worked, if it was not for the fact that you missed the note
in the email that says they no longer use auto-increment IDs in their URLs
(they read that it was a bad idea somewhere) and have decided to use slugs
instead:

https://api.example.com/v2/places/taksim-bunk-hostel

Now what? The only solution here is to create a script that goes through
each and every record in your database, hits their vi API and gets in-
formation (hopefully that slug is available) and then constructs a ‘v2’
compatible URL to store.

API Versioning 157

If you do that with a few million records then you will probably hit some
API limits fairly quickly. Twitter, for example, limits applications to 15
requests per endpoint per 15 minutes in some situations, so this would
take about two weeks to update one million records.

Maybe that sounds like an edge case, but putting the API version in
the URL is asking for all sorts of obscure problems down the line, and
asking your developers to manually construct resource URLs with string
replacement is just rude. Peter Williams pointed this out in an article
titled “Versioning REST Web Services”3 back in 2008, but everyone has
been consistently ignoring him it seems.

Another downside to this approach is that pointing v1 and v2 to different
servers can be difficult, unless you use some sort of Apache Proxy feature
or nginx-as-a-proxy trickery. Generally speaking, most systems expect
the same path to be on the same server (doing otherwise can lead to
overhead), so if v1 is PHP and v2 is Scala, you can run into some trouble
having them all set up on the same server.

The opposite of the putting-them-on-the-same-server-can-be-hard prob-
lem, iswhen API developers try to let one single code base take care of this
versioning internally in their web app. They simply make routes with the
prefix /vi/places, then when they want to make v2 they copy the routes,
copy the controllers and tweak things. This can be done if you also version
your transformers (to maintain structure and data types), and you are
confident that all shared code (libraries, packages, etc.) will maintain a
consistent output throughout. This is rarely the case, and people putting
v1in their URLs are just doing it because it is the only solution they know.

Instead, consider making each version its own code base. This means the
code is totally separate, executed separately, with different web server
vhosts or maybe even on different servers.

If the APIs are very similar (same language, same framework, etc), then
you can simply share a Git history — be it different branch in the same apsi
repository, or a different branch. Some people take the Git Flow4 model
and prepends version numbers, so one repository may have the following
branches:

3http://barelyenough.org/blog/2008/05/versioning-rest-web- services/
“http://nvie.com/posts/a-successful-git-branching-model/

http://barelyenough.org/blog/2008/05/versioning-rest-web-services/
http://nvie.com/posts/a-successful-git-branching-model/
http://barelyenough.org/blog/2008/05/versioning-rest-web-services/
http://nvie.com/posts/a-successful-git-branching-model/

API Versioning 158

+ 1.0/master
- 1.0/develop
« 2.0/master
- 2.0/develop

As long as you share a Git history, you can pull from the other repository
or branch and merge changes from older versions to newer versions. This
lets you fix bugs in multiple versions easily instead of copying and pasting
between all of your controllers in the the same code base.

Popular APIs

- Bitly

- Disqus

- Dropbox

- Bing (lol)

- Etsy

« Foursquare
« Tumblr

- Twitter

- Yammer

« YouTube

Pros
- Incredibly simple for API developers
- Incredibly simple for API consumers
- Copy-and-pasteable URLs

Cons
- Not technically RESTful

- Tricky to separate onto different servers
- Forces API consumers to do weird stuff to keep links up-to-date

API Versioning 159

Approach #2: Hostname

Some API developers try to avoid the issues with server setup found with
putting the version in the URI and simply put the version number in the
hostname (or subdomain) instead:

https://api-vi.example.com/places

This does not really solve any of the other problems. Having it in the
URL in general (URI or subdomain) shares all the same problems for API
consumers, but it does at least reduce the chances of API developers trying
to let one code base handle it all.

Pros

- Incredibly simple for API developers

- Incredibly simple for API consumers

- “Copy-and-paste-able” URLs

- Easy to use DNS to split versions over multiple servers

Cons

- Not technically RESTful
- Forces API consumers to do weird stuff to keep links up-to-date

Approach #3: Body and Query Params

If you are going to take the URI version out of the URL, then one of the two
other places to put it is the HTTP body itself:

~N o b~ W

a b W N R

API Versioning 160

POST /places HTTP/1.1
api.example.com
Content-Type: application/json

{

"version" : "1.0"

}

This solves the problem of URLs changing over time, but can lead to
inconsistent experiences. If the API developer is posting JSON, or a similar
data structure, then it is easy, but if they are posting with a content-Type
of image/png or even text/csv then this becomes very complicated very
quickly.

