
www.allitebooks.com

http://www.allitebooks.org

C# 3.0:
 The Complete Reference

Presented By: Oronno - "The ONE"

www.the1.co.nr

www.allitebooks.com

http://www.allitebooks.org

About the Author
Herbert Schildt is a leading authority on C#, C++, C,
and Java. His programming books have sold more than
3.5 million copies worldwide and have been translated
into all major foreign languages. He is the author of
numerous bestsellers, including Java: The Complete
Reference, C++: The Complete Reference, C: The Complete
Reference, and C#: A Beginner’s Guide. Although interested
in all facets of computing, his primary focus is computer
languages, including compilers, interpreters, and robotic
control languages. He also has an active interest in the
standardization of languages. Schildt holds both graduate
and undergraduate degrees from the University of Illinois.
He can be reached at his consulting office at (217) 586-4683.
His web site is www.HerbSchildt.com.

About the Technical Editor
Michael Howard (Austin, Texas) is a principal security
program manager on the Trustworthy Computing
(TwC) Group’s Security Engineering team at Microsoft,
where he is responsible for managing secure design,
programming, and testing techniques across the
company. Howard is an architect of the Security
Development Lifecycle (SDL), a process for improving
the security of Microsoft’s software. Howard speaks
regularly on the topic of securing code for Microsoft
and at conferences worldwide. He regularly publishes
articles on security design and is the co-author of six
security books, including the award-winning Writing
Secure Code, 19 Deadly Sins of Software Security, The Security
Development Lifecycle, and his most recent release, Writing
Secure Code for Windows Vista.

www.allitebooks.com

www.HerbSchildt.com
http://www.allitebooks.org

C# 3.0:
 The Complete Reference

Herbert Schildt

New York Chicago San Francisco
 Lisbon London Madrid Mexico City

 Milan New Delhi San Juan
 Seoul Singapore Sydney Toronto

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2009 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without
the prior written permission of the publisher.

ISBN: 978-0-07-159842-2

MHID: 0-07-159842-6

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-158841-6, MHID: 0-07-158841-8.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name,
we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where
such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. To contact a representative please visit the Contact Us page at www.mhprofessional.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use
of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to
comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DIS-
CLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the
functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor
its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages
resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances
shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from
the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

www.allitebooks.com

www.mhprofessional.com
http://www.allitebooks.org

Contents at a Glance

 Part I The C# Language
 1 The Creation of C# . 3
 2 An Overview of C# . 11
 3 Data Types, Literals, and Variables . 35
 4 Operators . 63
 5 Program Control Statements . 85
 6 Introducing Classes and Objects . 109
 7 Arrays and Strings . 137
 8 A Closer Look at Methods and Classes . 165
 9 Operator Overloading . 213
 10 Indexers and Properties . 245
 11 Inheritance . 269
 12 Interfaces, Structures, and Enumerations . 311
 13 Exception Handling . 337
 14 Using I/O . 363
 15 Delegates, Events, and Lambda Expressions . 399
 16 Namespaces, the Preprocessor, and Assemblies . 437
 17 Runtime Type ID, Refl ection, and Attributes . 459
 18 Generics . 495
 19 LINQ . 545
 20 Unsafe Code, Pointers, Nullable Types, and Miscellaneous Topics 585

 Part II Exploring the C# Library
 21 Exploring the System Namespace . 615
 22 Strings and Formatting . 663
 23 Multithreaded Programming . 703
 24 Collections, Enumerators, and Iterators . 749
 25 Networking Through the Internet Using System.Net 821
 26 Use System.Windows.Forms to Create Form-Based Windows
 Applications . 847
 A Documentation Comment Quick Reference . 867

 Index . 871

v

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

 Contents

Special Thanks . xxi
Preface . xxiii

 Part I The C# Language
 1 The Creation of C# . 3

C#’s Family Tree . 3
C: The Beginning of the Modern Age of Programming 3
The Creation of OOP and C++ . 4
The Internet and Java Emerge . 4
The Creation of C# . 5
The Evolution of C# . 7

How C# Relates to the .NET Framework . 7
What Is the .NET Framework? . 8

How the Common Language Runtime Works . 8
Managed vs. Unmanaged Code . 9

The Common Language Specifi cation . 9

 2 An Overview of C# . 11
Object-Oriented Programming . 11

Encapsulation . 12
Polymorphism . 12
Inheritance . 13

A First Simple Program . 13
Using csc.exe, the C# Command-Line Compiler 14
Using the Visual Studio IDE . 15
The First Sample Program, Line by Line . 19

Handling Syntax Errors . 22
A Small Variation . 22
A Second Simple Program . 23
Another Data Type . 25
Two Control Statements . 26

The if Statement . 27
The for Loop . 28

Using Code Blocks . 29
Semicolons, Positioning, and Indentation . 31
The C# Keywords . 32
Identifi ers . 33
The .NET Framework Class Library . 34

vii

www.allitebooks.com

http://www.allitebooks.org

viii C # 3 . 0 : T h e C o m p l e t e R e f e r e n c e

 3 Data Types, Literals, and Variables . 35
Why Data Types Are Important . 35
C#’s Value Types . 35
Integers . 36
Floating-Point Types . 38
The decimal Type . 40
Characters . 41
The bool Type . 42
Some Output Options . 43
Literals . 46

Hexadecimal Literals . 47
Character Escape Sequences . 47
String Literals . 48

A Closer Look at Variables . 49
Initializing a Variable . 50
Dynamic Initialization . 50
Implicitly Typed Variables . 51

The Scope and Lifetime of Variables . 52
Type Conversion and Casting . 55

Automatic Conversions . 55
Casting Incompatible Types . 56

Type Conversion in Expressions . 59
Using Casts in Expressions . 60

 4 Operators . 63
Arithmetic Operators . 63

Increment and Decrement . 64
Relational and Logical Operators . 67

Short-Circuit Logical Operators . 70
The Assignment Operator . 71

Compound Assignments . 72
The Bitwise Operators . 73

The Bitwise AND, OR, XOR, and NOT Operators 73
The Shift Operators . 79
Bitwise Compound Assignments . 81

The ? Operator . 82
Spacing and Parentheses . 83
Operator Precedence . 84

 5 Program Control Statements . 85
The if Statement . 85

Nested ifs . 86
The if-else-if Ladder . 87

The switch Statement . 88
Nested switch Statements . 92

The for Loop . 92
Some Variations on the for Loop . 94

www.allitebooks.com

http://www.allitebooks.org

C o n t e n t s ix

The while Loop . 99
The do-while Loop . 101
The foreach Loop . 102
Using break to Exit a Loop . 102
Using continue . 104

return . 105
The goto . 105

 6 Introducing Classes and Objects . 109
Class Fundamentals . 109

The General Form of a Class . 109
Defi ne a Class . 110

How Objects Are Created . 114
Reference Variables and Assignment . 115
Methods . 116

Add a Method to the Building Class . 117
Return from a Method . 119
Return a Value . 120
Use Parameters . 122
Add a Parameterized Method to Building . 125
Avoiding Unreachable Code . 126

Constructors . 126
Parameterized Constructors . 128
Add a Constructor to the Building Class . 129

The new Operator Revisited . 130
Using new with Value Types . 130

Garbage Collection and Destructors . 131
Destructors . 131

The this Keyword . 133

 7 Arrays and Strings . 137
Arrays . 137

One-Dimensional Arrays . 137
Multidimensional Arrays . 141

Two-Dimensional Arrays . 141
Arrays of Three or More Dimensions . 142
Initializing Multidimensional Arrays . 143

Jagged Arrays . 144
Assigning Array References . 146
Using the Length Property . 148

Using Length with Jagged Arrays . 150
Implicitly Typed Arrays . 151
The foreach Loop . 152
Strings . 156

Constructing Strings . 156
Operating on Strings . 157
Arrays of Strings . 160

www.allitebooks.com

http://www.allitebooks.org

x C # 3 . 0 : T h e C o m p l e t e R e f e r e n c e

Strings Are Immutable . 161
Strings Can Be Used in switch Statements . 162

 8 A Closer Look at Methods and Classes . 165
Controlling Access to Class Members . 165

C#’s Access Modifi ers . 165
Applying Public and Private Access . 167
Controlling Access: A Case Study . 168

Pass References to Methods . 172
How Arguments Are Passed . 174

Use ref and out Parameters . 176
Use ref . 177
Use out . 178
Use ref and out on References . 181

Use a Variable Number of Arguments . 182
Return Objects . 185

Return an Array . 187
Method Overloading . 188
Overload Constructors . 194

Invoke an Overloaded Constructor Through this 197
Object Initializers . 199
The Main() Method . 200

Return Values from Main() . 200
Pass Arguments to Main() . 200

Recursion . 202
Understanding static . 205

Static Constructors . 210
Static Classes . 211

 9 Operator Overloading . 213
Operator Overloading Fundamentals . 213

Overloading Binary Operators . 214
Overloading Unary Operators . 216

Handling Operations on C# Built-in Types . 220
Overloading the Relational Operators . 224
Overloading true and false . 226
Overloading the Logical Operators . 229

A Simple Approach to Overloading the Logical Operators 229
Enabling the Short-Circuit Operators . 231

Conversion Operators . 235
Operator Overloading Tips and Restrictions . 239
Another Example of Operator Overloading . 240

 10 Indexers and Properties . 245
Indexers . 245

Creating One-Dimensional Indexers . 245
Indexers Can Be Overloaded . 249

C o n t e n t s xi

Indexers Do Not Require an Underlying Array 251
Multidimensional Indexers . 252

Properties . 254
Auto-Implemented Properties . 259
Use Object Initializers with Properties . 260
Property Restrictions . 261

Use Access Modifi ers with Accessors . 261
Using Indexers and Properties . 264

 11 Inheritance . 269
Inheritance Basics . 269
Member Access and Inheritance . 272

Using Protected Access . 275
Constructors and Inheritance . 276

Calling Base Class Constructors . 278
Inheritance and Name Hiding . 282

Using base to Access a Hidden Name . 283
Creating a Multilevel Hierarchy . 285
When Are Constructors Called? . 288
Base Class References and Derived Objects . 289
Virtual Methods and Overriding . 294

Why Overridden Methods? . 297
Applying Virtual Methods . 298

Using Abstract Classes . 301
Using sealed to Prevent Inheritance . 305
The object Class . 305

Boxing and Unboxing . 307
Is object a Universal Data Type? . 309

 12 Interfaces, Structures, and Enumerations . 311
Interfaces . 311

Implementing Interfaces . 312
Using Interface References . 316
Interface Properties . 318
Interface Indexers . 320
Interfaces Can Be Inherited . 322
Name Hiding with Interface Inheritance . 323
Explicit Implementations . 323
Choosing Between an Interface and an Abstract Class 326
The .NET Standard Interfaces . 326
Structures . 326

Why Structures? . 330
Enumerations . 332

Initialize an Enumeration . 333
Specify the Underlying Type of an Enumeration 334
Use Enumerations . 334

xii C # 3 . 0 : T h e C o m p l e t e R e f e r e n c e

 13 Exception Handling . 337
The System.Exception Class . 337
Exception Handling Fundamentals . 338

Using try and catch . 338
A Simple Exception Example . 338
A Second Exception Example . 340

The Consequences of an Uncaught Exception . 341
Exceptions Let You Handle Errors Gracefully . 343
Using Multiple catch Clauses . 344
Catching All Exceptions . 345
Nesting try Blocks . 346
Throwing an Exception . 347

Rethrowing an Exception . 348
Using fi nally . 349
A Closer Look at the Exception Class . 351

Commonly Used Exceptions . 352
Deriving Exception Classes . 354
Catching Derived Class Exceptions . 358
Using checked and unchecked . 360

 14 Using I/O . 363
C#’s I/O Is Built Upon Streams . 363

Byte Streams and Character Streams . 363
The Predefi ned Streams . 363

The Stream Classes . 364
The Stream Class . 364
The Byte Stream Classes . 365
The Character Stream Wrapper Classes . 365
Binary Streams . 367

Console I/O . 367
Reading Console Input . 367
Using ReadKey() . 369
Writing Console Output . 371

FileStream and Byte-Oriented File I/O . 371
Opening and Closing a File . 372
Reading Bytes from a FileStream . 374
Writing to a File . 375
Using FileStream to Copy a File . 376

Character-Based File I/O . 378
Using StreamWriter . 378
Using a StreamReader . 380

Redirecting the Standard Streams . 381
Reading and Writing Binary Data . 383

BinaryWriter . 383
BinaryReader . 384
Demonstrating Binary I/O . 386

C o n t e n t s xiii

Random Access Files . 390
Using MemoryStream . 392
Using StringReader and StringWriter . 394
Converting Numeric Strings to Their Internal Representation 396

 15 Delegates, Events, and Lambda Expressions . 399
Delegates . 399

Delegate Method Group Conversion . 402
Using Instance Methods as Delegates . 402
Multicasting . 404
Covariance and Contravariance . 406
System.Delegate . 408
Why Delegates . 408

Anonymous Functions . 408
Anonymous Methods . 409

Pass Arguments to an Anonymous Method . 410
Return a Value from an Anonymous Method 410
Use Outer Variables with Anonymous Methods 412

Lambda Expressions . 413
The Lambda Operator . 413
Expression Lambdas . 414
Statement Lambdas . 416

Events . 419
A Multicast Event Example . 421
Instance Methods vs. Static Methods as Event Handlers 422
Using Event Accessors . 424
Miscellaneous Event Features . 429

Use Anonymous Methods and Lambda Expressions with Events 429
.NET Event Guidelines . 430

Use EventHandler . 432
Applying Events: A Case Study . 433

 16 Namespaces, the Preprocessor, and Assemblies . 437
Namespaces . 437

Declaring a Namespace . 438
Namespaces Prevent Name Confl icts . 440
using . 441
A Second Form of using . 443
Namespaces Are Additive . 444
Namespaces Can Be Nested . 446
The Global Namespace . 447
Using the :: Namespace Alias Qualifi er . 447

The Preprocessor . 451
#defi ne . 452
#if and #endif . 452
#else and #elif . 454
#undef . 455

xiv C # 3 . 0 : T h e C o m p l e t e R e f e r e n c e

#error . 456
#warning . 456
#line . 456
#region and #endregion . 456
#pragma . 457

Assemblies and the internal Access Modifi er . 457
The internal Access Modifi er . 458

 17 Runtime Type ID, Refl ection, and Attributes . 459
Runtime Type Identifi cation . 459

Testing a Type with is . 459
Using as . 460
Using typeof . 462

Refl ection . 463
The Refl ection Core: System.Type . 463

Using Refl ection . 465
Obtaining Information About Methods . 465
Calling Methods Using Refl ection . 469
Obtaining a Type’s Constructors . 471
Obtaining Types from Assemblies . 475
Fully Automating Type Discovery . 481

Attributes . 483
Attribute Basics . 483
Positional vs. Named Parameters . 487

Three Built-in Attributes . 491
AttributeUsage . 491
The Conditional Attribute . 491
The Obsolete Attribute . 493

 18 Generics . 495
What Are Generics? . 495
A Simple Generics Example . 496

Generic Types Differ Based on Their Type Arguments 499
How Generics Improve Type Safety . 499

A Generic Class with Two Type Parameters . 502
The General Form of a Generic Class . 503
Constrained Types . 503

Using a Base Class Constraint . 504
Using an Interface Constraint . 512
Using the new() Constructor Constraint . 516
The Reference Type and Value Type Constraints 517
Using a Constraint to Establish a Relationship Between Two Type

Parameters . 520
Using Multiple Constraints . 521

Creating a Default Value of a Type Parameter . 522
Generic Structures . 523
Creating a Generic Method . 524

C o n t e n t s xv

Using Explicit Type Arguments to Call a Generic Method 527
Using a Constraint with a Generic Method . 527

Generic Delegates . 527
Generic Interfaces . 530
Comparing Instances of a Type Parameter . 534
Generic Class Hierarchies . 537

Using a Generic Base Class . 537
A Generic Derived Class . 539

Overriding Virtual Methods in a Generic Class . 540
Overloading Methods That Use Type Parameters . 542
How Generic Types Are Instantiated . 543
Some Generic Restrictions . 544
Final Thoughts on Generics . 544

 19 LINQ . 545
What Is LINQ? . 545
LINQ Fundamentals . 546

A Simple Query . 546
A Query Can Be Executed More Than Once . 548
How the Data Types in a Query Relate . 549
The General Form of a Query . 550

Filter Values with where . 551
Sort Results with orderby . 552
A Closer Look at select . 556
Use Nested from Clauses . 560
Group Results with group . 561
Use into to Create a Continuation . 563
Use let to Create a Variable in a Query . 565
Join Two Sequences with join . 566
Anonymous Types . 569
Create a Group Join . 571
The Query Methods . 574

The Basic Query Methods . 574
Create Queries by Using the Query Methods 575
Query Syntax vs. Query Methods . 577
More Query-Related Extension Methods . 577

Deferred vs. Immediate Query Execution . 580
Expression Trees . 581
Extension Methods . 582

 20 Unsafe Code, Pointers, Nullable Types, and Miscellaneous Topics 585
Unsafe Code . 585

Pointer Basics . 586
Using unsafe . 587
Using fi xed . 588
Accessing Structure Members Through a Pointer 589

xvi C # 3 . 0 : T h e C o m p l e t e R e f e r e n c e

Pointer Arithmetic . 589
Pointer Comparisons . 591
Pointers and Arrays . 591
Pointers and Strings . 593
Multiple Indirection . 594
Arrays of Pointers . 595
stackalloc . 596
Creating Fixed-Size Buffers . 596

Nullable Types . 598
Nullable Basics . 598
Nullable Objects in Expressions . 600
The ?? Operator . 601
Nullable Objects and the Relational and Logical Operators 602

Partial Types . 603
Partial Methods . 604
Friend Assemblies . 605
Miscellaneous Keywords . 605

lock . 605
readonly . 606
const and volatile . 607
The using Statement . 607
extern . 608

 Part II Exploring the C# Library
 21 Exploring the System Namespace . 615

The Members of System . 615
The Math Class . 617
The .NET Structures Corresponding to the Built-in Value Types 623

The Integer Structures . 623
The Floating-Point Structures . 626
Decimal . 630
Char . 634
The Boolean Structure . 640

The Array Class . 641
Sorting and Searching Arrays . 648
Reversing an Array . 650
Copying an Array . 651
Using a Predicate . 652
Using an Action . 653

BitConverter . 654
Generating Random Numbers with Random . 656
Memory Management and the GC Class . 657
Object . 659
The IComparable and IComparable<T> Interfaces . 659
The IEquatable<T> Interface . 660

C o n t e n t s xvii

The IConvertible Interface . 660
The ICloneable Interface . 660
IFormatProvider and IFormattable . 662

 22 Strings and Formatting . 663
Strings in C# . 663
The String Class . 664

The String Constructors . 664
The String Field, Indexer, and Property . 665
The String Operators . 665
The String Methods . 665
Padding and Trimming Strings . 681
Inserting, Removing, and Replacing . 682
Changing Case . 683
Using the Substring() Method . 684
The String Extension Methods . 684

Formatting . 684
Formatting Overview . 685
The Numeric Format Specifi ers . 686
Understanding Argument Numbers . 687

Using String.Format() and ToString() to Format Data 688
Using String.Format() to Format Values . 688
Using ToString() to Format Data . 691

Creating a Custom Numeric Format . 692
The Custom Format Placeholder Characters . 692

Formatting Date and Time . 695
Creating a Custom Date and Time Format . 698

Formatting Enumerations . 700

 23 Multithreaded Programming . 703
Multithreading Fundamentals . 703
The Thread Class . 704

Creating and Starting a Thread . 704
Some Simple Improvements . 707
Creating Multiple Threads . 708

Determining When a Thread Ends . 710
Passing an Argument to a Thread . 713
The IsBackground Property . 715
Thread Priorities . 715
Synchronization . 717

An Alternative Approach . 721
The Monitor Class and lock . 723

Thread Communication Using Wait(), Pulse(), and PulseAll() 723
An Example That Uses Wait() and Pulse() . 724

Deadlock and Race Conditions . 727
Using MethodImplAttribute . 728
Using a Mutex and a Semaphore . 730

xviii C # 3 . 0 : T h e C o m p l e t e R e f e r e n c e

The Mutex . 730
The Semaphore . 734

Using Events . 737
The Interlocked Class . 739
Terminating a Thread . 741

An Abort() Alternative . 742
Canceling Abort() . 743

Suspending and Resuming a Thread . 745
Determining a Thread’s State . 745
Using the Main Thread . 746
Multithreading Tips . 747
Starting a Separate Task . 747

 24 Collections, Enumerators, and Iterators . 749
Collections Overview . 749
The Non-Generic Collections . 750

The Non-Generic Interfaces . 751
The DictionaryEntry Structure . 755
The Non-Generic Collection Classes . 755

Storing Bits with BitArray . 771
The Specialized Collections . 774
The Generic Collections . 774

The Generic Interfaces . 775
The KeyValuePair<TK, TV> Structure . 778
The Generic Collection Classes . 779

Storing User-Defi ned Classes in Collections . 799
Implementing IComparable . 801

Implementing IComparable for Non-Generic Collections 802
Implementing IComparable<T> for Generic Collections 803

Using an IComparer . 805
Using a Non-Generic IComparer . 805
Using a Generic IComparer<T> . 806

Accessing a Collection via an Enumerator . 808
Using an Enumerator . 808
Using the IDictionaryEnumerator . 809

Implementing IEnumerable and IEnumerator . 811
Using Iterators . 813

Stopping an Iterator . 815
Using Multiple yield Directives . 815
Creating a Named Iterator . 816
Creating a Generic Iterator . 818

Collection Initializers . 819

 25 Networking Through the Internet Using System.Net 821
The System.Net Members . 821
Uniform Resource Identifi ers . 823

Internet Access Fundamentals . 823
WebRequest . 824
WebResponse . 826
HttpWebRequest and HttpWebResponse . 826
A Simple First Example . 827

Handling Network Errors . 830
Exceptions Generated by Create() . 830
Exceptions Generated by GetReponse() . 830
Exceptions Generated by GetResponseStream() 831
Using Exception Handling . 831

The Uri Class . 833
Accessing Additional HTTP Response Information . 834

Accessing the Header . 834
Accessing Cookies . 836
Using the LastModifi ed Property . 838

MiniCrawler: A Case Study . 839
Using WebClient . 842

 26 Use System.Windows.Forms to Create Form-Based
 Windows Applications . 847

A Brief History of Windows Programming . 847
Two Ways to Write a Form-Based Windows Application 848
How Windows Interacts with the User . 848
Windows Forms . 849

The Form Class . 849
A Skeletal Form-Based Windows Program . 849

Compiling the Windows Skeleton . 851
Adding a Button . 852

Button Basics . 852
Adding a Button to a Form . 852
A Simple Button Example . 853

Handling Messages . 853
An Alternative Implementation . 856

Using a Message Box . 856
Adding a Menu . 859

Creating a Traditional-Style Main Menu . 859
Creating a New-Style Menu with MenuStrip 863

 A Documentation Comment Quick Reference . 867
The XML Comment Tags . 867
Compiling Documentation Comments . 868
An XML Documentation Example . 869

 Index . 871

C o n t e n t s xix

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

Special Thanks

Special thanks go to Michael Howard for his excellent technical edit of this book. His
expertise, insights, suggestions, and advice were of great value.

xxi

This page intentionally left blank

Preface

We programmers are a demanding bunch, always looking for ways to improve the
performance, efficiency, and portability of our programs. We also demand much
from the tools we use, especially when it comes to programming languages.

There are many programming languages, but only a few are great. A great programming
language must be powerful, yet flexible. Its syntax must be terse, but clear. It must facilitate
the creation of correct code while not getting in our way. It must support state-of-the-art
features, but not trendy dead ends. Finally, a great programming language must have one
more, almost intangible quality: It must feel right when we use it. C# is such a language.

Created by Microsoft to support its .NET Framework, C# builds on a rich programming
heritage. Its chief architect was long-time programming guru Anders Hejlsberg. C# is
directly descended from two of the world’s most successful computer languages: C and
C++. From C, it derives its syntax, many of its keywords, and its operators. It builds upon
and improves the object model defined by C++. C# is also closely related to another very
successful language: Java.

Sharing a common ancestry, but differing in many important ways, C# and Java are
more like cousins. Both support distributed programming and both use intermediate code
to achieve safety and portability, but the details differ. They both also provide a significant
amount of runtime error checking, security, and managed execution, but again, the details
differ. However, unlike Java, C# also gives you access to pointers—a feature supported by
C++. Thus, C# combines the raw power of C++ with the type safety of Java. Furthermore,
the trade-offs between power and safety are carefully balanced and are nearly transparent.

Throughout the history of computing, programming languages have evolved to
accommodate changes in the computing environment, advances in computer language theory,
and new ways of thinking about and approaching the job of programming. C# is no exception.
In the ongoing process of refinement, adaptation, and innovation, C# has demonstrated its
ability to respond rapidly to the changing needs of the programmer. This fact is testified to
by the many new features added to C# since its initial 1.0 release in 2000.

Consider the first major revision, C# 2.0. It added several features that made it easier for
programmers to write more resilient, reliable, and nimble code. Without question, the most
important 2.0 addition was generics. Through the use of generics, it became possible to create
type-safe, reusable code in C#. Thus, the addition of generics fundamentally expanded the
power and scope of the language.

Now consider the second major revision, C# 3.0. This is the latest version of C# and is the
version described in this book. It is not an exaggeration to say that C# 3.0 has added features
that have redefined the very core of C#, raising the bar in computer language development in
the process. Of its many innovative features, two stand out: LINQ and lambda expressions.
LINQ, which stands for Language Integrated Query, enables you to create database-style
queries by using elements of the C# language. Lambda expressions implement a functional-
style syntax that uses the => lambda operator, and lambda expressions are frequently used in
LINQ expressions.

As you will see in the course of this book, the combination of LINQ and lambda expressions
represents a radically powerful subset of C#. Furthermore, they are revolutionary features that

xxiii

xxiv C # 3 . 0 : T h e C o m p l e t e R e f e r e n c e

are redefining how solutions are crafted for many different types of programming tasks, not just
database queries. In essence, they let you approach old problems in new ways. Their use not
only streamlines a solution, but also helps you conceptualize a problem from a different point
of view. Simply put, the addition of LINQ and lambda expressions is both significant and far
reaching. They are changing the way we think about the job of programming.

Because of its ability to adapt rapidly to the changing demands of the programming
landscape, C# has remained a vibrant and innovative language. As a result, it defines one
of the most powerful, feature-rich languages in modern computing. It is also a language
that no programmer can afford to ignore. This book is designed to help you master it.

What’s Inside
This book describes C# 3.0. It is divided into two parts. Part I provides a comprehensive
discussion of the C# language, including the new features added by version 3.0. This is the
largest part in the book, and it describes the keywords, syntax, and features that define the
language. I/O, file handling, reflection, and the preprocessor are also discussed in Part I.

Part II explores the C# class library, which is the .NET Framework class library. This
library is huge! Because of space limitations, it is not possible to cover the entire .NET
Framework class library in one book. Instead, Part II focuses on the core library, which is
contained in the System namespace. Also covered are collections, multithreading,
networking, and Windows Forms. These are the parts of the library that nearly every C#
programmer will use.

A Book for All Programmers
This book does not require any previous programming experience. If you already know
C++ or Java, you will be able to advance quite rapidly because C# has much in common
with those languages. If you don’t have any previous programming experience, you will
still be able to learn C# from this book, but you will need to work carefully through the
examples in each chapter.

Required Software
To compile and run C# 3.0 programs, you must use Visual Studio 2008 or later.

Don’t Forget: Code on the Web
Remember, the source code for all of the programs in this book is available free-of-charge on
the Web at www.mhprofessional.com.

www.mhprofessional.com

For Further Study
C# 3.0: The Complete Reference is your gateway to the Herb Schildt series of programming
books. Here are some others that you will find of interest.

For a carefully paced introduction to C#, try

C# 3.0: A Beginner’s Guide

To learn about Java programming, we recommend the following:

Java: The Complete Reference

Java: A Beginner’s Guide

Swing: A Beginner’s Guide

The Art of Java

Herb Schildt’s Java Programming Cookbook

To learn about C++, you will find these books especially helpful:

C++: The Complete Reference

C++: A Beginner’s Guide

C++ From the Ground Up

STL Programming From the Ground Up

The Art of C++

Herb Schildt’s C++ Programming Cookbook

If you want to learn about the C language, the foundation of all modern programming, the
following title will be of interest:

C: The Complete Reference

When you need solid answers, fast, turn to Herbert Schildt,
the recognized authority on programming.

P r e f a c e xxv

This page intentionally left blank

I
The C# Language

Part I discusses the elements of the C# language, including its
keywords, syntax, and operators. Also described are several
foundational C# techniques, such as using I/O and reflection,

which are tightly linked with the C# language.

CHAPTER 1
The Creation of C#

CHAPTER 2
An Overview of C#

CHAPTER 3
Data Types, Literals, and Variables

CHAPTER 4
Operators

CHAPTER 5
Program Control Statements

CHAPTER 6
Introducing Classes and Objects

CHAPTER 7
Arrays and Strings

CHAPTER 8
A Closer Look at Methods and Classes

CHAPTER 9
Operator Overloading

CHAPTER 10
Indexers and Properties

CHAPTER 11
Inheritance

CHAPTER 12
Interfaces, Structures, and Enumerations

CHAPTER 13
Exception Handling

CHAPTER 14
Using I/O

CHAPTER 15
Delegates, Events, and Lambda
Expressions

CHAPTER 16
Namespaces, the Preprocessor, and
Assemblies

CHAPTER 17
Runtime Type ID, Refl ection, and
Attributes

CHAPTER 18
Generics

CHAPTER 19
LINQ

CHAPTER 20
Unsafe Code, Pointers, Nullable Types,
and Miscellaneous Topics

PART

This page intentionally left blank

1
The Creation of C#

C# is Microsoft’s premier language for .NET development. It leverages time-tested
features with cutting-edge innovations and provides a highly usable, efficient way
to write programs for the modern enterprise computing environment. It is, by any

measure, one of the most important languages of the 21st century.
The purpose of this chapter is to place C# into its historical context, including the forces

that drove its creation, its design philosophy, and how it was influenced by other computer
languages. This chapter also explains how C# relates to the .NET Framework. As you will
see, C# and the .NET Framework work together to create a highly refined programming
environment.

C#’s Family Tree
Computer languages do not exist in a void. Rather, they relate to one another, with each new
language influenced in one form or another by the ones that came before. In a process akin to
cross-pollination, features from one language are adapted by another, a new innovation is
integrated into an existing context, or an older construct is removed. In this way, languages
evolve and the art of programming advances. C# is no exception.

C# inherits a rich programming legacy. It is directly descended from two of the world’s
most successful computer languages: C and C++. It is closely related to another: Java.
Understanding the nature of these relationships is crucial to understanding C#. Thus, we
begin our examination of C# by placing it in the historical context of these three languages.

C: The Beginning of the Modern Age of Programming
The creation of C marks the beginning of the modern age of programming. C was invented
by Dennis Ritchie in the 1970s on a DEC PDP-11 that used the UNIX operating system.
While some earlier languages, most notably Pascal, had achieved significant success, C
established the paradigm that still charts the course of programming today.

C grew out of the structured programming revolution of the 1960s. Prior to structured
programming, large programs were difficult to write because the program logic tended to
degenerate into what is known as “spaghetti code,” a tangled mass of jumps, calls, and
returns that is difficult to follow. Structured languages addressed this problem by adding
well-defined control statements, subroutines with local variables, and other improvements.
Through the use of structured techniques programs became better organized, more reliable,
and easier to manage.

3

CHAPTER

www.allitebooks.com

http://www.allitebooks.org

4 P a r t I : T h e C # L a n g u a g e

Although there were other structured languages at the time, C was the first to successfully
combine power, elegance, and expressiveness. Its terse, yet easy-to-use syntax coupled with
its philosophy that the programmer (not the language) was in charge quickly won many
converts. It can be a bit hard to understand from today’s perspective, but C was a breath of
fresh air that programmers had long awaited. As a result, C became the most widely used
structured programming language of the 1980s.

However, even the venerable C language had its limits. One of the most troublesome
was its inability to handle large programs. The C language hits a barrier once a project
reaches a certain size, and after that point, C programs are difficult to understand and
maintain. Precisely where this limit is reached depends upon the program, the programmer,
and the tools at hand, but there is always a threshold beyond which a C program becomes
unmanageable.

The Creation of OOP and C++
By the late 1970s, the size of many projects was near or at the limits of what structured
programming methodologies and the C language could handle. To solve this problem, a
new way to program began to emerge. This method is called object-oriented programming
(OOP). Using OOP, a programmer could handle much larger programs. The trouble was
that C, the most popular language at the time, did not support object-oriented programming.
The desire for an object-oriented version of C ultimately led to the creation of C++.

C++ was invented by Bjarne Stroustrup beginning in 1979 at Bell Laboratories in Murray
Hill, New Jersey. He initially called the new language “C with Classes.” However, in 1983 the
name was changed to C++. C++ contains the entire C language. Thus, C is the foundation
upon which C++ is built. Most of the additions that Stroustrup made to C were designed to
support object-oriented programming. In essence, C++ is the object-oriented version of C. By
building upon the foundation of C, Stroustrup provided a smooth migration path to OOP.
Instead of having to learn an entirely new language, a C programmer needed to learn only
a few new features before reaping the benefits of the object-oriented methodology.

C++ simmered in the background during much of the 1980s, undergoing extensive
development. By the beginning of the 1990s, C++ was ready for mainstream use, and its
popularity exploded. By the end of the decade, it had become the most widely used
programming language. Today, C++ is still the preeminent language for the development of
high-performance system code.

It is critical to understand that the invention of C++ was not an attempt to create an
entirely new programming language. Instead, it was an enhancement to an already highly
successful language. This approach to language development—beginning with an existing
language and moving it forward—established a trend that continues today.

The Internet and Java Emerge
The next major advance in programming languages is Java. Work on Java, which was
originally called Oak, began in 1991 at Sun Microsystems. The main driving force behind
Java’s design was James Gosling. Patrick Naughton, Chris Warth, Ed Frank, and Mike
Sheridan also played a role.

Java is a structured, object-oriented language with a syntax and philosophy derived from
C++. The innovative aspects of Java were driven not so much by advances in the art of
programming (although some certainly were), but rather by changes in the computing
environment. Prior to the mainstreaming of the Internet, most programs were written,

PART I

C h a p t e r 1 : T h e C r e a t i o n o f C # 5

PART I
PART I

compiled, and targeted for a specific CPU and a specific operating system. While it has always
been true that programmers like to reuse their code, the ability to port a program easily from
one environment to another took a backseat to more pressing problems. However, with the
rise of the Internet, in which many different types of CPUs and operating systems are
connected, the old problem of portability reemerged with a vengeance. To solve the problem
of portability, a new language was needed, and this new language was Java.

Although the single most important aspect of Java (and the reason for its rapid acceptance)
is its ability to create cross-platform, portable code, it is interesting to note that the original
impetus for Java was not the Internet, but rather the need for a platform-independent
language that could be used to create software for embedded controllers. In 1993, it became
clear that the issues of cross-platform portability found when creating code for embedded
controllers are also encountered when attempting to create code for the Internet. Remember:
the Internet is a vast, distributed computing universe in which many different types of
computers live. The same techniques that solved the portability problem on a small scale
could be applied to the Internet on a large scale.

Java achieved portability by translating a program’s source code into an intermediate
language called bytecode. This bytecode was then executed by the Java Virtual Machine
(JVM). Therefore, a Java program could run in any environment for which a JVM was
available. Also, since the JVM is relatively easy to implement, it was readily available for
a large number of environments.

Java’s use of bytecode differed radically from both C and C++, which were nearly
always compiled to executable machine code. Machine code is tied to a specific CPU and
operating system. Thus, if you wanted to run a C/C++ program on a different system, it
needed to be recompiled to machine code specifically for that environment. Therefore, to
create a C/C++ program that would run in a variety of environments, several different
executable versions of the program would be needed. Not only was this impractical, it was
expensive. Java’s use of an intermediate language was an elegant, cost-effective solution.
It is also a solution that C# would adapt for its own purposes.

As mentioned, Java is descended from C and C++. Its syntax is based on C, and its object
model is evolved from C++. Although Java code is neither upwardly nor downwardly
compatible with C or C++, its syntax is sufficiently similar that the large pool of existing
C/C++ programmers could move to Java with very little effort. Furthermore, because Java
built upon and improved an existing paradigm, Gosling, et al., were free to focus their
attention on the new and innovative features. Just as Stroustrup did not need to “reinvent
the wheel” when creating C++, Gosling did not need to create an entirely new language
when developing Java. Moreover, with the creation of Java, C and C++ became an accepted
substrata upon which to base a new computer language.

The Creation of C#
While Java has successfully addressed many of the issues surrounding portability in the
Internet environment, there are still features that it lacks. One is cross-language interoperability,
also called mixed-language programming. This is the ability for the code produced by one
language to work easily with the code produced by another. Cross-language interoperability
is needed for the creation of large, distributed software systems. It is also desirable for
programming software components because the most valuable component is one that can
be used by the widest variety of computer languages, in the greatest number of operating
environments.

6 P a r t I : T h e C # L a n g u a g e

Another feature lacking in Java is full integration with the Windows platform. Although
Java programs can be executed in a Windows environment (assuming that the Java Virtual
Machine has been installed), Java and Windows are not closely coupled. Since Windows is
the most widely used operating system in the world, lack of direct support for Windows is a
drawback to Java.

To answer these and other needs, Microsoft developed C#. C# was created at Microsoft
late in the 1990s and was part of Microsoft’s overall .NET strategy. It was first released in its
alpha version in the middle of 2000. C#’s chief architect was Anders Hejlsberg. Hejlsberg is
one of the world’s leading language experts, with several notable accomplishments to his
credit. For example, in the 1980s he was the original author of the highly successful and
influential Turbo Pascal, whose streamlined implementation set the standard for all future
compilers.

C# is directly related to C, C++, and Java. This is not by accident. These are three of
the most widely used—and most widely liked—programming languages in the world.
Furthermore, at the time of C#’s creation, nearly all professional programmers knew C, C++,
and/or Java. By building C# upon a solid, well-understood foundation, C# offered an easy
migration path from these languages. Since it was neither necessary nor desirable for Hejlsberg
to “reinvent the wheel,” he was free to focus on specific improvements and innovations.

The family tree for C# is shown in Figure 1-1. The grandfather of C# is C. From C, C#
derives its syntax, many of its keywords, and its operators. C# builds upon and improves
the object model defined by C++. If you know C or C++, then you will feel at home with C#.

C# and Java have a bit more complicated relationship. As explained, Java is also
descended from C and C++. It too shares the C/C++ syntax and object model. Like Java, C#
is designed to produce portable code. However, C# is not descended from Java. Instead, C#
and Java are more like cousins, sharing a common ancestry, but differing in many important
ways. The good news, though, is that if you know Java, then many C# concepts will be
familiar. Conversely, if in the future you need to learn Java, then many of the things you
learn about C# will carry over.

C# contains many innovative features that we will examine at length throughout the
course of this book, but some of its most important relate to its built-in support for software
components. In fact, C# has been characterized as being a component-oriented language
because it contains integral support for the writing of software components. For example,

FIGURE 1-1
The C# family tree

PART I

C h a p t e r 1 : T h e C r e a t i o n o f C # 7

PART I
PART I

C# includes features that directly support the constituents of components, such as
properties, methods, and events. However, C#’s ability to work in a secure, mixed-language
environment is perhaps its most important component-oriented feature.

The Evolution of C#
Since its original 1.0 release, C# has been evolving at a rapid pace. Not long after C# 1.0,
Microsoft released version 1.1. It contained many minor tweaks but added no major
features. However, the situation was much different with the release of C# 2.0.

C# 2.0 was a watershed event in the lifecycle of C# because it added many new features,
such as generics, partial types, and anonymous methods, that fundamentally expanded
the scope, power, and range of the language. Version 2.0 firmly put C# at the forefront of
computer language development. It also demonstrated Microsoft’s long-term commitment
to the language.

The next major release of C# was 3.0, and this is the version of C# described by this book.
Because of the many new features added by C# 2.0, one might have expected the development
of C# to slow a bit, just to let programmers catch up, but this was not the case. With the release
of C# 3.0, Microsoft once again put C# on the cutting edge of language design, this time
adding a set of innovative features that redefined the programming landscape. Here is
a list of what 3.0 has added to the language:

• Anonymous types

• Auto-implemented properties

• Extension methods

• Implicitly typed variables

• Lambda expressions

• Language-integrated query (LINQ)

• Object and collection initializers

• Partial methods

Although all of these features are important and have significant impact on the language,
the two that are the most exciting are language-integrated query (LINQ) and lambda
expressions. LINQ enables you to write database-style queries using C# programming
elements. However, the LINQ syntax is not limited to only databases. It can also be used
with arrays and collections. Thus, LINQ offers a new way to approach several common
programming tasks. Lambda expressions are often used in LINQ expressions, but can also be
used elsewhere. They implement a functional-style syntax that uses the lambda operator =>.
Together, LINQ and lambda expressions add an entirely new dimension to C# programming.
Throughout the course of this book, you will see how these features are revolutionizing the
way that C# code is written.

How C# Relates to the .NET Framework
Although C# is a computer language that can be studied on its own, it has a special
relationship to its runtime environment, the .NET Framework. The reason for this is
twofold. First, C# was initially designed by Microsoft to create code for the .NET

8 P a r t I : T h e C # L a n g u a g e

Framework. Second, the libraries used by C# are the ones defined by the .NET Framework.
Thus, even though it is theoretically possible to separate C# the language from the .NET
environment, in practice the two are closely linked. Because of this, it is important to have a
general understanding of the .NET Framework and why it is important to C#.

What Is the .NET Framework?
The .NET Framework defines an environment that supports the development and execution
of highly distributed, component-based applications. It enables differing computer languages
to work together and provides for security, program portability, and a common programming
model for the Windows platform. As it relates to C#, the .NET Framework defines two very
important entities. The first is the Common Language Runtime (CLR). This is the system that
manages the execution of your program. Along with other benefits, the Common Language
Runtime is the part of the .NET Framework that enables programs to be portable, supports
mixed-language programming, and provides for secure execution.

The second entity is the .NET class library. This library gives your program access to the
runtime environment. For example, if you want to perform I/O, such as displaying something
on the screen, you will use the .NET class library to do it. If you are new to programming,
then the term class may be new. Although it is explained in detail later in this book, for now
a brief definition will suffice: a class is an object-oriented construct that helps organize
programs. As long as your program restricts itself to the features defined by the .NET class
library, your programs can run anywhere that the .NET runtime system is supported. Since
C# automatically uses the .NET Framework class library, C# programs are automatically
portable to all .NET environments.

How the Common Language Runtime Works
The Common Language Runtime manages the execution of .NET code. Here is how it
works: When you compile a C# program, the output of the compiler is not executable code.
Instead, it is a file that contains a special type of pseudocode called Microsoft Intermediate
Language (MSIL). MSIL defines a set of portable instructions that are independent of any
specific CPU. In essence, MSIL defines a portable assembly language. One other point:
although MSIL is similar in concept to Java’s bytecode, the two are not the same.

It is the job of the CLR to translate the intermediate code into executable code when a
program is run. Thus, any program compiled to MSIL can be run in any environment for
which the CLR is implemented. This is part of how the .NET Framework achieves portability.

Microsoft Intermediate Language is turned into executable code using a JIT compiler.
“JIT” stands for “Just-In-Time.” The process works like this: When a .NET program is
executed, the CLR activates the JIT compiler. The JIT compiler converts MSIL into native
code on demand as each part of your program is needed. Thus, your C# program actually
executes as native code even though it is initially compiled into MSIL. This means that your
program runs nearly as fast as it would if it had been compiled to native code in the first
place, but it gains the portability benefits of MSIL.

In addition to MSIL, one other thing is output when you compile a C# program:
metadata. Metadata describes the data used by your program and enables your code to
interact easily with other code. The metadata is contained in the same file as the MSIL.

PART I

C h a p t e r 1 : T h e C r e a t i o n o f C # 9

PART I
PART I

Managed vs. Unmanaged Code
In general, when you write a C# program, you are creating what is called managed code.
Managed code is executed under the control of the Common Language Runtime as just
described. Because it is running under the control of the CLR, managed code is subject to
certain constraints—and derives several benefits. The constraints are easily described and
met: the compiler must produce an MSIL file targeted for the CLR (which C# does) and use
the .NET class library (which C# does). The benefits of managed code are many, including
modern memory management, the ability to mix languages, better security, support for
version control, and a clean way for software components to interact.

The opposite of managed code is unmanaged code. Unmanaged code does not execute
under the Common Language Runtime. Thus, all Windows programs prior to the creation of
the .NET Framework use unmanaged code. It is possible for managed code and unmanaged
code to work together, so the fact that C# generates managed code does not restrict its ability
to operate in conjunction with preexisting programs.

The Common Language Specification
Although all managed code gains the benefits provided by the CLR, if your code will be
used by other programs written in different languages, then for maximum usability, it should
adhere to the Common Language Specification (CLS). The CLS describes a set of features
that different .NET-compatible languages have in common. CLS compliance is especially
important when creating software components that will be used by other languages. The
CLS includes a subset of the Common Type System (CTS). The CTS defines the rules
concerning data types. Of course, C# supports both the CLS and the CTS.

This page intentionally left blank

2
An Overview of C#

By far, the hardest thing about learning a programming language is the fact that no
element exists in isolation. Instead, the components of the language work together.
This interrelatedness makes it difficult to discuss one aspect of C# without involving

another. To help overcome this problem, this chapter provides a brief overview of several
C# features, including the general form of a C# program, some basic control statements, and
operators. It does not go into too many details, but rather concentrates on the general concepts
common to any C# program. Most of the topics discussed here are examined in greater
detail in the remaining chapters of Part I.

Object-Oriented Programming
At the center of C# is object-oriented programming (OOP). The object-oriented methodology is
inseparable from C#, and all C# programs are to at least some extent object oriented. Because
of its importance to C#, it is useful to understand OOP’s basic principles before you write
even a simple C# program.

OOP is a powerful way to approach the job of programming. Programming methodologies
have changed dramatically since the invention of the computer, primarily to accommodate
the increasing complexity of programs. For example, when computers were first invented,
programming was done by toggling in the binary machine instructions using the computer’s
front panel. As long as programs were just a few hundred instructions long, this approach
worked. As programs grew, assembly language was invented so that a programmer could
deal with larger, increasingly complex programs, using symbolic representations of the
machine instructions. As programs continued to grow, high-level languages such as
FORTRAN and COBOL were introduced that gave the programmer more tools with which
to handle complexity. When these early languages began to reach their breaking point,
structured programming languages, such as C, were invented.

At each milestone in the history of programming, techniques and tools were created to
allow the programmer to deal with increasingly greater complexity. Each step of the way,
the new approach took the best elements of the previous methods and moved forward. The
same is true of object-oriented programming. Prior to OOP, many projects were nearing (or
exceeding) the point where the structured approach no longer worked. A better way to
handle complexity was needed, and object-oriented programming was the solution.

11

CHAPTER

12 P a r t I : T h e C # L a n g u a g e

Object-oriented programming took the best ideas of structured programming and
combined them with several new concepts. The result was a different and better way of
organizing a program. In the most general sense, a program can be organized in one of two
ways: around its code (what is happening) or around its data (what is being affected). Using
only structured programming techniques, programs are typically organized around code.
This approach can be thought of as “code acting on data.”

Object-oriented programs work the other way around. They are organized around data,
with the key principle being “data controlling access to code.” In an object-oriented language,
you define the data and the code that is permitted to act on that data. Thus, a data type
defines precisely the operations that can be applied to that data.

To support the principles of object-oriented programming, all OOP languages, including
C#, have three traits in common: encapsulation, polymorphism, and inheritance. Let’s
examine each.

Encapsulation
Encapsulation is a programming mechanism that binds together code and the data it
manipulates, and that keeps both safe from outside interference and misuse. In an object-
oriented language, code and data can be bound together in such a way that a self-contained
black box is created. Within the box are all necessary data and code. When code and data are
linked together in this fashion, an object is created. In other words, an object is the device
that supports encapsulation.

Within an object, the code, data, or both may be private to that object or public. Private code
or data is known to and accessible by only another part of the object. That is, private code or
data cannot be accessed by a piece of the program that exists outside the object. When code
or data is public, other parts of your program can access it even though it is defined within
an object. Typically, the public parts of an object are used to provide a controlled interface to
the private elements.

C#’s basic unit of encapsulation is the class. A class defines the form of an object. It specifies
both the data and the code that will operate on that data. C# uses a class specification to
construct objects. Objects are instances of a class. Thus, a class is essentially a set of plans
that specify how to build an object.

Collectively, the code and data that constitute a class are called its members. The data
defined by the class is referred to as fields. The terms member variables and instance variables
also are used. The code that operates on that data is contained within function members, of
which the most common is the method. Method is C#’s term for a subroutine. (Other
function members include properties, events, and constructors.) Thus, the methods of a
class contain code that acts on the fields defined by that class.

Polymorphism
Polymorphism (from Greek, meaning “many forms”) is the quality that allows one interface
to access a general class of actions. A simple example of polymorphism is found in the
steering wheel of an automobile. The steering wheel (the interface) is the same no matter
what type of actual steering mechanism is used. That is, the steering wheel works the same
whether your car has manual steering, power steering, or rack-and-pinion steering. Thus,
turning the steering wheel left causes the car to go left no matter what type of steering is
used. The benefit of the uniform interface is, of course, that once you know how to operate
the steering wheel, you can drive any type of car.

PART I

C h a p t e r 2 : A n O v e r v i e w o f C # 13

PART I
PART I

The same principle can also apply to programming. For example, consider a stack
(which is a first-in, last-out list). You might have a program that requires three different
types of stacks. One stack is used for integer values, one for floating-point values, and one
for characters. In this case, the algorithm that implements each stack is the same, even
though the data being stored differs. In a non-object-oriented language, you would be
required to create three different sets of stack routines, with each set using different names.
However, because of polymorphism, in C# you can create one general set of stack routines
that works for all three specific situations. This way, once you know how to use one stack,
you can use them all.

More generally, the concept of polymorphism is often expressed by the phrase “one
interface, multiple methods.” This means that it is possible to design a generic interface to
a group of related activities. Polymorphism helps reduce complexity by allowing the same
interface to be used to specify a general class of action. It is the compiler’s job to select the
specific action (that is, method) as it applies to each situation. You, the programmer, don’t
need to do this selection manually. You need only remember and utilize the general interface.

Inheritance
Inheritance is the process by which one object can acquire the properties of another object.
This is important because it supports the concept of hierarchical classification. If you
think about it, most knowledge is made manageable by hierarchical (that is, top-down)
classifications. For example, a Red Delicious apple is part of the classification apple, which
in turn is part of the fruit class, which is under the larger class food. That is, the food class
possesses certain qualities (edible, nutritious, and so on) which also, logically, apply to its
subclass, fruit. In addition to these qualities, the fruit class has specific characteristics (juicy,
sweet, and so on) that distinguish it from other food. The apple class defines those qualities
specific to an apple (grows on trees, not tropical, and so on). A Red Delicious apple would,
in turn, inherit all the qualities of all preceding classes and would define only those qualities
that make it unique.

Without the use of hierarchies, each object would have to explicitly define all of its
characteristics. Using inheritance, an object need only define those qualities that make it
unique within its class. It can inherit its general attributes from its parent. Thus, the
inheritance mechanism makes it possible for one object to be a specific instance of a more
general case.

A First Simple Program
It is now time to look at an actual C# program. We will begin by compiling and running the
short program shown here:

/*
 This is a simple C# program.

 Call this program Example.cs.
*/

using System;

class Example {

www.allitebooks.com

http://www.allitebooks.org

14 P a r t I : T h e C # L a n g u a g e

 // A C# program begins with a call to Main().
 static void Main() {
 Console.WriteLine("A simple C# program.");
 }
}

The primary development environment for C# is Microsoft’s Visual Studio. To compile
all of the programs in this book, including those that use the new C# 3.0 features, you will
need to use a version of Visual Studio 2008 (or later) that supports C#. A good choice for
learning C# 3.0 is Visual C# 2008 Express Edition because (at the time of this writing) it is
available free of charge from Microsoft. Visual C# 2008 Express Edition contains a full-
featured compiler that supports all of C# 3.0 and is, therefore, able to compile all of the code
in this book. It also includes Visual Studio, which is Microsoft’s integrated programming
environment (IDE). Although the Express Edition does not supply all of the tools that a
commercial developer will want, it is perfect for learning C#. At the time of this writing,
Visual C# 2008 Express Edition can be downloaded from microsoft.com/express/. All
of the code in this book has been tested against this compiler.

Using Visual C#, there are two general approaches that you can take to creating, compiling,
and running a C# program. First, you can use the Visual Studio IDE. Second, you can use
the command-line compiler, csc.exe. Both methods are described here.

Using csc.exe, the C# Command-Line Compiler
Although the Visual Studio IDE is what you will probably be using for your commercial
projects, some readers will find the C# command-line compiler more convenient, especially
for compiling and running the sample programs shown in this book. The reason is that you
don’t have to create a project for the program. You can simply create the program and then
compile it and run it—all from the command line. Therefore, if you know how to use the
Command Prompt window and its command-line interface, using the command-line
compiler will be faster and easier than using the IDE.

CAUTIONCAUTION If you are not familiar with the Command Prompt window, then it is probably better to
use the Visual Studio IDE. Although its commands are not difficult to learn, trying to learn both
the Command Prompt and C# at the same time will be a challenging experience.

To create and run programs using the C# command-line compiler, follow these three steps:

 1. Enter the program using a text editor.

 2. Compile the program using csc.exe.

 3. Run the program.

Entering the Program
The source code for programs shown in this book are available at www.mhprofessional.com.
However, if you want to enter the programs by hand, you are free to do so. In this case, you
must enter the program into your computer using a text editor, such as Notepad. Remember,

www.mhprofessional.com

PART I

C h a p t e r 2 : A n O v e r v i e w o f C # 15

PART I
PART I

you must create text-only files, not formatted word-processor files, because the format
information in a word processor file will confuse the C# compiler. When entering the
program, call the file Example.cs.

Compiling the Program
To compile the program, execute the C# compiler, csc.exe, specifying the name of the source
file on the command line, as shown here:

C:\>csc Example.cs

The csc compiler creates a file called Example.exe that contains the MSIL version of the
program. Although MSIL is not executable code, it is still contained in an exe file. The
Common Language Runtime automatically invokes the JIT compiler when you attempt to
execute Example.exe. Be aware, however, that if you try to execute Example.exe (or any
other exe file that contains MSIL) on a computer for which the .NET Framework is not
installed, the program will not execute because the CLR will be missing.

NOTENOTE Prior to running csc.exe you will need to open a Command Prompt window that is
configured for Visual Studio. The easiest way to do this is to select Visual Studio 2008
Command Prompt under Visual Studio Tools in the Start menu. Alternatively, you can start
an unconfigured Command Prompt window and then run the batch file vsvars32.bat, which
is provided by Visual Studio. You may, however, encounter a problem with the command-line
approach. At the time of this writing, Visual C# 2008 Express Edition does not provide the
Visual Studio Tools menu or the vsvars32.bat file. Therefore, if you are using Visual C# 2008
Express, you may not be able to configure a command prompt window automatically. In this
case, use the Visual Studio IDE instead. However, Visual C++ 2008 Express Edition does supply
both vsvars32.bat and the Visual Studio 2008 Command Prompt menu selection. Therefore, if
you also install Visual C++ 2008 Express Edition, you will be able to start a properly configured
command prompt window that will also work for C#.

Running the Program
To actually run the program, just type its name on the command line, as shown here:

C:\>Example

When the program is run, the following output is displayed:

A simple C# program.

Using the Visual Studio IDE
Visual Studio is Microsoft’s integrated programming environment. It lets you edit, compile,
run, and debug a C# program, all without leaving its well-thought-out environment. Visual
Studio offers convenience and helps manage your programs. It is most effective for larger
projects, but it can be used to great success with smaller programs, such as those that
constitute the examples in this book.

16 P a r t I : T h e C # L a n g u a g e

The steps required to edit, compile, and run a C# program using the Visual Studio 2008
IDE are shown here. These steps assume the IDE provided by Visual C# 2008 Express
Edition. Slight differences may exist with other versions of Visual Studio 2008.

 1. Create a new, empty C# project by selecting File | New Project. Next, select Empty
Project:

 Then, press OK to create the project.

 2. Once the new project is created, the Visual Studio IDE will look like this:

PART I

C h a p t e r 2 : A n O v e r v i e w o f C # 17

PART I
PART I

 If for some reason you do not see the Solution Explorer window, activate it by
selecting Solution Explorer from the View menu.

 3. At this point, the project is empty and you will need to add a C# source file to it. Do
this by right-clicking on Project1 in the Solution Explorer and then selecting Add.
You will see the following:

 4. Next, select New Item. This causes the Add New Item dialog to be displayed. Select
Code File and then change the name to Example.cs, as shown here:

18 P a r t I : T h e C # L a n g u a g e

 5. Next, add the file to the project by pressing Add. Your screen will now look like this:

 6. Next, type the example program into the Example.cs window and then save
the file. (You can download the source code to the programs in this book from
www.mhprofessional.com so you won’t have to type in each example manually.)
When done, your screen will look like this:

www.mhprofessional.com

PART I

C h a p t e r 2 : A n O v e r v i e w o f C # 19

PART I
PART I

 7. Compile the program by selecting Build Solution from the Build menu.

 8. Run the program by selecting Start Without Debugging from the Debug menu.
When you run the program, you will see the window shown here.

As the preceding instructions show, compiling short sample programs using the IDE
involves a number of steps. However, you don’t need to create a new project for each
example program in this book. Instead, you can use the same C# project. Just delete the
current source file and add the new file. Then recompile and run. This approach greatly
simplifies the process. Understand, however, that for real-world applications, each program
will use its own project.

NOTENOTE Although the preceding instructions are sufficient to compile and run the programs in this
book, if you will be using the Visual Studio IDE for your main work environment, you should
become familiar with all of its capabilities and features. It is a very powerful development
environment that helps make large projects manageable. The IDE also provides a way of
organizing the files and resources associated with a project. It is worth the time and effort
that you spend to become proficient at running Visual Studio.

The First Sample Program, Line by Line
Although Example.cs is quite short, it includes several key features that are common to all
C# programs. Let’s closely examine each part of the program, beginning with its name.

The name of a C# program is arbitrary. Unlike some computer languages (most notably,
Java) in which the name of a program file is very important, this is not the case for C#. You
were told to call the sample program Example.cs so that the instructions for compiling and
running the program would apply, but as far as C# is concerned, you could have called the
file by another name. For example, the preceding sample program could have been called
Sample.cs, Test.cs, or even X.cs.

20 P a r t I : T h e C # L a n g u a g e

By convention, C# programs use the .cs file extension, and this is a convention that you
should follow. Also, many programmers call a file by the name of the principal class defined
within the file. This is why the filename Example.cs was chosen. Since the names of C#
programs are arbitrary, names won’t be specified for most of the sample programs in this
book. Just use names of your own choosing.

The program begins with the following lines:

/*
 This is a simple C# program.

 Call this program Example.cs.
*/

This is a comment. Like most other programming languages, C# lets you enter a remark into
a program’s source file. The contents of a comment are ignored by the compiler. Instead, a
comment describes or explains the operation of the program to anyone who is reading its
source code. In this case, the comment describes the program and reminds you to call the
source file Example.cs. Of course, in real applications, comments generally explain how
some part of the program works or what a specific feature does.

C# supports three styles of comments. The one shown at the top of the program is called
a multiline comment. This type of comment must begin with /* and end with */. Anything
between these two comment symbols is ignored by the compiler. As the name suggests, a
multiline comment can be several lines long.

The next line in the program is

using System;

This line indicates that the program is using the System namespace. In C#, a namespace
defines a declarative region. Although we will examine namespaces in detail later in this
book, a brief description is useful now. Through the use of namespaces, it is possible to keep
one set of names separate from another. In essence, names declared in one namespace will
not conflict with names declared in a different namespace. The namespace used by the
program is System, which is the namespace reserved for items associated with the .NET
Framework class library, which is the library used by C#. The using keyword simply states
that the program is using the names in the given namespace.

The next line of code in the program is shown here:

class Example {

This line uses the keyword class to declare that a new class is being defined. As mentioned,
the class is C#’s basic unit of encapsulation. Example is the name of the class. The class
definition begins with the opening curly brace ({) and ends with the closing curly brace (}).
The elements between the two braces are members of the class. For the moment, don’t
worry too much about the details of a class except to note that in C#, most program activity
occurs within one.

The next line in the program is the single-line comment, shown here:

// A C# program begins with a call to Main().

PART I

C h a p t e r 2 : A n O v e r v i e w o f C # 21

PART I
PART I

This is the second type of comment supported by C#. A single-line comment begins with
a // and ends at the end of the line. Although styles vary, it is not uncommon for programmers
to use multiline comments for longer remarks and single-line comments for brief, line-by-
line descriptions. (The third type of comment supported by C# aids in the creation of
documentation and is described in Appendix A.)

The next line of code is shown here:

static void Main() {

This line begins the Main() method. As mentioned earlier, in C#, a subroutine is called a
method. As the comment preceding it suggests, this is the line at which the program will
begin executing. All C# applications begin execution by calling Main(). The complete
meaning of each part of this line cannot be given now, since it involves a detailed
understanding of several other C# features. However, since many of the examples in
this book will use this line of code, we will take a brief look at it here.

The line begins with the keyword static. A method that is modified by static can be
called before an object of its class has been created. This is necessary because Main() is
called at program startup. The keyword void indicates that Main() does not return a value.
As you will see, methods can also return values. The empty parentheses that follow Main
indicate that no information is passed to Main(). Although it is possible to pass information
into Main(), none is passed in this example. The last character on the line is the {. This
signals the start of Main()’s body. All of the code that comprises a method will occur
between the method’s opening curly brace and its closing curly brace.

The next line of code is shown here. Notice that it occurs inside Main().

Console.WriteLine("A simple C# program.");

This line outputs the string “A simple C# program.” followed by a new line on the screen.
Output is actually accomplished by the built-in method WriteLine(). In this case, WriteLine()
displays the string that is passed to it. Information that is passed to a method is called an
argument. In addition to strings, WriteLine() can be used to display other types of information.
The line begins with Console, which is the name of a predefined class that supports console
I/O. By connecting Console with WriteLine(), you are telling the compiler that WriteLine()
is a member of the Console class. The fact that C# uses an object to define console output is
further evidence of its object-oriented nature.

Notice that the WriteLine() statement ends with a semicolon, as does the using System
statement earlier in the program. In general, statements in C# end with a semicolon. The
exception to this rule are blocks, which begin with a { and end with a }. This is why those
lines in the program don’t end with a semicolon. Blocks provide a mechanism for grouping
statements and are discussed later in this chapter.

The first } in the program ends Main(), and the last } ends the Example class definition.
One last point: C# is case-sensitive. Forgetting this can cause serious problems. For

example, if you accidentally type main instead of Main, or writeline instead of WriteLine,
the preceding program will be incorrect. Furthermore, although the C# compiler will compile
classes that do not contain a Main() method, it has no way to execute them. So, had you
mistyped Main, you would see an error message that states that Example.exe does not have
an entry point defined.

22 P a r t I : T h e C # L a n g u a g e

Handling Syntax Errors
If you are new to programming, it is important to learn how to interpret and respond to errors
that may occur when you try to compile a program. Most compilation errors are caused by
typing mistakes. As all programmers soon find out, accidentally typing something incorrectly
is quite easy. Fortunately, if you type something wrong, the compiler will report a syntax error
message when it tries to compile your program. This message gives you the line number at
which the error is found and a description of the error itself.

Although the syntax errors reported by the compiler are, obviously, helpful, they
sometimes can also be misleading. The C# compiler attempts to make sense out of your
source code no matter what you have written. For this reason, the error that is reported
may not always reflect the actual cause of the problem. In the preceding program, for
example, an accidental omission of the opening curly brace after the Main() method
generates the following sequence of errors when compiled by the csc command-line
compiler. (Similar errors are generated when compiling using the IDE.)

EX1.CS(12,21): error CS1002: ; expected
EX1.CS(13,22): error CS1519: Invalid token '(' in class, struct, or
interface member declaration
EX1.CS(15,1): error CS1022: Type or namespace definition, or
end-of-file expected

Clearly, the first error message is completely wrong, because what is missing is not a
semicolon, but a curly brace. The second two messages are equally confusing.

The point of this discussion is that when your program contains a syntax error, don’t
necessarily take the compiler’s messages at face value. They may be misleading. You may need
to “second guess” an error message in order to find the problem. Also, look at the last few lines
of code immediately preceding the one in which the error was reported. Sometimes an error
will not be reported until several lines after the point at which the error really occurred.

A Small Variation
Although all of the programs in this book will use it, the line

using System;

at the start of the first example program is not technically needed. It is, however, a valuable
convenience. The reason it’s not necessary is that in C# you can always fully qualify a name
with the namespace to which it belongs. For example, the line

Console.WriteLine("A simple C# program.");

can be rewritten as

System.Console.WriteLine("A simple C# program.");

Thus, the first example could be recoded as shown here:

// This version does not include "using System;".

class Example {

PART I

C h a p t e r 2 : A n O v e r v i e w o f C # 23

PART I
PART I

 // A C# program begins with a call to Main().
 static void Main() {

 // Here, Console.WriteLine is fully qualified.
 System.Console.WriteLine("A simple C# program.");
 }
}

Since it is quite tedious to always specify the System namespace whenever a member
of that namespace is used, most C# programmers include using System at the top of their
programs, as will all of the programs in this book. It is important to understand, however,
that you can explicitly qualify a name with its namespace if needed.

A Second Simple Program
Perhaps no other construct is as important to a programming language as the variable. A
variable is a named memory location that can be assigned a value. It is called a variable
because its value can be changed during the execution of a program. In other words, the
content of a variable is changeable, not fixed.

The following program creates two variables called x and y.

// This program demonstrates variables.

using System;

class Example2 {
 static void Main() {
 int x; // this declares a variable
 int y; // this declares another variable

 x = 100; // this assigns 100 to x

 Console.WriteLine("x contains " + x);

 y = x / 2;

 Console.Write("y contains x / 2: ");
 Console.WriteLine(y);
 }
}

When you run this program, you will see the following output:

x contains 100
y contains x / 2: 50

This program introduces several new concepts. First, the statement

int x; // this declares a variable

declares a variable called x of type integer. In C#, all variables must be declared before they
are used. Further, the kind of values that the variable can hold must also be specified. This
is called the type of the variable. In this case, x can hold integer values. These are whole

www.allitebooks.com

http://www.allitebooks.org

24 P a r t I : T h e C # L a n g u a g e

numbers. In C#, to declare a variable to be of type integer, precede its name with the
keyword int. Thus, the preceding statement declares a variable called x of type int.

The next line declares a second variable called y.

int y; // this declares another variable

Notice that it uses the same format as the first except that the name of the variable is
different.

In general, to declare a variable, you will use a statement like this:

type var-name;

Here, type specifies the type of variable being declared, and var-name is the name of the
variable. In addition to int, C# supports several other data types.

The following line of code assigns x the value 100:

x = 100; // this assigns 100 to x

In C#, the assignment operator is the single equal sign. It copies the value on its right side
into the variable on its left.

The next line of code outputs the value of x preceded by the string “x contains ”.

Console.WriteLine("x contains " + x);

In this statement, the plus sign causes the value of x to be displayed after the string that
precedes it. This approach can be generalized. Using the + operator, you can chain together
as many items as you want within a single WriteLine() statement.

The next line of code assigns y the value of x divided by 2:

y = x / 2;

This line divides the value in x by 2 and then stores that result in y. Thus, after the line
executes, y will contain the value 50. The value of x will be unchanged. Like most other
computer languages, C# supports a full range of arithmetic operators, including those
shown here:

+ Addition

– Subtraction

* Multiplication

/ Division

Here are the next two lines in the program:

Console.Write("y contains x / 2: ");
Console.WriteLine(y);

Two new things are occurring here. First, the built-in method Write() is used to display the
string “y contains x / 2: ”. This string is not followed by a new line. This means that when
the next output is generated, it will start on the same line. The Write() method is just like
WriteLine(), except that it does not output a new line after each call. Second, in the call

PART I

C h a p t e r 2 : A n O v e r v i e w o f C # 25

PART I
PART I

to WriteLine(), notice that y is used by itself. Both Write() and WriteLine() can be used to
output values of any of C#’s built-in types.

One more point about declaring variables before we move on: It is possible to declare
two or more variables using the same declaration statement. Just separate their names by
commas. For example, x and y could have been declared like this:

int x, y; // both declared using one statement

NOTENOTE C# 3.0 includes a new feature called an implicitly typed variable. Implicitly typed
variables are variables whose type is automatically determined by the compiler. Implicitly typed
variables are discussed in Chapter 3.

Another Data Type
In the preceding program, a variable of type int was used. However, an int variable can
hold only whole numbers. It cannot be used when a fractional component is required. For
example, an int variable can hold the value 18, but not the value 18.3. Fortunately, int is
only one of several data types defined by C#. To allow numbers with fractional components,
C# defines two floating-point types: float and double, which represent single- and double-
precision values, respectively. Of the two, double is the most commonly used.

To declare a variable of type double, use a statement similar to that shown here:

double result;

Here, result is the name of the variable, which is of type double. Because result has a
floating-point type, it can hold values such as 122.23, 0.034, or –19.0.

To better understand the difference between int and double, try the following program:

/*
 This program illustrates the differences
 between int and double.
*/

using System;

class Example3 {
 static void Main() {
 int ivar; // this declares an int variable
 double dvar; // this declares a floating-point variable

 ivar = 100; // assign ivar the value 100

 dvar = 100.0; // assign dvar the value 100.0

 Console.WriteLine("Original value of ivar: " + ivar);
 Console.WriteLine("Original value of dvar: " + dvar);

 Console.WriteLine(); // print a blank line

 // Now, divide both by 3.
 ivar = ivar / 3;
 dvar = dvar / 3.0;

26 P a r t I : T h e C # L a n g u a g e

 Console.WriteLine("ivar after division: " + ivar);
 Console.WriteLine("dvar after division: " + dvar);
 }
}

The output from this program is shown here:

Original value of ivar: 100
Original value of dvar: 100

ivar after division: 33
dvar after division: 33.3333333333333

As you can see, when ivar (an int variable) is divided by 3, a whole-number division is
performed, and the outcome is 33—the fractional component is lost. However, when dvar
(a double variable) is divided by 3, the fractional component is preserved.

As the program shows, when you want to specify a floating-point value in a program,
you must include a decimal point. If you don’t, it will be interpreted as an integer. For
example, in C#, the value 100 is an integer, but the value 100.0 is a floating-point value.

There is one other new thing to notice in the program. To print a blank line, simply call
WriteLine() without any arguments.

The floating-point data types are often used when working with real-world quantities
where fractional components are commonly needed. For example, this program computes
the area of a circle. It uses the value 3.1416 for pi.

// Compute the area of a circle.

using System;

class Circle {
 static void Main() {
 double radius;
 double area;

 radius = 10.0;
 area = radius * radius * 3.1416;

 Console.WriteLine("Area is " + area);
 }
}

The output from the program is shown here:

Area is 314.16

Clearly, the computation of a circle’s area could not be satisfactorily achieved without the
use of floating-point data.

Two Control Statements
Inside a method, execution proceeds from one statement to the next, top to bottom. It
is possible to alter this flow through the use of the various program control statements
supported by C#. Although we will look closely at control statements later, two are briefly
introduced here because we will be using them to write sample programs.

PART I

C h a p t e r 2 : A n O v e r v i e w o f C # 27

PART I
PART I

The if Statement
You can selectively execute part of a program through the use of C#’s conditional statement:
the if. The if statement works in C# much like the IF statement in any other language. For
example, it is syntactically identical to the if statements in C, C++, and Java. Its simplest
form is shown here:

if(condition) statement;

Here, condition is a Boolean (that is, true or false) expression. If condition is true, then the
statement is executed. If condition is false, then the statement is bypassed. Here is an
example:

if(10 < 11) Console.WriteLine("10 is less than 11");

In this case, since 10 is less than 11, the conditional expression is true, and WriteLine() will
execute. However, consider the following:

if(10 < 9) Console.WriteLine("this won’t be displayed");

In this case, 10 is not less than 9. Thus, the call to WriteLine() will not take place.
C# defines a full complement of relational operators that can be used in a conditional

expression. They are shown here:

Operator Meaning

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

= = Equal to

!= Not equal

Here is a program that illustrates the if statement:

// Demonstrate the if.

using System;

class IfDemo {
 static void Main() {
 int a, b, c;

 a = 2;
 b = 3;

 if(a < b) Console.WriteLine("a is less than b");

 // This won’t display anything.
 if(a == b) Console.WriteLine("you won’t see this");

 Console.WriteLine();

28 P a r t I : T h e C # L a n g u a g e

 c = a - b; // c contains -1

 Console.WriteLine("c contains -1");
 if(c >= 0) Console.WriteLine("c is non-negative");
 if(c < 0) Console.WriteLine("c is negative");

 Console.WriteLine();

 c = b - a; // c now contains 1
 Console.WriteLine("c contains 1");
 if(c >= 0) Console.WriteLine("c is non-negative");
 if(c < 0) Console.WriteLine("c is negative");
 }
}

The output generated by this program is shown here:

a is less than b

c contains -1
c is negative

c contains 1
c is non-negative

Notice one other thing in this program. The line

int a, b, c;

declares three variables, a, b, and c, by use of a comma-separated list. As mentioned earlier,
when you need two or more variables of the same type, they can be declared in one statement.
Just separate the variable names with commas.

The for Loop
You can repeatedly execute a sequence of code by creating a loop. C# supplies a powerful
assortment of loop constructs. The one we will look at here is the for loop. Like the if
statement, the C# for loop is similar to its counterpart in C, C++, and Java. The simplest
form of the for loop is shown here:

for(initialization; condition; iteration) statement;

In its most common form, the initialization portion of the loop sets a loop control variable
to an initial value. The condition is a Boolean expression that tests the loop control variable. If
the outcome of that test is true, the for loop continues to iterate. If it is false, the loop terminates.
The iteration expression determines how the loop control variable is changed each time the
loop iterates. Here is a short program that illustrates the for loop:

// Demonstrate the for loop.

using System;

class ForDemo {
 static void Main() {
 int count;

PART I

C h a p t e r 2 : A n O v e r v i e w o f C # 29

PART I
PART I

 for(count = 0; count < 5; count = count+1)
 Console.WriteLine("This is count: " + count);

 Console.WriteLine("Done!");
 }
}

The output generated by the program is shown here:

This is count: 0
This is count: 1
This is count: 2
This is count: 3
This is count: 4
Done!

In this example, count is the loop control variable. It is set to zero in the initialization portion
of the for. At the start of each iteration (including the first one), the conditional test count < 5
is performed. If the outcome of this test is true, the WriteLine() statement is executed. Next,
the iteration portion of the loop is executed, which adds 1 to count. This process continues
until count reaches 5. At this point, the conditional test becomes false, causing the loop to
terminate. Execution picks up at the bottom of the loop.

As a point of interest, in professionally written C# programs you will almost never see
the iteration portion of the loop written as shown in the preceding program. That is, you
will seldom see statements like this:

count = count + 1;

The reason is that C# includes a special increment operator that performs this operation.
The increment operator is ++ (that is, two consecutive plus signs). The increment operator
increases its operand by one. By use of the increment operator, the preceding statement can
be written like this:

count++;

Thus, the for in the preceding program will usually be written like this:

for(count = 0; count < 5; count++)

You might want to try this. As you will see, the loop still runs exactly the same as it did before.
C# also provides a decrement operator, which is specified as – –. This operator decreases

its operand by one.

Using Code Blocks
Another key element of C# is the code block. A code block is a grouping of statements. This is
done by enclosing the statements between opening and closing curly braces. Once a block of
code has been created, it becomes a logical unit that can be used any place a single statement
can. For example, a block can be a target for if and for statements. Consider this if statement:

if(w < h) {
 v = w * h;

30 P a r t I : T h e C # L a n g u a g e

 w = 0;
}

Here, if w is less than h, then both statements inside the block will be executed. Thus, the two
statements inside the block form a logical unit, and one statement cannot execute without the
other also executing. The key point here is that whenever you need to logically link two or
more statements, you do so by creating a block. Code blocks allow many algorithms to be
implemented with greater clarity and efficiency.

Here is a program that uses a code block to prevent a division by zero:

// Demonstrate a block of code.

using System;

class BlockDemo {
 static void Main() {
 int i, j, d;

 i = 5;
 j = 10;

 // The target of this if is a block.
 if(i != 0) {
 Console.WriteLine("i does not equal zero");
 d = j / i;
 Console.WriteLine("j / i is " + d);
 }
 }
}

The output generated by this program is shown here:

i does not equal zero
j / i is 2

In this case, the target of the if statement is a block of code and not just a single statement.
If the condition controlling the if is true (as it is in this case), the three statements inside the
block will be executed. Try setting i to zero and observe the result.

Here is another example. It uses a code block to compute the sum and the product of the
numbers from 1 to 10.

// Compute the sum and product of the numbers from 1 to 10.

using System;

class ProdSum {
 static void Main() {
 int prod;
 int sum;
 int i;

 sum = 0;
 prod = 1;

PART I

C h a p t e r 2 : A n O v e r v i e w o f C # 31

PART I
PART I

 for(i=1; i <= 10; i++) {
 sum = sum + i;
 prod = prod * i;
 }
 Console.WriteLine("Sum is " + sum);
 Console.WriteLine("Product is " + prod);

 }
}

The output is shown here:

Sum is 55
Product is 3628800

Here, the block enables one loop to compute both the sum and the product. Without the use
of the block, two separate for loops would have been required.

One last point: Code blocks do not introduce any runtime inefficiencies. In other words,
the { and } do not consume any extra time during the execution of a program. In fact, because
of their ability to simplify (and clarify) the coding of certain algorithms, the use of code blocks
generally results in increased speed and efficiency.

Semicolons, Positioning, and Indentation
In C#, the semicolon signals the end of a statement. That is, each individual statement must
end with a semicolon.

As you know, a block is a set of logically connected statements that are surrounded by
opening and closing braces. A block is not terminated with a semicolon. Since a block is a
group of statements, it makes sense that a block is not terminated by a semicolon; instead,
the end of the block is indicated by the closing brace.

C# does not recognize the end of the line as the end of a statement—only a semicolon
terminates a statement. For this reason, it does not matter where on a line you put a
statement. For example, to C#,

x = y;
y = y + 1;
Console.WriteLine(x + " " + y);

is the same as

x = y; y = y + 1; Console.WriteLine(x + " " + y);

Furthermore, the individual elements of a statement can also be put on separate lines. For
example, the following is perfectly acceptable:

Console.WriteLine("This is a long line of output" +
 x + y + z +
 "more output");

Breaking long lines in this fashion is often used to make programs more readable. It can also
help prevent excessively long lines from wrapping.

32 P a r t I : T h e C # L a n g u a g e

You may have noticed in the previous examples that certain statements were indented.
C# is a free-form language, meaning that it does not matter where you place statements
relative to each other on a line. However, over the years, a common and accepted indentation
style has developed that allows for very readable programs. This book follows that style,
and it is recommended that you do so as well. Using this style, you indent one level after
each opening brace and move back out one level after each closing brace. There are certain
statements that encourage some additional indenting; these will be covered later.

The C# Keywords
At its foundation, a computer language is defined by its keywords because they determine
the features built into the language. C# defines two general types of keywords: reserved and
contextual. The reserved keywords cannot be used as names for variables, classes, or methods.
They can be used only as keywords. This is why they are called reserved. The terms reserved
words or reserved identifiers are also sometimes used. There are currently 77 reserved keywords
defined by version 3.0 of the C# language. They are shown in Table 2-1.

C# 3.0 defines 13 contextual keywords that have a special meaning in certain contexts.
In those contexts, they act as keywords. Outside those contexts, they can be used as names
for other program elements, such as variable names. Thus, they are not technically reserved.
As a general rule, however, you should consider the contextual keywords reserved and
avoid using them for any other purpose. Using a contextual keyword as a name for some
other program element can be confusing and is considered bad practice by many
programmers. The contextual keywords are shown in Table 2-2.

abstract as base bool break

byte case catch char checked

class const continue decimal default

delegate do double else enum

event explicit extern false finally

fixed float for foreach goto

if implicit in int interface

internal is lock long namespace

new null object operator out

override params private protected public

readonly ref return sbyte sealed

short sizeof stackalloc static string

struct switch this throw true

try typeof uint ulong unchecked

unsafe ushort using virtual volatile

void while

TABLE 2-1 The C# Reserved Keywords

PART I

C h a p t e r 2 : A n O v e r v i e w o f C # 33

PART I
PART I

Identifiers
In C#, an identifier is a name assigned to a method, a variable, or any other user-defined
item. Identifiers can be one or more characters long. Variable names may start with any
letter of the alphabet or an underscore. Next may be a letter, a digit, or an underscore. The
underscore can be used to enhance the readability of a variable name, as in line_count.
However, identifers containing two consecutive underscores, such as max_ _value, are
reserved for use by the compiler. Uppercase and lowercase are different; that is, to C#,
myvar and MyVar are separate names. Here are some examples of acceptable identifiers:

Test x y2 MaxLoad

up _top my_var sample23

Remember, you can’t start an identifier with a digit. Thus, 12x is invalid, for example. Good
programming practice dictates that you choose identifiers that reflect the meaning or usage
of the items being named.

Although you cannot use any of the reserved C# keywords as identifiers, C# does allow
you to precede a keyword with an @, allowing it to be a legal identifier. For example, @for
is a valid identifier. In this case, the identifier is actually for and the @ is ignored. Here is a
program that illustrates the use of an @ identifier:

// Demonstrate an @ identifier.

using System;

class IdTest {
 static void Main() {
 int @if; // use if as an identifier

 for(@if = 0; @if < 10; @if++)
 Console.WriteLine("@if is " + @if);
 }
}

The output shown here proves the @if is properly interpreted as an identifier:

@if is 0
@if is 1
@if is 2
@if is 3
@if is 4

from get group into join

let orderby partial select set

value where yield

TABLE 2-2 The C# Contextual Keywords

www.allitebooks.com

http://www.allitebooks.org

34 P a r t I : T h e C # L a n g u a g e

@if is 5
@if is 6
@if is 7
@if is 8
@if is 9

Frankly, using @-qualified keywords for identifiers is not recommended, except for
special purposes. Also, the @ can precede any identifier, but this is considered bad practice.

The .NET Framework Class Library
The sample programs shown in this chapter make use of two built-in methods: WriteLine()
and Write(). As mentioned, these methods are members of the Console class, which is part
of the System namespace, which is defined by the .NET Framework’s class library. As
explained earlier in this chapter, the C# environment relies on the .NET Framework class
library to provide support for such things as I/O, string handling, networking, and GUIs.
Thus, C# as a totality is a combination of the C# language itself, plus the .NET standard
classes. As you will see, the class library provides much of the functionality that is part
of any C# program. Indeed, part of becoming a C# programmer is learning to use these
standard classes. Throughout Part I, various elements of the .NET library classes and
methods are described. Part II examines portions of the .NET library in detail.

3
Data Types, Literals,

and Variables

This chapter examines three fundamental elements of C#: data types, literals, and
variables. In general, the types of data that a language provides define the kinds of
problems to which the language can be applied. As you might expect, C# offers a rich

set of built-in data types, which makes C# suitable for a wide range of applications. You can
create variables of any of these types, and you can specify constants of each type, which in
the language of C# are called literals.

Why Data Types Are Important
Data types are especially important in C# because it is a strongly typed language. This
means that all operations are type-checked by the compiler for type compatibility. Illegal
operations will not be compiled. Thus, strong type-checking helps prevent errors and
enhances reliability. To enable strong type-checking, all variables, expressions, and values
have a type. There is no concept of a “typeless” variable, for example. Furthermore, a
value’s type determines what operations are allowed on it. An operation allowed on one
type might not be allowed on another.

C#’s Value Types
C# contains two general categories of built-in data types: value types and reference types. The
difference between the two types is what a variable contains. For a value type, a variable
holds an actual value, such 3.1416 or 212. For a reference type, a variable holds a reference
to the value. The most commonly used reference type is the class, and a discussion of classes
and reference types is deferred until later in this book. The value types are described here.

At the core of C# are the 13 value types shown in Table 3-1. Collectively, these are
referred to as the simple types. They are called simple types because they consist of a single
value. (In other words, they are not a composite of two or more values.) They form the
foundation of C#’s type system, providing the basic, low-level data elements upon which
a program operates. The simple types are also sometimes referred to as primitive types.

35

CHAPTER

36 P a r t I : T h e C # L a n g u a g e

C# strictly specifies a range and behavior for each value type. Because of portability
requirements, C# is uncompromising on this account. For example, an int is the same in all
execution environments. There is no need to rewrite code to fit a specific platform. Although
strictly specifying the size of the value types may cause a small loss of performance in some
environments, it is necessary in order to achieve portability.

NOTENOTE In addition to the simple types, C# defines three other categories of value types. These are
enumerations, structures, and nullable types, all of which are described later in this book.

Integers
C# defines nine integer types: char, byte, sbyte, short, ushort, int, uint, long, and ulong.
However, the char type is primarily used for representing characters, and it is discussed
later in this chapter. The remaining eight integer types are used for numeric calculations.
Their bit-width and ranges are shown here:

Type Width in Bits Range

byte 8 0 to 255

sbyte 8 –128 to 127

short 16 –32,768 to 32,767

ushort 16 0 to 65,535

int 32 –2,147,483,648 to 2,147,483,647

uint 32 0 to 4,294,967,295

long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

ulong 64 0 to 18,446,744,073,709,551,615

Type Meaning

bool Represents true/false values

byte 8-bit unsigned integer

char Character

decimal Numeric type for financial calculations

double Double-precision floating point

float Single-precision floating point

int Integer

long Long integer

sbyte 8-bit signed integer

short Short integer

uint An unsigned integer

ulong An unsigned long integer

ushort An unsigned short integer

TABLE 3-1 The C# Value Types

PART I

C h a p t e r 3 : D a t a T y p e s , L i t e r a l s , a n d V a r i a b l e s 37

PART I
PART I

As the table shows, C# defines both signed and unsigned versions of the various integer
types. The difference between signed and unsigned integers is in the way the high-order
bit of the integer is interpreted. If a signed integer is specified, then the C# compiler will
generate code that assumes the high-order bit of an integer is to be used as a sign flag. If the
sign flag is 0, then the number is positive; if it is 1, then the number is negative. Negative
numbers are almost always represented using the two’s complement approach. In this
method, all bits in the negative number are reversed, and then 1 is added to this number.

Signed integers are important for a great many algorithms, but they have only half the
absolute magnitude of their unsigned relatives. For example, as a short, here is 32,767:

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

For a signed value, if the high-order bit were set to 1, the number would then be interpreted
as –1 (assuming the two’s complement format). However, if you declared this to be a
ushort, then when the high-order bit was set to 1, the number would become 65,535.

Probably the most commonly used integer type is int. Variables of type int are often
employed to control loops, to index arrays, and for general-purpose integer math. When you
need an integer that has a range greater than int, you have many options. If the value you want
to store is unsigned, you can use uint. For large signed values, use long. For large unsigned
values, use ulong. For example, here is a program that computes the distance from the Earth to
the sun, in inches. Because this value is so large, the program uses a long variable to hold it.

// Compute the distance from the Earth to the sun, in inches.

using System;

class Inches {
 static void Main() {
 long inches;
 long miles;

 miles = 93000000; // 93,000,000 miles to the sun

 // 5,280 feet in a mile, 12 inches in a foot.
 inches = miles * 5280 * 12;

 Console.WriteLine("Distance to the sun: " +
 inches + " inches.");

 }
}

Here is the output from the program:

Distance to the sun: 5892480000000 inches.

Clearly, the result could not have been held in an int or uint variable.
The smallest integer types are byte and sbyte. The byte type is an unsigned value

between 0 and 255. Variables of type byte are especially useful when working with raw
binary data, such as a byte stream produced by some device. For small signed integers,
use sbyte. Here is an example that uses a variable of type byte to control a for loop that
produces the summation of the number 100:

// Use byte.

38 P a r t I : T h e C # L a n g u a g e

using System;

class Use_byte {
 static void Main() {
 byte x;
 int sum;

 sum = 0;
 for(x = 1; x <= 100; x++)
 sum = sum + x;

 Console.WriteLine("Summation of 100 is " + sum);
 }
}

The output from the program is shown here:

Summation of 100 is 5050

Since the for loop runs only from 0 to 100, which is well within the range of a byte, there is
no need to use a larger type variable to control it.

When you need an integer that is larger than a byte or sbyte, but smaller than an int or
uint, use short or ushort.

Floating-Point Types
The floating-point types can represent numbers that have fractional components. There are
two kinds of floating-point types, float and double, which represent single- and double-
precision numbers, respectively. The type float is 32 bits wide and has an approximate
range of 1.5E–45 to 3.4E+38. The double type is 64 bits wide and has an approximate range
of 5E–324 to 1.7E+308.

Of the two, double is the most commonly used. One reason for this is that many of the
math functions in C#’s class library (which is the .NET Framework library) use double
values. For example, the Sqrt() method (which is defined by the library class System.Math)
returns a double value that is the square root of its double argument. Here, Sqrt() is used to
compute the radius of a circle given the circle’s area:

// Find the radius of a circle given its area.

using System;

class FindRadius {
 static void Main() {
 Double r;
 Double area;

 area = 10.0;

 r = Math.Sqrt(area / 3.1416);

PART I

C h a p t e r 3 : D a t a T y p e s , L i t e r a l s , a n d V a r i a b l e s 39

PART I
PART I

 Console.WriteLine("Radius is " + r);
 }
}

The output from the program is shown here:

Radius is 1.78412203012729

One other point about the preceding example. As mentioned, Sqrt() is a member of the
Math class. Notice how Sqrt() is called; it is preceded by the name Math. This is similar to
the way Console precedes WriteLine(). Although not all standard methods are called by
specifying their class name first, several are, as the next example shows.

The following program demonstrates several of C#’s trigonometric functions, which are
also part of C#’s math library. They also operate on double data. The program displays the
sine, cosine, and tangent for the angles (measured in radians) from 0.1 to 1.0.

// Demonstrate Math.Sin(), Math.Cos(), and Math.Tan().

using System;

class Trigonometry {
 static void Main() {
 Double theta; // angle in radians

 for(theta = 0.1; theta <= 1.0; theta = theta + 0.1) {
 Console.WriteLine("Sine of " + theta + " is " +
 Math.Sin(theta));
 Console.WriteLine("Cosine of " + theta + " is " +
 Math.Cos(theta));
 Console.WriteLine("Tangent of " + theta + " is " +
 Math.Tan(theta));
 Console.WriteLine();
 }
 }
}

Here is a portion of the program’s output:

Sine of 0.1 is 0.0998334166468282
Cosine of 0.1 is 0.995004165278026
Tangent of 0.1 is 0.100334672085451

Sine of 0.2 is 0.198669330795061
Cosine of 0.2 is 0.980066577841242
Tangent of 0.2 is 0.202710035508673

Sine of 0.3 is 0.29552020666134
Cosine of 0.3 is 0.955336489125606
Tangent of 0.3 is 0.309336249609623

To compute the sine, cosine, and tangent, the standard library methods Math.Sin(),
Math.Cos(), and Math.Tan() are used. Like Math.Sqrt(), the trigonometric methods
are called with a double argument, and they return a double result. The angles must be
specified in radians.

40 P a r t I : T h e C # L a n g u a g e

The decimal Type
Perhaps the most interesting C# numeric type is decimal, which is intended for use in
monetary calculations. The decimal type utilizes 128 bits to represent values within the
range 1E–28 to 7.9E+28. As you may know, normal floating-point arithmetic is subject to a
variety of rounding errors when it is applied to decimal values. The decimal type eliminates
these errors and can accurately represent up to 28 decimal places (or 29 places in some
cases). This ability to represent decimal values without rounding errors makes it especially
useful for computations that involve money.

Here is a program that uses a decimal type in a financial calculation. The program
computes the discounted price given the original price and a discount percentage.

// Use the decimal type to compute a discount.

using System;

class UseDecimal {
 static void Main() {
 decimal price;
 decimal discount;
 decimal discounted_price;

 // Compute discounted price.
 price = 19.95m;
 discount = 0.15m; // discount rate is 15%

 discounted_price = price - (price * discount);

 Console.WriteLine("Discounted price: $" + discounted_price);
 }
}

The output from this program is shown here:

Discounted price: $16.9575

In the program, notice that the decimal constants are followed by the m suffix. This
is necessary because without the suffix, these values would be interpreted as standard
floating-point constants, which are not compatible with the decimal data type. You can
assign an integer value, such as 10, to a decimal variable without the use of the m suffix,
though. (A detailed discussion of numeric constants is found later in this chapter.)

Here is another example that uses the decimal type. It computes the future value of an
investment that has a fixed rate of return over a period of years.

/*
 Use the decimal type to compute the future value
 of an investment.
*/

using System;

class FutVal {

PART I

C h a p t e r 3 : D a t a T y p e s , L i t e r a l s , a n d V a r i a b l e s 41

PART I
PART I

 static void Main() {
 decimal amount;
 decimal rate_of_return;
 int years, i;

 amount = 1000.0M;
 rate_of_return = 0.07M;
 years = 10;

 Console.WriteLine("Original investment: $" + amount);
 Console.WriteLine("Rate of return: " + rate_of_return);
 Console.WriteLine("Over " + years + " years");

 for(i = 0; i < years; i++)
 amount = amount + (amount * rate_of_return);

 Console.WriteLine("Future value is $" + amount);
 }
}

Here is the output:

Original investment: $1000
Rate of return: 0.07
Over 10 years
Future value is $1967.151357289565322490000

Notice that the result is accurate to several decimal places—more than you would probably
want! Later in this chapter you will see how to format such output in a more appealing
fashion.

Characters
In C#, characters are not 8-bit quantities like they are in many other computer languages,
such as C++. Instead, C# uses a 16-bit character type called Unicode. Unicode defines a
character set that is large enough to represent all of the characters found in all human
languages. Although many languages, such as English, French, or German, use relatively
small alphabets, some languages, such as Chinese, use very large character sets that cannot
be represented using just 8 bits. To address this situation, in C#, char is an unsigned 16-bit
type having a range of 0 to 65,535. The standard 8-bit ASCII character set is a subset of
Unicode and ranges from 0 to 127. Thus, the ASCII characters are still valid C# characters.

A character variable can be assigned a value by enclosing the character inside single
quotes. For example, this assigns X to the variable ch:

char ch;
ch = 'X';

You can output a char value using a WriteLine() statement. For example, this line outputs
the value in ch:

Console.WriteLine("This is ch: " + ch);

42 P a r t I : T h e C # L a n g u a g e

Although char is defined by C# as an integer type, it cannot be freely mixed with integers
in all cases. This is because there are no automatic type conversions from integer to char.
For example, the following fragment is invalid:

char ch;

ch = 88; // error, won't work

The reason the preceding code will not work is that 10 is an integer value, and it won’t
automatically convert to a char. If you attempt to compile this code, you will see an error
message. To make the assignment legal, you would need to employ a cast, which is
described later in this chapter.

The bool Type
The bool type represents true/false values. C# defines the values true and false using the
reserved words true and false. Thus, a variable or expression of type bool will be one of
these two values. Furthermore, there is no conversion defined between bool and integer
values. For example, 1 does not convert to true, and 0 does not convert to false.

Here is a program that demonstrates the bool type:

// Demonstrate bool values.

using System;

class BoolDemo {
 static void Main() {
 bool b;

 b = false;
 Console.WriteLine("b is " + b);
 b = true;
 Console.WriteLine("b is " + b);

 // A bool value can control the if statement.
 if(b) Console.WriteLine("This is executed.");

 b = false;
 if(b) Console.WriteLine("This is not executed.");

 // Outcome of a relational operator is a bool value.
 Console.WriteLine("10 > 9 is " + (10 > 9));
 }
}

The output generated by this program is shown here:

b is False
b is True
This is executed.
10 > 9 is True

PART I

C h a p t e r 3 : D a t a T y p e s , L i t e r a l s , a n d V a r i a b l e s 43

PART I
PART I

There are three interesting things to notice about this program. First, as you can see,
when a bool value is output by WriteLine(), “True” or “False” is displayed. Second, the
value of a bool variable is sufficient, by itself, to control the if statement. There is no need
to write an if statement like this:

if(b == true) ...

Third, the outcome of a relational operator, such as <, is a bool value. This is why the
expression 10 > 9 displays the value “True.” Further, the extra set of parentheses around
10 > 9 is necessary because the + operator has a higher precedence than the >.

Some Output Options
Up to this point, when data has been output using a WriteLine() statement, it has been
displayed using the default format. However, the .NET Framework defines a sophisticated
formatting mechanism that gives you detailed control over how data is displayed. Although
formatted I/O is covered in detail later in this book, it is useful to introduce some formatting
options at this time. Using these options, you will be able to specify the way values look
when output via a WriteLine() statement. Doing so enables you to produce more appealing
output. Keep in mind that the formatting mechanism supports many more features than
described here.

When outputting lists of data, you have been separating each part of the list with a plus
sign, as shown here:

Console.WriteLine("You ordered " + 2 + " items at $" + 3 + " each.");

While very convenient, outputting numeric information in this way does not give you any
control over how that information appears. For example, for a floating-point value, you
can’t control the number of decimal places displayed. Consider the following statement:

Console.WriteLine("Here is 10/3: " + 10.0/3.0);

It generates this output:

Here is 10/3: 3.33333333333333

Although this might be fine for some purposes, displaying so many decimal places could
be inappropriate for others. For example, in financial calculations, you will usually want to
display two decimal places.

To control how numeric data is formatted, you will need to use a second form of
WriteLine(), shown here, which allows you to embed formatting information:

WriteLine(“format string”, arg0, arg1, ... , argN);

In this version, the arguments to WriteLine() are separated by commas and not + signs. The
format string contains two items: regular, printing characters that are displayed as-is, and
format specifiers. Format specifiers take this general form:

{argnum, width: fmt}

www.allitebooks.com

http://www.allitebooks.org

44 P a r t I : T h e C # L a n g u a g e

Here, argnum specifies the number of the argument (starting from zero) to display. The
minimum width of the field is specified by width, and the format is specified by fmt. The
width and fmt are optional.

During execution, when a format specifier is encountered in the format string, the
corresponding argument, as specified by argnum, is substituted and displayed. Thus, the
position of a format specification within the format string determines where its matching
data will be displayed. Both width and fmt are optional. Therefore, in its simplest form, a
format specifier simply indicates which argument to display. For example, {0} indicates
arg0, {1} specifies arg1, and so on.

Let’s begin with a simple example. The statement

Console.WriteLine("February has {0} or {1} days.", 28, 29);

produces the following output:

February has 28 or 29 days.

As you can see, the value 28 is substituted for {0}, and 29 is substituted for {1}. Thus, the
format specifiers identify the location at which the subsequent arguments, in this case 28
and 29, are displayed within the string. Furthermore, notice that the additional values are
separated by commas, not + signs.

Here is a variation of the preceding statement that specifies minimum field widths:

Console.WriteLine("February has {0,10} or {1,5} days.", 28, 29);

It produces the following output:

February has 28 or 29 days.

As you can see, spaces have been added to fill out the unused portions of the fields.
Remember, a minimum field width is just that: the minimum width. Output can exceed
that width if needed.

Of course, the arguments associated with a format command need not be constants. For
example, this program displays a table of squares and cubes. It uses format commands to
output the values.

// Use format commands.

using System;

class DisplayOptions {
 static void Main() {
 int i;

 Console.WriteLine("Value\tSquared\tCubed");

 for(i = 1; i < 10; i++)
 Console.WriteLine("{0}\t{1}\t{2}", i, i*i, i*i*i);
 }
}

The output is shown here:

PART I

C h a p t e r 3 : D a t a T y p e s , L i t e r a l s , a n d V a r i a b l e s 45

PART I
PART I

Value Squared Cubed
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

In the preceding examples, no formatting was applied to the values themselves. Of
course, the purpose of using format specifiers is to control the way the data looks. The types
of data most commonly formatted are floating-point and decimal values. One of the easiest
ways to specify a format is to describe a template that WriteLine() will use. To do this,
show an example of the format that you want, using #s to mark the digit positions. You can
also specify the decimal point and commas. For example, here is a better way to display 10
divided by 3:

Console.WriteLine("Here is 10/3: {0:#.##}", 10.0/3.0);

The output from this statement is shown here:

Here is 10/3: 3.33

In this example, the template is #.##, which tells WriteLine() to display two decimal places.
It is important to understand, however, that WriteLine() will display more than one digit
to the left of the decimal point, if necessary, so as not to misrepresent the value.

Here is another example. This statement

Console.WriteLine("{0:###,###.##}", 123456.56);

generates this output:

123,456.56

If you want to display monetary values, use the C format specifier. For example:

decimal balance;

balance = 12323.09m;
Console.WriteLine("Current balance is {0:C}", balance);

The output from this sequence is shown here (in U.S. dollar format):

Current balance is $12,323.09

The C format can be used to improve the output from the price discount program
shown earlier:

// Use the C format specifier to output dollars and cents.

using System;

46 P a r t I : T h e C # L a n g u a g e

class UseDecimal {
 static void Main() {
 decimal price;
 decimal discount;
 decimal discounted_price;

 // Compute discounted price.
 price = 19.95m;
 discount = 0.15m; // discount rate is 15%

 discounted_price = price - (price * discount);

 Console.WriteLine("Discounted price: {0:C}", discounted_price);
 }
}

Here is the way the output now looks:

Discounted price: $16.96

Literals
In C#, literals refer to fixed values that are represented in their human-readable form.
For example, the number 100 is a literal. For the most part, literals and their usage are
so intuitive that they have been used in one form or another by all the preceding sample
programs. Now the time has come to explain them formally.

C# literals can be of any simple type. The way each literal is represented depends upon
its type. As explained earlier, character literals are enclosed between single quotes. For
example, ‘a’ and ‘%’ are both character literals.

Integer literals are specified as numbers without fractional components. For example,
10 and –100 are integer literals. Floating-point literals require the use of the decimal point
followed by the number’s fractional component. For example, 11.123 is a floating-point literal.
C# also allows you to use scientific notation for floating-point numbers.

Since C# is a strongly typed language, literals, too, have a type. Naturally, this raises the
following question: What is the type of a numeric literal? For example, what is the type of
12, 123987, or 0.23? Fortunately, C# specifies some easy-to-follow rules that answer these
questions.

First, for integer literals, the type of the literal is the smallest integer type that will hold
it, beginning with int. Thus, an integer literal is either of type int, uint, long, or ulong,
depending upon its value. Second, floating-point literals are of type double.

If C#’s default type is not what you want for a literal, you can explicitly specify its type
by including a suffix. To specify a long literal, append an l or an L. For example, 12 is an
int, but 12L is a long. To specify an unsigned integer value, append a u or U. Thus, 100 is
an int, but 100U is a uint. To specify an unsigned, long integer, use ul or UL. For example,
984375UL is of type ulong.

To specify a float literal, append an F or f to the constant. For example, 10.19F is of type
float. Although redundant, you can specify a double literal by appending a D or d. (As just
mentioned, floating-point literals are double by default.)

To specify a decimal literal, follow its value with an m or M. For example, 9.95M is a
decimal literal.

PART I

C h a p t e r 3 : D a t a T y p e s , L i t e r a l s , a n d V a r i a b l e s 47

PART I
PART I

Although integer literals create an int, uint, long, or ulong value by default, they can
still be assigned to variables of type byte, sbyte, short, or ushort as long as the value being
assigned can be represented by the target type.

Hexadecimal Literals
As you probably know, in programming it is sometimes easier to use a number system based
on 16 instead of 10. The base 16 number system is called hexadecimal and uses the digits 0
through 9 plus the letters A through F, which stand for 10, 11, 12, 13, 14, and 15. For example,
the hexadecimal number 10 is 16 in decimal. Because of the frequency with which hexadecimal
numbers are used, C# allows you to specify integer literals in hexadecimal format. A
hexadecimal literal must begin with 0x (a 0 followed by an x). Here are some examples:

count = 0xFF; // 255 in decimal
incr = 0x1a; // 26 in decimal

Character Escape Sequences
Enclosing character literals in single quotes works for most printing characters, but a few
characters, such as the carriage return, pose a special problem when a text editor is used.
In addition, certain other characters, such as the single and double quotes, have special
meaning in C#, so you cannot use them directly. For these reasons, C# provides special
escape sequences, sometimes referred to as backslash character constants, shown in Table 3-2.
These sequences are used in place of the characters they represent.

For example, this assigns ch the tab character:

ch = '\t';

The next example assigns a single quote to ch:

ch = '\'';

Escape Sequence Description

\a Alert (bell)

\b Backspace

\f Form feed

\n New line (linefeed)

\r Carriage return

\t Horizontal tab

\v Vertical tab

\0 Null

\' Single quote

\" Double quote

\\ Backslash

TABLE 3-2 Character Escape Sequences

48 P a r t I : T h e C # L a n g u a g e

String Literals
C# supports one other type of literal: the string. A string literal is a set of characters enclosed
by double quotes. For example,

"this is a test"

is a string. You have seen examples of strings in many of the WriteLine() statements in the
preceding sample programs.

In addition to normal characters, a string literal can also contain one or more of the
escape sequences just described. For example, consider the following program. It uses
the \n and \t escape sequences.

// Demonstrate escape sequences in strings.

using System;

class StrDemo {
 static void Main() {
 Console.WriteLine("Line One\nLine Two\nLine Three");
 Console.WriteLine("One\tTwo\tThree");
 Console.WriteLine("Four\tFive\tSix");

 // Embed quotes.
 Console.WriteLine("\"Why?\", he asked.");
 }
}

The output is shown here:

Line One
Line Two
Line Three
One Two Three
Four Five Six
"Why?", he asked.

Notice how the \n escape sequence is used to generate a new line. You don’t need to use
multiple WriteLine() statements to get multiline output. Just embed \n within a longer
string at the points where you want the new lines to occur. Also note how a quotation mark
is generated inside a string.

In addition to the form of string literal just described, you can also specify a verbatim
string literal. A verbatim string literal begins with an @, which is followed by a quoted string.
The contents of the quoted string are accepted without modification and can span two or
more lines. Thus, you can include newlines, tabs, and so on, but you don’t need to use the
escape sequences. The only exception is that to obtain a double quote (“), you must use two
double quotes in a row (“”). Here is a program that demonstrates verbatim string literals:

// Demonstrate verbatim literal strings.

using System;

class Verbatim {

PART I

C h a p t e r 3 : D a t a T y p e s , L i t e r a l s , a n d V a r i a b l e s 49

PART I
PART I

 static void Main() {
 Console.WriteLine(@"This is a verbatim
string literal
that spans several lines.
");
 Console.WriteLine(@"Here is some tabbed output:
1 2 3 4
5 6 7 8
");
 Console.WriteLine(@"Programmers say, ""I like C#.""");
 }
}

The output from this program is shown here:

This is a verbatim
string literal
that spans several lines.

Here is some tabbed output:
1 2 3 4
5 6 7 8

Programmers say, "I like C#."

The important point to notice about the preceding program is that the verbatim string
literals are displayed precisely as they are entered into the program.

The advantage of verbatim string literals is that you can specify output in your program
exactly as it will appear on the screen. However, in the case of multiline strings, the
wrapping will obscure the indentation of your program. For this reason, the programs in
this book will make only limited use of verbatim string literals. That said, they are still a
wonderful benefit for many formatting situations.

One last point: Don’t confuse strings with characters. A character literal, such as 'X',
represents a single letter of type char. A string containing only one letter, such as "X", is still
a string.

A Closer Look at Variables
Variables are declared using this form of statement:

type var-name;

where type is the data type of the variable and var-name is its name. You can declare a variable
of any valid type, including the value types just described. It is important to understand that a
variable’s capabilities are determined by its type. For example, a variable of type bool cannot
be used to store floating-point values. Furthermore, the type of a variable cannot change
during its lifetime. An int variable cannot turn into a char variable, for example.

All variables in C# must be declared prior to their use. This is necessary because the
compiler must know what type of data a variable contains before it can properly compile
any statement that uses the variable. It also enables C# to perform strict type-checking.

C# defines several different kinds of variables. The kind that we have been using are
called local variables because they are declared within a method.

50 P a r t I : T h e C # L a n g u a g e

Initializing a Variable
One way to give a variable a value is through an assignment statement, as you have already
seen. Another way is by giving it an initial value when it is declared. To do this, follow the
variable’s name with an equal sign and the value being assigned. The general form of
initialization is shown here:

type var-name = value;

Here, value is the value that is given to the variable when it is created. The value must be
compatible with the specified type.

Here are some examples:

int count = 10; // give count an initial value of 10
char ch = 'X'; // initialize ch with the letter X
float f = 1.2F; // f is initialized with 1.2

When declaring two or more variables of the same type using a comma-separated list,
you can give one or more of those variables an initial value. For example:

int a, b = 8, c = 19, d; // b and c have initializations

In this case, only b and c are initialized.

Dynamic Initialization
Although the preceding examples have used only constants as initializers, C# allows
variables to be initialized dynamically, using any expression valid at the point at which
the variable is declared. For example, here is a short program that computes the hypotenuse
of a right triangle given the lengths of its two opposing sides.

// Demonstrate dynamic initialization.

using System;

class DynInit {
 static void Main() {
 // Length of sides.
 double s1 = 4.0;
 double s2 = 5.0;

 // Dynamically initialize hypot.
 double hypot = Math.Sqrt((s1 * s1) + (s2 * s2));

 Console.Write("Hypotenuse of triangle with sides " +
 s1 + " by " + s2 + " is ");

 Console.WriteLine("{0:#.###}.", hypot);

 }
}

Here is the output:

Hypotenuse of triangle with sides 4 by 5 is 6.403.

PART I

C h a p t e r 3 : D a t a T y p e s , L i t e r a l s , a n d V a r i a b l e s 51

PART I
PART I

Here, three local variables—s1, s2, and hypot—are declared. The first two, s1 and s2, are
initialized by constants. However, hypot is initialized dynamically to the length of the
hypotenuse. Notice that the initialization involves calling Math.Sqrt(). As explained, you can
use any expression that is valid at the point of the initialization. Since a call to Math.Sqrt()
(or any other library method) is valid at this point, it can be used in the initialization of
hypot. The key point here is that the initialization expression can use any element valid
at the time of the initialization, including calls to methods, other variables, or literals.

Implicitly Typed Variables
As explained, in C# all variables must be declared. Normally, a declaration includes the
type of the variable, such as int or bool, followed by the name of the variable. However,
beginning with C# 3.0, it is possible to let the compiler determine the type of a local variable
based on the value used to initialize it. This is called an implicitly typed variable.

An implicitly typed variable is declared using the keyword var, and it must be initialized.
The compiler uses the type of the initializer to determine the type of the variable. Here is an
example:

var e = 2.7183;

Because e is initialized with a floating-point literal (whose type is double by default), the
type of e is double. Had e been declared like this:

var e = 2.7183F;

then e would have the type float, instead.
The following program demonstrates implicitly typed variables. It reworks the program

shown in the preceding section so that all variables are implicitly typed.

// Demonstrate implicitly typed variables.

using System;

class ImplicitlyTypedVar {
 static void Main() {

 // These are now implicitly typed variables. They
 // are of type double because their initializing
 // expressions are of type double.
 var s1 = 4.0;
 var s2 = 5.0;

 // Now, hypot is implicitly typed. Its type is double
 // because the return type of Sqrt() is double.
 var hypot = Math.Sqrt((s1 * s1) + (s2 * s2));

 Console.Write("Hypotenuse of triangle with sides " +
 s1 + " by " + s2 + " is ");

 Console.WriteLine("{0:#.###}.", hypot);

 // The following statement will not compile because
 // s1 is a double and cannot be assigned a decimal value.

52 P a r t I : T h e C # L a n g u a g e

// s1 = 12.2M; // Error!
 }
}

The output is the same as before.
It is important to emphasize that an implicitly typed variable is still a strongly typed

variable. Notice this commented-out line in the program:

// s1 = 12.2M; // Error!

This assignment is invalid because s1 is of type double. Thus, it cannot be assigned a
decimal value. The only difference between an implicitly typed variable and a “normal”
explicitly typed variable is how the type is determined. Once that type has been determined,
the variable has a type, and this type is fixed throughout the lifetime of the variable. Thus,
the type of s1 cannot be changed during execution of the program.

Implicitly typed variables were not added to C# to replace “normal” variable declarations.
Instead, implicitly typed variables are designed to handle some special-case situations, the
most important of which relate to Language-Integrated Query (LINQ), which is described
in Chapter 19. Therefore, for most variable declarations, you should continue to use explicitly
typed variables because they make your code easier to read and easier to understand.

One last point: Only one implicitly typed variable can be declared at any one time.
Therefore, the following declaration,

var s1 = 4.0, s2 = 5.0; // Error!

is wrong and won’t compile because it attempts to declare both s1 and s2 at the same time.

The Scope and Lifetime of Variables
So far, all of the variables that we have been using are declared at the start of the Main()
method. However, C# allows a local variable to be declared within any block. As explained
in Chapter 1, a block begins with an opening curly brace and ends with a closing curly
brace. A block defines a scope. Thus, each time you start a new block, you are creating a new
scope. A scope determines what names are visible to other parts of your program without
qualification. It also determines the lifetime of local variables.

The most important scopes in C# are those defined by a class and those defined by a
method. A discussion of class scope (and variables declared within it) is deferred until later
in this book, when classes are described. For now, we will examine only the scopes defined
by or within a method.

The scope defined by a method begins with its opening curly brace and ends with its
closing curly brace. However, if that method has parameters, they too are included within
the scope defined by the method.

As a general rule, local variables declared inside a scope are not visible to code that
is defined outside that scope. Thus, when you declare a variable within a scope, you are
protecting it from access or modification from outside the scope. Indeed, the scope rules
provide the foundation for encapsulation.

Scopes can be nested. For example, each time you create a block of code, you are creating
a new, nested scope. When this occurs, the outer scope encloses the inner scope. This means
that local variables declared in the outer scope will be visible to code within the inner scope.

PART I

C h a p t e r 3 : D a t a T y p e s , L i t e r a l s , a n d V a r i a b l e s 53

PART I
PART I

However, the reverse is not true. Local variables declared within the inner scope will not be
visible outside it.

To understand the effect of nested scopes, consider the following program:

// Demonstrate block scope.

using System;

class ScopeDemo {
 static void Main() {
 int x; // known to all code within Main()

 x = 10;
 if(x == 10) { // start new scope
 int y = 20; // known only to this block

 // x and y both known here.
 Console.WriteLine("x and y: " + x + " " + y);
 x = y * 2;
 }
 // y = 100; // Error! y not known here.

 // x is still known here.
 Console.WriteLine("x is " + x);
 }
}

As the comments indicate, the variable x is declared at the start of Main()’s scope and is
accessible to all subsequent code within Main(). Within the if block, y is declared. Since a
block defines a scope, y is visible only to other code within its block. This is why outside of
its block, the line y = 100; is commented out. If you remove the leading comment symbol,
a compile-time error will occur because y is not visible outside of its block. Within the if
block, x can be used because code within a block (that is, a nested scope) has access to
variables declared by an enclosing scope.

Within a block, variables can be declared at any point, but are valid only after they are
declared. Thus, if you define a variable at the start of a method, it is available to all of the
code within that method. Conversely, if you declare a variable at the end of a block, it is
effectively useless, because no code will have access to it.

If a variable declaration includes an initializer, then that variable will be reinitialized
each time the block in which it is declared is entered. For example, consider this program:

// Demonstrate lifetime of a variable.

using System;

class VarInitDemo {
 static void Main() {
 int x;

 for(x = 0; x < 3; x++) {
 int y = -1; // y is initialized each time block is entered
 Console.WriteLine("y is: " + y); // this always prints -1

54 P a r t I : T h e C # L a n g u a g e

 y = 100;
 Console.WriteLine("y is now: " + y);
 }
 }
}

The output generated by this program is shown here:

y is: -1
y is now: 100
y is: -1
y is now: 100
y is: -1
y is now: 100

As you can see, y is always reinitialized to –1 each time the inner for loop is entered. Even
though it is subsequently assigned the value 100, this value is lost.

There is one quirk to C#’s scope rules that may surprise you: Although blocks can be
nested, no variable declared within an inner scope can have the same name as a variable
declared by an enclosing scope. For example, the following program, which tries to declare
two separate variables with the same name, will not compile.

/*
 This program attempts to declare a variable
 in an inner scope with the same name as one
 defined in an outer scope.

 *** This program will not compile. ***
*/

using System;

class NestVar {
 static void Main() {
 int count;

 for(count = 0; count < 10; count = count+1) {
 Console.WriteLine("This is count: " + count);

 int count; // illegal!!!
 for(count = 0; count < 2; count++)
 Console.WriteLine("This program is in error!");
 }
 }
}

If you come from a C/C++ background, then you know that there is no restriction on
the names you give variables declared in an inner scope. Thus, in C/C++ the declaration of
count within the block of the outer for loop is completely valid. However, in C/C++, such
a declaration hides the outer variable. The designers of C# felt that this type of name hiding
could easily lead to programming errors and disallowed it.

PART I

C h a p t e r 3 : D a t a T y p e s , L i t e r a l s , a n d V a r i a b l e s 55

PART I
PART I

Type Conversion and Casting
In programming, it is common to assign one type of variable to another. For example, you
might want to assign an int value to a float variable, as shown here:

int i;
float f;

i = 10;
f = i; // assign an int to a float

When compatible types are mixed in an assignment, the value of the right side is
automatically converted to the type of the left side. Thus, in the preceding fragment, the
value in i is converted into a float and then assigned to f. However, because of C#’s strict
type-checking, not all types are compatible, and thus, not all type conversions are implicitly
allowed. For example, bool and int are not compatible. Fortunately, it is still possible to
obtain a conversion between incompatible types by using a cast. A cast performs an explicit
type conversion. Both automatic type conversion and casting are examined here.

Automatic Conversions
When one type of data is assigned to another type of variable, an implicit type conversion
will take place automatically if

• The two types are compatible.

• The destination type has a range that is greater than the source type.

When these two conditions are met, a widening conversion takes place. For example, the int
type is always large enough to hold all valid byte values, and both int and byte are compatible
integer types, so an implicit conversion can be applied.

For widening conversions, the numeric types, including integer and floating-point
types, are compatible with each other. For example, the following program is perfectly
valid since long to double is a widening conversion that is automatically performed.

// Demonstrate implicit conversion from long to double.

using System;

class LtoD {
 static void Main() {
 long L;
 double D;

 L = 100123285L;
 D = L;

 Console.WriteLine("L and D: " + L + " " + D);
 }
}

56 P a r t I : T h e C # L a n g u a g e

Although there is an implicit conversion from long to double, there is no implicit
conversion from double to long since this is not a widening conversion. Thus, the following
version of the preceding program is invalid:

// *** This program will not compile. ***

using System;

class LtoD {
 static void Main() {
 long L;
 double D;

 D = 100123285.0;
 L = D; // Illegal!!!

 Console.WriteLine("L and D: " + L + " " + D);

 }
}

In addition to the restrictions just described, there are no implicit conversions between
decimal and float or double, or from the numeric types to char or bool. Also, char and bool
are not compatible with each other.

Casting Incompatible Types
Although the implicit type conversions are helpful, they will not fulfill all programming
needs because they apply only to widening conversions between compatible types. For all
other cases you must employ a cast. A cast is an instruction to the compiler to convert the
outcome of an expression into a specified type. Thus, it requests an explicit type conversion.
A cast has this general form:

(target-type) expression

Here, target-type specifies the desired type to convert the specified expression to. For
example, given

double x, y;

if you want the type of the expression x/y to be int, you can write

(int) (x / y)

Here, even though x and y are of type double, the cast converts the outcome of the expression
to int. The parentheses surrounding x / y are necessary. Otherwise, the cast to int would
apply only to the x and not to the outcome of the division. The cast is necessary here
because there is no implicit conversion from double to int.

When a cast involves a narrowing conversion, information might be lost. For example,
when casting a long into an int, information will be lost if the long’s value is greater than
the range of an int because its high-order bits are removed. When a floating-point value is
cast to an integer type, the fractional component will also be lost due to truncation. For

PART I

C h a p t e r 3 : D a t a T y p e s , L i t e r a l s , a n d V a r i a b l e s 57

PART I
PART I

example, if the value 1.23 is assigned to an integer, the resulting value will simply be 1.
The 0.23 is lost.

The following program demonstrates some type conversions that require casts. It also
shows some situations in which the casts cause data to be lost.

// Demonstrate casting.

using System;

class CastDemo {
 static void Main() {
 double x, y;
 byte b;
 int i;
 char ch;
 uint u;
 short s;
 long l;

 x = 10.0;
 y = 3.0;

 // Cast double to int, fractional component lost.
 i = (int) (x / y);
 Console.WriteLine("Integer outcome of x / y: " + i);
 Console.WriteLine();

 // Cast an int into a byte, no data lost.
 i = 255;
 b = (byte) i;
 Console.WriteLine("b after assigning 255: " + b +
 " -- no data lost.");

 // Cast an int into a byte, data lost.
 i = 257;
 b = (byte) i;
 Console.WriteLine("b after assigning 257: " + b +
 " -- data lost.");
 Console.WriteLine();

 // Cast a uint into a short, no data lost.
 u = 32000;
 s = (short) u;
 Console.WriteLine("s after assigning 32000: " + s +
 " -- no data lost.");

 // Cast a uint into a short, data lost.
 u = 64000;
 s = (short) u;
 Console.WriteLine("s after assigning 64000: " + s +
 " -- data lost.");
 Console.WriteLine();

58 P a r t I : T h e C # L a n g u a g e

 // Cast a long into a uint, no data lost.
 l = 64000;
 u = (uint) l;
 Console.WriteLine("u after assigning 64000: " + u +
 " -- no data lost.");

 // Cast a long into a uint, data lost.
 l = -12;
 u = (uint) l;
 Console.WriteLine("u after assigning -12: " + u +
 " -- data lost.");
 Console.WriteLine();

 // Cast an int into a char.
 b = 88; // ASCII code for X
 ch = (char) b;
 Console.WriteLine("ch after assigning 88: " + ch);
 }
}

The output from the program is shown here:

Integer outcome of x / y: 3

b after assigning 255: 255 -- no data lost.
b after assigning 257: 1 -- data lost.

s after assigning 32000: 32000 -- no data lost.
s after assigning 64000: -1536 -- data lost.

u after assigning 64000: 64000 -- no data lost.
u after assigning -12: 4294967284 -- data lost.

ch after assigning 88: X

Let’s look at each assignment. The cast of (x / y) to int results in the truncation of the
fractional component, and information is lost.

No loss of information occurs when b is assigned the value 255 because a byte can hold
the value 255. However, when the attempt is made to assign b the value 257, information
loss occurs because 257 exceeds a byte’s range. In both cases the casts are needed because
there is no implicit conversion from int to byte.

When the short variable s is assigned the value 32,000 through the uint variable u, no
data is lost because a short can hold the value 32,000. However, in the next assignment, u
has the value 64,000, which is outside the range of a short, and data is lost. In both cases the
casts are needed because there is no implicit conversion from uint to short.

Next, u is assigned the value 64,000 through the long variable l. In this case, no data is
lost because 64,000 is within the range of a uint. However, when the value –12 is assigned
to u, data is lost because a uint cannot hold negative numbers. In both cases the casts are
needed because there is no implicit conversion from long to uint.

Finally, no information is lost, but a cast is needed when assigning a byte value to
a char.

PART I

C h a p t e r 3 : D a t a T y p e s , L i t e r a l s , a n d V a r i a b l e s 59

PART I
PART I

Type Conversion in Expressions
In addition to occurring within an assignment, type conversions also take place within an
expression. In an expression, you can freely mix two or more different types of data as long
as they are compatible with each other. For example, you can mix short and long within an
expression because they are both numeric types. When different types of data are mixed
within an expression, they are converted to the same type, on an operation-by-operation basis.

The conversions are accomplished through the use of C#’s type promotion rules. Here is
the algorithm that they define for binary operations:

IF one operand is a decimal, THEN the other operand is promoted to decimal
 (unless it is of type fl oat or double, in which case an error results).

ELSE IF one operand is a double, the second is promoted to double.

ELSE IF one operand is a fl oat, the second is promoted to fl oat.

ELSE IF one operand is a ulong, the second is promoted to ulong (unless it is
 of type sbyte, short, int, or long, in which case an error results).

ELSE IF one operand is a long, the second is promoted to long.

ELSE IF one operand is a uint and the second is of type sbyte, short, or int,
 both are promoted to long.

ELSE IF one operand is a uint, the second is promoted to uint.

ELSE both operands are promoted to int.

There are a couple of important points to be made about the type promotion rules. First,
not all types can be mixed in an expression. Specifically, there is no implicit conversion from
float or double to decimal, and it is not possible to mix ulong with any signed integer type.
To mix these types requires the use of an explicit cast.

Second, pay special attention to the last rule. It states that if none of the preceding rules
applies, then all other operands are promoted to int. Therefore, in an expression, all char,
sbyte, byte, ushort, and short values are promoted to int for the purposes of calculation.
This is called integer promotion. It also means that the outcome of all arithmetic operations
will be no smaller than int.

It is important to understand that type promotions only apply to the values operated
upon when an expression is evaluated. For example, if the value of a byte variable is
promoted to int inside an expression, outside the expression, the variable is still a byte.
Type promotion only affects the evaluation of an expression.

Type promotion can, however, lead to somewhat unexpected results. For example, when
an arithmetic operation involves two byte values, the following sequence occurs. First, the
byte operands are promoted to int. Then the operation takes place, yielding an int result.
Thus, the outcome of an operation involving two byte values will be an int. This is not what
you might intuitively expect. Consider the following program.

60 P a r t I : T h e C # L a n g u a g e

// A promotion surprise!

using System;

class PromDemo {
 static void Main() {
 byte b;

 b = 10;
 b = (byte) (b * b); // cast needed!!

 Console.WriteLine("b: "+ b);
 }
}

Somewhat counterintuitively, a cast to byte is needed when assigning b * b back to b! The
reason is because in b * b, the value of b is promoted to int when the expression is evaluated.
Thus, b * b results in an int value, which cannot be assigned to a byte variable without a
cast. Keep this in mind if you get unexpected type-incompatibility error messages on
expressions that would otherwise seem perfectly correct.

This same sort of situation also occurs when performing operations on chars. For
example, in the following fragment, the cast back to char is needed because of the
promotion of ch1 and ch2 to int within the expression

char ch1 = 'a', ch2 = 'b';

ch1 = (char) (ch1 + ch2);

Without the cast, the result of adding ch1 to ch2 would be int, which can’t be assigned to
a char.

Type promotions also occur when a unary operation, such as the unary –, takes place.
For the unary operations, operands smaller than int (byte, sbyte, short, and ushort) are
promoted to int. Also, a char operand is converted to int. Furthermore, if a uint value is
negated, it is promoted to long.

Using Casts in Expressions
A cast can be applied to a specific portion of a larger expression. This gives you fine-grained
control over the way type conversions occur when an expression is evaluated. For example,
consider the following program. It displays the square roots of the numbers from 1 to 10. It
also displays the whole number portion and the fractional part of each result, separately. To
do so, it uses a cast to convert the result of Math.Sqrt() to int.

// Using casts in an expression.

using System;

class CastExpr {
 static void Main() {
 double n;

 for(n = 1.0; n <= 10; n++) {

PART I

C h a p t e r 3 : D a t a T y p e s , L i t e r a l s , a n d V a r i a b l e s 61

PART I
PART I

 Console.WriteLine("The square root of {0} is {1}",
 n, Math.Sqrt(n));

 Console.WriteLine("Whole number part: {0}" ,
 (int) Math.Sqrt(n));

 Console.WriteLine("Fractional part: {0}",
 Math.Sqrt(n) - (int) Math.Sqrt(n));
 Console.WriteLine();
 }
 }
}

Here is the output from the program:

The square root of 1 is 1
Whole number part: 1
Fractional part: 0

The square root of 2 is 1.4142135623731
Whole number part: 1
Fractional part: 0.414213562373095

The square root of 3 is 1.73205080756888
Whole number part: 1
Fractional part: 0.732050807568877

The square root of 4 is 2
Whole number part: 2
Fractional part: 0

The square root of 5 is 2.23606797749979
Whole number part: 2
Fractional part: 0.23606797749979

The square root of 6 is 2.44948974278318
Whole number part: 2
Fractional part: 0.449489742783178

The square root of 7 is 2.64575131106459
Whole number part: 2
Fractional part: 0.645751311064591

The square root of 8 is 2.82842712474619
Whole number part: 2
Fractional part: 0.82842712474619

The square root of 9 is 3
Whole number part: 3
Fractional part: 0

The square root of 10 is 3.16227766016838
Whole number part: 3
Fractional part: 0.16227766016838

62 P a r t I : T h e C # L a n g u a g e

As the output shows, the cast of Math.Sqrt() to int results in the whole number component
of the value. In this expression

Math.Sqrt(n) - (int) Math.Sqrt(n)

the cast to int obtains the whole number component, which is then subtracted from the
complete value, yielding the fractional component. Thus, the outcome of the expression
is double. Only the value of the second call to Math.Sqrt() is cast to int.

4
Operators

C# provides an extensive set of operators that give the programmer detailed control
over the construction and evaluation of expressions. Most of C#’s operators fall into
the following categories: arithmetic, bitwise, relational, and logical. These operators are

examined in this chapter. Also discussed are the assignment operator and the ? operator. C#
also defines several other operators that handle specialized situations, such as array indexing,
member access, and the lambda operator. These special operators are examined later in this
book, when the features to which they apply are described.

Arithmetic Operators
C# defines the following arithmetic operators:

Operator Meaning

+ Addition

– Subtraction (also unary minus)

* Multiplication

/ Division

% Modulus

++ Increment

– – Decrement

The operators +, –, *, and / all work in the expected way. These can be applied to any built-
in numeric data type.

Although the actions of arithmetic operators are well known to all readers, a few special
situations warrant some explanation. First, remember that when / is applied to an integer,
any remainder will be truncated; for example, 10/3 will equal 3 in integer division. You can
obtain the remainder of this division by using the modulus operator, %. The % is also
referred to as the remainder operator. It yields the remainder of an integer division. For
example, 10 % 3 is 1. In C#, the % can be applied to both integer and floating-point types.

63

CHAPTER

64 P a r t I : T h e C # L a n g u a g e

Thus, 10.0 % 3.0 is also 1. (This differs from C/C++, which allow modulus operations only
on integer types.) The following program demonstrates the modulus operator:

// Demonstrate the % operator.

using System;

class ModDemo {
 static void Main() {
 int iresult, irem;
 double dresult, drem;

 iresult = 10 / 3;
 irem = 10 % 3;

 dresult = 10.0 / 3.0;
 drem = 10.0 % 3.0;

 Console.WriteLine("Result and remainder of 10 / 3: " +
 iresult + " " + irem);
 Console.WriteLine("Result and remainder of 10.0 / 3.0: " +
 dresult + " " + drem);
 }
}

The output from the program is shown here:

Result and remainder of 10 / 3: 3 1
Result and remainder of 10.0 / 3.0: 3.33333333333333 1

As you can see, the % yields a remainder of 1 for both integer and floating-point operations.

Increment and Decrement
Introduced in Chapter 2, the ++ and the – – are the increment and decrement operators. As
you will see, they have some special properties that make them quite interesting. Let’s begin
by reviewing precisely what the increment and decrement operators do.

The increment operator adds 1 to its operand, and the decrement operator subtracts 1.
Therefore,

x = x + 1;

is the same as

x++;

and

x = x - 1;

is the same as

x--;

PART I

C h a p t e r 4 : O p e r a t o r s 65

PART I
PART I

Understand, however, that in the increment or decrement forms, x is evaluated only once,
not twice. This can improve efficiency in some cases.

Both the increment and decrement operators can either precede (prefix) or follow
(postfix) the operand. For example

x = x + 1;

can be written as

++x; // prefix form

or as

x++; // postfix form

In the foregoing example, there is no difference whether the increment is applied as a
prefix or a postfix. However, when an increment or decrement is used as part of a larger
expression, there is an important difference. When an increment or decrement operator
precedes its operand, the result of the operation is the value of the operand after the increment.
If the operator follows its operand, the result of the operation is the value of the operand
before the increment. Consider the following:

x = 10;
y = ++x;

In this case, y will be set to 11. This is because x is first incremented and then its value is
returned. However, if the code is written as

x = 10;
y = x++;

then y will be set to 10. In this case, the value of x is first obtained, x is incremented, and
then the original value of x is returned. In both cases, x is still set to 11. The difference is
what is returned by the operation.

There are significant advantages in being able to control when the increment or decrement
operation takes place. Consider the following program, which generates a series of numbers:

// Demonstrate the difference between prefix and
// postfix forms of ++.

using System;

class PrePostDemo {
 static void Main() {
 int x, y;
 int i;

 x = 1;
 Console.WriteLine("Series generated using y = x + x++;");
 for(i = 0; i < 10; i++) {

 y = x + x++; // postfix ++

66 P a r t I : T h e C # L a n g u a g e

 Console.WriteLine(y + " ");
 }
 Console.WriteLine();

 x = 1;
 Console.WriteLine("Series generated using y = x + ++x;");
 for(i = 0; i < 10; i++) {

 y = x + ++x; // prefix ++

 Console.WriteLine(y + " ");
 }
 Console.WriteLine();

 }
}

The output is shown here:

Series generated using y = x + x++;
2
4
6
8
10
12
14
16
18
20

Series generated using y = x + ++x;
3
5
7
9
11
13
15
17
19
21

As the output confirms, the statement

y = x + x++;

adds the original value of x to x and assigns this result to y. The value of x is incremented
after its value has been obtained. However, the statement

y = x + ++x;

obtains the value of x, increments x, and then adds that value to the original value of x.
The result is assigned to y. As the output shows, simply changing ++x to x++ changes the
number series from even to odd.

PART I

C h a p t e r 4 : O p e r a t o r s 67

PART I
PART I

One other point about the preceding example: Don’t let expressions like

x + ++x

intimidate you. Although having two operators back-to-back is a bit unsettling at first
glance, the compiler keeps it all straight. Just remember, this expression simply adds the
value of x to the value of x incremented.

Relational and Logical Operators
In the terms relational operator and logical operator, relational refers to the relationships that
values can have with one another, and logical refers to the ways in which true and false values
can be connected together. Since the relational operators produce true or false results, they
often work with the logical operators. For this reason they will be discussed together here.

The relational operators are as follows:

Operator Meaning

= = Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The logical operators are shown next:

Operator Meaning

& AND

| OR

^ XOR (exclusive OR)

|| Short-circuit OR

&& Short-circuit AND

! NOT

The outcome of the relational and logical operators is a bool value.
In general, objects can be compared for equality or inequality using == and !=.

However, the comparison operators, <, >, <=, or >=, can be applied only to those types
that support an ordering relationship. Therefore, all of the relational operators can be
applied to all numeric types. However, values of type bool can only be compared for
equality or inequality since the true and false values are not ordered. For example,
true > false has no meaning in C#.

68 P a r t I : T h e C # L a n g u a g e

For the logical operators, the operands must be of type bool, and the result of a logical
operation is of type bool. The logical operators, &, |, ^, and !, support the basic logical
operations AND, OR, XOR, and NOT, according to the following truth table:

p q p & q p | q p ^ q !p

False False False False False True

True False False True True False

False True False True True True

True True True True False False

As the table shows, the outcome of an exclusive OR operation is true when one and only
one operand is true.

Here is a program that demonstrates several of the relational and logical operators:

// Demonstrate the relational and logical operators.

using System;

class RelLogOps {
 static void Main() {
 int i, j;
 bool b1, b2;

 i = 10;
 j = 11;
 if(i < j) Console.WriteLine("i < j");
 if(i <= j) Console.WriteLine("i <= j");
 if(i != j) Console.WriteLine("i != j");
 if(i == j) Console.WriteLine("this won't execute");
 if(i >= j) Console.WriteLine("this won't execute");
 if(i > j) Console.WriteLine("this won't execute");

 b1 = true;
 b2 = false;
 if(b1 & b2) Console.WriteLine("this won't execute");
 if(!(b1 & b2)) Console.WriteLine("!(b1 & b2) is true");
 if(b1 | b2) Console.WriteLine("b1 | b2 is true");
 if(b1 ^ b2) Console.WriteLine("b1 ^ b2 is true");
 }
}

The output from the program is shown here:

i < j
i <= j
i != j
!(b1 & b2) is true
b1 | b2 is true
b1 ^ b2 is true

PART I

C h a p t e r 4 : O p e r a t o r s 69

PART I
PART I

The logical operators provided by C# perform the most commonly used logical
operations. However, several other operations are defined by the rules for formal logic. These
other logical operations can be constructed using the logical operators supported by C#.
Thus, C# supplies a set of logical operators sufficient to construct any other logical operation.
For example, another logical operation is implication. Implication is a binary operation in
which the outcome is false only when the left operand is true and the right operand is false.
(The implication operation reflects the idea that true cannot imply false.) Thus, the truth
table for the implication operator is shown here:

p q p implies q

True True True

True False False

False False True

False True True

The implication operation can be constructed using a combination of the ! and the |
operator, as shown here:

!p | q

The following program demonstrates this implementation:

// Create an implication operator in C#.

using System;

class Implication {
 static void Main() {
 bool p=false, q=false;
 int i, j;

 for(i = 0; i < 2; i++) {
 for(j = 0; j < 2; j++) {
 if(i==0) p = true;
 if(i==1) p = false;
 if(j==0) q = true;
 if(j==1) q = false;

 Console.WriteLine("p is " + p + ", q is " + q);
 if(!p | q) Console.WriteLine(p + " implies " + q +
 " is " + true);
 Console.WriteLine();
 }
 }
 }
}

The output is shown here:

p is True, q is True
True implies True is True

p is True, q is False

70 P a r t I : T h e C # L a n g u a g e

p is False, q is True
False implies True is True

p is False, q is False
False implies False is True

Short-Circuit Logical Operators
C# supplies special short-circuit versions of its AND and OR logical operators that can be
used to produce more efficient code. To understand why, consider the following. In an AND
operation, if the first operand is false, then the outcome is false no matter what value the
second operand has. In an OR operation, if the first operand is true, then the outcome of the
operation is true no matter what the value of the second operand. Thus, in these two cases
there is no need to evaluate the second operand. By not evaluating the second operand,
time is saved and more efficient code is produced.

The short-circuit AND operator is && and the short-circuit OR operator is ||. As
described earlier, their normal counterparts are & and |. The only difference between the
normal and short-circuit versions is that the normal operands will always evaluate each
operand, but short-circuit versions will evaluate the second operand only when necessary.

Here is a program that demonstrates the short-circuit AND operator. The program
determines if the value in d is a factor of n. It does this by performing a modulus operation.
If the remainder of n / d is zero, then d is a factor. However, since the modulus operation
involves a division, the short-circuit form of the AND is used to prevent a divide-by-zero
error.

// Demonstrate the short-circuit operators.

using System;

class SCops {
 static void Main() {
 int n, d;

 n = 10;
 d = 2;
 if(d != 0 && (n % d) == 0)
 Console.WriteLine(d + " is a factor of " + n);

 d = 0; // now, set d to zero

 // Since d is zero, the second operand is not evaluated.
 if(d != 0 && (n % d) == 0)
 Console.WriteLine(d + " is a factor of " + n);

 // Now, try the same thing without short-circuit operator.
 // This will cause a divide-by-zero error.
 if(d != 0 & (n % d) == 0)
 Console.WriteLine(d + " is a factor of " + n);
 }
}

To prevent a divide-by-zero error, the if statement first checks to see if d is equal to zero.
If it is, then the short-circuit AND stops at that point and does not perform the modulus

PART I

C h a p t e r 4 : O p e r a t o r s 71

PART I
PART I

division. Thus, in the first test, d is 2 and the modulus operation is performed. The second
test fails because d is set to zero, and the modulus operation is skipped, avoiding a divide-
by-zero error. Finally, the normal AND operator is tried. This causes both operands to be
evaluated, which leads to a runtime error when the division-by-zero occurs.

Since the short-circuit operators are, in some cases, more efficient than their normal
counterparts, you might be wondering why C# still offers the normal AND and OR
operators. The answer is that in some cases you will want both operands of an AND or OR
operation to be evaluated because of the side effects produced. Consider the following:

// Side effects can be important.

using System;

class SideEffects {
 static void Main() {
 int i;
 bool someCondition = false;

 i = 0;

 // Here, i is still incremented even though the if statement fails.
 if(someCondition & (++i < 100))
 Console.WriteLine("this won't be displayed");
 Console.WriteLine("if statement executed: " + i); // displays 1

 // In this case, i is not incremented because the short-circuit
 // operator skips the increment.
 if(someCondition && (++i < 100))
 Console.WriteLine("this won't be displayed");
 Console.WriteLine("if statement executed: " + i); // still 1 !!
 }
}

First, notice that the bool variable someCondition is initialized to false. Next, examine each
if statement. As the comments indicate, in the first if statement, i is incremented despite the
fact that someCondition is false. When the & is used, as it is in the first if statement, the
expression on the right side of the & is evaluated no matter what value the expression on
the left has. However, in the second if statement, the short-circuit operator is used. In this
case, the variable i is not incremented because the left operand, someCondition, is false,
which causes the expression on the right to be skipped. The lesson here is that if your code
expects the right-hand operand of an AND or OR operation to be evaluated, then you must
use C#’s non-short-circuit forms for these operations.

One other point: The short-circuit AND is also known as the conditional AND, and the
short-circuit OR is also called the conditional OR.

The Assignment Operator
The assignment operator is the single equal sign, =. The assignment operator works in C#
much as it does in other computer languages. It has this general form:

var-name = expression;

Here, the type of var-name must be compatible with the type of expression.

72 P a r t I : T h e C # L a n g u a g e

The assignment operator does have one interesting attribute that you may not be
familiar with: It allows you to create a chain of assignments. For example, consider this
fragment:

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This works
because the = is an operator that yields the assigned value. Thus, the value of z = 100 is 100,
which is then assigned to y, which in turn is assigned to x. Using a “chain of assignment” is
an easy way to set a group of variables to a common value.

Compound Assignments
C# provides special compound assignment operators that simplify the coding of certain
assignment statements. Let’s begin with an example. The assignment statement shown here:

x = x + 10;

can be written using a compound assignment as

x += 10;

The operator pair += tells the compiler to assign to x the value of x plus 10.
Here is another example. The statement

x = x - 100;

is the same as

x -= 100;

Both statements assign to x the value of x minus 100.
There are compound assignment operators for many of the binary operators (that is,

those that require two operands). The general form of the shorthand is

var-name op = expression;

Thus, the arithmetic and logical assignment operators are

+= –= *= /=

%= &= |= ^=

Because the compound assignment statements are shorter than their noncompound
equivalents, the compound assignment operators are also sometimes called the shorthand
assignment operators.

The compound assignment operators provide two benefits. First, they are more compact
than their “longhand” equivalents. Second, they can result in more efficient executable code
(because the left-hand operand is evaluated only once). For these reasons, you will often see
the compound assignment operators used in professionally written C# programs.

PART I

C h a p t e r 4 : O p e r a t o r s 73

PART I
PART I

The Bitwise Operators
C# provides a set of bitwise operators that expand the types of problems to which C# can be
applied. The bitwise operators act directly upon the bits of their operands. They are defined
only for integer operands. They cannot be used on bool, float, or double.

They are called the bitwise operators because they are used to test, set, or shift the bits
that comprise an integer value. Among other uses, bitwise operations are important to a
wide variety of systems-level programming tasks, such as analyzing status information
from a device. Table 4-1 lists the bitwise operators.

The Bitwise AND, OR, XOR, and NOT Operators
The bitwise operators AND, OR, XOR, and NOT are &, |, ^, and ~. They perform the same
operations as their Boolean logic equivalents described earlier. The difference is that the
bitwise operators work on a bit-by-bit basis. The following table shows the outcome of each
operation using 1s and 0s:

p q p & q p | q p ^ q ~p

0 0 0 0 0 1

1 0 0 1 1 0

0 1 0 1 1 1

1 1 1 1 0 0

In terms of its most common usage, you can think of the bitwise AND as a way to turn
bits off. That is, any bit that is 0 in either operand will cause the corresponding bit in the
outcome to be set to 0. For example

 1 1 0 1 0 0 1 1
& 1 0 1 0 1 0 1 0

 1 0 0 0 0 0 1 0

Operator Result

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR (XOR)

>> Shift right

<< Shift left

~ One’s complement (unary NOT)

TABLE 4-1 The Bitwise Operators

74 P a r t I : T h e C # L a n g u a g e

The following program demonstrates the & by using it to convert odd numbers into
even numbers. It does this by turning off bit zero. For example, the low-order byte of the
number 9 in binary is 0000 1001. When bit zero is turned off, this number becomes 8,
or 0000 1000 in binary.

// Use bitwise AND to make a number even.

using System;

class MakeEven {
 static void Main() {
 ushort num;
 ushort i;

 for(i = 1; i <= 10; i++) {
 num = i;

 Console.WriteLine("num: " + num);

 num = (ushort) (num & 0xFFFE);

 Console.WriteLine("num after turning off bit zero: "
 + num + "\n");
 }
 }
}

The output from this program is shown here:

num: 1
num after turning off bit zero: 0

num: 2
num after turning off bit zero: 2

num: 3
num after turning off bit zero: 2

num: 4
num after turning off bit zero: 4

num: 5
num after turning off bit zero: 4

num: 6
num after turning off bit zero: 6

num: 7
num after turning off bit zero: 6

num: 8
num after turning off bit zero: 8

num: 9
num after turning off bit zero: 8

PART I

C h a p t e r 4 : O p e r a t o r s 75

PART I
PART I

num: 10
num after turning off bit zero: 10

The value 0xFFFE used in the AND statement is the hexadecimal representation of
1111 1111 1111 1110. Therefore, the AND operation leaves all bits in num unchanged except
for bit zero, which is set to zero. Thus, even numbers are unchanged, but odd numbers are
made even by reducing their value by 1.

The AND operator is also useful when you want to determine whether a bit is on or off.
For example, this program determines if a number is odd:

// Use bitwise AND to determine if a number is odd.

using System;

class IsOdd {
 static void Main() {
 ushort num;

 num = 10;

 if((num & 1) == 1)
 Console.WriteLine("This won't display.");

 num = 11;

 if((num & 1) == 1)
 Console.WriteLine(num + " is odd.");

 }
}

The output is shown here:

11 is odd.

In the if statements, the value of num is ANDed with 1. If bit zero in num is set, the result
of num & 1 is 1; otherwise, the result is zero. Therefore, the if statement can succeed only
when the number is odd.

You can use the bit-testing capability of the bitwise & to create a program that uses the
bitwise & to show the bits of a byte value in binary format. Here is one approach:

// Display the bits within a byte.

using System;

class ShowBits {
 static void Main() {
 int t;
 byte val;

 val = 123;
 for(t=128; t > 0; t = t/2) {
 if((val & t) != 0) Console.Write("1 ");

76 P a r t I : T h e C # L a n g u a g e

 if((val & t) == 0) Console.Write("0 ");
 }
 }
}

The output is shown here:

0 1 1 1 1 0 1 1

The for loop successively tests each bit in val, using the bitwise AND, to determine if it is on
or off. If the bit is on, the digit 1 is displayed; otherwise, 0 is displayed.

The bitwise OR can be used to turn bits on. Any bit that is set to 1 in either operand will
cause the corresponding bit in the variable to be set to 1. For example

 1 1 0 1 0 0 1 1
| 1 0 1 0 1 0 1 0

 1 1 1 1 1 0 1 1

You can make use of the OR to change the make-even program shown earlier into a
make-odd program, as shown here:

// Use bitwise OR to make a number odd.

using System;

class MakeOdd {
 static void Main() {
 ushort num;
 ushort i;

 for(i = 1; i <= 10; i++) {
 num = i;

 Console.WriteLine("num: " + num);

 num = (ushort) (num | 1);

 Console.WriteLine("num after turning on bit zero: "
 + num + "\n");
 }
 }
}

The output from this program is shown here:

num: 1
num after turning on bit zero: 1

num: 2
num after turning on bit zero: 3

num: 3
num after turning on bit zero: 3

PART I

C h a p t e r 4 : O p e r a t o r s 77

PART I
PART I

num: 4
num after turning on bit zero: 5

num: 5
num after turning on bit zero: 5

num: 6
num after turning on bit zero: 7

num: 7
num after turning on bit zero: 7

num: 8
num after turning on bit zero: 9

num: 9
num after turning on bit zero: 9

num: 10
num after turning on bit zero: 11

The program works by ORing each number with the value 1, because 1 is the value that
produces a value in binary in which only bit zero is set. When this value is ORed with any
other value, it produces a result in which the low-order bit is set and all other bits remain
unchanged. Thus, a value that is even will be increased by 1, becoming odd.

An exclusive OR, usually abbreviated XOR, will set a bit on if, and only if, the bits being
compared are different, as illustrated here:

 0 1 1 1 1 1 1 1
^ 1 0 1 1 1 0 0 1

 1 1 0 0 0 1 1 0

The XOR operator has an interesting property that is useful in a variety of situations.
When some value X is XORed with another value Y, and then that result is XORed with Y
again, X is produced. That is, given the sequence

R1 = X ^ Y;
R2 = R1 ^ Y;

R2 is the same value as X. Thus, the outcome of a sequence of two XORs using the same
value produces the original value. This feature of the XOR can be put into action to create
a simple cipher in which some integer is the key that is used to both encode and decode a
message by XORing the characters in that message. To encode, the XOR operation is applied
the first time, yielding the ciphertext. To decode, the XOR is applied a second time, yielding
the plaintext. Of course, such a cipher has no practical value, being trivially easy to break.
It does, however, provide an interesting way to demonstrate the effects of the XOR, as the
following program shows:

// Demonstrate the XOR.

using System;

78 P a r t I : T h e C # L a n g u a g e

class Encode {
 static void Main() {
 char ch1 = 'H';
 char ch2 = 'i';
 char ch3 = '!';
 int key = 88;

 Console.WriteLine("Original message: " + ch1 + ch2 + ch3);

 // Encode the message.
 ch1 = (char) (ch1 ^ key);
 ch2 = (char) (ch2 ^ key);
 ch3 = (char) (ch3 ^ key);

 Console.WriteLine("Encoded message: " + ch1 + ch2 + ch3);

 // Decode the message.
 ch1 = (char) (ch1 ^ key);
 ch2 = (char) (ch2 ^ key);
 ch3 = (char) (ch3 ^ key);

 Console.WriteLine("Encoded message: " + ch1 + ch2 + ch3);
 }
}

Here is the output:

Original message: Hi!
Encoded message: ❑1y
Encoded message: Hi!

As you can see, the result of two XORs using the same key produces the decoded message.
(Remember, this simple XOR cipher is not suitable for any real-world, practical use because
it is inherently insecure.)

The unary one’s complement (NOT) operator reverses the state of all the bits of the
operand. For example, if some integer called A has the bit pattern 1001 0110, then ~A
produces a result with the bit pattern 0110 1001.

The following program demonstrates the NOT operator by displaying a number and its
complement in binary:

// Demonstrate the bitwise NOT.

using System;

class NotDemo {
 static void Main() {
 sbyte b = -34;

 for(int t=128; t > 0; t = t/2) {
 if((b & t) != 0) Console.Write("1 ");
 if((b & t) == 0) Console.Write("0 ");
 }
 Console.WriteLine();

PART I

C h a p t e r 4 : O p e r a t o r s 79

PART I
PART I

 // reverse all bits
 b = (sbyte) ~b;

 for(int t=128; t > 0; t = t/2) {
 if((b & t) != 0) Console.Write("1 ");
 if((b & t) == 0) Console.Write("0 ");
 }
 }
}

Here is the output:

1 1 0 1 1 1 1 0
0 0 1 0 0 0 0 1

The Shift Operators
In C# it is possible to shift the bits that comprise an integer value to the left or to the right by
a specified amount. C# defines the two bit-shift operators shown here:

<< Left shift

>> Right shift

The general forms for these operators are shown here:

value << num-bits
value >> num-bits

Here, value is the value being shifted by the number of bit positions specified by num-bits.
A left shift causes all bits within the specified value to be shifted left one position and a

zero bit to be brought in on the right. A right shift causes all bits to be shifted right one
position. In the case of a right shift on an unsigned value, a zero is brought in on the left.
In the case of a right shift on a signed value, the sign bit is preserved. Recall that negative
numbers are represented by setting the high-order bit of an integer value to 1. Thus, if
the value being shifted is negative, each right shift brings in a 1 on the left. If the value
is positive, each right shift brings in a 0 on the left.

For both left and right shifts, the bits shifted out are lost. Thus, a shift is not a rotate and
there is no way to retrieve a bit that has been shifted out.

Here is a program that graphically illustrates the effect of a left and right shift. Here, an
integer is given an initial value of 1, which means that its low-order bit is set. Then, eight
shifts are performed on the integer. After each shift, the lower eight bits of the value are
shown. The process is then repeated, except that a 1 is put in the eighth bit position, and
right shifts are performed.

// Demonstrate the shift << and >> operators.

using System;

class ShiftDemo {
 static void Main() {
 int val = 1;

80 P a r t I : T h e C # L a n g u a g e

 for(int i = 0; i < 8; i++) {
 for(int t=128; t > 0; t = t/2) {
 if((val & t) != 0) Console.Write("1 ");
 if((val & t) == 0) Console.Write("0 ");
 }
 Console.WriteLine();
 val = val << 1; // left shift
 }
 Console.WriteLine();

 val = 128;
 for(int i = 0; i < 8; i++) {
 for(int t=128; t > 0; t = t/2) {
 if((val & t) != 0) Console.Write("1 ");
 if((val & t) == 0) Console.Write("0 ");
 }
 Console.WriteLine();
 val = val >> 1; // right shift
 }
 }
}

The output from the program is shown here:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

Since binary is based on powers of 2, the shift operators can be used as a way to multiply
or divide an integer by 2. A shift left doubles a value. A shift right halves it. Of course, this
works only as long as you are not shifting bits off one end or the other. Here is an example:

// Use the shift operators to multiply and divide by 2.

using System;

class MultDiv {
 static void Main() {
 int n;

 n = 10;

PART I

C h a p t e r 4 : O p e r a t o r s 81

PART I
PART I

 Console.WriteLine("Value of n: " + n);

 // Multiply by 2.
 n = n << 1;
 Console.WriteLine("Value of n after n = n * 2: " + n);

 // Multiply by 4.
 n = n << 2;
 Console.WriteLine("Value of n after n = n * 4: " + n);

 // Divide by 2.
 n = n >> 1;
 Console.WriteLine("Value of n after n = n / 2: " + n);

 // Divide by 4.
 n = n >> 2;
 Console.WriteLine("Value of n after n = n / 4: " + n);
 Console.WriteLine();

 // Reset n.
 n = 10;
 Console.WriteLine("Value of n: " + n);

 // Multiply by 2, 30 times.
 n = n << 30; // data is lost
 Console.WriteLine("Value of n after left-shifting 30 places: " + n);
 }
}

The output is shown here:

Value of n: 10
Value of n after n = n * 2: 20
Value of n after n = n * 4: 80
Value of n after n = n / 2: 40
Value of n after n = n / 4: 10

Value of n: 10
Value of n after left-shifting 30 places: -2147483648

Notice the last line in the output. When the value 10 is left-shifted 30 times, information
is lost because bits are shifted out of the range of an int. In this case, the garbage value
produced is negative because a 1 bit is shifted into the high-order bit, which is used as a
sign bit, causing the number to be interpreted as negative. This illustrates why you must be
careful when using the shift operators to multiply or divide a value by 2. (See Chapter 3 for
an explanation of signed vs. unsigned data types.)

Bitwise Compound Assignments
All of the binary bitwise operators can be used in compound assignments. For example, the
following two statements both assign to x the outcome of an XOR of x with the value 127:

x = x ^ 127;
x ^= 127;

82 P a r t I : T h e C # L a n g u a g e

The ? Operator
One of C#’s most fascinating operators is the ?, which is C#’s conditional operator. The ?
operator is often used to replace certain types of if-then-else constructions. The ? is called
a ternary operator because it requires three operands. It takes the general form

Exp1 ? Exp2 : Exp3;

where Exp1 is a bool expression, and Exp2 and Exp3 are expressions. The type of Exp2 and
Exp3 must be the same. Notice the use and placement of the colon.

The value of a ? expression is determined like this: Exp1 is evaluated. If it is true, then
Exp2 is evaluated and becomes the value of the entire ? expression. If Exp1 is false, then
Exp3 is evaluated, and its value becomes the value of the expression. Consider this example,
which assigns absval the absolute value of val:

absval = val < 0 ? -val : val; // get absolute value of val

Here, absval will be assigned the value of val if val is zero or greater. If val is negative, then
absval will be assigned the negative of that value (which yields a positive value).

Here is another example of the ? operator. This program divides two numbers, but will
not allow a division by zero.

// Prevent a division by zero using the ?.

using System;

class NoZeroDiv {
 static void Main() {
 int result;

 for(int i = -5; i < 6; i++) {
 result = i != 0 ? 100 / i : 0;
 if(i != 0)
 Console.WriteLine("100 / " + i + " is " + result);
 }
 }
}

The output from the program is shown here:

100 / -5 is -20
100 / -4 is -25
100 / -3 is -33
100 / -2 is -50
100 / -1 is -100
100 / 1 is 100
100 / 2 is 50
100 / 3 is 33
100 / 4 is 25
100 / 5 is 20

PART I

C h a p t e r 4 : O p e r a t o r s 83

PART I
PART I

Pay special attention to this line from the program:

result = i != 0 ? 100 / i : 0;

Here, result is assigned the outcome of the division of 100 by i. However, this division takes
place only if i is not 0. When i is 0, a placeholder value of 0 is assigned to result.

