
www.allitebooks.com

http://www.allitebooks.org

Building UIs with Wijmo

Build user interfaces quickly using widgets

Yuguang Zhang

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Building UIs with Wijmo

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1120913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-606-7

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Yuguang Zhang

Reviewers
Stephen J. Naughton

Ryan Pinto

Michaël Vanderheeren

Acquisition Editor
Kartikey Pandey

Commissioning Editor
Subho Gupta

Technical Editor
Anita Nayak

Project Coordinator
Joel Goveya

Proofreader
Lauren Harkins

Indexer
Priya Subramani

Graphics
Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Yuguang Zhang has worked as a web developer in a number of small companies.
Notable companies where he has worked at include SociaLabra, a social media
company, and SmartPager, a startup in mobile paging. He has expertise in developing
interactive client-side applications with Knockout. As a personal project, he built
the first IDE that runs Python in the browser using Knockout and jQuery UI, that is
pythonfiddle.com. In addition, he designed and programmed fiddlesalad.com,
a multi-language playground for rapid frontend development built with CoffeeScript
and Django.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Stephen J. Naughton has been programming since the early days of the BBC
Micro on which he authored the "Plotter ROM", allowing users to print screen to a
plotter when Inkjet and other color printers were just appearing. He has worked in
the industry as a systems engineer for about 20 years and as a full-time developer
in 2003. He has now been a Microsoft MVP for five years in the area of ASP.Net
and especially in Dynamic Data. Stephen is freelance web developer specializing
in LOB ASP.Net Dynamic Data and LightSwitch application development.

Ryan Pinto is a technology entrepreneur who becomes familiar with emerging
technologies in a heartbeat and has a passion for clear and accurate documentation.

He has an intuitive awareness and understanding of Information and System
Architecture, being able to effortlessly identify and manipulate the data structure of
a product and tailor frontend user experience to its stakeholders. He is ever ready
to put in extra efforts and has a passion for getting the job done right, on schedule,
and on budget.

A graduate from the University of Waterloo's School of Computer Science and
Department of English Language, Ryan strongly believes in quality code with
concise documentation. He has architected software solutions and written technical
reports for large post-secondary institutions and telecommunication organizations.
Projects range from artificially intelligent, OO PHP/SQL Bayesian web applications,
to interactive Flash ActionScript market research tools.

www.allitebooks.com

http://www.allitebooks.org

Ryan is currently a co-founder and technical lead at SociaLabra Inc., a fast growing
company that builds, manages, and integrates niche social networks (NSNs). He is
active in both pre and post-sales roles, from client consultancy and business problem
definition to solution implementation and support. Whether Java or JavaScript,
Native Mobile or Responsive Design, he uses the latest in development ideology
and technology to build a customizable platform powering varied NSNs for a
number of education, hospitality, sports, and health organizations.

Ryan's knowledge with respect to development is diverse, and it's clear that his
passion for the field extends beyond the workplace.

Michaël Vanderheeren is both a strategic and technical consultant to international
industry leaders where he assists in new product development and defining growth
strategies. He has over five years experience with usability and interface design
and software development in general. He holds both a Masters degree in Computer
Sciences and an MBA in General Management and keeps a keen eye on technological
developments and their application in innovation projects. He previously was
involved in the Absolution theme development for both jQuery and Wijmo and
optimizing JavaScript for embedded devices in the healthcare industry.

I would like to thank my partner, friends, and family for supporting
me in developing my career and giving me the opportunity to stretch
the boundaries of both technology and innovation. A special thanks
to my partner for the countless discussions and feedback moment on
both success stories and difficult periods.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with Wijmo 5

Setting up Wijmo 5
Installing Wijmo the quick way via a CDN 6
Installing Wijmo for development 9

Customizing jQuery UI for download 9
Downloading Wijmo 10
Installing jQuery UI for development 11
Installing Wijmo for development 11
Adding Wijmo to an HTML document 12

Wijmo licensing 13
Required background 14
Summary 14

Chapter 2: The Dialog Widget 15
Wijmo additions to the dialog widget at a glance 15

Adding custom buttons 18
Configuring the dialog widget's appearance 21
Loading external content 23

Summary 24
Chapter 3: Form Components 25

Checkbox 25
Radio buttons 26
Dropdown 28
ComboBox 30
InputDate 31
InputMask 34
Summary 37

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 4: Working with Images 39
Using the carousel widget 39

Creating the carousel widget 39
Configuring the carousel widget 41
Using the display options to show multiple images 42
Specifying the navigation options 44
Adding the timer and autoplay 46

Using the gallery widget 46
Creating the gallery widget 47
Playing videos in the gallery widget 49

Using the lightbox widget 50
Creating the lightbox widget 51
Changing the lightbox widget's appearance 52

Summary 53
Chapter 5: Advanced Widgets 55

Using the tooltip widget 55
Positioning the tooltip widget 56
Loading AJAX content in the tooltip widget 57
Styling the tooltip widget 58

Using the upload widget with the ProgressBar element 60
Applying Wijmo themes to HTML5 videos 62
Using the editor widget 63

Using the editor widget with BBCode for forums 63
Summary 64

Chapter 6: Dashboard with WijmoGrid 65
Introduction to MVVM 65
Introduction to Knockout 67

Building a rating system with Knockout 68
Building the dashboard 70

Sending a message with Knockout and Socket.IO 71
Displaying messages on the Dashboard 75

Summary 77
Chapter 7: Wijmo Mobile 79

Getting started with Wijmo mobile 79
Setting up Wijmo mobile 79

Obtaining jQuery mobile 79
Installing jQuery mobile 80
Using a mobile browser emulator 81

Creating an expander widget 82
Passing options to the expander widget 82

Table of Contents

[iii]

Creating a ListView widget 83
Creating an AppView widget 84

Adding the AppView pages 86
Reusing non-mobile pages 87

Summary 90
Chapter 8: Extending Wijmo 91

Extending Wijmo Open 91
Modifying the Dialog widget 91
Modifying a Wijmo theme with ThemeRoller 94

Summary 95
Index 97

Preface
Wijmo is a new JavaScript library focusing on user interface widgets. It builds on
jQuery UI, enhancing existing widgets, and adding new ones. In this book we examine
the Wijmo widgets essential for web development. The useful configuration options
for 15 widgets are covered along with their usage scenarios. Most of the chapters take
a code recipe approach for tasks that occur often in web development. Whenever you
come across a widget or user interface component that you've implemented before,
chances are that Wijmo widgets have you covered. The chapters in this book are
designed to get you started using the widgets in no time. On the other hand, Chapter 6,
Dashboard with Wijmo Grid, takes a different approach in building an application and
explaining how it works.

There is no need for going in sequence of the chapters if you're familiar with Wijmo.
However, if you're experiencing Wijmo for the first time, I would recommend going
in the same order as the chapters.

What this book covers
Chapter 1, Getting Started with Wijmo, introduces Wijmo, the steps to install it,
and licensing.

Chapter 2, The Dialog Widget, explains Wijmo's features that can be added to
the jQuery UI dialog widget.

Chapter 3, Form Components, examines the Wijmo widgets for forms.

Chapter 4, Working with Images, shows the common uses of the gallery, lightbox,
and carousel widgets.

Chapter 5, Advanced Widgets, covers the tooltip, upload, video, and editor widgets.

Preface

[2]

Chapter 6, Dashboard with Wijmo Grid, builds an interactive application combining
Knockout and Wijmo.

Chapter 7, Wijmo Mobile, sets up the development environment for mobile and
introduces mobile views.

Chapter 8, Extending Wijmo, explains how to modify widgets and change the themes.

What you need for this book
You will need a text editor with JavaScript, CSS, and HTML syntax highlighting.
Notepad++ on Windows or Textmate on Mac is sufficient. Developing with Wijmo
does not require fancy editor features, such as auto-complete or warnings for
JavaScript. The widgets are simple and easy to use.

Besides a text editor, you also need a web browser. An Internet Explorer version
higher than Version 5, Firefox, Safari, or Chrome are all supported by Wijmo.
You probably already have one installed and prefer one over another.

Who this book is for
The primary audience for this book are the web developers working on projects
that require the use of ready-made widgets. jQuery UI lacks necessary components
or features, whereas Wijmo provides both free, open source widgets, as well as a
licensed option for more complex widgets. Since this book covers both the areas,
developers working on open source projects can also benefit.

Since Wijmo is easy to use, many of the simpler examples can be understood by a
beginner with JavaScript. When the previous condition is met, this book is the first
book that a JavaScript beginner should read after learning jQuery. Learning how to
use Wijmo widgets will reduce the unnecessary work of writing custom JavaScript.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The widget method returns the dialog HTML element."

Preface

[3]

A block of code is set as follows:

$("#dialog").wijdialog({captionButtons: {
 pin: { visible: false },
 refresh: { visible: false },
 toggle: { visible: false },
 minimize: { visible: false },
 maximize: { visible: false }
 }
});

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

maximize: {visible: true, click: function () {
 alert('To enlarge text, click the zoom icon.')
}, iconClassOn: 'ui-icon-lightbulb'},
close: {visible: true, click: self.close, iconClassOn:
 'ui-icon-close'}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes, for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

Getting Started with Wijmo
Wijmo is composed of over 40 user interface widgets ranging from form components
to enterprise charts. All of the widgets come with themes. The best features about
Wijmo are:

• Wijmo is easy to use. It is a complete set of widgets with a wide array of
configuration options. Chances are that Wijmo has a widget for every UI
component you've used in your projects.

• It deals with implementation differences between browsers. All versions
of IE since version 6 and other browsers are supported.

• It has Platinum support. Although the live phone support costs an annual
fee, your team will never get stuck or experience downtime while working
with Wijmo.

• It is open source and is hosted on a repository on GitHub with a GPL license
for open source applications.

Not everything is perfect. Wijmo comes with its rough edges. In this book, I point out
the pitfalls and guide you around them. The benefit of learning from this book is that
you won't make the mistakes I've made. Learning Wijmo makes web development
simpler, quicker, and more enjoyable.

Setting up Wijmo
Downloading and installing Wijmo only takes a few more steps compared to jQuery
UI. It has files hosted on a content distribution network for a quick start. For this
book, it is recommended that you download and set up the files for development.
Since Wijmo is built on jQuery UI, I have included the details on obtaining and
customizing jQuery UI. This chapter also covers how to install the minimized files
for production environments.

Getting Started with Wijmo

[6]

Installing Wijmo the quick way via a CDN
Both jQuery and jQuery UI are hosted by Google and Microsoft on their Content
Distribution Networks (CDNs). The Microsoft service hosts standard jQuery UI
themes as well as JavaScript. To use a CDN, you need to find the URLs of the files
that you want first. Microsoft has a page listing their hosted libraries at asp.net/
ajaxlibrary/cdn.ashx. If you click on the jQuery UI releases under the Table
of Contents, several versions are listed. Clicking on a version will show you the
URLs for the minified and regular versions. For example, jQuery UI 1.10.2 has the
following URL:

http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.2/jquery-ui.min.js

The page also has a nice visual gallery of all the themes for the version, with the
URL for the CSS theme below each theme. The URL for Cupertino is:

http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.2/themes/cupertino/
jquery-ui.css

However, the reader is encouraged to select from one of the Wijmo themes, as they
are more compatible with the library. Wijmo has a Theme Explorer (http://wijmo.
com/demo/themes/) showcasing six themes (as of version 3.20131.1) as shown in the
following screenshot:

Chapter 1

[7]

The URL for the Rocket theme is:

http://cdn.wijmo.com/themes/rocket/jquery-wijmo.css

Wijmo provides a separate CSS for Widgets that change with each version. The URLs
take the form: http://cdn.wijmo.com/jquery.wijmo-pro.all.[version].min.
css. For the version at the time of writing this book, the form is: http://cdn.wijmo.
com/jquery.wijmo-pro.all.3.20131.1.min.css.

The JavaScript files for Wijmo follow a similar format:

• http://cdn.wijmo.com/jquery.wijmo-open.all.3.20131.1.min.js

• http://cdn.wijmo.com/jquery.wijmo-pro.all.3.20131.1.min.js

To use Wijmo via a CDN, these URLs must be placed in script and link elements,
as shown:

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <!--jQuery References-->
 <script src="http://code.jquery.com/jquery-1.9.1.min.js"
 type="text/javascript"></script>
 <script src="http://code.jquery.com/ui/1.10.1/jquery-ui.min.js"
 type="text/javascript"></script>
 <!--Wijmo Widgets JavaScript-->
 <script src=
 "http://cdn.wijmo.com/jquery.wijmo-open.all.3.20131.1.min.js"
 type="text/javascript"></script>
 <script src=
 "http://cdn.wijmo.com/jquery.wijmo-pro.all.3.20131.1.min.js"
 type="text/javascript"></script>
 <!--Theme-->
 <link href="http://cdn.wijmo.com/themes/aristo/jquery-wijmo.
css"rel="stylesheet" type="text/css" />
 <!--Wijmo Widgets CSS-->
 <link href="http://cdn.wijmo.com/jquery.wijmo-pro.all.3.20131.1.min.
css"rel="stylesheet" type="text/css" />
 <script id="scriptInit" type="text/javascript">
 $(document).ready(function () {
 $('#dialog').wijdialog({
 autoOpen: true,
 captionButtons: {
 refresh: { visible: false }
 }

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Wijmo

[8]

 });
 });
 </script>
</head>
<body>
 <div id="dialog" title="Basic dialog">
 <p>Meet Wijmo.</p>
 </div>
</body>
</html>

If the Wijmo CDN files have been added properly, you should see a distinct
"window" with the standard minimize, expand, and close buttons as shown
in the following screenshot:

When browsers load JavaScript or CSS files, they check to see if the file is in the cache.
If the user already has a cached version on his machine, then the browser loads from
the cache instead of downloading the content. Serving jQuery over CDN will likely
reduce the download size for the user. However, the Wijmo and jQuery UI libraries are
less frequently used in web development so they are not likely to be cached. Instead
of loading the full libraries from a CDN, creating a custom download with only the
components used in your project, as covered in the next section, reduces the size.
As a result, your web application will load faster.