Some suggest the solution to that problem is to move the parameter to the

query string, but now the API version is in the URL again! Immediately,
many of the problems of the first two approaches are back.

POST /places?version=1.0 HTTP/1.1
api.example.com

headerl,header2
valuel,value2

This... just do something else. Many PHP frameworks ignore the query
string under anything other than a GeT request, which goes against the
HTTP specification but is still common. Having this parameter that moves
around inside different content types in the body or sometimes in the URL
or even always in the URL, regardless of the HTTP Verb being used, is just
confusing.

Popular APIs

- Netflix

+ Google Data
- PayPal

- Amazon SQS

Pros

API Versioning 161

- Simple for API developers

- Simple for API consumers

- Keeps URLs the same when param is in the body

+ Technically a bit more RESTful than putting version in the URI

Cons

- Different content types require different params, and some (like
CSV) just do not fit

- Forces API consumers to do weird stuff to keep links up-to-date
when the param is in the query string

Approach #4: Custom Request Header

So if the URL and the HTTP body is a bad place to put API version infor-
mation, where else is left? Well, headers of course!

GET /places HTTP/1.1
api.example.com
1.0

This example was lifted from Mark Nottingham?®, who is the chair of the
IEFT HTTPbis Working Group® at the time of writing. That group is in
charge of revising HTTP 1.1 and working on HTTP 2.0. He has this to say
about custom version headers:

This is broken and wrong for a whole mess of reasons. Why?

First, because the server’s response depends on the version in
the request header, it means that the response really needs to
be:

Shttp://www.mnot.net/
6http://t]:ac.tools.ietf.org/wg/httpbis/trac/wiki

http://www.mnot.net/
http://trac.tools.ietf.org/wg/httpbis/trac/wiki
http://www.mnot.net/
http://trac.tools.ietf.org/wg/httpbis/trac/wiki

API Versioning 162

1 HTTP/1.1 200 OK
2 1.1
3 BadAPIVersion

Otherwise, intervening caches can give clients the wrong re-
sponse (e.g. a 1.2 response to a 1.1 client, or vice versa).

— Source: Mark Nottingham, “Bad HTTP API Smells: Version
Headers”7

Without specifying the vary header, it is hard for a cache system like
Varnish to know that somebody is asking for 1.0 because the URL is not
any different than somebody asking for 1.1 or 2.0. That can be a big
problem as API consumers asking for a specific version need to get that
version, not a different one.

Beyond that rather tricky caching issue, it is generally just annoying.
If you use a custom header, then API consumers need to go and look
at your documentation to remember which it is. Maybe it is API-Version
OrI Foursquare-Version OI X-Api-Version Or Dave. Who kl’lOWS, and who can
remember?

Popular APIs
+ Azure

Pros

- Simple for API consumers (if they know about headers)
- Keeps URLs the same
+ Technically a bit more RESTful than putting version in the URI

Cons

- Cache systems can get confused
- API developers can get confused (if they do not know about headers)

7http://www.mnot.net/blog/2012/07/11/header_versioning

http://www.mnot.net/blog/2012/07/11/header_versioning
http://www.mnot.net/blog/2012/07/11/header_versioning
http://www.mnot.net/blog/2012/07/11/header_versioning

1

API Versioning 163

Approach #5: Content Negotiation

The Accept header is designed to ask the server to respond with a specific
resource in a different format. Traditionally, many developers think of
this in terms of only (X)HTML, JSON, Images, etc., but it can be more
generic than that. If we can RESTfully ask for our data to come back
with different content types having different syntax, then why not reuse
exactly the same header for versions too.

GitHub follows the advice of many of the people named in this chapter so
far, and uses the Accept header to return different Media Types.

All GitHub media types look like this:
application/vnd.github[.version].param[+json]
The most basic media types the API supports are:

application/json
application/vnd.github+json

- Source: GitHub, “Media Types”8

Basically if you ask for either of the following two MIME types, the result
will be returned as JSON:

* application/json
* application/vnd.github+json

Without specifying further, they will show you the current default re-
sponse, which at the time of writing is v3 but could at any time change
to v4. They warn that if you do not specify the version then your apps will
break; fair enough.

To specify the version, you must use the following:

Accept: application/vnd.github.v3+json

8https://developer.github.com/v3/media/

https://developer.github.com/v3/media/
https://developer.github.com/v3/media/

API Versioning 164

If the default switches to v4 at some point in the future, your application
will continue to use v3.