You don’t actually have to assign the value produced by the ? to some variable. For
example, you could use the value as an argument in a call to a method. Or, if the expressions
are all of type bool, the ? can be used as the conditional expression in a loop or if statement.
For example, the following program displays the results of dividing 100 by only even, non-
zero values:

// Divide by only even, non-zero values.

using System;

class NoZeroDiv2 {
 static void Main() {

 for(int i = -5; i < 6; i++)
 if(i != 0 ? (i%2 == 0) : false)
 Console.WriteLine("100 / " + i + " is " + 100 / i);
 }
}

Notice the if statement. If i is zero, then the outcome of the if is false. Otherwise, if i is non-
zero, then the outcome of the if is true if i is even and false if i is odd. Thus, only even, non-
zero divisors are allowed. Although this example is somewhat contrived for the sake of
illustration, such constructs are occasionally very useful.

Spacing and Parentheses
An expression in C# can have tabs and spaces in it to make it more readable. For example,
the following two expressions are the same, but the second is easier to read:

x=10/y*(127+x);

x = 10 / y * (127 + x);

Parentheses can be used to group subexpressions, thereby effectively increasing the
precedence of the operations contained within them, just like in algebra. Use of redundant
or additional parentheses will not cause errors or slow down execution of the expression.
You are encouraged to use parentheses to make clear the exact order of evaluation, both for
yourself and for others who may have to figure out your program later. For example, which
of the following two expressions is easier to read?

x = y/3-34*temp+127;

x = (y/3) - (34*temp) + 127;

84 P a r t I : T h e C # L a n g u a g e

Operator Precedence
Table 4-2 shows the order of precedence for all C# operators, from highest to lowest. This
table includes several operators that will be discussed later in this book.

Highest

() [] . ++
(postfix)

– –
(postfix)

checked new sizeof typeof unchecked

! ~ (cast) +
(unary)

–
(unary)

++
(prefix)

– –
(prefix)

* / %

+ –

<< >>

< > <= >= is

== !=

&

^

|

&&

||

??

?:

= op= =>

Lowest

TABLE 4-2 The Precedence of the C# Operators

5
Program Control Statements

This chapter discusses C#’s program control statements. There are three categories of
program control statements: selection statements, which are the if and the switch;
iteration statements, which consist of the for, while, do-while, and foreach loops; and

jump statements, which include break, continue, goto, return, and throw. Except for throw,
which is part of C#’s exception-handling mechanism and is discussed in Chapter 13, the
others are examined here.

The if Statement
Chapter 2 introduced the if statement. It is examined in detail here. The complete form of
the if statement is

if(condition) statement;
else statement;

where the targets of the if and else are single statements. The else clause is optional. The
targets of both the if and else can be blocks of statements. The general form of the if using
blocks of statements is

if(condition)
{

statement sequence
}
else
{

statement sequence
}

If the conditional expression is true, the target of the if will be executed; otherwise, if it
exists, the target of the else will be executed. At no time will both of them be executed.
The conditional expression controlling the if must produce a bool result.

Here is a simple example that uses an if and else to report if a number is positive or
negative:

// Determine if a value is positive or negative.

using System;

85

CHAPTER

86 P a r t I : T h e C # L a n g u a g e

class PosNeg {
 static void Main() {
 int i;

 for(i=-5; i <= 5; i++) {
 Console.Write("Testing " + i + ": ");

 if(i < 0) Console.WriteLine("negative");
 else Console.WriteLine("positive");
 }
 }
}

The output is shown here:

Testing -5: negative
Testing -4: negative
Testing -3: negative
Testing -2: negative
Testing -1: negative
Testing 0: positive
Testing 1: positive
Testing 2: positive
Testing 3: positive
Testing 4: positive
Testing 5: positive

In this example, if i is less than zero, then the target of the if is executed. Otherwise, the
target of the else is executed. In no case are both executed.

Nested ifs
A nested if is an if statement that is the target of another if or else. Nested ifs are very
common in programming. The main thing to remember about nested ifs in C# is that an
else clause always refers to the nearest if statement that is within the same block as the
else and not already associated with an else. Here is an example:

if(i == 10) {
 if(j < 20) a = b;
 if(k > 100) c = d;
 else a = c; // this else refers to if(k > 100)
}
else a = d; // this else refers to if(i == 10)

As the comments indicate, the final else is not associated with if(j < 20) because it is not
in the same block (even though it is the nearest if without an else). Rather, the final else
is associated with if(i == 10). The inner else refers to if(k > 100) because it is the closest if
within the same block.

The following program demonstrates a nested if. In the positive/negative program
shown earlier, zero is reported as positive. However, as a general rule, zero is considered
signless. The following version of the program reports zero as being neither positive nor
negative.

PART I

C h a p t e r 5 : P r o g r a m C o n t r o l S t a t e m e n t s 87

PART I
PART I

// Determine if a value is positive, negative, or zero.

using System;

class PosNegZero {
 static void Main() {
 int i;

 for(i=-5; i <= 5; i++) {

 Console.Write("Testing " + i + ": ");

 if(i < 0) Console.WriteLine("negative");
 else if(i == 0) Console.WriteLine("no sign");
 else Console.WriteLine("positive");
 }
 }
}

Here is the output:

Testing -5: negative
Testing -4: negative
Testing -3: negative
Testing -2: negative
Testing -1: negative
Testing 0: no sign
Testing 1: positive
Testing 2: positive
Testing 3: positive
Testing 4: positive
Testing 5: positive

The if-else-if Ladder
A common programming construct that is based upon the nested if is the if-else-if ladder. It
looks like this:

if(condition)
 statement;

else if(condition)
 statement;

else if(condition)
 statement;

.

.

.
else

statement;

The conditional expressions are evaluated from the top downward. As soon as a true condition
is found, the statement associated with it is executed, and the rest of the ladder is bypassed.

88 P a r t I : T h e C # L a n g u a g e

If none of the conditions is true, then the final else clause will be executed. The final else
often acts as a default condition. That is, if all other conditional tests fail, then the last else
clause is executed. If there is no final else and all other conditions are false, then no action
will take place.

The following program demonstrates the if-else-if ladder. It finds the smallest single-
digit factor (other than 1) for a given value.

// Determine smallest single-digit factor.

using System;

class Ladder {
 static void Main() {
 int num;

 for(num = 2; num < 12; num++) {
 if((num % 2) == 0)
 Console.WriteLine("Smallest factor of " + num + " is 2.");
 else if((num % 3) == 0)
 Console.WriteLine("Smallest factor of " + num + " is 3.");
 else if((num % 5) == 0)
 Console.WriteLine("Smallest factor of " + num + " is 5.");
 else if((num % 7) == 0)
 Console.WriteLine("Smallest factor of " + num + " is 7.");
 else
 Console.WriteLine(num + " is not divisible by 2, 3, 5, or 7.");
 }
 }
}

The program produces the following output:

Smallest factor of 2 is 2.
Smallest factor of 3 is 3.
Smallest factor of 4 is 2.
Smallest factor of 5 is 5.
Smallest factor of 6 is 2.
Smallest factor of 7 is 7.
Smallest factor of 8 is 2.
Smallest factor of 9 is 3.
Smallest factor of 10 is 2.
11 is not divisible by 2, 3, 5, or 7.

As you can see, the else is executed only if none of the preceding if statements succeeds.

The switch Statement
The second of C#’s selection statements is switch. The switch provides for a multiway branch.
Thus, it enables a program to select among several alternatives. Although a series of nested
if statements can perform multiway tests, for many situations the switch is a more efficient
approach. It works like this: The value of an expression is successively tested against a list
of constants. When a match is found, the statement sequence associated with that match is
executed. The general form of the switch statement is

PART I

C h a p t e r 5 : P r o g r a m C o n t r o l S t a t e m e n t s 89

PART I
PART I

switch(expression) {
 case constant1:
 statement sequence
 break;
 case constant2:

 statement sequence
 break;
 case constant3:

 statement sequence
 break;
 .
 .
 .
 default:

statement sequence
break;

}

The switch expression must be of an integer type, such as char, byte, short, or int, of
an enumeration type, or of type string. (Enumerations and the string type are described
later in this book.) Thus, floating-point expressions, for example, are not allowed.
Frequently, the expression controlling the switch is simply a variable. The case constants
must be of a type compatible with the expression. No two case constants in the same
switch can have identical values.

The default sequence is executed if no case constant matches the expression. The default
is optional; if it is not present, no action takes place if all matches fail. When a match is
found, the statements associated with that case are executed until the break is encountered.

The following program demonstrates the switch:

// Demonstrate the switch.

using System;

class SwitchDemo {
 static void Main() {
 int i;

 for(i=0; i<10; i++)
 switch(i) {
 case 0:
 Console.WriteLine("i is zero");
 break;
 case 1:
 Console.WriteLine("i is one");
 break;
 case 2:
 Console.WriteLine("i is two");
 break;
 case 3:
 Console.WriteLine("i is three");
 break;

90 P a r t I : T h e C # L a n g u a g e

 case 4:
 Console.WriteLine("i is four");
 break;
 default:
 Console.WriteLine("i is five or more");
 break;
 }
 }
}

The output produced by this program is shown here:

i is zero
i is one
i is two
i is three
i is four
i is five or more
i is five or more
i is five or more
i is five or more
i is five or more

As you can see, each time through the loop, the statements associated with the case constant
that matches i are executed. All others are bypassed. When i is five or greater, no case constants
match, so the default is executed.

In the preceding example, the switch was controlled by an int variable. As explained,
you can control a switch with any integer type, including char. Here is an example that uses
a char expression and char case constants:

// Use a char to control the switch.

using System;

class SwitchDemo2 {
 static void Main() {
 char ch;

 for(ch='A'; ch<= 'E'; ch++)
 switch(ch) {
 case 'A':
 Console.WriteLine("ch is A");
 break;
 case 'B':
 Console.WriteLine("ch is B");
 break;
 case 'C':
 Console.WriteLine("ch is C");
 break;
 case 'D':
 Console.WriteLine("ch is D");
 break;
 case 'E':
 Console.WriteLine("ch is E");

PART I

C h a p t e r 5 : P r o g r a m C o n t r o l S t a t e m e n t s 91

PART I
PART I

 break;
 }
 }
}

The output from this program is shown here:

ch is A
ch is B
ch is C
ch is D
ch is E

Notice that this example does not include a default case. Remember, the default is optional.
When not needed, it can be left out.

In C#, it is an error for the statement sequence associated with one case to continue on
into the next case. This is called the “no fall-through” rule. This is why case sequences end
with a break statement. (You can avoid fall-through in other ways, such as by using the
goto discussed later in this chapter, but break is by far the most commonly used approach.)
When encountered within the statement sequence of a case, the break statement causes
program flow to exit from the entire switch statement and resume at the next statement
outside the switch. The default sequence also must not “fall through,” and it too usually
ends with break.

The no fall-through rule is one point on which C# differs from C, C++, and Java. In
those languages, one case may continue on (that is, fall through) into the next case. There
are two reasons that C# instituted the no fall-through rule for cases: First, it allows the
compiler to freely rearrange the order of the case sequences, perhaps for purposes of
optimization. Such a rearrangement would not be possible if one case could flow into the
next. Second, requiring each case to explicitly end prevents a programmer from accidentally
allowing one case to flow into the next.

Although you cannot allow one case sequence to fall through into another, you can have
two or more case labels refer to the same code sequence, as shown in this example:

// Empty cases can fall through.

using System;

class EmptyCasesCanFall {
 static void Main() {
 int i;

 for(i=1; i < 5; i++)
 switch(i) {
 case 1:
 case 2:
 case 3: Console.WriteLine("i is 1, 2 or 3");
 break;
 case 4: Console.WriteLine("i is 4");
 break;
 }

 }
}

92 P a r t I : T h e C # L a n g u a g e

The output is shown here:

i is 1, 2 or 3
i is 1, 2 or 3
i is 1, 2 or 3
i is 4

In this example, if i has the value 1, 2, or 3, then the first WriteLine() statement executes. If i
is 4, then the second WriteLine() statement executes. The stacking of cases does not violate
the no fall-through rule, because the case statements all use the same statement sequence.

Stacking case labels is a commonly employed technique when several cases share
common code. This technique prevents the unnecessary duplication of code sequences.

Nested switch Statements
It is possible to have a switch as part of the statement sequence of an outer switch. This is
called a nested switch. The case constants of the inner and outer switch can contain common
values and no conflicts will arise. For example, the following code fragment is perfectly
acceptable:

switch(ch1) {
 case 'A': Console.WriteLine("This A is part of outer switch.");
 switch(ch2) {
 case 'A':
 Console.WriteLine("This A is part of inner switch");
 break;
 case 'B': // ...
 } // end of inner switch
 break;
 case 'B': // ...

The for Loop
The for loop was introduced in Chapter 2. Here, it is examined in detail. You might be
surprised at just how powerful and flexible the for loop is. Let’s begin by reviewing the
basics, starting with the most traditional forms of the for.

The general form of the for loop for repeating a single statement is

for(initialization; condition; iteration) statement;

For repeating a block, the general form is

for(initialization; condition; iteration)
{

statement sequence
}

The initialization is usually an assignment statement that sets the initial value of the loop
control variable, which acts as the counter that controls the loop. The condition is a Boolean
expression that determines whether the loop will repeat. The iteration expression defines the
amount by which the loop control variable will change each time the loop is repeated. Notice
that these three major sections of the loop must be separated by semicolons. The for loop will

PART I

C h a p t e r 5 : P r o g r a m C o n t r o l S t a t e m e n t s 93

PART I
PART I

continue to execute as long as the condition tests true. Once the condition becomes false, the
loop will exit, and program execution will resume on the statement following the for.

The for loop can proceed in a positive or negative fashion, and it can change the loop
control variable by any amount. For example, the following program prints the numbers
100 to –100, in decrements of 5:

// A negatively running for loop.

using System;

class DecrFor {
 static void Main() {
 int x;

 for(x = 100; x > -100; x -= 5)
 Console.WriteLine(x);
 }
}

An important point about for loops is that the conditional expression is always tested at
the top of the loop. This means that the code inside the loop may not be executed at all if the
condition is false to begin with. Here is an example:

for(count=10; count < 5; count++)
 x += count; // this statement will not execute

This loop will never execute because its control variable, count, is greater than 5 when the
loop is first entered. This makes the conditional expression, count < 5, false from the outset;
thus, not even one iteration of the loop will occur.

The for loop is most useful when you will be iterating a known number of times. For
example, the following program uses two for loops to find the prime numbers between 2
and 20. If the number is not prime, then its largest factor is displayed.

// Determine if a number is prime. If it is not, then
// display its largest factor.

using System;

class FindPrimes {
 static void Main() {
 int num;
 int i;
 int factor;
 bool isprime;

 for(num = 2; num < 20; num++) {
 isprime = true;
 factor = 0;

 // See if num is evenly divisible.
 for(i=2; i <= num/2; i++) {
 if((num % i) == 0) {

94 P a r t I : T h e C # L a n g u a g e

 // num is evenly divisible. Thus, it is not prime.
 isprime = false;
 factor = i;
 }
 }

 if(isprime)
 Console.WriteLine(num + " is prime.");
 else
 Console.WriteLine("Largest factor of " + num +
 " is " + factor);
 }
 }
}

The output from the program is shown here:

2 is prime.
3 is prime.
Largest factor of 4 is 2
5 is prime.
Largest factor of 6 is 3
7 is prime.
Largest factor of 8 is 4
Largest factor of 9 is 3
Largest factor of 10 is 5
11 is prime.
Largest factor of 12 is 6
13 is prime.
Largest factor of 14 is 7
Largest factor of 15 is 5
Largest factor of 16 is 8
17 is prime.
Largest factor of 18 is 9
19 is prime.

Some Variations on the for Loop
The for is one of the most versatile statements in the C# language because it allows a wide
range of variations. They are examined here.

Using Multiple Loop Control Variables
The for loop allows you to use two or more variables to control the loop. When using
multiple loop control variables, the initialization and increments statements for each
variable are separated by commas. Here is an example:

// Use commas in a for statement.

using System;

class Comma {
 static void Main() {
 int i, j;

PART I

C h a p t e r 5 : P r o g r a m C o n t r o l S t a t e m e n t s 95

PART I
PART I

 for(i=0, j=10; i < j; i++, j--)
 Console.WriteLine("i and j: " + i + " " + j);
 }
}

The output from the program is shown here:

i and j: 0 10
i and j: 1 9
i and j: 2 8
i and j: 3 7
i and j: 4 6

Here, commas separate the two initialization statements and the two iteration expressions.
When the loop begins, both i and j are initialized. Each time the loop repeats, i is incremented
and j is decremented. Multiple loop control variables are often convenient and can simplify
certain algorithms. You can have any number of initialization and iteration statements, but
in practice, more than two make the for loop unwieldy.

Here is a practical use of multiple loop control variables in a for statement. This
program uses two loop control variables within a single for loop to find the largest and
smallest factor of a number, in this case 100. Pay special attention to the termination
condition. It relies on both loop control variables.

// Use commas in a for statement to find the largest and
// smallest factor of a number.

using System;

class Comma {
 static void Main() {
 int i, j;
 int smallest, largest;
 int num;

 num = 100;

 smallest = largest = 1;

 for(i=2, j=num/2; (i <= num/2) & (j >= 2); i++, j--) {

 if((smallest == 1) & ((num % i) == 0))
 smallest = i;

 if((largest == 1) & ((num % j) == 0))
 largest = j;

 }

 Console.WriteLine("Largest factor: " + largest);
 Console.WriteLine("Smallest factor: " + smallest);
 }
}

96 P a r t I : T h e C # L a n g u a g e

Here is the output from the program:

Largest factor: 50
Smallest factor: 2

Through the use of two loop control variables, a single for loop can find both the smallest
and the largest factor of a number. The control variable i is used to search for the smallest
factor. It is initially set to 2 and incremented until its value exceeds one half of num. The
control variable j is used to search for the largest factor. Its value is initially set to one half
the num and decremented until it is less than 2. The loop runs until both i and j are at their
termination values. When the loop ends, both factors will have been found.

The Conditional Expression
The conditional expression controlling a for loop can be any valid expression that produces
a bool result. It does not need to involve the loop control variable. For example, in the next
program, the for loop is controlled by the value of done.

// Loop condition can be any bool expression.

using System;

class forDemo {
 static void Main() {
 int i, j;
 bool done = false;

 for(i=0, j=100; !done; i++, j--) {

 if(i*i >= j) done = true;

 Console.WriteLine("i, j: " + i + " " + j);
 }
 }
}

The output is shown here:

i, j: 0 100
i, j: 1 99
i, j: 2 98
i, j: 3 97
i, j: 4 96
i, j: 5 95
i, j: 6 94
i, j: 7 93
i, j: 8 92
i, j: 9 91
i, j: 10 90

In this example, the for loop iterates until the bool variable done is true. This variable is set
to true inside the loop when i squared is greater than or equal to j.

PART I

C h a p t e r 5 : P r o g r a m C o n t r o l S t a t e m e n t s 97

PART I
PART I

Missing Pieces
Some interesting for loop variations are created by leaving pieces of the loop definition
empty. In C#, it is possible for any or all of the initialization, condition, or iteration portions
of the for loop to be empty. For example, consider the following program:

// Parts of the for can be empty.

using System;

class Empty {
 static void Main() {
 int i;

 for(i = 0; i < 10;) {
 Console.WriteLine("Pass #" + i);
 i++; // increment loop control var
 }

 }
}

Here, the iteration expression of the for is empty. Instead, the loop control variable i is
incremented inside the body of the loop. This means that each time the loop repeats, i is tested
to see whether it equals 10, but no further action takes place. Of course, since i is incremented
within the body of the loop, the loop runs normally, displaying the following output:

Pass #0
Pass #1
Pass #2
Pass #3
Pass #4
Pass #5
Pass #6
Pass #7
Pass #8
Pass #9

In the next example, the initialization portion is also moved out of the for:

// Move more out of the for loop.

using System;

class Empty2 {
 static void Main() {
 int i;

 i = 0; // move initialization out of loop
 for(; i < 10;) {
 Console.WriteLine("Pass #" + i);
 i++; // increment loop control var
 }
 }
}

98 P a r t I : T h e C # L a n g u a g e

In this version, i is initialized before the loop begins, rather than as part of the for.
Normally, you will want to initialize the loop control variable inside the for. Placing the
initialization outside of the loop is generally done only when the initial value is derived
through a complex process that does not lend itself to containment inside the for statement.

The Infinite Loop
You can create an infinite loop (a loop that never terminates) using the for by leaving the
conditional expression empty. For example, the following fragment shows the way many
C# programmers create an infinite loop:

for(;;) // intentionally infinite loop
{
 //...
}

This loop will run forever. Although there are some programming tasks, such as operating
system command processors, that require an infinite loop, most “infinite loops” are really
just loops with special termination requirements. (See “Using break to Exit a Loop,” later in
this chapter.)

Loops with No Body
In C#, the body associated with a for loop (or any other loop) can be empty. This is because
a empty statement is syntactically valid. Bodyless loops are often useful. For example, the
following program uses a bodyless loop to sum the numbers 1 through 5:

// The body of a loop can be empty.

using System;

class Empty3 {
 static void Main() {
 int i;
 int sum = 0;

 // Sum the numbers through 5.
 for(i = 1; i <= 5; sum += i++) ;

 Console.WriteLine("Sum is " + sum);
 }
}

The output from the program is shown here:

Sum is 15

Notice that the summation process is handled entirely within the for statement, and no
body is needed. Pay special attention to the iteration expression:

sum += i++

Don’t be intimidated by statements like this. They are common in professionally written
C# programs and are easy to understand if you break them down into their parts. In words,

PART I

C h a p t e r 5 : P r o g r a m C o n t r o l S t a t e m e n t s 99

PART I
PART I

this statement says “add to sum the value of sum plus i, then increment i.” Thus, it is the
same as this sequence of statements:

sum = sum + i;
i++;

Declaring Loop Control Variables Inside the for Loop
Often the variable that controls a for loop is needed only for the purposes of the loop and
is not used elsewhere. When this is the case, it is possible to declare the variable inside the
initialization portion of the for. For example, the following program computes both the
summation and the factorial of the numbers 1 through 5. It declares its loop control variable
i inside the for:

// Declare loop control variable inside the for.

using System;

class ForVar {
 static void Main() {
 int sum = 0;
 int fact = 1;

 // Compute the factorial of the numbers 1 through 5.
 for(int i = 1; i <= 5; i++) {
 sum += i; // i is known throughout the loop.
 fact *= i;
 }

 // But, i is not known here.

 Console.WriteLine("Sum is " + sum);
 Console.WriteLine("Factorial is " + fact);
 }
}

When you declare a variable inside a for loop, there is one important point to remember:
The scope of that variable ends when the for statement does. (That is, the scope of the variable
is limited to the for loop.) Outside the for loop, the variable will cease to exist. Thus, in the
preceding example, i is not accessible outside the for loop. If you need to use the loop control
variable elsewhere in your program, you will not be able to declare it inside the for loop.

Before moving on, you might want to experiment with your own variations on the for
loop. As you will find, it is a fascinating loop.

The while Loop
Another of C#’s loops is the while. The general form of the while loop is

while(condition) statement;

where statement can be a single statement or a block of statements, and condition defines the
condition that controls the loop and may be any valid Boolean expression. The statement is
performed while the condition is true. When the condition becomes false, program control
passes to the line immediately following the loop.

100 P a r t I : T h e C # L a n g u a g e

Here is a simple example in which a while is used to compute the order of magnitude of
an integer:

// Compute the order of magnitude of an integer

using System;

class WhileDemo {
 static void Main() {
 int num;
 int mag;

 num = 435679;
 mag = 0;

 Console.WriteLine("Number: " + num);

 while(num > 0) {
 mag++;
 num = num / 10;
 };

 Console.WriteLine("Magnitude: " + mag);
 }
}

The output is shown here:

Number: 435679
Magnitude: 6

The while loop works like this: The value of num is tested. If num is greater than 0, the mag
counter is incremented, and num is divided by 10. As long as the value in num is greater
than 0, the loop repeats. When num is 0, the loop terminates and mag contains the order of
magnitude of the original value.

As with the for loop, the while checks the conditional expression at the top of the loop,
which means that the loop code may not execute at all. This eliminates the need for performing
a separate test before the loop. The following program illustrates this characteristic of the while
loop. It computes the integer powers of 2 from 0 to 9.

// Compute integer powers of 2.

using System;

class Power {
 static void Main() {
 int e;
 int result;

 for(int i=0; i < 10; i++) {
 result = 1;
 e = i;

PART I

C h a p t e r 5 : P r o g r a m C o n t r o l S t a t e m e n t s 101

PART I
PART I

 while(e > 0) {
 result *= 2;
 e--;
 }

 Console.WriteLine("2 to the " + i + " power is " + result);
 }
 }
}

The output from the program is shown here:

2 to the 0 power is 1
2 to the 1 power is 2
2 to the 2 power is 4
2 to the 3 power is 8
2 to the 4 power is 16
2 to the 5 power is 32
2 to the 6 power is 64
2 to the 7 power is 128
2 to the 8 power is 256
2 to the 9 power is 512

Notice that the while loop executes only when e is greater than 0. Thus, when e is 0, as it is
in the first iteration of the for loop, the while loop is skipped.

The do-while Loop
The third C# loop is the do-while. Unlike the for and the while loops, in which the condition
is tested at the top of the loop, the do-while loop checks its condition at the bottom of the
loop. This means that a do-while loop will always execute at least once. The general form of
the do-while loop is

do {
 statements;
} while(condition);

Although the braces are not necessary when only one statement is present, they are often
used to improve readability of the do-while construct, thus preventing confusion with the
while. The do-while loop executes as long as the conditional expression is true.

The following program uses a do-while loop to display the digits of an integer in
reverse order:

// Display the digits of an integer in reverse order.

using System;

class DoWhileDemo {
 static void Main() {
 int num;
 int nextdigit;

 num = 198;

102 P a r t I : T h e C # L a n g u a g e

 Console.WriteLine("Number: " + num);

 Console.Write("Number in reverse order: ");

 do {
 nextdigit = num % 10;
 Console.Write(nextdigit);
 num = num / 10;
 } while(num > 0);

 Console.WriteLine();
 }
}

The output is shown here:

Number: 198
Number in reverse order: 891

Here is how the loop works: With each iteration, the leftmost digit is obtained by computing
the remainder of an integer division by 10. This digit is then displayed. Next, the value in
num is divided by 10. Since this is an integer division, this results in the leftmost digit being
removed. This process repeats until num is 0.

The foreach Loop
The foreach loop cycles through the elements of a collection. A collection is a group of objects.
C# defines several types of collections, of which one is an array. The foreach loop is examined
in Chapter 7, when arrays are discussed.

Using break to Exit a Loop
It is possible to force an immediate exit from a loop, bypassing any code remaining in the
body of the loop and the loop’s conditional test, by using the break statement. When a
break statement is encountered inside a loop, the loop is terminated, and program control
resumes at the next statement following the loop. Here is a simple example:

// Using break to exit a loop.

using System;

class BreakDemo {
 static void Main() {

 // Use break to exit this loop.
 for(int i=-10; i <= 10; i++) {
 if(i > 0) break; // terminate loop when i is positive
 Console.Write(i + " ");
 }
 Console.WriteLine("Done");
 }
}

PART I

C h a p t e r 5 : P r o g r a m C o n t r o l S t a t e m e n t s 103

PART I
PART I

This program generates the following output:

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 Done

As you can see, although the for loop is designed to run from –10 to 10, the break statement
causes it to terminate early, when i becomes positive.

The break statement can be used with any of C#’s loops. For example, here is the
previous program recoded to use a do-while loop:

// Using break to exit a do-while loop.

using System;

class BreakDemo2 {
 static void Main() {
 int i;

 i = -10;
 do {
 if(i > 0) break;
 Console.Write(i + " ");
 i++;
 } while(i <= 10);

 Console.WriteLine("Done");
 }
}

Here is a more practical example of break. This program finds the smallest factor of a
number.

// Find the smallest factor of a value.

using System;

class FindSmallestFactor {
 static void Main() {
 int factor = 1;
 int num = 1000;

 for(int i=2; i <= num/i; i++) {
 if((num%i) == 0) {
 factor = i;
 break; // stop loop when factor is found
 }
 }
 Console.WriteLine("Smallest factor is " + factor);
 }
}

The output is shown here:

Smallest factor is 2

104 P a r t I : T h e C # L a n g u a g e

The break stops the for loop as soon as a factor is found. The use of break in this situation
prevents the loop from trying any other values once a factor has been found, thus preventing
inefficiency.

When used inside a set of nested loops, the break statement will break out of only the
innermost loop. For example:

// Using break with nested loops.

using System;

class BreakNested {
 static void Main() {

 for(int i=0; i<3; i++) {
 Console.WriteLine("Outer loop count: " + i);
 Console.Write(" Inner loop count: ");

 int t = 0;
 while(t < 100) {
 if(t == 10) break; // terminate loop if t is 10
 Console.Write(t + " ");
 t++;
 }
 Console.WriteLine();
 }
 Console.WriteLine("Loops complete.");
 }
}

This program generates the following output:

Outer loop count: 0
 Inner loop count: 0 1 2 3 4 5 6 7 8 9
Outer loop count: 1
 Inner loop count: 0 1 2 3 4 5 6 7 8 9
Outer loop count: 2
 Inner loop count: 0 1 2 3 4 5 6 7 8 9
Loops complete.

As you can see, the break statement in the inner loop causes only the termination of that
loop. The outer loop is unaffected.

Here are two other points to remember about break: First, more than one break statement
may appear in a loop. However, be careful. Too many break statements have the tendency
to destructure your code. Second, the break that exits a switch statement affects only that
switch statement and not any enclosing loops.

Using continue
It is possible to force an early iteration of a loop, bypassing the loop’s normal control structure.
This is accomplished using continue. The continue statement forces the next iteration of the
loop to take place, skipping any code in between. Thus, continue is essentially the complement
of break. For example, the following program uses continue to help print the even numbers
between 0 and 100.

PART I

C h a p t e r 5 : P r o g r a m C o n t r o l S t a t e m e n t s 105

PART I
PART I

// Use continue.

using System;

class ContDemo {
 static void Main() {

 // Print even numbers between 0 and 100.
 for(int i = 0; i <= 100; i++) {
 if((i%2) != 0) continue; // iterate
 Console.WriteLine(i);
 }
 }
}

Only even numbers are printed, because an odd number will cause the loop to iterate early,
bypassing the call to WriteLine().

In while and do-while loops, a continue statement will cause control to go directly to
the conditional expression and then continue the looping process. In the case of the for, the
iteration expression of the loop is evaluated, then the conditional expression is executed,
and then the loop continues.

Good uses of continue are rare. One reason is that C# provides a rich set of loop statements
that fit most applications. However, for those special circumstances in which early iteration
is needed, the continue statement provides a structured way to accomplish it.

return
The return statement causes a method to return. It can also be used to return a value. It is
examined in Chapter 6.

The goto
The goto is C#’s unconditional jump statement. When encountered, program flow jumps to
the location specified by the goto. The statement fell out of favor with programmers many
years ago because it encouraged the creation of “spaghetti code.” However, the goto is still
occasionally—and sometimes effectively—used. This book will not make a judgment
regarding its validity as a form of program control. It should be stated, however, that there
are no programming situations that require the use of the goto statement—it is not necessary
for making the language complete. Rather, goto is a convenience that, if used wisely, can be
a benefit in certain programming situations. As such, the goto is not used in this book
outside of this section. The chief concern most programmers have about the goto is its
tendency to clutter a program and render it nearly unreadable. However, there are times
when the use of the goto can clarify program flow rather than confuse it.

The goto requires a label for operation. A label is a valid C# identifier followed by a
colon. The label must be in the same method as the goto that uses it and within scope. For
example, a loop from 1 to 100 could be written using a goto and a label, as shown here:

x = 1;
loop1:
 x++;
 if(x < 100) goto loop1;

106 P a r t I : T h e C # L a n g u a g e

The goto can also be used to jump to a case or default statement within a switch.
Technically, the case and default statements of a switch are labels. Thus, they can be targets
of a goto. However, the goto statement must be executed from within the switch. That is,
you cannot use the goto to jump into a switch statement. Here is an example that illustrates
goto with a switch:

// Use goto with a switch.

using System;

class SwitchGoto {
 static void Main() {

 for(int i=1; i < 5; i++) {
 switch(i) {
 case 1:
 Console.WriteLine("In case 1");
 goto case 3;
 case 2:
 Console.WriteLine("In case 2");
 goto case 1;
 case 3:
 Console.WriteLine("In case 3");
 goto default;
 default:
 Console.WriteLine("In default");
 break;
 }

 Console.WriteLine();
 }

// goto case 1; // Error! Can't jump into a switch.
 }
}

The output from the program is shown here:

In case 1
In case 3
In default

In case 2
In case 1
In case 3
In default

In case 3
In default

In default

PART I

C h a p t e r 5 : P r o g r a m C o n t r o l S t a t e m e n t s 107

PART I
PART I

Inside the switch, notice how the goto is used to jump to other case statements or the
default statement. Furthermore, notice that the case statements do not end with a break.
Since the goto prevents one case from falling through to the next, the no fall-through rule
is not violated, and there is no need for a break statement. As explained, it is not possible
to use the goto to jump into a switch. If you remove the comment symbols from the start
of this line

// goto case 1; // Error! Can't jump into a switch.

the program will not compile. Frankly, using a goto with a switch can be useful in some
special-case situations, but it is not recommended style in general.

One good use for the goto is to exit from a deeply nested routine. Here is a simple
example:

// Demonstrate the goto.

using System;

class Use_goto {
 static void Main() {
 int i=0, j=0, k=0;

 for(i=0; i < 10; i++) {
 for(j=0; j < 10; j++) {
 for(k=0; k < 10; k++) {
 Console.WriteLine("i, j, k: " + i + " " + j + " " + k);
 if(k == 3) goto stop;
 }
 }
 }

stop:
 Console.WriteLine("Stopped! i, j, k: " + i + ", " + j + " " + k);

 }
}

The output from the program is shown here:

i, j, k: 0 0 0
i, j, k: 0 0 1
i, j, k: 0 0 2
i, j, k: 0 0 3
Stopped! i, j, k: 0, 0 3

Eliminating the goto would force the use of three if and break statements. In this case, the
goto simplifies the code. While this is a contrived example used for illustration, you can
probably imagine situations in which a goto might be beneficial.

One last point: Although you can jump out of a block (as the preceding example shows),
you can’t use the goto to jump into a block.

This page intentionally left blank

6
Introducing Classes and

Objects

This chapter introduces the class. The class is the foundation of C# because it defines
the nature of an object. Furthermore, the class forms the basis for object-oriented
programming. Within a class are defined both code and data. Because classes and

objects are fundamental to C#, they constitute a large topic, which spans several chapters.
This chapter begins the discussion by covering their main features.

Class Fundamentals
We have been using classes since the start of this book. Of course, only extremely simple
classes have been used, and we have not taken advantage of the majority of their features.
Classes are substantially more powerful than the limited ones presented so far.

Let’s begin by reviewing the basics. A class is a template that defines the form of an
object. It specifies both the data and the code that will operate on that data. C# uses a class
specification to construct objects. Objects are instances of a class. Thus, a class is essentially a
set of plans that specify how to build an object. It is important to be clear on one issue: A
class is a logical abstraction. It is not until an object of that class has been created that a
physical representation of that class exists in memory.

The General Form of a Class
When you define a class, you declare the data that it contains and the code that operates on
it. While very simple classes might contain only code or only data, most real-world classes
contain both.

In general terms, data is contained in data members defined by the class, and code is
contained in function members. It is important to state at the outset that C# defines several
specific flavors of data and function members. For example, data members (also called
fields) include instance variables and static variables. Function members include methods,
constructors, destructors, indexers, events, operators, and properties. For now, we will limit
our discussion of the class to its essential elements: instance variables and methods. Later in
this chapter constructors and destructors are discussed. The other types of members are
described in later chapters.

109

CHAPTER

110 P a r t I : T h e C # L a n g u a g e

A class is created by use of the keyword class. Here is the general form of a simple class
definition that contains only instance variables and methods:

 class classname {
 // declare instance variables

access type var1;
access type var2;

 // ...
access type varN;

 // declare methods
access ret-type method1(parameters) {

 // body of method
 }

access ret-type method2(parameters) {
 // body of method
 }
 // ...

access ret-type methodN(parameters) {
 // body of method
 }
 }

Notice that each variable and method declaration is preceded with access. Here, access
is an access specifier, such as public, which specifies how the member can be accessed. As
mentioned in Chapter 2, class members can be private to a class or more accessible. The
access specifier determines what type of access is allowed. The access specifier is optional,
and if absent, then the member is private to the class. Members with private access can be
used only by other members of their class. For the examples in this chapter, all members
(except for the Main() method) will be specified as public, which means that they can be
used by all other code—even code defined outside the class. We will return to the topic of
access specifiers in Chapter 8.

NOTENOTE In addition to an access specifier, the declaration of a class member can also contain one or
more type modifiers. These modifiers are discussed later in this book.

Although there is no syntactic rule that enforces it, a well-designed class should define
one and only one logical entity. For example, a class that stores names and telephone
numbers will not normally also store information about the stock market, average rainfall,
sunspot cycles, or other unrelated information. The point here is that a well-designed class
groups logically connected information. Putting unrelated information into the same class
will quickly destructure your code.

Up to this point, the classes that we have been using have had only one method: Main().
However, notice that the general form of a class does not specify a Main() method. A Main()
method is required only if that class is the starting point for your program.

Define a Class
To illustrate classes, we will be evolving a class that encapsulates information about buildings,
such as houses, stores, offices, and so on. This class is called Building, and it will store three

PART I

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s a n d O b j e c t s 111

PART I
PART I

items of information about a building: the number of floors, the total area, and the number
of occupants.

The first version of Building is shown here. It defines three instance variables: Floors,
Area, and Occupants. Notice that Building does not contain any methods. Thus, it is
currently a data-only class. (Subsequent sections will add methods to it.)

class Building {
 public int Floors; // number of floors
 public int Area; // total square footage of building
 public int Occupants; // number of occupants
}

The instance variables defined by Building illustrate the way that instance variables are
declared in general. The general form for declaring an instance variable is shown here:

access type var-name;

Here, access specifies the access; type specifies the type of variable; and var-name is the
variable’s name. Thus, aside from the access specifier, you declare an instance variable in
the same way that you declare local variables. For Building, the variables are preceded by
the public access modifier. As explained, this allows them to be accessed by code outside
of Building.

A class definition creates a new data type. In this case, the new data type is called
Building. You will use this name to declare objects of type Building. Remember that a class
declaration is only a type description; it does not create an actual object. Thus, the preceding
code does not cause any objects of type Building to come into existence.

To actually create a Building object, you will use a statement like the following:

Building house = new Building(); // create an object of type building

After this statement executes, house will be an instance of Building. Thus, it will have
“physical” reality. For the moment, don’t worry about the details of this statement.

Each time you create an instance of a class, you are creating an object that contains its
own copy of each instance variable defined by the class. Thus, every Building object will
contain its own copies of the instance variables Floors, Area, and Occupants. To access
these variables, you will use the member access operator, which is a period. It is commonly
referred to as the dot operator. The dot operator links the name of an object with the name of
a member. The general form of the dot operator is shown here:

object.member

Thus, the object is specified on the left, and the member is put on the right. For example, to
assign the Floors variable of house the value 2, use the following statement:

house.Floors = 2;

In general, you can use the dot operator to access both instance variables and methods.
Here is a complete program that uses the Building class:

// A program that uses the Building class.

using System;

112 P a r t I : T h e C # L a n g u a g e

class Building {
 public int Floors; // number of floors
 public int Area; // total square footage of building
 public int Occupants; // number of occupants
}

// This class declares an object of type Building.
class BuildingDemo {
 static void Main() {
 Building house = new Building(); // create a Building object
 int areaPP; // area per person

 // Assign values to fields in house.
 house.Occupants = 4;
 house.Area = 2500;
 house.Floors = 2;

 // Compute the area per person.
 areaPP = house.Area / house.Occupants;

 Console.WriteLine("house has:\n " +
 house.Floors + " floors\n " +
 house.Occupants + " occupants\n " +
 house.Area + " total area\n " +
 areaPP + " area per person");
 }
}

This program consists of two classes: Building and BuildingDemo. Inside BuildingDemo,
the Main() method creates an instance of Building called house. Then the code within
Main() accesses the instance variables associated with house, assigning them values and
using those values. It is important to understand that Building and BuildingDemo are two
separate classes. The only relationship they have to each other is that one class creates an
instance of the other. Although they are separate classes, code inside BuildingDemo can
access the members of Building because they are declared public. If they had not been
given the public access specifier, their access would have been limited to the Building
class, and BuildingDemo would not have been able to use them.

Assume that you call the preceding file UseBuilding.cs. Compiling this program creates
a file called UseBuilding.exe. Both the Building and BuildingDemo classes are automatically
part of the executable file. The program displays the following output:

house has:
 2 floors
 4 occupants
 2500 total area
 625 area per person

It is not necessary for the Building and the BuildingDemo classes to actually be in
the same source file. You could put each class in its own file, called Building.cs and
BuildingDemo.cs, for example. Just tell the C# compiler to compile both files and link

PART I

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s a n d O b j e c t s 113

PART I
PART I

them together. For example, you could use this command line to compile the program if
you split it into two pieces as just described:

csc Building.cs BuildingDemo.cs

If you are using the Visual C++ IDE, you will need to add both files to your project and then
build.

Before moving on, let’s review a fundamental principle: Each object has its own copies
of the instance variables defined by its class. Thus, the contents of the variables in one object
can differ from the contents of the variables in another. There is no connection between the
two objects except for the fact that they are both objects of the same type. For example, if
you have two Building objects, each has its own copy of Floors, Area, and Occupants, and
the contents of these can (and often will) differ between the two objects. The following
program demonstrates this fact:

// This program creates two Building objects.

using System;

class Building {
 public int Floors; // number of floors
 public int Area; // total square footage of building
 public int Occupants; // number of occupants
}

// This class declares two objects of type Building.
class BuildingDemo {
 static void Main() {
 Building house = new Building();
 Building office = new Building();

 int areaPP; // area per person

 // Assign values to fields in house.
 house.Occupants = 4;
 house.Area = 2500;
 house.Floors = 2;

 // Assign values to fields in office.
 office.Occupants = 25;
 office.Area = 4200;
 office.Floors = 3;

 // Compute the area per person in house.
 areaPP = house.Area / house.Occupants;

 Console.WriteLine("house has:\n " +
 house.Floors + " floors\n " +
 house.Occupants + " occupants\n " +
 house.Area + " total area\n " +
 areaPP + " area per person");

114 P a r t I : T h e C # L a n g u a g e

 Console.WriteLine();

 // Compute the area per person in office.
 areaPP = office.Area / office.Occupants;

 Console.WriteLine("office has:\n " +
 office.Floors + " floors\n " +
 office.Occupants + " occupants\n " +
 office.Area + " total area\n " +
 areaPP + " area per person");
 }
}

The output produced by this program is shown here:

house has:
 2 floors
 4 occupants
 2500 total area
 625 area per person

office has:
 3 floors
 25 occupants
 4200 total area
 168 area per person

As you can see, house’s data is completely separate from the data contained in office.
Figure 6-1 depicts this situation.

How Objects Are Created
In the preceding programs, the following line was used to declare an object of type
Building:

Building house = new Building();

This declaration performs three functions. First, it declares a variable called house of the
class type Building. This variable is not, itself, an object. Instead, it is simply a variable that
can refer to an object. Second, the declaration creates an actual, physical copy of the object.

FIGURE 6-1
One object’s
instance variables
are separate from
another’s.

PART I

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s a n d O b j e c t s 115

PART I
PART I

This is done by using the new operator. Finally, it assigns to house a reference to that object.
Thus, after the line executes, house refers to an object of type Building.

The new operator dynamically allocates (that is, allocates at runtime) memory for an
object and returns a reference to it. This reference is then stored in a variable. Thus, in C#,
all class objects must be dynamically allocated.

As you might expect, it is possible to separate the declaration of house from the creation
of the object to which it will refer, as shown here:

Building house; // declare reference to object
house = new Building(); // allocate a Building object

The first line declares house as a reference to an object of type Building. Thus, house is a
variable that can refer to an object, but it is not an object, itself. The next line creates a new
Building object and assigns a reference to it to house. Now, house is linked with an object.

The fact that class objects are accessed through a reference explains why classes are
called reference types. The key difference between value types and reference types is what
a variable of each type means. For a value type variable, the variable, itself, contains the
value. For example, given

int x;
x = 10;

x contains the value 10 because x is a variable of type int, which is a value type. However, in
the case of

Building house = new Building();

house does not, itself, contain the object. Instead, it contains a reference to the object.

Reference Variables and Assignment
In an assignment operation, reference variables act differently than do variables of a value
type, such as int. When you assign one value type variable to another, the situation is
straightforward. The variable on the left receives a copy of the value of the variable on the
right. When you assign one object reference variable to another, the situation is a bit more
complicated because the assignment causes the reference variable on the left to refer to the
same object to which the reference variable on the right refers. The object, itself, is not
copied. The effect of this difference can cause some counterintuitive results. For example,
consider the following fragment:

Building house1 = new Building();
Building house2 = house1;

At first glance, it is easy to think that house1 and house2 refer to separate and distinct objects,
but this is not the case. Instead, house1 and house2 will both refer to the same object. The
assignment of house1 to house2 simply makes house2 refer to the same object that house1
does. Thus, the object can be acted upon by either house1 or house2. For example, after the
assignment

house1.Area = 2600;

116 P a r t I : T h e C # L a n g u a g e

executes, both of these WriteLine() statements

Console.WriteLine(house1.Area);
Console.WriteLine(house2.Area);

display the same value: 2600.
Although house1 and house2 both refer to the same object, they are not linked in any

other way. For example, a subsequent assignment to house2 simply changes what object
house2 refers to. For example:

Building house1 = new Building();
Building house2 = house1;
Building house3 = new Building();

house2 = house3; // now house2 and house3 refer to the same object.

After this sequence executes, house2 refers to the same object as house3. The object referred
to by house1 is unchanged.

Methods
As explained, instance variables and methods are two of the primary constituents of classes.
So far, the Building class contains data, but no methods. Although data-only classes are
perfectly valid, most classes will have methods. Methods are subroutines that manipulate
the data defined by the class and, in many cases, provide access to that data. Typically, other
parts of your program will interact with a class through its methods.

A method contains one or more statements. In well-written C# code, each method
performs only one task. Each method has a name, and it is this name that is used to call
the method. In general, you can name a method using any valid identifier that you please.
However, remember that Main() is reserved for the method that begins execution of your
program. Also, don’t use C#’s keywords for method names.

When denoting methods in text, this book has used and will continue to use a
convention that has become common when writing about C#. A method will have
parentheses after its name. For example, if a method’s name is GetVal, then it will be
written GetVal() when its name is used in a sentence. This notation will help you
distinguish variable names from method names in this book.

The general form of a method is shown here:

access ret-type name(parameter-list) {
 // body of method
}

Here, access is an access modifier that governs what other parts of your program can call the
method. As explained earlier, the access modifier is optional. If not present, then the method
is private to the class in which it is declared. For now, we will declare methods as public so
that they can be called by any other code in the program. The ret-type specifies the type of
data returned by the method. This can be any valid type, including class types that you
create. If the method does not return a value, its return type must be void. The name of the
method is specified by name. This can be any legal identifier other than those that would
cause conflicts within the current declaration space. The parameter-list is a sequence of type

PART I

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s a n d O b j e c t s 117

PART I
PART I

and identifier pairs separated by commas. Parameters are variables that receive the value of
the arguments passed to the method when it is called. If the method has no parameters, then
the parameter list will be empty.

Add a Method to the Building Class
As just explained, the methods of a class typically manipulate and provide access to the
data of the class. With this in mind, recall that Main() in the preceding examples computed
the area-per-person by dividing the total area by the number of occupants. Although
technically correct, this is not the best way to handle this computation. The calculation of
area-per-person is something that is best handled by the Building class, itself. The reason
for this conclusion is easy to understand: The area-per-person of a building is dependent
upon the values in the Area and Occupants fields, which are encapsulated by Building.
Thus, it is possible for the Building class to perform this calculation on its own. Furthermore,
by adding this calculation to Building, you prevent each program that uses Building from
having to perform this calculation manually. This prevents the unnecessary duplication of
code. Finally, by adding a method to Building that computes the area-per-person, you are
enhancing its object-oriented structure by encapsulating the quantities that relate directly
to a building inside Building.

To add a method to Building, specify it within Building’s declaration. For example, the
following version of Building contains a method called AreaPerPerson() that displays the
area-per-person for a building:

// Add a method to Building.

using System;

class Building {
 public int Floors; // number of floors
 public int Area; // total square footage of building
 public int Occupants; // number of occupants

 // Display the area per person.
 public void AreaPerPerson() {
 Console.WriteLine(" " + Area / Occupants + " area per person");
 }
}

// Use the AreaPerPerson() method.
class BuildingDemo {
 static void Main() {
 Building house = new Building();
 Building office = new Building();

 // Assign values to fields in house.
 house.Occupants = 4;
 house.Area = 2500;
 house.Floors = 2;

 // Assign values to fields in office.
 office.Occupants = 25;

118 P a r t I : T h e C # L a n g u a g e

 office.Area = 4200;
 office.Floors = 3;

 Console.WriteLine("house has:\n " +
 house.Floors + " floors\n " +
 house.Occupants + " occupants\n " +
 house.Area + " total area");
 house.AreaPerPerson();

 Console.WriteLine();

 Console.WriteLine("office has:\n " +
 office.Floors + " floors\n " +
 office.Occupants + " occupants\n " +
 office.Area + " total area");
 office.AreaPerPerson();
 }
}

This program generates the following output, which is the same as before:

house has:
 2 floors
 4 occupants
 2500 total area
 625 area per person

office has:
 3 floors
 25 occupants
 4200 total area
 168 area per person

Let’s look at the key elements of this program, beginning with the AreaPerPerson()
method, itself. The first line of AreaPerPerson() is

public void AreaPerPerson() {

This line declares a method called AreaPerPerson that has no parameters. It is specified as
public, so it can be used by all other parts of the program. Its return type is void. Thus,
AreaPerPerson() does not return a value to the caller. The line ends with the opening curly
brace of the method body.

The body of AreaPerPerson() consists solely of this statement:

Console.WriteLine(" " + Area / Occupants + " area per person");

This statement displays the area-per-person of a building by dividing Area by Occupants.
Since each object of type Building has its own copy of Area and Occupants, when
AreaPerPerson() is called, the computation uses the calling object’s copies of those
variables.

The AreaPerPerson() method ends when its closing curly brace is encountered. This
causes program control to transfer back to the caller.

PART I

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s a n d O b j e c t s 119

PART I
PART I

Next, look closely at this line of code from inside Main():

house.AreaPerPerson();

This statement invokes the AreaPerPerson() method on house. That is, it calls
AreaPerPerson() relative to the object referred to by house, by use of the dot operator.
When a method is called, program control is transferred to the method. When the method
terminates, control is transferred back to the caller, and execution resumes with the line
of code following the call.

In this case, the call to house.AreaPerPerson() displays the area-per-person of the
building defined by house. In similar fashion, the call to office.AreaPerPerson() displays
the area-per-person of the building defined by office. Each time AreaPerPerson() is
invoked, it displays the area-per-person for the specified object.

There is something very important to notice inside the AreaPerPerson() method: The
instance variables Area and Occupants are referred to directly, without use of the dot
operator. When a method uses an instance variable that is defined by its class, it does so
directly, without explicit reference to an object and without use of the dot operator. This is
easy to understand if you think about it. A method is always invoked relative to some object
of its class. Once this invocation has occurred, the object is known. Thus, within a method,
there is no need to specify the object a second time. This means that Area and Occupants
inside AreaPerPerson() implicitly refer to the copies of those variables found in the object
that invokes AreaPerPerson().

NOTENOTE As a point of interest, in the AreaPerPerson() method, Occupants must not equal zero
(which it won’t for all of the examples in this chapter). If Occupants were zero, then a division-
by-zero error would occur. In Chapter 13, you will learn about exceptions, which are C#’s
approach to handling errors, and see how to watch for errors that can occur at runtime.

Return from a Method
In general, there are two conditions that cause a method to return. The first, as the
AreaPerPerson() method in the preceding example shows, is when the method’s closing
curly brace is encountered. The second is when a return statement is executed. There are
two forms of return: one for use in void methods (those that do not return a value) and one
for returning values. The first form is examined here. The next section explains how to
return values.

In a void method, you can cause the immediate termination of a method by using this
form of return:

return ;

When this statement executes, program control returns to the caller, skipping any remaining
code in the method. For example, consider this method:

public void MyMeth() {
 int i;

 for(i=0; i<10; i++) {
 if(i == 5) return; // stop at 5
 Console.WriteLine();
 }
}

120 P a r t I : T h e C # L a n g u a g e

Here, the for loop will only run from 0 to 5, because once i equals 5, the method returns.
It is permissible to have multiple return statements in a method, especially when there

are two or more routes out of it. For example,

public void MyMeth() {
 // ...
 if(done) return;
 // ...
 if(error) return;
}

Here, the method returns if it is done or if an error occurs. Be careful, however. Having
too many exit points in a method can destructure your code, so avoid using them
casually.

To review: A void method can return in one of two ways—its closing curly brace is
reached, or a return statement is executed.

Return a Value
Although methods with a return type of void are not rare, most methods will return a value.
In fact, the ability to return a value is one of a method’s most useful features. You have
already seen an example of a return value when we used the Math.Sqrt() function in
Chapter 3 to obtain a square root.

Return values are used for a variety of purposes in programming. In some cases, such as
with Math.Sqrt(), the return value contains the outcome of some calculation. In other cases,
the return value may simply indicate success or failure. In still others, it may contain a
status code. Whatever the purpose, using method return values is an integral part of C#
programming.

Methods return a value to the calling routine using this form of return:

return value;

Here, value is the value returned.
You can use a return value to improve the implementation of AreaPerPerson(). Instead

of displaying the area-per-person, a better approach is to have AreaPerPerson() return this
value. Among the advantages to this approach is that you can use the value for other
calculations. The following example modifies AreaPerPerson() to return the area-per-
person rather than displaying it:

// Return a value from AreaPerPerson().

using System;

class Building {
 public int Floors; // number of floors
 public int Area; // total square footage of building
 public int Occupants; // number of occupants

 // Return the area per person.
 public int AreaPerPerson() {
 return Area / Occupants;
 }
}

PART I

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s a n d O b j e c t s 121

PART I
PART I

// Use the return value from AreaPerPerson().
class BuildingDemo {
 static void Main() {
 Building house = new Building();
 Building office = new Building();
 int areaPP; // area per person

 // Assign values to fields in house.
 house.Occupants = 4;
 house.Area = 2500;
 house.Floors = 2;

 // Assign values to fields in office.
 office.Occupants = 25;
 office.Area = 4200;
 office.Floors = 3;

 // Obtain area per person for house.
 areaPP = house.AreaPerPerson();

 Console.WriteLine("house has:\n " +
 house.Floors + " floors\n " +
 house.Occupants + " occupants\n " +
 house.Area + " total area\n " +
 areaPP + " area per person");

 Console.WriteLine();

 // Obtain area per person for office.
 areaPP = office.AreaPerPerson();

 Console.WriteLine("office has:\n " +
 office.Floors + " floors\n " +
 office.Occupants + " occupants\n " +
 office.Area + " total area\n " +
 areaPP + " area per person");
 }
}

The output is the same as shown earlier.
In the program, notice that when AreaPerPerson() is called, it is put on the right side

of an assignment statement. On the left is a variable that will receive the value returned by
AreaPerPerson(). Thus, after

areaPP = house.AreaPerPerson();

executes, the area-per-person of the house object is stored in areaPP.
Notice that AreaPerPerson() now has a return type of int. This means that it will return

an integer value to the caller. The return type of a method is important because the type of
data returned by a method must be compatible with the return type specified by the method.
Thus, if you want a method to return data of type double, then its return type must be type
double.

122 P a r t I : T h e C # L a n g u a g e

Although the preceding program is correct, it is not written as efficiently as it could be.
Specifically, there is no need for the areaPP variable. A call to AreaPerPerson() can be used
in the WriteLine() statement directly, as shown here:

Console.WriteLine("house has:\n " +
 house.Floors + " floors\n " +
 house.Occupants + " occupants\n " +
 house.Area + " total area\n " +
 house.AreaPerPerson() + " area per person");

In this case, when WriteLine() is executed, house.AreaPerPerson() is called automatically,
and its value will be passed to WriteLine(). Furthermore, you can use a call to AreaPerPerson()
whenever the area-per-person of a Building object is needed. For example, this statement
compares the per-person areas of two buildings:

if(b1.AreaPerPerson() > b2.AreaPerPerson())
 Console.WriteLine("b1 has more space for each person");

Use Parameters
It is possible to pass one or more values to a method when the method is called. A value
passed to a method is called an argument. Inside the method, the variable that receives
the argument is called a formal parameter, or just parameter, for short. Parameters are
declared inside the parentheses that follow the method’s name. The parameter declaration
syntax is the same as that used for variables. The scope of a parameter is the body of its
method. Aside from its special task of receiving an argument, it acts like any other local
variable.

Here is a simple example that uses a parameter. Inside the ChkNum class, the method
IsPrime() returns true if the value that it is passed is prime. It returns false otherwise.
Therefore, IsPrime() has a return type of bool.

// A simple example that uses a parameter.

using System;

class ChkNum {
 // Return true if x is prime.
 public bool IsPrime(int x) {
 if(x <= 1) return false;

 for(int i=2; i <= x/i; i++)
 if((x %i) == 0) return false;

 return true;
 }
}

class ParmDemo {
 static void Main() {
 ChkNum ob = new ChkNum();

 for(int i=2; i < 10; i++)
 if(ob.IsPrime(i)) Console.WriteLine(i + " is prime.");

PART I

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s a n d O b j e c t s 123

PART I
PART I

 else Console.WriteLine(i + " is not prime.");
 }
}

Here is the output produced by the program:

2 is prime.
3 is prime.
4 is not prime.
5 is prime.
6 is not prime.
7 is prime.
8 is not prime.
9 is not prime.

In the program, IsPrime() is called nine times, and each time a different value is passed.
Let’s look at this process closely. First, notice how IsPrime() is called. The argument is
specified between the parentheses. When IsPrime() is called the first time, it is passed value
1. Thus, when IsPrime() begins executing, the parameter x receives the value 1. In the
second call, 2 is the argument, and x then has the value 2. In the third call, the argument
is 3, which is the value that x receives, and so on. The point is that the value passed as an
argument when IsPrime() is called is the value received by its parameter, x.

A method can have more than one parameter. Simply declare each parameter, separating
one from the next with a comma. For example, here the ChkNum class is expanded by
adding a method called LeastComFactor(), which returns the smallest factor that its two
arguments have in common. In other words, it returns the smallest whole number value
that can evenly divide both arguments.

// Add a method that takes two arguments.

using System;

class ChkNum {
 // Return true if x is prime.
 public bool IsPrime(int x) {
 if(x <= 1) return false;

 for(int i=2; i <= x/i; i++)
 if((x %i) == 0) return false;

 return true;
 }

 // Return the least common factor.
 public int LeastComFactor(int a, int b) {
 int max;

 if(IsPrime(a) || IsPrime(b)) return 1;

 max = a < b ? a : b;

 for(int i=2; i <= max/2; i++)
 if(((a%i) == 0) && ((b%i) == 0)) return i;

124 P a r t I : T h e C # L a n g u a g e

 return 1;
 }
}

class ParmDemo {
 static void Main() {
 ChkNum ob = new ChkNum();
 int a, b;

 for(int i=2; i < 10; i++)
 if(ob.IsPrime(i)) Console.WriteLine(i + " is prime.");
 else Console.WriteLine(i + " is not prime.");

 a = 7;
 b = 8;
 Console.WriteLine("Least common factor for " +
 a + " and " + b + " is " +
 ob.LeastComFactor(a, b));

 a = 100;
 b = 8;
 Console.WriteLine("Least common factor for " +
 a + " and " + b + " is " +
 ob.LeastComFactor(a, b));

 a = 100;
 b = 75;
 Console.WriteLine("Least common factor for " +
 a + " and " + b + " is " +
 ob.LeastComFactor(a, b));

 }
}

Notice that when LeastComFactor() is called, the arguments are also separated by
commas. The output from the program is shown here:

2 is prime.
3 is prime.
4 is not prime.
5 is prime.
6 is not prime.
7 is prime.
8 is not prime.
9 is not prime.
Least common factor for 7 and 8 is 1
Least common factor for 100 and 8 is 2
Least common factor for 100 and 75 is 5

When using multiple parameters, each parameter specifies its own type, which can
differ from the others. For example, this is perfectly valid:

int MyMeth(int a, double b, float c) {
 // ...

PART I

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s a n d O b j e c t s 125

PART I
PART I

Add a Parameterized Method to Building
You can use a parameterized method to add a new feature to the Building class: the ability
to compute the maximum number of occupants for a building assuming that each occupant
must have a certain minimal space. This new method is called MaxOccupant(). It is shown
here:

// Return the maximum number of occupants if each
// is to have at least the specified minimum area.
public int MaxOccupant(int minArea) {
 return Area / minArea;
}

When MaxOccupant() is called, the parameter minArea receives the minimum space
needed for each occupant. The method divides the total area of the building by this value
and returns the result.

The entire Building class that includes MaxOccupant() is shown here:

/*
 Add a parameterized method that computes the
 maximum number of people that can occupy a
 building assuming each needs a specified
 minimum space.
*/

using System;

class Building {
 public int Floors; // number of floors
 public int Area; // total square footage of building
 public int Occupants; // number of occupants

 // Return the area per person.
 public int AreaPerPerson() {
 return Area / Occupants;
 }

 // Return the maximum number of occupants if each
 // is to have at least the specified minimum area.
 public int MaxOccupant(int minArea) {
 return Area / minArea;
 }
}

// Use MaxOccupant().
class BuildingDemo {
 static void Main() {
 Building house = new Building();
 Building office = new Building();

 // Assign values to fields in house.
 house.Occupants = 4;
 house.Area = 2500;
 house.Floors = 2;

126 P a r t I : T h e C # L a n g u a g e

 // Assign values to fields in office.
 office.Occupants = 25;
 office.Area = 4200;
 office.Floors = 3;

 Console.WriteLine("Maximum occupants for house if each has " +
 300 + " square feet: " +
 house.MaxOccupant(300));

 Console.WriteLine("Maximum occupants for office if each has " +
 300 + " square feet: " +
 office.MaxOccupant(300));
 }
}

The output from the program is shown here:

Maximum occupants for house if each has 300 square feet: 8
Maximum occupants for office if each has 300 square feet: 14

Avoiding Unreachable Code
When creating methods, you should avoid causing a situation in which a portion of code
cannot, under any circumstances, be executed. This is called unreachable code, and it is
considered incorrect in C#. The compiler will issue a warning message if you create a
method that contains unreachable code. For example:

public void MyMeth() {
 char a, b;

 // ...

 if(a==b) {
 Console.WriteLine("equal");
 return;
 } else {
 Console.WriteLine("not equal");
 return;
 }
 Console.WriteLine("this is unreachable");
}

Here, the method MyMeth() will always return before the final WriteLine() statement is
executed. If you try to compile this method, you will receive a warning. In general, unreachable
code constitutes a mistake on your part, so it is a good idea to take unreachable code
warnings seriously.

Constructors
In the preceding examples, the instance variables of each Building object had to be set
manually using a sequence of statements, such as

PART I

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s a n d O b j e c t s 127

PART I
PART I

house.Occupants = 4;
house.Area = 2500;
house.Floors = 2;

An approach like this would never be used in professionally written C# code. Aside from
this approach being error prone (you might forget to set one of the fields), there is simply a
better way to accomplish this task: the constructor.

A constructor initializes an object when it is created. It has the same name as its class and
is syntactically similar to a method. However, constructors have no explicit return type. The
general form of a constructor is shown here:

access class-name(param-list) {
 // constructor code
}

Typically, you will use a constructor to give initial values to the instance variables defined
by the class or to perform any other startup procedures required to create a fully formed
object. Also, usually, access is public because constructors are normally called from outside
their class. The param-list can be empty, or it can specify one or more parameters.

All classes have constructors, whether you define one or not, because C# automatically
provides a default constructor that causes all member variables to be initialized to their
default values. For most value types, the default value is zero. For bool, the default is false.
For reference types, the default is null. However, once you define your own constructor, the
default constructor is no longer used.

Here is a simple example that uses a constructor:

// A simple constructor.

using System;

class MyClass {
 public int x;

 public MyClass() {
 x = 10;
 }
}

class ConsDemo {
 static void Main() {
 MyClass t1 = new MyClass();
 MyClass t2 = new MyClass();

 Console.WriteLine(t1.x + " " + t2.x);
 }
}

In this example, the constructor for MyClass is

public MyClass() {
 x = 10;
}

128 P a r t I : T h e C # L a n g u a g e

Notice that the constructor is specified as public. This is because the constructor will be
called from code defined outside of its class. This constructor assigns the instance variable
x of MyClass the value 10. This constructor is called by new when an object is created. For
example, in the line

MyClass t1 = new MyClass();

the constructor MyClass() is called on the t1 object, giving t1.x the value 10. The same is
true for t2. After construction, t2.x has the value 10. Thus, the output from the program is

10 10

Parameterized Constructors
In the preceding example, a parameterless constructor was used. While this is fine for some
situations, most often you will need a constructor that accepts one or more parameters.
Parameters are added to a constructor in the same way they are added to a method: just
declare them inside the parentheses after the constructor’s name. For example, here
MyClass is given a parameterized constructor:

// A parameterized constructor.

using System;

class MyClass {
 public int x;

 public MyClass(int i) {
 x = i;
 }
}

class ParmConsDemo {
 static void Main() {
 MyClass t1 = new MyClass(10);
 MyClass t2 = new MyClass(88);

 Console.WriteLine(t1.x + " " + t2.x);
 }
}

The output from this program is shown here:

10 88

In this version of the program, the MyClass() constructor defines one parameter called i,
which is used to initialize the instance variable, x. Thus, when the line

MyClass t1 = new MyClass(10);

executes, the value 10 is passed to i, which is then assigned to x.

PART I

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s a n d O b j e c t s 129

PART I
PART I

Add a Constructor to the Building Class
We can improve the Building class by adding a constructor that automatically initializes the
Floors, Area, and Occupants fields when an object is constructed. Pay special attention to
how Building objects are created.

// Add a constructor to Building.

using System;

class Building {
 public int Floors; // number of floors
 public int Area; // total square footage of building
 public int Occupants; // number of occupants

 // A parameterized constructor for Building.
 public Building(int f, int a, int o) {
 Floors = f;
 Area = a;
 Occupants = o;
 }

 // Display the area per person.
 public int AreaPerPerson() {
 return Area / Occupants;
 }

 // Return the maximum number of occupants if each
 // is to have at least the specified minimum area.
 public int MaxOccupant(int minArea) {
 return Area / minArea;
 }
}

// Use the parameterized Building constructor.
class BuildingDemo {
 static void Main() {
 Building house = new Building(2, 2500, 4);
 Building office = new Building(3, 4200, 25);

 Console.WriteLine("Maximum occupants for house if each has " +
 300 + " square feet: " +
 house.MaxOccupant(300));

 Console.WriteLine("Maximum occupants for office if each has " +
 300 + " square feet: " +
 office.MaxOccupant(300));
 }
}

The output from this program is the same as for the previous version.

130 P a r t I : T h e C # L a n g u a g e

Both house and office were initialized by the Building() constructor when they were
created. Each object is initialized as specified in the parameters to its constructor. For
example, in the following line,

Building house = new Building(2, 2500, 4);

the values 2, 2500, and 4 are passed to the Building() constructor when new creates the
object. Thus, house’s copy of Floors, Area, and Occupants will contain the values 2, 2500,
and 4, respectively.

The new Operator Revisited
Now that you know more about classes and their constructors, let’s take a closer look at the
new operator. As it relates to classes, the new operator has this general form:

new class-name(arg-list)

Here, class-name is the name of the class that is being instantiated. The class name followed
by parentheses specifies the constructor for the class. If a class does not define its own
constructor, new will use the default constructor supplied by C#. Thus, new can be used
to create an object of any class type.

Since memory is finite, it is possible that new will not be able to allocate memory for an
object because insufficient memory exists. If this happens, a runtime exception will occur.
(You will learn how to handle exceptions in Chapter 13.) For the sample programs in this
book, you won’t need to worry about running out of memory, but you may need to consider
this possibility in real-world programs that you write.

Using new with Value Types
At this point, you might be asking why you don’t need to use new for variables of the value
types, such as int or float? In C#, a variable of a value type contains its own value. Memory
to hold this value is automatically provided when the program is run. Thus, there is no
need to explicitly allocate this memory using new. Conversely, a reference variable stores
a reference to an object. The memory to hold this object must be allocated dynamically,
during execution.

Not making the fundamental types, such int or char, into reference types greatly
improves your program’s performance. When using a reference type, there is a layer of
indirection that adds overhead to each object access. This layer of indirection is avoided by
a value type.

As a point of interest, it is permitted to use new with the value types, as shown here:

int i = new int();

Doing so invokes the default constructor for type int, which initializes i to zero. For example:

// Use new with a value type.

using System;

class newValue {
 static void Main() {
 int i = new int(); // initialize i to zero

PART I

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s a n d O b j e c t s 131

PART I
PART I

 Console.WriteLine("The value of i is: " + i);
 }
}

The output from this program is

The value of i is: 0

As the output verifies, i is initialized to zero. Remember, without the use of new, i would be
uninitialized, and it would cause an error to attempt to use it in the WriteLine() statement
without explicitly giving it a value first.

In general, invoking new for a value type invokes the default constructor for that type.
It does not, however, dynamically allocate memory. Frankly, most programmers do not use
new with the value types.

Garbage Collection and Destructors
As you have seen, objects are dynamically allocated from a pool of free memory by using
the new operator. Of course, memory is not infinite, and the free memory can be exhausted.
Thus, it is possible for new to fail because there is insufficient free memory to create the
desired object. For this reason, one of the key components of any dynamic allocation scheme
is the recovery of free memory from unused objects, making that memory available for
subsequent reallocation. In many programming languages, the release of previously allocated
memory is handled manually. For example, in C++, the delete operator is used to free
memory that was allocated. However, C# uses a different, more trouble-free approach:
garbage collection.

C#’s garbage collection system reclaims objects automatically—occurring transparently,
behind the scenes, without any programmer intervention. It works like this: When no
references to an object exist, that object is assumed to be no longer needed, and the memory
occupied by the object is eventually released and collected. This recycled memory can then
be used for a subsequent allocation.

Garbage collection occurs only sporadically during the execution of your program. It
will not occur simply because one or more objects exist that are no longer used. Thus, you
can’t know, or make assumptions about, precisely when garbage collection will take place.

Destructors
It is possible to define a method that will be called just prior to an object’s final destruction
by the garbage collector. This method is called a destructor, and it can be used in some highly
specialized situations to ensure that an object terminates cleanly. For example, you might
use a destructor to ensure that a system resource owned by an object is released. It must be
stated at the outset that destructors are a very advanced feature that are applicable only to
certain rare cases. They are not normally needed. They are briefly described here for
completeness.

Destructors have this general form:

~class-name() {
 // destruction code
}

132 P a r t I : T h e C # L a n g u a g e

Here, class-name is the name of the class. Thus, a destructor is declared like a constructor
except that it is preceded with a ~ (tilde). Notice it has no return type and takes no
arguments.

To add a destructor to a class, you simply include it as a member. It is called whenever
an object of its class is about to be recycled. Inside the destructor, you will specify those
actions that must be performed before an object is destroyed.

It is important to understand that the destructor is called just prior to garbage collection.
It is not called when a variable containing a reference to an object goes out of scope, for
example. (This differs from destructors in C++, which are called when an object goes out
of scope.) This means that you cannot know precisely when a destructor will be executed.
Furthermore, it is possible for your program to end before garbage collection occurs, so a
destructor might not get called at all.

The following program demonstrates a destructor. It works by creating and destroying
a large number of objects. During this process, at some point the garbage collector will be
activated, and the destructors for the objects will be called.

// Demonstrate a destructor.

using System;

class Destruct {
 public int x;

 public Destruct(int i) {
 x = i;
 }

 // Called when object is recycled.
 ~Destruct() {
 Console.WriteLine("Destructing " + x);
 }

 // Generates an object that is immediately destroyed.
 public void Generator(int i) {
 Destruct o = new Destruct(i);
 }

}

class DestructDemo {
 static void Main() {
 int count;

 Destruct ob = new Destruct(0);

 /* Now, generate a large number of objects. At
 some point, garbage collection will occur.
 Note: You might need to increase the number
 of objects generated in order to force
 garbage collection. */

 for(count=1; count < 100000; count++)

PART I

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s a n d O b j e c t s 133

PART I
PART I

 ob.Generator(count);

 Console.WriteLine("Done");
 }
}

Here is how the program works. The constructor sets the instance variable x to a known
value. In this example, x is used as an object ID. The destructor displays the value of x when
an object is recycled. Of special interest is Generator(). This method creates and then promptly
destroys a Destruct object. The DestructDemo class creates an initial Destruct object called
ob. Then using ob, it creates 100,000 objects by calling Generator() on ob. This has the net
effect of creating and destroying 100,000 objects. At various points in the middle of this
process, garbage collection will take place. Precisely how often or when is dependent upon
several factors, such as the initial amount of free memory, the operating system, and so on.
However, at some point, you will start to see the messages generated by the destructor. If
you don’t see the messages prior to program termination (that is, before you see the “Done”
message), try increasing the number of objects being generated by upping the count in the
for loop.

One important point: The call to WriteLine() inside ~Destruct() is purely for the sake of
illustration in this rather contrived example. Normally, a destructor should act only on the
instance variables defined by its class.

Because of the nondeterministic way in which destructors are called, they should not
be used to perform actions that must occur at a specific point in your program. One other
point: It is possible to request garbage collection. This is described in Part II, when C#’s class
library is discussed. However, manually initiating garbage collection is not recommended
for most circumstances, because it can lead to inefficiencies. Also, because of the way the
garbage collector works, even if you explicitly request garbage collection, there is no way
to know precisely when a specific object will be recycled.

The this Keyword
Before concluding this chapter, it is necessary to introduce this. When a method is called,
it is automatically passed a reference to the invoking object (that is, the object on which the
method is called). This reference is called this. Therefore, this refers to the object on which
the method is acting. To understand this, first consider a program that creates a class called
Rect that encapsulates the width and height of a rectangle and that includes a method
called Area() that returns its area.

using System;

class Rect {
 public int Width;
 public int Height;

 public Rect(int w, int h) {
 Width = w;
 Height = h;
 }

 public int Area() {

134 P a r t I : T h e C # L a n g u a g e

 return Width * Height;
 }
}

class UseRect {
 static void Main() {
 Rect r1 = new Rect(4, 5);
 Rect r2 = new Rect(7, 9);

 Console.WriteLine("Area of r1: " + r1.Area());

 Console.WriteLine("Area of r2: " + r2.Area());
 }
}

As you know, within a method, the other members of a class can be accessed directly,
without any object or class qualification. Thus, inside Area(), the statement

return Width * Height;

means that the copies of Width and Height associated with the invoking object will be
multiplied together and the result returned. However, the same statement can also be
written like this:

return this.Width * this.Height;

Here, this refers to the object on which Area() was called. Thus, this.Width refers to that
object’s copy of Width, and this.Height refers to that object’s copy of Height. For example,
if Area() had been invoked on an object called x, then this in the preceding statement
would have been referring to x. Writing the statement without using this is really just
shorthand.

It is also possible to use this inside a constructor. In this case, this refers to the object
that is being constructed. For example, inside Rect(), the statements

Width = w;
Height = h;

can be written like this:

this.Width = w;
this.Height = h;

Of course, there is no benefit in doing so in this case.
For the sake of illustration, here is the entire Rect class written using the this reference:

using System;

class Rect {
 public int Width;
 public int Height;

 public Rect(int w, int h) {

PART I

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s a n d O b j e c t s 135

PART I
PART I

 this.Width = w;
 this.Height = h;
 }

 public int Area() {
 return this.Width * this.Height;
 }
}

class UseRect {
 static void Main() {
 Rect r1 = new Rect(4, 5);
 Rect r2 = new Rect(7, 9);

 Console.WriteLine("Area of r1: " + r1.Area());

 Console.WriteLine("Area of r2: " + r2.Area());

 }
}

Actually, no C# programmer would use this as just shown because nothing is gained
and the standard form is easier. However, this has some important uses. For example, the
C# syntax permits the name of a parameter or a local variable to be the same as the name of
an instance variable. When this happens, the local name hides the instance variable. You can
gain access to the hidden instance variable by referring to it through this. For example, the
following is a syntactically valid way to write the Rect() constructor:

public Rect(int Width, int Height) {
 this.Width = Width;
 this.Height = Height;
}

In this version, the names of the parameters are the same as the names of the instance
variables, thus hiding them. However, this is used to “uncover” the instance variables.

This page intentionally left blank

7
Arrays and Strings

This chapter returns to the subject of C#’s data types. It discusses arrays and the string
type. The foreach loop is also examined.

Arrays
An array is a collection of variables of the same type that are referred to by a common name.
In C#, arrays can have one or more dimensions, although the one-dimensional array is the
most common. Arrays are used for a variety of purposes because they offer a convenient
means of grouping together related variables. For example, you might use an array to hold
a record of the daily high temperature for a month, a list of stock prices, or your collection
of programming books.

The principal advantage of an array is that it organizes data in such a way that it can
be easily manipulated. For example, if you have an array containing the dividends for a
selected group of stocks, it is easy to compute the average income by cycling through the
array. Also, arrays organize data in such a way that it can be easily sorted.

Although arrays in C# can be used just like arrays in many other programming languages,
they have one special attribute: They are implemented as objects. This fact is one reason that
a discussion of arrays was deferred until objects had been introduced. By implementing
arrays as objects, several important advantages are gained, not the least of which is that
unused arrays can be garbage-collected.

One-Dimensional Arrays
A one-dimensional array is a list of related variables. Such lists are common in programming.
For example, you might use a one-dimensional array to store the account numbers of the
active users on a network. Another array might store the current batting averages for a
baseball team.

Because arrays in C# are implemented as objects, two steps are needed to obtain an
array for use in your program. First, you must declare a variable that can refer to an array.
Second, you must create an instance of the array by use of new. Therefore, to declare a one-
dimensional array, you will typically use this general form:

type[] array-name = new type[size];

137

CHAPTER

138 P a r t I : T h e C # L a n g u a g e

Here, type declares the element type of the array. The element type determines the data type
of each element that comprises the array. Notice the square brackets that follow type. They
indicate that a one-dimensional array is being declared. The number of elements that the
array will hold is determined by size.

NOTENOTE If you come from a C or C++ background, pay special attention to the way arrays are
declared. Specifically, the square brackets follow the type name, not the array name.

Here is an example. The following creates an int array of ten elements and links it to an
array reference variable named sample.

int[] sample = new int[10];

The sample variable holds a reference to the memory allocated by new. This memory is
large enough to hold ten elements of type int.

As is the case when creating an instance of a class, it is possible to break the preceding
declaration in two. For example:

int[] sample;
sample = new int[10];

In this case, when sample is first created, it refers to no physical object. It is only after the
second statement executes that sample refers to an array.

An individual element within an array is accessed by use of an index. An index describes
the position of an element within an array. In C#, all arrays have 0 as the index of their first
element. Because sample has 10 elements, it has index values of 0 through 9. To index an
array, specify the number of the element you want, surrounded by square brackets. Thus,
the first element in sample is sample[0], and the last element is sample[9]. For example, the
following program loads sample with the numbers 0 through 9:

// Demonstrate a one-dimensional array.

using System;

class ArrayDemo {
 static void Main() {
 int[] sample = new int[10];
 int i;

 for(i = 0; i < 10; i = i+1)
 sample[i] = i;

 for(i = 0; i < 10; i = i+1)
 Console.WriteLine("sample[" + i + "]: " + sample[i]);
 }
}

The output from the program is shown here:

sample[0]: 0
sample[1]: 1
sample[2]: 2

PART I

C h a p t e r 7 : A r r a y s a n d S t r i n g s 139

PART I
PART I

sample[3]: 3
sample[4]: 4
sample[5]: 5
sample[6]: 6
sample[7]: 7
sample[8]: 8
sample[9]: 9

Conceptually, the sample array looks like this:

Arrays are common in programming because they let you deal easily with large numbers
of related variables. For example, the following program finds the average of the set of values
stored in the nums array by cycling through the array using a for loop:

// Compute the average of a set of values.

using System;

class Average {
 static void Main() {
 int[] nums = new int[10];
 int avg = 0;

 nums[0] = 99;
 nums[1] = 10;
 nums[2] = 100;
 nums[3] = 18;
 nums[4] = 78;
 nums[5] = 23;
 nums[6] = 63;
 nums[7] = 9;
 nums[8] = 87;
 nums[9] = 49;

 for(int i=0; i < 10; i++)
 avg = avg + nums[i];

 avg = avg / 10;

 Console.WriteLine("Average: " + avg);
 }
}

The output from the program is shown here:

Average: 53

140 P a r t I : T h e C # L a n g u a g e

Initializing an Array
In the preceding program, the nums array was given values by hand, using ten separate
assignment statements. While that is perfectly correct, there is an easier way to accomplish
this. Arrays can be initialized when they are created. The general form for initializing a one-
dimensional array is shown here:

type[] array-name = { val1, val2, val3, ..., valN };

Here, the initial values are specified by val1 through valN. They are assigned in sequence,
left to right, in index order. C# automatically allocates an array large enough to hold the
initializers that you specify. There is no need to use the new operator explicitly. For example,
here is a better way to write the Average program:

// Compute the average of a set of values.

using System;

class Average {
 static void Main() {
 int[] nums = { 99, 10, 100, 18, 78, 23,
 63, 9, 87, 49 };
 int avg = 0;

 for(int i=0; i < 10; i++)
 avg = avg + nums[i];

 avg = avg / 10;

 Console.WriteLine("Average: " + avg);
 }
}

As a point of interest, although not needed, you can use new when initializing an array.
For example, this is a proper, but redundant, way to initialize nums in the foregoing
program:

int[] nums = new int[] { 99, 10, 100, 18, 78, 23,
 63, 9, 87, 49 };

Although redundant here, the new form of array initialization is useful when you are
assigning a new array to an already-existent array reference variable. For example:

int[] nums;
nums = new int[] { 99, 10, 100, 18, 78, 23,
 63, 9, 87, 49 };

In this case, nums is declared in the first statement and initialized by the second.
One last point: It is permissible to specify the array size explicitly when initializing an

array, but the size must agree with the number of initializers. For example, here is another
way to initialize nums:

int[] nums = new int[10] { 99, 10, 100, 18, 78, 23,
 63, 9, 87, 49 };

In this declaration, the size of nums is explicitly stated as 10.

PART I

C h a p t e r 7 : A r r a y s a n d S t r i n g s 141

PART I
PART I

Boundaries Are Enforced
Array boundaries are strictly enforced in C#; it is a runtime error to overrun or underrun
the ends of an array. If you want to confirm this for yourself, try the following program that
purposely overruns an array:

// Demonstrate an array overrun.

using System;

class ArrayErr {
 static void Main() {
 int[] sample = new int[10];
 int i;

 // Generate an array overrun.
 for(i = 0; i < 100; i = i+1)
 sample[i] = i;
 }
}

As soon as i reaches 10, an IndexOutOfRangeException is generated and the program is
terminated. (See Chapter 13 for a discussion of exceptions and exception handling.)

Multidimensional Arrays
Although the one-dimensional array is the most commonly used array in programming,
multidimensional arrays are certainly not rare. A multidimensional array is an array that has
two or more dimensions, and an individual element is accessed through the combination
of two or more indices.

Two-Dimensional Arrays
The simplest form of the multidimensional array is the two-dimensional array. In a two-
dimensional array, the location of any specific element is specified by two indices. If you
think of a two-dimensional array as a table of information, one index indicates the row, the
other indicates the column.

To declare a two-dimensional integer array table of size 10, 20, you would write

int[,] table = new int[10, 20];

Pay careful attention to the declaration. Notice that the two dimensions are separated from
each other by a comma. In the first part of the declaration, the syntax

[,]

indicates that a two-dimensional array reference variable is being created. When memory is
actually allocated for the array using new, this syntax is used:

int[10, 20]

This creates a 10×20 array, and again, the comma separates the dimensions.

142 P a r t I : T h e C # L a n g u a g e

To access an element in a two-dimensional array, you must specify both indices,
separating the two with a comma. For example, to assign the value 10 to location 3, 5
of array table, you would use

table[3, 5] = 10;

Here is a complete example. It loads a two-dimensional array with the numbers 1
through 12 and then displays the contents of the array.

// Demonstrate a two-dimensional array.

using System;

class TwoD {
 static void Main() {
 int t, i;
 int[,] table = new int[3, 4];

 for(t=0; t < 3; ++t) {
 for(i=0; i < 4; ++i) {
 table[t,i] = (t*4)+i+1;
 Console.Write(table[t,i] + " ");
 }
 Console.WriteLine();
 }
 }
}

In this example, table[0, 0] will have the value 1, table[0, 1] the value 2, table[0, 2] the
value 3, and so on. The value of table[2, 3] will be 12. Conceptually, the array will look like
the one shown in Figure 7-1.

NOTENOTE If you have previously programmed in C, C++, or Java, be careful when declaring or accessing
multidimensional arrays in C#. In these other languages, array dimensions and indices are
specified within their own set of brackets. C# separates dimensions using commas.

Arrays of Three or More Dimensions
C# allows arrays with more than two dimensions. Here is the general form of a
multidimensional array declaration:

type[, ...,] name = new type[size1, size2, ..., sizeN];

FIGURE 7-1
A conceptual view
of the table array
created by the
TwoD program

PART I

C h a p t e r 7 : A r r a y s a n d S t r i n g s 143

PART I
PART I

For example, the following declaration creates a 4×10×3 three-dimensional integer array:

int[,,] multidim = new int[4, 10, 3];

To assign element 2, 4, 1 of multidim the value 100, use this statement:

multidim[2, 4, 1] = 100;

Here is a program that uses a three-dimensional array that holds a 3×3×3 matrix of
values. It then sums the value on one of the diagonals through the cube.

// Sum the values on a diagonal of a 3x3x3 matrix.

using System;

class ThreeDMatrix {
 static void Main() {
 int[,,] m = new int[3, 3, 3];
 int sum = 0;
 int n = 1;

 for(int x=0; x < 3; x++)
 for(int y=0; y < 3; y++)
 for(int z=0; z < 3; z++)
 m[x, y, z] = n++;

 sum = m[0, 0, 0] + m[1, 1, 1] + m[2, 2, 2];

 Console.WriteLine("Sum of first diagonal: " + sum);
 }
}

The output is shown here:

Sum of first diagonal: 42

Initializing Multidimensional Arrays
A multidimensional array can be initialized by enclosing each dimension’s initializer list
within its own set of curly braces. For example, the general form of array initialization for a
two-dimensional array is shown here:

type[,] array_name = {
 { val, val, val, ..., val },
 { val, val, val, ..., val },
.
.
.
 { val, val, val, ..., val }
};

Here, val indicates an initialization value. Each inner block designates a row. Within each
row, the first value will be stored in the first position, the second value in the second position,
and so on. Notice that commas separate the initializer blocks and that a semicolon follows
the closing }.

144 P a r t I : T h e C # L a n g u a g e

For example, the following program initializes an array called sqrs with the numbers 1
through 10 and their squares.

// Initialize a two-dimensional array.

using System;

class Squares {
 static void Main() {
 int[,] sqrs = {
 { 1, 1 },
 { 2, 4 },
 { 3, 9 },
 { 4, 16 },
 { 5, 25 },
 { 6, 36 },
 { 7, 49 },
 { 8, 64 },
 { 9, 81 },
 { 10, 100 }
 };
 int i, j;

 for(i=0; i < 10; i++) {
 for(j=0; j < 2; j++)
 Console.Write(sqrs[i,j] + " ");
 Console.WriteLine();
 }
 }
}

Here is the output from the program:

1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

Jagged Arrays
In the preceding examples, when you created a two-dimensional array, you were creating
what C# calls a rectangular array. Thinking of two-dimensional arrays as tables, a rectangular
array is a two-dimensional array in which the length of each row is the same for the entire
array. However, C# also allows you to create a special type of two-dimensional array called
a jagged array. A jagged array is an array of arrays in which the length of each array can differ.
Thus, a jagged array can be used to create a table in which the lengths of the rows are not
the same.

PART I

C h a p t e r 7 : A r r a y s a n d S t r i n g s 145

PART I
PART I

Jagged arrays are declared by using sets of square brackets to indicate each dimension.
For example, to declare a two-dimensional jagged array, you will use this general form:

type[] [] array-name = new type[size][];

Here, size indicates the number of rows in the array. The rows, themselves, have not been
allocated. Instead, the rows are allocated individually. This allows for the length of each row
to vary. For example, the following code allocates memory for the first dimension of jagged
when it is declared. It then allocates the second dimensions manually.

int[][] jagged = new int[3][];
jagged[0] = new int[4];
jagged[1] = new int[3];
jagged[2] = new int[5];

After this sequence executes, jagged looks like this:

It is easy to see how jagged arrays got their name!
Once a jagged array has been created, an element is accessed by specifying each index

within its own set of brackets. For example, to assign the value 10 to element 2, 1 of jagged,
you would use this statement:

jagged[2][1] = 10;

Note that this differs from the syntax that is used to access an element of a rectangular array.
The following program demonstrates the creation of a jagged two-dimensional array:

// Demonstrate jagged arrays.

using System;

class Jagged {
 static void Main() {
 int[][] jagged = new int[3][];
 jagged[0] = new int[4];
 jagged[1] = new int[3];
 jagged[2] = new int[5];

 int i;

 // Store values in first array.
 for(i=0; i < 4; i++)
 jagged[0][i] = i;

 // Store values in second array.
 for(i=0; i < 3; i++)
 jagged[1][i] = i;

146 P a r t I : T h e C # L a n g u a g e

 // Store values in third array.
 for(i=0; i < 5; i++)
 jagged[2][i] = i;

 // Display values in first array.
 for(i=0; i < 4; i++)
 Console.Write(jagged[0][i] + " ");

 Console.WriteLine();

 // Display values in second array.
 for(i=0; i < 3; i++)
 Console.Write(jagged[1][i] + " ");

 Console.WriteLine();

 // Display values in third array.
 for(i=0; i < 5; i++)
 Console.Write(jagged[2][i] + " ");

 Console.WriteLine();
 }
}

The output is shown here:

0 1 2 3
0 1 2
0 1 2 3 4

Jagged arrays are not used by all applications, but they can be effective in some
situations. For example, if you need a very large two-dimensional array that is sparsely
populated (that is, one in which not all of the elements will be used), then a jagged array
might be a perfect solution.

One last point: Because jagged arrays are arrays of arrays, there is no restriction that
requires that the arrays be one-dimensional. For example, the following creates an array
of two-dimensional arrays:

int[][,] jagged = new int[3][,];

The next statement assigns jagged[0] a reference to a 4×2 array:

jagged[0] = new int[4, 2];

The following statement assigns a value to jagged[0][1,0]:

jagged[0][1,0] = i;

Assigning Array References
As with other objects, when you assign one array reference variable to another, you are
simply making both variables refer to the same array. You are neither causing a copy of the

PART I

C h a p t e r 7 : A r r a y s a n d S t r i n g s 147

PART I
PART I

array to be created, nor are you causing the contents of one array to be copied to the other.
For example, consider this program:

// Assigning array reference variables.

using System;

class AssignARef {
 static void Main() {
 int i;

 int[] nums1 = new int[10];
 int[] nums2 = new int[10];

 for(i=0; i < 10; i++) nums1[i] = i;

 for(i=0; i < 10; i++) nums2[i] = -i;

 Console.Write("Here is nums1: ");
 for(i=0; i < 10; i++)
 Console.Write(nums1[i] + " ");
 Console.WriteLine();

 Console.Write("Here is nums2: ");
 for(i=0; i < 10; i++)
 Console.Write(nums2[i] + " ");
 Console.WriteLine();

 nums2 = nums1; // now nums2 refers to nums1

 Console.Write("Here is nums2 after assignment: ");
 for(i=0; i < 10; i++)
 Console.Write(nums2[i] + " ");
 Console.WriteLine();

 // Next, operate on nums1 array through nums2.
 nums2[3] = 99;

 Console.Write("Here is nums1 after change through nums2: ");
 for(i=0; i < 10; i++)
 Console.Write(nums1[i] + " ");
 Console.WriteLine();
 }
}

The output from the program is shown here:

Here is nums1: 0 1 2 3 4 5 6 7 8 9
Here is nums2: 0 -1 -2 -3 -4 -5 -6 -7 -8 -9
Here is nums2 after assignment: 0 1 2 3 4 5 6 7 8 9
Here is nums1 after change through nums2: 0 1 2 99 4 5 6 7 8 9

As the output shows, after the assignment of nums1 to nums2, both array reference
variables refer to the same object.

148 P a r t I : T h e C # L a n g u a g e

Using the Length Property
A number of benefits result because C# implements arrays as objects. One comes from the
fact that each array has associated with it a Length property that contains the number of
elements that an array can hold. Thus, each array provides a means by which its length can
be determined. Here is a program that demonstrates this property:

// Use the Length array property.

using System;

class LengthDemo {
 static void Main() {
 int[] nums = new int[10];

 Console.WriteLine("Length of nums is " + nums.Length);

 // Use Length to initialize nums.
 for(int i=0; i < nums.Length; i++)
 nums[i] = i * i;

 // Now use Length to display nums.
 Console.Write("Here is nums: ");
 for(int i=0; i < nums.Length; i++)
 Console.Write(nums[i] + " ");

 Console.WriteLine();
 }
}

This program displays the following output:

Length of nums is 10
Here is nums: 0 1 4 9 16 25 36 49 64 81

In LengthDemo notice the way that nums.Length is used by the for loops to govern the
number of iterations that take place. Since each array carries with it its own length, you can
use this information rather than manually keeping track of an array’s size. Keep in mind
that the value of Length has nothing to do with the number of elements that are actually in
use. Length contains the number of elements that the array is capable of holding.

When the length of a multidimensional array is obtained, the total number of elements
that can be held by the array is returned. For example:

// Use the Length array property on a 3D array.

using System;

class LengthDemo3D {
 static void Main() {
 int[,,] nums = new int[10, 5, 6];

 Console.WriteLine("Length of nums is " + nums.Length);
 }
}

PART I

C h a p t e r 7 : A r r a y s a n d S t r i n g s 149

PART I
PART I

The output is shown here:

Length of nums is 300

As the output verifies, Length obtains the number of elements that nums can hold, which
is 300 (10×5×6) in this case. It is not possible to use Length to obtain the length of a specific
dimension.

The inclusion of the Length property simplifies many algorithms by making certain
types of array operations easier—and safer—to perform. For example, the following
program uses Length to reverse the contents of an array by copying it back-to-front into
another array:

// Reverse an array.

using System;

class RevCopy {
 static void Main() {
 int i,j;
 int[] nums1 = new int[10];
 int[] nums2 = new int[10];

 for(i=0; i < nums1.Length; i++) nums1[i] = i;

 Console.Write("Original contents: ");
 for(i=0; i < nums2.Length; i++)
 Console.Write(nums1[i] + " ");

 Console.WriteLine();

 // Reverse copy nums1 to nums2.
 if(nums2.Length >= nums1.Length) // make sure nums2 is long enough
 for(i=0, j=nums1.Length-1; i < nums1.Length; i++, j--)
 nums2[j] = nums1[i];

 Console.Write("Reversed contents: ");
 for(i=0; i < nums2.Length; i++)
 Console.Write(nums2[i] + " ");

 Console.WriteLine();
 }
}

Here is the output:

Original contents: 0 1 2 3 4 5 6 7 8 9
Reversed contents: 9 8 7 6 5 4 3 2 1 0

Here, Length helps perform two important functions. First, it is used to confirm that the
target array is large enough to hold the contents of the source array. Second, it provides
the termination condition of the for loop that performs the reverse copy. Of course, in this
simple example, the size of the arrays is easily known, but this same approach can be
applied to a wide range of more challenging situations.

150 P a r t I : T h e C # L a n g u a g e

Using Length with Jagged Arrays
A special case occurs when Length is used with jagged arrays. In this situation, it is possible
to obtain the length of each individual array. For example, consider the following program,
which simulates the CPU activity on a network with four nodes:

// Demonstrate Length with jagged arrays.

using System;

class Jagged {
 static void Main() {
 int[][] network_nodes = new int[4][];
 network_nodes[0] = new int[3];
 network_nodes[1] = new int[7];
 network_nodes[2] = new int[2];
 network_nodes[3] = new int[5];

 int i, j;

 // Fabricate some fake CPU usage data.
 for(i=0; i < network_nodes.Length; i++)
 for(j=0; j < network_nodes[i].Length; j++)
 network_nodes[i][j] = i * j + 70;

 Console.WriteLine("Total number of network nodes: " +
 network_nodes.Length + "\n");

 for(i=0; i < network_nodes.Length; i++) {
 for(j=0; j < network_nodes[i].Length; j++) {
 Console.Write("CPU usage at node " + i +
 " CPU " + j + ": ");
 Console.Write(network_nodes[i][j] + "% ");
 Console.WriteLine();
 }
 Console.WriteLine();
 }
 }
}

The output is shown here:

Total number of network nodes: 4

CPU usage at node 0 CPU 0: 70%
CPU usage at node 0 CPU 1: 70%
CPU usage at node 0 CPU 2: 70%

CPU usage at node 1 CPU 0: 70%
CPU usage at node 1 CPU 1: 71%
CPU usage at node 1 CPU 2: 72%
CPU usage at node 1 CPU 3: 73%
CPU usage at node 1 CPU 4: 74%

PART I

C h a p t e r 7 : A r r a y s a n d S t r i n g s 151

PART I
PART I

CPU usage at node 1 CPU 5: 75%
CPU usage at node 1 CPU 6: 76%

CPU usage at node 2 CPU 0: 70%
CPU usage at node 2 CPU 1: 72%

CPU usage at node 3 CPU 0: 70%
CPU usage at node 3 CPU 1: 73%
CPU usage at node 3 CPU 2: 76%
CPU usage at node 3 CPU 3: 79%
CPU usage at node 3 CPU 4: 82%

Pay special attention to the way Length is used on the jagged array network_nodes.
Recall, a two-dimensional jagged array is an array of arrays. Thus, when the expression

network_nodes.Length

is used, it obtains the number of arrays stored in network_nodes, which is four in this case.
To obtain the length of any individual array in the jagged array, you will use an expression
such as this:

network_nodes[0].Length

which, in this case, obtains the length of the first array.

Implicitly Typed Arrays
As explained in Chapter 3, C# 3.0 adds the ability to declare implicitly typed variables by
using the var keyword. These are variables whose type is determined by the compiler, based
on the type of the initializing expression. Thus, all implicitly typed variables must be
initialized. Using the same mechanism, it is also possible to create an implicitly typed array.
As a general rule, implicitly typed arrays are for use in certain types of queries involving
LINQ, which is described in Chapter 19. In most other cases, you will use the “normal”
array declaration approach. Implicitly typed arrays are introduced here for completeness.

An implicitly typed array is declared using the keyword var, but you do not follow var
with []. Furthermore, the array must be initialized because it is the type of the initializers
that determine the element type of the array. All of the initializers must be of the same or
compatible type. Here is an example of an implicitly typed array:

var vals = new[] { 1, 2, 3, 4, 5 };

This creates an array of int that is five elements long. A reference to that array is assigned to
vals. Thus, the type of vals is “array of int” and it has five elements. Again, notice that var is
not followed by []. Also, even though the array is being initialized, you must include new[].
It’s not optional in this context.

Here is another example. It creates a two-dimensional array of double:

var vals = new[,] { {1.1, 2.2}, {3.3, 4.4},{ 5.5, 6.6} };

In this case, vals has the dimensions 2×3.

152 P a r t I : T h e C # L a n g u a g e

You can also declare implicitly typed jagged arrays. For example, consider the following
program:

// Demonstrate an implicitly typed jagged array.

using System;

class Jagged {
 static void Main() {

 var jagged = new[] {
 new[] { 1, 2, 3, 4 },
 new[] { 9, 8, 7 },
 new[] { 11, 12, 13, 14, 15 }
 };

 for(int j = 0; j < jagged.Length; j++) {
 for(int i=0; i < jagged[j].Length; i++)
 Console.Write(jagged[j][i] + " ");

 Console.WriteLine();
 }
 }
}

The program produces the following output:

1 2 3 4
9 8 7
11 12 13 14 15

Pay special attention to the declaration of jagged:

var jagged = new[] {
 new[] { 1, 2, 3, 4 },
 new[] { 9, 8, 7 },
 new[] { 11, 12, 13, 14, 15 }
};

Notice how new[] is used in two ways. First, it creates the array of arrays. Second, it creates
each individual array, based on the number and type of initializers. As you would expect,
all of the initializers in the individual arrays must be of the same type. The same general
approach used to declare jagged can be used to declare any implicitly typed jagged array.

As mentioned, implicitly typed arrays are most applicable to LINQ-based queries. They
are not meant for general use. In most cases, you should use explicitly typed arrays.

The foreach Loop
In Chapter 5, it was mentioned that C# defines a loop called foreach, but a discussion of
that statement was deferred until later. The time for that discussion has now come.

The foreach loop is used to cycle through the elements of a collection. A collection is a
group of objects. C# defines several types of collections, of which one is an array. The general
form of foreach is shown here:

PART I

C h a p t e r 7 : A r r a y s a n d S t r i n g s 153

PART I
PART I

foreach(type loopvar in collection) statement;

Here, type loopvar specifies the type and name of an iteration variable. The iteration variable
receives the value of the next element in the collection each time the foreach loop iterates.
The collection being cycled through is specified by collection, which, for the rest of this
discussion, is an array. Thus, type must be the same as (or compatible with) the element
type of the array. Beginning with C# 3.0, type can also be var, in which case the compiler
determines the type based on the element type of the array. This can be useful when
working with certain queries, as described later in this book. Normally, you will explicitly
specify the type.

Here is how foreach works. When the loop begins, the first element in the array is
obtained and assigned to loopvar. Each subsequent iteration obtains the next element from
the array and stores it in loopvar. The loop ends when there are no more elements to obtain.
Thus, the foreach cycles through the array one element at a time, from start to finish.

One important point to remember about foreach is that the iteration variable loopvar is
read-only. This means you can’t change the contents of an array by assigning the iteration
variable a new value.

Here is a simple example that uses foreach. It creates an array of integers and gives it
some initial values. It then displays those values, computing the summation in the process.

// Use the foreach loop.

using System;

class ForeachDemo {
 static void Main() {
 int sum = 0;
 int[] nums = new int[10];

 // Give nums some values.
 for(int i = 0; i < 10; i++)
 nums[i] = i;

 // Use foreach to display and sum the values.
 foreach(int x in nums) {
 Console.WriteLine("Value is: " + x);
 sum += x;
 }
 Console.WriteLine("Summation: " + sum);
 }
}

The output from the program is shown here:

Value is: 0
Value is: 1
Value is: 2
Value is: 3
Value is: 4
Value is: 5
Value is: 6
Value is: 7

154 P a r t I : T h e C # L a n g u a g e

Value is: 8
Value is: 9
Summation: 45

As this output shows, foreach cycles through an array in sequence from the lowest index to
the highest.

Although the foreach loop iterates until all elements in an array have been examined, it
is possible to terminate a foreach loop early by using a break statement. For example, this
program sums only the first five elements of nums:

// Use break with a foreach.

using System;

class ForeachDemo {
 static void Main() {
 int sum = 0;
 int[] nums = new int[10];

 // Give nums some values.
 for(int i = 0; i < 10; i++)
 nums[i] = i;

 // Use foreach to display and sum the values.
 foreach(int x in nums) {
 Console.WriteLine("Value is: " + x);
 sum += x;
 if(x == 4) break; // stop the loop when 4 is obtained
 }
 Console.WriteLine("Summation of first 5 elements: " + sum);
 }
}

This is the output produced:

Value is: 0
Value is: 1
Value is: 2
Value is: 3
Value is: 4
Summation of first 5 elements: 10

As is evident, the foreach loop stops after the fifth element has been obtained.
The foreach loop also works on multidimensional arrays. It returns those elements in

row order, from first to last.

// Use foreach on a two-dimensional array.

using System;

class ForeachDemo2 {
 static void Main() {
 int sum = 0;
 int[,] nums = new int[3,5];

PART I

C h a p t e r 7 : A r r a y s a n d S t r i n g s 155

PART I
PART I

 // Give nums some values.
 for(int i = 0; i < 3; i++)
 for(int j=0; j < 5; j++)
 nums[i,j] = (i+1)*(j+1);

 // Use foreach to display and sum the values.
 foreach(int x in nums) {
 Console.WriteLine("Value is: " + x);
 sum += x;
 }
 Console.WriteLine("Summation: " + sum);
 }
}

The output from this program is shown here:

Value is: 1
Value is: 2
Value is: 3
Value is: 4
Value is: 5
Value is: 2
Value is: 4
Value is: 6
Value is: 8
Value is: 10
Value is: 3
Value is: 6
Value is: 9
Value is: 12
Value is: 15
Summation: 90

Since the foreach loop can only cycle through an array sequentially, from start to finish,
you might think that its use is limited. However, this is not true. A large number of algorithms
require exactly this mechanism, of which one of the most common is searching. For example,
the following program uses a foreach loop to search an array for a value. It stops if the
value is found.

// Search an array using foreach.

using System;

class Search {
 static void Main() {
 int[] nums = new int[10];
 int val;
 bool found = false;

 // Give nums some values.
 for(int i = 0; i < 10; i++)
 nums[i] = i;

 val = 5;

156 P a r t I : T h e C # L a n g u a g e

 // Use foreach to search nums for key.
 foreach(int x in nums) {
 if(x == val) {
 found = true;
 break;
 }
 }

 if(found)
 Console.WriteLine("Value found!");
 }
}

The output is shown here:

Value found!

The foreach loop is an excellent choice in this application because searching an array involves
examining each element. Other types of foreach applications include such things as computing
an average, finding the minimum or maximum of a set, looking for duplicates, and so on.
As you will see later in this book, foreach is especially useful when operating on other types
of collections.

Strings
From a day-to-day programming standpoint, one of the most important of C#’s data types is
string. string defines and supports character strings. In many other programming languages,
a string is an array of characters. This is not the case with C#. In C#, strings are objects. Thus,
string is a reference type. Although string is a built-in data type in C#, a discussion of string
needed to wait until classes and objects had been introduced.

Actually, you have been using the string class since Chapter 2, but you did not know it.
When you create a string literal, you are actually creating a string object. For example, in the
statement

Console.WriteLine("In C#, strings are objects.");

the string “In C#, strings are objects.” is automatically made into a string object by C#. Thus,
the use of the string class has been “below the surface” in the preceding programs. In this
section, you will learn to handle them explicitly.

Constructing Strings
The easiest way to construct a string is to use a string literal. For example, here str is a
string reference variable that is assigned a reference to a string literal:

string str = "C# strings are powerful.";

In this case, str is initialized to the character sequence “C# strings are powerful.”
You can also create a string from a char array. For example:

char[] charray = {'t', 'e', 's', 't'};
string str = new string(charray);

PART I

C h a p t e r 7 : A r r a y s a n d S t r i n g s 157

PART I
PART I

Once you have created a string object, you can use it nearly anywhere that a quoted
string is allowed. For example, you can use a string object as an argument to WriteLine(),
as shown in this example:

// Introduce string.

using System;

class StringDemo {
 static void Main() {

 char[] charray = {'A', ' ', 's', 't', 'r', 'i', 'n', 'g', '.' };
 string str1 = new string(charray);
 string str2 = "Another string.";

 Console.WriteLine(str1);
 Console.WriteLine(str2);
 }
}

The output from the program is shown here:

A string.
Another string.

Operating on Strings
The string class contains several methods that operate on strings. Table 7-1 shows a few. The
string type also includes the Length property, which contains the length of the string.

To obtain the value of an individual character of a string, you simply use an index. For
example:

string str = "test";
Console.WriteLine(str[0]);

This displays “t”, the first character of “test”. Like arrays, string indexes begin at zero. One
important point, however, is that you cannot assign a new value to a character within a
string using an index. An index can only be used to obtain a character.

Method Description

static string Copy(string str) Returns a copy of str.

int CompareTo(string str) Returns less than zero if the invoking string is less than
str, greater than zero if the invoking string is greater than
str, and zero if the strings are equal.

int IndexOf(string str) Searches the invoking string for the substring specified by
str. Returns the index of the first match, or –1 on failure.

int LastIndexOf(string str) Searches the invoking string for the substring specified by
str. Returns the index of the last match, or –1 on failure.

string ToLower() Returns a lowercase version of the invoking string.

string ToUpper() Returns an uppercase version of the invoking string.

TABLE 7-1 Some Common String Handling Methods

158 P a r t I : T h e C # L a n g u a g e

To test two strings for equality, you can use the = = operator. Normally, when the = =
operator is applied to object references, it determines if both references refer to the same
object. This differs for objects of type string. When the = = is applied to two string references,
the contents of the strings, themselves, are compared for equality. The same is true for the !=
operator: When comparing string objects, the contents of the strings are compared. For other
types of string comparisons, you will need to use the CompareTo() method.

Here is a program that demonstrates several string operations:

// Some string operations.

using System;

class StrOps {
 static void Main() {
 string str1 =
 "When it comes to .NET programming, C# is #1.";
 string str2 = string.Copy(str1);
 string str3 = "C# strings are powerful.";
 string strUp, strLow;
 int result, idx;

 Console.WriteLine("str1: " + str1);

 Console.WriteLine("Length of str1: " +
 str1.Length);

 // Create upper- and lowercase versions of str1.
 strLow = str1.ToLower();
 strUp = str1.ToUpper();
 Console.WriteLine("Lowercase version of str1:\n " +
 strLow);
 Console.WriteLine("Uppercase version of str1:\n " +
 strUp);

 Console.WriteLine();

 // Display str1, one char at a time.
 Console.WriteLine("Display str1, one char at a time.");
 for(int i=0; i < str1.Length; i++)
 Console.Write(str1[i]);
 Console.WriteLine("\n");

 // Compare strings.
 if(str1 == str2)
 Console.WriteLine("str1 == str2");
 else
 Console.WriteLine("str1 != str2");

 if(str1 == str3)
 Console.WriteLine("str1 == str3");
 else
 Console.WriteLine("str1 != str3");

PART I

C h a p t e r 7 : A r r a y s a n d S t r i n g s 159

PART I
PART I

 result = str1.CompareTo(str3);
 if(result == 0)
 Console.WriteLine("str1 and str3 are equal");
 else if(result < 0)
 Console.WriteLine("str1 is less than str3");
 else
 Console.WriteLine("str1 is greater than str3");

 Console.WriteLine();

 // Assign a new string to str2.
 str2 = "One Two Three One";

 // Search a string.
 idx = str2.IndexOf("One");
 Console.WriteLine("Index of first occurrence of One: " + idx);
 idx = str2.LastIndexOf("One");
 Console.WriteLine("Index of last occurrence of One: " + idx);

 }
}

This program generates the following output:

str1: When it comes to .NET programming, C# is #1.
Length of str1: 44
Lowercase version of str1:
 when it comes to .net programming, c# is #1.
Uppercase version of str1:
 WHEN IT COMES TO .NET PROGRAMMING, C# IS #1.

Display str1, one char at a time.
When it comes to .NET programming, C# is #1.

str1 == str2
str1 != str3
str1 is greater than str3

Index of first occurrence of One: 0
Index of last occurrence of One: 14

You can concatenate (join together) two strings using the + operator. For example, this
statement:

string str1 = "One";
string str2 = "Two";
string str3 = "Three";
string str4 = str1 + str2 + str3;

initializes str4 with the string “OneTwoThree”.
One other point: The string keyword is an alias for (that is, maps directly to) the

System.String class defined by the .NET Framework class library. Thus, the fields and
methods defined by string are those of the System.String class, which includes more
than the sampling described here. System.String is examined in detail in Part II.

160 P a r t I : T h e C # L a n g u a g e

Arrays of Strings
Like any other data type, strings can be assembled into arrays. For example:

// Demonstrate string arrays.
using System;

class StringArrays {
 static void Main() {
 string[] str = { "This", "is", "a", "test." };

 Console.WriteLine("Original array: ");
 for(int i=0; i < str.Length; i++)
 Console.Write(str[i] + " ");
 Console.WriteLine("\n");

 // Change a string.
 str[1] = "was";
 str[3] = "test, too!";

 Console.WriteLine("Modified array: ");
 for(int i=0; i < str.Length; i++)
 Console.Write(str[i] + " ");
 }
}

Here is the output from this program:

Original array:
This is a test.

Modified array:
This was a test, too!

Here is a more interesting example. The following program displays an integer value
using words. For example, the value 19 will display as “one nine”.

// Display the digits of an integer using words.

using System;

class ConvertDigitsToWords {
 static void Main() {
 int num;
 int nextdigit;
 int numdigits;
 int[] n = new int[20];

 string[] digits = { "zero", "one", "two",
 "three", "four", "five",
 "six", "seven", "eight",
 "nine" };

 num = 1908;

PART I

C h a p t e r 7 : A r r a y s a n d S t r i n g s 161

PART I
PART I

 Console.WriteLine("Number: " + num);

 Console.Write("Number in words: ");

 nextdigit = 0;
 numdigits = 0;

 // Get individual digits and store in n.
 // These digits are stored in reverse order.
 do {
 nextdigit = num % 10;
 n[numdigits] = nextdigit;
 numdigits++;
 num = num / 10;
 } while(num > 0);
 numdigits--;

 // Display the words.
 for(; numdigits >= 0; numdigits--)
 Console.Write(digits[n[numdigits]] + " ");

 Console.WriteLine();
 }
}

The output is shown here:

Number: 1908
Number in words: one nine zero eight

In the program, the string array digits holds in order the word equivalents of the digits
from zero to nine. The program converts an integer into words by first obtaining each digit
of the value and then storing those digits, in reverse order, in the int array called n. Then,
this array is cycled through from back to front. In the process, each integer value in n is
used as an index into digits, with the corresponding string being displayed.

Strings Are Immutable
Here is something that might surprise you: The contents of a string object are immutable.
That is, once created, the character sequence comprising that string cannot be altered. This
restriction allows strings to be implemented more efficiently. Even though this probably
sounds like a serious drawback, it isn’t. When you need a string that is a variation on one
that already exists, simply create a new string that contains the desired changes. Since
unused string objects are automatically garbage-collected, you don’t even need to worry
about what happens to the discarded strings.

It must be made clear, however, that string reference variables may, of course, change
which object they refer to. It is just that the contents of a specific string object cannot be
changed after it is created.

To fully understand why immutable strings are not a hindrance, we will use another of
string’s methods: Substring(). The Substring() method returns a new string that contains
a specified portion of the invoking string. Because a new string object is manufactured that

162 P a r t I : T h e C # L a n g u a g e

contains the substring, the original string is unaltered, and the rule of immutability is still
intact. The form of Substring() that we will be using is shown here:

string Substring(int start, int len)

Here, start specifies the beginning index, and len specifies the length of the substring.
Here is a program that demonstrates Substring() and the principle of immutable strings:

// Use Substring().

using System;

class SubStr {
 static void Main() {
 string orgstr = "C# makes strings easy.";

 // construct a substring
 string substr = orgstr.Substring(5, 12);

 Console.WriteLine("orgstr: " + orgstr);
 Console.WriteLine("substr: " + substr);
 }
}

Here is the output from the program:

orgstr: C# makes strings easy.
substr: kes strings

As you can see, the original string orgstr is unchanged and substr contains the substring.
One more point: Although the immutability of string objects is not usually a restriction

or hindrance, there may be times when it would be beneficial to modify a string. To allow
this, C# offers a class called StringBuilder, which is in the System.Text namespace. It
creates string objects that can be changed. For most purposes, however, you will want to use
string, not StringBuilder.

Strings Can Be Used in switch Statements
A string can be used to control a switch statement. It is the only non-integer type that can
be used in the switch. The fact that strings can be used in switch statements makes it
possible to handle some otherwise challenging situations more easily than you might
expect. For example, the following program displays the digit equivalent of the words
“one,” “two,” and “three”:

// A string can control a switch statement.

using System;

class StringSwitch {
 static void Main() {
 string[] strs = { "one", "two", "three", "two", "one" };

PART I

C h a p t e r 7 : A r r a y s a n d S t r i n g s 163

PART I
PART I

 foreach(string s in strs) {
 switch(s) {
 case "one":
 Console.Write(1);
 break;
 case "two":
 Console.Write(2);
 break;
 case "three":
 Console.Write(3);
 break;
 }
 }
 Console.WriteLine();
 }
}

The output is shown here:

12321

This page intentionally left blank

8
A Closer Look at

Methods and Classes

This chapter resumes the examination of classes and methods. It begins by explaining
how to control access to the members of a class. It then discusses the passing and
returning of objects, method overloading, the various forms of Main(), recursion,

and the use of the keyword static.

Controlling Access to Class Members
In its support for encapsulation, the class provides two major benefits. First, it links data
with code. You have been taking advantage of this aspect of the class since Chapter 6.
Second, it provides the means by which access to members can be controlled. It is this
second feature that is examined here.

Although C#’s approach is a bit more sophisticated, in essence, there are two basic
types of class members: public and private. A public member can be freely accessed by code
defined outside of its class. This is the type of class member that we have been using up to
this point. A private member can be accessed only by methods defined by its class. It is
through the use of private members that access is controlled.

Restricting access to a class’ members is a fundamental part of object-oriented programming
because it helps prevent the misuse of an object. By allowing access to private data only
through a well-defined set of methods, you can prevent improper values from being assigned
to that data—by performing a range check, for example. It is not possible for code outside
the class to set the value of a private member directly. You can also control precisely how
and when the data within an object is used. Thus, when correctly implemented, a class
creates a “black box” that can be used, but the inner workings of which are not open to
tampering.

C#’s Access Modifiers
Member access control is achieved through the use of four access modifiers: public, private,
protected, and internal. In this chapter, we will be concerned with public and private. The
protected modifier applies only when inheritance is involved and is described in Chapter 11.

165

CHAPTER

166 P a r t I : T h e C # L a n g u a g e

The internal modifier applies mostly to the use of an assembly, which for C# loosely means
a deployable program or library. The internal modifier is examined in Chapter 16.

When a member of a class is modified by the public specifier, that member can be
accessed by any other code in your program. This includes methods defined inside other
classes.

When a member of a class is specified as private, then that member can be accessed only
by other members of its class. Thus, methods in other classes are not able to access a private
member of another class. As explained in Chapter 6, if no access specifier is used, a class
member is private to its class by default. Thus, the private specifier is optional when creating
private class members.

An access specifier precedes the rest of a member’s type specification. That is, it must
begin a member’s declaration statement. Here are some examples:

public string errMsg;
private double bal;
private bool isError(byte status) { // ...

To understand the difference between public and private, consider the following
program:

// Public vs. private access.

using System;

class MyClass {
 private int alpha; // private access explicitly specified
 int beta; // private access by default
 public int gamma; // public access

 // Methods to access alpha and beta. It is OK for a member
 // of a class to access a private member of the same class.

 public void SetAlpha(int a) {
 alpha = a;
 }

 public int GetAlpha() {
 return alpha;
 }

 public void SetBeta(int a) {
 beta = a;
 }

 public int GetBeta() {
 return beta;
 }
}

class AccessDemo {
 static void Main() {
 MyClass ob = new MyClass();

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 167

PART I
PART I

 // Access to alpha and beta is allowed only through methods.
 ob.SetAlpha(-99);
 ob.SetBeta(19);
 Console.WriteLine("ob.alpha is " + ob.GetAlpha());
 Console.WriteLine("ob.beta is " + ob.GetBeta());

 // You cannot access alpha or beta like this:
// ob.alpha = 10; // Wrong! alpha is private!
// ob.beta = 9; // Wrong! beta is private!

 // It is OK to directly access gamma because it is public.
 ob.gamma = 99;
 }
}

As you can see, inside the MyClass class, alpha is specified as private, beta is private by
default, and gamma is specified as public. Because alpha and beta are private, they cannot
be accessed by code outside of their class. Therefore, inside the AccessDemo class, neither
can be used directly. Each must be accessed through public methods, such as SetAlpha()
and GetAlpha(). For example, if you were to remove the comment symbol from the
beginning of the following line

// ob.alpha = 10; // Wrong! alpha is private!

you would not be able to compile this program because of the access violation. Although
access to alpha by code outside of MyClass is not allowed, methods defined within
MyClass can freely access it, as the SetAlpha() and GetAlpha() methods show. The same
is true for beta.

The key point is this: A private member can be used freely by other members of its class,
but it cannot be accessed by code outside its class.

Applying Public and Private Access
The proper use of public and private access is a key component of successful object-oriented
programming. Although there are no hard and fast rules, here are some general principles
that serve as guidelines:

• Members of a class that are used only within the class itself should be private.

• Instance data that must be within a specific range should be private, with access
provided through public methods that can perform range checks.

• If changing a member can cause an effect that extends beyond the member itself
(that is, affects other aspects of the object), that member should be private, and
access to it should be controlled.

• Members that can cause harm to an object when improperly used should be private.
Access to these members should be through public methods that prevent improper
usage.

• Methods that get and set the values of private data must be public.

• Public instance variables are permissible when there is no reason for them to be
private.

168 P a r t I : T h e C # L a n g u a g e

Of course, there are many nuances that the preceding rules do not address, and special
cases cause one or more rules to be violated. But, in general, if you follow these rules, you
will be creating resilient objects that are not easily misused.

Controlling Access: A Case Study
To better understand the “how and why” behind access control, a case study is useful. One
of the quintessential examples of object-oriented programming is a class that implements a
stack. As you probably know, a stack is a data structure that implements a last-in, first-out
list. Its name comes from the analogy of a stack of plates on a table. The first plate on the
table is the last one to be used.

A stack is a classic example of object-oriented programming because it combines storage
for information along with the methods that access that information. Thus, a stack is a data
engine that enforces the last-in, first-out usage. Such a combination is an excellent choice for
a class in which the members that provide storage for the stack are private, and public methods
provide access. By encapsulating the underlying storage, it is not possible for code that uses
the stack to access the elements out of order.

A stack defines two basic operations: push and pop. A push puts a value onto the top of
the stack. A pop removes a value from the top of the stack. Thus, a pop is consumptive; once
a value has been popped off the stack, it has been removed and cannot be accessed again.

The example shown here creates a class called Stack that implements a stack. The
underlying storage for the stack is provided by a private array. The push and pop operations
are available through the public methods of the Stack class. Thus, the public methods enforce
the last-in, first-out mechanism. As shown here, the Stack class stores characters, but the
same mechanism could be used to store any type of data:

// A stack class for characters.

using System;

class Stack {
 // These members are private.
 char[] stck; // holds the stack
 int tos; // index of the top of the stack

 // Construct an empty Stack given its size.
 public Stack(int size) {
 stck = new char[size]; // allocate memory for stack
 tos = 0;
 }

 // Push characters onto the stack.
 public void Push(char ch) {
 if(tos==stck.Length) {
 Console.WriteLine(" -- Stack is full.");
 return;
 }

 stck[tos] = ch;
 tos++;
 }

 // Pop a character from the stack.

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 169

PART I
PART I

 public char Pop() {
 if(tos==0) {
 Console.WriteLine(" -- Stack is empty.");
 return (char) 0;
 }

 tos--;
 return stck[tos];
 }

 // Return true if the stack is full.
 public bool IsFull() {
 return tos==stck.Length;
 }

 // Return true if the stack is empty.
 public bool IsEmpty() {
 return tos==0;
 }

 // Return total capacity of the stack.
 public int Capacity() {
 return stck.Length;
 }

 // Return number of objects currently on the stack.
 public int GetNum() {
 return tos;
 }
}

Let’s examine this class closely. The Stack class begins by declaring these two instance
variables:

// These members are private.
char[] stck; // holds the stack
int tos; // index of the top of the stack

The stck array provides the underlying storage for the stack, which in this case holds
characters. Notice that no array is allocated. The allocation of the actual array is handled
by the Stack constructor. The tos member holds the index of the top of the stack.

Both the tos and stck members are private. This enforces the last-in, first-out stack
mechanism. If public access to stck were allowed, then the elements on the stack could
be accessed out of order. Also, since tos holds the index of the top element in the stack,
manipulations of tos by code outside the Stack class must be prevented in order to avoid
corruption of the stack. Access to stck and tos is available, indirectly, to the user of Stack
through the various public methods described shortly.

The stack constructor is shown next:

// Construct an empty Stack given its size.
public Stack(int size) {
 stck = new char[size]; // allocate memory for stack
 tos = 0;
}

170 P a r t I : T h e C # L a n g u a g e

The constructor is passed the desired size of the stack. It allocates the underlying array and
sets tos to zero. Thus, a zero value in tos indicates that the stack is empty.

The public Push() method puts an element onto the stack. It is shown here:

// Push characters onto the stack.
public void Push(char ch) {
 if(tos==stck.Length) {
 Console.WriteLine(" -- Stack is full.");
 return;
 }

 stck[tos] = ch;
 tos++;
}

The element to be pushed onto the stack is passed in ch. Before the element is added to
the stack, a check is made to ensure that there is still room in the underlying array. This is
done by making sure that tos does not exceed the length of stck. If there is still room, the
element is stored in stck at the index specified by tos, and then tos is incremented. Thus,
tos always contains the index of the next free element in stck.

To remove an element from the stack, call the public method Pop(). It is shown here:

// Pop a character from the stack.
public char Pop() {
 if(tos==0) {
 Console.WriteLine(" -- Stack is empty.");
 return (char) 0;
 }

 tos--;
 return stck[tos];
}

Here, the value of tos is checked. If it is zero, the stack is empty. Otherwise, tos is
decremented, and the element at that index is returned.

Although Push() and Pop() are the only methods needed to implement a stack, some
others are quite useful, and the Stack class defines four more. These are IsFull(), IsEmpty(),
Capacity(), and GetNum(), and they provide information about the state of the stack. They
are shown here:

// Return true if the stack is full.
public bool IsFull() {
 return tos==stck.Length;
}

// Return true if the stack is empty.
public bool IsEmpty() {
 return tos==0;
}

// Return total capacity of the stack.

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 171

PART I
PART I

public int Capacity() {
 return stck.Length;
}

// Return number of objects currently on the stack.
public int GetNum() {
 return tos;
}

The IsFull() method returns true when the stack is full and false otherwise. The IsEmpty()
method returns true when the stack is empty and false otherwise. To obtain the total capacity
of the stack (that is, the total number of elements it can hold), call Capacity(). To obtain the
number of elements currently stored on the stack, call GetNum(). These methods are useful
because the information they provide requires access to tos, which is private. They are also
examples of how public methods can provide safe access to private members.

The following program demonstrates the stack:

// Demonstrate the Stack class.

using System;

class StackDemo {
 static void Main() {
 Stack stk1 = new Stack(10);
 Stack stk2 = new Stack(10);
 Stack stk3 = new Stack(10);
 char ch;
 int i;

 // Put some characters into stk1.
 Console.WriteLine("Push A through J onto stk1.");
 for(i=0; !stk1.IsFull(); i++)
 stk1.Push((char) ('A' + i));

 if(stk1.IsFull()) Console.WriteLine("stk1 is full.");

 // Display the contents of stk1.
 Console.Write("Contents of stk1: ");
 while(!stk1.IsEmpty()) {
 ch = stk1.Pop();
 Console.Write(ch);
 }

 Console.WriteLine();

 if(stk1.IsEmpty()) Console.WriteLine("stk1 is empty.\n");

 // Put more characters into stk1.
 Console.WriteLine("Again push A through J onto stk1.");
 for(i=0; !stk1.IsFull(); i++)
 stk1.Push((char) ('A' + i));

 // Now, pop from stk1 and push the element in stk2.

172 P a r t I : T h e C # L a n g u a g e

 // This causes stk2 to hold the elements in reverse order.
 Console.WriteLine("Now, pop chars from stk1 and push " +
 "them onto stk2.");
 while(!stk1.IsEmpty()) {
 ch = stk1.Pop();
 stk2.Push(ch);
 }

 Console.Write("Contents of stk2: ");
 while(!stk2.IsEmpty()) {
 ch = stk2.Pop();
 Console.Write(ch);
 }

 Console.WriteLine("\n");

 // Put 5 characters into stack.
 Console.WriteLine("Put 5 characters on stk3.");
 for(i=0; i < 5; i++)
 stk3.Push((char) ('A' + i));

 Console.WriteLine("Capacity of stk3: " + stk3.Capacity());
 Console.WriteLine("Number of objects in stk3: " +
 stk3.GetNum());
 }
}

The output from the program is shown here:

Push A through J onto stk1.
stk1 is full.
Contents of stk1: JIHGFEDCBA
stk1 is empty.

Again push A through J onto stk1.
Now, pop chars from stk1 and push them onto stk2.
Contents of stk2: ABCDEFGHIJ

Put 5 characters on stk3.
Capacity of stk3: 10
Number of objects in stk3: 5

Pass References to Methods
Up to this point, the examples in this book have been using value types, such as int or
double, as parameters to methods. However, it is both correct and common to use a
reference type as a parameter. Doing so allows an object to be passed to a method. For
example, consider the following program:

// References can be passed to methods.

using System;

class MyClass {
 int alpha, beta;

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 173

PART I
PART I

 public MyClass(int i, int j) {
 alpha = i;
 beta = j;
 }

 // Return true if ob contains the same values as the invoking object.
 public bool SameAs(MyClass ob) {
 if((ob.alpha == alpha) & (ob.beta == beta))
 return true;
 else return false;
 }

 // Make a copy of ob.
 public void Copy(MyClass ob) {
 alpha = ob.alpha;
 beta = ob.beta;
 }

 public void Show() {
 Console.WriteLine("alpha: {0}, beta: {1}",
 alpha, beta);
 }
}

class PassOb {
 static void Main() {
 MyClass ob1 = new MyClass(4, 5);
 MyClass ob2 = new MyClass(6, 7);

 Console.Write("ob1: ");
 ob1.Show();

 Console.Write("ob2: ");
 ob2.Show();

 if(ob1.SameAs(ob2))
 Console.WriteLine("ob1 and ob2 have the same values.");
 else
 Console.WriteLine("ob1 and ob2 have different values.");

 Console.WriteLine();

 // Now, make ob1 a copy of ob2.
 ob1.Copy(ob2);

 Console.Write("ob1 after copy: ");
 ob1.Show();

 if(ob1.SameAs(ob2))
 Console.WriteLine("ob1 and ob2 have the same values.");
 else
 Console.WriteLine("ob1 and ob2 have different values.");
 }
}

174 P a r t I : T h e C # L a n g u a g e

This program generates the following output:

ob1: alpha: 4, beta: 5
ob2: alpha: 6, beta: 7
ob1 and ob2 have different values.

ob1 after copy: alpha: 6, beta: 7
ob1 and ob2 have the same values.

The SameAs() and Copy() methods each take a reference of type MyClass as an
argument. The SameAs() method compares the values of alpha and beta in the invoking
object with the values of alpha and beta in the object passed via ob. The method returns
true only if the two objects contain the same values for these instance variables. The Copy()
method assigns the values of alpha and beta in the object referred to by ob to alpha and
beta in the invoking object. As this example shows, syntactically, reference types are passed
to methods in the same way as are value types.

How Arguments Are Passed
As the preceding example demonstrated, passing an object reference to a method is a
straightforward task. However, there are some nuances that the example did not show.
In certain cases, the effects of passing a reference type will be different than those experienced
when passing a value type. To see why, let’s review the two ways in which an argument
can be passed to a subroutine.

The first way is call-by-value. This method copies the value of an argument into the formal
parameter of the subroutine. Therefore, changes made to the parameter of the subroutine
have no effect on the argument used in the call. The second way an argument can be passed
is call-by-reference. In this method, a reference to an argument (not the value of the argument)
is passed to the parameter. Inside the subroutine, this reference is used to access the actual
argument specified in the call. This means that changes made to the parameter will affect
the argument used to call the subroutine.

By default, C# uses call-by-value, which means that a copy of the argument is made and
given to the receiving parameter. Thus, when you pass a value type, such as int or double,
what occurs to the parameter that receives the argument has no effect outside the method.
For example, consider the following program:

// Value types are passed by value.

using System;

class Test {
 /* This method causes no change to the arguments
 used in the call. */
 public void NoChange(int i, int j) {
 i = i + j;
 j = -j;
 }
}

class CallByValue {
 static void Main() {
 Test ob = new Test();

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 175

PART I
PART I

 int a = 15, b = 20;

 Console.WriteLine("a and b before call: " +
 a + " " + b);

 ob.NoChange(a, b);

 Console.WriteLine("a and b after call: " +
 a + " " + b);
 }
}

The output from this program is shown here:

a and b before call: 15 20
a and b after call: 15 20

As you can see, the operations that occur inside NoChange() have no effect on the values of
a and b used in the call. Again, this is because copies of the value of a and b have been given
to parameters i and j, but a and b are otherwise completely independent of i and j. Thus,
assigning i a new value will not affect a.

When you pass a reference to a method, the situation is a bit more complicated. In this
case, the reference, itself, is still passed by value. Thus, a copy of the reference is made and
changes to the parameter will not affect the argument. (For example, making the parameter
refer to a new object will not change the object to which the argument refers.) However—
and this is a big however—changes made to the object being referred to by the parameter will
affect the object referred to by the argument. Let’s see why.

Recall that when you create a variable of a class type, you are only creating a reference
to an object. Thus, when you pass this reference to a method, the parameter that receives it
will refer to the same object as that referred to by the argument. Therefore, the argument
and the parameter will both refer to the same object. This means that objects are passed to
methods by what is effectively call-by-reference. Thus, changes to the object inside the method
do affect the object used as an argument. For example, consider the following program:

// Objects are passed by reference.

using System;

class Test {
 public int a, b;

 public Test(int i, int j) {
 a = i;
 b = j;
 }

 /* Pass an object. Now, ob.a and ob.b in object
 used in the call will be changed. */
 public void Change(Test ob) {
 ob.a = ob.a + ob.b;
 ob.b = -ob.b;
 }
}

176 P a r t I : T h e C # L a n g u a g e

class CallByRef {
 static void Main() {
 Test ob = new Test(15, 20);

 Console.WriteLine("ob.a and ob.b before call: " +
 ob.a + " " + ob.b);

 ob.Change(ob);

 Console.WriteLine("ob.a and ob.b after call: " +
 ob.a + " " + ob.b);
 }
}

This program generates the following output:

ob.a and ob.b before call: 15 20
ob.a and ob.b after call: 35 -20

As you can see, in this case, the actions inside Change() have affected the object used as an
argument.

To review: When a reference is passed to a method, the reference itself is passed by use
of call-by-value. Thus, a copy of that reference is made. However, the copy of that reference
will still refer to the same object as its corresponding argument. This means that objects are
implicitly passed using call-by-reference.

Use ref and out Parameters
As just explained, value types, such as int or char, are passed by value to a method. This
means that changes to the parameter that receives a value type will not affect the actual
argument used in the call. You can, however, alter this behavior. Through the use of the ref
and out keywords, it is possible to pass any of the value types by reference. Doing so allows
a method to alter the argument used in the call.

Before going into the mechanics of using ref and out, it is useful to understand why you
might want to pass a value type by reference. In general, there are two reasons: to allow a
method to alter the contents of its arguments or to allow a method to return more than one
value. Let’s look at each reason in detail.

Often you will want a method to be able to operate on the actual arguments that are
passed to it. The quintessential example of this is a Swap() method that exchanges the values
of its two arguments. Since value types are passed by value, it is not possible to write a
method that swaps the value of two ints, for example, using C#’s default call-by-value
parameter passing mechanism. The ref modifier solves this problem.

As you know, a return statement enables a method to return a value to its caller. However, a
method can return only one value each time it is called. What if you need to return two or more
pieces of information? For example, what if you want to create a method that decomposes a
floating-point number into its integer and fractional parts? To do this requires that two pieces
of information be returned: the integer portion and the fractional component. This method
cannot be written using only a single return value. The out modifier solves this problem.

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 177

PART I
PART I

Use ref
The ref parameter modifier causes C# to create a call-by-reference, rather than a call-by-
value. The ref modifier is specified when the method is declared and when it is called. Let’s
begin with a simple example. The following program creates a method called Sqr() that
returns in-place the square of its integer argument. Notice the use and placement of ref.

// Use ref to pass a value type by reference.

using System;

class RefTest {
 // This method changes its argument. Notice the use of ref.
 public void Sqr(ref int i) {
 i = i * i;
 }
}

class RefDemo {
 static void Main() {
 RefTest ob = new RefTest();

 int a = 10;

 Console.WriteLine("a before call: " + a);

 ob.Sqr(ref a); // notice the use of ref

 Console.WriteLine("a after call: " + a);
 }
}

Notice that ref precedes the entire parameter declaration in the method and that it precedes
the argument when the method is called. The output from this program, shown here, confirms
that the value of the argument, a, was indeed modified by Sqr():

a before call: 10
a after call: 100

Using ref, it is now possible to write a method that exchanges the values of its two
value-type arguments. For example, here is a program that contains a method called
Swap() that exchanges the values of the two integer arguments with which it is called:

// Swap two values.

using System;

class ValueSwap {
 // This method now changes its arguments.
 public void Swap(ref int a, ref int b) {
 int t;

178 P a r t I : T h e C # L a n g u a g e

 t = a;
 a = b;
 b = t;
 }
}

class ValueSwapDemo {
 static void Main() {
 ValueSwap ob = new ValueSwap();

 int x = 10, y = 20;

 Console.WriteLine("x and y before call: " + x + " " + y);

 ob.Swap(ref x, ref y);

 Console.WriteLine("x and y after call: " + x + " " + y);
 }
}

The output from this program is shown here:

x and y before call: 10 20
x and y after call: 20 10

Here is one important point to understand about ref: An argument passed by ref must
be assigned a value prior to the call. The reason is that the method that receives such an
argument assumes that the parameter refers to a valid value. Thus, using ref, you cannot
use a method to give an argument an initial value.

Use out
Sometimes you will want to use a reference parameter to receive a value from a method, but
not pass in a value. For example, you might have a method that performs some function,
such as opening a network socket, that returns a success/fail code in a reference parameter.
In this case, there is no information to pass into the method, but there is information to pass
back out. The problem with this scenario is that a ref parameter must be initialized to a
value prior to the call. Thus, to use a ref parameter would require giving the argument a
dummy value just to satisfy this constraint. Fortunately, C# provides a better alternative:
the out parameter.

An out parameter is similar to a ref parameter with this one exception: It can only be
used to pass a value out of a method. It is not necessary (or useful) to give the variable used
as an out parameter an initial value prior to calling the method. The method will give the
variable a value. Furthermore, inside the method, an out parameter is considered unassigned;
that is, it is assumed to have no initial value. This implies that the method must assign the
parameter a value prior to the method’s termination. Thus, after the call to the method, an
out parameter will contain a value.

Here is an example that uses an out parameter. In the class Decompose, the GetParts()
method decomposes a floating-point number into its integer and fractional parts. Notice
how each component is returned to the caller.

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 179

PART I
PART I

// Use out.

using System;

class Decompose {

 /* Decompose a floating-point value into its
 integer and fractional parts. */
 public int GetParts(double n, out double frac) {
 int whole;

 whole = (int) n;
 frac = n - whole; // pass fractional part back through frac
 return whole; // return integer portion
 }
}

class UseOut {
 static void Main() {
 Decompose ob = new Decompose();
 int i;
 double f;

 i = ob.GetParts(10.125, out f);

 Console.WriteLine("Integer portion is " + i);
 Console.WriteLine("Fractional part is " + f);
 }
}

The output from the program is shown here:

Integer portion is 10
Fractional part is 0.125

The GetParts() method returns two pieces of information. First, the integer portion of n is
returned as GetParts()’s return value. Second, the fractional portion of n is passed back to
the caller through the out parameter frac. As this example shows, by using out, it is possible
for one method to return two values.

Of course, you are not limited to only one out parameter. A method can return as many
pieces of information as necessary through out parameters. Here is an example that uses
two out parameters. The method HasComFactor() performs two functions. First, it determines
if two integers have a common factor (other than 1). It returns true if they do and false
otherwise. Second, if they do have a common factor, HasComFactor() returns the least and
greatest common factors in out parameters.

// Use two out parameters.

using System;

class Num {
 /* Determine if x and v have a common divisor.

180 P a r t I : T h e C # L a n g u a g e

 If so, return least and greatest common factors in
 the out parameters. */
 public bool HasComFactor(int x, int y,
 out int least, out int greatest) {
 int i;
 int max = x < y ? x : y;
 bool first = true;

 least = 1;
 greatest = 1;

 // Find least and greatest common factors.
 for(i=2; i <= max/2 + 1; i++) {
 if(((y%i)==0) & ((x%i)==0)) {
 if(first) {
 least = i;
 first = false;
 }
 greatest = i;
 }
 }

 if(least != 1) return true;
 else return false;
 }
}

class DemoOut {
 static void Main() {
 Num ob = new Num();
 int lcf, gcf;

 if(ob.HasComFactor(231, 105, out lcf, out gcf)) {
 Console.WriteLine("Lcf of 231 and 105 is " + lcf);
 Console.WriteLine("Gcf of 231 and 105 is " + gcf);
 }
 else
 Console.WriteLine("No common factor for 35 and 49.");

 if(ob.HasComFactor(35, 51, out lcf, out gcf)) {
 Console.WriteLine("Lcf of 35 and 51 " + lcf);
 Console.WriteLine("Gcf of 35 and 51 is " + gcf);
 }
 else
 Console.WriteLine("No common factor for 35 and 51.");
 }
}

In Main(), notice that lcf and gcf are not assigned values prior to the call to
HasComFactor(). This would be an error if the parameters had been ref rather than
out. The method returns either true or false, depending upon whether the two integers
have a common factor. If they do, the least and greatest common factors are returned
in the out parameters. The output from this program is shown here:

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 181

PART I
PART I

Lcf of 231 and 105 is 3
Gcf of 231 and 105 is 21
No common factor for 35 and 51.

Use ref and out on References
The use of ref and out is not limited to the passing of value types. They can also be used
when a reference is passed. When ref or out modifies a reference, it causes the reference,
itself, to be passed by reference. This allows a method to change the object to which the
reference refers. Consider the following program, which uses ref reference parameters to
exchange the objects to which two references are referring:

// Swap two references.

using System;

class RefSwap {
 int a, b;

 public RefSwap(int i, int j) {
 a = i;
 b = j;
 }

 public void Show() {
 Console.WriteLine("a: {0}, b: {1}", a, b);
 }

 // This method changes its arguments.
 public void Swap(ref RefSwap ob1, ref RefSwap ob2) {
 RefSwap t;

 t = ob1;
 ob1 = ob2;
 ob2 = t;
 }
}

class RefSwapDemo {
 static void Main() {
 RefSwap x = new RefSwap(1, 2);
 RefSwap y = new RefSwap(3, 4);

 Console.Write("x before call: ");
 x.Show();

 Console.Write("y before call: ");
 y.Show();

 Console.WriteLine();

 // Exchange the objects to which x and y refer.
 x.Swap(ref x, ref y);

182 P a r t I : T h e C # L a n g u a g e

 Console.Write("x after call: ");
 x.Show();

 Console.Write("y after call: ");
 y.Show();

 }
}

The output from this program is shown here:

x before call: a: 1, b: 2
y before call: a: 3, b: 4

x after call: a: 3, b: 4
y after call: a: 1, b: 2

In this example, the method Swap() exchanges the objects to which the two arguments to
Swap() refer. Before calling Swap(), x refers to an object that contains the values 1 and 2,
and y refers to an object that contains the values 3 and 4. After the call to Swap(), x refers to
the object that contains the values 3 and 4, and y refers to the object that contains the values
1 and 2. If ref parameters had not been used, then the exchange inside Swap() would have
had no effect outside Swap(). You might want to prove this by removing ref from Swap().

Use a Variable Number of Arguments
When you create a method, you usually know in advance the number of arguments that
you will be passing to it, but this is not always the case. Sometimes you will want to create
a method that can be passed an arbitrary number of arguments. For example, consider a
method that finds the smallest of a set of values. Such a method might be passed as few
as two values, or three, or four, and so on. In all cases, you want that method to return the
smallest value. Such a method cannot be created using normal parameters. Instead, you
must use a special type of parameter that stands for an arbitrary number of parameters.
This is done by creating a params parameter.

The params modifier is used to declare an array parameter that will be able to receive
zero or more arguments. The number of elements in the array will be equal to the number
of arguments passed to the method. Your program then accesses the array to obtain the
arguments.

Here is an example that uses params to create a method called MinVal(), which returns
the minimum value from a set of values:

// Demonstrate params.

using System;

class Min {
 public int MinVal(params int[] nums) {
 int m;

 if(nums.Length == 0) {

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 183

PART I
PART I

 Console.WriteLine("Error: no arguments.");
 return 0;
 }

 m = nums[0];
 for(int i=1; i < nums.Length; i++)
 if(nums[i] < m) m = nums[i];

 return m;
 }
}

class ParamsDemo {
 static void Main() {
 Min ob = new Min();
 int min;
 int a = 10, b = 20;

 // Call with 2 values.
 min = ob.MinVal(a, b);
 Console.WriteLine("Minimum is " + min);

 // Call with 3 values.
 min = ob.MinVal(a, b, -1);
 Console.WriteLine("Minimum is " + min);

 // Call with 5 values.
 min = ob.MinVal(18, 23, 3, 14, 25);
 Console.WriteLine("Minimum is " + min);

 // Can call with an int array, too.
 int[] args = { 45, 67, 34, 9, 112, 8 };
 min = ob.MinVal(args);
 Console.WriteLine("Minimum is " + min);
 }
}

The output from the program is shown here:

Minimum is 10
Minimum is -1
Minimum is 3
Minimum is 8

Each time MinVal() is called, the arguments are passed to it via the nums array. The length
of the array equals the number of elements. Thus, you can use MinVal() to find the minimum
of any number of values.

Notice the last call to MinVal(). Rather than being passed the values individually, it is
passed an array containing the values. This is perfectly legal. When a params parameter
is created, it will accept either a variable-length list of arguments or an array containing the
arguments.

184 P a r t I : T h e C # L a n g u a g e

Although you can pass a params parameter any number of arguments, they all must
be of a type compatible with the array type specified by the parameter. For example, calling
MinVal() like this:

min = ob.MinVal(1, 2.2); // Wrong!

is illegal because there is no automatic conversion from double (2.2) to int, which is the type
of nums in MinVal().

When using params, you need to be careful about boundary conditions because a
params parameter can accept any number of arguments—even zero! For example, it is
syntactically valid to call MinVal() as shown here:

min = ob.MinVal(); // no arguments
min = ob.MinVal(3); // 1 argument

This is why there is a check in MinVal() to confirm that at least one element is in the nums
array before there is an attempt to access that element. If the check were not there, then a
runtime exception would result if MinVal() were called with no arguments. (Exceptions are
described in Chapter 13.) Furthermore, the code in MinVal() was written in such a way as to
permit calling MinVal() with one argument. In that situation, the lone argument is returned.

A method can have normal parameters and a variable-length parameter. For example,
in the following program, the method ShowArgs() takes one string parameter and then a
params integer array:

// Use regular parameter with a params parameter.

using System;

class MyClass {
 public void ShowArgs(string msg, params int[] nums) {
 Console.Write(msg + ": ");

 foreach(int i in nums)
 Console.Write(i + " ");

 Console.WriteLine();
 }
}

class ParamsDemo2 {
 static void Main() {
 MyClass ob = new MyClass();

 ob.ShowArgs("Here are some integers",
 1, 2, 3, 4, 5);

 ob.ShowArgs("Here are two more",
 17, 20);
 }
}

This program displays the following output:

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 185

PART I
PART I

Here are some integers: 1 2 3 4 5
Here are two more: 17 20

In cases where a method has regular parameters and a params parameter, the params
parameter must be the last one in the parameter list. Furthermore, in all situations, there
must be only one params parameter.

Return Objects
A method can return any type of data, including class types. For example, the following
version of the Rect class includes a method called Enlarge() that creates a rectangle that
is proportionally the same as the invoking rectangle, but larger by a specified factor:

// Return an object.

using System;

class Rect {
 int width;
 int height;

 public Rect(int w, int h) {
 width = w;
 height = h;
 }

 public int Area() {
 return width * height;
 }

 public void Show() {
 Console.WriteLine(width + " " + height);
 }

 /* Return a rectangle that is a specified
 factor larger than the invoking rectangle. */
 public Rect Enlarge(int factor) {
 return new Rect(width * factor, height * factor);
 }
}

class RetObj {
 static void Main() {
 Rect r1 = new Rect(4, 5);

 Console.Write("Dimensions of r1: ");
 r1.Show();
 Console.WriteLine("Area of r1: " + r1.Area());

 Console.WriteLine();

 // Create a rectangle that is twice as big as r1.
 Rect r2 = r1.Enlarge(2);

186 P a r t I : T h e C # L a n g u a g e

 Console.Write("Dimensions of r2: ");
 r2.Show();
 Console.WriteLine("Area of r2: " + r2.Area());
 }
}

The output is shown here:

Dimensions of r1: 4 5
Area of r1: 20

Dimensions of r2: 8 10
Area of r2: 80

When an object is returned by a method, it remains in existence until there are no more
references to it. At that point, it is subject to garbage collection. Thus, an object won’t be
destroyed just because the method that created it terminates.

One application of object return types is the class factory. A class factory is a method that
is used to construct objects of its class. In some situations, you may not want to give users of
a class access to the class’ constructor because of security concerns or because object construction
depends upon certain external factors. In such cases, a class factory is used to construct
objects. Here is a simple example:

// Use a class factory.

using System;

class MyClass {
 int a, b; // private

 // Create a class factory for MyClass.
 public MyClass Factory(int i, int j) {
 MyClass t = new MyClass();

 t.a = i;
 t.b = j;

 return t; // return an object
 }

 public void Show() {
 Console.WriteLine("a and b: " + a + " " + b);
 }

}

class MakeObjects {
 static void Main() {
 MyClass ob = new MyClass();
 int i, j;

 // Generate objects using the factory.
 for(i=0, j=10; i < 10; i++, j--) {

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 187

PART I
PART I

 MyClass anotherOb = ob.Factory(i, j); // make an object
 anotherOb.Show();
 }

 Console.WriteLine();
 }
}

The output is shown here:

a and b: 0 10
a and b: 1 9
a and b: 2 8
a and b: 3 7
a and b: 4 6
a and b: 5 5
a and b: 6 4
a and b: 7 3
a and b: 8 2
a and b: 9 1

Let’s look closely at this example. MyClass does not define a constructor, so only the
default constructor is available. Thus, it is not possible to set the values of a and b using a
constructor. However, the class factory Factory() can create objects in which a and b are
given values. Moreover, since a and b are private, using Factory() is the only way to set
these values.

In Main(), a MyClass object is instantiated, and its factory method is used inside the for
loop to create ten other objects. The line of code that creates objects is shown here:

MyClass anotherOb = ob.Factory(i, j); // get an object

With each iteration, an object reference called anotherOb is created, and it is assigned a
reference to the object constructed by the factory. At the end of each iteration of the loop,
anotherOb goes out of scope, and the object to which it refers is recycled.

Return an Array
Since in C# arrays are implemented as objects, a method can also return an array. (This
differs from C++ in which arrays are not valid as return types.) For example, in the
following program, the method FindFactors() returns an array that holds the factors
of the argument that it is passed:

// Return an array.

using System;

class Factor {
 /* Return an array containing the factors of num.
 On return, numfactors will contain the number of
 factors found. */
 public int[] FindFactors(int num, out int numfactors) {
 int[] facts = new int[80]; // size of 80 is arbitrary
 int i, j;

188 P a r t I : T h e C # L a n g u a g e

 // Find factors and put them in the facts array.
 for(i=2, j=0; i < num/2 + 1; i++)
 if((num%i)==0) {
 facts[j] = i;
 j++;
 }

 numfactors = j;
 return facts;
 }
}

class FindFactors {
 static void Main() {
 Factor f = new Factor();
 int numfactors;
 int[] factors;

 factors = f.FindFactors(1000, out numfactors);

 Console.WriteLine("Factors for 1000 are: ");
 for(int i=0; i < numfactors; i++)
 Console.Write(factors[i] + " ");

 Console.WriteLine();
 }
}

The output is shown here:

Factors for 1000 are:
2 4 5 8 10 20 25 40 50 100 125 200 250 500

In Factor, FindFactors() is declared like this:

public int[] FindFactors(int num, out int numfactors) {

Notice how the int array return type is specified. This syntax can be generalized. Whenever
a method returns an array, specify it in a similar fashion, adjusting the type and dimensions
as needed. For example, the following declares a method called someMeth() that returns a
two-dimensional array of double:

public double[,] someMeth() { // ...

Method Overloading
In C#, two or more methods within the same class can share the same name, as long as
their parameter declarations are different. When this is the case, the methods are said to
be overloaded, and the process is referred to as method overloading. Method overloading is
one of the ways that C# implements polymorphism.

In general, to overload a method, simply declare different versions of it. The compiler
takes care of the rest. You must observe one important restriction: The type and/or number of
the parameters of each overloaded method must differ. It is not sufficient for two methods
to differ only in their return types. They must differ in the types or number of their parameters.

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 189

PART I
PART I

(Return types do not provide sufficient information in all cases for C# to decide which
method to use.) Of course, overloaded methods may differ in their return types, too. When
an overloaded method is called, the version of the method executed is the one whose
parameters match the arguments.

Here is a simple example that illustrates method overloading:

// Demonstrate method overloading.

using System;

class Overload {
 public void OvlDemo() {
 Console.WriteLine("No parameters");
 }

 // Overload OvlDemo for one integer parameter.
 public void OvlDemo(int a) {
 Console.WriteLine("One parameter: " + a);
 }

 // Overload OvlDemo for two integer parameters.
 public int OvlDemo(int a, int b) {
 Console.WriteLine("Two parameters: " + a + " " + b);
 return a + b;
 }

 // Overload OvlDemo for two double parameters.
 public double OvlDemo(double a, double b) {
 Console.WriteLine("Two double parameters: " +
 a + " "+ b);
 return a + b;
 }
}

class OverloadDemo {
 static void Main() {
 Overload ob = new Overload();
 int resI;
 double resD;

 // Call all versions of OvlDemo().
 ob.OvlDemo();
 Console.WriteLine();

 ob.OvlDemo(2);
 Console.WriteLine();

 resI = ob.OvlDemo(4, 6);
 Console.WriteLine("Result of ob.OvlDemo(4, 6): " + resI);
 Console.WriteLine();

 resD = ob.OvlDemo(1.1, 2.32);
 Console.WriteLine("Result of ob.OvlDemo(1.1, 2.32): " + resD);
 }
}

190 P a r t I : T h e C # L a n g u a g e

This program generates the following output:

No parameters

One parameter: 2

Two parameters: 4 6
Result of ob.OvlDemo(4, 6): 10

Two double parameters: 1.1 2.32
Result of ob.OvlDemo(1.1, 2.32): 3.42

As you can see, OvlDemo() is overloaded four times. The first version takes no parameters;
the second takes one integer parameter; the third takes two integer parameters; and the
fourth takes two double parameters. Notice that the first two versions of OvlDemo() return
void and the second two return a value. This is perfectly valid, but as explained, overloading
is not affected one way or the other by the return type of a method. Thus, attempting to use
these two versions of OvlDemo() will cause an error:

// One OvlDemo(int) is OK.
public void OvlDemo(int a) {
 Console.WriteLine("One parameter: " + a);
}

/* Error! Two OvlDemo(int)s are not OK even though
 return types differ. */
public int OvlDemo(int a) {
 Console.WriteLine("One parameter: " + a);
 return a * a;
}

As the comments suggest, the difference in their return types is an insufficient difference for
the purposes of overloading.

As you will recall from Chapter 3, C# provides certain implicit (i.e., automatic) type
conversions. These conversions also apply to parameters of overloaded methods. For
example, consider the following:

// Implicit type conversions can affect overloaded method resolution.

using System;

class Overload2 {
 public void MyMeth(int x) {
 Console.WriteLine("Inside MyMeth(int): " + x);
 }

 public void MyMeth(double x) {
 Console.WriteLine("Inside MyMeth(double): " + x);
 }
}

class TypeConv {
 static void Main() {

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 191

PART I
PART I

 Overload2 ob = new Overload2();

 int i = 10;
 double d = 10.1;

 byte b = 99;
 short s = 10;
 float f = 11.5F;

 ob.MyMeth(i); // calls ob.MyMeth(int)
 ob.MyMeth(d); // calls ob.MyMeth(double)

 ob.MyMeth(b); // calls ob.MyMeth(int) -- type conversion
 ob.MyMeth(s); // calls ob.MyMeth(int) -- type conversion
 ob.MyMeth(f); // calls ob.MyMeth(double) -- type conversion
 }
}

The output from the program is shown here:

Inside MyMeth(int): 10
Inside MyMeth(double): 10.1
Inside MyMeth(int): 99
Inside MyMeth(int): 10
Inside MyMeth(double): 11.5

In this example, only two versions of MyMeth() are defined: one that has an int parameter
and one that has a double parameter. However, it is possible to pass MyMeth() a byte,
short, or float value. In the case of byte and short, C# automatically converts them to int.
Thus, MyMeth(int) is invoked. In the case of float, the value is converted to double and
MyMeth(double) is called.