Chapter 1

[9]

Installing Wijmo for development
jQuery UI has five main areas of functionality. You can create a custom download
that includes only the features necessary for your web application, resulting in a
smaller library for browsers to download.

To avoid the pitfalls of using a jQuery UI theme, it is recommended to completely
avoid the ThemeRoller on http://jqueryui.com. If Wijmo is configured with a
jQuery UI theme such as Redmond, a few quirks will appear as show in the screenshot:

Customizing jQuery UI for download
The jQuery UI download page, http://jqueryui.com/download/, lets you select
only the features required for your project to create a set of smaller files for the browser
to download. This is usually a better idea than using a CDN, since jQuery UI has
many releases each year and the chances of your project using the same version that
the browser has already downloaded is low. For this book, download jQuery UI 1.10.2
with the default options. Later on, you will want to unselect the features that you don't
use and see if your project still functions.

When customizing a jQuery UI library, the dependencies are sorted out for you.
When a component is enabled, its dependencies are automatically selected. As you
minimize your files for production, keep in mind that most of the effects along with
some interactions and widgets may not be necessary. For example, only the slide
effect is used in the accordion and dialog widgets. If your project only uses these
widgets, then the other effects are not necessary.

Getting Started with Wijmo

[10]

Downloading Wijmo
To start, go to http://wijmo.com/downloads/ and scroll down to the bottom.
There is a navigation panel on the right-hand side with the Downloads link as
shown in the following screenshot:

This loads the Downloads page, which consists of a list of ways to include Wijmo in
your project along with an introductory video, Get Started with Wijmo, at the bottom.
Click on the Free Trial button to download Wijmo Professional. The licensing options,
along with a comparison chart of features, are at the end of this chapter. After clicking
on the Free Trial button, you will need to register an account if you're a new user.
Once you log in with your new account, you will see a link to download the library
and you will be able to see a screen as shown in the following screenshot:

Chapter 1

[11]

You will notice that there are JavaScript and CSS files for individual components
and features in the Wijmo folder. They can be helpful when you want to reduce the
size of the download for production. Since only the current version of Wijmo is
downloadable from the website, you will want to keep a backup of your download.

Installing jQuery UI for development
Inside the jQuery UI download both the minified files for production and the
uncompressed source code for development are present. Using the development
versions makes it easy to debug, as you don't have to step through the minified
code. To set up your development environment, copy the files js\jquery-ui-
1.10.2.custom.js and js\jquery-1.9.1.js into a lib folder.

Installing Wijmo for development
Like the jQuery UI download, the Wijmo download contains all the files that you
need for development and production. For this book, we will be using features in
Wijmo Professional. Wijmo Professional depends on components in Wijmo Open.
You need to copy the following files from the Wijmo download into the lib folder:

• js\jquery.wijmo-open.3.20131.2.all.js

• js\jquery.wijmo-pro.all.3.20131.2.js

• css\jquery.open.css

• css\jquery.wijmo-pro.3.20131.2.css

• css\images

• Themes\rocket\jquery-wijmo.css

• Themes\rocket\images

When copying the theme images, merge the folder contents. Note that the image
paths are relative in the CSS and will work as long as you have the folder in the
same directory as the CSS file. The Wijmo Professional files include the version
number of the release that was downloaded. These change with each release,
while the image and theme files are relatively static. The version, as of early 2013,
is 3.20131.2. Simply replace it with your version number for the rest of the book
or just use the version 3.20131.2.

Getting Started with Wijmo

[12]

Adding Wijmo to an HTML document
All that remains is to add Wijmo to your HTML document. You can do this by
adding the script and link elements to the files in the lib folder as shown:

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <!--jQuery References-->
 <script src="../lib/jquery-1.9.1.js"
 type="text/javascript"></script>
 <script src="../lib/jquery-ui.custom.js"
 type="text/javascript"></script>
 <!--Wijmo Widgets JavaScript-->

 <script src="../lib/jquery.wijmo-open.3.20131.2.all.js"
 type="text/javascript"></script>
 <script src="../lib/jquery.wijmo-pro.all.3.20131.2.js"
 type="text/javascript"></script>
 <!--Theme-->
 <link href="../lib/jquery-wijmo.css" rel="stylesheet"
 type="text/css" />
 <!--Wijmo Widgets CSS-->

 <link href="../lib/jquery.wijmo-open.3.20131.2.css"
 rel="stylesheet" type="text/css" />
 <link href="../lib/jquery.wijmo-pro.3.20131.2.css"
 rel="stylesheet" type="text/css" />
 <script id="scriptInit" type="text/javascript">
 $(document).ready(function () {
 $('#dialog').wijdialog({
 autoOpen: true,
 captionButtons: {
 refresh: { visible: false }
 }
 });
 });
 </script>
</head>
<body>
 <div id="dialog" title="Basic dialog">
 <p>Click OK to close this window.</p>
 </div>
</body>
</html>

Chapter 1

[13]

Wijmo licensing
Wijmo Open is licensed under both MIT and GPL. The MIT license allows you to use
the software in any way you want as long as the copyright attribution is kept. Wijmo
Open is an expansion of jQuery UI with more widgets and options. A few of the
widgets not included in jQuery UI that are in Wijmo Open are:

• Expander
• Radio Button
• TextBox
• DropDown
• CheckBox
• List
• Popup
• Splitter
• SuperPanel
• Video Player

Below the differences between jQuery UI and Wijmo are mentioned, showcasing
which of the features are present in both or the other.

Wijmo Professional is intended for businesses developing closed-source projects.
It includes everything from Wijmo Open, in addition to the following:

• Charts
• ComboBox
• Datasource
• Grid
• Input

 ° Date
 ° Mask
 ° Number

• Media
 ° Carousel
 ° Gallery
 ° Lightbox

Getting Started with Wijmo

[14]

• Pager
• Rating
• Tree
• Upload
• Wizard

The license cost is per developer at a rate of $495 (https://wijmo.com/purchase/).
However, ComponentOne does offer a GPLv3 license for use in open source
applications.

Required background
Before reading this book, you should be familiar with HTML, CSS, JavaScript,
and jQuery. jQuery UI knowledge is not required, but would be a bonus since
Wijmo is similar to jQuery UI in many ways. Only the last chapter of the book,
which is based on extending Wijmo, requires advanced CSS and JavaScript
knowledge. A basic working understanding of web development will get you
through this book. If the examples in this chapter come naturally to you, then
you're well on your way to learning Wijmo.

Summary
By this point, you should have the most recent version of Wijmo set up for
development. If not, the source code for all the examples in this book are available
at https://github.com/yuguang/wijmo_essentials. Download it to a permanent
location on your computer and you will have all the code at your disposal. All of the
examples are MIT licensed, so you may use it in any way you want.

Now that you have Wijmo set up on your computer for development, you are
ready to start exploring Wijmo. In the next chapter, we dive into the dialog widget
and look at several features which are not available in jQuery's version.

In addition to setting up Wijmo, we've also covered its licensing details. If you plan
to use any of the complete Wijmo widgets in a proprietary application, make sure to
get a license.

The Dialog Widget
The dialog widget is in the Wijmo Open set. It is an enhancement of the jQuery UI
dialog with more features. Wijmo dialogs can be maximized, minimized, pinned
to a location, and display external content from a URL in the dialog window. This
chapter discusses the options, methods, and events that are added in Wijmo, and
how to use them to change the appearance and behavior of the dialog.

Wijmo additions to the dialog widget at
a glance
By default, the dialog window includes the pin, toggle, minimize, maximize, and close
buttons. Pinning the dialog to a location on the screen disables the dragging feature on
the title bar. The dialog can still be resized. Maximizing the dialog makes it take up the
area inside the browser window. Toggling it expands or collapses it so that the dialog
contents are shown or hidden with the title bar remaining visible. If these buttons
cramp your style, they can be turned off with the captionButtons option. You can
see how the dialog is presented in the browser from the following screenshot:

The Dialog Widget

[16]

Wijmo features additional API compared to jQuery UI for changing the behavior
of the dialog. The new API is mostly for the buttons in the title bar and managing
window stacking. Window stacking determines which windows are drawn on top
of other ones. Clicking on a dialog raises it above other dialogs and changes their
window stacking settings. The following table shows the options added in Wijmo.

Options Events Methods
captionButtons

contentUrl

disabled

expandingAnimation

stack

zIndex

blur

buttonCreating

stateChanged

disable

enable

getState

maximize

minimize

pin

refresh

reset

restore

toggle

widget

• The contentUrl option allows you to specify a URL to load within the window.
• The expandingAnimation option is applied when the dialog is toggled from

a collapsed state to an expanded state.
• The stack and zIndex options determine whether the dialog sits on top of

other dialogs.
• Similar to the blur event on input elements, the blur event for dialog is fired

when the dialog loses focus.
• The buttonCreating method is called when buttons are created and can

modify the buttons on the title bar.
• The disable method disables the event handlers for the dialog. It prevents

the default button actions and disables dragging and resizing.
• The widget method returns the dialog HTML element.
• The methods maximize, minimize, pin, refresh, reset, restore, and

toggle, are available as buttons on the title bar. The best way to see what
they do is play around with them.

Chapter 2

[17]

• In addition, the getState method is used to find the dialog state and returns
either maximized, minimized, or normal.

• Similarly, the stateChanged event is fired when the state of the dialog changes.

The methods are called as a parameter to the wijdialog method. To disable button
interactions, pass the string disable:

$("#dialog").wijdialog ("disable");

Many of the methods come as pairs, and enable and disable are one of them.
Calling enable enables the buttons again. Another pair is restore/minimize.
minimize hides the dialog in a tray on the left bottom of the screen. restore
sets the dialog back to its normal size and displays it again.

The most important option for usability is the captionButtons option. Although
users are likely familiar with the minimize, resize, and close buttons; the pin and
toggle buttons are not featured in common desktop environments. Therefore, you
will want to choose the buttons that are visible depending on your use of the dialog
box in your project. To turn off a button on the title bar, set the visible option
to false. A default jQuery UI dialog window with only the close button can be
created with:

$("#dialog").wijdialog({captionButtons: {
 pin: { visible: false },
 refresh: { visible: false },
 toggle: { visible: false },
 minimize: { visible: false },
 maximize: { visible: false }
 }
});

www.allitebooks.com

http://www.allitebooks.org

The Dialog Widget

[18]

The other options for each button are click, iconClassOff, and iconClassOn.
The click option specifies an event handler for the button. Nevertheless, the
buttons come with default actions and you will want to use different icons for
custom actions. That's where iconClass comes in. iconClassOn defines the CSS
class for the button when it is loaded. iconClassOff is the class for the button icon
after clicking. For a list of available jQuery UI icons and their classes, see http://
jquery-ui.googlecode.com/svn/tags/1.6rc5/tests/static/icons.html.

Our next example uses ui-icon-zoomin, ui-icon-zoomout, and ui-icon-lightbulb.
They can be found by toggling the text for the icons on the web page as shown in the
preceding screenshot.

Adding custom buttons
jQuery UI's dialog API lacks an option for configuring the buttons shown on the title
bar. Wijmo not only comes with useful default buttons, but also lets you override
them easily.

<!DOCTYPE HTML>
<html>
<head>
 ...
 <style>
 .plus {
 font-size: 150%;
 }
 </style>
 <script id="scriptInit" type="text/javascript">
 $(document).ready(function () {
 $('#dialog').wijdialog({
 autoOpen: true,

Chapter 2

[19]

 captionButtons: {
 pin: { visible: false },
 refresh: { visible: false },
 toggle: {visible: true, click: function () {
 $('#dialog').toggleClass('plus')
 }, iconClassOn: 'ui-icon-zoomin', iconClassOff:
 'ui-icon-zoomout'},
 minimize: { visible: false },
 maximize: {visible: true, click: function () {
 alert('To enloarge text, click the zoom icon.')
 }, iconClassOn: 'ui-icon-lightbulb'},
 close: {visible: true, click: self.close, iconClassOn:
 'ui-icon-close'}
 }
 });
 });
 </script>
</head>
<body>
 <div id="dialog" title="Basic dialog">
 <p>Loremipsum dolor sitamet, consectetueradipiscingelit.
 Aeneancommodo ligula eget dolor.Aeneanmassa. Cum
 sociisnatoquepenatibusetmagnis dis parturient montes,
 nasceturridiculus mus. Donec quam felis, ultriciesnec,
 pellentesqueeu, pretiumquis, sem.
 Nullaconsequatmassaquisenim. Donecpedejusto, fringillavel,
 aliquetnec, vulputate</p>
 </div>
</body>
</html>

The Dialog Widget

[20]

We create a dialog window passing in the captionButtons option. The pin, refresh,
and minimize buttons have visible set to false so that the title bar is initialized
without them. The final output looks as shown in the following screenshot:

In addition, the toggle and maximize buttons are modified and given custom
behaviors. The toggle button toggles the font size of the text by applying or removing
a CSS class. Its default icon, set with iconClassOn, indicates that clicking on it will
zoom in on the text. Once clicked, the icon changes to a zoom out icon. Likewise, the
behavior and appearance of the maximize button have been changed. In the position
where the maximize icon was displayed in the title bar previously, there is now a
lightbulb icon with a tip.