This solves the caching problem, solves the URL manipulation problems
of the URL-based versioning approaches, and is considered rather REST-
ful, but it can confuse some developers. You could train them to get used
to it, or perhaps stick with URL-based versioning, but it is semantically
more correct and generally works very well. This was done at Kapture for
the internal API and it worked without problems.

The only downside is one that is found with all the approaches mentioned
so far: if you version the entire API as a whole, it becomes very hard for
API developers to upgrade their applications. It could be that only 10% of
the API has changed between versions, but changing the version of the
entire API can scare developers. Even with a changelog, it is hard for the
developer to know if their entire application is going to break completely
when they switch over. Even an extensive test suite is not going to catch
every issue with a third party service like this, because most developers
use hardcoded JSON responses in their unit tests to mock interactions.

If changing the version of the whole API is too much, the only other option
is to version parts of the API.

Popular APIs
« GitHub
Pros

- Simple for API consumers (if they know about headers)
- Keeps URLs the same

- HATEOAS-friendly

- Cache-friendly

- Sturgeon-approved

Cons
- API developers can get confused (if they do not know about headers)

- Versioning the WHOLE thing can confuse users (but this is the same
with all previous approaches)

API Versioning 165

Approach #6: Content Negotiation for Resources

Generally accepted to be the proper HATEOAS approach, content negoti-
ation for specific resources using media types is one of the most complex
solutions, but is a very scalable way to approach things. It solves the all-
or-nothing approach of versioning the entire API, but still lets breaking
changes be made to the API in a manageable way.

Basically, if GitHub were to do this, they would take their current media-
type and add an extra item:

Accept: application/vnd.github.user.v4+json

Alternatively, the Accept header is capable of containing arbitrary param-
eters.

Accept: application/vnd.github.user+json; version=4.0

This was suggested by Avdi Grimm? and written about in an article by
Steve Klabnik?!® called “Nobody Understands REST or HTTP”!!, That whole
article, written in 2011, is a great rant containing lots of useful advice.
Again, most API developers seem to have ignored the advice or have
simply not known about it.

Picking between those two specific formats will no doubt have pros and
cons. Apparently, Rails is not able to pick up the latter (or at least could
not in 2011), but that should not be considered much of a reason.

The other argument for using the latter media type is that arbitrary
parameter names can have the same confusion as arbitrary version header
names, but developers can all just agree to just call it “version”. Right?

Whichever way you end up specifying the header, the advantage is not
just specifying “I want the v4 API” but instead saying “I would like the
v4 version of a place(s)”. Services that provide an API can email their
API consumers saying “We are updating the way ‘places’ work. Here is

http://about.avdi.org/

9http://blog.steveklabnik.com/

"http://blog.steveklabnik.com/posts/2011-07-03-nobody-understands-rest-or-http#i_want_
my_api_to_be_versioned

http://about.avdi.org/
http://blog.steveklabnik.com/
http://blog.steveklabnik.com/posts/2011-07-03-nobody-understands-rest-or-http#i_want_my_api_to_be_versioned
http://about.avdi.org/
http://blog.steveklabnik.com/
http://blog.steveklabnik.com/posts/2011-07-03-nobody-understands-rest-or-http#i_want_my_api_to_be_versioned
http://blog.steveklabnik.com/posts/2011-07-03-nobody-understands-rest-or-http#i_want_my_api_to_be_versioned

API Versioning 166

an example of the resource, here is what you need to change; specify the
new version when you are ready”.

Partial updates like this ease third party efforts to upgrade applications,
and the chances of leaving developers stranded on an older version be-
comes far less likely.

Popular APIs
« GitHub
Pros

- HATEOAS-friendly

- Cache-friendly

- Keeps URLs the same

- Easier upgrades for API consumers
- Can be one code base or multiple

Cons

- API consumers need to pay attention to versions

- Splitting across multiple code bases is not impossible, but it is hard

- Putting it in the same code base leads to accidental breakage, if
transformers are not versioned

Approach #7: Feature Flagging

This approach is something that so far I have only seen done by Facebook
and its Graph API. Their approach is interesting, but not as common as
some of these other approaches.

Facebook do not version their entire API with simple numbers like any-
body else does. They do not version their resources, and they do not allow
you to request different versions with headers, parameters or anything
else.

They essentially make a custom version for each single client application.
The way this works is there are various feature flags, which they call

API Versioning 167

“migrations”. They put out a migration every few months, write a blog,
email API developers about it, and ask those developers to log into the
developer area on the Facebook platform to manage their application.