It is important to understand, however, that the implicit conversions apply only if there
is no exact type match between a parameter and an argument. For example, here is the
preceding program with the addition of a version of MyMeth() that specifies a byte
parameter:

// Add MyMeth(byte).

using System;

class Overload2 {
 public void MyMeth(byte x) {
 Console.WriteLine("Inside MyMeth(byte): " + x);
 }

 public void MyMeth(int x) {
 Console.WriteLine("Inside MyMeth(int): " + x);
 }

 public void MyMeth(double x) {
 Console.WriteLine("Inside MyMeth(double): " + x);
 }
}

192 P a r t I : T h e C # L a n g u a g e

class TypeConv {
 static void Main() {
 Overload2 ob = new Overload2();

 int i = 10;
 double d = 10.1;

 byte b = 99;
 short s = 10;
 float f = 11.5F;

 ob.MyMeth(i); // calls ob.MyMeth(int)
 ob.MyMeth(d); // calls ob.MyMeth(double)

 ob.MyMeth(b); // calls ob.MyMeth(byte) -- now, no type conversion

 ob.MyMeth(s); // calls ob.MyMeth(int) -- type conversion
 ob.MyMeth(f); // calls ob.MyMeth(double) -- type conversion
 }
}

Now when the program is run, the following output is produced:

Inside MyMeth(int): 10
Inside MyMeth(double): 10.1
Inside MyMeth(byte): 99
Inside MyMeth(int): 10
Inside MyMeth(double): 11.5

In this version, since there is a version of MyMeth() that takes a byte argument, when
MyMeth() is called with a byte argument, MyMeth(byte) is invoked and the automatic
conversion to int does not occur.

Both ref and out participate in overload resolution. For example, the following defines
two distinct and separate methods:

public void MyMeth(int x) {
 Console.WriteLine("Inside MyMeth(int): " + x);
}

public void MyMeth(ref int x) {
 Console.WriteLine("Inside MyMeth(ref int): " + x);
}

Thus,

ob.MyMeth(i)

invokes MyMeth(int x), but

ob.MyMeth(ref i)

invokes MyMeth(ref int x).

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 193

PART I
PART I

Although ref and out participate in overload resolution, the difference between the two
alone is not sufficient. For example, these two versions of MyMeth() are invalid:

// Wrong!
public void MyMeth(out int x) { // ...
public void MyMeth(ref int x) { // ...

In this case, the compiler cannot differentiate between the two version of MyMeth() simply
because one uses an out int parameter and the other uses a ref int parameter.

Method overloading supports polymorphism because it is one way that C#
implements the “one interface, multiple methods” paradigm. To understand how,
consider the following. In languages that do not support method overloading, each
method must be given a unique name. However, frequently you will want to implement
essentially the same method for different types of data. Consider the absolute value
function. In languages that do not support overloading, there are usually three or more
versions of this function, each with a slightly different name. For instance, in C, the
function abs() returns the absolute value of an integer, labs() returns the absolute value
of a long integer, and fabs() returns the absolute value of a floating-point value.

Since C does not support overloading, each function must have its own unique name,
even though all three functions do essentially the same thing. This makes the situation more
complex, conceptually, than it actually is. Although the underlying concept of each function
is the same, you still have three names to remember. This situation does not occur in C#
because each absolute value method can use the same name. Indeed, the .NET Framework
class library includes an absolute value method called Abs(). This method is overloaded by
the System.Math class to handle the numeric types. C# determines which version of Abs()
to call based upon the type of argument.

A principal value of overloading is that it allows related methods to be accessed by use
of a common name. Thus, the name Abs represents the general action that is being performed.
It is left to the compiler to choose the right specific version for a particular circumstance. You,
the programmer, need only remember the general operation being performed. Through the
application of polymorphism, several names have been reduced to one. Although this
example is fairly simple, if you expand the concept, you can see how overloading can help
manage greater complexity.

When you overload a method, each version of that method can perform any activity
you desire. There is no rule stating that overloaded methods must relate to one another.
However, from a stylistic point of view, method overloading implies a relationship. Thus,
while you can use the same name to overload unrelated methods, you should not. For
example, you could use the name Sqr to create methods that return the square of an integer
and the square root of a floating-point value. But these two operations are fundamentally
different. Applying method overloading in this manner defeats its original purpose. In
practice, you should only overload closely related operations.

C# defines the term signature, which is the name of a method plus its parameter
list. Thus, for the purposes of overloading, no two methods within the same class
can have the same signature. Notice that a signature does not include the return type
since it is not used by C# for overload resolution. Also, the params modifier is not part
of the signature.

194 P a r t I : T h e C # L a n g u a g e

Overload Constructors
Like methods, constructors can also be overloaded. Doing so allows you to construct objects
in a variety of ways. For example, consider the following program:

// Demonstrate an overloaded constructor.

using System;

class MyClass {
 public int x;

 public MyClass() {
 Console.WriteLine("Inside MyClass().");
 x = 0;
 }

 public MyClass(int i) {
 Console.WriteLine("Inside MyClass(int).");
 x = i;
 }

 public MyClass(double d) {
 Console.WriteLine("Inside MyClass(double).");
 x = (int) d;
 }

 public MyClass(int i, int j) {
 Console.WriteLine("Inside MyClass(int, int).");
 x = i * j;
 }
}

class OverloadConsDemo {
 static void Main() {
 MyClass t1 = new MyClass();
 MyClass t2 = new MyClass(88);
 MyClass t3 = new MyClass(17.23);
 MyClass t4 = new MyClass(2, 4);

 Console.WriteLine("t1.x: " + t1.x);
 Console.WriteLine("t2.x: " + t2.x);
 Console.WriteLine("t3.x: " + t3.x);
 Console.WriteLine("t4.x: " + t4.x);
 }
}

The output from the program is shown here:

Inside MyClass().
Inside MyClass(int).
Inside MyClass(double).
Inside MyClass(int, int).

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 195

PART I
PART I

t1.x: 0
t2.x: 88
t3.x: 17
t4.x: 8

MyClass() is overloaded four ways, each constructing an object differently. The proper
constructor is called based upon the arguments specified when new is executed. By
overloading a class’ constructor, you give the user of your class flexibility in the way
objects are constructed.

One of the most common reasons that constructors are overloaded is to allow one object
to initialize another. For example, here is an enhanced version of the Stack class developed
earlier that allows one stack to be constructed from another:

// A stack class for characters.

using System;

class Stack {
 // These members are private.
 char[] stck; // holds the stack
 int tos; // index of the top of the stack

 // Construct an empty Stack given its size.
 public Stack(int size) {
 stck = new char[size]; // allocate memory for stack
 tos = 0;
 }

 // Construct a Stack from a stack.
 public Stack(Stack ob) {
 // Allocate memory for stack.
 stck = new char[ob.stck.Length];

 // Copy elements to new stack.
 for(int i=0; i < ob.tos; i++)
 stck[i] = ob.stck[i];

 // Set tos for new stack.
 tos = ob.tos;
 }

 // Push characters onto the stack.
 public void Push(char ch) {
 if(tos==stck.Length) {
 Console.WriteLine(" -- Stack is full.");
 return;
 }

 stck[tos] = ch;
 tos++;
 }

 // Pop a character from the stack.

196 P a r t I : T h e C # L a n g u a g e

 public char Pop() {
 if(tos==0) {
 Console.WriteLine(" -- Stack is empty.");
 return (char) 0;
 }

 tos--;
 return stck[tos];
 }

 // Return true if the stack is full.
 public bool IsFull() {
 return tos==stck.Length;
 }

 // Return true if the stack is empty.
 public bool IsEmpty() {
 return tos==0;
 }

 // Return total capacity of the stack.
 public int Capacity() {
 return stck.Length;
 }

 // Return number of objects currently on the stack.
 public int GetNum() {
 return tos;
 }
}

// Demonstrate the Stack class.
class StackDemo {
 static void Main() {
 Stack stk1 = new Stack(10);
 char ch;
 int i;

 // Put some characters into stk1.
 Console.WriteLine("Push A through J onto stk1.");
 for(i=0; !stk1.IsFull(); i++)
 stk1.Push((char) ('A' + i));

 // Create a copy of stck1.
 Stack stk2 = new Stack(stk1);

 // Display the contents of stk1.
 Console.Write("Contents of stk1: ");
 while(!stk1.IsEmpty()) {
 ch = stk1.Pop();
 Console.Write(ch);
 }

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 197

PART I
PART I

 Console.WriteLine();

 Console.Write("Contents of stk2: ");
 while (!stk2.IsEmpty()) {
 ch = stk2.Pop();
 Console.Write(ch);
 }

 Console.WriteLine("\n");

 }
}

The output is shown here:

Push A through J onto stk1.
Contents of stk1: JIHGFEDCBA
Contents of stk2: JIHGFEDCBA

In StackDemo, the first stack, stk1, is constructed and filled with characters. This stack is
then used to construct the second stack, stk2. This causes the following Stack constructor
to be executed:

// Construct a Stack from a stack.
public Stack(Stack ob) {
 // Allocate memory for stack.
 stck = new char[ob.stck.Length];

 // Copy elements to new stack.
 for(int i=0; i < ob.tos; i++)
 stck[i] = ob.stck[i];

 // Set tos for new stack.
 tos = ob.tos;
}

Inside this constructor, an array is allocated that is long enough to hold the elements
contained in the stack passed in ob. Then, the contents of ob’s array are copied to the new
array, and tos is set appropriately. After the constructor finishes, the new stack and the
original stack are separate, but identical.

Invoke an Overloaded Constructor Through this
When working with overloaded constructors, it is sometimes useful for one constructor to
invoke another. In C#, this is accomplished by using another form of the this keyword. The
general form is shown here:

constructor-name(parameter-list1) : this(parameter-list2) {
 // ... body of constructor, which may be empty
}

198 P a r t I : T h e C # L a n g u a g e

When the constructor is executed, the overloaded constructor that matches the parameter
list specified by parameter-list2 is first executed. Then, if there are any statements inside the
original constructor, they are executed. Here is an example:

// Demonstrate invoking a constructor through this.

using System;

class XYCoord {
 public int x, y;

 public XYCoord() : this(0, 0) {
 Console.WriteLine("Inside XYCoord()");
 }

 public XYCoord(XYCoord obj) : this(obj.x, obj.y) {
 Console.WriteLine("Inside XYCoord(obj)");
 }

 public XYCoord(int i, int j) {
 Console.WriteLine("Inside XYCoord(int, int)");
 x = i;
 y = j;
 }
}

class OverloadConsDemo {
 static void Main() {
 XYCoord t1 = new XYCoord();
 XYCoord t2 = new XYCoord(8, 9);
 XYCoord t3 = new XYCoord(t2);

 Console.WriteLine("t1.x, t1.y: " + t1.x + ", " + t1.y);
 Console.WriteLine("t2.x, t2.y: " + t2.x + ", " + t2.y);
 Console.WriteLine("t3.x, t3.y: " + t3.x + ", " + t3.y);
 }
}

The output from the program is shown here:

Inside XYCoord(int, int)
Inside XYCoord()
Inside XYCoord(int, int)
Inside XYCoord(int, int)
Inside XYCoord(obj)
t1.x, t1.y: 0, 0
t2.x, t2.y: 8, 9
t3.x, t3.y: 8, 9

Here is how the program works. In the XYCoord class, the only constructor that actually
initializes the x and y fields is XYCoord(int, int). The other two constructors simply invoke
XYCoord(int, int) through this. For example, when object t1 is created, its constructor,
XYCoord(), is called. This causes this(0, 0) to be executed, which in this case translates
into a call to XYCoord(0, 0). The creation of t2 works in similar fashion.

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 199

PART I
PART I

One reason why invoking overloaded constructors through this can be useful is that
it can prevent the unnecessary duplication of code. In the foregoing example, there is no
reason for all three constructors to duplicate the same initialization sequence, which the use
of this avoids. Another advantage is that you can create constructors with implied “default
arguments” that are used when these arguments are not explicitly specified. For example,
you could create another XYCoord constructor as shown here:

public XYCoord(int x) : this(x, x) { }

This constructor automatically defaults the y coordinate to the same value as the x
coordinate. Of course, it is wise to use such “default arguments” carefully because
their misuse could easily confuse users of your classes.

Object Initializers
C# 3.0 added a new feature called object initializers that provides another way to create an
object and initialize its fields and properties. (See Chapter 10 for a discussion of properties.)
Using object initializers, you do not call a class’ constructor in the normal way. Rather, you
specify the names of the fields and/or properties to be initialized, giving each an initial
value. Thus, the object initializer syntax provides an alternative to explicitly invoking a
class’ constructor. The primary use of the object initializer syntax is with anonymous types
created in a LINQ expression. (Anonymous types and LINQ are described in Chapter 19.)
However, because the object initializers can be used (and occasionally are used) with a
named class, the fundamentals of object initialization are introduced here.

Let’s begin with a simple example:

// A simple demonstration that uses object initializers.

using System;

class MyClass {
 public int Count;
 public string Str;
}

class ObjInitDemo {
 static void Main() {
 // Construct a MyClass object by using object initializers.
 MyClass obj = new MyClass { Count = 100, Str = "Testing" };

 Console.WriteLine(obj.Count + " " + obj.Str);
 }
}

This produces the following output:

100 Testing

As the output shows, the value of obj.Count has been initialized to 100 and the value of
obj.Str has been initialized to “Testing”. Notice, however, that MyClass does not define any
explicit constructors, and that the normal constructor syntax has not been used. Rather, obj
is created using the following line:

MyClass obj = new MyClass { Count = 100, Str = "Testing" };

200 P a r t I : T h e C # L a n g u a g e

Here, the names of the fields are explicitly specified along with their initial values. This
results in a default instance of MyClass being constructed (by use of the implicit default
constructor) and then Count and Str are given the specified initial values.

It is important to understand that the order of the initializers is not important. For
example, obj could have been initialized as shown here:

MyClass obj = new MyClass { Str = "Testing", Count = 100 };

In this statement, the initialization of Str precedes the initialization of Count. In the program,
it was the other way around. However, in either case, the end result is the same.

Here is the general form of object initialization syntax:

new class-name { name = expr, name = expr, name = expr, ... }

Here, name specifies the name of a field or property that is an accessible member of class-
name. Of course, the type of the initializing expression specified by expr must be compatible
with the type of field or property.

Although you can use object initializers with a named class (such as MyClass in the
example), you usually won’t. In general, you will use the normal constructor call syntax
when working with named classes. As mentioned, object initializers are most applicable
to anonymous types generated by a LINQ expression.

The Main() Method
Up to this point, you have been using one form of Main(). However, it has several
overloaded forms. Some can be used to return a value, and some can receive arguments.
Each is examined here.

Return Values from Main()
When a program ends, you can return a value to the calling process (often the operating
system) by returning a value from Main(). To do so, you can use this form of Main():

static int Main()

Notice that instead of being declared void, this version of Main() has a return type of int.
Usually, the return value from Main() indicates whether the program ended normally

or due to some abnormal condition. By convention, a return value of zero usually indicates
normal termination. All other values indicate some type of error occurred.

Pass Arguments to Main()
Many programs accept what are called command-line arguments. A command-line argument
is the information that directly follows the program’s name on the command line when it is
executed. For C# programs, these arguments are then passed to the Main() method. To receive
the arguments, you must use one of these forms of Main():

static void Main(string[] args)
static int Main(string[] args)

The first form returns void; the second can be used to return an integer value, as described
in the preceding section. For both, the command-line arguments are stored as strings in the

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 201

PART I
PART I

string array passed to Main(). The length of the args array will be equal to the number of
command-line arguments, which might be zero.

For example, the following program displays all of the command-line arguments that it
is called with:

// Display all command-line information.

using System;

class CLDemo {
 static void Main(string[] args) {
 Console.WriteLine("There are " + args.Length +
 " command-line arguments.");

 Console.WriteLine("They are: ");
 for(int i=0; i < args.Length; i++)
 Console.WriteLine(args[i]);
 }
}

If CLDemo is executed like this:

CLDemo one two three

you will see the following output:

There are 3 command-line arguments.
They are:
one
two
three

To understand the way that command-line arguments can be used, consider the next
program. It uses a simple substitution cipher to encode or decode messages. The message
to be encoded or decoded is specified on the command line. The cipher is very simple: To
encode a word, each letter is incremented by 1. Thus, A becomes B, and so on. To decode,
each letter is decremented. Of course, such a cipher is of no practical value, being trivially
easy to break. But it does provide an enjoyable pastime for children.

// Encode or decode a message using a simple substitution cipher.

using System;

class Cipher {
 static int Main(string[] args) {

 // See if arguments are present.
 if(args.Length < 2) {
 Console.WriteLine("Usage: encode/decode word1 [word2...wordN]");
 return 1; // return failure code
 }

 // If args present, first arg must be encode or decode.

202 P a r t I : T h e C # L a n g u a g e

 if(args[0] != "encode" & args[0] != "decode") {
 Console.WriteLine("First arg must be encode or decode.");
 return 1; // return failure code
 }

 // Encode or decode message.
 for(int n=1; n < args.Length; n++) {
 for(int i=0; i < args[n].Length; i++) {
 if(args[0] == "encode")
 Console.Write((char) (args[n][i] + 1));
 else
 Console.Write((char) (args[n][i] - 1));
 }
 Console.Write(" ");
 }

 Console.WriteLine();

 return 0;
 }
}

To use the program, specify either the “encode” or “decode” command followed by the
phrase that you want to encrypt or decrypt. Assuming the program is called Cipher, here
are two sample runs:

C:>Cipher encode one two
pof uxp

C:>Cipher decode pof uxp
one two

There are two interesting things in this program. First, notice how the program checks
that a command-line argument is present before it continues executing. This is very important
and can be generalized. When a program relies on there being one or more command-line
arguments, it must always confirm that the proper arguments have been supplied. Failure to
do this can lead to program malfunctions. Also, since the first command-line argument must
be either “encode” or “decode,” the program also checks this before proceeding.

Second, notice how the program returns a termination code. If the required command
line is not present, then 1 is returned, indicating abnormal termination. Otherwise, 0 is
returned when the program ends.

Recursion
In C#, a method can call itself. This process is called recursion, and a method that calls itself
is said to be recursive. In general, recursion is the process of defining something in terms of
itself and is somewhat similar to a circular definition. The key component of a recursive
method is that it contains a statement that executes a call to itself. Recursion is a powerful
control mechanism.

The classic example of recursion is the computation of the factorial of a number. The
factorial of a number N is the product of all the whole numbers between 1 and N. For
example, 3 factorial is 1×2×3, or 6. The following program shows a recursive way to

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 203

PART I
PART I

compute the factorial of a number. For comparison purposes, a nonrecursive equivalent
is also included.

// A simple example of recursion.

using System;

class Factorial {
 // This is a recursive method.
 public int FactR(int n) {
 int result;

 if(n==1) return 1;
 result = FactR(n-1) * n;
 return result;
 }

 // This is an iterative equivalent.
 public int FactI(int n) {
 int t, result;

 result = 1;
 for(t=1; t <= n; t++) result *= t;
 return result;
 }
}

class Recursion {
 static void Main() {
 Factorial f = new Factorial();

 Console.WriteLine("Factorials using recursive method.");
 Console.WriteLine("Factorial of 3 is " + f.FactR(3));
 Console.WriteLine("Factorial of 4 is " + f.FactR(4));
 Console.WriteLine("Factorial of 5 is " + f.FactR(5));
 Console.WriteLine();

 Console.WriteLine("Factorials using iterative method.");
 Console.WriteLine("Factorial of 3 is " + f.FactI(3));
 Console.WriteLine("Factorial of 4 is " + f.FactI(4));
 Console.WriteLine("Factorial of 5 is " + f.FactI(5));
 }
}

The output from this program is shown here:

Factorials using recursive method.
Factorial of 3 is 6
Factorial of 4 is 24
Factorial of 5 is 120

Factorials using iterative method.
Factorial of 3 is 6
Factorial of 4 is 24
Factorial of 5 is 120

204 P a r t I : T h e C # L a n g u a g e

The operation of the nonrecursive method FactI() should be clear. It uses a loop starting
at 1 and progressively multiplies each number by the moving product.

The operation of the recursive FactR() is a bit more complex. When FactR() is called with
an argument of 1, the method returns 1; otherwise, it returns the product of FactR(n–1)*n. To
evaluate this expression, FactR() is called with n–1. This process repeats until n equals 1 and
the calls to the method begin returning. For example, when the factorial of 2 is calculated, the
first call to FactR() will cause a second call to be made with an argument of 1. This call will
return 1, which is then multiplied by 2 (the original value of n). The answer is then 2. You
might find it interesting to insert WriteLine() statements into FactR() that show the level of
recursion of each call and what the intermediate results are.

When a method calls itself, new local variables and parameters are allocated storage on
the system stack, and the method code is executed with these new variables from the start.
A recursive call does not make a new copy of the method. Only the arguments are new. As
each recursive call returns, the old local variables and parameters are removed from the
stack, and execution resumes at the point of the call inside the method. Recursive methods
could be said to “telescope” out and back.

Here is another example of recursion. The DisplayRev() method uses recursion to
display its string argument backward.

// Display a string in reverse by using recursion.

using System;

class RevStr {

 // Display a string backward.
 public void DisplayRev(string str) {
 if(str.Length > 0)
 DisplayRev(str.Substring(1, str.Length-1));
 else
 return;

 Console.Write(str[0]);
 }
}

class RevStrDemo {
 static void Main() {
 string s = "this is a test";
 RevStr rsOb = new RevStr();

 Console.WriteLine("Original string: " + s);

 Console.Write("Reversed string: ");
 rsOb.DisplayRev(s);

 Console.WriteLine();
 }
}

Here is the output:

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 205

PART I
PART I

Original string: this is a test
Reversed string: tset a si siht

Each time DisplayRev() is called, it first checks to see if str has a length greater than zero. If
it does, it recursively calls DisplayRev() with a new string that consists of str minus its first
character. This process repeats until a zero-length string is passed. This causes the recursive
calls to start unraveling. As they do, the first character of str in each call is displayed. This
results in the string being displayed in reverse order.

Recursive versions of many routines may execute a bit more slowly than the iterative
equivalent because of the added overhead of the additional method calls. Too many recursive
calls to a method could cause a stack overrun. Because storage for parameters and local
variables is on the system stack, and each new call creates a new copy of these variables, it
is possible that the stack could be exhausted. If this occurs, the CLR will throw an exception.
However, you probably will not have to worry about this unless a recursive routine runs wild.

The main advantage to recursion is that some types of algorithms can be more clearly
and simply implemented recursively than iteratively. For example, the quicksort sorting
algorithm is quite difficult to implement in an iterative way. Also, some problems, especially
AI-related ones, seem to lend themselves to recursive solutions.

When writing recursive methods, you must have a conditional statement, such as an if,
somewhere to force the method to return without the recursive call being executed. If you
don’t do this, once you call the method, it will never return. This type of error is very
common when working with recursion. Use WriteLine() statements liberally so that you
can watch what is going on and abort execution if you see that you have made a mistake.

Understanding static
There will be times when you will want to define a class member that will be used
independently of any object of that class. Normally, a class member must be accessed
through an object of its class, but it is possible to create a member that can be used by itself,
without reference to a specific instance. To create such a member, precede its declaration
with the keyword static. When a member is declared static, it can be accessed before any
objects of its class are created and without reference to any object. You can declare both
methods and variables to be static. The most common example of a static member is
Main(), which is declared static because it must be called by the operating system when
your program begins.

Outside the class, to use a static member, you must specify the name of its class followed
by the dot operator. No object needs to be created. In fact, a static member cannot be accessed
through an object reference. It must be accessed through its class name. For example, if you
want to assign the value 10 to a static variable called count that is part of a class called
Timer, use this line:

Timer.count = 10;

This format is similar to that used to access normal instance variables through an object,
except that the class name is used. A static method can be called in the same way—by use
of the dot operator on the name of the class.

Variables declared as static are, essentially, global variables. When objects of its class are
declared, no copy of a static variable is made. Instead, all instances of the class share the same

206 P a r t I : T h e C # L a n g u a g e

static variable. A static variable is initialized before its class is used. If no explicit initializer
is specified, it is initialized to zero for numeric types, null in the case of reference types, or
false for variables of type bool. Thus, a static variable always has a value.

The difference between a static method and a normal method is that the static method
can be called through its class name, without any instance of that class being created. You
have seen an example of this already: the Sqrt() method, which is a static method within
C#’s System.Math class.

Here is an example that declares a static variable and a static method:

// Use static.

using System;

class StaticDemo {
 // A static variable.
 public static int Val = 100;

 // A static method.
 public static int ValDiv2() {
 return Val/2;
 }
}

class SDemo {
 static void Main() {

 Console.WriteLine("Initial value of StaticDemo.Val is "
 + StaticDemo.Val);

 StaticDemo.Val = 8;
 Console.WriteLine("StaticDemo.Val is " + StaticDemo.Val);
 Console.WriteLine("StaticDemo.ValDiv2(): " +
 StaticDemo.ValDiv2());
 }
}

The output is shown here:

Initial value of StaticDemo.Val is 100
StaticDemo.Val is 8
StaticDemo.ValDiv2(): 4

As the output shows, a static variable is initialized before any object of its class is created.
There are several restrictions that apply to static methods:

• A static method does not have a this reference. This is because a static method does
not execute relative to any object.

• A static method can directly call only other static methods of its class. It cannot
directly call an instance method of its class. The reason is that instance methods
operate on specific objects, but a static method is not called on an object. Thus, on
what object would the static method operate?

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 207

PART I
PART I

• A similar restriction applies to static data. A static method can directly access only
other static data defined by its class. It cannot operate on an instance variable of its
class because there is no object to operate on.

For example, in the following class, the static method ValDivDenom() is illegal:

class StaticError {
 public int Denom = 3; // a normal instance variable
 public static int Val = 1024; // a static variable

 /* Error! Can't directly access a non-static variable
 from within a static method. */
 static int ValDivDenom() {
 return Val/Denom; // won't compile!
 }
}

Here, Denom is a normal instance variable that cannot be accessed within a static method.
However, the use of Val is okay since it is a static variable.

The same problem occurs when trying to call a non-static method from within a static
method of the same class. For example:

using System;

class AnotherStaticError {
 // A non-static method.
 void NonStaticMeth() {
 Console.WriteLine("Inside NonStaticMeth().");
 }

 /* Error! Can't directly call a non-static method
 from within a static method. */
 static void staticMeth() {
 NonStaticMeth(); // won't compile
 }
}

In this case, the attempt to call a non-static (that is, instance method) from a static method
causes a compile-time error.

It is important to understand that a static method can call instance methods and access
instance variables of its class if it does so through an object of that class. It is just that it
cannot use an instance variable or method without an object qualification. For example,
this fragment is perfectly valid:

class MyClass {
 // A non-static method.
 void NonStaticMeth() {
 Console.WriteLine("Inside NonStaticMeth().");
 }

 /* Can call a non-static method through an
 object reference from within a static method. */

208 P a r t I : T h e C # L a n g u a g e

 public static void staticMeth(MyClass ob) {
 ob.NonStaticMeth(); // this is OK
 }
}

Here, NonStaticMeth() is called by staticMeth() through ob, which is an object of type
MyClass.

Because static fields are independent of any specific object, they are useful when you
need to maintain information that is applicable to an entire class. Here is an example of
such a situation. It uses a static field to maintain a count of the number of objects that are
in existence.

// Use a static field to count instances.

using System;

class CountInst {
 static int count = 0;

 // Increment count when object is created.
 public CountInst() {
 count++;
 }

 // Decrement count when object is destroyed.
 ~CountInst() {
 count--;
 }

 public static int GetCount() {
 return count;
 }
}

class CountDemo {
 static void Main() {
 CountInst ob;

 for(int i=0; i < 10; i++) {
 ob = new CountInst();
 Console.WriteLine("Current count: " + CountInst.GetCount());
 }
 }
}

The output is shown here:

Current count: 1
Current count: 2
Current count: 3
Current count: 4
Current count: 5
Current count: 6

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 209

PART I
PART I

Current count: 7
Current count: 8
Current count: 9
Current count: 10

Each time that an object of type CountInst is created, the static field count is incremented.
Each time an object is recycled, count is decremented. Thus, count always contains a count of
the number of objects currently in existence. This is possible only through the use of a static
field. There is no way for an instance variable to maintain the count because the count relates
to the class as a whole, not to a specific instance.

Here is one more example that uses static. Earlier in this chapter, you saw how a class
factory could be used to create objects. In that example, the class factory was a non-static
method, which meant that it could be called only through an object reference. This meant
that a default object of the class needed to be created so that the factory method could be
called. However, a better way to implement a class factory is as a static method, which
allows the class factory to be called without creating an unnecessary object. Here is the
class factory example rewritten to reflect this improvement:

// Use a static class factory.

using System;

class MyClass {
 int a, b;

 // Create a class factory for MyClass.
 static public MyClass Factory(int i, int j) {
 MyClass t = new MyClass();

 t.a = i;
 t.b = j;

 return t; // return an object
 }

 public void Show() {
 Console.WriteLine("a and b: " + a + " " + b);
 }
}

class MakeObjects {
 static void Main() {
 int i, j;

 // Generate objects using the factory.
 for(i=0, j=10; i < 10; i++, j--) {
 MyClass ob = MyClass.Factory(i, j); // get an object
 ob.Show();
 }

 Console.WriteLine();
 }
}

210 P a r t I : T h e C # L a n g u a g e

In this version, Factory() is invoked through its class name in this line of code:

MyClass ob = MyClass.Factory(i, j); // get an object

There is no need to create a MyClass object prior to using the factory.

Static Constructors
A constructor can also be specified as static. A static constructor is typically used to
initialize features that apply to a class rather than an instance. Thus, it is used to initialize
aspects of a class before any objects of the class are created. Here is a simple example:

// Use a static constructor.

using System;

class Cons {
 public static int alpha;
 public int beta;

 // A static constructor.
 static Cons() {
 alpha = 99;
 Console.WriteLine("Inside static constructor.");
 }

 // An instance constructor.
 public Cons() {
 beta = 100;
 Console.WriteLine("Inside instance constructor.");
 }
}

class ConsDemo {
 static void Main() {
 Cons ob = new Cons();

 Console.WriteLine("Cons.alpha: " + Cons.alpha);
 Console.WriteLine("ob.beta: " + ob.beta);
 }
}

Here is the output:

Inside static constructor.
Inside instance constructor.
Cons.alpha: 99
ob.beta: 100

Notice that the static constructor is called automatically (when the class is first loaded) and
before the instance constructor. This can be generalized. In all cases, the static constructor
will be executed before any instance constructor. Furthermore, static constructors cannot
have access modifiers (thus, they use default access) and cannot be called by your program.

PART I

C h a p t e r 8 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 211

PART I
PART I

Static Classes
Beginning with C# 2.0, you can declare a class static. There are two key features of a static
class. First, no object of a static class can be created. Second, a static class must contain only
static members. A static class is created by modifying a class declaration with the keyword
static, shown here.

static class class-name { // ...

Within the cla ss, all members must be explicitly specified as static. Making a class static
does not automatically make its members static.

static classes have two primary uses. First, a static class is required when creating
an extension method, which is a new feature added by C# 3.0. Extension methods relate
mostly to LINQ, and a discussion of extensions methods is found in Chapter 19. Second,
a static class is used to contain a collection of related static methods. This second use is
demonstrated here.

The following example uses a static class called NumericFn to hold a set of static methods
that operate on a numeric value. Because all of the members of NumericFn are declared static,
the class can also be declared static, which prevents it from being instantiated. Thus, NumericFn
serves an organization role, providing a good way to logically group related methods.

// Demonstrate a static class.

using System;

static class NumericFn {
 // Return the reciprocal of a value.
 static public double Reciprocal(double num) {
 return 1/num;
 }

 // Return the fractional part of a value.
 static public double FracPart(double num) {
 return num - (int) num;
 }

 // Return true if num is even.
 static public bool IsEven(double num) {
 return (num % 2) == 0 ? true : false;
 }

 // Return true if num is odd.
 static public bool IsOdd(double num) {
 return !IsEven(num);
 }

}

class StaticClassDemo {
 static void Main() {
 Console.WriteLine("Reciprocal of 5 is " +
 NumericFn.Reciprocal(5.0));

212 P a r t I : T h e C # L a n g u a g e

 Console.WriteLine("Fractional part of 4.234 is " +
 NumericFn.FracPart(4.234));

 if(NumericFn.IsEven(10))
 Console.WriteLine("10 is even.");

 if(NumericFn.IsOdd(5))
 Console.WriteLine("5 is odd.");

 // The following attempt to create an instance of
 // NumericFn will cause an error.
// NumericFn ob = new NumericFn(); // Wrong!
 }
}

The output from the program is shown here.

Reciprocal of 5 is 0.2
Fractional part of 4.234 is 0.234
10 is even.
5 is odd.

Notice that the last line in the program is commented-out. Because NumericFn is a static
class, any attempt to create an object will result in a compile-time error. It would also be an
error to attempt to give NumericFn a non-static member.

One last point: Although a static class cannot have an instance constructor, it can have a
static constructor.

9
Operator Overloading

C# allows you to define the meaning of an operator relative to a class that you create.
This process is called operator overloading. By overloading an operator, you expand its
usage to your class. The effects of the operator are completely under your control and

may differ from class to class. For example, a class that defines a linked list might use the +
operator to add an object to the list. A class that implements a stack might use the + to push
an object onto the stack. Another class might use the + operator in an entirely different way.

When an operator is overloaded, none of its original meaning is lost. It is simply that a new
operation, relative to a specific class, is added. Therefore, overloading the + to handle a linked
list, for example, does not cause its meaning relative to integers (that is, addition) to be changed.

A principal advantage of operator overloading is that it allows you to seamlessly
integrate a new class type into your programming environment. This type extensibility is an
important part of the power of an object-oriented language such as C#. Once operators are
defined for a class, you can operate on objects of that class using the normal C# expression
syntax. You can even use an object in expressions involving other types of data. Operator
overloading is one of C#’s most powerful features.

Operator Overloading Fundamentals
Operator overloading is closely related to method overloading. To overload an operator, use
the operator keyword to define an operator method, which defines the action of the operator
relative to its class.

There are two forms of operator methods: one for unary operators and one for binary
operators. The general form for each is shown here:

// General form for overloading a unary operator
public static ret-type operator op(param-type operand)
{
 // operations
}

// General form for overloading a binary operator
public static ret-type operator op(param-type1 operand1, param-type1 operand2)
{
 // operations
}

213

CHAPTER

214 P a r t I : T h e C # L a n g u a g e

Here, the operator that you are overloading, such as + or /, is substituted for op. The ret-type
specifies the type of value returned by the specified operation. Although it can be any type
you choose, the return value is often of the same type as the class for which the operator is being
overloaded. This correlation facilitates the use of the overloaded operator in expressions. For
unary operators, the operand is passed in operand. For binary operators, the operands are
passed in operand1 and operand2. Notice that operator methods must be both public and static.

For unary operators, the operand must be of the same type as the class for which the
operator is being defined. For binary operators, at least one of the operands must be of the
same type as its class. Thus, you cannot overload any C# operators for objects that you have
not created. For example, you can’t redefine + for int or string.

One other point: Operator parameters must not use the ref or out modifier.

Overloading Binary Operators
To see how operator overloading works, let’s start with an example that overloads two
binary operators, the + and the –. The following program creates a class called ThreeD,
which maintains the coordinates of an object in three-dimensional space. The overloaded +
adds the individual coordinates of one ThreeD object to another. The overloaded – subtracts
the coordinates of one object from the other.

// An example of operator overloading.

using System;

// A three-dimensional coordinate class.
class ThreeD {
 int x, y, z; // 3-D coordinates

 public ThreeD() { x = y = z = 0; }
 public ThreeD(int i, int j, int k) { x = i; y = j; z = k; }

 // Overload binary +.
 public static ThreeD operator +(ThreeD op1, ThreeD op2)
 {
 ThreeD result = new ThreeD();

 /* This adds together the coordinates of the two points
 and returns the result. */
 result.x = op1.x + op2.x; // These are integer additions
 result.y = op1.y + op2.y; // and the + retains its original
 result.z = op1.z + op2.z; // meaning relative to them.

 return result;
 }

 // Overload binary -.
 public static ThreeD operator -(ThreeD op1, ThreeD op2)
 {
 ThreeD result = new ThreeD();

 /* Notice the order of the operands. op1 is the left
 operand and op2 is the right. */

PART I

C h a p t e r 9 : O p e r a t o r O v e r l o a d i n g 215

PART I
PART I

 result.x = op1.x - op2.x; // these are integer subtractions
 result.y = op1.y - op2.y;
 result.z = op1.z - op2.z;

 return result;
 }

 // Show X, Y, Z coordinates.
 public void Show()
 {
 Console.WriteLine(x + ", " + y + ", " + z);
 }
}

class ThreeDDemo {
 static void Main() {
 ThreeD a = new ThreeD(1, 2, 3);
 ThreeD b = new ThreeD(10, 10, 10);
 ThreeD c;

 Console.Write("Here is a: ");
 a.Show();
 Console.WriteLine();
 Console.Write("Here is b: ");
 b.Show();
 Console.WriteLine();

 c = a + b; // add a and b together
 Console.Write("Result of a + b: ");
 c.Show();
 Console.WriteLine();

 c = a + b + c; // add a, b, and c together
 Console.Write("Result of a + b + c: ");
 c.Show();
 Console.WriteLine();

 c = c - a; // subtract a
 Console.Write("Result of c - a: ");
 c.Show();
 Console.WriteLine();

 c = c - b; // subtract b
 Console.Write("Result of c - b: ");
 c.Show();
 Console.WriteLine();
 }
}

This program produces the following output:

Here is a: 1, 2, 3

Here is b: 10, 10, 10

216 P a r t I : T h e C # L a n g u a g e

Result of a + b: 11, 12, 13

Result of a + b + c: 22, 24, 26

Result of c - a: 21, 22, 23

Result of c - b: 11, 12, 13

Let’s examine the preceding program carefully, beginning with the overloaded operator
+. When two objects of type ThreeD are operated on by the + operator, the magnitudes of
their respective coordinates are added together, as shown in operator+(). Notice, however,
that this method does not modify the value of either operand. Instead, a new object of type
ThreeD, which contains the result of the operation, is returned by the method. To understand
why the + operation does not change the contents of either object, think about the standard
arithmetic + operation as applied like this: 10 + 12. The outcome of this operation is 22, but
neither 10 nor 12 is changed by it. Although no rule prevents an overloaded operator from
altering the value of one of its operands, it is best for the actions of an overloaded operator
to be consistent with its usual meaning.

Notice that operator+() returns an object of type ThreeD. Although the method could
have returned any valid C# type, the fact that it returns a ThreeD object allows the +
operator to be used in compound expressions, such as a+b+c. Here, a+b generates a result
that is of type ThreeD. This value can then be added to c. Had any other type of value been
generated by a+b, such an expression would not work.

Here is another important point: When the coordinates are added together inside
operator+(), the addition of the individual coordinates results in an integer addition. This
is because the individual coordinates, x, y, and z, are integer quantities. The fact that the +
operator is overloaded for objects of type ThreeD has no effect on the + as it is applied to
integer values.

Now, look at operator–(). The – operator works just like the + operator except that the
order of the parameters is important. Recall that addition is commutative, but subtraction is
not. (That is, A – B is not the same as B – A!) For all binary operators, the first parameter to
an operator method will contain the left operand. The second parameter will contain the
one on the right. When implementing overloaded versions of the noncommutative
operators, you must remember which operand is on the left and which is on the right.

Overloading Unary Operators
The unary operators are overloaded just like the binary operators. The main difference, of
course, is that there is only one operand. For example, here is a method that overloads the
unary minus for the ThreeD class:

// Overload unary -.
public static ThreeD operator -(ThreeD op)
{
 ThreeD result = new ThreeD();

 result.x = -op.x;
 result.y = -op.y;
 result.z = -op.z;

 return result;
}

PART I

C h a p t e r 9 : O p e r a t o r O v e r l o a d i n g 217

PART I
PART I

Here, a new object is created that contains the negated fields of the operand. This object
is then returned. Notice that the operand is unchanged. Again, this is in keeping with the
usual meaning of the unary minus. For example, in an expression such as this,

a = -b

a receives the negation of b, but b is not changed.
In C#, overloading ++ and – – is quite easy; simply return the incremented or decremented

value, but don’t change the invoking object. C# will automatically handle that for you,
taking into account the difference between the prefix and postfix forms. For example, here
is an operator++() method for the ThreeD class:

// Overload unary ++.
public static ThreeD operator ++(ThreeD op)
{
 ThreeD result = new ThreeD();

 // Return the incremented result.
 result.x = op.x + 1;
 result.y = op.y + 1;
 result.z = op.z + 1;

 return result;
}

Here is an expanded version of the previous example program that demonstrates the
unary – and the ++ operator:

// More operator overloading.

using System;

// A three-dimensional coordinate class.
class ThreeD {
 int x, y, z; // 3-D coordinates

 public ThreeD() { x = y = z = 0; }
 public ThreeD(int i, int j, int k) { x = i; y = j; z = k; }

 // Overload binary +.
 public static ThreeD operator +(ThreeD op1, ThreeD op2)
 {
 ThreeD result = new ThreeD();

 /* This adds together the coordinates of the two points
 and returns the result. */
 result.x = op1.x + op2.x;
 result.y = op1.y + op2.y;
 result.z = op1.z + op2.z;

 return result;
 }

 // Overload binary -.

218 P a r t I : T h e C # L a n g u a g e

 public static ThreeD operator -(ThreeD op1, ThreeD op2)
 {
 ThreeD result = new ThreeD();

 /* Notice the order of the operands. op1 is the left
 operand and op2 is the right. */
 result.x = op1.x - op2.x;
 result.y = op1.y - op2.y;
 result.z = op1.z - op2.z;

 return result;
 }

 // Overload unary -.
 public static ThreeD operator -(ThreeD op)
 {
 ThreeD result = new ThreeD();

 result.x = -op.x;
 result.y = -op.y;
 result.z = -op.z;

 return result;
 }

 // Overload unary ++.
 public static ThreeD operator ++(ThreeD op)
 {
 ThreeD result = new ThreeD();

 // Return the incremented result.
 result.x = op.x + 1;
 result.y = op.y + 1;
 result.z = op.z + 1;

 return result;
 }
 // Show X, Y, Z coordinates.
 public void Show()
 {
 Console.WriteLine(x + ", " + y + ", " + z);
 }
}

class ThreeDDemo {
 static void Main() {
 ThreeD a = new ThreeD(1, 2, 3);
 ThreeD b = new ThreeD(10, 10, 10);
 ThreeD c = new ThreeD();

 Console.Write("Here is a: ");
 a.Show();
 Console.WriteLine();

PART I

C h a p t e r 9 : O p e r a t o r O v e r l o a d i n g 219

PART I
PART I

 Console.Write("Here is b: ");
 b.Show();
 Console.WriteLine();

 c = a + b; // add a and b together
 Console.Write("Result of a + b: ");
 c.Show();
 Console.WriteLine();

 c = a + b + c; // add a, b, and c together
 Console.Write("Result of a + b + c: ");
 c.Show();
 Console.WriteLine();

 c = c - a; // subtract a
 Console.Write("Result of c - a: ");
 c.Show();
 Console.WriteLine();

 c = c - b; // subtract b
 Console.Write("Result of c - b: ");
 c.Show();
 Console.WriteLine();

 c = -a; // assign -a to c
 Console.Write("Result of -a: ");
 c.Show();
 Console.WriteLine();

 c = a++; // post-increment a
 Console.WriteLine("Given c = a++");
 Console.Write("c is ");
 c.Show();
 Console.Write("a is ");
 a.Show();

 // Reset a to 1, 2, 3
 a = new ThreeD(1, 2, 3);
 Console.Write("\nResetting a to ");
 a.Show();

 c = ++a; // pre-increment a
 Console.WriteLine("\nGiven c = ++a");
 Console.Write("c is ");
 c.Show();
 Console.Write("a is ");
 a.Show();
 }
}

The output from the program is shown here:

Here is a: 1, 2, 3

220 P a r t I : T h e C # L a n g u a g e

Here is b: 10, 10, 10

Result of a + b: 11, 12, 13

Result of a + b + c: 22, 24, 26

Result of c - a: 21, 22, 23

Result of c - b: 11, 12, 13

Result of -a: -1, -2, -3

Given c = a++
c is 1, 2, 3
a is 2, 3, 4

Resetting a to 1, 2, 3

Given c = ++a
c is 2, 3, 4
a is 2, 3, 4

Handling Operations on C# Built-in Types
For any given class and operator, an operator method can, itself, be overloaded. One of the
most common reasons for this is to allow operations between a class type and other types
of data, such as a built-in type. For example, once again consider the ThreeD class. To this
point, you have seen how to overload the + so that it adds the coordinates of one ThreeD
object to another. However, this is not the only way in which you might want to define
addition for ThreeD. For example, it might be useful to add an integer value to each
coordinate of a ThreeD object. Such an operation could be used to translate axes. To
perform such an operation, you will need to overload + a second time, as shown here:

// Overload binary + for ThreeD + int.
public static ThreeD operator +(ThreeD op1, int op2)
{
 ThreeD result = new ThreeD();

 result.x = op1.x + op2;
 result.y = op1.y + op2;
 result.z = op1.z + op2;

 return result;
}

Notice that the second parameter is of type int. Thus, the preceding method allows an
integer value to be added to each field of a ThreeD object. This is permissible because, as
explained earlier, when overloading a binary operator, one of the operands must be of the
same type as the class for which the operator is being overloaded. However, the other
operand can be of any other type.

Here is a version of ThreeD that has two overloaded + methods:

PART I

C h a p t e r 9 : O p e r a t o r O v e r l o a d i n g 221

PART I
PART I

// Overload addition for ThreeD + ThreeD, and for ThreeD + int.

using System;

// A three-dimensional coordinate class.
class ThreeD {
 int x, y, z; // 3-D coordinates

 public ThreeD() { x = y = z = 0; }
 public ThreeD(int i, int j, int k) { x = i; y = j; z = k; }

 // Overload binary + for ThreeD + ThreeD.
 public static ThreeD operator +(ThreeD op1, ThreeD op2)
 {
 ThreeD result = new ThreeD();

 /* This adds together the coordinates of the two points
 and returns the result. */
 result.x = op1.x + op2.x;
 result.y = op1.y + op2.y;
 result.z = op1.z + op2.z;

 return result;
 }

 // Overload binary + for object + int.
 public static ThreeD operator +(ThreeD op1, int op2)
 {
 ThreeD result = new ThreeD();

 result.x = op1.x + op2;
 result.y = op1.y + op2;
 result.z = op1.z + op2;

 return result;
 }

 // Show X, Y, Z coordinates.
 public void Show()
 {
 Console.WriteLine(x + ", " + y + ", " + z);
 }
}

class ThreeDDemo {
 static void Main() {
 ThreeD a = new ThreeD(1, 2, 3);
 ThreeD b = new ThreeD(10, 10, 10);
 ThreeD c = new ThreeD();

 Console.Write("Here is a: ");
 a.Show();
 Console.WriteLine();
 Console.Write("Here is b: ");

222 P a r t I : T h e C # L a n g u a g e

 b.Show();
 Console.WriteLine();

 c = a + b; // ThreeD + ThreeD
 Console.Write("Result of a + b: ");
 c.Show();
 Console.WriteLine();

 c = b + 10; // ThreeD + int
 Console.Write("Result of b + 10: ");
 c.Show();
 }
}

The output from this program is shown here:

Here is a: 1, 2, 3

Here is b: 10, 10, 10

Result of a + b: 11, 12, 13

Result of b + 10: 20, 20, 20

As the output confirms, when the + is applied to two ThreeD objects, their coordinates are
added together. When the + is applied to a ThreeD object and an integer, the coordinates
are increased by the integer value.

While the overloading of + just shown certainly adds a useful capability to the ThreeD
class, it does not quite finish the job. Here is why. The operator+(ThreeD, int) method
allows statements like this:

ob1 = ob2 + 10;

It does not, unfortunately, allow ones like this:

ob1 = 10 + ob2;

The reason is that the integer argument is the second argument, which is the right-hand
operand, but the preceding statement puts the integer argument on the left. To allow both
forms of statements, you will need to overload the + yet another time. This version must
have its first parameter as type int and its second parameter as type ThreeD. One version of
the operator+() method handles ThreeD + integer, and the other handles integer + ThreeD.
Overloading the + (or any other binary operator) this way allows a built-in type to occur on
the left or right side of the operator. Here is a version ThreeD that overloads the + operator
as just described:

// Overload the + for ThreeD + ThreeD, ThreeD + int, and int + ThreeD.

using System;

// A three-dimensional coordinate class.
class ThreeD {
 int x, y, z; // 3-D coordinates

PART I

C h a p t e r 9 : O p e r a t o r O v e r l o a d i n g 223

PART I
PART I

 public ThreeD() { x = y = z = 0; }
 public ThreeD(int i, int j, int k) { x = i; y = j; z = k; }

 // Overload binary + for ThreeD + ThreeD.
 public static ThreeD operator +(ThreeD op1, ThreeD op2)
 {
 ThreeD result = new ThreeD();

 /* This adds together the coordinates of the two points
 and returns the result. */
 result.x = op1.x + op2.x;
 result.y = op1.y + op2.y;
 result.z = op1.z + op2.z;

 return result;
 }

 // Overload binary + for ThreeD + int.
 public static ThreeD operator +(ThreeD op1, int op2)
 {
 ThreeD result = new ThreeD();

 result.x = op1.x + op2;
 result.y = op1.y + op2;
 result.z = op1.z + op2;

 return result;
 }

 // Overload binary + for int + ThreeD.
 public static ThreeD operator +(int op1, ThreeD op2)
 {
 ThreeD result = new ThreeD();

 result.x = op2.x + op1;
 result.y = op2.y + op1;
 result.z = op2.z + op1;

 return result;
 }

 // Show X, Y, Z coordinates.
 public void Show()
 {
 Console.WriteLine(x + ", " + y + ", " + z);
 }
}

class ThreeDDemo {
 static void Main() {
 ThreeD a = new ThreeD(1, 2, 3);
 ThreeD b = new ThreeD(10, 10, 10);
 ThreeD c = new ThreeD();

224 P a r t I : T h e C # L a n g u a g e

 Console.Write("Here is a: ");
 a.Show();
 Console.WriteLine();
 Console.Write("Here is b: ");
 b.Show();
 Console.WriteLine();

 c = a + b; // ThreeD + ThreeD
 Console.Write("Result of a + b: ");
 c.Show();
 Console.WriteLine();

 c = b + 10; // ThreeD + int
 Console.Write("Result of b + 10: ");
 c.Show();
 Console.WriteLine();

 c = 15 + b; // int + ThreeD
 Console.Write("Result of 15 + b: ");
 c.Show();
 }
}

The output from this program is shown here:

Here is a: 1, 2, 3

Here is b: 10, 10, 10

Result of a + b: 11, 12, 13

Result of b + 10: 20, 20, 20

Result of 15 + b: 25, 25, 25

Overloading the Relational Operators
The relational operators, such as = = or <, can also be overloaded and the process is
straightforward. Usually, an overloaded relational operator returns a true or false value.
This is in keeping with the normal usage of these operators and allows the overloaded
relational operators to be used in conditional expressions. If you return a different type
result, then you are greatly restricting the operator’s utility.

Here is a version of the ThreeD class that overloads the < and > operators. In this
example, these operators compare ThreeD objects based on their distance from the origin.
One object is greater than another if its distance from the origin is greater. One object is less
than another if its distance from the origin is less than the other. Given two points, such an
implementation could be used to determine which point lies on the larger sphere. If neither
operator returns true, then the two points lie on the same sphere. Of course, other ordering
schemes are possible.

PART I

C h a p t e r 9 : O p e r a t o r O v e r l o a d i n g 225

PART I
PART I

// Overload < and >.

using System;

// A three-dimensional coordinate class.
class ThreeD {
 int x, y, z; // 3-D coordinates

 public ThreeD() { x = y = z = 0; }
 public ThreeD(int i, int j, int k) { x = i; y = j; z = k; }

 // Overload <.
 public static bool operator <(ThreeD op1, ThreeD op2)
 {
 if(Math.Sqrt(op1.x * op1.x + op1.y * op1.y + op1.z * op1.z) <
 Math.Sqrt(op2.x * op2.x + op2.y * op2.y + op2.z * op2.z))
 return true;
 else
 return false;
 }

 // Overload >.
 public static bool operator >(ThreeD op1, ThreeD op2)
 {
 if(Math.Sqrt(op1.x * op1.x + op1.y * op1.y + op1.z * op1.z) >
 Math.Sqrt(op2.x * op2.x + op2.y * op2.y + op2.z * op2.z))
 return true;
 else
 return false;
 }

 // Show X, Y, Z coordinates.
 public void Show()
 {
 Console.WriteLine(x + ", " + y + ", " + z);
 }
}

class ThreeDDemo {
 static void Main() {
 ThreeD a = new ThreeD(5, 6, 7);
 ThreeD b = new ThreeD(10, 10, 10);
 ThreeD c = new ThreeD(1, 2, 3);
 ThreeD d = new ThreeD(6, 7, 5);

 Console.Write("Here is a: ");
 a.Show();
 Console.Write("Here is b: ");
 b.Show();
 Console.Write("Here is c: ");
 c.Show();
 Console.Write("Here is d: ");
 d.Show();

226 P a r t I : T h e C # L a n g u a g e

 Console.WriteLine();

 if(a > c) Console.WriteLine("a > c is true");
 if(a < c) Console.WriteLine("a < c is true");
 if(a > b) Console.WriteLine("a > b is true");
 if(a < b) Console.WriteLine("a < b is true");

 if(a > d) Console.WriteLine("a > d is true");
 else if(a < d) Console.WriteLine("a < d is true");
 else Console.WriteLine("a and d are same distance from origin");
 }
}

The output from this program is shown here:

Here is a: 5, 6, 7
Here is b: 10, 10, 10
Here is c: 1, 2, 3
Here is d: 6, 7, 5

a > c is true
a < b is true
a and d are same distance from origin

An important restriction applies to overloading the relational operators: You must
overload them in pairs. For example, if you overload <, you must also overload >, and vice
versa. The operator pairs are

= = !=

< >

<= >=

One other point: If you overload the = = and != operators, then you will usually need to
override Object.Equals() and Object.GetHashCode(). These methods and the technique of
overriding are discussed in Chapter 11.

Overloading true and false
The keywords true and false can also be used as unary operators for the purposes of
overloading. Overloaded versions of these operators provide custom determinations of
true and false relative to classes that you create. Once true and false are overloaded for a
class, you can use objects of that class to control the if, while, for, and do-while statements,
or in a ? expression.

The true and false operators must be overloaded as a pair. You cannot overload just one.
Both are unary operators and they have this general form:

public static bool operator true(param-type operand)
{
 // return true or false
}

PART I

C h a p t e r 9 : O p e r a t o r O v e r l o a d i n g 227

PART I
PART I

public static bool operator false(param-type operand)
{
 // return true or false
}

Notice that each returns a bool result.
The following example shows how true and false can be implemented for the ThreeD

class. Each assumes that a ThreeD object is true if at least one coordinate is non-zero. If all
three coordinates are zero, then the object is false. The decrement operator is also implemented
for the purpose of illustration.

// Overload true and false for ThreeD.

using System;

// A three-dimensional coordinate class.
class ThreeD {
 int x, y, z; // 3-D coordinates

 public ThreeD() { x = y = z = 0; }
 public ThreeD(int i, int j, int k) { x = i; y = j; z = k; }

 // Overload true.
 public static bool operator true(ThreeD op) {
 if((op.x != 0) || (op.y != 0) || (op.z != 0))
 return true; // at least one coordinate is non-zero
 else
 return false;
 }

 // Overload false.
 public static bool operator false(ThreeD op) {
 if((op.x == 0) && (op.y == 0) && (op.z == 0))
 return true; // all coordinates are zero
 else
 return false;
 }

 // Overload unary --.
 public static ThreeD operator --(ThreeD op)
 {
 ThreeD result = new ThreeD();

 // Return the decremented result.
 result.x = op.x - 1;
 result.y = op.y - 1;
 result.z = op.z - 1;

 return result;
 }

 // Show X, Y, Z coordinates.
 public void Show()
 {

228 P a r t I : T h e C # L a n g u a g e

 Console.WriteLine(x + ", " + y + ", " + z);
 }
}

class TrueFalseDemo {
 static void Main() {
 ThreeD a = new ThreeD(5, 6, 7);
 ThreeD b = new ThreeD(10, 10, 10);
 ThreeD c = new ThreeD(0, 0, 0);

 Console.Write("Here is a: ");
 a.Show();
 Console.Write("Here is b: ");
 b.Show();
 Console.Write("Here is c: ");
 c.Show();
 Console.WriteLine();

 if(a) Console.WriteLine("a is true.");
 else Console.WriteLine("a is false.");

 if(b) Console.WriteLine("b is true.");
 else Console.WriteLine("b is false.");

 if(c) Console.WriteLine("c is true.");
 else Console.WriteLine("c is false.");

 Console.WriteLine();

 Console.WriteLine("Control a loop using a ThreeD object.");
 do {
 b.Show();
 b--;
 } while(b);
 }
}

The output is shown here:

Here is a: 5, 6, 7
Here is b: 10, 10, 10
Here is c: 0, 0, 0

a is true.
b is true.
c is false.

Control a loop using a ThreeD object.
10, 10, 10
9, 9, 9
8, 8, 8
7, 7, 7
6, 6, 6
5, 5, 5

PART I

C h a p t e r 9 : O p e r a t o r O v e r l o a d i n g 229

PART I
PART I

4, 4, 4
3, 3, 3
2, 2, 2
1, 1, 1

Notice how the ThreeD objects are used to control if statements and a while loop. In the
case of the if statements, the ThreeD object is evaluated using true. If the result of this
operation is true, then the if statement succeeds. In the case of the do-while loop, each
iteration of the loop decrements b. The loop repeats as long as b evaluates as true (that is, it
contains at least one non-zero coordinate). When b contains all zero coordinates, it evaluates
as false when the true operator is applied and the loop stops.

Overloading the Logical Operators
As you know, C# defines the following logical operators: &, |, !, &&, and ||. Of these, only
the &, |, and ! can be overloaded. By following certain rules, however, the benefits of the
short-circuit && and || can still be obtained. Each situation is examined here.

A Simple Approach to Overloading the Logical Operators
Let’s begin with the simplest situation. If you will not be making use of the short-circuit
logical operators, then you can overload & and | as you would intuitively think, with each
returning a bool result. An overloaded ! will also usually return a bool result.

Here is an example that overloads the !, &, and | logical operators for objects of type
ThreeD. As before, each assumes that a ThreeD object is true if at least one coordinate is
non-zero. If all three coordinates are zero, then the object is false.

// A simple way to overload !, |, and & for ThreeD.

using System;

// A three-dimensional coordinate class.
class ThreeD {
 int x, y, z; // 3-D coordinates

 public ThreeD() { x = y = z = 0; }
 public ThreeD(int i, int j, int k) { x = i; y = j; z = k; }

 // Overload |.
 public static bool operator |(ThreeD op1, ThreeD op2)
 {
 if(((op1.x != 0) || (op1.y != 0) || (op1.z != 0)) |
 ((op2.x != 0) || (op2.y != 0) || (op2.z != 0)))
 return true;
 else
 return false;
 }

 // Overload &.
 public static bool operator &(ThreeD op1, ThreeD op2)
 {

230 P a r t I : T h e C # L a n g u a g e

 if(((op1.x != 0) && (op1.y != 0) && (op1.z != 0)) &
 ((op2.x != 0) && (op2.y != 0) && (op2.z != 0)))
 return true;
 else
 return false;
 }

 // Overload !.
 public static bool operator !(ThreeD op)
 {
 if((op.x != 0) || (op.y != 0) || (op.z != 0))
 return false;
 else return true;
 }

 // Show X, Y, Z coordinates.
 public void Show()
 {
 Console.WriteLine(x + ", " + y + ", " + z);
 }
}

class TrueFalseDemo {
 static void Main() {
 ThreeD a = new ThreeD(5, 6, 7);
 ThreeD b = new ThreeD(10, 10, 10);
 ThreeD c = new ThreeD(0, 0, 0);

 Console.Write("Here is a: ");
 a.Show();
 Console.Write("Here is b: ");
 b.Show();
 Console.Write("Here is c: ");
 c.Show();
 Console.WriteLine();

 if(!a) Console.WriteLine("a is false.");
 if(!b) Console.WriteLine("b is false.");
 if(!c) Console.WriteLine("c is false.");

 Console.WriteLine();

 if(a & b) Console.WriteLine("a & b is true.");
 else Console.WriteLine("a & b is false.");

 if(a & c) Console.WriteLine("a & c is true.");
 else Console.WriteLine("a & c is false.");

 if(a | b) Console.WriteLine("a | b is true.");
 else Console.WriteLine("a | b is false.");

 if(a | c) Console.WriteLine("a | c is true.");
 else Console.WriteLine("a | c is false.");
 }
}

PART I

C h a p t e r 9 : O p e r a t o r O v e r l o a d i n g 231

PART I
PART I

The output from the program is shown here:

Here is a: 5, 6, 7
Here is b: 10, 10, 10
Here is c: 0, 0, 0

c is false.

a & b is true.
a & c is false.
a | b is true.
a | c is true.

In this approach, the &, |, and ! operator methods each return a bool result. This is necessary
if the operators are to be used in their normal manner (that is, in places that expect a bool
result). Recall that for all built-in types, the outcome of a logical operation is a value of type
bool. Thus, having the overloaded versions of these operators return type bool is a rational
approach. Unfortunately, this approach works only if you will not be needing the short-
circuit operators.

Enabling the Short-Circuit Operators
To enable the use of the && and || short-circuit operators, you must follow four rules.
First, the class must overload & and |. Second, the return type of the overloaded & and |
methods must be the same as the class for which the operators are being overloaded. Third,
each parameter must be a reference to an object of the class for which the operator is being
overloaded. Fourth, the true and false operators must be overloaded for the class. When
these conditions have been met, the short-circuit operators automatically become available
for use.

The following program shows how to properly implement the & and | for the ThreeD
class so that the short-circuit operators && and || are available.

/* A better way to overload !, |, and & for ThreeD.
 This version automatically enables the && and || operators. */

using System;

// A three-dimensional coordinate class.
class ThreeD {
 int x, y, z; // 3-D coordinates

 public ThreeD() { x = y = z = 0; }
 public ThreeD(int i, int j, int k) { x = i; y = j; z = k; }

 // Overload | for short-circuit evaluation.
 public static ThreeD operator |(ThreeD op1, ThreeD op2)
 {
 if(((op1.x != 0) || (op1.y != 0) || (op1.z != 0)) |
 ((op2.x != 0) || (op2.y != 0) || (op2.z != 0)))
 return new ThreeD(1, 1, 1);
 else
 return new ThreeD(0, 0, 0);
 }

232 P a r t I : T h e C # L a n g u a g e

 // Overload & for short-circuit evaluation.
 public static ThreeD operator &(ThreeD op1, ThreeD op2)
 {
 if(((op1.x != 0) && (op1.y != 0) && (op1.z != 0)) &
 ((op2.x != 0) && (op2.y != 0) && (op2.z != 0)))
 return new ThreeD(1, 1, 1);
 else
 return new ThreeD(0, 0, 0);
 }

 // Overload !.
 public static bool operator !(ThreeD op)
 {
 if(op) return false;
 else return true;
 }

 // Overload true.
 public static bool operator true(ThreeD op) {
 if((op.x != 0) || (op.y != 0) || (op.z != 0))
 return true; // at least one coordinate is non-zero
 else
 return false;
 }

 // Overload false.
 public static bool operator false(ThreeD op) {
 if((op.x == 0) && (op.y == 0) && (op.z == 0))
 return true; // all coordinates are zero
 else
 return false;
 }

 // Show X, Y, Z coordinates.
 public void Show()
 {
 Console.WriteLine(x + ", " + y + ", " + z);
 }
}

class TrueFalseDemo {
 static void Main() {
 ThreeD a = new ThreeD(5, 6, 7);
 ThreeD b = new ThreeD(10, 10, 10);
 ThreeD c = new ThreeD(0, 0, 0);

 Console.Write("Here is a: ");
 a.Show();
 Console.Write("Here is b: ");
 b.Show();
 Console.Write("Here is c: ");
 c.Show();
 Console.WriteLine();

PART I

C h a p t e r 9 : O p e r a t o r O v e r l o a d i n g 233

PART I
PART I

 if(a) Console.WriteLine("a is true.");
 if(b) Console.WriteLine("b is true.");
 if(c) Console.WriteLine("c is true.");

 if(!a) Console.WriteLine("a is false.");
 if(!b) Console.WriteLine("b is false.");
 if(!c) Console.WriteLine("c is false.");

 Console.WriteLine();

 Console.WriteLine("Use & and |");
 if(a & b) Console.WriteLine("a & b is true.");
 else Console.WriteLine("a & b is false.");

 if(a & c) Console.WriteLine("a & c is true.");
 else Console.WriteLine("a & c is false.");

 if(a | b) Console.WriteLine("a | b is true.");
 else Console.WriteLine("a | b is false.");

 if(a | c) Console.WriteLine("a | c is true.");
 else Console.WriteLine("a | c is false.");

 Console.WriteLine();

 // Now use short-circuit ops.
 Console.WriteLine("Use short-circuit && and ||");
 if(a && b) Console.WriteLine("a && b is true.");
 else Console.WriteLine("a && b is false.");

 if(a && c) Console.WriteLine("a && c is true.");
 else Console.WriteLine("a && c is false.");

 if(a || b) Console.WriteLine("a || b is true.");
 else Console.WriteLine("a || b is false.");

 if(a || c) Console.WriteLine("a || c is true.");
 else Console.WriteLine("a || c is false.");
 }
}

The output from the program is shown here:

Here is a: 5, 6, 7
Here is b: 10, 10, 10
Here is c: 0, 0, 0

a is true.
b is true.
c is false.

Use & and |
a & b is true.

234 P a r t I : T h e C # L a n g u a g e

a & c is false.
a | b is true.
a | c is true.

Use short-circuit && and ||
a && b is true.
a && c is false.
a || b is true.
a || c is true.

Let’s look closely at how the & and | are implemented. They are shown here:

// Overload | for short-circuit evaluation.
public static ThreeD operator |(ThreeD op1, ThreeD op2)
{
 if(((op1.x != 0) || (op1.y != 0) || (op1.z != 0)) |
 ((op2.x != 0) || (op2.y != 0) || (op2.z != 0)))
 return new ThreeD(1, 1, 1);
 else
 return new ThreeD(0, 0, 0);
}

// Overload & for short-circuit evaluation.
public static ThreeD operator &(ThreeD op1, ThreeD op2)
{
 if(((op1.x != 0) && (op1.y != 0) && (op1.z != 0)) &
 ((op2.x != 0) && (op2.y != 0) && (op2.z != 0)))
 return new ThreeD(1, 1, 1);
 else
 return new ThreeD(0, 0, 0);
}

Notice first that both now return an object of type ThreeD. Pay attention to how this object
is generated. If the outcome of the operation is true, then a true ThreeD object (one in which
at least one coordinate is non-zero) is created and returned. If the outcome is false, then a
false object is created and returned. Thus, in a statement like this

if(a & b) Console.WriteLine("a & b is true.");
else Console.WriteLine("a & b is false.");

the outcome of a & b is a ThreeD object, which in this case is a true object. Since the
operators true and false are defined, this resulting object is subjected to the true operator,
and a bool result is returned. In this case, the result is true and the if succeeds.

Because the necessary rules have been followed, the short-circuit operators are now
available for use on ThreeD objects. They work like this. The first operand is tested by using
operator true (for ||) or operator false (for &&). If it can determine the outcome of the
operation, then the corresponding & or | is not evaluated. Otherwise, the corresponding
overloaded & or | is used to determine the result. Thus, using a && or || causes the
corresponding & or | to be invoked only when the first operand cannot determine the
outcome of the expression. For example, consider this statement from the program:

PART I

C h a p t e r 9 : O p e r a t o r O v e r l o a d i n g 235

PART I
PART I

if(a || c) Console.WriteLine("a || c is true.");

The true operator is first applied to a. Since a is true in this situation, there is no need to use
the | operator method. However, if the statement were rewritten like this:

if(c || a) Console.WriteLine("c || a is true.");

then the true operator would first be applied to c, which in this case is false. Thus, the |
operator method would be invoked to determine if a was true (which it is in this case).

Although you might at first think that the technique used to enable the short-circuit
operators is a bit convoluted, it makes sense if you think about it a bit. By overloading true
and false for a class, you enable the compiler to utilize the short-circuit operators without
having to explicitly overload either. Furthermore, you gain the ability to use objects in
conditional expressions. In general, unless you need a very narrow implementation of &
and |, you are better off creating a full implementation.

Conversion Operators
In some situations, you will want to use an object of a class in an expression involving other
types of data. Sometimes, overloading one or more operators can provide the means of doing
this. However, in other cases, what you want is a simple type conversion from the class type
to the target type. To handle these cases, C# allows you to create a special type of operator
method called a conversion operator. A conversion operator converts an object of your class into
another type. Conversion operators help fully integrate class types into the C# programming
environment by allowing objects of a class to be freely mixed with other data types as long
as a conversion to those other types is defined.

There are two forms of conversion operators, implicit and explicit. The general form for
each is shown here:

public static operator implicit target-type(source-type v) { return value; }
public static operator explicit target-type(source-type v) { return value; }

Here, target-type is the target type that you are converting to; source-type is the type you
are converting from; and value is the value of the class after conversion. The conversion
operators return data of type target-type, and no other return type specifier is allowed.

If the conversion operator specifies implicit, then the conversion is invoked automatically,
such as when an object is used in an expression with the target type. When the conversion
operator specifies explicit, the conversion is invoked when a cast is used. You cannot define
both an implicit and explicit conversion operator for the same target and source types.

To illustrate a conversion operator, we will create one for the ThreeD class. Suppose
you want to convert an object of type ThreeD into an integer so it can be used in an integer
expression. Further, the conversion will take place by using the product of the three
dimensions. To accomplish this, you will use an implicit conversion operator that looks
like this:

public static implicit operator int(ThreeD op1)
{
 return op1.x * op1.y * op1.z;
}

236 P a r t I : T h e C # L a n g u a g e

Here is a program that illustrates this conversion operator:

// An example that uses an implicit conversion operator.

using System;

// A three-dimensional coordinate class.
class ThreeD {
 int x, y, z; // 3-D coordinates

 public ThreeD() { x = y = z = 0; }
 public ThreeD(int i, int j, int k) { x = i; y = j; z = k; }

 // Overload binary +.
 public static ThreeD operator +(ThreeD op1, ThreeD op2)
 {
 ThreeD result = new ThreeD();

 result.x = op1.x + op2.x;
 result.y = op1.y + op2.y;
 result.z = op1.z + op2.z;

 return result;
 }

 // An implicit conversion from ThreeD to int.
 public static implicit operator int(ThreeD op1)
 {
 return op1.x * op1.y * op1.z;
 }

 // Show X, Y, Z coordinates.
 public void Show()
 {
 Console.WriteLine(x + ", " + y + ", " + z);
 }
}

class ThreeDDemo {
 static void Main() {
 ThreeD a = new ThreeD(1, 2, 3);
 ThreeD b = new ThreeD(10, 10, 10);
 ThreeD c = new ThreeD();
 int i;

 Console.Write("Here is a: ");
 a.Show();
 Console.WriteLine();
 Console.Write("Here is b: ");
 b.Show();
 Console.WriteLine();

 c = a + b; // add a and b together
 Console.Write("Result of a + b: ");

PART I

C h a p t e r 9 : O p e r a t o r O v e r l o a d i n g 237

PART I
PART I

 c.Show();
 Console.WriteLine();

 i = a; // convert to int
 Console.WriteLine("Result of i = a: " + i);
 Console.WriteLine();

 i = a * 2 - b; // convert to int
 Console.WriteLine("result of a * 2 - b: " + i);
 }
}

This program displays the output:

Here is a: 1, 2, 3

Here is b: 10, 10, 10

Result of a + b: 11, 12, 13

Result of i = a: 6

result of a * 2 - b: -988

As the program illustrates, when a ThreeD object is used in an integer expression, such as
i = a, the conversion is applied to the object. In this specific case, the conversion returns the
value 6, which is the product of coordinates stored in a. However, when an expression does
not require a conversion to int, the conversion operator is not called. This is why c = a + b
does not invoke operator int().

Remember that you can create different conversion operators to meet different needs. You
could define a second conversion operator that converts ThreeD to double, for example.
Each conversion is applied automatically and independently.

An implicit conversion operator is applied automatically when a conversion is required
in an expression, when passing an object to a method, in an assignment, and also when an
explicit cast to the target type is used. Alternatively, you can create an explicit conversion
operator, which is invoked only when an explicit cast is used. An explicit conversion
operator is not invoked automatically. For example, here is the previous program reworked
to use an explicit conversion to int:

// Use an explicit conversion.

using System;

// A three-dimensional coordinate class.
class ThreeD {
 int x, y, z; // 3-D coordinates

 public ThreeD() { x = y = z = 0; }
 public ThreeD(int i, int j, int k) { x = i; y = j; z = k; }

 // Overload binary +.
 public static ThreeD operator +(ThreeD op1, ThreeD op2)
 {

238 P a r t I : T h e C # L a n g u a g e

 ThreeD result = new ThreeD();

 result.x = op1.x + op2.x;
 result.y = op1.y + op2.y;
 result.z = op1.z + op2.z;

 return result;
 }

 // This is now explicit.
 public static explicit operator int(ThreeD op1)
 {
 return op1.x * op1.y * op1.z;
 }

 // Show X, Y, Z coordinates.
 public void Show()
 {
 Console.WriteLine(x + ", " + y + ", " + z);
 }
}

class ThreeDDemo {
 static void Main() {
 ThreeD a = new ThreeD(1, 2, 3);
 ThreeD b = new ThreeD(10, 10, 10);
 ThreeD c = new ThreeD();
 int i;

 Console.Write("Here is a: ");
 a.Show();
 Console.WriteLine();
 Console.Write("Here is b: ");
 b.Show();
 Console.WriteLine();

 c = a + b; // add a and b together
 Console.Write("Result of a + b: ");
 c.Show();
 Console.WriteLine();

 i = (int) a; // explicitly convert to int -- cast required
 Console.WriteLine("Result of i = a: " + i);
 Console.WriteLine();

 i = (int)a * 2 - (int)b; // casts required
 Console.WriteLine("result of a * 2 - b: " + i);

 }
}

Because the conversion operator is now marked as explicit, conversion to int must be
explicitly cast. For example, in this line:

i = (int) a; // explicitly convert to int -- cast required

PART I

C h a p t e r 9 : O p e r a t o r O v e r l o a d i n g 239

PART I
PART I

if you remove the cast, the program will not compile.
There are a few restrictions to conversion operators:

• Either the target type or the source type of the conversion must be the class in which
the conversion is declared. You cannot, for example, redefine the conversion from
double to int.

• You cannot define a conversion to or from object.

• You cannot define both an implicit and an explicit conversion for the same source
and target types.

• You cannot define a conversion from a base class to a derived class. (See Chapter 11
for a discussion of base and derived classes.)

• You cannot define a conversion from or to an interface. (See Chapter 12 for a
discussion of interfaces.)

In addition to these rules, there are suggestions that you should normally follow when
choosing between implicit and explicit conversion operators. Although convenient, implicit
conversions should be used only in situations in which the conversion is inherently error-
free. To ensure this, implicit conversions should be created only when these two conditions
are met: First, that no loss of information, such as truncation, overflow, or loss of sign,
occurs. Second, that the conversion does not cause an exception. If the conversion cannot
meet these two requirements, then you should use an explicit conversion.

Operator Overloading Tips and Restrictions
The action of an overloaded operator as applied to the class for which it is defined need
not bear any relationship to that operator’s default usage, as applied to C#’s built-in types.
However, for the purposes of the structure and readability of your code, an overloaded
operator should reflect, when possible, the spirit of the operator’s original use. For example,
the + relative to ThreeD is conceptually similar to the + relative to integer types. There would
be little benefit in defining the + operator relative to some class in such a way that it acts
more the way you would expect the / operator to perform, for instance. The central concept
is that while you can give an overloaded operator any meaning you like, for clarity it is best
when its new meaning is related to its original meaning.

There are some restrictions to overloading operators. You cannot alter the precedence of
any operator. You cannot alter the number of operands required by the operator, although
your operator method could choose to ignore an operand. There are several operators that
you cannot overload. Perhaps most significantly, you cannot overload any assignment
operator, including the compound assignments, such as +=. Here are the other operators
that cannot be overloaded. (This list includes several operators that are discussed later in
this book.)

&& () . ?

?? [] || =

=> –> as checked

default is new sizeof

typeof unchecked

240 P a r t I : T h e C # L a n g u a g e

Although you cannot overload the cast operator () explicitly, you can create conversion
operators, as shown earlier, that perform this function.

It may seem like a serious restriction that operators such as += can’t be overloaded, but
it isn’t. In general, if you have defined an operator, then if that operator is used in a compound
assignment, your overloaded operator method is invoked. Thus, += automatically uses your
version of operator+(). For example, assuming the ThreeD class, if you use a sequence
like this

ThreeD a = new ThreeD(1, 2, 3);
ThreeD b = new ThreeD(10, 10, 10);

b += a; // add a and b together

ThreeD’s operator+() is automatically invoked, and b will contain the coordinate 11, 12, 13.
One last point: Although you cannot overload the [] array indexing operator using an

operator method, you can create indexers, which are described in the next chapter.

Another Example of Operator Overloading
Throughout this chapter we have been using the ThreeD class to demonstrate operator
overloading, and in this regard it has served us well. Before concluding this chapter,
however, it is useful to work through another example. Although the general principles
of operator overloading are the same no matter what class is used, the following example
helps show the power of operator overloading—especially where type extensibility is
concerned.

This example develops a four-bit integer type and defines several operations for it. As
you might know, in the early days of computing, the four-bit quantity was common because
it represented half a byte. It is also large enough to hold one hexadecimal digit. Since four
bits are half a byte, a four-bit quantity is sometimes referred to as a nybble. In the days of
front-panel machines in which programmers entered code one nybble at a time, thinking in
terms of nybbles was an everyday affair! Although not as common now, a four-bit type still
makes an interesting addition to the other C# integers. Traditionally, a nybble is an unsigned
value.

The following example uses the Nybble class to implement a nybble data type. It uses
an int for its underlying storage, but it restricts the values that can be held to 0 through 15.
It defines the following operators:

• Addition of a Nybble to a Nybble

• Addition of an int to a Nybble

• Addition of a Nybble to an int

• Greater than and less than

• The increment operator

• Conversion to Nybble from int

• Conversion to int from Nybble

These operations are sufficient to show how a class type can be fully integrated into the C#
type system. However, for complete Nybble implementation, you will need to define all of
the other operators. You might want to try adding others on your own.

PART I

C h a p t e r 9 : O p e r a t o r O v e r l o a d i n g 241

PART I
PART I

The complete Nybble class is shown here along with a NybbleDemo, which
demonstrates its use:

// Create a 4-bit type called Nybble.

using System;

// A 4-bit type.
class Nybble {
 int val; // underlying storage

 public Nybble() { val = 0; }

 public Nybble(int i) {
 val = i;
 val = val & 0xF; // retain lower 4 bits
 }

 // Overload binary + for Nybble + Nybble.
 public static Nybble operator +(Nybble op1, Nybble op2)
 {
 Nybble result = new Nybble();

 result.val = op1.val + op2.val;

 result.val = result.val & 0xF; // retain lower 4 bits

 return result;
 }

 // Overload binary + for Nybble + int.
 public static Nybble operator +(Nybble op1, int op2)
 {
 Nybble result = new Nybble();

 result.val = op1.val + op2;

 result.val = result.val & 0xF; // retain lower 4 bits

 return result;
 }

 // Overload binary + for int + Nybble.
 public static Nybble operator +(int op1, Nybble op2)
 {
 Nybble result = new Nybble();

 result.val = op1 + op2.val;

 result.val = result.val & 0xF; // retain lower 4 bits

 return result;
 }

 // Overload ++.

242 P a r t I : T h e C # L a n g u a g e

 public static Nybble operator ++(Nybble op)
 {
 Nybble result = new Nybble();
 result.val = op.val + 1;

 result.val = result.val & 0xF; // retain lower 4 bits

 return result;
 }

 // Overload >.
 public static bool operator >(Nybble op1, Nybble op2)
 {
 if(op1.val > op2.val) return true;
 else return false;
 }

 // Overload <.
 public static bool operator <(Nybble op1, Nybble op2)
 {
 if(op1.val < op2.val) return true;
 else return false;
 }

 // Convert a Nybble into an int.
 public static implicit operator int (Nybble op)
 {
 return op.val;
 }

 // Convert an int into a Nybble.
 public static implicit operator Nybble (int op)
 {
 return new Nybble(op);
 }
}

class NybbleDemo {
 static void Main() {
 Nybble a = new Nybble(1);
 Nybble b = new Nybble(10);
 Nybble c = new Nybble();
 int t;

 Console.WriteLine("a: " + (int) a);
 Console.WriteLine("b: " + (int) b);

 // Use a Nybble in an if statement.
 if(a < b) Console.WriteLine("a is less than b\n");

 // Add two Nybbles together.
 c = a + b;
 Console.WriteLine("c after c = a + b: " + (int) c);

PART I

C h a p t e r 9 : O p e r a t o r O v e r l o a d i n g 243

PART I
PART I

 // Add an int to a Nybble.
 a += 5;
 Console.WriteLine("a after a += 5: " + (int) a);

 Console.WriteLine();

 // Use a Nybble in an int expression.
 t = a * 2 + 3;
 Console.WriteLine("Result of a * 2 + 3: " + t);

 Console.WriteLine();

 // Illustrate int assignment and overflow.
 a = 19;
 Console.WriteLine("Result of a = 19: " + (int) a);

 Console.WriteLine();

 // Use a Nybble to control a loop.
 Console.WriteLine("Control a for loop with a Nybble.");
 for(a = 0; a < 10; a++)
 Console.Write((int) a + " ");

 Console.WriteLine();
 }
}

The output from the program is shown here:

a: 1
b: 10
a is less than b

c after c = a + b: 11
a after a += 5: 6

Result of a * 2 + 3: 15

Result of a = 19: 3

Control a for loop with a Nybble.
0 1 2 3 4 5 6 7 8 9

Although most of the operation of Nybble should be easy to understand, there is one
important point to make: The conversion operators play a large role in the integration of
Nybble into the C# type system. Because conversions are defined from Nybble to int and
from int to Nybble, a Nybble object can be freely mixed in arithmetic expressions. For
example, consider this expression from the program:

t = a * 2 + 3;

Here, t is an int, as are 2 and 3, but a is a Nybble. These two types are compatible in the
expression because of the implicit conversion of Nybble to int. In this case, since the rest
of the expression is of type int, a is converted to int by its conversion method.

244 P a r t I : T h e C # L a n g u a g e

The conversion from int to Nybble allows a Nybble object to be assigned an int value.
For example, in the program, the statement

a = 19;

works like this. The conversion operator from int to Nybble is executed. This causes a new
Nybble object to be created that contains the low-order 4 bits of the value 19 (which is 3
because 19 overflows the range of a Nybble). This object is then assigned to a. Without the
conversion operators, such expressions would not be allowed.

The conversion of Nybble to int is also used by the for loop. Without this conversion, it
would not be possible to write the for loop in such a straightforward way.

10
Indexers and Properties

This chapter examines two special types of class members that have a close relationship
to each other: indexers and properties. Each expands the power of a class by
enhancing its integration into C#’s type system and improving its resiliency. Indexers

provide the mechanism by which an object can be indexed like an array. Properties offer a
streamlined way to manage access to a class’ instance data. They relate to each other because
both rely upon another feature of C#: the accessor.

Indexers
As you know, array indexing is performed using the [] operator. It is possible to define the
[] operator for classes that you create, but you don’t use an operator method. Instead, you
create an indexer. An indexer allows an object to be indexed like an array. The main use of
indexers is to support the creation of specialized arrays that are subject to one or more
constraints. However, you can use an indexer for any purpose for which an array-like
syntax is beneficial. Indexers can have one or more dimensions. We will begin with one-
dimensional indexers.

Creating One-Dimensional Indexers
A one-dimensional indexer has this general form:

element-type this[int index] {
 // The get accessor
 get {
 // return the value specifi ed by index
 }

 // The set accessor
 set {
 // set the value specifi ed by index
 }
}

245

CHAPTER

246 P a r t I : T h e C # L a n g u a g e

Here, element-type is the element type of the indexer. Thus, each element accessed by the
indexer will be of type element-type. This type corresponds to the element type of an array.
The parameter index receives the index of the element being accessed. Technically, this
parameter does not have to be of type int, but since indexers are typically used to provide
array indexing, an integer type is customary.

Inside the body of the indexer two accessors are defined that are called get and set. An
accessor is similar to a method except that it does not declare a return type or parameters.
The accessors are automatically called when the indexer is used, and both accessors receive
index as a parameter. If the indexer is on the left side of an assignment statement, then the
set accessor is called and the element specified by index must be set. Otherwise, the get
accessor is called and the value associated with index must be returned. The set method also
receives an implicit parameter called value, which contains the value being assigned to the
specified index.

One of the benefits of an indexer is that you can control precisely how an array is accessed,
heading off improper access. Here is an example. In the following program, the FailSoftArray
class implements an array that traps boundary errors, thus preventing runtime exceptions if
the array is indexed out-of-bounds. This is accomplished by encapsulating the array as a
private member of a class, allowing access to the array only through the indexer. With this
approach, any attempt to access the array beyond its boundaries can be prevented, with such
an attempt failing gracefully (resulting in a “soft landing” rather than a “crash”). Since
FailSoftArray uses an indexer, the array can be accessed using the normal array notation.

// Use an indexer to create a fail-soft array.

using System;

class FailSoftArray {
 int[] a; // reference to underlying array

 public int Length; // Length is public

 public bool ErrFlag; // indicates outcome of last operation

 // Construct array given its size.
 public FailSoftArray(int size) {
 a = new int[size];
 Length = size;
 }

 // This is the indexer for FailSoftArray.
 public int this[int index] {
 // This is the get accessor.
 get {
 if(ok(index)) {
 ErrFlag = false;
 return a[index];
 } else {
 ErrFlag = true;
 return 0;
 }
 }

PART I

C h a p t e r 1 0 : I n d e x e r s a n d P r o p e r t i e s 247

PART I
PART I

 // This is the set accessor.
 set {
 if(ok(index)) {
 a[index] = value;
 ErrFlag = false;
 }
 else ErrFlag = true;
 }
 }

 // Return true if index is within bounds.
 private bool ok(int index) {
 if(index >= 0 & index < Length) return true;
 return false;
 }
}

// Demonstrate the fail-soft array.
class FSDemo {
 static void Main() {
 FailSoftArray fs = new FailSoftArray(5);
 int x;

 // Show quiet failures.
 Console.WriteLine("Fail quietly.");
 for(int i=0; i < (fs.Length * 2); i++)
 fs[i] = i*10;

 for(int i=0; i < (fs.Length * 2); i++) {
 x = fs[i];
 if(x != -1) Console.Write(x + " ");
 }
 Console.WriteLine();

 // Now, display failures.
 Console.WriteLine("\nFail with error reports.");
 for(int i=0; i < (fs.Length * 2); i++) {
 fs[i] = i*10;
 if(fs.ErrFlag)
 Console.WriteLine("fs[" + i + "] out-of-bounds");
 }

 for(int i=0; i < (fs.Length * 2); i++) {
 x = fs[i];
 if(!fs.ErrFlag) Console.Write(x + " ");
 else
 Console.WriteLine("fs[" + i + "] out-of-bounds");
 }
 }
}

The output from the program is shown here:

Fail quietly.
0 10 20 30 40 0 0 0 0 0

248 P a r t I : T h e C # L a n g u a g e

Fail with error reports.
fs[5] out-of-bounds
fs[6] out-of-bounds
fs[7] out-of-bounds
fs[8] out-of-bounds
fs[9] out-of-bounds
0 10 20 30 40 fs[5] out-of-bounds
fs[6] out-of-bounds
fs[7] out-of-bounds
fs[8] out-of-bounds
fs[9] out-of-bounds

The indexer prevents the array boundaries from being overrun. Let’s look closely at
each part of the indexer. It begins with this line:

public int this[int index] {

This declares an indexer that operates on int elements. The index is passed in index. The
indexer is public, allowing it to be used by code outside of its class.

The get accessor is shown here:

get {
 if(ok(index)) {
 ErrFlag = false;
 return a[index];
 } else {
 ErrFlag = true;
 return 0;
 }
}

The get accessor prevents array boundary errors by first confirming that the index is not
out-of-bounds. This range check is performed by the ok() method, which returns true if the
index is valid and false otherwise. If the specified index is within bounds, the element
corresponding to the index is returned. If it is out of bounds, no operation takes place and
no overrun occurs. In this version of FailSoftArray, a variable called ErrFlag contains the
outcome of each operation. This field can be examined after each operation to assess the
success or failure of the operation. (In Chapter 13, you will see a better way to handle errors
by using C#’s exception subsystem, but for now, using an error flag is an acceptable
approach.)

The set accessor is shown here. It too prevents a boundary error.

set {
 if(ok(index)) {
 a[index] = value;
 ErrFlag = false;
 }
 else ErrFlag = true;
}

Here, if index is within bounds, the value passed in value is assigned to the corresponding
element. Otherwise, ErrFlag is set to true. Recall that in an accessor method, value is an

PART I

C h a p t e r 1 0 : I n d e x e r s a n d P r o p e r t i e s 249

PART I
PART I

implicit parameter that contains the value being assigned. You do not need to (nor can you)
declare it.

It is not necessary for an indexer to support both get and set. You can create a read-only
indexer by implementing only the get accessor. You can create a write-only indexer by
implementing only set.

Indexers Can Be Overloaded
An indexer can be overloaded. The version executed will be the one that has the closest
type-match between its parameter and the argument used as an index. Here is an example
that overloads the FailSoftArray indexer for indexes of type double. The double indexer
rounds its index to the nearest integer value.

// Overload the FailSoftArray indexer.

using System;

class FailSoftArray {
 int[] a; // reference to underlying array

 public int Length; // Length is public

 public bool ErrFlag; // indicates outcome of last operation

 // Construct array given its size.
 public FailSoftArray(int size) {
 a = new int[size];
 Length = size;
 }

 // This is the int indexer for FailSoftArray.
 public int this[int index] {
 // This is the get accessor.
 get {
 if(ok(index)) {
 ErrFlag = false;
 return a[index];
 } else {
 ErrFlag = true;
 return 0;
 }
 }

 // This is the set accessor.
 set {
 if(ok(index)) {
 a[index] = value;
 ErrFlag = false;
 }
 else ErrFlag = true;
 }
 }

250 P a r t I : T h e C # L a n g u a g e

 /* This is another indexer for FailSoftArray.
 This index takes a double argument. It then
 rounds that argument to the nearest integer index. */
 public int this[double idx] {
 // This is the get accessor.
 get {
 int index;

 // Round to nearest int.
 if((idx - (int) idx) < 0.5) index = (int) idx;
 else index = (int) idx + 1;

 if(ok(index)) {
 ErrFlag = false;
 return a[index];
 } else {
 ErrFlag = true;
 return 0;
 }
 }

 // This is the set accessor.
 set {
 int index;

 // Round to nearest int.
 if((idx - (int) idx) < 0.5) index = (int) idx;
 else index = (int) idx + 1;

 if(ok(index)) {
 a[index] = value;
 ErrFlag = false;
 }
 else ErrFlag = true;
 }
 }

 // Return true if index is within bounds.
 private bool ok(int index) {
 if(index >= 0 & index < Length) return true;
 return false;
 }
}

// Demonstrate the fail-soft array.
class FSDemo {
 static void Main() {
 FailSoftArray fs = new FailSoftArray(5);

 // Put some values in fs.
 for(int i=0; i < fs.Length; i++)
 fs[i] = i;

 // Now index with ints and doubles.
 Console.WriteLine("fs[1]: " + fs[1]);

PART I

C h a p t e r 1 0 : I n d e x e r s a n d P r o p e r t i e s 251

PART I
PART I

 Console.WriteLine("fs[2]: " + fs[2]);

 Console.WriteLine("fs[1.1]: " + fs[1.1]);
 Console.WriteLine("fs[1.6]: " + fs[1.6]);
 }
}

This program produces the following output:

fs[1]: 1
fs[2]: 2
fs[1.1]: 1
fs[1.6]: 2

As the output shows, the double indexes are rounded to their nearest integer value.
Specifically, 1.1 is rounded to 1, and 1.6 is rounded to 2.

Although overloading an indexer as shown in this program is valid, it is not common.
Most often, an indexer is overloaded to enable an object of a class to be used as an index,
with the index computed in some special way.

Indexers Do Not Require an Underlying Array
It is important to understand that there is no requirement that an indexer actually operate
on an array. It simply must provide functionality that appears “array-like” to the user of the
indexer. For example, the following program has an indexer that acts like a read-only array
that contains the powers of 2 from 0 to 15. Notice, however, that no actual array exists.
Instead, the indexer simply computes the proper value for a given index.

// Indexers don't have to operate on actual arrays.

using System;

class PwrOfTwo {

 /* Access a logical array that contains
 the powers of 2 from 0 to 15. */
 public int this[int index] {
 // Compute and return power of 2.
 get {
 if((index >= 0) && (index < 16)) return pwr(index);
 else return -1;
 }

 // There is no set accessor.
 }

 int pwr(int p) {
 int result = 1;

 for(int i=0; i < p; i++)
 result *= 2;

 return result;
 }
}

252 P a r t I : T h e C # L a n g u a g e

class UsePwrOfTwo {
 static void Main() {
 PwrOfTwo pwr = new PwrOfTwo();

 Console.Write("First 8 powers of 2: ");
 for(int i=0; i < 8; i++)
 Console.Write(pwr[i] + " ");
 Console.WriteLine();

 Console.Write("Here are some errors: ");
 Console.Write(pwr[-1] + " " + pwr[17]);

 Console.WriteLine();
 }
}

The output from the program is shown here:

First 8 powers of 2: 1 2 4 8 16 32 64 128
Here are some errors: -1 -1

Notice that the indexer for PwrOfTwo includes a get accessor, but no set accessor. As
explained, this means that the indexer is read-only. Thus, a PwrOfTwo object can be used
on the right side of an assignment statement, but not on the left. For example, attempting
to add this statement to the preceding program won’t work:

pwr[0] = 11; // won't compile

This statement will cause a compilation error because no set accessor is defined for the
indexer.

There are two important restrictions to using indexers. First, because an indexer does
not define a storage location, a value produced by an indexer cannot be passed as a ref or
out parameter to a method. Second, an indexer must be an instance member of its class; it
cannot be declared static.

Multidimensional Indexers
You can create indexers for multidimensional arrays, too. For example, here is a two-
dimensional fail-soft array. Pay close attention to the way that the indexer is declared.

// A two-dimensional fail-soft array.

using System;

class FailSoftArray2D {
 int[,] a; // reference to underlying 2D array
 int rows, cols; // dimensions
 public int Length; // Length is public

 public bool ErrFlag; // indicates outcome of last operation

 // Construct array given its dimensions.
 public FailSoftArray2D(int r, int c) {

PART I

C h a p t e r 1 0 : I n d e x e r s a n d P r o p e r t i e s 253

PART I
PART I

 rows = r;
 cols = c;
 a = new int[rows, cols];
 Length = rows * cols;
 }

 // This is the indexer for FailSoftArray2D.
 public int this[int index1, int index2] {
 // This is the get accessor.
 get {
 if(ok(index1, index2)) {
 ErrFlag = false;
 return a[index1, index2];
 } else {
 ErrFlag = true;
 return 0;
 }
 }

 // This is the set accessor.
 set {
 if(ok(index1, index2)) {
 a[index1, index2] = value;
 ErrFlag = false;
 }
 else ErrFlag = true;
 }
 }

 // Return true if indexes are within bounds.
 private bool ok(int index1, int index2) {
 if(index1 >= 0 & index1 < rows &
 index2 >= 0 & index2 < cols)
 return true;

 return false;
 }
}

// Demonstrate a 2D indexer.
class TwoDIndexerDemo {
 static void Main() {
 FailSoftArray2D fs = new FailSoftArray2D(3, 5);
 int x;

 // Show quiet failures.
 Console.WriteLine("Fail quietly.");
 for(int i=0; i < 6; i++)
 fs[i, i] = i*10;

 for(int i=0; i < 6; i++) {
 x = fs[i,i];
 if(x != -1) Console.Write(x + " ");
 }

254 P a r t I : T h e C # L a n g u a g e

 Console.WriteLine();

 // Now, display failures.
 Console.WriteLine("\nFail with error reports.");
 for(int i=0; i < 6; i++) {
 fs[i,i] = i*10;
 if(fs.ErrFlag)
 Console.WriteLine("fs[" + i + ", " + i + "] out-of-bounds");
 }

 for(int i=0; i < 6; i++) {
 x = fs[i,i];
 if(!fs.ErrFlag) Console.Write(x + " ");
 else
 Console.WriteLine("fs[" + i + ", " + i + "] out-of-bounds");
 }
 }
}

The output from this program is shown here:

Fail quietly.
0 10 20 0 0 0

Fail with error reports.
fs[3, 3] out-of-bounds
fs[4, 4] out-of-bounds
fs[5, 5] out-of-bounds
0 10 20 fs[3, 3] out-of-bounds
fs[4, 4] out-of-bounds
fs[5, 5] out-of-bounds

Properties
Another type of class member is the property. As a general rule, a property combines a field
with the methods that access it. As some examples earlier in this book have shown, you will
often want to create a field that is available to users of an object, but you want to maintain
control over the operations allowed on that field. For instance, you might want to limit the
range of values that can be assigned to that field. While it is possible to accomplish this goal
through the use of a private variable along with methods to access its value, a property
offers a better, more streamlined approach.

Properties are similar to indexers. A property consists of a name along with get and set
accessors. The accessors are used to get and set the value of a variable. The key benefit of a
property is that its name can be used in expressions and assignments like a normal variable,
but in actuality the get and set accessors are automatically invoked. This is similar to the
way that an indexer’s get and set accessors are automatically used.

The general form of a property is shown here:

type name {
 get {
 // get accessor code
 }

PART I

C h a p t e r 1 0 : I n d e x e r s a n d P r o p e r t i e s 255

PART I
PART I

 set {
 // set accessor code
 }
}

Here, type specifies the type of the property, such as int, and name is the name of the property.
Once the property has been defined, any use of name results in a call to its appropriate
accessor. The set accessor automatically receives a parameter called value that contains the
value being assigned to the property.

It is important to understand that properties do not define storage locations. Instead, a
property typically manages access to a field. It does not, itself, provide that field. The field
must be specified independently of the property. (The exception is the auto-implemented
property added by C# 3.0, which is described shortly.)

Here is a simple example that defines a property called MyProp, which is used to access
the field prop. In this case, the property allows only positive values to be assigned.

// A simple property example.

using System;

class SimpProp {
 int prop; // field being managed by MyProp

 public SimpProp() { prop = 0; }

 /* This is the property that supports access to
 the private instance variable prop. It
 allows only positive values. */
 public int MyProp {
 get {
 return prop;
 }
 set {
 if(value >= 0) prop = value;
 }
 }
}

// Demonstrate a property.
class PropertyDemo {
 static void Main() {
 SimpProp ob = new SimpProp();

 Console.WriteLine("Original value of ob.MyProp: " + ob.MyProp);

 ob.MyProp = 100; // assign value
 Console.WriteLine("Value of ob.MyProp: " + ob.MyProp);

 // Can't assign negative value to prop.
 Console.WriteLine("Attempting to assign -10 to ob.MyProp");
 ob.MyProp = -10;
 Console.WriteLine("Value of ob.MyProp: " + ob.MyProp);
 }
}

256 P a r t I : T h e C # L a n g u a g e

Output from this program is shown here:

Original value of ob.MyProp: 0
Value of ob.MyProp: 100
Attempting to assign -10 to ob.MyProp
Value of ob.MyProp: 100

Let’s examine this program carefully. The program defines one private field, called
prop, and a property called MyProp that manages access to prop. As explained, a property
by itself does not define a storage location. Instead, most properties simply manage access
to a field. Furthermore, because prop is private, it can be accessed only through MyProp.

The property MyProp is specified as public so it can be accessed by code outside of its
class. This makes sense because it provides access to prop, which is private. The get accessor
simply returns the value of prop. The set accessor sets the value of prop if and only if that
value is positive. Thus, the MyProp property controls what values prop can have. This is
the essence of why properties are important.

The type of property defined by MyProp is called a read-write property because it allows
its underlying field to be read and written. It is possible, however, to create read-only and
write-only properties. To create a read-only property, define only a get accessor. To define a
write-only property, define only a set accessor.

You can use a property to further improve the fail-soft array class. As you know, all
arrays have a Length property associated with them. Up to now, the FailSoftArray class
simply used a public integer field called Length for this purpose. This is not good practice,
though, because it allows Length to be set to some value other than the length of the fail-
soft array. (For example, a malicious programmer could intentionally corrupt its value.) We
can remedy this situation by transforming Length into a read-only property, as shown in
the following version of FailSoftArray:

// Add Length property to FailSoftArray.

using System;

class FailSoftArray {
 int[] a; // reference to underlying array
 int len; // length of array -- underlies Length property

 public bool ErrFlag; // indicates outcome of last operation

 // Construct array given its size.
 public FailSoftArray(int size) {
 a = new int[size];
 len = size;
 }

 // Read-only Length property.
 public int Length {
 get {
 return len;
 }
 }

PART I

C h a p t e r 1 0 : I n d e x e r s a n d P r o p e r t i e s 257

PART I
PART I

 // This is the indexer for FailSoftArray.
 public int this[int index] {
 // This is the get accessor.
 get {
 if(ok(index)) {
 ErrFlag = false;
 return a[index];
 } else {
 ErrFlag = true;
 return 0;
 }
 }

 // This is the set accessor.
 set {
 if(ok(index)) {
 a[index] = value;
 ErrFlag = false;
 }
 else ErrFlag = true;
 }
 }

 // Return true if index is within bounds.
 private bool ok(int index) {
 if(index >= 0 & index < Length) return true;
 return false;
 }
}

// Demonstrate the improved fail-soft array.
class ImprovedFSDemo {
 static void Main() {
 FailSoftArray fs = new FailSoftArray(5);
 int x;

 // Can read Length.
 for(int i=0; i < fs.Length; i++)
 fs[i] = i*10;

 for(int i=0; i < fs.Length; i++) {
 x = fs[i];
 if(x != -1) Console.Write(x + " ");
 }
 Console.WriteLine();

 // fs.Length = 10; // Error, illegal!
 }
}

Length is now a property that uses the private variable len for its storage. Length defines
only a get accessor, which means that it is read-only. Thus, Length can be read, but not

258 P a r t I : T h e C # L a n g u a g e

changed. To prove this to yourself, try removing the comment symbol preceding this line
in the program:

// fs.Length = 10; // Error, illegal!

When you try to compile, you will receive an error message stating that Length is read-only.
Although the addition of the Length property improves FailSoftArray, it is not the only

improvement that properties can make. The ErrFlag member is also a prime candidate for
conversion into a property since access to it should also be limited to read-only. Here is the
final improvement of FailSafeArray. It creates a property called Error that uses the original
ErrFlag variable as its storage, and ErrFlag is made private to FailSoftArray.

// Convert ErrFlag into a property.

using System;

class FailSoftArray {
 int[] a; // reference to underlying array
 int len; // length of array

 bool ErrFlag; // now private

 // Construct array given its size.
 public FailSoftArray(int size) {
 a = new int[size];
 len = size;
 }

 // Read-only Length property.
 public int Length {
 get {
 return len;
 }
 }

 // Read-only Error property.
 public bool Error {
 get {
 return ErrFlag;
 }
 }

 // This is the indexer for FailSoftArray.
 public int this[int index] {
 // This is the get accessor.
 get {
 if(ok(index)) {
 ErrFlag = false;
 return a[index];
 } else {
 ErrFlag = true;
 return 0;
 }
 }

PART I

C h a p t e r 1 0 : I n d e x e r s a n d P r o p e r t i e s 259

PART I
PART I

 // This is the set accessor.
 set {
 if(ok(index)) {
 a[index] = value;
 ErrFlag = false;
 }
 else ErrFlag = true;
 }
 }

 // Return true if index is within bounds.
 private bool ok(int index) {
 if(index >= 0 & index < Length) return true;
 return false;
 }
}

// Demonstrate the improved fail-soft array.
class FinalFSDemo {
 static void Main() {
 FailSoftArray fs = new FailSoftArray(5);

 // Use Error property.
 for(int i=0; i < fs.Length + 1; i++) {
 fs[i] = i*10;
 if(fs.Error)
 Console.WriteLine("Error with index " + i);
 }
 }
}

The creation of the Error property has caused two changes to be made to FailSoftArray.
First, ErrFlag has been made private because it is now used as the underlying storage for
the Error property. Thus, it won’t be available directly. Second, the read-only Error property
has been added. Now, programs that need to detect errors will interrogate Error. This is
demonstrated in Main(), where a boundary error is intentionally generated, and the Error
property is used to detect it.

Auto-Implemented Properties
Beginning with C# 3.0, it is possible to implement very simple properties without having
to explicitly define the variable managed by the property. Instead, you can let the compiler
automatically supply the underlying variable. This is called an auto-implemented property. It
has the following general form:

type name { get; set; }

Here, type specifies the type of the property and name specifies the name. Notice that get
and set are immediately followed by a semicolon. The accessors for an auto-implemented
property have no bodies. This syntax tells the compiler to automatically create a storage
location (sometimes referred to as a backing field) that holds the value. This variable is not
named and is not directly available to you. Instead, it can be accessed only through the
property.

260 P a r t I : T h e C # L a n g u a g e

Here is how a property called UserCount is declared using an auto-implemented
property:

public int UserCount { get; set; }

Notice that no variable is explicitly declared. As explained, the compiler automatically
generates an anonymous field that holds the value. Otherwise, UserCount acts like and is
used like any other property.

Unlike normal properties, an auto-implemented property cannot be read-only or write-
only. Both the get and set must be specified in all cases. However, you can approximate the
same effect by declaring either get or set as private, as explained in “Use Access Modifiers
with Accessors” later in this chapter.

Although auto-implemented properties offer convenience, their use is limited to those
cases in which you do not need control over the getting or setting of the backing field.
Remember, you cannot access the backing field directly. This means that there is no way
to constrain the value an auto-implemented property can have. Thus, auto-implemented
properties simply let the name of the property act as a proxy for the field, itself. However,
sometimes this is exactly what you want. Also, they can be very useful in cases in which
properties are used to expose functionality to a third party, possibly through a design tool.

Use Object Initializers with Properties
As discussed in Chapter 8, C# 3.0 adds a new feature called an object initializer, which
provides an alternative to explicitly calling a constructor when creating an object. When
using object initializers, you specify initial values for the fields and/or properties that you
want to initialize. Furthermore, the object initializer syntax is the same for both properties
or fields. For example, here is the object initializer demonstration program from Chapter 8,
reworked to show the use of object initializers with properties. Recall that the version
shown in Chapter 8 used fields. The only difference between this version of the program
and the one shown in Chapter 8 is that Count and Str have been converted from fields into
properties. The object initializer syntax is unchanged.

// Use object initializers with properties.

using System;

class MyClass {
 // These are now properties.
 public int Count { get; set; }
 public string Str { get; set; }
}

class ObjInitDemo {
 static void Main() {
 // Construct a MyClass object by using object initializers.
 MyClass obj = new MyClass { Count = 100, Str = "Testing" };

 Console.WriteLine(obj.Count + " " + obj.Str);
 }
}

PART I

C h a p t e r 1 0 : I n d e x e r s a n d P r o p e r t i e s 261

PART I
PART I

As you can see, the properties Count and Str are set via object initializer expressions. The
output is the same as that produced by the program in Chapter 8 and is shown here:

100 Testing

As explained in Chapter 8, the object initializer syntax is most useful when working
with anonymous types generated by a LINQ expression. In most other cases, you will use
the normal constructor syntax.

Property Restrictions
Properties have some important restrictions. First, because a property does not define a storage
location, it cannot be passed as a ref or out parameter to a method. Second, you cannot
overload a property. (You can have two different properties that both access the same variable,
but this would be unusual.) Finally, a property should not alter the state of the underlying
variable when the get accessor is called. Although this rule is not enforced by the compiler,
violating it is semantically wrong. A get operation should be nonintrusive.

Use Access Modifiers with Accessors
By default, the set and get accessors have the same accessibility as the indexer or property
of which they are a part. For example, if the property is declared public, then by default the
get and set accessors are also public. It is possible, however, to give set or get its own access
modifier, such as private. In all cases, the access modifier for an accessor must be more
restrictive then the access specification of its property or indexer.

There are a number of reasons why you may want to restrict the accessibility of an
accessor. For example, you might want to let anyone obtain the value of a property, but
allow only members of its class to set the property. To do this, declare the set accessor as
private. For example, here is a property called MyProp that has its set accessor specified
as private.

// Use an access modifier with an accessor.

using System;

class PropAccess {
 int prop; // field being managed by MyProp

 public PropAccess() { prop = 0; }

 /* This is the property that supports access to
 the private instance variable prop. It allows
 any code to obtain the value of prop, but only
 other class members can set the value of prop. */
 public int MyProp {
 get {
 return prop;
 }
 private set { // now, private
 prop = value;
 }
 }

262 P a r t I : T h e C # L a n g u a g e

 // This class member increments the value of MyProp.
 public void IncrProp() {
 MyProp++; // OK, in same class.
 }
}

// Demonstrate accessor access modifier.
class PropAccessDemo {
 static void Main() {
 PropAccess ob = new PropAccess();

 Console.WriteLine("Original value of ob.MyProp: " + ob.MyProp);

// ob.MyProp = 100; // can't access set

 ob.IncrProp();
 Console.WriteLine("Value of ob.MyProp after increment: "
 + ob.MyProp);
 }
}

In the PropAccess class, the set accessor is specified private. This means that it can be
accessed by other class members, such as IncrProp(), but it cannot be accessed by code
outside of PropAccess. This is why the attempt to assign ob.MyProp a value inside
PropAccessDemo is commented out.

Perhaps the most important use of restricting an accessor’s access is found when working
with auto-implemented properties. As explained, it is not possible to create a read-only or
write-only auto-implemented property because both the get and set accessors must be
specified when the auto-implemented property is declared. However, you can gain much
the same effect by declaring either get or set as private. For example, this declares what is
effectively a read-only, auto-implemented Length property for the FailSoftArray class
shown earlier.

public int Length { get; private set; }

Because set is private, Length can be set only by code within its class. Outside its class, an
attempt to change Length is illegal. Thus, outside its class, Length is effectively read-only.
The same technique can also be applied to the Error property, like this:

public bool Error { get; private set; }

This allows Error to be read, but not set, by code outside FailSoftArray.
To try the auto-implemented version of Length and Error with FailSoftArray, first

remove the len and ErrFlag variables. They are no longer needed. Then, replace each use of
len inside FailSoftArray with Length and each use of ErrFlag with Error. Here is the updated
version of FailSoftArray along with a Main() method to demonstrate it:

// Use read-only, auto-implemented properties for Length and Error.

using System;

PART I

C h a p t e r 1 0 : I n d e x e r s a n d P r o p e r t i e s 263

PART I
PART I

class FailSoftArray {
 int[] a; // reference to underlying array

 // Construct array given its size.
 public FailSoftArray(int size) {
 a = new int[size];
 Length = size;
 }

 // An auto-implemented, read-only Length property.
 public int Length { get; private set; }

 // An auto-implemented, read-only Error property.
 public bool Error { get; private set; }

 // This is the indexer for FailSoftArray.
 public int this[int index] {
 // This is the get accessor.
 get {
 if(ok(index)) {
 Error = false;
 return a[index];
 } else {
 Error = true;
 return 0;
 }
 }

 // This is the set accessor.
 set {
 if(ok(index)) {
 a[index] = value;
 Error = false;
 }
 else Error = true;
 }
 }

 // Return true if index is within bounds.
 private bool ok(int index) {
 if(index >= 0 & index < Length) return true;
 return false;
 }
}

// Demonstrate the improved fail-soft array.
class FinalFSDemo {
 static void Main() {
 FailSoftArray fs = new FailSoftArray(5);

 // Use Error property.
 for(int i=0; i < fs.Length + 1; i++) {
 fs[i] = i*10;

264 P a r t I : T h e C # L a n g u a g e

 if(fs.Error)
 Console.WriteLine("Error with index " + i);
 }
 }
}

This version of FailSoftArray works the same as the previous version, but it does not
contain the explicitly declared backing fields.

Here are some restrictions that apply to using access modifiers with accessors. First,
only the set or get accessor can be modified, not both. Furthermore, the access modifier must
be more restrictive than the access level of the property or indexer. Finally, an access
modifier cannot be used when declaring an accessor within an interface or when implementing
an accessor specified by an interface. (Interfaces are described in Chapter 12.)

Using Indexers and Properties
Although the preceding examples have demonstrated the basic mechanism of indexers and
properties, they haven’t displayed their full power. To conclude this chapter, a class called
RangeArray is developed that uses indexers and properties to create an array type in which
the index range of the array is determined by the programmer.

As you know, in C# all arrays begin indexing at zero. However, some applications would
benefit from an array that allows indexes to begin at any arbitrary point. For example, in
some situations it might be more convenient for an array to begin indexing with 1. In another
situation, it might be beneficial to allow negative indexes, such as an array that runs from –5
to 5. The RangeArray class developed here allows these and other types of indexing.

Using RangeArray, you can write code like this:

RangeArray ra = new RangeArray(-5, 10); // array with indexes from -5 to 10

for(int i=-5; i <= 10; i++) ra[i] = i; // index from -5 to 10

As you can guess, the first line constructs a RangeArray that runs from –5 to 10, inclusive.
The first argument specifies the beginning index. The second argument specifies the ending
index. Once ra has been constructed, it can be indexed from –5 to 10.

The entire RangeArray class is shown here, along with RangeArrayDemo, which
demonstrates the array. As implemented here, RangeArray supports arrays of int, but
you can change the data type, if desired.

/* Create a specifiable range array class.
 The RangeArray class allows indexing to begin at
 some value other than 0. When you create a RangeArray,
 you specify the beginning and ending index. Negative
 indexes are also allowed. For example, you can create
 arrays that index from -5 to 5, 1 to 10, or 50 to 56.
*/

using System;

class RangeArray {
 // Private data.
 int[] a; // reference to underlying array

PART I

C h a p t e r 1 0 : I n d e x e r s a n d P r o p e r t i e s 265

PART I
PART I

 int lowerBound; // smallest index
 int upperBound; // largest index

 // An auto-implemented, read-only Length property.
 public int Length { get; private set; }

 // An auto-implemented, read-only Error property.
 public bool Error { get; private set; }

 // Construct array given its size.
 public RangeArray(int low, int high) {
 high++;
 if(high <= low) {
 Console.WriteLine("Invalid Indices");
 high = 1; // create a minimal array for safety
 low = 0;
 }
 a = new int[high - low];
 Length = high - low;

 lowerBound = low;
 upperBound = --high;
 }

 // This is the indexer for RangeArray.
 public int this[int index] {
 // This is the get accessor.
 get {
 if(ok(index)) {
 Error = false;
 return a[index - lowerBound];
 } else {
 Error = true;
 return 0;
 }
 }

 // This is the set accessor.
 set {
 if(ok(index)) {
 a[index - lowerBound] = value;
 Error = false;
 }
 else Error = true;
 }
 }

 // Return true if index is within bounds.
 private bool ok(int index) {
 if(index >= lowerBound & index <= upperBound) return true;
 return false;
 }
}

266 P a r t I : T h e C # L a n g u a g e

// Demonstrate the index-range array.
class RangeArrayDemo {
 static void Main() {
 RangeArray ra = new RangeArray(-5, 5);
 RangeArray ra2 = new RangeArray(1, 10);
 RangeArray ra3 = new RangeArray(-20, -12);

 // Demonstrate ra.
 Console.WriteLine("Length of ra: " + ra.Length);

 for(int i = -5; i <= 5; i++)
 ra[i] = i;

 Console.Write("Contents of ra: ");
 for(int i = -5; i <= 5; i++)
 Console.Write(ra[i] + " ");

 Console.WriteLine("\n");

 // Demonstrate ra2.
 Console.WriteLine("Length of ra2: " + ra2.Length);

 for(int i = 1; i <= 10; i++)
 ra2[i] = i;

 Console.Write("Contents of ra2: ");
 for(int i = 1; i <= 10; i++)
 Console.Write(ra2[i] + " ");

 Console.WriteLine("\n");

 // Demonstrate ra3.
 Console.WriteLine("Length of ra3: " + ra3.Length);

 for(int i = -20; i <= -12; i++)
 ra3[i] = i;

 Console.Write("Contents of ra3: ");
 for(int i = -20; i <= -12; i++)
 Console.Write(ra3[i] + " ");

 Console.WriteLine("\n");
 }
}

The output from the program is shown here:

Length of ra: 11
Contents of ra: -5 -4 -3 -2 -1 0 1 2 3 4 5

Length of ra2: 10
Contents of ra2: 1 2 3 4 5 6 7 8 9 10

Length of ra3: 9
Contents of ra3: -20 -19 -18 -17 -16 -15 -14 -13 -12

PART I

C h a p t e r 1 0 : I n d e x e r s a n d P r o p e r t i e s 267

PART I
PART I

As the output verifies, objects of type RangeArray can be indexed in ways other than
starting at zero. Let’s look more closely at how RangeArray is implemented.

RangeArray begins by defining the following private instance variables:

// Private data.
int[] a; // reference to underlying array
int lowerBound; // smallest index
int upperBound; // largest index

The underlying array is referred to by a. This array is allocated by the RangeArray
constructor. The index of the lower bound of the array is stored in lowerBound, and the
index of the upper bound is stored in upperBound.

Next, the auto-implemented, read-only properties Length and Error are declared:

// An auto-implemented, read-only Length property.
public int Length { get; private set; }

// An auto-implemented, read-only Error property.
public bool Error { get; private set; }

Notice that for both properties, the set accessor is private. As explained earlier in this
chapter, this results in what is effectively a read-only, auto-implemented property.

The RangeArray constructor is shown here:

// Construct array given its size.
public RangeArray(int low, int high) {
 high++;
 if(high <= low) {
 Console.WriteLine("Invalid Indices");
 high = 1; // create a minimal array for safety
 low = 0;
 }
 a = new int[high - low];
 Length = high - low;

 lowerBound = low;
 upperBound = --high;
}

A RangeArray is constructed by passing the lower bound index in low and the upper
bound index in high. The value of high is then incremented because the indexes specified
are inclusive. Next, a check is made to ensure that the upper index is greater than the lower
index. If not, an error is reported and a one-element array is created. Next, storage for the
array is allocated and assigned to a. Then the Length property is set equal to the number of
elements in the array. Finally, lowerBound and upperBound are set.

Next, RangeArray implements its indexer, as shown here:

// This is the indexer for RangeArray.
public int this[int index] {
 // This is the get accessor.
 get {
 if(ok(index)) {

268 P a r t I : T h e C # L a n g u a g e

 Error = false;
 return a[index - lowerBound];
 } else {
 Error = true;
 return 0;
 }
 }

 // This is the set accessor.
 set {
 if(ok(index)) {
 a[index - lowerBound] = value;
 Error = false;
 }
 else Error = true;
 }
}

This indexer is similar to the one used by FailSoftArray, with one important exception.
Notice the expression that indexes a. It is

index - lowerBound

This expression transforms the index passed in index into a zero-based index suitable for
use on a. This expression works whether lowerBound is positive, negative, or zero.

The ok() method is shown here:

// Return true if index is within bounds.
private bool ok(int index) {
 if(index >= lowerBound & index <= upperBound) return true;
 return false;
}

It is similar to the one used by FailSoftArray except that the range is checked by testing it
against the values in lowerBound and upperBound.

RangeArray illustrates just one kind of custom array that you can create through the
use of indexers and properties. There are, of course, several others. For example, you can
create dynamic arrays, which expand and contract as needed, associative arrays, and sparse
arrays. You might want to try creating one of these types of arrays as an exercise.

11
Inheritance

Inheritance is one of the three foundational principles of object-oriented programming
because it allows the creation of hierarchical classifications. Using inheritance, you can
create a general class that defines traits common to a set of related items. This class can

then be inherited by other, more specific classes, each adding those things that are unique
to it.

In the language of C#, a class that is inherited is called a base class. The class that does
the inheriting is called a derived class. Therefore, a derived class is a specialized version of a
base class. It inherits all of the variables, methods, properties, and indexers defined by the
base class and adds its own unique elements.

Inheritance Basics
C# supports inheritance by allowing one class to incorporate another class into its declaration.
This is done by specifying a base class when a derived class is declared. Let’s begin with
an example. The following class called TwoDShape stores the width and height of a two-
dimensional object, such as a square, rectangle, triangle, and so on.

// A class for two-dimensional objects.
class TwoDShape {
 public double Width;
 public double Height;

 public void ShowDim() {
 Console.WriteLine("Width and height are " +
 Width + " and " + Height);
 }
}

TwoDShape can be used as a base class (that is, as a starting point) for classes that
describe specific types of two-dimensional objects. For example, the following program uses
TwoDShape to derive a class called Triangle. Pay close attention to the way that Triangle is
declared.

// A simple class hierarchy.

269

CHAPTER

270 P a r t I : T h e C # L a n g u a g e

using System;

// A class for two-dimensional objects.
class TwoDShape {
 public double Width;
 public double Height;

 public void ShowDim() {
 Console.WriteLine("Width and height are " +
 Width + " and " + Height);
 }
}

// Triangle is derived from TwoDShape.
class Triangle : TwoDShape {
 public string Style; // style of triangle

 // Return area of triangle.
 public double Area() {
 return Width * Height / 2;
 }

 // Display a triangle's style.
 public void ShowStyle() {
 Console.WriteLine("Triangle is " + Style);
 }
}

class Shapes {
 static void Main() {
 Triangle t1 = new Triangle();
 Triangle t2 = new Triangle();

 t1.Width = 4.0;
 t1.Height = 4.0;
 t1.Style = "isosceles";

 t2.Width = 8.0;
 t2.Height = 12.0;
 t2.Style = "right";

 Console.WriteLine("Info for t1: ");
 t1.ShowStyle();
 t1.ShowDim();
 Console.WriteLine("Area is " + t1.Area());

 Console.WriteLine();

 Console.WriteLine("Info for t2: ");
 t2.ShowStyle();
 t2.ShowDim();
 Console.WriteLine("Area is " + t2.Area());
 }
}

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 271

PART I
PART I

The output from this program is shown here:

Info for t1:
Triangle is isosceles
Width and height are 4 and 4
Area is 8

Info for t2:
Triangle is right
Width and height are 8 and 12
Area is 48

The Triangle class creates a specific type of TwoDShape, in this case, a triangle. The
Triangle class includes all of TwoDShape and adds the field Style, the method Area(), and
the method ShowStyle(). A description of the type of triangle is stored in Style; Area()
computes and returns the area of the triangle; and ShowStyle() displays the triangle style.

Notice the syntax that Triangle uses to inherit TwoDShape:

class Triangle : TwoDShape {

This syntax can be generalized. Whenever one class inherits another, the base class name
follows the name of the derived class, separated by a colon. In C#, the syntax for inheriting
a class is remarkably simple and easy to use.

Because Triangle includes all of the members of its base class, TwoDShape, it can access
Width and Height inside Area(). Also, inside Main(), objects t1 and t2 can refer to Width
and Height directly, as if they were part of Triangle. Figure 11-1 depicts conceptually how
TwoDShape is incorporated into Triangle.

Even though TwoDShape is a base for Triangle, it is also a completely independent,
stand-alone class. Being a base class for a derived class does not mean that the base class
cannot be used by itself. For example, the following is perfectly valid:

TwoDShape shape = new TwoDShape();

shape.Width = 10;
shape.Height = 20;

shape.ShowDim();

Of course, an object of TwoDShape has no knowledge of or access to any classes derived
from TwoDShape.

W

H

A

FIGURE 11-1 A conceptual depiction of the Triangle class

272 P a r t I : T h e C # L a n g u a g e

The general form of a class declaration that inherits a base class is shown here:

class derived-class-name : base-class-name {
 // body of class
}

You can specify only one base class for any derived class that you create. C# does not
support the inheritance of multiple base classes into a single derived class. (This differs
from C++, in which you can inherit multiple base classes. Be aware of this when converting
C++ code to C#.) You can, however, create a hierarchy of inheritance in which a derived
class becomes a base class of another derived class. (Of course, no class can be a base class
of itself, either directly or indirectly.) In all cases, a derived class inherits all of the members
of its base class. This includes instance variables, methods, properties, and indexers.

A major advantage of inheritance is that once you have created a base class that defines
the attributes common to a set of objects, it can be used to create any number of more
specific derived classes. Each derived class can precisely tailor its own classification. For
example, here is another class derived from TwoDShape that encapsulates rectangles:

// A derived class of TwoDShape for rectangles.
class Rectangle : TwoDShape {
 // Return true if the rectangle is square.
 public bool IsSquare() {
 if(Width == Height) return true;
 return false;
 }

 // Return area of the rectangle.
 public double Area() {
 return Width * Height;
 }
}

The Rectangle class includes TwoDShape and adds the methods IsSquare(), which
determines if the rectangle is square, and Area(), which computes the area of a rectangle.

Member Access and Inheritance
As explained in Chapter 8, members of a class are often declared private to prevent their
unauthorized use or tampering. Inheriting a class does not overrule the private access
restriction. Thus, even though a derived class includes all of the members of its base class,
it cannot access those members of the base class that are private. For example, if, as shown
here, Width and Height are made private in TwoDShape, then Triangle will not be able to
access them:

// Access to private members is not inherited.

// This example will not compile.
using System;

// A class for two-dimensional objects.
class TwoDShape {

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 273

PART I
PART I

 double Width; // now private
 double Height; // now private

 public void ShowDim() {
 Console.WriteLine("Width and height are " +
 Width + " and " + Height);
 }
}

// Triangle is derived from TwoDShape.
class Triangle : TwoDShape {
 public string Style; // style of triangle

 // Return area of triangle.
 public double Area() {
 return Width * Height / 2; // Error, can't access private member
 }

 // Display a triangle's style.
 public void ShowStyle() {
 Console.WriteLine("Triangle is " + Style);
 }
}

The Triangle class will not compile because the use of Width and Height inside the
Area() method is illegal. Since Width and Height are now private, they are accessible only
to other members of their own class. Derived classes have no access to them.

REMEMBERREMEMBER A private class member will remain private to its class. It is not accessible to any code
outside its class, including derived classes.

At first, you might think that it is a serious restriction that derived classes do not have
access to the private members of base classes because it would prevent the use of private
members in many situations. However, this is not true; C# provides various solutions. One
is to use protected members, which is described in the next section. A second is to use public
properties to provide access to private data.

As explained in the previous chapter, a property allows you to manage access to an
instance variable. For example, you can enforce constraints on its values, or you can make
the variable read-only. By making a property public, but declaring its underlying variable
private, a derived class can still use the property, but it cannot directly access the underlying
private variable.

Here is a rewrite of the TwoDShape class that makes Width and Height into properties.
In the process, it ensures that the values of Width and Height will be positive. This would
allow you, for example, to specify the Width and Height using the coordinates of the shape
in any quadrant of the Cartesian plane without having to first obtain their absolute values.

// Use public properties to set and get private members.

using System;

// A class for two-dimensional objects.

274 P a r t I : T h e C # L a n g u a g e

class TwoDShape {
 double pri_width; // now private
 double pri_height; // now private

 // Properties for width and height.
 public double Width {
 get { return pri_width; }
 set { pri_width = value < 0 ? -value : value; }
 }

 public double Height {
 get { return pri_height; }
 set { pri_height = value < 0 ? -value : value; }
 }

 public void ShowDim() {
 Console.WriteLine("Width and height are " +
 Width + " and " + Height);
 }
}

// A derived class of TwoDShape for triangles.
class Triangle : TwoDShape {
 public string Style; // style of triangle

 // Return area of triangle.
 public double Area() {
 return Width * Height / 2;
 }

 // Display a triangle's style.
 public void ShowStyle() {
 Console.WriteLine("Triangle is " + Style);
 }
}

class Shapes2 {
 static void Main() {
 Triangle t1 = new Triangle();
 Triangle t2 = new Triangle();

 t1.Width = 4.0;
 t1.Height = 4.0;
 t1.Style = "isosceles";

 t2.Width = 8.0;
 t2.Height = 12.0;
 t2.Style = "right";

 Console.WriteLine("Info for t1: ");
 t1.ShowStyle();
 t1.ShowDim();
 Console.WriteLine("Area is " + t1.Area());

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 275

PART I
PART I

 Console.WriteLine();

 Console.WriteLine("Info for t2: ");
 t2.ShowStyle();
 t2.ShowDim();
 Console.WriteLine("Area is " + t2.Area());
 }
}

In this version, the properties Width and Height provide access to the private members,
pri_width and pri_height, which actually store the values. Therefore, even though
pri_width and pri_height are private to TwoDShape, their values can still be set and
obtained through their corresponding public properties.

When referring to base and derived classes, sometimes the terms superclass and subclass
are used. These terms come from Java programming. What Java calls a superclass, C# calls
a base class. What Java calls a subclass, C# calls a derived class. You will commonly hear
both sets of terms applied to a class of either language, but this book will continue to use
the standard C# terms. C++ also uses the base-class/derived-class terminology.

Using Protected Access
As just explained, a private member of a base class is not accessible to a derived class. This
would seem to imply that if you wanted a derived class to have access to some member in
the base class, it would need to be public. Of course, making the member public also makes
it available to all other code, which may not be desirable. Fortunately, this implication is
untrue because C# allows you to create a protected member. A protected member is public
within a class hierarchy, but private outside that hierarchy.

A protected member is created by using the protected access modifier. When a member
of a class is declared as protected, that member is, with one important exception, private.
The exception occurs when a protected member is inherited. In this case, a protected member
of the base class becomes a protected member of the derived class and is, therefore, accessible
to the derived class. Therefore, by using protected, you can create class members that are
private to their class but that can still be inherited and accessed by a derived class.

Here is a simple example that uses protected:

// Demonstrate protected.

using System;

class B {
 protected int i, j; // private to B, but accessible by D

 public void Set(int a, int b) {
 i = a;
 j = b;
 }

 public void Show() {
 Console.WriteLine(i + " " + j);
 }
}

276 P a r t I : T h e C # L a n g u a g e

class D : B {
 int k; // private

 // D can access B's i and j
 public void Setk() {
 k = i * j;
 }

 public void Showk() {
 Console.WriteLine(k);
 }
}

class ProtectedDemo {
 static void Main() {
 D ob = new D();

 ob.Set(2, 3); // OK, known to D
 ob.Show(); // OK, known to D

 ob.Setk(); // OK, part of D
 ob.Showk(); // OK, part of D
 }
}

In this example, because B is inherited by D and because i and j are declared as protected in
B, the Setk() method can access them. If i and j had been declared as private by B, then D
would not have access to them, and the program would not compile.

Like public and private, protected status stays with a member no matter how many
layers of inheritance are involved. Therefore, when a derived class is used as a base class for
another derived class, any protected member of the initial base class that is inherited by the
first derived class is also inherited as protected by a second derived class.

Although protected access is quite useful, it doesn’t apply in all situations. For example,
in the case of TwoDShape shown in the preceding section, we specifically want the Width
and Height values to be publicly accessible. It’s just that we want to manage the values they
are assigned. Therefore, declaring them protected is not an option. In this case, the use of
properties supplies the proper solution by controlling, rather than preventing, access.
Remember, use protected when you want to create a member that is accessible throughout a
class hierarchy, but otherwise private. To manage access to a value, use a property.

Constructors and Inheritance
In a hierarchy, it is possible for both base classes and derived classes to have their own
constructors. This raises an important question: What constructor is responsible for building
an object of the derived class? The one in the base class, the one in the derived class, or both?
Here is the answer: The constructor for the base class constructs the base class portion of the
object, and the constructor for the derived class constructs the derived class part. This makes
sense because the base class has no knowledge of or access to any element in a derived
class. Thus, their construction must be separate. The preceding examples have relied upon
the default constructors created automatically by C#, so this was not an issue. However, in
practice, most classes will define constructors. Here you will see how to handle this situation.

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 277

PART I
PART I

When only the derived class defines a constructor, the process is straightforward:
Simply construct the derived class object. The base class portion of the object is constructed
automatically using its default constructor. For example, here is a reworked version of
Triangle that defines a constructor. It also makes Style private since it is now set by the
constructor.

// Add a constructor to Triangle.

using System;

// A class for two-dimensional objects.
class TwoDShape {
 double pri_width;
 double pri_height;

 // Properties for Width and Height.
 public double Width {
 get { return pri_width; }
 set { pri_width = value < 0 ? -value : value; }
 }

 public double Height {
 get { return pri_height; }
 set { pri_height = value < 0 ? -value : value; }
 }

 public void ShowDim() {
 Console.WriteLine("Width and height are " +
 Width + " and " + Height);
 }
}

// A derived class of TwoDShape for triangles.
class Triangle : TwoDShape {
 string Style;

 // Constructor.
 public Triangle(string s, double w, double h) {
 Width = w; // init the base class
 Height = h; // init the base class

 Style = s; // init the derived class
 }

 // Return area of triangle.
 public double Area() {
 return Width * Height / 2;
 }

 // Display a triangle's style.
 public void ShowStyle() {
 Console.WriteLine("Triangle is " + Style);
 }
}

278 P a r t I : T h e C # L a n g u a g e

class Shapes3 {
 static void Main() {
 Triangle t1 = new Triangle("isosceles", 4.0, 4.0);
 Triangle t2 = new Triangle("right", 8.0, 12.0);

 Console.WriteLine("Info for t1: ");
 t1.ShowStyle();
 t1.ShowDim();
 Console.WriteLine("Area is " + t1.Area());

 Console.WriteLine();

 Console.WriteLine("Info for t2: ");
 t2.ShowStyle();
 t2.ShowDim();
 Console.WriteLine("Area is " + t2.Area());
 }
}

Here, Triangle’s constructor initializes the members of TwoDShape that it inherits along
with its own Style field.

When both the base class and the derived class define constructors, the process is a
bit more complicated because both the base class and derived class constructors must be
executed. In this case, you must use another of C#’s keywords, base, which has two uses.
The first use is to call a base class constructor. The second is to access a member of the base
class that has been hidden by a member of a derived class. Here, we will look at its first use.

Calling Base Class Constructors
A derived class can call a constructor defined in its base class by using an expanded form
of the derived class’ constructor declaration and the base keyword. The general form of this
expanded declaration is shown here:

derived-constructor(parameter-list) : base(arg-list) {
 // body of constructor
}

Here, arg-list specifies any arguments needed by the constructor in the base class. Notice the
placement of the colon.

To see how base is used, consider the version of TwoDShape in the following program.
It defines a constructor that initializes the Width and Height properties. This constructor is
then called by the Triangle constructor.

// Add constructor to TwoDShape.

using System;

// A class for two-dimensional objects.
class TwoDShape {
 double pri_width;
 double pri_height;

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 279

PART I
PART I

 // Constructor for TwoDShape.
 public TwoDShape(double w, double h) {
 Width = w;
 Height = h;
 }

 // Properties for Width and Height.
 public double Width {
 get { return pri_width; }
 set { pri_width = value < 0 ? -value : value; }
 }

 public double Height {
 get { return pri_height; }
 set { pri_height = value < 0 ? -value : value; }
 }

 public void ShowDim() {
 Console.WriteLine("Width and height are " +
 Width + " and " + Height);
 }
}

 // A derived class of TwoDShape for triangles.
class Triangle : TwoDShape {
 string Style;

 // Call the base class constructor.
 public Triangle(string s, double w, double h) : base(w, h) {
 Style = s;
 }

 // Return area of triangle.
 public double Area() {
 return Width * Height / 2;
 }

 // Display a triangle's style.
 public void ShowStyle() {
 Console.WriteLine("Triangle is " + Style);
 }
}

class Shapes4 {
 static void Main() {
 Triangle t1 = new Triangle("isosceles", 4.0, 4.0);
 Triangle t2 = new Triangle("right", 8.0, 12.0);

 Console.WriteLine("Info for t1: ");
 t1.ShowStyle();
 t1.ShowDim();
 Console.WriteLine("Area is " + t1.Area());

280 P a r t I : T h e C # L a n g u a g e

 Console.WriteLine();

 Console.WriteLine("Info for t2: ");
 t2.ShowStyle();
 t2.ShowDim();
 Console.WriteLine("Area is " + t2.Area());
 }
}

Notice that the Triangle constructor is now declared as shown here.

public Triangle(string s, double w, double h) : base(w, h) {

In this version, Triangle() calls base with the parameters w and h. This causes the
TwoDShape() constructor to be called, which initializes Width and Height using these
values. Triangle no longer initializes these values itself. It need only initialize the value
unique to it: Style. This leaves TwoDShape free to construct its subobject in any manner
that it chooses. Furthermore, TwoDShape can add functionality about which existing
derived classes have no knowledge, thus preventing existing code from breaking.

Any form of constructor defined by the base class can be called by base. The constructor
executed will be the one that matches the arguments. For example, here are expanded
versions of both TwoDShape and Triangle that include default constructors and constructors
that take one argument.

// Add more constructors to TwoDShape.

using System;

class TwoDShape {
 double pri_width;
 double pri_height;

 // Default constructor.
 public TwoDShape() {
 Width = Height = 0.0;
 }

 // Constructor for TwoDShape.
 public TwoDShape(double w, double h) {
 Width = w;
 Height = h;
 }

 // Construct object with equal width and height.
 public TwoDShape(double x) {
 Width = Height = x;
 }

 // Properties for Width and Height.
 public double Width {
 get { return pri_width; }
 set { pri_width = value < 0 ? -value : value; }
 }

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 281

PART I
PART I

 public double Height {
 get { return pri_height; }
 set { pri_height = value < 0 ? -value : value; }
 }

 public void ShowDim() {
 Console.WriteLine("Width and height are " +
 Width + " and " + Height);
 }
}

// A derived class of TwoDShape for triangles.
class Triangle : TwoDShape {
 string Style;

 /* A default constructor. This automatically invokes
 the default constructor of TwoDShape. */
 public Triangle() {
 Style = "null";
 }

 // Constructor that takes three arguments.
 public Triangle(string s, double w, double h) : base(w, h) {
 Style = s;
 }

 // Construct an isosceles triangle.
 public Triangle(double x) : base(x) {
 Style = "isosceles";
 }

 // Return area of triangle.
 public double Area() {
 return Width * Height / 2;
 }

 // Display a triangle's style.
 public void ShowStyle() {
 Console.WriteLine("Triangle is " + Style);
 }
}

class Shapes5 {
 static void Main() {
 Triangle t1 = new Triangle();
 Triangle t2 = new Triangle("right", 8.0, 12.0);
 Triangle t3 = new Triangle(4.0);

 t1 = t2;

 Console.WriteLine("Info for t1: ");
 t1.ShowStyle();
 t1.ShowDim();
 Console.WriteLine("Area is " + t1.Area());

282 P a r t I : T h e C # L a n g u a g e

 Console.WriteLine();

 Console.WriteLine("Info for t2: ");
 t2.ShowStyle();
 t2.ShowDim();
 Console.WriteLine("Area is " + t2.Area());

 Console.WriteLine();

 Console.WriteLine("Info for t3: ");
 t3.ShowStyle();
 t3.ShowDim();
 Console.WriteLine("Area is " + t3.Area());

 Console.WriteLine();
 }
}

Here is the output from this version:

Info for t1:
Triangle is right
Width and height are 8 and 12
Area is 48

Info for t2:
Triangle is right
Width and height are 8 and 12
Area is 48

Info for t3:
Triangle is isosceles
Width and height are 4 and 4
Area is 8

Let’s review the key concepts behind base. When a derived class specifies a base
clause, it is calling the constructor of its immediate base class. Thus, base always refers
to the base class immediately above the calling class. This is true even in a multileveled
hierarchy. You pass arguments to the base constructor by specifying them as arguments to
base. If no base clause is present, then the base class’ default constructor is called
automatically.

Inheritance and Name Hiding
It is possible for a derived class to define a member that has the same name as a member in
its base class. When this happens, the member in the base class is hidden within the derived
class. While this is not technically an error in C#, the compiler will issue a warning message.
This warning alerts you to the fact that a name is being hidden. If your intent is to hide a
base class member, then to prevent this warning, the derived class member must be preceded
by the new keyword. Understand that this use of new is separate and distinct from its use
when creating an object instance.

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 283

PART I
PART I

Here is an example of name hiding:

// An example of inheritance-related name hiding.

using System;

class A {
 public int i = 0;
}

// Create a derived class.
class B : A {
 new int i; // this i hides the i in A

 public B(int b) {
 i = b; // i in B
 }

 public void Show() {
 Console.WriteLine("i in derived class: " + i);
 }
}

class NameHiding {
 static void Main() {
 B ob = new B(2);

 ob.Show();
 }
}

First, notice the use of new in this line.

new int i; // this i hides the i in A

In essence, it tells the compiler that you know a new variable called i is being created that
hides the i in the base class A. If you leave new out, a warning is generated.

The output produced by this program is shown here:

i in derived class: 2

Since B defines its own instance variable called i, it hides the i in A. Therefore, when Show()
is invoked on an object of type B, the value of i as defined by B is displayed—not the one
defined in A.

Using base to Access a Hidden Name
There is a second form of base that acts somewhat like this, except that it always refers to the
base class of the derived class in which it is used. This usage has the following general form:

base.member

Here, member can be either a method or an instance variable. This form of base is most
applicable to situations in which member names of a derived class hide members by the

284 P a r t I : T h e C # L a n g u a g e

same name in the base class. Consider this version of the class hierarchy from the preceding
example:

// Using base to overcome name hiding.

using System;

class A {
 public int i = 0;
}

// Create a derived class.
class B : A {
 new int i; // this i hides the i in A

 public B(int a, int b) {
 base.i = a; // this uncovers the i in A
 i = b; // i in B
 }

 public void Show() {
 // This displays the i in A.
 Console.WriteLine("i in base class: " + base.i);

 // This displays the i in B.
 Console.WriteLine("i in derived class: " + i);
 }
}

class UncoverName {
 static void Main() {
 B ob = new B(1, 2);

 ob.Show();
 }
}

This program displays the following:

i in base class: 1
i in derived class: 2

Although the instance variable i in B hides the i in A, base allows access to the i defined in
the base class.

Hidden methods can also be called through the use of base. For example, in the
following code, class B inherits class A, and both A and B declare a method called Show().
Inside, B’s Show(), the version of Show() defined by A is called through the use of base.

// Call a hidden method.

using System;

class A {

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 285

PART I
PART I

 public int i = 0;

 // Show() in A
 public void Show() {
 Console.WriteLine("i in base class: " + i);
 }
}

// Create a derived class.
class B : A {
 new int i; // this i hides the i in A

 public B(int a, int b) {
 base.i = a; // this uncovers the i in A
 i = b; // i in B
 }

 // This hides Show() in A. Notice the use of new.
 new public void Show() {
 base.Show(); // this calls Show() in A

 // this displays the i in B
 Console.WriteLine("i in derived class: " + i);
 }
}

class UncoverName {
 static void Main() {
 B ob = new B(1, 2);

 ob.Show();
 }
}

The output from the program is shown here:

i in base class: 1
i in derived class: 2

As you can see, base.Show() calls the base class version of Show().
One other point: Notice that new is used in this program to tell the compiler that you

know a new method called Show() is being declared that hides the Show() in A.

Creating a Multilevel Hierarchy
Up to this point, we have been using simple class hierarchies consisting of only a base class
and a derived class. However, you can build hierarchies that contain as many layers of
inheritance as you like. As mentioned, it is perfectly acceptable to use a derived class as a
base class of another. For example, given three classes called A, B, and C, C can be derived
from B, which can be derived from A. When this type of situation occurs, each derived class
inherits all of the traits found in all of its base classes. In this case, C inherits all aspects of B
and A.

286 P a r t I : T h e C # L a n g u a g e

To see how a multilevel hierarchy can be useful, consider the following program.
In it, the derived class Triangle is used as a base class to create the derived class called
ColorTriangle. ColorTriangle inherits all of the traits of Triangle and TwoDShape and
adds a field called color, which holds the color of the triangle.

// A multilevel hierarchy.

using System;

class TwoDShape {
 double pri_width;
 double pri_height;

 // Default constructor.
 public TwoDShape() {
 Width = Height = 0.0;
 }

 // Constructor for TwoDShape.
 public TwoDShape(double w, double h) {
 Width = w;
 Height = h;
 }

 // Construct object with equal width and height.
 public TwoDShape(double x) {
 Width = Height = x;
 }

 // Properties for Width and Height.
 public double Width {
 get { return pri_width; }
 set { pri_width = value < 0 ? -value : value; }
 }

 public double Height {
 get { return pri_height; }
 set { pri_height = value < 0 ? -value : value; }
 }

 public void ShowDim() {
 Console.WriteLine("Width and height are " +
 Width + " and " + Height);
 }
}

// A derived class of TwoDShape for triangles.
class Triangle : TwoDShape {
 string Style; // private

 /* A default constructor. This invokes the default
 constructor of TwoDShape. */
 public Triangle() {
 Style = "null";
 }

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 287

PART I
PART I

 // Constructor.
 public Triangle(string s, double w, double h) : base(w, h) {
 Style = s;
 }

 // Construct an isosceles triangle.
 public Triangle(double x) : base(x) {
 Style = "isosceles";
 }

 // Return area of triangle.
 public double Area() {
 return Width * Height / 2;
 }

 // Display a triangle's style.
 public void ShowStyle() {
 Console.WriteLine("Triangle is " + Style);
 }
}

// Extend Triangle.
class ColorTriangle : Triangle {
 string color;

 public ColorTriangle(string c, string s,
 double w, double h) : base(s, w, h) {
 color = c;
 }

 // Display the color.
 public void ShowColor() {
 Console.WriteLine("Color is " + color);
 }
}

class Shapes6 {
 static void Main() {
 ColorTriangle t1 =
 new ColorTriangle("Blue", "right", 8.0, 12.0);
 ColorTriangle t2 =
 new ColorTriangle("Red", "isosceles", 2.0, 2.0);

 Console.WriteLine("Info for t1: ");
 t1.ShowStyle();
 t1.ShowDim();
 t1.ShowColor();
 Console.WriteLine("Area is " + t1.Area());

 Console.WriteLine();

 Console.WriteLine("Info for t2: ");
 t2.ShowStyle();
 t2.ShowDim();
 t2.ShowColor();

288 P a r t I : T h e C # L a n g u a g e

 Console.WriteLine("Area is " + t2.Area());
 }
}

The output of this program is shown here:

Info for t1:
Triangle is right
Width and height are 8 and 12
Color is Blue
Area is 48

Info for t2:
Triangle is isosceles
Width and height are 2 and 2
Color is Red
Area is 2

Because of inheritance, ColorTriangle can make use of the previously defined classes of
Triangle and TwoDShape, adding only the extra information it needs for its own, specific
application. This is part of the value of inheritance; it allows the reuse of code.

This example illustrates one other important point: base always refers to the constructor
in the closest base class. The base in ColorTriangle calls the constructor in Triangle. The
base in Triangle calls the constructor in TwoDShape. In a class hierarchy, if a base class
constructor requires parameters, then all derived classes must pass those parameters “up
the line.” This is true whether or not a derived class needs parameters of its own.

When Are Constructors Called?
In the foregoing discussion of inheritance and class hierarchies, an important question may
have occurred to you: When a derived class object is created, whose constructor is executed
first? The one in the derived class or the one defined by the base class? For example, given a
derived class called B and a base class called A, is A’s constructor called before B’s, or vice
versa? The answer is that in a class hierarchy, constructors are called in order of derivation,
from base class to derived class. Furthermore, this order is the same whether or not base is
used. If base is not used, then the default (parameterless) constructor of each base class will
be executed. The following program illustrates the order of constructor execution:

// Demonstrate when constructors are called.

using System;

// Create a base class.
class A {
 public A() {
 Console.WriteLine("Constructing A.");
 }
}

// Create a class derived from A.
class B : A {
 public B() {

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 289

PART I
PART I

 Console.WriteLine("Constructing B.");
 }
}

// Create a class derived from B.
class C : B {
 public C() {
 Console.WriteLine("Constructing C.");
 }
}

class OrderOfConstruction {
 static void Main() {
 C c = new C();
 }
}

The output from this program is shown here:

Constructing A.
Constructing B.
Constructing C.

As you can see, the constructors are called in order of derivation.
If you think about it, it makes sense that constructors are executed in order of derivation.

Because a base class has no knowledge of any derived class, any initialization it needs to
perform is separate from and possibly prerequisite to any initialization performed by the
derived class. Therefore, it must be executed first.

Base Class References and Derived Objects
As you know, C# is a strongly typed language. Aside from the standard conversions and
automatic promotions that apply to its value types, type compatibility is strictly enforced.
Therefore, a reference variable for one class type cannot normally refer to an object of
another class type. For example, consider the following program that declares two classes
that are identical in their composition:

// This program will not compile.

class X {
 int a;

 public X(int i) { a = i; }
}

class Y {
 int a;

 public Y(int i) { a = i; }
}

class IncompatibleRef {
 static void Main() {

290 P a r t I : T h e C # L a n g u a g e

 X x = new X(10);
 X x2;
 Y y = new Y(5);

 x2 = x; // OK, both of same type

 x2 = y; // Error, not of same type
 }
}

Here, even though class X and class Y are physically the same, it is not possible to assign a
reference of type Y to a variable of type X because they have different types. Therefore, this
line is incorrect because it causes a compile-time type mismatch:

x2 = y; // Error, not of same type

In general, an object reference variable can refer only to objects of its type.
There is, however, an important exception to C#’s strict type enforcement. A reference

variable of a base class can be assigned a reference to an object of any class derived from
that base class. This is legal because an instance of a derived type encapsulates an instance
of the base type. Thus, a base class reference can refer to it. Here is an example:

// A base class reference can refer to a derived class object.

using System;

class X {
 public int a;

 public X(int i) {
 a = i;
 }
}

class Y : X {
 public int b;

 public Y(int i, int j) : base(j) {
 b = i;
 }
}

class BaseRef {
 static void Main() {
 X x = new X(10);
 X x2;
 Y y = new Y(5, 6);

 x2 = x; // OK, both of same type
 Console.WriteLine("x2.a: " + x2.a);

 x2 = y; // OK because Y is derived from X
 Console.WriteLine("x2.a: " + x2.a);

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 291

PART I
PART I

 // X references know only about X members
 x2.a = 19; // OK
// x2.b = 27; // Error, X doesn't have a b member
 }
}

In this program, Y is derived from X. Now, the assignment

x2 = y; // OK because Y is derived from X

is permissible because a base class reference, x2 in this case, can refer to a derived class
object (which is the object referred to by y).

It is important to understand that it is the type of the reference variable—not the type of
the object that it refers to—that determines what members can be accessed. That is, when a
reference to a derived class object is assigned to a base class reference variable, you will
have access only to those parts of the object defined by the base class. This is why x2 can’t
access b even when it refers to a Y object. This makes sense because the base class has no
knowledge of what a derived class adds to it. This is why the last line of code in the program
is commented out.

Although the preceding discussion may seem a bit esoteric, it has some important
practical applications. One is described here. The other is discussed later in this chapter,
when virtual methods are covered.

An important place where derived class references are assigned to base class variables
is when constructors are called in a class hierarchy. As you know, it is common for a class
to define a constructor that takes an object of its class as a parameter. This allows the class to
construct a copy of an object. Classes derived from such a class can take advantage of this
feature. For example, consider the following versions of TwoDShape and Triangle. Both
add constructors that take an object as a parameter.

// Pass a derived class reference to a base class reference.

using System;

class TwoDShape {
 double pri_width;
 double pri_height;

 // Default constructor.
 public TwoDShape() {
 Width = Height = 0.0;
 }

 // Constructor for TwoDShape.
 public TwoDShape(double w, double h) {
 Width = w;
 Height = h;
 }

 // Construct object with equal width and height.
 public TwoDShape(double x) {
 Width = Height = x;
 }

292 P a r t I : T h e C # L a n g u a g e

 // Construct a copy of a TwoDShape object.
 public TwoDShape(TwoDShape ob) {
 Width = ob.Width;
 Height = ob.Height;
 }

 // Properties for Width and Height.
 public double Width {
 get { return pri_width; }
 set { pri_width = value < 0 ? -value : value; }
 }

 public double Height {
 get { return pri_height; }
 set { pri_height = value < 0 ? -value : value; }
 }

 public void ShowDim() {
 Console.WriteLine("Width and height are " +
 Width + " and " + Height);
 }
}

// A derived class of TwoDShape for triangles.
class Triangle : TwoDShape {
 string Style;

 // A default constructor.
 public Triangle() {
 Style = "null";
 }

 // Constructor for Triangle.
 public Triangle(string s, double w, double h) : base(w, h) {
 Style = s;
 }

 // Construct an isosceles triangle.
 public Triangle(double x) : base(x) {
 Style = "isosceles";
 }

 // Construct a copy of a Triangle object.
 public Triangle(Triangle ob) : base(ob) {
 Style = ob.Style;
 }

 // Return area of triangle.
 public double Area() {
 return Width * Height / 2;
 }

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 293

PART I
PART I

 // Display a triangle's style.
 public void ShowStyle() {
 Console.WriteLine("Triangle is " + Style);
 }
}

class Shapes7 {
 static void Main() {
 Triangle t1 = new Triangle("right", 8.0, 12.0);

 // Make a copy of t1.
 Triangle t2 = new Triangle(t1);

 Console.WriteLine("Info for t1: ");
 t1.ShowStyle();
 t1.ShowDim();
 Console.WriteLine("Area is " + t1.Area());

 Console.WriteLine();

 Console.WriteLine("Info for t2: ");
 t2.ShowStyle();
 t2.ShowDim();
 Console.WriteLine("Area is " + t2.Area());
 }
}

In this program, t2 is constructed from t1 and is, thus, identical. The output is shown here:

Info for t1:
Triangle is right
Width and height are 8 and 12
Area is 48

Info for t2:
Triangle is right
Width and height are 8 and 12
Area is 48

Pay special attention to this Triangle constructor:

public Triangle(Triangle ob) : base(ob) {
 Style = ob.Style;
}

It receives an object of type Triangle, and it passes that object (through base) to this
TwoDShape constructor:

public TwoDShape(TwoDShape ob) {
 Width = ob.Width;
 Height = ob.Height;
}

294 P a r t I : T h e C # L a n g u a g e

The key point is that TwoDShape() is expecting a TwoDShape object. However,
Triangle() passes it a Triangle object. As explained, the reason this works is because a base
class reference can refer to a derived class object. Thus, it is perfectly acceptable to pass
TwoDShape() a reference to an object of a class derived from TwoDShape. Because the
TwoDShape() constructor is initializing only those portions of the derived class object
that are members of TwoDShape, it doesn’t matter that the object might also contain other
members added by derived classes.

Virtual Methods and Overriding
A virtual method is a method that is declared as virtual in a base class. The defining
characteristic of a virtual method is that it can be redefined in one or more derived classes.
Thus, each derived class can have its own version of a virtual method. Virtual methods are
interesting because of what happens when one is called through a base class reference. In
this situation, C# determines which version of the method to call based upon the type of the
object referred to by the reference—and this determination is made at runtime. Thus, when
different objects are referred to, different versions of the virtual method are executed. In
other words, it is the type of the object being referred to (not the type of the reference) that
determines which version of the virtual method will be executed. Therefore, if a base class
contains a virtual method and classes are derived from that base class, then when different
types of objects are referred to through a base class reference, different versions of the
virtual method are executed.

You declare a method as virtual inside a base class by preceding its declaration with the
keyword virtual. When a virtual method is redefined by a derived class, the override modifier
is used. Thus, the process of redefining a virtual method inside a derived class is called method
overriding. When overriding a method, the name, return type, and signature of the overriding
method must be the same as the virtual method that is being overridden. Also, a virtual
method cannot be specified as static or abstract (discussed later in this chapter).

Method overriding forms the basis for one of C#’s most powerful concepts: dynamic
method dispatch. Dynamic method dispatch is the mechanism by which a call to an
overridden method is resolved at runtime, rather than compile time. Dynamic method
dispatch is important because this is how C# implements runtime polymorphism.

Here is an example that illustrates virtual methods and overriding:

// Demonstrate a virtual method.

using System;

class Base {
 // Create virtual method in the base class.
 public virtual void Who() {
 Console.WriteLine("Who() in Base");
 }
}

class Derived1 : Base {
 // Override Who() in a derived class.
 public override void Who() {
 Console.WriteLine("Who() in Derived1");
 }
}

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 295

PART I
PART I

class Derived2 : Base {
 // Override Who() again in another derived class.
 public override void Who() {
 Console.WriteLine("Who() in Derived2");
 }
}

class OverrideDemo {
 static void Main() {
 Base baseOb = new Base();
 Derived1 dOb1 = new Derived1();
 Derived2 dOb2 = new Derived2();

 Base baseRef; // a base class reference

 baseRef = baseOb;
 baseRef.Who();

 baseRef = dOb1;
 baseRef.Who();

 baseRef = dOb2;
 baseRef.Who();
 }
}

The output from the program is shown here:

Who() in Base
Who() in Derived1
Who() in Derived2

This program creates a base class called Base and two derived classes, called Derived1
and Derived2. Base declares a method called Who(), and the derived classes override it.
Inside the Main() method, objects of type Base, Derived1, and Derived2 are declared. Also,
a reference of type Base, called baseRef, is declared. The program then assigns a reference
to each type of object to baseRef and uses that reference to call Who(). As the output
shows, the version of Who() executed is determined by the type of object being referred to
at the time of the call, not by the class type of baseRef.