Although this method of adding new buttons to the title bar seems clumsy, it is
the only option that Wijmo currently offers. Adding buttons in the content area
is much simpler. The buttons option specifies the buttons to be displayed in the
dialog window content area below the title bar. For example, to display a simple
confirmation button:

$('#dialog').wijdialog({buttons: {ok: function () {
 $(this).wijdialog('close')
}}});

The text displayed on the button is ok and clicking on the button hides the dialog.
Calling $('#dialog').wijdialog('open') will show the dialog again.

Chapter 2

[21]

Configuring the dialog widget's appearance
Wijmo offers several options that change the dialog's appearance including title,
height, width, and position. The title of the dialog can be changed either by setting
the title attribute of the div element of the dialog, or by using the title option.
To change the dialog's theme, you can use CSS styling on the wijmo-wijdialog
and wijmo-wijdialog-captionbutton classes:

<!DOCTYPE HTML>
<html>
<head>
 ...
 <style>
 .wijmo-wijdialog {

 /*rounded corners*/
 -webkit-border-radius: 12px;
 border-radius: 12px;
 background-clip: padding-box;

 /*shadow behind dialog window*/
 -moz-box-shadow: 3px 3px 5px 6px #ccc;
 -webkit-box-shadow: 3px 3px 5px 6px #ccc;
 box-shadow: 3px 3px 5px 6px #ccc;

 /*fade contents from dark gray to gray*/
 background-image: -webkit-gradient(linear, left top, left
 bottom, from(#444444), to(#999999));
 background-image: -webkit-linear-gradient(top, #444444,
 #999999);
 background-image: -moz-linear-gradient(top, #444444,
 #999999);
 background-image: -o-linear-gradient(top, #444444, #999999);
 background-image: linear-gradient(to bottom, #444444,
 #999999);

 background-color: transparent;

 text-shadow: 1px 1px 3px #888;

 }
 </style>
 <script id="scriptInit" type="text/javascript">

The Dialog Widget

[22]

 $(document).ready(function () {
 $('#dialog').wijdialog({width: 350});
 });
 </script>
</head>
<body>
 <div id="dialog" title="Subtle gradients">
 <p>Loremipsum dolor sitamet, consectetueradipiscingelit.
 Aeneancommodo ligula eget dolor.Aeneanmassa. Cum
 sociisnatoquepenatibusetmagnis dis parturient montes,
 nasceturridiculus mus. Donec quam felis, ultriciesnec,
 pellentesqueeu, pretiumquis, sem.
 Nullaconsequatmassaquisenim. Donecpedejusto, fringillavel,
 aliquetnec, vulputate
 </p>
 </div>
</body>
</html>

We now add rounded boxes, a box shadow, and a text shadow to the dialog box.
This is done with the .wijmo-wijdialog class. Since many of the CSS3 properties
have different names on different browsers, the browser specific properties are used.
For example, -webkit-box-shadow is necessary on Webkit-based browsers. The
dialog width is set to 350 px when initialized so that the title text and buttons all fit
on one line.

Chapter 2

[23]

Loading external content
Wijmo makes it easy to load content in an iFrame. Simply pass a URL with the
contentUrl option:

$(document).ready(function () {
 $("#dialog").wijdialog({captionButtons: {
 pin: { visible: false },
 refresh: { visible: true },
 toggle: { visible: false },
 minimize: { visible: false },
 maximize: { visible: true },
 close: { visible: false }
 },
 contentUrl: "http://wijmo.com/demo/themes/"
 });
});

This will load the Wijmo theme explorer in a dialog window with refresh and
maximize/restore buttons. This output can be seen in the following screenshot:

The refresh button reloads the content in the iFrame, which is useful for dynamic
content. The maximize button resizes the dialog window.

The Dialog Widget

[24]

Summary
The Wijmo dialog widget is an extension of the jQuery UI dialog. In this chapter,
the features unique to Wijmo's dialog widget are explored and given emphasis.
I showed you how to add custom buttons, how to change the dialog appearance,
and how to load content from other URLs in the dialog.

Form Components
Wijmo form decorator widgets for radio button, checkbox, dropdown, and textbox
elements give forms a consistent visual style across all platforms. There are separate
libraries for decorating the dropdown and other form elements, but Wijmo gives
them a consistent theme. jQuery UI lacks form decorators, leaving the styling of
form components to the designer. Using Wijmo form components saves time during
development and presents a consistent interface across all browsers. To use these
form components with custom styles, see Chapter 8, Extending Wijmo.

Checkbox
The checkbox widget is an excellent example of the style enhancements that Wijmo
provides over default form controls. The checkbox is used if multiple choices are
allowed. The following screenshot shows the different checkbox states:

Wijmo adds rounded corners, gradients, and hover highlighting to the checkbox.
Also, the increased size makes it more usable. Wijmo checkboxes can be initialized
to be checked. The code for this purpose is as follows:

<!DOCTYPE HTML>
<html>
<head>

Form Components

[26]

 ...
 <script id="scriptInit" type="text/javascript">
 $(document).ready(function () {
 $("#checkbox3").wijcheckbox({checked: true});
 $(":input[type='checkbox']:not(:checked)").wijcheckbox();
 });
 </script>
<style>
div {
 display: block; margin-top: 2em;
 }
</style>
</head>
<body>
 <div><input type='checkbox' id='checkbox1' /><label
 for='checkbox1'>Unchecked</label></div>
 <div><input type='checkbox' id='checkbox2' /><label
 for='checkbox2'>Hover</label></div>
 <div><input type='checkbox' id='checkbox3' /><label
 for='checkbox3'>Checked</label></div>
</body>
</html>.

In this instance, checkbox3 is set to Checked as it is initialized.

You will not get the same result if one of the checkboxes is initialized
twice. Here, we avoid that by selecting the checkboxes that are not
checked after checkbox3 is set to be Checked.

Radio buttons
Radio buttons, in contrast with checkboxes, allow only one of the several options to
be selected. In addition, they are customized through the HTML markup rather than
a JavaScript API. To illustrate, the checked option is set by the checked attribute:

<input type="radio" checked />

jQuery UI offers a button widget for radio buttons, as shown in the following
screenshot, which in my experience causes confusion as users think that they
can select multiple options:

Chapter 3

[27]

The Wijmo radio buttons are closer in appearance to regular radio buttons so that
users would expect the same behavior, as shown in the following screenshot:

Wijmo radio buttons are initialized by calling the wijradiomethod method on radio
button elements:

<!DOCTYPE html>
<html>
<head>
 ...
 <script id="scriptInit" type="text/javascript">
 $(document).ready(function () {
 $(":input[type='radio']").wijradio({
 changed: function (e, data) {
 if (data.checked) {
 alert($(this).attr('id') + ' is checked')
 }
 }
 });
 });
</script>
</head>
<body>
 <div id="radio">
 <input type="radio" id="radio1" name="radio"/><label
 for="radio1">Choice 1</label>
 <input type="radio" id="radio2" name="radio"
 checked="checked"/><label for="radio2">Choice 2</label>
 <input type="radio" id="radio3" name="radio"/><label
 for="radio3">Choice 3</label>
 </div>
</body>
</html>

www.allitebooks.com

http://www.allitebooks.org

Form Components

[28]

In this example, the changed option, which is also available for checkboxes, is set to
a handler. The handler is passed a jQuery.Event object as the first argument. It is
just a JavaScript event object normalized for consistency across browsers. The second
argument exposes the state of the widget. For both checkboxes and radio buttons,
it is an object with only the checked property.

Dropdown
Styling a dropdown to be consistent across all browsers is notoriously difficult.
Wijmo offers two options for styling the HTML select and option elements. When
there are no option groups, the ComboBox is the better widget to use. This is covered
in the next section. For a dropdown with nested options under option groups, only
the wijdropdown widget will work. As an example, consider a country selector
categorized by continent:

<!DOCTYPE HTML>
<html>
<head>
 ...
 <script id="scriptInit" type="text/javascript">
 $(document).ready(function () {
 $('select[name=country]').wijdropdown();
 $('#reset').button().click(function(){
 $('select[name=country]').wijdropdown('destroy')
 });
 $('#refresh').button().click(function(){
 $('select[name=country]').wijdropdown('refresh')
 })
 });
 </script>
</head>
<body>
 <button id="reset">
 Reset
 </button>
 <button id="refresh">
 Refresh
 </button>
 <select name="country" style="width:170px">
 <optgroup label="Africa">
 <option value="gam">Gambia</option>
 <option value="mad">Madagascar</option>

Chapter 3

[29]

 <option value="nam">Namibia</option>
 </optgroup>
 <optgroup label="Europe">
 <option value="fra">France</option>
 <option value="rus">Russia</option>
 </optgroup>
 <optgroup label="North America">
 <option value="can">Canada</option>
 <option value="mex">Mexico</option>
 <option selected="selected" value="usa">United
 States</option>
 </optgroup>
 </select>
</body>
</html>

The select element's width is set to 170 pixels so that when the dropdown is
initialized, both the dropdown menu and items have a width of 170 pixels. This allows
the North America option category to be displayed on a single line, as shown in the
following screenshot. Although the dropdown widget lacks a width option, it takes
the select element's width when it is initialized. To initialize the dropdown, call the
wijdropdown method on the select element:

$('select[name=country]').wijdropdown();

The dropdown element uses the blind animation to show the items when the menu
is toggled.

Form Components

[30]

Also, it applies the same click animation as on buttons to the slider and menu:

To reset the dropdown to a select box, I've added a reset button that calls the
destroy method. If you have JavaScript code that dynamically changes the
styling of the dropdown, the refresh method applies the Wijmo styles again.

ComboBox
The Wijmo ComboBox works on the select and option elements. The options
can either be loaded through HTML markup or JavaScript Object Notation (JSON).
For our example, we load the menu items by using markup:

<!DOCTYPE HTML>
<html>
<head>
 ...

 <script id="scriptInit" type="text/javascript">
 $(document).ready(function () {
 $("#states").wijcombobox({
 dropdownHeight: 150,
 dropdownWidth: 200,
 showingAnimation: { effect: "clip" },
 hidingAnimation: { effect: "fade" }
 });
 $("#states").bind("wijcomboboxselectedindexchanged",
 function(e, data) {
 $('#message').text('You moved from ' + data.oldItem.label +
 ' to ' + data.selectedItem.label + '.');
 })
 });
 </script>
</head>
<body>
 <p><label id="output">Where do you live? (type to
 autocomplete)</label></p>
 <div>

Chapter 3

[31]

 <select id="states">
 <option value="AL">Alabama</option>
 ...
 <option value="WY">Wyoming</option>
 </select>
 </div>
 <p id="message"></p>
</body>
</html>

The showingAnimation method specifies the animation to use when the options
become visible. All of the jQuery UI effects can be used, and you can try them
on the jQuery UI effects demo page: http://jqueryui.com/effect/. For the
hidingAnimation method, I use the fade effect, which gradually decreases the
opacity to 0. We bind to the event type wijcomboboxselectedindexchanged
that is triggered when the selected index of the ComboBox is changed to display
a message involving the old item and the new item.

InputDate
The InputDate widget provides a convenient visual mechanism for helping users
to select dates. This widget supports a wide range of date formats, making it easier
for the user to select a date and provide the information to you in a consistent way.
The InputDate widget only works on an input element. To display a calendar
without the input element, use the calendar widget, which looks as shown in
the following screenshot:

Form Components

[32]

To display an InputDate widget with a button to trigger the calendar, wrap the
input element in a fixed width block, initialize the widget with the showTrigger
option, and remove the wijmo-wijinput-trigger class:

<!DOCTYPE HTML>
<html>
<head>
 <title>InputDate Example</title>
 ...
$(document).ready(function () {
 $("#calendarInput").wijinputdate({showTrigger: true});

});
</script>
 <style>
 .date {
 width: 200px;
 }
</style>
</head>
<body>
 <div class="date"><input type="text" id="calendarInput" /></div>
</body>
</html>.

Similarly, showing an InputDate with a spinner for incrementing or decrementing
the day, month, and year fields needs extra configuration. While the input field still
accepts keystrokes that are valid within the date format, the spinner gives another
option. Clicking once on the spinner changes the value of the selected date segment
by one. Holding the click gradually accelerates the rate at which the date segment
changes. Try it for yourself to get a feel of the visual effect:

<!DOCTYPE HTML>
<html>
<head>
 ...
 <script id="scriptInit" type="text/javascript">
 $(document).ready(function () {
 $spinnerInput = $("#spinnerInput");

Chapter 3

[33]

 $spinnerInput.wijinputdate({showSpinner: true, dateFormat:
 'g', activeField: 3});
 });
 </script>
</head>
<body>
 <div class="date"><input type="text" id="spinnerInput" /></div>
</body>
</html>

When working with a date input field, the most important part is sending the date
to the server. Wijmo offers a variety of dateFormat options depending on your
server setup and the date format that it accepts. In particular, if your server accepts
the short date (mm/dd/yyyy) and short time (hh:mmtt) formats, then the general
date format g will work for you. Simply initialize the InputDate widget with the
dateFormat option set to g. With the previous example, it would be:

$spinnerInput.wijinputdate({showSpinner: true, dateFormat: 'g'});

To get the date from the input, call the getText method:
$spinnerInput.wijinputdate("getText")

which returns the text displayed in the input box.