Basically, they warn you that things are going to break in a few months.
They list all the changes and give you the chance to see if this will affect
your application. If your application does not use an endpoint that is
being changed, or they are removing a field your application does not use,
then you can click “Enable” for the migration. From that point on, any
interaction your application has with the Facebook Graph API will use the
new format.

If you wait, eventually they will flip that switch regardless. This is consid-
ered a fair warning, and means they do not have to support an old version
for years. Facebook simply maintain one version with a few feature flags
and those flags exist for a few months before that old code is removed. If
your application still uses the old format then it is just tough.

To me, this system has the most benefits. One tricky part is that getting
the timing right for the changeover is hard on API consumers. If your code
is live looking at the old style, then you cannot push new code for the new
style, because it will be broken until you flip the switch. That might only be
seconds, but if you have multiple applications then you have to update and
deploy all of them within minutes (or seconds) and then flip the switch.

Realistically speaking, that is very hard to do, so you will end up with code
having a lot of if statements ready to look for fields that may or may not
be there depending on the version. That leads to lots of extra code which
you have to remember to remove afterwards by shoving comment blocks
throughout your code:

@TODO Kill this when Facebook September 13 Migration is confirmed working

This is not insanely hard, but it can be complicated sometimes.

Generally speaking, the Feature Flag solution is the easiest for API con-
sumers if the changes happen to hit a part of the API they do not care
about. They do not need to be scared of changing to an entirely new
version of the API, they know their code will work, and things seem safer.
If they do require changes then... well a few if statements never really hurt
anyone.

API Versioning 168

13.3 Ask Your Users

None of these will have a drastic impact on your business, especially if
your APl is internal. If you are creating a platform as big as Facebook, then
maybe you need a solution as complex as theirs, but that is probably not
the case.

My advice with versioning (as with most aspects of your API) is to know
your audience. Twitter gets away with flagrant disregard for almost every
single concept or principle that ever makes something RESTful whilst still
calling it a REST API, so you can probably break a few rules too.

If I may leave others considering how to version their APIs with
a final thought: nobody will use your API until you’ve built it.
Stop procrastinating. None of these are “bad” in any tangible
sense, they’re just different.

They are all easily consumable, they all return the same result
and none of them are likely to have any real impact on the
success of your project.

- Source: Troy Hunt, “Your API versioning is wrong, which is
why I decided to do it 3 different wrong ways”’12

The real truth is that all of the approaches are annoying in some ways, or
technically ‘unRESTful’ in some respects, or difficult, or a combination
of it all. You have to pick what is realistic for your project in both the
difficulty of the implementation and the skill/knowledge level of your
target audience.

2http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html

http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html

Conclusion

Thank you for reading the whole way through this book. This was a large
and complex topic I tried to turn into an interesting read with a little
humour.

It has been a really enjoyable experience, and I have been blown away
with the positive feedback. I have also received plenty of constructive
criticism, which was mostly begging me to hire an editor. The PHP Editor
at SitePoint gave the book a 4/5 star rating, saying:

The one downside is that Phil can’t spell to save his life.

This is true. I’'ve been writing blogs for years, and that has not helped me.
This experience very much has. I hired a good friend of mine as an editor
and she has done an amazing job.

Now that this book is in paperback form as well as eBook, I do plan to
change it less. I do, however, have some ideas for a second edition which
may be released in early 2016.

A dilemma I am currently having is that any further explanation of REST-
ful / Hypermedia API development is just going to be paraphrasing con-
tent in the various HTTP 1.1 Specification RFCs. Hypermedia APIs respect
as many aspects of the HTTP spec as possible, so headers like Accept-
Language, Expires, Etag, Retry-After, etc., could be catered for. A whole book
could be written about the HTTP specification itself, so it seems somewhat
outside the scope of this book, but it has been commonly requested.

No matter what happens next with this book, this has been a great project.
Not only was it a much needed break from writing code nonstop 24/7,
but it has ended up helping me out substantially with my US visa! It has
also helped me out a few times, when I forgot how something worked and
looked back in here.

If this book has helped you out, please pass it on. Hand the paperback
to somebody, or give them a link to apisyouwonthate.com, and help me

169

Conclusion 170

continue to update the project. Part of the joys of this project are the extra
income of course, but I really enjoy helping to educate people.

I am always happy to hand out coupon codes for people who want to give
away cheap copies of the eBook at their usergroups, conferences, etc, so
find me on twitter for that: @philsturgeon.

Thanks again for reading!

Further Reading

Here are some resources you should look into reading.