It is not necessary to override a virtual method. If a derived class does not provide its
own version of a virtual method, then the one in the base class is used. For example:

/* When a virtual method is not overridden,
 the base class method is used. */

using System;

class Base {
 // Create virtual method in the base class.
 public virtual void Who() {
 Console.WriteLine("Who() in Base");
 }
}

296 P a r t I : T h e C # L a n g u a g e

class Derived1 : Base {
 // Override Who() in a derived class.
 public override void Who() {
 Console.WriteLine("Who() in Derived1");
 }
}

class Derived2 : Base {
 // This class does not override Who().
}

class NoOverrideDemo {
 static void Main() {
 Base baseOb = new Base();
 Derived1 dOb1 = new Derived1();
 Derived2 dOb2 = new Derived2();

 Base baseRef; // a base class reference

 baseRef = baseOb;
 baseRef.Who();

 baseRef = dOb1;
 baseRef.Who();

 baseRef = dOb2;
 baseRef.Who(); // calls Base's Who()
 }
}

The output from this program is shown here:

Who() in Base
Who() in Derived1
Who() in Base

Here, Derived2 does not override Who(). Thus, when Who() is called on a Derived2
object, the Who() in Base is executed.

In the case of a multilevel hierarchy, if a derived class does not override a virtual
method, then, while moving up the hierarchy, the first override of the method that is
encountered is the one executed. For example:

/* In a multilevel hierarchy, the first override of a virtual
 method that is found while moving up the hierarchy is the
 one executed. */

using System;

class Base {
 // Create virtual method in the base class.
 public virtual void Who() {
 Console.WriteLine("Who() in Base");

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 297

PART I
PART I

 }
}

class Derived1 : Base {
 // Override Who() in a derived class.
 public override void Who() {
 Console.WriteLine("Who() in Derived1");
 }
}

class Derived2 : Derived1 {
 // This class also does not override Who().
}

class Derived3 : Derived2 {
 // This class does not override Who().
}

class NoOverrideDemo2 {
 static void Main() {
 Derived3 dOb = new Derived3();
 Base baseRef; // a base class reference

 baseRef = dOb;
 baseRef.Who(); // calls Derived1's Who()
 }
}

The output is shown here:

Who() in Derived1

Here, Derived3 inherits Derived2, which inherits Derived1, which inherits Base. As the
output verifies, since Who() is not overridden by either Derived3 or Derived2, it is the
override of Who() in Derived1 that is executed, since it is the first version of Who() that
is found.

One other point: Properties can also be modified by the virtual keyword and overridden
using override. The same is true for indexers.

Why Overridden Methods?
Overridden methods allow C# to support runtime polymorphism. Polymorphism is essential
to object-oriented programming for one reason: It allows a general class to specify methods
that will be common to all of its derivatives, while allowing derived classes to define the
specific implementation of some or all of those methods. Overridden methods are another
way that C# implements the “one interface, multiple methods” aspect of polymorphism.

Part of the key to applying polymorphism successfully is understanding that the base
classes and derived classes form a hierarchy that moves from lesser to greater specialization.
Used correctly, the base class provides all elements that a derived class can use directly. Through
virtual methods, it also defines those methods that the derived class can implement on its
own. This allows the derived class flexibility, yet still enforces a consistent interface. Thus,
by combining inheritance with overridden methods, a base class can define the general
form of the methods that will be used by all of its derived classes.

298 P a r t I : T h e C # L a n g u a g e

Applying Virtual Methods
To better understand the power of virtual methods, we will apply them to the TwoDShape
class. In the preceding examples, each class derived from TwoDShape defines a method
called Area(). This suggests that it might be better to make Area() a virtual method of the
TwoDShape class, allowing each derived class to override it, defining how the area is
calculated for the type of shape that the class encapsulates. The following program does
this. For convenience, it also adds a name property to TwoDShape. (This makes it easier
to demonstrate the classes.)

// Use virtual methods and polymorphism.

using System;

class TwoDShape {
 double pri_width;
 double pri_height;

 // A default constructor.
 public TwoDShape() {
 Width = Height = 0.0;
 name = "null";
 }

 // Parameterized constructor.
 public TwoDShape(double w, double h, string n) {
 Width = w;
 Height = h;
 name = n;
 }

 // Construct object with equal width and height.
 public TwoDShape(double x, string n) {
 Width = Height = x;
 name = n;
 }

 // Construct a copy of a TwoDShape object.
 public TwoDShape(TwoDShape ob) {
 Width = ob.Width;
 Height = ob.Height;
 name = ob.name;
 }

 // Properties for Width and Height.
 public double Width {
 get { return pri_width; }
 set { pri_width = value < 0 ? -value : value; }
 }

 public double Height {
 get { return pri_height; }
 set { pri_height = value < 0 ? -value : value; }
 }

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 299

PART I
PART I

 public string name { get; set; }

 public void ShowDim() {
 Console.WriteLine("Width and height are " +
 Width + " and " + Height);
 }

 public virtual double Area() {
 Console.WriteLine("Area() must be overridden");
 return 0.0;
 }
}

// A derived class of TwoDShape for triangles.
class Triangle : TwoDShape {
 string Style;

 // A default constructor.
 public Triangle() {
 Style = "null";
 }

 // Constructor for Triangle.
 public Triangle(string s, double w, double h) :
 base(w, h, "triangle") {
 Style = s;
 }

 // Construct an isosceles triangle.
 public Triangle(double x) : base(x, "triangle") {
 Style = "isosceles";
 }

 // Construct a copy of a Triangle object.
 public Triangle(Triangle ob) : base(ob) {
 Style = ob.Style;
 }

 // Override Area() for Triangle.
 public override double Area() {
 return Width * Height / 2;
 }

 // Display a triangle's style.
 public void ShowStyle() {
 Console.WriteLine("Triangle is " + Style);
 }
}

// A derived class of TwoDShape for rectangles.
class Rectangle : TwoDShape {

 // Constructor for Rectangle.
 public Rectangle(double w, double h) :
 base(w, h, "rectangle"){ }

300 P a r t I : T h e C # L a n g u a g e

 // Construct a square.
 public Rectangle(double x) :
 base(x, "rectangle") { }

 // Construct a copy of a Rectangle object.
 public Rectangle(Rectangle ob) : base(ob) { }

 // Return true if the rectangle is square.
 public bool IsSquare() {
 if(Width == Height) return true;
 return false;
 }

 // Override Area() for Rectangle.
 public override double Area() {
 return Width * Height;
 }
}

class DynShapes {
 static void Main() {
 TwoDShape[] shapes = new TwoDShape[5];

 shapes[0] = new Triangle("right", 8.0, 12.0);
 shapes[1] = new Rectangle(10);
 shapes[2] = new Rectangle(10, 4);
 shapes[3] = new Triangle(7.0);
 shapes[4] = new TwoDShape(10, 20, "generic");

 for(int i=0; i < shapes.Length; i++) {
 Console.WriteLine("object is " + shapes[i].name);
 Console.WriteLine("Area is " + shapes[i].Area());

 Console.WriteLine();
 }
 }
}

The output from the program is shown here:

object is triangle
Area is 48

object is rectangle
Area is 100

object is rectangle
Area is 40

object is triangle
Area is 24.5

object is generic
Area() must be overridden
Area is 0

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 301

PART I
PART I

Let’s examine this program closely. First, as explained, Area() is declared as virtual in
the TwoDShape class and is overridden by Triangle and Rectangle. Inside TwoDShape,
Area() is given a placeholder implementation that simply informs the user that this method
must be overridden by a derived class. Each override of Area() supplies an implementation
that is suitable for the type of object encapsulated by the derived class. Thus, if you were to
implement an ellipse class, for example, then Area() would need to compute the area of an
ellipse.

There is one other important feature in the preceding program. Notice in Main() that
shapes is declared as an array of TwoDShape objects. However, the elements of this array
are assigned Triangle, Rectangle, and TwoDShape references. This is valid because a base
class reference can refer to a derived class object. The program then cycles through the array,
displaying information about each object. Although quite simple, this illustrates the power
of both inheritance and method overriding. The type of object stored in a base class reference
variable is determined at runtime and acted on accordingly. If an object is derived from
TwoDShape, then its area can be obtained by calling Area(). The interface to this operation
is the same no matter what type of shape is being used.

Using Abstract Classes
Sometimes you will want to create a base class that defines only a generalized form that will
be shared by all of its derived classes, leaving it to each derived class to fill in the details.
Such a class determines the nature of the methods that the derived classes must implement,
but does not, itself, provide an implementation of one or more of these methods. One way
this situation can occur is when a base class is unable to create a meaningful implementation
for a method. This is the case with the version of TwoDShape used in the preceding example.
The definition of Area() is simply a placeholder. It will not compute and display the area of
any type of object.

You will see as you create your own class libraries that it is not uncommon for a method
to have no meaningful definition in the context of its base class. You can handle this situation
two ways. One way, as shown in the previous example, is to simply have it report a warning
message. Although this approach can be useful in certain situations—such as debugging—it
is not usually appropriate. You may have methods that must be overridden by the derived
class in order for the derived class to have any meaning. Consider the class Triangle. It is
incomplete if Area() is not defined. In such a case, you want some way to ensure that a
derived class does, indeed, override all necessary methods. C#’s solution to this problem is
the abstract method.

An abstract method is created by specifying the abstract type modifier. An abstract
method contains no body and is, therefore, not implemented by the base class. Thus, a
derived class must override it—it cannot simply use the version defined in the base class.
As you can probably guess, an abstract method is automatically virtual, and there is no
need to use the virtual modifier. In fact, it is an error to use virtual and abstract together.

To declare an abstract method, use this general form:

abstract type name(parameter-list);

As you can see, no method body is present. The abstract modifier can be used only on
instance methods. It cannot be applied to static methods. Properties and indexers can also
be abstract.

302 P a r t I : T h e C # L a n g u a g e

A class that contains one or more abstract methods must also be declared as abstract by
preceding its class declaration with the abstract specifier. Since an abstract class does not
define a complete implementation, there can be no objects of an abstract class. Thus, attempting
to create an object of an abstract class by using new will result in a compile-time error.

When a derived class inherits an abstract class, it must implement all of the abstract
methods in the base class. If it doesn’t, then the derived class must also be specified as
abstract. Thus, the abstract attribute is inherited until such time as a complete implementation
is achieved.

Using an abstract class, you can improve the TwoDShape class. Since there is no meaningful
concept of area for an undefined two-dimensional figure, the following version of the preceding
program declares Area() as abstract inside TwoDShape and TwoDShape as abstract. This,
of course, means that all classes derived from TwoDShape must override Area().

// Create an abstract class.

using System;

abstract class TwoDShape {
 double pri_width;
 double pri_height;

 // A default constructor.
 public TwoDShape() {
 Width = Height = 0.0;
 name = "null";
 }

 // Parameterized constructor.
 public TwoDShape(double w, double h, string n) {
 Width = w;
 Height = h;
 name = n;
 }

 // Construct object with equal width and height.
 public TwoDShape(double x, string n) {
 Width = Height = x;
 name = n;
 }

 // Construct a copy of a TwoDShape object.
 public TwoDShape(TwoDShape ob) {
 Width = ob.Width;
 Height = ob.Height;
 name = ob.name;
 }

 // Properties for Width and Height.
 public double Width {
 get { return pri_width; }
 set { pri_width = value < 0 ? -value : value; }
 }

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 303

PART I
PART I

 public double Height {
 get { return pri_height; }
 set { pri_height = value < 0 ? -value : value; }
 }

 public string name { get; set; }

 public void ShowDim() {
 Console.WriteLine("Width and height are " +
 Width + " and " + Height);
 }

 // Now, Area() is abstract.
 public abstract double Area();
}

// A derived class of TwoDShape for triangles.
class Triangle : TwoDShape {
 string Style;

 // A default constructor.
 public Triangle() {
 Style = "null";
 }

 // Constructor for Triangle.
 public Triangle(string s, double w, double h) :
 base(w, h, "triangle") {
 Style = s;
 }

 // Construct an isosceles triangle.
 public Triangle(double x) : base(x, "triangle") {
 Style = "isosceles";
 }

 // Construct a copy of a Triangle object.
 public Triangle(Triangle ob) : base(ob) {
 Style = ob.Style;
 }

 // Override Area() for Triangle.
 public override double Area() {
 return Width * Height / 2;
 }

 // Display a triangle's style.
 public void ShowStyle() {
 Console.WriteLine("Triangle is " + Style);
 }
}

// A derived class of TwoDShape for rectangles.
class Rectangle : TwoDShape {

304 P a r t I : T h e C # L a n g u a g e

 // Constructor for Rectangle.
 public Rectangle(double w, double h) :
 base(w, h, "rectangle"){ }

 // Construct a square.
 public Rectangle(double x) :
 base(x, "rectangle") { }

 // Construct a copy of a Rectangle object.
 public Rectangle(Rectangle ob) : base(ob) { }

 // Return true if the rectangle is square.
 public bool IsSquare() {
 if(Width == Height) return true;
 return false;
 }

 // Override Area() for Rectangle.
 public override double Area() {
 return Width * Height;
 }
}

class AbsShape {
 static void Main() {
 TwoDShape[] shapes = new TwoDShape[4];

 shapes[0] = new Triangle("right", 8.0, 12.0);
 shapes[1] = new Rectangle(10);
 shapes[2] = new Rectangle(10, 4);
 shapes[3] = new Triangle(7.0);

 for(int i=0; i < shapes.Length; i++) {
 Console.WriteLine("object is " + shapes[i].name);
 Console.WriteLine("Area is " + shapes[i].Area());

 Console.WriteLine();
 }
 }
}

As the program illustrates, all derived classes must override Area() (or also be declared
abstract). To prove this to yourself, try creating a derived class that does not override Area().
You will receive a compile-time error. Of course, it is still possible to create an object reference
of type TwoDShape, which the program does. However, it is no longer possible to declare
objects of type TwoDShape. Because of this, in Main() the shapes array has been shortened
to 4, and a generic TwoDShape object is no longer created.

One other point: Notice that TwoDShape still includes the ShowDim() method and
that it is not modified by abstract. It is perfectly acceptable—indeed, quite common—for an
abstract class to contain concrete methods that a derived class is free to use as-is. Only those
methods declared as abstract must be overridden by derived classes.

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 305

PART I
PART I

Using sealed to Prevent Inheritance
As powerful and useful as inheritance is, sometimes you will want to prevent it. For
example, you might have a class that encapsulates the initialization sequence of some
specialized hardware device, such as a medical monitor. In this case, you don’t want users
of your class to be able to change the way the monitor is initialized, possibly setting the
device incorrectly. Whatever the reason, in C# it is easy to prevent a class from being
inherited by using the keyword sealed.

To prevent a class from being inherited, precede its declaration with sealed. As you
might expect, it is illegal to declare a class as both abstract and sealed because an abstract
class is incomplete by itself and relies upon its derived classes to provide complete
implementations.

Here is an example of a sealed class:

sealed class A {
 // ...
}

// The following class is illegal.
class B : A { // ERROR! Can't derive from class A
 // ...
}

As the comments imply, it is illegal for B to inherit A because A is declared as sealed.
One other point: sealed can also be used on virtual methods to prevent further

overrrides. For example, assume a base class called B and a derived class called D. A
method declared virtual in B can be declared sealed by D. This would prevent any class
that inherits D from overriding the method. This situation is illustrated by the following:

class B {
 public virtual void MyMethod() { /* ... */ }
}

class D : B {
 // This seals MyMethod() and prevents further overrides.
 sealed public override void MyMethod() { /* ... */ }
}

class X : D {
 // Error! MyMethod() is sealed!
 public override void MyMethod() { /* ... */ }
}

Because MyMethod() is sealed by D, it can’t be overridden by X.

The object Class
C# defines one special class called object that is an implicit base class of all other classes and
for all other types (including the value types). In other words, all other types are derived
from object. This means that a reference variable of type object can refer to an object of any

306 P a r t I : T h e C # L a n g u a g e

other type. Also, since arrays are implemented as objects, a variable of type object can also
refer to any array. Technically, the C# name object is just another name for System.Object,
which is part of the .NET Framework class library.

The object class defines the methods shown in Table 11-1, which means that they are
available in every object.

A few of these methods warrant some additional explanation. By default, the Equals(object)
method determines if the invoking object refers to the same object as the one referred to by
the argument. (That is, it determines if the two references are the same.) It returns true if the
objects are the same, and false otherwise. You can override this method in classes that you
create. Doing so allows you to define what equality means relative to a class. For example,
you could define Equals(object) so that it compares the contents of two objects for equality.
The Equals(object, object) method invokes Equals(object) to compute its result.

The GetHashCode() method returns a hash code associated with the invoking object.
This hash code can be used with any algorithm that employs hashing as a means of
accessing stored objects.

As mentioned in Chapter 9, if you overload the = = operator, then you will usually need
to override Equals(object) and GetHashCode() because most of the time you will want
the = = operator and the Equals(object) methods to function the same. When Equals()
is overridden, you should also override GetHashCode(), so that the two methods are
compatible.

The ToString() method returns a string that contains a description of the object on
which it is called. Also, this method is automatically called when an object is output using

Method Purpose

public virtual bool Equals(object ob) Determines whether the invoking object is the
same as the one referred to by ob.

public static bool Equals(object ob1, object ob2) Determines whether ob1 is the same as ob2.

protected virtual Finalize() Performs shutdown actions prior to garbage
collection. In C#, Finalize() is accessed through
a destructor.

public virtual int GetHashCode() Returns the hash code associated with the
invoking object.

public Type GetType() Obtains the type of an object at runtime.

protected object MemberwiseClone() Makes a “shallow copy” of the object. This
is one in which the members are copied, but
objects referred to by members are not.

public static bool ReferenceEquals(object ob1,
 object ob2)

Determines whether ob1 and ob2 refer to the
same object.

public virtual string ToString() Returns a string that describes the object.

TABLE 11-1 Methods of the object Class

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 307

PART I
PART I

WriteLine(). Many classes override this method. Doing so allows them to tailor a
description specifically for the types of objects that they create. For example:

// Demonstrate ToString()

using System;

class MyClass {
 static int count = 0;
 int id;

 public MyClass() {
 id = count;
 count++;
 }

 public override string ToString() {
 return "MyClass object #" + id;
 }
}

class Test {
 static void Main() {
 MyClass ob1 = new MyClass();
 MyClass ob2 = new MyClass();
 MyClass ob3 = new MyClass();

 Console.WriteLine(ob1);
 Console.WriteLine(ob2);
 Console.WriteLine(ob3);
 }
}

The output from the program is shown here:

MyClass object #0
MyClass object #1
MyClass object #2

Boxing and Unboxing
As explained, all C# types, including the value types, are derived from object. Thus, a
reference of type object can be used to refer to any other type, including value types. When
an object reference refers to a value type, a process known as boxing occurs. Boxing causes
the value of a value type to be stored in an object instance. Thus, a value type is “boxed”
inside an object. This object can then be used like any other object. In all cases, boxing occurs
automatically. You simply assign a value to an object reference. C# handles the rest.

Unboxing is the process of retrieving a value from a boxed object. This action is performed
using an explicit cast from the object reference to its corresponding value type. Attempting
to unbox an object into a different type will result in a runtime error.

308 P a r t I : T h e C # L a n g u a g e

Here is a simple example that illustrates boxing and unboxing:

// A simple boxing/unboxing example.

using System;

class BoxingDemo {
 static void Main() {
 int x;
 object obj;

 x = 10;
 obj = x; // box x into an object

 int y = (int)obj; // unbox obj into an int
 Console.WriteLine(y);
 }
}

This program displays the value 10. Notice that the value in x is boxed simply by assigning
it to obj, which is an object reference. The integer value in obj is retrieved by casting obj
to int.

Here is another, more interesting example of boxing. In this case, an int is passed as an
argument to the Sqr() method, which uses an object parameter.

// Boxing also occurs when passing values.

using System;

class BoxingDemo {
 static void Main() {
 int x;

 x = 10;
 Console.WriteLine("Here is x: " + x);

 // x is automatically boxed when passed to Sqr().
 x = BoxingDemo.Sqr(x);
 Console.WriteLine("Here is x squared: " + x);
 }

 static int Sqr(object o) {
 return (int)o * (int)o;
 }
}

The output from the program is shown here:

Here is x: 10
Here is x squared: 100

Here, the value of x is automatically boxed when it is passed to Sqr().
Boxing and unboxing allow C#’s type system to be fully unified. All types derive from

object. A reference to any type can be assigned to a variable of type object. Boxing and

PART I

C h a p t e r 1 1 : I n h e r i t a n c e 309

PART I
PART I

unboxing automatically handle the details for the value types. Furthermore, because all
types are derived from object, they all have access to object’s methods. For example,
consider the following rather surprising program:

// Boxing makes it possible to call methods on a value!

using System;

class MethOnValue {
 static void Main() {

 Console.WriteLine(10.ToString());

 }
}

This program displays 10. The reason is that the ToString() method returns a string
representation of the object on which it is called. In this case, the string representation
of 10 is 10!

Is object a Universal Data Type?
Given that object is a base class for all other types and that boxing of the value types takes
place automatically, it is possible to use object as a “universal” data type. For example,
consider the following program that creates an array of object and then assigns various
other types of data to its elements:

// Use object to create a "generic" array.

using System;

class GenericDemo {
 static void Main() {
 object[] ga = new object[10];

 // Store ints.
 for(int i=0; i < 3; i++)
 ga[i] = i;

 // Store doubles.
 for(int i=3; i < 6; i++)
 ga[i] = (double) i / 2;

 // Store two strings, a bool, and a char.
 ga[6] = "Hello";
 ga[7] = true;
 ga[8] = 'X';
 ga[9] = "end";

 for(int i = 0; i < ga.Length; i++)
 Console.WriteLine("ga[" + i + "]: " + ga[i] + " ");
 }
}

310 P a r t I : T h e C # L a n g u a g e

The output is shown here:

ga[0]: 0
ga[1]: 1
ga[2]: 2
ga[3]: 1.5
ga[4]: 2
ga[5]: 2.5
ga[6]: Hello
ga[7]: True
ga[8]: X
ga[9]: end

As this program illustrates, because an object reference can hold a reference to any other
type of data, it is possible to use an object reference to refer to any type of data. Thus, an array
of object as used by the program can store any type of data. Expanding on this concept, it is
easy to see how you could construct a stack class, for example, that stored object references.
This would enable the stack to store any type of data.

Although the universal-type feature of object is powerful and can be used quite effectively
in some situations, it is a mistake to think that you should use object as a way around C#’s
otherwise strong type checking. In general, when you need to store an int, use an int variable;
when you need to store a string, use a string reference; and so on.

More importantly, since version 2.0, true generic types are available to the C# programmer.
(Generics are described in Chapter 18.) The addition of generics enables you to easily define
classes and algorithms that automatically work with different types of data in a type-safe
manner. Because of generics, you will normally not need to use object as a universal type
when creating new code. Today, it’s best to reserve object’s universal nature for specialized
situations.

12
Interfaces, Structures, and

Enumerations

This chapter discusses one of C#’s most important features: the interface. An interface
defines a set of methods that will be implemented by a class. An interface does not,
itself, implement any method. Thus, an interface is a purely logical construct that

describes functionality without specifying implementation.
Also discussed in this chapter are two more C# data types: structures and enumerations.

Structures are similar to classes except that they are handled as value types rather than
reference types. Enumerations are lists of named integer constants. Structures and enumerations
contribute to the richness of the C# programming environment.

Interfaces
In object-oriented programming it is sometimes helpful to define what a class must do, but
not how it will do it. You have already seen an example of this: the abstract method. An
abstract method declares the return type and signature for a method, but provides no
implementation. A derived class must provide its own implementation of each abstract
method defined by its base class. Thus, an abstract method specifies the interface to the
method, but not the implementation. Although abstract classes and methods are useful, it is
possible to take this concept a step further. In C#, you can fully separate a class’ interface
from its implementation by using the keyword interface.

Interfaces are syntactically similar to abstract classes. However, in an interface, no
method can include a body. That is, an interface provides no implementation whatsoever.
It specifies what must be done, but not how. Once an interface is defined, any number of
classes can implement it. Also, one class can implement any number of interfaces.

To implement an interface, a class must provide bodies (implementations) for the
methods described by the interface. Each class is free to determine the details of its own
implementation. Thus, two classes might implement the same interface in different ways,
but each class still supports the same set of methods. Therefore, code that has knowledge of
the interface can use objects of either class since the interface to those objects is the same. By
providing the interface, C# allows you to fully utilize the “one interface, multiple methods”
aspect of polymorphism.

311

CHAPTER

312 P a r t I : T h e C # L a n g u a g e

Interfaces are declared by using the interface keyword. Here is a simplified form of an
interface declaration:

interface name {
ret-type method-name1(param-list);
ret-type method-name2(param-list);

 // ...
ret-type method-nameN(param-list);

}

The name of the interface is specified by name. Methods are declared using only their return
type and signature. They are, essentially, abstract methods. As explained, in an interface,
no method can have an implementation. Thus, each class that includes an interface must
implement all of the methods. In an interface, methods are implicitly public, and no explicit
access specifier is allowed.

Here is an example of an interface. It specifies the interface to a class that generates a
series of numbers.

public interface ISeries {
 int GetNext(); // return next number in series
 void Reset(); // restart
 void SetStart(int x); // set starting value
}

The name of this interface is ISeries. Although the prefix I is not necessary, many
programmers prefix interfaces with I to differentiate them from classes. ISeries is
declared public so that it can be implemented by any class in any program.

In addition to methods, interfaces can specify properties, indexers, and events. Events
are described in Chapter 15, and we will be concerned with only methods, properties, and
indexers here. Interfaces cannot have data members. They cannot define constructors,
destructors, or operator methods. Also, no member can be declared as static.

Implementing Interfaces
Once an interface has been defined, one or more classes can implement that interface. To
implement an interface, the name of the interface is specified after the class name in just
the same way that a base class is specified. The general form of a class that implements an
interface is shown here:

class class-name : interface-name {
 // class-body
}

The name of the interface being implemented is specified in interface-name. When a class
implements an interface, the class must implement the entire interface. It cannot pick and
choose which parts to implement, for example.

A class can implement more than one interface. When a class implements more than one
interface, specify each interface in a comma-separated list. A class can inherit a base class
and also implement one or more interfaces. In this case, the name of the base class must
come first in the comma-separated list.

PART I

C h a p t e r 1 2 : I n t e r f a c e s , S t r u c t u r e s , a n d E n u m e r a t i o n s 313

PART I
PART I

The methods that implement an interface must be declared public. The reason for this is
that methods are implicitly public within an interface, so their implementation must also be
public. Also, the return type and signature of the implementing method must match exactly
the return type and signature specified in the interface definition.

Here is an example that implements the ISeries interface shown earlier. It creates a class
called ByTwos, which generates a series of numbers, each two greater than the previous one.

// Implement ISeries.
class ByTwos : ISeries {
 int start;
 int val;

 public ByTwos() {
 start = 0;
 val = 0;
 }

 public int GetNext() {
 val += 2;
 return val;
 }

 public void Reset() {
 val = start;
 }

 public void SetStart(int x) {
 start = x;
 val = start;
 }
}

As you can see, ByTwos implements all three methods defined by ISeries. As explained,
this is necessary since a class cannot create a partial implementation of an interface.

Here is a class that demonstrates ByTwos:

// Demonstrate the ByTwos interface.

using System;

class SeriesDemo {
 static void Main() {
 ByTwos ob = new ByTwos();

 for(int i=0; i < 5; i++)
 Console.WriteLine("Next value is " +
 ob.GetNext());

 Console.WriteLine("\nResetting");
 ob.Reset();
 for(int i=0; i < 5; i++)
 Console.WriteLine("Next value is " +
 ob.GetNext());

314 P a r t I : T h e C # L a n g u a g e

 Console.WriteLine("\nStarting at 100");
 ob.SetStart(100);
 for(int i=0; i < 5; i++)
 Console.WriteLine("Next value is " +
 ob.GetNext());
 }
}

To compile SeriesDemo, you must include the files that contain ISeries, ByTwos, and
SeriesDemo in the compilation. The compiler will automatically compile all three files to
create the final executable. For example, if you called these files ISeries.cs, ByTwos.cs, and
SeriesDemo.cs, then the following command line will compile the program:

>csc SeriesDemo.cs ISeries.cs ByTwos.cs

If you are using the Visual C++ IDE, simply add all three files to your C# project. One other
point: It is perfectly valid to put all three of these classes in the same file, too.

The output from this program is shown here:

Next value is 2
Next value is 4
Next value is 6
Next value is 8
Next value is 10

Resetting
Next value is 2
Next value is 4
Next value is 6
Next value is 8
Next value is 10

Starting at 100
Next value is 102
Next value is 104
Next value is 106
Next value is 108
Next value is 110

It is both permissible and common for classes that implement interfaces to define
additional members of their own. For example, the following version of ByTwos adds
the method GetPrevious(), which returns the previous value:

// Implement ISeries and add GetPrevious().
 class ByTwos : ISeries {
 int start;
 int val;
 int prev;

 public ByTwos() {
 start = 0;
 val = 0;
 prev = -2;
 }

PART I

C h a p t e r 1 2 : I n t e r f a c e s , S t r u c t u r e s , a n d E n u m e r a t i o n s 315

PART I
PART I

 public int GetNext() {
 prev = val;
 val += 2;
 return val;
 }

 public void Reset() {
 val = start;
 prev = start - 2;
 }

 public void SetStart(int x) {
 start = x;
 val = start;
 prev = val - 2;
 }

 // A method not specified by ISeries.
 public int GetPrevious() {
 return prev;
 }
}

Notice that the addition of GetPrevious() required a change to the implementations of the
methods defined by ISeries. However, since the interface to those methods stays the same,
the change is seamless and does not break preexisting code. This is one of the advantages
of interfaces.

As explained, any number of classes can implement an interface. For example, here is a
class called Primes that generates a series of prime numbers. Notice that its implementation
of ISeries is fundamentally different than the one provided by ByTwos.

// Use ISeries to implement a series of prime numbers.
class Primes : ISeries {
 int start;
 int val;

 public Primes() {
 start = 2;
 val = 2;
 }

 public int GetNext() {
 int i, j;
 bool isprime;

 val++;
 for(i = val; i < 1000000; i++) {
 isprime = true;
 for(j = 2; j <= i/j; j++) {
 if((i%j)==0) {
 isprime = false;
 break;
 }
 }

316 P a r t I : T h e C # L a n g u a g e

 if(isprime) {
 val = i;
 break;
 }
 }
 return val;
 }

 public void Reset() {
 val = start;
 }

 public void SetStart(int x) {
 start = x;
 val = start;
 }
}

The key point is that even though ByTwos and Primes generate completely unrelated
series of numbers, both implement ISeries. As explained, an interface says nothing about
the implementation, so each class is free to implement the interface as it sees fit.

Using Interface References
You might be somewhat surprised to learn that you can declare a reference variable of an
interface type. In other words, you can create an interface reference variable. Such a variable
can refer to any object that implements its interface. When you call a method on an object
through an interface reference, it is the version of the method implemented by the object
that is executed. This process is similar to using a base class reference to access a derived
class object, as described in Chapter 11.

The following example illustrates the use of an interface reference. It uses the same
interface reference variable to call methods on objects of both ByTwos and Primes. For
clarity, it shows all pieces of the program, assembled into a single file.

// Demonstrate interface references.

using System;

// Define the interface.
public interface ISeries {
 int GetNext(); // return next number in series
 void Reset(); // restart
 void SetStart(int x); // set starting value
}

// Use ISeries to implement a series in which each
// value is two greater than the previous one.
class ByTwos : ISeries {
 int start;
 int val;

PART I

C h a p t e r 1 2 : I n t e r f a c e s , S t r u c t u r e s , a n d E n u m e r a t i o n s 317

PART I
PART I

 public ByTwos() {
 start = 0;
 val = 0;
 }

 public int GetNext() {
 val += 2;
 return val;
 }

 public void Reset() {
 val = start;
 }

 public void SetStart(int x) {
 start = x;
 val = start;
 }
}

// Use ISeries to implement a series of prime numbers.
class Primes : ISeries {
 int start;
 int val;

 public Primes() {
 start = 2;
 val = 2;
 }

 public int GetNext() {
 int i, j;
 bool isprime;

 val++;
 for(i = val; i < 1000000; i++) {
 isprime = true;
 for(j = 2; j <= i/j; j++) {
 if((i%j)==0) {
 isprime = false;
 break;
 }
 }
 if(isprime) {
 val = i;
 break;
 }
 }
 return val;
 }

 public void Reset() {
 val = start;
 }

318 P a r t I : T h e C # L a n g u a g e

 public void SetStart(int x) {
 start = x;
 val = start;
 }
}

class SeriesDemo2 {
 static void Main() {
 ByTwos twoOb = new ByTwos();
 Primes primeOb = new Primes();
 ISeries ob;

 for(int i=0; i < 5; i++) {
 ob = twoOb;
 Console.WriteLine("Next ByTwos value is " +
 ob.GetNext());
 ob = primeOb;
 Console.WriteLine("Next prime number is " +
 ob.GetNext());
 }
 }
}

The output from the program is shown here:

Next ByTwos value is 2
Next prime number is 3
Next ByTwos value is 4
Next prime number is 5
Next ByTwos value is 6
Next prime number is 7
Next ByTwos value is 8
Next prime number is 11
Next ByTwos value is 10
Next prime number is 13

In Main(), ob is declared to be a reference to an ISeries interface. This means that it can be
used to store references to any object that implements ISeries. In this case, it is used to refer
to twoOb and primeOb, which are objects of type ByTwos and Primes, respectively, which
both implement ISeries.

One other point: An interface reference variable has knowledge only of the methods
declared by its interface declaration. Thus, an interface reference cannot be used to access
any other variables or methods that might be supported by the object.

Interface Properties
Like methods, properties are specified in an interface without any body. Here is the general
form of a property specification:

// interface property
type name {
 get;
 set;
}

PART I

C h a p t e r 1 2 : I n t e r f a c e s , S t r u c t u r e s , a n d E n u m e r a t i o n s 319

PART I
PART I

Of course, only get or set will be present for read-only or write-only properties, respectively.
Although the declaration of a property in an interface looks similar to how an auto-

implemented property is declared in a class, the two are not the same. The interface
declaration does not cause the property to be auto-implemented. It only specifies the name
and type of the property. Implementation is left to each implementing class. Also, no access
modifiers are allowed on the accessors when a property is declared in an interface. Thus,
the set accessor, for example, cannot be specified as private in an interface.

Here is a rewrite of the ISeries interface and the ByTwos class that uses a property
called Next to obtain and set the next element in the series:

// Use a property in an interface.

using System;

public interface ISeries {
 // An interface property.
 int Next {
 get; // return the next number in series
 set; // set next number
 }
}

// Implement ISeries.
class ByTwos : ISeries {
 int val;

 public ByTwos() {
 val = 0;
 }

 // Get or set value.
 public int Next {
 get {
 val += 2;
 return val;
 }
 set {
 val = value;
 }
 }
}

// Demonstrate an interface property.
class SeriesDemo3 {
 static void Main() {
 ByTwos ob = new ByTwos();

 // Access series through a property.
 for(int i=0; i < 5; i++)
 Console.WriteLine("Next value is " + ob.Next);

 Console.WriteLine("\nStarting at 21");
 ob.Next = 21;

320 P a r t I : T h e C # L a n g u a g e

 for(int i=0; i < 5; i++)
 Console.WriteLine("Next value is " + ob.Next);
 }
}

The output from this program is shown here:

Next value is 2
Next value is 4
Next value is 6
Next value is 8
Next value is 10

Starting at 21
Next value is 23
Next value is 25
Next value is 27
Next value is 29
Next value is 31

Interface Indexers
An interface can specify an indexer. A one-dimensional indexer declared in an interface has
this general form:

// interface indexer
element-type this[int index] {
 get;
 set;
}

As before, only get or set will be present for read-only or write-only indexers, respectively.
Also, no access modifiers are allowed on the accessors when an indexer is declared in an
interface.

Here is another version of ISeries that adds a read-only indexer that returns the i-th
element in the series.

// Add an indexer in an interface.

using System;

public interface ISeries {
 // An interface property.
 int Next {
 get; // return the next number in series
 set; // set next number
 }

 // An interface indexer.
 int this[int index] {
 get; // return the specified number in series
 }
}

PART I

C h a p t e r 1 2 : I n t e r f a c e s , S t r u c t u r e s , a n d E n u m e r a t i o n s 321

PART I
PART I

// Implement ISeries.
class ByTwos : ISeries {
 int val;

 public ByTwos() {
 val = 0;
 }

 // Get or set value using a property.
 public int Next {
 get {
 val += 2;
 return val;
 }
 set {
 val = value;
 }
 }

 // Get a value using an index.
 public int this[int index] {
 get {
 val = 0;
 for(int i=0; i < index; i++)
 val += 2;
 return val;
 }
 }
}

// Demonstrate an interface indexer.
class SeriesDemo4 {
 static void Main() {
 ByTwos ob = new ByTwos();

 // Access series through a property.
 for(int i=0; i < 5; i++)
 Console.WriteLine("Next value is " + ob.Next);

 Console.WriteLine("\nStarting at 21");
 ob.Next = 21;
 for(int i=0; i < 5; i++)
 Console.WriteLine("Next value is " +
 ob.Next);

 Console.WriteLine("\nResetting to 0");
 ob.Next = 0;

 // Access series through an indexer.
 for(int i=0; i < 5; i++)
 Console.WriteLine("Next value is " + ob[i]);
 }
}

322 P a r t I : T h e C # L a n g u a g e

The output from this program is shown here:

Next value is 2
Next value is 4
Next value is 6
Next value is 8
Next value is 10

Starting at 21
Next value is 23
Next value is 25
Next value is 27
Next value is 29
Next value is 31

Resetting to 0
Next value is 0
Next value is 2
Next value is 4
Next value is 6
Next value is 8

Interfaces Can Be Inherited
One interface can inherit another. The syntax is the same as for inheriting classes. When a
class implements an interface that inherits another interface, it must provide implementations
for all the members defined within the interface inheritance chain. Here is an example:

// One interface can inherit another.

using System;

public interface IA {
 void Meth1();
 void Meth2();
}

// B now includes Meth1() and Meth2() -- it adds Meth3().
public interface IB : IA {
 void Meth3();
}

// This class must implement all of IA and IB.
class MyClass : IB {
 public void Meth1() {
 Console.WriteLine("Implement Meth1().");
 }

 public void Meth2() {
 Console.WriteLine("Implement Meth2().");
 }

 public void Meth3() {
 Console.WriteLine("Implement Meth3().");

PART I

C h a p t e r 1 2 : I n t e r f a c e s , S t r u c t u r e s , a n d E n u m e r a t i o n s 323

PART I
PART I

 }
}

class IFExtend {
 static void Main() {
 MyClass ob = new MyClass();

 ob.Meth1();
 ob.Meth2();
 ob.Meth3();
 }
}

As an experiment, you might try removing the implementation for Meth1() in MyClass.
This will cause a compile-time error. As stated earlier, any class that implements an interface
must implement all methods defined by that interface, including any that are inherited from
other interfaces.

Name Hiding with Interface Inheritance
When one interface inherits another, it is possible to declare a member in the derived
interface that hides one defined by the base interface. This happens when a member in a
derived interface has the same declaration as one in the base interface. In this case, the base
interface name is hidden. This will cause a warning message unless you specify the derived
interface member with new.

Explicit Implementations
When implementing a member of an interface, it is possible to fully qualify its name with
its interface name. Doing this creates an explicit interface member implementation, or explicit
implementation, for short. For example, given

interface IMyIF {
 int MyMeth(int x);
}

then it is legal to implement IMyIF as shown here:

class MyClass : IMyIF {
 int IMyIF.MyMeth(int x) {
 return x / 3;
 }
}

As you can see, when the MyMeth() member of IMyIF is implemented, its complete name,
including its interface name, is specified.

There are two reasons that you might need to create an explicit implementation of an
interface method. First, when you implement an interface method using its fully qualified
name, you are providing an implementation that cannot be accessed through an object of the
class. Instead, it must be accessed via an interface reference. Thus, an explicit implementation
gives you a way to implement an interface method so that it is not a public member of the

324 P a r t I : T h e C # L a n g u a g e

class that provides the implementation. Second, it is possible for a class to implement two
interfaces, both of which declare methods by the same name and type signature. Qualifying
the names with their interfaces removes the ambiguity from this situation. Let’s look at an
example of each.

The following program contains an interface called IEven, which defines two methods,
IsEven() and IsOdd(), which determine if a number is even or odd. MyClass then implements
IEven. When it does so, it implements IsOdd() explicitly.

// Explicitly implement an interface member.

using System;

interface IEven {
 bool IsOdd(int x);
 bool IsEven(int x);
}

class MyClass : IEven {

 // Explicit implementation. Notice that this member is private
 // by default.
 bool IEven.IsOdd(int x) {
 if((x%2) != 0) return true;
 else return false;
 }

 // Normal implementation.
 public bool IsEven(int x) {
 IEven o = this; // Interface reference to the invoking object.

 return !o.IsOdd(x);
 }
}

class Demo {
 static void Main() {
 MyClass ob = new MyClass();
 bool result;

 result = ob.IsEven(4);
 if(result) Console.WriteLine("4 is even.");

 // result = ob.IsOdd(4); // Error, IsOdd not exposed.

 // But, this is OK. It creates an IEven reference to a MyClass object
 // and then calls IsOdd() through that reference.
 IEven iRef = (IEven) ob;
 result = iRef.IsOdd(3);
 if(result) Console.WriteLine("3 is odd.");

 }
}

PART I

C h a p t e r 1 2 : I n t e r f a c e s , S t r u c t u r e s , a n d E n u m e r a t i o n s 325

PART I
PART I

Since IsOdd() is implemented explicitly, it is not exposed as a public member of MyClass.
Instead, IsOdd() can be accessed only through an interface reference. This is why it is
invoked through o (which is a reference variable of type IEven) in the implementation for
IsEven().

Here is an example in which two interfaces are implemented and both interfaces declare
a method called Meth(). Explicit implementation is used to eliminate the ambiguity inherent
in this situation.

// Use explicit implementation to remove ambiguity.

using System;

interface IMyIF_A {
 int Meth(int x);
}

interface IMyIF_B {
 int Meth(int x);
}

// MyClass implements both interfaces.
class MyClass : IMyIF_A, IMyIF_B {

 // Explicitly implement the two Meth()s.
 int IMyIF_A.Meth(int x) {
 return x + x;
 }
 int IMyIF_B.Meth(int x) {
 return x * x;
 }

 // Call Meth() through an interface reference.
 public int MethA(int x){
 IMyIF_A a_ob;
 a_ob = this;
 return a_ob.Meth(x); // calls IMyIF_A
 }

 public int MethB(int x){
 IMyIF_B b_ob;
 b_ob = this;
 return b_ob.Meth(x); // calls IMyIF_B
 }
}

class FQIFNames {
 static void Main() {
 MyClass ob = new MyClass();

 Console.Write("Calling IMyIF_A.Meth(): ");
 Console.WriteLine(ob.MethA(3));

326 P a r t I : T h e C # L a n g u a g e

 Console.Write("Calling IMyIF_B.Meth(): ");
 Console.WriteLine(ob.MethB(3));
 }
}

The output from this program is shown here:

Calling IMyIF_A.Meth(): 6
Calling IMyIF_B.Meth(): 9

Looking at the program, first notice that Meth() has the same signature in both IMyIF_A
and IMyIF_B. Thus, when MyClass implements both of these interfaces, it explicitly
implements each one separately, fully qualifying its name in the process. Since the only way
that an explicitly implemented method can be called is on an interface reference, MyClass
creates two such references, one for IMyIF_A and one for IMyIF_B. It then calls two of its
own methods, which call the interface methods, thereby removing the ambiguity.

Choosing Between an Interface and an Abstract Class
One of the more challenging parts of C# programming is knowing when to create an interface
and when to use an abstract class in cases in which you want to describe functionality but
not implementation. The general rule is this: When you can fully describe the concept in
terms of “what it does” without needing to specify any “how it does it,” then you should
use an interface. If you need to include some implementation details, then you will need to
represent your concept in an abstract class.

The .NET Standard Interfaces
The .NET Framework defines a large number of interfaces that a C# program can use. For
example, System.IComparable defines the CompareTo() method, which allows objects to be
compared when an ordering relationship is required. Interfaces also form an important part
of the Collections classes, which provide various types of storage (such as stacks and queues)
for groups of objects. For example, System.Collections.ICollection defines the functionality
of a collection. System.Collections.IEnumerator offers a way to sequence through the
elements in a collection. These and many other interfaces are described in Part II.

Structures
As you know, classes are reference types. This means that class objects are accessed through
a reference. This differs from the value types, which are accessed directly. However, sometimes
it would be useful to be able to access an object directly, in the way that value types are. One
reason for this is efficiency. Accessing class objects through a reference adds overhead onto
every access. It also consumes space. For very small objects, this extra space might be
significant. To address these concerns, C# offers the structure. A structure is similar to a
class, but is a value type, rather than a reference type.

Structures are declared using the keyword struct and are syntactically similar to classes.
Here is the general form of a struct:

PART I

C h a p t e r 1 2 : I n t e r f a c e s , S t r u c t u r e s , a n d E n u m e r a t i o n s 327

PART I
PART I

struct name : interfaces {
 // member declarations
}

The name of the structure is specified by name.
Structures cannot inherit other structures or classes or be used as a base for other

structures or classes. (Of course, like all C# types, structures do inherit object.) However, a
structure can implement one or more interfaces. These are specified after the structure name
using a comma-separated list. Like classes, structure members include methods, fields,
indexers, properties, operator methods, and events. Structures can also define constructors,
but not destructors. However, you cannot define a default (parameterless) constructor for a
structure. The reason for this is that a default constructor is automatically defined for all
structures, and this default constructor can’t be changed. The default constructor initializes
the fields of a structure to their default value. Since structures do not support inheritance,
structure members cannot be specified as abstract, virtual, or protected.

A structure object can be created using new in the same way as a class object, but it is
not required. When new is used, the specified constructor is called. When new is not used,
the object is still created, but it is not initialized. Thus, you will need to perform any
initialization manually.

Here is an example that uses a structure to hold information about a book:

// Demonstrate a structure.

using System;

// Define a structure.
struct Book {
 public string Author;
 public string Title;
 public int Copyright;

 public Book(string a, string t, int c) {
 Author = a;
 Title = t;
 Copyright = c;
 }
}

// Demonstrate Book structure.
class StructDemo {
 static void Main() {
 Book book1 = new Book("Herb Schildt",
 "C# 3.0: The Complete Reference",
 2009); // explicit constructor

 Book book2 = new Book(); // default constructor
 Book book3; // no constructor

 Console.WriteLine(book1.Title + " by " + book1.Author +
 ", (c) " + book1.Copyright);
 Console.WriteLine();

328 P a r t I : T h e C # L a n g u a g e

 if(book2.Title == null)
 Console.WriteLine("book2.Title is null.");

 // Now, give book2 some info.
 book2.Title = "Brave New World";
 book2.Author = "Aldous Huxley";
 book2.Copyright = 1932;
 Console.Write("book2 now contains: ");
 Console.WriteLine(book2.Title + " by " + book2.Author +
 ", (c) " + book2.Copyright);

 Console.WriteLine();

// Console.WriteLine(book3.Title); // error, must initialize first
 book3.Title = "Red Storm Rising";

 Console.WriteLine(book3.Title); // now OK
 }
}

The output from this program is shown here:

C# 3.0: The Complete Reference by Herb Schildt, (c) 2009

book2.Title is null.
book2 now contains: Brave New World by Aldous Huxley, (c) 1932

Red Storm Rising

As the program shows, a structure can be initialized either by using new to invoke a
constructor or by simply declaring an object. If new is used, then the fields of the structure
will be initialized either by the default constructor, which initializes all fields to their default
value, or by a user-defined constructor. If new is not used, as is the case with book3, then
the object is not initialized, and its fields must be set prior to using the object.

When you assign one structure to another, a copy of the object is made. This is an
important way in which struct differs from class. As explained earlier in this book, when
you assign one class reference to another, you are simply making the reference on the left
side of the assignment refer to the same object as that referred to by the reference on the
right. When you assign one struct variable to another, you are making a copy of the object on
the right. For example, consider the following program:

// Copy a struct.

using System;

// Define a structure.
struct MyStruct {
 public int x;
}

// Demonstrate structure assignment.
class StructAssignment {

PART I

C h a p t e r 1 2 : I n t e r f a c e s , S t r u c t u r e s , a n d E n u m e r a t i o n s 329

PART I
PART I

 static void Main() {
 MyStruct a;
 MyStruct b;

 a.x = 10;
 b.x = 20;

 Console.WriteLine("a.x {0}, b.x {1}", a.x, b.x);

 a = b;
 b.x = 30;

 Console.WriteLine("a.x {0}, b.x {1}", a.x, b.x);
 }
}

The output is shown here:

a.x 10, b.x 20
a.x 20, b.x 30

As the output shows, after the assignment

a = b;

the structure variables a and b are still separate and distinct. That is, a does not refer to or
relate to b in any way other than containing a copy of b’s value. This would not be the case
if a and b were class references. For example, here is the class version of the preceding
program:

// Use a class.

using System;

// Now a class.
class MyClass {
 public int x;
}

// Now show a class object assignment.
class ClassAssignment {
 static void Main() {
 MyClass a = new MyClass();
 MyClass b = new MyClass();

 a.x = 10;
 b.x = 20;

 Console.WriteLine("a.x {0}, b.x {1}", a.x, b.x);

 a = b;
 b.x = 30;

330 P a r t I : T h e C # L a n g u a g e

 Console.WriteLine("a.x {0}, b.x {1}", a.x, b.x);
 }
}

The output from this version is shown here:

a.x 10, b.x 20
a.x 30, b.x 30

As you can see, after the assignment of b to a, both variables refer to the same object—the
one originally referred to by b.

Why Structures?
At this point, you might be wondering why C# includes the struct since it seems to be a
less-capable version of a class. The answer lies in efficiency and performance. Because
structures are value types, they are operated on directly rather than through a reference.
Thus, a struct does not require a separate reference variable. This means that less memory
is used in some cases. Furthermore, because a struct is accessed directly, it does not suffer
from the performance loss that is inherent in accessing a class object. Because classes are
reference types, all access to class objects is through a reference. This indirection adds
overhead to every access. Structures do not incur this overhead. In general, if you need
to simply store a group of related data, but don’t need inheritance and don’t need to operate
on that data through a reference, then a struct can be a more efficient choice.

Here is another example that shows how a structure might be used in practice. It
simulates an e-commerce transaction record. Each transaction includes a packet header that
contains the packet number and the length of the packet. This is followed by the account
number and the amount of the transaction. Because the packet header is a self-contained
unit of information, it is organized as a structure. This structure can then be used to create
a transaction record, or any other type of information packet.

// Structures are good when grouping small amounts of data.

using System;

// Define a packet structure.
struct PacketHeader {
 public uint PackNum; // packet number
 public ushort PackLen; // length of packet
}

// Use PacketHeader to create an e-commerce transaction record.
class Transaction {
 static uint transacNum = 0;

 PacketHeader ph; // incorporate PacketHeader into Transaction
 string accountNum;
 double amount;

PART I

C h a p t e r 1 2 : I n t e r f a c e s , S t r u c t u r e s , a n d E n u m e r a t i o n s 331

PART I
PART I

 public Transaction(string acc, double val) {
 // create packet header
 ph.PackNum = transacNum++;
 ph.PackLen = 512; // arbitrary length

 accountNum = acc;
 amount = val;
 }

 // Simulate a transaction.
 public void sendTransaction() {
 Console.WriteLine("Packet #: " + ph.PackNum +
 ", Length: " + ph.PackLen +
 ",\n Account #: " + accountNum +
 ", Amount: {0:C}\n", amount);
 }
}

// Demonstrate Packet.
class PacketDemo {
 static void Main() {
 Transaction t = new Transaction("31243", -100.12);
 Transaction t2 = new Transaction("AB4655", 345.25);
 Transaction t3 = new Transaction("8475-09", 9800.00);

 t.sendTransaction();
 t2.sendTransaction();
 t3.sendTransaction();
 }
}

The output from the program is shown here:

Packet #: 0, Length: 512,
 Account #: 31243, Amount: ($100.12)

Packet #: 1, Length: 512,
 Account #: AB4655, Amount: $345.25

Packet #: 2, Length: 512,
 Account #: 8475-09, Amount: $9,800.00

PacketHeader is a good choice for a struct because it contains only a small amount of data
and does not use inheritance or even contain methods. As a structure, PacketHeader does
not incur the additional overhead of a reference, as a class would. Thus, any type of
transaction record can use PacketHeader without affecting its efficiency.

As a point of interest, C++ also has structures and uses the struct keyword. However,
C# and C++ structures are not the same. In C++, struct defines a class type. Thus, in C++,
struct and class are nearly equivalent. (The difference has to do with the default access of
their members, which is private for class and public for struct.) In C#, a struct defines a
value type, and a class defines a reference type.

332 P a r t I : T h e C # L a n g u a g e

Enumerations
An enumeration is a set of named integer constants. The keyword enum declares an
enumerated type. The general form for an enumeration is

enum name { enumeration list };

Here, the type name of the enumeration is specified by name. The enumeration list is a
comma-separated list of identifiers.

Here is an example. It defines an enumeration called Apple that enumerates various
types of apples:

enum Apple { Jonathan, GoldenDel, RedDel, Winesap,
 Cortland, McIntosh };

A key point to understand about an enumeration is that each of the symbols stands for
an integer value. However, no implicit conversions are defined between an enum type and
the built-in integer types, so an explicit cast must be used. Also, a cast is required when
converting between two enumeration types. Since enumerations represent integer values,
you can use an enumeration to control a switch statement or as the control variable in a for
loop, for example.

Each enumeration symbol is given a value one greater than the symbol that precedes it.
By default, the value of the first enumeration symbol is 0. Therefore, in the Apple enumeration,
Jonathan is 0, GoldenDel is 1, RedDel is 2, and so on.

The members of an enumeration are accessed through their type name via the dot
operator. For example

Console.WriteLine(Apple.RedDel + " has the value " +
 (int)Apple.RedDel);

displays

RedDel has the value 2

As the output shows, when an enumerated value is displayed, its name is used. To obtain
its integer value, a cast to int must be employed.

Here is a program that illustrates the Apple enumeration:

// Demonstrate an enumeration.

using System;

class EnumDemo {
 enum Apple { Jonathan, GoldenDel, RedDel, Winesap,
 Cortland, McIntosh };

 static void Main() {
 string[] color = {
 "Red",
 "Yellow",

PART I

C h a p t e r 1 2 : I n t e r f a c e s , S t r u c t u r e s , a n d E n u m e r a t i o n s 333

PART I
PART I

 "Red",
 "Red",
 "Red",
 "Reddish Green"
 };

 Apple i; // declare an enum variable

 // Use i to cycle through the enum.
 for(i = Apple.Jonathan; i <= Apple.McIntosh; i++)
 Console.WriteLine(i + " has value of " + (int)i);

 Console.WriteLine();

 // Use an enumeration to index an array.
 for(i = Apple.Jonathan; i <= Apple.McIntosh; i++)
 Console.WriteLine("Color of " + i + " is " +
 color[(int)i]);
 }
}

The output from the program is shown here:

Jonathan has value of 0
GoldenDel has value of 1
RedDel has value of 2
Winesap has value of 3
Cortland has value of 4
McIntosh has value of 5

Color of Jonathan is Red
Color of GoldenDel is Yellow
Color of RedDel is Red
Color of Winesap is Red
Color of Cortland is Red
Color of McIntosh is Reddish Green

Notice how the for loops are controlled by a variable of type Apple. Because the
enumerated values in Apple start at zero, these values can be used to index color to obtain
the color of the apple. Notice that a cast is required when the enumeration value is used to
index the color array. As mentioned, there are no implicit conversions defined between
integers and enumeration types. An explicit cast is required.

Initialize an Enumeration
You can specify the value of one or more of the symbols by using an initializer. Do this by
following the symbol with an equal sign and an integer value. Symbols that appear after
initializers are assigned values greater than the previous initialization value. For example,
the following code assigns the value of 10 to RedDel:

enum Apple { Jonathan, GoldenDel, RedDel = 10, Winesap,
 Cortland, McIntosh };

334 P a r t I : T h e C # L a n g u a g e

Now the values of these symbols are

Jonathan 0

GoldenDel 1

RedDel 10

Winesap 11

Cortland 12

McIntosh 13

Specify the Underlying Type of an Enumeration
By default, enumerations are based on type int, but you can create an enumeration of any
integral type, except for type char. To specify a type other than int, put the desired type
after the enumeration name, separated by a colon. For example, this statement makes
Apple an enumeration based on byte:

enum Apple : byte { Jonathan, GoldenDel, RedDel, Winesap,
 Cortland, McIntosh };

Now Apple.Winesap, for example, is a byte quantity.

Use Enumerations
At first glance you might think that enumerations are an interesting but relatively
unimportant part of C#, yet this is not the case. Enumerations are very useful when your
program requires one or more specialized symbols. For example, imagine that you are
writing a program that controls a conveyor belt in a factory. You might create a method
called Conveyor() that accepts the following commands as parameters: start, stop, forward,
and reverse. Instead of passing Conveyor() integers, such as 1 for start, 2 for stop, and so
on, which is error-prone, you can create an enumeration that assigns words to these values.
Here is an example of this approach:

// Simulate a conveyor belt.

using System;

class ConveyorControl {
 // Enumerate the conveyor commands.
 public enum Action { Start, Stop, Forward, Reverse };

 public void Conveyor(Action com) {
 switch(com) {
 case Action.Start:
 Console.WriteLine("Starting conveyor.");
 break;
 case Action.Stop:
 Console.WriteLine("Stopping conveyor.");
 break;

PART I

C h a p t e r 1 2 : I n t e r f a c e s , S t r u c t u r e s , a n d E n u m e r a t i o n s 335

PART I
PART I

 case Action.Forward:
 Console.WriteLine("Moving forward.");
 break;
 case Action.Reverse:
 Console.WriteLine("Moving backward.");
 break;
 }
 }
}

class ConveyorDemo {
 static void Main() {
 ConveyorControl c = new ConveyorControl();

 c.Conveyor(ConveyorControl.Action.Start);
 c.Conveyor(ConveyorControl.Action.Forward);
 c.Conveyor(ConveyorControl.Action.Reverse);
 c.Conveyor(ConveyorControl.Action.Stop);

 }
}

The output from the program is shown here:

Starting conveyor.
Moving forward.
Moving backward.
Stopping conveyor.

Because Conveyor() takes an argument of type Action, only the values defined by Action
can be passed to the method. For example, here an attempt is made to pass the value 22 to
Conveyor():

c.Conveyor(22); // Error!

This won’t compile because there is no predefined conversion from int to Action. This prevents
the passing of invalid commands to Conveyor(). Of course, you could use a cast to force
a conversion, but this would require a premeditated act, not an accidental misuse. Also,
because commands are specified by name rather than by number, it is less likely that a
user of Conveyor() will inadvertently pass the wrong value.

There is one other interesting thing in this example: Notice that an enumeration type
is used to control the switch statement. As mentioned, because enumerations are integral
types, they are perfectly valid for use in a switch.

This page intentionally left blank

13
Exception Handling

An exception is an error that occurs at runtime. Using C#’s exception handling
subsystem, you can, in a structured and controlled manner, handle runtime errors.
A principal advantage of exception handling is that it automates much of the error-

handling code that previously had to be entered “by hand” into any large program. For
example, in a computer language without exception handling, error codes must be returned
when a method fails, and these values must be checked manually each time the method is
called. This approach is both tedious and error-prone. Exception handling streamlines error-
handling by allowing your program to define a block of code, called an exception handler,
that is executed automatically when an error occurs. It is not necessary to manually check
the success or failure of each specific operation or method call. If an error occurs, it will be
processed by the exception handler.

Exception handling is also important because C# defines standard exceptions for common
program errors, such as divide-by-zero or index-out-of-range. To respond to these errors,
your program must watch for and handle these exceptions. In the final analysis, to be a
successful C# programmer means that you are fully capable of navigating C#’s exception-
handling subsystem.

The System.Exception Class
In C#, exceptions are represented by classes. All exception classes must be derived from the
built-in exception class Exception, which is part of the System namespace. Thus, all exceptions
are subclasses of Exception.

One very important subclass of Exception is SystemException. This is the exception
class from which all exceptions generated by the C# runtime system (that is, the CLR) are
derived. SystemException does not add anything to Exception. It simply defines the top
of the standard exceptions hierarchy.

The .NET Framework defines several built-in exceptions that are derived from
SystemException. For example, when a division-by-zero is attempted, a DivideByZeroException
exception is generated. As you will see later in this chapter, you can create your own
exception classes by deriving them from Exception.

337

CHAPTER

338 P a r t I : T h e C # L a n g u a g e

Exception Handling Fundamentals
C# exception handling is managed via four keywords: try, catch, throw, and finally.
They form an interrelated subsystem in which the use of one implies the use of another.
Throughout the course of this chapter, each keyword is examined in detail. However, it
is useful at the outset to have a general understanding of the role each plays in exception
handling. Briefly, here is how they work.

Program statements that you want to monitor for exceptions are contained within a
try block. If an exception occurs within the try block, it is thrown. Your code can catch this
exception using catch and handle it in some rational manner. System-generated exceptions
are automatically thrown by the runtime system. To manually throw an exception, use the
keyword throw. Any code that absolutely must be executed upon exiting from a try block is
put in a finally block.

Using try and catch
At the core of exception handling are try and catch. These keywords work together, and you
can’t have a catch without a try. Here is the general form of the try/catch exception-handling
blocks:

try {
 // block of code to monitor for errors
}

catch (ExcepType1 exOb) {
 // handler for ExcepType1
}

catch (ExcepType2 exOb) {
 // handler for ExcepType2
}...

Here, ExcepType is the type of exception that has occurred. When an exception is thrown,
it is caught by its corresponding catch clause, which then processes the exception. As the
general form shows, more than one catch clause can be associated with a try. The type of
the exception determines which catch is executed. That is, if the exception type specified
by a catch matches that of the exception, then that catch is executed (and all others are
bypassed). When an exception is caught, the exception variable exOb will receive its value.

Actually, specifying exOb is optional. If the exception handler does not need access to the
exception object (as is often the case), there is no need to specify exOb. The exception type
alone is sufficient. For this reason, many of the examples in this chapter will not specify exOb.

Here is an important point: If no exception is thrown, then a try block ends normally,
and all of its catch clauses are bypassed. Execution resumes with the first statement
following the last catch. Thus, a catch is executed only if an exception is thrown.

A Simple Exception Example
Here is a simple example that illustrates how to watch for and catch an exception. As you
know, it is an error to attempt to index an array beyond its boundaries. When this error
occurs, the CLR throws an IndexOutOfRangeException, which is a standard exception

PART I

C h a p t e r 1 3 : E x c e p t i o n H a n d l i n g 339

PART I
PART I

defined by the .NET Framework. The following program purposely generates such an
exception and then catches it:

// Demonstrate exception handling.

using System;

class ExcDemo1 {
 static void Main() {
 int[] nums = new int[4];

 try {
 Console.WriteLine("Before exception is generated.");

 // Generate an index out-of-bounds exception.
 for(int i=0; i < 10; i++) {
 nums[i] = i;
 Console.WriteLine("nums[{0}]: {1}", i, nums[i]);
 }

 Console.WriteLine("this won't be displayed");
 }
 catch (IndexOutOfRangeException) {
 // Catch the exception.
 Console.WriteLine("Index out-of-bounds!");
 }
 Console.WriteLine("After catch block.");
 }
}

This program displays the following output:

Before exception is generated.
nums[0]: 0
nums[1]: 1
nums[2]: 2
nums[3]: 3
Index out-of-bounds!
After catch block.

Notice that nums is an int array of four elements. However, the for loop tries to index nums
from 0 to 9, which causes an IndexOutOfRangeException to occur when an index value of
4 is tried.

Although quite short, the preceding program illustrates several key points about exception
handling. First, the code that you want to monitor for errors is contained within a try block.
Second, when an exception occurs (in this case, because of the attempt to index nums
beyond its bounds inside the for loop), the exception is thrown out of the try block and
caught by the catch. At this point, control passes to the catch block, and the try block is
terminated. That is, catch is not called. Rather, program execution is transferred to it. Thus,
the WriteLine() statement following the out-of-bounds index will never execute. After the
catch block executes, program control continues with the statements following the catch.
Thus, it is the job of your exception handler to remedy the problem that caused the
exception so program execution can continue normally.

340 P a r t I : T h e C # L a n g u a g e

Notice that no exception variable is specified in the catch clause. Instead, only the type
of the exception (IndexOutOfRangeException in this case) is required. As mentioned, an
exception variable is needed only when access to the exception object is required. In some
cases, the value of the exception object can be used by the exception handler to obtain
additional information about the error, but in many cases, it is sufficient to simply know
that an exception occurred. Thus, it is not unusual for the catch variable to be absent in the
exception handler, as is the case in the preceding program.

As explained, if no exception is thrown by a try block, no catch will be executed and
program control resumes after the catch. To confirm this, in the preceding program, change
the for loop from

for(int i=0; i < 10; i++) {

to

for(int i=0; i < nums.Length; i++) {

Now, the loop does not overrun nums’ boundary. Thus, no exception is generated, and the
catch block is not executed.

A Second Exception Example
It is important to understand that all code executed within a try block is monitored for
exceptions. This includes exceptions that might be generated by a method called from
within the try block. An exception thrown by a method called from within a try block
can be caught by that try block, assuming, of course, that the method itself did not catch
the exception.

For example, consider the following program. Main() establishes a try block from which
the method GenException() is called. Inside GenException(), an IndexOutOfRangeException
is generated. This exception is not caught by GenException(). However, since GenException()
was called from within a try block in Main(), the exception is caught by the catch statement
associated with that try.

/* An exception can be generated by one
 method and caught by another. */

using System;

class ExcTest {
 // Generate an exception.
 public static void GenException() {
 int[] nums = new int[4];

 Console.WriteLine("Before exception is generated.");

 // Generate an index out-of-bounds exception.
 for(int i=0; i < 10; i++) {
 nums[i] = i;
 Console.WriteLine("nums[{0}]: {1}", i, nums[i]);
 }

PART I

C h a p t e r 1 3 : E x c e p t i o n H a n d l i n g 341

PART I
PART I

 Console.WriteLine("this won't be displayed");
 }
}

class ExcDemo2 {
 static void Main() {

 try {
 ExcTest.GenException();
 }
 catch (IndexOutOfRangeException) {
 // Catch the exception.
 Console.WriteLine("Index out-of-bounds!");
 }
 Console.WriteLine("After catch block.");
 }
}

This program produces the following output, which is the same as that produced by the
first version of the program shown earlier:

Before exception is generated.
nums[0]: 0
nums[1]: 1
nums[2]: 2
nums[3]: 3
Index out-of-bounds!
After catch block.

As explained, because GenException() is called from within a try block, the exception that
it generates (and does not catch) is caught by the catch in Main(). Understand, however,
that if GenException() had caught the exception, then it never would have been passed
back to Main().

The Consequences of an Uncaught Exception
Catching one of the standard exceptions, as the preceding program does, has a side benefit:
It prevents abnormal program termination. When an exception is thrown, it must be caught
by some piece of code, somewhere. In general, if your program does not catch an exception,
it will be caught by the runtime system. The trouble is that the runtime system will report
an error and terminate the program. For instance, in this example, the index out-of-bounds
exception is not caught by the program:

// Let the C# runtime system handle the error.

using System;

class NotHandled {
 static void Main() {
 int[] nums = new int[4];

342 P a r t I : T h e C # L a n g u a g e

 Console.WriteLine("Before exception is generated.");

 // Generate an index out-of-bounds exception.
 for(int i=0; i < 10; i++) {
 nums[i] = i;
 Console.WriteLine("nums[{0}]: {1}", i, nums[i]);
 }

 }
}

When the array index error occurs, execution is halted and the following error message
is displayed:

Unhandled Exception: System.IndexOutOfRangeException:
 Index was outside the bounds of the array.
 at NotHandled.Main()

Although such a message is useful while debugging, you would not want others to see it, to
say the least! This is why it is important for your program to handle exceptions itself.

As mentioned earlier, the type of the exception must match the type specified in a catch.
If it doesn’t, the exception won’t be caught. For example, the following program tries to
catch an array boundary error with a catch for a DivideByZeroException (another built-in
exception). When the array boundary is overrun, an IndexOutOfRangeException is
generated, but it won’t be caught by the catch. This results in abnormal program termination.

// This won't work!

using System;

class ExcTypeMismatch {
 static void Main() {
 int[] nums = new int[4];

 try {
 Console.WriteLine("Before exception is generated.");

 // Generate an index out-of-bounds exception.
 for(int i=0; i < 10; i++) {
 nums[i] = i;
 Console.WriteLine("nums[{0}]: {1}", i, nums[i]);
 }

 Console.WriteLine("this won't be displayed");
 }

 /* Can't catch an array boundary error with a
 DivideByZeroException. */
 catch (DivideByZeroException) {
 // Catch the exception.
 Console.WriteLine("Index out-of-bounds!");
 }

PART I

C h a p t e r 1 3 : E x c e p t i o n H a n d l i n g 343

PART I
PART I

 Console.WriteLine("After catch block.");
 }
}

The output is shown here:

Before exception is generated.
nums[0]: 0
nums[1]: 1
nums[2]: 2
nums[3]: 3

Unhandled Exception: System.IndexOutOfRangeException:
 Index was outside the bounds of the array.
 at ExcTypeMismatch.Main()

As the output demonstrates, a catch for DivideByZeroException won’t catch an
IndexOutOfRangeException.

Exceptions Let You Handle Errors Gracefully
One of the key benefits of exception handling is that it enables your program to respond
to an error and then continue running. For example, consider the following example that
divides the elements of one array by the elements of another. If a division-by-zero occurs, a
DivideByZeroException is generated. In the program, this exception is handled by reporting
the error and then continuing with execution. Thus, attempting to divide by zero does not
cause an abrupt runtime error resulting in the termination of the program. Instead, it is
handled gracefully, allowing program execution to continue.

// Handle error gracefully and continue.

using System;

class ExcDemo3 {
 static void Main() {
 int[] numer = { 4, 8, 16, 32, 64, 128 };
 int[] denom = { 2, 0, 4, 4, 0, 8 };

 for(int i=0; i < numer.Length; i++) {
 try {
 Console.WriteLine(numer[i] + " / " +
 denom[i] + " is " +
 numer[i]/denom[i]);
 }
 catch (DivideByZeroException) {
 // Catch the exception.
 Console.WriteLine("Can't divide by Zero!");
 }
 }
 }
}

344 P a r t I : T h e C # L a n g u a g e

The output from the program is shown here:

4 / 2 is 2
Can't divide by Zero!
16 / 4 is 4
32 / 4 is 8
Can't divide by Zero!
128 / 8 is 16

This example makes another important point: Once an exception has been handled, it is
removed from the system. Therefore, in the program, each pass through the loop enters the
try block anew—any prior exceptions have been handled. This enables your program to
handle repeated errors.

Using Multiple catch Clauses
You can associate more than one catch clause with a try. In fact, it is common to do so.
However, each catch must catch a different type of exception. For example, the program
shown here catches both array boundary and divide-by-zero errors:

// Use multiple catch clauses.

using System;

class ExcDemo4 {
 static void Main() {
 // Here, numer is longer than denom.
 int[] numer = { 4, 8, 16, 32, 64, 128, 256, 512 };
 int[] denom = { 2, 0, 4, 4, 0, 8 };

 for(int i=0; i < numer.Length; i++) {
 try {
 Console.WriteLine(numer[i] + " / " +
 denom[i] + " is " +
 numer[i]/denom[i]);
 }
 catch (DivideByZeroException) {
 Console.WriteLine("Can't divide by Zero!");
 }
 catch (IndexOutOfRangeException) {
 Console.WriteLine("No matching element found.");
 }
 }
 }
}

This program produces the following output:

4 / 2 is 2
Can't divide by Zero!
16 / 4 is 4
32 / 4 is 8
Can't divide by Zero!
128 / 8 is 16

PART I

C h a p t e r 1 3 : E x c e p t i o n H a n d l i n g 345

PART I
PART I

No matching element found.
No matching element found.

As the output confirms, each catch clause responds only to its own type of exception.
In general, catch clauses are checked in the order in which they occur in a program.

Only the first matching clause is executed. All other catch blocks are ignored.

Catching All Exceptions
Occasionally, you might want to catch all exceptions, no matter the type. To do this, use a
catch clause that specifies no exception type or variable. It has this general form:

catch {
 // handle exceptions
}

This creates a “catch all” handler that ensures that all exceptions are caught by your
program.

Here is an example of a “catch all” exception handler. Notice that it catches both the
IndexOutOfRangeException and the DivideByZeroException generated by the program:

// Use the "catch all" catch.

using System;

class ExcDemo5 {
 static void Main() {
 // Here, numer is longer than denom.
 int[] numer = { 4, 8, 16, 32, 64, 128, 256, 512 };
 int[] denom = { 2, 0, 4, 4, 0, 8 };

 for(int i=0; i < numer.Length; i++) {
 try {
 Console.WriteLine(numer[i] + " / " +
 denom[i] + " is " +
 numer[i]/denom[i]);
 }
 catch { // A "catch-all" catch.
 Console.WriteLine("Some exception occurred.");
 }
 }
 }
}

The output is shown here:

4 / 2 is 2
Some exception occurred.
16 / 4 is 4
32 / 4 is 8
Some exception occurred.
128 / 8 is 16
Some exception occurred.
Some exception occurred.

346 P a r t I : T h e C # L a n g u a g e

There is one point to remember about using a catch-all catch: It must be the last catch
clause in the catch sequence.

NOTENOTE In the vast majority of cases you should not use the “catch all” handler as a means of dealing
with exceptions. It is normally better to deal individually with the exceptions that your code can
generate. The inappropriate use of the “catch all” handler can lead to situations in which errors
that would otherwise be caught during testing are masked. It is also difficult to correctly handle
all types of exceptions with a single hander. That said, a “catch all” handler might be appropriate
in certain specialized circumstances, such as in a runtime code analysis tool.

Nesting try Blocks
One try block can be nested within another. An exception generated within the inner try
block that is not caught by a catch associated with that try is propagated to the outer try block.
For example, here the IndexOutOfRangeException is not caught by the inner try block, but
by the outer try:

// Use a nested try block.

using System;

class NestTrys {
 static void Main() {
 // Here, numer is longer than denom.
 int[] numer = { 4, 8, 16, 32, 64, 128, 256, 512 };
 int[] denom = { 2, 0, 4, 4, 0, 8 };

 try { // outer try
 for(int i=0; i < numer.Length; i++) {
 try { // nested try
 Console.WriteLine(numer[i] + " / " +
 denom[i] + " is " +
 numer[i]/denom[i]);
 }
 catch (DivideByZeroException) {
 Console.WriteLine("Can't divide by Zero!");
 }
 }
 }
 catch (IndexOutOfRangeException) {
 Console.WriteLine("No matching element found.");
 Console.WriteLine("Fatal error -- program terminated.");
 }
 }
}

The output from the program is shown here:

4 / 2 is 2
Can't divide by Zero!
16 / 4 is 4

PART I

C h a p t e r 1 3 : E x c e p t i o n H a n d l i n g 347

PART I
PART I

32 / 4 is 8
Can't divide by Zero!
128 / 8 is 16
No matching element found.
Fatal error -- program terminated.

In this example, an exception that can be handled by the inner try—in this case a divide-by-
zero error—allows the program to continue. However, an array boundary error is caught by
the outer try, which causes the program to terminate.

Although certainly not the only reason for nested try statements, the preceding program
makes an important point that can be generalized. Often, nested try blocks are used to
allow different categories of errors to be handled in different ways. Some types of errors
are catastrophic and cannot be fixed. Some are minor and can be handled immediately.
Many programmers use an outer try block to catch the most severe errors, allowing inner
try blocks to handle less serious ones. You can also use an outer try block as a “catch all”
block for those errors that are not handled by the inner block.

Throwing an Exception
The preceding examples have been catching exceptions generated automatically by the
runtime system. However, it is possible to throw an exception manually by using the throw
statement. Its general form is shown here:

throw exceptOb;

The exceptOb must be an object of an exception class derived from Exception.
Here is an example that illustrates the throw statement by manually throwing a

DivideByZeroException:

// Manually throw an exception.

using System;

class ThrowDemo {
 static void Main() {
 try {
 Console.WriteLine("Before throw.");
 throw new DivideByZeroException();
 }
 catch (DivideByZeroException) {
 Console.WriteLine("Exception caught.");
 }
 Console.WriteLine("After try/catch statement.");
 }
}

The output from the program is shown here:

Before throw.
Exception caught.
After try/catch statement.

348 P a r t I : T h e C # L a n g u a g e

Notice how the DivideByZeroException was created using new in the throw statement.
Remember, throw throws an object. Thus, you must create an object for it to throw. That
is, you can’t just throw a type. In this case, the default constructor is used to create a
DivideByZeroException object, but other constructors are available for exceptions.

Most often, exceptions that you throw will be instances of exception classes that you
created. As you will see later in this chapter, creating your own exception classes allows you
to handle errors in your code as part of your program’s overall exception handling strategy.

Rethrowing an Exception
An exception caught by one catch can be rethrown so that it can be caught by an outer
catch. The most likely reason for rethrowing an exception is to allow multiple handlers
access to the exception. For example, perhaps one exception handler manages one aspect of
an exception, and a second handler copes with another aspect. To rethrow an exception, you
simply specify throw, without specifying an expression. That is, you use this form of throw:

throw ;

Remember, when you rethrow an exception, it will not be recaught by the same catch
clause. Instead, it will propagate to an outer catch.

The following program illustrates rethrowing an exception. In this case, it rethrows an
IndexOutOfRangeException.

// Rethrow an exception.

using System;

class Rethrow {
 public static void GenException() {
 // Here, numer is longer than denom.
 int[] numer = { 4, 8, 16, 32, 64, 128, 256, 512 };
 int[] denom = { 2, 0, 4, 4, 0, 8 };

 for(int i=0; i<numer.Length; i++) {
 try {
 Console.WriteLine(numer[i] + " / " +
 denom[i] + " is " +
 numer[i]/denom[i]);
 }
 catch (DivideByZeroException) {
 Console.WriteLine("Can't divide by Zero!");
 }
 catch (IndexOutOfRangeException) {
 Console.WriteLine("No matching element found.");
 throw; // rethrow the exception
 }
 }
 }
}

class RethrowDemo {
 static void Main() {
 try {

PART I

C h a p t e r 1 3 : E x c e p t i o n H a n d l i n g 349

PART I
PART I

 Rethrow.GenException();
 }
 catch(IndexOutOfRangeException) {
 // recatch exception
 Console.WriteLine("Fatal error -- " + "program terminated.");
 }
 }
}

In this program, divide-by-zero errors are handled locally, by GenException(), but an array
boundary error is rethrown. In this case, the IndexOutOfRangeException is handled by
Main().

Using finally
Sometimes you will want to define a block of code that will execute when a try/catch block
is left. For example, an exception might cause an error that terminates the current method,
causing its premature return. However, that method may have opened a file or a network
connection that needs to be closed. Such types of circumstances are common in programming,
and C# provides a convenient way to handle them: finally.

To specify a block of code to execute when a try/catch block is exited, include a finally
block at the end of a try/catch sequence. The general form of a try/catch that includes
finally is shown here:

try {
 // block of code to monitor for errors
}

catch (ExcepType1 exOb) {
 // handler for ExcepType1
}

catch (ExcepType2 exOb) {
 // handler for ExcepType2
}...
fi nally {
 // fi nally code
}
The finally block will be executed whenever execution leaves a try/catch block, no

matter what conditions cause it. That is, whether the try block ends normally, or because
of an exception, the last code executed is that defined by finally. The finally block is also
executed if any code within the try block or any of its catch blocks returns from the method.

Here is an example of finally:

// Use finally.

using System;

class UseFinally {
 public static void GenException(int what) {

350 P a r t I : T h e C # L a n g u a g e

 int t;
 int[] nums = new int[2];

 Console.WriteLine("Receiving " + what);
 try {
 switch(what) {
 case 0:
 t = 10 / what; // generate div-by-zero error
 break;
 case 1:
 nums[4] = 4; // generate array index error
 break;
 case 2:
 return; // return from try block
 }
 }
 catch (DivideByZeroException) {
 Console.WriteLine("Can't divide by Zero!");
 return; // return from catch
 }
 catch (IndexOutOfRangeException) {
 Console.WriteLine("No matching element found.");
 }
 finally {
 Console.WriteLine("Leaving try.");
 }
 }
}

class FinallyDemo {
 static void Main() {

 for(int i=0; i < 3; i++) {
 UseFinally.GenException(i);
 Console.WriteLine();
 }
 }
}

Here is the output produced by the program:

Receiving 0
Can't divide by Zero!
Leaving try.

Receiving 1
No matching element found.
Leaving try.

Receiving 2
Leaving try.

As the output shows, no matter how the try block is exited, the finally block executed.

PART I

C h a p t e r 1 3 : E x c e p t i o n H a n d l i n g 351

PART I
PART I

One other point: Syntactically, when a finally block follows a try block, no catch clauses
are technically required. Thus, you can have a try followed by a finally with no catch
clauses. In this case, the finally block is executed when the try exits, but no exceptions
are handled.

A Closer Look at the Exception Class
Up to this point, we have been catching exceptions, but we haven’t been doing anything
with the exception object itself. As explained earlier, a catch clause allows you to specify an
exception type and a variable. The variable receives a reference to the exception object. Since
all exceptions are derived from Exception, all exceptions support the members defined by
Exception. Here we will examine several of its most useful members and constructors, and
put the exception variable to use.

Exception defines several properties. Three of the most interesting are Message,
StackTrace, and TargetSite. All are read-only. Message contains a string that describes the
nature of the error. StackTrace contains a string that contains the stack of calls that lead to
the exception. TargetSite obtains an object that specifies the method that generated the
exception.

Exception also defines several methods. One that you will often use is ToString(),
which returns a string that describes the exception. ToString() is automatically called
when an exception is displayed via WriteLine(), for example.

The following program demonstrates these properties and this method:

// Using Exception members.

using System;

class ExcTest {
 public static void GenException() {
 int[] nums = new int[4];

 Console.WriteLine("Before exception is generated.");

 // Generate an index out-of-bounds exception.
 for(int i=0; i < 10; i++) {
 nums[i] = i;
 Console.WriteLine("nums[{0}]: {1}", i, nums[i]);
 }

 Console.WriteLine("this won't be displayed");
 }
}

class UseExcept {
 static void Main() {

 try {
 ExcTest.GenException();
 }
 catch (IndexOutOfRangeException exc) {

352 P a r t I : T h e C # L a n g u a g e

 Console.WriteLine("Standard message is: ");
 Console.WriteLine(exc); // calls ToString()
 Console.WriteLine("Stack trace: " + exc.StackTrace);
 Console.WriteLine("Message: " + exc.Message);
 Console.WriteLine("TargetSite: " + exc.TargetSite);
 }
 Console.WriteLine("After catch block.");
 }
}

The output from this program is shown here:

Before exception is generated.
nums[0]: 0
nums[1]: 1
nums[2]: 2
nums[3]: 3
Standard message is:
System.IndexOutOfRangeException: Index was outside the bounds of the array.
 at ExcTest.GenException()
 at UseExcept.Main()
Stack trace: at ExcTest.GenException()
 at UseExcept.Main()
Message: Index was outside the bounds of the array.
TargetSite: Void GenException()
After catch block.

Exception defi nes the following four constructors:

public Exception()

public Exception(string str)

public Exception(string str, Exception inner)

protected Exception(System.Runtime.Serialization.SerializationInfo si,
 System.Runtime.Serialization.StreamingContext sc)

The first is the default constructor. The second specifies the string associated with the
Message property associated with the exception. The third specifies what is called an inner
exception. It is used when one exception gives rise to another. In this case, inner specifies the
first exception, which will be null if no inner exception exists. (The inner exception, if it
exists, can be obtained from the InnerException property defined by Exception.) The last
constructor handles exceptions that occur remotely and require deserialization.

One other point: In the fourth Exception constructor shown above, notice that the types
SerializationInfo and StreamingContext are contained in the System.Runtime.Serialization
namespace.

Commonly Used Exceptions
The System namespace defines several standard, built-in exceptions. All are derived from
SystemException since they are generated by the CLR when runtime errors occur. Several
of the more commonly used standard exceptions are shown in Table 13-1.

PART I

C h a p t e r 1 3 : E x c e p t i o n H a n d l i n g 353

PART I
PART I

Most of the exceptions in Table 13-1 are self-explanatory, with the possible exception of
NullReferenceException. This exception is thrown when there is an attempt to use a null
reference as if it referred to an object—for example, if you attempt to call a method on a null
reference. A null reference is a reference that does not point to any object. One way to create a
null reference is to explicitly assign it the value null by using the keyword null. Null references
can also occur in other ways that are less obvious. Here is a program that demonstrates the
NullReferenceException:

// Use the NullReferenceException.

using System;

class X {
 int x;
 public X(int a) {
 x = a;
 }

 public int Add(X o) {
 return x + o.x;
 }
}

// Demonstrate NullReferenceException.
class NREDemo {
 static void Main() {
 X p = new X(10);
 X q = null; // q is explicitly assigned null
 int val;

Exception Meaning

ArrayTypeMismatchException Type of value being stored is incompatible with the type of
the array.

DivideByZeroException Division by zero attempted.

IndexOutOfRangeException Array index is out of bounds.

InvalidCastException A runtime cast is invalid.

OutOfMemoryException Insufficient free memory exists to continue program
execution. For example, this exception will be thrown if
there is not sufficient free memory to create an object via
new.

OverflowException An arithmetic overflow occurred.

NullReferenceException An attempt was made to operate on a null reference—that
is, a reference that does not refer to an object.

StackOverflowException The stack was overrun.

TABLE 13-1 Commonly Used Exceptions Defi ned Within the System Namespace

354 P a r t I : T h e C # L a n g u a g e

 try {
 val = p.Add(q); // this will lead to an exception
 } catch (NullReferenceException) {
 Console.WriteLine("NullReferenceException!");
 Console.WriteLine("fixing...\n");

 // Now, fix it.
 q = new X(9);
 val = p.Add(q);
 }

 Console.WriteLine("val is {0}", val);
 }
}

The output from the program is shown here:

NullReferenceException!
fixing...

val is 19

The program creates a class called X that defines a member called x and the Add()
method, which adds the invoking object’s x to the x in the object passed as a parameter. In
Main(), two X objects are created. The first, p, is initialized. The second, q, is not. Instead, it
is explicitly assigned null. Then p.Add() is called with q as an argument. Because q does
not refer to any object, a NullReferenceException is generated when the attempt is made to
obtain the value of q.x.

An interesting exception is StackOverflowException, which is thrown when the system
stack is overrun. One situation in which this can happen is when a recursive method runs
wild. Because the stack is exhausted, a StackOverflowException can’t be caught by your
program. Instead, a stack overflow results in the abnormal termination of your program.

Deriving Exception Classes
Although C#’s built-in exceptions handle most common errors, C#’s exception handling
mechanism is not limited to these errors. In fact, part of the power of C#’s approach to
exceptions is its ability to handle exceptions that you create. You can use custom exceptions
to handle errors in your own code. Creating an exception is easy. Just define a class derived
from Exception. Your derived classes don’t need to actually implement anything—it is their
existence in the type system that allows you to use them as exceptions.

NOTENOTE In the past, custom exceptions were derived from ApplicationException since this is the
hierarchy that was originally reserved for application-related exceptions. However, Microsoft
no longer recommends this. Instead, at the time of this writing, Microsoft recommends deriving
custom exceptions from Exception. For this reason, this approach is used here.

PART I

C h a p t e r 1 3 : E x c e p t i o n H a n d l i n g 355

PART I
PART I

The exception classes that you create will automatically have the properties and methods
defined by Exception available to them. Of course, you can override one or more of these
members in exception classes that you create.

When creating your own exception class, you will generally want your class to support
all of the constructors defined by Exception. For simple custom exception classes, this is
easy to do because you can simply pass along the constructor’s arguments to the corresponding
Exception constructor via base. Of course, technically, you need to provide only those
constructors actually used by your program.

Here is an example that makes use of a custom exception type. At the end of Chapter 10
an array class called RangeArray was developed. As you may recall, RangeArray supports
single-dimensional int arrays in which the starting and ending index is specified by the
user. For example, an array that ranges from –5 to 27 is perfectly legal for a RangeArray.
In Chapter 10, if an index was out of range, a special error variable defined by RangeArray
was set. This meant that the error variable had to be checked after each operation by the
code that used RangeArray. Of course, such an approach is error-prone and clumsy. A far
better design is to have RangeArray throw a custom exception when a range error occurs.
This is precisely what the following version of RangeArray does:

// Use a custom Exception for RangeArray errors.

using System;

// Create a RangeArray exception.
class RangeArrayException : Exception {
 /* Implement all of the Exception constructors. Notice that
 the constructors simply execute the base class constructor.
 Because RangeArrayException adds nothing to Exception,
 there is no need for any further actions. */
 public RangeArrayException() : base() { }
 public RangeArrayException(string str) : base(str) { }
 public RangeArrayException(string str, Exception inner) :
 base(str, inner) { }
 protected RangeArrayException(
 System.Runtime.Serialization.SerializationInfo si,
 System.Runtime.Serialization.StreamingContext sc) :
 base(si, sc) { }

 // Override ToString for RangeArrayException.
 public override string ToString() {
 return Message;
 }
}

// An improved version of RangeArray.
class RangeArray {
 // Private data.
 int[] a; // reference to underlying array
 int lowerBound; // smallest index
 int upperBound; // largest index

 // An auto-implemented, read-only Length property.
 public int Length { get; private set; }

356 P a r t I : T h e C # L a n g u a g e

 // Construct array given its size.
 public RangeArray(int low, int high) {
 high++;
 if(high <= low) {
 throw new RangeArrayException("Low index not less than high.");
 }
 a = new int[high - low];
 Length = high - low;

 lowerBound = low;
 upperBound = --high;
 }

 // This is the indexer for RangeArray.
 public int this[int index] {
 // This is the get accessor.
 get {
 if(ok(index)) {
 return a[index - lowerBound];
 } else {
 throw new RangeArrayException("Range Error.");
 }
 }

 // This is the set accessor.
 set {
 if(ok(index)) {
 a[index - lowerBound] = value;
 }
 else throw new RangeArrayException("Range Error.");
 }
 }

 // Return true if index is within bounds.
 private bool ok(int index) {
 if(index >= lowerBound & index <= upperBound) return true;
 return false;
 }
}

// Demonstrate the index-range array.
class RangeArrayDemo {
 static void Main() {
 try {
 RangeArray ra = new RangeArray(-5, 5);
 RangeArray ra2 = new RangeArray(1, 10);

 // Demonstrate ra.
 Console.WriteLine("Length of ra: " + ra.Length);

 for(int i = -5; i <= 5; i++)
 ra[i] = i;

PART I

C h a p t e r 1 3 : E x c e p t i o n H a n d l i n g 357

PART I
PART I

 Console.Write("Contents of ra: ");
 for(int i = -5; i <= 5; i++)
 Console.Write(ra[i] + " ");

 Console.WriteLine("\n");

 // Demonstrate ra2.
 Console.WriteLine("Length of ra2: " + ra2.Length);

 for(int i = 1; i <= 10; i++)
 ra2[i] = i;

 Console.Write("Contents of ra2: ");
 for(int i = 1; i <= 10; i++)
 Console.Write(ra2[i] + " ");

 Console.WriteLine("\n");

 } catch (RangeArrayException exc) {
 Console.WriteLine(exc);
 }

 // Now, demonstrate some errors.
 Console.WriteLine("Now generate some range errors.");

 // Use an invalid constructor.
 try {
 RangeArray ra3 = new RangeArray(100, -10); // Error
 } catch (RangeArrayException exc) {
 Console.WriteLine(exc);
 }

 // Use an invalid index.
 try {
 RangeArray ra3 = new RangeArray(-2, 2);

 for(int i = -2; i <= 2; i++)
 ra3[i] = i;

 Console.Write("Contents of ra3: ");
 for(int i = -2; i <= 10; i++) // generate range error
 Console.Write(ra3[i] + " ");

 } catch (RangeArrayException exc) {
 Console.WriteLine(exc);
 }
 }
}

The output from the program is shown here:

Length of ra: 11
Contents of ra: -5 -4 -3 -2 -1 0 1 2 3 4 5

358 P a r t I : T h e C # L a n g u a g e

Length of ra2: 10
Contents of ra2: 1 2 3 4 5 6 7 8 9 10

Now generate some range errors.
Low index not less than high.
Contents of ra3: -2 -1 0 1 2 Range Error.

When a range error occurs, RangeArray throws an object of type RangeArrayException.
Notice there are three places in RangeArray that this might occur: in the get indexer accessor,
in the set indexer accessor, and by the RangeArray constructor. To catch these exceptions
implies that RangeArray objects must be constructed and accessed from within a try block,
as the program illustrates. By using an exception to report errors, RangeArray now acts like
one of C#’s built-in types and can be fully integrated into a program’s exception-handling
mechanism.

Notice that none of the RangeArrayException constructors provide any statements
in their body. Instead, they simply pass their arguments along to Exception via base. As
explained, in cases in which your exception class does not add any functionality, you can
simply let the Exception constructors handle the process. There is no requirement that your
derived class add anything to what is inherited from Exception.

Before moving on, you might want to experiment with this program a bit. For example,
try commenting-out the override of ToString() and observe the results. Also, try creating an
exception using the default constructor, and observe what C# generates as its default message.

Catching Derived Class Exceptions
You need to be careful how you order catch clauses when trying to catch exception types that
involve base and derived classes, because a catch for a base class will also match any of its
derived classes. For example, because the base class of all exceptions is Exception, catching
Exception catches all possible exceptions. Of course, using catch without an exception type
provides a cleaner way to catch all exceptions, as described earlier. However, the issue of
catching derived class exceptions is very important in other contexts, especially when you
create exceptions of your own.

If you want to catch exceptions of both a base class type and a derived class type, put
the derived class first in the catch sequence. This is necessary because a base class catch will
also catch all derived classes. Fortunately, this rule is self-enforcing because putting the base
class first causes a compile-time error.

The following program creates two exception classes called ExceptA and ExceptB.
ExceptA is derived from Exception. ExceptB is derived from ExceptA. The program then
throws an exception of each type. For brevity, the custom exceptions supply only one
constructor (which takes a string that describes the exception). But remember, in commercial
code, your custom exception classes will normally provide all four of the constructors
defined by Exception.

// Derived exceptions must appear before base class exceptions.

using System;

// Create an exception.
class ExceptA : Exception {
 public ExceptA(string str) : base(str) { }

PART I

C h a p t e r 1 3 : E x c e p t i o n H a n d l i n g 359

PART I
PART I

 public override string ToString() {
 return Message;
 }
}

// Create an exception derived from ExceptA.
class ExceptB : ExceptA {
 public ExceptB(string str) : base(str) { }

 public override string ToString() {
 return Message;
 }
}

class OrderMatters {
 static void Main() {
 for(int x = 0; x < 3; x++) {
 try {
 if(x==0) throw new ExceptA("Caught an ExceptA exception");
 else if(x==1) throw new ExceptB("Caught an ExceptB exception");
 else throw new Exception();
 }
 catch (ExceptB exc) {
 Console.WriteLine(exc);
 }
 catch (ExceptA exc) {
 Console.WriteLine(exc);
 }
 catch (Exception exc) {
 Console.WriteLine(exc);
 }
 }
 }
}

The output from the program is shown here:

Caught an ExceptA exception
Caught an ExceptB exception
System.Exception: Exception of type 'System.Exception' was thrown.
 at OrderMatters.Main()

Notice the type and order of the catch clauses. This is the only order in which they can
occur. Since ExceptB is derived from ExceptA, the catch for ExceptB must be before the one
for ExceptA. Similarly, the catch for Exception (which is the base class for all exceptions)
must appear last. To prove this point for yourself, try rearranging the catch clauses. Doing
so will result in a compile-time error.

One good use of a base class catch clause is to catch an entire category of exceptions. For
example, imagine you are creating a set of exceptions for some device. If you derive all of
the exceptions from a common base class, then applications that don’t need to know precisely
what problem occurred could simply catch the base class exception, avoiding the unnecessary
duplication of code.

360 P a r t I : T h e C # L a n g u a g e

Using checked and unchecked
A special feature in C# relates to the generation of overflow exceptions in arithmetic
computations. As you know, it is possible for some types of arithmetic computations to
produce a result that exceeds the range of the data type involved in the computation. When
this occurs, the result is said to overflow. For example, consider the following sequence:

byte a, b, result;
a = 127;
b = 127;

result = (byte)(a * b);

Here, the product of a and b exceeds the range of a byte value. Thus, the result overflows
the type of the result.

C# allows you to specify whether your code will raise an exception when overflow
occurs by using the keywords checked and unchecked. To specify that an expression be
checked for overflow, use checked. To specify that overflow be ignored, use unchecked.
In this case, the result is truncated to fit into the target type of the expression.

The checked keyword has these two general forms. One checks a specific expression
and is called the operator form of checked. The other checks a block of statements and is
called the statement form.

checked (expr)

checked {
 // statements to be checked
}

Here, expr is the expression being checked. If a checked expression overflows, then an
OverflowException is thrown.

The unchecked keyword also has two general forms. The first is the operator form,
which ignores overflow for a specific expression. The second ignores overflow for a block
of statements.

unchecked (expr)

unchecked {
 // statements for which overfl ow is ignored
}

Here, expr is the expression that is not being checked for overflow. If an unchecked
expression overflows, then truncation will occur.

Here is a program that demonstrates both checked and unchecked:

// Using checked and unchecked.

using System;

class CheckedDemo {
 static void Main() {
 byte a, b;

PART I

C h a p t e r 1 3 : E x c e p t i o n H a n d l i n g 361

PART I
PART I

 byte result;

 a = 127;
 b = 127;

 try {
 result = unchecked((byte)(a * b));
 Console.WriteLine("Unchecked result: " + result);

 result = checked((byte)(a * b)); // this causes exception
 Console.WriteLine("Checked result: " + result); // won't execute
 }
 catch (OverflowException exc) {
 Console.WriteLine(exc);
 }
 }
}

The output from the program is shown here:

Unchecked result: 1
System.OverflowException: Arithmetic operation resulted in an overflow.
 at CheckedDemo.Main()

As is evident, the unchecked expression resulted in a truncation. The checked expression
caused an exception.

The preceding program demonstrated the use of checked and unchecked for a single
expression. The following program shows how to check and uncheck a block of statements.

// Using checked and unchecked with statement blocks.

using System;

class CheckedBlocks {
 static void Main() {
 byte a, b;
 byte result;

 a = 127;
 b = 127;

 try {
 unchecked {
 a = 127;
 b = 127;
 result = unchecked((byte)(a * b));
 Console.WriteLine("Unchecked result: " + result);

 a = 125;
 b = 5;
 result = unchecked((byte)(a * b));
 Console.WriteLine("Unchecked result: " + result);
 }

362 P a r t I : T h e C # L a n g u a g e

 checked {
 a = 2;
 b = 7;
 result = checked((byte)(a * b)); // this is OK
 Console.WriteLine("Checked result: " + result);

 a = 127;
 b = 127;
 result = checked((byte)(a * b)); // this causes exception
 Console.WriteLine("Checked result: " + result); // won't execute
 }
 }
 catch (OverflowException exc) {
 Console.WriteLine(exc);
 }
 }
}

The output from the program is shown here:

Unchecked result: 1
Unchecked result: 113
Checked result: 14
System.OverflowException: Arithmetic operation resulted in an overflow.
 at CheckedBlocks.Main()

As you can see, the unchecked block results in the overflow being truncated. When
overflow occurred in the checked block, an exception was raised.

One reason that you may need to use checked or unchecked is that the default
checked/unchecked status of overflow is determined by the setting of a compiler option
and the execution environment, itself. Thus, for some types of programs, it is best to specify
the overflow check status explicitly.

14
Using I/O

The earlier chapters of this book have used parts of the C# I/O system, such as
Console.WriteLine(), but have done so without much formal explanation. Because
the I/O system is built upon a hierarchy of classes, it was not possible to present its

theory and details without first discussing classes, inheritance, and exceptions. Now it is
time to examine I/O in detail. Because C# uses the I/O system and classes defined by the
.NET Framework, a discussion of I/O under C# is also a discussion of the .NET I/O system,
in general.

This chapter examines both console I/O and file I/O. Be forewarned that the I/O system
is quite large. This chapter describes the most important and commonly used features.

C#’s I/O Is Built Upon Streams
C# programs perform I/O through streams. A stream is an abstraction that either produces or
consumes information. A stream is linked to a physical device by the I/O system. All streams
behave in the same manner, even if the actual physical devices they are linked to differ. Thus,
the I/O classes and methods can be applied to many types of devices. For example, the same
methods that you use to write to the console can also be used to write to a disk file.

Byte Streams and Character Streams
At the lowest level, all C# I/O operates on bytes. This makes sense because many devices are
byte oriented when it comes to I/O operations. Frequently, though, we humans prefer to
communicate using characters. Recall that in C#, char is a 16-bit type, and byte is an 8-bit type.
If you are using the ASCII character set, then it is easy to convert between char and byte; just
ignore the high-order byte of the char value. But this won’t work for the rest of the Unicode
characters, which need both bytes (and possibly more). Thus, byte streams are not perfectly
suited to handling character-based I/O. To solve this problem, the .NET Framework defines
several classes that convert a byte stream into a character stream, handling the translation of
byte-to-char and char-to-byte automatically.

The Predefined Streams
Three predefined streams, which are exposed by the properties called Console.In,
Console.Out, and Console.Error, are available to all programs that use the System
namespace. Console.Out refers to the standard output stream. By default, this is the

363

CHAPTER

364 P a r t I : T h e C # L a n g u a g e

console. When you call Console.WriteLine(), for example, it automatically sends
information to Console.Out. Console.In refers to standard input, which is, by default,
the keyboard. Console.Error refers to the standard error stream, which is also the console
by default. However, these streams can be redirected to any compatible I/O device. The
standard streams are character streams. Thus, these streams read and write characters.

The Stream Classes
The .NET Framework defines both byte and character stream classes. However, the character
stream classes are really just wrappers that convert an underlying byte stream to a character
stream, handling any conversion automatically. Thus, the character streams, while logically
separate, are built upon byte streams.

The core stream classes are defined within the System.IO namespace. To use these
classes, you will usually include the following statement near the top of your program:

using System.IO;

The reason that you don’t have to specify System.IO for console input and output is that
the Console class is defined in the System namespace.

The Stream Class
The core stream class is System.IO.Stream. Stream represents a byte stream and is a base
class for all other stream classes. It is also abstract, which means that you cannot instantiate
a Stream object. Stream defines a set of standard stream operations. Table 14-1 shows
several commonly used methods defined by Stream.

Several of the methods shown in Table 14-1 will throw an IOException if an I/O error
occurs. If an invalid operation is attempted, such as attempting to write to a stream that is
read-only, a NotSupportedException is thrown. Other exceptions are possible, depending
on the specific method.

Method Description

void Close() Closes the stream.

void Flush() Writes the contents of the stream to the physical device.

int ReadByte() Returns an integer representation of the next available
byte of input. Returns –1 when the end of the file is
encountered.

int Read(byte[] buf, int offset,
 int numBytes)

Attempts to read up to numBytes bytes into buf starting
at buf [offset], returning the number of bytes successfully
read.

long Seek(long offset, SeekOrigin origin) Sets the current position in the stream to the specified
offset from the specified origin. It returns the new position.

void WriteByte(byte b) Writes a single byte to an output stream.

int Write(byte[] buf, int offset,
 int numBytes)

Writes a subrange of numBytes bytes from the array buf,
beginning at buf [offset]. The number of bytes written is
returned.

TABLE 14-1 Some of the Methods Defi ned by Stream

PART I

C h a p t e r 1 4 : U s i n g I / O 365

PART I
PART I

Notice that Stream defines methods that read and write data. However, not all streams
will support both of these operations because it is possible to open read-only or write-only
streams. Also, not all streams will support position requests via Seek(). To determine the
capabilities of a stream, you will use one or more of Stream’s properties. They are shown in
Table 14-2. Also shown are the Length and Position properties, which contain the length of
the stream and its current position.

The Byte Stream Classes
Several concrete byte streams are derived from Stream. Those defined in the System.IO
namespace are shown here:

Stream Class Description

BufferedStream Wraps a byte stream and adds buffering. Buffering provides
a performance enhancement in many cases.

FileStream A byte stream designed for file I/O.

MemoryStream A byte stream that uses memory for storage.

UnmanagedMemoryStream A byte stream that uses unmanaged memory for storage.

Several other concrete stream classes are also supported by the .NET framework, which
provide support for compressed files, sockets, and pipes, among others. It is also possible to
derive your own stream classes. However, for the vast majority of applications, the built-in
streams will be sufficient.

The Character Stream Wrapper Classes
To create a character stream, wrap a byte stream inside one of the character stream
wrappers. At the top of the character stream hierarchy are the abstract classes TextReader
and TextWriter. TextReader handles input and TextWriter handles output. The methods
defined by these two abstract classes are available to all of their subclasses. Thus, they form
a minimal set of I/O functions that all character streams will have.

Method Description

bool CanRead This property is true if the stream can be read. This property is read-only.

bool CanSeek This property is true if the stream supports position requests. This property is
read-only.

bool CanTimeout This property is true if the stream can time out. This property is read-only.

bool CanWrite This property is true if the stream can be written. This property is read-only.

long Length This property contains the length of the stream. This property is read-only.

long Position This property represents the current position of the stream. This property is
read/write.

int ReadTimeout This property represents the length of time before a time-out will occur for
read operations. This property is read/write.

int WriteTimeout This property represents the length of time before a time-out will occur for
write operations. This property is read/write.

TABLE 14-2 The Properties Defi ned by Stream

366 P a r t I : T h e C # L a n g u a g e

Table 14-3 shows the input methods in TextReader. In general, these methods can throw
an IOException on error. (Some can throw other types of exceptions, too.) Of particular
interest is the ReadLine() method, which reads an entire line of text, returning it as a string.
This method is useful when reading input that contains embedded spaces.

TextWriter defines versions of Write() and WriteLine() that output all of the built-in
types. For example, here are just a few of their overloaded versions:

Method Description

void Write(int val) Writes an int.

void Write(double val) Writes a double.

void Write(bool val) Writes a bool.

void WriteLine(string val) Writes a string followed by a newline.

void WriteLine(uint val) Writes a uint followed by a newline.

void WriteLine(char val) Writes a character followed by a newline.

All throw an IOException if an error occurs while writing.
TextWriter also defines the Close() and Flush() methods shown here:

virtual void Close()
virtual void Flush()

Flush() causes any data remaining in the output buffer to be written to the physical
medium. Close() closes the stream.

Method Description

int Peek() Obtains the next character from the input stream,
but does not remove that character. Returns –1 if no
character is available.

int Read() Returns an integer representation of the next
available character from the invoking input stream.
Returns –1 when the end of the stream
is encountered.

int Read(char[] buf, int offset,
 int numChars)

Attempts to read up to numChars characters into
buf starting at buf [offset], returning the number of
characters successfully read.

int ReadBlock(char[] buf, int offset,
 int numChars)

Attempts to read up to numChars characters into
buf starting at buf [offset], returning the number of
characters successfully read.

string ReadLine() Reads the next line of text and returns it as a string.
Null is returned if an attempt is made to read at end-
of-file.

string ReadToEnd() Reads all of the remaining characters in a stream
and returns them as a string.

TABLE 14-3 The Input Methods Defi ned by TextReader

PART I

C h a p t e r 1 4 : U s i n g I / O 367

PART I
PART I

The TextReader and TextWriter classes are implemented by several character-based
stream classes, including those shown here. Thus, these streams provide the methods and
properties specified by TextReader and TextWriter.

Stream Class Description

StreamReader Read characters from a byte stream. This class wraps a byte input stream.

StreamWriter Write characters to a byte stream. This class wraps a byte output stream.

StringReader Read characters from a string.

StringWriter Write characters to a string.

Binary Streams
In addition to the byte and character streams, there are two binary stream classes that can
be used to read and write binary data directly. These streams are called BinaryReader and
BinaryWriter. We will look closely at these later in this chapter when binary file I/O is
discussed.

Now that you understand the general layout of the I/O system, the rest of this chapter
will examine its various pieces in detail, beginning with console I/O.

Console I/O
Console I/O is accomplished through the standard streams Console.In, Console.Out, and
Console.Error. Console I/O has been used since Chapter 2, so you are already familiar with
it. As you will see, it has some additional capabilities.

Before we begin, however, it is important to emphasize a point made earlier in this book:
Most real applications of C# will not be text-based, console programs. Rather, they will be
graphically oriented programs or components that rely upon a windowed interface for
interaction with the user, or will be server-side code. Thus, the portion of the I/O system
that relates to console input and output is not widely used. Although text-based programs
are excellent as teaching examples, for short utility programs, and for some types of
components, they are not suitable for most real-world applications.

Reading Console Input
Console.In is an instance of TextReader, and you can use the methods and properties
defined by TextReader to access it. However, you will generally use the methods provided
by Console, which automatically read from Console.In. Console defines three input methods.
The first two, Read() and ReadLine(), have been available since .NET Framework 1.0. The
third, ReadKey(), was added by .NET Framework 2.0.

To read a single character, use the Read() method:

static int Read()

Read() returns the next character read from the console. It waits until the user presses a key
and then returns the result. The character is returned as an int, which must be cast to char.
Read() returns –1 on error. This method will throw an IOException on failure. When using
Read(), console input is line-buffered, so you must press ENTER before any character that
you type will be sent to your program.

368 P a r t I : T h e C # L a n g u a g e

Here is a program that reads a character from the keyboard using Read():

// Read a character from the keyboard.

using System;

class KbIn {
 static void Main() {
 char ch;

 Console.Write("Press a key followed by ENTER: ");

 ch = (char) Console.Read(); // get a char

 Console.WriteLine("Your key is: " + ch);
 }
}

Here is a sample run:

Press a key followed by ENTER: t
Your key is: t

The fact that Read() is line-buffered is a source of annoyance at times. When you press
ENTER, a carriage-return, line-feed sequence is entered into the input stream. Furthermore,
these characters are left pending in the input buffer until you read them. Thus, for some
applications, you may need to remove them (by reading them) before the next input operation.
(To read keystrokes from the console in a non-line-buffered manner, you can use ReadKey(),
described later in this section.)

To read a string of characters, use the ReadLine() method. It is shown here:

static string ReadLine()

ReadLine() reads characters until you press ENTER and returns them in a string object. This
method will also throw an IOException on failure.

Here is a program that demonstrates reading a string from Console.In by using
ReadLine():

// Input from the console using ReadLine().

using System;

class ReadString {
 static void Main() {
 string str;

 Console.WriteLine("Enter some characters.");
 str = Console.ReadLine();
 Console.WriteLine("You entered: " + str);
 }
}

Here is a sample run:

PART I

C h a p t e r 1 4 : U s i n g I / O 369

PART I
PART I

Enter some characters.
This is a test.
You entered: This is a test.

Although the Console methods are the easiest way to read from Console.In, you can
call methods on the underlying TextReader. For example, here is the preceding program
rewritten to use the ReadLine() method defined by TextReader:

// Read a string from the keyboard, using Console.In directly.

using System;

class ReadChars2 {
 static void Main() {
 string str;

 Console.WriteLine("Enter some characters.");

 str = Console.In.ReadLine(); // call TextReader's ReadLine() method

 Console.WriteLine("You entered: " + str);
 }
}

Notice how ReadLine() is now invoked directly on Console.In. The key point here is that
if you need access to the methods defined by the TextReader that underlies Console.In, you
will invoke those methods as shown in this example.

Using ReadKey()
Beginning with version 2.0, the .NET Framework has included a method in Console that
enables you to read individual keystrokes directly from the keyboard in a non-line-buffered
manner. This method is called ReadKey(). When it is called, it waits until a key is pressed.
When a key is pressed, ReadKey() returns the keystroke immediately. The user does not need
to press ENTER. Thus, ReadKey() allows keystrokes to be read and processed in real time.

ReadKey() has these two forms.

static ConsoleKeyInfo ReadKey()

static ConsoleKeyInfo ReadKey(bool noDisplay)

The first form waits for a key to be pressed. When that occurs, it returns the key and also
displays the key on the screen. The second form also waits for and returns a keypress.
However, if noDisplay is true, then the key is not displayed. If noDisplay is false, the key
is displayed.

ReadKey() returns information about the keypress in an object of type ConsoleKeyInfo,
which is a structure. It contains the following read-only properties.

char KeyChar

ConsoleKey Key

ConsoleModifi ers Modifi ers

370 P a r t I : T h e C # L a n g u a g e

KeyChar contains the char equivalent of the character that was pressed. Key contains a
value from the ConsoleKey enumeration, which is an enumeration of all the keys on the
keyboard. Modifiers describes which, if any, of the keyboard modifiers ATL, CTRL, or SHIFT

were pressed when the keystroke was generated. These modifiers are represented by the
ConsoleModifiers enumeration, which has these values: Control, Shift, and Alt. More than
one modifier value might be present in Modifiers.

The major advantage to ReadKey() is that it provides a means of achieving interactive
keyboard input because it is not line buffered. To see the effect of this, try the following
program:

// Read keystrokes from the console by using ReadKey().

using System;

class ReadKeys {
 static void Main() {
 ConsoleKeyInfo keypress;

 Console.WriteLine("Enter keystrokes. Enter Q to stop.");

 do {
 keypress = Console.ReadKey(); // read keystrokes

 Console.WriteLine(" Your key is: " + keypress.KeyChar);

 // Check for modifier keys.
 if((ConsoleModifiers.Alt & keypress.Modifiers) != 0)
 Console.WriteLine("Alt key pressed.");
 if((ConsoleModifiers.Control & keypress.Modifiers) != 0)
 Console.WriteLine("Control key pressed.");
 if((ConsoleModifiers.Shift & keypress.Modifiers) != 0)
 Console.WriteLine("Shift key pressed.");

 } while(keypress.KeyChar != 'Q');
 }
}

A sample run is shown here:

Enter keystrokes. Enter Q to stop.
a Your key is: a
b Your key is: b
d Your key is: d
A Your key is: A
Shift key pressed.
B Your key is: B
Shift key pressed.
C Your key is: C
Shift key pressed.
• Your key is: •
Control key pressed.
Q Your key is: Q
Shift key pressed.

PART I

C h a p t e r 1 4 : U s i n g I / O 371

PART I
PART I

As the output confirms, each time a key is pressed, ReadKey() immediately returns the
keypress. As explained, this differs from Read() and ReadLine(), which use line-buffered
input. Therefore, if you want to achieve interactive responses from the keyboard, use
ReadKey().

Writing Console Output
Console.Out and Console.Error are objects of type TextWriter. Console output is most easily
accomplished with Write() and WriteLine(), with which you are already familiar. Versions
of these methods exist that output for each of the built-in types. Console defines its own
versions of Write() and WriteLine() so they can be called directly on Console, as you have
been doing throughout this book. However, you can invoke these (and other) methods on
the TextWriter that underlies Console.Out and Console.Error if you choose.

Here is a program that demonstrates writing to Console.Out and Console.Error. By
default, both write to the console.

// Write to Console.Out and Console.Error.

using System;

class ErrOut {
 static void Main() {
 int a=10, b=0;
 int result;

 Console.Out.WriteLine("This will generate an exception.");
 try {
 result = a / b; // generate an exception
 } catch(DivideByZeroException exc) {
 Console.Error.WriteLine(exc.Message);
 }
 }
}

The output from the program is shown here:

This will generate an exception.
Attempted to divide by zero.

Sometimes newcomers to programming are confused about when to use Console.Error.
Since both Console.Out and Console.Error default to writing their output to the console,
why are there two different streams? The answer lies in the fact that the standard streams
can be redirected to other devices. For example, Console.Error can be redirected to write to
a disk file, rather than the screen. Thus, it is possible to direct error output to a log file, for
example, without affecting console output. Conversely, if console output is redirected and
error output is not, then error messages will appear on the console, where they can be seen.
We will examine redirection later, after file I/O has been described.

FileStream and Byte-Oriented File I/O
The .NET Framework provides classes that allow you to read and write files. Of course,
the most common type of files are disk files. At the operating system level, all files are byte

372 P a r t I : T h e C # L a n g u a g e

oriented. As you would expect, there are methods to read and write bytes from and to a file.
Thus, reading and writing files using byte streams is very common. You can also wrap a
byte-oriented file stream within a character-based object. Character-based file operations
are useful when text is being stored. Character streams are discussed later in this chapter.
Byte-oriented I/O is described here.

To create a byte-oriented stream attached to a file, you will use the FileStream class.
FileStream is derived from Stream and contains all of Stream’s functionality.

Remember, the stream classes, including FileStream, are defined in System.IO. Thus,
you will usually include

using System.IO;

near the top of any program that uses them.

Opening and Closing a File
To create a byte stream linked to a file, create a FileStream object. FileStream defines
several constructors. Perhaps its most commonly used is the one shown here:

FileStream(string fi lename, FileMode mode)

Here, filename specifies the name of the file to open, which can include a full path specification.
The mode parameter specifies how the file will be opened. It must be one of the values
defined by the FileMode enumeration. These values are shown in Table 14-4. In general,
this constructor opens a file for read/write access. The exception is when the file is opened
using FileMode.Append. In this case, the file is write-only.

If a failure occurs when attempting to open the file, an exception will be thrown. If the file
cannot be opened because it does not exist, FileNotFoundException will be thrown. If the
file cannot be opened because of some type of I/O error, IOException will be thrown. Other
possible exceptions are ArgumentNullException (the filename is null), ArgumentException
(the filename is invalid), ArgumentOutOfRangeException (the mode is invalid),
SecurityException (user does not have access rights), PathTooLongException (the filename/
path is too long), NotSupportedException (the filename specifies an unsupported device),
and DirectoryNotFoundException (specified directory is invalid).

Value Description

FileMode.Append Output is appended to the end of file.

FileMode.Create Creates a new output file. Any preexisting file by the same name
will be destroyed.

FileMode.CreateNew Creates a new output file. The file must not already exist.

FileMode.Open Opens a preexisting file.

FileMode.OpenOrCreate Opens a file if it exists, or creates the file if it does not already
exist.

FileMode.Truncate Opens a preexisting file, but reduces its length to zero.

TABLE 14-4 The FileMode Values

PART I

C h a p t e r 1 4 : U s i n g I / O 373

PART I
PART I

The exceptions PathTooLongException, DirectoryNotFoundException, and
FileNotFoundException are subclasses of IOException. Thus, it is possible to catch
all three by catching IOException.

The following shows one way to open the file test.dat for input:

FileStream fin;

try {
 fin = new FileStream("test", FileMode.Open);
}
catch(IOException exc) { // catch all I/O exceptions
 Console.WriteLine(exc.Message);
 // Handle the error.
}
catch(Exception exc { // catch any other exception.
 Console.WriteLine(exc.Message);
 // Handle the error.
}

Here, the first catch clause handles situations in which the file is not found, the path is too
long, the directory does not exist, or other I/O errors occur. The second catch, which is a
“catch all” clause for all other types of exceptions, handles the other possible errors (possibly
by rethrowing the exception). You could also check for each error individually, reporting
more specifically the problem that occurred and taking remedial action specific to that error.

For the sake of simplicity, the examples in this book will catch only IOException, but
your real-world code may (probably will) need to handle the other possible exceptions,
depending upon the circumstances. Also, the exception handlers in this chapter simply
report the error, but in many cases, your code should take steps to correct the problem when
possible. For example, you might reprompt the user for a filename if the one previously
entered is not found.

REMEMBERREMEMBER To keep the code simple, the examples in this chapter catch only IOException, but
your own code may need to handle other possible exceptions or handle each type of I/O exception
individually.

As mentioned, the FileStream constructor just described opens a file that has read/
write access. If you want to restrict access to just reading or just writing, use this constructor
instead:

FileStream(string fi lename, FileMode mode, FileAccess how)

As before, filename specifies the name of the file to open, and mode specifies how the file will
be opened. The value passed in how determines how the file can be accessed. It must be one
of the values defined by the FileAccess enumeration, which are shown here:

FileAccess.Read FileAccess.Write FileAccess.ReadWrite

For example, this opens a read-only file:

FileStream fin = new FileStream("test.dat", FileMode.Open, FileAccess.Read);

374 P a r t I : T h e C # L a n g u a g e

When you are done with a file, you should close it by calling Close(). Its general form is
shown here:

void Close()

Closing a file releases the system resources allocated to the file, allowing them to be used by
another file. As a point of interest, Close() works by calling Dispose(), which actually frees
the resources.

NOTENOTE The using statement, described in Chapter 20, offers a way to automatically close a file when
it is no longer needed. This approach is beneficial in many file-handling situations because it
provides a simple means to ensure that a file is closed when it is no longer needed. However, to
clearly illustrate the fundamentals of file handling, including the point at which a file can be
closed, this chapter explicitly calls Close() in all cases.

Reading Bytes from a FileStream
FileStream defines two methods that read bytes from a file: ReadByte() and Read(). To
read a single byte from a file, use ReadByte(), whose general form is shown here:

int ReadByte()

Each time it is called, it reads a single byte from the file and returns it as an integer
value. It returns –1 when the end of the file is encountered. Possible exceptions include
NotSupportedException (the stream is not opened for input) and ObjectDisposedException
(the stream is closed).

To read a block of bytes, use Read(), which has this general form:

int Read(byte[] buf, int offset, int numBytes)

Read() attempts to read up to numBytes bytes into buf starting at buf [offset]. It returns the
number of bytes successfully read. An IOException is thrown if an I/O error occurs. Several
other types of exceptions are possible, including NotSupportedException, which is thrown
if reading is not supported by the stream.

The following program uses ReadByte() to input and display the contents of a text file,
the name of which is specified as a command-line argument. Note the program handles two
errors that might occur when this program is first executed: the specified file not being
found or the user forgetting to include the name of the file.

/* Display a text file.

 To use this program, specify the name of the file that you
 want to see. For example, to see a file called TEST.CS,
 use the following command line.

 ShowFile TEST.CS
*/

using System;
using System.IO;

class ShowFile {
 static void Main(string[] args) {

PART I

C h a p t e r 1 4 : U s i n g I / O 375

PART I
PART I

 int i;
 FileStream fin;

 if(args.Length != 1) {
 Console.WriteLine("Usage: ShowFile File");
 return;
 }

 try {
 fin = new FileStream(args[0], FileMode.Open);
 } catch(IOException exc) {
 Console.WriteLine("Cannot Open File");
 Console.WriteLine(exc.Message);
 return;
 }

 // Read bytes until EOF is encountered.
 do {
 try {
 i = fin.ReadByte();
 } catch(IOException exc) {
 Console.WriteLine("Error Reading File");
 Console.WriteLine(exc.Message);
 break;
 }
 if(i != -1) Console.Write((char) i);
 } while(i != -1);

 fin.Close();
 }
}

Writing to a File
To write a byte to a file, use the WriteByte() method. Its simplest form is shown here:

void WriteByte(byte val)

This method writes the byte specified by val to the file. If the underlying stream is
not opened for output, a NotSupportedException is thrown. If the stream is closed,
ObjectDisposedException is thrown.

You can write an array of bytes to a file by calling Write(). It is shown here:

void Write(byte[] buf, int offset, int numBytes)

Write() writes numBytes bytes from the array buf, beginning at buf [offset], to the file. The
number of bytes written is returned. If an error occurs during writing, an IOException is
thrown. If the underlying stream is not opened for output, a NotSupportedException is
thrown. Several other exceptions are also possible.

As you may know, when file output is performed, often that output is not immediately
written to the actual physical device. Instead, output is buffered by the operating system
until a sizable chunk of data can be written all at once. This improves the efficiency of the
system. For example, disk files are organized by sectors, which might be anywhere from 128
bytes long, on up. Output is usually buffered until an entire sector can be written all at once.

376 P a r t I : T h e C # L a n g u a g e

However, if you want to cause data to be written to the physical device whether the buffer
is full or not, you can call Flush(), shown here:

void Flush()

An IOException is thrown on failure. If the stream is closed, ObjectDisposedException is
thrown.

Once you are done with an output file, you must remember to close it using Close().
Doing so ensures that any output remaining in a disk buffer is actually written to the disk.
Thus, there is no reason to call Flush() before closing a file.

Here is a simple example that writes to a file:

// Write to a file.

using System;
using System.IO;

class WriteToFile {
 static void Main(string[] args) {
 FileStream fout;

 // Open output file.
 try {
 fout = new FileStream("test.txt", FileMode.Create);
 } catch(IOException exc) {
 Console.WriteLine("Cannot Open File");
 Console.WriteLine(exc.Message);
 return;
 }

 // Write the alphabet to the file.
 try {
 for(char c = 'A'; c <= 'Z'; c++)
 fout.WriteByte((byte) c);
 } catch(IOException exc) {
 Console.WriteLine("Error Writing File");
 Console.WriteLine(exc.Message);
 }

 fout.Close();
 }
}

The program first opens a file called test.txt for output. It then writes the uppercase
alphabet to the file. Finally, it closes the file. Notice how possible I/O errors are handled by
the try/catch blocks. After this program executes, test.txt will contain the following output:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Using FileStream to Copy a File
One advantage to the byte-oriented I/O used by FileStream is that you can use it on any
type of file—not just those that contain text. For example, the following program copies
any type of file, including executable files. The names of the source and destination files
are specified on the command line.

PART I

C h a p t e r 1 4 : U s i n g I / O 377

PART I
PART I

/* Copy a file.

 To use this program, specify the name of the source
 file and the destination file. For example, to copy a
 file called FIRST.DAT to a file called SECOND.DAT, use
 the following command line:

 CopyFile FIRST.DAT SECOND.DAT
*/

using System;
using System.IO;

class CopyFile {
 static void Main(string[] args) {
 int i;
 FileStream fin;
 FileStream fout;

 if(args.Length != 2) {
 Console.WriteLine("Usage: CopyFile From To");
 return;
 }

 // Open input file.
 try {
 fin = new FileStream(args[0], FileMode.Open);
 } catch(IOException exc) {
 Console.WriteLine("Cannot Open Input File");
 Console.WriteLine(exc.Message);
 return;
 }

 // Open output file.
 try {
 fout = new FileStream(args[1], FileMode.Create);
 } catch(IOException exc) {
 Console.WriteLine("Cannot Open Output File");
 Console.WriteLine(exc.Message);
 fin.Close();
 return;
 }

 // Copy File
 try {
 do {
 i = fin.ReadByte();
 if(i != -1) fout.WriteByte((byte)i);
 } while(i != -1);
 } catch(IOException exc) {
 Console.WriteLine("Error Copying File");
 Console.WriteLine(exc.Message);
 }

 fin.Close();

378 P a r t I : T h e C # L a n g u a g e

 fout.Close();
 }
}

Character-Based File I/O
Although byte-oriented file handling is quite common, it is possible to use character-based
streams for this purpose. The advantage to the character streams is that they operate directly
on Unicode characters. Thus, if you want to store Unicode text, the character streams are
certainly your best option. In general, to perform character-based file operations, you will wrap
a FileStream inside either a StreamReader or a StreamWriter. These classes automatically
convert a byte stream into a character stream, and vice versa.

Remember, at the operating system level, a file consists of a set of bytes. Using a
StreamReader or StreamWriter does not alter this fact.

StreamWriter is derived from TextWriter. StreamReader is derived from TextReader.
Thus, StreamWriter and StreamReader have access to the methods and properties defined
by their base classes.

Using StreamWriter
To create a character-based output stream, wrap a Stream object (such as a FileStream)
inside a StreamWriter. StreamWriter defines several constructors. One of its most popular
is shown here:

StreamWriter(Stream stream)

Here, stream is the name of an open stream. This constructor throws an ArgumentException
if stream is not opened for output and an ArgumentNullException if stream is null. Once
created, a StreamWriter automatically handles the conversion of characters to bytes.

Here is a simple key-to-disk utility that reads lines of text entered at the keyboard and
writes them to a file called “test.txt.” Text is read until the user enters the word “stop”. It
uses a FileStream wrapped in a StreamWriter to output to the file.

// A simple key-to-disk utility that demonstrates a StreamWriter.

using System;
using System.IO;

class KtoD {
 static void Main() {
 string str;
 FileStream fout;

 try {
 fout = new FileStream("test.txt", FileMode.Create);
 }
 catch(IOException exc) {
 Console.WriteLine("Cannot Open File");
 Console.WriteLine(exc.Message);
 return ;
 }
 StreamWriter fstr_out = new StreamWriter(fout);

PART I

C h a p t e r 1 4 : U s i n g I / O 379

PART I
PART I

 Console.WriteLine("Enter text ('stop' to quit).");
 do {
 Console.Write(": ");
 str = Console.ReadLine();

 if(str != "stop") {
 str = str + "\r\n"; // add newline
 try {
 fstr_out.Write(str);
 } catch(IOException exc) {
 Console.WriteLine("Error Writing File");
 Console.WriteLine(exc.Message);
 break;
 }
 }
 } while(str != "stop");

 fstr_out.Close();
 }
}

In some cases, it might be more convenient to open a file directly using StreamWriter.
To do so, use one of these constructors:

StreamWriter(string fi lename)
StreamWriter(string fi lename, bool appendFlag)

Here, filename specifies the name of the file to open, which can include a full path specifier.
In the second form, if appendFlag is true, then output is appended to the end of an existing
file. Otherwise, output overwrites the specified file. In both cases, if the file does not exist,
it is created. Also, both throw an IOException if an I/O error occurs. Other exceptions are
also possible.

Here is the key-to-disk program rewritten so that it uses StreamWriter to open the
output file:

// Open a file using StreamWriter.

using System;
using System.IO;

class KtoD {
 static void Main() {
 string str;
 StreamWriter fstr_out;

 try {
 fstr_out = new StreamWriter("test.txt");
 }
 catch(IOException exc) {
 Console.WriteLine("Cannot Open File");
 Console.WriteLine(exc.Message);
 return ;
 }

 Console.WriteLine("Enter text ('stop' to quit).");

380 P a r t I : T h e C # L a n g u a g e

 do {
 Console.Write(": ");
 str = Console.ReadLine();

 if(str != "stop") {
 str = str + "\r\n"; // add newline
 try {
 fstr_out.Write(str);
 } catch(IOException exc) {
 Console.WriteLine("Error Writing File");
 Console.WriteLine(exc.Message);
 break;
 }
 }
 } while(str != "stop");

 fstr_out.Close();
 }
}

Using a StreamReader
To create a character-based input stream, wrap a byte stream inside a StreamReader.
StreamReader defines several constructors. A frequently used one is shown here:

StreamReader(Stream stream)

Here, stream is the name of an open stream. This constructor throws an ArgumentNullException
if stream is null. It throws ArgumentException if stream is not opened for input. Once created,
a StreamReader will automatically handle the conversion of bytes to characters.

The following program creates a simple disk-to-screen utility that reads a text file called
“test.txt” and displays its contents on the screen. Thus, it is the complement of the key-to-disk
utility shown in the previous section:

// A simple disk-to-screen utility that demonstrates a StreamReader.

using System;
using System.IO;

class DtoS {
 static void Main() {
 FileStream fin;
 string s;

 try {
 fin = new FileStream("test.txt", FileMode.Open);
 }
 catch(IOException exc) {
 Console.WriteLine("Error Opening File");
 Console.WriteLine(exc.Message);
 return ;
 }

 StreamReader fstr_in = new StreamReader(fin);

PART I

C h a p t e r 1 4 : U s i n g I / O 381

PART I
PART I

 try {
 while((s = fstr_in.ReadLine()) != null) {
 Console.WriteLine(s);
 }
 } catch(IOException exc) {
 Console.WriteLine("Error Reading File");
 Console.WriteLine(exc.Message);
 }

 fstr_in.Close();
 }
}

In the program, notice how the end of the file is determined. When the reference returned
by ReadLine() is null, the end of the file has been reached. Although this approach works,
StreamReader provides an alternative means of detecting the end of the stream: the
EndOfStream property. This read-only property is true when the end of the stream has been
reached and false otherwise. Therefore, you can use EndOfStream to watch for the end of a
file. For example, here is another way to write the while loop that reads the file:

while(!fstr_in.EndOfStream) {
 s = fstr_in.ReadLine();
 Console.WriteLine(s);
}

In this case, the use of EndOfStream makes the code a bit easier to understand but does
not change the overall structure of the sequence. There are times, however, when the use
of EndOfStream can simplify an otherwise tricky situation, adding clarity and improving
structure.

As with StreamWriter, in some cases, you might find it easier to open a file directly
using StreamReader. To do so, use this constructor:

StreamReader(string fi lename)

Here, filename specifies the name of the file to open, which can include a full path specifier.
The file must exist. If it doesn’t, a FileNotFoundException is thrown. If filename is null, then
an ArgumentNullException is thrown. If filename is an empty string, ArgumentException is
thrown. IOException and DirectoryNotFoundException are also possible.

Redirecting the Standard Streams
As mentioned earlier, the standard streams, such as Console.In, can be redirected. By far, the
most common redirection is to a file. When a standard stream is redirected, input and/or
output is automatically directed to the new stream, bypassing the default devices. By
redirecting the standard streams, your program can read commands from a disk file, create
log files, or even read input from a network connection.

Redirection of the standard streams can be accomplished in two ways. First, when you
execute a program on the command line, you can use the < and > operators to redirect
Console.In and/or Console.Out, respectively. For example, given this program:

using System;

382 P a r t I : T h e C # L a n g u a g e

class Test {
 static void Main() {
 Console.WriteLine("This is a test.");
 }
}

executing the program like this

Test > log

will cause the line “This is a test.” to be written to a file called log. Input can be redirected in
the same way. The thing to remember when input is redirected is that you must make sure
that what you specify as an input source contains sufficient input to satisfy the demands of
the program. If it doesn’t, the program will hang.

The < and > command-line redirection operators are not part of C#, but are provided by
the operating system. Thus, if your environment supports I/O redirection (as is the case with
Windows), you can redirect standard input and standard output without making any changes
to your program. However, there is a second way that you can redirect the standard streams
that is under program control. To do so, you will use the SetIn(), SetOut(), and SetError()
methods, shown here, which are members of Console:

static void SetIn(TextReader input)
static void SetOut(TextWriter output)
static void SetError(TextWriter output)

Thus, to redirect input, call SetIn(), specifying the desired stream. You can use any input
stream as long as it is derived from TextReader. To redirect output, call SetOut (),
specifying the desired output stream, which must be derived from TextWriter. For example,
to redirect output to a file, specify a FileStream that is wrapped in a StreamWriter. The
following program shows an example:

// Redirect Console.Out.

using System;
using System.IO;

class Redirect {
 static void Main() {
 StreamWriter log_out;

 try {
 log_out = new StreamWriter("logfile.txt");
 }
 catch(IOException exc) {
 Console.WriteLine("Error Opening Log File");
 Console.WriteLine(exc.Message);
 return ;
 }

 // Redirect standard out to logfile.txt.
 Console.SetOut(log_out);

PART I

C h a p t e r 1 4 : U s i n g I / O 383

PART I
PART I

 try {
 Console.WriteLine("This is the start of the log file.");

 for(int i=0; i<10; i++) Console.WriteLine(i);

 Console.WriteLine("This is the end of the log file.");
 } catch(IOException exc) {
 Console.WriteLine("Error Writing Log File");
 Console.WriteLine(exc.Message);
 }

 log_out.Close();
 }
}

When you run this program, you won’t see any of the output on the screen, but the file
logfile.txt will contain the following:

This is the start of the log file.
0
1
2
3
4
5
6
7
8
9
This is the end of the log file.

On your own, you might want to experiment with redirecting the other built-in streams.

Reading and Writing Binary Data
So far, we have just been reading and writing bytes or characters, but it is possible—indeed,
common—to read and write other types of data. For example, you might want to create a
file that contains the ints, doubles, or shorts. To read and write binary values of the C#
built-in types, you will use BinaryReader and BinaryWriter. When using these streams, it is
important to understand that this data is read and written using its internal, binary format,
not its human-readable text form.

BinaryWriter
A BinaryWriter is a wrapper around a byte stream that manages the writing of binary data.
Its most commonly used constructor is shown here:

BinaryWriter(Stream outputStream)

384 P a r t I : T h e C # L a n g u a g e

Here, outputStream is the stream to which data is written. To write output to a file, you
can use the object created by FileStream for this parameter. If outputStream is null, then
an ArgumentNullException is thrown. If outputStream has not been opened for writing,
ArgumentException is thrown.

BinaryWriter defines methods that can write all of C#’s built-in types. Several are
shown in Table 14-5. Notice that a string is written using its internal format, which includes
a length specifier. BinaryWriter also defines the standard Close() and Flush() methods,
which work as described earlier.

BinaryReader
A BinaryReader is a wrapper around a byte stream that handles the reading of binary data.
Its most commonly used constructor is shown here:

BinaryReader(Stream inputStream)

Here, inputStream is the stream from which data is read. To read from a file, you can use
the object created by FileStream for this parameter. If inputStream has not been opened for
reading or is otherwise invalid, ArgumentException is thrown.

BinaryReader provides methods for reading all of C#’s simple types. Several commonly
used methods are shown in Table 14-6. Notice that ReadString() reads a string that is stored
using its internal format, which includes a length specifier. These methods throw an
IOException if an error occurs. (Other exceptions are also possible.)

Method Description

void Write(sbyte val) Writes a signed byte.

void Write(byte val) Writes an unsigned byte.

void Write(byte[] buf) Writes an array of bytes.

void Write(short val) Writes a short integer.

void Write(ushort val) Writes an unsigned short integer.

void Write(int val) Writes an integer.

void Write(uint val) Writes an unsigned integer.

void Write(long val) Writes a long integer.

void Write(ulong val) Writes an unsigned long integer.

void Write(float val) Writes a float.

void Write(double val) Writes a double.

void Write(char val) Writes a character.

void Write(char[] buf) Writes an array of characters.

void Write(string val) Writes a string using its internal representation, which includes a
length specifier.

TABLE 14-5 Commonly Used Output Methods Defi ned by BinaryWriter

PART I

C h a p t e r 1 4 : U s i n g I / O 385

PART I
PART I

BinaryReader also defines three versions of Read(), which are shown here:

Method Description

int Read() Returns an integer representation of the next
available character from the invoking input stream.
Returns –1 when attempting to read at the end of
the file.

int Read(byte[] buf, int offset, int num) Attempts to read up to num bytes into buf starting
at buf [offset], returning the number of bytes
successfully read.

int Read(char[] buf, int offset, int num) Attempts to read up to num characters into buf
starting at buf [offset], returning the number of
characters successfully read.

These methods will throw an IOException on failure. Other exceptions are possible. Also
defined is the standard Close() method.

Method Description

bool ReadBoolean() Reads a bool.

byte ReadByte() Reads a byte.

sbyte ReadSByte() Reads an sbyte.

byte[] ReadBytes(int num) Reads num bytes and returns them as an array.

char ReadChar() Reads a char.

char[] ReadChars(int num) Reads num characters and returns them as an array.

double ReadDouble() Reads a double.

float ReadSingle() Reads a float.

short ReadInt16() Reads a short.

int ReadInt32() Reads an int.

long ReadInt64() Reads a long.

ushort ReadUInt16() Reads a ushort.

uint ReadUInt32() Reads a uint.

ulong ReadUInt64() Reads a ulong.

string ReadString() Reads a string that is represented in its internal, binary
format, which includes a length specifier. This method
should only be used to read a string that has been written
using a BinaryWriter.

TABLE 14-6 Commonly Used Input Methods Defi ned by BinaryReader

386 P a r t I : T h e C # L a n g u a g e

Demonstrating Binary I/O
Here is a program that demonstrates BinaryReader and BinaryWriter. It writes and then
reads back various types of data to and from a file.

// Write and then read back binary data.

using System;
using System.IO;

class RWData {
 static void Main() {
 BinaryWriter dataOut;
 BinaryReader dataIn;

 int i = 10;
 double d = 1023.56;
 bool b = true;
 string str = "This is a test";
 try {
 dataOut = new
 BinaryWriter(new FileStream("testdata", FileMode.Create));
 }
 catch(IOException exc) {
 Console.WriteLine("Cannot Open File For Output");
 Console.WriteLine(exc.Message);
 return;
 }

 // Write data to a file.
 try {
 Console.WriteLine("Writing " + i);
 dataOut.Write(i);

 Console.WriteLine("Writing " + d);
 dataOut.Write(d);

 Console.WriteLine("Writing " + b);
 dataOut.Write(b);

 Console.WriteLine("Writing " + 12.2 * 7.4);
 dataOut.Write(12.2 * 7.4);

 Console.WriteLine("Writing " + str);
 dataOut.Write(str);
 }
 catch(IOException exc) {
 Console.WriteLine("Error Writing File");
 Console.WriteLine(exc.Message);
 }

 dataOut.Close();

 Console.WriteLine();

PART I

C h a p t e r 1 4 : U s i n g I / O 387

PART I
PART I

 // Now, read the data.
 try {
 dataIn = new
 BinaryReader(new FileStream("testdata", FileMode.Open));
 }
 catch(IOException exc) {
 Console.WriteLine("Cannot Open File For Input");
 Console.WriteLine(exc.Message);
 return;
 }

 try {
 i = dataIn.ReadInt32();
 Console.WriteLine("Reading " + i);

 d = dataIn.ReadDouble();
 Console.WriteLine("Reading " + d);

 b = dataIn.ReadBoolean();
 Console.WriteLine("Reading " + b);

 d = dataIn.ReadDouble();
 Console.WriteLine("Reading " + d);

 str = dataIn.ReadString();
 Console.WriteLine("Reading " + str);
 }
 catch(IOException exc) {
 Console.WriteLine("Error Reading File");
 Console.WriteLine(exc.Message);
 }

 dataIn.Close();
 }
}

The output from the program is shown here:

Writing 10
Writing 1023.56
Writing True
Writing 90.28
Writing This is a test

Reading 10
Reading 1023.56
Reading True
Reading 90.28
Reading This is a test

If you examine the testdata file produced by this program, you will find that it contains
binary data, not human-readable text.

Here is a more practical example that shows how powerful binary I/O is. The following
program implements a very simple inventory program. For each item in the inventory, the

388 P a r t I : T h e C # L a n g u a g e

program stores the item’s name, the number on hand, and its cost. Next, the program prompts
the user for the name of an item. It then searches the database. If the item is found, the
inventory information is displayed.

/* Use BinaryReader and BinaryWriter to implement
 a simple inventory program. */

using System;
using System.IO;

class Inventory {
 static void Main() {
 BinaryWriter dataOut;
 BinaryReader dataIn;

 string item; // name of item
 int onhand; // number on hand
 double cost; // cost

 try {
 dataOut = new
 BinaryWriter(new FileStream("inventory.dat",
 FileMode.Create));
 }
 catch(IOException exc) {
 Console.WriteLine("Cannot Open Inventory File For Output");
 Console.WriteLine(exc.Message);
 return;
 }

 // Write some inventory data to the file.
 try {
 dataOut.Write("Hammers");
 dataOut.Write(10);
 dataOut.Write(3.95);

 dataOut.Write("Screwdrivers");
 dataOut.Write(18);
 dataOut.Write(1.50);

 dataOut.Write("Pliers");
 dataOut.Write(5);
 dataOut.Write(4.95);

 dataOut.Write("Saws");
 dataOut.Write(8);
 dataOut.Write(8.95);
 }
 catch(IOException exc) {
 Console.WriteLine("Error Writing Inventory File");
 Console.WriteLine(exc.Message);
 }

 dataOut.Close();

PART I

C h a p t e r 1 4 : U s i n g I / O 389

PART I
PART I

 Console.WriteLine();

 // Now, open inventory file for reading.
 try {
 dataIn = new
 BinaryReader(new FileStream("inventory.dat",
 FileMode.Open));
 }
 catch(IOException exc) {
 Console.WriteLine("Cannot Open Inventory File For Input");
 Console.WriteLine(exc.Message);
 return;
 }

 // Lookup item entered by user.
 Console.Write("Enter item to lookup: ");
 string what = Console.ReadLine();
 Console.WriteLine();

 try {
 for(;;) {
 // Read an inventory entry.
 item = dataIn.ReadString();
 onhand = dataIn.ReadInt32();
 cost = dataIn.ReadDouble();

 // See if the item matches the one requested.
 // If so, display information.
 if(item.CompareTo(what) == 0) {
 Console.WriteLine(onhand + " " + item + " on hand. " +
 "Cost: {0:C} each", cost);
 Console.WriteLine("Total value of {0}: {1:C}." ,
 item, cost * onhand);
 break;
 }
 }
 }
 catch(EndOfStreamException) {
 Console.WriteLine("Item not found.");
 }
 catch(IOException exc) {
 Console.WriteLine("Error Reading Inventory File");
 Console.WriteLine(exc.Message);
 }

 dataIn.Close();
 }
}

Here is a sample run:

Enter item to look up: Screwdrivers

18 Screwdrivers on hand. Cost: $1.50 each
Total value of Screwdrivers: $27.00.

390 P a r t I : T h e C # L a n g u a g e

In the program, notice how inventory information is stored in its binary format. Thus, the
number of items on hand and the cost is stored using their binary format rather than their
human-readable text-based equivalents. This makes it is possible to perform computations
on the numeric data without having to convert it from its human-readable form.

There is one other point of interest in the inventory program. Notice how the end of the
file is detected. Since the binary input methods throw an EndOfStreamException when the
end of the stream is reached, the program simply reads the file until either it finds the
desired item or this exception is generated. Thus, no special mechanism is needed to detect
the end of the file.

Random Access Files
Up to this point, we have been using sequential files, which are files that are accessed in a
strictly linear fashion, one byte after another. However, you can also access the contents of a
file in random order. One way to do this is to use the Seek() method defined by FileStream.
This method allows you to set the file position indicator (also called the file pointer or simply
the current position) to any point within a file.

The method Seek() is shown here:

long Seek(long newPos, SeekOrigin origin)

Here, newPos specifies the new position, in bytes, of the file pointer from the location specified
by origin. The origin will be one of these values, which are defined by the SeekOrigin
enumeration:

Value Meaning

SeekOrigin.Begin Seek from the beginning of the file.

SeekOrigin.Current Seek from the current location.

SeekOrigin.End Seek from the end of the file.

After a call to Seek(), the next read or write operation will occur at the new file position.
The new position is returned. If an error occurs while seeking, an IOException is thrown.
If the underlying stream does not support position requests, a NotSupportedException is
thrown. Other exceptions are possible.

Here is an example that demonstrates random access I/O. It writes the uppercase
alphabet to a file and then reads it back in nonsequential order.

// Demonstrate random access.

using System;
using System.IO;

class RandomAccessDemo {
 static void Main() {
 FileStream f;
 char ch;
 try {
 f = new FileStream("random.dat", FileMode.Create);
 }

PART I

C h a p t e r 1 4 : U s i n g I / O 391

PART I
PART I

 catch(IOException exc) {
 Console.WriteLine("Cannot Open File");
 Console.WriteLine(exc.Message);
 return ;
 }

 // Write the alphabet.
 for(int i=0; i < 26; i++) {
 try {
 f.WriteByte((byte)('A'+i));
 }
 catch(IOException exc) {
 Console.WriteLine("Error Writing File");
 Console.WriteLine(exc.Message);
 f.Close();
 return ;
 }
 }

 try {
 // Now, read back specific values.
 f.Seek(0, SeekOrigin.Begin); // seek to first byte
 ch = (char) f.ReadByte();
 Console.WriteLine("First value is " + ch);

 f.Seek(1, SeekOrigin.Begin); // seek to second byte
 ch = (char) f.ReadByte();
 Console.WriteLine("Second value is " + ch);

 f.Seek(4, SeekOrigin.Begin); // seek to 5th byte
 ch = (char) f.ReadByte();
 Console.WriteLine("Fifth value is " + ch);

 Console.WriteLine();

 // Now, read every other value.
 Console.WriteLine("Here is every other value: ");
 for(int i=0; i < 26; i += 2) {
 f.Seek(i, SeekOrigin.Begin); // seek to ith character
 ch = (char) f.ReadByte();
 Console.Write(ch + " ");
 }
 }
 catch(IOException exc) {
 Console.WriteLine("Error Reading or Seeking");
 Console.WriteLine(exc.Message);
 }

 Console.WriteLine();
 f.Close();
 }
}

392 P a r t I : T h e C # L a n g u a g e

The output from the program is shown here:

First value is A
Second value is B
Fifth value is E

Here is every other value:
A C E G I K M O Q S U W Y

Although Seek() offers the greatest flexibility, there is another way to set the current file
position. You can use the Position property. As shown previously in Table 14-2, Position is
a read/write property. Therefore, you can use it to obtain the current position or to set the
current position. For example, here is the code sequence from the preceding program that
reads the “random.dat” file, rewritten to use the Position property:

// Use Position rather than Seek() to set the current
// file position.
try {
 f.Position = 0;
 ch = (char) f.ReadByte();
 Console.WriteLine("First value is " + ch);

 f.Position = 1;
 ch = (char) f.ReadByte();
 Console.WriteLine("Second value is " + ch);

 f.Position = 4;
 ch = (char) f.ReadByte();
 Console.WriteLine("Fifth value is " + ch);

 Console.WriteLine();

 // Now, read every other value.
 Console.WriteLine("Here is every other value: ");
 for(int i=0; i < 26; i += 2) {
 f.Position = i; // seek to ith character
 ch = (char) f.ReadByte();
 Console.Write(ch + " ");
 }
}
catch(IOException exc) {
 Console.WriteLine("Error Reading or Seeking");
 Console.WriteLine(exc.Message);
}

Using MemoryStream
Sometimes it is useful to read input from or to write output to an array, rather than directly
from or to a device. To do this, you will use MemoryStream. MemoryStream is an
implementation of Stream that uses an array of bytes for input and/or output.
MemoryStream defines several constructors. Here is the one we will use:

MemoryStream(byte[] buf)

PART I

C h a p t e r 1 4 : U s i n g I / O 393

PART I
PART I

Here, buf is an array of bytes that will be used for the source and/or target of I/O requests.
The stream created by this constructor can be written or read, and supports Seek(). When
using this constructor, you must remember to make buf large enough to hold whatever
output you will be directing to it.

Here is a program that demonstrates the use of MemoryStream:

// Demonstrate MemoryStream.

using System;
using System.IO;

class MemStrDemo {
 static void Main() {
 byte[] storage = new byte[255];

 // Create a memory-based stream.
 MemoryStream memstrm = new MemoryStream(storage);

 // Wrap memstrm in a reader and a writer.
 StreamWriter memwtr = new StreamWriter(memstrm);
 StreamReader memrdr = new StreamReader(memstrm);

 // Write to storage, through memwtr.
 for(int i=0; i < 10; i++)
 memwtr.WriteLine("byte [" + i + "]: " + i);

 // Put a period at the end.
 memwtr.WriteLine(".");

 memwtr.Flush();

 Console.WriteLine("Reading from storage directly: ");

 // Display contents of storage directly.
 foreach(char ch in storage) {
 if (ch == '.') break;
 Console.Write(ch);
 }

 Console.WriteLine("\nReading through memrdr: ");

 // Read from memstrm using the stream reader.
 memstrm.Seek(0, SeekOrigin.Begin); // reset file pointer

 string str = memrdr.ReadLine();
 while(str != null) {
 str = memrdr.ReadLine();
 if(str.CompareTo(".") == 0) break;
 Console.WriteLine(str);
 }
 }
}

394 P a r t I : T h e C # L a n g u a g e

The output from the program is shown here:

Reading from storage directly:
byte [0]: 0
byte [1]: 1
byte [2]: 2
byte [3]: 3
byte [4]: 4
byte [5]: 5
byte [6]: 6
byte [7]: 7
byte [8]: 8
byte [9]: 9

Reading through memrdr:
byte [1]: 1
byte [2]: 2
byte [3]: 3
byte [4]: 4
byte [5]: 5
byte [6]: 6
byte [7]: 7
byte [8]: 8
byte [9]: 9

In the program, an array of bytes called storage is created. This array is then used as the
underlying storage for a MemoryStream called memstrm. From memstrm are created a
StreamReader called memrdr and a StreamWriter called memwtr. Using memwtr, output
is written to the memory-based stream. Notice that after the output has been written, Flush()
is called on memwtr. This is necessary to ensure that the contents of memwtr’s buffer are
actually written to the underlying array. Next, the contents of the underlying byte array are
displayed manually, using a foreach loop. Then, using Seek(), the file pointer is reset to the
start of the stream, and the memory stream is read using memrdr.

Memory-based streams are quite useful in programming. For example, you can construct
complicated output in advance, storing it in the array until it is needed. This technique is
especially useful when programming for a GUI environment, such as Windows. You can
also redirect a standard stream to read from an array. This might be useful for feeding test
information into a program, for example.

Using StringReader and StringWriter
For some applications, it might be easier to use a string rather than a byte array for the
underlying storage when performing memory-based I/O operations. When this is the case,
use StringReader and StringWriter. StringReader inherits TextReader, and StringWriter
inherits TextWriter. Thus, these streams have access to methods defined by those two
classes. For example, you can call ReadLine() on a StringReader and WriteLine() on a
StringWriter.

The constructor for StringReader is shown here:

StringReader(string str)

PART I

C h a p t e r 1 4 : U s i n g I / O 395

PART I
PART I

Here, str is the string that will be read from.
StringWriter defines several constructors. Here is the one that we will use:

StringWriter()

This constructor creates a writer that will put its output into a string. This string (in the form
of a StringBuilder) is automatically created by StringWriter. You can obtain the contents of
this string by calling ToString().

Here is an example that uses StringReader and StringWriter:

// Demonstrate StringReader and StringWriter.

using System;
using System.IO;

class StrRdrDemo {
 static void Main() {
 // Create a StringWriter.
 StringWriter strwtr = new StringWriter();

 // Write to StringWriter.
 for(int i=0; i < 10; i++)
 strwtr.WriteLine("This is i: " + i);

 // Create a StringReader.
 StringReader strrdr = new StringReader(strwtr.ToString());

 // Now, read from StringReader.
 string str = strrdr.ReadLine();
 while(str != null) {
 str = strrdr.ReadLine();
 Console.WriteLine(str);
 }
 }
}

The output is shown here:

This is i: 1
This is i: 2
This is i: 3
This is i: 4
This is i: 5
This is i: 6
This is i: 7
This is i: 8
This is i: 9

The program first creates a StringWriter called strwtr and outputs to it using WriteLine().
Next, it creates a StringReader using the string contained in strwtr. This string is obtained
by calling ToString() on strwtr. Finally, the contents of this string are read using ReadLine().

396 P a r t I : T h e C # L a n g u a g e

Converting Numeric Strings to Their Internal Representation
Before leaving the topic of I/O, we will examine a technique useful when reading numeric
strings. As you know, WriteLine() provides a convenient way to output various types of
data to the console, including numeric values of the built-in types, such as int and double.
Thus, WriteLine() automatically converts numeric values into their human-readable form.
However, a parallel input method that reads and converts strings containing numeric
values into their internal, binary format is not provided. For example, there is no version of
Read() that reads from the keyboard a string such as “100” and then automatically converts
it into its corresponding binary value that can be stored in an int variable. Instead, there are
other ways to accomplish this task. Perhaps the easiest is to use a method that is defined for
all of the built-in numeric types: Parse().

Before we begin, it is necessary to state an important fact: All of C#’s built-in types, such
as int and double, are actually just aliases (that is, other names) for structures defined by the
.NET framework. In fact, the C# type and .NET structure type are indistinguishable. One is
just another name for the other. Because C#’s value types are supported by structures, the
value types have members defined for them.

For the numeric types, the .NET structure names and their C# keyword equivalents are
shown here:

.NET Structure Name C# Name

Decimal decimal

Double double

Single float

Int16 short

Int32 int

Int64 long

UInt16 ushort

UInt32 uint

UInt64 ulong

Byte byte

SByte sbyte

These structures are defined inside the System namespace. Thus, the fully qualified
name for Int32 is System.Int32. These structures offer a wide array of methods that help
fully integrate the value types into C#’s object hierarchy. As a side benefit, the numeric
structures also define a static method called Parse() that converts a numeric string into
its corresponding binary equivalent.

There are several overloaded forms of Parse(). The simplest version for each numeric
structure is shown here. It performs the conversion using the default locale and numeric
style. (Other versions let you perform locale-specific conversions and specify the numeric
style.) Notice that each method returns a binary value that corresponds to the string.

PART I

C h a p t e r 1 4 : U s i n g I / O 397

PART I
PART I

Structure Conversion Method

Decimal static decimal Parse(string str)

Double static double Parse(string str)

Single static float Parse(string str)

Int64 static long Parse(string str)

Int32 static int Parse(string str)

Int16 static short Parse(string str)

UInt64 static ulong Parse(string str)

UInt32 static uint Parse(string str)

UInt16 static ushort Parse(string str)

Byte static byte Parse(string str)

SByte static sbyte Parse(string str)

The Parse() methods will throw a FormatException if str does not contain a valid
number as defined by the invoking type. ArgumentNullException is thrown if str is null, and
OverflowException is thrown if the value in str exceeds the bounds of the invoking type.

The parsing methods give you an easy way to convert a numeric value, read as a string
from the keyboard or a text file, into its proper internal format. For example, the following
program averages a list of numbers entered by the user. It first asks the user for the number
of values to be averaged. It then reads that number using ReadLine() and uses Int32.Parse()
to convert the string into an integer. Next, it inputs the values, using Double.Parse() to convert
the strings into their double equivalents.