The wijinput format string follows the same convention as Java's SimpleDateFormat
class, except for the AM/PM designator. The following table summarizes the
formatting options:

Letter Date or Time Component Example Output

y Year yyyy; yy 1996; 96

M Month in year MMMM;MMM;MM July;Jul;07
d Day in month dd 10
H Hour in day (0-23) H 0
h Hour in am/pm (1-12) hh 12
m Minute in hour mm 30
s Second in minute ss 55
t AM/PM tt AM

To illustrate, if the dateFormat is set as MMM-dd-yyyy, you can expect to see a date
of the form Jul-14-2013 in the field.

Form Components

[34]

InputMask
The InputMask widget shows the user the correct format for an input box.
In addition, it prevents invalid input and gives visual cues about the data
required. An example is shown as follows:

The input format is specified by a mask. A list of options are available on
http://wijmo.com/wiki/index.php/InputMask. For our example, we make
an input mask for U.S. phone numbers where the area codes are optional. These
optional characters can be left blank:

<!DOCTYPE HTML>
<html>
<head>
 ...
 <script id="scriptInit" type="text/javascript">
 $(document).ready(function () {
 $("#textbox1").wijinputmask({
 mask: '(999) 000 - 0000'
 });
 });
 </script>
</head>
<body>
 <input type="text" id="textbox1" />
</body>
</html>

The masking element 9 indicates an optional digit, while 0 indicates a required digit.
Literals such as the dash and parenthesis are displayed as they appear in the mask.
By default, invalid inputs do not show up in the input element. To give the user
feedback when the input is invalid, we add an error CSS class that is triggered on
such inputs:

<!DOCTYPE HTML>
<html>

Chapter 3

[35]

<head>
 ...
 <script id="scriptInit" type="text/javascript">
 $(document).ready(function () {
 $("#phoneNumber").wijinputmask({
 mask: '(999) 000-0000',
 resetOnSpace: true,
 invalidInput: function () {
 $("#phoneNumber").addClass('error')
 },
 textChanged: function () {
 $("#phoneNumber").removeClass('error')
 }
 });
 });
 </script>
<style>
 .error {
 border:1px solid red;
 }
 .mask {
 width: 130px;
 }
</style>
</head>
<body>
 <div class="mask"><input type="text" id="phoneNumber" /> </div>
</body>
</html>

When the text changes, we remove the error class. On invalid input, we add the
class again. Another useful input mask is the day, month abbreviation, and year
format as shown in the following screenshot:

Form Components

[36]

This can be done with the input mask 00->L<LL-0000 where >L indicates an
uppercase character from A to Z and <LL indicates two lowercase characters from a
to z. To add a clear button for each of the fields, call the jQuery UI button function
and register the click event on it. Since the clear button is placed next to the input,
we call the setText method on its sibling input element.

<!DOCTYPE HTML>
<html>
<head>
 ...
 <script id="scriptInit" type="text/javascript">
 $(document).ready(function () {
 $("#phoneNumber").wijinputmask({
 mask: '(999) 000-0000',
 resetOnSpace: true,
 invalidInput: function () {
 $("#phoneNumber").addClass('error')
 },
 textChanged: function () {
 $("#phoneNumber").removeClass('error')
 }
 });
 $("#date").wijinputmask({
 mask: '00->L<LL-0000',
 resetOnSpace: true
 });
 $("button").button().click(function () {
 $(this).siblings().find("input").wijinputmask("setText",
 "");
 })
 });
 </script>
<style>
 .error {
 border:1px solid red;
 }
 .mask {
 width: 130px;
 }
 .ui-button-text-only .ui-button-text {
 padding: 3px 5px;
 }
</style>

Chapter 3

[37]

</head>
<body>
 <div class="mask"><input type="text" id="phoneNumber" /><button
 class="reset">Clear</button></div>
 <div class="mask"><input type="text" id="date" /><button
 class="reset">Clear</button></div>
</body>
</html>

Note that we also override the CSS for the button padding so that the buttons are the
same size as the inputs. With the reset button beside each field, the user would not
need to fill out the form again if they make a mistake on one of the fields.

Summary
In this chapter we learned about Wijmo's form components. A checkbox is used when
multiple items can be selected. Wijmo's checkbox widget has style enhancements over
the default checkboxes. Radio buttons are used when only one item is to be selected.
While jQuery UI only supports button sets on radio buttons, Wijmo's radio buttons
are much more intuitive. Wijmo's dropdown widget should only be used when there
are nested or categorized <select> options. The ComboBox comes with more features
when the structure of the options is flat. InputDate is used to display a date selector
calendar widget, while the InputMask is meant to give users a hint of what the correct
input format is.

Now that you have learned the form components in Wijmo, try building a form on
your own before moving onto the next chapter. Try making a nested form where
selecting a choice in a radio group shows or hides fields.

www.allitebooks.com

http://www.allitebooks.org

Working with Images
This chapter introduces the widgets for working with images: the carousel, gallery,
and lightbox. The carousel is a simpler form of the gallery widget, without thumbnails
by default. Both of them are used to display a list of images on the page. The carousel
is intended to show multiple images at once. The lightbox works differently in that it
shows a selected image in full size and opens in a dialog on top of the page contents.

Using the carousel widget
The carousel widget displays a list of images. The images by default are aligned
horizontally with previous and next buttons to scroll through them. Captions
can be displayed at the bottom of each of the images. In the sections that follow,
I'll show you how to create, configure, and use the carousel widget.

Creating the carousel widget
To set up the carousel widget, the width and height of the container element needs
to be the same as the image sizes. For instance, if your images are 300 x 200, then the
width and height needs to be set in the CSS as follows:

<!DOCTYPE HTML>
<html>
<head>
 ...
 <script id="scriptInit" type="text/javascript">
 $(document).ready(function () {

Working with Images

[40]

 $("#wijcarousel").wijcarousel({
 orientation: "horizontal",
 display: 1
 });
 });
 </script>
 <style type="text/css">
 #wijcarousel
 {
 width: 300px;
 height: 200px;
 }
 </style>
</head>
<body>
 <div id="wijcarousel">

 <img alt="1" src="http://lorempixum.com/300/200/nature/1"
 title="Word1"/>Word Caption 1

 <img alt="2" src="http://lorempixum.com/300/200/nature/2"
 title="Word2" />Word Caption 2

 <img alt="3" src="http://lorempixum.com/300/200/nature/3"
 title="Word3"/>Word Caption 3

 <img alt="4" src="http://lorempixum.com/300/200/nature/4"
 title="Word4"/>Word Caption 4

 <img alt="5" src="http://lorempixum.com/300/200/nature/5"
 title="Word5"/>Word Caption 5

 <img alt="6" src="http://lorempixum.com/300/200/nature/6"
 title="Word6" />Word Caption 6

 </div>
</body>
</html>

Chapter 4

[41]

With these settings, one image is displayed at a time with next and previous buttons
on the sides of the image, as shown in the following screenshot:

All of the images used in the example are the same size. This allows us to set the
container dimensions without cropping or resizing the images.

Configuring the carousel widget
The carousel widget supports a number of settings that let you control the features
available in the user interface as well as its display. The most useful ones are shown
as follows:

Setting Description
display This setting specifies the number of images shown
step This setting specifies the number of images scrolled by a transition

orientation This setting specifies whether to scroll the images horizontally or
vertically

showTimer This setting allows the images in carousel to be played with a timer
displaying the progress and a play/pause button

loop This setting allows cycling to continue through the images so that
the last image returns to the first one

Working with Images

[42]

The following diagram shows the different parts of the carousel widget:

Using the display options to show multiple
images
To show multiple images with the carousel widget, we increase the width of the
wijcarousel element proportional to the number of images to show. Since each
image is 300 pixels wide, to show two images at a time, we would set the display
option to 2 and the width of the element to 600 pixels. As another example, to
show three images at a time, we set the display options and CSS as shown in the
code listing:

<!DOCTYPE HTML>
<html>
<head>
 ...
 <script id="scriptInit" type="text/javascript">
 $(document).ready(function () {
 $("#wijcarousel").wijcarousel({
 orientation: "horizontal",
 display: 3,

Chapter 4

[43]

 step: 2
 });
 });
 </script>
<style type="text/css">
 #wijcarousel
 {
 width: 900px;
 height: 200px;
 }
</style>
</head>
<body>
 <div id="wijcarousel">

 <img alt="1" src="http://lorempixum.com/300/200/nature/1"
 title="Word1" />Word Caption 1

 <img alt="2" src="http://lorempixum.com/300/200/nature/2"
 title="Word2" />Word Caption 2

 <img alt="3" src="http://lorempixum.com/300/200/nature/3"
 title="Word3" />Word Caption 3

 <img alt="4" src="http://lorempixum.com/300/200/nature/4"
 title="Word4" />Word Caption 4

 <img alt="5" src="http://lorempixum.com/300/200/nature/5"
 title="Word5" />Word Caption 5

 <img alt="6" src="http://lorempixum.com/300/200/nature/6"
 title="Word6" />Word Caption 6

 </div>
</body>
</html>

Working with Images

[44]

As you can see in the following screenshot, setting the width to 900 pixels allows
enough room for the next and previous buttons so that they do not overlap with
the images.

We also set the step property in the options to 2 so that hitting the next button
slides the current images to the left so that two of them disappear. Wijmo plays a
nice animation while sliding the third image into the position of the first image.
To try out various animation and options, head to http://wijmo.com/demo/
explore/?widget=Carousel&sample=Animation.

Specifying the navigation options
In addition to the next and previous buttons, a pager can be added to navigate to a
specific image. The pager comes in many forms, specified by the pagerType option.
The available options are numbers, dots, thumbnails, and a slider. If you want to use
thumbnails, I recommend switching to the gallery widget as it comes with thumbnails
by default. The gallery widget is covered in the next section. The position settings
for a pager, as well as other elements, have fields that position elements relative to
each other.

For a visual display of the position options, refer to the section Positioning the Tooltip
in the next chapter. In this example, we place the pager's center top at the bottom of
the carousel with the my option and move it left by 10 pixels with the offset:

pagerPosition: {
 my: "center top",
 at: "center bottom",
 offset: "-10 0"
}

Chapter 4

[45]

Another handy option to make the carousel look cleaner is to display buttons on the
outside instead of overlapping them with the image.

Putting it all together, we initialize the carousel widget with the pager as follows:

$("#wijcarousel").wijcarousel({
 orientation: "horizontal",
 display: 1,
 showPager: true,
 pagerPosition: {
 my: "center top",
 at: "center bottom",
 offset: "-10 0"
 },
 pagerType: "dots",
 buttonPosition: "outside"
});

To center align the carousel, a common pattern is to set the width and let the margins
be automatically adjusted:

#wijcarousel
{
 display: block;
 margin: 0 auto;
 width: 304px;
 height: 200px;
}

The end result is a user friendly, clean interface as shown in the following screenshot:

Working with Images

[46]

Adding the timer and autoplay
To let the images play like a slideshow, we only need to set the auto option to true.
Along with the loop option, the images can play continuously. If you have many
images to show, you will want to reduce the interval or duration when each is
shown. Furthermore, the timer option allows the user to pause the slideshow.
The timer in progress looks like the one shown in the following screenshot:

An example setting to play each image for three seconds before moving onto the
next one is listed as follows:

$("#wijcarousel").wijcarousel({
 orientation: "vertical",
 interval: 3000,
 loop: true,
 auto: true,
 showTimer: true,
 display: 1
});

Using the gallery widget
As mentioned in the section on the carousel widget, the gallery widget displays
navigable thumbnails by default. Selecting a thumbnail shows a larger version
of the image above it.

Chapter 4

[47]

Creating the gallery widget
As you might expect by now, the Wijmo gallery widget is created with the
wijgallery method:

$("#wijgallery").wijgallery({
 thumbsDisplay: 3
});

This gallery is created with as much reuse of the carousel example as possible.
For the gallery, we only limit the width on the container as it needs space to
display the thumbnails:

#wijgallery {
 width: 300px;
}

We set the number of thumbnails to 3 due to the horizontal area below our images.
Wijmo automatically crops the images for the thumbnails. Our gallery widget now
looks like the one shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Working with Images

[48]

In the example, we used the same HTML list format as for the carousel. Nevertheless,
the Wijmo documentation recommends another format:

<div id="wijgallery">

 <img alt="1" src="http://lorempixum.com/100/100/nature/1"
 title="Word Caption 1"/>

 <img alt="2" src="http://lorempixum.com/100/100/nature/2"
 title="Word Caption 2"/>

 <img alt="3" src="http://lorempixum.com/100/100/nature/3"
 title="Word Caption 3"/>

 <img alt="4" src="http://lorempixum.com/100/100/nature/4"
 title="Word Caption 4"/>

 <img alt="5" src="http://lorempixum.com/100/100/nature/5"
 title="Word Caption 5"/>

 <img alt="6" src="http://lorempixum.com/100/100/nature/6"
 title="Word Caption 6"/>

</div>

Although more verbose, this format allows us to specify the thumbnail images.
Now each 300 x 200 image is accompanied by a 100 x 100 thumbnail. The gallery
widget automatically resizes images to fit the display area. If you want to resize
the images in your gallery widget without changing the aspect ratio, refer to a blog
post by one of the developers at http://wijmo.com/maintaining-aspect-ratio-
in-wijgallery/.