API Web Resources

Interagent: HTTP API Design'3 - HTTP API design guide extracted from work
on the Heroku Platform API. They have some good tips for making a HTTP
API. I don’t agree with all of it entirely, but a lot of it it. Either way it gives
you a lot of things to think about.

Nordic APIs*4 - Online API advice, with articles about new technologies in
the world of APIs, opinion pieces and the occasional article about why
SOAP is great sometimes.

Non-API Books

While these books are not directly about API development, they are about
related subjects. APIs must be secure. APIs need to be tested. APIs need
virtual machines to run on locally, servers to live on in production, and
that all needs to be provisioned using fancy devops tooling.

Building Secure PHP Apps®™ - Is your PHP app truly secure? Let’s make sure
you get home on time and sleep well at night.

The Grumpy Programmer’s PHPUnit Cookbook'® - Learning how to use PH-
PUnit doesn’t have to suck. Your code is untested and fixing bugs is
tedious. You know you need something better, but time just doesn’t seem
to be on your side. Making things “right” is costly and you need to deliver
working code NOW.

Bhttps://github.com/interagent/http-api-design
“http://nordicapis.com/
Bhttps://leanpub.com/buildingsecurephpapps

16 https://leanpub.com/grumpy-phpunit

171

https://github.com/interagent/http-api-design
http://nordicapis.com/
https://leanpub.com/buildingsecurephpapps
https://leanpub.com/grumpy-phpunit
https://github.com/interagent/http-api-design
http://nordicapis.com/
https://leanpub.com/buildingsecurephpapps
https://leanpub.com/grumpy-phpunit

Further Reading 172

Scaling PHP Apps'7 - Steve Corona’s book about scaling not just PHP, but
Nginx and various data stores helped me out a lot over the course of the
Kapture API development.

Servers for Hackers'® - Your API has to go somewhere, and unless you’re
literally made of money, and have some way to get that money through
Heroku’s payment gateway, then you need to know how to manage a
server.

Vagrant Cookbook® - Learn how to create effective Vagrant development
environments. This book will cover from basic to advanced concepts on
Vagrant, including important ProTips to improve your Vagrant projects
and avoid common mistakes. The book was updated to cover the new fea-
tures on Vagrant 1.5, which are substantial compared to previous versions.

7https://leanpub.com/scalingphp
®https://serversforhackers.com/
Yhttps://leanpub.com/vagrantcookbook

https://leanpub.com/scalingphp
https://serversforhackers.com/
https://leanpub.com/vagrantcookbook
https://leanpub.com/scalingphp
https://serversforhackers.com/
https://leanpub.com/vagrantcookbook

	Table of Contents
	Introduction
	Sample Code
	Useful Database Seeding
	Introduction
	Introduction to Database Seeding
	Building Seeders
	That is about it
	Secondary Data
	When to run this?

	Planning and Creating Endpoints
	Functional Requirements
	Endpoint Theory
	Planning Endpoints

	Input and Output Theory
	Introduction
	Requests
	Responses
	Supporting Formats
	Content Structure

	Status Codes, Errors and Messages
	Introduction
	HTTP Status Codes
	Error Codes and Error Messages
	Error or Errors
	Standards for Error Responses
	Common Pitfalls

	Endpoint Testing
	Introduction
	Concepts & Tools
	Setup
	Initialise
	Features
	Scenarios
	Prepping Behat
	Running Behat

	Outputting Data
	Introduction
	The Direct Approach
	Transformations with Fractal
	Hiding Schema Updates
	Outputting Errors
	Testing this Output
	Homework

	Data Relationships
	Introduction
	Subresources
	Foreign Key Arrays
	Compound Documents (aka Sideloading)
	Embedded Documents (aka Nesting)
	Summary

	Debugging
	Introduction
	Command-line Debugging
	Browser Debugging
	Network Debugging

	Authentication
	Introduction
	When is Authentication Useful?
	Different Approaches to Authentication
	Implementing an OAuth 2.0 Server
	Where the OAuth 2.0 Server Lives
	Understanding OAuth 2.0 Grant Types

	Pagination
	Introduction
	Paginators
	Offsets and Cursors

	Documentation
	Introduction
	Types of Documentation
	Picking a Tool
	Setting up API Blueprint and Aglio
	Learning API Blueprint Syntax
	Further Reading

	HATEOAS
	Introduction
	Content Negotiation
	Hypermedia Controls

	API Versioning
	Introduction
	Different Approaches to API Versioning
	Ask Your Users

	Conclusion
	Further Reading
	API Web Resources
	Non-API Books