// This program averages a list of numbers entered by the user.

using System;
using System.IO;

class AvgNums {
 static void Main() {
 string str;
 int n;
 double sum = 0.0;
 double avg, t;

 Console.Write("How many numbers will you enter: ");
 str = Console.ReadLine();
 try {
 n = Int32.Parse(str);
 } catch(FormatException exc) {
 Console.WriteLine(exc.Message);
 return;
 } catch(OverflowException exc) {
 Console.WriteLine(exc.Message);
 return;
 }

398 P a r t I : T h e C # L a n g u a g e

 Console.WriteLine("Enter " + n + " values.");
 for(int i=0; i < n ; i++) {
 Console.Write(": ");
 str = Console.ReadLine();
 try {
 t = Double.Parse(str);
 } catch(FormatException exc) {
 Console.WriteLine(exc.Message);
 t = 0.0;
 } catch(OverflowException exc) {
 Console.WriteLine(exc.Message);
 t = 0;
 }
 sum += t;
 }
 avg = sum / n;
 Console.WriteLine("Average is " + avg);
 }
}

Here is a sample run:

How many numbers will you enter: 5
Enter 5 values.
: 1.1
: 2.2
: 3.3
: 4.4
: 5.5
Average is 3.3

One other point: You must use the right parsing method for the type of value you
are trying to convert. For example, trying to use Int32.Parse() on a string that contains
a floating-point value will not produce the desired result.

As explained, Parse() will throw an exception on failure. You can avoid generating an
exception when converting numeric strings by using the TryParse() method, which is defined
for all of the numeric structures. Here is an example. It shows one version of TryParse() as
defined by Int32.

static bool TryParse(string str, out int result)

The numeric string is passed in str. The result is returned in result. It performs the
conversion using the default locale and numeric style. (A second version of TryParse()
is available that lets you specify the numeric style and locale.) If the conversion fails, such
as when str does not contain a numeric string in the proper form, TryParse() returns false.
Otherwise, it returns true. Therefore, you must check the return value to confirm that a
successful conversion has occurred.

15
Delegates, Events, and

Lambda Expressions

This chapter examines three innovative C# features: delegates, events, and lambda
expressions. A delegate provides a way to encapsulate a method. An event is a
notification that some action has occurred. Delegates and events are related because

an event is built upon a delegate. Both expand the set of programming tasks to which C#
can be applied. The lambda expression is a new syntactic feature provided by C# 3.0. It offers
a streamlined, yet powerful way to define what is, essentially, a unit of executable code.
Lambda expressions are often used when working with delegates and events because a
delegate can refer to a lambda expression. (Lambda expressions are also very important to
LINQ, which is described in Chapter 19.) Also examined are anonymous methods, covariance,
contravariance, and method group conversions.

Delegates
Let’s begin by defining the term delegate. In straightforward language, a delegate is an object
that can refer to a method. Therefore, when you create a delegate, you are creating an object
that can hold a reference to a method. Furthermore, the method can be called through this
reference. In other words, a delegate can invoke the method to which it refers. As you will
see, this is a very powerful concept.

It is important to understand that the same delegate can be used to call different
methods during the runtime of a program by simply changing the method to which the
delegate refers. Thus, the method that will be invoked by a delegate is not determined at
compile time, but rather at runtime. This is the principal advantage of a delegate.

NOTENOTE If you are familiar with C/C++, then it will help to know that a delegate in C# is similar to a
function pointer in C/C++.

A delegate type is declared using the keyword delegate. The general form of a delegate
declaration is shown here:

delegate ret-type name(parameter-list);

399

CHAPTER

400 P a r t I : T h e C # L a n g u a g e

Here, ret-type is the type of value returned by the methods that the delegate will be calling.
The name of the delegate is specified by name. The parameters required by the methods
called through the delegate are specified in the parameter-list. Once created, a delegate
instance can refer to and call methods whose return type and parameter list match those
specified by the delegate declaration.

A key point to understand is that a delegate can be used to call any method that agrees
with its signature and return type. Furthermore, the method can be either an instance method
associated with an object or a static method associated with a class. All that matters is that
the return type and signature of the method agree with those of the delegate.

To see delegates in action, let’s begin with the simple example shown here:

// A simple delegate example.

using System;

// Declare a delegate type.
delegate string StrMod(string str);

class DelegateTest {
 // Replaces spaces with hyphens.
 static string ReplaceSpaces(string s) {
 Console.WriteLine("Replacing spaces with hyphens.");
 return s.Replace(' ', '-');
 }

 // Remove spaces.
 static string RemoveSpaces(string s) {
 string temp = "";
 int i;

 Console.WriteLine("Removing spaces.");
 for(i=0; i < s.Length; i++)
 if(s[i] != ' ') temp += s[i];

 return temp;
 }

 // Reverse a string.
 static string Reverse(string s) {
 string temp = "";
 int i, j;

 Console.WriteLine("Reversing string.");
 for(j=0, i=s.Length-1; i >= 0; i--, j++)
 temp += s[i];

 return temp;
 }

 static void Main() {
 // Construct a delegate.
 StrMod strOp = new StrMod(ReplaceSpaces);
 string str;

PART I

C h a p t e r 1 5 : D e l e g a t e s , E v e n t s , a n d L a m b d a E x p r e s s i o n s 401

PART I
PART I

 // Call methods through the delegate.
 str = strOp("This is a test.");
 Console.WriteLine("Resulting string: " + str);
 Console.WriteLine();

 strOp = new StrMod(RemoveSpaces);
 str = strOp("This is a test.");
 Console.WriteLine("Resulting string: " + str);
 Console.WriteLine();

 strOp = new StrMod(Reverse);
 str = strOp("This is a test.");
 Console.WriteLine("Resulting string: " + str);
 }
}

The output from the program is shown here:

Replacing spaces with hyphens.
Resulting string: This-is-a-test.

Removing spaces.
Resulting string: Thisisatest.

Reversing string.
Resulting string: .tset a si sihT

Let’s examine this program closely. The program declares a delegate type called
StrMod, shown here:

delegate string StrMod(string str);

Notice that StrMod takes one string parameter and returns a string.
Next, in DelegateTest, three static methods are declared, each with a single parameter

of type string and a return type of string. Thus, they match the StrMod delegate. These
methods perform some type of string modification. Notice that ReplaceSpaces() uses one
of string’s methods, called Replace(), to replace spaces with hyphens.

In Main(), a StrMod reference called strOp is created and assigned a reference to
ReplaceSpaces(). Pay close attention to this line:

StrMod strOp = new StrMod(ReplaceSpaces);

Notice how the method ReplaceSpaces() is passed as a parameter. Only its name is used;
no parameters are specified. This can be generalized. When instantiating a delegate, you
specify only the name of the method to which you want the delegate to refer. Of course, the
method’s signature must match that of the delegate’s declaration. If it doesn’t, a compile-
time error will result.

Next, ReplaceSpaces() is called through the delegate instance strOp, as shown here:

str = strOp("This is a test.");

Because strOp refers to ReplaceSpaces(), ReplaceSpaces() is invoked.

402 P a r t I : T h e C # L a n g u a g e

Next, strOp is assigned a reference to RemoveSpaces(), and then strOp is called again.
This time, RemoveSpaces() is invoked.

Finally, strOp is assigned a reference to Reverse() and strOp is called. This results in
Reverse() being called.

The key point of the example is that the invocation of strOp results in a call to the method
referred to by strOp at the time at which the invocation occurs. Thus, the method to call is
resolved at runtime, not compile time.

Delegate Method Group Conversion
Beginning with version 2.0, C# has included an option that significantly simplifies the
syntax that assigns a method to a delegate. This feature is called method group conversion,
and it allows you to simply assign the name of a method to a delegate, without using new
or explicitly invoking the delegate’s constructor.

For example, here is the Main() method of the preceding program rewritten to use
method group conversions:

static void Main() {
 // Construct a delegate using method group conversion.
 StrMod strOp = ReplaceSpaces; // use method group conversion
 string str;

 // Call methods through the delegate.
 str = strOp("This is a test.");
 Console.WriteLine("Resulting string: " + str);
 Console.WriteLine();

 strOp = RemoveSpaces; // use method group conversion
 str = strOp("This is a test.");
 Console.WriteLine("Resulting string: " + str);
 Console.WriteLine();

 strOp = Reverse; // use method group conversion
 str = strOp("This is a test.");
 Console.WriteLine("Resulting string: " + str);
}

Pay special attention to the way that strOp is created and assigned the method
ReplaceSpaces in this line:

StrMod strOp = ReplaceSpaces; // use method group conversion

The name of the method is assigned directly to strOp. C# automatically provides a
conversion from the method to the delegate type. This syntax can be generalized to any
situation in which a method is assigned to (or converted to) a delegate type.

Because the method group conversion syntax is simpler than the old approach, it is used
throughout the remainder of this book.

Using Instance Methods as Delegates
Although the preceding example used static methods, a delegate can also refer to instance
methods. It must do so, however, through an object reference. For example, here is a rewrite
of the previous example, which encapsulates the string operations inside a class called

PART I

C h a p t e r 1 5 : D e l e g a t e s , E v e n t s , a n d L a m b d a E x p r e s s i o n s 403

PART I
PART I

StringOps. Notice that the method group conversion syntax can also be applied in this
situation.

// Delegates can refer to instance methods, too.

using System;

// Declare a delegate type.
delegate string StrMod(string str);

class StringOps {
 // Replaces spaces with hyphens.
 public string ReplaceSpaces(string s) {
 Console.WriteLine("Replacing spaces with hyphens.");
 return s.Replace(' ', '-');
 }

 // Remove spaces.
 public string RemoveSpaces(string s) {
 string temp = "";
 int i;

 Console.WriteLine("Removing spaces.");
 for(i=0; i < s.Length; i++)
 if(s[i] != ' ') temp += s[i];

 return temp;
 }

 // Reverse a string.
 public string Reverse(string s) {
 string temp = "";
 int i, j;

 Console.WriteLine("Reversing string.");
 for(j=0, i=s.Length-1; i >= 0; i--, j++)
 temp += s[i];

 return temp;
 }
}

class DelegateTest {
 static void Main() {
 StringOps so = new StringOps(); // create an instance of StringOps

 // Initialize a delegate.
 StrMod strOp = so.ReplaceSpaces;
 string str;

 // Call methods through delegates.
 str = strOp("This is a test.");
 Console.WriteLine("Resulting string: " + str);
 Console.WriteLine();

404 P a r t I : T h e C # L a n g u a g e

 strOp = so.RemoveSpaces;
 str = strOp("This is a test.");
 Console.WriteLine("Resulting string: " + str);
 Console.WriteLine();

 strOp = so.Reverse;
 str = strOp("This is a test.");
 Console.WriteLine("Resulting string: " + str);
 }
}

This program produces the same output as the first, but in this case, the delegate refers
to methods on an instance of StringOps.

Multicasting
One of the most exciting features of a delegate is its support for multicasting. In simple
terms, multicasting is the ability to create an invocation list, or chain, of methods that will be
automatically called when a delegate is invoked. Such a chain is very easy to create. Simply
instantiate a delegate, and then use the + or += operator to add methods to the chain. To
remove a method, use – or – =. If the delegate returns a value, then the value returned by
the last method in the list becomes the return value of the entire delegate invocation. Thus,
a delegate that makes use of multicasting will often have a void return type.

Here is an example of multicasting. Notice that it reworks the preceding examples by
changing the string manipulation method’s return type to void and using a ref parameter to
return the altered string to the caller. This makes the methods more appropriate for multicasting.

// Demonstrate multicasting.

using System;

// Declare a delegate type.
delegate void StrMod(ref string str);

class MultiCastDemo {
 // Replaces spaces with hyphens.
 static void ReplaceSpaces(ref string s) {
 Console.WriteLine("Replacing spaces with hyphens.");
 s = s.Replace(' ', '-');
 }

 // Remove spaces.
 static void RemoveSpaces(ref string s) {
 string temp = "";
 int i;

 Console.WriteLine("Removing spaces.");
 for(i=0; i < s.Length; i++)
 if(s[i] != ' ') temp += s[i];

 s = temp;
 }

PART I

C h a p t e r 1 5 : D e l e g a t e s , E v e n t s , a n d L a m b d a E x p r e s s i o n s 405

PART I
PART I

 // Reverse a string.
 static void Reverse(ref string s) {
 string temp = "";
 int i, j;

 Console.WriteLine("Reversing string.");
 for(j=0, i=s.Length-1; i >= 0; i--, j++)
 temp += s[i];

 s = temp;
 }

 static void Main() {
 // Construct delegates.
 StrMod strOp;
 StrMod replaceSp = ReplaceSpaces;
 StrMod removeSp = RemoveSpaces;
 StrMod reverseStr = Reverse;
 string str = "This is a test";

 // Set up multicast.
 strOp = replaceSp;
 strOp += reverseStr;

 // Call multicast.
 strOp(ref str);
 Console.WriteLine("Resulting string: " + str);
 Console.WriteLine();

 // Remove replace and add remove.
 strOp -= replaceSp;
 strOp += removeSp;

 str = "This is a test."; // reset string

 // Call multicast.
 strOp(ref str);
 Console.WriteLine("Resulting string: " + str);
 Console.WriteLine();
 }
}

Here is the output:

Replacing spaces with hyphens.
Reversing string.
Resulting string: tset-a-si-sihT

Reversing string.
Removing spaces.
Resulting string: .tsetasisihT

406 P a r t I : T h e C # L a n g u a g e

In Main(), four delegate instances are created. One, strOp, is null. The other three refer to
specific string modification methods. Next, a multicast is created that calls RemoveSpaces()
and Reverse(). This is accomplished via the following lines:

strOp = replaceSp;
strOp += reverseStr;

First, strOp is assigned replaceSp. Next, using +=, reverseStr is added. When strOp is
invoked, both methods are invoked, replacing spaces with hyphens and reversing the
string, as the output illustrates.

Next, replaceSp is removed from the chain, using this line:

strOp -= replaceSp;

and removeSP is added using this line:

strOp += removeSp;

Then, strOp is again invoked. This time, spaces are removed and the string is reversed.
Delegate chains are a powerful mechanism because they allow you to define a set of

methods that can be executed as a unit. This can increase the structure of some types of
code. Also, as you will soon see, delegate chains have a special value to events.

Covariance and Contravariance
There are two features that add flexibility to delegates: covariance and contravariance. Normally,
the method that you pass to a delegate must have the same return type and signature as the
delegate. However, covariance and contravariance relax this rule slightly, as it pertains to
derived types. Covariance enables a method to be assigned to a delegate when the method’s
return type is a class derived from the class specified by the return type of the delegate.
Contravariance enables a method to be assigned to a delegate when a method’s parameter
type is a base class of the class specified by the delegate’s declaration.

Here is an example that illustrates both covariance and contravariance:

// Demonstrate covariance and contravariance.

using System;

class X {
 public int Val;
}

// Y is derived from X.
class Y : X { }

// This delegate returns X and takes a Y argument.
delegate X ChangeIt(Y obj);

class CoContraVariance {

 // This method returns X and has an X parameter.

PART I

C h a p t e r 1 5 : D e l e g a t e s , E v e n t s , a n d L a m b d a E x p r e s s i o n s 407

PART I
PART I

 static X IncrA(X obj) {
 X temp = new X();
 temp.Val = obj.Val + 1;
 return temp;
 }

 // This method returns Y and has a Y parameter.
 static Y IncrB(Y obj) {
 Y temp = new Y();
 temp.Val = obj.Val + 1;
 return temp;
 }

 static void Main() {
 Y Yob = new Y();

 // In this case, the parameter to IncrA
 // is X and the parameter to ChangeIt is Y.
 // Because of contravariance, the following
 // line is OK.
 ChangeIt change = IncrA;

 X Xob = change(Yob);

 Console.WriteLine("Xob: " + Xob.Val);

 // In the next case, the return type of
 // IncrB is Y and the return type of
 // ChangeIt is X. Because of covariance,
 // the following line is OK.
 change = IncrB;

 Yob = (Y) change(Yob);

 Console.WriteLine("Yob: " + Yob.Val);
 }
}

The output from the program is shown here:

Xob: 1
Yob: 1

In the program, notice that class Y is derived from class X. Next, notice that the delegate
ChangeIt() is declared like this:

delegate X ChangeIt(Y obj);

ChangeIt() returns X and has a Y parameter. Next, notice that the methods IncrA() and
IncrB() are declared as shown here:

static X IncrA(X obj)
static Y IncrB(Y obj)

408 P a r t I : T h e C # L a n g u a g e

The IncrA() method has an X parameter and returns X. The IncrB() method has a Y
parameter and returns Y. Given covariance and contravariance, either of these methods
can be passed to ChangeIt, as the program illustrates.

Therefore, this line

ChangeIt change = IncrA;

uses contravariance to enable IncrA() to be passed to the delegate because IncrA() has an X
parameter, but the delegate has a Y parameter. This works because, with contravariance, if
the parameter type of the method passed to a delegate is a base class of the parameter type
used by the delegate, then the method and the delegate are compatible.

The next line is also legal, but this time it is because of covariance:

change = IncrB;

In this case, the return type of IncrB() is Y, but the return type of ChangeIt() is X. However,
because the return type of the method is a class derived from the return type of the delegate,
the two are compatible.

System.Delegate
All delegates are classes that are implicitly derived from System.Delegate. You don’t normally
need to use its members directly, and this book makes no explicit use of System.Delegate.
However, its members may be useful in certain specialized situations.

Why Delegates
Although the preceding examples show the “how” behind delegates, they don’t really
illustrate the “why.” In general, delegates are useful for two main reasons. First, as shown
later in this chapter, delegates support events. Second, delegates give your program a way
to execute methods at runtime without having to know precisely what those methods are at
compile time. This ability is quite useful when you want to create a framework that allows
components to be plugged in. For example, imagine a drawing program (a bit like the
standard Windows Paint accessory). Using a delegate, you could allow the user to plug in
special color filters or image analyzers. Furthermore, the user could create a sequence of
these filters or analyzers. Such a scheme could be easily handled using a delegate.

Anonymous Functions
You will often find that the method referred to by a delegate is used only for that purpose.
In other words, the only reason for the method is so it can be invoked via a delegate. The
method is never called on its own. In such a case, you can avoid the need to create a
separate method by using an anonymous function. An anonymous function is, essentially, an
unnamed block of code that is passed to a delegate constructor. One advantage to using an
anonymous function is simplicity. There is no need to declare a separate method whose only
purpose is to be passed to a delegate.

Beginning with version 3.0, C# defines two types of anonymous functions: anonymous
methods and lambda expressions. The anonymous method was added by C# 2.0. The lambda
expression was added by C# 3.0. In general, the lambda expression improves on the concept

PART I

C h a p t e r 1 5 : D e l e g a t e s , E v e n t s , a n d L a m b d a E x p r e s s i o n s 409

PART I
PART I

of the anonymous method and is now the preferred approach to creating an anonymous
function. However, anonymous methods are widely used in existing C# code. Therefore,
they are still an important part of C#. Furthermore, anonymous methods are the precursor
to lambda expressions and a clear understanding of anonymous methods makes it easier to
understand aspects of the lambda expression. Also, there is a narrow set of cases in which
an anonymous method can be used, but a lambda expression cannot. Therefore, both
anonymous methods and lambda expressions are described in this chapter.

Anonymous Methods
An anonymous method is one way to create an unnamed block of code that is associated
with a specific delegate instance. An anonymous method is created by following the
keyword delegate with a block of code. To see how this is done, let’s begin with a simple
example. The following program uses an anonymous method that counts from 0 to 5.

// Demonstrate an anonymous method.

using System;

// Declare a delegate type.
delegate void CountIt();

class AnonMethDemo {

 static void Main() {

 // Here, the code for counting is passed
 // as an anonymous method.
 CountIt count = delegate {
 // This is the block of code passed to the delegate.
 for(int i=0; i <= 5; i++)
 Console.WriteLine(i);
 }; // notice the semicolon

 count();
 }
}

This program first declares a delegate type called CountIt that has no parameters and
returns void. Inside Main(), a CountIt instance called count is created, and it is passed the
block of code that follows the delegate keyword. This block of code is the anonymous
method that will be executed when count is called. Notice that the block of code is followed
by a semicolon, which terminates the declaration statement. The output from the program is
shown here:

0
1
2
3
4
5

410 P a r t I : T h e C # L a n g u a g e

Pass Arguments to an Anonymous Method
It is possible to pass one or more arguments to an anonymous method. To do so, follow the
delegate keyword with a parenthesized parameter list. Then, pass the argument(s) to the
delegate instance when it is called. For example, here is the preceding program rewritten
so that the ending value for the count is passed:

// Demonstrate an anonymous method that takes an argument.

using System;

// Notice that CountIt now has a parameter.
delegate void CountIt(int end);

class AnonMethDemo2 {

 static void Main() {

 // Here, the ending value for the count
 // is passed to the anonymous method.
 CountIt count = delegate (int end) {
 for(int i=0; i <= end; i++)
 Console.WriteLine(i);
 };

 count(3);
 Console.WriteLine();
 count(5);
 }
}

In this version, CountIt now takes an integer argument. Notice how the parameter list
is specified after the delegate keyword when the anonymous method is created. The code
inside the anonymous method has access to the parameter end in just the same way it would
if a named method were being created. The output from this program is shown next:

0
1
2
3

0
1
2
3
4
5

Return a Value from an Anonymous Method
An anonymous method can return a value. The value is returned by use of the return
statement, which works the same in an anonymous method as it does in a named method.
As you would expect, the type of the return value must be compatible with the return type

PART I

C h a p t e r 1 5 : D e l e g a t e s , E v e n t s , a n d L a m b d a E x p r e s s i o n s 411

PART I
PART I

specified by the delegate. For example, here the code that performs the count also computes
the summation of the count and returns the result:

// Demonstrate an anonymous method that returns a value.

using System;

// This delegate returns a value.
delegate int CountIt(int end);

class AnonMethDemo3 {

 static void Main() {
 int result;

 // Here, the ending value for the count
 // is passed to the anonymous method.
 // A summation of the count is returned.
 CountIt count = delegate (int end) {
 int sum = 0;

 for(int i=0; i <= end; i++) {
 Console.WriteLine(i);
 sum += i;
 }
 return sum; // return a value from an anonymous method
 };

 result = count(3);
 Console.WriteLine("Summation of 3 is " + result);
 Console.WriteLine();

 result = count(5);
 Console.WriteLine("Summation of 5 is " + result);
 }
}

In this version, the value of sum is returned by the code block that is associated with the
count delegate instance. Notice that the return statement is used in an anonymous method
in just the same way that it is used in a named method. The output is shown here:

0
1
2
3
Summation of 3 is 6

0
1
2
3
4
5
Summation of 5 is 15

412 P a r t I : T h e C # L a n g u a g e

Use Outer Variables with Anonymous Methods
A local variable or parameter whose scope includes an anonymous method is called an outer
variable. An anonymous method has access to and can use these outer variables. When an
outer variable is used by an anonymous method, that variable is said to be captured. A
captured variable will stay in existence at least until the delegate that captured it is subject
to garbage collection. Thus, even though a local variable will normally cease to exist when
its block is exited, if that local variable is being used by an anonymous method, then that
variable will stay in existence at least until the delegate referring to that method is destroyed.

The capturing of a local variable can lead to unexpected results. For example, consider
this version of the counting program. As in the previous version, the summation of the
count is computed. However, in this version, a CountIt object is constructed and returned
by a static method called Counter(). This object uses the variable sum, which is declared in
the enclosing scope provided by Counter(), rather than in the anonymous method, itself.
Thus, sum is captured by the anonymous method. Inside Main(), Counter() is called to
obtain a CountIt object. Thus, sum will not be destroyed until the program finishes.

// Demonstrate a captured variable.

using System;

// This delegate returns int and takes an int argument.
delegate int CountIt(int end);

class VarCapture {

 static CountIt Counter() {
 int sum = 0;

 // Here, a summation of the count is stored
 // in the captured variable sum.
 CountIt ctObj = delegate (int end) {
 for(int i=0; i <= end; i++) {
 Console.WriteLine(i);
 sum += i;
 }
 return sum;
 };
 return ctObj;
 }

 static void Main() {
 // Get a counter.
 CountIt count = Counter();

 int result;

 result = count(3);
 Console.WriteLine("Summation of 3 is " + result);
 Console.WriteLine();

 result = count(5);
 Console.WriteLine("Summation of 5 is " + result);

PART I

C h a p t e r 1 5 : D e l e g a t e s , E v e n t s , a n d L a m b d a E x p r e s s i o n s 413

PART I
PART I

 }
}

The output is shown here. Pay special attention to the summation value.

0
1
2
3
Summation of 3 is 6

0
1
2
3
4
5
Summation of 5 is 21

As you can see, the count still proceeds normally. However, notice the summation value for
5. It shows 21 instead of 15! The reason for this is that sum is captured by ctObj when it is
created by the Counter() method. This means it remains in existence until count is subject
to garbage collection at the end of the program. Thus, its value is not destroyed when
Counter() returns or with each call to the anonymous method when count is called in Main().

Although captured variables can result in rather counterintuitive situations, such as the
one just shown, it makes sense if you think about it a bit. The key point is that when an
anonymous method captures a variable, that variable cannot go out of existence until the
delegate that captures it is no longer being used. If this were not the case, then the captured
variable could be undefined when it is needed by the delegate.

Lambda Expressions
Although anonymous methods are a valuable feature, they have been largely superceded
by a better approach: the lambda expression. It is not an overstatement to say that the lambda
expression is one of the two most important features added by C# 3.0 (the other being LINQ).
Based on an entirely new syntactic element, the lambda expression provides a powerful
alternative to the anonymous method. Although a principal use of lambda expressions is
found when working with LINQ (see Chapter 19), they are also applicable to (and commonly
used with) delegates and events. This use of lambda expressions is described here.

A lambda expression is the second way that an anonymous function can be created.
(The other type of anonymous function is the anonymous method, described in the
preceding section.) Thus, a lambda expression can be assigned to a delegate. Because a
lambda expression is more streamlined than the equivalent anonymous method, lambda
expressions are now the recommended approach in almost all cases.

The Lambda Operator
All lambda expressions use the new lambda operator, which is =>. This operator divides
a lambda expression into two parts. On the left the input parameter (or parameters) is
specified. On the right is the lambda body. The => operator is sometimes verbalized as
“goes to” or “becomes.”

414 P a r t I : T h e C # L a n g u a g e

C# supports two types of lambda expressions, and it is the lambda body that determines
what type is being created. If the lambda body consists of a single expression, then an
expression lambda is being created. In this case, the body is free-standing—it is not enclosed
between braces. If the lambda body consists of a block of statements enclosed by braces,
then a statement lambda is being created. A statement lambda can contain multiple statements
and include such things as loops, method calls, and if statements. The following sections
describe both kinds of lambdas.

Expression Lambdas
In an expression lambda, the expression on the right side of the => acts on the parameter (or
parameters) specified by the left side. The result of the expression becomes the result of the
lambda operator and is returned.

Here is the general form of an expression lambda that takes only one parameter:

param => expr

When more than one parameter is required, then the following form is used:

(param-list) => expr

Therefore, when two or more parameters are needed, they must be enclosed by parentheses.
If no parameters are needed, then empty parentheses must be used.

Here is a simple expression lambda:

count => count + 2

Here count is the parameter that is acted on by the expression count + 2. Thus, the result is
the value of count increased by two. Here is another example:

n => n % 2 == 0

In this case, this expression returns true if n is even and false if it is odd.
To use a lambda expression involves two steps. First, declare a delegate type that

is compatible with the lambda expression. Second, declare an instance of the delegate,
assigning to it the lambda expression. Once this has been done, the lambda expression can
be executed by calling the delegate instance. The result of the lambda expression becomes
the return value.

The following program shows how to put the two expression lambdas just shown into
action. It declares two delegate types. The first, called Incr, takes an int argument and
returns an int result. The second, called IsEven, takes an int argument and returns a bool
result. It then assigns the lambda expressions to instances of those delegates. Finally, it
executes the lambda expressions through the delegate instances.

// Use two simple lambda expressions.

using System;

// Declare a delegate that takes an int argument
// and returns an int result.
delegate int Incr(int v);

// Declare a delegate that takes an int argument
// and returns a bool result.

PART I

C h a p t e r 1 5 : D e l e g a t e s , E v e n t s , a n d L a m b d a E x p r e s s i o n s 415

PART I
PART I

delegate bool IsEven(int v);

class SimpleLambdaDemo {

 static void Main() {

 // Create an Incr delegate instance that refers to
 // a lambda expression that increases its parameter by 2.
 Incr incr = count => count + 2;

 // Now, use the incr lambda expression.
 Console.WriteLine("Use incr lambda expression: ");
 int x = -10;
 while(x <= 0) {
 Console.Write(x + " ");
 x = incr(x); // increase x by 2
 }

 Console.WriteLine("\n");

 // Create an IsEven delegate instance that refers to
 // a lambda expression that returns true if its parameter
 // is even and false otherwise.
 IsEven isEven = n => n % 2 == 0;

 // Now, use the isEven lambda expression.
 Console.WriteLine("Use isEven lambda expression: ");
 for(int i=1; i <= 10; i++)
 if(isEven(i)) Console.WriteLine(i + " is even.");

 }
}

The output is shown here:

Use incr lambda expression:
-10 -8 -6 -4 -2 0

Use isEven lambda expression:
2 is even.
4 is even.
6 is even.
8 is even.
10 is even.

In the program, pay special attention to these declarations:

Incr incr = count => count + 2;
IsEven isEven = n => n % 2 == 0;

The first assigns to incr a lambda expression that returns the result of increasing the value
passed to count by 2. This expression can be assigned to an Incr delegate because it is
compatible with Incr’s declaration. The argument used in the call to incr is passed to count.
The result is returned. The second declaration assigns to isEven an expression that returns

416 P a r t I : T h e C # L a n g u a g e

true if the argument is even and false otherwise. Thus, it is compatible with the IsEven
delegate declaration.

At this point, you might be wondering how the compiler knows the type of the data
used in a lambda expression. For example, in the lambda expression assigned to incr, how
does the compiler know that count is an int? The answer is that the compiler infers the type
of the parameter and the expression’s result type from the delegate type. Thus, the lambda
parameters and return value must be compatible with the parameter type(s) and return type
of the delegate.

Although type inference is quite useful, in some cases, you might need to explicitly
specify the type of a lambda parameter. To do so, simply include the type name. For
example, here is another way to declare the incr delegate instance:

Incr incr = (int count) => count + 2;

Notice now that count is explicitly declared as an int. Also notice the use of parentheses.
They are now necessary. (Parentheses can be omitted only when exactly one parameter is
specified and no type specifier is used.)

Although the preceding two lambda expressions each used one parameter, lambda
expressions can use any number, including zero. When using more than one parameter you
must enclose them within parentheses. Here is an example that uses a lambda expression to
determine if a value is within a specified range:

(low, high, val) => val >= low && val <= high;

Here is a delegate type that is compatible with this lambda expression:

delegate bool InRange(int lower, int upper, int v);

Thus, you could create an InRange delegate instance like this:

InRange rangeOK = (low, high, val) => val >= low && val <= high;

After doing so, the lambda expression can be executed as shown here:

if(rangeOK(1, 5, 3)) Console.WriteLine("3 is within 1 to 5.");

One other point: Lambda expressions can use outer variables in the same way as
anonymous methods, and they are captured in the same way.

Statement Lambdas
As mentioned, there are two basic flavors of the lambda expression. The first is the expression
lambda, which was discussed in the preceding section. As explained, the body of an
expression lambda consists solely of a single expression. The second type of lambda
expression is the statement lambda. A statement lambda expands the types of operations that
can be handled within a lambda expression because it allows the body of lambda to contain
multiple statements. For example, using a statement lambda you can use loops, if statements,
declare variables, and so on. A statement lambda is easy to create. Simply enclose the body
within braces. Aside from allowing multiple statements, it works much like the expression
lambdas just discussed.

PART I

C h a p t e r 1 5 : D e l e g a t e s , E v e n t s , a n d L a m b d a E x p r e s s i o n s 417

PART I
PART I

Here is an example that uses a statement lambda to compute and return the factorial of
an int value:

// Demonstrate a statement lambda.
using System;

// IntOp takes one int argument and returns an int result.
delegate int IntOp(int end);

class StatementLambdaDemo {

 static void Main() {

 // A statement lambda that returns the factorial
 // of the value it is passed.
 IntOp fact = n => {
 int r = 1;
 for(int i=1; i <= n; i++)
 r = i * r;
 return r;
 };

 Console.WriteLine("The factorial of 3 is " + fact(3));
 Console.WriteLine("The factorial of 5 is " + fact(5));
 }
}

The output is shown here:

The factorial of 3 is 6
The factorial of 5 is 120

In the program, notice that the statement lambda declares a variable called r, uses a for
loop, and has a return statement. These are legal inside a statement lambda. In essence, a
statement lambda closely parallels an anonymous method. Therefore, many anonymous
methods will be converted to statement lambdas when updating legacy code. (As mentioned,
as of C# 3.0, lambda expressions are the preferred way of creating anonymous functions.)
One other point: When a return statement occurs within a lambda expression, it simply
causes a return from the lambda. It does not cause the enclosing method to return.

Before concluding, it is worthwhile to see another example that shows the statement
lambda in action. The following program reworks the first delegate example in this chapter
so it uses statement lambdas (rather than standalone methods) to accomplish various string
modifications:

// The first delegate example rewritten to use
// statement lambdas.

using System;

// Declare a delegate type.
delegate string StrMod(string s);

418 P a r t I : T h e C # L a n g u a g e

class UseStatementLambdas {

 static void Main() {
 // Create delegates that refer to lambda expressions
 // that perform various string modifications.

 // Replaces spaces with hyphens.
 StrMod ReplaceSpaces = s => {
 Console.WriteLine("Replacing spaces with hyphens.");
 return s.Replace(' ', '-');
 };

 // Remove spaces.
 StrMod RemoveSpaces = s => {
 string temp = "";
 int i;

 Console.WriteLine("Removing spaces.");
 for(i=0; i < s.Length; i++)
 if(s[i] != ' ') temp += s[i];

 return temp;
 };

 // Reverse a string.
 StrMod Reverse = s => {
 string temp = "";
 int i, j;

 Console.WriteLine("Reversing string.");
 for(j=0, i=s.Length-1; i >= 0; i--, j++)
 temp += s[i];

 return temp;
 };

 string str;

 // Call methods through the delegate.
 StrMod strOp = ReplaceSpaces;
 str = strOp("This is a test.");
 Console.WriteLine("Resulting string: " + str);
 Console.WriteLine();

 strOp = RemoveSpaces;
 str = strOp("This is a test.");
 Console.WriteLine("Resulting string: " + str);
 Console.WriteLine();

 strOp = Reverse;
 str = strOp("This is a test.");

PART I

C h a p t e r 1 5 : D e l e g a t e s , E v e n t s , a n d L a m b d a E x p r e s s i o n s 419

PART I
PART I

 Console.WriteLine("Resulting string: " + str);
 }
}

The output, which is the same as the original version, is shown here:

Replacing spaces with hyphens.
Resulting string: This-is-a-test.

Removing spaces.
Resulting string: Thisisatest.

Reversing string.
Resulting string: .tset a si sihT

Events
Another important C# feature is built upon the foundation of delegates: the event. An event
is, essentially, an automatic notification that some action has occurred. Events work like this:
An object that has an interest in an event registers an event handler for that event. When the
event occurs, all registered handlers are called. Event handlers are represented by delegates.

Events are members of a class and are declared using the event keyword. Its most
commonly used form is shown here:

event event-delegate event-name;

Here, event-delegate is the name of the delegate used to support the event, and event-name is
the name of the specific event object being declared.

Let’s begin with a very simple example:

// A very simple event demonstration.

using System;

// Declare a delegate type for an event.
delegate void MyEventHandler();

// Declare a class that contains an event.
class MyEvent {
 public event MyEventHandler SomeEvent;

 // This is called to fire the event.
 public void OnSomeEvent() {
 if(SomeEvent != null)
 SomeEvent();
 }
}

class EventDemo {
 // An event handler.
 static void Handler() {
 Console.WriteLine("Event occurred");
 }

420 P a r t I : T h e C # L a n g u a g e

 static void Main() {
 MyEvent evt = new MyEvent();

 // Add Handler() to the event list.
 evt.SomeEvent += Handler;

 // Fire the event.
 evt.OnSomeEvent();
 }
}

This program displays the following output:

Event occurred

Although simple, this program contains all the elements essential to proper event
handling. Let’s look at it carefully. The program begins by declaring a delegate type for
the event handler, as shown here:

delegate void MyEventHandler();

All events are activated through a delegate. Thus, the event delegate type defines the return
type and signature for the event. In this case, there are no parameters, but event parameters
are allowed.

Next, an event class, called MyEvent, is created. Inside the class, an event called
SomeEvent is declared, using this line:

public event MyEventHandler SomeEvent;

Notice the syntax. The keyword event tells the compiler that an event is being declared.
Also declared inside MyEvent is the method OnSomeEvent(), which is the method a

program will call to signal (or “fire”) an event. (That is, this is the method called when the
event occurs.) It calls an event handler through the SomeEvent delegate, as shown here:

if(SomeEvent != null)
 SomeEvent();

Notice that a handler is called if and only if SomeEvent is not null. Since other parts of your
program must register an interest in an event in order to receive event notifications, it is
possible that OnSomeEvent() could be called before any event handler has been registered.
To prevent calling on a null reference, the event delegate must be tested to ensure that it is
not null.

Inside EventDemo, an event handler called Handler() is created. In this simple example,
the event handler simply displays a message, but other handlers could perform more
meaningful actions. In Main(), a MyEvent object is created, and Handler() is registered
as a handler for this event, by adding it as shown here:

MyEvent evt = new MyEvent();

// Add Handler() to the event list.
evt.SomeEvent += Handler;

PART I

C h a p t e r 1 5 : D e l e g a t e s , E v e n t s , a n d L a m b d a E x p r e s s i o n s 421

PART I
PART I

Notice that the handler is added using the += operator. Events support only += and – =. In
this case, Handler() is a static method, but event handlers can also be instance methods.

Finally, the event is fired as shown here:

// Fire the event.
evt.OnSomeEvent();

Calling OnSomeEvent() causes all registered event handlers to be called. In this case, there
is only one registered handler, but there could be more, as the next section explains.

A Multicast Event Example
Like delegates, events can be multicast. This enables multiple objects to respond to an event
notification. Here is an event multicast example:

// An event multicast demonstration.

using System;

// Declare a delegate type for an event.
delegate void MyEventHandler();

// Declare a class that contains an event.
class MyEvent {
 public event MyEventHandler SomeEvent;

 // This is called to fire the event.
 public void OnSomeEvent() {
 if(SomeEvent != null)
 SomeEvent();
 }
}

class X {
 public void Xhandler() {
 Console.WriteLine("Event received by X object");
 }
}

class Y {
 public void Yhandler() {
 Console.WriteLine("Event received by Y object");
 }
}

class EventDemo2 {
 static void Handler() {
 Console.WriteLine("Event received by EventDemo");
 }

 static void Main() {
 MyEvent evt = new MyEvent();
 X xOb = new X();
 Y yOb = new Y();

422 P a r t I : T h e C # L a n g u a g e

 // Add handlers to the event list.
 evt.SomeEvent += Handler;
 evt.SomeEvent += xOb.Xhandler;
 evt.SomeEvent += yOb.Yhandler;

 // Fire the event.
 evt.OnSomeEvent();
 Console.WriteLine();

 // Remove a handler.
 evt.SomeEvent -= xOb.Xhandler;
 evt.OnSomeEvent();
 }
}

The output from the program is shown here:

Event received by EventDemo
Event received by X object
Event received by Y object

Event received by EventDemo
Event received by Y object

This example creates two additional classes, called X and Y, which also define event
handlers compatible with MyEventHandler. Thus, these handlers can also become part
of the event chain. Notice that the handlers in X and Y are not static. This means that objects
of each must be created, and the handler linked to each instance must be added to the event
chain. The differences between instance and static handlers is examined in the next section.

Instance Methods vs. Static Methods as Event Handlers
Although both instance methods and static methods can be used as event handlers, they do
differ in one important way. When a static method is used as a handler, an event notification
applies to the class. When an instance method is used as an event handler, events are sent to
specific object instances. Thus, each object of a class that wants to receive an event notification
must register individually. In practice, most event handlers are instance methods, but, of
course, this is subject to the specific application. Let’s look at an example of each.

The following program creates a class called X that defines an instance method as an
event handler. This means that each X object must register individually to receive events.
To demonstrate this fact, the program multicasts an event to three objects of type X.

/* Individual objects receive notifications when instance
 event handlers are used. */

using System;

// Declare a delegate type for an event.
delegate void MyEventHandler();

// Declare a class that contains an event.
class MyEvent {

PART I

C h a p t e r 1 5 : D e l e g a t e s , E v e n t s , a n d L a m b d a E x p r e s s i o n s 423

PART I
PART I

 public event MyEventHandler SomeEvent;

 // This is called to fire the event.
 public void OnSomeEvent() {
 if(SomeEvent != null)
 SomeEvent();
 }
}

class X {
 int id;

 public X(int x) { id = x; }

 // This is an instance method that will be used as an event handler.
 public void Xhandler() {
 Console.WriteLine("Event received by object " + id);
 }
}

class EventDemo3 {
 static void Main() {
 MyEvent evt = new MyEvent();
 X o1 = new X(1);
 X o2 = new X(2);
 X o3 = new X(3);

 evt.SomeEvent += o1.Xhandler;
 evt.SomeEvent += o2.Xhandler;
 evt.SomeEvent += o3.Xhandler;

 // Fire the event.
 evt.OnSomeEvent();
 }
}

The output from this program is shown here:

Event received by object 1
Event received by object 2
Event received by object 3

As the output shows, each object registers its interest in an event separately, and each
receives a separate notification.

Alternatively, when a static method is used as an event handler, events are handled
independently of any object, as the following program shows:

/* A class receives the notification when
 a static method is used as an event handler. */

using System;

// Declare a delegate type for an event.

424 P a r t I : T h e C # L a n g u a g e

delegate void MyEventHandler();

// Declare a class that contains an event.
class MyEvent {
 public event MyEventHandler SomeEvent;

 // This is called to fire the event.
 public void OnSomeEvent() {
 if(SomeEvent != null)
 SomeEvent();
 }
}

class X {

 /* This is a static method that will be used as
 an event handler. */
 public static void Xhandler() {
 Console.WriteLine("Event received by class.");
 }
}

class EventDemo4 {
 static void Main() {
 MyEvent evt = new MyEvent();

 evt.SomeEvent += X.Xhandler;

 // Fire the event.
 evt.OnSomeEvent();
 }
}

The output from this program is shown here:

Event received by class.

In the program, notice that no object of type X is ever created. However, since Xhandler() is
a static method of X, it can be attached to SomeEvent and executed when OnSomeEvent()
is called.

Using Event Accessors
The form of event used in the preceding examples created events that automatically manage
the event handler invocation list, including the adding and subtracting of event handlers
to and from the list. Thus, you did not need to implement any of the list management
functionality yourself. Because they manage the details for you, these types of events are
by far the most commonly used. It is possible, however, to provide the event handler list
operations yourself, perhaps to implement some type of specialized event storage mechanism.

To take control of the event handler list, you will use an expanded form of the event
statement, which allows the use of event accessors. The accessors give you control over how
the event handler list is implemented. This form is shown here:

PART I

C h a p t e r 1 5 : D e l e g a t e s , E v e n t s , a n d L a m b d a E x p r e s s i o n s 425

PART I
PART I

event event-delegate event-name {
 add {
 // code to add an event to the chain
 }

 remove {
 // code to remove an event from the chain
 }
}

This form includes the two event accessors add and remove. The add accessor is called
when an event handler is added to the event chain, by using +=. The remove accessor is
called when an event handler is removed from the chain, by using – =.

When add or remove is called, it receives the handler to add or remove as a parameter.
As with other types of accessors, this parameter is called value. By implementing add and
remove, you can define a custom event-handler storage scheme. For example, you could
use an array, a stack, or a queue to store the handlers.

Here is an example that uses the accessor form of event. It uses an array to hold the
event handlers. Because the array is only three elements long, only three event handlers
can be held in the chain at any one time.

// Create a custom means of managing the event invocation list.

using System;

// Declare a delegate type for an event.
delegate void MyEventHandler();

// Declare a class that holds up to 3 events.
class MyEvent {
 MyEventHandler[] evnt = new MyEventHandler[3];

 public event MyEventHandler SomeEvent {
 // Add an event to the list.
 add {
 int i;

 for(i=0; i < 3; i++)
 if(evnt[i] == null) {
 evnt[i] = value;
 break;
 }
 if (i == 3) Console.WriteLine("Event list full.");
 }

 // Remove an event from the list.
 remove {
 int i;

 for(i=0; i < 3; i++)
 if(evnt[i] == value) {

426 P a r t I : T h e C # L a n g u a g e

 evnt[i] = null;
 break;
 }
 if (i == 3) Console.WriteLine("Event handler not found.");
 }
 }

 // This is called to fire the events.
 public void OnSomeEvent() {
 for(int i=0; i < 3; i++)
 if(evnt[i] != null) evnt[i]();
 }

}

// Create some classes that use MyEventHandler.
class W {
 public void Whandler() {
 Console.WriteLine("Event received by W object");
 }
}

class X {
 public void Xhandler() {
 Console.WriteLine("Event received by X object");
 }
}

class Y {
 public void Yhandler() {
 Console.WriteLine("Event received by Y object");
 }
}

class Z {
 public void Zhandler() {
 Console.WriteLine("Event received by Z object");
 }
}

class EventDemo5 {
 static void Main() {
 MyEvent evt = new MyEvent();
 W wOb = new W();
 X xOb = new X();
 Y yOb = new Y();
 Z zOb = new Z();

 // Add handlers to the event list.
 Console.WriteLine("Adding events.");
 evt.SomeEvent += wOb.Whandler;
 evt.SomeEvent += xOb.Xhandler;
 evt.SomeEvent += yOb.Yhandler;

PART I

C h a p t e r 1 5 : D e l e g a t e s , E v e n t s , a n d L a m b d a E x p r e s s i o n s 427

PART I
PART I

 // Can't store this one -- full.
 evt.SomeEvent += zOb.Zhandler;
 Console.WriteLine();

 // Fire the events.
 evt.OnSomeEvent();
 Console.WriteLine();

 // Remove a handler.
 Console.WriteLine("Remove xOb.Xhandler.");
 evt.SomeEvent -= xOb.Xhandler;
 evt.OnSomeEvent();

 Console.WriteLine();

 // Try to remove it again.
 Console.WriteLine("Try to remove xOb.Xhandler again.");
 evt.SomeEvent -= xOb.Xhandler;
 evt.OnSomeEvent();

 Console.WriteLine();

 // Now, add Zhandler.
 Console.WriteLine("Add zOb.Zhandler.");
 evt.SomeEvent += zOb.Zhandler;
 evt.OnSomeEvent();

 }
}

The output from the program is shown here:

Adding events.
Event list full.

Event received by W object
Event received by X object
Event received by Y object

Remove xOb.Xhandler.
Event received by W object
Event received by Y object

Try to remove xOb.Xhandler again.
Event handler not found.
Event received by W object
Event received by Y object

Add zOb.Zhandler.
Event received by W object
Event received by Z object
Event received by Y object

428 P a r t I : T h e C # L a n g u a g e

Let’s examine this program closely. First, an event handler delegate called MyEventHandler
is defined. Next, the class MyEvent is declared. It begins by defining a three-element array
of event handlers called evnt, as shown here:

MyEventHandler[] evnt = new MyEventHandler[3];

This array will be used to store the event handlers that are added to the event chain. The
elements in evnt are initialized to null by default.

Next, the event SomeEvent is declared. It uses the accessor form of the event statement,
as shown here:

public event MyEventHandler SomeEvent {
 // Add an event to the list.
 add {
 int i;

 for(i=0; i < 3; i++)
 if(evnt[i] == null) {
 evnt[i] = value;
 break;
 }
 if (i == 3) Console.WriteLine("Event queue full.");
 }

 // Remove an event from the list.
 remove {
 int i;

 for(i=0; i < 3; i++)
 if(evnt[i] == value) {
 evnt[i] = null;
 break;
 }
 if (i == 3) Console.WriteLine("Event handler not found.");
 }
}

When an event handler is added, add is called and a reference to the handler (contained in
value) is put into the first unused (that is, null) element of evnt. If no element is free, then
an error is reported. (Of course, throwing an exception when the list is full would be a better
approach for real-world code.) Since evnt is only three elements long, only three event
handlers can be stored. When an event handler is removed, remove is called and the evnt
array is searched for the reference to the handler passed in value. If it is found, its element
in the array is assigned null, thus removing the handler from the list.

When an event is fired, OnSomeEvent() is called. It cycles through the evnt array,
calling each event handler in turn.

As the preceding example shows, it is relatively easy to implement a custom event-
handler storage mechanism if one is needed. For most applications, though, the default
storage provided by the non-accessor form of event is better. The accessor-based form of
event can be useful in certain specialized situations, however. For example, if you have a
program in which event handlers need to be executed in order of their priority and not in
the order in which they are added to the chain, then you could use a priority queue to store
the handlers.

PART I

C h a p t e r 1 5 : D e l e g a t e s , E v e n t s , a n d L a m b d a E x p r e s s i o n s 429

PART I
PART I

NOTENOTE In multithreaded applications, you will usually need to synchronize access to the event
accessors. For information on multithreaded programming, see Chapter 23.

Miscellaneous Event Features
Events can be specified in interfaces. Implementing classes must supply the event.

Events can also be specified as abstract. A derived class must implement the event.
Accessor-based events cannot, however, be abstract.

An event can be specified as sealed.
Finally, an event can be virtual, which means that it can be overridden in a derived class.

Use Anonymous Methods and Lambda Expressions with Events
Anonymous methods and lambda expressions are especially useful when working with
events because often the event handler is not called by any code other than the event
handling mechanism. As a result, there is usually no reason to create a standalone method.
Thus, the use of lambda expressions or anonymous methods can significantly streamline
event handling code.

Since lambda expressions are now the preferred approach, we will start there. Here is an
example that uses a lambda expression as an event handler:

// Use a lambda expression as an event handler.
using System;

// Declare a delegate type for an event.
delegate void MyEventHandler(int n);

// Declare a class that contains an event.
class MyEvent {
 public event MyEventHandler SomeEvent;

 // This is called to fire the event.
 public void OnSomeEvent(int n) {
 if(SomeEvent != null)
 SomeEvent(n);
 }
}

class LambdaEventDemo {
 static void Main() {
 MyEvent evt = new MyEvent();

 // Use a lambda expression as an event handler.
 evt.SomeEvent += (n) =>
 Console.WriteLine("Event received. Value is " + n);

 // Fire the event twice.
 evt.OnSomeEvent(1);
 evt.OnSomeEvent(2);
 }
}

430 P a r t I : T h e C # L a n g u a g e

The output is shown here:

Event received. Value is 1
Event received. Value is 2

In the program, pay special attention to the way the lambda expression is used as an
event handler, as shown here:

evt.SomeEvent += (n) =>
 Console.WriteLine("Event received. Value is " + n);

The syntax for using a lambda expression event handler is the same as that for using a
lambda expression with any other type of delegate.

Although lambda expressions are now the preferred way to construct an anonymous
function, you can still use an anonymous method as an event handler if you so choose. For
example, here is the event handler from the previous example rewritten to use an
anonymous method:

// Use an anonymous method as an event handler.
evt.SomeEvent += delegate(int n) {
 Console.WriteLine("Event received. Value is" + n);
};

As you can see, the syntax for using an anonymous event handler is the same as that for any
anonymous method.

.NET Event Guidelines
C# allows you to write any type of event you desire. However, for component compatibility
with the .NET Framework, you will need to follow the guidelines Microsoft has established
for this purpose. At the core of these guidelines is the requirement that event handlers have
two parameters. The first is a reference to the object that generated the event. The second is
a parameter of type EventArgs that contains any other information required by the handler.
Thus, .NET-compatible event handlers will have this general form:

void handler(object source, EventArgs arg) {
 // ...
}

Typically, the source parameter is passed this by the calling code. The EventArgs parameter
contains additional information and can be ignored if it is not needed.

The EventArgs class itself does not contain fields that you use to pass additional data to
a handler. Instead, EventArgs is used as a base class from which you will derive a class that
contains the necessary fields. EventArgs does include one static field called Empty, which is
an EventArgs object that contains no data.

Here is an example that creates a .NET-compatible event:

// A .NET-compatible event.

using System;

// Derive a class from EventArgs.
class MyEventArgs : EventArgs {
 public int EventNum;

PART I

C h a p t e r 1 5 : D e l e g a t e s , E v e n t s , a n d L a m b d a E x p r e s s i o n s 431

PART I
PART I

}

// Declare a delegate type for an event.
delegate void MyEventHandler(object source, MyEventArgs arg);

// Declare a class that contains an event.
class MyEvent {
 static int count = 0;

 public event MyEventHandler SomeEvent;

 // This fires SomeEvent.
 public void OnSomeEvent() {
 MyEventArgs arg = new MyEventArgs();

 if(SomeEvent != null) {
 arg.EventNum = count++;
 SomeEvent(this, arg);
 }
 }
}

class X {
 public void Handler(object source, MyEventArgs arg) {
 Console.WriteLine("Event " + arg.EventNum +
 " received by an X object.");
 Console.WriteLine("Source is " + source);
 Console.WriteLine();
 }
}

class Y {
 public void Handler(object source, MyEventArgs arg) {
 Console.WriteLine("Event " + arg.EventNum +
 " received by a Y object.");
 Console.WriteLine("Source is " + source);
 Console.WriteLine();
 }
}

class EventDemo6 {
 static void Main() {
 X ob1 = new X();
 Y ob2 = new Y();
 MyEvent evt = new MyEvent();

 // Add Handler() to the event list.
 evt.SomeEvent += ob1.Handler;
 evt.SomeEvent += ob2.Handler;

 // Fire the event.
 evt.OnSomeEvent();
 evt.OnSomeEvent();
 }
}

432 P a r t I : T h e C # L a n g u a g e

Here is the output:

Event 0 received by an X object.
Source is MyEvent

Event 0 received by a Y object.
Source is MyEvent

Event 1 received by an X object.
Source is MyEvent

Event 1 received by a Y object.
Source is MyEvent

In this example, MyEventArgs is derived from EventArgs. MyEventArgs adds just one
field of its own: EventNum. The event handler delegate MyEventHandler now takes the
two parameters required by the .NET Framework. As explained, the first is an object
reference to the generator of the event. The second is a reference to EventArgs or a class
derived from EventArgs. The event handlers in the X and Y classes, Handler(), also have
the same types of parameters.

Inside MyEvent, a MyEventHandler called SomeEvent is declared. In the OnSomeEvent()
method, SomeEvent is called with the first argument being this, and the second argument
being a MyEventArgs instance. Thus, the proper arguments are passed to MyEventHandler
to fulfill the requirements for .NET compatibility.

Use EventHandler
For many events, the EventArgs parameter is unused. To help facilitate the creation of code in
these situations, the .NET Framework includes a built-in delegate type called EventHandler,
which can be used to declare event handlers in which no extra information is needed. Here
is an example that uses EventHandler:

// Use the built-in EventHandler delegate.

using System;

// Declare a class that contains an event.
class MyEvent {
 public event EventHandler SomeEvent; // uses EventHandler delegate

 // This is called to fire SomeEvent.
 public void OnSomeEvent() {
 if(SomeEvent != null)
 SomeEvent(this, EventArgs.Empty);
 }
}

class EventDemo7 {
 static void Handler(object source, EventArgs arg) {
 Console.WriteLine("Event occurred");
 Console.WriteLine("Source is " + source);
 }

PART I

C h a p t e r 1 5 : D e l e g a t e s , E v e n t s , a n d L a m b d a E x p r e s s i o n s 433

PART I
PART I

 static void Main() {
 MyEvent evt = new MyEvent();

 // Add Handler() to the event list.
 evt.SomeEvent += Handler;

 // Fire the event.
 evt.OnSomeEvent();
 }
}

In this case, the EventArgs parameter is unused and is passed the placeholder object
EventArgs.Empty. The output is shown here:

Event occurred
Source is MyEvent

Applying Events: A Case Study
Events are frequently used in message-based environments such as Windows. In such an
environment, a program simply waits until it receives a message, and then it takes the
appropriate action. Such an architecture is well suited for C#-style event handling because it
is possible to create event handlers for various messages and then simply invoke a handler
when a message is received. For example, the left-button mouse click message could be tied
to an event called LButtonClick. When a left-button click is received, a method called
OnLButtonClick() can be called, and all registered handlers will be notified.

Although developing a Windows program that demonstrates this approach is beyond
the scope of this chapter, it is possible to give an idea of how such an approach would work.
The following program creates an event handler that processes keystrokes. The event is
called KeyPress, and each time a key is pressed, the event is fired by calling OnKeyPress().
Notice that .NET-compatible events are created and that lambda expressions provide the
event handlers.

// A keypress event example.

using System;

// Derive a custom EventArgs class that holds the key.
class KeyEventArgs : EventArgs {
 public char ch;
}

// Declare a delegate type for an event.
delegate void KeyHandler(object source, KeyEventArgs arg);

// Declare a keypress event class.
class KeyEvent {
 public event KeyHandler KeyPress;

 // This is called when a key is pressed.
 public void OnKeyPress(char key) {

434 P a r t I : T h e C # L a n g u a g e

 KeyEventArgs k = new KeyEventArgs();

 if(KeyPress != null) {
 k.ch = key;
 KeyPress(this, k);
 }
 }
}

// Demonstrate KeyEvent.
class KeyEventDemo {
 static void Main() {
 KeyEvent kevt = new KeyEvent();
 ConsoleKeyInfo key;
 int count = 0;

 // Use a lambda expression to display the keypress.
 kevt.KeyPress += (source, arg) =>
 Console.WriteLine(" Received keystroke: " + arg.ch);

 // Use a lambda expression to count keypresses.
 kevt.KeyPress += (source, arg) =>
 count++; // count is an outer variable

 Console.WriteLine("Enter some characters. " +
 "Enter a period to stop.");
 do {
 key = Console.ReadKey();
 kevt.OnKeyPress(key.KeyChar);
 } while(key.KeyChar != '.');

 Console.WriteLine(count + " keys pressed.");
 }
}

Here is a sample run:

Enter some characters. Enter a period to stop.
t Received keystroke: t
e Received keystroke: e
s Received keystroke: s
t Received keystroke: t
. Received keystroke: .
5 keys pressed.

The program begins by deriving a class from EventArgs called KeyEventArgs, which is
used to pass a keystroke to an event handler. Next, a delegate called KeyHandler defines
the event handler for keystroke events. The class KeyEvent encapsulates the keypress event.
It defines the event KeyPress.

In Main(), a KeyEvent object called kevt is created. Next, an event handler based on
a lambda expression is added to kvet.KeyPress that displays each key as it is entered, as
shown here:

PART I

C h a p t e r 1 5 : D e l e g a t e s , E v e n t s , a n d L a m b d a E x p r e s s i o n s 435

PART I
PART I

kevt.KeyPress += (source, arg) =>
 Console.WriteLine(" Received keystroke: " + arg.ch);

Next, another lambda expression–based handler is added to kvet.KeyPress by the
following code. It counts the number of keypresses.

kevt.KeyPress += (source, arg) =>
 count++; // count is an outer variable

Notice that count is a local variable declared in Main() that is initialized to zero.
Next, a loop is started that calls kevt.OnKeyPress() when a key is pressed. This causes

the registered event handlers to be notified. When the loop ends, the number of keypresses
is displayed. Although quite simple, this example illustrates the essence of event handling.
The same basic approach will be used for other event handling situations. Of course, in
some cases, anonymous event handlers will not be appropriate and named methods will
need to be employed.

This page intentionally left blank

16
Namespaces, the

Preprocessor, and Assemblies

This chapter discusses three C# features that give you greater control over the
organization and accessibility of a program. These are namespaces, the preprocessor,
and assemblies.

Namespaces
The namespace was mentioned briefly in Chapter 2 because it is a concept fundamental to
C#. In fact, every C# program makes use of a namespace in one way or another. We didn’t
need to examine namespaces in detail before now because C# automatically provides a
default, global namespace for your program. Thus, the programs in earlier chapters simply
used the global namespace. In the real world, however, many programs will need to create
their own namespaces or interact with other namespaces. Here, they are examined in detail.

A namespace defines a declarative region that provides a way to keep one set of names
separate from another. In essence, names declared in one namespace will not conflict with
the same names declared in another. The namespace used by the .NET Framework library
(which is the C# library) is System. This is why you have included

using System;

near the top of every program. As explained in Chapter 14, the I/O classes are defined
within a namespace subordinate to System called System.IO. There are many other
namespaces subordinate to System that hold other parts of the C# library.

Namespaces are important because there has been an explosion of variable, method,
property, and class names over the past few years. These include library routines, third-
party code, and your own code. Without namespaces, all of these names would compete
for slots in the global namespace and conflicts would arise. For example, if your program
defined a class called Finder, it could conflict with another class called Finder supplied by
a third-party library that your program uses. Fortunately, namespaces prevent this type of
problem because a namespace restricts the visibility of names declared within it.

437

CHAPTER

438 P a r t I : T h e C # L a n g u a g e

Declaring a Namespace
A namespace is declared using the namespace keyword. The general form of namespace is
shown here:

namespace name {
 // members
}

Here, name is the name of the namespace. A namespace declaration defines a scope. Anything
declared immediately inside the namespace is in scope throughout the namespace. Within a
namespace, you can declare classes, structures, delegates, enumerations, interfaces, or another
namespace.

Here is an example of a namespace that creates a namespace called Counter. It localizes
the name used to implement a simple countdown counter class called CountDown.

// Declare a namespace for counters.

namespace Counter {
 // A simple countdown counter.
 class CountDown {
 int val;

 public CountDown(int n) {
 val = n;
 }

 public void Reset(int n) {
 val = n;
 }

 public int Count() {
 if(val > 0) return val--;
 else return 0;
 }
 }
} // This is the end of the Counter namespace.

Notice how the class CountDown is declared within the scope defined by the Counter
namespace. To follow along with the example, put this code into a file called Counter.cs.

Here is a program that demonstrates the use of the Counter namespace:

// Demonstrate the Counter namespace.

using System;

class NSDemo {
 static void Main() {
 // Notice how CountDown is qualified by Counter.
 Counter.CountDown cd1 = new Counter.CountDown(10);
 int i;

 do {
 i = cd1.Count();
 Console.Write(i + " ");

PART I

C h a p t e r 1 6 : N a m e s p a c e s , t h e P r e p r o c e s s o r , a n d A s s e m b l i e s 439

PART I
PART I

 } while(i > 0);
 Console.WriteLine();

 // Again, notice how CountDown is qualified by Counter.
 Counter.CountDown cd2 = new Counter.CountDown(20);

 do {
 i = cd2.Count();
 Console.Write(i + " ");
 } while(i > 0);
 Console.WriteLine();

 cd2.Reset(4);
 do {
 i = cd2.Count();
 Console.Write(i + " ");
 } while(i > 0);
 Console.WriteLine();
 }
}

The output from the program is shown here:

10 9 8 7 6 5 4 3 2 1 0
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
4 3 2 1 0

To compile this program, you must include both the preceding code and the code
contained in the Counter namespace. Assuming you called the preceding code NSDemo.cs
and put the source code for the Counter namespace into a file called Counter.cs as
mentioned earlier, then you can use this command line to compile the program:

csc NSDemo.cs counter.cs

Some important aspects of this program warrant close examination. First, since
CountDown is declared within the Counter namespace, when an object is created,
CountDown must be qualified with Counter, as shown here:

Counter.CountDown cd1 = new Counter.CountDown(10);

This rule can be generalized. Whenever you use a member of a namespace, you must
qualify it with the namespace name. If you don’t, the member of the namespace won’t be
found by the compiler.

Second, once an object of type Counter has been created, it is not necessary to further
qualify it or any of its members with the namespace. Thus, cd1.Count() can be called
directly without namespace qualification, as this line shows:

i = cd1.Count();

Third, for the sake of illustration, this example uses two separate files. One holds the
Counter namespace and the other holds the NSDemo program. However, both could have
been contained in the same file. Furthermore, a single file can contain two or more named
namespaces, with each namespace defining its own declarative region. When a named

440 P a r t I : T h e C # L a n g u a g e

namespace ends, the outer namespace resumes, which in the case of the Counter is the
global namespace. For clarity, subsequent examples will show all namespaces required by a
program within the same file, but remember that separate files would be equally valid (and
more commonly used in production code).

REMEMBERREMEMBER For clarity, the remaining namespace examples in this chapter show all namespaces
required by a program within the same file. In real-world code, however, a namespace will often
be defined in its own file, as the preceding example illustrates.

Namespaces Prevent Name Conflicts
The key point about a namespace is that names declared within it won’t conflict with
similar names declared outside of it. For example, the following program defines two
namespaces. The first is Counter, shown earlier. The second is called Counter2. Both
contain classes called CountDown, but because they are in separate namespaces, the two
classes do not conflict. Also notice how both namespaces are specified within the same file.
As just explained, a single file can contain multiple namespace declarations. Of course,
separate files for each namespace could also have been used.

// Namespaces prevent name conflicts.

using System;

// Declare the Counter namespace.
namespace Counter {
 // A simple countdown counter.
 class CountDown {
 int val;

 public CountDown(int n) {
 val = n;
 }

 public void Reset(int n) {
 val = n;
 }

 public int Count() {
 if(val > 0) return val--;
 else return 0;
 }
 }
}

// Declare the Counter2 namespace.
namespace Counter2 {
 /* This CountDown is in the Counter2 namespace and
 does not conflict with the one in Counter. */
 class CountDown {
 public void Count() {
 Console.WriteLine("This is Count() in the " +
 "Counter2 namespace.");
 }

PART I

C h a p t e r 1 6 : N a m e s p a c e s , t h e P r e p r o c e s s o r , a n d A s s e m b l i e s 441

PART I
PART I

 }
}

class NSDemo2 {
 static void Main() {
 // This is CountDown in the Counter namespace.
 Counter.CountDown cd1 = new Counter.CountDown(10);

 // This is CountDown in the Counter2 namespace.
 Counter2.CountDown cd2 = new Counter2.CountDown();

 int i;

 do {
 i = cd1.Count();
 Console.Write(i + " ");
 } while(i > 0);
 Console.WriteLine();

 cd2.Count();
 }
}

The output is shown here:

10 9 8 7 6 5 4 3 2 1 0
This is Count() in the Counter2 namespace.

As the output confirms, the CountDown class inside Counter is separate from the CountDown
class in the Counter2 namespace, and no name conflicts arise. Although this example is
quite simple, it is easy to see how putting classes into a namespace helps prevent name
conflicts between your code and code written by others.

using
If your program includes frequent references to the members of a namespace, having to
specify the namespace each time you need to refer to one quickly becomes tedious. The
using directive alleviates this problem. Throughout this book, you have been using it to bring
the C# System namespace into view, so you are already familiar with it. As you would
expect, using can also be employed to bring namespaces that you create into view.

There are two forms of the using directive. The first is shown here:

using name;

Here, name specifies the name of the namespace you want to access. This is the form
of using that you have already seen. All of the members defined within the specified
namespace are brought into view and can be used without qualification. A using directive
must be specified at the top of each file, prior to any other declarations, or at the start of a
namespace body.

The following program reworks the counter example to show how you can employ
using to bring a namespace that you create into view:

// Demonstrate the using directive.

using System;

442 P a r t I : T h e C # L a n g u a g e

// Bring Counter into view.
using Counter;

// Declare a namespace for counters.
namespace Counter {
 // A simple countdown counter.
 class CountDown {
 int val;

 public CountDown(int n) {
 val = n;
 }

 public void Reset(int n) {
 val = n;
 }

 public int Count() {
 if(val > 0) return val--;
 else return 0;
 }
 }
}

class NSDemo3 {
 static void Main() {
 // now, CountDown can be used directly.
 CountDown cd1 = new CountDown(10);
 int i;

 do {
 i = cd1.Count();
 Console.Write(i + " ");
 } while(i > 0);
 Console.WriteLine();

 CountDown cd2 = new CountDown(20);

 do {
 i = cd2.Count();
 Console.Write(i + " ");
 } while(i > 0);
 Console.WriteLine();

 cd2.Reset(4);
 do {
 i = cd2.Count();
 Console.Write(i + " ");
 } while(i > 0);
 Console.WriteLine();
 }
}

This version of the program contains two important changes. The first is this using
statement, near the top of the program:

PART I

C h a p t e r 1 6 : N a m e s p a c e s , t h e P r e p r o c e s s o r , a n d A s s e m b l i e s 443

PART I
PART I

using Counter;

This brings the Counter namespace into view. The second change is that it is no longer
necessary to qualify CountDown with Counter, as this statement in Main() shows:

CountDown cd1 = new CountDown(10);

Because Counter is now in view, CountDown can be used directly.
The program illustrates one other important point: Using one namespace does not

override another. When you bring a namespace into view, it simply lets you use its contents
without qualification. Thus, in the example, both System and Counter have been brought
into view.

A Second Form of using
The using directive has a second form that creates another name, called an alias, for a type
or a namespace. This form is shown here:

using alias = name;

Here, alias becomes another name for the type (such as a class type) or namespace specified
by name. Once the alias has been created, it can be used in place of the original name.

Here the example from the preceding section has been reworked so that an alias for
Counter.CountDown called MyCounter is created:

// Demonstrate a using alias.

using System;

// Create an alias for Counter.CountDown.
using MyCounter = Counter.CountDown;

// Declare a namespace for counters.
namespace Counter {
 // A simple countdown counter.
 class CountDown {
 int val;

 public CountDown(int n) {
 val = n;
 }

 public void Reset(int n) {
 val = n;
 }

 public int Count() {
 if(val > 0) return val--;
 else return 0;
 }
 }
}

class NSDemo4 {

444 P a r t I : T h e C # L a n g u a g e

 static void Main() {
 // Here, MyCounter is used as a name for Counter.CountDown.
 MyCounter cd1 = new MyCounter(10);
 int i;

 do {
 i = cd1.Count();
 Console.Write(i + " ");
 } while(i > 0);
 Console.WriteLine();

 MyCounter cd2 = new MyCounter(20);

 do {
 i = cd2.Count();
 Console.Write(i + " ");
 } while(i > 0);
 Console.WriteLine();

 cd2.Reset(4);
 do {
 i = cd2.Count();
 Console.Write(i + " ");
 } while(i > 0);
 Console.WriteLine();
 }
}

The MyCounter alias is created using this statement:

using MyCounter = Counter.CountDown;

Once MyCounter has been specified as another name for Counter.CountDown, it can be
used to declare objects without any further namespace qualification. For example, in the
program, this line

 MyCounter cd1 = new MyCounter(10);

creates a CountDown object.

Namespaces Are Additive
There can be more than one namespace declaration of the same name. This allows a
namespace to be split over several files or even separated within the same file. For example,
the following program defines two Counter namespaces. One contains the CountDown
class. The other contains the CountUp class. When compiled, the contents of both Counter
namespaces are added together.

// Namespaces are additive.

using System;

// Bring Counter into view.
using Counter;

PART I

C h a p t e r 1 6 : N a m e s p a c e s , t h e P r e p r o c e s s o r , a n d A s s e m b l i e s 445

PART I
PART I

// Here is one Counter namespace.
namespace Counter {
 // A simple countdown counter.
 class CountDown {
 int val;

 public CountDown(int n) {
 val = n;
 }

 public void Reset(int n) {
 val = n;
 }

 public int Count() {
 if(val > 0) return val--;
 else return 0;
 }
 }
}

// Here is another Counter namespace.
namespace Counter {
 // A simple count-up counter.
 class CountUp {
 int val;
 int target;

 public int Target {
 get{
 return target;
 }
 }

 public CountUp(int n) {
 target = n;
 val = 0;
 }

 public void Reset(int n) {
 target = n;
 val = 0;
 }

 public int Count() {
 if(val < target) return val++;
 else return target;
 }
 }
}

class NSDemo5 {
 static void Main() {
 CountDown cd = new CountDown(10);

446 P a r t I : T h e C # L a n g u a g e

 CountUp cu = new CountUp(8);
 int i;

 do {
 i = cd.Count();
 Console.Write(i + " ");
 } while(i > 0);
 Console.WriteLine();

 do {
 i = cu.Count();
 Console.Write(i + " ");
 } while(i < cu.Target);

 }
}

This program produces the following output:

10 9 8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8

Notice one other thing: The directive

using Counter;

brings into view the entire contents of the Counter namespace. Thus, both CountDown and
CountUp can be referred to directly, without namespace qualification. It doesn’t matter that
the Counter namespace was split into two parts.

Namespaces Can Be Nested
One namespace can be nested within another. Consider this program:

// Namespaces can be nested.

using System;

namespace NS1 {
 class ClassA {
 public ClassA() {
 Console.WriteLine("constructing ClassA");
 }
 }
 namespace NS2 { // a nested namespace
 class ClassB {
 public ClassB() {
 Console.WriteLine("constructing ClassB");
 }
 }
 }
}

class NestedNSDemo {
 static void Main() {

PART I

C h a p t e r 1 6 : N a m e s p a c e s , t h e P r e p r o c e s s o r , a n d A s s e m b l i e s 447

PART I
PART I

 NS1.ClassA a = new NS1.ClassA();

 // NS2.ClassB b = new NS2.ClassB(); // Error!!! NS2 is not in view

 NS1.NS2.ClassB b = new NS1.NS2.ClassB(); // this is right
 }
}

This program produces the following output:

constructing ClassA
constructing ClassB

In the program, the namespace NS2 is nested within NS1. Thus, to refer to ClassB, you
must qualify it with both the NS1 and NS2 namespaces. NS2, by itself, is insufficient. As
shown, the namespace names are separated by a period. Therefore, to refer to ClassB within
Main(), you must use NS1.NS2.ClassB.

Namespaces can be nested by more than two levels. When this is the case, a member in
a nested namespace must be qualified with all of the enclosing namespace names.

You can specify a nested namespace using a single namespace statement by separating
each namespace with a period. For example,

namespace OuterNS {
 namespace InnerNS {
 // ...
 }
}

can also be specified like this:

namespace OuterNS.InnerNS {
 // ...
}

The Global Namespace
If you don’t declare a namespace for your program, then the default global namespace is
used. This is why you have not needed to use namespace for the programs in the preceding
chapters. Although the global namespace is convenient for the short, sample programs
found in this book, most real-world code will be contained within a declared namespace.
The main reason for encapsulating your code within a declared namespace is that it
prevents name conflicts. Namespaces are another tool that you have to help you organize
programs and make them viable in today’s complex, networked environment.

Using the :: Namespace Alias Qualifier
Although namespaces help prevent name conflicts, they do not completely eliminate them.
One way that a conflict can still occur is when the same name is declared within two
different namespaces, and you then try to bring both namespaces into view. For example,
assume that two different namespaces contain a class called MyClass. If you attempt to bring
these two namespaces into view via using statements, MyClass in the first namespace will
conflict with MyClass in the second namespace, causing an ambiguity error. In this situation,
you can use the :: namespace alias qualifier to explicitly specify which namespace is intended.

448 P a r t I : T h e C # L a n g u a g e

The :: operator has this general form.

namespace-alias::identifi er

Here, namespace-alias is the name of a namespace alias and identifier is the name of a member
of that namespace.

To understand why the namespace alias qualifier is needed, consider the following
program. It creates two namespaces, Counter and AnotherCounter, and both declare a class
called CountDown. Furthermore, both namespaces are brought into view by using statements.
Finally, in Main(), an attempt is made to instantiate an object of type CountDown.

// Demonstrate why the :: qualifier is needed.
//
// This program will not compile.

using System;

// Use both the Counter and AnotherCounter namespace.
using Counter;
using AnotherCounter;

// Declare a namespace for counters.
namespace Counter {
 // A simple countdown counter.
 class CountDown {
 int val;

 public CountDown(int n) {
 val = n;
 }

 // ...
 }
}

// Declare another namespace for counters.
namespace AnotherCounter {
 // Declare another class called CountDown, which
 // is in the AnotherCounter namespace.
 class CountDown {
 int val;

 public CountDown(int n) {
 val = n;
 }

 // ...
 }
}

class WhyAliasQualifier {
 static void Main() {
 int i;

PART I

C h a p t e r 1 6 : N a m e s p a c e s , t h e P r e p r o c e s s o r , a n d A s s e m b l i e s 449

PART I
PART I

 // The following line is inherently ambiguous!
 // Does it refer to CountDown in Counter or
 // to CountDown in AnotherCounter?
 CountDown cd1 = new CountDown(10); // Error! ! !

 // ...
 }
}

If you try to compile this program, you will receive an error message stating that this
line in Main() is ambiguous:

CountDown cd1 = new CountDown(10); // Error! ! !

The trouble is that both namespaces, Counter and AnotherCounter, declare a class called
CountDown, and both namespaces have been brought into view. Thus, to which version of
CountDown does the preceding declaration refer? The :: qualifier was designed to handle
these types of problems.

To use the ::, you must first define an alias for the namespace you want to qualify. Then,
simply qualify the ambiguous element with the alias. For example, here is one way to fix the
preceding program:

// Demonstrate the :: qualifier.

using System;

using Counter;
using AnotherCounter;

// Give Counter an alias called Ctr.
using Ctr = Counter;

// Declare a namespace for counters.
namespace Counter {
 // A simple countdown counter.
 class CountDown {
 int val;

 public CountDown(int n) {
 val = n;
 }

 // ...
 }
}

// Another counter namespace.
namespace AnotherCounter {
 // Declare another class called CountDown, which
 // is in the AnotherCounter namespace.
 class CountDown {
 int val;

450 P a r t I : T h e C # L a n g u a g e

 public CountDown(int n) {
 val = n;
 }

 // ...
 }
}

class AliasQualifierDemo {
 static void Main() {

 // Here, the :: operator to resolve
 // tells the compiler to use the CountDown
 // that is in the Counter namespace.
 Ctr::CountDown cd1 = new Ctr::CountDown(10);

 // ...
 }
}

In this version, the alias Ctr is specified for Counter by the following line:

using Ctr = Counter;

Then, inside Main(), this alias is used to qualify CountDown, as shown here:

Ctr::CountDown cd1 = new Ctr::CountDown(10);

The use of the :: qualifier removes the ambiguity because it specifies that the CountDown in
Ctr (which stands for Counter) is desired, and the program now compiles.

You can use the :: qualifier to refer to the global namespace by using the predefined
identifier global. For example, in the following program, a class called CountDown is
declared in both the Counter namespace and in the global namespace. To access the
version of CountDown in the global namespace, the predefined alias global is used.

// Use the global alias.

using System;

// Give Counter an alias called Ctr.
using Ctr = Counter;

// Declare a namespace for counters.
namespace Counter {
 // A simple countdown counter.
 class CountDown {
 int val;

 public CountDown(int n) {
 val = n;
 }

 // ...
 }

PART I

C h a p t e r 1 6 : N a m e s p a c e s , t h e P r e p r o c e s s o r , a n d A s s e m b l i e s 451

PART I
PART I

}

// Declare another class called CountDown, which
// is in the global namespace.
class CountDown {
 int val;

 public CountDown(int n) {
 val = n;
 }

 // ...
}

class GlobalAliasQualifierDemo {
 static void Main() {

 // Here, the :: qualifier tells the compiler
 // to use the CountDown in the Counter namespace.
 Ctr::CountDown cd1 = new Ctr::CountDown(10);

 // Next, create CountDown object from global namespace.
 global::CountDown cd2 = new global::CountDown(10);

 // ...
 }
}

Notice how the global identifier is used to access the version of CountDown in the default
namespace:

global::CountDown cd2 = new global::CountDown(10);

This same general approach can be generalized to any situation in which you need to
specify the default namespace.

One final point: You can also use the namespace alias qualifier with extern aliases,
which are described in Chapter 20.

The Preprocessor
C# defines several preprocessor directives, which affect the way that your program’s source
file is interpreted by the compiler. These directives affect the text of the source file in which
they occur, prior to the translation of the program into object code. The term preprocessor
directive comes from the fact that these instructions were traditionally handled by a separate
compilation phase called the preprocessor. Today’s modern compiler technology no longer
requires a separate preprocessing stage to handle the directives, but the name has stuck.

C# defines the following preprocessor directives:

#define #elif #else #endif

#endregion #error #if #line

#pragma #region #undef #warning

452 P a r t I : T h e C # L a n g u a g e

All preprocessor directives begin with a # sign. In addition, each preprocessor directive
must be on its own line.

Given C#’s modern, object-oriented architecture, there is not as much need for the
preprocessor directives as there is in older languages. Nevertheless, they can be of value
from time to time, especially for conditional compilation. Each directive is examined in turn.

#define
The #define directive defines a character sequence called a symbol. The existence or
nonexistence of a symbol can be determined by #if or #elif and is used to control
compilation. Here is the general form for #define:

#defi ne symbol

Notice that there is no semicolon in this statement. There may be any number of spaces
between the #define and the symbol, but once the symbol begins, it is terminated only by
a newline. For example, to define the symbol EXPERIMENTAL, use this directive:

#define EXPERIMENTAL

NOTENOTE In C/C++ you can use #define to perform textual substitutions, such as defining a name for
a value, and to create function-like macros. C# does not support these uses of #define. In C#,
#define is used only to define a symbol.

#if and #endif
The #if and #endif directives enable conditional compilation of a sequence of code based
upon whether an expression involving one or more symbols evaluates to true. A symbol is
true if it has been defined. It is false otherwise. Thus, if a symbol has been defined by a
#define directive, it will evaluate as true.

The general form of #if is

#if symbol-expression
statement sequence

#endif

If the expression following #if is true, the code that is between it and #endif is compiled.
Otherwise, the intervening code is skipped. The #endif directive marks the end of an #if block.

A symbol expression can be as simple as just the name of a symbol. You can also use
these operators in a symbol expression: !, = =, !=, &&, and ||. Parentheses are also allowed.

Here’s an example:

// Demonstrate #if, #endif, and #define.

#define EXPERIMENTAL

using System;

class Test {
 static void Main() {

 #if EXPERIMENTAL
 Console.WriteLine("Compiled for experimental version.");

PART I

C h a p t e r 1 6 : N a m e s p a c e s , t h e P r e p r o c e s s o r , a n d A s s e m b l i e s 453

PART I
PART I

 #endif

 Console.WriteLine("This is in all versions.");
 }
}

This program displays the following:

Compiled for experimental version.
This is in all versions.

The program defines the symbol EXPERIMENTAL. Thus, when the #if is encountered,
the symbol expression evaluates to true, and the first WriteLine() statement is compiled.
If you remove the definition of EXPERIMENTAL and recompile the program, the first
WriteLine() statement will not be compiled, because the #if will evaluate to false. In all
cases, the second WriteLine() statement is compiled because it is not part of the #if block.

As explained, you can use a symbol expression in an #if. For example,

// Use a symbol expression.

#define EXPERIMENTAL
#define TRIAL

using System;

class Test {
 static void Main() {

 #if EXPERIMENTAL
 Console.WriteLine("Compiled for experimental version.");
 #endif

 #if EXPERIMENTAL && TRIAL
 Console.Error.WriteLine("Testing experimental trial version.");
 #endif

 Console.WriteLine("This is in all versions.");
 }
}

The output from this program is shown here:

Compiled for experimental version.
Testing experimental trial version.
This is in all versions.

In this example, two symbols are defined, EXPERIMENTAL and TRIAL. The second
WriteLine() statement is compiled only if both are defined.

You can use the ! to compile code when a symbol is not defined. For example,

#if !EXPERIMENTAL
 Console.WriteLine("Code is not experimental!");
#endif

The call to WriteLine() will be compiled only if EXPERIMENTAL has not been defined.

454 P a r t I : T h e C # L a n g u a g e

#else and #elif
The #else directive works much like the else that is part of the C# language: It establishes an
alternative if #if fails. The previous example can be expanded as shown here:

// Demonstrate #else.

#define EXPERIMENTAL

using System;

class Test {
 static void Main() {

 #if EXPERIMENTAL
 Console.WriteLine("Compiled for experimental version.");
 #else
 Console.WriteLine("Compiled for release.");
 #endif

 #if EXPERIMENTAL && TRIAL
 Console.Error.WriteLine("Testing experimental trial version.");
 #else
 Console.Error.WriteLine("Not experimental trial version.");
 #endif

 Console.WriteLine("This is in all versions.");
 }
}

The output is shown here:

Compiled for experimental version.
Not experimental trial version.
This is in all versions.

Since TRIAL is not defined, the #else portion of the second conditional code sequence is
used.

Notice that #else marks both the end of the #if block and the beginning of the #else
block. This is necessary because there can only be one #endif associated with any #if.
Furthermore, there can be only one #else associated with any #if.

The #elif directive means “else if” and establishes an if-else-if chain for multiple
compilation options. #elif is followed by a symbol expression. If the expression is true, that
block of code is compiled and no other #elif expressions are tested. Otherwise, the next
block in the series is checked. If no #elif succeeds, then if there is a #else, the code sequence
associated with the #else is compiled. Otherwise, no code in the entire #if is compiled.

The general form for #elif is

#if symbol-expression
 statement sequence
#elif symbol-expression
 statement sequence
#elif symbol-expression

PART I

C h a p t e r 1 6 : N a m e s p a c e s , t h e P r e p r o c e s s o r , a n d A s s e m b l i e s 455

PART I
PART I

 statement sequence
// . . .
#endif

Here’s an example:

// Demonstrate #elif.

#define RELEASE

using System;

class Test {
 static void Main() {

 #if EXPERIMENTAL
 Console.WriteLine("Compiled for experimental version.");
 #elif RELEASE
 Console.WriteLine("Compiled for release.");
 #else
 Console.WriteLine("Compiled for internal testing.");
 #endif

 #if TRIAL && !RELEASE
 Console.WriteLine("Trial version.");
 #endif

 Console.WriteLine("This is in all versions.");
 }
}

The output is shown here:

Compiled for release.
This is in all versions.

#undef
The #undef directive removes a previously defined symbol. That is, it “undefines” a
symbol. The general form for #undef is

#undef symbol

Here’s an example:

#define SMALL

#if SMALL
 // ...
#undef SMALL
// at this point SMALL is undefined.

After the #undef directive, SMALL is no longer defined.
#undef is used principally to allow symbols to be localized to only those sections of

code that need them.

456 P a r t I : T h e C # L a n g u a g e

#error
The #error directive forces the compiler to stop compilation. It is used for debugging. The
general form of the #error directive is

#error error-message

When the #error directive is encountered, the error message is displayed. For example,
when the compiler encounters this line:

#error This is a test error!

compilation stops and the error message “This is a test error!” is displayed.

#warning
The #warning directive is similar to #error, except that a warning rather than an error is
produced. Thus, compilation is not stopped. The general form of the #warning directive is

#warning warning-message

#line
The #line directive sets the line number and filename for the file that contains the #line
directive. The number and the name are used when errors or warnings are output during
compilation. The general form for #line is

#line number “fi lename”

where number is any positive integer, which becomes the new line number, and the optional
filename is any valid file identifier, which becomes the new filename. #line is primarily used
for debugging and special applications.

#line allows two options. The first is default, which returns the line numbering to its
original condition. It is used like this:

#line default

The second is hidden. When stepping through a program, the hidden option allows a
debugger to bypass lines between a

#line hidden

directive and the next #line directive that does not include the hidden option.

#region and #endregion
The #region and #endregion directives let you define a region that will be expanded or
collapsed when using outlining in the Visual Studio IDE. The general form is shown here:

#region text
 // code sequence
#endregion text

Here, text is an optional string.

PART I

C h a p t e r 1 6 : N a m e s p a c e s , t h e P r e p r o c e s s o r , a n d A s s e m b l i e s 457

PART I
PART I

#pragma
The #pragma directive gives instructions, such as specifying an option, to the compiler. It
has this general form:

#pragma option

Here, option is the instruction passed to the compiler.
In C# 3.0, there are two options supported by #pragma. The first is warning, which is

used to enable or disable specific compiler warnings. It has these two forms:

#pragma warning disable warnings

#pragma warning restore warnings

Here, warnings is a comma-separated list of warning numbers. To disable a warning, use the
disable option. To enable a warning, use the restore option.

For example, this #pragma statement disables warning 168, which indicates when a
variable is declared but not used:

#pragma warning disable 168

The second #pragma option is checksum. It is used to generate checksums for ASP.NET
projects. It has this general form.

#pragma checksum “fi lename” “{GUID}” “check-sum”

Here, filename is the name of the file, GUID is the globally unique identifier associated with
filename, and check-sum is a hexadecimal number that contains the checksum. This string
must contain an even number of digits.

Assemblies and the internal Access Modifier
An integral part of C# programming is the assembly. An assembly is a file (or files) that
contains all deployment and version information for a program. Assemblies are fundamental
to the .NET environment. They provide mechanisms that support safe component
interaction, interlanguage operability, and versioning. An assembly also defines a scope.

An assembly is composed of four sections. The first is the assembly manifest. The manifest
contains information about the assembly, itself. This data includes such things as the name of
the assembly, its version number, type mapping information, and cultural settings. The second
section is type metadata, which is information about the data types used by the program.
Among other benefits, type metadata aids in cross-language interoperability. The third part
of an assembly is the program code, which is stored in Microsoft Intermediate Language
(MSIL) format. The fourth constituent of an assembly is the resources used by the program.

Fortunately, when using C#, assemblies are produced automatically, with little or no
extra effort on your part. The reason for this is that the exe file created when you compile
a C# program is actually an assembly that contains your program’s executable code as
well as other types of information. Thus, when you compile a C# program, an assembly
is automatically produced.

There are many other features and topics that relate to assemblies, but a discussion of
these is outside the scope of this book. (Assemblies are an integral part of .NET development,

458 P a r t I : T h e C # L a n g u a g e

but are not technically a feature of the C# language.) However, there is one part of C# that
relates directly to the assembly: the internal access modifier, which is examined next.

The internal Access Modifier
In addition to the access modifiers public, private, and protected, which you have been
using throughout this book, C# also defines internal. The internal modifier declares that a
member is known throughout all files in an assembly, but unknown outside that assembly.
Thus, in simplified terms, a member marked as internal is known throughout a program,
but not elsewhere. The internal access modifier is particularly useful when creating
software components.

The internal modifier can be applied to classes and members of classes and to structures
and members of structures. The internal modifier can also be applied to interface and
enumeration declarations.

You can use protected in conjunction with internal to produce the protected internal
access modifier pair. The protected internal access level can be given only to class members.
A member declared with protected internal access is accessible within its own assembly or
to derived types.

Here is an example that uses internal:

// Use internal.

using System;

class InternalTest {
 internal int x;
}

class InternalDemo {
 static void Main() {
 InternalTest ob = new InternalTest();

 ob.x = 10; // can access -- in same file

 Console.WriteLine("Here is ob.x: " + ob.x);

 }
}

Inside InternalTest, the field x is declared internal. This means that it is accessible within
the program, as its use in InternalDemo shows, but unavailable outside the program.

17
Runtime Type ID, Reflection,

and Attributes

This chapter discusses three interrelated and powerful features: runtime type
identification, reflection, and attributes. Runtime type ID is the mechanism that lets
you identify a type during the execution of a program. Reflection is the feature that

enables you to obtain information about a type. Using this information, you can construct
and use objects at runtime. This feature is very powerful because it lets a program add
functionality dynamically, during execution. An attribute describes a characteristic of some
element of a C# program. For example, you can specify attributes for classes, methods, and
fields, among others. Attributes can be interrogated at runtime, and the attribute information
obtained. Attributes use both runtime type identification and reflection.

Runtime Type Identification
Runtime type identification (RTTI) allows the type of an object to be determined during
program execution. RTTI is useful for many reasons. For example, you can discover
precisely what type of object is being referred to by a base-class reference. Another use of
RTTI is to test in advance whether a cast will succeed, preventing an invalid cast exception.
Runtime type identification is also a key component of reflection.

C# includes three keywords that support runtime type identification: is, as, and typeof.
Each is examined in turn.

Testing a Type with is
You can determine if an object is of a certain type by using the is operator. Its general form
is shown here:

expr is type

Here, expr is an expression that describes an object whose type is being tested against type. If
the type of expr is the same as, or compatible with, type, then the outcome of this operation
is true. Otherwise, it is false. Thus, if the outcome is true, expr is some form of type. As it
applies to is, one type is compatible with another if both are the same type, or if a reference,
boxing, or unboxing conversion exists.

459

CHAPTER

460 P a r t I : T h e C # L a n g u a g e

Here is an example that uses is:

// Demonstrate is.

using System;

class A {}
class B : A {}

class UseIs {
 static void Main() {
 A a = new A();
 B b = new B();

 if(a is A) Console.WriteLine("a is an A");
 if(b is A)
 Console.WriteLine("b is an A because it is derived from A");
 if(a is B)
 Console.WriteLine("This won’t display -- a not derived from B");

 if(b is B) Console.WriteLine("B is a B");
 if(a is object) Console.WriteLine("a is an object");
 }
}

The output is shown here:

a is an A
b is an A because it is derived from A
B is a B
a is an object

Most of the is expressions are self-explanatory, but two may need a little discussion.
First, notice this statement:

if(b is A)
 Console.WriteLine("b is an A because it is derived from A");

The if succeeds because b is an object of type B, which is derived from type A. Thus, b is an
A. However, the reverse is not true. When this line is executed,

if(a is B)
 Console.WriteLine("This won’t display -- a not derived from B");

the if does not succeed, because a is of type A, which is not derived from B. Thus, a is not B.

Using as
Sometimes you will want to try a conversion at runtime, but not throw an exception if the
conversion fails (which is the case when a cast is used). To do this, use the as operator,
which has this general form:

expr as type

PART I

C h a p t e r 1 7 : R u n t i m e T y p e I D , R e f l e c t i o n , a n d A t t r i b u t e s 461

PART I
PART I

Here, expr is the expression being converted to type. If the conversion succeeds, then a
reference to type is returned. Otherwise, a null reference is returned. The as operator can be
used to perform only reference, boxing, unboxing, or identity conversions.

The as operator offers a streamlined alternative to is in some cases. For example,
consider the following program that uses is to prevent an invalid cast from occurring:

// Use is to avoid an invalid cast.

using System;

class A {}
class B : A {}

class CheckCast {
 static void Main() {
 A a = new A();
 B b = new B();

 // Check to see if a can be cast to B.
 if(a is B) // if so, do the cast
 b = (B) a;
 else // if not, skip the cast
 b = null;

 if(b==null)
 Console.WriteLine("The cast in b = (B) a is NOT allowed.");
 else
 Console.WriteLine("The cast in b = (B) a is allowed");
 }
}

This program displays the following output:

The cast in b = (B) a is NOT allowed.

As the output shows, since a is not a B, the cast of a to B is invalid and is prevented by the if
statement. However, this approach requires two steps. First, the validity of the cast must be
confirmed. Second, the cast must be made. These two steps can be combined into one through
the use of as, as the following program shows:

// Demonstrate as.

using System;

class A {}
class B : A {}

class CheckCast {
 static void Main() {
 A a = new A();
 B b = new B();

 b = a as B; // cast, if possible

462 P a r t I : T h e C # L a n g u a g e

 if(b==null)
 Console.WriteLine("The cast in b = (B) a is NOT allowed.");
 else
 Console.WriteLine("The cast in b = (B) a is allowed");
 }
}

Here is the output, which is the same as before:

The cast in b = (B) a is NOT allowed.

In this version, the as statement checks the validity of the cast and then, if valid, performs
the cast, all in one statement.

Using typeof
Although useful in their own ways, the as and is operators simply test the compatibility of
two types. Often, you will need to obtain information about a type. To do this, C# supplies
the typeof operator. It retrieves a System.Type object for a given type. Using this object, you
can determine the type’s characteristics.

The typeof operator has this general form:

typeof(type)

Here, type is the type being obtained. The Type object returned encapsulates the information
associated with type.

Once you have obtained a Type object for a given type, you can obtain information about
it through the use of various properties, fields, and methods defined by Type. Type is a large
class with many members, and a discussion is deferred until the next section, where reflection
is examined. However, to briefly demonstrate Type, the following program uses three of
its properties: FullName, IsClass, and IsAbstract. To obtain the full name of the type, use
FullName. IsClass returns true if the type is a class. IsAbstract returns true if a class is abstract.

// Demonstrate typeof.

using System;
using System.IO;

class UseTypeof {
 static void Main() {
 Type t = typeof(StreamReader);

 Console.WriteLine(t.FullName);

 if(t.IsClass) Console.WriteLine("Is a class.");
 if(t.IsAbstract) Console.WriteLine("Is abstract.");
 else Console.WriteLine("Is concrete.");
 }
}

This program outputs the following:

System.IO.StreamReader
Is a class.
Is concrete.

PART I

C h a p t e r 1 7 : R u n t i m e T y p e I D , R e f l e c t i o n , a n d A t t r i b u t e s 463

PART I
PART I

This program obtains a Type object that describes StreamReader. It then displays the full
name, and determines if it is a class and whether it is abstract.

Reflection
Reflection is the feature that enables you to obtain information about a type. The term
reflection comes from the way the process works: A Type object mirrors the underlying type
that it represents. To obtain information, you ask the Type object questions, and it returns
(reflects) the information associated with the type back to you. Reflection is a powerful
mechanism because it allows you to learn and use the capabilities of types that are known
only at runtime.

Many of the classes that support reflection are part of the .NET Reflection API, which
is in the System.Reflection namespace. Thus, you will normally include the following in
programs that use reflection:

using System.Reflection;

The Reflection Core: System.Type
System.Type is at the core of the reflection subsystem because it encapsulates a type. It
contains many properties and methods that you will use to obtain information about a type
at runtime. Type is derived from an abstract class called System.Reflection.MemberInfo.

MemberInfo defines the following read-only properties:

Property Description

Type DeclaringType Obtains the type of the class or interface in which the
member is declared.

MemberTypes MemberType Obtains the kind of the member. This value indicates if the
member is a field, method, property, event, or constructor.

int MetadataToken Obtains a value associated with a specific metadata.

Module Module Obtains a Module object that represents the module (an
executable file) in which the reflected type resides.

string Name The name of the type.

Type ReflectedType The type of the object being reflected.

Notice that the return type of MemberType is MemberTypes. MemberTypes is an
enumeration that defines values that indicate the various member types. Among others,
these include

MemberTypes.Constructor
MemberTypes.Method
MemberTypes.Field
MemberTypes.Event
MemberTypes.Property

Thus, the type of a member can be determined by checking MemberType. For example, if
MemberType equals MemberTypes.Method, then that member is a method.

464 P a r t I : T h e C # L a n g u a g e

MemberInfo includes two abstract methods: GetCustomAttributes() and IsDefined().
These both relate to attributes. The first obtains a list of the custom attributes associated with
the invoking object. The second determines if an attribute is defined for the invoking object.
(Attributes are described later in this chapter.)

To the methods and properties defined by MemberInfo, Type adds a great many of its
own. For example, here are several commonly used methods defined by Type:

Method Purpose

ConstructorInfo[] GetConstructors() Obtains a list of the constructors for the specified type.

EventInfo[] GetEvents() Obtains a list of events for the specified type.

FieldInfo[] GetFields() Obtains a list of the fields for the specified type.

Type[] GetGenericArguments() Obtains a list of the type arguments bound to
a closed constructed generic type or the type
parameters if the specified type is a generic type
definition. For an open constructed type, the list may
contain both type arguments and type parameters.
(See Chapter 18 for a discussion of generics.)

MemberInfo[] GetMembers() Obtains a list of the members for the specified type.

MethodInfo[] GetMethods() Obtains a list of methods for the specified type.

PropertyInfo[] GetProperties() Obtains a list of properties for the specified type.

Here are several commonly used, read-only properties defined by Type:

Property Purpose

Assembly Assembly Obtains the assembly for the specified type.

TypeAttributes Attributes Obtains the attributes for the specified type.

Type BaseType Obtains the immediate base type for the specified
type.

string FullName Obtains the complete name of the specified type.

bool IsAbstract Is true if the specified type is abstract.

bool isArray Is true if the specified type is an array.

bool IsClass Is true if the specified type is a class.

bool IsEnum Is true if the specified type is an enumeration.

bool IsGenericParameter Is true if the specified type is a generic type
parameter. (See Chapter 18 for a discussion of
generics.)

bool IsGenericType Is true if the specified type is a generic type. (See
Chapter 18 for a discussion of generics.)

string Namespace Obtains the namespace of the specified type.

PART I

C h a p t e r 1 7 : R u n t i m e T y p e I D , R e f l e c t i o n , a n d A t t r i b u t e s 465

PART I
PART I

Using Reflection
Using Type’s methods and properties, it is possible to obtain detailed information about a
type at runtime. This is an extremely powerful feature, because once you have obtained
information about a type, you can invoke its constructors, call its methods, and use its
properties. Thus, reflection enables you to use code that was not available at compile time.

The Reflection API is quite large, and it is not possible to cover the entire topic here.
(Complete coverage of reflection could easily fill an entire book!) However, because the
Reflection API is logically designed, once you understand how to use a part of it, the rest
just falls into place. With this thought in mind, the following sections demonstrate four key
reflection techniques: obtaining information about methods, invoking methods, constructing
objects, and loading types from assemblies.

Obtaining Information About Methods
Once you have a Type object, you can obtain a list of methods supported by the type by
using GetMethods(). One form is shown here:

MethodInfo[] GetMethods()

It returns an array of MethodInfo objects that describe the methods supported by the
invoking type. MethodInfo is in the System.Reflection namespace.

MethodInfo is derived from the abstract class MethodBase, which inherits MemberInfo.
Thus, the properties and methods defined by all three of these classes are available for your
use. For example, to obtain the name of a method, use the Name property. Two members that
are of particular interest at this time are ReturnType and GetParameters().

The return type of a method is found in the read-only ReturnType property, which is an
object of Type.

The method GetParameters() returns a list of the parameters associated with a method.
It has this general form:

ParameterInfo[] GetParameters();

The parameter information is held in a ParameterInfo object. ParameterInfo defines a large
number of properties and methods that describe the parameter. Two properties that are of
particular value are Name, which is a string that contains the name of the parameter, and
ParameterType, which describes the parameter’s type. The parameter’s type is encapsulated
within a Type object.

Here is a program that uses reflection to obtain the methods supported by a class called
MyClass. For each method, it displays the return type and name of the method, and the
name and type of any parameters that each method may have.

// Analyze methods using reflection.

using System;
using System.Reflection;

class MyClass {
 int x;
 int y;

466 P a r t I : T h e C # L a n g u a g e

 public MyClass(int i, int j) {
 x = i;
 y = j;
 }

 public int Sum() {
 return x+y;
 }

 public bool IsBetween(int i) {
 if(x < i && i < y) return true;
 else return false;
 }

 public void Set(int a, int b) {
 x = a;
 y = b;
 }

 public void Set(double a, double b) {
 x = (int) a;
 y = (int) b;
 }

 public void Show() {
 Console.WriteLine(" x: {0}, y: {1}", x, y);
 }
}

class ReflectDemo {
 static void Main() {
 Type t = typeof(MyClass); // get a Type object representing MyClass

 Console.WriteLine("Analyzing methods in " + t.Name);
 Console.WriteLine();

 Console.WriteLine("Methods supported: ");

 MethodInfo[] mi = t.GetMethods();

 // Display methods supported by MyClass.
 foreach(MethodInfo m in mi) {
 // Display return type and name.
 Console.Write(" " + m.ReturnType.Name +
 " " + m.Name + "(");

 // Display parameters.
 ParameterInfo[] pi = m.GetParameters();

 for(int i=0; i < pi.Length; i++) {
 Console.Write(pi[i].ParameterType.Name +
 " " + pi[i].Name);
 if(i+1 < pi.Length) Console.Write(", ");
 }

PART I

C h a p t e r 1 7 : R u n t i m e T y p e I D , R e f l e c t i o n , a n d A t t r i b u t e s 467

PART I
PART I

 Console.WriteLine(")");

 Console.WriteLine();
 }
 }
}

The output is shown here:

Analyzing methods in MyClass

Methods supported:
 Int32 Sum()

 Boolean IsBetween(Int32 i)

 Void Set(Int32 a, Int32 b)

 Void Set(Double a, Double b)

 Void Show()

 Type GetType()

 String ToString()

 Boolean Equals(Object obj)

 Int32 GetHashCode()

Notice that in addition to the methods defined by MyClass, the methods defined by object
are also displayed. This is because all types in C# inherit object. Also notice that the .NET
structure names are used for the type names. Observe that Set() is displayed twice. This
is because Set() is overloaded. One version takes int arguments. The other takes double
arguments.

Let’s look at this program closely. First, notice that MyClass defines a public constructor
and a number of public methods, including the overloaded Set() method.

Inside Main(), a Type object representing MyClass is obtained using this line of code:

Type t = typeof(MyClass); // get a Type object representing MyClass

Recall that typeof returns a Type object that represents the specified type, which in this case
is MyClass.

Using t and the Reflection API, the program then displays information about the methods
supported by MyClass. First, a list of the methods is obtained by the following statement:

MethodInfo[] mi = t.GetMethods();

Next, a foreach loop is established that cycles through mi. With each pass, the return
type, name, and parameters for each method are displayed by the following code:

// Display return type and name.
Console.Write(" " + m.ReturnType.Name +
 " " + m.Name + "(");

468 P a r t I : T h e C # L a n g u a g e

// Display parameters.
ParameterInfo[] pi = m.GetParameters();

for(int i=0; i < pi.Length; i++) {
 Console.Write(pi[i].ParameterType.Name +
 " " + pi[i].Name);
 if(i+1 < pi.Length) Console.Write(", ");
}

In this sequence, the parameters associated with each method are obtained by calling
GetParameters() and stored in the pi array. Then a for loop cycles through the pi array,
displaying the type and name of each parameter. The key point is that this information
is obtained dynamically at runtime without relying on prior knowledge of MyClass.

A Second Form of GetMethods()
A second form of GetMethods() lets you specify various flags that filter the methods that
are retrieved. It has this general form:

MethodInfo[] GetMethods(BindingFlags fl ags)

This version obtains only those methods that match the criteria you specify. BindingFlags is
an enumeration. Here are several commonly used values:

Value Meaning

DeclaredOnly Retrieves only those methods defined by the specified class. Inherited
methods are not included.

Instance Retrieves instance methods.

NonPublic Retrieves nonpublic methods.

Public Retrieves public methods.

Static Retrieves static methods.

You can OR together two or more flags. In fact, minimally you must include either Instance
or Static with Public or NonPublic. Failure to do so will result in no methods being retrieved.

One of the main uses of the BindingFlags form of GetMethods() is to enable you to
obtain a list of the methods defined by a class without also retrieving the inherited methods.
This is especially useful for preventing the methods defined by object from being obtained.
For example, try substituting this call to GetMethods() into the preceding program:

// Now, only methods declared by MyClass are obtained.
MethodInfo[] mi = t.GetMethods(BindingFlags.DeclaredOnly |
 BindingFlags.Instance |
 BindingFlags.Public) ;

After making this change, the program produces the following output:

Analyzing methods in MyClass

Methods supported:
 Int32 Sum()

PART I

C h a p t e r 1 7 : R u n t i m e T y p e I D , R e f l e c t i o n , a n d A t t r i b u t e s 469

PART I
PART I

 Boolean IsBetween(Int32 i)

 Void Set(Int32 a, Int32 b)

 Void Set(Double a, Double b)

 Void Show()

As you can see, only those methods explicitly defined by MyClass are displayed.

Calling Methods Using Reflection
Once you know what methods a type supports, you can call one or more of them. To do
this, you will use the Invoke() method that is contained in MethodInfo. One of its forms
is shown here:

object Invoke(object ob, object[] args)

Here, ob is a reference to the object on which the method is invoked. For static methods, pass
null to ob. Any arguments that need to be passed to the method are specified in the array
args. If no arguments are needed, args must be null. Also, args must contain exactly the same
number of elements as there are arguments. Therefore, if two arguments are needed, then
args must be two elements long. It can’t, for example, be three or four elements long. The
value returned by the invoked method is returned by Invoke().

To call a method, simply call Invoke() on an instance of MethodInfo that was obtained
by calling GetMethods(). The following program demonstrates the procedure:

// Invoke methods using reflection.

using System;
using System.Reflection;

class MyClass {
 int x;
 int y;

 public MyClass(int i, int j) {
 x = i;
 y = j;
 }

 public int Sum() {
 return x+y;
 }

 public bool IsBetween(int i) {
 if((x < i) && (i < y)) return true;
 else return false;
 }

 public void Set(int a, int b) {
 Console.Write("Inside Set(int, int). ");
 x = a;

470 P a r t I : T h e C # L a n g u a g e

 y = b;
 Show();
 }

 // Overload set.
 public void Set(double a, double b) {
 Console.Write("Inside Set(double, double). ");
 x = (int) a;
 y = (int) b;
 Show();
 }

 public void Show() {
 Console.WriteLine("Values are x: {0}, y: {1}", x, y);
 }
}

class InvokeMethDemo {
 static void Main() {
 Type t = typeof(MyClass);
 MyClass reflectOb = new MyClass(10, 20);
 int val;

 Console.WriteLine("Invoking methods in " + t.Name);
 Console.WriteLine();
 MethodInfo[] mi = t.GetMethods();

 // Invoke each method.
 foreach(MethodInfo m in mi) {
 // Get the parameters.
 ParameterInfo[] pi = m.GetParameters();

 if(m.Name.CompareTo("Set")==0 &&
 pi[0].ParameterType == typeof(int)) {
 object[] args = new object[2];
 args[0] = 9;
 args[1] = 18;
 m.Invoke(reflectOb, args);
 }
 else if(m.Name.CompareTo("Set")==0 &&
 pi[0].ParameterType == typeof(double)) {
 object[] args = new object[2];
 args[0] = 1.12;
 args[1] = 23.4;
 m.Invoke(reflectOb, args);
 }
 else if(m.Name.CompareTo("Sum")==0) {
 val = (int) m.Invoke(reflectOb, null);
 Console.WriteLine("sum is " + val);
 }
 else if(m.Name.CompareTo("IsBetween")==0) {
 object[] args = new object[1];
 args[0] = 14;
 if((bool) m.Invoke(reflectOb, args))

PART I

C h a p t e r 1 7 : R u n t i m e T y p e I D , R e f l e c t i o n , a n d A t t r i b u t e s 471

PART I
PART I

 Console.WriteLine("14 is between x and y");
 }
 else if(m.Name.CompareTo("Show")==0) {
 m.Invoke(reflectOb, null);
 }
 }
 }
}

The output is shown here:

Invoking methods in MyClass

sum is 30
14 is between x and y
Inside Set(int, int). Values are x: 9, y: 18
Inside Set(double, double). Values are x: 1, y: 23
Values are x: 1, y: 23

Look closely at how the methods are invoked. First, a list of methods is obtained. Then,
inside the foreach loop, parameter information is retrieved. Next, using a series of if/else
statements, each method is executed with the proper type and number of arguments. Pay
special attention to the way that the overloaded Set() method is executed by the following
code:

if(m.Name.CompareTo("Set")==0 &&
 pi[0].ParameterType == typeof(int)) {
 object[] args = new object[2];
 args[0] = 9;
 args[1] = 18;
 m.Invoke(reflectOb, args);
}
else if(m.Name.CompareTo("Set")==0 &&
 pi[0].ParameterType == typeof(double)) {
 object[] args = new object[2];
 args[0] = 1.12;
 args[1] = 23.4;
 m.Invoke(reflectOb, args);
}

If the name of the method is Set, then the type of the first parameter is tested to determine
which version of the method was found. If it was Set(int, int), then int arguments are
loaded into args. Otherwise, double arguments are used.

Obtaining a Type’s Constructors
In the previous example, there is no advantage to using reflection to invoke methods on
MyClass since an object of type MyClass was explicitly created. It would be easier to just
call its methods normally. However, the power of reflection starts to become apparent when
an object is created dynamically at runtime. To do this, you will need to first obtain a list
of the constructors. Then, you will create an instance of the type by invoking one of the
constructors. This mechanism allows you to instantiate any type of object at runtime
without naming it in a declaration statement.

472 P a r t I : T h e C # L a n g u a g e

To obtain the constructors for a type, call GetConstructors() on a Type object. One
commonly used form is shown here:

ConstructorInfo[] GetConstructors()

It returns an array of ConstructorInfo objects that describe the constructors.
ConstructorInfo is derived from the abstract class MethodBase, which inherits

MemberInfo. It also defines several members of its own. The one we are interested in is
GetParameters(), which returns a list of the parameters associated with a constructor. It
works just like GetParameters() defined by MethodInfo, described earlier.

Once an appropriate constructor has been found, an object is created by calling the
Invoke() method defined by ConstructorInfo. One form is shown here:

object Invoke(object[] args)

Any arguments that need to be passed to the method are specified in the array args. If no
arguments are needed, pass null to args. In all cases, args must contain exactly the same
number of elements as there are arguments and the types of arguments must be compatible
with the types of the parameters. Invoke() returns a reference to the object that was
constructed.

The following program uses reflection to create an instance of MyClass:

// Create an object using reflection.

using System;
using System.Reflection;

class MyClass {
 int x;
 int y;

 public MyClass(int i) {
 Console.WriteLine("Constructing MyClass(int, int). ");
 x = y = i;
 }

 public MyClass(int i, int j) {
 Console.WriteLine("Constructing MyClass(int, int). ");
 x = i;
 y = j;
 Show();
 }

 public int Sum() {
 return x+y;
 }

 public bool IsBetween(int i) {
 if((x < i) && (i < y)) return true;
 else return false;
 }

 public void Set(int a, int b) {
 Console.Write("Inside Set(int, int). ");

PART I

C h a p t e r 1 7 : R u n t i m e T y p e I D , R e f l e c t i o n , a n d A t t r i b u t e s 473

PART I
PART I

 x = a;
 y = b;
 Show();
 }

 // Overload Set.
 public void Set(double a, double b) {
 Console.Write("Inside Set(double, double). ");
 x = (int) a;
 y = (int) b;
 Show();
 }

 public void Show() {
 Console.WriteLine("Values are x: {0}, y: {1}", x, y);
 }

}

class InvokeConsDemo {
 static void Main() {
 Type t = typeof(MyClass);
 int val;

 // Get constructor info.
 ConstructorInfo[] ci = t.GetConstructors();

 Console.WriteLine("Available constructors: ");
 foreach(ConstructorInfo c in ci) {
 // Display return type and name.
 Console.Write(" " + t.Name + "(");

 // Display parameters.
 ParameterInfo[] pi = c.GetParameters();

 for(int i=0; i < pi.Length; i++) {
 Console.Write(pi[i].ParameterType.Name +
 " " + pi[i].Name);
 if(i+1 < pi.Length) Console.Write(", ");
 }

 Console.WriteLine(")");
 }
 Console.WriteLine();

 // Find matching constructor.
 int x;

 for(x=0; x < ci.Length; x++) {
 ParameterInfo[] pi = ci[x].GetParameters();
 if(pi.Length == 2) break;
 }

 if(x == ci.Length) {

474 P a r t I : T h e C # L a n g u a g e

 Console.WriteLine("No matching constructor found.");
 return;
 }
 else
 Console.WriteLine("Two-parameter constructor found.\n");

 // Construct the object.
 object[] consargs = new object[2];
 consargs[0] = 10;
 consargs[1] = 20;
 object reflectOb = ci[x].Invoke(consargs);

 Console.WriteLine("\nInvoking methods on reflectOb.");
 Console.WriteLine();
 MethodInfo[] mi = t.GetMethods();

 // Invoke each method.
 foreach(MethodInfo m in mi) {
 // Get the parameters.
 ParameterInfo[] pi = m.GetParameters();

 if(m.Name.CompareTo("Set")==0 &&
 pi[0].ParameterType == typeof(int)) {
 // This is Set(int, int).
 object[] args = new object[2];
 args[0] = 9;
 args[1] = 18;
 m.Invoke(reflectOb, args);
 }
 else if(m.Name.CompareTo("Set")==0 &&
 pi[0].ParameterType == typeof(double)) {
 // This is Set(double, double).
 object[] args = new object[2];
 args[0] = 1.12;
 args[1] = 23.4;
 m.Invoke(reflectOb, args);
 }
 else if(m.Name.CompareTo("Sum")==0) {
 val = (int) m.Invoke(reflectOb, null);
 Console.WriteLine("sum is " + val);
 }
 else if(m.Name.CompareTo("IsBetween")==0) {
 object[] args = new object[1];
 args[0] = 14;
 if((bool) m.Invoke(reflectOb, args))
 Console.WriteLine("14 is between x and y");
 }
 else if(m.Name.CompareTo("Show")==0) {
 m.Invoke(reflectOb, null);
 }
 }
 }
}

PART I

C h a p t e r 1 7 : R u n t i m e T y p e I D , R e f l e c t i o n , a n d A t t r i b u t e s 475

PART I
PART I

The output is shown here:

Available constructors:
 MyClass(Int32 i)
 MyClass(Int32 i, Int32 j)

Two-parameter constructor found.

Constructing MyClass(int, int).
Values are x: 10, y: 20

Invoking methods on reflectOb.

sum is 30
14 is between x and y
Inside Set(int, int). Values are x: 9, y: 18
Inside Set(double, double). Values are x: 1, y: 23
Values are x: 1, y: 23

Let’s look at how reflection is used to construct a MyClass object. First, a list of the
public constructors is obtained using the following statement:

ConstructorInfo[] ci = t.GetConstructors();

Next, for the sake of illustration, the constructors are displayed. Then the list is searched
for a constructor that takes two arguments, using this code:

for(x=0; x < ci.Length; x++) {
 ParameterInfo[] pi = ci[x].GetParameters();
 if(pi.Length == 2) break;
}

If the constructor is found (as it will be in this case), an object is instantiated by the
following sequence:

// Construct the object.
object[] consargs = new object[2];
consargs[0] = 10;
consargs[1] = 20;
object reflectOb = ci[x].Invoke(consargs);

After the call to Invoke(), reflectOb will refer to an object of type MyClass. The program
then executes methods on that instance.

One important point needs to be made. In this example, for the sake of simplicity, it
was assumed that the only two-argument constructor was one that took two int arguments.
Obviously, in real-world code this would need to be verified by checking the parameter
type of each argument.

Obtaining Types from Assemblies
In the preceding example, everything about MyClass has been discovered using reflection
except for one item: the type MyClass, itself. That is, although the preceding examples
dynamically determined information about MyClass, they still relied upon the fact that the

476 P a r t I : T h e C # L a n g u a g e

type name MyClass was known in advance and used in a typeof statement to obtain a Type
object upon which all of the reflection methods either directly or indirectly operated.
Although this might be useful in a number of circumstances, the full power of reflection
is found when the types available to a program are determined dynamically by analyzing
the contents of other assemblies.

As you know from Chapter 16, an assembly carries with it type information about the
classes, structures, and so on, that it contains. The Reflection API allows you to load an
assembly, discover information about it, and create instances of any of its publicly available
types. Using this mechanism, a program can search its environment, utilizing functionality
that might be available without having to explicitly define that functionality at compile
time. This is an extremely potent, and exciting, concept. For example, you can imagine a
program that acts as a “type browser,” displaying the types available on a system. Another
application could be a design tool that lets you visually “wire together” a program that is
composed of the various types supported by the system. Since all information about a type
is discoverable, there is no inherent limitation to the ways reflection can be applied.

To obtain information about an assembly, you will first create an Assembly object. The
Assembly class does not define a public constructor. Instead, an Assembly object is obtained
by calling one of its methods. The one we will use is LoadFrom(), which loads an assembly
given its filename. The form we will use is shown here:

static Assembly LoadFrom(string fi lename)

Here, filename specifies the filename of the assembly.
Once you have obtained an Assembly object, you can discover the types that it defines

by calling GetTypes() on it. Here is its general form:

Type[] GetTypes()

It returns an array of the types contained in the assembly.
To demonstrate the discovery of types in an assembly, you will need two files. The first

will contain a set of classes that will be discovered by the second. To begin, create a file
called MyClasses.cs that contains the following:

// A file that contains three classes. Call this file MyClasses.cs.

using System;

class MyClass {
 int x;
 int y;

 public MyClass(int i) {
 Console.WriteLine("Constructing MyClass(int). ");
 x = y = i;
 Show();
 }

 public MyClass(int i, int j) {
 Console.WriteLine("Constructing MyClass(int, int). ");
 x = i;
 y = j;

PART I

C h a p t e r 1 7 : R u n t i m e T y p e I D , R e f l e c t i o n , a n d A t t r i b u t e s 477

PART I
PART I

 Show();
 }

 public int Sum() {
 return x+y;
 }

 public bool IsBetween(int i) {
 if((x < i) && (i < y)) return true;
 else return false;
 }

 public void Set(int a, int b) {
 Console.Write("Inside Set(int, int). ");
 x = a;
 y = b;
 Show();
 }

 // Overload Set.
 public void Set(double a, double b) {
 Console.Write("Inside Set(double, double). ");
 x = (int) a;
 y = (int) b;
 Show();
 }

 public void Show() {
 Console.WriteLine("Values are x: {0}, y: {1}", x, y);
 }
}

class AnotherClass {
 string msg;

 public AnotherClass(string str) {
 msg = str;
 }

 public void Show() {
 Console.WriteLine(msg);
 }
}

class Demo {
 static void Main() {
 Console.WriteLine("This is a placeholder.");
 }
}

This file contains MyClass, which we have been using in the previous examples. It also
adds a second class called AnotherClass and a third class called Demo. Thus, the assembly

478 P a r t I : T h e C # L a n g u a g e

produced by this program will contain three classes. Next, compile this file so the file
MyClasses.exe is produced. This is the assembly that will be interrogated.

The program that will discover information about MyClasses.exe is shown here. Enter
it at this time.

/* Locate an assembly, determine types, and create
 an object using reflection. */

using System;
using System.Reflection;

class ReflectAssemblyDemo {
 static void Main() {
 int val;

 // Load the MyClasses.exe assembly.
 Assembly asm = Assembly.LoadFrom("MyClasses.exe");

 // Discover what types MyClasses.exe contains.
 Type[] alltypes = asm.GetTypes();
 foreach(Type temp in alltypes)
 Console.WriteLine("Found: " + temp.Name);

 Console.WriteLine();

 // Use the first type, which is MyClass in this case.
 Type t = alltypes[0]; // use first class found
 Console.WriteLine("Using: " + t.Name);

 // Obtain constructor info.
 ConstructorInfo[] ci = t.GetConstructors();

 Console.WriteLine("Available constructors: ");
 foreach(ConstructorInfo c in ci) {
 // Display return type and name.
 Console.Write(" " + t.Name + "(");

 // Display parameters.
 ParameterInfo[] pi = c.GetParameters();

 for(int i=0; i < pi.Length; i++) {
 Console.Write(pi[i].ParameterType.Name +
 " " + pi[i].Name);
 if(i+1 < pi.Length) Console.Write(", ");
 }

 Console.WriteLine(")");
 }
 Console.WriteLine();

 // Find matching constructor.
 int x;

 for(x=0; x < ci.Length; x++) {

PART I

C h a p t e r 1 7 : R u n t i m e T y p e I D , R e f l e c t i o n , a n d A t t r i b u t e s 479

PART I
PART I

 ParameterInfo[] pi = ci[x].GetParameters();
 if(pi.Length == 2) break;
 }

 if(x == ci.Length) {
 Console.WriteLine("No matching constructor found.");
 return;
 }
 else
 Console.WriteLine("Two-parameter constructor found.\n");

 // Construct the object.
 object[] consargs = new object[2];
 consargs[0] = 10;
 consargs[1] = 20;
 object reflectOb = ci[x].Invoke(consargs);

 Console.WriteLine("\nInvoking methods on reflectOb.");
 Console.WriteLine();
 MethodInfo[] mi = t.GetMethods();

 // Invoke each method.
 foreach(MethodInfo m in mi) {
 // Get the parameters.
 ParameterInfo[] pi = m.GetParameters();

 if(m.Name.CompareTo("Set")==0 &&
 pi[0].ParameterType == typeof(int)) {
 // This is Set(int, int).
 object[] args = new object[2];
 args[0] = 9;
 args[1] = 18;
 m.Invoke(reflectOb, args);
 }
 else if(m.Name.CompareTo("Set")==0 &&
 pi[0].ParameterType == typeof(double)) {
 // This is Set(double, double).
 object[] args = new object[2];
 args[0] = 1.12;
 args[1] = 23.4;
 m.Invoke(reflectOb, args);
 }
 else if(m.Name.CompareTo("Sum")==0) {
 val = (int) m.Invoke(reflectOb, null);
 Console.WriteLine("sum is " + val);
 }
 else if(m.Name.CompareTo("IsBetween")==0) {
 object[] args = new object[1];
 args[0] = 14;
 if((bool) m.Invoke(reflectOb, args))
 Console.WriteLine("14 is between x and y");
 }
 else if(m.Name.CompareTo("Show")==0) {
 m.Invoke(reflectOb, null);

480 P a r t I : T h e C # L a n g u a g e

 }
 }

 }
}

The output from the program is shown here:

Found: MyClass
Found: AnotherClass
Found: Demo

Using: MyClass
Available constructors:
 MyClass(Int32 i)
 MyClass(Int32 i, Int32 j)

Two-parameter constructor found.

Constructing MyClass(int, int).
Values are x: 10, y: 20

Invoking methods on reflectOb.

sum is 30
14 is between x and y
Inside Set(int, int). Values are x: 9, y: 18
Inside Set(double, double). Values are x: 1, y: 23
Values are x: 1, y: 23

As the output shows, all three classes contained within MyClasses.exe were found. The
first one, which in this case was MyClass, was then used to instantiate an object and execute
methods.

The types in MyClasses.exe are discovered using this sequence of code, which is near
the start of Main():

// Load the MyClasses.exe assembly.
Assembly asm = Assembly.LoadFrom("MyClasses.exe");

// Discover what types MyClasses.exe contains.
Type[] alltypes = asm.GetTypes();
foreach(Type temp in alltypes)
 Console.WriteLine("Found: " + temp.Name);

You can use such a sequence whenever you need to dynamically load and interrogate an
assembly.

On a related point, an assembly need not be an exe file. Assemblies can also be contained
in dynamic link library (DLL) files that use the dll extension. For example, if you were to
compile MyClasses.cs using this command line,

csc /t:library MyClasses.cs

then the output file would be MyClasses.dll. One advantage to putting code into a DLL is
that no Main() method is required. All exe files require an entry point, such as Main(), that

PART I

C h a p t e r 1 7 : R u n t i m e T y p e I D , R e f l e c t i o n , a n d A t t r i b u t e s 481

PART I
PART I

defines where execution begins. This is why the Demo class contained a placeholder Main()
method. Such a method is not required by a DLL. If you try making MyClass into a DLL,
you will need to change the call to LoadFrom() as shown here:

Assembly asm = Assembly.LoadFrom("MyClasses.dll");

Fully Automating Type Discovery
Before we leave the topic of reflection, one last example will be instructive. Even though the
preceding program was able to fully use MyClass without explicitly specifying MyClass in
the program, it still relied upon prior knowledge of the contents of MyClass. For example,
the program knew the names of its methods, such as Set and Sum. However, using reflection
it is possible to utilize a type about which you have no prior knowledge. To do this, you
must discover all information necessary to construct an object and to generate method calls.
Such an approach would be useful to a visual design tool, for example, because it could
utilize the types available on the system.

To see how the full dynamic discovery of a type can be accomplished, consider the
following example, which loads the MyClasses.exe assembly, constructs a MyClass object,
and then calls all of the methods declared by MyClass, all without assuming any prior
knowledge:

// Utilize MyClass without assuming any prior knowledge.

using System;
using System.Reflection;

class ReflectAssemblyDemo {
 static void Main() {
 int val;
 Assembly asm = Assembly.LoadFrom("MyClasses.exe");

 Type[] alltypes = asm.GetTypes();

 Type t = alltypes[0]; // use first class found

 Console.WriteLine("Using: " + t.Name);

 ConstructorInfo[] ci = t.GetConstructors();

 // Use first constructor found.
 ParameterInfo[] cpi = ci[0].GetParameters();
 object reflectOb;

 if(cpi.Length > 0) {
 object[] consargs = new object[cpi.Length];

 // Initialize args.
 for(int n=0; n < cpi.Length; n++)
 consargs[n] = 10 + n * 20;

 // Construct the object.
 reflectOb = ci[0].Invoke(consargs);
 } else

482 P a r t I : T h e C # L a n g u a g e

 reflectOb = ci[0].Invoke(null);

 Console.WriteLine("\nInvoking methods on reflectOb.");
 Console.WriteLine();

 // Ignore inherited methods.
 MethodInfo[] mi = t.GetMethods(BindingFlags.DeclaredOnly |
 BindingFlags.Instance |
 BindingFlags.Public) ;

 // Invoke each method.
 foreach(MethodInfo m in mi) {
 Console.WriteLine("Calling {0} ", m.Name);

 // Get the parameters.
 ParameterInfo[] pi = m.GetParameters();

 // Execute methods.
 switch(pi.Length) {
 case 0: // no args
 if(m.ReturnType == typeof(int)) {
 val = (int) m.Invoke(reflectOb, null);
 Console.WriteLine("Result is " + val);
 }
 else if(m.ReturnType == typeof(void)) {
 m.Invoke(reflectOb, null);
 }
 break;
 case 1: // one arg
 if(pi[0].ParameterType == typeof(int)) {
 object[] args = new object[1];
 args[0] = 14;
 if((bool) m.Invoke(reflectOb, args))
 Console.WriteLine("14 is between x and y");
 else
 Console.WriteLine("14 is not between x and y");
 }
 break;
 case 2: // two args
 if((pi[0].ParameterType == typeof(int)) &&
 (pi[1].ParameterType == typeof(int))) {
 object[] args = new object[2];
 args[0] = 9;
 args[1] = 18;
 m.Invoke(reflectOb, args);
 }
 else if((pi[0].ParameterType == typeof(double)) &&
 (pi[1].ParameterType == typeof(double))) {
 object[] args = new object[2];
 args[0] = 1.12;
 args[1] = 23.4;
 m.Invoke(reflectOb, args);
 }
 break;

PART I

C h a p t e r 1 7 : R u n t i m e T y p e I D , R e f l e c t i o n , a n d A t t r i b u t e s 483

PART I
PART I

 }
 Console.WriteLine();
 }

 }
}

Here is the output produced by the program:

Using: MyClass
Constructing MyClass(int).
Values are x: 10, y: 10

Invoking methods on reflectOb.

Calling Sum
Result is 20

Calling IsBetween
14 is not between x and y

Calling Set
Inside Set(int, int). Values are x: 9, y: 18

Calling Set
Inside Set(double, double). Values are x: 1, y: 23

Calling Show
Values are x: 1, y: 23

The operation of the program is straightforward, but a couple of points are worth mentioning.
First, notice that only the methods explicitly declared by MyClass are obtained and used.
This is accomplished by using the BindingFlags form of GetMethods(). The reason for this
is to prevent calling the methods inherited from object. Second, notice how the number of
parameters and return type of each method are obtained dynamically. A switch statement
determines the number of parameters. Within each case, the parameter type(s) and return
type are checked. A method call is then constructed based on this information.

Attributes
C# allows you to add declarative information to a program in the form of an attribute. An
attribute defines additional information (metadata) that is associated with a class, structure,
method, and so on. For example, you might define an attribute that determines the type of
button that a class will display. Attributes are specified between square brackets, preceding
the item to which they apply. Thus, an attribute is not a member of a class. Rather, an
attribute specifies supplemental information that is attached to an item.

Attribute Basics
An attribute is supported by a class that inherits System.Attribute. Thus, all attribute classes
must be subclasses of Attribute. Although Attribute defines substantial functionality, this
functionality is not always needed when working with attributes. By convention, attribute
classes often use the suffix Attribute. For example, ErrorAttribute would be a name for an
attribute class that described an error.

484 P a r t I : T h e C # L a n g u a g e

When an attribute class is declared, it is preceded by an attribute called AttributeUsage.
This built-in attribute specifies the types of items to which the attribute can be applied. Thus,
the usage of an attribute can be restricted to methods, for example.

Creating an Attribute
In an attribute class, you will define the members that support the attribute. Often attribute
classes are quite simple, containing just a small number of fields or properties. For example,
an attribute might define a remark that describes the item to which the attribute is being
attached. Such an attribute might look like this:

 [AttributeUsage(AttributeTargets.All)]
public class RemarkAttribute : Attribute {
 string pri_remark; // underlies Remark property

 public RemarkAttribute(string comment) {
 pri_remark = comment;
 }

 public string Remark {
 get {
 return pri_remark;
 }
 }
}

Let’s look at this class, line by line.
The name of this attribute is RemarkAttribute. Its declaration is preceded by the

AttributeUsage attribute, which specifies that RemarkAttribute can be applied to all
types of items. Using AttributeUsage, it is possible to narrow the list of items to which
an attribute can be attached, and we will examine its capabilities later in this chapter.

Next, RemarkAttribute is declared and it inherits Attribute. Inside RemarkAttribute
there is one private field, pri_remark, which supports one public, read-only property: Remark.
This property holds the description that will be associated with the attribute. (Remark could
also have been declared as an auto-implemented property with a private set accessor, but a
read-only property is used for the purposes of illustration.) There is one public constructor
that takes a string argument and assigns it to Remark.

At this point, no other steps are needed, and RemarkAttribute is ready for use.

Attaching an Attribute
Once you have defined an attribute class, you can attach the attribute to an item. An attribute
precedes the item to which it is attached and is specified by enclosing its constructor inside
square brackets. For example, here is how RemarkAttribute can be associated with a class:

[RemarkAttribute("This class uses an attribute.")]
class UseAttrib {
 // ...
}

This constructs a RemarkAttribute that contains the comment, “This class uses an
attribute.” This attribute is then associated with UseAttrib.

PART I

C h a p t e r 1 7 : R u n t i m e T y p e I D , R e f l e c t i o n , a n d A t t r i b u t e s 485

PART I
PART I

When attaching an attribute, it is not actually necessary to specify the Attribute suffix.
For example, the preceding class could be declared this way:

[Remark("This class uses an attribute.")]
class UseAttrib {
 // ...
}

Here, only the name Remark is used. Although the short form is correct, it is usually safer
to use the full name when attaching attributes, because it avoids possible confusion and
ambiguity.

Obtaining an Object’s Attributes
Once an attribute has been attached to an item, other parts of the program can retrieve the
attribute. To retrieve an attribute, you will usually use one of two methods. The first is
GetCustomAttributes(), which is defined by MemberInfo and inherited by Type. It
retrieves a list of all attributes attached to an item. Here is one of its forms:

object[] GetCustomAttributes(bool searchBases)

If searchBases is true, then the attributes of all base classes through the inheritance chain will
be included. Otherwise, only those classes defined by the specified type will be found.

The second method is GetCustomAttribute(), which is defined by Attribute. One of its
forms is shown here:

static Attribute GetCustomAttribute(MemberInfo mi, Type attribtype)

Here, mi is a MemberInfo object that describes the item for which the attributes are being
obtained. The attribute desired is specified by attribtype. You will use this method when you
know the name of the attribute you want to obtain, which is often the case. For example,
assuming that the UseAttrib class has the RemarkAttribute, to obtain a reference to the
RemarkAttribute, you can use a sequence like this:

// Get a MemberInfo instance associated with a
// class that has the RemarkAttribute.
Type t = typeof(UseAttrib);

// Retrieve the RemarkAttribute.
Type tRemAtt = typeof(RemarkAttribute);
RemarkAttribute ra = (RemarkAttribute)
 Attribute.GetCustomAttribute(t, tRemAtt);

This sequence works because MemberInfo is a base class of Type. Thus, t is a MemberInfo
instance.

Once you have a reference to an attribute, you can access its members. This makes
information associated with an attribute available to a program that uses an element to
which an attribute is attached. For example, the following statement displays the Remark
property:

Console.WriteLine(ra.Remark);

486 P a r t I : T h e C # L a n g u a g e

The following program puts together all of the pieces and demonstrates the use of
RemarkAttribute:

// A simple attribute example.

using System;
using System.Reflection;

[AttributeUsage(AttributeTargets.All)]
public class RemarkAttribute : Attribute {
 string pri_remark; // underlies Remark property

 public RemarkAttribute(string comment) {
 pri_remark = comment;
 }

 public string Remark {
 get {
 return pri_remark;
 }
 }
}

[RemarkAttribute("This class uses an attribute.")]
class UseAttrib {
 // ...
}

class AttribDemo {
 static void Main() {
 Type t = typeof(UseAttrib);

 Console.Write("Attributes in " + t.Name + ": ");

 object[] attribs = t.GetCustomAttributes(false);
 foreach(object o in attribs) {
 Console.WriteLine(o);
 }

 Console.Write("Remark: ");

 // Retrieve the RemarkAttribute.
 Type tRemAtt = typeof(RemarkAttribute);
 RemarkAttribute ra = (RemarkAttribute)
 Attribute.GetCustomAttribute(t, tRemAtt);

 Console.WriteLine(ra.Remark);
 }
}

The output from the program is shown here:

Attributes in UseAttrib: RemarkAttribute
Remark: This class uses an attribute.

PART I

C h a p t e r 1 7 : R u n t i m e T y p e I D , R e f l e c t i o n , a n d A t t r i b u t e s 487

PART I
PART I

Positional vs. Named Parameters
In the preceding example, RemarkAttribute was initialized by passing the description
string to the constructor, using the normal constructor syntax. In this case, the comment
parameter to RemarkAttribute() is called a positional parameter. This term relates to the fact
that the argument is linked to a parameter by its position in the argument list. This is the way
that all methods and constructors work in C#. For example, given a method called test(),
declared as shown here:

void test(int a, double b, string c)

the following call to test()

test(10, 1.1, "hello");

passes 10 to a, 1.1 to b, and “hello” to c because of the position (i.e., order) of the arguments.
However, for an attribute, you can also create named parameters, which can be assigned initial
values by using their name. In this case, it is the name of the parameter, not its position, that
is important.

A named parameter is supported by either a public field or property, which must be
read-write and nonstatic. Any such field or property is automatically able to be used as a
named parameter. A named parameter is given a value by an assignment statement that is
located within the argument list when the attribute’s constructor is invoked. Here is the
general form of an attribute specification that includes named parameters:

[attrib(positional-param-list, named-param1 = value, named-param2 = value, ...)]

The positional parameters (if they exist) come first. Next, each named parameter is assigned
a value. The order of the named parameters is not important. Named parameters do not
need to be given a value. In this case, their default value will be used.

To understand how to use a named parameter, it is best to work through an example.
Here is a version of RemarkAttribute that adds a field called Supplement, which can be
used to hold a supplemental remark:

 [AttributeUsage(AttributeTargets.All)]
public class RemarkAttribute : Attribute {
 string pri_remark; // underlies Remark property

 // This can be used as a named parameter:
 public string Supplement;

 public RemarkAttribute(string comment) {
 pri_remark = comment;
 Supplement = "None";
 }

 public string Remark {
 get {
 return pri_remark;
 }
 }
}

488 P a r t I : T h e C # L a n g u a g e

As you can see, Supplement is initialized to the string “None” by the constructor. There
is no way of using the constructor to assign it a different initial value. However, because
Supplement is a public field of RemarkAttribute, it can be used as a named parameter,
as shown here:

[RemarkAttribute("This class uses an attribute.",
 Supplement = "This is additional info.")]
class UseAttrib {
 // ...
}

Pay close attention to the way RemarkAttribute’s constructor is called. First, the
positional argument is specified as it was before. Next is a comma, followed by the named
parameter, Supplement, which is assigned a value. Finally, the closing) ends the call to the
constructor. Thus, the named parameter is initialized within the call to the constructor. This
syntax can be generalized. Position parameters must be specified in the order in which they
appear. Named parameters are specified by assigning values to their name.

Here is a program that demonstrates the Supplement field:

// Use a named attribute parameter.

using System;
using System.Reflection;

[AttributeUsage(AttributeTargets.All)]
public class RemarkAttribute : Attribute {
 string pri_remark; // underlies Remark property

 public string Supplement; // this is a named parameter

 public RemarkAttribute(string comment) {
 pri_remark = comment;
 Supplement = "None";
 }

 public string Remark {
 get {
 return pri_remark;
 }
 }
}

[RemarkAttribute("This class uses an attribute.",
 Supplement = "This is additional info.")]
class UseAttrib {
 // ...
}

class NamedParamDemo {
 static void Main() {
 Type t = typeof(UseAttrib);

 Console.Write("Attributes in " + t.Name + ": ");

PART I

C h a p t e r 1 7 : R u n t i m e T y p e I D , R e f l e c t i o n , a n d A t t r i b u t e s 489

PART I
PART I

 object[] attribs = t.GetCustomAttributes(false);
 foreach(object o in attribs) {
 Console.WriteLine(o);
 }

 // Retrieve the RemarkAttribute.
 Type tRemAtt = typeof(RemarkAttribute);
 RemarkAttribute ra = (RemarkAttribute)
 Attribute.GetCustomAttribute(t, tRemAtt);

 Console.Write("Remark: ");
 Console.WriteLine(ra.Remark);

 Console.Write("Supplement: ");
 Console.WriteLine(ra.Supplement);
 }
}

The output from the program is shown here:

Attributes in UseAttrib: RemarkAttribute
Remark: This class uses an attribute.
Supplement: This is additional info.

Before moving on, it is important to emphasize that pri_remark cannot be used as a
named parameter because it is private to RemarkAttribute. The Remark property cannot be
used as a named parameter because it is read-only. Remember that only public, read-write
fields and properties can be used as named parameters.

A public, read-write property can be used as a named parameter in the same way as
a field. For example, here an auto-implemented int property called Priority is added to
RemarkAttribute:

// Use a property as a named attribute parameter.

using System;
using System.Reflection;

[AttributeUsage(AttributeTargets.All)]
public class RemarkAttribute : Attribute {
 string pri_remark; // underlies Remark property

 public string Supplement; // this is a named parameter

 public RemarkAttribute(string comment) {
 pri_remark = comment;
 Supplement = "None";
 Priority = 1;
 }

 public string Remark {
 get {
 return pri_remark;
 }
 }

490 P a r t I : T h e C # L a n g u a g e

 // Use a property as a named parameter.
 public int Priority { get; set; }
}

[RemarkAttribute("This class uses an attribute.",
 Supplement = "This is additional info.",
 Priority = 10)]
class UseAttrib {
 // ...
}

class NamedParamDemo {
 static void Main() {
 Type t = typeof(UseAttrib);

 Console.Write("Attributes in " + t.Name + ": ");

 object[] attribs = t.GetCustomAttributes(false);
 foreach(object o in attribs) {
 Console.WriteLine(o);
 }

 // Retrieve the RemarkAttribute.
 Type tRemAtt = typeof(RemarkAttribute);
 RemarkAttribute ra = (RemarkAttribute)
 Attribute.GetCustomAttribute(t, tRemAtt);

 Console.Write("Remark: ");
 Console.WriteLine(ra.Remark);

 Console.Write("Supplement: ");
 Console.WriteLine(ra.Supplement);

 Console.WriteLine("Priority: " + ra.Priority);
 }
}

The output is shown here:

Attributes in UseAttrib: RemarkAttribute
Remark: This class uses an attribute.
Supplement: This is additional info.
Priority: 10

There is one point of interest in the program. Notice the attribute specified before
UseAttrib that is shown here:

[RemarkAttribute("This class uses an attribute.",
 Supplement = "This is additional info.",
 Priority = 10)]

The named attributes Supplement and Priority are not in any special order. These two
assignments can be reversed without any change to the attribute.

PART I

C h a p t e r 1 7 : R u n t i m e T y p e I D , R e f l e c t i o n , a n d A t t r i b u t e s 491

PART I
PART I

One last point: For both positional and named parameters, the type of an attribute
parameter must be either one of the built-in primitive types, object, Type, an enumeration,
or a one-dimensional array of one of these types.

Three Built-in Attributes
C# defines several built-in attributes, but three are especially important because they apply
to a wide variety of situations: AttributeUsage, Conditional, and Obsolete. They are
examined here.

AttributeUsage
As mentioned earlier, the AttributeUsage attribute specifies the types of items to
which an attribute can be applied. AttributeUsage is another name for the
System.AttributeUsageAttribute class. AttributeUsage has the following constructor:

AttributeUsage(AttributeTargets item)

Here, item specifies the item or items upon which the attribute can be used.
AttributeTargets is an enumeration that defines the following values:

All Assembly Class Constructor

Delegate Enum Event Field

GenericParameter Interface Method Module

Parameter Property ReturnValue Struct

Two or more of these value can be ORed together. For example, to specify an attribute that
can be applied only to fields and properties, use

AttributeTargets.Field | AttributeTargets.Property

AttributeUsage supports two named parameters. The first is AllowMultiple, which is
a bool value. If this value is true, then the attribute can be applied more than one time to a
single item. The second is Inherited, which is also a bool value. If this value is true, then the
attribute is inherited by derived classes. Otherwise, it is not inherited. The default setting is
false for AllowMultiple and true for Inherited.

AttributeUsage also specifies a read-only property called ValidOn, which returns a
value of type AttributeTargets, which specifies what types of items the attribute can be
used on. The default is AttributeTargets.All.

The Conditional Attribute
The attribute Conditional is perhaps C#’s most interesting built-in attribute. It allows you
to create conditional methods. A conditional method is invoked only when a specific symbol
has been defined via #define. Otherwise, the method is bypassed. Thus, a conditional
method offers an alternative to conditional compilation using #if.

Conditional is another name for System.Diagnostics.ConditionalAttribute. To use the
Conditional attribute, you must include the System.Diagnostics namespace.

492 P a r t I : T h e C # L a n g u a g e

Let’s begin with an example:

// Demonstrate the Conditional attribute.

#define TRIAL

using System;
using System.Diagnostics;

class Test {

 [Conditional("TRIAL")]
 void Trial() {
 Console.WriteLine("Trial version, not for distribution.");
 }

 [Conditional("RELEASE")]
 void Release() {
 Console.WriteLine("Final release version.");
 }

 static void Main() {
 Test t = new Test();

 t.Trial(); // called only if TRIAL is defined
 t.Release(); // called only if RELEASE is defined
 }
}

The output from this program is shown here:

Trial version, not for distribution.

Let’s look closely at this program to understand why this output is produced. First,
notice the program defines the symbol TRIAL. Next, notice how the methods Trial() and
Release() are coded. They are both preceded with the Conditional attribute, which has this
general form:

[Conditional symbol]

where symbol is the symbol that determines whether the method will be executed. This
attribute can be used only on methods. If the symbol is defined, then when the method is
called, it will be executed. If the symbol is not defined, then the method is not executed.

Inside Main(), both Trial() and Release() are called. However, only TRIAL is defined.
Thus, Trial() is executed. The call to Release() is ignored. If you define RELEASE, then
Release() will also be called. If you remove the definition for TRIAL, then Trial() will not
be called.

Conditional methods have a few restrictions. First, they must return void. Second, they
must be members of a class or structure, not an interface. Third, they cannot be preceded
with the override keyword.

PART I

C h a p t e r 1 7 : R u n t i m e T y p e I D , R e f l e c t i o n , a n d A t t r i b u t e s 493

PART I
PART I

The Obsolete Attribute
The Obsolete attribute, which is short for System.ObsoleteAttribute, lets you mark a
program element as obsolete. It has this general form:

[Obsolete(“message”)]

Here, message is displayed when that program element is compiled. Here is a short example:

// Demonstrate the Obsolete attribute.

using System;

class Test {

 [Obsolete("Use MyMeth2, instead.")]
 public static int MyMeth(int a, int b) {
 return a / b;
 }

 // Improved version of MyMeth.
 public static int MyMeth2(int a, int b) {
 return b == 0 ? 0 : a /b;
 }

 static void Main() {
 // Warning displayed for this.
 Console.WriteLine("4 / 3 is " + Test.MyMeth(4, 3));

 // No warning here.
 Console.WriteLine("4 / 3 is " + Test.MyMeth2(4, 3));
 }
}

When the call to MyMeth() is encountered in Main() when this program is compiled,
a warning will be generated that tells the user to use MyMeth2() instead.

A second form of Obsolete is shown here:

[Obsolete(“message”, error)]

Here, error is a Boolean value. If it is true, then use of the obsolete item generates a
compilation error rather than a warning. The difference is, of course, that a program
containing an error cannot be compiled into an executable program.

This page intentionally left blank

18
Generics

This chapter examines one of C#’s most sophisticated and powerful features: generics.
Interestingly, although generics are now an indispensable part of C# programming,
they were not included in the original 1.0 release. Instead, they were added by C# 2.0.

It is not an overstatement to say that the addition of generics fundamentally changed the
character of C#. Not only did it add a new syntactic element, it also added new capabilities
and resulted in many changes and upgrades to the library. Although it has been a few years
since the inclusion of generics in C#, the effects still reverberate throughout the language.

The generics feature is so important because it enables the creation of classes, structures,
interfaces, methods, and delegates that work in a type-safe manner with various kinds of
data. As you may know, many algorithms are logically the same no matter what type of
data they are being applied to. For example, the mechanism that supports a queue is the
same whether the queue is storing items of type int, string, object, or a user-defined class.
Prior to generics, you might have created several different versions of the same algorithm to
handle different types of data. Through the use of generics, you can define a solution once,
independently of any specific type of data, and then apply that solution to a wide variety of
data types without any additional effort.

This chapter describes the syntax, theory, and use of generics. It also shows how generics
provide type safety for some previously difficult cases. Once you have completed this chapter,
you will want to examine Chapter 24, which covers Collections. There you will find many
examples of generics at work in the generic collection classes.

What Are Generics?
At its core, the term generics means parameterized types. Parameterized types are important
because they enable you to create classes, structures, interfaces, methods, and delegates in
which the type of data upon which they operate is specified as a parameter. Using generics,
it is possible to create a single class, for example, that automatically works with different
types of data. A class, structure, interface, method, or delegate that operates on a parameterized
type is called generic, as in generic class or generic method.

It is important to understand that C# has always given you the ability to create generalized
code by operating through references of type object. Because object is the base class of all
other classes, an object reference can refer to any type of object. Thus, in pre-generics code,
generalized code used object references to operate on a variety of different kinds of objects.

495

CHAPTER

496 P a r t I : T h e C # L a n g u a g e

The problem was that it could not do so with type safety because casts were needed to convert
between the object type and the actual type of the data. This was a potential source of errors
because it was possible to accidentally use an incorrect cast. Generics avoid this problem by
providing the type safety that was lacking. Generics also streamline the process because it is
no longer necessary to employ casts to translate between object and the type of data that is
actually being operated upon. Thus, generics expand your ability to re-use code, and let
you do so safely and easily.

NOTENOTE A Warning to C++ and Java Programmers: Although C# generics are similar to templates
in C++ and generics in Java, they are not the same as either. In fact, there are some fundamental
differences among these three approaches to generics. If you have a background in C++ or Java, it
is important to not jump to conclusions about how generics work in C#.

A Simple Generics Example
Let’s begin with a simple example of a generic class. The following program defines two
classes. The first is the generic class Gen, and the second is GenericsDemo, which uses Gen.

// A simple generic class.

using System;

// In the following Gen class, T is a type parameter
// that will be replaced by a real type when an object
// of type Gen is created.
class Gen<T> {
 T ob; // declare a variable of type T

 // Notice that this constructor has a parameter of type T.
 public Gen(T o) {
 ob = o;
 }

 // Return ob, which is of type T.
 public T GetOb() {
 return ob;
 }

 // Show type of T.
 public void ShowType() {
 Console.WriteLine("Type of T is " + typeof(T));
 }
}

// Demonstrate the generic class.
class GenericsDemo {
 static void Main() {
 // Create a Gen reference for int.
 Gen<int> iOb;

 // Create a Gen<int> object and assign its reference to iOb.
 iOb = new Gen<int>(102);

PART I

C h a p t e r 1 8 : G e n e r i c s 497

PART I
PART I

 // Show the type of data used by iOb.
 iOb.ShowType();

 // Get the value in iOb.
 int v = iOb.GetOb();
 Console.WriteLine("value: " + v);

 Console.WriteLine();

 // Create a Gen object for strings.
 Gen<string> strOb = new Gen<string>("Generics add power.");

 // Show the type of data stored in strOb.
 strOb.ShowType();

 // Get the value in strOb.
 string str = strOb.GetOb();
 Console.WriteLine("value: " + str);
 }
}

The output produced by the program is shown here:

Type of T is System.Int32
value: 102

Type of T is System.String
value: Generics add power.

Let’s examine this program carefully.
First, notice how Gen is declared by the following line.

class Gen<T> {

Here, T is the name of a type parameter. This name is used as a placeholder for the actual
type that will be specified when a Gen object is created. Thus, T is used within Gen whenever
the type parameter is needed. Notice that T is contained within < >. This syntax can be
generalized. Whenever a type parameter is being declared, it is specified within angle brackets.
Because Gen uses a type parameter, Gen is a generic class.

In the declaration of Gen, there is no special significance to the name T. Any valid
identifier could have been used, but T is traditional. Other commonly used type parameter
names include V and E. Of course, you can also use descriptive names for type parameters,
such as TValue or TKey. When using a descriptive name, it is common practice to use T as
the first letter.

Next, T is used to declare a variable called ob, as shown here:

T ob; // declare a variable of type T

As explained, T is a placeholder for the actual type that will be specified when a Gen object
is created. Thus, ob will be a variable of the type bound to T when a Gen object is instantiated.
For example, if type string is specified for T, then in that instance, ob will be of type string.

498 P a r t I : T h e C # L a n g u a g e

Now consider Gen’s constructor:

public Gen(T o) {
 ob = o;
}

Notice that its parameter, o, is of type T. This means that the actual type of o is determined
by the type bound to T when a Gen object is created. Also, because both the parameter o
and the instance variable ob are of type T, they will both be of the same actual type when a
Gen object is created.

The type parameter T can also be used to specify the return type of a method, as is the
case with the GetOb() method, shown here:

public T GetOb() {
 return ob;
}

Because ob is also of type T, its type is compatible with the return type specified by GetOb().
The ShowType() method displays the type of T by passing T to the typeof operator.

Because a real type will be substituted for T when an object of type Gen is created, typeof
will obtain type information about the actual type.

The GenericsDemo class demonstrates the generic Gen class. It first creates a version of
Gen for type int, as shown here:

Gen<int> iOb;

Look closely at this declaration. First, notice that the type int is specified within the angle
brackets after Gen. In this case, int is a type argument that is bound to Gen’s type parameter,
T. This creates a version of Gen in which all uses of T are replaced by int. Thus, for this
declaration, ob is of type int, and the return type of GetOb() is of type int.

The next line assigns to iOb a reference to an instance of an int version of the Gen class:

iOb = new Gen<int>(102);

Notice that when the Gen constructor is called, the type argument int is also specified. This
is necessary because the type of the variable (in this case iOb) to which the reference is being
assigned is of type Gen<int>. Thus, the reference returned by new must also be of type
Gen<int>. If it isn’t, a compile-time error will result. For example, the following assignment
will cause a compile-time error:

iOb = new Gen<double>(118.12); // Error!

Because iOb is of type Gen<int>, it can’t be used to refer to an object of Gen<double>. This
type checking is one of the main benefits of generics because it ensures type safety.

The program then displays the type of ob within iOb, which is System.Int32. This is the
.NET structure that corresponds to int. Next, the program obtains the value of ob by use of
the following line:

int v = iOb.GetOb();

Because the return type of GetOb() is T, which was replaced by int when iOb was declared,
the return type of GetOb() is also int. Thus, this value can be assigned to an int variable.

PART I

C h a p t e r 1 8 : G e n e r i c s 499

PART I
PART I

Next, GenericsDemo declares an object of type Gen<string>:

Gen<string> strOb = new Gen<string>("Generics add power.");

Because the type argument is string, string is substituted for T inside Gen. This creates a
string version of Gen, as the remaining lines in the program demonstrate.

Before moving on, a few terms need to be defined. When you specify a type argument
such as int or string for Gen, you are creating what is referred to in C# as a closed constructed
type. Thus, Gen<int> is a closed constructed type. In essence, a generic type, such as
Gen<T>, is an abstraction. It is only after a specific version, such as Gen<int>, has been
constructed that a concrete type has been created. In C# terminology, a construct such as
Gen<T> is called an open constructed type, because the type parameter T (rather than an
actual type, such as int) is specified.

More generally, C# defines the concepts of an open type and a closed type. An open type is
a type parameter or any generic type whose type argument is (or involves) a type parameter.
Any type that is not an open type is a closed type. A constructed type is a generic type for
which all type arguments have been supplied. If those type arguments are all closed types,
then it is a closed constructed type. If one or more of those type arguments are open types,
it is an open constructed type.

Generic Types Differ Based on Their Type Arguments
A key point to understand about generic types is that a reference of one specific version of a
generic type is not type-compatible with another version of the same generic type. For example,
assuming the program just shown, the following line of code is in error and will not compile:

iOb = strOb; // Wrong!

Even though both iOb and strOb are of type Gen<T>, they are references to different types
because their type arguments differ.

How Generics Improve Type Safety
At this point, you might be asking yourself the following question. Given that the same
functionality found in the generic Gen class can be achieved without generics, by simply
specifying object as the data type and employing the proper casts, what is the benefit of
making Gen generic? The answer is that generics automatically ensure the type safety of all
operations involving Gen. In the process, generics eliminate the need for you to use casts
and type-check code by hand.