Chapter 4

[49]

Playing videos in the gallery widget
To play videos within the gallery widget, you just need to specify a thumbnail of the
video and a link to it. An example markup with three videos is:

<div id="wijgallery">

 <img width="120" height="90"
 src="http://i.ytimg.com/vi/0ZNSVMaPIUQ/0.jpg">

 <img width="120" height="90"
 src="http://i.ytimg.com/vi/4B22QGJoxZQ/0.jpg">

 <img width="120" height="90"
 src="http://i.ytimg.com/vi/bpPMAyAxO4Q/0.jpg">

</div>

The thumbnails will display at the bottom of the gallery. To prevent Wijmo from
cropping the thumbnails, we can set the thumbsLength option to the width of the
image. Moreover, the thumbsDisplay option, which determines the number of
thumbnails shown, needs to be adjusted. The mode can be set to swf for flash or
iframe for other video types. Since we did not specify a caption for the video,
we set the showCaption option to false:

$("#wijgallery").wijgallery({
 thumbsDisplay: 4,
 thumbsLength: 100,
 mode: "swf",
 showCaption: false
});

Working with Images

[50]

In this example, the thumbnails are assumed to be 100 pixels wide. An additional
library is required to play flash videos. The swfobject.js library must be loaded
before the wijgallery method is called. A Wijmo gallery configured to play
YouTube videos is shown as follows:

Using the lightbox widget
The lightbox widget is a tool to give focus to images. It displays the current image on
top of other page contents in a modal dialog. The Wijmo lightbox widget shares many
common features with the carousel and gallery widgets, including the navigation
buttons, timer, and caption area. The lightbox comes with default settings that show
the control buttons on hover along with an image count. In addition, it also adds a
close button to the top right corner.

Chapter 4

[51]

Creating the lightbox widget
Unlike the gallery and carousel widgets, the lightbox requires options to be
specified in the rel attribute of the anchor element. The following example
shows the required elements and a script that creates the lightbox:

<!DOCTYPE HTML>
<html>
<head>
...
 <script id="scriptInit" type="text/javascript">
 $(document).ready(function () {
 $("#lightbox").wijlightbox();
 });
 </script>
 <style type="text/css">
 #lightbox {
 width: 600;
 }
 </style>
</head>
<body>
 <div id="lightbox" class="">
 <a href="http://lorempixum.com/600/400/nature/1"
 rel="wijlightbox[stock];player=img">
 <imgsrc="http://lorempixum.com/150/125/nature/1" title="nature
 1"/>
 <a href="http://lorempixum.com/600/400/nature/2"
 rel="wijlightbox[stock];player=img">
 <imgsrc="http://lorempixum.com/150/125/nature/2" title="nature
 2"/>
 <a href="http://lorempixum.com/600/400/nature/3"
 rel="wijlightbox[stock];player=img">
 <imgsrc="http://lorempixum.com/150/125/nature/3" title="nature
 3"/>
 </div>
</body>
</html>

Working with Images

[52]

The lightbox widget requires an img element inside an anchor element. Also, the img
element needs to have a title, which is displayed as a caption. As you're familiar now,
we set the width attribute of the lightbox to be the width of the image. When you call
the wijlightbox method with no settings and click on one of the images, you get an
image frame on top of the page contents as shown in the following screenshot:

Changing the lightbox widget's appearance
The lightbox by default shows navigation and close buttons when hovering over it;
and play/pause buttons for slideshows are also available. To show these buttons,
use the ctrlButtons option. You may also want to display the lightbox with a modal
view by setting the modal option to true. To avoid having the navigation controls
overlap with the images, set the controlsPosition property to outside:

$("#lightbox").wijlightbox({
 modal: true,
 controlsPosition: 'outside',
 ctrlButtons: 'play|stop'
});

Chapter 4

[53]

The result is shown as follows:

Summary
In this chapter, we learned about the carousel widget, which is used for displaying
multiple images, and how to configure it with display and navigation options. This
chapter also introduced the animation and timer options available for the carousel.
Next, we learned about the gallery widget and using it to play videos. Finally, this
chapter concluded with a section on the lightbox widget.

Advanced Widgets
Wijmo includes many advanced widgets commonly used in web development.
These components of applications are often implemented with libraries or plugins.
In this chapter, we cover the tooltip, upload, video, and editor widgets. The main
advantage of using these Wijmo widgets over other libraries for the developer is
its consistent API. For the user, the interface components look more consistent.

Using the tooltip widget
Browsers, by default, display a textbox or balloon when hovering over image
elements that have title attributes. To make these text balloons user friendly,
Wijmo's tooltip widget uses JavaScript and CSS to enhance them. By default,
Wijmo shows the text in the title attribute of the tooltip elements. Consider
a simple example with an input element:

<input title="Instructions for the form go here" type="text" />

Calling $("input[title]").wijtooltip() generates a tooltip that shows when
hovering over the element. In addition, the jQuery selector only applies the tooltip
on those input elements that have titles. In this section, we explore how to position
the tooltip, load AJAX content within it, and change its style.

Advanced Widgets

[56]

Positioning the tooltip widget
Wijmo uses jQuery UI's position method which takes four main parameters:

Field Values Description
my left/right/center/top/

bottom/center
The position on the element being
moved

at left/right/center/top/
bottom/center

The position on the target element
to be aligned against

of selector The target element to be positioned
against

offset Integer The x y offset that specifies how
much to move horizontally and
vertically

The syntax reads almost like a sentence. Suppose we wanted to position a box with
ID move-it so that its top left is at the right bottom of the target; then we could use
the position method in the following way:

$("#move-it").position({
 "my": "left top",
 "at": "right bottom",
 "of": $("#target")
});

The following screenshot depicts the elements in the preceding example as boxes:

Chapter 5

[57]

jQuery UI has an example page where you can play around with the different
position settings at http://jqueryui.com/position/.

In the context of the tooltip, the my parameter specifies the position of the tooltip arrow.
The following diagram shows each of the configurations for the my parameter:

The at parameter for the tooltip works exactly the same way as with jQuery UI's
position method.

Loading AJAX content in the tooltip widget
A commonly used pattern for tooltips is loading external content. Wijmo tooltips
have the ajaxCallback option for inserting content into the tooltip. Our example
sends a request to the server and displays its response. We set the data-id attribute
on the links to be the indexes of the content we want. For instance, this link refers to
the first element in a table:

link text

Since you're sending the request to the server, data-id would be the primary
key of the row in the table or model you're querying. The following code snippet
demonstrates how to retrieve AJAX content:

$(document).ready(function () {
 $("a[data-id]").wijtooltip({
 position: { my: 'left bottom', at: 'right top' },
 ajaxCallback: function () {
 var $tooltip = this;
 $.get(url, { id: $tooltip.attr("data-id") }, function (text)

www.allitebooks.com

http://jqueryui.com/position/
http://www.allitebooks.org

Advanced Widgets

[58]

 {
 $tooltip.wijtooltip("option", "content", text);
 });
 }
 });
});

In the ajaxCallback function, the ID associated with each link is retrieved with
$tooltip.attr("data-id"), which returns the value of the data-id attribute.
This ID is then used to retrieve the tooltip contents, which is set with $tooltip.
wijtooltip("option", "content", "text").

Styling the tooltip widget
By default, Wijmo styles tooltips using the theme you selected, but we want tooltips
to stand out from the rest of the user interface. By applying a few CSS classes, we
can quickly change a Rocket-themed tooltip to a customized tooltip as shown in the
following screenshot:

When styling the tooltip, the idea is to set the border, background, and text colors
without overriding the default theme classes such as .ui-container. We do this
by setting the colors on the tooltip classes:

.wijmo-wijtooltip-container {
 color: #ffffff;
 background-color: slategray;
}
 .wijmo-wijtooltip-pointer-inner {
 border-right-color: slategray !important;
}
 .wijmo-wijtooltip, .wijmo-wijtooltip-pointer {
 border: 3px solid lawngreen;
}

Chapter 5

[59]

The .wijmo-wijtooltip-pointer-inner class is applied to the tail in the speech
bubble, so we set its background color to be the same as the .wijmo-wijtooltip-
container class. The text color is also set within the .wijmo-wijtooltip-
container class. Finally, we set the border colors on the tooltip and the pointer.

To make it easier to adjust the colors, I set the tooltip to show automatically with
the closeBehavior option set to sticky. Making the tooltip sticky makes it stay
on the page after moving the mouse outside of the target element. In this case,
it's the label. The complete example is as follows:

<!DOCTYPE HTML>
<html>
<head>
...

 <script id="scriptInit" type="text/javascript">
 $(document).ready(function () {
 $("[title]").wijtooltip({
 modal: true
 });
 $("[title]").wijtooltip("option","closeBehavior","sticky");
 $("[title]").wijtooltip ("show");
 });
 </script>
 <style>
 .wijmo-wijtooltip-container {
 color: #ffffff;
 background-color: slategray;
 }
 .wijmo-wijtooltip-pointer-inner {
 border-right-color: slategray !important;
 }
 .wijmo-wijtooltip, .wijmo-wijtooltip-pointer {
 border: 3px solid lawngreen;
 }
 </style>
 </head>
<body>
 <label id="tooltip" title="tooltip"></label>
</body>
</html>

Advanced Widgets

[60]

Using the upload widget with the
ProgressBar element
The Wijmo upload widget can upload multiple files at once, and supports a progress
bar. File uploads use HttpHandler to reduce the load on the server.

When initialized, the upload widget only has the Upload files button as shown in
the preceding screenshot. Once a file is selected, the upload file user interface has the
Upload files button to open the file browser, a Cancel All button, and an Upload All
button. Each file that is selected has an individual upload or cancel button next to it.
While uploading, the upload progress is shown in a progress bar element.

We will look at an example of replacing file inputs in web forms, where the file
uploads are submitted with the form:

<!DOCTYPE html>
<html>
<head>

...
<script id="scriptInit" type="text/javascript">
 $(document).ready(function () {
 varprogressbar = $("#progressbar");
 //Initializes the wijupload with file-input element.
 var upload = $("#upload").wijupload({
 totalUpload: function () {
 progressbar.show();
 },
 //Hide the progress-bar when upload action finished.
 totalComplete: function () {
 progressbar.fadeOut(1500, function () {
 if (supportXhr) {
 $("#progressbar").wijprogressbar("option", "value", 0);
 }
 });
 },

Chapter 5

[61]

 //Get the total progress of wijupload and update the
 //progress-bar.
 totalProgress: function (e, data) {
 if (supportXhr) {
 $("#progressbar").wijprogressbar("option", "maxValue",
 data.total);
 $("#progressbar").wijprogressbar("option", "value",
 data.loaded);
 }
 },
 action: $("form").attr("action")
 });
 supportXhr = $("#upload").wijupload("supportXhr");
 if (supportXhr) {
 progressbar.wijprogressbar({ value: 0 });
 }
 progressbar.hide();
 });
 </script>
 <style>
 #progressbar-container {
 height: 5em;
 }
 form {
 width: 800px;
 }
 </style>
</head>
<body>
 <form action="">
 <input id="upload" type="file" multiple/>
 <div id="progressbar-container">
 <div id="progressbar"></div>
 </div>
 </form>
</body>
</html>

With supportXhr = $("#upload").wijupload("supportXhr"), we check whether
the upload widget can be hooked up with AJAX to display file upload progress.
Although hidden, the progress bar is initialized when AJAX hooks are available.

Advanced Widgets

[62]

The upload widget is initialized with three event handlers to enable the progress bar.
First, totalUpload is the event that gets fired when the Upload All button is clicked.
In this example, we show the progress bar. Since <div id="progressbar"></div> is
an empty element, calling the jQuery show method does not render anything visible.
Next, the totalComplete event is triggered when all the files have been uploaded.
We fadeout the progress bar and set its value to zero for its next use. Finally, as the
file is getting uploaded, the function defined for totalProgress receives the upload
progress and the number of bytes uploaded to display in the progress bar. The action
option for the upload widget is the URL where the form is submitted on the server.

Applying Wijmo themes to HTML5 videos
The Wijmo video widget works with the HTML5 video tag and adds controls
using jQuery UI theming. The video player has the common play/stop, volume,
and full-screen controls. To initialize the widget, just call the wijvideo method on
a video element. To support all browsers, the video element needs to have the video
encoded in at least two formats. The browser support for each format is as follows:

Browser MP4 WebM Ogg
Internet
Explorer 9+

YES NO NO

Chrome 6+ YES YES YES
Firefox 3.6+ NO YES YES
Safari 5+ YES NO NO
Opera 10.6+ NO YES YES

For older browsers that don't support HTML5 such as IE8, it is recommended to not
use the video widget. However, you can insert text content to display a message in
place of the video. The full markup looks like the following:

<video width="520" height="340"controls="controls">
 <source src="movie.mp4" type="video/mp4">
 <source src="movie.ogg" type="video/ogg">
 Your browser does not support the video tag.
</video>

If you change the width or height, the video automatically resizes to fit the area.
To initialize the video widget, we would call $("video").wijvideo().

Chapter 5

[63]

Using the editor widget
The Wijmo editor allows non-technical users to manage and write HTML content.
Unlike other HTML editing tools for the browser on the market, Wijmo sports a
Microsoft Office 2007 style Ribbon UI, as shown in the following screenshot:

The Ribbon UI automatically resizes to fit within the textarea dimensions that create
the widget, as shown in the preceding screenshot. It supports three views for editing
HTML. For non-technical users, there is a WYSIWYG view that acts like Microsoft
Word. The formatting and layout is exactly what you see in the editor. In addition,
there is a source code view for those who know HTML. Furthermore, the split view
is a combination of these two so that the HTML and its preview are both visible.
To initialize an editor, just call the wijeditor method on a textarea; for example,
$("#wijeditor").wijeditor({ mode: "ribbon"}).