To understand the benefits of generics, first consider the following program that creates
a non-generic equivalent of Gen:

// NonGen is functionally equivalent to Gen but does not use generics.

using System;

class NonGen {
 object ob; // ob is now of type object

 // Pass the constructor a reference of type object.
 public NonGen(object o) {

500 P a r t I : T h e C # L a n g u a g e

 ob = o;
 }

 // Return type object.
 public object GetOb() {
 return ob;
 }

 // Show type of ob.
 public void ShowType() {
 Console.WriteLine("Type of ob is " + ob.GetType());
 }
}

// Demonstrate the non-generic class.
class NonGenDemo {
 static void Main() {
 NonGen iOb;

 // Create NonGen object.
 iOb = new NonGen(102);

 // Show the type of data stored in iOb.
 iOb.ShowType();

 // Get the value in iOb.
 // This time, a cast is necessary.
 int v = (int) iOb.GetOb();
 Console.WriteLine("value: " + v);

 Console.WriteLine();

 // Create another NonGen object and store a string in it.
 NonGen strOb = new NonGen("Non-Generics Test");

 // Show the type of data stored in strOb.
 strOb.ShowType();

 // Get the value of strOb.
 // Again, notice that a cast is necessary.
 String str = (string) strOb.GetOb();
 Console.WriteLine("value: " + str);

 // This compiles, but is conceptually wrong!
 iOb = strOb;

 // The following line results in a runtime exception.
 // v = (int) iOb.GetOb(); // runtime error!
 }
}

This program produces the following output:

Type of ob is System.Int32
value: 102

PART I

C h a p t e r 1 8 : G e n e r i c s 501

PART I
PART I

Type of ob is System.String
value: Non-Generics Test

As you can see, the output is similar to the previous version of the program.
There are several things of interest in this version. First, notice that NonGen replaces all

uses of T with object. This makes NonGen able to store any type of object, as can the generic
version. However, this approach is bad for two reasons. First, explicit casts must be employed
to retrieve the stored data. Second, many kinds of type mismatch errors cannot be found
until runtime. Let’s look closely at each problem.

We will begin with this line:

int v = (int) iOb.GetOb();

Because the return type of GetOb() is now object, the cast to int is necessary to enable
the value returned by GetOb() to be unboxed and stored in v. If you remove the cast, the
program will not compile. In the generic version of the program, this cast was not needed
because int was specified as a type argument when iOb was constructed. In the non-generic
version, the cast must be employed. This is not only an inconvenience, but a potential
source of error.

Now, consider the following sequence from near the end of the program:

// This compiles, but is conceptually wrong!
iOb = strOb;

// The following line results in a runtime exception.
// v = (int) iOb.GetOb(); // runtime error!

Here, strOb is assigned to iOb. However, strOb refers to an object that contains a string, not
an integer. This assignment is syntactically valid because all NonGen references are the same,
and any NonGen reference can refer to any other NonGen object. However, the statement is
semantically wrong, as the commented-out line shows. In that line, the return type of GetOb()
is cast to int and then an attempt is made to assign this value to v. The trouble is that iOb
now refers to an object that stores a string, not an int. Unfortunately, without generics, the
compiler won’t catch this error. Instead, a runtime exception will occur when the cast to int
is attempted. To see this for yourself, try removing the comment symbol from the start of
the line and then compiling and running the program. A runtime error will occur.

The preceding sequence can’t occur when generics are used. If this sequence were
attempted in the generic version of the program, the compiler would catch it and report
an error, thus preventing a serious bug that results in a runtime exception. The ability to
create type-safe code in which type-mismatch errors are caught at compile time is a key
advantage of generics. Although using object references to create “generic” code has always
been possible in C#, that code was not type-safe and its misuse could result in runtime
exceptions. Generics prevent this from occurring. In essence, through generics, what
were once runtime errors have become compile-time errors. This is a major benefit.

There is one other point of interest in the NonGen program. Notice how the type of the
NonGen instance variable ob is obtained by ShowType():

Console.WriteLine("Type of ob is " + ob.GetType());

Recall from Chapter 11 that object defines several methods that are available to all data types.
One of these methods is GetType(), which returns a Type object that describes the type of

502 P a r t I : T h e C # L a n g u a g e

the invoking object at runtime. Thus, even though the type of ob is specified as object in the
program’s source code, at runtime, the actual type of object being referred to is known. This
is why the CLR will generate an exception if you try an invalid cast during program execution.

A Generic Class with Two Type Parameters
You can declare more than one type parameter in a generic type. To specify two or more
type parameters, simply use a comma-separated list. For example, the following TwoGen
class is a variation of the Gen class that has two type parameters:

// A simple generic class with two type parameters: T and V.

using System;

class TwoGen<T, V> {
 T ob1;
 V ob2;

 // Notice that this constructor has parameters of type T and V.
 public TwoGen(T o1, V o2) {
 ob1 = o1;
 ob2 = o2;
 }

 // Show types of T and V.
 public void showTypes() {
 Console.WriteLine("Type of T is " + typeof(T));
 Console.WriteLine("Type of V is " + typeof(V));
 }

 public T getob1() {
 return ob1;
 }

 public V GetObj2() {
 return ob2;
 }
}

// Demonstrate two generic type parameters.
class SimpGen {
 static void Main() {

 TwoGen<int, string> tgObj =
 new TwoGen<int, string>(119, "Alpha Beta Gamma");

 // Show the types.
 tgObj.showTypes();

 // Obtain and show values.
 int v = tgObj.getob1();
 Console.WriteLine("value: " + v);

PART I

C h a p t e r 1 8 : G e n e r i c s 503

PART I
PART I

 string str = tgObj.GetObj2();
 Console.WriteLine("value: " + str);
 }
}

The output from this program is shown here:

Type of T is System.Int32
Type of V is System.String
value: 119
value: Alpha Beta Gamma

Notice how TwoGen is declared:

class TwoGen<T, V> {

It specifies two type parameters: T and V, separated by a comma. Because it has two type
parameters, two type arguments must be specified when a TwoGen object is created, as
shown here:

TwoGen<int, string> tgObj =
 new TwoGen<int, string>(119, "Alpha Beta Gamma");

In this case, int is substituted for T and string is substituted for V.
Although the two type arguments differ in this example, it is possible for both types to

be the same. For example, the following line of code is valid:

TwoGen<string, string> x = new TwoGen<string, string>("Hello", "Goodbye");

In this case, both T and V would be of type string. Of course, if the type arguments were
always the same, then two type parameters would be unnecessary.

The General Form of a Generic Class
The generics syntax shown in the preceding examples can be generalized. Here is the syntax
for declaring a generic class:

class class-name<type-param-list> { // ...

Here is the syntax for declaring a reference to a generics class:

class-name<type-arg-list> var-name =
 new class-name<type-arg-list>(cons-arg-list);

Constrained Types
In the preceding examples, the type parameters could be replaced by any type. For example,
given this declaration

class Gen<T> {

any type can be specified for T. Thus, it is legal to create Gen objects in which T is replaced
by int, double, string, FileStream, or any other type. Although having no restrictions on the

504 P a r t I : T h e C # L a n g u a g e

type argument is fine for many purposes, sometimes it is useful to limit the types that can
be used as a type argument. For example, you might want to create a method that operates
on the contents of a stream, including a FileStream or MemoryStream. This situation seems
perfect for generics, but you need some way to ensure that only stream types are used as
type arguments. You don’t want to allow a type argument of int, for example. You also need
some way to tell the compiler that the methods defined by a stream will be available for use.
For example, your generic code needs some way to know that it can call the Read() method.

To handle such situations, C# provides constrained types. When specifying a type parameter,
you can specify a constraint that the type parameter must satisfy. This is accomplished through
the use of a where clause when specifying the type parameter, as shown here:

class class-name<type-param> where type-param : constraints { // ...

Here, constraints is a comma-separated list of constraints.
C# defines the following types of constraints.

• You can require that a certain base class be present in a type argument by using a
base class constraint. This constraint is specified by naming the desired base class.
There is a variation of this constraint, called a naked type constraint, in which a type
parameter (rather than an actual type) specifies the base class. This enables you to
establish a relationship between two type parameters.

• You can require that one or more interfaces be implemented by a type argument by
using an interface constraint. This constraint is specified by naming the desired interface.

• You can require that the type argument supply a parameterless constructor. This is
called a constructor constraint. It is specified by new().

• You can specify that a type argument must be a reference type by specifying the
reference type constraint: class.

• You can specify that the type argument be a value type by specifying the value type
constraint: struct.

Of these constraints, the base class constraint and the interface constraint are probably
the most often used, but all are important. Each constraint is examined in the following
sections.

Using a Base Class Constraint
The base class constraint enables you to specify a base class that a type argument must
inherit. A base class constraint serves two important purposes. First, it lets you use the
members of the base class specified by the constraint within the generic class. For example,
you can call a method or use a property of the base class. Without a base class constraint,
the compiler has no way to know what type of members a type argument might have. By
supplying a base class constraint, you are letting the compiler know that all type arguments
will have the members defined by that base class.

The second purpose of a base class constraint is to ensure that only type arguments that
support the specified base class are used. This means that for any given base class constraint,
the type argument must be either the base class, itself, or a class derived from that base class.
If you attempt to use a type argument that does not match or inherit the specified base class,
a compile-time error will result.

PART I

C h a p t e r 1 8 : G e n e r i c s 505

PART I
PART I

The base class constraint uses this form of the where clause:

where T : base-class-name

Here, T is the name of the type parameter, and base-class-name is the name of the base class.
Only one base class can be specified.

Here is a simple example that demonstrates the base class constraint mechanism:

// A simple demonstration of a base class constraint.

using System;

class A {
 public void Hello() {
 Console.WriteLine("Hello");
 }
}

// Class B inherits A.
class B : A { }

// Class C does not inherit A.
class C { }

// Because of the base class constraint, all type arguments
// passed to Test must have A as a base class.
class Test<T> where T : A {
 T obj;

 public Test(T o) {
 obj = o;
 }

 public void SayHello() {
 // OK to call Hello() because it’s declared
 // by the base class A.
 obj.Hello();
 }
}

class BaseClassConstraintDemo {
 static void Main() {
 A a = new A();
 B b = new B();
 C c = new C();

 // The following is valid because A is the specified base class.
 Test<A> t1 = new Test<A>(a);

 t1.SayHello();

 // The following is valid because B inherits A.
 Test t2 = new Test(b);

506 P a r t I : T h e C # L a n g u a g e

 t2.SayHello();

 // The following is invalid because C does not inherit A.
// Test<C> t3 = new Test<C>(c); // Error!
// t3.SayHello(); // Error!
 }
}

In this program, class A is inherited by B, but not by C. Notice also that A declares a
method called Hello(). Next, notice that Test is a generic class that is declared like this:

class Test<T> where T : A {

The where clause stipulates that any type argument specified for T must have A as a base
class.

Now notice that Test declares the method SayHello(), shown next:

public void SayHello() {
 // OK to call Hello() because it’s declared
 // by the base class A.
 obj.Hello();
}

This method calls Hello() on obj, which is a T object. The key point is that the only reason
that Hello() can be called is because the base class constraint requires that any type argument
bound to T must be A or inherit A, and A declares Hello(). Thus, any valid T will define
Hello(). If the base class constraint had not been used, the compiler would have no way of
knowing that a method called Hello() could be called on a object of type T. You can prove
this for yourself by removing the where clause. The program will no longer compile because
the Hello() method will be unknown.

In addition to enabling access to members of the base class, the base class constraint
enforces that only types that inherit the base class can be passed as type arguments. This
is why the following two lines are commented-out:

// Test<C> t3 = new Test<C>(c); // Error!
// t3.SayHello(); // Error!

Because C does not inherit A, it can’t be used as a type argument when constructing a Test
object. You can prove this by removing the comment symbols and trying to recompile.

Before continuing, let’s review the two effects of a base class constraint: A base class
constraint enables a generic class to access the members of the base class. It also ensures that
only those type arguments that fulfill this constraint are valid, thus preserving type safety.

Although the preceding example shows the “how” of base class constraints, it does not
show the “why.” To better understand the value of base type constraints, let’s work through
another, more practical example. Assume you want to create a mechanism that manages
lists of telephone numbers. Furthermore, assume you want to use different lists for different
groupings of numbers. Specifically, you want one list for friends, another for suppliers, and
so on. To accomplish this, you might start by creating a base class called PhoneNumber that
stores a name and a phone number linked to that name. Such a class might look like this:

PART I

C h a p t e r 1 8 : G e n e r i c s 507

PART I
PART I

// A base class that stores a name and phone number.
class PhoneNumber {
 public PhoneNumber(string n, string num) {
 Name = n;
 Number = num;
 }

 // Auto-implemented properties that hold a name and phone number.
 public string Number { get; set; }
 public string Name { get; set; }
}

Next, you create two classes that inherit PhoneNumber: Friend and Supplier. They are
shown here:

// A class of phone numbers for friends.
class Friend : PhoneNumber {

 public Friend(string n, string num, bool wk) :
 base(n, num)
 {
 IsWorkNumber = wk;
 }

 public bool IsWorkNumber { get; private set; }
 // ...
}

// A class of phone numbers for suppliers.
class Supplier : PhoneNumber {
 public Supplier(string n, string num) :
 base(n, num) { }

 // ...
}

Notice that Friend adds a property called IsWorkNumber, which returns true if the
telephone number is a work number.

To manage telephone lists, you create a class called PhoneList. Because you want this
class to manage any type of phone list, you make it generic. Furthermore, because part
of the list management is looking up numbers given names, and vice versa, you add the
constraint that requires that the type of objects stored in the list must be instances of a class
derived from PhoneNumber.

// PhoneList can manage any type of phone list
// as long as it is derived from PhoneNumber.
class PhoneList<T> where T : PhoneNumber {
 T[] phList;
 int end;

 public PhoneList() {
 phList = new T[10];

508 P a r t I : T h e C # L a n g u a g e

 end = 0;
 }

 // Add an entry to the list.
 public bool Add(T newEntry) {
 if(end == 10) return false;

 phList[end] = newEntry;
 end++;

 return true;
 }

 // Given a name, find and return the phone info.
 public T FindByName(string name) {

 for(int i=0; i<end; i++) {
 // Name can be used because it is a member of
 // PhoneNumber, which is the base class constraint.
 if(phList[i].Name == name)
 return phList[i];
 }

 // Name not in list.
 throw new NotFoundException();
 }

 // Given a number, find and return the phone info.
 public T FindByNumber(string number) {

 for(int i=0; i<end; i++) {
 // Number can be used because it is also a member of
 // PhoneNumber, which is the base class constraint.
 if(phList[i].Number == number)
 return phList[i];
 }

 // Number not in list.
 throw new NotFoundException();
 }

 // ...
}

The base class constraint enables code inside PhoneList to access the properties Name and
Number for any type of telephone list. It also guarantees that only valid types are used to
construct a PhoneList object. Notice that PhoneList throws a NotFoundException if a name
or number is not found. This is a custom exception that is declared as shown here:

class NotFoundException : Exception {
 /* Implement all of the Exception constructors. Notice that
 the constructors simply execute the base class constructor.
 Because NotFoundException adds nothing to Exception,
 there is no need for any further actions. */

PART I

C h a p t e r 1 8 : G e n e r i c s 509

PART I
PART I

 public NotFoundException() : base() { }
 public NotFoundException(string str) : base(str) { }
 public NotFoundException(string str, Exception inner) :
 base(str, inner) { }
 protected NotFoundException(
 System.Runtime.Serialization.SerializationInfo si,
 System.Runtime.Serialization.StreamingContext sc) :
 base(si, sc) { }
}

Although only the default constructor is used by this example, NotFoundException
implements all of the constructors defined by Exception for the sake of illustration.
Notice that these constructors simply invoke the equivalent base class constructor
defined by Exception. Because NotFoundException adds nothing to Exception, there
is no reason for any further action.

The following program puts together all the pieces and demonstrates PhoneList. Notice
that a class called EmailFriend is also created. This class does not inherit PhoneNumber.
Thus, it cannot be used to create a PhoneList.

// A more practical demonstration of a base class constraint.

using System;

// A custom exception that is thrown if a name or number is not found.
class NotFoundException : Exception {
 /* Implement all of the Exception constructors. Notice that
 the constructors simply execute the base class constructor.
 Because NotFoundException adds nothing to Exception,
 there is no need for any further actions. */
 public NotFoundException() : base() { }
 public NotFoundException(string str) : base(str) { }
 public NotFoundException(string str, Exception inner) :
 base(str, inner) { }
 protected NotFoundException(
 System.Runtime.Serialization.SerializationInfo si,
 System.Runtime.Serialization.StreamingContext sc) :
 base(si, sc) { }
}
// A base class that stores a name and phone number.
class PhoneNumber {

 public PhoneNumber(string n, string num) {
 Name = n;
 Number = num;
 }

 public string Number { get; set; }
 public string Name { get; set; }

}

// A class of phone numbers for friends.
class Friend : PhoneNumber {

510 P a r t I : T h e C # L a n g u a g e

 public Friend(string n, string num, bool wk) :
 base(n, num)
 {
 IsWorkNumber = wk;
 }

 public bool IsWorkNumber { get; private set; }

 // ...
}

// A class of phone numbers for suppliers.
class Supplier : PhoneNumber {
 public Supplier(string n, string num) :
 base(n, num) { }

 // ...
}

// Notice that this class does not inherit PhoneNumber.
class EmailFriend {
 // ...
}

// PhoneList can manage any type of phone list
// as long as it is derived from PhoneNumber.
class PhoneList<T> where T : PhoneNumber {
 T[] phList;
 int end;

 public PhoneList() {
 phList = new T[10];
 end = 0;
 }

 // Add an entry to the list.
 public bool Add(T newEntry) {
 if(end == 10) return false;

 phList[end] = newEntry;
 end++;

 return true;
 }

 // Given a name, find and return the phone info.
 public T FindByName(string name) {

 for(int i=0; i<end; i++) {
 // Name can be used because it is a member of
 // PhoneNumber, which is the base class constraint.
 if(phList[i].Name == name)
 return phList[i];
 }

PART I

C h a p t e r 1 8 : G e n e r i c s 511

PART I
PART I

 // Name not in list.
 throw new NotFoundException();
 }

 // Given a number, find and return the phone info.
 public T FindByNumber(string number) {

 for(int i=0; i<end; i++) {
 // Number can be used because it is also a member of
 // PhoneNumber, which is the base class constraint.
 if(phList[i].Number == number)
 return phList[i];
 }

 // Number not in list.
 throw new NotFoundException();
 }

 // ...
}

// Demonstrate base class constraints.
class UseBaseClassConstraint {
 static void Main() {

 // The following code is OK because Friend
 // inherits PhoneNumber.
 PhoneList<Friend> plist = new PhoneList<Friend>();
 plist.Add(new Friend("Tom", "555-1234", true));
 plist.Add(new Friend("Gary", "555-6756", true));
 plist.Add(new Friend("Matt", "555-9254", false));

 try {
 // Find the number of a friend given a name.
 Friend frnd = plist.FindByName("Gary");

 Console.Write(frnd.Name + ": " + frnd.Number);

 if(frnd.IsWorkNumber)
 Console.WriteLine(" (work)");
 else
 Console.WriteLine();
 } catch(NotFoundException) {
 Console.WriteLine("Not Found");
 }

 Console.WriteLine();

 // The following code is also OK because Supplier
 // inherits PhoneNumber.
 PhoneList<Supplier> plist2 = new PhoneList<Supplier>();
 plist2.Add(new Supplier("Global Hardware", "555-8834"));
 plist2.Add(new Supplier("Computer Warehouse", "555-9256"));
 plist2.Add(new Supplier("NetworkCity", "555-2564"));

512 P a r t I : T h e C # L a n g u a g e

 try {
 // Find the name of a supplier given a number.
 Supplier sp = plist2.FindByNumber("555-2564");
 Console.WriteLine(sp.Name + ": " + sp.Number);
 } catch(NotFoundException) {
 Console.WriteLine("Not Found");
 }

 // The following declaration is invalid because EmailFriend
 // does NOT inherit PhoneNumber.
// PhoneList<EmailFriend> plist3 =
// new PhoneList<EmailFriend>(); // Error!
 }
}

The output from the program is shown here:

Gary: 555-6756 (work)

NetworkCity: 555-2564

You might want to try experimenting with this program a bit. For example, try creating
different types of telephone lists. Also, try using IsWorkNumber from within PhoneList. As
you will see, the compiler won’t let you do it. The reason is that IsWorkNumber is a property
defined by Friend, not by PhoneNumber. Thus, PhoneList has no knowledge of it.

Using an Interface Constraint
The interface constraint enables you to specify an interface that a type argument must
implement. The interface constraint serves the same two important purposes as the base
class constraint. First, it lets you use the members of the interface within the generic class.
Second, it ensures that only type arguments that implement the specified interface are used.
This means that for any given interface constraint, the type argument must be either the
interface or a type that implements that interface.

The interface constraint uses this form of the where clause:

where T : interface-name

Here, T is the name of the type parameter, and interface-name is the name of the interface.
More than one interface can be specified by using a comma-separated list. If a constraint
includes both a base class and interface, then the base class must be listed first.

The following program illustrates the interface constraint by reworking the telephone
list example shown in the previous section. In this version, the PhoneNumber class has
been converted into an interface called IPhoneNumber. This interface is then implemented
by Friend and Supplier.

// Use an interface constraint.

using System;

// A custom exception that is thrown if a name or number is not found.
class NotFoundException : Exception {
 /* Implement all of the Exception constructors. Notice that

PART I

C h a p t e r 1 8 : G e n e r i c s 513

PART I
PART I

 the constructors simply execute the base class constructor.
 Because NotFoundException adds nothing to Exception,
 there is no need for any further actions. */
 public NotFoundException() : base() { }
 public NotFoundException(string str) : base(str) { }
 public NotFoundException(string str, Exception inner) :
 base(str, inner) { }
 protected NotFoundException(
 System.Runtime.Serialization.SerializationInfo si,
 System.Runtime.Serialization.StreamingContext sc) :
 base(si, sc) { }
}

// An interface that supports a name and phone number.
public interface IPhoneNumber {

 string Number {
 get;
 set;
 }

 string Name {
 get;
 set;
 }
}

// A class of phone numbers for friends.
// It implements IPhoneNumber.
class Friend : IPhoneNumber {

 public Friend(string n, string num, bool wk) {
 Name = n;
 Number = num;

 IsWorkNumber = wk;
 }

 public bool IsWorkNumber { get; private set; }

 // Implement IPhoneNumber.
 public string Number { get; set; }
 public string Name { get; set; }

 // ...
}

// A class of phone numbers for suppliers.
class Supplier : IPhoneNumber {

 public Supplier(string n, string num) {
 Name = n;
 Number = num;
 }

514 P a r t I : T h e C # L a n g u a g e

 // Implement IPhoneNumber.
 public string Number { get; set; }
 public string Name { get; set; }

 // ...
}

// Notice that this class does not implement IPhoneNumber.
class EmailFriend {
 // ...
}

// PhoneList can manage any type of phone list
// as long as it implements IPhoneNumber.
class PhoneList<T> where T : IPhoneNumber {
 T[] phList;
 int end;

 public PhoneList() {
 phList = new T[10];
 end = 0;
 }

 public bool Add(T newEntry) {
 if(end == 10) return false;

 phList[end] = newEntry;
 end++;

 return true;
 }

 // Given a name, find and return the phone info.
 public T FindByName(string name) {

 for(int i=0; i<end; i++) {
 // Name can be used because it is a member of
 // IPhoneNumber, which is the interface constraint.
 if(phList[i].Name == name)
 return phList[i];
 }

 // Name not in list.
 throw new NotFoundException();
 }

 // Given a number, find and return the phone info.
 public T FindByNumber(string number) {

 for(int i=0; i<end; i++) {
 // Number can be used because it is also a member of
 // IPhoneNumber, which is the interface constraint.
 if(phList[i].Number == number)
 return phList[i];
 }

PART I

C h a p t e r 1 8 : G e n e r i c s 515

PART I
PART I

 // Number not in list.
 throw new NotFoundException();
 }

 // ...
}

// Demonstrate interface constraints.
class UseInterfaceConstraint {
 static void Main() {

 // The following code is OK because Friend
 // implements IPhoneNumber.
 PhoneList<Friend> plist = new PhoneList<Friend>();
 plist.Add(new Friend("Tom", "555-1234", true));
 plist.Add(new Friend("Gary", "555-6756", true));
 plist.Add(new Friend("Matt", "555-9254", false));

 try {
 // Find the number of a friend given a name.
 Friend frnd = plist.FindByName("Gary");

 Console.Write(frnd.Name + ": " + frnd.Number);

 if(frnd.IsWorkNumber)
 Console.WriteLine(" (work)");
 else
 Console.WriteLine();
 } catch(NotFoundException) {
 Console.WriteLine("Not Found");
 }

 Console.WriteLine();

 // The following code is also OK because Supplier
 // implements IPhoneNumber.
 PhoneList<Supplier> plist2 = new PhoneList<Supplier>();
 plist2.Add(new Supplier("Global Hardware", "555-8834"));
 plist2.Add(new Supplier("Computer Warehouse", "555-9256"));
 plist2.Add(new Supplier("NetworkCity", "555-2564"));

 try {
 // Find the name of a supplier given a number.
 Supplier sp = plist2.FindByNumber("555-2564");
 Console.WriteLine(sp.Name + ": " + sp.Number);
 } catch(NotFoundException) {
 Console.WriteLine("Not Found");
 }

 // The following declaration is invalid because EmailFriend
 // does NOT implement IPhoneNumber.
// PhoneList<EmailFriend> plist3 =
// new PhoneList<EmailFriend>(); // Error!
 }
}

516 P a r t I : T h e C # L a n g u a g e

In this version of the program, the interface constraint specified by PhoneList requires
that a type argument implement the IPhoneList interface. Because both Friend and Supplier
implement IPhoneList, they are valid types to be bound to T. However, EmailFriend does
not implement IPhoneList and cannot be bound to T. To prove this, remove the comment
symbols from the last two lines in Main(). As you will see, the program will not compile.

Using the new() Constructor Constraint
The new() constructor constraint enables you to instantiate an object of a generic type.
Normally, you cannot create an instance of a generic type parameter. However, the new()
constraint changes this because it requires that a type argument supply a parameterless
constructor. This can be the default constructor provided automatically when no explicit
constructor is declared or a parameterless constructor explicitly defined by you. With the
new() constraint in place, you can invoke the parameterless constructor to create an object.

Here is a simple example that illustrates the use of new():

// Demonstrate a new() constructor constraint.

using System;

class MyClass {

 public MyClass() {
 // ...
 }

 //...
}

class Test<T> where T : new() {
 T obj;

 public Test() {
 // This works because of the new() constraint.
 obj = new T(); // create a T object
 }

 // ...
}

class ConsConstraintDemo {
 static void Main() {

 Test<MyClass> x = new Test<MyClass>();

 }
}

First, notice the declaration of the Test class, shown here:

class Test<T> where T : new() {

PART I

C h a p t e r 1 8 : G e n e r i c s 517

PART I
PART I

Because of the new() constraint, any type argument must supply a parameterless
constructor.

Next, examine the Test constructor, shown here:

public Test() {
 // This works because of the new() constraint.
 obj = new T(); // create a T object
}

A new object of type T is created and a reference to it is assigned to obj. This statement is
valid only because the new() constraint ensures that a constructor will be available. To
prove this, try removing the new() constraint and then attempt to recompile the program.
As you will see, an error will be reported.

In Main(), an object of type Test is instantiated, as shown here:

Test<MyClass> x = new Test<MyClass>();

Notice that the type argument is MyClass, and that MyClass defines a parameterless
constructor. Thus, it is valid for use as a type argument for Test. It must be emphasized that
it was not necessary for MyClass to explicitly declare a parameterless constructor. Its default
constructor would also satisfy the constraint. However, if a class needs other constructors
in addition to a parameterless one, then it would be necessary to also explicitly declare a
parameterless version, too.

There are three important points about using new(). First, it can be used with other
constraints, but it must be the last constraint in the list. Second, new() allows you to
construct an object using only the parameterless constructor, even when other constructors
are available. In other words, it is not permissible to pass arguments to the constructor of a
type parameter. Third, you cannot use new() in conjunction with a value type constraint,
described next.

The Reference Type and Value Type Constraints
The next two constraints enable you to indicate that a type argument must be either a
reference type or a value type. These are useful in the few cases in which the difference
between reference and value types are important to generic code. Here is the general form
of the reference type constraint:

where T : class

In this form of the where clause, the keyword class specifies that T must be a reference type.
Thus, an attempt to use a value type, such as int or bool, for T will result in a compilation
error.

Here is the general form of the value type constraint:

where T : struct

In this case, the keyword struct specifies that T must be a value type. (Recall that structures
are value types.) Thus, an attempt to use a reference type, such as string, for T will result in
a compilation error. In both cases, when additional constraints are present, class or struct
must be the first constraint in the list.

518 P a r t I : T h e C # L a n g u a g e

Here is an example that demonstrates the reference type constraint:

// Demonstrate a reference constraint.

using System;

class MyClass {
 //...
}

// Use a reference constraint.
class Test<T> where T : class {
 T obj;

 public Test() {
 // The following statement is legal only
 // because T is guaranteed to be a reference
 // type, which can be assigned the value null.
 obj = null;
 }

 // ...
}

class ClassConstraintDemo {
 static void Main() {

 // The following is OK because MyClass is a class.
 Test<MyClass> x = new Test<MyClass>();

 // The next line is in error because int is a value type.
// Test<int> y = new Test<int>();
 }
}

First, notice how Test is declared:

class Test<T> where T : class {

The class constraint requires that any type argument for T be a reference type. In this
program, this is necessary because of what occurs inside the Test constructor:

public Test() {
 // The following statement is legal only
 // because T is guaranteed to be a reference
 // type, which can be assigned the value null.
 obj = null;
}

Here, obj (which is of type T) is assigned the value null. This assignment is valid only for
reference types. As a general rule, you cannot assign null to a value type. (The exception to
this rule is the nullable type, which is a special structure type that encapsulates a value type
and allows the value null. See Chapter 20 for details.) Therefore, without the constraint, the

PART I

C h a p t e r 1 8 : G e n e r i c s 519

PART I
PART I

assignment would not have been valid and the compile would have failed. This is one case
in which the difference between value types and reference types might be important to a
generic routine.

The value type constraint is the complement of the reference type constraint. It simply
ensures that any type argument is a value type, including a struct or an enum. (In this
context, a nullable type is not considered a value type.) Here is an example:

// Demonstrate a value type constraint.

using System;

struct MyStruct {
 //...
}

class MyClass {
 // ...
}

class Test<T> where T : struct {
 T obj;

 public Test(T x) {
 obj = x;
 }

 // ...
}

class ValueConstraintDemo {
 static void Main() {

 // Both of these declarations are legal.

 Test<MyStruct> x = new Test<MyStruct>(new MyStruct());

 Test<int> y = new Test<int>(10);

 // But, the following declaration is illegal!
// Test<MyClass> z = new Test<MyClass>(new MyClass());
 }
}

In this program, Test is declared as shown here:

class Test<T> where T : struct {

Because T of Test now has the struct constraint, T can be bound only to value type arguments.
This means that Test<MyStruct> and Test<int> are valid, but Test<MyClass> is not. To
prove this, try removing the comment symbols from the start of the last line in the program
and recompiling. An error will be reported.

520 P a r t I : T h e C # L a n g u a g e

Using a Constraint to Establish a Relationship Between Two Type Parameters
There is a variation of the base class constraint that allows you to establish a relationship
between two type parameters. For example, consider the following generic class declaration:

class Gen<T, V> where V : T {

In this declaration, the where clause tells the compiler that the type argument bound to V
must be identical to or inherit from the type argument bound to T. If this relationship is not
present when an object of type Gen is declared, then a compile-time error will result. A
constraint that uses a type parameter, such as that just shown, is called a naked type constraint.
The following example illustrates this constraint:

// Create relationship between two type parameters.

using System;

class A {
 //...
}

class B : A {
 // ...
}

// Here, V must be or inherit from T.
class Gen<T, V> where V : T {
 // ...
}

class NakedConstraintDemo {
 static void Main() {

 // This declaration is OK because B inherits A.
 Gen<A, B> x = new Gen<A, B>();

 // This declaration is in error because
 // A does not inherit B.
// Gen<B, A> y = new Gen<B, A>();

 }
}

First, notice that class B inherits class A. Next, examine the two Gen declarations in
Main(). As the comments explain, the first declaration

Gen<A, B> x = new Gen<A, B>();

is legal because B inherits A. However, the second declaration

// Gen<B, A> y = new Gen<B, A>();

is illegal because A does not inherit B.

PART I

C h a p t e r 1 8 : G e n e r i c s 521

PART I
PART I

Using Multiple Constraints
There can be more than one constraint associated with a type parameter. When this is the
case, use a comma-separated list of constraints. In this list, the first constraint must be class
or struct (if present) or the base class (if one is specified). It is illegal to specify both a class
or struct constraint and a base class constraint. Next in the list must be any interface
constraints. The new() constraint must be last. For example, this is a valid declaration.

class Gen<T> where T : MyClass, IMyInterface, new() { // ...

In this case, T must be replaced by a type argument that inherits MyClass, implements
IMyInterface, and has a parameterless constructor.

When using two or more type parameters, you can specify a constraint for each
parameter by using a separate where clause. Here is an example:

// Use multiple where clauses.

using System;

// Gen has two type arguments and both have a where clause.
class Gen<T, V> where T : class
 where V : struct {
 T ob1;
 V ob2;

 public Gen(T t, V v) {
 ob1 = t;
 ob2 = v;
 }
}

class MultipleConstraintDemo {
 static void Main() {
 // This is OK because string is a class and
 // int is a value type.
 Gen<string, int> obj = new Gen<string, int>("test", 11);

 // The next line is wrong because bool is not
 // a reference type.
// Gen<bool, int> obj = new Gen<bool, int>(true, 11);
 }
}

In this example, Gen takes two type arguments and both have a where clause. Pay
special attention to its declaration:

class Gen<T, V> where T : class
 where V : struct {

Notice the only thing that separates the first where clause from the second is whitespace.
No other punctuation is required or valid.

522 P a r t I : T h e C # L a n g u a g e

Creating a Default Value of a Type Parameter
When writing generic code, there will be times when the difference between value types and
reference types is an issue. One such situation occurs when you want to give a variable of a
type parameter a default value. For reference types, the default value is null. For non-struct
value types, the default value is 0. The default value for a struct is an object of that struct
with all fields set to their defaults. Thus, trouble occurs if you want to give a variable of a
type parameter a default value. What value would you use: null, 0, or something else?

For example, given a generic class called Test declared like this:

class Test<T> {
 T obj;
 // ...

if you want to give obj a default value, would you use

obj = null; // works only for reference types

or

obj = 0; // works only for numeric types and enums, but not structs

The solution to this problem is to use another form of default, shown here:

default(type)

This is the operator form of default, and it produces a default value of the specified type, no
matter what type is used. Thus, continuing with the example, to assign obj a default value
of type T, you would use this statement:

obj = default(T);

This will work for all type arguments, whether they are value or reference types.
Here is a short program that demonstrates default:

// Demonstrate the default operator.

using System;

class MyClass {
 //...
}

// Construct a default value of T.
class Test<T> {
 public T obj;

 public Test() {
 // The following statement would work only for reference types.
// obj = null; // can’t use

 // The following statement will work only for numeric value types.
// obj = 0; // can’t use

PART I

C h a p t e r 1 8 : G e n e r i c s 523

PART I
PART I

 // This statement works for both reference and value types.
 obj = default(T); // Works!
 }

 // ...
}

class DefaultDemo {
 static void Main() {

 // Construct Test using a reference type.
 Test<MyClass> x = new Test<MyClass>();

 if(x.obj == null)
 Console.WriteLine("x.obj is null.");

 // Construct Test using a value type.
 Test<int> y = new Test<int>();

 if(y.obj == 0)
 Console.WriteLine("y.obj is 0.");
 }
}

The output is shown here:

x.obj is null.
y.obj is 0.

Generic Structures
C# allows you to create generic structures. The syntax is the same as for generic classes. For
example, in the following program, the XY structure, which stores X, Y coordinates, is generic:

// Demonstrate a generic struct.
using System;

// This structure is generic.
struct XY<T> {
 T x;
 T y;

 public XY(T a, T b) {
 x = a;
 y = b;
 }

 public T X {
 get { return x; }
 set { x = value; }
 }

 public T Y {
 get { return y; }

524 P a r t I : T h e C # L a n g u a g e

 set { y = value; }
 }
}

class StructTest {
 static void Main() {
 XY<int> xy = new XY<int>(10, 20);
 XY<double> xy2 = new XY<double>(88.0, 99.0);

 Console.WriteLine(xy.X + ", " + xy.Y);

 Console.WriteLine(xy2.X + ", " + xy2.Y);
 }
}

The output is shown here:

10, 20
88, 99

Like generic classes, generic structures can have constraints. For example, this version of
XY restricts type arguments to value types:

struct XY<T> where T : struct {
// ...

Creating a Generic Method
As the preceding examples have shown, methods inside a generic class can make use of a
class’ type parameter and are, therefore, automatically generic relative to the type parameter.
However, it is possible to declare a generic method that uses one or more type parameters
of its own. Furthermore, it is possible to create a generic method that is enclosed within a
non-generic class.

Let’s begin with an example. The following program declares a non-generic class called
ArrayUtils and a static generic method within that class called CopyInsert(). The CopyInsert()
method copies the contents of one array to another, inserting a new element at a specified
location in the process. It can be used with any type of array.

// Demonstrate a generic method.

using System;

// A class of array utilities. Notice that this is not
// a generic class.
class ArrayUtils {

 // Copy an array, inserting a new element
 // in the process. This is a generic method.
 public static bool CopyInsert<T>(T e, uint idx,
 T[] src, T[] target) {

 // See if target array is big enough.
 if(target.Length < src.Length+1)
 return false;

PART I

C h a p t e r 1 8 : G e n e r i c s 525

PART I
PART I

 // Copy src to target, inserting e at idx in the process.
 for(int i=0, j=0; i < src.Length; i++, j++) {
 if(i == idx) {
 target[j] = e;
 j++;
 }
 target[j] = src[i];
 }

 return true;
 }
}

class GenMethDemo {
 static void Main() {
 int[] nums = { 1, 2, 3 };
 int[] nums2 = new int[4];

 // Display contents of nums.
 Console.Write("Contents of nums: ");
 foreach(int x in nums)
 Console.Write(x + " ");

 Console.WriteLine();

 // Operate on an int array.
 ArrayUtils.CopyInsert(99, 2, nums, nums2);

 // Display contents of nums2.
 Console.Write("Contents of nums2: ");
 foreach(int x in nums2)
 Console.Write(x + " ");

 Console.WriteLine();

 // Now, use copyInsert on an array of strings.
 string[] strs = { "Generics", "are", "powerful."};
 string[] strs2 = new string[4];

 // Display contents of strs.
 Console.Write("Contents of strs: ");
 foreach(string s in strs)
 Console.Write(s + " ");

 Console.WriteLine();

 // Insert into a string array.
 ArrayUtils.CopyInsert("in C#", 1, strs, strs2);

 // Display contents of strs2.
 Console.Write("Contents of strs2: ");
 foreach(string s in strs2)
 Console.Write(s + " ");

526 P a r t I : T h e C # L a n g u a g e

 Console.WriteLine();

 // This call is invalid because the first argument
 // is of type double, and the third and fourth arguments
 // have element types of int.
// ArrayUtils.CopyInsert(0.01, 2, nums, nums2);
 }
}

The output from the program is shown here:

Contents of nums: 1 2 3
Contents of nums2: 1 2 99 3
Contents of strs: Generics are powerful.
Contents of strs2: Generics in C# are powerful.

Let’s examine CopyInsert() closely. First, notice how it is declared by this line:

public static bool CopyInsert<T>(T e, uint idx,
 T[] src, T[] target) {

The type parameter is declared after the method name, but before the parameter list. Also
notice that CopyInsert() is static, enabling it to be called independently of any object.
Understand, though, that generic methods can be either static or non-static. There is no
restriction in this regard.

Now, notice how CopyInsert() is called within Main() by use of the normal call syntax,
without the need to specify type arguments. This is because the types of the arguments are
automatically discerned, and the type of T is adjusted accordingly. This process is called
type inference. For example, in the first call:

ArrayUtils.CopyInsert(99, 2, nums, nums2);

the type of T becomes int because 99 and the element types of nums and nums2 are int. In
the second call, string types are used, and T is replaced by string.

Now, notice the commented-out code, shown here:

// ArrayUtils.CopyInsert(0.01, 2, nums, nums2);

If you remove the comments and then try to compile the program, you will receive an error.
The reason is that the type of the first argument is double, but the element types of nums
and nums2 are int. However, all three types must be substituted for the same type
parameter, T. This causes a type-mismatch, which results in a compile-time error. This
ability to enforce type safety is one of the most important advantages of generic methods.

The syntax used to create CopyInsert() can be generalized. Here is the general form of a
generic method:

ret-type meth-name<type-param-list>(param-list) { // ...

In all cases, type-param-list is a comma-separated list of type parameters. Notice that for a
generic method, the type parameter list follows the method name.

PART I

C h a p t e r 1 8 : G e n e r i c s 527

PART I
PART I

Using Explicit Type Arguments to Call a Generic Method
Although implicit type inference is adequate for most invocations of a generic method, it is
possible to explicitly specify the type argument. To do so, specify the type argument after
the method name when calling the method. For example, here CopyInsert() is explicitly
passed type string:

ArrayUtils.CopyInsert<string>("in C#", 1, strs, strs2);

You will need to explicitly specify the type when the compiler cannot infer the type for the
T parameter or if you want to override the type inference.

Using a Constraint with a Generic Method
You can add constraints to the type arguments of a generic method by specifying them after
the parameter list. For example, the following version of CopyInsert() will work only with
reference types:

public static bool CopyInsert<T>(T e, uint idx,
 T[] src, T[] target) where T : class {

If you were to try this version in the program shown earlier, then the following call to
CopyInsert() would not compile because int is a value type, not a reference type:

// Now wrong because T must be reference type!
ArrayUtils.CopyInsert(99, 2, nums, nums2); // Now illegal!

Generic Delegates
Like methods, delegates can also be generic. To declare a generic delegate, use this general
form:

delegate ret-type delegate-name<type-parameter-list>(arg-list);

Notice the placement of the type parameter list. It immediately follows the delegate’s name.
The advantage of generic delegates is that they let you define, in a type-safe manner, a
generalized form that can then be matched to any compatible method.

The following program demonstrates a generic delegate called SomeOp that has one
type parameter called T. It returns type T and takes an argument of type T.

// A simple generic delegate.

using System;

// Declare a generic delegate.
delegate T SomeOp<T>(T v);

class GenDelegateDemo {
 // Return the summation of the argument.
 static int Sum(int v) {
 int result = 0;
 for(int i=v; i>0; i--)

528 P a r t I : T h e C # L a n g u a g e

 result += i;

 return result;
 }

 // Return a string containing the reverse of the argument.
 static string Reflect(string str) {
 string result = "";

 foreach(char ch in str)
 result = ch + result;

 return result;
 }

 static void Main() {
 // Construct an int delegate.
 SomeOp<int> intDel = Sum;
 Console.WriteLine(intDel(3));

 // Construct a string delegate.
 SomeOp<string> strDel = Reflect;
 Console.WriteLine(strDel("Hello"));
 }
}

The output is shown here:

6
olleH

Let’s look closely at this program. First, notice how the SomeOp delegate is declared:

delegate T SomeOp<T>(T v);

Notice that T can be used as the return type even though the type parameter T is specified
after the name SomeOp.

Inside GenDelegateDemo, the methods Sum() and Reflect() are declared, as shown
here:

static int Sum(int v) {

static string Reflect(string str) {

The Sum() method returns the summation of the integer value passed as an argument. The
Reflect() method returns a string that is the reverse of the string passed as an argument.

Inside Main(), a delegate called intDel is instantiated and assigned a reference to Sum():

SomeOp<int> intDel = Sum;

Because Sum() takes an int argument and returns an int value, Sum() is compatible with
an int instance of SomeOp.

PART I

C h a p t e r 1 8 : G e n e r i c s 529

PART I
PART I

In similar fashion, the delegate strDel is created and assigned a reference to Reflect():

SomeOp<string> strDel = Reflect;

Because Reflect() takes a string argument and returns a string result, it is compatible with
the string version of SomeOp.

Because of the type safety inherent in generics, you cannot assign incompatible methods
to delegates. For example, assuming the preceding program, the following statement would
be in error:

SomeOp<int> intDel = Reflect; // Error!

Because Reflect() takes a string argument and returns a string result, it cannot be assigned
to an int version of SomeOp.

As explained in Chapter 15, one of the major uses of delegates occurs when handling
events. Although events, themselves, cannot be generic, the delegate that supports an event
can. The following program reworks an example from Chapter 15 (the .NET-compatible
event demonstration) so that it uses a generic delegate:

// Convert event example from Chapter 15 to use generic delegate.

using System;

// Derive a class from EventArgs.
class MyEventArgs : EventArgs {
 public int EventNum;
}

// Declare a generic delegate for an event.
delegate void MyEventHandler<T, V>(T source, V args);

// Declare an event class.
class MyEvent {
 static int count = 0;

 public event MyEventHandler<MyEvent, MyEventArgs> SomeEvent;

 // This fires SomeEvent.
 public void OnSomeEvent() {
 MyEventArgs arg = new MyEventArgs();

 if(SomeEvent != null) {
 arg.EventNum = count++;
 SomeEvent(this, arg);
 }
 }
}

class X {
 public void Handler<T, V>(T source, V arg) where V : MyEventArgs {
 Console.WriteLine("Event " + arg.EventNum +
 " received by an X object.");

530 P a r t I : T h e C # L a n g u a g e

 Console.WriteLine("Source is " + source);
 Console.WriteLine();
 }
}

class Y {
 public void Handler<T,V>(T source, V arg) where V : MyEventArgs {
 Console.WriteLine("Event " + arg.EventNum +
 " received by a Y object.");
 Console.WriteLine("Source is " + source);
 Console.WriteLine();
 }
}

class UseGenericEventDelegate {
 static void Main() {
 X ob1 = new X();
 Y ob2 = new Y();
 MyEvent evt = new MyEvent();

 // Add Handler() to the event list.
 evt.SomeEvent += ob1.Handler;
 evt.SomeEvent += ob2.Handler;

 // Fire the event.
 evt.OnSomeEvent();
 evt.OnSomeEvent();
 }
}

The output is show here:

Event 0 received by an X object.
Source is MyEvent

Event 0 received by a Y object.
Source is MyEvent

Event 1 received by an X object.
Source is MyEvent

Event 1 received by a Y object.
Source is MyEvent

Generic Interfaces
In addition to generic classes and methods, you can also have generic interfaces. Generic
interfaces are specified just like generic classes. Here is an example that reworks the ISeries
interface developed in Chapter 12. (Recall that ISeries defines the interface to a class that
generates a series of numbers.) The data type upon which it operates is now specified by
a type parameter.

PART I

C h a p t e r 1 8 : G e n e r i c s 531

PART I
PART I

// Demonstrate a generic interface.

using System;

public interface ISeries<T> {
 T GetNext(); // return next element in series
 void Reset(); // restart the series
 void SetStart(T v); // set the starting element
}

// Implement ISeries.
class ByTwos<T> : ISeries<T> {
 T start;
 T val;

 // This delegate defines the form of a method
 // that will be called when the next element in
 // the series is needed.
 public delegate T IncByTwo(T v);

 // This delegate reference will be assigned the
 // method passed to the ByTwos constructor.
 IncByTwo incr;

 public ByTwos(IncByTwo incrMeth) {
 start = default(T);
 val = default(T);
 incr = incrMeth;
 }

 public T GetNext() {
 val = incr(val);
 return val;
 }

 public void Reset() {
 val = start;
 }

 public void SetStart(T v) {
 start = v;
 val = start;
 }
}

class ThreeD {
 public int x, y, z;

 public ThreeD(int a, int b, int c) {
 x = a;
 y = b;
 z = c;
 }
}

532 P a r t I : T h e C # L a n g u a g e

class GenIntfDemo {
 // Define plus two for int.
 static int IntPlusTwo(int v) {
 return v + 2;
 }

 // Define plus two for double.
 static double DoublePlusTwo(double v) {
 return v + 2.0;
 }

 // Define plus two for ThreeD.
 static ThreeD ThreeDPlusTwo(ThreeD v) {
 if(v==null) return new ThreeD(0, 0, 0);
 else return new ThreeD(v.x + 2, v.y + 2, v.z + 2);
 }

 static void Main() {

 // Demonstrate int series.
 ByTwos<int> intBT = new ByTwos<int>(IntPlusTwo);

 for(int i=0; i < 5; i++)
 Console.Write(intBT.GetNext() + " ");

 Console.WriteLine();

 // Demonstrate double series.
 ByTwos<double> dblBT = new ByTwos<double>(DoublePlusTwo);

 dblBT.SetStart(11.4);

 for(int i=0; i < 5; i++)
 Console.Write(dblBT.GetNext() + " ");

 Console.WriteLine();

 // Demonstrate ThreeD series.
 ByTwos<ThreeD> ThrDBT = new ByTwos<ThreeD>(ThreeDPlusTwo);

 ThreeD coord;
 for(int i=0; i < 5; i++) {
 coord = ThrDBT.GetNext();
 Console.Write(coord.x + "," +
 coord.y + "," +
 coord.z + " ");
 }

 Console.WriteLine();
 }
}

PART I

C h a p t e r 1 8 : G e n e r i c s 533

PART I
PART I

The output is shown here:

2 4 6 8 10
13.4 15.4 17.4 19.4 21.4
0,0,0 2,2,2 4,4,4 6,6,6 8,8,8

There are several things of interest in the preceding example. First, notice how ISeries is
declared:

public interface ISeries<T> {

As mentioned, a generic interface uses a syntax similar to that of a generic class.
Now, notice how ByTwos, which implements ISeries, is declared:

class ByTwos<T> : ISeries<T> {

The type parameter T is specified by ByTwos and is also specified in ISeries. This is
important. A class that implements a generic version of a generic interface must, itself, be
generic. For example, the following declaration would be illegal because T is not defined:

class ByTwos : ISeries<T> { // Wrong!

The type argument required by the ISeries interface must be passed to ByTwos. Otherwise,
there is no way for the interface to receive the type argument.

Next, the current value of the series, val, and the starting value, start, are declared to be
objects of the generic type T. Then, a delegate called IncByTwo is declared. This delegate
defines the form of a method that will be used to increase an object of type T by two. In order
for ByTwos to work with any type of data, there must be some way to define what an increase
by two means for each type of data. This is achieved by passing to the ByTwos constructor a
reference to a method that performs an increase by two. This reference is stored in incr. When
the next element in the series is needed, that method is called through the incr delegate to
obtain the next value in the series.

Notice the class ThreeD. It encapsulates three-dimensional (X,Z,Y) coordinates. It is
used to demonstrate ByTwos on a class type.

In GenIntfDemo, three increment methods are declared; one for int, one for double,
and one for objects of type ThreeD. These are passed to the ByTwos constructor when
objects of their respective types are created. Pay special attention to ThreeDPlusTwo(),
shown here:

// Define plus two for ThreeD.
static ThreeD ThreeDPlusTwo(ThreeD v) {
 if(v==null) return new ThreeD(0, 0, 0);
 else return new ThreeD(v.x + 2, v.y + 2, v.z + 2);
}

Notice that it first checks if v is null. If it is, then it returns a new ThreeD object in which
all fields are set to zero. The reason for this is that v is set to default(T) by the ByTwos
constructor. This value is zero for value types and null for object types. Thus, (unless
SetStart() has been called) for the first increment, v will contain null instead of a reference
to an object. This means that for the first increment, a new object is required.

534 P a r t I : T h e C # L a n g u a g e

A type parameter for a generic interface can have constraints in the same way as it can
for a generic class. For example, this version of ISeries restricts its use to reference types:

public interface ISeries<T> where T : class {

When this version of ISeries is implemented, the implementing class must also specify the
same constraint for T, as shown here:

class ByTwos<T> : ISeries<T> where T : class {

Because of the reference constraint, this version of ISeries cannot be used on value types.
Thus, in the preceding program, only ByTwos<ThreeD> would be valid. ByTwos<int> and
ByTwos<double> would be invalid.

Comparing Instances of a Type Parameter
Sometimes you will want to compare two instances of a type parameter. For example, you
might want to write a generic method called IsIn() that returns true if some value is
contained within an array. To accomplish this, you might first try something like this:

// This won’t work!
public static bool IsIn<T>(T what, T[] obs) {
 foreach(T v in obs)
 if(v == what) // Error!
 return true;

 return false;
}

Unfortunately, this attempt won’t work. Because T is a generic type, the compiler has no
way to know precisely how two objects should be compared for equality. Should a bitwise
comparison be done? Should only certain fields be compared? Should reference equality be
used? The compiler has no way to answer these questions.

To enable two objects of a generic type parameter to be compared, you must use the
CompareTo() method defined by one of .NET’s standard interfaces: IComparable. This
interface is implemented by all of C#’s built-in types, including int, string, and double. It
is also easy to implement for classes that you create.

The IComparable interface defines only the CompareTo() method shown here:

int CompareTo(object obj)

CompareTo() compares the invoking object to obj. It returns zero if the two objects are
equal, a positive value if the invoking object is greater than obj, and a negative value if the
invoking object is less than obj.

To use CompareTo(), you must specify a constraint that requires every type argument
to implement the IComparable interface. Then, when you need to compare two instances of
the type parameter, simply call CompareTo(). For example, here is a corrected version of
IsIn():

// Require IComparable interface.
public static bool IsIn<T>(T what, T[] obs) where T : IComparable {
 foreach(T v in obs)

PART I

C h a p t e r 1 8 : G e n e r i c s 535

PART I
PART I

 if(v.CompareTo(what) == 0) // now OK, uses CompareTo()
 return true;

 return false;
}

Notice the use of the constraint

where T : IComparable

This constraint ensures that only types that implement IComparable are valid type
arguments for IsIn().

The following program demonstrates IsIn(). It also shows how IComparable can be
easily implemented by a class:

// Demonstrate IComparable.

using System;

class MyClass : IComparable {
 public int Val;

 public MyClass(int x) { Val = x; }

 // Implement IComparable.
 public int CompareTo(object obj) {
 return Val - ((MyClass) obj).Val;
 }
}

class CompareDemo {

 // Require IComparable interface.
 public static bool IsIn<T>(T what, T[] obs) where T : IComparable {
 foreach(T v in obs)
 if(v.CompareTo(what) == 0) // now OK, uses CompareTo()
 return true;

 return false;
 }

 // Demonstrate comparisons.
 static void Main() {
 // Use IsIn() with int.
 int[] nums = { 1, 2, 3, 4, 5 };

 if(IsIn(2, nums))
 Console.WriteLine("2 is found.");

 if(IsIn(99, nums))
 Console.WriteLine("This won’t display.");

 // Use IsIn() with string.

536 P a r t I : T h e C # L a n g u a g e

 string[] strs = { "one", "two", "Three"};

 if(IsIn("two", strs))
 Console.WriteLine("two is found.");

 if(IsIn("five", strs))
 Console.WriteLine("This won’t display.");

 // Use IsIn with MyClass.
 MyClass[] mcs = { new MyClass(1), new MyClass(2),
 new MyClass(3), new MyClass(4) };

 if(IsIn(new MyClass(3), mcs))
 Console.WriteLine("MyClass(3) is found.");

 if(IsIn(new MyClass(99), mcs))
 Console.WriteLine("This won’t display.");
 }
}

The output is shown here:

2 is found.
two is found.
MyClass(3) is found.

Although the preceding program is correct, there is still one potential trouble spot.
Notice how CompareTo() is implemented by MyClass:

public int CompareTo(object obj) {
 return Val - ((MyClass) obj).Val;
}

Because the parameter to CompareTo() must be of type object, obj must be explicitly cast
to MyClass in order for Val to be accessed. However, it’s precisely this type of thing that
generics were designed to eliminate!

To solve this problem, C# provides a generic version of IComparable, which is declared
like this:

public interface IComparable<T>

In this version, the type of data being compared is passed as a type argument to T. This
causes the declaration of CompareTo() to be changed, as shown next:

int CompareTo(T obj)

Now, the parameter to CompareTo() can be specified as the proper type and no cast from
object is needed. IComparable<T> is also implemented by all built-in types.

Here is an improved version of MyClass that implements IComparable<T>:

// This version of MyClass implements IComparable<T>
class MyClass : IComparable<MyClass> {
 public int Val;

PART I

C h a p t e r 1 8 : G e n e r i c s 537

PART I
PART I

 public MyClass(int x) { Val = x; }

 public int CompareTo(MyClass obj) {
 return Val - obj.Val; // Now, no cast is needed.
 }
}

Notice that a cast is no longer required by this line in CompareTo():

return Val - obj.Val; // Now, no cast is needed.

Because the type parameter to IComparable is MyClass, the type of obj is now known to be
MyClass.

Here is an updated version of IsIn() that requires IComparable<T>:

// Require IComparable<T> interface.
public static bool IsIn<T>(T what, T[] obs) where T : IComparable<T> {
 foreach(T v in obs)
 if(v.CompareTo(what) == 0) // now OK, uses CompareTo()
 return true;

 return false;
}

NOTENOTE If a type parameter specifies a reference or a base class constraint, then = = and ! = can be
applied to instances of that type parameter, but they only test for reference equality. To compare
values, you must implement IComparable or IComparable<T>.

Generic Class Hierarchies
Generic classes can be part of a class hierarchy in just the same way as non-generic classes.
Thus, a generic class can act as a base class or be a derived class. The key difference between
generic and non-generic hierarchies is that in a generic hierarchy, any type arguments needed
by a generic base class must be passed up the hierarchy by all derived classes. This is similar
to the way that constructor arguments must be passed up a hierarchy.

Using a Generic Base Class
Here is a simple example of a hierarchy that uses a generic base class:

// A simple generic class hierarchy.
using System;

// A generic base class.
class Gen<T> {
 T ob;

 public Gen(T o) {
 ob = o;
 }

 // Return ob.
 public T GetOb() {

538 P a r t I : T h e C # L a n g u a g e

 return ob;
 }
}

// A class derived from Gen.
class Gen2<T> : Gen<T> {
 public Gen2(T o) : base(o) {
 // ...
 }
}

class GenHierDemo {
 static void Main() {
 Gen2<string> g2 = new Gen2<string>("Hello");

 Console.WriteLine(g2.GetOb());
 }
}

In this hierarchy, Gen2 inherits the generic class Gen. Notice how Gen2 is declared by
the following line:

class Gen2<T> : Gen<T> {

The type parameter T is specified by Gen2 and is also passed to Gen. This means that
whatever type is passed to Gen2 will also be passed to Gen. For example, this declaration

Gen2<string> g2 = new Gen2<string>("Hello");

passes string as the type parameter to Gen. Thus, the ob inside the Gen portion of Gen2
will be of type string.

Notice also that Gen2 does not use the type parameter T except to pass it along to the
Gen base class. Thus, even if a derived class would otherwise not need to be generic, it still
must specify the type parameter(s) required by its generic base class.

Of course, a derived class is free to add its own type parameters, if needed. For example,
here is a variation on the preceding hierarchy in which Gen2 adds a type parameter of its
own:

// A derived class can add its own type parameters.
using System;

// A generic base class.
class Gen<T> {
 T ob; // declare a variable of type T

 // Pass the constructor a reference of type T.
 public Gen(T o) {
 ob = o;
 }

 // Return ob.
 public T GetOb() {
 return ob;

PART I

C h a p t e r 1 8 : G e n e r i c s 539

PART I
PART I

 }
}

// A derived class of Gen that defines a second
// type parameter, called V.
class Gen2<T, V> : Gen<T> {
 V ob2;

 public Gen2(T o, V o2) : base(o) {
 ob2 = o2;
 }

 public V GetObj2() {
 return ob2;
 }
}

// Create an object of type Gen2.
class GenHierDemo2 {
 static void Main() {

 // Create a Gen2 object for string and int.
 Gen2<string, int> x =
 new Gen2<string, int>("Value is: ", 99);

 Console.Write(x.GetOb());
 Console.WriteLine(x.GetObj2());
 }
}

Notice the declaration of this version of Gen2, which is shown here:

class Gen2<T, V> : Gen<T> {

Here, T is the type passed to Gen, and V is the type that is specific to Gen2. V is used to
declare an object called ob2 and as a return type for the method GetObj2(). In Main(), a
Gen2 object is created in which type parameter T is string, and type parameter V is int.
The program displays the following, expected, result:

Value is: 99

A Generic Derived Class
It is perfectly acceptable for a non-generic class to be the base class of a generic derived
class. For example, consider this program:

// A non-generic class can be the base class of a generic derived class.
using System;

// A non-generic class.
class NonGen {
 int num;

 public NonGen(int i) {

540 P a r t I : T h e C # L a n g u a g e

 num = i;
 }

 public int GetNum() {
 return num;
 }
}

// A generic derived class.
class Gen<T> : NonGen {
 T ob;

 public Gen(T o, int i) : base (i) {
 ob = o;
 }

 // Return ob.
 public T GetOb() {
 return ob;
 }
}

// Create a Gen object.
class HierDemo3 {
 static void Main() {

 // Create a Gen object for string.
 Gen<String> w = new Gen<String>("Hello", 47);

 Console.Write(w.GetOb() + " ");
 Console.WriteLine(w.GetNum());
 }
}

The output from the program is shown here:

Hello 47

In the program, notice how Gen inherits NonGen in the following declaration:

class Gen<T> : NonGen {

Because NonGen is not generic, no type argument is specified. Thus, even though Gen
declares the type parameter T, it is not needed by (nor can it be used by) NonGen. Thus,
NonGen is inherited by Gen in the normal way. No special conditions apply.

Overriding Virtual Methods in a Generic Class
A virtual method in a generic class can be overridden just like any other method. For
example, consider this program in which the virtual method GetOb() is overridden:

// Overriding a virtual method in a generic class.
using System;

PART I

C h a p t e r 1 8 : G e n e r i c s 541

PART I
PART I

// A generic base class.
class Gen<T> {
 protected T ob;

 public Gen(T o) {
 ob = o;
 }

 // Return ob. This method is virtual.
 public virtual T GetOb() {
 Console.Write("Gen’s GetOb(): ");
 return ob;
 }
}

// A derived class of Gen that overrides GetOb().
class Gen2<T> : Gen<T> {

 public Gen2(T o) : base(o) { }

 // Override GetOb().
 public override T GetOb() {
 Console.Write("Gen2’s GetOb(): ");
 return ob;
 }
}

// Demonstrate generic method override.
class OverrideDemo {
 static void Main() {

 // Create a Gen object for int.
 Gen<int> iOb = new Gen<int>(88);

 // This calls Gen’s version of GetOb().
 Console.WriteLine(iOb.GetOb());

 // Now, create a Gen2 object and assign its
 // reference to iOb (which is a Gen<int> variable).
 iOb = new Gen2<int>(99);

 // This calls Gen2’s version of GetOb().
 Console.WriteLine(iOb.GetOb());
 }
}

The output is shown here:

Gen’s GetOb(): 88
Gen2’s GetOb(): 99

As the output confirms, the overridden version of GetOb() is called for an object of type
Gen2, but the base class version is called for an object of type Gen.

542 P a r t I : T h e C # L a n g u a g e

Notice one other thing: This line

iOb = new Gen2<int>(99);

is valid because iOb is a variable of type Gen<int>. Thus, it can refer to any object of type
Gen<int> or any object of a class derived from Gen<int>, including Gen2<int>. Of course,
iOb couldn’t be used to refer to an object of type Gen2<double>, for example, because of
the type mismatch.

Overloading Methods That Use Type Parameters
Methods that use type parameters to declare method parameters can be overloaded. However,
the rules are a bit more stringent than they are for methods that don’t use type parameters.
In general, a method that uses a type parameter as the data type of a parameter can be
overloaded as long as the signatures of the two versions differ. This means the type and/or
number of their parameters must differ. However, the determination of type difference is
not based on the generic type parameter, but on the type argument substituted for the type
parameter when a constructed type is created. Therefore, it is possible to overload a method
that uses type parameters in such a way that it “looks right,” but won’t work in all specific
cases.

For example, consider this generic class:

// Ambiguity can result when overloading methods that
// use type parameters.
//
// This program will not compile.

using System;

// A generic class that contains a potentially ambiguous
// overload of the Set() method.
class Gen<T, V> {
 T ob1;
 V ob2;

 // ...

 // In some cases, these two methods
 // will not differ in their parameter types.
 public void Set(T o) {
 ob1 = o;
 }

 public void Set(V o) {
 ob2 = o;
 }
}

class AmbiguityDemo {
 static void Main() {
 Gen<int, double> ok = new Gen<int, double>();

PART I

C h a p t e r 1 8 : G e n e r i c s 543

PART I
PART I

 Gen<int, int> notOK = new Gen<int, int>();

 ok.Set(10); // is valid, type args differ

 notOK.Set(10); // ambiguous, type args are the same!
 }
}

Let’s examine this program closely. First, notice that Gen declares two type parameters:
T and V. Inside Gen, Set() is overloaded based on parameters of type T and V, as shown
here:

public void Set(T o) {
 ob1 = o;
}

public void Set(V o) {
 ob2 = o;
}

This looks reasonable because T and V appear to be different types. However, this
overloading creates a potential ambiguity problem.

As Gen is written, there is no requirement that T and V actually be different types. For
example, it is perfectly correct (in principle) to construct a Gen object as shown here:

Gen<int, int> notOK = new Gen<int, int>();

In this case, both T and V will be replaced by int. This makes both versions of Set()
identical, which is, of course, an error. Thus, when the attempt to call Set() on notOK
occurs later in Main(), a compile-time ambiguity error is reported.

In general, you can overload methods that use type parameters as long as there is no
constructed type that results in a conflict. It is important to understand that type constraints
do not participate in overload resolution. Thus, type constraints cannot be used to eliminate
ambiguity. Like methods, constructors, operators, and indexers that use type parameters
can also be overloaded, and the same rules apply.

How Generic Types Are Instantiated
One question that is often raised when working with generics is whether the use of a generic
class leads to code-bloat at runtime. The simple answer is no. The reason is that C# implements
generics in a highly efficient manner that creates new constructed types only when they are
needed. Here is how the process works.

When a generic class is compiled into MSIL, it retains all of its type parameters in their
generic form. At runtime, when a specific instance of the class is required, the JIT compiler
constructs a specific, executable code version of the class in which the type parameters are
replaced by the type arguments. Each instance of the class that uses the same type arguments
will use the same executable code version.

For example, given some generic class called Gen<T>, then all Gen<int> objects will
use the same executable code. Thus, code-bloat is reduced and only those versions of the
class that are actually used in the program will be created. When a different constructed
type is needed, a new version of the class is compiled.

544 P a r t I : T h e C # L a n g u a g e

In general, a new executable version of a generic class is created for each constructed
type in which the type argument is a value type, such as int or double. Thus, each object of
Gen<int> will use one version of Gen and each object of type Gen<double> will use another
version of Gen, with each version of Gen tailored to the specific value type. However, there
will be only one version of a generic class that handles all cases in which the type argument is a
reference type. This is because the size (in bytes) of all references is the same. Thus, only one
version is needed to handle all types of references. This optimization also reduces code-bloat.

Some Generic Restrictions
Here are a few restrictions that you need to keep in mind when using generics:

• Properties, operators, indexers, and events cannot be generic. However, these items
can be used in a generic class and can make use of the generic type parameters of
that class.

• The extern modifier cannot be applied to a generic method.

• Pointer types cannot be used as type arguments.

• If a generic class contains a static field, then each constructed type has its own copy of
that field. This means that each instance of the same constructed type shares the same
static field. However, a different constructed type shares a different copy of that
field. Thus, a static field is not shared by all constructed types.

Final Thoughts on Generics
Generics are a powerful extension to C# because they streamline the creation of type-safe,
reusable code. Although the generic syntax can seem a bit overwhelming at first, it will quickly
become second nature. Likewise, learning how and when to use constraints takes a bit of
practice, but becomes easier over time. Generics are now an integral part of C# programming.
It’s worth the effort it takes to master this important feature.

19
LINQ

Future generations of programmers will look back on version 3.0 as a pivotal event in
the evolution of C# because it fundamentally and irrevocably reshapes the core of the
language. The reason for this dramatic impact can be stated in a single acronym: LINQ.

LINQ adds to C# an entirely new syntactic element, several new keywords, and a powerful
new capability. The inclusion of LINQ significantly increases the scope of the language,
expanding the range of tasks to which C# can be applied. Moreover, LINQ has charted the
future direction of computer language development because it offers a new way to think
about and solve some of the most common, yet challenging problems that face today’s
programmers. Simply put, the integration of LINQ into C# sets a new standard that will
affect the course of language design well into the future. LINQ is that important.

NOTENOTE LINQ in C# is essentially a language within a language. As a result, the subject of LINQ is
quite large, involving many features, options, and alternatives. Although this chapter describes
LINQ in significant detail, it is not possible to explore all facets, nuances, and applications of this
powerful feature. To do so would require an entire book of its own. Instead, this chapter focuses
on the core elements of LINQ and presents numerous examples. It is important to understand
that we are just now at the beginning of the LINQ revolution. Going forward, LINQ is a
subsystem that you will want to study in greater detail.

What Is LINQ?
LINQ stands for Language-Integrated Query. It encompasses a set of features that let you
retrieve information from a data source. As you may know, the retrieval of data constitutes an
important part of many programs. For example, a program might obtain information from a
customer list, look up product information in a catalog, or access an employee’s record. In
many cases, such data is stored in a database that is separate from the application. For
example, a product catalog might be stored in a relational database. In the past, interacting
with such a database would involve generating queries using Structured Query Language
(SQL). Other sources of data, such as XML, required their own approach. Therefore, prior to
C# 3.0, support for such queries was not built into C#. LINQ changes this.

LINQ adds to C# the ability to generate queries for any LINQ-compatible data source.
Furthermore, the syntax used for the query is the same, no matter what data source is used.
This means that the syntax used to query data in a relational database is the same as that

545

CHAPTER

546 P a r t I : T h e C # L a n g u a g e

used to query data stored in an array, for example. It is no longer necessary to use SQL or
any other non-C# mechanism. The query capability is fully integrated into the C# language.

In addition to using LINQ with SQL, LINQ can be used with XML files and ADO.NET
Datasets. Perhaps equally important, it can also be used with C# arrays and collections
(described in Chapter 24). Therefore, LINQ gives you a uniform way to access data. This is a
powerful, innovative concept. It is not only changing the way that data is accessed, but it also
offers a new way to think about and approach old problems. In the future, many programming
solutions will be crafted in terms of LINQ. Its effects will not be limited to just database access.

LINQ is supported by a set of interrelated features, including the query syntax added to
the C# language, lambda expressions, anonymous types, and extension methods. Lambda
expressions are described in Chapter 15. The others are examined here.

LINQ Fundamentals
At LINQ’s core is the query. A query specifies what data will be obtained from a data source.
For example, a query on a customer mailing list might request the addresses of all customers
that reside in a specific city, such as Chicago or Tokyo. A query on an inventory database
might request a list of out-of-stock items. A query on a log of Internet usage could ask for a
list of the websites with the highest hit counts. Although these queries differ in their specifics,
all can be expressed using the same LINQ syntactic elements.

After a query has been created, it can be executed. One way this is done is by using the
query in a foreach loop. Executing a query causes its results to be obtained. Thus, using a
query involves two key steps. First, the form of the query is created. Second, the query is
executed. Therefore, the query defines what to retrieve from a data source. Executing the
query actually obtains the results.

In order for a source of data to be used by LINQ, it must implement the IEnumerable
interface. There are two forms of this interface: one generic, one not. In general, it is easier if
the data source implements the generic version, IEnumerable<T>, where T specifies the
type of data being enumerated. The rest of the chapter assumes that a data source implements
IEnumerable<T>. This interface is declared in System.Collections.Generic. A class that
implements IEnumerable<T> supports enumeration, which means that its contents can be
obtained one at a time, in sequence. All C# arrays support IEnumerable<T>. Thus, arrays
can be used to demonstrate the central concepts of LINQ. Understand, however, that LINQ
is not limited to arrays.

A Simple Query
At this point, it will be helpful to work through a simple LINQ example. The following
program uses a query to obtain the positive values contained in an array of integers:

// Create a simple LINQ query.
using System;
using System.Linq;

class SimpQuery {
 static void Main() {

 int[] nums = { 1, -2, 3, 0, -4, 5 };

PART I

C h a p t e r 1 9 : L I N Q 547

PART I
PART I

 // Create a query that obtains only positive numbers.
 var posNums = from n in nums
 where n > 0
 select n;

 Console.Write("The positive values in nums: ");

 // Execute the query and display the results.
 foreach(int i in posNums) Console.Write(i + " ");

 Console.WriteLine();
 }
}

This program produces the following output:

The positive values in nums: 1 3 5

As you can see, only the positive values in the nums array are displayed. Although quite
simple, this program demonstrates the key features of LINQ. Let’s examine it closely.

The first thing to notice in the program is the using directive:

using System.Linq;

To use the LINQ features, you must include the System.Linq namespace.
Next, an array of int called nums is declared. All arrays in C# are implicitly convertible

to IEnumerable<T>. This makes any C# array usable as a LINQ data source.
Next, a query is declared that retrieves those elements in nums that are positive. It is

shown here:

var posNums = from n in nums
 where n > 0
 select n;

The variable posNums is called the query variable. It refers to the set of rules defined by the
query. Notice it uses var to implicitly declare posNums. As you know, this makes posNums
an implicitly typed variable. In queries, it is often convenient to use implicitly typed
variables, although you can also explicitly declare the type (which must be some form
of IEnumerable<T>). The variable posNums is then assigned the query expression.

All queries begin with from. This clause specifies two items. The first is the range
variable, which will receive elements obtained from the data source. In this case, the range
variable is n. The second item is the data source, which in this case is the nums array. The
type of the range variable is inferred from the data source. In this case, the type of n is int.
Generalizing, here is the syntax of the from clause:

from range-variable in data-source

The next clause in the query is where. It specifies a condition that an element in the data
source must meet in order to be obtained by the query. Its general form is shown here:

where boolean-expression

548 P a r t I : T h e C # L a n g u a g e

The boolean-expression must produce a bool result. (This expression is also called a predicate.)
There can be more than one where clause in a query. In the program, this where clause is used:

where n > 0

It will be true only for an element whose value is greater than zero. This expression will be
evaluated for every n in nums when the query executes. Only those values that satisfy this
condition will be obtained. In other words, a where clause acts as a filter on the data source,
allowing only certain items through.

All queries end with either a select clause or a group clause. This example employs the
select clause. It specifies precisely what is obtained by the query. For simple queries, such as
the one in this example, the range value is selected. Therefore, it returns those integers from
nums that satisfy the where clause. In more sophisticated situations, it is possible to finely
tune what is selected. For example, when querying a mailing list, you might return just the
last name of each recipient, rather than the entire address. Notice that the select clause ends
with a semicolon. Because select ends a query, it ends the statement and requires a semicolon.
Notice, however, that the other clauses in the query do not end with a semicolon.

At this point, a query variable called posNums has been created, but no results have
been obtained. It is important to understand that a query simply defines a set of rules. It is
not until the query is executed that results are obtained. Furthermore, the same query can
be executed two or more times, with the possibility of differing results if the underlying
data source changes between executions. Therefore, simply declaring the query posNums
does not mean that it contains the results of the query.

To execute the query, the program uses the foreach loop shown here:

foreach(int i in posNums) Console.WriteLine(i + " ");

Notice that posNums is specified as the collection being iterated over. When the foreach
executes, the rules defined by the query specified by posNums are executed. With each pass
through the loop, the next element returned by the query is obtained. The process ends when
there are no more elements to retrieve. In this case, the type of the iteration variable i is
explicitly specified as int because this is the type of the elements retrieved by the query.
Explicitly specifying the type of the iteration variable is fine in this situation, since it is easy
to know the type of the value selected by the query. However, in more complicated situations,
it will be easier (or in some cases, necessary) to implicitly specify the type of the iteration
variable by using var.

A Query Can Be Executed More Than Once
Because a query defines a set of rules that are used to retrieve data, but does not, itself,
produce results, the same query can be run multiple times. If the data source changes
between runs, then the results of the query may differ. Therefore, once you define a query,
executing it will always produce the most current results. Here is an example. In the
following version of the preceding program, the contents of the nums array are changed
between two executions of posNums:

// Create a simple query.
using System;
using System.Linq;
using System.Collections.Generic;

PART I

C h a p t e r 1 9 : L I N Q 549

PART I
PART I

class SimpQuery {
 static void Main() {

 int[] nums = { 1, -2, 3, 0, -4, 5 };

 // Create a query that obtains only positive numbers.
 var posNums = from n in nums
 where n > 0
 select n;

 Console.Write("The positive values in nums: ");

 // Execute the query and display the results.
 foreach(int i in posNums) Console.Write(i + " ");
 Console.WriteLine();

 // Change nums.
 Console.WriteLine("\nSetting nums[1] to 99.");
 nums[1] = 99;

 Console.Write("The positive values in nums after change: ");

 // Execute the query a second time.
 foreach(int i in posNums) Console.Write(i + " ");
 Console.WriteLine();
 }
}

The following output is produced:

The positive values in nums: 1 3 5

Setting nums[1] to 99.
The positive values in nums after change: 1 99 3 5

As the output confirms, after the value in nums[1] was changed from –2 to 99, the result
of rerunning the query reflects the change. This is a key point that must be emphasized.
Each execution of a query produces its own results, which are obtained by enumerating the
current contents of the data source. Therefore, if the data source changes, so, too, might the
results of executing a query. The benefits of this approach are quite significant. For example,
if you are obtaining a list of pending orders for an online store, then you want each execution
of your query to produce all orders, including those just entered.

How the Data Types in a Query Relate
As the preceding examples have shown, a query involves variables whose types relate to
one another. These are the query variable, the range variable, and the data source. Because
the correspondence among these types is both important and a bit confusing at first, they
merit a closer look.

The type of the range variable must agree with the type of the elements stored in the
data source. Thus, the type of the range variable is dependent upon the type of the data
source. In many cases, C# can infer the type of the range variable. As long as the data source
implements IEnumerable<T>, the type inference can be made because T describes the type

550 P a r t I : T h e C # L a n g u a g e

of the elements in the data source. (As mentioned, all arrays implement IEnumerable<T>,
as do many other data sources.) However, if the data source implements the non-generic
version of IEnumerable, then you will need to explicitly specify the type of the range
variable. This is done by specifying its type in the from clause. For example, assuming
the preceding examples, this shows how to explicitly declare n to be an int:

var posNums = from int n in nums
 // ...

Of course, the explicit type specification is not needed here because all arrays are implicitly
convertible to IEnumerable<T>, which enables the type of the range variable to be inferred.

The type of object returned by a query is an instance of IEnumerable<T>, where T is
the type of the elements. Thus, the type of the query variable must be an instance of
IEnumerable<T>. The value of T is determined by the type of the value specified by the
select clause. In the case of the preceding examples, T is int because n is an int. (As explained,
n is an int because int is the type of elements stored in nums.) Therefore, the query could
have been written like this, with the type explicitly specified as IEnumerable <int>:

IEnumerable<int> posNums = from n in nums
 where n > 0
 select n;

The key point is that the type of the item selected by select must agree with the type
argument passed to IEnumerable<T> used to declare the query variable. Often query
variables use var rather than explicitly specifying the type because this lets the compiler
infer the proper type from the select clause. As you will see, this approach is particularly
useful when select returns something other than an individual element from the data source.

When a query is executed by the foreach loop, the type of the iteration variable must be
the same as the type of the range variable. In the preceding examples, this type was explicitly
specified as int, but you can let the compiler infer the type by specifying this variable as var.
As you will see, there are also some cases in which var must be used because the data type
has no name.

The General Form of a Query
All queries share a general form, which is based on a set of contextual keywords, shown here:

ascending descending equals from

group in into join

let on orderby select

where

Of these, the following begin query clauses:

from group join let

orderby select where

A query must begin with the keyword from and end with either a select or group clause.
The select clause determines what type of value is enumerated by the query. The group

PART I

C h a p t e r 1 9 : L I N Q 551

PART I
PART I

clause returns the data by groups, with each group being able to be enumerated individually.
As the preceding examples have shown, the where clause specifies criteria that an item
must meet in order for it to be returned. The remaining clauses help you fine-tune a query.
The follows sections examine each query clause.

Filter Values with where
As explained, where is used to filter the data returned by a query. The preceding examples
have shown only its simplest form, in which a single condition is used. A key point to
understand is that you can use where to filter data based on more than one condition. One
way to do this is through the use of multiple where clauses. For example, consider the
following program that displays only those values in the array that are both positive and
less than 10:

// Use multiple where clauses.
using System;
using System.Linq;

class TwoWheres {
 static void Main() {

 int[] nums = { 1, -2, 3, -3, 0, -8, 12, 19, 6, 9, 10 };

 // Create a query that obtains positive values less than 10.
 var posNums = from n in nums
 where n > 0
 where n < 10
 select n;

 Console.Write("The positive values less than 10: ");

 // Execute the query and display the results.
 foreach(int i in posNums) Console.Write (i + " ");
 Console.WriteLine();
 }
}

The output is shown here:

The positive values less than 10: 1 3 6 9

As you can see, only positive values less than 10 are retrieved. This outcome is achieved by
the use of the following two where clauses:

where n > 0
where n < 10

The first where requires that an element be greater than zero. The second requires the
element to be less than 10. Thus, an element must be between 1 and 9 (inclusive) to satisfy
both clauses.

552 P a r t I : T h e C # L a n g u a g e

Although it is not wrong to use two where clauses as just shown, the same effect can be
achieved in a more compact manner by using a single where in which both tests are combined
into a single expression. Here is the query rewritten to use this approach:

var posNums = from n in nums
 where n > 0 && n < 10
 select n;

In general, a where condition can use any valid C# expression that evaluates to a
Boolean result. For example, the following program defines an array of strings. Several of
the strings define Internet addresses. The query netAddrs retrieves only those strings that
have more than four characters and that end with “.net”. Thus, it finds those strings that
contain Internet addresses that use the .net top-level domain name.

// Demonstrate another where clause.
using System;
using System.Linq;

class WhereDemo2 {

 static void Main() {

 string[] strs = { ".com", ".net", "hsNameA.com", "hsNameB.net",
 "test", ".network", "hsNameC.net", "hsNameD.com" };

 // Create a query that obtains Internet addresses that
 // end with .net.
 var netAddrs = from addr in strs
 where addr.Length > 4 && addr.EndsWith(".net")
 select addr;

 // Execute the query and display the results.
 foreach(var str in netAddrs) Console.WriteLine(str);
 }
}

The output is shown here:

hsNameB.net
hsNameC.net

Notice that the program makes use of one of string’s methods called EndsWith() within the
where clause. It returns true if the invoking string ends with the character sequence specified
as an argument.

Sort Results with orderby
Often you will want the results of a query to be sorted. For example, you might want to
obtain a list of past-due accounts, in order of the remaining balance, from greatest to least.
Or, you might want to obtain a customer list, alphabetized by name. Whatever the purpose,
LINQ gives you an easy way to produce sorted results: the orderby clause.

PART I

C h a p t e r 1 9 : L I N Q 553

PART I
PART I

You can use orderby to sort on one or more criteria. We will begin with the simplest
case: sorting on a single item. The general form of orderby that sorts based on a single
criterion is shown here:

orderby sort-on how

The item on which to sort is specified by sort-on. This can be as inclusive as the entire element
stored in the data source or as restricted as a portion of a single field within the element.
The value of how determines if the sort is ascending or descending, and it must be either
ascending or descending. The default direction is ascending, so you won’t normally specify
ascending.

Here is an example that uses orderby to retrieve the values in an int array in ascending
order:

// Demonstrate orderby.
using System;
using System.Linq;

class OrderbyDemo {

 static void Main() {

 int[] nums = { 10, -19, 4, 7, 2, -5, 0 };

 // Create a query that obtains the values in sorted order.
 var posNums = from n in nums
 orderby n
 select n;

 Console.Write("Values in ascending order: ");

 // Execute the query and display the results.
 foreach(int i in posNums) Console.Write(i + " ");

 Console.WriteLine();
 }
}

The output is shown here:

Values in ascending order: -19 -5 0 2 4 7 10

To change the order to descending, simply specify the descending option, as shown here:

var posNums = from n in nums
 orderby n descending
 select n;

If you try this, you will see that the order of the values is reversed.
Although sorting on a single criterion is often what is needed, you can use orderby to

sort on multiple items by using this form:

orderby sort-onA direction, sort-onB direction, sort-onC direction, …

554 P a r t I : T h e C # L a n g u a g e

In this form, sort-onA is the item on which the primary sorting is done. Then, each group of
equivalent items is sorted on sort-onB, and each of those groups is sorted on sort-onC, and so
on. Thus, each subsequent sort-on specifies a “then by” item on which to sort. In all cases,
direction is optional, defaulting to ascending. Here is an example that uses three sort criteria
to sort bank account information by last name, then by first name, and finally by account
balance:

// Sort on multiple criteria with orderby.
using System;
using System.Linq;

class Account {
 public string FirstName { get; private set; }
 public string LastName { get; private set; }
 public double Balance { get; private set; }
 public string AccountNumber { get; private set; }

 public Account(string fn, string ln, string accnum, double b) {
 FirstName = fn;
 LastName = ln;
 AccountNumber = accnum;
 Balance = b;
 }
}

class OrderbyDemo {

 static void Main() {

 // Create some data.
 Account[] accounts = { new Account("Tom", "Smith", "132CK", 100.23),
 new Account("Tom", "Smith", "132CD", 10000.00),
 new Account("Ralph", "Jones", "436CD", 1923.85),
 new Account("Ralph", "Jones", "454MM", 987.132),
 new Account("Ted", "Krammer", "897CD", 3223.19),
 new Account("Ralph", "Jones", "434CK", -123.32),
 new Account("Sara", "Smith", "543MM", 5017.40),
 new Account("Sara", "Smith", "547CD", 34955.79),
 new Account("Sara", "Smith", "843CK", 345.00),
 new Account("Albert", "Smith", "445CK", 213.67),
 new Account("Betty", "Krammer","968MM",5146.67),
 new Account("Carl", "Smith", "078CD", 15345.99),
 new Account("Jenny", "Jones", "108CK", 10.98)
 };

 // Create a query that obtains the accounts in sorted order.
 // Sorting first by last name, then within same last names sorting by
 // by first name, and finally by account balance.
 var accInfo = from acc in accounts
 orderby acc.LastName, acc.FirstName, acc.Balance
 select acc;

PART I

C h a p t e r 1 9 : L I N Q 555

PART I
PART I

 Console.WriteLine("Accounts in sorted order: ");

 string str = "";

 // Execute the query and display the results.
 foreach(Account acc in accInfo) {
 if(str != acc.FirstName) {
 Console.WriteLine();
 str = acc.FirstName;
 }

 Console.WriteLine("{0}, {1}\tAcc#: {2}, {3,10:C}",
 acc.LastName, acc.FirstName,
 acc.AccountNumber, acc.Balance);
 }
 Console.WriteLine();
 }
}

The output is shown here:

Accounts in sorted order:

Jones, Jenny Acc#: 108CK, $10.98

Jones, Ralph Acc#: 434CK, ($123.32)
Jones, Ralph Acc#: 454MM, $987.13
Jones, Ralph Acc#: 436CD, $1,923.85

Krammer, Betty Acc#: 968MM, $5,146.67

Krammer, Ted Acc#: 897CD, $3,223.19

Smith, Albert Acc#: 445CK, ($213.67)

Smith, Carl Acc#: 078CD, $15,345.99

Smith, Sara Acc#: 843CK, $345.00
Smith, Sara Acc#: 543MM, $5,017.40
Smith, Sara Acc#: 547CD, $34,955.79

Smith, Tom Acc#: 132CK, $100.23
Smith, Tom Acc#: 132CD, $10,000.00

In the query, look closely at how the orderby clause is written:

var accInfo = from acc in accounts
 orderby acc.LastName, acc.FirstName, acc.Balance
 select acc;

Here is how it works. First, the results are sorted by last name, and then entries with the
same last name are sorted by the first name. Finally, groups of entries with the same first

556 P a r t I : T h e C # L a n g u a g e

and last name are sorted by the account balance. This is why the list of accounts under the
name Jones is shown in this order:

Jones, Jenny Acc#: 108CK, $10.98

Jones, Ralph Acc#: 434CK, ($123.32)
Jones, Ralph Acc#: 454MM, $987.13
Jones, Ralph Acc#: 436CD, $1,923.85

As the output confirms, the list is sorted by last name, then by first name, and finally by
account balance.

When using multiple criteria, you can reverse the condition of any sort by applying
the descending option. For example, this query causes the results to be shown in order
of decreasing balance:

var accInfo = from acc in accounts
 orderby x.LastName, x.FirstName, x.Balance descending
 select acc;

When using this version, the list of Jones entries will be displayed like this:

Jones, Jenny Acc#: 108CK, $10.98

Jones, Ralph Acc#: 436CD, $1,923.85
Jones, Ralph Acc#: 454MM, $987.13
Jones, Ralph Acc#: 434CK, ($123.32)

As you can see, now the accounts for Ralph Jones are displayed from greatest to least.

A Closer Look at select
The select clause determines what type of elements are obtained by a query. Its general
form is shown here:

select expression

So far we have been using select to return the range variable. Thus, expression has simply
named the range variable. However, select is not limited to this simple action. It can return
a specific portion of the range variable, the result of applying some operation or transformation
to the range variable, or even a new type of object that is constructed from pieces of the
information retrieved from the range variable. This is called projecting.

To begin examining the other capabilities of select, consider the following program. It
displays the square roots of the positive values contained in an array of double values.

// Use select to return the square root of all positive values
// in an array of doubles.
using System;
using System.Linq;

class SelectDemo {

 static void Main() {

PART I

C h a p t e r 1 9 : L I N Q 557

PART I
PART I

 double[] nums = { -10.0, 16.4, 12.125, 100.85, -2.2, 25.25, -3.5 } ;

 // Create a query that returns the square roots of the
 // positive values in nums.
 var sqrRoots = from n in nums
 where n > 0
 select Math.Sqrt(n);

 Console.WriteLine("The square roots of the positive values" +
 " rounded to two decimal places:");

 // Execute the query and display the results.
 foreach(double r in sqrRoots) Console.WriteLine("{0:#.##}", r);
 }
}

The output is shown here:

The square roots of the positive values rounded to two decimal places:
4.05
3.48
10.04
5.02

In the query, pay special attention to the select clause:

select Math.Sqrt(n);

It returns the square root of the range variable. It does this by obtaining the result of passing
the range variable to Math.Sqrt(), which returns the square root of its argument. This means
that the sequence obtained when the query is executed will contain the square roots of the
positive values in nums. If you generalize this concept, the power of select becomes apparent.
You can use select to generate any type of sequence you need, based on the values obtained
from the data source.

Here is a program that shows another way to use select. It creates a class called
EmailAddress that contains two properties. The first holds a person’s name. The second
contains an e-mail address. The program then creates an array that contains several
EmailAddress entries. The program uses a query to obtain a list of just the e-mail addresses
by themselves.

// Return a portion of the range variable.
using System;
using System.Linq;

class EmailAddress {
 public string Name { get; set; }
 public string Address { get; set; }

 public EmailAddress(string n, string a) {
 Name = n;
 Address = a;
 }
}

558 P a r t I : T h e C # L a n g u a g e

class SelectDemo2 {
 static void Main() {

 EmailAddress[] addrs = {
 new EmailAddress("Herb", "Herb@HerbSchildt.com"),
 new EmailAddress("Tom", "Tom@HerbSchildt.com"),
 new EmailAddress("Sara", "Sara@HerbSchildt.com")
 };

 // Create a query that selects e-mail addresses.
 var eAddrs = from entry in addrs
 select entry.Address;

 Console.WriteLine("The e-mail addresses are");

 // Execute the query and display the results.
 foreach(string s in eAddrs) Console.WriteLine(" " + s);
 }
}

The output is shown here:

The e-mail addresses are
 Herb@HerbSchildt.com
 Tom@HerbSchildt.com
 Sara@HerbSchildt.com

Pay special attention to the select clause:

select entry.Address;

Instead of returning the entire range variable, it returns only the Address portion. This
fact is evidenced by the output. This means the query returns a sequence of strings, not a
sequence of EmailAddress objects. This is why the foreach loop specifies s as a string. As
explained, the type of sequence returned by a query is determined by the type of value
returned by the select clause.

One of the more powerful features of select is its ability to return a sequence that contains
elements created during the execution of the query. For example, consider the following
program. It defines a class called ContactInfo, which stores a name, e-mail address, and
telephone number. It also defines the EmailAddress class used by the preceding example.
Inside Main(), an array of ContactInfo is created. Then, a query is declared in which the
data source is an array of ContactInfo, but the sequence returned contains EmailAddress
objects. Thus, the type of the sequence returned by select is not ContactInfo, but rather
EmailAddress, and these objects are created during the execution of the query.

// Use a query to obtain a sequence of EmailAddresses
// from a list of ContactInfo.
using System;
using System.Linq;

class ContactInfo {
 public string Name { get; set; }
 public string Email { get; set; }

PART I

C h a p t e r 1 9 : L I N Q 559

PART I
PART I

 public string Phone { get; set; }

 public ContactInfo(string n, string a, string p) {
 Name = n;
 Email = a;
 Phone = p;
 }
}

class EmailAddress {
 public string Name { get; set; }
 public string Address { get; set; }

 public EmailAddress(string n, string a) {
 Name = n;
 Address = a;
 }
}

class SelectDemo3 {
 static void Main() {

 ContactInfo[] contacts = {
 new ContactInfo("Herb", "Herb@HerbSchildt.com", "555-1010"),
 new ContactInfo("Tom", "Tom@HerbSchildt.com", "555-1101"),
 new ContactInfo("Sara", "Sara@HerbSchildt.com", "555-0110")
 };

 // Create a query that creates a list of EmailAddress objects.
 var emailList = from entry in contacts
 select new EmailAddress(entry.Name, entry.Email);

 Console.WriteLine("The e-mail list is");

 // Execute the query and display the results.
 foreach(EmailAddress e in emailList)
 Console.WriteLine(" {0}: {1}", e.Name, e.Address);
 }
}

The output is shown here:

The e-mail list is
 Herb: Herb@HerbSchildt.com
 Tom: Tom@HerbSchildt.com
 Sara: Sara@HerbSchildt.com

In the query, pay special attention to the select clause :

select new EmailAddress(entry.Name, entry.Email);

It creates a new EmailAddress object that contains the name and e-mail address obtained
from a ContactInfo object in the contacts array. The key point is that new EmailAddress
objects are created by the query in its select clause, during the query’s execution.

560 P a r t I : T h e C # L a n g u a g e

Use Nested from Clauses
A query can contain more than one from clause. Thus, a query can contain nested from
clauses. One common use of a nested from clause is found when a query needs to obtain
data from two different sources. Here is a simple example. It uses two from clauses to
iterate over two different character arrays. It produces a sequence that contains all possible
combinations of the two sets of characters.

// Use two from clauses to create a list of all
// possible combinations of the letters A, B, and C
// with the letters X, Y, and Z.
using System;
using System.Linq;

// This class holds the result of the query.
class ChrPair {
 public char First;
 public char Second;

 public ChrPair(char c, char c2) {
 First = c;
 Second = c2;
 }
}

class MultipleFroms {
 static void Main() {

 char[] chrs = { 'A', 'B', 'C' };
 char[] chrs2 = { 'X', 'Y', 'Z' };

 // Notice that the first from iterates over chrs and
 // the second from iterates over chrs2.
 var pairs = from ch1 in chrs
 from ch2 in chrs2
 select new ChrPair(ch1, ch2);

 Console.WriteLine("All combinations of ABC with XYZ: ");

 foreach(var p in pairs)
 Console.WriteLine("{0} {1}", p.First, p.Second);
 }
}

The output is shown here:

All combinations of ABC with XYZ:
A X
A Y
A Z
B X
B Y

PART I

C h a p t e r 1 9 : L I N Q 561

PART I
PART I

B Z
C X
C Y
C Z

The program begins by creating a class called ChrPair that will hold the results of the
query. It then creates two character arrays, called chrs and chrs2. It uses the following query
to produce all possible combinations of the two sequences:

var pairs = from ch1 in chrs
 from ch2 in chrs2
 select new ChrPair(ch1, ch2);

The nested from clauses cause both chrs and chrs2 to be iterated over. Here is how it works.
First, a character is obtained from chrs and stored in ch1. Then, the chrs2 array is enumerated.
With each iteration of the inner from, a character from chrs2 is stored in ch2 and the select
clause is executed. The result of the select clause is a new object of type ChrPair that contains
the character pair ch1, ch2 produced by each iteration of the inner from. Thus, a ChrPair is
produced in which each possible combination of characters is obtained.

Another common use of a nested from is to iterate over a data source that is contained
within another data source. An example of this is found in the section, “Use let to Create
a Variable in a Query,” later in this chapter.

Group Results with group
One of the most powerful query features is provided by the group clause because it enables
you to create results that are grouped by keys. Using the sequence obtained from a group,
you can easily access all of the data associated with a key. This makes group an easy and
effective way to retrieve data that is organized into sequences of related items. The group
clause is one of only two clauses that can end a query. (The other is select.)

The group clause has the following general form:

group range-variable by key

It returns data grouped into sequences, with each sequence sharing the key specified by key.
The result of group is a sequence that contains elements of type IGrouping<TKey,

TElement>, which is declared in the System.Linq namespace. It defines a collection of
objects that share a common key. The type of query variable in a query that returns a group
is IEnumerable<IGrouping<TKey, TElement>>. IGrouping defines a read-only property
called Key, which returns the key associated with each sequence.

Here is an example that illustrates the use of group. It declares an array that contains a
list of websites. It then creates a query that groups the list by top-level domain name, such
as .org or .com.

// Demonstrate the group clause.
using System;
using System.Linq;

class GroupDemo {

 static void Main() {

562 P a r t I : T h e C # L a n g u a g e

 string[] websites = { "hsNameA.com", "hsNameB.net", "hsNameC.net",
 "hsNameD.com", "hsNameE.org", "hsNameF.org",
 "hsNameG.tv", "hsNameH.net", "hsNameI.tv" };

 // Create a query that groups websites by top-level domain name.
 var webAddrs = from addr in websites
 where addr.LastIndexOf(".") != -1
 group addr by addr.Substring(addr.LastIndexOf("."));

 // Execute the query and display the results.
 foreach(var sites in webAddrs) {
 Console.WriteLine("Web sites grouped by " + sites.Key);
 foreach(var site in sites)
 Console.WriteLine(" " + site);
 Console.WriteLine();
 }
 }
}

The output is shown here:

Web sites grouped by .com
 hsNameA.com
 hsNameD.com

Web sites grouped by .net
 hsNameB.net
 hsNameC.net
 hsNameH.net

Web sites grouped by .org
 hsNameE.org
 hsNameF.org

Web sites grouped by .tv
 hsNameG.tv
 hsNameI.tv

As the output shows, the data is grouped based on the top-level domain name of a
website. Notice how this is achieved by the group clause:

var webAddrs = from addr in websites
 where addr.LastIndexOf(".") != -1
 group addr by addr.Substring(addr.LastIndexOf("."));

The key is obtained by use of the LastIndexOf() and Substring() methods defined by string.
(These are described in Chapter 7. The version of Substring() used here returns the substring
that starts at the specified index and runs to the end of the invoking string.) The index of the
last period in a website name is found using LastIndexOf(). Using this index, the Substring()
method obtains the remainder of the string, which is the part of the website name that
contains the top-level domain name. One other point: Notice the use of the where clause to
filter out any strings that don’t contain a period. The LastIndexOf() method returns –1 if
the specified string is not contained in the invoking string.

PART I

C h a p t e r 1 9 : L I N Q 563

PART I
PART I

Because the sequence obtained when webAddrs is executed is a list of groups, you will
need to use two foreach loops to access the members of each group. The outer loop obtains
each group. The inner loop enumerates the members within the group. The iteration variable
of the outer foreach loop must be an IGrouping instance compatible with the key and
element type. In the example both the keys and elements are string. Therefore, the type of
the sites iteration variable of the outer loop is IGrouping<string, string>. The type of the
iteration variable of the inner loop is string. For brevity, the example implicitly declares
these variables, but they could have been explicitly declared as shown here:

foreach(IGrouping<string, string> sites in webAddrs) {
 Console.WriteLine("Web sites grouped by " + sites.Key);
 foreach(string site in sites)
 Console.WriteLine(" " + site);
 Console.WriteLine();
}

Use into to Create a Continuation
When using select or group, you will sometimes want to generate a temporary result that
will be used by a subsequent part of the query to produce the final result. This is called a
query continuation (or just a continuation for short), and it is accomplished through the use
of into with a select or group clause. It has the following general form:

into name query-body

where name is the name of the range variable that iterates over the temporary result and is
used by the continuing query, specified by query-body. This is why into is called a query
continuation when used with select or group—it continues the query. In essence, a query
continuation embodies the concept of building a new query that queries the results of the
preceding query.

NOTENOTE There is also a form of into that can be used with join, which creates a group join. This is
described later in this chapter.

Here is an example that uses into with group. The following program reworks the
GroupDemo example shown earlier, which creates a list of websites grouped by top-level
domain name. In this case, the initial results are queried by a range variable called ws. This
result is then filtered to remove all groups that have fewer than three elements.

// Use into with group.
using System;
using System.Linq;

class IntoDemo {

 static void Main() {

 string[] websites = { "hsNameA.com", "hsNameB.net", "hsNameC.net",
 "hsNameD.com", "hsNameE.org", "hsNameF.org",
 "hsNameG.tv", "hsNameH.net", "hsNameI.tv" };

564 P a r t I : T h e C # L a n g u a g e

 // Create a query that groups websites by top-level domain name,
 // but select only those groups that have more than two members.
 // Here, ws is the range variable over the set of groups
 // returned when the first half of the query is executed.
 var webAddrs = from addr in websites
 where addr.LastIndexOf(".") != -1
 group addr by addr.Substring(addr.LastIndexOf("."))
 into ws
 where ws.Count() > 2
 select ws;

 // Execute the query and display the results.
 Console.WriteLine("Top-level domains with more than 2 members.\n");

 foreach(var sites in webAddrs) {
 Console.WriteLine("Contents of " + sites.Key + " domain:");
 foreach(var site in sites)
 Console.WriteLine(" " + site);
 Console.WriteLine();
 }
 }
}

The following output is produced:

Top-level domains with more than 2 members.

Contents of .net domain:
 hsNameB.net
 hsNameC.net
 hsNameH.net

As the output shows, only the .net group is returned because it is the only group that has
more than two elements.

In the program, pay special attention to this sequence of clauses in the query:

group addr by addr.Substring(addr.LastIndexOf(".", addr.Length))
 into ws
where ws.Count() > 2
select ws;

First, the results of the group clause are stored (creating a temporary result) and a new query
begins that operates on the stored results. The range variable of the new query is ws. At this
point, ws will range over each group returned by the first query. (It ranges over groups
because the first query results in a sequence of groups.) Next, the where clause filters the
query so the final result contains only those groups that contain more than two members. This
determination is made by calling Count(), which is an extension method that is implemented
for all IEnumerable objects. It returns the number of elements in a sequence. (You’ll learn
more about extension methods later in this chapter.) The resulting sequence of groups is
returned by the select clause.

PART I

C h a p t e r 1 9 : L I N Q 565

PART I
PART I

Use let to Create a Variable in a Query
In a query, you will sometimes want to retain a value temporarily. For example, you might
want to create an enumerable variable that can, itself, be queried. Or, you might want to
store a value that will be used later on in a where clause. Whatever the purpose, these types
of actions can be accomplished through the use of let.

The let clause has this general form:

let name = expression

Here, name is an identifier that is assigned the value of expression. The type of name is
inferred from the type of the expression.

Here is an example that shows how let can be used to create another enumerable data
source. The query takes as input an array of strings. It then converts those strings into char
arrays. This is accomplished by use of another string method called ToCharArray(), which
returns an array containing the characters in the string. The result is assigned to a variable
called chrArray, which is then used by a nested from clause to obtain the individual characters
in the array. The query then sorts the characters and returns the resulting sequence.

// Use a let clause and a nested from clause.
using System;
using System.Linq;

class LetDemo {

 static void Main() {

 string[] strs = { "alpha", "beta", "gamma" };

 // Create a query that obtains the characters in the
 // strings, returned in sorted order. Notice the use
 // of a nested from clause.
 var chrs = from str in strs
 let chrArray = str.ToCharArray()
 from ch in chrArray
 orderby ch
 select ch;

 Console.WriteLine("The individual characters in sorted order:");

 // Execute the query and display the results.
 foreach(char c in chrs) Console.Write(c + " ");

 Console.WriteLine();
 }
}

The output is shown here:

The individual characters in sorted order:
a a a a a b e g h l m m p t

566 P a r t I : T h e C # L a n g u a g e

In the program, notice how the let clause assigns to chrArray a reference to the array
returned by str.ToCharArray():

let chrArray = str.ToCharArray()

After the let clause, other clauses can make use of chrArray. Furthermore, because all arrays
in C# are convertible to IEnumerable<T>, chrArray can be used as a data source for a second,
nested from clause. This is what happens in the example. It uses the nested from to enumerate
the individual characters in the array, sorting them into ascending sequence and returning
the result.

You can also use a let clause to hold a non-enumerable value. For example, the following
is a more efficient way to write the query used in the IntoDemo program shown in the
preceding section.

var webAddrs = from addr in websites
 let idx = addr.LastIndexOf(".")
 where idx != -1
 group addr by addr.Substring(idx)
 into ws
 where ws.Count() > 2
 select ws;

In this version, the index of the last occurrence of a period is assigned to idx. This value
is then used by Substring(). This prevents the search for the period from having to be
conducted twice.

Join Two Sequences with join
When working with databases, it is common to want to create a sequence that correlates
data from two different data sources. For example, an online store might have one database
that associates the name of an item with its item number, and a second database that
associates the item number with its in-stock status. Given this situation, you might want to
generate a list that shows the in-stock status of items by name, rather than by item number.
You can do this by correlating the data in the two databases. Such an action is easy to
accomplish in LINQ through the use of the join clause.

The general form of join is shown here (in context with the from):

from range-varA in data-sourceA
 join range-varB in data-sourceB
 on range-varA.property equals range-varB.property

The key to using join is to understand that each data source must contain data in common,
and that data can be compared for equality. Thus, in the general form, data-sourceA and data-
sourceB must have something in common that can be compared. The items being compared
are specified by the on section. Thus, when range-varA.property is equal to range-varB.property,
the correlation succeeds. In essence, join acts like a filter, allowing only those elements that
share a common value to pass through.

When using join, often the sequence returned is a composite of portions of the two data
sources. Therefore, join lets you generate a new list that contains elements from two
different data sources. This enables you to organize data in a new way.

PART I

C h a p t e r 1 9 : L I N Q 567

PART I
PART I

The following program creates a class called Item, which encapsulates an item’s name
with its number. It creates another class called InStockStatus, which links an item number
with a Boolean property that indicates whether or not the item is in stock. It also creates a
class called Temp, which has two fields: one string and one bool. Objects of this class will
hold the result of the query. The query uses join to produce a list in which an item’s name
is associated with its in-stock status.

// Demonstrate join.
using System;
using System.Linq;

// A class that links an item name with its number.
class Item {
 public string Name { get; set; }
 public int ItemNumber { get; set; }

 public Item(string n, int inum) {
 Name = n;
 ItemNumber = inum;
 }
}

// A class that links an item number with its in-stock status.
class InStockStatus {
 public int ItemNumber { get; set; }
 public bool InStock { get; set; }

 public InStockStatus(int n, bool b) {
 ItemNumber = n;
 InStock = b;
 }
}

// A class that encapsulates a name with its status.
class Temp {
 public string Name { get; set; }
 public bool InStock { get; set; }

 public Temp(string n, bool b) {
 Name = n;
 InStock = b;
 }
}

class JoinDemo {
 static void Main() {

 Item[] items = {
 new Item("Pliers", 1424),
 new Item("Hammer", 7892),
 new Item("Wrench", 8534),
 new Item("Saw", 6411)
 };

568 P a r t I : T h e C # L a n g u a g e

 InStockStatus[] statusList = {
 new InStockStatus(1424, true),
 new InStockStatus(7892, false),
 new InStockStatus(8534, true),
 new InStockStatus(6411, true)
 };

 // Create a query that joins Item with InStockStatus to
 // produce a list of item names and availability. Notice
 // that a sequence of Temp objects is produced.
 var inStockList = from item in items
 join entry in statusList
 on item.ItemNumber equals entry.ItemNumber
 select new Temp(item.Name, entry.InStock);

 Console.WriteLine("Item\tAvailable\n");

 // Execute the query and display the results.
 foreach(Temp t in inStockList)
 Console.WriteLine("{0}\t{1}", t.Name, t.InStock);
 }
}

The output is shown here:

Item Available

Pliers True
Hammer False
Wrench True
Saw True

To understand how join works, let’s walk through each line in the query. The query
begins in the normal fashion with this from clause:

var inStockList = from item in items

This clause specifies that item is the range variable for the data source specified by items.
The items array contains objects of type Item, which encapsulate a name and a number for
an inventory item.

Next comes the join clause shown here:

join entry in statusList
 on item.ItemNumber equals entry.ItemNumber

This clause specifies that entry is the range variable for the statusList data source. The
statusList array contains objects of type InStockStatus, which link an item number with
its status. Thus, items and statusList have a property in common: the item number. This
is used by the on/equals portion of the join clause to describe the correlation. Thus, join
matches items from the two data sources when their item numbers are equal.

Finally, the select clause returns a Temp object that contains an item’s name along with
its in-stock status:

PART I

C h a p t e r 1 9 : L I N Q 569

PART I
PART I

select new Temp(item.Name, entry.InStock);

Therefore, the sequence obtained by the query consists of Temp objects.
Although the preceding example is fairly straightforward, join supports substantially

more sophisticated operations. For example, you can use into with join to create a group
join, which creates a result that consists of an element from the first sequence and a group of
all matching elements from the second sequence. (You’ll see an example of this a bit later in
this chapter.) In general, the time and effort needed to fully master join is well worth the
investment because it gives you the ability to reorganize data at runtime. This is a powerful
capability. This capability is made even more powerful by the use of anonymous types,
described in the next section.

Anonymous Types
C# 3.0 adds a new feature called the anonymous type that directly relates to LINQ. As the
name implies, an anonymous type is a class that has no name. Its primary use is to create an
object returned by the select clause. Often, the outcome of a query is a sequence of objects
that are either a composite of two (or more) data sources (such as in the case of join) or
include a subset of the members of one data source. In either case, often the type of the
object being returned is needed only because of the query and is not used elsewhere in the
program. In this case, using an anonymous type eliminates the need to declare a class that
will be used simply to hold the outcome of the query.

An anonymous type is created through the use of this general form:

new { nameA = valueA, nameB = valueB, ... }

Here, the names specify identifiers that translate into read-only properties that are
initialized by the values. For example,

new { Count = 10, Max = 100, Min = 0 }

This creates a class type that has three public read-only properties: Count, Max, and Min.
These are given the values 10, 100, and 0, respectively. These properties can be referred to by
name by other code. Notice that an anonymous type uses object initializers to initialize fields
and properties. As explained in Chapter 8, object initializers provide a way to initialize an
object without explicitly invoking a constructor. This is necessary in the case of anonymous
types because there is no way to explicitly call a constructor. (Recall that constructors have
the same name as their class. In the case of an anonymous class, there is no name. So, how
would you invoke the constructor?)

Because an anonymous type has no name, you must use an implicitly typed variable to
refer to it. This lets the compiler infer the proper type. For example,

var myOb = new { Count = 10, Max = 100, Min = 0 }

creates a variable called myOb that is assigned a reference to the object created by the
anonymous type expression. This means that the following statements are legal:

Console.WriteLine("Count is " + myOb.Count);

if(i <= myOb.Max && i >= myOb.Min) // ...

570 P a r t I : T h e C # L a n g u a g e

Remember, when an anonymous type is created, the identifiers that you specify become
read-only public properties. Thus, they can be used by other parts of your code.

Although the term anonymous type is used, it’s not quite completely true! The type is
anonymous relative to you, the programmer. However, the compiler does give it an internal
name. Thus, anonymous types do not violate C#‘s strong type checking rules.

To fully understand the value of anonymous types, consider this rewrite of the previous
program that demonstrated join. Recall that in the previous version, a class called Temp
was needed to encapsulate the result of the join. Through the use of an anonymous type,
this “placeholder” class is no longer needed and no longer clutters the source code to the
program. The output from the program is unchanged from before.

// Use an anonymous type to improve the join demo program.
using System;
using System.Linq;

// A class that links an item name with its number.
class Item {
 public string Name { get; set; }
 public int ItemNumber { get; set; }

 public Item(string n, int inum) {
 Name = n;
 ItemNumber = inum;
 }
}

// A class that links an item number with its in-stock status.
class InStockStatus {
 public int ItemNumber { get; set; }
 public bool InStock { get; set; }

 public InStockStatus(int n, bool b) {
 ItemNumber = n;
 InStock = b;
 }
}

class AnonTypeDemo {
 static void Main() {

 Item[] items = {
 new Item("Pliers", 1424),
 new Item("Hammer", 7892),
 new Item("Wrench", 8534),
 new Item("Saw", 6411)
 };

 InStockStatus[] statusList = {
 new InStockStatus(1424, true),
 new InStockStatus(7892, false),
 new InStockStatus(8534, true),
 new InStockStatus(6411, true)
 };

PART I

C h a p t e r 1 9 : L I N Q 571

PART I
PART I

 // Create a query that joins Item with InStockStatus to
 // produce a list of item names and availability.
 // Now, an anonymous type is used.
 var inStockList = from item in items
 join entry in statusList
 on item.ItemNumber equals entry.ItemNumber
 select new { Name = item.Name,
 InStock = entry.InStock };

 Console.WriteLine("Item\tAvailable\n");

 // Execute the query and display the results.
 foreach(var t in inStockList)
 Console.WriteLine("{0}\t{1}", t.Name, t.InStock);
 }
}

Pay special attention to the select clause:

select new { Name = item.Name,
 InStock = entry.InStock };

It returns an object of an anonymous type that has two read-only properties, Name and
InStock. These are given the values specified by the item’s name and availability. Because
of the anonymous type, there is no longer any need for the Temp class.

One other point. Notice the foreach loop that executes the query. It now uses var to
declare the iteration variable. This is necessary because the type of the object contained in
inStockList has no name. This situation is one of the reasons that C# 3.0 added implicitly
typed variables. They are needed to support anonymous types.

Before moving on, there is one more aspect of anonymous types that warrants a mention.
In some cases, including the one just shown, you can simplify the syntax of the anonymous
type through the use of a projection initializer. In this case, you simply specify the name of
the initializer by itself. This name automatically becomes the name of the property. For
example, here is another way to code the select clause used by the preceding program:

select new { item.Name, entry.InStock };

Here, the property names are still Name and InStock, just as before. The compiler
automatically “projects” the identifiers Name and InStock, making them the property
names of the anonymous type. Also as before, the properties are given the values specified
by item.Name and entry.InStock.

Create a Group Join
As explained earlier, you can use into with join to create a group join, which creates a
sequence in which each entry in the result consists of an entry from the first sequence and
a group of all matching elements from the second sequence. No example was presented
then because often a group join makes use of an anonymous type. Now that anonymous
types have been covered, an example of a simple group join can be given.

The following example uses a group join to create a list in which various transports, such
as cars, boats, and planes, are organized by their general transportation category, which is

572 P a r t I : T h e C # L a n g u a g e

land, sea, and air. The program first creates a class called Transport that links a transport
type with its classification. Inside Main(), it creates two input sequences. The first is an array
of strings that contains the names of the general means by which one travels, which is land,
sea, and air. The second is an array of Transport, which encapsulates various means of
transportation. It then uses a group join to produce a list of transports that are organized
by their category.

// Demonstrate a simple group join.
using System;
using System.Linq;

// This class links the name of a transport, such as Train,
// with its general classification, such as land, sea, or air.
class Transport {
 public string Name { get; set; }
 public string How { get; set; }

 public Transport(string n, string h) {
 Name = n;
 How = h;
 }
}

class GroupJoinDemo {
 static void Main() {

 // An array of transport classifications.
 string[] travelTypes = {
 "Air",
 "Sea",
 "Land"
 };

 // An array of transports.
 Transport[] transports = {
 new Transport("Bicycle", "Land"),
 new Transport("Balloon", "Air"),
 new Transport("Boat", "Sea"),
 new Transport("Jet", "Air"),
 new Transport("Canoe", "Sea"),
 new Transport("Biplane", "Air"),
 new Transport("Car", "Land"),
 new Transport("Cargo Ship", "Sea"),
 new Transport("Train", "Land")
 };

 // Create a query that uses a group join to produce
 // a list of item names and IDs organized by category.
 var byHow = from how in travelTypes
 join trans in transports
 on how equals trans.How
 into lst
 select new { How = how, Tlist = lst };

PART I

C h a p t e r 1 9 : L I N Q 573

PART I
PART I

 // Execute the query and display the results.
 foreach(var t in byHow) {
 Console.WriteLine("{0} transportation includes:", t.How);

 foreach(var m in t.Tlist)
 Console.WriteLine(" " + m.Name);

 Console.WriteLine();
 }
 }
}

The output is shown here:

Air transportation includes:
 Balloon
 Jet
 Biplane

Sea transportation includes:
 Boat
 Canoe
 Cargo Ship

Land transportation includes:
 Bicycle
 Car
 Train

The key part of the program is, of course, the query, which is shown here:

var byHow = from how in travelTypes
 join trans in transports
 on how equals trans.How
 into lst
 select new { How = how, Tlist = lst };

Here is how it works. The from statement uses how to range over the travelTypes array.
Recall that travelTypes contains an array of the general travel classifications: air, land, and
sea. The join clause joins each travel type with those transports that use that type. For
example, the type Land is joined with Bicycle, Car, and Train. However, because of the into
clause, for each travel type, the join produces a list of the transports that use that travel
type. This list is represented by lst. Finally, select returns an anonymous type that encapsulates
each value of how (the travel type) with a list of transports. This is why the two foreach
loops shown here are needed to display the results of the query:

foreach(var t in byHow) {
 Console.WriteLine("{0} transportation includes:", t.How);

 foreach(var m in t.Tlist)
 Console.WriteLine(" " + m.Name);

 Console.WriteLine();
}

574 P a r t I : T h e C # L a n g u a g e

The outer loop obtains an object that contains the name of the travel type and the list of the
transports for that type. The inner loop displays the individual transports.

The Query Methods
The query syntax described by the preceding sections is the way you will probably write
most queries in C#. It is convenient, powerful, and compact. It is, however, not the only way
to write a query. The other way is to use the query methods. These methods can be called on
any enumerable object, such as an array.

The Basic Query Methods
The query methods are defined by System.Linq.Enumerable and are implemented as
extension methods that extend the functionality of IEnumerable<T>. (Query methods are
also defined by System.Linq.Queryable, which extends the functionality of IQueryable<T>,
but this interface is not used in this chapter.) An extension method adds functionality to
another class, but without the use of inheritance. Support for extension methods was added
by C# 3.0, and we will look more closely at them later in this chapter. For now, it is sufficient
to understand that query methods can be called only on an object that implements
IEnumerable<T>.

The Enumerable class provides many query methods, but at the core are those that
correspond to the query keywords described earlier. These methods are shown here, along
with the keywords to which they relate. Understand that these methods have overloaded
forms and only their simplest form is shown. However, this is also the form that you will
often use.

Query Keyword Equivalent Query Method

select Select(arg)

where Where(arg)

orderby OrderBy(arg) or OrderByDescending(arg)

join Join(seq2, key1, key2, result)

group GroupBy(arg)

Except for Join(), the other methods take one argument, arg, which is an object of type
Func<T, TResult>, as a parameter. This is a delegate type defined by LINQ. It is declared
like this:

delegate TResult Func<T, TResult>(T arg)

Here, TResult specifies the result of the delegate and T specifies the parameter type. In the
query methods, arg determines what action the query method takes. For example, in the
case of Where(), arg determines how the query filters the data. Each of these query methods
returns an enumerable object. Thus, the result of one can be used to execute a call on
another, allowing the methods to be chained together.

The Join() method takes four arguments. The first is a reference to the second sequence
to be joined. The first sequence is the one on which Join() is called. The key selector for the
first sequence is passed via key1, and the key selector for the second sequence is passed via

PART I

C h a p t e r 1 9 : L I N Q 575

PART I
PART I

key2. The result of the join is described by result. The type of key1 is Func<TOuter, TKey>,
and the type of key2 is Func<TInner, TKey>. The result argument is of type Func<TOuter,
TInner, TResult>. Here, TOuter is the element type of the invoking sequence; TInner is the
element type of the passed sequence; and TResult is the type of the resulting elements. An
enumerable object is returned that contains the result of the join.

Although an argument to a query method such as Where() is a method compatible with
the specified form of the Func delegate, it does not need to be an explicitly declared method.
In fact, most often it won’t be. Instead, you will usually use a lambda expression. As explained
in Chapter 15, a lambda expression is a new syntactic feature provided by C# 3.0. It offers a
streamlined, yet powerful way to define what is, essentially, an anonymous method. The C#
compiler automatically converts a lambda expression into a form that can be passed to a
Func parameter. Because of the streamlined convenience offered by lambda expressions,
they are used by all of the examples in this section.

Create Queries by Using the Query Methods
By using the query methods in conjunction with lambda expressions, it is possible to create
queries that do not use the C# query syntax. Instead, the query methods are called. Let’s
begin with a simple example. It reworks the first program in this chapter so that it uses calls
to Where() and Select() rather than the query keywords.

// Use the query methods to create a simple query.
// This is a reworked version of the first program in this chapter.
using System;
using System.Linq;

class SimpQuery {
 static void Main() {

 int[] nums = { 1, -2, 3, 0, -4, 5 };

 // Use Where() and Select() to create a simple query.
 var posNums = nums.Where(n => n > 0).Select(r => r);

 Console.Write("The positive values in nums: ");

 // Execute the query and display the results.
 foreach(int i in posNums) Console.Write(i + " ");
 Console.WriteLine();
 }
}

The output, shown here, is the same as the original version:

The positive values in nums: 1 3 5

In the program, pay special attention to this line:

var posNums = nums.Where(n => n > 0).Select(r => r);

This creates a query called posNums that creates a sequence of the positive values in nums.
It does this by use of the Where() method (to filter the values) and Select() (to select the

576 P a r t I : T h e C # L a n g u a g e

values). The Where() method can be invoked on nums because all arrays implement
IEnumerable<T>, which supports the query extension methods.

Technically, the Select() method in the preceding example is not necessary because in
this simple case, the sequence returned by Where() already contains the result. However,
you can use more sophisticated selection criteria, just as you did with the query syntax. For
example, this query returns the positive values in nums increased by an order of magnitude:

var posNums = nums.Where(n => n > 0).Select(r => r * 10);

As you might expect, you can chain together other operations. For example, this query
selects the positive values, sorts them into descending order, and returns the resulting
sequence:

var posNums = nums.Where(n => n > 0).OrderByDescending(j => j);

Here, the expression j => j specifies that the ordering is dependent on the input parameter,
which is an element from the sequence obtained from Where().

Here is an example that demonstrates the GroupBy() method. It reworks the group
example shown earlier.

// Demonstrate the GroupBy() query method.
// This program reworks the earlier version that used
// the query syntax.
using System;
using System.Linq;

class GroupByDemo {

 static void Main() {

 string[] websites = { "hsNameA.com", "hsNameB.net", "hsNameC.net",
 "hsNameD.com", "hsNameE.org", "hsNameF.org",
 "hsNameG.tv", "hsNameH.net", "hsNameI.tv" };

 // Use query methods to group websites by top-level domain name.
 var webAddrs = websites.Where(w => w.LastIndexOf(".") != 1).
 GroupBy(x => x.Substring(x.LastIndexOf(".", x.Length)));

 // Execute the query and display the results.
 foreach(var sites in webAddrs) {
 Console.WriteLine("Web sites grouped by " + sites.Key);
 foreach(var site in sites)
 Console.WriteLine(" " + site);
 Console.WriteLine();
 }
 }
}

This version produces the same output as the earlier version. The only difference is how the
query is created. In this version, the query methods are used.

Here is another example. Recall the join query used in the JoinDemo example shown
earlier:

PART I

C h a p t e r 1 9 : L I N Q 577

PART I
PART I

var inStockList = from item in items
 join entry in statusList
 on item.ItemNumber equals entry.ItemNumber
 select new Temp(item.Name, entry.InStock);

This query produces a sequence that contains objects that encapsulate the name and the in-
stock status of an inventory item. This information is synthesized from joining the two lists
items and statusList. The following version reworks this query so that it uses the Join()
method rather than the C# query syntax:

// Use Join() to produce a list of item names and status.
var inStockList = items.Join(statusList,
 k1 => k1.ItemNumber,
 k2 => k2.ItemNumber,
 (k1, k2) => new Temp(k1.Name, k2.InStock));

Although this version uses the named class called Temp to hold the resulting object, an
anonymous type could have been used instead. This approach is shown next:

var inStockList = items.Join(statusList,
 k1 => k1.ItemNumber,
 k2 => k2.ItemNumber,
 (k1, k2) => new { k1.Name, k2.InStock});

Query Syntax vs. Query Methods
As the preceding section has explained, C# has two ways of creating queries: the query
syntax and the query methods. What is interesting, and not readily apparent by simply
looking at a program’s source code, is that the two approaches are more closely related than
you might at first assume. The reason is that the query syntax is compiled into calls to the
query methods. Thus, when you write something like

where x < 10

the compiler translates it into

Where(x => x < 10)

Therefore, the two approaches to creating a query ultimately lead to the same place.
Given that the two approaches are ultimately equivalent, the following question

naturally arises: Which approach is best for a C# program? The answer: In general, you
will want to use the query syntax. It is fully integrated into the C# language, supported by
keywords and syntax, and is cleaner.

More Query-Related Extension Methods
In addition to the methods that correspond to the query keywords supported by C#, the
.NET Framework provides several other query-related extension methods that are often
helpful in a query. These query-related methods are defined for IEnumerable<T> by
Enumerable. Here is a sampling of several commonly used methods. Because many of the
methods are overloaded, only their general form is shown.

578 P a r t I : T h e C # L a n g u a g e

Method Description

All(condition) Returns true if all elements in a sequence satisfy a specified condition.

Any(condition) Returns true if any element in a sequence satisfies a specified condition.

Average() Returns the average of the values in a numeric sequence.

Contains(obj) Returns true if the sequence contains the specified object.

Count() Returns the length of a sequence. This is the number of elements that it
contains.

First() Returns the first element in a sequence.

Last() Returns the last element in a sequence.

Max() Returns the maximum value in a sequence.

Min() Returns the minimum value in a sequence.

Sum() Returns the summation of the values in a numeric sequence.

You have already seen Count() in action earlier in this chapter. Here is a program that
demonstrates the others:

// Use several of the extension methods defined by Enumerable.
using System;
using System.Linq;

class ExtMethods {
 static void Main() {

 int[] nums = { 3, 1, 2, 5, 4 };

 Console.WriteLine("The minimum value is " + nums.Min());
 Console.WriteLine("The maximum value is " + nums.Max());

 Console.WriteLine("The first value is " + nums.First());
 Console.WriteLine("The last value is " + nums.Last());

 Console.WriteLine("The sum is " + nums.Sum());
 Console.WriteLine("The average is " + nums.Average());

 if(nums.All(n => n > 0))
 Console.WriteLine("All values are greater than zero.");

 if(nums.Any(n => (n % 2) == 0))
 Console.WriteLine("At least one value is even.");

 if(nums.Contains(3))
 Console.WriteLine("The array contains 3.");
 }
}

The output is shown here:

PART I

C h a p t e r 1 9 : L I N Q 579

PART I
PART I

The minimum value is 1
The maximum value is 5
The first value is 3
The last value is 4
The sum is 15
The average is 3
All values are greater than zero.
At least one value is even.
The array contains 3.

You can also use the query-related extension methods within a query based on the C#
query syntax. In fact, it is quite common to do so. For example, this program uses Average()
to obtain a sequence that contains only those values that are less than the average of the
values in an array.

// Use Average() with the query syntax.
using System;
using System.Linq;

class ExtMethods2 {
 static void Main() {

 int[] nums = { 1, 2, 4, 8, 6, 9, 10, 3, 6, 7 };

 var ltAvg = from n in nums
 let x = nums.Average()
 where n < x
 select n;

 Console.WriteLine("The average is " + nums.Average());

 Console.Write("These values are less than the average: ");

 // Execute the query and display the results.
 foreach(int i in ltAvg) Console.Write(i + " ");

 Console.WriteLine();
 }
}

The output is shown here:

The average is 5.6
These values are less than the average: 1 2 4 3

Pay special attention to the query:

 var ltAvg = from n in nums
 let x = nums.Average()
 where n < x
 select n;

Notice in the let statement, x is set equal to the average of the values in nums. This value is
obtained by calling Average() on nums.

580 P a r t I : T h e C # L a n g u a g e

Deferred vs. Immediate Query Execution
In LINQ, queries have two different modes of execution: immediate and deferred. As
explained early in this chapter, a query defines a set of rules that are not actually executed
until a foreach statement executes. This is called deferred execution.

However, if you use one of the extension methods that produces a nonsequence result,
then the query must be executed to obtain that result. For example, consider the Count()
method. In order for Count() to return the number of elements in the sequence, the query
must be executed, and this is done automatically when Count() is called. In this case,
immediate execution takes place, with the query being executed automatically in order to
obtain the result. Therefore, even though you don’t explicitly use the query in a foreach
loop, the query is still executed.

Here is a simple example. It obtains the number of positive elements in the sequence.

// Use immediate execution.
using System;
using System.Linq;

class ImmediateExec {
 static void Main() {

 int[] nums = { 1, -2, 3, 0, -4, 5 };

 // Create a query that obtains the number of positive
 // values in nums.
 int len = (from n in nums
 where n > 0
 select n).Count();

 Console.WriteLine("The number of positive values in nums: " + len);
 }
}

The output is

The number of positive values in nums: 3

In the program, notice that no explicit foreach loop is specified. Instead, the query
automatically executes because of the call to Count().

As a point of interest, the query in the preceding program could also have been written
like this:

var posNums = from n in nums
 where n > 0
 select n;

int len = posNums.Count(); // query executes here

In this case, Count() is called on the query variable. At that point, the query is executed to
obtain the count.

Two other methods that cause immediate execution of a query are ToArray() and
ToList(). Both are extension methods defined by Enumerable. ToArray() returns the results

PART I

C h a p t e r 1 9 : L I N Q 581

PART I
PART I

of a query in an array. ToList() returns the results of a query in the form of a List collection.
(See Chapter 24 for a discussion of collections.) In both cases, the query is executed to obtain
the results. For example, the following sequence obtains an array of the results generated by
the posNums query just shown. It then displays the results.

int[] pnums = posNum.ToArray(); // query executes here

foreach(int i in pnums)
 Console.Write(i + " ");
}

Expression Trees
Another new LINQ-related feature is the expression tree. An expression tree is a representation
of a lambda expression as data. Thus, an expression tree, itself, cannot be executed. It can,
however, be converted into an executable form. Expression trees are encapsulated by the
System.Linq.Expressions.Expression<T> class. Expression trees are useful in situations in
which a query will be executed by something outside the program, such as a database that
uses SQL. By representing the query as data, the query can be converted into a format
understood by the database. This process is used by the LINQ to SQL feature provided by
Visual C#, for example. Thus, expression trees help C# support a variety of data sources.

You can obtain an executable form of an expression tree by calling the Compile()
method defined by Expression. It returns a reference that can be assigned to a delegate and
then executed. You can declare your own delegate type or use one of the predefined Func
delegate types defined within the System namespace. Two forms of the Func delegate were
mentioned earlier, when the query methods were described. Here is a list of all its forms:

delegate TResult Func<TResult>()

delegate TResult Func<T1, TResult>()

delegate TResult Func<T1, T2, TResult>()

delegate TResult Func<T1, T2, T3, TResult>()

delegate TResult Func<T1, T2, T3, T4, TResult>()

These forms represent methods that return a value and take from zero to four parameters
(whose types are T1 through T4). If your expression requires more than four parameters,
then you will need to define your own delegate type.

Expression trees have one key restriction: Only expression lambdas can be represented
by expression trees. They cannot be used to represent statement lambdas.

Here is a simple example of an expression tree in action. It creates an expression tree
whose data represents a method that determines if one integer is a factor of another. It then
compiles the expression tree into executable code. Finally, it demonstrates the compiled code.

// A simple expression tree.
using System;
using System.Linq;
using System.Linq.Expressions;

582 P a r t I : T h e C # L a n g u a g e

class SimpleExpTree {
 static void Main() {

 // Represent a lambda expression as data.
 Expression<Func<int, int, bool>>
 IsFactorExp = (n, d) => (d != 0) ? (n % d) == 0 : false;

 // Compile the expression data into executable code.
 Func<int, int, bool> IsFactor = IsFactorExp.Compile();

 // Execute the expression.
 if(IsFactor(10, 5))
 Console.WriteLine("5 is a factor of 10.");

 if(!IsFactor(10, 7))
 Console.WriteLine("7 is not a factor of 10.");

 Console.WriteLine();
 }
}

The output is shown here:

5 is a factor of 10.
7 is not a factor of 10.

The program illustrates the two key steps in using an expression tree. First, it creates an
expression tree by using this statement:

Expression<Func<int, int, bool>>
 IsFactorExp = (n, d) => (d != 0) ? (n % d) == 0 : false;

This constructs a representation of a lambda expression in memory. As explained, this
representation is data, not code. This representation is referred to by IsFactorExp. The
following statement converts the expression data into executable code:

Func<int, int, bool> IsFactor = IsFactorExp.Compile();

After this statement executes, the IsFactor delegate can be called to determine if one value is
a factor of another.

One other point: Notice that Func<int, int, bool> indicates the delegate type. This form
of Func specifies two parameters of type int and a return type of bool. This is the form of
Func that is compatible with the lambda expression used in the program because that
expression requires two parameters. Other lambda expressions may require different forms
of Func, based on the number of parameters they require. In general, the specific form of
Func must match the requirements of the lambda expression.

Extension Methods
As mentioned earlier, extension methods provide a means by which functionality can be
added to a class without using the normal inheritance mechanism. Although you won’t
often create your own extension methods (because the inheritance mechanism offers a

PART I

C h a p t e r 1 9 : L I N Q 583

PART I
PART I

better solution in many cases), it is still important that you understand how they work
because of their integral importance to LINQ.

An extension method is a static method that must be contained within a static, non-generic
class. The type of its first parameter determines the type of objects on which the extension
method can be called. Furthermore, the first parameter must be modified by this. The object on
which the method is invoked is passed automatically to the first parameter. It is not explicitly
passed in the argument list. A key point is that even though an extension method is declared
static, it can still be called on an object, just as if it were an instance method.

Here is the general form of an extension method:

static ret-type name(this invoked-on-type ob, param-list)

Of course, if there are no arguments other than the one passed implicitly to ob, then param-list
will be empty. Remember, the first parameter is automatically passed the object on which
the method is invoked. In general, an extension method will be a public member of its class.

Here is an example that creates three simple extension methods:

// Create and use some extension methods.
using System;

static class MyExtMeths {

 // Return the reciprocal of a double.
 public static double Reciprocal(this double v) {
 return 1.0 / v;
 }

 // Reverse the case of letters within a string and
 // return the result.
 public static string RevCase(this string str) {
 string temp = "";

 foreach(char ch in str) {
 if(Char.IsLower(ch)) temp += Char.ToUpper(ch);
 else temp += Char.ToLower(ch);
 }
 return temp;
 }

 // Return the absolute value of n / d.
 public static double AbsDivideBy(this double n, double d) {
 return Math.Abs(n / d);
 }
}

class ExtDemo {
 static void Main() {
 double val = 8.0;
 string str = "Alpha Beta Gamma";

 // Call the Recip() extension method.
 Console.WriteLine("Reciprocal of {0} is {1}",
 val, val.Reciprocal());

584 P a r t I : T h e C # L a n g u a g e

 // Call the RevCase() extension method.
 Console.WriteLine(str + " after reversing case is " +
 str.RevCase());

 // Use AbsDivideBy();
 Console.WriteLine("Result of val.AbsDivideBy(-2): " +
 val.AbsDivideBy(-2));
 }
}

The output is shown here:

Reciprocal of 8 is 0.125
Alpha Beta Gamma after reversing case is aLPHA bETA gAMMA
Result of val.AbsDivideBy(-2): 4

In the program, notice that each extension method is contained in a static class called
MyExtMeths. As explained, an extension method must be declared within a static class.
Furthermore, this class must be in scope in order for the extension methods that it contains
to be used. (This is why you needed to include the System.Linq namespace to use the LINQ-
related extension methods.) Next, notice the calls to the extension methods. They are
invoked on an object, in just the same way that an instance method is called. The main
difference is that the invoking object is passed to the first parameter of the extension
method. Therefore, when the expression

val.AbsDivideBy(-2)

executes, val is passed to the n parameter of AbsDivideBy() and –2 is passed to the d
parameter.

As a point of interest, because the methods Reciprocal() and AbsDivideBy() are
defined for double, it is legal to invoke them on a double literal, as shown here:

8.0.Reciprocal()
8.0.AbsDivideBy(-1)

Furthermore, RevCase() can be invoked like this:

"AbCDe".RevCase()

Here, the reversed-case version of a string literal is returned.

20
Unsafe Code, Pointers,

Nullable Types, and
Miscellaneous Topics

This chapter covers a feature of C# whose name usually takes programmers by surprise:
unsafe code. Unsafe code often involves the use of pointers. Together, unsafe code and
pointers enable C# to be used to create applications that one might normally associate

with C++: high-performance, systems code. Moreover, the inclusion of unsafe code and
pointers gives C# capabilities that are lacking in Java.

Also covered in this chapter are nullable types, partial class and partial method
definitions, and fixed-size buffers. The chapter concludes by discussing the few keywords
that have not been covered by the preceding chapters.

Unsafe Code
C# allows you to write what is called “unsafe” code. Although this statement might seem
shocking, it really isn’t. Unsafe code is not code that is poorly written; it is code that does
not execute under the full management of the common language runtime (CLR). As
explained in Chapter 1, C# is normally used to create managed code. It is possible, however,
to write code that does not execute under the full control of the CLR. This unmanaged code
is not subject to the same controls and constraints as managed code, so it is called “unsafe”
because it is not possible to verify that it won’t perform some type of harmful action. Thus,
the term unsafe does not mean that the code is inherently flawed. It simply means that it is
possible for the code to perform actions that are not subject to the supervision of the
managed context.

Given that unsafe code might cause problems, you might ask why anyone would want
to create such code. The answer is that managed code prevents the use of pointers. If you are
familiar with C or C++, then you know that pointers are variables that hold the addresses
of other objects. Thus, pointers are a bit like references in C#. The main difference is that a
pointer can point anywhere in memory; a reference always refers to an object of its type.
Because a pointer can point anywhere in memory, it is possible to misuse a pointer. It is also

585

CHAPTER

586 P a r t I : T h e C # L a n g u a g e

easy to introduce a coding error when using pointers. This is why C# does not support
pointers when creating managed code. Pointers are, however, both useful and necessary for
some types of programming (such as system-level utilities), and C# does allow you to create
and use pointers. However, all pointer operations must be marked as unsafe since they
execute outside the managed context.

The declaration and use of pointers in C# parallels that of C/C++—if you know how to
use pointers in C/C++, then you can use them in C#. But remember, the essence of C# is the
creation of managed code. Its ability to support unmanaged code allows it to be applied to a
special class of problems. It is not for normal C# programming. In fact, to compile unmanaged
code, you must use the /unsafe compiler option.

Since pointers are at the core of unsafe code, we will begin there.

Pointer Basics
A pointer is a variable that holds the address of some other object, such as another variable.
For example, if x contains the address of y, then x is said to “point to” y. When a pointer
points to a variable, the value of that variable can be obtained or changed through the pointer.
Operations through pointers are often referred to as indirection.

Declaring a Pointer
Pointer variables must be declared as such. The general form of a pointer variable
declaration is

type* var-name;

Here, type is the pointer’s referent type, which must be a nonreference type. Thus, you cannot
declare a pointer to a class object. A pointer’s referent type is also sometimes called its base
type. Notice the placement of the *. It follows the type name. var-name is the name of the
pointer variable.

Here is an example. To declare ip to be a pointer to an int, use this declaration:

int* ip;

For a float pointer, use

float* fp;

In general, in a declaration statement, following a type name with an * creates a pointer type.
The type of data that a pointer will point to is determined by its referent type. Thus, in

the preceding examples, ip can be used to point to an int, and fp can be used to point to a
float. Understand, however, that there is nothing that actually prevents a pointer from
pointing elsewhere. This is why pointers are potentially unsafe.

If you come from a C/C++ background, then you need to be aware of an important
difference between the way C# and C/C++ declare pointers. When you declare a pointer
type in C/C++, the * is not distributive over a list of variables in a declaration. Thus, in
C/C++, this statement

int* p, q;

declares an int pointer called p and an int called q. It is equivalent to the following two
declarations:

PART I

C h a p t e r 2 0 : U n s a f e C o d e , P o i n t e r s , N u l l a b l e T y p e s , a n d M i s c e l l a n e o u s T o p i c s 587

PART I
PART I

int* p;
int q;

However, in C#, the * is distributive and the declaration

int* p, q;

creates two pointer variables. Thus, in C# it is the same as these two declarations:

int* p;
int* q;

This is an important difference to keep in mind when porting C/C++ code to C#.

The * and & Pointer Operators
Two operators are used with pointers: * and &. The & is a unary operator that returns the
memory address of its operand. (Recall that a unary operator requires only one operand.)
For example,

int* ip;
int num = 10;

ip = #

puts into ip the memory address of the variable num. This address is the location of the
variable in the computer’s internal memory. It has nothing to do with the value of num.
Thus, ip does not contain the value 10 (num’s initial value). It contains the address at which
num is stored. The operation of & can be remembered as returning “the address of” the
variable it precedes. Therefore, the preceding assignment statement could be verbalized
as “ip receives the address of num.”

The second operator is *, and it is the complement of &. It is a unary operator that
evaluates to the value of the variable located at the address specified by its operand. That
is, it refers to the value of the variable pointed to by a pointer. Continuing with the same
example, if ip contains the memory address of the variable num, then

int val = *ip;

will place into val the value 10, which is the value of num, which is pointed to by ip. The
operation of * can be remembered as “at address.” In this case, then, the statement could be
read as “val receives the value at address ip.”

The * can also be used on the left side of an assignment statement. In this usage, it sets
the value pointed to by the pointer. For example,

*ip = 100;

This statement assigns 100 to the variable pointed to by ip, which is num in this case. Thus,
this statement can be read as “at address ip, put the value 100.”

Using unsafe
Any code that uses pointers must be marked as unsafe by using the unsafe keyword. You
can mark types (such as classes and structures), members (such as methods and operators),

588 P a r t I : T h e C # L a n g u a g e

or individual blocks of code as unsafe. For example, here is a program that uses pointers
inside Main(), which is marked unsafe:

// Demonstrate pointers and unsafe.

using System;

class UnsafeCode {
 // Mark Main as unsafe.
 unsafe static void Main() {
 int count = 99;
 int* p; // create an int pointer

 p = &count; // put address of count into p

 Console.WriteLine("Initial value of count is " + *p);

 *p = 10; // assign 10 to count via p

 Console.WriteLine("New value of count is " + *p);
 }
}

The output of this program is shown here:

Initial value of count is 99
New value of count is 10

Using fixed
The fixed modifier is often used when working with pointers. It prevents a managed
variable from being moved by the garbage collector. This is needed when a pointer refers to
a field in a class object, for example. Because the pointer has no knowledge of the actions of
the garbage collector, if the object is moved, the pointer will point to the wrong object. Here
is the general form of fixed:

fi xed (type* p = &fi xedObj) {
 // use fi xed object
}

Here, p is a pointer that is being assigned the address of an object. The object will remain at
its current memory location until the block of code has executed. You can also use a single
statement for the target of a fixed statement. The fixed keyword can be used only in an
unsafe context. You can declare more than one fixed pointer at a time using a comma-
separated list.

Here is an example of fixed:

// Demonstrate fixed.

using System;

class Test {
 public int num;
 public Test(int i) { num = i; }
}

PART I

C h a p t e r 2 0 : U n s a f e C o d e , P o i n t e r s , N u l l a b l e T y p e s , a n d M i s c e l l a n e o u s T o p i c s 589

PART I
PART I

class FixedCode {
 // Mark Main as unsafe.
 unsafe static void Main() {
 Test o = new Test(19);

 fixed (int* p = &o.num) { // use fixed to put address of o.num into p

 Console.WriteLine("Initial value of o.num is " + *p);

 *p = 10; // assign 10 to count via p

 Console.WriteLine("New value of o.num is " + *p);
 }
 }
}

The output from this program is shown here:

Initial value of o.num is 19
New value of o.num is 10

Here, fixed prevents o from being moved. Because p points to o.num, if o were moved, then
p would point to an invalid location.

Accessing Structure Members Through a Pointer
A pointer can point to an object of a structure type as long as the structure does not contain
reference types. When you access a member of a structure through a pointer, you must use
the arrow operator, which is –>, rather than the dot (.) operator. For example, given this
structure,

struct MyStruct {
 public int a;
 public int b;
 public int Sum() { return a + b; }
}

you would access its members through a pointer, like this:

MyStruct o = new MyStruct();
MyStruct* p; // declare a pointer

p = &o;
p->a = 10; // use the -> operator
p->b = 20; // use the -> operator

Console.WriteLine("Sum is " + p->Sum());

Pointer Arithmetic
There are only four arithmetic operators that can be used on pointers: ++, – –, +, and –. To
understand what occurs in pointer arithmetic, we will begin with an example. Let p1 be an
int pointer with a current value of 2,000 (that is, it contains the address 2,000). After this
expression,

p1++;

590 P a r t I : T h e C # L a n g u a g e

the contents of p1 will be 2,004, not 2,001! The reason is that each time p1 is incremented, it
will point to the next int. Since int in C# is 4 bytes long, incrementing p1 increases its value
by 4. The reverse is true of decrements. Each decrement decreases p1’s value by 4. For
example,

p1--;

will cause p1 to have the value 1,996, assuming it previously was 2,000.
Generalizing from the preceding example, each time that a pointer is incremented,

it will point to the memory location of the next element of its referent type. Each time it is
decremented, it will point to the location of the previous element of its referent type.

Pointer arithmetic is not limited to only increment and decrement operations. You can
also add or subtract integers to or from pointers. The expression

p1 = p1 + 9;

makes p1 point to the ninth element of p1’s referent type, beyond the one it is currently
pointing to.

Although you cannot add pointers, you can subtract one pointer from another (provided
they are both of the same referent type). The remainder will be the number of elements of
the referent type that separate the two pointers.

Other than addition and subtraction of a pointer and an integer, or the subtraction of
two pointers, no other arithmetic operations can be performed on pointers. For example,
you cannot add or subtract float or double values to or from pointers.

To see the effects of pointer arithmetic, execute the next short program. It prints the
actual physical addresses to which an integer pointer (ip) and a floating-point pointer (fp)
are pointing. Observe how each changes, relative to its referent type, each time the loop is
repeated.

// Demonstrate the effects of pointer arithmetic.

using System;

class PtrArithDemo {
 unsafe static void Main() {
 int x;
 int i;
 double d;

 int* ip = &i;
 double* fp = &d;

 Console.WriteLine("int double\n");

 for(x=0; x < 10; x++) {
 Console.WriteLine((uint) (ip) + " " + (uint) (fp));
 ip++;
 fp++;
 }
 }
}

PART I

C h a p t e r 2 0 : U n s a f e C o d e , P o i n t e r s , N u l l a b l e T y p e s , a n d M i s c e l l a n e o u s T o p i c s 591

PART I
PART I

Sample output is shown here. Your output may differ, but the intervals will be the same.

int double

1243464 1243468
1243468 1243476
1243472 1243484
1243476 1243492
1243480 1243500
1243484 1243508
1243488 1243516
1243492 1243524
1243496 1243532
1243500 1243540

As the output shows, pointer arithmetic is performed relative to the referent type of the
pointer. Since an int is 4 bytes and a double is 8 bytes, the addresses change in increments
of these values.

Pointer Comparisons
Pointers can be compared using the relational operators, such as = =, <, and >. However, for
the outcome of a pointer comparison to be meaningful, usually the two pointers must have
some relationship to each other. For example, if p1 and p2 are pointers that point to two
separate and unrelated variables, then any comparison between p1 and p2 is generally
meaningless. However, if p1 and p2 point to variables that are related to each other, such
as elements of the same array, then p1 and p2 can be meaningfully compared.

Pointers and Arrays
In C#, pointers and arrays are related. For example, within a fixed statement, the name
of an array without any index generates a pointer to the start of the array. Consider the
following program:

/* An array name without an index yields a pointer to the
 start of the array. */

using System;

class PtrArray {
 unsafe static void Main() {
 int[] nums = new int[10];

 fixed(int* p = &nums[0], p2 = nums) {
 if(p == p2)
 Console.WriteLine("p and p2 point to same address.");
 }
 }
}

The output is shown here:

p and p2 point to same address.

592 P a r t I : T h e C # L a n g u a g e

As the output shows, the expression

&nums[0]

is the same as

nums

Since the second form is shorter, most programmers use it when a pointer to the start of an
array is needed.

Indexing a Pointer
When a pointer refers to an array, the pointer can be indexed as if it were an array. This
syntax provides an alternative to pointer arithmetic that can be more convenient in some
situations. Here is an example:

// Index a pointer as if it were an array.

using System;

class PtrIndexDemo {
 unsafe static void Main() {
 int[] nums = new int[10];

 // Index a pointer.
 Console.WriteLine("Index pointer like array.");
 fixed (int* p = nums) {
 for(int i=0; i < 10; i++)
 p[i] = i; // index pointer like array

 for(int i=0; i < 10; i++)
 Console.WriteLine("p[{0}]: {1} ", i, p[i]);
 }

 // Use pointer arithmetic.
 Console.WriteLine("\nUse pointer arithmetic.");
 fixed (int* p = nums) {
 for(int i=0; i < 10; i++)
 *(p+i) = i; // use pointer arithmetic

 for(int i=0; i < 10; i++)
 Console.WriteLine("*(p+{0}): {1} ", i, *(p+i));
 }
 }
}

The output is shown here:

Index pointer like array.
p[0]: 0
p[1]: 1
p[2]: 2
p[3]: 3

PART I

C h a p t e r 2 0 : U n s a f e C o d e , P o i n t e r s , N u l l a b l e T y p e s , a n d M i s c e l l a n e o u s T o p i c s 593

PART I
PART I

p[4]: 4
p[5]: 5
p[6]: 6
p[7]: 7
p[8]: 8
p[9]: 9

Use pointer arithmetic.
*(p+0): 0
*(p+1): 1
*(p+2): 2
*(p+3): 3
*(p+4): 4
*(p+5): 5
*(p+6): 6
*(p+7): 7
*(p+8): 8
*(p+9): 9

As the program illustrates, a pointer expression with this general form

*(ptr + i)

can be rewritten using array-indexing syntax like this:

ptr[i]

There are two important things to understand about indexing a pointer: First, no
boundary checking is applied. Thus, it is possible to access an element beyond the end
of the array to which the pointer refers. Second, a pointer does not have a Length property.
So, using the pointer, there is no way of knowing how long the array is.

Pointers and Strings
Although strings are implemented as objects in C#, it is possible to access the characters in
a string through a pointer. To do so, you will assign a pointer to the start of the string to a
char* pointer using a fixed statement like this:

fi xed(char* p = str) { // ...

After the fixed statement executes, p will point to the start of the array of characters that
make up the string. This array is null-terminated, which means that it ends with a zero. You
can use this fact to test for the end of the array. Null-terminated character arrays are the way
that strings are implemented in C/C++. Thus, obtaining a char* pointer to a string allows
you to operate on strings in much the same way as does C/C++.

Here is a program that demonstrates accessing a string through a char* pointer:

// Use fixed to get a pointer to the start of a string.

using System;

class FixedString {
 unsafe static void Main() {
 string str = "this is a test";

594 P a r t I : T h e C # L a n g u a g e

 // Point p to start of str.
 fixed(char* p = str) {

 // Display the contents of str via p.
 for(int i=0; p[i] != 0; i++)
 Console.Write(p[i]);
 }

 Console.WriteLine();

 }
}

The output is shown here:

this is a test

Multiple Indirection
You can have a pointer point to another pointer that points to the target value. This situation
is called multiple indirection, or pointers to pointers. Pointers to pointers can be confusing.
Figure 20-1 helps clarify the concept of multiple indirection. As you can see, the value of a
normal pointer is the address of the variable that contains the value desired. In the case of a
pointer to a pointer, the first pointer contains the address of the second pointer, which points
to the variable that contains the value desired.

Multiple indirection can be carried on to whatever extent desired, but more than a
pointer to a pointer is rarely needed. In fact, excessive indirection is difficult to follow and
prone to conceptual errors.

A variable that is a pointer to a pointer must be declared as such. You do this by placing
an additional asterisk after the type name. For example, the following declaration tells the
compiler that q is a pointer to a pointer of type int:

int** q;

You should understand that q is not a pointer to an integer, but rather a pointer to an int
pointer.

FIGURE 20-1 Single and multiple indirection

PART I

C h a p t e r 2 0 : U n s a f e C o d e , P o i n t e r s , N u l l a b l e T y p e s , a n d M i s c e l l a n e o u s T o p i c s 595

PART I
PART I

To access the target value indirectly pointed to by a pointer to a pointer, you must apply
the asterisk operator twice, as in this example:

using System;

class MultipleIndirect {
 unsafe static void Main() {
 int x; // holds an int value
 int* p; // holds an int pointer
 int** q; // holds a pointer to an int pointer

 x = 10;
 p = &x; // put address of x into p
 q = &p; // put address of p into q

 Console.WriteLine(**q); // display the value of x
 }
}

The output is the value of x, which is 10. In the program, p is declared as a pointer to an int
and q as a pointer to an int pointer.

One last point: Do not confuse multiple indirection with high-level data structures, such
as linked lists. These are two fundamentally different concepts.

Arrays of Pointers
Pointers can be arrayed like any other data type. The declaration for an int pointer array of
size 3 is

int * [] ptrs = new int * [3];

To assign the address of an int variable called var to the third element of the pointer array,
write

ptrs[2] = &var;

To find the value of var, write

*ptrs[2]

sizeof
When working in an unsafe context, you might occasionally find it useful to know the size,
in bytes, of one of C#’s value types. To obtain this information, use the sizeof operator. It
has this general form:

sizeof(type)

Here, type is the type whose size is being obtained. In general, sizeof is intended primarily for
special-case situations, especially when working with a blend of managed and unmanaged
code.

596 P a r t I : T h e C # L a n g u a g e

stackalloc
You can allocate memory from the stack by using stackalloc. It can be used only when
initializing local variables and has this general form:

type *p = stackalloc type[size]

Here, p is a pointer that receives the address of the memory that is large enough to hold size
number of objects of type. Also, type must be a nonreference type. If there is not room on the
stack to allocate the memory, a System.StackOverflowException is thrown. Finally, stackalloc
can be used only in an unsafe context.

Normally, memory for objects is allocated from the heap, which is a region of free memory.
Allocating memory from the stack is the exception. Variables allocated on the stack are not
garbage-collected. Rather, they exist only while the method in which they are declared is
executing. When the method is left, the memory is freed. One advantage to using stackalloc is
that you don’t need to worry about the memory being moved about by the garbage collector.

Here is an example that uses stackalloc:

// Demonstrate stackalloc.

using System;

class UseStackAlloc {
 unsafe static void Main() {
 int* ptrs = stackalloc int[3];

 ptrs[0] = 1;
 ptrs[1] = 2;
 ptrs[2] = 3;

 for(int i=0; i < 3; i++)
 Console.WriteLine(ptrs[i]);
 }
}

The output is shown here:

1
2
3

Creating Fixed-Size Buffers
There is a second use of the fixed keyword that enables you to create fixed-sized, single-
dimensional arrays. In the C# documentation, these are referred to as fixed-size buffers. A fixed-
size buffer is always a member of a struct. The purpose of a fixed-size buffer is to allow the
creation of a struct in which the array elements that make up the buffer are contained within
the struct. Normally, when you include an array member in a struct, only a reference to the
array is actually held within the struct. By using a fixed-size buffer, you cause the entire array
to be contained within the struct. This results in a structure that can be used in situations in
which the size of a struct is important, such as in mixed-language programming, interfacing
to data not created by a C# program, or whenever a nonmanaged struct containing an array is
required. Fixed-size buffers can be used only within an unsafe context.

PART I

C h a p t e r 2 0 : U n s a f e C o d e , P o i n t e r s , N u l l a b l e T y p e s , a n d M i s c e l l a n e o u s T o p i c s 597

PART I
PART I

To create a fixed-size buffer, use this form of fixed:

fi xed type buf-name[size];

Here, type is the data type of the array; buf-name is the name of the fixed-size buffer; and size is
the number of elements in the buffer. Fixed-size buffers can be specified only within a struct.

To understand why a fixed-size buffer might be useful, consider a situation in which
you want to pass bank account information to an account management program that is
written in C++. Furthermore, assume that each account record uses the following organization:

Name An 8-bit, ASCII character string, 80 bytes long

Balance A double, 8 bytes long

ID A long, 8 bytes long

In C++, each structure, itself, contains the Name array. This differs from C#, which would
normally just store a reference to the array. Thus, representing this data in a C# struct
requires the use of a fixed-size buffer, as shown here:

// Use a fixed-size buffer.
unsafe struct FixedBankRecord {
 public fixed byte Name[80]; // create a fixed-size buffer
 public double Balance;
 public long ID;
}

By using a fixed-size buffer for Name, each instance of FixedBankRecord will contain all 80
bytes of the Name array, which is the way that a C++ struct would be organized. Thus, the
overall size of FixedBankRecord is 96, which is the sum of its members. Here is a program
that demonstrates this fact:

// Demonstrate a fixed-size buffer.

using System;

// Create a fixed-size buffer.
unsafe struct FixedBankRecord {
 public fixed byte Name[80]; // create a fixed-size buffer
 public double Balance;
 public long ID;
}

class FixedSizeBuffer {
 // Mark Main as unsafe.
 unsafe static void Main() {
 Console.WriteLine("Size of FixedBankRecord is " +
 sizeof(FixedBankRecord));
 }
}

The output is shown here:

Size of FixedBankRecord is 96

598 P a r t I : T h e C # L a n g u a g e

Although the size of FixedBankRecord is the exact sum of its members, this may not be
the case for all structs that have fixed-size buffers. C# is free to pad the overall length of
structure so that it aligns on an even boundary (such as a word boundary) for efficiency
reasons. Therefore, the overall length of a struct might be a few bytes greater than the sum
of its fields, even when fixed-size buffers are used. In most cases, an equivalent C++ struct
would also use the same padding. However, be aware that a difference in this regard may
be possible.

One last point: In the program, notice how the fixed-size buffer for Name is created:

public fixed byte Name[80]; // create a fixed-size buffer

Pay special attention to how the dimension of the array is specified. The brackets containing
the array size follow the array name. This is C++-style syntax, and it differs from normal C#
array declarations. This statement allocates 80 bytes of storage within each FixedBankRecord
object.

Nullable Types
Beginning with version 2.0, C# has included a feature that provides an elegant solution to
what is both a common and irritating problem. The feature is the nullable type. The problem is
how to recognize and handle fields that do not contain values (in other words, unassigned
fields). To understand the problem, consider a simple customer database that keeps a record
of the customer’s name, address, customer ID, invoice number, and current balance. In such a
situation, it is possible to create a customer entry in which one or more of those fields would
be unassigned. For example, a customer may simply request a catalog. In this case, no invoice
number would be needed and the field would be unused.

In the past, handling the possibility of unused fields required the use of either placeholder
values or an extra field that simply indicated whether a field was in use. Of course, placeholder
values could work only if there was a value that would otherwise be invalid, which won’t
be the case in all situations. Adding an extra field to indicate if a field is in use works in all
cases, but having to manually create and manage such a field is an annoyance. The nullable
type solves both problems.

Nullable Basics
A nullable type is a special version of a value type that is represented by a structure. In
addition to the values defined by the underlying type, a nullable type can also store the
value null. Thus, a nullable type has the same range and characteristics as its underlying
type. It simply adds the ability to represent a value that indicates that a variable of that type
is unassigned. Nullable types are objects of System.Nullable<T>, where T must be a non-
nullable value type.

REMEMBERREMEMBER Only value types have nullable equivalents.

A nullable type can be specified two different ways. First, you can explicitly declare
objects of type Nullable<T>, which is defined in the System namespace. For example, this
creates int and bool nullable types:

System.Nullable<int> count;
System.Nullable<bool> done;

PART I

C h a p t e r 2 0 : U n s a f e C o d e , P o i n t e r s , N u l l a b l e T y p e s , a n d M i s c e l l a n e o u s T o p i c s 599

PART I
PART I

The second way to declare a nullable type is much shorter and is more commonly used.
Simply follow the type name with a ?. For example, the following shows the more common
way to declare a nullable int and bool type:

int? count;
bool? done;

When using nullable types, you will often see a nullable object created like this:

int? count = null;

This explicitly initializes count to null. This satisfies the constraint that a variable must be
given a value before it is used. In this case, the value simply means undefined.

You can assign a value to a nullable variable in the normal way because a conversion
from the underlying type to the nullable type is predefined. For example, this assigns the
value 100 to count.

count = 100;

There are two ways to determine if a variable of a nullable type is null or contains a
value. First, you can test its value against null. For example, using count declared by the
preceding statement, the following determines if it has a value:

if(count != null) // has a value

If count is not null, then it contains a value.
The second way to determine if a nullable type contains a value is to use the HasValue

read-only property defined by Nullable<T>. It is shown here:

bool HasValue

HasValue will return true if the instance on which it is called contains a value. It will return
false otherwise. Using the HasValue property, here is the second way to determine if the
nullable object count has a value:

if(count.HasValue) // has a value

Assuming that a nullable object contains a value, you can obtain its value by using the
Value read-only property defined by Nullable<T>, which is shown here:

T Value

It returns the value of the nullable instance on which it is called. If you try to obtain a value
from a variable that is null, a System.InvalidOperationException will be thrown. It is also
possible to obtain the value of a nullable instance by casting it into its underlying type.

The following program puts together the pieces and demonstrates the basic mechanism
that handles a nullable type:

// Demonstrate a nullable type.

using System;

class NullableDemo {
 static void Main() {

600 P a r t I : T h e C # L a n g u a g e

 int? count = null;

 if(count.HasValue)
 Console.WriteLine("count has this value: " + count.Value);
 else
 Console.WriteLine("count has no value");

 count = 100;

 if(count.HasValue)
 Console.WriteLine("count has this value: " + count.Value);
 else
 Console.WriteLine("count has no value");
 }
}

The output is shown here:

count has no value
count has this value: 100

Nullable Objects in Expressions
A nullable object can be used in expressions that are valid for its underlying type.
Furthermore, it is possible to mix nullable objects and non-nullable objects within the same
expression. This works because of the predefined conversion that exists from the underlying
type to the nullable type. When non-nullable and nullable types are mixed in an operation,
the outcome is a nullable value.

The following program illustrates the use of nullable types in expressions:

// Use nullable objects in expressions.

using System;

class NullableDemo {
 static void Main() {
 int? count = null;
 int? result = null;

 int incr = 10; // notice that incr is a non-nullable type

 // result contains null, because count is null.
 result = count + incr;

 if(result.HasValue)
 Console.WriteLine("result has this value: " + result.Value);
 else
 Console.WriteLine("result has no value");

 // Now, count is given a value and result will contain a value.
 count = 100;
 result = count + incr;

PART I

C h a p t e r 2 0 : U n s a f e C o d e , P o i n t e r s , N u l l a b l e T y p e s , a n d M i s c e l l a n e o u s T o p i c s 601

PART I
PART I

 if(result.HasValue)
 Console.WriteLine("result has this value: " + result.Value);
 else
 Console.WriteLine("result has no value");

 }
}

The output is shown here:

result has no value
result has this value: 110

The ?? Operator
If you attempt to use a cast to convert a nullable object to its underlying type, a
System.InvalidOperationException will be thrown if the nullable object contains a null
value. This can occur, for example, when you use a cast to assign the value of a nullable
object to a variable of its underlying type. You can avoid the possibility of this exception
being thrown by using the ?? operator, which is called the null coalescing operator. It lets you
specify a default value that will be used when the nullable object contains null. It also
eliminates the need for the cast.

The ?? operator has this general form:

nullable-object ?? default-value

If nullable-object contains a value, then the value of the ?? is that value. Otherwise, the value
of the ?? operation is default-value.

For example, in the following code balance is null. This causes currentBalance to be
assigned the value 0.0 and no exception will be thrown.

double? balance = null;
double currentBalance;

currentBalance = balance ?? 0.0;

In the next sequence, balance is given the value 123.75:

double? balance = 123.75;
double currentBalance;

currentBalance = balance ?? 0.0;

Now, currentBalance will contain the value of balance, which is 123.75.
One other point: The right-hand expression of the ?? is evaluated only if the left-hand

expression does not contain a value. The following program demonstrates this fact:

// Using ??

using System;

class NullableDemo2 {

602 P a r t I : T h e C # L a n g u a g e

 // Return a zero balance.
 static double GetZeroBal() {
 Console.WriteLine("In GetZeroBal().");
 return 0.0;
 }

 static void Main() {
 double? balance = 123.75;
 double currentBalance;

 // Here, GetZeroBal() is not called because balance
 // contains a value.
 currentBalance = balance ?? GetZeroBal();

 Console.WriteLine(currentBalance);
 }
}

In this program, the method GetZeroBal() is not called because balance contains a value.
As explained, when the left-hand expression of ?? contains a value, the right-hand expression
is not evaluated.

Nullable Objects and the Relational and Logical Operators
Nullable objects can be used in relational expressions in just the same way as their
corresponding non-nullable types. However, there is one additional rule that applies.
When two nullable objects are compared using the <, >, <=, or >= operators, the result
is false if either of the objects is null. For example, consider this sequence:

byte? lower = 16;
byte? upper = null;

// Here, lower is defined, but upper isn’t.
if(lower < upper) // false

Here, the result of the test for less than is false. However, somewhat counterintuitively, so is
the inverse comparison:

if(lower > upper) // .. also false!

Thus, when one (or both) of the nullable objects used in a comparison is null, the result of
that comparison is always false. Thus, null does not participate in an ordering relationship.

You can test whether a nullable object contains null, however, by using the == or !=
operators. For example, this is a valid test that will result in a true outcome:

if(upper == null) // ...

When a logical expression involves two bool? objects, the outcome of that expression
will be one of three values: true, false, or null (undefined). Here are the entries that are
added to the truth table for the & and | operators that apply to bool?.

PART I

C h a p t e r 2 0 : U n s a f e C o d e , P o i n t e r s , N u l l a b l e T y p e s , a n d M i s c e l l a n e o u s T o p i c s 603

PART I
PART I

P Q P | Q P & Q

true null true null

false null null false

null true true null

null false null false

null null null null

One other point: When the ! operator is applied to a bool? value that is null, the
outcome is null.

Partial Types
Beginning with C# 2.0, a class, structure, or interface definition can be broken into two or
more pieces, with each piece residing in a separate file. This is accomplished through the
use of the partial keyword. When your program is compiled, the pieces are united.

When used to create a partial type, the partial modifier has this general form:

partial type typename { // ...

Here, typename is the name of the class, structure, or interface that is being split into pieces.
Each part of a partial type must be modified by partial.

Here is an example that divides a simple XY coordinate class into three separate files.
The first file is shown here:

partial class XY {
 public XY(int a, int b) {
 X = a;
 Y = b;
 }
}

The second file is shown next:

partial class XY {
 public int X { get; set; }
}

The third file is

partial class XY {
 public int Y { get; set; }
}

The following file demonstrates the use of XY:

// Demonstrate partial class definitions.
using System;

604 P a r t I : T h e C # L a n g u a g e

class Test {
 static void Main() {
 XY xy = new XY(1, 2);

 Console.WriteLine(xy.X + "," + xy.Y);
 }
}

To use XY, all files must be included in the compile. For example, assuming the XY files
are called xy1.cs, xy2.cs, and xy3.cs, and that the Test class is contained in a file called test.cs,
then to compile Test, use the following command line:

csc test.cs xy1.cs xy2.cs xy3.cs

One last point: It is legal to have partial generic classes. However, the type parameters
of each partial declaration must match the other parts.

Partial Methods
As the preceding section described, you can use partial to create a partial type. Beginning
with C# 3.0, there is a second use of partial that lets you create a partial method within a
partial type. A partial method has its declaration in one part and its implementation in
another part. Thus, in a partial class or structure, partial can be used to allow the declaration
of a method to be separate from its implementation.

The key aspect of a partial method is that the implementation is not required! When the
partial method is not implemented by another part of the class or structure, then all calls to
the partial method are silently ignored. This makes it possible for a class to specify, but not
require, optional functionality. If that functionality is not implemented, then it is simply
ignored.

Here is an expanded version of the preceding program that creates a partial method
called Show(). It is called by another method called ShowXY(). (For convenience, all pieces
of the partial class XY are shown in one file, but they could have been organized into
separate files, as illustrated in the preceding section.)

// Demonstrate a partial method.
using System;

partial class XY {
 public XY(int a, int b) {
 X = a;
 Y = b;
 }

 // Declare a partial method.
 partial void Show();
}

partial class XY {
 public int X { get; set; }

PART I

C h a p t e r 2 0 : U n s a f e C o d e , P o i n t e r s , N u l l a b l e T y p e s , a n d M i s c e l l a n e o u s T o p i c s 605

PART I
PART I

 // Implement a partial method.
 partial void Show() {
 Console.WriteLine("{0}, {1}", X, Y);
 }
}

partial class XY {
 public int Y { get; set; }

 // Call a partial method.
 public void ShowXY() {
 Show();
 }
}

class Test {
 static void Main() {
 XY xy = new XY(1, 2);

 xy.ShowXY();
 }
}

Notice that Show() is declared in one part of XY and implemented by another part.
The implementation displays the values of X and Y. This means that when Show() is called
by ShowXY(), the call has effect, and it will, indeed, display X and Y. However, if you
comment-out the implementation of Show(), then the call to Show() within ShowXY()
does nothing.

Partial methods have several restrictions, including these: They must return void. They
cannot have access modifiers. They cannot be virtual. They cannot use out parameters.

Friend Assemblies
It is possible to make one assembly the friend of another. A friend has access to the private
members of the assembly of which it is a friend. This feature makes it possible to share
members between selected assemblies without making those members public.

To declare a friend assembly, you must specify the friend assembly’s name and its
public key token in an InternalsVisibleTo attribute.

Miscellaneous Keywords
To conclude Part I, the few remaining keywords defined by C# that have not been described
elsewhere are briefly discussed.

lock
The lock keyword is used when creating multithreaded programs. It is examined in detail
in Chapter 23, where multithreaded programming is discussed. A brief description is given
here for the sake of completeness.

606 P a r t I : T h e C # L a n g u a g e

In C#, a program can contain more than one thread of execution. When this is the case, the
program is said to be multithreaded, and pieces of the program are executed concurrently. Thus,
pieces of the program execute independently and simultaneously. This raises the prospect
of a special type of problem: What if two threads try to use a resource that can be used by
only one thread at a time? To solve this problem, you can create a critical code section that
will be executed by one and only one thread at a time. This is accomplished by lock. Its
general form is shown here:

lock(obj) {
 // critical section
}

Here, obj is the object on which the lock is synchronized. If one thread has already entered
the critical section, then a second thread will wait until the first thread exits the critical
section. When the first thread leaves the critical section, the lock is released and the second
thread can be granted the lock, at which point the second thread can execute the critical
section.

NOTENOTE lock is discussed in detail in Chapter 23.

readonly
You can create a read-only field in a class by declaring it as readonly. A readonly field can
be given a value only by using an initializer when it is declared or by assigning it a value
within a constructor. Once the value has been set, it can’t be changed outside the constructor.
Thus, a readonly field is a good way to create a fixed value that has its value set by a
constructor. For example, you might use a readonly field to represent an array dimension
that is used frequently throughout a program. Both static and non-static readonly fields are
allowed.

NOTENOTE Although similar, readonly fields are not the same as const fields, which are described in the
following section.

Here is an example that creates a readonly field:

// Demonstrate readonly.

using System;

class MyClass {
 public static readonly int SIZE = 10;
}

class DemoReadOnly {
 static void Main() {
 int[] source = new int[MyClass.SIZE];
 int[] target = new int[MyClass.SIZE];

 // Give source some values.
 for(int i=0; i < MyClass.SIZE; i++)
 source[i] = i;

PART I

C h a p t e r 2 0 : U n s a f e C o d e , P o i n t e r s , N u l l a b l e T y p e s , a n d M i s c e l l a n e o u s T o p i c s 607

PART I
PART I

 foreach(int i in source)
 Console.Write(i + " ");

 Console.WriteLine();

 // Reverse copy source into target.
 for(int i = MyClass.SIZE-1, j = 0; i > 0; i--, j++)
 target[j] = source[i];

 foreach(int i in target)
 Console.Write(i + " ");

 Console.WriteLine();

// MyClass.SIZE = 100; // Error!!! can’t change
 }
}

Here, MyClass.SIZE is initialized to 10. After that, it can be used, but not changed. To prove
this, try removing the comment symbol from before the last line and then compiling the
program. As you will see, an error will result.

const and volatile
The const modifier is used to declare fields or local variables that cannot be changed. These
variables must be given initial values when they are declared. Thus, a const variable is
essentially a constant. For example,

const int i = 10;

creates a const variable called i that has the value 10. Although a const field is similar to a
readonly field, the two are not the same. A const field cannot be set within a constructor,
but a readonly field can.

The volatile modifier tells the compiler that a field’s value may be changed by two or
more concurrently executing threads. In this situation, one thread may not know when the
field has been changed by another thread. This is important because the C# compiler will
automatically perform certain optimizations that work only when a field is accessed by a
single thread of execution. To prevent these optimizations from being applied to a shared
field, declare it volatile. This tells the compiler that it must obtain the value of this field each
time it is accessed.

The using Statement
In addition to the using directive discussed earlier, using has a second form that is called the
using statement. It has these general forms:

using (obj) {
 // use obj
}

using (type obj = initializer) {
 // use obj
}

608 P a r t I : T h e C # L a n g u a g e

Here, obj is an expression that must evaluate to an object that implements the
System.IDisposable interface. It specifies a variable that will be used inside the using
block. In the first form, the object is declared outside the using statement. In the second
form, the object is declared within the using statement. When the block concludes, the
Dispose() method (defined by the System.IDisposable interface) will be called on obj.
Dispose() is called even if the using block ends because of an exception. Thus, a using
statement provides a means by which objects are automatically disposed when they are no
longer needed. Remember, the using statement applies only to objects that implement the
System.IDisposable interface.

Here is an example of each form of the using statement:

// Demonstrate using statement.

using System;
using System.IO;

class UsingDemo {
 static void Main() {
 try {
 StreamReader sr = new StreamReader("test.txt");

 // Use object inside using statement.
 using(sr) {
 // ...
 }
 } catch(IOException exc) {
 // ...
 }

 try {
 // Create a StreamReader inside the using statement.
 using(StreamReader sr2 = new StreamReader("test.txt")) {
 // ...
 }
 } catch(IOException exc) {
 // ...
 }
 }
}

The class StreamReader implements the IDisposable interface (through its base class
TextReader). Thus, it can be used in a using statement. When the using statement ends,
Dispose() is automatically called on the stream variable, thus closing the stream.

As the preceding example illustrates, using is particularly useful when working with
files because the file is automatically closed at the end of the using block, even if the block
ends because of an exception. As a result, closing a file via using often simplifies file-
handling code.

extern
The extern keyword has two uses. Each is examined here.

PART I

C h a p t e r 2 0 : U n s a f e C o d e , P o i n t e r s , N u l l a b l e T y p e s , a n d M i s c e l l a n e o u s T o p i c s 609

PART I
PART I

Declaring extern Methods
The first use of extern has been available since the creation of C#. It indicates that a method
is provided by unmanaged code that is not part of the program. In other words, that
method is supplied by external code.

To declare a method as external, simply precede its declaration with the extern modifier.
The declaration must not include any body. Thus, the general form of an extern declaration
is as shown here:

extern ret-type meth-name(arg-list);

Notice that no braces are used.
In this use, extern is often used with the DllImport attribute, which specifies the DLL

that contains the method. DllImport is in the System.Runtime.InteropServices namespace.
It supports several options, but for most uses, it is sufficient to simply specify the name of
the DLL that contains the extern method. In general, extern methods should be coded in C.
(If you use C++, then the name of the method within the DLL might be altered with the
addition of type decorations.)

To best understand how to use extern methods, it is helpful to work through an
example. The example consists of two files. The first is the C file shown here, which defines
a method called AbsMax(). Call this file ExtMeth.c.

#include <stdlib.h>

int __declspec(dllexport) AbsMax(int a, int b) {
 return abs(a) < abs(b) ? abs(b) : abs(a);
}

The AbsMax() method compares the absolute values of its two parameters and returns the
maximum. Notice the use of __declspec(dllexport). This is a Microsoft-specific extension to
the C language that tells the compiler to export the AbsMax() method within the DLL that
contains it. You must use this command line to compile ExtMeth.c.

CL /LD /MD ExtMeth.c

This creates a DLL file called ExtMeth.dll.
Next is a program that uses AbsMax():

using System;
using System.Runtime.InteropServices;

class ExternMeth {

 // Here an extern method is declared.
 [DllImport("ExtMeth.dll")]
 public extern static int AbsMax(int a, int b);

 static void Main() {

 // Use the extern method.

610 P a r t I : T h e C # L a n g u a g e

 int max = AbsMax(-10, -20);
 Console.WriteLine(max);

 }
}

Notice the use of the DllImport attribute. It tells the compiler what DLL contains the extern
method AbsMax(). In this case, the file is ExtMeth.dll, which is the file DLL created when
the C file was compiled. When the program is run, the value 20 is displayed, as expected.

Declaring an extern Assembly Alias
A second form of extern (which was added by C# 2.0) provides an alias for an external
assembly. It is used in cases in which a program includes two separate assemblies that both
contain the same name. For example, if an assembly called test1 contains a class called
MyClass and test2 also contains a class called MyClass, then a conflict will arise if both
classes need to be used within the same program.

To solve this problem, you must create an alias for each assembly. This is a two-step
process. First, you must specify the aliases using the /r compiler option. For example:

/r:Asm1=test1
/r:Asm2=test2

Second, you must specify extern statements that refer to these aliases. Here is the form of
extern that creates an assembly alias:

extern alias assembly-name;

Continuing the example, these lines must appear in your program:

extern alias Asm1;
extern alias Asm2;

Now, either version of MyClass can be accessed by qualifying it with its alias.
Here is a complete example that demonstrates an extern alias. It contains three files. The

first is shown here. It should be put in a file called test1.cs.

using System;

namespace MyNS {
 public class MyClass {
 public MyClass() {
 Console.WriteLine("Constructing from MyClass1.dll.");
 }
 }
}

The second file is called test2.cs. It is shown here:

using System;

namespace MyNS {
 public class MyClass {
 public MyClass() {
 Console.WriteLine("Constructing from MyClass2.dll.");

PART I

C h a p t e r 2 0 : U n s a f e C o d e , P o i n t e r s , N u l l a b l e T y p e s , a n d M i s c e l l a n e o u s T o p i c s 611

PART I
PART I

 }
 }
}

Notice that both test1.cs and test2.cs define a namespace called MyNS, and that within
that namespace, both files define a class called MyClass. Thus, without an extern alias, no
program could have access to both versions of MyClass.

The third file, test3.cs, which is shown next, uses MyClass from both test1.cs and
test2.cs. It is able to do this because of the extern alias statements.

// extern alias statements must be at the top of the file.
extern alias Asm1;
extern alias Asm2;

using System;

class Demo {
 static void Main() {
 Asm1::MyNS.MyClass t = new Asm1::MyNS.MyClass();
 Asm2::MyNS.MyClass t2 = new Asm2::MyNS.MyClass();
 }
}

Start by compiling test1.cs and test2.cs into DLLs. This can be easily done from the
command line by using these commands:

csc /t:library test1.cs
csc /t:library test2.cs

Next, compile test3.cs by using this command line:

csc /r:Asm1=test1.dll /r:Asm2=test2.dll test3.cs

Notice the use of the /r option, which tells the compiler to reference the metadata found in
the associated file. In this case, the alias Asm1 is linked with test1.dll and the alias Asm2 is
linked with test2.dll.

Within the program, the aliases are specified by these two extern statements at the top
of the file:

extern alias Asm1;
extern alias Asm2;

Within Main(), the aliases are used to disambiguate the references to MyClass. Notice how
the alias is used to refer to MyClass:

Asm1::MyNS.MyClass

The alias is specified first, followed by the namespace resolution operator, followed by the
name of the namespace that contains the ambiguous class, followed by the dot operator and
the class name. This same general form works with other extern aliases.

The output from the program is shown here:

Constructing from MyClass1.dll.
Constructing from MyClass2.dll.

This page intentionally left blank

CHAPTER 21
Exploring the System
Namespace

CHAPTER 22
Strings and Formatting

CHAPTER 23
Multithreaded Programming

CHAPTER 24
Collections, Enumerators,
and Iterators

CHAPTER 25
Networking Through the
Internet Using System.Net

CHAPTER 26
Use System.Windows.Forms
to Create Form-Based
Windows Applications

II
Exploring the C# Library

Part II explores the C# library. As explained in Part I, the class
library used by C# is the .NET Framework class library. As a
result, the material in this section applies not only to C#, but to

the .NET Framework as a whole.
The .NET Framework class library is organized into namespaces.

To use a portion of the library, you will normally import its namespace
by including a using directive. Of course, you can also fully qualify
the name of the item with its namespace name, but most often, it is
simply easier to import the entire namespace.

The .NET library is very large, and it is beyond the scope of this
book to examine each part of it. (A complete description would easily
fill a very large book!) Instead, Part II examines the core elements of the
library, many of which are contained in the System namespace. Also
discussed are the collection classes, multithreading, and networking.

NOTENOTE The I/O classes are discussed in Chapter 14.

PART

This page intentionally left blank

21
Exploring the System

Namespace

This chapter explores the System namespace. System is a top-level namespace of the
.NET Framework class library. It directly contains those classes, structures, interfaces,
delegates, and enumerations that are most commonly used by a C# program or that

are deemed otherwise integral to the .NET Framework. Thus, System defines the core of the
library.

System also contains many nested namespaces that support specific subsystems, such
as System.Net. Several of these subsystems are described later in this book. This chapter is
concerned only with the members of System, itself.

The Members of System
In addition to a large number of exception classes, System contains the following classes:

ActivationContext Activator AppDomain

AppDomainManager AppDomainSetup ApplicationId

ApplicationIdentity Array AssemblyLoadEventArgs

Attribute AttributeUsageAttribute BitConverter

Buffer CharEnumerator CLSCompliantAttribute

Console ConsoleCancelEventArgs ContextBoundObject

ContextStaticAttribute Convert DBNull

Delegate Enum Environment

EventArgs Exception FileStyleUriParser

FlagsAttribute FtpStyleUriParser GC

GenericUriParser GopherStyleUriParser HttpStyleUriParser

LdapStyleUriParser LoaderOptimizationAttribute LocalDataStoreSlot

MarshalByRefObject Math MTAThreadAttribute

MulticastDelegate NetPipeStyleUriParser NetTcpStyleUriParser

615

CHAPTER

616 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

NewsStyleUriParser NonSerializedAttribute Nullable

Object ObsoleteAttribute OperatingSystem

ParamArrayAttribute Random ResolveEventArgs

SerializableAttribute STAThreadAttribute String

StringComparer ThreadStaticAttribute TimeZone

TimeZoneInfo TimeZoneInfo.AdjustmentRule Type

UnhandledExceptionEventArgs Uri UriBuilder

UriParser UriTemplate UriTemplateEquivalenceComparer

UriTemplateTable UriTypeConverter ValueType

Version WeakReference

System defines the following structures:

ArgIterator ArraySegment<T> Boolean

Byte Char ConsoleKeyInfo

DateTime DateTimeOffset Decimal

Double Guid Int16

Int32 Int64 IntPtr

ModuleHandle Nullable<T> RuntimeArgumentHandle

RuntimeFieldHandle RuntimeMethodHandle RuntimeTypeHandle

Sbyte Single TimeSpan

TimeZoneInfo.TransitionTime TypedReference UInt16

UInt32 UInt64 UIntPtr

Void

System defines the following interfaces:

_AppDomain IAppDomainSetup IAsyncResult

ICloneable IComparable IComparable<T>

IConvertible ICustomFormatter IDisposable

IEquatable<T> IFormatProvider IFormattable

IServiceProvider

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 617

System defines the following delegates:

Action Action<T> Action<T1, T2>

Action<T1, T2, T3> Action<T1, T2, T3, T4> AppDomainInitializer

AssemblyLoadEventHandler AsyncCallback Comparison<T>

ConsoleCancelEventHandler Converter<T, V> CrossAppDomainDelegate

EventHandler EventHandler<T> Func<TResult>

Func<T, TResult> Func<T1, T2, TResult> Func<T1, T2, T3, TResult>

Func<T1, T2, T3. T4, TResult> Predicate<T> ResolveEventHandler

UnhandledExceptionEventHandler

System defines these enumerations:

ActivationContext.contextForm AppDomainManagerInitializationOptions AttributeTargets

Base64FormattingOptions ConsoleColor ConsoleKey

ConsoleModifiers ConsoleSpecialKey DateTimeKind

DayOfWeek Environment.SpecialFolder EnvironmentVariableTarget

GCCollectionMode GenericUriParserOptions LoaderOptimization

MidpointRounding PlatformID StringComparison

StringSplitOptions TypeCode UriComponents

UriFormat UriHostNameType UriIdnScope

UriKind UriPartial

As the preceding tables show, System is quite large. It is not possible to examine all of
its constituents in detail in a single chapter. Furthermore, several of System’s members, such
as Nullable<T>, Type, Exception, and Attribute, are discussed in Part I or elsewhere in
Part II. Finally, because System.String, which defines the C# string type, is such a large and
important topic, it is covered in Chapter 22 along with formatting. For these reasons, this
chapter explores only those members that are most commonly used by C# programmers
and that are not fully covered elsewhere.

The Math Class
Math defines several standard mathematical operations, such as square root, sine, cosine,
and logarithms. The Math class is static, which means all of the methods defined by Math
are static and no object of type Math can be constructed. It also means Math is implicitly
sealed and cannot be inherited. The methods defined by Math are shown in Table 21-1. All
angles are in radians.

Math also defines these two fields:

public const double E
public const double PI

618 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

E is the value of the natural logarithm base, commonly referred to as e. PI is the value of pi.

Method Meaning

public static double Abs(double v) Returns the absolute value of v.

public static float Abs(float v) Returns the absolute value of v.

public static decimal Abs(decimal v) Returns the absolute value of v.

public static int Abs(int v) Returns the absolute value of v.

public static short Abs(short v) Returns the absolute value of v.

public static long Abs(long v) Returns the absolute value of v.

public static sbyte Abs(sbyte v) Returns the absolute value of v.

public static double Acos(double v) Returns the arc cosine of v. The value of v must be
between –1 and 1.

public static double Asin(double v) Returns the arc sine of v. The value of v must be
between –1 and 1.

public static double Atan(double v) Returns the arc tangent of v.

public static double Atan2(double y,
 double x)

Returns the arc tangent of y/x.

public static long BigMul(int x, int y) Returns the result of x * y as a long value, thus
avoiding overflow.

public static double Ceiling(double v) Returns the smallest integer (represented as a
floating-point value) not less than v. For example,
given 1.02, Ceiling() returns 2.0. Given –1.02,
Ceiling() returns –1.

public static double Ceiling(decimal v) Returns the smallest integer (represented as a
decimal value) not less than v. For example, given
1.02, Ceiling() returns 2.0. Given –1.02, Ceiling()
returns –1.

public static double Cos(double v) Returns the cosine of v.

public static double Cosh(double v) Returns the hyperbolic cosine of v.

public static int DivRem(int x, int y,
 out int rem)

Return the result of x / y. The remainder is returned
in rem.

public static long DivRem(long x, long y,
 out long rem)

Return the result of x / y. The remainder is returned
in rem.

public static double Exp(double v) Returns the natural logarithm base e raised to the v
power.

public static decimal Floor(decimal v) Returns the largest integer (represented as a decimal
value) not greater than v. For example, given 1.02,
Floor() returns 1.0. Given –1.02, Floor() returns –2.

TABLE 21-1 Methods Defi ned by Math

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 619

public static double Floor(double v) Returns the largest integer (represented as a floating-
point value) not greater than v. For example, given
1.02, Floor() returns 1.0. Given –1.02, Floor()
returns –2.

public static double
 IEEERemainder(double dividend,
 double divisor)

Returns the remainder of dividend / divisor.

public static double Log(double v) Returns the natural logarithm for v.

public static double Log(double v,
 double base)

Returns the logarithm for v using base base.

public static double Log10(double v) Returns the base 10 logarithm for v.

public static double Max(double v1,
 double v2)

Returns the greater of v1 and v2.

public static float Max(float v1, float v2) Returns the greater of v1 and v2.

public static decimal Max(decimal v1,
 decimal v2)

Returns the greater of v1 and v2.

public static int Max(int v1, int v2) Returns the greater of v1 and v2.

public static short Max(short v1, short v2) Returns the greater of v1 and v2.

public static long Max(long v1, long v2) Returns the greater of v1 and v2.

public static uint Max(uint v1, uint v2) Returns the greater of v1 and v2.

public static ushort Max(ushort v1,
 ushort v2)

Returns the greater of v1 and v2.

public static ulong Max(ulong v1,
 ulong v2)

Returns the greater of v1 and v2.

public static byte Max(byte v1, byte v2) Returns the greater of v1 and v2.

public static sbyte Max(sbyte v1, sbyte v2) Returns the greater of v1 and v2.

public static double Min(double v1,
 double v2)

Returns the lesser of v1 and v2.

public static float Min(float v1, float v2) Returns the lesser of v1 and v2.

public static decimal Min(decimal v1,
 decimal v2)

Returns the lesser of v1 and v2.

public static int Min(int v1, int v2) Returns the lesser of v1 and v2.

public static short Min(short v1, short v2) Returns the lesser of v1 and v2.

public static long Min(long v1, long v2) Returns the lesser of v1 and v2.

public static uint Min(uint v1, uint v2) Returns the lesser of v1 and v2.

public static ushort Min(ushort v1,
 ushort v2)

Returns the lesser of v1 and v2.

TABLE 21-1 Methods Defi ned by Math (continued)

Method Meaning

620 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

public static ulong Min(ulong v1, ulong v2) Returns the lesser of v1 and v2.

public static byte Min(byte v1, byte v2) Returns the lesser of v1 and v2.

public static sbyte Min(sbyte v1, sbyte v2) Returns the lesser of v1 and v2.

public static double Pow(double base,
 double exp)

Returns base raised to the exp power(baseexp).

public static double Round(double v) Returns v rounded to the nearest whole number.

public static decimal Round(decimal v) Returns v rounded to the nearest whole number.

public static double Round(double v,
 int frac)

Returns v rounded to the number of fractional digits
specified by frac.

public static decimal Round(decimal v,
 int frac)

Returns v rounded to the number of fractional digits
specified by frac.

public static double Round(double v,
 MidpointRounding how)

Returns v rounded to the nearest whole number using
the rounding mode specified by how.

public static decimal Round(decimal v,
 MidpointRounding how)

Returns v rounded to the nearest whole number using
the rounding mode specified by how.

public static double Round(double v,
 int frac,
 MidpointRounding how)

Returns v rounded to the number of fractional digits
specified by frac. It uses the rounding mode specified
by how.

public static decimal Round(decimal v,
 int frac,
 MidpointRounding how)

Returns v rounded to the number of fractional digits
specified by frac. It uses the rounding mode specified
by how.

public static int Sign(double v) Returns –1 if v is less than zero, 0 if v is zero, and
1 if v is greater than zero.

public static int Sign(float v) Returns –1 if v is less than zero, 0 if v is zero, and
1 if v is greater than zero.

public static int Sign(decimal v) Returns –1 if v is less than zero, 0 if v is zero, and
1 if v is greater than zero.

public static int Sign(int v) Returns –1 if v is less than zero, 0 if v is zero, and
1 if v is greater than zero.

public static int Sign(short v) Returns –1 if v is less than zero, 0 if v is zero, and
1 if v is greater than zero.

public static int Sign(long v) Returns –1 if v is less than zero, 0 if v is zero, and
1 if v is greater than zero.

public static int Sign(sbyte v) Returns –1 if v is less than zero, 0 if v is zero, and
1 if v is greater than zero.

public static double Sin(double v) Returns the sine of v.

public static double Sinh(double v) Returns the hyperbolic sine of v.

Method Meaning

TABLE 21-1 Methods Defi ned by Math (continued)

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 621

public static double Sqrt(double v) Returns the square root of v.

public static double Tan(double v) Returns the tangent of v.

public static double Tanh(double v) Returns the hyperbolic tangent of v.

public static double Truncate(double v) Returns the whole number portion of v.

public static decimal Truncate(decimal v) Returns the whole number portion of v.

TABLE 21-1 Methods Defi ned by Math (continued)

Method Meaning

Here is an example that uses Sqrt() to help implement the Pythagorean theorem. It
computes the length of the hypotenuse given the lengths of the two opposing sides of a
right triangle.

// Implement the Pythagorean Theorem.

using System;

class Pythagorean {
 static void Main() {
 double s1;
 double s2;
 double hypot;
 string str;

 Console.WriteLine("Enter length of first side: ");
 str = Console.ReadLine();
 s1 = Double.Parse(str);

 Console.WriteLine("Enter length of second side: ");
 str = Console.ReadLine();
 s2 = Double.Parse(str);

 hypot = Math.Sqrt(s1*s1 + s2*s2);

 Console.WriteLine("Hypotenuse is " + hypot);
 }
}

Here is a sample run:

Enter length of first side: 3
Enter length of second side: 4
Hypotenuse is 5

Next is an example that uses the Pow() method to compute the initial investment
required to achieve a desired future value given the annual rate of return and the number
of years. The formula to compute the initial investment is shown here:

InitialInvestment = FutureValue / (1 + InterestRate)Years

622 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Because Pow() requires double arguments, the interest rate and the number of years are
held in double values. The future value and initial investment use the decimal type.

/* Compute the initial investment needed to attain
 a known future value given annual rate of return
 and the time period in years. */

using System;

class InitialInvestment {
 static void Main() {
 decimal initInvest; // initial investment
 decimal futVal; // future value

 double numYears; // number of years
 double intRate; // annual rate of return as a decimal

 string str;

 Console.Write("Enter future value: ");
 str = Console.ReadLine();
 try {
 futVal = Decimal.Parse(str);
 } catch(FormatException exc) {
 Console.WriteLine(exc.Message);
 return;
 }

 Console.Write("Enter interest rate (such as 0.085): ");
 str = Console.ReadLine();
 try {
 intRate = Double.Parse(str);
 } catch(FormatException exc) {
 Console.WriteLine(exc.Message);
 return;
 }

 Console.Write("Enter number of years: ");
 str = Console.ReadLine();
 try {
 numYears = Double.Parse(str);
 } catch(FormatException exc) {
 Console.WriteLine(exc.Message);
 return;
 }

 initInvest = futVal / (decimal) Math.Pow(intRate+1.0, numYears);

 Console.WriteLine("Initial investment required: {0:C}",
 initInvest);
 }
}

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 623

Here is a sample run:

Enter future value: 10000
Enter interest rate (such as 0.085): 0.07
Enter number of years: 10
Initial investment required: $5,083.49

The .NET Structures Corresponding to the Built-in Value Types
The structures that correspond to C#’s built-in value types were introduced in Chapter 14
when they were used to convert strings holding human-readable numeric values into their
equivalent binary values. Here these structures are examined in detail.

The .NET structure names and their C# keyword equivalents are shown in the following
table:

.NET Structure Name C# Name

System.Boolean bool

System.Char char

System.Decimal decimal

System.Double double

System.Single float

System.Int16 short

System.Int32 int

System.Int64 long

System.UInt16 ushort

System.UInt32 uint

System.UInt64 ulong

System.Byte byte

System.SByte sbyte

By using the members defined by these structures, you can perform operations relating to
the value types. The following sections examine each of these structures.

NOTENOTE Some methods defined by the structures that correspond to the built-in value types take a
parameter of type IFormatProvider or NumberStyles. IFormatProvider is briefly described
later in this chapter. NumberStyles is an enumeration found in the System.Globalization
namespace. The topic of formatting is discussed in Chapter 22.

The Integer Structures
The integer structures are

Byte SByte Int16 UInt16

Int32 UInt32 Int64 UInt64

624 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Each of these structures contains the same methods. They are shown in Table 21-2. The only
difference from structure to structure is the return type of Parse(). For each structure, Parse()
returns a value of the type represented by the structure. For example, for Int32, Parse()
returns an int value. For UInt16, Parse() returns a ushort value. For an example that
demonstrates Parse(), see Chapter 14.

In addition to the methods shown in Table 21-2, the integer structures also define the
following const fields:

MaxValue
MinValue

For each structure, these fields contain the largest and smallest value that type of integer
can hold.

All of the integer structures implement the following interfaces: IComparable,
IComparable<T>, IConvertible, IFormattable, and IEquatable<T>, where T is replaced
by the corresponding data type. For example, T will be replaced with int for Int32.

Method Meaning

public int CompareTo(object v) Compares the numerical value of the invoking object
with that of v. Returns zero if the values are equal.
Returns a negative value if the invoking object has a
lower value. Returns a positive value if the invoking
object has a greater value.

public int CompareTo(type v) Compares the numerical value of the invoking object
with that of v. Returns zero if the values are equal.
Returns a negative value if the invoking object
has a lower value. Returns a positive value if the
invoking object has a greater value. In this version of
CompareTo(), type explicitly specifies the data type,
such as in System.Int32.CompareTo(int v).

public override bool Equals(object v) Returns true if the value of the invoking object equals
the value of v.

public bool Equals(type v) Returns true if the value of the invoking object equals
the value of v. In this version of Equals(), type
explicitly specifies the data type, such as in
System.Int32.Equals(int v).

public override int GetHashCode() Returns the hash code for the invoking object.

public TypeCode GetTypeCode() Returns the TypeCode enumeration value for the
equivalent value type. For example, for Int32, the type
code is TypeCode.Int32.

public static retType Parse(string str) Returns the binary equivalent of the numeric string in
str. If the string does not represent a numeric value as
defined by the structure type, an exception is thrown.
retType is a placeholder for the actual type of data
returned based on which numeric structure is used.
For example, for Int32, retType will be int.

TABLE 21-2 Methods Supported by the Integer Structures

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 625

public static retType
 Parse(string str,
 IFormatProvider fmtpvdr)

Returns the binary equivalent of the numeric string
in str using the culture-specific information provided
by fmtpvdr. If the string does not represent a numeric
value as defined by the structure type, an exception
is thrown. retType is a placeholder for the actual type
of data returned based on which numeric structure is
used. For example, for Int32, retType will be int.

public static retType
 Parse(string str, NumberStyles styles)

Returns the binary equivalent of the numeric string
in str using the style information provided by styles.
If the string does not represent a numeric value as
defined by the structure type, an exception is thrown.
retType is a placeholder for the actual type of data
returned based on which numeric structure is used.
For example, for Int32, retType will be int.

public static retType
 Parse(string str, NumberStyles styles,
 IFormatProvider fmtpvdr)

Returns the binary equivalent of the numeric string
in str using the style information provided by styles
and the culture-specific format information provided
by fmtpvdr. If the string does not represent a numeric
value as defined by structure type, an exception is
thrown. retType is a placeholder for the actual type
of data returned based on which numeric structure is
used. For example, for Int32, retType will be int.

public override string ToString() Returns the string representation of the value of the
invoking object.

public string ToString(string format) Returns the string representation of the value of
the invoking object as specified by the format string
passed in format.

public string
 ToString(IFormatProvider fmtpvdr)

Returns the string representation of the value of the
invoking object using the culture-specific information
specified in fmtpvdr.

public string
 ToString(string format,
 IFormatProvider fmtpvdr)

Returns the string representation of the value of the
invoking object using the culture-specific information
specified in fmtpvdr and the format specified by
format.

public static bool TryParse(string str,
 out type val)

Attempts to convert the numeric string in str into a
binary value. If successful, the value is stored in val
and true is returned. If no conversion takes place,
false is returned. This differs from Parse(), which
throws an exception on failure. In TryParse(), type
explicitly specifies the data type, such as in
System.Int32.TryParse(int v).

Method Meaning

TABLE 21-2 Methods Supported by the Integer Structures (continued)

626 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

public static bool TryParse(string str,
 NumberStyles styles,

IFormatProvider fmtpvdr,
 out type val)

Attempts to convert the numeric string in str into a
binary value using the style information provided by
styles and the culture-specific format information
provided by fmtpvdr. If successful, the value is stored
in val and true is returned. If no conversion takes
place, false is returned. This differs from Parse(),
which throws an exception on failure. In TryParse(),
type explicitly specifies the data type, such
as in System.Int32.TryParse(int v).

TABLE 21-2 Methods Supported by the Integer Structures (continued)

Method Meaning

The Floating-Point Structures
There are two floating-point structures: Double and Single. Single represents float. Its
methods are shown in Table 21-3, and its fields are shown in Table 21-4. Double represents
double. Its methods are shown in Table 21-5, and its fields are shown in Table 21-6. As is the
case with the integer structures, you can specify culture-specific information and format
information in a call to Parse() or ToString().

The floating-point structures implement the following interfaces: IComparable,
IComparable<T>, IConvertible, IFormattable, and IEquatable<T>, where T is replaced
by either double for Double or float for Single.

Method Meaning

public int CompareTo(object v) Compares the numerical value of the invoking object
with that of v. Returns zero if the values are equal.
Returns a negative value if the invoking object has a
lower value. Returns a positive value if the invoking
object has a greater value.

public int CompareTo(float v) Compares the numerical value of the invoking object
with that of v. Returns zero if the values are equal.
Returns a negative value if the invoking object has a
lower value. Returns a positive value if the invoking
object has a greater value.

public override bool Equals(object v) Returns true if the value of the invoking object equals
the value of v.

public bool Equals(float v) Returns true if the value of the invoking object equals
the value of v.

public override int GetHashCode() Returns the hash code for the invoking object.

public TypeCode GetTypeCode() Returns the TypeCode enumeration value for Single,
which is TypeCode.Single.

public static bool IsInfinity(float v) Returns true if v represents infinity (either positive or
negative). Otherwise, returns false.

public static bool IsNaN(float v) Returns true if v is not a number. Otherwise, returns false.

TABLE 21-3 Methods Supported by Single

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 627

public static bool IsPositiveInfinity(float v) Returns true if v represents positive infinity. Otherwise,
returns false.

public static bool IsNegativeInfinity(float v) Returns true if v represents negative infinity.
Otherwise, returns false.

public static float Parse(string str) Returns the binary equivalent of the numeric string in
str. If the string does not represent a float value, an
exception is thrown.

public static float
 Parse(string str,
 IFormatProvider fmtpvdr)

Returns the binary equivalent of the numeric string in
str using the culture-specific information provided by
fmtpvdr. If the string does not represent a float value,
an exception is thrown.

public static float
 Parse(string str, NumberStyles styles)

Returns the binary equivalent of the numeric string in
str using the style information provided by styles. If the
string does not represent a float value, an exception is
thrown.

public static float
 Parse(string str,
 NumberStyles styles,
 IFormatProvider fmtpvdr)

Returns the binary equivalent of the numeric string in
str using the style information provided by styles and
the culture-specific format information provided by
fmtpvdr. If the string does not represent a float value,
an exception is thrown.

public override string ToString() Returns the string representation of the value of the
invoking object in the default format.

public string ToString(string format) Returns the string representation of the value of
the invoking object as specified by the format string
passed in format.

public string
 ToString(IFormatProvider fmtpvdr)

Returns the string representation of the value of the
invoking object using the culture-specific information
specified in fmtpvdr.

public string
 ToString(string format,
 IFormatProvider fmtpvdr)

Returns the string representation of the value of the
invoking object using the culture-specific information
specified in fmtpvdr and the format specified by format.

public static bool TryParse(string str,
out float val)

Attempts to convert the numeric string in str into a
float value. If successful, the value is stored in val and
true is returned. If no conversion takes place, false is
returned. This differs from Parse(), which throws an
exception on failure.

public static bool TryParse(string str,
 NumberStyles styles,

IFormatProvider fmtpvdr,
 out float val)

Attempts to convert the numeric string in str into a
float value using the style information provided by
styles and the culture-specific format information
provided by fmtpvdr. If successful, the value is stored
in val and true is returned. If no conversion takes
place, false is returned. This differs from Parse(),
which throws an exception on failure.

TABLE 21-3 Methods Supported by Single (continued)

Method Meaning

628 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Field Meaning

public const float Epsilon The smallest non-zero positive value.

public const float MaxValue The largest value that a float can hold.

public const float MinValue The smallest value that a float can hold.

public const float NaN A value that is not a number.

public const float NegativeInfinity A value representing negative infinity.

public const float PositiveInfinity A value representing positive infinity.

TABLE 21-4 Fields Supported by Single

Method Meaning

public int CompareTo(object v) Compares the numerical value of the invoking
object with that of v. Returns zero if the values
are equal. Returns a negative value if the invoking
object has a lower value. Returns a positive value
if the invoking object has a greater value.

public int CompareTo(double v) Compares the numerical value of the invoking
object with that of v. Returns zero if the values
are equal. Returns a negative value if the invoking
object has a lower value. Returns a positive value
if the invoking object has a greater value.

public override bool Equals(object v) Returns true if the value of the invoking object
equals the value of v.

public bool Equals(double v) Returns true if the value of the invoking object
equals the value of v.

public override int GetHashCode() Returns the hash code for the invoking object.

public TypeCode GetTypeCode() Returns the TypeCode enumeration value for
Double, which is TypeCode.Double.

public static bool IsInfinity(double v) Returns true if v represents infinity (either
positive or negative). Otherwise, returns false.

public static bool IsNaN(double v) Returns true if v is not a number. Otherwise,
returns false.

public static bool IsPositiveInfinity(double v) Returns true if v represents positive infinity.
Otherwise, returns false.

public static bool IsNegativeInfinity(double v) Returns true if v represents negative infinity.
Otherwise, returns false.

public static double Parse(string str) Returns the binary equivalent of the numeric
string in str. If the string does not represent a
double value, an exception is thrown.

TABLE 21-5 Methods Supported by Double

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 629

public static double
 Parse(string str,
 IFormatProvider fmtpvdr)

Returns the binary equivalent of the numeric
string in str using the culture-specific information
provided by fmtpvdr. If the string does not
represent a double value, an exception is thrown.

public static double
 Parse(string str, NumberStyles styles)

Returns the binary equivalent of the numeric
string in str using the style information provided
by styles. If the string does not represent a
double value, an exception is thrown.

public static double
 Parse(string str,
 NumberStyles styles,
 IFormatProvider fmtpvdr)

Returns the binary equivalent of the numeric
string in str using the style information provided by
styles and the culture-specific format information
provided by fmtpvdr. If the string does not
represent a double value, an exception is thrown.

public override string ToString() Returns the string representation of the value of
the invoking object in the default format.

public string ToString(string format) Returns the string representation of the value
of the invoking object as specified by the format
string passed in format.

public string
 ToString(IFormatProvider fmtpvdr)

Returns the string representation of the value
of the invoking object using the culture-specific
information specified in fmtpvdr.

public string
 ToString(string format,
 IFormatProvider fmtpvdr)

Returns the string representation of the value
of the invoking object using the culture-specific
information specified in fmtpvdr and the format
specified by format.

public static bool TryParse(string str,
 out double val)

Attempts to convert the numeric string in str into
a double value. If successful, the value is stored
in val and true is returned. If no conversion
takes place, false is returned. This differs from
Parse(), which throws an exception on failure.

public static bool TryParse(string str,
 NumberStyles styles,

IFormatProvider fmtpvdr,
 out double val)

Attempts to convert the numeric string in str
into a double value using the style information
provided by styles and the culture-specific format
information provided by fmtpvdr. If successful,
the value is stored in val and true is returned.
If no conversion takes place, false is returned.
This differs from Parse(), which throws an
exception on failure.

Method Meaning

TABLE 21-5 Methods Supported by Double (continued)

630 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Decimal
The Decimal structure is a bit more complicated than its integer and floating-point relatives.
It contains many constructors, fields, methods, and operators that help integrate decimal
with the other numeric types supported by C#. For example, several of the methods provide
conversions between decimal and the other numeric types.

Decimal offers eight public constructors. The following six are the most commonly used:

public Decimal(int v)
public Decimal(uint v)
public Decimal(long v)
public Decimal(ulong v)
public Decimal(fl oat v)
public Decimal(double v)

Each constructs a Decimal from the specified value.
You can also construct a Decimal by specifying its constituent parts using this constructor:

public Decimal(int low, int middle, int high, bool signFlag, byte scaleFactor)

A decimal value consists of three parts. The first is a 96-bit integer, the second is a sign flag,
and the third is a scaling factor. The 96-bit integer is passed in 32-bit chunks through low,
middle, and high. The sign is passed through signFlag, which is false for a positive number
and true for a negative number. The scaling factor is passed in scaleFactor, which must be a
value between 0 and 28. This factor specifies the power of 10 (that is, 10scaleFactor) by which the
number is divided, thus yielding its fractional component.

Instead of passing each component separately, you can specify the constituents of a
Decimal in an array of integers, using this constructor:

public Decimal(int[] parts)

The first three ints in parts contain the 96-bit integer value. In parts[3], bit 31 specifies the
sign flag (0 for positive, 1 for negative), and bits 16 through 23 contain the scale factor.

Decimal implements the following interfaces: IComparable, IComparable<decimal>,
IConvertible, IFormattable, and IEquatable<decimal>.

Here is an example that constructs a decimal value by hand:

// Manually create a decimal number.

Field Meaning

public const double Epsilon The smallest non-zero positive value.

public const double MaxValue The largest value that a double can hold.

public const double MinValue The smallest value that a double can hold.

public const double NaN A value that is not a number.

public const double NegativeInfinity A value representing negative infinity.

public const double PositiveInfinity A value representing positive infinity.

TABLE 21-6 Fields Supported by Double

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 631

using System;

class CreateDec {
 static void Main() {
 decimal d = new decimal(12345, 0, 0, false, 2);

 Console.WriteLine(d);
 }
}

The output is shown here:

123.45

In this example, the value of the 96-bit integer is 12345. Its sign is positive, and it has two
decimal fractions.

The methods defined by Decimal are shown in Table 21-7. The fields defined by Decimal
are shown in Table 21-8. Decimal also defines a large number of operators and conversions
that allow decimal values to be used in expressions with other numeric types. The rules
governing the use of decimal in expressions and assignments are described in Chapter 3.

Method Meaning

public static decimal Add(decimal v1,
 decimal v2)

Returns v1 + v2.

public static decimal Ceiling(decimal v) Returns the smallest integer (represented as a
decimal value) not less than v. For example, given
1.02, Ceiling() returns 2.0. Given –1.02, Ceiling()
returns –1.

public static int Compare(decimal v1,
 decimal v2)

Compares the numerical value of v1 with that of
v2. Returns zero if the values are equal. Returns a
negative value if v1 is less than v2. Returns a positive
value if v1 is greater than v2.

public int CompareTo(object v) Compares the numerical value of the invoking object
with that of v. Returns zero if the values are equal.
Returns a negative value if the invoking object has a
lower value. Returns a positive value if the invoking
object has a greater value.

public int CompareTo(decimal v) Compares the numerical value of the invoking object
with that of v. Returns zero if the values are equal.
Returns a negative value if the invoking object has a
lower value. Returns a positive value if the invoking
object has a greater value.

public static decimal Divide(decimal v1,
 decimal v2)

Returns v1 / v2.

public bool Equals(decimal v) Returns true if the value of the invoking object equals
the value of v.

TABLE 21-7 Methods Defi ned by Decimal

632 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

public override bool Equals(object v) Returns true if the value of the invoking object equals
the value of v.

public static bool Equals(decimal v1,
 decimal v2)

Returns true if v1 equals v2.

public static decimal Floor(decimal v) Returns the largest integer (represented as a decimal
value) not greater than v. For example, given 1.02,
Floor() returns 1.0. Given –1.02, Floor() returns –2.

public static decimal
 FromOACurrency(long v)

Converts the OLE Automation currency value in v into
its decimal equivalent and returns the result.

public static int[] GetBits(decimal v) Returns the binary representation of v as an array of
int. The organization of this array is as described in
the text.

public override int GetHashCode() Returns the hash code for the invoking object.

public TypeCode GetTypeCode() Returns the TypeCode enumeration value for Decimal,
which is TypeCode.Decimal.

public static decimal Multiply(decimal v1,
 decimal v2)

Returns v1 * v2.

public static decimal Negate(decimal v) Returns –v.

public static decimal Parse(string str) Returns the binary equivalent of the numeric string in
str. If the string does not represent a decimal value,
an exception is thrown.

public static decimal
 Parse(string str,
 IFormatProvider fmtpvdr)

Returns the binary equivalent of the numeric string
in str using the culture-specific information provided
by fmtpvdr. If the string does not represent a decimal
value, an exception is thrown.

public static decimal
 Parse(string str, NumberStyles styles)

Returns the binary equivalent of the numeric string
in str, using the style information provided by styles.
If the string does not represent a decimal value, an
exception is thrown.

public static decimal
 Parse(string str,
 NumberStyles styles,
 IFormatProvider fmtpvdr)

Returns the binary equivalent of the numeric string
in str using the style information provided by styles
and the culture-specific format information provided
by fmtpvdr. If the string does not represent a decimal
value, an exception is thrown.

public static decimal
 Remainder(decimal v1, decimal v2)

Returns the remainder of the integer division v1 / v2.

public static decimal Round(decimal v) Returns the value of v rounded to the nearest whole
number.

public static decimal
 Round(decimal v, int decPlaces)

Returns the value of v rounded to the number of
decimal places specified by decPlaces, which must
be between 0 and 28.

TABLE 21-7 Methods Defi ned by Decimal (continued)

Method Meaning

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 633

public static decimal
 Round(decimal v,
 MidPointRounding how)

Returns the value of v rounded to the nearest whole
number using the rounding mode specified by how.
The rounding mode applies only to those conditions in
which v is at the midpoint between two whole numbers.

public static decimal
 Round(decimal v, int decPlaces,
 MidPointRounding how)

Returns the value of v rounded to the number of
decimal places specified by decPlaces (which must be
between 0 and 28), using the rounding mode specified
by how. The rounding mode applies only to those
conditions in which v is at the midpoint between two
rounded values.

public static decimal
 Subtract(decimal v1, decimal v2)

Returns v1 – v2.

public static byte ToByte(decimal v) Returns the byte equivalent of v. Any fractional
component is truncated. An OverflowException occurs
if v is not within the range of a byte.

public static double ToDouble(decimal v) Returns the double equivalent of v. A loss of precision
may occur because double has fewer significant digits
than does decimal.

public static short ToInt16(decimal v) Returns the short equivalent of v. Any fractional
component is truncated. An OverflowException occurs
if v is not within the range of a short.

public static int ToInt32(decimal v) Returns the int equivalent of v. Any fractional
component is truncated. An OverflowException occurs
if v is not within the range of an int.

public static long ToInt64(decimal v) Returns the long equivalent of v. Any fractional
component is truncated. An OverflowException occurs
if v is not within the range of a long.

public static long
 ToOACurrency(decimal v)

Converts v into the equivalent OLE Automation
currency value and returns the result.

public static sbyte ToSByte(decimal v) Returns the sbyte equivalent of v. Any fractional
component is truncated. An OverflowException occurs
if v is not within the range of an sbyte.

public static float ToSingle(decimal v) Returns the float equivalent of v. A loss of precision
may occur because float has fewer significant digits
than does decimal.

public override string ToString() Returns the string representation of the value of the
invoking object in the default format.

public string ToString(string format) Returns the string representation of the value of
the invoking object as specified by the format string
passed in format.

Method Meaning

TABLE 21-7 Methods Defi ned by Decimal (continued)

634 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Char
The structure corresponding to the char type is Char. It is quite useful because it supplies a
large number of methods that allow you to process and categorize characters. For example,
you can convert a lowercase character to uppercase by calling ToUpper(). You can determine
if a character is a digit by calling IsDigit().

The methods defined by Char are shown in Table 21-9. Notice that several, such as
ConvertFromUtf32() and ConvertToUtf32(), give you the ability to work with both UTF-16
and UTF-32 Unicode characters. In the past, all Unicode characters could be represented by
16 bits, which is the size of a char. However, a few years ago the Unicode character set was
expanded and more than 16 bits are required. Each Unicode character is represented by a
code point. The way that a code point is encoded depends on the Unicode Transformation
Format (UTF) being used. In UTF-16, the most common code points require one 16-bit
value, but some need two 16-bit values. When two 16-bit values are needed, two char

public string
 ToString(IFormatProvider fmtpvdr)

Returns the string representation of the value of the
invoking object using the culture-specific information
specified in fmtpvdr.

public string
 ToString(string format,
 IFormatProvider fmtpvdr)

Returns the string representation of the value of the
invoking object using the culture-specific information
specified in fmtpvdr and the format specified by format.

public static ushort ToUInt16(decimal v) Returns the ushort equivalent of v. Any fractional
component is truncated. An OverflowException occurs
if v is not within the range of a ushort.

public static uint ToUInt32(decimal v) Returns the uint equivalent of v. Any fractional
component is truncated. An OverflowException occurs
if v is not within the range of a uint.

public static ulong ToUInt64(decimal v) Returns the ulong equivalent of v. Any fractional
component is truncated. An OverflowException occurs
if v is not within the range of a ulong.

public static decimal Truncate(decimal v) Returns the whole-number portion of v. Thus, it
truncates any fractional digits.

public static bool
 TryParse(string str, out decimal val)

Attempts to convert the numeric string in str into a
decimal value. If successful, the value is stored in
val and true is returned. If no conversion takes place,
false is returned. This differs from Parse(), which
throws an exception on failure.

public static bool TryParse(string str,
 NumberStyles styles,

IFormatProvider fmtpvdr,
 out decimal val)

Attempts to convert the numeric string in str into a
decimal value using the style information provided
by styles and the culture-specific format information
provided by fmtpvdr. If successful, the value is stored
in val and true is returned. If no conversion takes
place, false is returned. This differs from Parse(),
which throws an exception on failure.

TABLE 21-7 Methods Defi ned by Decimal (continued)

Method Meaning

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 635

values are used to represent it. The first character is called the high surrogate and the second
is called the low surrogate. In UTF-32, each code point uses one 32-bit value. Char provides
the necessary conversions between UTF-16 and UTF-32.

Char defines the following fields:

public const char MaxValue
public const char MinValue

These represent the largest and smallest values that a char variable can hold.
Char implements the following interfaces: IComparable, IComparable<char>,

IConvertible, and IEquatable<char>.

Field Meaning

public static readonly decimal MaxValue The largest value that a decimal can hold.

public static readonly decimal MinusOne The decimal representation of –1.

public static readonly decimal MinValue The smallest value that a decimal can hold.

public static readonly decimal One The decimal representation of 1.

public static readonly decimal Zero The decimal representation of 0.

TABLE 21-8 Fields Supported by Decimal

Method Meaning

public int CompareTo(char v) Compares the character in the invoking object
with that of v. Returns zero if the characters are
equal. Returns a negative value if the invoking
object has a lower value. Returns a positive value
if the invoking object has a greater value.

public int CompareTo(object v) Compares the character in the invoking object
with that of v. Returns zero if the characters are
equal. Returns a negative value if the invoking
object has a lower value. Returns a positive value
if the invoking object has a greater value.

public static string
 ConvertFromUtf32(int utf32Ch)

Converts the Unicode UTF-32 code point in
utf32Ch into a UTF-16 string and returns the
result.

pubic static int
 ConvertToUtf32(char highSurrogate,
 char lowSurrogate)

Converts the high and low UTF-16 surrogates
specified by highSurrogate and lowSurrogate into
a UTF-32 code point. The result is returned.

pubic static int
 ConvertToUtf32(string str, int idx)

Converts the UTF-16 surrogate pair at str[idx] into
its UTF-32 code point. The result is returned.

public bool Equals(char v) Returns true if the value of the invoking object
equals the value of v.

public override bool Equals(object v) Returns true if the value of the invoking object
equals the value of v.

TABLE 21-9 Methods Defi ned by Char

636 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

public override int GetHashCode() Returns the hash code for the invoking object.

public static double GetNumericValue(char ch) Returns the numeric value of ch if ch is a digit.
Otherwise, returns –1.

public static double
 GetNumericValue(string str, int idx)

Returns the numeric value of str[idx] if that
character is a digit. Otherwise, returns –1.

public TypeCode GetTypeCode() Returns the TypeCode enumeration value for
Char, which is TypeCode.Char.

public static UnicodeCategory
 GetUnicodeCategory(char ch)

Returns the UnicodeCategory enumeration value
for ch. UnicodeCategory is an enumeration
defined by System.Globalization that categorizes
Unicode characters.

public static UnicodeCategory
 GetUnicodeCategory(string str, int idx)

Returns the UnicodeCategory enumeration value
for str[idx]. UnicodeCategory is an enumeration
defined by System.Globalization that categorizes
Unicode characters.

public static bool IsControl(char ch) Returns true if ch is a control character.
Otherwise, returns false.

public static bool IsControl(string str, int idx) Returns true if str[idx] is a control character.
Otherwise, returns false.

public static bool IsDigit(char ch) Returns true if ch is a digit. Otherwise, returns
false.

public static bool IsDigit(string str, int idx) Returns true if str[idx] is a digit. Otherwise,
returns false.

public static bool IsHighSurrogate(char ch) Returns true if ch is a valid UTF-32 high
surrogate. Otherwise, returns false.

public static bool IsHighSurrogate(string str,
 int idx)

Returns true if str[idx] is a valid UTF-32 high
surrogate. Otherwise, returns false.

public static bool IsLetter(char ch) Returns true if ch is a letter of the alphabet.
Otherwise, returns false.

public static bool IsLetter(string str, int idx) Returns true if str[idx] is a letter of the alphabet.
Otherwise, returns false.

public static bool IsLetterOrDigit(char ch) Returns true if ch is either a letter of the alphabet
or a digit. Otherwise, returns false.

public static bool
 IsLetterOrDigit(string str, int idx)

Returns true if str[idx] is either a letter of the
alphabet or a digit. Otherwise, returns false.

public static bool IsLower(char ch) Returns true if ch is a lowercase letter of the
alphabet. Otherwise, returns false.

public static bool IsLower(string str, int idx) Returns true if str[idx] is a lowercase letter of the
alphabet. Otherwise, returns false.

TABLE 21-9 Methods Defi ned by Char (continued)

Method Meaning

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 637

public static bool IsLowSurrogate(char ch) Returns true if ch is a valid UTF-32 low surrogate.
Otherwise, returns false.

public static bool IsLowSurrogate(string str,
 int idx)

Returns true if str[idx] is a valid UTF-32 low
surrogate. Otherwise, returns false.

public static bool IsNumber(char ch) Returns true if ch is a number. Otherwise, returns
false.

public static bool IsNumber(string str, int idx) Returns true if str[idx] is a number. Otherwise,
returns false.

public static bool IsPunctuation(char ch) Returns true if ch is a punctuation character.
Otherwise, returns false.

public static bool
 IsPunctuation(string str, int idx)

Returns true if str[idx] is a punctuation character.
Otherwise, returns false.

public static bool IsSeparator(char ch) Returns true if ch is a separator character, such
as a space. Otherwise, returns false.

public static bool IsSeparator(string str, int idx) Returns true if str[idx] is a separator character,
such as a space. Otherwise, returns false.

public static bool IsSurrogate(char ch) Returns true if ch is a Unicode surrogate
character. Otherwise, returns false.

public static bool IsSurrogate(string str, int idx) Returns true if str[idx] is a Unicode surrogate
character. Otherwise, returns false.

public static bool IsSurrogatePair(char high,
 char low)

Returns true if high and low form a valid
surrogate pair. Otherwise, returns false.

public static bool IsSurrogatePair(string str,
 int idx)

Returns true if the two consecutive characters
starting at idx within str form a valid surrogate
pair. Otherwise, returns false.

public static bool IsSymbol(char ch) Returns true if ch is a symbolic character, such
as the currency symbol. Otherwise, returns false.

public static bool IsSymbol(string str, int idx) Returns true if str[idx] is a symbolic character,
such as the currency symbol. Otherwise, returns
false.

public static bool IsUpper(char ch) Returns true if ch is an uppercase letter.
Otherwise, returns false.

public static bool IsUpper(string str, int idx) Returns true if str[idx] is an uppercase letter.
Otherwise, returns false.

public static bool IsWhiteSpace(char ch) Returns true if ch is a whitespace character, such
as a space or tab. Otherwise, returns false.

public static bool
 IsWhiteSpace(string str, int idx)

Returns true if str[idx] is a whitespace character,
such as a space or tab. Otherwise, returns false.

TABLE 21-9 Methods Defi ned by Char (continued)

Method Meaning

638 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

public static char Parse(string str) Returns the char equivalent of the character in
str. If str contains more than one character, a
FormatException is thrown.

public static char ToLower(char ch) Returns the lowercase equivalent of ch if ch is
an uppercase letter. Otherwise, ch is returned
unchanged.

public static char
 ToLower(char ch, CultureInfo c)

Returns the lowercase equivalent of ch if ch is
an uppercase letter. Otherwise, ch is returned
unchanged. The conversion is handled in
accordance with the specified cultural
information. CultureInfo is a class defined
in System.Globalization.

public static char ToLowerInvariant(char ch) Returns the lowercase version of ch
independently of the cultural settings.

public override string ToString() Returns the string representation of the value of
the invoking Char.

public static string ToString(char ch) Returns the string representation of ch.

public string
 ToString(IFormatProvider fmtpvdr)

Returns the string representation of the invoking
Char using the specified cultural information.

public static char ToUpper(char ch) Returns the uppercase equivalent of ch if ch is
a lowercase letter. Otherwise, ch is returned
unchanged.

public static char ToUpper(char ch,
 CultureInfo c)

Returns the uppercase equivalent of ch if
ch is a lowercase letter. Otherwise, ch is
returned unchanged. The conversion is handled
in accordance with the specified cultural
information. CultureInfo is a class defined
in System.Globalization.

public static char ToUpperInvariant(char ch) Returns the uppercase version of ch
independently of the cultural settings.

public static bool TryParse(string str,
 out char ch)

Attempts to convert the character in str into its
char equivalent. If successful, the value is stored
in ch and true is returned. If str contains more than
one character, false is returned. This differs from
Parse(), which throws an exception on failure.

TABLE 21-9 Methods Defi ned by Char (continued)

Method Meaning

Here is a program that demonstrates several of the methods defined by Char:

// Demonstrate several Char methods.

using System;

class CharDemo {

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 639

 static void Main() {
 string str = "This is a test. $23";
 int i;

 for(i=0; i < str.Length; i++) {
 Console.Write(str[i] + " is");
 if(Char.IsDigit(str[i]))
 Console.Write(" digit");
 if(Char.IsLetter(str[i]))
 Console.Write(" letter");
 if(Char.IsLower(str[i]))
 Console.Write(" lowercase");
 if(Char.IsUpper(str[i]))
 Console.Write(" uppercase");
 if(Char.IsSymbol(str[i]))
 Console.Write(" symbol");
 if(Char.IsSeparator(str[i]))
 Console.Write(" separator");
 if(Char.IsWhiteSpace(str[i]))
 Console.Write(" whitespace");
 if(Char.IsPunctuation(str[i]))
 Console.Write(" punctuation");

 Console.WriteLine();
 }

 Console.WriteLine("Original: " + str);

 // Convert to uppercase.
 string newstr = "";
 for(i=0; i < str.Length; i++)
 newstr += Char.ToUpper(str[i]);

 Console.WriteLine("Uppercased: " + newstr);

 }
}

The output is shown here:

T is letter uppercase
h is letter lowercase
i is letter lowercase
s is letter lowercase
 is separator whitespace
i is letter lowercase
s is letter lowercase
 is separator whitespace
a is letter lowercase
 is separator whitespace
t is letter lowercase
e is letter lowercase
s is letter lowercase
t is letter lowercase
. is punctuation

640 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 is separator whitespace
$ is symbol
2 is digit
3 is digit
Original: This is a test. $23
Uppercased: THIS IS A TEST. $23

The Boolean Structure
The Boolean structure supports the bool data type. The methods defined by Boolean are
shown in Table 21-10. It defines these fields:

public static readonly string FalseString
public static readonly string TrueString

These contain the human-readable forms of true and false. For example, if you output
FalseString using a call to WriteLine(), the string “False” is displayed.

Boolean implements the following interfaces: IComparable, IComparable<bool>,
IConvertible, and IEquatable<bool>.

Method Meaning

public int CompareTo(bool v) Compares the value of the invoking object with that of v.
Returns zero if the values are equal. Returns a negative
value if the invoking object is false and v is true. Returns
a positive value if the invoking object is true and v is false.

public int CompareTo(object v) Compares the value of the invoking object with that of v.
Returns zero if the values are equal. Returns a negative
value if the invoking object is false and v is true. Returns
a positive value if the invoking object is true and v is false.

public bool Equals(bool v) Returns true if the value of the invoking object equals the
value of v.

public override bool Equals(object v) Returns true if the value of the invoking object equals the
value of v.

public override int GetHashCode() Returns the hash code for the invoking object.

public TypeCode GetTypeCode() Returns the TypeCode enumeration value for Boolean,
which is TypeCode.Boolean.

public static bool Parse(string str) Returns the bool equivalent of the string in str. If the string
is neither Boolean.TrueString nor Boolean.FalseString, a
FormatException is thrown. However, case differences are
ignored.

public override string ToString() Returns the string representation of the value of the invoking
object, which will be either TrueString or FalseString.

public string
 ToString(IFormatProvider fmtpvdr)

Returns the string representation of the value of the
invoking object, which will be either TrueString or
FalseString. The fmtpvdr parameter is ignored.

TABLE 21-10 Methods Defi ned by Boolean

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 641

The Array Class
One very useful class in System is Array. Array is a base class for all arrays in C#. Thus, its
methods can be applied to arrays of any of the built-in types or to arrays of types that you
create. Array defines the properties shown in Table 21-11. It defines the methods shown in
Table 21-12.

Array implements the following interfaces: ICloneable, ICollection, IEnumerable, and
IList. ICollection, IEnumerable, and IList are defined in the System.Collections namespace
and are described in Chapter 24.

Several methods use a parameter of type IComparer or IComparer<T>. The IComparer
interface is in System.Collections. It defines a method called Compare(), which compares
the values of two objects. It is shown here:

int Compare(object v1, object v2)

It returns greater than zero if v1 is greater than v2, less than zero if v1 is less than v2, and
zero if the two values are equal.

IComparer<T> is in System.Collections.Generic. It defines a generic form of Compare(),
which is shown here:

int Compare(T v1, T v2)

It works the same as its non-generic relative: returning greater than zero if v1 is greater than
v2, less than zero if v1 is less than v2, and zero if the two values are equal. The advantage to
IComparer<T> is type safety, because the type of data being operated upon is explicitly
specified. Thus, no casts from object are required.

The next few sections demonstrate several commonly used array operations.

public static bool TryParse(string str,
 out bool b)

Attempts to convert the character in str into its bool
equivalent. If successful, the value is stored in b and true
is returned. If the string is neither Boolean.TrueString nor
Boolean.FalseString, false is returned. (Case differences
are ignored.) This differs from Parse(), which throws an
exception on failure.

TABLE 21-10 Methods Defi ned by Boolean (continued)

Method Meaning

Property Meaning

public bool IsFixedSize { get; } A read-only property that is true if the array is of fixed size and
false if the array is dynamic. This value is true for arrays.

public bool IsReadOnly { get; } A read-only property that is true if the Array object is read-only
and false if it is not. This value is true for arrays.

public bool IsSynchronized { get; } A read-only property that is true if the array is safe for use in a
multithreaded environment and false if it is not. This value is
true for arrays.

TABLE 21-11 Properties Defi ned by Array

642 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

public int Length { get; } An int read-only property that contains the number of elements
in the array.

public long LongLength { get; } A long read-only property that contains the number of elements
in the array.

public int Rank { get; } A read-only property that contains the number of dimensions in
the array.

public object SyncRoot { get; } A read-only property that contains the object that synchronizes
access to the array.

TABLE 21-11 Properties Defi ned by Array (continued)

Property Meaning

Method Meaning

public static ReadOnlyCollection<T>
 AsReadOnly<T>(T[] a)

Returns a read-only collection that wraps the array specified by a.

public static int BinarySearch(Array a, object v) Searches the array specified by a for the value specified by v. Returns the
index of the first match. If v is not found, returns a negative value. The array
must be sorted and one-dimensional.

public static int BinarySearch<T>(T[] a, T v) Searches the array specified by a for the value specified by v. Returns the
index of the first match. If v is not found, returns a negative value. The array
must be sorted and one-dimensional.

public static int
 BinarySearch(Array a, object v,
 IComparer comp)

Searches the array specified by a for the value specified by v, using the
comparison method specified by comp. Returns the index of the first match.
If v is not found, returns a negative value. The array must be sorted and one-
dimensional.

public static int
 BinarySearch<T>(T[] a, T v,
 IComparer<T> comp)

Searches the array specified by a for the value specified by v, using the
comparison method specified by comp. Returns the index of the first match.
If v is not found, returns a negative value. The array must be sorted and one-
dimensional.

public static int
 BinarySearch(Array a, int start,
 int count, object v)

Searches a portion of the array specified by a for the value specified by v.
The search begins at the index specified by start and is restricted to count
elements. Returns the index of the first match. If v is not found, returns a
negative value. The array must be sorted and one-dimensional.

public static int
 BinarySearch<T>(T[] a, int start,
 int count, T v)

Searches a portion of the array specified by a for the value specified by v.
The search begins at the index specified by start and is restricted to count
elements. Returns the index of the first match. If v is not found, returns a
negative value. The array must be sorted and one-dimensional.

public static int
 BinarySearch(Array a, int start,
 int count, object v,
 IComparer comp)

Searches a portion of the array specified by a for the value specified by v,
using the comparison method specified by comp. The search begins at the
index specified by start and is restricted to count elements. Returns the
index of the first match. If v is not found, returns a negative value. The array
must be sorted and one-dimensional.

public static int
 BinarySearch<T>(T [] a, int start,
 int count, T v,
 IComparer<T> comp)

Searches a portion of the array specified by a for the value specified by v,
using the comparison method specified by comp. The search begins at the
index specified by start and is restricted to count elements. Returns the
index of the first match. If v is not found, returns a negative value. The array
must be sorted and one-dimensional.

TABLE 21-12 Methods Defi ned by Array

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 643

public static void Clear(Array a, int start,
 int count)

Sets the specified elements of a to zero, null, or false, depending on whether
the element type is a value type, a reference type, or Boolean. The elements
to be zeroed begin at the index specified by start and run for count elements.

public object Clone() Returns a copy of the invoking array. The copy refers to the same elements
as does the original. This is called a “shallow copy.” Thus, changes to the
elements affect both arrays since they both use the same elements.

public static void
 ConstrainedCopy(Array source, int srcIdx,
 Array dest, int destIdx,
 int count)

Copies count elements from source (beginning at srcIdx) to dest (beginning
at destIdx). If both arrays are reference types, then ConstrainedCopy()
makes a “shallow copy,” which means that both arrays will refer to the same
elements. If an error occurs during the copy, dest is unchanged.

public static TTo[]
 ConvertAll<TFrom, TTo>(TFrom[] a,
 Converter<TFrom, TTo> conv)

Converts a from type TFrom to TTo and returns the resulting array. The
original array is unaffected. The conversion is performed by the specified
converter.

public static void Copy(Array source,
 Array dest,
 int count)

Beginning at the start of each array, copies count elements from source to
dest. When both arrays are reference types, then Copy() makes a “shallow
copy,” which means that both arrays will refer to the same elements. If an
error occurs during the copy, dest is undefined.

public static void Copy(Array source,
 Array dest,
 long count)

Beginning at the start of each array, copies count elements from source to
dest. When both arrays are reference types, then Copy() makes a “shallow
copy,” which means that both arrays will refer to the same elements. If an
error occurs during the copy, dest is undefined.

public static void Copy(Array source,
 int srcStart,
 Array dest,
 int destStart,
 int count)

Copies count elements from source[srcStart] to dest[destStart]. When both
arrays are reference types, then Copy() makes a “shallow copy,” which
means that both arrays will refer to the same elements. If an error occurs
during the copy, dest is undefined.

public static void Copy(Array source,
 long srcStart,
 Array dest,
 long destStart,
 long count)

Copies count elements from source[srcStart] to dest[destStart]. When both
arrays are reference types, then Copy() makes a “shallow copy,” which
means that both arrays will refer to the same elements. If an error occurs
during the copy, dest is undefined.

public void CopyTo(Array dest, int start) Copies the elements of the invoking array to dest, beginning at dest[start].

public void CopyTo(Array dest,
 long start)

Copies the elements of the invoking array to dest, beginning at dest[start].

public static Array
 CreateInstance(Type t, int size)

Returns a reference to a one-dimensional array that contains size elements
of type t.

public static Array
 CreateInstance(Type t, int size1, int size2)

Returns a reference to a size1-by-size2 two-dimensional array. Each element
is of type t.

public static Array
 CreateInstance(Type t, int size1,
 int size2, int size3)

Returns a reference to a size1-by-size2-by-size3 three-dimensional array. Each
element is of type t.

public static Array
 CreateInstance(Type t, int[] sizes)

Returns a reference to a multi-dimensional array that has the dimensions
specified in sizes. Each element is of type t.

public static Array
 CreateInstance(Type t, long[] sizes)

Returns a reference to a multi-dimensional array that has the dimensions
specified in sizes. Each element is of type t.

public static Array
 CreateInstance(Type t, int[] sizes,
 int[] startIndexes)

Returns a reference to a multi-dimensional array that has the dimensions
specified in sizes. Each element is of type t. The starting index of each
dimension is specified in startIndexes. Thus, it is possible to create arrays
that begin at some index other than zero.

TABLE 21-12 Methods Defi ned by Array (continued)

Method Meaning

644 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

public override bool Equals(object v) Returns true if the value of the invoking object equals the value of v.

public static bool Exists<T>(T[] a,
 Predicate<T> pred)

Returns true if a contains at least one element that satisfies the predicate
specified by pred. Returns false if no elements satisfy pred.

public static T Find<T>(T[] a,
 Predicate<T> pred)

Returns the first element in a that satisfies the predicate specified by pred. If
no element satisfies pred, then default(T) is returned.

public static T[] FindAll<T>(T[] a,
 Predicate<T> pred)

Returns an array that contains all elements in a that satisfy the predicate
specified by pred. If no element satisfies pred, then a zero-length array is
returned.

public static int FindIndex<T>(T[] a,
 Predicate<T> pred)

Returns the index of the first element in a that satisfies the predicate
specified by pred. If no element satisfies pred, –1 is returned.

public static int FindIndex<T>(T[] a,
 int start,
 Predicate<T> pred)

Returns the index of the first element in a that satisfies the predicate
specified by pred. The search begins at a[start]. If no element satisfies pred,
–1 is returned.

public static int FindIndex<T>(T[] a,
 int start,
 int count,
 Predicate<T> pred)

Returns the index of the first element in a that satisfies the predicate
specified by pred. The search begins at a[start] and runs for count elements.
If no element satisfies pred, –1 is returned.

public static T FindLast<T>(T[] a,
 Predicate<T> pred)

Returns the last element in a that satisfies the predicate specified by pred. If
no element satisfies pred, then default(T) is returned.

public static int FindLastIndex<T>(T[] a,
 Predicate<T> pred)

Returns the index of the last element in a that satisfies the predicate
specified by pred. If no element satisfies pred, –1 is returned.

public static int FindLastIndex<T>(T[] a,
 int start,
 Predicate<T> pred)

Returns the index of the last element in a that satisfies the predicate
specified by pred. The search proceeds in reverse order, beginning at a[start]
and stopping at a[0]. If no element satisfies pred, –1 is returned.

public static int FindLastIndex<T>(T[] a,
 int start,
 int count,
 Predicate<T> pred)

Returns the index of the last element in a that satisfies the predicate
specified by pred. The search proceeds in reverse order, beginning at a[start]
and running for count elements. If no element satisfies pred, –1 is returned.

public static void ForEach<T>(T[] a,
 Action<T> act)

Applies the method specified by act to each element of a.

public IEnumerator GetEnumerator() Returns an enumerator object for the array. An enumerator enables you to
cycle through an array. Enumerators are described in Chapter 24.

public override int GetHashCode() Returns the hash code for the invoking object.

public int GetLength(int dim) Returns the length of the specified dimension. The dimension is zero-based.
Thus, to get the length of the first dimension, pass 0; to obtain the length of
the second dimension, pass 1; and so on.

public long GetLongLength(int dim) Returns the length of the specified dimension as a long. The dimension is
zero-based. Thus, to get the length of the first dimension, pass 0; to obtain
the length of the second dimension, pass 1; and so on.

public int GetLowerBound(int dim) Returns the first index of the specified dimension, which is usually zero.
The parameter dim is zero-based. Thus, to get the start index of the first
dimension, pass 0; to obtain the start index of the second dimension, pass
1; and so on.

public int GetUpperBound(int dim) Returns the last index of the specified dimension. The parameter dim is zero-
based. Thus, to get the last index of the first dimension, pass 0; to obtain
the last index of the second dimension, pass 1; and so on.

TABLE 21-12 Methods Defi ned by Array (continued)

Method Meaning

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 645

public object GetValue(int idx) Returns the value of the element at index idx within the invoking array. The
array must be one-dimensional.

public object GetValue(long idx) Returns the value of the element at index idx within the invoking array. The
array must be one-dimensional.

public object GetValue(int idx1, int idx2) Returns the value of the element at [idx1, idx2] within the invoking array. The
array must be two-dimensional.

public object GetValue(long idx1, long idx2) Returns the value of the element at [idx1, idx2] within the invoking array. The
array must be two-dimensional.

public object GetValue(int idx1, int idx2,
 int idx3)

Returns the value of the element at [idx1, idx2, idx3] within the invoking
array. The array must be three-dimensional.

public object GetValue(long idx1, long idx2,
 long idx3)

Returns the value of the element at [idx1, idx2, idx3] within the invoking
array. The array must be three-dimensional.

public object GetValue(int[] idxs) Returns the value of the element at the specified indices within the invoking
array. The array must have as many dimensions as idxs has elements.

public object GetValue(long[] idxs) Returns the value of the element at the specified indices within the invoking
array. The array must have as many dimensions as idxs has elements.

public static int IndexOf(Array a, object v) Returns the index of the first element within the one-dimensional array a that
has the value specified by v. Returns –1 if the value is not found. (If the array
has a lower bound other than 0, then the failure value is the lower bound –1.)

public static int IndexOf<T>(T[] a, T v) Returns the index of the first element within the one-dimensional array a that
has the value specified by v. Returns –1 if the value is not found.

public static int IndexOf(Array a, object v,
 int start)

Returns the index of the first element within the one-dimensional array a that
has the value specified by v. The search begins at a[start]. Returns –1 if the
value is not found. (If the array has a lower bound other than 0, then the
failure value is the lower bound –1.)

public static int IndexOf<T>(T[] a, T v,
 int start)

Returns the index of the first element within the one-dimensional array a that
has the value specified by v. The search begins at a[start]. Returns –1 if the
value is not found.

public static int IndexOf(Array a, object v,
 int start, int count)

Returns the index of the first element within the one-dimensional array a that
has the value specified by v. The search begins at a[start] and runs for count
elements. Returns –1 if the value is not found within the specified range. (If
the array has a lower bound other than 0, then the failure value is the lower
bound –1.)

public static int IndexOf<T>(T[] a, T v,
 int start, int count)

Returns the index of the first element within the one-dimensional array a that
has the value specified by v. The search begins at a[start] and runs for count
elements. Returns –1 if the value is not found within the specified range.

public void Initialize() Initializes each element in the invoking array by calling the element’s default
constructor. This method can be used only on arrays of value types that have
constructors.

public static int LastIndexOf(Array a, object v) Returns the index of the last element within the one-dimensional array a that
has the value specified by v. Returns –1 if the value is not found. (If the array
has a lower bound other than 0, then the failure value is the lower bound –1.)

public static int LastIndexOf<T>(T[] a, T v) Returns the index of the last element within the one-dimensional array a that
has the value specified by v. Returns –1 if the value is not found.

public static int LastIndexOf(Array a, object v,
 int start)

Returns the index of the last element within a range of the one-dimensional
array a that has the value specified by v. The search proceeds in reverse
order, beginning at a[start] and stopping at a[0]. Returns –1 if the value is
not found. (If the array has a lower bound other than 0, then the failure value
is the lower bound –1.)

TABLE 21-12 Methods Defi ned by Array (continued)

Method Meaning

646 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

public static int LastIndexOf<T>(T[] a, T v,
 int start)

Returns the index of the last element within a range of the one-dimensional
array a that has the value specified by v. The search proceeds in reverse
order, beginning at a[start] and stopping at a[0]. Returns –1 if the value is
not found.

public static int LastIndexOf(Array a, object v,
 int start, int count)

Returns the index of the last element within a range of the one-dimensional
array a that has the value specified by v. The search proceeds in reverse order,
beginning at a[start] and running for count elements. Returns –1 if the value is
not found within the specified range. (If the array has a lower bound other than
0, then the failure value is the lower bound –1.)

public static int LastIndexOf<T>(T[] a, T v,
 int start,
 int count)

Returns the index of the last element within a range of the one-dimensional
array a that has the value specified by v. The search proceeds in reverse
order, beginning at a[start] and running for count elements. Returns –1 if the
value is not found within the specified range.

public static void Resize<T>(ref T[] a, int size) Sets the size of a to size.

public static void Reverse(Array a) Reverses the elements in a.

public static void Reverse(Array a, int start,
 int count)

Reverses a range of elements in a. The range reversed begins at a[start] and
runs for count elements.

public void SetValue(object v, int idx) Sets the value of the element at index idx within the invoking array to v. The
array must be one-dimensional.

public void SetValue(object v, long idx) Sets the value of the element at index idx within the invoking array to v. The
array must be one-dimensional.

public void SetValue(object v, int idx1, int idx2) Sets the value of the element at indices [idx1, idx2] within the invoking array
to v. The array must be two-dimensional.

public void SetValue(object v,
 long idx1, long idx2)

Sets the value of the element at indices [idx1, idx2] within the invoking array
to v. The array must be two-dimensional.

public void SetValue(object v, int idx1,
 int idx2, int idx3)

Sets the value of the element at indices [idx1, idx2, idx3] within the invoking
array to v. The array must be three-dimensional.

public void SetValue(object v, long idx1,
 long idx2, long idx3)

Sets the value of the element at indices [idx1, idx2, idx3] within the invoking
array to v. The array must be three-dimensional.

public void SetValue(object v, int[] idxs) Sets the value of the element at the specified indices within the invoking array
to v. The array must have as many dimensions as idxs has elements.

public void SetValue(object v, long[] idxs) Sets the value of the element at the specified indices within the invoking array
to v. The array must have as many dimensions as idxs has elements.

public static void Sort(Array a) Sorts a into ascending order. The array must be one-dimensional.

public static void Sort<T>(T[] a) Sorts a into ascending order. The array must be one-dimensional.

public static void Sort(Array a,
 IComparer comp)

Sorts a into ascending order using the comparison method specified by
comp. The array must be one-dimensional.

public static void Sort<T>(T[] a,
 Comparison<T> comp)

Sorts a into ascending order using the comparison method specified by
comp. The array must be one-dimensional.

public static void Sort<T>(T[] a,
 IComparer<T> comp)

Sorts a into ascending order using the comparison method specified by
comp. The array must be one-dimensional.

public static void Sort(Array k, Array v) Sorts a pair of one-dimensional arrays into ascending order. The k array
contains the sort keys. The v array contains the values linked to those keys.
Thus, the two arrays contain key/value pairs. After the sort, both arrays are
in ascending-key order.

TABLE 21-12 Methods Defi ned by Array (continued)

Method Meaning

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 647

public static void Sort<TK, TV>(TK[] k,
 TV[] v)

Sorts a pair of one-dimensional arrays into ascending order. The k array
contains the sort keys. The v array contains the values linked to those keys.
Thus, the two arrays contain key/value pairs. After the sort, both arrays are
in ascending-key order.

public static void Sort(Array k, Array v,
 IComparer comp)

Sorts a pair of one-dimensional arrays into ascending order using the
comparison method specified by comp. The k array contains the sort keys.
The v array contains the values linked to those keys. Thus, the two arrays
contain key/value pairs. After the sort, both arrays are in ascending-key
order.

public static void
 Sort<TK, TV>(TK[] k, TV[] v,
 IComparer<TK> comp)

Sorts a pair of one-dimensional arrays into ascending order using the
comparison method specified by comp. The k array contains the sort keys.
The v array contains the values linked to those keys. Thus, the two arrays
contain key/value pairs. After the sort, both arrays are in ascending-key
order.

public static void Sort(Array a, int start,
 int count)

Sorts a range of a into ascending order. The range begins at a[start] and
runs for count elements. The array must be one-dimensional.

public static void Sort<T>(T[] a, int start,
 int count)

Sorts a range of a into ascending order. The range begins at a[start] and
runs for count elements. The array must be one-dimensional.

public static void Sort(Array a, int start,
 int count,
 IComparer comp)

Sorts a range of a into ascending order using the comparison method
specified by comp. The range begins at a[start] and runs for count elements.
The array must be one-dimensional.

public static void Sort<T>(T[] a, int start,
 int count,
 IComparer<T> comp)

Sorts a range of a into ascending order using the comparison method
specified by comp. The range begins at a[start] and runs for count elements.
The array must be one-dimensional.

public static void Sort(Array k, Array v,
 int start, int count)

Sorts a range within a pair of one-dimensional arrays into ascending order.
Within both arrays, the range to sort begins at the index passed in start
and runs for count elements. The k array contains the sort keys. The v array
contains the values linked to those keys. Thus, the two arrays contain key/
value pairs. After the sort, both ranges are in ascending-key order.

public static void
 Sort<TK, TV>(TK[] k, TK[] v,
 int start, int count)

Sorts a range within a pair of one-dimensional arrays into ascending order.
Within both arrays, the range to sort begins at the index passed in start
and runs for count elements. The k array contains the sort keys. The v array
contains the values linked to those keys. Thus, the two arrays contain key/
value pairs. After the sort, both ranges are in ascending-key order.

public static void Sort(Array k, Array v,
 int start, int count,
 IComparer comp)

Sorts a range within a pair of one-dimensional arrays into ascending order
using the comparison method specified by comp. Within both arrays,
the range to sort begins at the index passed in start and runs for count
elements. The k array contains the sort keys. The v array contains the values
linked to those keys. Thus, the two arrays contain key/value pairs. After the
sort, both ranges are in ascending-key order.

public static void
 Sort<TK, TV>(TK[] k, TV v,
 int start, int count,
 IComparer<TK> comp)

Sorts a range within a pair of one-dimensional arrays into ascending order
using the comparison method specified by comp. Within both arrays,
the range to sort begins at the index passed in start and runs for count
elements. The k array contains the sort keys. The v array contains the values
linked to those keys. Thus, the two arrays contain key/value pairs. After the
sort, both ranges are in ascending-key order.

public static bool
 TrueForAll<T>(T[] a, Predicate<T> pred)

Returns true if the predicate specified by pred is satisfied by all elements in a.
If one or more elements fail to satisfy pred, then false is returned.

TABLE 21-12 Methods Defi ned by Array (continued)

Method Meaning

648 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Sorting and Searching Arrays
Often you will want to sort the contents of an array. To handle this, Array supports a rich
complement of sorting methods. Using Sort(), you can sort an entire array, a range within
an array or a pair of arrays that contain corresponding key/value pairs. Once an array has
been sorted, you can efficiently search it using BinarySearch(). Here is a program that
demonstrates the Sort() and BinarySearch() methods by sorting an array of ints:

// Sort an array and search for a value.

using System;

class SortDemo {
 static void Main() {
 int[] nums = { 5, 4, 6, 3, 14, 9, 8, 17, 1, 24, -1, 0 };

 // Display original order.
 Console.Write("Original order: ");
 foreach(int i in nums)
 Console.Write(i + " ");
 Console.WriteLine();

 // Sort the array.
 Array.Sort(nums);

 // Display sorted order.
 Console.Write("Sorted order: ");
 foreach(int i in nums)
 Console.Write(i + " ");
 Console.WriteLine();

 // Search for 14.
 int idx = Array.BinarySearch(nums, 14);

 Console.WriteLine("Index of 14 is " + idx);
 }
}

The output is shown here:

Original order: 5 4 6 3 14 9 8 17 1 24 -1 0
Sorted order: -1 0 1 3 4 5 6 8 9 14 17 24
Index of 14 is 9

In the preceding example, the array has an element type of int, which is a value type.
All methods defined by Array are automatically available to all of the built-in value types.
However, this may not be the case for arrays of object references. To sort or search an array
of object references, the class type of those objects must implement either the IComparable
or IComparable<T> interface. If the class does not implement one of these interfaces, a
runtime exception will occur when attempting to sort or search the array. Fortunately, both
IComparable and IComparable<T> are easy to implement.

IComparable defines just one method:

int CompareTo(object obj)

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 649

This method compares the invoking object against the value in obj. It returns greater than
zero if the invoking object is greater than obj, zero if the two objects are equal, and less than
zero if the invoking object is less than obj.

IComparable<T> is the generic version of IComparable. It defines the generic version
of CompareTo():

int CompareTo(T obj)

The generic version of CompareTo() works like the non-generic version. It compares
the invoking object against the value in obj. It returns greater than zero if the invoking object
is greater than obj, zero if the two objects are equal, and less than zero if the invoking object
is less than obj. The advantage of using IComparable<T> is type safety because the type of
data being operated upon is explicitly specified. There is no need to cast the object being
compared from object into the desired type. Here is an example that illustrates sorting and
searching an array of user-defined class objects:

// Sort and search an array of objects.

using System;

class MyClass : IComparable<MyClass> {
 public int i;

 public MyClass(int x) { i = x; }

 // Implement IComparable<MyClass>.
 public int CompareTo(MyClass v) {
 return i - v.i;
 }

 public bool Equals(MyClass v) {
 return i == v.i;
 }

}

class SortDemo {
 static void Main() {
 MyClass[] nums = new MyClass[5];

 nums[0] = new MyClass(5);
 nums[1] = new MyClass(2);
 nums[2] = new MyClass(3);
 nums[3] = new MyClass(4);
 nums[4] = new MyClass(1);

 // Display original order.
 Console.Write("Original order: ");
 foreach(MyClass o in nums)
 Console.Write(o.i + " ");
 Console.WriteLine();

 // Sort the array.
 Array.Sort(nums);

650 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 // Display sorted order.
 Console.Write("Sorted order: ");
 foreach(MyClass o in nums)
 Console.Write(o.i + " ");
 Console.WriteLine();

 // Search for MyClass(2).
 MyClass x = new MyClass(2);
 int idx = Array.BinarySearch(nums, x);

 Console.WriteLine("Index of MyClass(2) is " + idx);
 }
}

The output is shown here:

Original order: 5 2 3 4 1
Sorted order: 1 2 3 4 5
Index of MyClass(2) is 1

Reversing an Array
Sometimes it is useful to reverse the contents of an array. For example, you might want to
change an array that has been sorted in ascending order into one sorted in descending
order. Reversing an array is easy: Simply call Reverse(). Using Reverse(), you can reverse
all or part of an array. The following program demonstrates the process:

// Reverse an array.

using System;

class ReverseDemo {
 static void Main() {
 int[] nums = { 1, 2, 3, 4, 5 };

 // Display original order.
 Console.Write("Original order: ");
 foreach(int i in nums)
 Console.Write(i + " ");
 Console.WriteLine();

 // Reverse the entire array.
 Array.Reverse(nums);

 // Display reversed order.
 Console.Write("Reversed order: ");
 foreach(int i in nums)
 Console.Write(i + " ");
 Console.WriteLine();

 // Reverse a range.
 Array.Reverse(nums, 1, 3);

 // Display reversed order.
 Console.Write("Range reversed: ");
 foreach(int i in nums)

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 651

 Console.Write(i + " ");
 Console.WriteLine();
 }
}

The output is shown here:

Original order: 1 2 3 4 5
Reversed order: 5 4 3 2 1
Range reversed: 5 2 3 4 1

Copying an Array
Copying all or part of one array to another is another common array operation. To copy an
array, use Copy(). Copy() can put elements at the start of the destination array or in the
middle, depending upon which version of Copy() you use. Copy() is demonstrated by the
following program:

// Copy an array.

using System;

class CopyDemo {
 static void Main() {
 int[] source = { 1, 2, 3, 4, 5 };
 int[] target = { 11, 12, 13, 14, 15 };
 int[] source2 = { -1, -2, -3, -4, -5 };

 // Display source.
 Console.Write("source: ");
 foreach(int i in source)
 Console.Write(i + " ");
 Console.WriteLine();

 // Display original target.
 Console.Write("Original contents of target: ");
 foreach(int i in target)
 Console.Write(i + " ");
 Console.WriteLine();

 // Copy the entire array.
 Array.Copy(source, target, source.Length);

 // Display copy.
 Console.Write("target after copy: ");
 foreach(int i in target)
 Console.Write(i + " ");
 Console.WriteLine();

 // Copy into middle of target.
 Array.Copy(source2, 2, target, 3, 2);

 // Display copy.
 Console.Write("target after copy: ");
 foreach(int i in target)

652 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 Console.Write(i + " ");
 Console.WriteLine();
 }
}

The output is shown here:

source: 1 2 3 4 5
Original contents of target: 11 12 13 14 15
target after copy: 1 2 3 4 5
target after copy: 1 2 3 -3 -4

Using a Predicate
A predicate is a delegate of type System.Predicate that returns either true or false, based
upon some condition. It is declared as shown here:

public delegate bool Predicate<T> (T obj)

The object to be tested against the condition is passed in obj. If obj satisfies that condition,
the predicate must return true. Otherwise, it must return false. Predicates are used by
several methods in Array, including Exists(), Find(), FindIndex(), and FindAll().

The following program demonstrates using a predicate to determine if an array of
integers contains a negative value. If a negative value is found, the program then obtains the
first negative value in the array. To accomplish this, the program uses Exists() and Find().

// Demonstrate Predicate delegate.

using System;

class PredDemo {

 // A predicate method.
 // It returns true if v is negative.
 static bool IsNeg(int v) {
 if(v < 0) return true;
 return false;
 }

 static void Main() {
 int[] nums = { 1, 4, -1, 5, -9 };

 Console.Write("Contents of nums: ");
 foreach(int i in nums)
 Console.Write(i + " ");
 Console.WriteLine();

 // First see if nums contains a negative value.
 if(Array.Exists(nums, PredDemo.IsNeg)) {
 Console.WriteLine("nums contains a negative value.");

 // Now, find first negative value.
 int x = Array.Find(nums, PredDemo.IsNeg);
 Console.WriteLine("First negative value is : " + x);
 }

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 653

 else
 Console.WriteLine("nums contains no negative values.");
 }
}

The output is shown here:

Contents of nums: 1 4 -1 5 -9
nums contains a negative value.
First negative value is : -1

In the program, the method passed to Exists() and Find() for the predicate is IsNeg().
Notice that IsNeg() is declared like this:

static bool IsNeg(int v) {

The methods Exists() and Find() will automatically pass the elements of the array (in
sequence) to v. Thus, each time IsNeg() is called, v will contain the next element in the array.

Using an Action
The Action delegate is used by Array.ForEach() to perform an action on each element of an
array. There are various forms of Action, each taking a different number of type parameters.
The one used here is

public delegate void Action<T> (T obj)

The object to be acted upon is passed in obj. When used with ForEach(), each element of the
array is passed to obj in turn. Thus, through the use of ForEach() and Action, you can, in a
single statement, perform an operation over an entire array.

The following program demonstrates both ForEach() and Action. It first creates an
array of MyClass objects, then uses the method Show() to display the values. Next, it uses
Neg() to negate the values. Finally, it uses Show() again to display the negated values.
These operations all occur through calls to ForEach().

// Demonstrate an Action.

using System;

class MyClass {
 public int i;

 public MyClass(int x) { i = x; }
}

class ActionDemo {

 // An Action method.
 // It displays the value it is passed.
 static void Show(MyClass o) {
 Console.Write(o.i + " ");
 }

 // Another Action method.
 // It negates the value it is passed.

654 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 static void Neg(MyClass o) {
 o.i = -o.i;
 }

 static void Main() {
 MyClass[] nums = new MyClass[5];

 nums[0] = new MyClass(5);
 nums[1] = new MyClass(2);
 nums[2] = new MyClass(3);
 nums[3] = new MyClass(4);
 nums[4] = new MyClass(1);

 Console.Write("Contents of nums: ");

 // Use action to show the values.
 Array.ForEach(nums, ActionDemo.Show);

 Console.WriteLine();

 // Use action to negate the values.
 Array.ForEach(nums, ActionDemo.Neg);

 Console.Write("Contents of nums negated: ");

 // Use action to show the values again.
 Array.ForEach(nums, ActionDemo.Show);

 Console.WriteLine();
 }
}

The output is shown here:

Contents of nums: 5 2 3 4 1
Contents of nums negated: -5 -2 -3 -4 -1

BitConverter
In programming one often needs to convert a built-in data type into an array of bytes. For
example, some hardware device might require an integer value, but that value must be sent
one byte at a time. The reverse situation also frequently occurs. Sometimes data will be
received as an ordered sequence of bytes that needs to be converted into one of the built-in
types. For example, a device might output integers, sent as a stream of bytes. Whatever
your conversion needs, .NET provides the BitConverter class to meet them.

BitConverter is static class. It contains the methods shown in Table 21-13. It defines the
following field:

public static readonly bool IsLittleEndian

This field is true if the current environment stores a word with the least significant byte first
and the most significant byte last. This is called “little-endian” format. IsLittleEndian is
false if the current environment stores a word with the most significant byte first and the
least significant byte last. This is called “big-endian” format. Intel Pentium–based machines
use little-endian format.

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 655

Method Meaning

public static long
 DoubleToInt64Bits(double v)

Converts v into a long integer and returns the
result.

public static byte[] GetBytes(bool v) Converts v into a 1-byte array and returns the
result.

public static byte[] GetBytes(char v) Converts v into a 2-byte array and returns the
result.

public static byte[] GetBytes(double v) Converts v into an 8-byte array and returns the
result.

public static byte[] GetBytes(float v) Converts v into a 4-byte array and returns the
result.

public static byte[] GetBytes(int v) Converts v into a 4-byte array and returns the
result.

public static byte[] GetBytes(long v) Converts v into an 8-byte array and returns the
result.

public static byte[] GetBytes(short v) Converts v into a 2-byte array and returns the
result.

public static byte[] GetBytes(uint v) Converts v into a 4-byte array and returns the
result.

public static byte[] GetBytes(ulong v) Converts v into an 8-byte array and returns the
result.

public static byte[] GetBytes(ushort v) Converts v into a 2-byte array and returns the
result.

public static double
 Int64BitsToDouble(long v)

Converts v into a double value and returns the
result.

public static bool ToBoolean(byte[] a, int idx) Converts the byte at a[idx] into its bool equivalent
and returns the result. A non-zero value is
converted to true; zero is converted to false.

public static char ToChar(byte[] a, int start) Converts two bytes starting at a[start] into its
char equivalent and returns the result.

public static double ToDouble(byte[] a,
 int start)

Converts eight bytes starting at a[start] into its
double equivalent and returns the result.

public static short ToInt16(byte[] a, int start) Converts two bytes starting at a[start] into its
short equivalent and returns the result.

public static int ToInt32(byte[] a, int start) Converts four bytes starting at a[start] into its
int equivalent and returns the result.

public static long ToInt64(byte[] a, int start) Converts eight bytes starting at a[start] into its
long equivalent and returns the result.

public static float ToSingle(byte[] a, int start) Converts four bytes starting at a[start] into its
float equivalent and returns the result.

TABLE 21-13 Methods Defi ned by BitConverter

656 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Generating Random Numbers with Random
To generate a sequence of pseudorandom numbers, you will use the Random class.
Sequences of random numbers are useful in a variety of situations, including simulations
and modeling. The starting point of the sequence is determined by a seed value, which can
be automatically provided by Random or explicitly specified.

Random defines these two constructors:

public Random()
public Random(int seed)

The first version creates a Random object that uses the system time to compute the seed
value. The second uses the value of seed as the seed value.

Random defines the methods shown in Table 21-14.
Here is a program that demonstrates Random by creating a pair of computerized dice:

// An automated pair of dice.

using System;

class RandDice {
 static void Main() {
 Random ran = new Random();

 Console.Write(ran.Next(1, 7) + " ");
 Console.WriteLine(ran.Next(1, 7));
 }
}

public static string ToString(byte[] a) Converts the bytes in a into a string. The string
contains the hexadecimal values associated
with the bytes, separated by hyphens.

public static string ToString(byte[] a, int start) Converts the bytes in a, beginning at
a[start], into a string. The string contains the
hexadecimal values associated with the bytes,
separated by hyphens.

public static string ToString(byte[] a, int start,
 int count)

Converts the bytes in a, beginning at a[start] and
running for count bytes, into a string. The string
contains the hexadecimal values associated with
the bytes, separated by hyphens.

public static ushort ToUInt16(byte[] a, int start) Converts two bytes starting at a[start] into its
ushort equivalent and returns the result.

public static uint ToUInt32(byte[] a, int start) Converts four bytes starting at a[start] into its
uint equivalent and returns the result.

public static ulong ToUInt64(byte[] a, int start) Converts eight bytes starting at a[start] into its
ulong equivalent and returns the result.

TABLE 21-13 Methods Defi ned by BitConverter (continued)

Method Meaning

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 657

Here are three sample runs:

5 2
4 4
1 6

The program works by first creating a Random object. Then it requests the two random
values, each between 1 and 6, inclusive.

Memory Management and the GC Class
The GC class encapsulates the garbage-collection facility. The methods defined by GC are
shown in Table 21-15. It defines the read-only property shown here:

public static int MaxGeneration { get; }

MaxGeneration contains the maximum generation number available to the system. A
generation number indicates the age of an allocation. Newer allocations have a lower
number than older ones. Generation numbers help improve the efficiency of the garbage
collector.

For most applications, you will not use any of the capabilities of GC. However, in
specialized cases, they can be very useful. For example, you might want to use Collect() to
force garbage collection to occur at a time of your choosing. Normally, garbage collection
occurs at times unspecified by your program. Since garbage collection takes time, you might
not want it to occur during some time-critical task, or you might want to take advantage of
idle time to perform garbage collection and other types of “housekeeping” chores.

Method Meaning

public virtual int Next() Returns the next random integer, which will be
between 0 and Int32.MaxValue–1, inclusive.

public virtual int Next(int upperBound) Returns the next random integer that is between 0
and upperBound–1, inclusive.

public virtual int Next(int lowerBound,
 int upperBound)

Returns the next random integer that is between
lowerBound and upperBound–1, inclusive.

public virtual void NextBytes(byte[] buf) Fills buf with a sequence of random integers.
Each byte in the array will be between 0 and
Byte.MaxValue–1, inclusive.

public virtual double NextDouble() Returns the next random value from the sequence
represented as a floating-point number that is greater
than or equal to 0.0 and less than 1.0.

protected virtual double Sample() Returns the next random value from the sequence
represented as a floating-point number that is greater
than or equal to 0.0 and less than 1.0. To create
a skewed or specialized distribution, override this
method in a derived class.

TABLE 21-14 Methods Defi ned by Random

658 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

There are two methods that are especially important if you have unmanaged code in
your project: AddMemoryPressure() and RemoveMemoryPressure(). These are used to
indicate that a large amount of unmanaged memory has been allocated or released by the
program. They are important because the memory management system has no oversight
on unmanaged memory. If a program allocates a large amount of unmanaged memory, then
performance might be affected because the system has no way of knowing that free memory
has been reduced. By calling AddMemoryPressure() when allocating large amounts of
unmanaged memory, you let the CLR know that memory has been reduced. By calling
RemoveMemoryPressure(), you let the CLR know the memory has been freed. Remember:
RemoveMemoryPressure() must be called only to indicate that memory reported by a call
to AddMemoryPressure() has been released.

Method Meaning

public static void
 AddMemoryPressure(long size)

Indicates that size number of bytes of unmanaged
memory have been allocated.

public static void Collect() Initiates garbage collection.

public static void Collect(int maxGen) Initiates garbage collection for memory with generation
numbers of 0 through maxGen.

public static void Collect(int maxGen,
 GCCollectionMode GCMode)

Initiates garbage collection for memory with generation
numbers of 0 through maxGen as specified by GCMode.

public static int CollectionCount(int gen) Returns the number of garbage collections that have
taken place for memory having the generation number
specified by gen.

public static int GetGeneration(object o) Returns the generation number for the memory referred
to by o.

public static int
 GetGeneration(WeakReference o)

Returns the generation number for the memory
referred to by the weak reference specified by o. A
weak reference does not prevent the object from being
garbage-collected.

public static long
 GetTotalMemory(bool collect)

Returns the total number of bytes currently allocated. If
collect is true, garbage collection occurs first.

public static void KeepAlive(object o) Creates a reference to o, thus preventing it from being
garbage collected. This reference ends when KeepAlive()
executes.

public static void
 RemoveMemoryPressure(long size)

Indicates that size number of bytes of unmanaged
memory have been released.

public static void
 ReRegisterForFinalize(object o)

Causes the finalizer (i.e., the destructor) for o to be called.
This method undoes the effects of SuppressFinalize().

public static void
 SuppressFinalize(object o)

Prevents the finalizer (i.e., the destructor) for o from
being called.

public static void
 WaitForPendingFinalizers()

Halts execution of the invoking thread until all pending
finalizers (i.e., destructors) have been called.

TABLE 21-15 Methods Defi ned by GC

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 659

Object
Object is the class that underlies the C# object type. The members of Object were discussed
in Chapter 11, but because of its central role in C#, its methods are repeated in Table 21-16
for your convenience. Object defines one constructor, which is shown here:

public Object()

It constructs an empty object.

The IComparable and IComparable<T> Interfaces
Many classes will need to implement either the IComparable or IComparable<T> interface
because it enables one object to be compared to another by various methods defined by the
.NET Framework. Chapter 18 introduced the IComparable and IComparable<T> interfaces,
where they were used to enable two objects of a generic type parameter to be compared. They
were also mentioned in the discussion of Array, earlier in this chapter. However, because of
their importance and applicability to many situations, they are formally examined here.

IComparable is especially easy to implement because it consists of just this one method:

int CompareTo(object v)

This method compares the invoking object against the value in v. It returns greater than zero
if the invoking object is greater than v, zero if the two objects are equal, and less than zero if
the invoking object is less than v.

Method Purpose

public virtual bool Equals(object ob) Returns true if the invoking object is the same
as the one referred to by object. Returns false
otherwise.

public static bool Equals(object ob1, object ob2) Returns true if ob1 is the same as ob2. Returns
false otherwise.

protected Finalize() Performs shutdown actions prior to garbage
collection. In C#, Finalize() is accessed through
a destructor.

public virtual int GetHashCode() Returns the hash code associated with the
invoking object.

public Type GetType() Obtains the type of an object at runtime.

protected object MemberwiseClone() Makes a “shallow copy” of the object. This
is one in which the members are copied, but
objects referred to by members are not.

public static bool ReferenceEquals(object ob1,
 object ob2)

Returns true if ob1 and ob2 refer to the same
object. Returns false otherwise.

public virtual string ToString() Returns a string that describes the object.

TABLE 21-16 Methods Defi ned by Object

660 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

The generic version of IComparable is declared like this:

public interface IComparable<T>

In this version, the type of data being compared is passed as a type argument to T. This
causes the declaration of CompareTo() to be changed, as shown next.

int CompareTo(T obj)

Here, the type of data that CompareTo() operates on can be explicitly specified. This
makes IComparable<T> type-safe. For this reason, IComparable<T> is now preferable
to IComparable.

The IEquatable<T> Interface
IEquatable<T>is implemented by those classes that need to define how two objects should
be compared for equality. It defines only one method, Equals(), which is shown here:

bool Equals(T obj)

The method returns true if obj is equal to the invoking object and false otherwise.
IEquatable<T> is implemented by several classes and structures in the .NET Framework,

including the numeric structures, Char, Int32, Boolean, and String.

The IConvertible Interface
The IConvertible interface is implemented by all of the value-type structures, string, and
DateTime. It specifies various type conversions. Normally, classes that you create will not
need to implement this interface.

The ICloneable Interface
By implementing the ICloneable interface, you enable a copy of an object to be made.
ICloneable defines only one method, Clone(), which is shown here:

object Clone()

This method makes a copy of the invoking object. How you implement Clone()
determines how the copy is made. In general, there are two types of copies: deep and
shallow. When a deep copy is made, the copy and original are completely independent.
Thus, if the original object contained a reference to another object O, then a copy of O will
also be made. In a shallow copy, members are copied, but objects referred to by members
are not. If an object refers to some other object O, then after a shallow copy, both the copy
and the original will refer to the same O, and any changes to O affect both the copy and the
original. Usually, you will implement Clone() so that it performs a deep copy. Shallow
copies can be made by using MemberwiseClone(), which is defined by Object.

Here is an example that illustrates ICloneable. It creates a class called Test that contains
a reference to an object of a class called X. Test uses Clone() to create a deep copy.

// Demonstrate ICloneable.

using System;

class X {

PART II

C h a p t e r 2 1 : E x p l o r i n g t h e S y s t e m N a m e s p a c e 661

 public int a;

 public X(int x) { a = x; }
}

class Test : ICloneable {
 public X o;
 public int b;

 public Test(int x, int y) {
 o = new X(x);
 b = y;
 }

 public void Show(string name) {
 Console.Write(name + " values are ");
 Console.WriteLine("o.a: {0}, b: {1}", o.a, b);
 }

 // Make a deep copy of the invoking object.
 public object Clone() {
 Test temp = new Test(o.a, b);
 return temp;
 }

}

class CloneDemo {
 static void Main() {
 Test ob1 = new Test(10, 20);

 ob1.Show("ob1");

 Console.WriteLine("Make ob2 a clone of ob1.");
 Test ob2 = (Test) ob1.Clone();

 ob2.Show("ob2");

 Console.WriteLine("Changing ob1.o.a to 99 and ob1.b to 88.");
 ob1.o.a = 99;
 ob1.b = 88;

 ob1.Show("ob1");
 ob2.Show("ob2");
 }
}

The output is shown here:

ob1 values are o.a: 10, b: 20
Make ob2 a clone of ob1.
ob2 values are o.a: 10, b: 20
Changing ob1.o.a to 99 and ob1.b to 88.
ob1 values are o.a: 99, b: 88
ob2 values are o.a: 10, b: 20

662 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

As the output shows, ob2 is a clone of ob1, but ob1 and ob2 are completely separate objects.
Changing one does not affect the other. This is accomplished by constructing a new Test
object, which allocates a new X object for the copy. The new X instance is given the same
value as the X object in the original.

To implement a shallow copy, simply have Clone() call MemberwiseClone() defined
by Object. For example, try changing Clone() in the preceding program as shown here:

// Make a shallow copy of the invoking object.
public object Clone() {
 Test temp = (Test) MemberwiseClone();
 return temp;
}

After making this change, the output of the program will look like this:

ob1 values are o.a: 10, b: 20
Make ob2 a clone of ob1.
ob2 values are o.a: 10, b: 20
Changing ob1.o.a to 99 and ob1.b to 88.
ob1 values are o.a: 99, b: 88
ob2 values are o.a: 99, b: 20

Notice that o in ob1 and o in ob2 both refer to the same X object. Changing one affects both.
Of course, the int field b in each is still separate because the value types are not accessed via
references.

IFormatProvider and IFormattable
The IFormatProvider interface defines one method called GetFormat(), which returns an
object that controls the formatting of data into a human-readable string. The general form of
GetFormat() is shown here:

object GetFormat(Type fmt)

Here, fmt specifies the format object to obtain.
The IFormattable interface supports the formatting of human-readable output.

IFormattable defines this method:

string ToString(string fmt, IFormatProvider fmtpvdr)

Here, fmt specifies formatting instructions and fmtpvdr specifies the format provider.

NOTENOTE Formatting is described in detail in Chapter 22.

22
Strings and Formatting

This chapter examines the String class, which underlies C#’s string type. As all
programmers know, string handling is a part of almost any program. For this reason,
the String class defines an extensive set of methods, properties, and fields that give

you detailed control over the construction and manipulation of strings. Closely related to
string handling is the formatting of data into its human-readable form. Using the formatting
subsystem, you can format the C# numeric types, date and time, and enumerations.

Strings in C#
An overview of C#’s string handling was presented in Chapter 7, and that discussion is not
repeated here. However, it is worthwhile to review how strings are implemented in C# before
examining the String class.

In all computer languages, a string is a sequence of characters, but precisely how such a
sequence is implemented varies from language to language. In some computer languages,
such as C++, strings are arrays of characters, but this is not the case with C#. Instead, C#
strings are objects of the built-in string data type. Thus, string is a reference type. Moreover,
string is C#’s name for System.String, the standard .NET string type. Thus, a C# string has
access to all of the methods, properties, fields, and operators defined by String.

Once a string has been created, the character sequence that comprises a string cannot be
altered. This restriction allows C# to implement strings more efficiently. Though this restriction
probably sounds like a serious drawback, it isn’t. When you need a string that is a variation
on one that already exists, simply create a new string that contains the desired changes,
and discard the original string if it is no longer needed. Because unused string objects are
automatically garbage-collected, you don’t need to worry about what happens to the discarded
strings. It must be made clear, however, that string reference variables may, of course, change
the object to which they refer. It is just that the character sequence of a specific string object
cannot be changed after it is created.

To create a string that can be changed, C# offers a class called StringBuilder, which is in
the System.Text namespace. For most purposes, however, you will want to use string, not
StringBuilder.

663

CHAPTER

664 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

The String Class
String is defined in the System namespace. It implements the IComparable,
IComparable<string>, ICloneable, IConvertible, IEnumerable, IEnumerable<char>,
and IEquatable<string> interfaces. String is a sealed class, which means that it cannot be
inherited. String provides string-handling functionality for C#. It underlies C#’s built-in
string type and is part of the .NET Framework. The next few sections examine String
in detail.

The String Constructors
The String class defines several constructors that allow you to construct a string in a variety
of ways. To create a string from a character array, use one of these constructors:

public String(char[] chrs)
public String(char[] chrs, int start, int count)

The first form constructs a string that contains the characters in chrs. The second form uses
count characters from chrs, beginning at the index specified by start.

You can create a string that contains a specific character repeated a number of times
using this constructor:

public String(char ch, int count)

Here, ch specifies the character that will be repeated count times.
You can construct a string given a pointer to a character array using one of these

constructors:

public String(char* chrs)
public String(char* chrs, int start, int count)

The first form constructs a string that contains the characters pointed to by chrs. It is assumed
that chrs points to a null-terminated array, which is used in its entirety. The second form uses
count characters from the array pointed to by chrs, beginning at the index specified by start.
Because they use pointers, these constructors can be used only in unsafe code.

You can construct a string given a pointer to an array of bytes using one of these
constructors:

public String(sbyte* chrs)
public String(sbyte* chrs, int start, int count)
public String(sbyte* chrs, int start, int count, Encoding en)

The first form constructs a string that contains the bytes pointed to by chrs. It is assumed
that chrs points to a null-terminated array, which is used in its entirety. The second form
uses count characters from the array pointed to by chrs, beginning at the index specified by
start. The third form lets you specify how the bytes are encoded. The default encoding is
ASCIIEncoding. The Encoding class is in the System.Text namespace. Because they use
pointers, these constructors can be used only in unsafe code.

PART II

C h a p t e r 2 2 : S t r i n g s a n d F o r m a t t i n g 665

A string literal automatically creates a string object. For this reason, a string object is
often initialized by assigning it a string literal, as shown here:

string str = "a new string";

The String Field, Indexer, and Property
The String class defines one field, shown here:

public static readonly string Empty

Empty specifies an empty string, which is a string that contains no characters. This differs
from a null String reference, which simply refers to no object.

There is one read-only indexer defined for String, which is shown here:

public char this[int idx] { get; }

This indexer allows you to obtain the character at a specified index. Like arrays, the
indexing for strings begins at zero. Since String objects are immutable, it makes sense that
String supports a read-only indexer.

There is one read-only property:

public int Length { get; }

Length returns the number of characters in the string.

The String Operators
The String class overloads two operators: = = and !=. To test two strings for equality, use the
= = operator. Normally, when the = = operator is applied to object references, it determines
if both references refer to the same object. This differs for objects of type String. When the
= = is applied to two String references, the contents of the strings, themselves, are compared
for equality. The same is true for the != operator: When comparing String objects, the contents
of the strings are compared. However, the other relational operators, such as < or >=, compare
the references, just like they do for other types of objects. To determine if one string is greater
than or less than another, use the Compare() method defined by String.

The String Methods
The String class defines a large number of methods, and many of the methods have two
or more overloaded forms. For this reason, it is neither practical nor useful to list them all.
Instead, several of the more commonly used methods will be presented, along with examples
that illustrate them.

Comparing Strings
Perhaps the most frequently used string-handling operation is the comparison of one string
to another. Because of its importance, String provides a wide array of comparison methods.
These are shown in Table 22-1. Be aware that string comparisons are sensitive to cultural
differences. Comparison methods that do not pass cultural information use the currently
selected cultural settings.

666 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Method Description

public static int
 Compare(string str1, string str2)

Compares the string referred to by str1 with str2.
Returns greater than zero if str1 is greater than
str2, less than zero if str1 is less than str2, and
zero if str1 and str2 are equal.

public static int
 Compare(string str1, string str2,
 bool ignoreCase)

Compares the string referred to by str1 with str2.
Returns greater than zero if str1 is greater than
str2, less than zero if str1 is less than str2, and
zero if str1 and str2 are equal. If ignoreCase is
true, the comparison ignores case differences.
Otherwise, case differences matter.

public static int
 Compare(string str1, string str2,
 StringComparison how)

Compares the string referred to by str1 with str2.
Returns greater than zero if str1 is greater than
str2, less than zero if str1 is less than str2, and
zero if str1 and str2 are equal. How the comparison
is performed is specified by how.

public static int
 Compare(string str1, string str2,
 bool ignoreCase,
 CultureInfo ci)

Compares the string referred to by str1 with str2
using the cultural information passed in ci. Returns
greater than zero if str1 is greater than str2, less
than zero if str1 is less than str2, and zero if
str1 and str2 are equal. If ignoreCase is true, the
comparison ignores case differences. Otherwise,
case differences matter. The CultureInfo class is
defined in the System.Globalization namespace.

public static int
 Compare(string str1, int start1,
 string str2, int start2,
 int count)

Compares portions of the strings referred to by str1
and str2. The comparison begins at str1[start1] and
str2[start2] and runs for count characters. Returns
greater than zero if str1 is greater than str2, less
than zero if str1 is less than str2, and zero if str1
and str2 are equal.

public static int
 Compare(string str1, int start1,
 string str2, int start2,
 int count,
 bool ignoreCase)

Compares portions of the strings referred to by str1
and str2. The comparison begins at str1[start1] and
str2[start2] and runs for count characters. Returns
greater than zero if str1 is greater than str2, less
than zero if str1 is less than str2, and zero if str1 and
str2 are equal. If ignoreCase is true, the comparison
ignores case differences. Otherwise, case differences
matter.

public static int
 Compare(string str1, int start1,
 string str2, int start2,
 int count,
 StringComparison how)

Compares portions of the strings referred to by str1
and str2. The comparison begins at str1[start1]
and str2[start2] and runs for count characters.
Returns greater than zero if str1 is greater than
str2, less than zero if str1 is less than str2, and
zero if str1 and str2 are equal. How the comparison
is performed is specified by how.

TABLE 22-1 The String Comparison Methods

PART II

C h a p t e r 2 2 : S t r i n g s a n d F o r m a t t i n g 667

Of the comparison methods, the Compare() method is the most versatile. It can
compare two strings in their entirety or in parts. It can use case-sensitive comparisons
or ignore case. In general, string comparisons use dictionary order to determine whether
one string is greater than, equal to, or less than another. You can also specify cultural
information that governs the comparison. The following program demonstrates several
versions of Compare():

// Compare strings.
using System;

class CompareDemo {
 static void Main() {
 string str1 = "one";
 string str2 = "one";

TABLE 22-1 The String Comparison Methods (continued)

public static int
 Compare(string str1, int start1,
 string str2, int start2,
 int count,
 bool ignoreCase,
 CultureInfo ci)

Compares portions of the strings referred to by
str1 and str2 using the cultural information passed
in ci. The comparison begins at str1[start1] and
str2[start2] and runs for count characters. Returns
greater than zero if str1 is greater than str2, less
than zero if str1 is less than str2, and zero if
str1 and str2 are equal. If ignoreCase is true, the
comparison ignores case differences. Otherwise,
case differences matter. The CultureInfo class is
defined in the System.Globalization namespace.

public static int
 CompareOrdinal(string str1, string str2)

Compares the string referred to by str1 with str2
independently of culture, region, or language.
Returns greater than zero if str1 is greater than
str2, less than zero if str1 is less than str2, and
zero if str1 and str2 are equal.

public static int
 CompareOrdinal(string str1, int start1,
 string str2, int start2,
 int count)

Compares portions of the strings referred to by
str1 and str2 independently of culture, region, or
language. The comparison begins at str1[start1]
and str2[start2] and runs for count characters.
Returns greater than zero if str1 is greater than
str2, less than zero if str1 is less than str2, and
zero if str1 and str2 are equal.

public int CompareTo(object str) Compares the invoking string with str. Returns
greater than zero if the invoking string is greater
than str, less than zero if the invoking string is less
than str, and zero if the two are equal.

public int CompareTo(string str) Compares the invoking string with str. Returns
greater than zero if the invoking string is greater
than str, less than zero if the invoking string is less
than str, and zero if the two are equal.

Method Description

668 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 string str3 = "ONE";
 string str4 = "two";
 string str5 = "one, too";

 if(String.Compare(str1, str2) == 0)
 Console.WriteLine(str1 + " and " + str2 +
 " are equal.");
 else
 Console.WriteLine(str1 + " and " + str2 +
 " are not equal.");

 if(String.Compare(str1, str3) == 0)
 Console.WriteLine(str1 + " and " + str3 +
 " are equal.");
 else
 Console.WriteLine(str1 + " and " + str3 +
 " are not equal.");

 if(String.Compare(str1, str3, true) == 0)
 Console.WriteLine(str1 + " and " + str3 +
 " are equal ignoring case.");
 else
 Console.WriteLine(str1 + " and " + str3 +
 " are not equal ignoring case.");

 if(String.Compare(str1, str5) == 0)
 Console.WriteLine(str1 + " and " + str5 +
 " are equal.");
 else
 Console.WriteLine(str1 + " and " + str5 +
 " are not equal.");

 if(String.Compare(str1, 0, str5, 0, 3) == 0)
 Console.WriteLine("First part of " + str1 + " and " +
 str5 + " are equal.");
 else
 Console.WriteLine("First part of " + str1 + " and " +
 str5 + " are not equal.");

 int result = String.Compare(str1, str4);
 if(result < 0)
 Console.WriteLine(str1 + " is less than " + str4);
 else if(result > 0)
 Console.WriteLine(str1 + " is greater than " + str4);
 else
 Console.WriteLine(str1 + " equals " + str4);
 }
}

PART II

C h a p t e r 2 2 : S t r i n g s a n d F o r m a t t i n g 669

The output is shown here:

one and one are equal.
one and ONE are not equal.
one and ONE are equal ignoring case.
one and one, too are not equal.
First part of one and one, too are equal.
one is less than two

Using The StringComparison Enumeration
In Table 22-1, notice the two Compare() methods that take a parameter of type
StringComparison. These versions are shown here:

public static int Compare(string str1, string str2, StringComparison how)

public static int Compare(string str1, int start1, string str2, int start2,
 int count, StringComparison how)

For each version, the how parameter specifies how the comparison of str1 with str2 takes
place. StringComparison is an enumeration that defines the values shown in Table 22-2.
Using these values, it is possible to craft a comparison that meets the specific needs of your
application. Thus, the addition of the StringComparison parameter expands the capabilities
of Compare().

One particularly good use of the StringComparison form of Compare() is to compare a
string against an invariant file name or password. For example, imagine a situation in which
the user must enter the password we~23&blx$. This password is the same no matter what
cultural settings are in effect. Thus, you want to compare the string entered by the user to
the password without cultural differences affecting the comparison. One way to do this is

Value Description

CurrentCulture Comparisons are performed using the currently active
cultural settings.

CurrentCultureIgnoreCase Case-insensitive comparisons are performed using the
currently active cultural settings.

InvariantCulture Comparisons are performed using an invariant (that is,
universal and unchanging) culture.

InvariantCultureIngoreCase Case-insensitive comparisons are performed using an
invariant (that is, universal and unchanging) culture.

Ordinal Comparisons are performed using the ordinal values of the
characters in the string. Thus, dictionary-order may not result
and cultural conventions are ignored.

OrdinalIgnoreCase Case-insensitive comparisons are performed using the ordinal
values of the characters in the string. Thus, dictionary-order
may not result and cultural conventions are ignored.

TABLE 22-2 The StringComparison Enumeration Values

670 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

to specify StringComparison.InvariantCulture for the how parameter in which case all
cultural differences are avoided. This approach is demonstrated by the following program:

// Compare strings using StringComparison enumeration.

using System;

class StrCompDemo {
 static void Main() {
 // Note: Never embed a password in real code.
 // This is for demonstration purposes only.
 string pswd = "we~23&blx$";

 string str;

 Console.WriteLine("Enter password: ");
 str = Console.ReadLine();

 // Compare using invariant culture.
 if(String.Compare(pswd, str,
 StringComparison.InvariantCulture) == 0)
 Console.WriteLine("Password accepted.");
 else
 Console.WriteLine("Password invalid.");
 }
}

Concatenating Strings
There are two ways to concatenate (join together) two or more strings. First, you can use
the + operator, as demonstrated in Chapter 7. Second, you can use one of the various
concatenation methods defined by String. Although using + is the easiest approach in
many cases, the concatenation methods give you an alternative.

The method that performs concatenation is called Concat(). One of its most commonly
used forms is shown here:

public static string Concat(string str1, string str2)

This method returns a string that contains str2 concatenated to the end of str1. Another form
of Concat(), shown here, concatenates three strings:

public static string Concat(string str1, string str2, string str3)

In this version, a string that contains the concatenation of str1, str2, and str3 is returned.
There is also a form that concatenates four strings:

public static string Concat(string str1, string str2, string str3, string str4)

This version returns the concatenation of all four strings.
The version of Concat() shown next concatenates an arbitrary number of strings:

public static string Concat(params string[] strs)

Here, strs refers to a variable number of arguments that are concatenated, and the result is
returned. Because this version of Concat() can be used to concatenate any number of strings,
including two, three, or four strings, you might wonder why the other forms just shown

PART II

C h a p t e r 2 2 : S t r i n g s a n d F o r m a t t i n g 671

exist. The reason is efficiency; passing up to four arguments is more efficient than using a
variable-length argument list.

The following program demonstrates the variable-length argument version of Concat():

// Demonstrate Concat().

using System;

class ConcatDemo {
 static void Main() {

 string result = String.Concat("This ", "is ", "a ",
 "test ", "of ", "the ",
 "String ", "class.");

 Console.WriteLine("result: " + result);

 }
}

The output is shown here:

result: This is a test of the String class.

There are also versions of the Concat() method that take object references, rather than
string references. These obtain the string representation of the objects with which they
are called and return a string containing the concatenation of those strings. (The string
representations are obtained by calling ToString() on the objects.) These versions of
Concat() are shown here:

public static string Concat(object v1)
public static string Concat(object v1, object v2)
public static string Concat(object v1, object v2, object v3)
public static string Concat(object v1, object v2, object v3, object v4)
public static string Concat(params object[] v)

The first method simply returns the string equivalent of v1. The other methods return a
string that contains the concatenation of their arguments. The object forms of Concat() are
very convenient because they let you avoid having to manually obtain string representations
prior to concatenation. To see how useful these methods can be, consider the following
program:

// Demonstrate the object form of Concat().

using System;

class MyClass {
 public static int Count = 0;

 public MyClass() { Count++; }
}

class ConcatDemo {
 static void Main() {

672 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 string result = String.Concat("The value is " + 19);
 Console.WriteLine("result: " + result);

 result = String.Concat("hello ", 88, " ", 20.0, " ",
 false, " ", 23.45M);
 Console.WriteLine("result: " + result);

 MyClass mc = new MyClass();

 result = String.Concat(mc, " current count is ",
 MyClass.Count);
 Console.WriteLine("result: " + result);
 }
}

The output is shown here:

result: The value is 19
result: hello 88 20 False 23.45
result: MyClass current count is 1

In this example, Concat() concatenates the string representations of various types of
data. For each argument, the ToString() method associated with that argument is called to
obtain a string representation. Thus, in this call to Concat()

string result = String.Concat("The value is " + 19);

Int32.ToString() is invoked to obtain the string representation of the integer value 19.
Concat() then concatenates the strings and returns the result.

Also notice how an object of the user-defined class MyClass can be used in this call to
Concat():

result = String.Concat(mc, " current count is ",
 MyClass.Count);

In this case, the string representation of mc, which is of type MyClass, is returned. By default,
this is simply its class name. However, if you override the ToString() method, then MyClass
can return a different string. For example, try adding this version of ToString() to MyClass
in the preceding program:

public override string ToString() {
 return "An object of type MyClass";
}

When this version is used, the last line in the output will be

result: An object of type MyClass current count is 1

Searching a String
String offers many methods that allow you to search a string. For example, you can search
for either a substring or a character. You can also search for the first or last occurrence of
either.

PART II

C h a p t e r 2 2 : S t r i n g s a n d F o r m a t t i n g 673

To search for the first occurrence of a character or substring, use the IndexOf() method.
Here are two of its forms:

public int IndexOf(char ch)
public int IndexOf(String str)

The first form returns the index of the first occurrence of the character ch within the invoking
string. The second form returns the first occurrence of the string str. Both return –1 if the
item is not found.

To search for the last occurrence of a character or substring, use the LastIndexOf()
method. Here are two of its forms:

public int LastIndexOf(char ch)
public int LastIndexOf(string str)

The first form returns the index of the last occurrence of the character ch within the invoking
string. The second form returns the index of the last occurrence of the string str. Both return
–1 if the item is not found.

String offers two interesting supplemental search methods: IndexOfAny() and
LastIndexOfAny(). These search for the first or last character that matches any of a set of
characters. Here are their simplest forms:

public int IndexOfAny(char[] a)
public int LastIndexOfAny(char[] a)

IndexOfAny() returns the index of the first occurrence of any character in a that is found
within the invoking string. LastIndexOfAny() returns the index of the last occurrence of any
character in a that is found within the invoking string. Both return –1 if no match is found.

When working with strings, it is often useful to know if a string begins with or ends
with a given substring. To accomplish these tasks, use the StartsWith() and EndsWith()
methods. Here are their two simplest forms:

public bool StartsWith(string str)
public bool EndsWith(string str)

StartsWith() returns true if the invoking string begins with the string passed in str.
EndsWith() returns true if the invoking string ends with the string passed in str. Both
return false on failure.

Here is a program that demonstrates several of the string search methods:

// Search strings.

using System;

class StringSearchDemo {
 static void Main() {
 string str = "C# has powerful string handling.";
 int idx;

 Console.WriteLine("str: " + str);

 idx = str.IndexOf('h');
 Console.WriteLine("Index of first 'h': " + idx);

674 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 idx = str.LastIndexOf('h');
 Console.WriteLine("Index of last 'h': " + idx);

 idx = str.IndexOf("ing");
 Console.WriteLine("Index of first \"ing\": " + idx);

 idx = str.LastIndexOf("ing");
 Console.WriteLine("Index of last \"ing\": " + idx);

 char[] chrs = { 'a', 'b', 'c' };
 idx = str.IndexOfAny(chrs);
 Console.WriteLine("Index of first 'a', 'b', or 'c': " + idx);

 if(str.StartsWith("C# has"))
 Console.WriteLine("str begins with \"C# has\"");

 if(str.EndsWith("ling."))
 Console.WriteLine("str ends with \"ling.\"");
 }
}

The output from the program is shown here:

str: C# has powerful string handling.
Index of first 'h': 3
Index of last 'h': 23
Index of first "ing": 19
Index of last "ing": 28
Index of first 'a', 'b', or 'c': 4
str begins with "C# has"
str ends with "ling."

A string search method that you will find useful in many circumstances is Contains().
Its general form is shown here:

public bool Contains(string str)

It returns true if the invoking string contains the string specified by str and false otherwise.
This method is especially useful when all you need to know is if a specific substring exists
within another string. Here is an example that demonstrates its use:

// Demonstrate Contains().

using System;

class ContainsDemo {
 static void Main() {
 string str = "C# combines power with performance.";

 if(str.Contains("power"))
 Console.WriteLine("The sequence power was found.");

 if(str.Contains("pow"))
 Console.WriteLine("The sequence pow was found.");

PART II

C h a p t e r 2 2 : S t r i n g s a n d F o r m a t t i n g 675

 if(!str.Contains("powerful"))
 Console.WriteLine("The sequence powerful was not found.");
 }
}

The output is shown here:

The sequence power was found.
The sequence pow was found.
The sequence powerful was not found.

As the output shows, Contains() searches for a matching sequence, not for whole words.
Thus, both “pow” and “power” are found. However, since there is no sequence that matches
“powerful”, it is (correctly) not found.

Several of the search methods have additional forms that allow you to begin a search
at a specified index or to specify a range to search within. All versions of the String search
methods are shown in Table 22-3.

Method Description

public bool Contains(string str) Returns true if the invoking string contains the string
specified by str. False is returned if str is not found.

public bool EndsWith(string str) Returns true if the invoking string ends with the
string passed in str. Otherwise, false is returned.

public bool
 EndsWith(string str,
 StringComparison how)

Returns true if the invoking string ends with the
string passed in str. Otherwise, false is returned.
How the search is performed is specified by how.

public bool
 EndsWith(string str,
 bool ignoreCase,
 CultureInfo ci)

Returns true if the invoking string ends with the
string passed in str. Otherwise, false is returned.
If ignoreCase is true, the search ignores case
differences. Otherwise, case differences matter. The
search is conducted using the cultural information
passed in ci.

public int IndexOf(char ch) Returns the index of the first occurrence of ch within
the invoking string. Returns –1 if ch is not found.

public int IndexOf(string str) Returns the index of the first occurrence of str within
the invoking string. Returns –1 if str is not found.

public int IndexOf(char ch, int start) Returns the index of the first occurrence of ch within
the invoking string. Searching begins at the index
specified by start. Returns –1 if ch is not found.

public int IndexOf(string str, int start) Returns the index of the first occurrence of str within
the invoking string. Searching begins at the index
specified by start. Returns –1 if str is not found.

TABLE 22-3 The Search Methods Offered by String

676 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

public int
 IndexOf(char ch, int start, int count)

Returns the index of the first occurrence of ch within
the invoking string. Searching begins at the index
specified by start and runs for count elements.
Returns –1 if ch is not found.

public int
 IndexOf(string str, int start, int count)

Returns the index of the first occurrence of str within
the invoking string. Searching begins at the index
specified by start and runs for count elements.
Returns –1 if str is not found.

public int IndexOf(string str,
 StringComparison how)

Returns the index of the first occurrence of str within
the invoking string. How the search is performed is
specified by how. Returns –1 if str is not found.

public int IndexOf(string str, int start,
 StringComparison how)

Returns the index of the first occurrence of str within
the invoking string. Searching begins at the index
specified by start. How the search is performed is
specified by how. Returns –1 if str is not found.

public int
 IndexOf(string str, int start, int count,
 StringComparison how)

Returns the index of the first occurrence of str within
the invoking string. Searching begins at the index
specified by start and runs for count elements.
How the search is performed is specified by how.
Returns –1 if ch is not found.

public int LastIndexOf(char ch) Returns the index of the last occurrence of ch within
the invoking string. Returns –1 if ch is not found.

public int LastIndexOf(string str) Returns the index of the last occurrence of str within
the invoking string. Returns –1 if str is not found.

public int LastIndexOf(char ch, int start) Returns the index of the last occurrence of ch within
a range of the invoking string. The search proceeds
in reverse order, beginning at the index specified by
start and stopping at 0. Returns –1 if the ch is not
found.

public int LastIndexOf(string str, int start) Returns the index of the last occurrence of str within
a range of the invoking string. The search proceeds
in reverse order, beginning at the index specified
by start and stopping at 0. Returns –1 if str is not
found.

public int
 LastIndexOf(char ch, int start,
 int count)

Returns the index of the last occurrence of ch within
the invoking string. The search proceeds in reverse
order, beginning at the index specified by start and
running for count elements. Returns –1 if ch is not
found.

TABLE 22-3 The Search Methods Offered by String (continued)

Method Description

PART II

C h a p t e r 2 2 : S t r i n g s a n d F o r m a t t i n g 677

public int
 LastIndexOf(string str, int start,
 int count)

Returns the index of the last occurrence of str within
the invoking string. The search proceeds in reverse
order, beginning at the index specified by start and
running for count elements. Returns –1 if str is not
found.

public int
 LastIndexOf(string str,
 StringComparison how)

Returns the index of the last occurrence of str within
the invoking string. How the search is performed is
specified by how. Returns –1 if str is not found.

public int
 LastIndexOf(string str, int start,
 StringComparison how)

Returns the index of the last occurrence of str within
a range of the invoking string. The search proceeds
in reverse order, beginning at the index specified
by start and stopping at 0. How the search is
performed is specified by how. Returns –1 if str is
not found.

public int
 LastIndexOf(string str, int start,
 int count,
 StringComparison how)

Returns the index of the last occurrence of str within
the invoking string. The search proceeds in reverse
order, beginning at the index specified by start
and running for count elements. How the search is
performed is specified by how. Returns –1 if str is
not found.

public bool StartsWith(string str) Returns true if the invoking string begins with the
string passed in str. Otherwise, false is returned.

public bool
 StartsWith(string str,
 StringComparison how)

Returns true if the invoking string begins with the
string passed in str. Otherwise, false is returned.
How the search is performed is specified by how.

public bool
 StartsWith(string str,
 bool ignoreCase,
 CultureInfo ci)

Returns true if the invoking string begins with the
string passed in str. Otherwise, false is returned.
If ignoreCase is true, the search ignores case
differences. Otherwise, case differences matter.
The search is conducted using the cultural
information passed in ci.

Method Description

TABLE 22-3 The Search Methods Offered by String (continued)

Splitting and Joining Strings
Two fundamental string-handling operations are split and join. A split decomposes a string
into its constituent parts. A join constructs a string from a set of parts. To split a string,
String defines Split(). To join a set of strings, String provides Join().

There are several versions of Split(). Two commonly used forms, which have been
available since C# 1.0, are shown here:

public string[] Split(params char[] seps)
public string[] Split(params char[] seps, int count)

678 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

The first form splits the invoking string into pieces and returns an array containing the
substrings. The characters that delimit each substring are passed in seps. If seps is null or
refers to an empty string, then whitespace is used as the separator. In the second form, no
more than count substrings will be returned.

The two forms of the Join() method are shown here:

public static string Join(string sep, string[] strs)
public static string Join(string sep, string[] strs, int start, int count)

The first form returns a string that contains the concatenation of the strings in strs. The
second form returns a string that contains the concatenation of count strings in strs,
beginning at strs[start]. For both versions, each string is separated from the next by the
string specified by sep.

The following program demonstrates Split() and Join():

// Split and join strings.

using System;

class SplitAndJoinDemo {
 static void Main() {
 string str = "One if by land, two if by sea.";
 char[] seps = {' ', '.', ',' };

 // Split the string into parts.
 string[] parts = str.Split(seps);
 Console.WriteLine("Pieces from split: ");
 for(int i=0; i < parts.Length; i++)
 Console.WriteLine(parts[i]);

 // Now, join the parts.
 string whole = String.Join(" | ", parts);
 Console.WriteLine("Result of join: ");
 Console.WriteLine(whole);
 }
}

Here is the output:

Pieces from split:
One
if
by
land

two
if
by
sea

Result of join:
One | if | by | land | | two | if | by | sea |

PART II

C h a p t e r 2 2 : S t r i n g s a n d F o r m a t t i n g 679

There is one important thing to notice in this output: the empty string that occurs
between “land” and “two”. This is caused by the fact that in the original string, the word
“land” is followed by a comma and a space, as in “land, two”. However, both the comma
and the space are specified as separators. Thus, when this string is split, the empty string
that exists between the two separators (the comma and the space) is returned.

There are several additional forms of Split() that take a parameter of type
StringSplitOptions. This parameter controls whether empty strings are part of the
resulting split. Here are these forms of Split():

public string[] Split(params char[] seps, StringSplitOptions how)
public string[] Split(string[] seps, StringSplitOptions how)
public string[] Split(params char[] seps, int count, StringSplitOptions how)
public string[] Split(string[] seps, int count, StringSplitOptions how)

The first two forms split the invoking string into pieces and return an array containing the
substrings. The characters that delimit each substring are passed in seps. If seps is null, then
whitespace is used as the separator. In the third and fourth forms, no more than count
substrings will be returned. For all versions, the value of how determines how to handle empty
strings that result when two separators are adjacent to each other. The StringSplitOptions
enumeration defines only two values: None and RemoveEmptyEntries. If how is None,
then empty strings are included in the result (as the previous program showed). If how is
RemoveEmptyEntries, empty strings are excluded from the result.

To understand the effects of removing empty entries, try replacing this line in the
preceding program:

string[] parts = str.Split(seps);

with the following:

string[] parts = str.Split(seps, StringSplitOptions.RemoveEmptyEntries);

When you run the program, the output will be as shown next:

Pieces from split:
One
if
by
land
two
if
by
sea
Result of join:
One | if | by | land | two | if | by | sea

As you can see, the empty string that previously resulted because of the combination of the
comma and space after “land” has been removed.

Splitting a string is an important string-manipulation procedure because it is often used
to obtain the individual tokens that comprise the string. For example, a database program
might use Split() to decompose a query such as “show me all balances greater than 100”

680 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

into its individual parts, such as “show” and “100”. In the process, the separators are
removed. Thus, “show” (without any leading or trailing spaces) is obtained, not “ show”. The
following program illustrates this concept. It tokenizes strings containing binary mathematical
operations, such as 10 + 5. It then performs the operation and displays the result.

// Tokenize strings.

using System;

class TokenizeDemo {
 static void Main() {
 string[] input = {
 "100 + 19",
 "100 / 3.3",
 "-3 * 9",
 "100 - 87"
 };
 char[] seps = {' '};

 for(int i=0; i < input.Length; i++) {
 // split string into parts
 string[] parts = input[i].Split(seps);
 Console.Write("Command: ");
 for(int j=0; j < parts.Length; j++)
 Console.Write(parts[j] + " ");

 Console.Write(", Result: ");
 double n = Double.Parse(parts[0]);
 double n2 = Double.Parse(parts[2]);

 switch(parts[1]) {
 case "+":
 Console.WriteLine(n + n2);
 break;
 case "-":
 Console.WriteLine(n - n2);
 break;
 case "*":
 Console.WriteLine(n * n2);
 break;
 case "/":
 Console.WriteLine(n / n2);
 break;
 }
 }
 }
}

Here is the output:

Command: 100 + 19 , Result: 119
Command: 100 / 3.3 , Result: 30.3030303030303
Command: -3 * 9 , Result: -27
Command: 100 - 87 , Result: 13

PART II

C h a p t e r 2 2 : S t r i n g s a n d F o r m a t t i n g 681

Padding and Trimming Strings
Sometimes you will want to remove leading and trailing spaces from a string. This type of
operation, called trimming, is often needed by command processors. For example, a database
might recognize the word “print.” However, a user might enter this command with one or
more leading or trailing spaces. Any such spaces must be removed before the string can be
recognized by the database. Conversely, sometimes you will want to pad a string with
spaces so that it meets some minimal length. For example, if you are preparing formatted
output, you might need to ensure that each line is of a certain length in order to maintain
alignment. Fortunately, C# includes methods that make these types of operations easy.

To trim a string, use one of these Trim() methods:

public string Trim()
public string Trim(params char[] chrs)

The first form removes leading and trailing whitespace from the invoking string. The second
form removes leading and trailing occurrences of the characters specified by chrs. In both
cases, the resulting string is returned.

You can pad a string by adding characters to either the left or the right side of the string.
To pad a string on the left, use one of the methods shown here:

public string PadLeft(int len)
public string PadLeft(int len, char ch)

The first form adds spaces on the left as needed to the invoking string so that its total length
equals len. The second form adds the character specified by ch as needed to the invoking
string so that its total length equals len. In both cases, the resulting string is returned. If len is
less than the length of the invoking string, a copy of the invoking string is returned unaltered.

To pad a string to the right, use one of these methods:

public string PadRight(int len)
public string PadRight(int len, char ch)

The first form adds spaces on the right as needed to the invoking string so that its total
length equals len. The second form adds the characters specified by ch as needed to the
invoking string so that its total length equals len. In both cases, the resulting string is returned.
If len is less than the length of the invoking string, a copy of the invoking string is returned
unaltered.

The following program demonstrates trimming and padding:

// Trimming and padding.

using System;

class TrimPadDemo {
 static void Main() {
 string str = "test";

 Console.WriteLine("Original string: " + str);

 // Pad on left with spaces.
 str = str.PadLeft(10);
 Console.WriteLine("|" + str + "|");

682 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 // Pad on right with spaces.
 str = str.PadRight(20);
 Console.WriteLine("|" + str + "|");

 // Trim spaces.
 str = str.Trim();
 Console.WriteLine("|" + str + "|");

 // Pad on left with #s.
 str = str.PadLeft(10, '#');
 Console.WriteLine("|" + str + "|");

 // Pad on right with #s.
 str = str.PadRight(20, '#');
 Console.WriteLine("|" + str + "|");

 // Trim #s.
 str = str.Trim('#');
 Console.WriteLine("|" + str + "|");
 }
}

The output is shown here:

Original string: test
| test|
| test |
|test|
|######test|
|######test##########|
|test|

Inserting, Removing, and Replacing
You can insert a string into another using the Insert() method, shown here:

public string Insert(int start, string str)

Here, str is inserted into the invoking string at the index specified by start. The resulting
string is returned.

You can remove a portion of a string using Remove(), shown next:

public string Remove(int start)
public string Remove(int start, int count)

The first form begins at the index specified by start and removes all remaining characters
in the string. The second form begins at count and removes count number of characters. In
both cases, the resulting string is returned.

You can replace a portion of a string by using Replace(). It has these forms:

public string Replace(char ch1, char ch2)
public string Replace(string str1, string str2)

The first form replaces all occurrences of ch1 in the invoking string with ch2. The second
form replaces all occurrences of str1 in the invoking string with str2. In both cases, the
resulting string is returned.

PART II

C h a p t e r 2 2 : S t r i n g s a n d F o r m a t t i n g 683

Here is an example that demonstrates Insert(), Remove(), and Replace():

// Inserting, replacing, and removing.

using System;

class InsRepRevDemo {
 static void Main() {
 string str = "This test";

 Console.WriteLine("Original string: " + str);

 // Insert
 str = str.Insert(5, "is a ");
 Console.WriteLine(str);

 // Replace string
 str = str.Replace("is", "was");
 Console.WriteLine(str);

 // Replace characters
 str = str.Replace('a', 'X');
 Console.WriteLine(str);

 // Remove
 str = str.Remove(4, 5);
 Console.WriteLine(str);
 }
}

The output is shown here:

Original string: This test
This is a test
Thwas was a test
ThwXs wXs X test
ThwX X test

Changing Case
String offers two convenient methods that enable you to change the case of letters within a
string. These are called ToUpper() and ToLower(). Here are their simplest forms:

public string ToLower()
public string ToUpper()

ToLower() lowercases all letters within the invoking string. ToUpper() uppercases all letters
within the invoking string. The resulting string is returned. There are also versions of these
methods that allow you to specify cultural settings.

Also available are the methods ToUpperInvariant() and ToLowerInvariant(), shown here:

public string ToUpperInvariant()
public string ToLowerInvariant()

These work like ToUpper() and ToLower() except that they use the invariant culture to
perform the transformations to upper- or lowercase.

684 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Using the Substring() Method
You can obtain a portion of a string by using the Substring() method. It has these two
forms:

public string Substring(int idx)
public string Substring(int idx, int count)

In the first form, the substring begins at the index specified by idx and runs to the end of the
invoking string. In the second form, the substring begins at idx and runs for count
characters. In each case, the substring is returned.

The following program demonstrates the Substring() method:

// Use Substring().

using System;

class SubstringDemo {
 static void Main() {
 string str = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 Console.WriteLine("str: " + str);

 Console.Write("str.Substring(15): ");
 string substr = str.Substring(15);
 Console.WriteLine(substr);

 Console.Write("str.Substring(0, 15): ");
 substr = str.Substring(0, 15);
 Console.WriteLine(substr);
 }
}

The following output is produced:

str: ABCDEFGHIJKLMNOPQRSTUVWXYZ
str.Substring(15): PQRSTUVWXYZ
str.Substring(0, 15): ABCDEFGHIJKLMNO

The String Extension Methods
As mentioned earlier, String implements IEnumerable<T>. This means that beginning with
C# 3.0, a String object can call the extension methods defined by Enumerable and Queryable,
which are both in the System.Linq namespace. These extension methods primarily provide
support for LINQ, but some can also be used for other purposes, such as certain types of
string handling. See Chapter 19 for a discussion of extension methods.

Formatting
When a human-readable form of a built-in type, such as int or double, is needed, a string
representation must be created. Although C# automatically supplies a default format for this
representation, it is also possible to specify a format of your own choosing. For example, as you
saw in Part I, it is possible to output numeric data using a dollars and cents format. A number

PART II

C h a p t e r 2 2 : S t r i n g s a n d F o r m a t t i n g 685

of methods format data, including Console.WriteLine(), String.Format(), and the ToString()
method defined for the numeric structure types. The same approach to formatting is used by
all three; once you have learned to format data for one, you can apply it to the others.

Formatting Overview
Formatting is governed by two components: format specifiers and format providers. The form
that the string representation of a value will take is controlled through the use of a format
specifier. Thus, it is the format specifier that dictates how the human-readable form of the
data will look. For example, to output a numeric value using scientific notation, you will
use the E format specifier.

In many cases, the precise format of a value will be affected by the culture and
language in which the program is running. For example, in the United States, money is
represented in dollars. In Europe, money is represented in euros. To handle the cultural
and language differences, C# uses format providers. A format provider defines the way
that a format specifier will be interpreted. A format provider is created by implementing
the IFormatProvider interface, which defines the GetFormat() method. Format providers
are predefined for the built-in numeric types and many other types in the .NET Framework.
In general, you can format data without having to worry about specifying a format
provider, and format providers are not examined further in this book.