Using the editor widget with BBCode for
forums
For forum and blog use, the editor supports BBCode, namely tags such as
[url=http://example.com]Example[/url]. If BBCode is used, the source view
is in the BBCode format. The editor must be initialized in the bbcode mode:

<textarea id="wijeditor" style="width: 450px; height:
 200px;">Editor content</textarea>

Advanced Widgets

[64]

Calling $("#wijeditor").wijeditor({ mode: "bbcode"}) generates an editor
with BBCode controls.

Summary
In this chapter, we learned about the tooltip, upload, video, and editor widgets. These
widgets are commonly used in web applications. We took a look at customizing the
tooltip styling so that it stands out from the rest of the UI and loading AJAX content
in it. We've seen how to upload multiple files with Wijmo while showing a progress
bar, a video widget, and the Ribbon style editor. In the next chapter, you will learn
how to combine Wijmo with Knockout to build interactive user interfaces.

Dashboard with WijmoGrid
Developing rich client applications with jQuery UI results in a large number
of CSS query selectors and event handlers. In this chapter, you will learn about
another way of developing interactive user interfaces. Wijmo facilitates the shift
to this programming paradigm, supporting it with a plugin. This chapter will get
you started with the concepts.

Introduction to MVVM
Modern web applications are often built with the MVC pattern, for the backend. What
about the frontend? Frameworks such as Backbone.js leave a lot of boilerplate code
to be written. This becomes apparent for large projects. The library is lightweight, but
lacks strong abstractions. It leaves the task of loading data from the server and DOM
manipulation to the developer.

Dashboard with WijmoGrid

[66]

With the ModelViewViewModel (MVVM) pattern, the application logic is
encapsulated in a set of ViewModel classes that expose an object model that is
View-friendly. Views rely on bindings to observables to be notified of changes
in the ViewModel. As a result, the UI refreshes automatically with the data when
using the MVVM pattern. The flow of data in the MVVM pattern is illustrated
in this diagram:

UI events

PropertyChanged

events

ViewModel data

Model change

events

Update

Read

From a software design point of view, the MVVM pattern has the benefit of
testability, separation of concerns, and reusability. The ViewModel doesn't contain
any user interface elements, making it easy to test. The presentation is kept in the
View with HTML and CSS, which requires different skills than those for working
with the business logic in the ViewModel. The ViewModel can be reused in other
views, such as a mobile one or in a similar application with a different look. In
my own experience, I have used subclasses of a common ViewModel to build two
applications. Both of the applications use the same backend Model.

When the MVVM pattern is used in the browser, the Model represents the backend.
It is an abstraction of the normalized data store for objects and the operations (create,
read, update, delete) on it. The View is the user interface that displays information to
the user and fires events to the ViewModel. The ViewModel retrieves data from the
Model and notifies the View of changes. Also, it receives UI events from the View
and updates the data in the Model in response.

Chapter 6

[67]

Introduction to Knockout
Knockout is a JavaScript library that implements the MVVM pattern. By using
Knockout, you can avoid event handling and DOM manipulation with jQuery
and work with declarative bindings instead. Knockout comes with a rich set of
bindings for controlling the text, appearance, and flow. These include foreach,
if, visiblility, and style bindings. In addition, there are specific bindings
for working with form fields. They can be used to handle click events and to
enable or disable UI elements. These bindings are bound to an observable or an
observableArray object in the ViewModel. An observable issues notifications
when their value changes. Knockout provides a simple syntax for reading and
writing from an observable, as we will see. Equally important, Knockout keeps
track of the right parts of your UI to update when the ViewModel changes. That
means if you update an item of an observableArray object that is rendered with
a foreach loop, the HTML element that corresponds to the item changes with it.
If an observable is computed from another observable, then the dependency is
tracked for you.

Let's take a look at instantiating and using an observable. To create an observable,
we assign it to a property of a ViewModel.

varviewModel = {
 name: ko.observable('Bob')
};

To read from the observable, just call the observable with no parameters. If we call
viewModel.name(), "Bob" is returned. To write to the observable, pass the new value
as the parameter to the observable. Calling viewModel.name('Jeff') writes the
value Jeff to the value name.

Next, we write the View with a templating language using the data-bind attribute:

My name is

The View has the same effect as the following when initialized:

My name is Bob

Finally, to activate Knockout, we bind the ViewModel layer to the View layer
with JavaScript:

ko.applyBindings(myViewModel);

We can place this either at the bottom of the page or a DOM-ready function.

Dashboard with WijmoGrid

[68]

Building a rating system with Knockout
In this section we build a rating system using Wijmo's rating widget. The rating
system lets the user vote for the factors that affect their technology choices. They
have a total of 10 points to use. The Finish button is only enabled if the number
of points left for use is valid as shown in the following screenshot:

To build this rating system, we make use of Wijmo's Knockout binding for its rating
widgets. The survey is composed of a set of options where the user rates the option.
For each of the options, we create an answer object with the values for the binding:

function Answer(text) {
 this.answerText = text;
 this.points = ko.observable(1);
 this.split = ko.observable(2); // each star is split into 2
 sections to allow voting by .5
}

The contents of answerText are displayed under the Option heading. The points
are the number of stars under the Importance heading. The rating widget has many
other options, but we only introduce the ones necessary for our use. These options
are bound to the widget with the data-bind attribute:

<div data-bind="wijrating: { value: points, split: split }"></div>

Chapter 6

[69]

In our ViewModel, we have an array of options called answers and a total number of
points allowed, the pointsBudget. The pointsUsed is a dependent observable and
is calculated by adding up the points in all the answers:

function SurveyViewModel(pointsBudget, answers) {
 this.pointsBudget = pointsBudget;
 this.answers = $.map(answers, function (text) {
 return new Answer(text)
});
this.save = function () {
 alert('To do')
};

this.pointsUsed = ko.computed(function () {
 var total = 0;
 for (var i = 0; i <this.answers.length; i++)
 total += this.answers[i].points();
 return total;
}, this);

Using the jQuery $.map function, we can pass an array of option texts to the
SurveyViewModelclass. The first argument sets the total number of points allowed:

newSurveyViewModel(10, [
"Functionality, compatibility, pricing - all that boring stuff",
"How often it is mentioned on Hacker News",
"Number of gradients/dropshadows on project homepage",
"Totally believable testimonials on project homepage"
])

Since Knockout is an MVVM framework, we need to write the View using a
templating language. To display the options and the rating widget, we loop
through each answer in the ViewModel and display the answerText string
and the points for each answer, as follows:

<tbody data-bind="foreach: answers">
<tr>
 <td data-bind="text: answerText"></td>
 <td><div data-bind="wijrating: { value: points, split: split
 }"></div></td>
</tr>
</tbody>

Dashboard with WijmoGrid

[70]

The text binding applied to answerText displays its text value, while the value
binding for wijrating shows up as stars. Next, we want to show the number of
points the user is left with. This is also done with the help of text binding, which
converts a numeric value to a string:

<p>You've got <b data-bind="text: pointsBudget -
pointsUsed()"> points left to use.</p>

We enable the Submit button only when the value of pointsUsed doesn't exceed
the value we set in the SurveyViewModel. In this case, it's 10. The click binding
assigns the save action in the SurveyViewModel to the click event on the button:

<button data-bind="enable: pointsUsed() <= pointsBudget, click:
save">Finished</button>

To initialize the UI, we bind the ViewModel to the HTML by calling
ko.applyBindings and passing a SurveyViewModel object. Putting it all together, the
rating system is only a few lines of JavaScript and has no DOM manipulation. For the
complete source code for this example, refer to the code bundle available for download
online on the Packt website. Note that in addition to the usual Wijmo imports, we add
the Knockout library and the Wijmo bindings, which includes wijrating.

Now that you know how to build a user interface with the MVVM design pattern,
we go on to building a more complete application with forms and grids.

Building the dashboard
The project for the rest of the chapter is based on a mobile-paging application.
The application allows messages to be sent to pagers with a dashboard showing all
of the messages. The messages in the dashboard are updated in real time and are
sortable by column headings. In a real-world application, the messages shown in the
dashboard would be paginated and sorting each column would send an AJAX request
to the server. Wijmo already has an example of how to do this with the Grid widget,
which we will also use in our project. Our project introduces the basics of setting up
a real-time messaging platform with the MVVM pattern. The data is not persisted to
a database. However, form submissions are sent to the dashboard in real time with
WebSockets. After you finish this chapter, I would encourage you to take a look at
http://wijmo.com/grid-with-knockout-viewmodel-loading-remote-data/.

Chapter 6

[71]

Sending a message with Knockout and
Socket.IO
The Send Message page is a form that lets the user submit a message with a subject,
body, phone number, and message type. We build this form using a combination of
the bindings that come with Knockout and those provided by Wijmo. First, let's start
with a subject and a body. Since the Wijmo's textbox widget doesn't have a binding
for the input value, we use Knockout's value binding. This binding can be used on
the <input>, <select>, and <textarea> elements and links the element's value with
a property in the ViewModel:

<ul class="formdecorator">

 <h3> Subject </h3>
 <input id="text1" type="text" data-bind="value: subject"/>

 <h3> Body </h3>
 <textarea id="textarea1" rows="2" cols="50" data-bind="value:
body"></textarea>

To make these elements use the same styles as the rest of the form, we decorate them
with the textbox widget. This is done for styling the elements, as the View in HTML
contains the bindings:

$('#text1,#textarea1').wijtextbox();

In our ViewModel, we initialize the subject and body fields as observables with
empty strings:

varViewModel = function () {
 this.subject = ko.observable('');
 this.body = ko.observable('');
};

Dashboard with WijmoGrid

[72]

After seeing how the subject and body fields are implemented, you may want to
use the wijtextbox binding directly, as shown in the following demonstration that
does not work:

<ul class="formdecorator">

 <h3> Subject </h3>
 <input id="text1" type="text" data-bind="wijtextbox:
 {value: subject}"/>

 <h3> Body </h3>
 <textarea id="Textarea1" rows="2" cols="50" databind="wijtextbox:
 {value: body}">
 </textarea>

Although Knockout has a value binding, the wijtextbox binding is purely for
presentation. For a list of supported options for each binding, see http://wijmo.
com/wiki/index.php/Using_Wijmo_with_Knockout. Only the options listed on
the page support two-way bindings while other widget options are just used for
initialization. In the next step, Wijmo bindings are used for the phone number
and message type form components:

 <h3> Phone Number </h3>
 <input data-bind="wijinputmask:
 { text: phoneNumber, mask: '(999) 000-0000' }" />

 <h3> Message Type </h3>
 <input data-bind="wijcombobox:
 { text: messageType, data: messageTypes }"/>

Chapter 6

[73]

The wijinputmask binding initializes a WijmoInputMask widget with the pattern
(___) ___-____. The text option binds it to the observable phoneNumber in the
ViewModel. The wijcombobox widget acts as a dropdown for the message type.
The data option sets the messageTypes as available. Since the message types
are only read and not written, we scope it outside of the ViewModel. Changes to
objects outside of the ViewModel layer do not affect the UI. Later on, we submit the
ViewModel object to the server and having extraneous data such as message types
outside of the ViewModel layer simplifies the code. Wijmo's ComboBox takes an
array of objects with the label and value for the data option. The label property is
the text displayed, while value would be stored in the messageType observable.

varmessageTypes = $.map(["Alpha", "Beta", "Gamma"], function (type)
{
 return {label: type, value: type}
});

To initialize the message type to Gamma, we set it in the observable:

varViewModel = function () {
 this.subject = ko.observable('');
 this.body = ko.observable('');
 this.messageType = ko.observable('Gamma');
 this.phoneNumber = ko.observable('');
};

Finally, the last item we have left on the form is a submit button which sends the
data to the server using a WebSocket object. For this part, we will use Socket.IO.
To set up Socket.IO, download and install Node.JS from http://nodejs.org/
download/, then run npm install socket.io on the command line. This will
make the path /socket.io/socket.io.js available in the browser when the
Node.JS server is running. On the server, Socket.IO listens for message events
and broadcasts it as news. The emit function broadcasts to all clients except the
one who sent the message:

io.sockets.on('connection', function (socket) {
 socket.on('message', function (data) {
 socket.broadcast.emit('news', data);
 });
});

http://nodejs.org/download/

Dashboard with WijmoGrid

[74]

In the browser, a WebSocket connection is created to localhost by calling
io.connect('http://localhost'). The submit function sends a message
event to the server:

varViewModel = function () {
...
 this.submit = function () {
 socket.emit('message', ko.toJSON(viewModel));
 }
};

ko.toJSON converts the ViewModel data to JSON. JSON includes all of the
observables. The submit button is bound to the method through the click binding:

 <button id="Button1" data-bind="click: submit">
 Submit
 </button>

For decorating the button, call $('button').button(). The jQuery UI button
method styles the submit button in the same way as other widgets. You may ask,
why not just write the View so that the jQuery UI button is applied in the binding?
The following code would work in a perfect world:

<button id="Button1" data-bind="button: { click: submit }">
 Submit
</button>

Yet, Wijmo does not support binding to the click event on button widgets. So we
use Knockout's native click binding and jQuery UI's button method.

To make the View and the ViewModel layers work together, we apply the bindings
to the HTML:

varviewModel = new ViewModel();
ko.applyBindings(viewModel);

Chapter 6

[75]

With the Rocket theme, the Send Message page looks like the following screenshot:

Displaying messages on the Dashboard
Our ViewModel class for the Dashboard page is simple. It is composed of an
observableArray of message objects. An observableArray is useful when you
want to detect and respond to changes in a collection of JavaScript objects. Since
the messages on the Dashboard are not editable, the properties of each message
object do not need to be an observable. Each message has subject, body,
messageType, and, phoneNumber strings:

varviewModel = {
 data: ko.observableArray([
 {"subject": "Hi", "body": "Just a message", "messageType":
 "Gamma", "phoneNumber": "4128675309"}
])
};

Dashboard with WijmoGrid

[76]

On receiving an update from the server, the message is added to the ViewModel.
The data is received as text, as in AJAX responses. So the JSON.parse method turns
it into a message object:

var socket = io.connect('http://localhost');
socket.on('news', function (data) {
 viewModel.data.push(JSON.parse(data));
});

In the preceding code, a WebSocket connection is made to the server, allowing bi-
directional communication. However, we only listen for events from the server for
the Dashboard.

Our View layer is just a table. Wijmo makes displaying tabular data so easy that all
we need to make it dynamic is just the wijgrid binding, along with one essential
option, data. The data option takes as its parameter a wijdatasource widget, an
array, or a DOM table. A wijdatasource can be used to load data dynamically
from a remote source with filtering and sorting. Because our application doesn't
have a database in the Model, we pass an observableArrayto the data option:

<table id="dataGrid" data-bind="wijgrid: { data: data,
 allowSorting: true }">
</table>

To enhance the functionality, allowSorting is set so that clicking on a column
heading sorts the table by that column. The wijgrid binding takes care of
updating the table when the ViewModel data changes. As you are now familiar,
we are missing an essential piece that links the View and the ViewModels:
ko.applyBindings(viewModel). That finishes the dashboard with the result
as seen in the following screenshot:

Chapter 6

[77]

The dashboard initially loads with just the first message. When the Send Message
page is submitted, another message is inserted below it.

Summary
Wijmo, combined with Knockout, makes programming interactive applications easy.
In the rating system example, we have seen how observables that are computed from
other observables work. We've used a dependent observable to calculate the total
number of points used as each rating changes. In the Dashboard example, we built
a dynamic table that is updated by the server with the Wijmo grid widget. Also, we
coded the Send Message page to use the Wijmo widgets in combination with Knockout
bindings. The next chapter introduces mobile web development with Wijmo Mobile.

Wijmo Mobile
Introduced in the 2013 release, adaptive widgets can be used in both desktop and
mobile web applications. In this chapter, we take a quick tour of Wijmo mobile:
the setup, simple widgets, and views. In particular, we focus on the AppView,
Wijmo's adaptive super widget that lets you use the same pages for mobile and
desktop browsers.

Getting started with Wijmo mobile
In this section, I show you how to enable Wijmo's mobile widgets. We go through
the steps of obtaining jQuery mobile and creating widgets. Wijmo mobile widgets
are an extension of jQuery's mobile widgets. I also explain how a different approach
to creating mobile widgets is taken by jQuery mobile.

Setting up Wijmo mobile
Since Wijmo mobile is built on jQuery mobile, we will first obtain and install
jQuery mobile.

Obtaining jQuery mobile
You will need to replace the jQuery UI library used in the setup previously with
jQuery mobile, which is available from http://jquerymobile.com/download/.
jQuery mobile also has a Theme Roller like jQuery UI. The default theme is included
in the jQuery mobile package. If you want to make a custom theme, you can do so at
http://jquerymobile.com/themeroller/.

Wijmo Mobile

[80]

Installing jQuery mobile
You need to copy over the following items from the jQuery mobile download into
the lib folder:

• The jquery.mobile-1.3.1.min.js file
• The jquery.mobile-1.3.1.min.css file for the CSS styles
• The images directory for jQuery mobile icons

Once the files are in place, a mobile page can be created. In the following code
snippet, I show the contents of an example page using jQuery mobile:

<!DOCTYPE HTML>
<HTML>
<head>
<meta name="viewport" content="width=device-width"/>
<!--jQuery References-->
<script src="../lib/jquery-1.9.1.js"
 type="text/javascript"></script>
<script src="../lib/jquery.mobile-1.3.1.min.js"
 type="text/javascript"></script>
<!--Wijmo Widgets JavaScript-->
<script src="../lib/jquery.wijmo-open.all.3.20131.2.js"
 type="text/javascript"></script>
<script src="../lib/jquery.wijmo-pro.all.3.20131.2.js"
 type="text/javascript"></script>
<!--Theme-->
<link href="../lib/jquery.mobile-1.3.1.min.css" rel="stylesheet"
 type="text/css"/>
<!--Wijmo Widgets CSS-->
<link href="../lib/jquery.wijmo-open.3.20131.2.css"
 rel="stylesheet" type="text/css"/>
<link href="../lib/jquery.wijmo-pro.3.20131.2.css"
 rel="stylesheet" type="text/css"/>
</head>
<body>
 <div data-role="page" data-theme="b">
 <div data-role="content">
 <div data-role="header">
 <h1>Page Title</h1>
 </div>
 <div data-role="content">
 <button>Press Here</button>
 </div>

Chapter 7

[81]

 </div>
 </div>
</body>
</HTML>

Instead of the jQuery UI library, we used jQuery mobile here. In addition, we replaced
the Wijmo Rocket theme with the jQuery UI theme.

Using a mobile browser emulator
For this chapter, we use the Opera mobile emulator available at http://www.opera.
com/developer/mobile-emulator. Compared to the iPhone or Android emulators,
it is easier to install and simulate different devices with different screen sizes. The
Opera mobile browser is also widely used and supported on all popular platforms.
The following screenshot shows you the previous example of a jQuery mobile page
rendered in Opera mobile:

Wijmo Mobile

[82]

Creating an expander widget
The expander is for collapsible content. Unlike the accordion, it only has a single
section. To create an expander, wrap the collapsible block in a single-parent element
and apply the data-role="wijexpander" attribute to the parent element. You
can see how to do this in the following example, where only the contents of the body
tag are shown:

<div data-role="page" data-theme="b">
<div data-role="content">
<div data-role="wijexpander">
<h3>Header</h3>

<div>
Loremipsum...
</div>
</div>
</div>
</div>

The default for an expander shows the content within the block.

Passing options to the expander widget
To make the expander collapsed by default, we use the data-options attribute and
set expanded to false.

<div data-role="wijexpander" data-options='{ expanded: false }'>
<h3>Header</h3>

<div>
...
</div>
</div>

Since Wijmo mobile is still new, many of the widgets do not have mobile counterparts
and a few of the options supported for desktop browsers don't work. Namely, the
option contentUrl does not work in the 3.20131.2 version, and setting the expand
direction to right makes the UI look confusing. Here, we see an example of changing
the expand direction by setting data-options='{expandDirection: "right"}':

Chapter 7

[83]

Creating a ListView widget
The ListView acts as a list of links for navigation. jQuery mobile applies the necessary
styles to make the list mobile-friendly. Once a list item is tapped on, the link content is
loaded through AJAX and inserted into the page. This improves the user perception as
they do not see a blank screen. A ListView is created by setting the data-role attribute
of an HTML list to listview with each list item containing a link:

<div data-role="page">
<div data-role="content">
<ul data-role="listview" data-autodividers="true" data-theme="c">
Wijmo Demos
WijmoListView
Documentation
<a href="http://jquerymobile.com/demos/1.2.0/docs/lists/docs-
lists.html">jQuery Mobile Lists

</div>
</div>

Wijmo Mobile

[84]

With data-autodividers="true" on the list parent, the list items are categorized
by their first letter. The list items show up as navigation buttons with right arrows
as shown in the following screenshot:

Creating an AppView widget
The WijmoAppView creates a responsive layout that adapts to the screen size. It
works similar to ListView on phones. On desktops and tablets, the list is displayed
on the left side with the content pane taking up the rest of the page. Note that when
using AppView, your jQuery mobile and jQuery versions must be compatible with
the release of Wijmo you're using. For this example, I am using jQuery 1.8.2, jQuery
mobile 1.2.0, and Wijmo3.20131.4.

An AppView is composed of an AppView page and a ListView for navigation:

<div data-role="wijappview">
<div data-role="appviewpage">
<div data-role="header" data-position="fixed">
<h2>Title</h2>
</div>
<div data-role="content">
<h3>Content for Tablets</h3>
<p>On an tablet the AppView will result in a multi-column layout
with an always visible menu. This view is optimized for tablets
or even full desktop browsers. AppView will automatically use
this view when running on a large enough screen.</p>
</div>
<div data-role="footer" data-position="fixed">
<h2>Footer</h2>
</div>

Chapter 7

[85]

</div>
<div data-role="menu" class="ui-body-a">
<ul data-role="listview" data-theme="a">
 Calendar
 Form
 Accordion

</div>
</div>

Under the AppView page, the page title is set in an element using data-
role="header", which is always displayed at the top of the page. As you might
guess, there is also a data-role="footer" attribute, which is displayed at the
bottom of the page when data-position is set to fixed. The content area in the
preceding code marked with data-role="content" only shows in tablets.
You can see how the page would look like in a tablet in the following screenshot:

Wijmo Mobile

[86]

The navigation panel is a ListView widget wrapped around by a data-role="menu"
element. On the phone, only the navigation panel is shown when the AppView is
loaded as in the following screenshot:

To make the menu items work, we need to serve the files set in the href attributes
from a server since they are loaded through AJAX. The downloadable source code
for this chapter includes a file server written in Node.JS.

Adding the AppView pages
Let's add the calendar page and initialize it with the calendar widget. Create a
calendar.html file with the following code:

<div data-role="appviewpage" data-title="Calendar">
 <div data-role="content">
 <div id="wijcalendar" data-role="wijcalendar"></div>
 </div>
</div>

The contents under data-role="content" are displayed in the content area. In this
area, the calendar is added by setting data-role="wijcalendar" on a div. On the
top left is a Back button, which returns to the main menu. It is added whenever a
menu item is selected. In the following screen, I selected the calendar menu entry:

Chapter 7

[87]

If the example doesn't work for you, the first thing to try is
replacing the header styles and scripts with the ones hosted
on the CDN: http://wijmo.com/downloads/#wijmo-cdn.
The next step is to upload your HTML files and post a question on
the forum http://wijmo.com/forums/. In addition, check the
AJAX requests and make sure your files are being served locally.

Reusing non-mobile pages
Suppose we already have a calendar.htmlfile. How can it be used with the
new mobile app? You just need to add data-role="appviewpage",data-
role="content", and insert data-role="widgetname" for all widgets on
the page. For instance, we could replace calendar.html with the following,
keeping the reference to jQuery UI and the Rocket theme:

<!DOCTYPE HTML>
<html>
<head>

http://wijmo.com/forums/
http://wijmo.com/forums/

Wijmo Mobile

[88]

 <title>Calendar</title>
 <!--jQuery References-->
 <script src="../lib/jquery-1.9.1.js"
 type="text/javascript"></script>
 <script src="../lib/jquery-ui.custom.js"
 type="text/javascript"></script>
 <!--Wijmo Widgets JavaScript-->
 <script src="../lib/jquery.wijmo-open.all.js"
 type="text/javascript"></script>
 <script src="../lib/jquery.wijmo-pro.all.3.20131.2.js"
 type="text/javascript"></script>
 <!--Theme-->
 <link href="../lib/jquery-wijmo.css" rel="stylesheet"
 type="text/css" />
 <!--Wijmo Widgets CSS-->
 <link href="../lib/jquery.wijmo-open.css" rel="stylesheet"
 type="text/css" />
 <link href="../lib/jquery.wijmo-pro.3.20131.2.css"
 rel="stylesheet" type="text/css" />
 <script id="scriptInit" type="text/javascript">
 $(document).ready(function () {
 $('#wijcalendar').wijcalendar()
 });
</script>
</head>
<body>
 <div data-role="appviewpage">
 <div data-role="content">
 <div id="wijcalendar" data-role="wijcalendar"></div>
 </div>
 </div>
</body>
</html>

We added two extra elements for the required data-roles. Your page may have
a different structure and you may just need to add the data-roles attribute to
existing elements. The JavaScript on the page is not executed, as Wijmo ignores
everything except the title outside of data-role="appviewpage". Since the title
is set with <title>Calendar</title>, Wijmo uses it as the title for the page as
shown in the following screenshot:

Chapter 7

[89]

On desktop browsers, the page still displays the calendar widget. Take a look at
the screenshot:

This is quite remarkable as jQuery mobile does not have a similar widget to allow
reuse of non-mobile pages. Using the WijmoAppView, separate mobile development
is no longer necessary.

Wijmo Mobile

[90]

Summary
This chapter introduced Wijmo mobile widgets. Unlike jQuery mobile, Wijmo's
adaptive widgets can be used on both desktops and phones. We started by setting
up the development environment, then we looked at several widgets, starting from
the simplest.

Extending Wijmo
In this chapter, I show you how to modify Wijmo's widgets and CSS styles for
themes. You will learn how to add a button to the dialog widget without overriding
existing buttons. Then, I introduce an easy way to modify existing Wijmo themes.

Extending Wijmo Open
Wijmo Open is a set of open source jQuery UI widgets. Wijmo widgets such as the
slider, dialog, or accordion are extensions to jQuery UI's widgets. Others, such as
Wijmo's menu or dropdown, are new widgets.

Modifying the Dialog widget
In Chapter 2, The Dialog Widget, I showed you how to add custom buttons to the
dialog widget without changing the internals. The API is unwieldy, in that you
must override the icons and behavior for a default button. Now, I will show you
how to add a custom button by extending the API. First, open jquery.wijmo-
open.all.js and rename it as jquery.wijmo-open.all.extended.js.

Extending Wijmo

[92]

When you open jquery.wijmo-open.all.extended.js in an editor, use code
folding to collapse all the code and search for wijdialog. You will get a view that
looks like the following screenshot after expanding on the line with varWijDialog:

All of the Wijmo Open widgets start with "use strict". This turns on strict semantics
for ECMAScript 5 and allows code to run faster on browsers that support it. Let's take
a look at those lines that start with WijDialog.prototype. All the methods that start
with an underscore are private, while the other ones are accessible through the API
and documented. Under the _createCaptionButtons function, there is a button
object with all the buttons on the title bar. To add a hint button to the dialog title
bar, we use the same format as the other buttons:

varcaptionButtons = [], self = this, o = self.options, i, buttons = {
 pin: {

Chapter 8

[93]

 visible: true,
 click: self.pin,
 iconClassOn: "ui-icon-pin-w",
 iconClassOff: "ui-icon-pin-s"
 },
 refresh: {
 visible: true,
 click: self.refresh,
 iconClassOn: "ui-icon-refresh"
 },
 toggle: {
 visible: true,
 click: self.toggle,
 iconClassOn: "ui-icon-carat-1-n",
 iconClassOff: "ui-icon-carat-1-s"
 },
 hint: {
 visible: true,
 click: self.hint,
 message: "",
 iconClassOn: "ui-icon-lightbulb"
 },
 minimize: {
 visible: true,
 click: self.minimize,
 iconClassOn: "ui-icon-minus"
 },
 maximize: {
 visible: true,
 click: self.maximize,
 iconClassOn: "ui-icon-extlink"
 },
 close: {
 visible: true,
 click: self.close,
 iconClassOn: "ui-icon-close"
 }
}

"use strict" may cause unexpected behavior in your
code. You may want to check with a utility such as JSHint
(http://www.jshint.com/) or remove strict mode altogether.

http://www.jshint.com/
http://www.jshint.com/

Extending Wijmo

[94]

The click event for the button is specified with the click option. For the hint button,
use self.hint. So, we write the hint function as a WijDialog method:

WijDialog.prototype.hint = function () {
 var self = this, o = self.options;
 alert(o.message);
};

In this function, the options are read from self.options, and the message string set
in the option is used in an alert box. To use the new API for the hint button, we just
need to set the message option:

$('#dialog').wijdialog({message: 'Success! You just added a title
bar button.'});

Be sure to change the reference to the jquery.wijmo-open.all.js script to jquery.
wijmo-open.all.extended.js.

Modifying a Wijmo theme with ThemeRoller
To modify an existing Wijmo theme, open the jquery-wijmo.css file in the lib
folder in our project structure. You can find more themes in your Wijmo download
under the Themes folder. Once you've opened up the CSS file, search for jQuery UI
CSS Framework. There should be a comment section like the following:

/*
 * jQuery UI CSS Framework 1.8.7
 *
 * Copyright 2010, AUTHORS.txt (http://jqueryui.com/about)
 * Dual licensed under the MIT or GPL Version 2 licenses.
 * http://jquery.org/license
 *
 * http://docs.jquery.com/UI/Theming/API
 *
 * To view and modify this theme, visit
http://jqueryui.com/themeroller/?ffDefault=...
 */

When you visit the link in the browser, ThemeRoller loads the Wijmo theme.
The theme settings can be caned under the Roll Your Own tab on the left side.
You can see the Rocket theme loaded in ThemeRoller in the following screenshot:

Chapter 8

[95]

For details on how to modify a theme, see http://wijmo.com/wiki/index.php/
Wijmo_Loves_ThemeRoller:_An_Overview.

Summary
Now that you have a sense of how to change things in Wijmo, you're in a better
position to use Wijmo in your projects. Often, the situation requires changes to
the theme or the behavior of widgets. Wijmo makes it easy to make those changes.

Index
Symbols
$.map function 69
_createCaptionButtons function 92
.wijmo-wijdialog class 22
.wijmo-wijtooltip-pointer-inner class 59

A
action option 62
ajaxCallback function 58
ajaxCallback option 57
anchor element 51
animation

URL 44
answerText string 69
AppView pages

adding 86, 87
AppView widget

AppView pages, adding 86, 87
creating 84-86
non-mobile pages, reusing 87-89

at field 56
auto option 46
autoplay

adding 46

B
Back button 86
BBCode

editor, using 63
blur event 16
body tag 82
buttonCreating method 16
button method 74

button object 92

C
Cancel All button 60
captionButtons option 15-17, 20
Carousel widget

autoplay, adding 46
configuring 41
creating 39-41
display options, using to show multiple

pages 42-44
navigation options, specifying 44, 45
timer, adding 46
using 39

CDN 6
changed option 28
checkbox widget 25, 26
checked attribute 26
checked property 28
clear button 36
click event 70, 74
click option 18, 94
closeBehavior option 59
ComboBox 30, 31
Content Distribution Networks. See CDN
contentUrl option 16, 23
controlsPosition property 52
CSS

for Widgets, URL 7
ctrlButtons option 52
Cupertino

URL 6
custom buttons

adding 18-20

[98]

D
dashboard

building 70
messages, displaying 75-77
message, sending with Knockout 71-75
message, sending with Socket.IO 71-75

data-bind attribute 67, 68
data-id attribute 57, 58
data option 73, 76
data-options attribute 82
data-role attribute 83
dateFormat option 33
destroy method 30
development

jQuery UI, installing for 11
Wijmo, installing for 11

dialog appearance
configuring 21, 22

dialog widget
modifying 91-94
Wijmo, adding to 15-18

disable method 16
display options

used, to show multiple pages 42-44
div element 21
dropdown 28-30

E
editor widget

used, with BBCode for forums 63
using 63

emit function 73
expander widget

creating 82
options, passing to 82

expandingAnimation option 16
external content

loading 23

F
Finish button 68
form components

checkbox widget 25, 26
ComboBox 30, 31
dropdown 28-30

InputDate widget 31-33
InputMask widget 34-37
radio buttons 26-28

Free Trial button 10

G
gallery widget

creating 47, 48
using 46
videos, playing 49

getState method 17

H
hint button 92
hint function 94
href attribute 86
HTML5 videos

Wijmo themes, applying to 62
HTML document

Wijmo, adding to 12

I
img element 52
InputDate widget 31-33
input element 31, 32
InputMask widget

about 34-37
URL 34

J
jQuery.Event object 28
jQuery mobile

installing 80
obtaining 79
URL 79

jQuery UI
customizing, for download 9
download page, URL 9
installing, for download 11

jQuery UI 1.10.2
URL 6

jQuery UI effects
URL 31

jQuery UI icons

[99]

URL 18
JSHint

URL 93
JSON.parse method 76

K
Knockout

about 67
messages, sending with 71-75
rating system, building with 68-70

L
label property 73
lightBox widget

appearance, changing 52
creating 51, 52
using 50

ListView widget
creating 83, 84

loop option 46

M
maximize method 16
message object 76
minimize method 16
mobile browser emulator

using 81
Model 66
ModelViewViewModel (MVVM) 66
my field 56
my option 44
my parameter 57

N
navigation options

specifying 44, 45
Node.JS

URL 73
non-mobile pages

reusing 87-89

O
observableArray object 67
of field 56

offset field 56
Opera mobile emulator

URL 81

P
pagerType option 44
pin method 16
position settings

URL 57
ProgressBar element

upload widget, using with 60-62

R
radio buttons 26-28
rating system

building, with Knockout 68-70
refresh method 16, 30
rel attribute 51
reset button 37
reset method 16
restore method 16
Rocket theme

URL 7

S
select element 29
setText method 36
showCaption option 49
showTrigger option 32
SimpleDateFormat class 33
Socket.IO

messages, sending with 71-75
stack option 16
stateChanged event 17
Submit button 70
Submit function 74
SurveyViewModelclass 69

T
target element 59
text binding 70
text option 73
theme

modifying, URL 95

[100]

Theme Explorer
URL 6

ThemeRoller
URL 9, 79
Wijmo theme, modifying with 94, 95

thumbsDisplay option 49
thumbsLength option 49
timer

adding 46
timer option 46
title attribute 21, 55
title option 21
toggle method 16
tooltip widget

AJAX content, loading 57, 58
positioning 56, 57
styling 58, 59
using 55

totalComplete event 62

U
Upload All button 60, 62
Upload files button 60
upload widget

used, with ProgressBar element 60-62

V
videos

playing, in gallery widget 49
View 66
ViewModel 66
visible option 17

W
widget method 16
width attribute 52
width option 29
wijcarousel element 42
wijdatasource widget 76
WijDialog method 17, 94
wijdropdown method 29
wijgallery method 47, 50
wijlightbox method 52

Wijmo
adding, to dialog widget 15-18
adding, to HTML document 12
custom buttons, adding 18-20
dialog appearance, configuring 21, 22
downloading 10, 11
external content, loading 23
installing, for development 9-11
installing, via CDN 6-8
licensing 13, 14
setting up 5

WijmoInputMask widget 73
Wijmo, installing

jQuery UI, customizing for download 9
jQuery UI, installing for development 11

Wijmo mobile
jQuery mobile, installing 80
jQuery mobile, obtaining 79
mobile browser emulator, using 81
setting up 79

Wijmo Open
Dialog widget, modifying 91-94
extending 91
Wijmo theme, modifying with

ThemeRoller 94, 95
Wijmo themes

applying, to HTML5 videos 62
modifying, with ThemeRoller 94, 95

wijradiomethod method 27

Z
zIndex option 16

Thank you for buying
Building UIs with Wijmo

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one
of our commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but
no writing experience, our experienced editors can help you develop a writing career,
or simply get some additional reward for your expertise.

Instant Wijmo Widgets How-to
ISBN: 978-1-782161-86-8 Paperback: 82 pages

Learn how to use Wijmo tools to speed up UI
development and browser compatibility through
practical recipes

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Make calendars, sliders, dynamic and
animated charts quickly and easily

3. Create a live stream chart displaying real
time data

jQuery UI 1.8: The User Interface
Library for jQuery
ISBN: 978-1-849516-52-5 Paperback: 424 pages

Build highly interactive web applications with
ready-to-use widgets from the jQuery User
Interface Library

1. Packed with examples and clear explanations
of how to easily design elegant and powerful
front-end interfaces for your web applications

2. A section covering the widget factory including
an in-depth example on how to build a custom
jQuery UI widget

3. Updated code with significant changes and
fixes to the previous edition

Please check www.PacktPub.com for information on our titles

WordPress Multisite
Administration
ISBN: 978-1-783282-47-0 Paperback: 106 pages

A concise guide to set up, manage, and customize
your blog network using WordPress multisite

1. Learn how to configure a complete, functional,
and attractive WordPress Multisite

2. Customize your sites with WordPress themes
and plugins

3. Set up, maintain, and secure your blog network

Instant Ext JS Starter
ISBN: 978-1-782166-10-8 Paperback: 56 pages

Find out what Ext JS actually is, what you can do
with it, and why it's so great

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results

2. Install and set up the environment with
this quick Starter guide

3. Learn the basics of the framework and
built-in utility functions

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Wijmo
	Setting up Wijmo
	Installing Wijmo the quick way via a CDN
	Installing Wijmo for development
	Customizing jQuery UI for download
	Downloading Wijmo
	Installing jQuery UI for development
	Installing Wijmo for development
	Adding Wijmo to an HTML document

	Wijmo licensing

	Required background
	Summary

	Chapter 2: The Dialog Widget
	Wijmo additions to the dialog widget at
a glance
	Adding custom buttons
	Configuring the dialog appearance
	Loading external content

	Summary

	Chapter 3: Form Components
	Checkbox
	Radio buttons
	Dropdown
	ComboBox
	InputDate
	InputMask
	Summary

	Chapter 4: Working with Images
	Using the carousel widget
	Creating the carousel
	Configuring carousel
	Using the display options to show multiple images
	Specifying the navigation options
	Adding the timer and autoplay

	Using the gallery widget
	Creating the gallery
	Playing videos in the gallery

	Using the lightbox widget
	Creating the lightbox
	Changing the lightbox appearance

	Summary

	Chapter 5: Advanced Widgets
	Using the tooltip widget
	Positioning the tooltip widget
	Loading AJAX content in the tooltip
	Styling the tooltip

	Using the upload widget with the ProgressBar element
	Applying Wijmo themes to HTML5 videos
	Using the editor widget
	Using editor with BBCode for forums

	Summary

	Chapter 6: Dashboard with WijmoGrid
	Introduction to MVVM
	Introduction to Knockout
	Building a rating system with Knockout

	Building the dashboard
	Sending a message with Knockout and Socket.IO
	Displaying messages on the Dashboard

	Summary

	Chapter 7: Wijmo Mobile
	Getting started with Wijmo mobile
	Setting up Wijmo mobile
	Obtaining jQuery mobile
	Installing jQuery mobile
	Using a mobile browser emulator

	Creating an expander widget
	Passing options to the expander widget

	Creating a ListView widget
	Creating an AppView widget
	Adding the AppView pages
	Reusing non-mobile pages

	Summary

	Chapter 8: Extending Wijmo
	Extending Wijmo Open
	Modifying the Dialog widget
	Modifying a Wijmo theme with ThemeRoller

	Summary

	Index