To format data, include a format specifier in a call to a method that supports formatting.
The use of format specifiers was introduced in Chapter 3, but is worthwhile reviewing here.
The discussion that follows uses Console.WriteLine(), but the same basic approach applies
to other methods that support formatting.

To format data using WriteLine(), use the version of WriteLine() shown here:

WriteLine(“format string”, arg0, arg1, ... , argN);

In this version, the arguments to WriteLine() are separated by commas and not + signs. The
format string contains two items: regular, printing characters that are displayed as-is, and
format commands.

Format commands take this general form:

{argnum, width: fmt}

Here, argnum specifies the number of the argument (starting from zero) to display. The
minimum width of the field is specified by width, and the format specifier is represented by
fmt. Both width and fmt are optional. Thus, in its simplest form, a format command simply
indicates which argument to display. For example, {0} indicates arg0, {1} specifies arg1, and
so on.

During execution, when a format command is encountered in the format string, the
corresponding argument, as specified by argnum, is substituted and displayed. Thus, it is
the position of a format specifier within the format string that determines where its matching
data will be displayed. It is the argument number that determines which argument will be
formatted.

If fmt is present, then the data is displayed using the specified format. Otherwise, the
default format is used. If width is present, then output is padded with spaces to ensure that
the minimum field width is attained. If width is positive, output is right-justified. If width is
negative, output is left-justified.

The remainder of this chapter examines formatting and format specifiers in detail.

686 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

The Numeric Format Specifiers
There are several format specifiers defined for numeric data. They are shown in Table 22-4.
Each format specifier can include an optional precision specifier. For example, to specify
that a value be represented as a fixed-point value with two decimal places, use F2.

As explained, the precise effect of certain format specifiers depends upon the cultural
settings. For example, the currency specifier, C, automatically displays a value in the
monetary format of the selected culture. For most users, the default cultural information
matches their locale and language. Thus, the same format specifier can be used without
concern about the cultural context in which the program is executed.

Here is a program that demonstrates several of the numeric format specifiers:

// Demonstrate various format specifiers.

using System;

class FormatDemo {
 static void Main() {
 double v = 17688.65849;
 double v2 = 0.15;
 int x = 21;

 Console.WriteLine("{0:F2}", v);

 Console.WriteLine("{0:N5}", v);

 Console.WriteLine("{0:e}", v);

 Console.WriteLine("{0:r}", v);

 Console.WriteLine("{0:p}", v2);

 Console.WriteLine("{0:X}", x);

 Console.WriteLine("{0:D12}", x);

 Console.WriteLine("{0:C}", 189.99);
 }
}

The output is shown here:

17688.66
17,688.65849
1.768866e+004
17688.65849
15.00 %
15
000000000021
$189.99

Notice the effect of the precision specifier in several of the formats.

PART II

C h a p t e r 2 2 : S t r i n g s a n d F o r m a t t i n g 687

Specifier Format Meaning of Precision Specifier

C Currency (that is, a monetary value). Specifies the number of decimal places.

c Same as C.

D Whole number numeric data. (Use with
integers only.)

Minimum number of digits. Leading
zeros will be used to pad the result, if
necessary.

d Same as D.

E Scientific notation (uses uppercase E). Specifies the number of decimal places.
The default is six.

e Scientific notation (uses lowercase e). Specifies the number of decimal places.
The default is six.

F Fixed-point notation. Specifies the number of decimal places.

f Same as F.

G Use either E or F format, whichever is
shorter.

See E and F.

g Use either e or f format, whichever is
shorter.

See e and f.

N Fixed-point notation, with comma
separators.

Specifies the number of decimal places.

n Same as N.

P Percentage Specifies the number of decimal places.

p Same as P.

R or r Numeric value that can be parsed,
using Parse(), back into its equivalent
internal form. (This is called the “round-
trip” format.)

Not used.

X Hexadecimal (uses uppercase letters A
through F).

Minimum number of digits. Leading
zeros will be used to pad the result, if
necessary.

x Hexadecimal (uses lowercase letters a
through f).

Minimum number of digits. Leading zeros
will be used to pad the result if necessary.

TABLE 22-4 The Format Specifi ers

Understanding Argument Numbers
It is important to understand that the argument associated with a format specifier is determined
by the argument number, not the argument’s position in the argument list. This means the
same argument can be output more than once within the same call to WriteLine(). It also

688 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

means that arguments can be displayed in a sequence different than they are specified in
the argument list. For example, consider the following program:

using System;

class FormatDemo2 {
 static void Main() {

 // Format the same argument three different ways:
 Console.WriteLine("{0:F2} {0:F3} {0:e}", 10.12345);

 // Display arguments in non-sequential order.
 Console.WriteLine("{2:d} {0:d} {1:d}", 1, 2, 3);
 }
}

The output is shown here:

10.12 10.123 1.012345e+001
3 1 2

In the first WriteLine() statement, the same argument, 10.12345, is formatted three
different ways. This is possible because each format specifier refers to the first (and only)
argument. In the second WriteLine() statement, the three arguments are displayed in non-
sequential order. Remember, there is no rule that format specifiers must use the arguments
in sequence. Any format specifier can refer to any argument.

Using String.Format() and ToString() to Format Data
Although embedding format commands into WriteLine() is a convenient way to format
output, sometimes you will want to create a string that contains the formatted data, but not
immediately display that string. Doing so lets you format data in advance, allowing you to
output it later, to the device of your choosing. This is especially useful in a GUI environment,
such as Windows, in which console-based I/O is rarely used, or for preparing output for a
web page.

In general, there are two ways to obtain the formatted string representation of a value.
One way is to use String.Format(). The other is to pass a format specifier to the ToString()
method of the built-in numeric types. Each approach is examined here.

Using String.Format() to Format Values
You can obtain a formatted value by calling one of the Format() methods defined by String.
They are shown in Table 22-5. Format() works much like WriteLine(), except that it returns
a formatted string rather than outputting it to the console.

PART II

C h a p t e r 2 2 : S t r i n g s a n d F o r m a t t i n g 689

Here is the previous format demonstration program rewritten to use String.Format(). It
produces the same output as the earlier version.

// Use String.Format() to format a value.

using System;

class FormatDemo {
 static void Main() {
 double v = 17688.65849;
 double v2 = 0.15;
 int x = 21;

 string str = String.Format("{0:F2}", v);
 Console.WriteLine(str);

 str = String.Format("{0:N5}", v);
 Console.WriteLine(str);

Method Description

public static string
 Format(string str, object v)

Formats v according to the first format command in
str. Returns a copy of str in which formatted data
has been substituted for the format command.

public static string
 Format(string str, object v1, object v2)

Formats v1 according to the first format command
in str, and v2 according to the second format
command in str. Returns a copy of str in which
formatted data has been substituted for the format
commands.

public static string
 Format(string str, object v1,
 object v2, object v3)

Formats v1, v2, and v3 according to the
corresponding format commands in str. Returns
a copy of str in which formatted data has been
substituted for the format commands.

public static string
 Format(string str, params object[] v)

Formats the values passed in v according to the
format commands in str. Returns a copy of str in
which formatted data has been substituted for
each format command.

public static string
 Format(IFormatProvider fmtprvdr,
 string str, params object[] v)

Formats the values passed in v according to the
format commands in str using the format provider
specified by fmtprvdr. Returns a copy of str in
which formatted data has been substituted for
each format command.

TABLE 22-5 The Format() Methods

690 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 str = String.Format("{0:e}", v);
 Console.WriteLine(str);

 str = String.Format("{0:r}", v);
 Console.WriteLine(str);

 str = String.Format("{0:p}", v2);
 Console.WriteLine(str);

 str = String.Format("{0:X}", x);
 Console.WriteLine(str);

 str = String.Format("{0:D12}", x);
 Console.WriteLine(str);

 str = String.Format("{0:C}", 189.99);
 Console.WriteLine(str);
 }
}

Like WriteLine(), String.Format() lets you embed regular text along with format
specifiers, and you can use more than one format specifier and value. For example, consider
this program, which displays the running sum and product of the numbers 1 through 10:

// A closer look at Format().

using System;

class FormatDemo2 {
 static void Main() {
 int i;
 int sum = 0;
 int prod = 1;
 string str;

 /* Display the running sum and product
 for the numbers 1 through 10. */
 for(i=1; i <= 10; i++) {
 sum += i;
 prod *= i;
 str = String.Format("Sum:{0,3:D} Product:{1,8:D}",
 sum, prod);
 Console.WriteLine(str);
 }
 }
}

The output is shown here:

Sum: 1 Product: 1
Sum: 3 Product: 2
Sum: 6 Product: 6
Sum: 10 Product: 24
Sum: 15 Product: 120
Sum: 21 Product: 720
Sum: 28 Product: 5040

PART II

C h a p t e r 2 2 : S t r i n g s a n d F o r m a t t i n g 691

Sum: 36 Product: 40320
Sum: 45 Product: 362880
Sum: 55 Product: 3628800

In the program, pay close attention to this statement:

str = String.Format("Sum:{0,3:D} Product:{1,8:D}",
 sum, prod);

This call to Format() contains two format specifiers, one for sum and one for prod. Notice
that the argument numbers are specified just as they are when using WriteLine(). Also,
notice that regular text, such as “Sum:” is included. This text is passed through and becomes
part of the output string.

Using ToString() to Format Data
For all of the built-in numeric structure types, such as Int32 or Double, you can use ToString()
to obtain a formatted string representation of the value. To do so, you will use this version
of ToString():

public string ToString(string fmt)

It returns the string representation of the invoking object as specified by the format specifier
passed in fmt. For example, the following statement creates a monetary representation of the
value 188.99 through the use of the C format specifier:

string str = 189.99.ToString("C");

Notice how the format specifier is passed directly to ToString(). Unlike embedded format
commands used by WriteLine() or Format(), which supply an argument-number and field-
width component, ToString() requires only the format specifier, itself.

Here is a rewrite of the previous format program that uses ToString() to obtain formatted
strings. It produces the same output as the earlier versions.

// Use ToString() to format values.

using System;

class ToStringDemo {
 static void Main() {
 double v = 17688.65849;
 double v2 = 0.15;
 int x = 21;

 string str = v.ToString("F2");
 Console.WriteLine(str);

 str = v.ToString("N5");
 Console.WriteLine(str);

 str = v.ToString("e");
 Console.WriteLine(str);

 str = v.ToString("r");

692 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 Console.WriteLine(str);

 str = v2.ToString("p");
 Console.WriteLine(str);

 str = x.ToString("X");
 Console.WriteLine(str);

 str = x.ToString("D12");
 Console.WriteLine(str);

 str = 189.99.ToString("C");
 Console.WriteLine(str);
 }
}

Creating a Custom Numeric Format
Although the predefined numeric format specifiers are quite useful, C# gives you the ability
to define your own, custom format using a feature sometimes called picture format. The term
picture format comes from the fact that you create a custom format by specifying an example
(that is, picture) of how you want the output to look. This approach was mentioned briefly
in Part I. Here it is examined in detail.

The Custom Format Placeholder Characters
When you create a custom format, you specify that format by creating an example (or
picture) of what you want the data to look like. To do this, you use the characters shown in
Table 22-6 as placeholders. Each is examined in turn.

The period specifies where the decimal point will be located.
The # placeholder specifies a digit position. The # can occur on the left or right side of

the decimal point or by itself. When one or more #s occur on the right side of the decimal
point, they specify the number of decimal digits to display. The value is rounded if necessary.
When the # occurs to the left of the decimal point, it specifies the digit positions for the
whole-number part of the value. Leading zeros will be added if necessary. If the whole-
number portion of the value has more digits than there are #s, the entire whole-number
portion will be displayed. In no cases will the whole-number portion of a value be
truncated. If there is no decimal point, then the # causes the value to be rounded to its
integer value. A zero value that is not significant, such as a trailing zero, will not be displayed.
This causes a somewhat odd quirk, however, because a format such as #.## displays nothing
at all if the value being formatted is zero. To output a zero value, use the 0 placeholder
described next.

The 0 placeholder causes a leading or trailing 0 to be added to ensure that a minimum
number of digits will be present. It can be used on both the right and left side of the decimal
point. For example,

Console.WriteLine("{0:00##.#00}", 21.3);

displays this output:

0021.300

PART II

C h a p t e r 2 2 : S t r i n g s a n d F o r m a t t i n g 693

Values containing more digits will be displayed in full on the left side of the decimal point
and rounded on the right side.

You can insert commas into large numbers by specifying a pattern that embeds a
comma within a sequence of #s. For example, this:

Console.WriteLine("{0:#,###.#}", 3421.3);

displays

3,421.3.

It is not necessary to specify each comma for each position. Specifying one comma causes it
to be inserted into the value every third digit from the left of the decimal point. For example,

Console.WriteLine("{0:#,###.#}", 8763421.3);

produces this output:

8,763,421.3.

Commas have a second meaning. When they occur on the immediate left of the decimal
point, they act as a scaling factor. Each comma causes the value to be divided by 1,000. For
example,

Console.WriteLine("Value in thousands: {0:#,###,.#}", 8763421.3);

produces this output:

Value in thousands: 8,763.4

As the output shows, the value is scaled in terms of thousands.
In addition to the placeholders, a custom format specifier can contain other characters.

Any other characters are simply passed through, appearing in the formatted string exactly
as they appear in the format specifier. For example, this WriteLine() statement:

Console.WriteLine("Fuel efficiency is {0:##.# mpg}", 21.3);

produces this output:

Fuel efficiency is 21.3 mpg

You can also use the escape sequences, such as \t or \n, if necessary.
The E and e placeholders cause a value to be displayed in scientific notation. At least

one 0, but possibly more, must follow the E or e. The 0s indicate the number of decimal
digits that will be displayed. The decimal component will be rounded to fit the format.
Using an uppercase E causes an uppercase E to be displayed; using a lowercase e causes a
lowercase e to be displayed. To ensure that a sign character precedes the exponent, use the
E+ or e+ forms. To display a sign character for negative values only, use E, e, E-, or e-.

The “;” is a separator that enables you to specify different formats for positive, negative,
and zero values. Here is the general form of a custom format specifier that uses the “;”:

positive-fmt;negative-fmt;zero-fmt

694 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Here is an example:

Console.WriteLine("{0:#.##;(#.##);0.00}", num);

If num is positive, the value is displayed with two decimal places. If num is negative, the
value is displayed with two decimal places and is between a set of parentheses. If num is
zero, the string 0.00 is displayed. When using the separators, you don’t need to supply all
parts. If you just want to specify how positive and negative values will look, omit the zero
format. To use the default for negative values, omit the negative format. In this case, the
positive format and the zero format will be separated by two semicolons.

The following program demonstrates just a few of the many possible custom formats
that you can create:

// Using custom formats.

using System;

class PictureFormatDemo {
 static void Main() {
 double num = 64354.2345;

 Console.WriteLine("Default format: " + num);

 // Display with 2 decimal places.
 Console.WriteLine("Value with two decimal places: " +
 "{0:#.##}", num);

 // Display with commas and 2 decimal places.
 Console.WriteLine("Add commas: {0:#,###.##}", num);

 // Display using scientific notation.
 Console.WriteLine("Use scientific notation: " +
 "{0:#.###e+00}", num);

 // Scale the value by 1000.
 Console.WriteLine("Value in 1,000s: " +
 "{0:#0,}", num);

 /* Display positive, negative, and zero
 values differently. */
 Console.WriteLine("Display positive, negative, " +
 "and zero values differently.");
 Console.WriteLine("{0:#.#;(#.##);0.00}", num);
 num = -num;
 Console.WriteLine("{0:#.##;(#.##);0.00}", num);
 num = 0.0;
 Console.WriteLine("{0:#.##;(#.##);0.00}", num);

 // Display a percentage.
 num = 0.17;
 Console.WriteLine("Display a percentage: {0:#%}", num);
 }
}

PART II

C h a p t e r 2 2 : S t r i n g s a n d F o r m a t t i n g 695

The output is shown here:

Default format: 64354.2345
Value with two decimal places: 64354.23
Add commas: 64,354.23
Use scientific notation: 6.435e+04
Value in 1,000s: 64
Display positive, negative, and zero values differently.
64354.2
(64354.23)
0.00
Display a percentage: 17%

Formatting Date and Time
In addition to formatting numeric values, another data type to which formatting is often
applied is DateTime. DateTime is a structure that represents date and time. Date and time
values can be displayed a variety of ways. Here are just a few examples:

06/05/2006
Monday, June 5, 2006
12:59:00
12:59:00 PM

Also, the date and time representations can vary from country to country. For these reasons,
the .NET Framework provides an extensive formatting subsystem for time and date values.

Date and time formatting is handled through format specifiers. The format specifiers for
date and time are shown in Table 22-7. Because the specific date and time representation
may vary from country to country and by language, the precise representation generated
will be influenced by the cultural settings.

Placeholder Meaning

Digit

. Decimal point

, Thousands separator

% Percentage, which is the value being formatted multiplied by 100

0 Pads with leading and trailing zeros

; Separates sections that describe the format for positive, negative, and
zero values

E0 E+0 E-0
e0 e+0 e-0

Scientific notation

TABLE 22-6 Custom Format Placeholder Characters

696 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Specifier Format

D Date in long form.

d Date in short form.

F Date and time in long form.

f Date and time in short form.

G Date in short form, time in long form.

gg Date in short form, time in short form.

M Month and day.

m Same as M.

O A form of date and time that includes the time zone. The string produced
by the O format can be parsed back into the equivalent date and time.
This is called the “round trip” format.

o Same as O.

R Date and time in standard, GMT form.

r Same as R.

s A sortable form of date and time.

T Time in long form.

t Time in short form.

U Long form, universal form of date and time. Time is displayed as UTC.

u Short form, universal form of date and time.

Y Month and year.

y Same as Y.

TABLE 22-7 The Date and Time Format Specifi ers

Here is a program that demonstrates the date and time format specifiers:

// Format time and date information.

using System;

class TimeAndDateFormatDemo {
 static void Main() {
 DateTime dt = DateTime.Now; // obtain current time

 Console.WriteLine("d format: {0:d}", dt);
 Console.WriteLine("D format: {0:D}", dt);

 Console.WriteLine("t format: {0:t}", dt);
 Console.WriteLine("T format: {0:T}", dt);

 Console.WriteLine("f format: {0:f}", dt);
 Console.WriteLine("F format: {0:F}", dt);

PART II

C h a p t e r 2 2 : S t r i n g s a n d F o r m a t t i n g 697

 Console.WriteLine("g format: {0:g}", dt);
 Console.WriteLine("G format: {0:G}", dt);

 Console.WriteLine("m format: {0:m}", dt);
 Console.WriteLine("M format: {0:M}", dt);

 Console.WriteLine("o format: {0:o}", dt);
 Console.WriteLine("O format: {0:O}", dt);

 Console.WriteLine("r format: {0:r}", dt);
 Console.WriteLine("R format: {0:R}", dt);

 Console.WriteLine("s format: {0:s}", dt);

 Console.WriteLine("u format: {0:u}", dt);
 Console.WriteLine("U format: {0:U}", dt);

 Console.WriteLine("y format: {0:y}", dt);
 Console.WriteLine("Y format: {0:Y}", dt);
 }
}

Sample output is shown here:

d format: 6/18/2008
D format: Wednesday, June 18, 2008
t format: 11:53 AM
T format: 11:53:09 AM
f format: Wednesday, June 18, 2008 11:53 AM
F format: Wednesday, June 18, 2008 11:53:09 AM
g format: 6/18/2008 11:53 AM
G format: 6/18/2008 11:53:09 AM
m format: June 18
M format: June 18
o format: 2008-06-18T11:53:09.5074933-05:00
O format: 2008-06-18T11:53:09.5074933-05:00
r format: Wed, 18 Jun 2008 11:53:09 GMT
R format: Wed, 18 Jun 2008 11:53:09 GMT
s format: 2008-06-18T11:53:09
u format: 2008-06-18 11:53:09Z
U format: Wednesday, June 18, 2008 4:53:09 PM
y format: June, 2008
Y format: June, 2008

The next program creates a very simple clock. The time is updated once every second.
At the top of each hour, the computer’s bell is sounded. It uses the ToString() method of
DateTime to obtain the formatted time prior to outputting it. If the top of the hour has been
reached, then the alert character (\a) is appended to the formatted time, thus ringing the bell.

// A simple clock.

using System;

class SimpleClock {
 static void Main() {
 string t;

698 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 int seconds;

 DateTime dt = DateTime.Now;
 seconds = dt.Second;

 for(;;) {
 dt = DateTime.Now;

 // update time if seconds change
 if(seconds != dt.Second) {
 seconds = dt.Second;

 t = dt.ToString("T");

 if(dt.Minute==0 && dt.Second==0)
 t = t + "\a"; // ring bell at top of hour

 Console.WriteLine(t);
 }
 }
 }
}

Creating a Custom Date and Time Format
Although the standard date and time format specifiers will apply to the vast majority of
situations, you can create your own, custom formats. The process is similar to creating custom
formats for the numeric types, as described earlier. In essence, you simply create an example
(picture) of what you want the date and time information to look like. To create a custom date
and time format, you will use one or more of the placeholders shown in Table 22-8.

If you examine Table 22-8, you will see that the placeholders d, f, g, m, M, s, and t are the
same as the date and time format specifiers shown in Table 22-7. In general, if one of these
characters is used by itself, it is interpreted as a format specifier. Otherwise, it is assumed to
be a placeholder. If you want use one of these characters by itself but have it interpreted as a
placeholder, then precede the character with a %.

The following program demonstrates several custom time and date formats:

// Format time and date information.

using System;

class CustomTimeAndDateFormatsDemo {
 static void Main() {
 DateTime dt = DateTime.Now;

 Console.WriteLine("Time is {0:hh:mm tt}", dt);
 Console.WriteLine("24 hour time is {0:HH:mm}", dt);
 Console.WriteLine("Date is {0:ddd MMM dd, yyyy}", dt);

 Console.WriteLine("Era: {0:gg}", dt);

 Console.WriteLine("Time with seconds: " +
 "{0:HH:mm:ss tt}", dt);

PART II

C h a p t e r 2 2 : S t r i n g s a n d F o r m a t t i n g 699

 Console.WriteLine("Use m for day of month: {0:m}", dt);
 Console.WriteLine("use m for minutes: {0:%m}", dt);
 }
}

Placeholder Replaced By

d Day of month as a number between 1 and 31.

dd Day of month as a number between 1 and 31. A leading 0 prefixes the values
1 through 9.

ddd Abbreviated weekday name.

dddd Full weekday name.

f, ff, fff, ffff,
fffff, ffffff, fffffff

Fractional seconds, with the number of decimal places specified by the number
of fs. (If uppercase Fs are used, trailing 0s are not displayed.)

g Era.

h Hour as a number between 1 and 12.

hh Hour as a number between 1 and 12. A leading 0 prefixes the values 1 through 9.

H Hour as a number between 0 and 23.

HH Hour as a number between 0 and 23. A leading 0 prefixes the values 0 through 9.

K Time zone offset in hours. It uses the value of the DateTime.Kind property
to automatically adjust for local time and UTC time. (This specifier is now
recommended over the z-based specifiers.)

m Minutes.

mm Minutes. A leading 0 prefixes the values 0 through 9.

M Month as a number between 1 and 12.

MM Month as a number between 1 and 12. A leading 0 prefixes the values 1
through 9.

MMM Abbreviated month name.

MMMM Full month name.

s Seconds.

ss Seconds. A leading 0 prefixes the values 0 through 9.

t A or P, indicating A.M. or P.M.

tt A.M. or P.M.

y Year as two digits, unless only one digit is needed.

yy Year as two digits. A leading 0 prefixes the values 0 through 9.

yyy Year as three digits.

yyyy Year using four digits.

yyyyy Year using five digits.

z Time zone offset in hours.

TABLE 22-8 The Custom Date and Time Placeholder Characters

700 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

The output is shown here:

Time is 11:55 AM
24 hour time is 11:55
Date is Wed Jun 18, 2008
Era: A.D.
Time with seconds: 11:55:52 AM
Use m for day of month: June 18
use m for minutes: 55

Formatting Enumerations
C# allows you to format the values defined by an enumeration. In general, enumeration
values can be displayed using their name or their value. The enumeration format specifiers
are shown in Table 22-9. Pay special attention to the G and F formats. Enumerations that
will be used to represent bit-fields can be preceded by the Flags attribute. Typically, bit-
fields hold values that represent individual bits and are arranged in powers of two. If the
Flags attribute is present, then the G specifier will display the names of all of the values that
comprise the value, assuming the value is valid. The F specifier will display the names of all
of the values that comprise the value if the value can be constructed by ORing together two
or more fields defined by the enumeration.

The following program demonstrates the enumeration specifiers:

// Format an enumeration.

using System;

class EnumFmtDemo {
 enum Direction { North, South, East, West }
 [Flags] enum Status { Ready=0x1, OffLine=0x2,
 Waiting=0x4, TransmitOK=0x8,
 ReceiveOK=0x10, OnLine=0x20 }

 static void Main() {
 Direction d = Direction.West;

 Console.WriteLine("{0:G}", d);
 Console.WriteLine("{0:F}", d);

zz Time zone offset in hours. A leading 0 prefixes the values 0 through 9.

zzz Time zone offset in hours and minutes.

: Separator for time components.

/ Separator for date components.

%fmt The standard format associated with fmt.

Placeholder Replaced By

TABLE 22-8 The Custom Date and Time Placeholder Characters (continued)

PART II

C h a p t e r 2 2 : S t r i n g s a n d F o r m a t t i n g 701

 Console.WriteLine("{0:D}", d);
 Console.WriteLine("{0:X}", d);

 Status s = Status.Ready | Status.TransmitOK;

 Console.WriteLine("{0:G}", s);
 Console.WriteLine("{0:F}", s);
 Console.WriteLine("{0:D}", s);
 Console.WriteLine("{0:X}", s);
 }
}

The output is shown here:

West
West
3
00000003
Ready, TransmitOK
Ready, TransmitOK
9
00000009

Specifier Meaning

D Displays the value as a decimal integer.

d Same as D.

F Displays the name of the value. However, if the value can be created by
ORing together two or more values defined by the enumeration, then the
names of each part of the value will be displayed. This applies whether or
not the Flags attribute has been specified.

f Same as F.

G Displays the name of the value. If the enumeration is preceded by the
Flags attribute, then all names that are part of the value will be displayed
(assuming a valid value).

g Same as G.

X Displays the value as a hexadecimal integer. Leading zeros will be added to
ensure that at least eight digits are shown.

x Same as X.

TABLE 22-9 The Enumeration Format Specifi ers

This page intentionally left blank

23
Multithreaded Programming

Although C# contains many exciting features, one of its most powerful is its built-in
support for multithreaded programming. A multithreaded program contains two or
more parts that can run concurrently. Each part of such a program is called a thread,

and each thread defines a separate path of execution. Thus, multithreading is a specialized
form of multitasking.

Multithreaded programming relies on a combination of features defined by the C#
language and by classes in the .NET Framework. Because support for multithreading is
built into C#, many of the problems associated with multithreading in other languages are
minimized or eliminated.

Multithreading Fundamentals
There are two distinct types of multitasking: process-based and thread-based. It is important
to understand the difference between the two. A process is, in essence, a program that is
executing. Thus, process-based multitasking is the feature that allows your computer to run
two or more programs concurrently. For example, process-based multitasking allows you to
run a word processor at the same time you are using a spreadsheet or browsing the Internet.
In process-based multitasking, a program is the smallest unit of code that can be dispatched
by the scheduler.

A thread is a dispatchable unit of executable code. The name comes from the concept of a
“thread of execution.” In a thread-based multitasking environment, all processes have at least
one thread, but they can have more. This means that a single program can perform two or
more tasks at once. For instance, a text editor can be formatting text at the same time that it
is printing, as long as these two actions are being performed by two separate threads.

The differences between process-based and thread-based multitasking can be summarized
like this: Process-based multitasking handles the concurrent execution of programs. Thread-
based multitasking deals with the concurrent execution of pieces of the same program.

The principal advantage of multithreading is that it enables you to write very efficient
programs because it lets you utilize the idle time that is present in most programs. As you
probably know, most I/O devices, whether they be network ports, disk drives, or the
keyboard, are much slower than the CPU. Thus, a program will often spend a majority
of its execution time waiting to send or receive information to or from a device. By using
multithreading, your program can execute another task during this idle time. For example,

703

CHAPTER

704 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

while one part of your program is sending a file over the Internet, another part can be
reading keyboard input, and still another can be buffering the next block of data to send.

A thread can be in one of several states. In general terms, it can be running. It can be ready
to run as soon as it gets CPU time. A running thread can be suspended, which is a temporary
halt to its execution. It can later be resumed. A thread can be blocked when waiting for a
resource. A thread can be terminated, in which case its execution ends and cannot be resumed.

The .NET Framework defines two types of threads: foreground and background. By default,
when you create a thread, it is a foreground thread, but you can change it to a background
thread. The only difference between foreground and background threads is that a background
thread will be automatically terminated when all foreground threads in its process have
stopped.

Along with thread-based multitasking comes the need for a special type of feature
called synchronization, which allows the execution of threads to be coordinated in certain
well-defined ways. C# has a complete subsystem devoted to synchronization, and its key
features are also described here.

All processes have at least one thread of execution, which is usually called the main
thread because it is the one that is executed when your program begins. Thus, the main
thread is the thread that all of the preceding example programs in the book have been
using. From the main thread, you can create other threads.

C# and the .NET Framework support both process-based and thread-based multitasking.
Thus, using C#, you can create and manage both processes and threads. However, little
programming effort is required to start a new process because each process is largely separate
from the next. Rather, it is C#’s support for multithreading that is important. Because support
for multithreading is built in, C# makes it easier to construct high-performance, multithreaded
programs than do some other languages.

The classes that support multithreaded programming are defined in the
System.Threading namespace. Thus, you will usually include this statement at the
start of any multithreaded program:

using System.Threading;

The Thread Class
The multithreading system is built upon the Thread class, which encapsulates a thread of
execution. The Thread class is sealed, which means that it cannot be inherited. Thread
defines several methods and properties that help manage threads. Throughout this chapter,
several of its most commonly used members will be examined.

Creating and Starting a Thread
There are a number of ways to create and start a thread. This section describes the basic
mechanism. Various options are described later in this chapter.

To create a thread, instantiate an object of type Thread, which is a class defined in
System.Threading. The simplest Thread constructor is shown here:

public Thread(ThreadStart entryPoint)

Here, entryPoint is the name of the method that will be called to begin execution of the
thread. ThreadStart is a delegate defined by the .NET Framework as shown here:

public delegate void ThreadStart()

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 705

Thus, your entry point method must have a void return type and take no arguments.
Once created, the new thread will not start running until you call its Start() method,

which is defined by Thread. The Start() method has two forms. The one used here is

public void Start()

Once started, the thread will run until the method specified by entryPoint returns. Thus,
when entryPoint returns, the thread automatically stops. If you try to call Start() on a thread
that has already been started, a ThreadStateException will be thrown.

Here is an example that creates a new thread and starts it running:

// Create a thread of execution.

using System;
using System.Threading;

class MyThread {
 public int Count;
 string thrdName;

 public MyThread(string name) {
 Count = 0;
 thrdName = name;
 }

 // Entry point of thread.
 public void Run() {
 Console.WriteLine(thrdName + " starting.");

 do {
 Thread.Sleep(500);
 Console.WriteLine("In " + thrdName +
 ", Count is " + Count);
 Count++;
 } while(Count < 10);

 Console.WriteLine(thrdName + " terminating.");
 }
}

class MultiThread {
 static void Main() {
 Console.WriteLine("Main thread starting.");

 // First, construct a MyThread object.
 MyThread mt = new MyThread("Child #1");

 // Next, construct a thread from that object.
 Thread newThrd = new Thread(mt.Run);

 // Finally, start execution of the thread.
 newThrd.Start();

 do {
 Console.Write(".");

706 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 Thread.Sleep(100);
 } while (mt.Count != 10);

 Console.WriteLine("Main thread ending.");
 }
}

Let’s look closely at this program. MyThread defines a class that will be used to create a
second thread of execution. Inside its Run() method, a loop is established that counts from
0 to 9. Notice the call to Sleep(), which is a static method defined by Thread. The Sleep()
method causes the thread from which it is called to suspend execution for the specified
period of milliseconds. When a thread suspends, another thread can run. The form used by
the program is shown here:

public static void Sleep(int milliseconds)

The number of milliseconds to suspend is specified in milliseconds. If milliseconds is zero, the
calling thread is suspended only to allow a waiting thread to execute.

Inside Main(), a new Thread object is created by the following sequence of statements:

// First, construct a MyThread object.
MyThread mt = new MyThread("Child #1");

// Next, construct a thread from that object.
Thread newThrd = new Thread(mt.Run);

// Finally, start execution of the thread.
newThrd.Start();

As the comments suggest, first an object of MyThread is created. This object is then used
to construct a Thread object by passing the mt.Run() method as the entry point. Finally,
execution of the new thread is started by calling Start(). This causes mt.Run() to begin
executing in its own thread. After calling Start(), execution of the main thread returns to
Main(), and it enters Main()’s do loop. Both threads continue running, sharing the CPU,
until their loops finish. The output produced by this program is as follows. (The precise
output that you see may vary slightly because of differences in your execution environment,
operating system, and task load.)

Main thread starting.
Child #1 starting.
.....In Child #1, Count is 0
.....In Child #1, Count is 1
.....In Child #1, Count is 2
.....In Child #1, Count is 3
.....In Child #1, Count is 4
.....In Child #1, Count is 5
.....In Child #1, Count is 6
.....In Child #1, Count is 7
.....In Child #1, Count is 8
.....In Child #1, Count is 9
Child #1 terminating.
Main thread ending.

Often in a multithreaded program, you will want the main thread to be the last thread
to finish running. Technically, a program continues to run until all of its foreground threads

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 707

have finished. Thus, having the main thread finish last is not a requirement. It is, however,
often good practice to follow because it clearly defines your program’s endpoint. The
preceding program tries to ensure that the main thread will finish last, by checking the value
of Count within Main()’s do loop, stopping when Count equals 10, and through the use of
calls to Sleep(). However, this is an imperfect approach. Later in this chapter, you will see
better ways for one thread to wait until another finishes.

Some Simple Improvements
While the preceding program is perfectly valid, some easy improvements will make it more
efficient. First, it is possible to have a thread begin execution as soon as it is created. In the
case of MyThread, this is done by instantiating a Thread object inside MyThread’s constructor.
Second, there is no need for MyThread to store the name of the thread since Thread defines
a property called Name that can be used for this purpose. Name is defined like this:

public string Name { get; set; }

Since Name is a read-write property, you can use it to set the name of a thread or to retrieve
the thread’s name.

Here is a version of the preceding program that makes these three improvements:

// An alternate way to start a thread.

using System;
using System.Threading;

class MyThread {
 public int Count;
 public Thread Thrd;

 public MyThread(string name) {
 Count = 0;
 Thrd = new Thread(this.Run);
 Thrd.Name = name; // set the name of the thread
 Thrd.Start(); // start the thread
 }

 // Entry point of thread.
 void Run() {
 Console.WriteLine(Thrd.Name + " starting.");

 do {
 Thread.Sleep(500);
 Console.WriteLine("In " + Thrd.Name +
 ", Count is " + Count);
 Count++;
 } while(Count < 10);

 Console.WriteLine(Thrd.Name + " terminating.");
 }
}

class MultiThreadImproved {
 static void Main() {

708 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 Console.WriteLine("Main thread starting.");

 // First, construct a MyThread object.
 MyThread mt = new MyThread("Child #1");

 do {
 Console.Write(".");
 Thread.Sleep(100);
 } while (mt.Count != 10);

 Console.WriteLine("Main thread ending.");
 }
}

This version produces the same output as before. Notice that the thread object is stored in
Thrd inside MyThread.

Creating Multiple Threads
The preceding examples have created only one child thread. However, your program can
spawn as many threads as it needs. For example, the following program creates three child
threads:

// Create multiple threads of execution.

using System;
using System.Threading;

class MyThread {
 public int Count;
 public Thread Thrd;

 public MyThread(string name) {
 Count = 0;
 Thrd = new Thread(this.Run);
 Thrd.Name = name;
 Thrd.Start();
 }

 // Entry point of thread.
 void Run() {
 Console.WriteLine(Thrd.Name + " starting.");

 do {
 Thread.Sleep(500);
 Console.WriteLine("In " + Thrd.Name +
 ", Count is " + Count);
 Count++;
 } while(Count < 10);

 Console.WriteLine(Thrd.Name + " terminating.");
 }
}

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 709

class MoreThreads {
 static void Main() {
 Console.WriteLine("Main thread starting.");

 // Construct three threads.
 MyThread mt1 = new MyThread("Child #1");
 MyThread mt2 = new MyThread("Child #2");
 MyThread mt3 = new MyThread("Child #3");

 do {
 Console.Write(".");
 Thread.Sleep(100);
 } while (mt1.Count < 10 ||
 mt2.Count < 10 ||
 mt3.Count < 10);

 Console.WriteLine("Main thread ending.");
 }
}

Sample output from this program is shown next:

Main thread starting.
.Child #1 starting.
Child #2 starting.
Child #3 starting.
....In Child #1, Count is 0
In Child #2, Count is 0
In Child #3, Count is 0
.....In Child #1, Count is 1
In Child #2, Count is 1
In Child #3, Count is 1
.....In Child #1, Count is 2
In Child #2, Count is 2
In Child #3, Count is 2
.....In Child #1, Count is 3
In Child #2, Count is 3
In Child #3, Count is 3
.....In Child #1, Count is 4
In Child #2, Count is 4
In Child #3, Count is 4
.....In Child #1, Count is 5
In Child #2, Count is 5
In Child #3, Count is 5
.....In Child #1, Count is 6
In Child #2, Count is 6
In Child #3, Count is 6
.....In Child #1, Count is 7
In Child #2, Count is 7
In Child #3, Count is 7
.....In Child #1, Count is 8
In Child #2, Count is 8
In Child #3, Count is 8
.....In Child #1, Count is 9

710 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Child #1 terminating.
In Child #2, Count is 9
Child #2 terminating.
In Child #3, Count is 9
Child #3 terminating.
Main thread ending.

As you can see, once started, all three child threads share the CPU. Again, because of
differences among system configurations, operating systems, and other environmental factors,
when you run the program, the output you see may differ slightly from that shown here.

Determining When a Thread Ends
Often it is useful to know when a thread has ended. In the preceding examples, this was
attempted by watching the Count variable—hardly a satisfactory or generalizable solution.
Fortunately, Thread provides two means by which you can determine whether a thread has
ended. First, you can interrogate the read-only IsAlive property for the thread. It is defined
like this:

public bool IsAlive { get; }

IsAlive returns true if the thread upon which it is called is still running. It returns false
otherwise. To try IsAlive, substitute this version of MoreThreads for the one shown in the
preceding program:

// Use IsAlive to wait for threads to end.
class MoreThreads {
 static void Main() {
 Console.WriteLine("Main thread starting.");

 // Construct three threads.
 MyThread mt1 = new MyThread("Child #1");
 MyThread mt2 = new MyThread("Child #2");
 MyThread mt3 = new MyThread("Child #3");

 do {
 Console.Write(".");
 Thread.Sleep(100);
 } while (mt1.Thrd.IsAlive &&
 mt2.Thrd.IsAlive &&
 mt3.Thrd.IsAlive);

 Console.WriteLine("Main thread ending.");
 }
}

This version produces the same output as before. The only difference is that it uses IsAlive
to wait for the child threads to terminate.

Another way to wait for a thread to finish is to call Join(). Its simplest form is shown
here:

public void Join()

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 711

Join() waits until the thread on which it is called terminates. Its name comes from the concept
of the calling thread waiting until the specified thread joins it. A ThreadStateException will be
thrown if the thread has not been started. Additional forms of Join() allow you to specify a
maximum amount of time that you want to wait for the specified thread to terminate.

Here is a program that uses Join() to ensure that the main thread is the last to stop:

// Use Join().

using System;
using System.Threading;

class MyThread {
 public int Count;
 public Thread Thrd;

 public MyThread(string name) {
 Count = 0;
 Thrd = new Thread(this.Run);
 Thrd.Name = name;
 Thrd.Start();
 }

 // Entry point of thread.
 void Run() {
 Console.WriteLine(Thrd.Name + " starting.");

 do {
 Thread.Sleep(500);
 Console.WriteLine("In " + Thrd.Name +
 ", Count is " + Count);
 Count++;
 } while(Count < 10);

 Console.WriteLine(Thrd.Name + " terminating.");
 }
}

// Use Join() to wait for threads to end.
class JoinThreads {
 static void Main() {
 Console.WriteLine("Main thread starting.");

 // Construct three threads.
 MyThread mt1 = new MyThread("Child #1");
 MyThread mt2 = new MyThread("Child #2");
 MyThread mt3 = new MyThread("Child #3");

 mt1.Thrd.Join();
 Console.WriteLine("Child #1 joined.");

 mt2.Thrd.Join();
 Console.WriteLine("Child #2 joined.");

712 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 mt3.Thrd.Join();
 Console.WriteLine("Child #3 joined.");

 Console.WriteLine("Main thread ending.");
 }
}

Sample output from this program is shown here. Remember when you try the program,
your output may vary slightly.

Main thread starting.
Child #1 starting.
Child #2 starting.
Child #3 starting.
In Child #1, Count is 0
In Child #2, Count is 0
In Child #3, Count is 0
In Child #1, Count is 1
In Child #2, Count is 1
In Child #3, Count is 1
In Child #1, Count is 2
In Child #2, Count is 2
In Child #3, Count is 2
In Child #1, Count is 3
In Child #2, Count is 3
In Child #3, Count is 3
In Child #1, Count is 4
In Child #2, Count is 4
In Child #3, Count is 4
In Child #1, Count is 5
In Child #2, Count is 5
In Child #3, Count is 5
In Child #1, Count is 6
In Child #2, Count is 6
In Child #3, Count is 6
In Child #1, Count is 7
In Child #2, Count is 7
In Child #3, Count is 7
In Child #1, Count is 8
In Child #2, Count is 8
In Child #3, Count is 8
In Child #1, Count is 9
Child #1 terminating.
In Child #2, Count is 9
Child #2 terminating.
In Child #3, Count is 9
Child #3 terminating.
Child #1 joined.
Child #2 joined.
Child #3 joined.
Main thread ending.

As you can see, after the calls to Join() return, the threads have stopped executing.

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 713

Passing an Argument to a Thread
In the early days of the .NET Framework, it was not possible to pass an argument to a
thread when the thread was started because the method that serves as the entry point to a
thread could not have a parameter. If information needed to be passed to a thread, various
workarounds (such as using a shared variable) were required. However, this deficiency was
subsequently remedied, and today it is possible to pass an argument to a thread. To do so,
you must use different forms of Start(), the Thread constructor, and the entry point method.

An argument is passed to a thread through this version of Start():

public void Start(object arg)

The object passed to arg is automatically passed to the thread’s entry point method. Thus, to
pass an argument to a thread, you pass it to Start().

To make use of the parameterized version of Start(), you must use the following form
of the Thread constructor:

public Thread(ParameterizedThreadStart entryPoint)

Here, entryPoint is the name of the method that will be called to begin execution of the
thread. Notice in this version, the type of entryPoint is ParameterizedThreadStart rather
than ThreadStart, as used by the preceding examples. ParameterizedThreadStart is a
delegate that is declared as shown here:

public delegate void ParameterizedThreadStart(object arg)

As you can see, this delegate takes an argument of type object. Therefore, to use this form
of the Thread constructor, the thread entry point method must have an object parameter.

Here is an example that demonstrates the passing of an argument to a thread:

// Passing an argument to the thread method.

using System;
using System.Threading;

class MyThread {
 public int Count;
 public Thread Thrd;

 // Notice that MyThread is also passed an int value.
 public MyThread(string name, int num) {
 Count = 0;

 // Explicitly invoke ParameterizedThreadStart constructor
 // for the sake of illustration.
 Thrd = new Thread(this.Run);

 Thrd.Name = name;

 // Here, Start() is passed num as an argument.
 Thrd.Start(num);
 }

714 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 // Notice that this version of Run() has
 // a parameter of type object.
 void Run(object num) {
 Console.WriteLine(Thrd.Name +
 " starting with count of " + num);

 do {
 Thread.Sleep(500);
 Console.WriteLine("In " + Thrd.Name +
 ", Count is " + Count);
 Count++;
 } while(Count < (int) num);

 Console.WriteLine(Thrd.Name + " terminating.");
 }
}

class PassArgDemo {
 static void Main() {

 // Notice that the iteration count is passed
 // to these two MyThread objects.
 MyThread mt = new MyThread("Child #1", 5);
 MyThread mt2 = new MyThread("Child #2", 3);

 do {
 Thread.Sleep(100);
 } while (mt.Thrd.IsAlive | mt2.Thrd.IsAlive);

 Console.WriteLine("Main thread ending.");
 }
}

The output is shown here. (The actual output you see may vary.)

Child #1 starting with count of 5
Child #2 starting with count of 3
In Child #2, Count is 0
In Child #1, Count is 0
In Child #1, Count is 1
In Child #2, Count is 1
In Child #2, Count is 2
Child #2 terminating.
In Child #1, Count is 2
In Child #1, Count is 3
In Child #1, Count is 4
Child #1 terminating.
Main thread ending.

As the output shows, the first thread iterates five times and the second thread iterates three
times. The iteration count is specified in the MyThread constructor and then passed to the
thread entry method Run() through the use of the ParameterizedThreadStart version of
Start().

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 715

The IsBackground Property
As mentioned earlier, the .NET Framework defines two types of threads: foreground and
background. The only difference between the two is that a process won’t end until all of its
foreground threads have ended, but background threads are terminated automatically after
all foreground threads have stopped. By default, a thread is created as a foreground thread.
It can be changed to a background thread by using the IsBackground property defined by
Thread, as shown here:

public bool IsBackground { get; set; }

To set a thread to background, simply assign IsBackground a true value. A value of false
indicates a foreground thread.

Thread Priorities
Each thread has a priority setting associated with it. A thread’s priority determines, in part,
how frequently a thread gains access to the CPU. In general, low-priority threads gain access
to the CPU less often than high-priority threads. As a result, within a given period of time, a
low-priority thread will often receive less CPU time than a high-priority thread. As you might
expect, how much CPU time a thread receives profoundly affects its execution characteristics
and its interaction with other threads currently executing in the system.

It is important to understand that factors other than a thread’s priority can also affect how
frequently a thread gains access to the CPU. For example, if a high-priority thread is waiting
on some resource, perhaps for keyboard input, it will be blocked, and a lower-priority thread
will run. Thus, in this situation, a low-priority thread may gain greater access to the CPU than
the high-priority thread over a specific period. Finally, precisely how task scheduling is
implemented by the operating system affects how CPU time is allocated.

When a child thread is started, it receives a default priority setting. You can change a
thread’s priority through the Priority property, which is a member of Thread. This is its
general form:

public ThreadPriority Priority{ get; set; }

ThreadPriority is an enumeration that defines the following five priority settings:

ThreadPriority.Highest
ThreadPriority.AboveNormal
ThreadPriority.Normal
ThreadPriority.BelowNormal
ThreadPriority.Lowest

The default priority setting for a thread is ThreadPriority.Normal.
To understand how priorities affect thread execution, we will use an example that

executes two threads, one having a higher priority than the other. The threads are created as
instances of the MyThread class. The Run() method contains a loop that counts the number
of iterations. The loop stops when either the count reaches 1,000,000,000 or the static variable
stop is true. Initially, stop is set to false. The first thread to count to 1,000,000,000 sets stop
to true. This causes the second thread to terminate with its next time slice. Each time through
the loop, the string in currentName is checked against the name of the executing thread. If

716 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

they don’t match, it means that a task-switch occurred. Each time a task-switch happens, the
name of the new thread is displayed and currentName is given the name of the new thread.
This allows you to watch how often each thread has access to the CPU. After both threads
stop, the number of iterations for each loop is displayed.

// Demonstrate thread priorities.

using System;
using System.Threading;

class MyThread {
 public int Count;
 public Thread Thrd;

 static bool stop = false;
 static string currentName;

 /* Construct a new thread. Notice that this
 constructor does not actually start the
 threads running. */
 public MyThread(string name) {
 Count = 0;
 Thrd = new Thread(this.Run);
 Thrd.Name = name;
 currentName = name;
 }

 // Begin execution of new thread.
 void Run() {
 Console.WriteLine(Thrd.Name + " starting.");
 do {
 Count++;

 if(currentName != Thrd.Name) {
 currentName = Thrd.Name;
 Console.WriteLine("In " + currentName);
 }

 } while(stop == false && Count < 1000000000);
 stop = true;

 Console.WriteLine(Thrd.Name + " terminating.");
 }
}

class PriorityDemo {
 static void Main() {
 MyThread mt1 = new MyThread("High Priority");
 MyThread mt2 = new MyThread("Low Priority");

 // Set the priorities.
 mt1.Thrd.Priority = ThreadPriority.AboveNormal;
 mt2.Thrd.Priority = ThreadPriority.BelowNormal;

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 717

 // Start the threads.
 mt1.Thrd.Start();
 mt2.Thrd.Start();

 mt1.Thrd.Join();
 mt2.Thrd.Join();

 Console.WriteLine();
 Console.WriteLine(mt1.Thrd.Name + " thread counted to " +
 mt1.Count);
 Console.WriteLine(mt2.Thrd.Name + " thread counted to " +
 mt2.Count);
 }
}

Here is sample output:

High Priority starting.
In High Priority
Low Priority starting.
In Low Priority
In High Priority
In Low Priority
In High Priority
In Low Priority
In High Priority
In Low Priority
In High Priority
In Low Priority
In High Priority
High Priority terminating.
Low Priority terminating.

High Priority thread counted to 1000000000
Low Priority thread counted to 23996334

In this run, of the CPU time allotted to the program, the high-priority thread got approximately
98 percent. Of course, the precise output you see may vary, depending on the speed of your
CPU and the number of other tasks running on the system. Which version of Windows you
are running will also have an effect.

Because multithreaded code can behave differently in different environments, you
should never base your code on the execution characteristics of a single environment. For
example, in the preceding example, it would be a mistake to assume that the low-priority
thread will always execute at least a small amount of time before the high-priority thread
finishes. In a different environment, the high-priority thread might complete before the low-
priority thread has executed even once, for example.

Synchronization
When using multiple threads, you will sometimes need to coordinate the activities of two or
more of the threads. The process by which this is achieved is called synchronization. The most
common reason for using synchronization is when two or more threads need access to a

718 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

shared resource that can be used by only one thread at a time. For example, when one
thread is writing to a file, a second thread must be prevented from doing so at the same
time. Another situation in which synchronization is needed is when one thread is waiting
for an event that is caused by another thread. In this case, there must be some means by
which the first thread is held in a suspended state until the event has occurred. Then the
waiting thread must resume execution.

The key to synchronization is the concept of a lock, which controls access to a block of
code within an object. When an object is locked by one thread, no other thread can gain
access to the locked block of code. When the thread releases the lock, the object is available
for use by another thread.

The lock feature is built into the C# language. Thus, all objects can be synchronized.
Synchronization is supported by the keyword lock. Since synchronization was designed
into C# from the start, it is much easier to use than you might first expect. In fact, for many
programs, the synchronization of objects is almost transparent.

The general form of lock is shown here:

lock(lockObj) {
 // statements to be synchronized
}

Here, lockObj is a reference to the object being synchronized. If you want to synchronize
only a single statement, the curly braces are not needed. A lock statement ensures that the
section of code protected by the lock for the given object can be used only by the thread that
obtains the lock. All other threads are blocked until the lock is removed. The lock is released
when the block is exited.

The object you lock on is an object that represents the resource being synchronized. In
some cases, this will be an instance of the resource itself or simply an arbitrary instance of
object that is being used to provide synchronization. A key point to understand about lock
is that the lock-on object should not be publically accessible. Why? Because it is possible
that another piece of code that is outside your control could lock on the object and never
release it. In the past, it was common to use a construct such as lock(this). However, this
works only if this refers to a private object. Because of the potential for error and conceptual
mistakes in this regard, lock(this) is no longer recommended for general use. Instead, it is
better to simply create a private object on which to lock. This is the approach used by the
examples in this chapter. Be aware that you will still find many examples of lock(this) in
legacy C# code. In some cases, it will be safe. In others, it will need to be changed to avoid
problems.

The following program demonstrates synchronization by controlling access to a method
called SumIt(), which sums the elements of an integer array:

// Use lock to synchronize access to an object.

using System;
using System.Threading;

class SumArray {
 int sum;
 object lockOn = new object(); // a private object to lock on

 public int SumIt(int[] nums) {

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 719

 lock(lockOn) { // lock the entire method
 sum = 0; // reset sum

 for(int i=0; i < nums.Length; i++) {
 sum += nums[i];
 Console.WriteLine("Running total for " +
 Thread.CurrentThread.Name +
 " is " + sum);
 Thread.Sleep(10); // allow task-switch
 }
 return sum;
 }
 }
}

class MyThread {
 public Thread Thrd;
 int[] a;
 int answer;

 // Create one SumArray object for all instances of MyThread.
 static SumArray sa = new SumArray();

 // Construct a new thread.
 public MyThread(string name, int[] nums) {
 a = nums;
 Thrd = new Thread(this.Run);
 Thrd.Name = name;
 Thrd.Start(); // start the thread
 }

 // Begin execution of new thread.
 void Run() {
 Console.WriteLine(Thrd.Name + " starting.");

 answer = sa.SumIt(a);

 Console.WriteLine("Sum for " + Thrd.Name +
 " is " + answer);

 Console.WriteLine(Thrd.Name + " terminating.");
 }
}

class Sync {
 static void Main() {
 int[] a = {1, 2, 3, 4, 5};

 MyThread mt1 = new MyThread("Child #1", a);
 MyThread mt2 = new MyThread("Child #2", a);

 mt1.Thrd.Join();
 mt2.Thrd.Join();
 }
}

720 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Here is sample output from the program. (The actual output you see may vary slightly.)

Child #1 starting.
Running total for Child #1 is 1
Child #2 starting.
Running total for Child #1 is 3
Running total for Child #1 is 6
Running total for Child #1 is 10
Running total for Child #1 is 15
Running total for Child #2 is 1
Sum for Child #1 is 15
Child #1 terminating.
Running total for Child #2 is 3
Running total for Child #2 is 6
Running total for Child #2 is 10
Running total for Child #2 is 15
Sum for Child #2 is 15
Child #2 terminating.

As the output shows, both threads compute the proper sum of 15.
Let’s examine this program in detail. The program creates three classes. The first is

SumArray. It defines the method SumIt(), which sums an integer array. The second class
is MyThread, which uses a static object called sa that is of type SumArray. Thus, only one
object of SumArray is shared by all objects of type MyThread. This object is used to obtain
the sum of an integer array. Notice that SumArray stores the running total in a field called
sum. Thus, if two threads use SumIt() concurrently, both will be attempting to use sum to
hold the running total. Because this will cause errors, access to SumIt() must be synchronized.
Finally, the class Sync creates two threads and has them compute the sum of an integer array.

Inside SumIt(), the lock statement prevents simultaneous use of the method by
different threads. Notice that lock uses lockOn as the object being synchronized. This is a
private object that is used solely for synchronization. Sleep() is called to purposely allow a
task-switch to occur, if one can—but it can’t in this case. Because the code within SumIt()
is locked, it can be used by only one thread at a time. Thus, when the second child thread
begins execution, it does not enter SumIt() until after the first child thread is done with it.
This ensures the correct result is produced.

To understand the effects of lock fully, try removing it from the body of SumIt(). After
doing this, SumIt() is no longer synchronized, and any number of threads can use it
concurrently on the same object. The problem with this is that the running total is stored in
sum, which will be changed by each thread that calls SumIt(). Thus, when two threads call
SumIt() at the same time on the same object, incorrect results are produced because sum
reflects the summation of both threads, mixed together. For example, here is sample output
from the program after lock has been removed from SumIt():

Child #1 starting.
Running total for Child #1 is 1
Child #2 starting.
Running total for Child #2 is 1
Running total for Child #1 is 3
Running total for Child #2 is 5
Running total for Child #1 is 8
Running total for Child #2 is 11

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 721

Running total for Child #1 is 15
Running total for Child #2 is 19
Running total for Child #1 is 24
Running total for Child #2 is 29
Sum for Child #1 is 29
Child #1 terminating.
Sum for Child #2 is 29
Child #2 terminating.

As the output shows, both child threads are using SumIt() at the same time on the same
object, and the value of sum is corrupted.

The effects of lock are summarized here:

• For any given object, once a lock has been acquired, the object is locked and no
other thread can acquire the lock.

• Other threads trying to acquire the lock on the same object will enter a wait state
until the code is unlocked.

• When a thread leaves the locked block, the object is unlocked.

An Alternative Approach
Although locking a method’s code, as shown in the previous example, is an easy and effective
means of achieving synchronization, it will not work in all cases. For example, you might
want to synchronize access to a method of a class you did not create, which is itself not
synchronized. This can occur if you want to use a class that was written by a third party and
for which you do not have access to the source code. Thus, it is not possible for you to add a
lock statement to the appropriate method within the class. How can access to an object of
this class be synchronized? Fortunately, the solution to this problem is simple: Lock access
to the object from code outside the object by specifying the object in a lock statement. For
example, here is an alternative implementation of the preceding program. Notice that the
code within SumIt() is no longer locked and no longer declares the lockOn object. Instead,
calls to SumIt() are locked within MyThread.

// Another way to use lock to synchronize access to an object.

using System;
using System.Threading;

class SumArray {
 int sum;

 public int SumIt(int[] nums) {
 sum = 0; // reset sum

 for(int i=0; i < nums.Length; i++) {
 sum += nums[i];
 Console.WriteLine("Running total for " +
 Thread.CurrentThread.Name +
 " is " + sum);
 Thread.Sleep(10); // allow task-switch
 }
 return sum;

722 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 }
}

class MyThread {
 public Thread Thrd;
 int[] a;
 int answer;

 /* Create one SumArray object for all
 instances of MyThread. */
 static SumArray sa = new SumArray();

 // Construct a new thread.
 public MyThread(string name, int[] nums) {
 a = nums;
 Thrd = new Thread(this.Run);
 Thrd.Name = name;
 Thrd.Start(); // start the thread
 }

 // Begin execution of new thread.
 void Run() {
 Console.WriteLine(Thrd.Name + " starting.");

 // Lock calls to SumIt().
 lock(sa) answer = sa.SumIt(a);

 Console.WriteLine("Sum for " + Thrd.Name +
 " is " + answer);

 Console.WriteLine(Thrd.Name + " terminating.");
 }
}

class Sync {
 static void Main() {
 int[] a = {1, 2, 3, 4, 5};

 MyThread mt1 = new MyThread("Child #1", a);
 MyThread mt2 = new MyThread("Child #2", a);

 mt1.Thrd.Join();
 mt2.Thrd.Join();
 }
}

Here, the call to sa.SumIt() is locked, rather than the code inside SumIt() itself. The code
that accomplishes this is shown here:

// Lock calls to SumIt().
lock(sa) answer = sa.SumIt(a);

Because sa is a private object, it is safe to lock on. Using this approach, the program
produces the same correct results as the original approach.

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 723

The Monitor Class and lock
The C# keyword lock is really just shorthand for using the synchronization features defined
by the Monitor class, which is defined in the System.Threading namespace. Monitor
defines several methods that control or manage synchronization. For example, to obtain a
lock on an object, call Enter(). To release a lock, call Exit(). These methods are shown here:

public static void Enter(object syncOb)
public static void Exit(object syncOb)

Here, syncOb is the object being synchronized. If the object is not available when Enter() is
called, the calling thread will wait until it becomes available. You will seldom use Enter() or
Exit(), however, because a lock block automatically provides the equivalent. For this reason,
lock is the preferred method of obtaining a lock on an object when programming in C#.

One method in Monitor that you may find useful on occasion is TryEnter(). One of its
forms is shown here:

public static bool TryEnter(object syncOb)

It returns true if the calling thread obtains a lock on syncOb and false if it doesn’t. In no case
does the calling thread wait. You could use this method to implement an alternative if the
desired object is unavailable.

Monitor also defines these three methods: Wait(), Pulse(), and PulseAll(). They are
described in the next section.

Thread Communication Using Wait(), Pulse(), and PulseAll()
Consider the following situation. A thread called T is executing inside a lock block and needs
access to a resource, called R, that is temporarily unavailable. What should T do? If T enters
some form of polling loop that waits for R, then T ties up the object, blocking other threads’
access to it. This is a less than optimal solution because it partially defeats the advantages of
programming for a multithreaded environment. A better solution is to have T temporarily
relinquish control of the object, allowing another thread to run. When R becomes available, T
can be notified and resume execution. Such an approach relies upon some form of interthread
communication in which one thread can notify another that it is blocked and be notified when
it can resume execution. C# supports interthread communication with the Wait(), Pulse(),
and PulseAll() methods.

The Wait(), Pulse(), and PulseAll() methods are defined by the Monitor class. These
methods can be called only from within a locked block of code. Here is how they are used.
When a thread is temporarily blocked from running, it calls Wait(). This causes the thread
to go to sleep and the lock for that object to be released, allowing another thread to use the
object. At a later point, the sleeping thread is awakened when some other thread enters the
same lock and calls Pulse() or PulseAll(). A call to Pulse() resumes the first thread in the
queue of threads waiting for the lock. A call to PulseAll() signals the release of the lock to
all waiting threads.

Here are two commonly used forms of Wait():

public static bool Wait(object waitOb)
public static bool Wait(object waitOb, int milliseconds)

The first form waits until notified. The second form waits until notified or until the specified
period of milliseconds has expired. For both, waitOb specifies the object upon which to wait.

724 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Here are the general forms for Pulse() and PulseAll():

public static void Pulse(object waitOb)
public static void PulseAll(object waitOb)

Here, waitOb is the object being released.
A SynchronizationLockException will be thrown if Wait(), Pulse(), or PulseAll() is

called from code that is not within synchronized code, such as a lock block.

An Example That Uses Wait() and Pulse()
To understand the need for and the application of Wait() and Pulse(), we will create a
program that simulates the ticking of a clock by displaying the words “Tick” and “Tock” on the
screen. To accomplish this, we will create a class called TickTock that contains two methods:
Tick() and Tock(). The Tick() method displays the word “Tick” and Tock() displays “Tock”.
To run the clock, two threads are created, one that calls Tick() and one that calls Tock(). The
goal is to make the two threads execute in a way that the output from the program displays a
consistent “Tick Tock”—that is, a repeated pattern of one “Tick” followed by one “Tock.”

// Use Wait() and Pulse() to create a ticking clock.

using System;
using System.Threading;

class TickTock {
 object lockOn = new object();

 public void Tick(bool running) {
 lock(lockOn) {
 if(!running) { // stop the clock
 Monitor.Pulse(lockOn); // notify any waiting threads
 return;
 }

 Console.Write("Tick ");
 Monitor.Pulse(lockOn); // let Tock() run

 Monitor.Wait(lockOn); // wait for Tock() to complete
 }
 }

 public void Tock(bool running) {
 lock(lockOn) {
 if(!running) { // stop the clock
 Monitor.Pulse(lockOn); // notify any waiting threads
 return;
 }

 Console.WriteLine("Tock");
 Monitor.Pulse(lockOn); // let Tick() run

 Monitor.Wait(lockOn); // wait for Tick() to complete
 }
 }

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 725

}

class MyThread {
 public Thread Thrd;
 TickTock ttOb;

 // Construct a new thread.
 public MyThread(string name, TickTock tt) {
 Thrd = new Thread(this.Run);
 ttOb = tt;
 Thrd.Name = name;
 Thrd.Start();
 }

 // Begin execution of new thread.
 void Run() {
 if(Thrd.Name == "Tick") {
 for(int i=0; i<5; i++) ttOb.Tick(true);
 ttOb.Tick(false);
 }
 else {
 for(int i=0; i<5; i++) ttOb.Tock(true);
 ttOb.Tock(false);
 }
 }
}

class TickingClock {
 static void Main() {
 TickTock tt = new TickTock();
 MyThread mt1 = new MyThread("Tick", tt);
 MyThread mt2 = new MyThread("Tock", tt);

 mt1.Thrd.Join();
 mt2.Thrd.Join();
 Console.WriteLine("Clock Stopped");
 }
}

Here is the output produced by the program:

Tick Tock
Tick Tock
Tick Tock
Tick Tock
Tick Tock
Clock Stopped

Let’s take a close look at this program. In Main(), a TickTock object called tt is created,
and this object is used to start two threads of execution. Inside the Run() method of MyThread,
if the name of the thread is “Tick,” calls to Tick() are made. If the name of the thread is
“Tock,” the Tock() method is called. Five calls that pass true as an argument are made to
each method. The clock runs as long as true is passed. A final call that passes false to each
method stops the clock.

726 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

The most important part of the program is found in the Tick() and Tock() methods. We
will begin with the Tick() method, which, for convenience, is shown here:

public void Tick(bool running) {
 lock(lockOn) {
 if(!running) { // stop the clock
 Monitor.Pulse(lockOn); // notify any waiting threads
 return;
 }

 Console.Write("Tick ");
 Monitor.Pulse(lockOn); // let Tock() run

 Monitor.Wait(lockOn); // wait for Tock() to complete
 }
}

First, notice that the code in Tick() is contained within a lock block. Recall, Wait() and
Pulse() can be used only inside synchronized blocks. The method begins by checking the
value of the running parameter. This parameter is used to provide a clean shutdown of the
clock. If it is false, then the clock has been stopped. If this is the case, a call to Pulse() is
made to enable any waiting thread to run. We will return to this point in a moment. Assuming
the clock is running when Tick() executes, the word “Tick” is displayed, and then a call to
Pulse() takes place followed by a call to Wait(). The call to Pulse() allows a thread waiting
on the same object to run. The call to Wait() causes Tick() to suspend until another thread
calls Pulse(). Thus, when Tick() is called, it displays one “Tick,” lets another thread run,
and then suspends.

The Tock() method is an exact copy of Tick(), except that it displays “Tock.” Thus,
when entered, it displays “Tock,” calls Pulse(), and then waits. When viewed as a pair, a
call to Tick() can be followed only by a call to Tock(), which can be followed only by a call
to Tick(), and so on. Therefore, the two methods are mutually synchronized.

The reason for the call to Pulse() when the clock is stopped is to allow a final call to Wait()
to succeed. Remember, both Tick() and Tock() execute a call to Wait() after displaying their
message. The problem is that when the clock is stopped, one of the methods will still be
waiting. Thus, a final call to Pulse() is required in order for the waiting method to run. As an
experiment, try removing this call to Pulse() and watch what happens. As you will see, the
program will “hang,” and you will need to press CTRL-C to exit. The reason for this is that
when the final call to Tock() calls Wait(), there is no corresponding call to Pulse() that lets
Tock() conclude. Thus, Tock() just sits there, waiting forever.

Before moving on, if you have any doubt that the calls to Wait() and Pulse() are actually
needed to make the “clock” run right, substitute this version of TickTock into the preceding
program. It has all calls to Wait() and Pulse() removed.

// A nonfunctional version of TickTock.
class TickTock {

 object lockOn = new object();

 public void Tick(bool running) {
 lock(lockOn) {
 if(!running) { // stop the clock
 return;

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 727

 }

 Console.Write("Tick ");
 }
 }

 public void Tock(bool running) {
 lock(lockOn) {
 if(!running) { // stop the clock
 return;
 }

 Console.WriteLine("Tock");
 }
 }
}

After the substitution, the output produced by the program will look like this:

Tick Tick Tick Tick Tick Tock
Tock
Tock
Tock
Tock
Clock Stopped

Clearly, the Tick() and Tock() methods are no longer synchronized!

Deadlock and Race Conditions
When developing multithreaded programs, you must be careful to avoid deadlock and race
conditions. Deadlock is, as the name implies, a situation in which one thread is waiting for
another thread to do something, but that other thread is waiting on the first. Thus, both
threads are suspended, waiting for each other, and neither executes. This situation is
analogous to two overly polite people both insisting that the other step through a door first!

Avoiding deadlock seems easy, but it’s not. For example, deadlock can occur in
roundabout ways. Consider the TickTock class. As explained, if a final Pulse() is not
executed by Tick() or Tock(), then one or the other will be waiting indefinitely and the
program is deadlocked. Often the cause of the deadlock is not readily understood simply
by looking at the source code to the program, because concurrently executing threads
can interact in complex ways at runtime. To avoid deadlock, careful programming and
thorough testing is required. In general, if a multithreaded program occasionally “hangs,”
deadlock is the likely cause.

A race condition occurs when two (or more) threads attempt to access a shared resource
at the same time, without proper synchronization. For example, one thread may be writing
a new value to a variable while another thread is incrementing the variable’s current value.
Without synchronization, the outcome will depend on the order in which the threads
execute. (Does the second thread increment the original value or the new value written by
the first thread?) In situations like this, the two threads are said to be “racing each other,”
with the final outcome determined by which thread finishes first. Like deadlock, a race
condition can occur in difficult-to-discover ways. The solution is prevention: careful
programming that properly synchronizes access to shared resources.

728 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Using MethodImplAttribute
It is possible to synchronize an entire method by using the MethodImplAttribute attribute.
This approach can be used as an alternative to the lock statement in cases in which the
entire contents of a method are to be locked. MethodImplAttribute is defined within the
System.Runtime.CompilerServices namespace. The constructor that applies to
synchronization is shown here:

public MethodImplAttribute(MethodImplOptions opt)

Here, opt specifies the implementation attribute. To synchronize a method, specify
MethodImplOptions.Synchronized. This attribute causes the entire method to be locked
on the instance (that is, via this). (In the case of static methods, the type is locked on.) Thus,
it must not be used on a public object or with a public class.

Here is a rewrite of the TickTock class that uses MethodImplAttribute to provide
synchronization:

// Use MethodImplAttribute to synchronize a method.

using System;
using System.Threading;
using System.Runtime.CompilerServices;

// Rewrite of TickTock to use MethodImplOptions.Synchronized.
class TickTock {

 /* The following attribute synchronizes the entire
 Tick() method. */
 [MethodImplAttribute(MethodImplOptions.Synchronized)]
 public void Tick(bool running) {
 if(!running) { // stop the clock
 Monitor.Pulse(this); // notify any waiting threads
 return;
 }

 Console.Write("Tick ");
 Monitor.Pulse(this); // let Tock() run

 Monitor.Wait(this); // wait for Tock() to complete
 }

 /* The following attribute synchronizes the entire
 Tock() method. */
 [MethodImplAttribute(MethodImplOptions.Synchronized)]
 public void Tock(bool running) {
 if(!running) { // stop the clock
 Monitor.Pulse(this); // notify any waiting threads
 return;
 }

 Console.WriteLine("Tock");

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 729

 Monitor.Pulse(this); // let Tick() run

 Monitor.Wait(this); // wait for Tick() to complete
 }
}

class MyThread {
 public Thread Thrd;
 TickTock ttOb;

 // Construct a new thread.
 public MyThread(string name, TickTock tt) {
 Thrd = new Thread(this.Run);
 ttOb = tt;
 Thrd.Name = name;
 Thrd.Start();
 }

 // Begin execution of new thread.
 void Run() {
 if(Thrd.Name == "Tick") {
 for(int i=0; i<5; i++) ttOb.Tick(true);
 ttOb.Tick(false);
 }
 else {
 for(int i=0; i<5; i++) ttOb.Tock(true);
 ttOb.Tock(false);
 }
 }
}

class TickingClock {
 static void Main() {
 TickTock tt = new TickTock();
 MyThread mt1 = new MyThread("Tick", tt);
 MyThread mt2 = new MyThread("Tock", tt);

 mt1.Thrd.Join();
 mt2.Thrd.Join();
 Console.WriteLine("Clock Stopped");
 }
}

The proper Tick Tock output is the same as before.
As long as the method being synchronized is not defined by a public class or called on

a public object, then whether you use lock or MethodImplAttribute is your decision. Both
produce the same results. Because lock is a keyword built into C#, that is the approach the
examples in this book will use.

REMEMBERREMEMBER Do not use MethodImplAttribute with public classes or with public instances.
Instead, use lock, locking on a private object (as explained earlier).

730 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Using a Mutex and a Semaphore
Although C#’s lock statement is sufficient for many synchronization needs, some situations,
such as restricting access to a shared resource, are sometimes more conveniently handled by
other synchronization mechanisms built into the .NET Framework. The two described here
are related to each other: mutexes and semaphores.

The Mutex
A mutex is a mutually exclusive synchronization object. This means it can be acquired by
one and only one thread at a time. The mutex is designed for those situations in which a
shared resource can be used by only one thread at a time. For example, imagine a log file
that is shared by several processes, but only one process can write to that file at any one
time. A mutex is the perfect synchronization device to handle this situation.

The mutex is supported by the System.Threading.Mutex class. It has several
constructors. Two commonly used ones are shown here:

public Mutex()
public Mutex(bool owned)

The first version creates a mutex that is initially unowned. In the second version, if owned is
true, the initial state of the mutex is owned by the calling thread. Otherwise, it is unowned.

To acquire the mutex, your code will call WaitOne() on the mutex. This method is
inherited by Mutex from the Thread.WaitHandle class. Here is its simplest form:

public bool WaitOne();

It waits until the mutex on which it is called can be acquired. Thus, it blocks execution of the
calling thread until the specified mutex is available. It always returns true.

When your code no longer needs ownership of the mutex, it releases it by calling
ReleaseMutex(), shown here:

public void ReleaseMutex()

This releases the mutex on which it is called, enabling the mutex to be acquired by another
thread.

To use a mutex to synchronize access to a shared resource, you will use WaitOne() and
ReleaseMutex(), as shown in the following sequence:

Mutex myMtx = new Mutex();

// ...

myMtx.WaitOne(); // wait to acquire the mutex

// Access the shared resource.

myMtx.ReleaseMutex(); // release the mutex

When the call to WaitOne() takes place, execution of the thread will suspend until the
mutex can be acquired. When the call to ReleaseMutex() takes place, the mutex is released
and another thread can acquire it. Using this approach, access to a shared resource can be
limited to one thread at a time.

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 731

The following program puts this framework into action. It creates two threads,
IncThread and DecThread, which both access a shared resource called SharedRes.Count.
IncThread increments SharedRes.Count and DecThread decrements it. To prevent both
threads from accessing SharedRes.Count at the same time, access is synchronized by the
Mtx mutex, which is also part of the SharedRes class.

// Use a Mutex.

using System;
using System.Threading;

// This class contains a shared resource (Count),
// and a mutex (Mtx) to control access to it.
class SharedRes {
 public static int Count = 0;
 public static Mutex Mtx = new Mutex();
}

// This thread increments SharedRes.Count.
class IncThread {
 int num;
 public Thread Thrd;

 public IncThread(string name, int n) {
 Thrd = new Thread(this.Run);
 num = n;
 Thrd.Name = name;
 Thrd.Start();
 }

 // Entry point of thread.
 void Run() {

 Console.WriteLine(Thrd.Name + " is waiting for the mutex.");

 // Acquire the Mutex.
 SharedRes.Mtx.WaitOne();

 Console.WriteLine(Thrd.Name + " acquires the mutex.");

 do {
 Thread.Sleep(500);
 SharedRes.Count++;
 Console.WriteLine("In " + Thrd.Name +
 ", SharedRes.Count is " + SharedRes.Count);
 num--;
 } while(num > 0);

 Console.WriteLine(Thrd.Name + " releases the mutex.");

 // Release the Mutex.
 SharedRes.Mtx.ReleaseMutex();
 }
}

732 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

// This thread decrements SharedRes.Count.
class DecThread {
 int num;
 public Thread Thrd;

 public DecThread(string name, int n) {
 Thrd = new Thread(new ThreadStart(this.Run));
 num = n;
 Thrd.Name = name;
 Thrd.Start();
 }

 // Entry point of thread.
 void Run() {

 Console.WriteLine(Thrd.Name + " is waiting for the mutex.");

 // Acquire the Mutex.
 SharedRes.Mtx.WaitOne();

 Console.WriteLine(Thrd.Name + " acquires the mutex.");

 do {
 Thread.Sleep(500);
 SharedRes.Count--;
 Console.WriteLine("In " + Thrd.Name +
 ", SharedRes.Count is " + SharedRes.Count);
 num--;
 } while(num > 0);

 Console.WriteLine(Thrd.Name + " releases the mutex.");

 // Release the Mutex.
 SharedRes.Mtx.ReleaseMutex();
 }
}

class MutexDemo {
 static void Main() {

 // Construct three threads.
 IncThread mt1 = new IncThread("Increment Thread", 5);

 Thread.Sleep(1); // let the Increment thread start

 DecThread mt2 = new DecThread("Decrement Thread", 5);

 mt1.Thrd.Join();
 mt2.Thrd.Join();
 }
}

The output is shown here:

Increment Thread is waiting for the mutex.
Increment Thread acquires the mutex.

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 733

Decrement Thread is waiting for the mutex.
In Increment Thread, SharedRes.Count is 1
In Increment Thread, SharedRes.Count is 2
In Increment Thread, SharedRes.Count is 3
In Increment Thread, SharedRes.Count is 4
In Increment Thread, SharedRes.Count is 5
Increment Thread releases the mutex.
Decrement Thread acquires the mutex.
In Decrement Thread, SharedRes.Count is 4
In Decrement Thread, SharedRes.Count is 3
In Decrement Thread, SharedRes.Count is 2
In Decrement Thread, SharedRes.Count is 1
In Decrement Thread, SharedRes.Count is 0
Decrement Thread releases the mutex.

As the output shows, access to SharedRes.Count is synchronized, with only one thread at a
time being able to change its value.

To prove that the Mtx mutex was needed to produce the preceding output, try commenting
out the calls to WaitOne() and ReleaseMutex() in the preceding program. When you run
the program, you will see the following sequence (the actual output you see may vary):

In Increment Thread, SharedRes.Count is 1
In Decrement Thread, SharedRes.Count is 0
In Increment Thread, SharedRes.Count is 1
In Decrement Thread, SharedRes.Count is 0
In Increment Thread, SharedRes.Count is 1
In Decrement Thread, SharedRes.Count is 0
In Increment Thread, SharedRes.Count is 1
In Decrement Thread, SharedRes.Count is 0
In Increment Thread, SharedRes.Count is 1

As this output shows, without the mutex, increments and decrements to SharedRes.Count
are interspersed rather than sequenced.

The mutex created by the previous example is known only to the process that creates it.
However, it is possible to create a mutex that is known systemwide. To do so, you must
create a named mutex, using one of these constructors:

public Mutex(bool owned, string name)
public Mutex(bool owned, string name, out bool whatHappened)

In both forms, the name of the mutex is passed in name. In the first form, if owned is true,
then ownership of the mutex is requested. However, because a systemwide mutex might
already be owned by another process, it is better to specify false for this parameter. In the
second form, on return, whatHappened will be true if ownership was requested and acquired.
It will be false if ownership was denied. (There is also a third form of the Mutex constructor
that allows you to specify a MutexSecurity object, which controls access.) Using a named
mutex enables you to manage interprocess synchronization.

One other point: It is legal for a thread that has acquired a mutex to make one or more
additional calls to WaitOne() prior to calling ReleaseMutex(), and these additional calls
will succeed. That is, redundant calls to WaitOne() will not block a thread that already
owns the mutex. However, the number of calls to WaitOne() must be balanced by the same
number of calls to ReleaseMutex() before the mutex is released.

734 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

The Semaphore
A semaphore is similar to a mutex except that it can grant more than one thread access to
a shared resource at the same time. Thus, the semaphore is useful when a collection of
resources is being synchronized. A semaphore controls access to a shared resource through
the use of a counter. If the counter is greater than zero, then access is allowed. If it is zero,
access is denied. What the counter is counting are permits. Thus, to access the resource, a
thread must be granted a permit from the semaphore.

In general, to use a semaphore, the thread that wants access to the shared resource tries
to acquire a permit. If the semaphore’s counter is greater than zero, the thread acquires a
permit, which causes the semaphore’s count to be decremented. Otherwise, the thread will
block until a permit can be acquired. When the thread no longer needs access to the shared
resource, it releases the permit, which causes the semaphore’s count to be incremented. If
there is another thread waiting for a permit, then that thread will acquire a permit at that
time. The number of simultaneous accesses permitted is specified when the semaphore is
created. If you create a semaphore that allows only one access, then a semaphore acts just
like a mutex.

Semaphores are especially useful in situations in which a shared resource consists of a
group or pool. For example, a collection of network connections, any of which can be used
for communication, is a resource pool. A thread needing a network connection doesn’t care
which one it gets. In this case, a semaphore offers a convenient mechanism to manage
access to the connections.

The semaphore is implemented by System.Threading.Semaphore. It has several
constructors. The simplest form is shown here:

public Semaphore(int initial, int max)

Here, initial specifies the initial value of the semaphore permit counter, which is the number
of permits available. The maximum value of the counter is passed in max. Thus, max represents
the maximum number of permits that can granted by the semaphore. The value in initial
specifies how many of these permits are initially available.

Using a semaphore is similar to using a mutex, described earlier. To acquire access, your
code will call WaitOne() on the semaphore. This method is inherited by Semaphore from
the WaitHandle class. WaitOne() waits until the semaphore on which it is called can be
acquired. Thus, it blocks execution of the calling thread until the specified semaphore can
grant permission.

When your code no longer needs ownership of the semaphore, it releases it by calling
Release(), which is shown here:

public int Release()
public int Release(int num)

The first form releases one permit. The second form releases the number of permits
specified by num. Both return the permit count that existed prior to the release.

It is possible for a thread to call WaitOne() more than once before calling Release().
However, the number of calls to WaitOne() must be balanced by the same number of calls
to Release() before the permit is released. Alternatively, you can call the Release(int) form,
passing a number equal to the number of times that WaitOne() was called.

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 735

Here is an example that illustrates the semaphore. In the program, the class MyThread
uses a semaphore to allow only two MyThread threads to be executed at any one time.
Thus, the resource being shared is the CPU.

// Use a Semaphore.

using System;
using System.Threading;

// This thread allows only two instances of itself
// to run at any one time.
class MyThread {
 public Thread Thrd;

 // This creates a semaphore that allows up to two
 // permits to be granted and that initially has
 // two permits available.
 static Semaphore sem = new Semaphore(2, 2);

 public MyThread(string name) {
 Thrd = new Thread(this.Run);
 Thrd.Name = name;
 Thrd.Start();
 }

 // Entry point of thread.
 void Run() {

 Console.WriteLine(Thrd.Name + " is waiting for a permit.");

 sem.WaitOne();

 Console.WriteLine(Thrd.Name + " acquires a permit.");

 for(char ch='A'; ch < 'D'; ch++) {
 Console.WriteLine(Thrd.Name + " : " + ch + " ");
 Thread.Sleep(500);
 }

 Console.WriteLine(Thrd.Name + " releases a permit.");

 // Release the semaphore.
 sem.Release();
 }
}

class SemaphoreDemo {
 static void Main() {

 // Construct three threads.

736 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 MyThread mt1 = new MyThread("Thread #1");
 MyThread mt2 = new MyThread("Thread #2");
 MyThread mt3 = new MyThread("Thread #3");

 mt1.Thrd.Join();
 mt2.Thrd.Join();
 mt3.Thrd.Join();
 }
}

MyThread declares the semaphore sem, as shown here:

static Semaphore sem = new Semaphore(2, 2);

This creates a semaphore that can grant up to two permits and that initially has both
permits available.

In MyThread.Run(), notice that execution cannot continue until a permit is granted
by the semaphore, sem. If no permits are available, then execution of that thread suspends.
When a permit does become available, execution resumes and the thread can run. In Main(),
three MyThread threads are created. However, only the first two get to execute. The third
must wait until one of the other threads terminates. The output, shown here, verifies this.
(The actual output you see may vary slightly.)

Thread #1 is waiting for a permit.
Thread #1 acquires a permit.
Thread #1 : A
Thread #2 is waiting for a permit.
Thread #2 acquires a permit.
Thread #2 : A
Thread #3 is waiting for a permit.
Thread #1 : B
Thread #2 : B
Thread #1 : C
Thread #2 : C
Thread #1 releases a permit.
Thread #3 acquires a permit.
Thread #3 : A
Thread #2 releases a permit.
Thread #3 : B
Thread #3 : C
Thread #3 releases a permit.

The semaphore created by the previous example is known only to the process that creates
it. However, it is possible to create a semaphore that is known systemwide. To do so, you
must create a named semaphore. To do this, use one of these constructors:

public Semaphore(int initial, int max, string name)
public Semaphore(int initial, int max, string name, out bool whatHappened)

In both forms, the name of the semaphore is passed in name. In the first form, if a semaphore
by the specified name does not already exist, it is created using the values of initial and max.
If it does already exist, then the values of initial and max are ignored. In the second form, on
return, whatHappened will be true if the semaphore was created. In this case, the values of
initial and max will be used to create the semaphore. If whatHappened is false, then the

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 737

semaphore already exists and the values of initial and max are ignored. (There is also a third
form of the Semaphore constructor that allows you to specify a SemaphoreSecurity object,
which controls access.) Using a named semaphore enables you to manage interprocess
synchronization.

Using Events
C# supports another type of synchronization object: the event. There are two types of
events: manual reset and auto reset. These are supported by the classes ManualResetEvent
and AutoResetEvent. These classes are derived from the top-level class EventWaitHandle.
These classes are used in situations in which one thread is waiting for some event to occur
in another thread. When the event takes place, the second thread signals the first, allowing
it to resume execution.

The constructors for ManualResetEvent and AutoResetEvent are shown here:

public ManualResetEvent(bool status)
public AutoResetEvent(bool status)

Here, if status is true, the event is initially signaled. If status is false, the event is initially
non-signaled.

Events are easy to use. For a ManualResetEvent, the procedure works like this. A thread
that is waiting for some event simply calls WaitOne() on the event object representing that
event. WaitOne() returns immediately if the event object is in a signaled state. Otherwise,
it suspends execution of the calling thread until the event is signaled. After another thread
performs the event, that thread sets the event object to a signaled state by calling Set().
Thus, a call to Set() can be understood as signaling that an event has occurred. After the
event object is set to a signaled state, the call to WaitOne() will return and the first thread
will resume execution. The event is returned to a non-signaled state by calling Reset().

The difference between AutoResetEvent and ManualResetEvent is how the event gets
reset. For ManualResetEvent, the event remains signaled until a call to Reset() is made. For
AutoResetEvent, the event automatically changes to a non-signaled state as soon as a thread
waiting on that event receives the event notification and resumes execution. Thus, a call to
Reset() is not necessary when using AutoResetEvent.

Here is an example that illustrates ManualResetEvent:

// Use a manual event object.

using System;
using System.Threading;

// This thread signals the event passed to its constructor.
class MyThread {
 public Thread Thrd;
 ManualResetEvent mre;

 public MyThread(string name, ManualResetEvent evt) {
 Thrd = new Thread(this.Run);
 Thrd.Name = name;
 mre = evt;
 Thrd.Start();
 }

738 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 // Entry point of thread.
 void Run() {
 Console.WriteLine("Inside thread " + Thrd.Name);

 for(int i=0; i<5; i++) {
 Console.WriteLine(Thrd.Name);
 Thread.Sleep(500);
 }

 Console.WriteLine(Thrd.Name + " Done!");

 // Signal the event.
 mre.Set();
 }
}

class ManualEventDemo {
 static void Main() {
 ManualResetEvent evtObj = new ManualResetEvent(false);

 MyThread mt1 = new MyThread("Event Thread 1", evtObj);

 Console.WriteLine("Main thread waiting for event.");

 // Wait for signaled event.
 evtObj.WaitOne();

 Console.WriteLine("Main thread received first event.");

 // Reset the event.
 evtObj.Reset();

 mt1 = new MyThread("Event Thread 2", evtObj);

 // Wait for signaled event.
 evtObj.WaitOne();

 Console.WriteLine("Main thread received second event.");
 }
}

The output is shown here. (The actual output you see may vary slightly.)

Inside thread Event Thread 1
Event Thread 1
Main thread waiting for event.
Event Thread 1
Event Thread 1
Event Thread 1
Event Thread 1
Event Thread 1 Done!
Main thread received first event.
Inside thread Event Thread 2

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 739

Event Thread 2
Event Thread 2
Event Thread 2
Event Thread 2
Event Thread 2
Event Thread 2 Done!
Main thread received second event.

First, notice that MyThread is passed a ManualResetEvent in its constructor. When
MyThread’s Run() method finishes, it calls Set() on that event object, which puts the event
object into a signaled state. Inside Main(), a ManualResetEvent called evtObj is created
with an initially unsignaled state. Then, a MyThread instance is created and passed evtObj.
Next, the main thread waits on the event object. Because the initial state of evtObj is not
signaled, this causes the main thread to wait until the instance of MyThread calls Set(),
which puts evtObj into a signaled state. This allows the main thread to run again. Then the
event is reset and the process is repeated for the second thread. Without the use of the event
object, all threads would have run simultaneously and their output would have been
jumbled. To verify this, try commenting out the call to WaitOne() inside Main().

In the preceding program, if an AutoResetEvent object rather than a ManualResetEvent
object were used, then the call to Reset() in Main() would not be necessary. The reason is that
the event is automatically set to a non-signaled state when a thread waiting on the event is
resumed. To try this, simply change all references to ManualResetEvent to AutoResetEvent
and remove the calls to Reset(). This version will execute the same as before.

The Interlocked Class
One other class that is related to synchronization is Interlocked. This class offers an alternative
to the other synchronization features when all you need to do is change the value of a shared
variable. The methods provided by Interlocked guarantee that their operation is performed as
a single, uninterruptable operation. Thus, no other synchronization is needed. Interlocked
provides static methods that add two integers, increment an integer, decrement an integer,
compare and set an object, exchange objects, and obtain a 64-bit value. All of these operations
take place without interruption.

The following program demonstrates two Interlocked methods: Increment() and
Decrement(). Here the forms of these methods that will be used:

public static int Increment(ref int v)

public static int Decrement(ref int v)

Here, v is the value to be incremented or decremented.

// Use Interlocked operations.

using System;
using System.Threading;

// A shared resource.
class SharedRes {
 public static int Count = 0;
}

740 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

// This thread increments SharedRes.Count.
class IncThread {
 public Thread Thrd;

 public IncThread(string name) {
 Thrd = new Thread(this.Run);
 Thrd.Name = name;
 Thrd.Start();
 }

 // Entry point of thread.
 void Run() {

 for(int i=0; i<5; i++) {
 Interlocked.Increment(ref SharedRes.Count);
 Console.WriteLine(Thrd.Name + " Count is " + SharedRes.Count);
 }
 }
}

// This thread decrements SharedRes.Count.
class DecThread {
 public Thread Thrd;

 public DecThread(string name) {
 Thrd = new Thread(this.Run);
 Thrd.Name = name;
 Thrd.Start();
 }

 // Entry point of thread.
 void Run() {

 for(int i=0; i<5; i++) {
 Interlocked.Decrement(ref SharedRes.Count);
 Console.WriteLine(Thrd.Name + " Count is " + SharedRes.Count);
 }
 }
}

class InterlockedDemo {
 static void Main() {

 // Construct two threads.
 IncThread mt1 = new IncThread("Increment Thread");
 DecThread mt2 = new DecThread("Decrement Thread");

 mt1.Thrd.Join();
 mt2.Thrd.Join();
 }
}

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 741

Terminating a Thread
It is sometimes useful to stop a thread prior to its normal conclusion. For example, a
debugger may need to stop a thread that has run wild. Once a thread has been terminated,
it is removed from the system and cannot be restarted.

To terminate a thread prior to its normal ending point, use Thread.Abort(). Its simplest
form is shown here:

public void Abort()

Abort() causes a ThreadAbortException to be thrown to the thread on which Abort() is
called. This exception causes the thread to terminate. This exception can also be caught by
your code (but is automatically rethrown in order to stop the thread). Abort() may not
always be able to stop a thread immediately, so if it is important that a thread be stopped
before your program continues, you will need to follow a call to Abort() with a call to Join().
Also, in rare cases, it is possible that Abort() won’t be able to stop a thread. One way this
could happen is if a finally block goes into an infinite loop.

The following example shows how to stop a thread by use of Abort():

// Stopping a thread by use of Abort().

using System;
using System.Threading;

class MyThread {
 public Thread Thrd;

 public MyThread(string name) {
 Thrd = new Thread(this.Run);
 Thrd.Name = name;
 Thrd.Start();
 }

 // This is the entry point for thread.
 void Run() {
 Console.WriteLine(Thrd.Name + " starting.");

 for(int i = 1; i <= 1000; i++) {
 Console.Write(i + " ");
 if((i%10)==0) {
 Console.WriteLine();
 Thread.Sleep(250);
 }
 }
 Console.WriteLine(Thrd.Name + " exiting.");
 }
}

class StopDemo {
 static void Main() {

742 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 MyThread mt1 = new MyThread("My Thread");

 Thread.Sleep(1000); // let child thread start executing

 Console.WriteLine("Stopping thread.");
 mt1.Thrd.Abort();

 mt1.Thrd.Join(); // wait for thread to terminate

 Console.WriteLine("Main thread terminating.");
 }
}

The output from this program is shown here:

My Thread starting.
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
Stopping thread.
Main thread terminating.

NOTENOTE Abort() should not be used as the normal means of stopping a thread. It is meant for
specialized situations. Usually, a thread should end because its entry point method returns.

An Abort() Alternative
You might find a second form of Abort() useful in some cases. Its general form is shown here:

public void Abort(object info)

Here, info contains any information that you want to pass to the thread when it is
being stopped. This information is accessible through the ExceptionState property
of ThreadAbortException. You might use this to pass a termination code to a thread.
The following program demonstrates this form of Abort():

// Using Abort(object).

using System;
using System.Threading;

class MyThread {
 public Thread Thrd;

 public MyThread(string name) {
 Thrd = new Thread(this.Run);
 Thrd.Name = name;
 Thrd.Start();
 }

 // This is the entry point for thread.
 void Run() {
 try {

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 743

 Console.WriteLine(Thrd.Name + " starting.");

 for(int i = 1; i <= 1000; i++) {
 Console.Write(i + " ");
 if((i%10)==0) {
 Console.WriteLine();
 Thread.Sleep(250);
 }
 }
 Console.WriteLine(Thrd.Name + " exiting normally.");
 } catch(ThreadAbortException exc) {
 Console.WriteLine("Thread aborting, code is " +
 exc.ExceptionState);
 }
 }
}

class UseAltAbort {
 static void Main() {
 MyThread mt1 = new MyThread("My Thread");

 Thread.Sleep(1000); // let child thread start executing

 Console.WriteLine("Stopping thread.");
 mt1.Thrd.Abort(100);

 mt1.Thrd.Join(); // wait for thread to terminate

 Console.WriteLine("Main thread terminating.");
 }
}

The output is shown here:

My Thread starting.
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
Stopping thread.
Thread aborting, code is 100
Main thread terminating.

As the output shows, the value 100 is passed to Abort(). This value is then accessed
through the ExceptionState property of the ThreadAbortException caught by the thread
when it is terminated.

Canceling Abort()
A thread can override a request to abort. To do so, the thread must catch the
ThreadAbortException and then call ResetAbort(). This prevents the exception from
being automatically rethrown when the thread’s exception handler ends. ResetAbort()
is declared like this:

public static void ResetAbort()

744 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

A call to ResetAbort() can fail if the thread does not have the proper security setting to
cancel the abort.

The following program demonstrates ResetAbort():

// Using ResetAbort().

using System;
using System.Threading;

class MyThread {
 public Thread Thrd;

 public MyThread(string name) {
 Thrd = new Thread(this.Run);
 Thrd.Name = name;
 Thrd.Start();
 }

 // This is the entry point for thread.
 void Run() {
 Console.WriteLine(Thrd.Name + " starting.");

 for(int i = 1; i <= 1000; i++) {
 try {
 Console.Write(i + " ");
 if((i%10)==0) {
 Console.WriteLine();
 Thread.Sleep(250);
 }
 } catch(ThreadAbortException exc) {
 if((int)exc.ExceptionState == 0) {
 Console.WriteLine("Abort Cancelled! Code is " +
 exc.ExceptionState);
 Thread.ResetAbort();
 }
 else
 Console.WriteLine("Thread aborting, code is " +
 exc.ExceptionState);
 }
 }
 Console.WriteLine(Thrd.Name + " exiting normally.");
 }
}

class ResetAbort {
 static void Main() {
 MyThread mt1 = new MyThread("My Thread");

 Thread.Sleep(1000); // let child thread start executing

 Console.WriteLine("Stopping thread.");
 mt1.Thrd.Abort(0); // this won't stop the thread

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 745

 Thread.Sleep(1000); // let child execute a bit longer

 Console.WriteLine("Stopping thread.");
 mt1.Thrd.Abort(100); // this will stop the thread

 mt1.Thrd.Join(); // wait for thread to terminate

 Console.WriteLine("Main thread terminating.");
 }
}

The output is shown here:

My Thread starting.
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
Stopping thread.
Abort Cancelled! Code is 0
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
Stopping thread.
Thread aborting, code is 100
Main thread terminating.

In this example, if Abort() is called with an argument that equals zero, then the abort
request is cancelled by the thread by calling ResetAbort(), and the thread’s execution
continues. Any other value causes the thread to stop.

Suspending and Resuming a Thread
In early versions of the .NET Framework, a thread could be suspended by calling
Thread.Suspend() and resumed by calling Thread.Resume(). Today, however, both of
these methods are marked as obsolete and should not be used for new code. One reason
is that Suspend() is inherently dangerous because it can be used to suspend a thread that is
currently holding a lock, thus preventing the lock from being released, resulting in deadlock.
This can cause a systemwide problem. You must use C#’s other synchronization features,
such as a mutex, to suspend and resume a thread.

Determining a Thread’s State
The state of a thread can be obtained from the ThreadState property provided by Thread. It
is shown here:

public ThreadState ThreadState{ get; }

746 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

The state of the thread is returned as a value defined by the ThreadState enumeration. It
defines the following values:

ThreadState.Aborted ThreadState.AbortRequested

ThreadState.Background ThreadState.Running

ThreadState.Stopped ThreadState.StopRequested

ThreadState.Suspended ThreadState.SuspendRequested

ThreadState.Unstarted ThreadState.WaitSleepJoin

All but one of these values is self-explanatory. The one that needs some explanation is
ThreadState.WaitSleepJoin. A thread enters this state when it is waiting because of a call
to Wait(), Sleep(), or Join().

Using the Main Thread
As mentioned at the start of this chapter, all C# programs have at least one thread of
execution, called the main thread, which is given to the program automatically when it
begins running. The main thread can be handled just like all other threads.

To access the main thread, you must obtain a Thread object that refers to it. You do this
through the CurrentThread property, which is a member of Thread. Its general form is
shown here:

public static Thread CurrentThread{ get; }

This property returns a reference to the thread in which it is used. Therefore, if you use
CurrentThread while execution is inside the main thread, you will obtain a reference to the
main thread. Once you have this reference, you can control the main thread just like any
other thread.

The following program obtains a reference to the main thread and then gets and sets the
main thread’s name and priority:

// Control the main thread.

using System;
using System.Threading;

class UseMain {
 static void Main() {
 Thread Thrd;

 // Get the main thread.
 Thrd = Thread.CurrentThread;

 // Display main thread's name.
 if(Thrd.Name == null)
 Console.WriteLine("Main thread has no name.");
 else
 Console.WriteLine("Main thread is called: " + Thrd.Name);

 // Display main thread's priority.
 Console.WriteLine("Priority: " + Thrd.Priority);

PART II

C h a p t e r 2 3 : M u l t i t h r e a d e d P r o g r a m m i n g 747

 Console.WriteLine();

 // Set the name and priority.
 Console.WriteLine("Setting name and priority.\n");
 Thrd.Name = "Main Thread";
 Thrd.Priority = ThreadPriority.AboveNormal;

 Console.WriteLine("Main thread is now called: " +
 Thrd.Name);

 Console.WriteLine("Priority is now: " +
 Thrd.Priority);
 }
}

The output from the program is shown here:

Main thread has no name.
Priority: Normal

Setting name and priority.

Main thread is now called: Main Thread
Priority is now: AboveNormal

One word of caution: You need to be careful about what operations you perform on the
main thread. For example, if you add this call to Join() to the end of Main(),

Thrd.Join();

the program will never terminate because it will be waiting for the main thread to end!

Multithreading Tips
The key to effectively utilizing multithreading is to think concurrently rather than serially.
For example, when you have two subsystems within a program that can execute concurrently,
make them into individual threads. A word of caution is in order, however. If you create too
many threads, you can actually degrade your program’s performance rather than enhance
it. Remember, there is some overhead associated with context switching. If you create too
many threads, more CPU time will be spent changing contexts than in executing your program!

Starting a Separate Task
Although thread-based multitasking is what you will use most often when programming
in C#, it is possible to utilize process-based multitasking where appropriate. When using
process-based multitasking, instead of starting another thread within the same program,
one program starts the execution of another program. In C#, you do this by using the
Process class. Process is defined within the System.Diagnostics namespace. To conclude
this chapter, a brief look at starting and managing another process is offered.

The easiest way to start another process is to use the Start() method defined by Process.
Here is one of its simplest forms:

public static Process Start(string name)

748 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Here, name specifies the name of an executable file that will be executed or a file that is
associated with an executable.

When a process that you create ends, call Close() to free the memory associated with
that process. It is shown here:

public void Close()

You can terminate a process in two ways. If the process is a Windows GUI application,
then to terminate the process, call CloseMainWindow(), shown here:

public bool CloseMainWindow()

This method sends a message to the process, instructing it to stop. It returns true if the message
was received. It returns false if the application was not a GUI application, or does not have a
main window. Furthermore, CloseMainWindow() is only a request to shut down. If the
application ignores the request, the application will not be terminated.

To positively terminate a process, call Kill(), as shown here:

public void Kill()

Use Kill() carefully. It causes an uncontrolled termination of the process. Any unsaved data
associated with the process will most likely be lost.

You can wait for a process to end by calling WaitForExit(). Its two forms are shown here:

public void WaitForExit()
public bool WaitForExit(int milliseconds)

The first form waits until the process terminates. The second waits for only the specified
number of milliseconds. The second form returns true if the process has terminated and
false if it is still running.

The following program demonstrates how to create, wait for, and close a process. It starts
the standard Windows utility program WordPad.exe. It then waits for WordPad to end.

// Starting a new process.

using System;
using System.Diagnostics;

class StartProcess {
 static void Main() {
 Process newProc = Process.Start("wordpad.exe");

 Console.WriteLine("New process started.");

 newProc.WaitForExit();

 newProc.Close(); // free resources

 Console.WriteLine("New process ended.");
 }
}

When you run this program, WordPad will start, and you will see the message, “New
process started.” The program will then wait until you close WordPad. Once WordPad
has been terminated, the final message “New process ended.” is displayed.

24
Collections, Enumerators,

and Iterators

This chapter discusses one of the most important parts of the .NET Framework:
collections. In C#, a collection is a group of objects. The .NET Framework contains a
large number of interfaces and classes that define and implement various types of

collections. Collections simplify many programming tasks because they provide off-the-
shelf solutions to several common, but sometimes tedious-to-develop, data structures. For
example, there are built-in collections that support dynamic arrays, linked lists, stacks,
queues, and hash tables. Collections are a state-of-the-art technology that merits close
attention by all C# programmers.

Originally, there were only non-generic collection classes. However, the addition of
generics in C# 2.0 coincided with the addition of many new generic classes and interfaces
to the .NET Framework. The inclusion of the generic collections essentially doubled the
number of collection classes and interfaces. Thus, the Collections API is now quite large.
Although the generic and non-generic collections work in similar ways, there are some
differences, and both are described in this chapter.

Also described in this chapter are two features that relate to collections: enumerators
and iterators. Both enumerators and iterators enable the contents of a class to be cycled
through via a foreach loop.

Collections Overview
The principal benefit of collections is that they standardize the way groups of objects are
handled by your programs. All collections are designed around a set of cleanly defined
interfaces. Several built-in implementations of these interfaces, such as ArrayList,
Hashtable, Stack, and Queue, are provided, which you can use as-is. You can also
implement your own collection, but you will seldom need to.

The .NET Framework supports four general types of collections: non-generic,
specialized, bit based, and generic. The non-generic collections implement several
fundamental data structures, including a dynamic array, stack, and queue. They also
include dictionaries, in which you can store key/value pairs. An essential point to
understand about the non-generic collections is that they operate on data of type object.

749

CHAPTER

750 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Thus, they can be used to store any type of data, and different types of data can be mixed
within the same collection. Of course, because they store object references, they are not
type-safe. The non-generic collection classes and interfaces are in System.Collections.

The specialized collections operate on a specific type of data or operate in a unique
way. For example, there are specialized collections for strings. There are also specialized
collections that use a singly linked list. The specialized collections are declared in
System.Collections.Specialized.

The Collections API defines one bit-based collection called BitArray. BitArray supports
bitwise operations on bits, such as AND and XOR. As such, it differs significantly in its
capabilities from the other collections. BitArray is declared in System.Collections.

The generic collections provide generic implementations of several standard data
structures, such as linked lists, stacks, queues, and dictionaries. Because these collections
are generic, they are type-safe. This means that only items that are type-compatible with the
type of the collection can be stored in a generic collection, thus eliminating accidental type
mismatches. Generic collections are declared in System.Collections.Generic.

There are also several classes in the System.Collections.ObjectModel namespace that
support programmers who want to create their own generic collections.

Fundamental to all collections is the concept of an enumerator, which is supported by
the non-generic interfaces IEnumerator and IEnumerable, and the generic interfaces
IEnumerator<T> and IEnumerable<T>. An enumerator provides a standardized way of
accessing the elements within a collection, one at a time. Thus, it enumerates the contents
of a collection. Because each collection must implement either a generic or non-generic form
of IEnumerable, the elements of any collection class can be accessed through the methods
defined by IEnumerator or IEnumerator<T>. Therefore, with only small changes, the code
that cycles through one type of collection can be used to cycle through another. As a point of
interest, the foreach loop uses the enumerator to cycle through the contents of a collection.

A feature related to an enumerator is the iterator. It simplifies the process of creating
classes, such as custom collections, that can be cycled through by a foreach loop. Iterators
are also described in this chapter.

One last thing: If you are familiar with C++, then you will find it helpful to know that
the collection classes are similar in spirit to the Standard Template Library (STL) classes
defined by C++. What a C++ programmer calls a container, a C# programmer calls a
collection. The same is true of Java. If you are familiar with Java’s Collections Framework,
then you will have no trouble learning to use C# collections.

Because of the differences among the four types of collections—non-generic, bit-based,
specialized, and generic—this chapter discusses each separately.

The Non-Generic Collections
The non-generic collections have been part of the .NET Framework since version 1.0. They
are defined in the System.Collections namespace. The non-generic collections are general-
purpose data structures that operate on object references. Thus, they can manage any type
of object, but not in a type-safe manner. This is both their advantage and disadvantage.
Because they operate on object references, you can mix various types of data within the
same collection. This makes them useful in situations in which you need to manage a
collection of different types of objects or when the type of objects being stored are not known
in advance. However, if you intend a collection to store a specific type of object, then the
non-generic collections do not have the type safety that is found in the generic collections.

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 751

The non-generic collections are defined by a set of interfaces and the classes that
implement those interfaces. Each is described by the following sections.

The Non-Generic Interfaces
System.Collections defines a number of non-generic interfaces. It is necessary to begin with
the collection interfaces because they determine the functionality common to all of the non-
generic collection classes. The interfaces that underpin collections are summarized in Table
24-1. The following sections examine each interface in detail.

The ICollection Interface
The ICollection interface is the foundation upon which all non-generic collections are built.
It declares the core methods and properties that all non-generic collections will have. It also
inherits the IEnumerable interface.

ICollection defines the following properties:

Property Meaning

int Count { get; } The number of items currently held in the collection.

bool IsSynchronized { get; } Is true if the collection is synchronized and false if it is not.
By default, collections are not synchronized. It is possible,
though, to obtain a synchronized version of most collections.

object SyncRoot { get; } An object upon which the collection can be synchronized.

Count is the most often used property because it contains the number of elements currently
held in a collection. If Count is zero, then the collection is empty.

ICollection defines the following method:

void CopyTo(Array target, int startIdx)

CopyTo() copies the contents of a collection to the array specified by target, beginning at
the index specified by startIdx. Thus, CopyTo() provides a pathway from a collection to a
standard C# array.

Interface Description

ICollection Defines the elements that all non-generic collections must have.

IComparer Defines the Compare() method that performs a comparison on
objects stored in a collection.

IDictionary Defines a collection that consists of key/value pairs.

IDictionaryEnumerator Defines the enumerator for a collection that implements IDictionary.

IEnumerable Defines the GetEnumerator() method, which supplies the
enumerator for a collection class.

IEnumerator Provides methods that enable the contents of a collection to be
obtained one at a time.

IEqualityComparer Compares two objects for equality.

IHashCodeProvider Declared obsolete. Use IEqualityComparer instead.

IList Defines a collection that can be accessed via an indexer.

TABLE 24-1 The Non-Generic Collection Interfaces

752 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Because ICollection inherits IEnumerable, it also includes the sole method defined by
IEnumerable: GetEnumerator(), which is shown here:

IEnumerator GetEnumerator()

It returns the enumerator for the collection.
Because ICollection inherits IEnumerable, three extension methods are defined

for it. They are AsQueryable(), Cast(), and OfType(). AsQueryable() is declared in
System.Linq.Queryable. Both Cast() and OfType() are declared in System.Linq.Enumerable.
These methods are designed primarily to support LINQ, but may be useful in other contexts.

The IList Interface
The IList interface declares the behavior of a non-generic collection that allows elements
to be accessed via a zero-based index. It inherits ICollection and IEnumerable. In addition
to the methods defined by ICollection and IEnumerable, IList defines several of its own.
These are summarized in Table 24-2. Several of these methods imply the modification of a
collection. If the collection is read-only or of fixed size, then these methods will throw a
NotSupportedException.

Objects are added to an IList collection by calling Add(). Notice that Add() takes an
argument of type object. Since object is a base class for all types, any type of object can be
stored in a non-generic collection. This includes the value types, because boxing and
unboxing will automatically take place.

You can remove an element using Remove() or RemoveAt(). Remove() removes the
specified object. RemoveAt() removes the object at a specified index. To empty the collection,
call Clear().

Method Description

int Add(object obj) Adds obj into the invoking collection. Returns the index at
which the object is stored.

void Clear() Deletes all elements from the invoking collection.

bool Contains(object obj) Returns true if the invoking collection contains obj. Returns
false if obj is not in the collection.

int IndexOf(object obj) Returns the index of obj if obj is contained within the invoking
collection. If obj is not found, –1 is returned.

void Insert(int idx, object obj) Inserts obj at the index specified by idx. Elements at and
below idx are moved down to make room for obj.

void Remove(object obj) Removes the first occurrence of obj from the invoking
collection. Elements at and below the removed element are
moved up to close the gap.

void RemoveAt(int idx) Removes the object at the index specified by idx from the
invoking collection. Elements at and below idx are moved up
to close the gap.

TABLE 24-2 The Methods Defi ned by IList

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 753

You can determine whether a collection contains a specific object by calling Contains().
You can obtain the index of an object by called IndexOf(). You can insert an element at a
specific index by calling Insert().

IList defines the following properties:

bool IsFixedSize { get; }
bool IsReadOnly { get; }

If the collection is of fixed size, IsFixedSize is true. This means elements cannot be inserted
or removed. If the collection is read-only, then IsReadOnly is true. This means the contents
of the collection cannot be changed.

IList defines the following indexer:

object this[int idx] { get; set; }

You will use this indexer to get or set the value of an element. However, you cannot use it to
add a new element to the collection. To add an element to a list, call Add(). Once it is added,
you can access the element through the indexer.

The IDictionary Interface
The IDictionary interface defines the behavior of a non-generic collection that maps unique
keys to values. A key is an object that you use to retrieve a value at a later date. Thus, a
collection that implements IDictionary stores key/value pairs. Once the pair is stored, you
can retrieve it by using its key. IDictionary inherits ICollection and IEnumerable. The
methods declared by IDictionary are summarized in Table 24-3. Several methods throw an
ArgumentNullException if an attempt is made to specify a null key and null keys are not
allowed.

To add a key/value pair to an IDictionary collection, use Add(). Notice that the key
and its value are specified separately. To remove an element, specify the key of the object
in a call to Remove(). To empty the collection, call Clear().

You can determine whether a collection contains a specific object by calling Contains()
with the key of the desired item. GetEnumerator() obtains an enumerator compatible with
an IDictionary collection. This enumerator operates on key/value pairs.

Method Description

void Add(object k, object v) Adds the key/value pair specified by k and v to
the invoking collection. k must not be null.

void Clear() Removes all key/value pairs from the invoking
collection.

bool Contains(object k) Returns true if the invoking collection contains k
as a key. Otherwise, returns false.

IDictionaryEnumerator GetEnumerator() Returns the enumerator for the invoking collection.

void Remove(object k) Removes the entry whose key equals k.

TABLE 24-3 The Methods Defi ned by IDictionary

754 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

IDictionary defines the following properties:

Property Description

bool IsFixedSize { get; } Is true if the dictionary is of fixed size.

bool IsReadOnly { get; } Is true if the dictionary is read-only.

ICollection Keys { get; } Obtains a collection of the keys.

ICollection Values { get; } Obtains a collection of the values.

Notice that the keys and values contained within the collection are available as separate lists
through the Keys and Values properties.

IDictionary defines the following indexer:

object this[object key] { get; set; }

You can use this indexer to get or set the value of an element. You can also use it to add a
new element to the collection. Notice that the “index” is not actually an index, but rather the
key of the item.

IEnumerable, IEnumerator, and IDictionaryEnumerator
IEnumerable is the non-generic interface that a class must implement if it is to support
enumerators. As explained, all of the non-generic collection classes implement IEnumerable
because it is inherited by ICollection. The sole method defined by IEnumerable is
GetEnumerator(), which is shown here:

IEnumerator GetEnumerator()

It returns the enumerator for the collection. Also, implementing IEnumerable allows the
contents of a collection to be obtained by a foreach loop.

IEnumerator is the interface that defines the functionality of an enumerator. Using
its methods, you can cycle through the contents of a collection. For collections that
store key/value pairs (dictionaries), GetEnumerator() returns an object of type
IDictionaryEnumerator, rather than IEnumerator. IDictionaryEnumerator inherits
IEnumerator and adds functionality to facilitate the enumeration of dictionaries.

IEnumerator defines the methods MoveNext() and Reset() and the Current property.
The techniques needed to use them are described in detail later in this chapter. Briefly,
Current holds the element currently being obtained. MoveNext() moves to the next
element. Reset() restarts the enumeration from the beginning.

IComparer and IEqualityComparer
The IComparer interface defines a method called Compare(), which defines the way two
objects are compared. It is shown here:

int Compare(object v1, object v2)

It must return greater than zero if v1 is greater than v2, less than zero if v1 is less than v2,
and zero if the two values are the same. This interface can be used to specify how the
elements of a collection should be sorted.

IEqualityComparer defines these two methods:

bool Equals(object obj1, object obj2)

int GetHashCode(object obj)

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 755

Equals() must return true if obj1 and obj2 are equal. GetHashCode() must return the hash
code for obj.

The DictionaryEntry Structure
System.Collections defines one structure type called DictionaryEntry. Non-generic
collections that hold key/value pairs store those pairs in a DictionaryEntry object. This
structure defines the following two properties:

public object Key { get; set; }
public object Value { get; set; }

These properties are used to access the key or value associated with an entry. You can
construct a DictionaryEntry object by using the following constructor:

public DictionaryEntry(object k, object v)

Here, k is the key and v is the value.

The Non-Generic Collection Classes
Now that you are familiar with the non-generic collection interfaces, we can examine the
standard classes that implement them. With the exception of BitArray, described later, the
non-generic collection classes are summarized here:

Class Description

ArrayList A dynamic array. This is an array that can grow as needed.

Hashtable A hash table for key/value pairs.

Queue A first-in, first-out list.

SortedList A sorted list of key/value pairs.

Stack A first-in, last-out list.

The following sections examine these collection classes and illustrate their use.

ArrayList
The ArrayList class supports dynamic arrays, which can grow or shrink as needed. In C#,
standard arrays are of a fixed length, which cannot be changed during program execution.
This means you must know in advance how many elements an array will hold. But sometimes
you may not know until runtime precisely how large an array you will need. To handle this
situation, use ArrayList. An ArrayList is a variable-length array of object references that can
dynamically increase or decrease in size. An ArrayList is created with an initial size. When
this size is exceeded, the collection is automatically enlarged. When objects are removed, the
array can be shrunk. ArrayList is currently in wide use in existing code. For this reason, it is
examined in depth here. However, many of the same techniques that apply to ArrayList
apply to the other collections as well, including the generic collections.

ArrayList implements ICollection, IList, IEnumerable, and ICloneable. ArrayList has
the constructors shown here:

public ArrayList()
public ArrayList(ICollection c)
public ArrayList(int capacity)

756 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

The first constructor builds an empty ArrayList with an initial capacity of zero. The second
constructor builds an ArrayList that is initialized with the elements specified by c and has
an initial capacity equal to the number of elements. The third constructor builds an array list
that has the specified initial capacity. The capacity is the size of the underlying array that is
used to store the elements. The capacity grows automatically as elements are added to an
ArrayList.

In addition to the methods defined by the interfaces that it implements, ArrayList
defines several methods of its own. Some of the more commonly used ones are shown in
Table 24-4. An ArrayList can be sorted by calling Sort(). Once sorted, it can be efficiently
searched by BinarySearch(). The contents of an ArrayList can be reversed by calling
Reverse().

ArrayList supports several methods that operate on a range of elements within a
collection. You can insert another collection into an ArrayList by calling InsertRange().
You can remove a range by calling RemoveRange(). You can overwrite a range within an
ArrayList with the elements of another collection by calling SetRange(). You can also sort
or search a range rather than the entire collection.

By default, an ArrayList is not synchronized. To obtain a synchronized wrapper around
a collection, call Synchronized().

Method Description

public virtual void AddRange(ICollection c) Adds the elements in c to the end of the invoking
ArrayList.

public virtual int BinarySearch(object v) Searches the invoking collection for the value
passed in v. The index of the matching element is
returned. If the value is not found, a negative value
is returned. The invoking list must be sorted.

public virtual int
 BinarySearch(object v, IComparer comp)

Searches the invoking collection for the value
passed in v using the comparison object specified
by comp. The index of the matching element is
returned. If the value is not found, a negative value
is returned. The invoking list must be sorted.

public virtual int
 BinarySearch(int startIdx, int count,
 object v, IComparer comp)

Searches the invoking collection for the value
passed in v using the comparison object specified
by comp. The search begins at startIdx and runs for
count elements. The index of the matching element
is returned. If the value is not found, a negative
value is returned. The invoking list must be sorted.

public virtual void
 CopyTo(Array ar)

Copies the contents of the invoking collection to
the array specified by ar, which must be a one-
dimensional array compatible with the type of the
elements in the collection.

public virtual void
 CopyTo(Array ar, int startIdx)

Copies the contents of the invoking collection to the
array specified by ar, beginning at startIdx. The array
must be a one-dimensional array compatible with the
type of the elements in the collection.

TABLE 24-4 Several Commonly Used Methods Defi ned by ArrayList

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 757

public virtual void
 CopyTo(int srcIdx, Array ar,
 int destIdx, int count)

Copies a portion of the invoking collection, beginning
at srcIdx and running for count elements, to the
array specified by ar, beginning at destIdx. ar must
be a one-dimensional array compatible with the type
of the elements in the collection.

public static ArrayList FixedSize(ArrayList ar) Wraps ar in a fixed-size ArrayList and returns the
result.

public virtual ArrayList
 GetRange(int idx, int count)

Returns a portion of the invoking ArrayList. The
range returned begins at idx and runs for count
elements. The returned object refers to the same
elements as the invoking object.

public virtual int IndexOf(object v) Returns the index of the first occurrence of v in the
invoking collection. Returns –1 if v is not found.

public virtual void
 InsertRange(int startIdx, ICollection c)

Inserts the elements of c into the invoking collection,
starting at the index specified by startIdx.

public virtual int LastIndexOf(object v) Returns the index of the last occurrence of v in the
invoking collection. Returns –1 if v is not found.

public static ArrayList ReadOnly(ArrayList ar) Wraps ar in a read-only ArrayList and returns the
result.

public virtual void
 RemoveRange(int idx, int count)

Removes count elements from the invoking
collection, beginning at idx.

public virtual void Reverse() Reverses the contents of the invoking collection.

public virtual void
 Reverse(int startIdx, int count)

Reverses count elements of the invoking collection,
beginning at startIdx.

public virtual void
 SetRange(int startIdx, ICollection c)

Replaces elements within the invoking collection,
beginning at startIdx, with those specified by c.

public virtual void Sort() Sorts the collection into ascending order.

public virtual void Sort(IComparer comp) Sorts the collection using the specified comparison
object. If comp is null, the default comparison for
each object is used.

public virtual void
 Sort(int startIdx, int count,
 IComparer comp)

Sorts a portion of the collection using the specified
comparison object. The sort begins at startIdx and
runs for count elements. If comp is null, the default
comparison for each object is used.

public static ArrayList
 Synchronized(ArrayList list)

Returns a synchronized version of the invoking
ArrayList.

public virtual object[] ToArray() Returns an array that contains copies of the
elements of the invoking object.

TABLE 24-4 Several Commonly Used Methods Defi ned by ArrayList (continued)

Method Description

758 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

In addition to those properties defined by the interfaces that it implements, ArrayList
adds Capacity, shown here:

public virtual int Capacity { get; set; }

Capacity gets or sets the capacity of the invoking ArrayList. The capacity is the number of
elements that can be held before the ArrayList must be enlarged. As mentioned, an ArrayList
grows automatically, so it is not necessary to set the capacity manually. However, for
efficiency reasons, you might want to set the capacity when you know in advance how
many elements the list will contain. This prevents the overhead associated with the
allocation of more memory.

Conversely, if you want to reduce the size of the array that underlies an ArrayList, you
can set Capacity to a smaller value. However, this value must not be less than Count. Recall
that Count is a property defined by ICollection that holds the number of objects currently
stored in a collection. Attempting to set Capacity to a value less than Count causes an
ArgumentOutOfRangeException to be generated. To obtain an ArrayList that is precisely
as large as the number of items that it is currently holding, set Capacity equal to Count. You
can also call TrimToSize().

The following program demonstrates ArrayList. It creates an ArrayList and then adds
characters to it. The list is then displayed. Some of the elements are removed, and the list is
displayed again. Next, more elements are added, forcing the capacity of the list to be
increased. Finally, the contents of elements are changed.

// Demonstrate ArrayList.

using System;
using System.Collections;

class ArrayListDemo {
 static void Main() {
 // Create an array list.
 ArrayList al = new ArrayList();

 Console.WriteLine("Initial number of elements: " +
 al.Count);

 Console.WriteLine();

 Console.WriteLine("Adding 6 elements");
 // Add elements to the array list
 al.Add('C');

public virtual Array ToArray(Type type) Returns an array that contains copies of the
elements of the invoking object. The type of the
elements in the array are specified by type.

public virtual void TrimToSize() Sets Capacity to Count.

TABLE 24-4 Several Commonly Used Methods Defi ned by ArrayList (continued)

Method Description

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 759

 al.Add('A');
 al.Add('E');
 al.Add('B');
 al.Add('D');
 al.Add('F');

 Console.WriteLine("Number of elements: " +
 al.Count);

 // Display the array list using array indexing.
 Console.Write("Current contents: ");
 for(int i=0; i < al.Count; i++)
 Console.Write(al[i] + " ");
 Console.WriteLine("\n");

 Console.WriteLine("Removing 2 elements");
 // Remove elements from the array list.
 al.Remove('F');
 al.Remove('A');

 Console.WriteLine("Number of elements: " +
 al.Count);

 // Use foreach loop to display the list.
 Console.Write("Contents: ");
 foreach(char c in al)
 Console.Write(c + " ");
 Console.WriteLine("\n");

 Console.WriteLine("Adding 20 more elements");
 // Add enough elements to force al to grow.
 for(int i=0; i < 20; i++)
 al.Add((char)('a' + i));
 Console.WriteLine("Current capacity: " +
 al.Capacity);
 Console.WriteLine("Number of elements after adding 20: " +
 al.Count);
 Console.Write("Contents: ");
 foreach(char c in al)
 Console.Write(c + " ");
 Console.WriteLine("\n");

 // Change contents using array indexing.
 Console.WriteLine("Change first three elements");
 al[0] = 'X';
 al[1] = 'Y';
 al[2] = 'Z';
 Console.Write("Contents: ");
 foreach(char c in al)
 Console.Write(c + " ");
 Console.WriteLine();
 }
}

760 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

The output from this program is shown here:

Initial number of elements: 0

Adding 6 elements
Number of elements: 6
Current contents: C A E B D F

Removing 2 elements
Number of elements: 4
Contents: C E B D

Adding 20 more elements
Current capacity: 32
Number of elements after adding 20: 24
Contents: C E B D a b c d e f g h i j k l m n o p q r s t

Change first three elements
Contents: X Y Z D a b c d e f g h i j k l m n o p q r s t

Sorting and Searching an ArrayList An ArrayList can be sorted by Sort(). Once sorted, it can be
efficiently searched by BinarySearch(). The following program demonstrates these methods:

// Sort and search an ArrayList.

using System;
using System.Collections;

class SortSearchDemo {
 static void Main() {
 // Create an array list.
 ArrayList al = new ArrayList();

 // Add elements to the array list.
 al.Add(55);
 al.Add(43);
 al.Add(-4);
 al.Add(88);
 al.Add(3);
 al.Add(19);

 Console.Write("Original contents: ");
 foreach(int i in al)
 Console.Write(i + " ");
 Console.WriteLine("\n");

 // Sort
 al.Sort();

 // Use foreach loop to display the list.
 Console.Write("Contents after sorting: ");
 foreach(int i in al)
 Console.Write(i + " ");
 Console.WriteLine("\n");

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 761

 Console.WriteLine("Index of 43 is " +
 al.BinarySearch(43));
 }
}

The output is shown here:

Original contents: 55 43 -4 88 3 19

Contents after sorting: -4 3 19 43 55 88

Index of 43 is 3

Although an ArrayList can store objects of any type within the same list, when sorting
or searching a list, it is necessary for those objects to be comparable. For example, the
preceding program would have generated an exception if the list had included a string.
(It is possible to create custom comparison methods that would allow the comparison of
strings and integers, however. Custom comparators are discussed later in this chapter.)

Obtaining an Array from an ArrayList When working with ArrayList, you will sometimes want
to obtain an actual array that contains the contents of the list. You can do this by calling
ToArray(). There are several reasons why you might want to convert a collection into an
array. Here are two: You may want to obtain faster processing times for certain operations,
or you might need to pass an array to a method that is not overloaded to accept a collection.
Whatever the reason, converting an ArrayList to an array is a trivial matter, as the following
program shows:

// Convert an ArrayList into an array.

using System;
using System.Collections;

class ArrayListToArray {
 static void Main() {
 ArrayList al = new ArrayList();

 // Add elements to the array list.
 al.Add(1);
 al.Add(2);
 al.Add(3);
 al.Add(4);

 Console.Write("Contents: ");
 foreach(int i in al)
 Console.Write(i + " ");
 Console.WriteLine();

 // Get the array.
 int[] ia = (int[]) al.ToArray(typeof(int));
 int sum = 0;

 // Sum the array.
 for(int i=0; i<ia.Length; i++)
 sum += ia[i];

762 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 Console.WriteLine("Sum is: " + sum);
 }
}

The output from the program is shown here:

Contents: 1 2 3 4
Sum is: 10

The program begins by creating a collection of integers. Next, ToArray() is called with the
type specified as int. This causes an array of integers to be created. Since the return type of
ToArray() is Array, the contents of the array must still be cast to int[]. (Recall that Array is
the base type of all C# arrays.) Finally, the values are summed.

Hashtable
Hashtable creates a collection that uses a hash table for storage. As most readers will know, a
hash table stores information using a mechanism called hashing. In hashing, the informational
content of a key is used to determine a unique value, called its hash code. The hash code is
then used as the index at which the data associated with the key is stored in the table. The
transformation of the key into its hash code is performed automatically—you never see the
hash code itself. The advantage of hashing is that it allows the execution time of lookup,
retrieve, and set operations to remain near constant, even for large sets. Hashtable implements
the IDictionary, ICollection, IEnumerable, ISerializable, IDeserializationCallback, and
ICloneable interfaces.

Hashtable defines many constructors, including these frequently used ones:

public Hashtable()
public Hashtable(IDictionary c)
public Hashtable(int capacity)
public Hashtable(int capacity, fl oat fi llRatio)

The first form constructs a default Hashtable. The second form initializes the Hashtable by
using the elements of c. The third form initializes the capacity of the Hashtable to capacity.
The fourth form initializes both the capacity and fill ratio. The fill ratio (also called the load
factor) must be between 0.1 and 1.0, and it determines how full the hash table can be before
it is resized upward. Specifically, when the number of elements is greater than the capacity
of the table multiplied by its fill ratio, the table is expanded. For constructors that do not
take a fill ratio, 1.0 is used.

In addition to the methods defined by the interfaces that it implements, Hashtable also
defines several methods of its own. Some commonly used ones are shown in Table 24-5.
To determine if a Hashtable contains a key, call ContainsKey(). To see if a specific value
is stored, call ContainsValue(). To enumerate the contents of a Hashtable, obtain an
IDictionaryEnumerator by calling GetEnumerator(). Recall that IDictionaryEnumerator
is used to enumerate the contents of a collection that stores key/value pairs.

The public properties available in Hashtable are those defined by the interfaces that
it implements. Two especially important ones are Keys and Values because they let you
obtain a collection of a Hashtable’s keys or values. They are specified by IDictionary and
are shown here:

public virtual ICollection Keys { get; }
public virtual ICollection Values { get; }

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 763

Because Hashtable does not maintain an ordered collection, there is no specific order to
the collection of keys or values obtained. Hashtable also has two protected properties:
EqualityComparer and KeyComparer. Two other properties called hcp and comparer
are flagged as obsolete.

Hashtable stores key/value pairs in the form of a DictionaryEntry structure, but most
of the time, you won’t be aware of it directly because the properties and methods work with
keys and values individually. For example, when you add an element to a Hashtable, you
call Add(), which takes two arguments: the key and the value.

It is important to note that Hashtable does not guarantee the order of its elements. This
is because the process of hashing does not usually lend itself to the creation of sorted tables.

Here is an example that demonstrates Hashtable:

// Demonstrate Hashtable.

using System;
using System.Collections;

class HashtableDemo {
 static void Main() {
 // Create a hash table.
 Hashtable ht = new Hashtable();

 // Add elements to the table.
 ht.Add("house", "Dwelling");
 ht.Add("car", "Means of transport");
 ht.Add("book", "Collection of printed words");
 ht.Add("apple", "Edible fruit");

 // Can also add by using the indexer.
 ht["tractor"] = "Farm implement";

 // Get a collection of the keys.
 ICollection c = ht.Keys;

 // Use the keys to obtain the values.
 foreach(string str in c)
 Console.WriteLine(str + ": " + ht[str]);
 }
}

Method Description

public virtual bool ContainsKey(object k) Returns true if k is a key in the invoking Hashtable.
Returns false otherwise.

public virtual bool ContainsValue(object v) Returns true if v is a value in the invoking Hashtable.
Returns false otherwise.

public virtual IDictionaryEnumerator
 GetEnumerator()

Returns an IDictionaryEnumerator for the invoking
Hashtable.

public static Hashtable
 Synchronized(Hashtable ht)

Returns a synchronized version of the Hashtable
passed in ht.

TABLE 24-5 Several Commonly Used Methods Defi ned by Hashtable

764 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

The output from this program is shown here:

book: Collection of printed words
tractor: Farm implement
apple: Edible fruit
house: Dwelling
car: Means of transport

As the output shows, the key/value pairs are not stored in sorted order. Notice how the
contents of the hash table ht were obtained and displayed. First, a collection of the keys was
retrieved by the Keys property. Each key was then used to index ht, yielding the value
associated with each key. Remember, the indexer defined by IDictionary and implemented
by Hashtable uses a key as the index.

SortedList
SortedList creates a collection that stores key/value pairs in sorted order, based on the
value of the keys. SortedList implements the IDictionary, ICollection, IEnumerable, and
ICloneable interfaces.

SortedList has several constructors, including those shown here:

public SortedList()
public SortedList(IDictionary c)
public SortedList(int capacity)
public SortedList(IComparer comp)

The first constructor builds an empty collection with an initial capacity of zero. The second
constructor builds a SortedList that is initialized with the elements of c and has an initial
capacity equal to the number of elements. The third constructor builds an empty SortedList
that has the initial capacity specified by capacity. The capacity is the size of the underlying
array that is used to store the elements. The fourth form lets you specify a comparison
method that will be used to compare the object contained in the list. This form creates an
empty collection with an initial capacity of zero.

The capacity of a SortedList grows automatically as needed when elements are added
to the list. When the current capacity is exceeded, the capacity is increased. The advantage
of specifying a capacity when creating a SortedList is that you can prevent or minimize the
overhead associated with resizing the collection. Of course, it makes sense to specify an
initial capacity only if you have some idea of how many elements will be stored.

In addition to the methods defined by the interfaces that it implements, SortedList also
defines several methods of its own. Some of the most commonly used ones are shown in Table
24-6. To determine if a SortedList contains a key, call ContainsKey(). To see if a specific
value is stored, call ContainsValue(). To enumerate the contents of a SortedList, obtain an
IDictionaryEnumerator by calling GetEnumerator(). Recall that IDictionaryEnumerator is
used to enumerate the contents of a collection that stores key/value pairs. You can obtain a
synchronized wrapper around a SortedList by calling Synchronized().

There are various ways to set or obtain a value or key. To obtain the value associated
with a specific index, call GetByIndex(). To set a value given its index, call SetByIndex().
You can retrieve the key associated with a specific index by calling GetKey(). To obtain a
list of all the keys, use GetKeyList(). To get a list of all the values, use GetValueList(). You
can obtain the index of a key by calling IndexOfKey() and the index of a value by calling
IndexOfValue(). Of course, SortedList also supports the indexer defined by IDictionary
that lets you set or obtain a value given its key.

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 765

The public properties available in SortedList are those defined by the interfaces that it
implements. As is the case with Hashtable, two especially important properties are Keys
and Values because they let you obtain a read-only collection of a SortedList’s keys or
values. They are specified by IDictionary and are shown here:

public virtual ICollection Keys { get; }
public virtual ICollection Values { get; }

The order of the keys and values reflects that of the SortedList.
Like Hashtable, a SortedList stores key/value pairs in the form of a DictionaryEntry

structure, but you will usually access the keys and values individually using the methods
and properties defined by SortedList.

The following program demonstrates SortedList. It reworks and expands the Hashtable
demonstration program from the previous section, substituting SortedList. When you
examine the output, you will see that the SortedList version is sorted by key.

// Demonstrate a SortedList.

using System;
using System.Collections;

Method Description

public virtual bool ContainsKey(object k) Returns true if k is a key in the invoking SortedList.
Returns false otherwise.

public virtual bool ContainsValue(object v) Returns true if v is a value in the invoking SortedList.
Returns false otherwise.

public virtual object GetByIndex(int idx) Returns the value at the index specified by idx.

public virtual IDictionaryEnumerator
 GetEnumerator()

Returns an IDictionaryEnumerator for the invoking
SortedList.

public virtual object GetKey(int idx) Returns the value of the key at the index specified by idx.

public virtual IList GetKeyList() Returns an IList collection of the keys in the invoking
SortedList.

public virtual IList GetValueList() Returns an IList collection of the values in the invoking
SortedList.

public virtual int IndexOfKey(object k) Returns the index of the key specified by k. Returns –1
if the key is not in the list.

public virtual int IndexOfValue(object v) Returns the index of the first occurrence of the value
specified by v. Returns –1 if the value is not in the list.

public virtual void
 SetByIndex(int idx, object v)

Sets the value at the index specified by idx to the value
passed in v.

public static SortedList
 Synchronized(SortedList sl)

Returns a synchronized version of the SortedList
passed in sl.

public virtual void TrimToSize() Sets Capacity to Count.

TABLE 24-6 Several Commonly Used Methods Defi ned by SortedList

766 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

class SLDemo {
 static void Main() {
 // Create a sorted SortedList.
 SortedList sl = new SortedList();

 // Add elements to the table.
 sl.Add("house", "Dwelling");
 sl.Add("car", "Means of transport");
 sl.Add("book", "Collection of printed words");
 sl.Add("apple", "Edible fruit");

 // Can also add by using the indexer.
 sl["tractor"] = "Farm implement";

 // Get a collection of the keys.
 ICollection c = sl.Keys;

 // Use the keys to obtain the values.
 Console.WriteLine("Contents of list via indexer.");
 foreach(string str in c)
 Console.WriteLine(str + ": " + sl[str]);

 Console.WriteLine();

 // Display list using integer indexes.
 Console.WriteLine("Contents by integer indexes.");
 for(int i=0; i < sl.Count; i++)
 Console.WriteLine(sl.GetByIndex(i));

 Console.WriteLine();

 // Show integer indexes of entries.
 Console.WriteLine("Integer indexes of entries.");
 foreach(string str in c)
 Console.WriteLine(str + ": " + sl.IndexOfKey(str));
 }
}

The output is shown here:

Contents of list via indexer.
apple: Edible fruit
book: Collection of printed words
car: Means of transport
house: Dwelling
tractor: Farm implement

Contents by integer indexes.
Edible fruit
Collection of printed words
Means of transport
Dwelling
Farm implement

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 767

Integer indexes of entries.
apple: 0
book: 1
car: 2
house: 3
tractor: 4

Stack
As most readers know, a stack is a first-in, last-out list. To visualize a stack, imagine a stack
of plates on a table. The first plate put down is the last one to be picked up. The stack is one
of the most important data structures in computing. It is frequently used in system
software, compilers, and AI-based backtracking routines, to name just a few examples.

The collection class that supports a stack is called Stack. It implements the ICollection,
IEnumerable, and ICloneable interfaces. Stack is a dynamic collection that grows as
needed to accommodate the elements it must store. Each time the capacity must be
increased, the capacity is doubled.

Stack defines the following constructors:

public Stack()
public Stack(int capacity)
public Stack(ICollection c)

The first form creates an empty stack. The second form creates an empty stack with the initial
capacity specified by capacity. The third form creates a stack that contains the elements of the
collection specified by c and an initial capacity equal to the number of elements.

In addition to the methods defined by the interfaces that it implements, Stack defines
the methods shown in Table 24-7. In general, here is how you use Stack. To put an object on
the top of the stack, call Push(). To remove and return the top element, call Pop(). You can
use Peek() to return, but not remove, the top object. An InvalidOperationException is
thrown if you call Pop() or Peek() when the invoking stack is empty.

Method Description

public virtual void Clear() Sets Count to zero, which effectively clears
the stack.

public virtual bool Contains(object v) Returns true if v is on the invoking stack. If v
is not found, false is returned.

public virtual object Peek() Returns the element on the top of the stack,
but does not remove it.

public virtual object Pop() Returns the element on the top of the stack,
removing it in the process.

public virtual void Push(object v) Pushes v onto the stack.

public static Stack Synchronized(Stack stk) Returns a synchronized version of the Stack
passed in stk.

public virtual object[] ToArray() Returns an array that contains copies of the
elements of the invoking stack.

TABLE 24-7 The Methods Defi ned by Stack

768 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Here is an example that creates a stack, pushes several integers onto it, and then pops
them off again:

// Demonstrate the Stack class.

using System;
using System.Collections;

class StackDemo {
 static void ShowPush(Stack st, int a) {
 st.Push(a);
 Console.WriteLine("Push(" + a + ")");

 Console.Write("stack: ");
 foreach(int i in st)
 Console.Write(i + " ");

 Console.WriteLine();
 }

 static void ShowPop(Stack st) {
 Console.Write("Pop -> ");
 int a = (int) st.Pop();
 Console.WriteLine(a);

 Console.Write("stack: ");
 foreach(int i in st)
 Console.Write(i + " ");

 Console.WriteLine();
 }

 static void Main() {
 Stack st = new Stack();

 foreach(int i in st)
 Console.Write(i + " ");

 Console.WriteLine();

 ShowPush(st, 22);
 ShowPush(st, 65);
 ShowPush(st, 91);
 ShowPop(st);
 ShowPop(st);
 ShowPop(st);

 try {
 ShowPop(st);
 } catch (InvalidOperationException) {
 Console.WriteLine("Stack empty.");

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 769

 }
 }
}

Here’s the output produced by the program. Notice how the exception handler for
InvalidOperationException manages a stack underflow.

Push(22)
stack: 22
Push(65)
stack: 65 22
Push(91)
stack: 91 65 22
Pop -> 91
stack: 65 22
Pop -> 65
stack: 22
Pop -> 22
stack:
Pop -> Stack empty.

Queue
Another familiar data structure is the queue, which is a first-in, first-out list. That is, the first
item put in a queue is the first item retrieved. Queues are common in real life. For example,
lines at a bank or fast-food restaurant are queues. In programming, queues are used to hold
such things as the currently executing processes in the system, a list of pending database
transactions, or data packets received over the Internet. They are also often used in
simulations.

The collection class that supports a queue is called Queue. It implements the ICollection,
IEnumerable, and ICloneable interfaces. Queue is a dynamic collection that grows as
needed to accommodate the elements it must store. When more room is needed, the size
of the queue is increased by a growth factor, which, by default, is 2.0.

Queue defines the following constructors:

public Queue()
public Queue (int capacity)
public Queue (int capacity, fl oat growFact)
public Queue (ICollection c)

The first form creates an empty queue with an initial capacity of 32 and uses the default
growth factor of 2.0. The second form creates an empty queue with the initial capacity
specified by capacity and a growth factor of 2.0. The third form allows you to specify a
growth factor in growFact (which must be between 1.0 and 10.0). The fourth form creates
a queue that contains the elements of the collection specified by c, and an initial capacity
equal to the number of elements. In this form, the default growth factor of 2.0 is used.

In addition to the methods defined by the interfaces that it implements, Queue defines
the methods shown in Table 24-8. In general, here is how you use Queue. To put an object
in the queue, call Enqueue(). To remove and return the object at the front of the queue,
call Dequeue(). You can use Peek() to return, but not remove, the next object. An
InvalidOperationException is thrown if you call Dequeue() or Peek() when the invoking
queue is empty.

770 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Here is an example that demonstrates Queue:

// Demonstrate the Queue class.

using System;
using System.Collections;

class QueueDemo {
 static void ShowEnq(Queue q, int a) {
 q.Enqueue(a);
 Console.WriteLine("Enqueue(" + a + ")");

 Console.Write("queue: ");
 foreach(int i in q)
 Console.Write(i + " ");

 Console.WriteLine();
 }

 static void ShowDeq(Queue q) {
 Console.Write("Dequeue -> ");
 int a = (int) q.Dequeue();
 Console.WriteLine(a);

 Console.Write("queue: ");
 foreach(int i in q)
 Console.Write(i + " ");

 Console.WriteLine();
 }

 static void Main() {

Method Description

public virtual void Clear() Sets Count to zero, which effectively clears
the queue.

public virtual bool Contains(object v) Returns true if v is in the invoking queue. If v
is not found, false is returned.

public virtual object Dequeue() Returns the object at the front of the invoking
queue. The object is removed in the process.

public virtual void Enqueue(object v) Adds v to the end of the queue.

public virtual object Peek() Returns the object at the front of the invoking
queue, but does not remove it.

public static Queue Synchronized(Queue q) Returns a synchronized version of q.

public virtual object[] ToArray() Returns an array that contains copies of the
elements of the invoking queue.

public virtual void TrimToSize() Sets Capacity to Count.

TABLE 24-8 The Methods Defi ned by Queue

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 771

 Queue q = new Queue();

 foreach(int i in q)
 Console.Write(i + " ");

 Console.WriteLine();

 ShowEnq(q, 22);
 ShowEnq(q, 65);
 ShowEnq(q, 91);
 ShowDeq(q);
 ShowDeq(q);
 ShowDeq(q);

 try {
 ShowDeq(q);
 } catch (InvalidOperationException) {
 Console.WriteLine("Queue empty.");
 }
 }
}

The output is shown here:

Enqueue(22)
queue: 22
Enqueue(65)
queue: 22 65
Enqueue(91)
queue: 22 65 91
Dequeue -> 22
queue: 65 91
Dequeue -> 65
queue: 91
Dequeue -> 91
queue:
Dequeue -> Queue empty.

Storing Bits with BitArray
The BitArray class supports a collection of bits. Because it stores bits rather than objects,
BitArray has capabilities different from those of the other collections. However, it still
supports the basic collection underpinning by implementing ICollection and IEnumerable.
It also implements ICloneable.

BitArray defines several constructors. You can construct a BitArray from an array of
Boolean values using this constructor:

public BitArray(bool[] bits)

In this case, each element of bits becomes a bit in the collection. Thus, each bit in the
collection corresponds to an element of bits. Furthermore, the ordering of the elements of
bits and the bits in the collection are the same.

772 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

You can create a BitArray from an array of bytes using this constructor:

public BitArray(byte[] bits)

Here, the bit pattern in bits becomes the bits in the collection, with bits[0] specifying the first
8 bits, bits[1] specifying the second 8 bits, and so on. In similar fashion, you can construct a
BitArray from an array of ints using this constructor:

public BitArray(int[] bits)

In this case, bits[0] specifies the first 32 bits, bits[1] specifies the second 32 bits, and so on.
You can create a BitArray of a specific size using this constructor:

public BitArray(int size)

Here, size specifies the number of bits. The bits in the collection are initialized to false. To
specify a size and initial value of the bits, use the following constructor:

public BitArray(int size, bool v)

In this case, all bits in the collection will be set to the value passed in v.
Finally, you can create a new BitArray from an existing one by using this constructor:

public BitArray(BitArray bits)

The new object will contain the same collection of bits as bits, but the two collections will be
otherwise separate.

BitArrays can be indexed. Each index specifies an individual bit, with an index of zero
indicating the low-order bit.

In addition to the methods specified by the interfaces that it implements, BitArray defines
the methods shown in Table 24-9. Notice that BitArray does not supply a Synchronized()
method. Thus, a synchronized wrapper is not available, and the IsSynchronized property is
always false. However, you can control access to a BitArray by synchronizing on the object
provided by SyncRoot.

Method Description

public BitArray And(BitArray ba) ANDs the bits of the invoking object with those specified by ba
and returns a BitArray that contains the result.

public bool Get(int idx) Returns the value of the bit at the index specified by idx.

public BitArray Not() Performs a bitwise, logical NOT on the invoking collection and
returns a BitArray that contains the result.

public BitArray Or(BitArray ba) ORs the bits of the invoking object with those specified by ba
and returns a BitArray that contains the result.

public void Set(int idx, bool v) Sets the bit at the index specified by idx to v.

public void SetAll(bool v) Sets all bits to v.

public BitArray Xor(BitArray ba) XORs the bits of the invoking object with those specified by ba
and returns a BitArray that contains the result.

TABLE 24-9 The Methods Defi ned by BitArray

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 773

To the properties specified by the interfaces that it implements, BitArray adds Length,
which is shown here:

public int Length { get; set; }

Length sets or obtains the number of bits in the collection. Thus, Length gives the same
value as does the standard Count property, which is defined for all collections. However,
Count is read-only, but Length is not. Thus, Length can be used to change the size of a
BitArray. If you shorten a BitArray, bits are truncated from the high-order end. If you
lengthen a BitArray, false bits are added to the high-order end.

BitArray defines the following indexer:

public bool this[int idx] { get; set; }

You can use this indexer to get or set the value of an element.
Here is an example that demonstrates BitArray:

// Demonstrate BitArray.

using System;
using System.Collections;

class BADemo {
 public static void ShowBits(string rem,
 BitArray bits) {
 Console.WriteLine(rem);
 for(int i=0; i < bits.Count; i++)
 Console.Write("{0, -6} ", bits[i]);
 Console.WriteLine("\n");
 }

 static void Main() {
 BitArray ba = new BitArray(8);
 byte[] b = { 67 };
 BitArray ba2 = new BitArray(b);

 ShowBits("Original contents of ba:", ba);

 ba = ba.Not();

 ShowBits("Contents of ba after Not:", ba);

 ShowBits("Contents of ba2:", ba2);

 BitArray ba3 = ba.Xor(ba2);

 ShowBits("Result of ba XOR ba2:", ba3);
 }
}

The output is shown here:

Original contents of ba:
False False False False False False False False

774 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Contents of ba after Not:
True True True True True True True True

Contents of ba2:
True True False False False False True False

Result of ba XOR ba2:
False False True True True True False True

The Specialized Collections
The .NET Framework provides some specialized collections that are optimized to work on a
specific type of data or in a specific way. These non-generic collection classes are defined
inside the System.Collections.Specialized namespace. They are synopsized in the
following table:

Specialized Collection Description

CollectionsUtil Contains factory methods that create collections.

HybridDictionary A collection that uses a ListDictionary to store key/value pairs
when there are few elements in the collection. When the collection
grows beyond a certain size, a Hashtable is automatically used to
store the elements.

ListDictionary A collection that stores key/value pairs in a linked list. It is
recommended only for small collections.

NameValueCollection A sorted collection of key/value pairs in which both the key and
value are of type string.

OrderedDictionary A collection of key/value pairs that can be indexed.

StringCollection A collection optimized for storing strings.

StringDictionary A hash table of key/value pairs in which both the key and the value
are of type string.

System.Collections also defines three abstract base classes, CollectionBase,
ReadOnlyCollectionBase, and DictionaryBase, which can be inherited and used as a
starting point for developing custom specialized collections.

The Generic Collections
The addition of generics greatly expanded the Collections API, essentially doubling the
amount of collection classes and interfaces. The generic collections are declared in the
System.Collections.Generic namespace. In many cases, the generic collection classes are
simply generic equivalents of the non-generic classes discussed earlier. However, the
correspondence is not one-to-one. For example, there is a generic collection called LinkedList
that implements a doubly linked list, but no non-generic equivalent. In some cases, parallel
functionality exists between the generic and non-generic classes, but the names differ. For
example, the generic version of ArrayList is called List, and the generic version of HashTable

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 775

is called Dictionary. Also, the specific contents of the various interfaces and classes contain
minor reorganizations, with some functionality shifting from one interface to another, for
example. However, overall, if you understand the non-generic collections, then you can easily
use the generic collections.

In general, the generic collections work in the same way as the non-generic collections
with the exception that a generic collection is type-safe. Thus, a generic collection can store
only items that are compatible with its type argument. Therefore, if you want a collection
that is capable of storing unrelated, mixed types, you should use one of the non-generic
classes. However, for all cases in which a collection is storing only one type of object, then
a generic collection is now your best choice.

The generic collections are defined by a set of interfaces and the classes that implement
those interfaces. Each is described by the following sections.

The Generic Interfaces
System.Collections.Generic defines a number of generic interfaces, all of which parallel
their corresponding non-generic counterparts. The generic interfaces are summarized in
Table 24-10.

The ICollection<T> Interface
The ICollection<T> interface defines those features that all generic collections have in
common. It inherits the IEnumerable and IEnumerable<T> interfaces. ICollection<T> is
the generic version of the non-generic ICollection interface. However, there are some
differences between the two.

ICollection<T> defines the following properties:

int Count { get; }

bool IsReadOnly { get; }

Count contains the number of items currently held in the collection. IsReadOnly is true if
the collection is read-only. It is false if the collection is read/write.

Interface Description

ICollection<T> Defines the foundational features for the generic collections.

IComparer<T> Defines the generic Compare() method that performs a
comparison on objects stored in a collection.

IDictionary<TK, TV> Defines a generic collection that consists of key/value pairs.

IEnumerable<T> Defines the generic GetEnumerator() method, which supplies the
enumerator for a collection class.

IEnumerator<T> Provides members that enable the contents of a collection to be
obtained one at a time.

IEqualityComparer<T> Compares two objects for equality.

IList<T> Defines a generic collection that can be accessed via an indexer.

TABLE 24-10 The Generic Collection Interfaces

776 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

ICollection<T> defines the following methods. Notice it defines a few more methods
than does its non-generic counterpart.

Method Description

void Add(T obj) Adds obj to the invoking collection. Throws a
NotSupportedException if the collection is read-only.

void Clear() Deletes all elements from the invoking collection and
sets Count to zero.

bool Contains(T obj) Returns true if the invoking collection contains the
object passed in obj and false otherwise.

void CopyTo(T[] target, int startIdx) Copies the contents of the invoking collection to
the array specified by target, beginning at the index
specified by startIdx.

bool Remove(T obj) Removes the first occurrence of obj from the invoking
collection. Returns true if obj was removed and false if
it was not found in the invoking collection.

Several of these methods will throw NotSupportedException if the collection is read-only.
Because ICollection<T> inherits IEnumerable and IEnumerable<T>, it also includes both
the generic and non-generic forms of the method GetEnumerator().

Because ICollection<T> inherits IEnumerable<T>, it supports the extension methods
defined by Enumerable. Although the extension methods were designed mostly for LINQ,
they are available for other uses, including collections.

The IList<T> Interface
The IList<T> interface defines the behavior of a generic collection that allows elements to
be accessed via a zero-based index. It inherits IEnumerable, IEnumerable<T>, and
ICollection<T> and is the generic version of the non-generic IList interface. IList<T>
defines the methods shown in Table 24-11. Two of these methods imply the modification of
a collection. If the collection is read-only or of fixed size, then the Insert() and RemoveAt()
methods will throw a NotSupportedException.

IList<T> defines the following indexer:

T this[int idx] { get; set; }

This indexer sets or gets the value of the element at the index specified by idx.

Method Description

int IndexOf(T obj) Returns the index of the first occurrence of obj if obj is
contained within the invoking collection. If obj is not found,
–1 is returned.

void Insert(int idx, T obj) Inserts obj at the index specified by idx.

void RemoveAt(int idx) Removes the object at the index specified by idx from the
invoking collection.

TABLE 24-11 The Methods Defi ned by IList<T>

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 777

The IDictionary<TK, TV> Interface
The IDictionary<TK, TV> interface defines the behavior of a generic collection that
maps unique keys to values. That is, it defines a collection that stores key/value pairs.
IDictionary<TK, TV> inherits IEnumerable, IEnumerable<KeyValuePair<TK, TV>>,
and ICollection< KeyValuePair<TK, TV>> and is the generic version of the non-generic
IDictionary. The methods declared by IDictionary<TK, TV> are summarized in Table 24-12.
All throw an ArgumentNullException if an attempt is made to specify a null key.

IDictionary<TK, TV> defines the following properties:

Property Description

ICollection Keys<TK> { get; } Obtains a collection of the keys.

ICollection Values<TV> { get; } Obtains a collection of the values.

Notice that the keys and values contained within the collection are available as separate lists
through the Keys and Values properties.

IDictionary<TK, TV> defines the following indexer:

TV this[TK key] { get; set; }

You can use this indexer to get or set the value of an element. You can also use it to add a
new element to the collection. Notice that the “index” is not actually an index, but rather the
key of the item.

IEnumerable<T> and IEnumerator<T>
IEnumerable<T> and IEnumerator<T> are the generic equivalents of the non-generic
IEnumerable and IEnumerator interfaces described earlier. They declare the same methods
and properties, and work in the same way. Of course, the generic versions operate on data
of the type specified by the type argument.

IEnumerable<T> declares the GetEnumerator() method as shown here:

IEnumerator<T> GetEnumerator()

It returns an enumerator of type T for the collection. Thus, it returns a type-safe enumerator.

Method Description

void Add(TK k, TV v) Adds the key/value pair specified by k and v to the invoking
collection. An ArgumentException is thrown if k is already
stored in the collection.

bool ContainsKey(TK k) Returns true if the invoking collection contains k as a key.
Otherwise, returns false.

bool Remove(TK k) Removes the entry whose key equals k.

bool TryGetValue(TK k, out TV v) Attempts to retrieve the value associated with k, putting it
into v. Returns true if successful and false otherwise. If k
is not found, v is given its default value.

TABLE 24-12 The Methods Defi ned by IDictionary<TK, TV>

778 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

IEnumerator<T> has the same two methods as does the non-generic IEnumerator:
MoveNext() and Reset(). It also declares a generic version of the Current property, as
shown here:

T Current { get; }

It returns a T reference to the next object. Thus, the generic version of Current is type-safe.
There is one other difference between IEnumerator and IEnumerator<T>: IEnumerator<T>

inherits the IDisposable interface, but IEnumerator does not. IDisposable defines the Dispose()
method, which is used to free unmanaged resources.

NOTENOTE IEnumerable<T> also implements the non-generic IEnumerable interface. Thus, it
supports the non-generic version of GetEnumerator(). IEnumerator<T> also implements the
non-generic IEnumerator interface, thus supporting the non-generic versions of Current.

IComparer<T>
The IComparer<T> interface is the generic version of IComparer described earlier. The
main difference between the two is that IComparer<T> is type-safe, declaring the generic
version of Compare() shown here:

int Compare(T obj1, T obj2)

This method compares obj1 with obj2 and returns greater than zero if obj1 is greater than
obj2, zero if the two objects are the same, and less than zero if obj1 is less that obj2.

IEqualityComparer<T>
The IEqualityComparer<T> interface is the equivalent of its non-generic relative
IEqualityComparer. It defines these two methods:

bool Equals(T obj1, T obj2)

int GetHashCode(T obj)

Equals() must return true if obj1 and obj2 are equal. GetHashCode() must return the hash
code for obj.

The KeyValuePair<TK, TV> Structure
System.Collections.Generic defines a structure called KeyValuePair<TK, TV>, which is
used to store a key and its value. It is used by the generic collection classes that store key/
value pairs, such as Dictionary<TK, TV>. This structure defines the following two
properties:

public TK Key { get; };
public TV Value { get; };

These properties hold the key or value associated with an entry. You can construct a
KeyValuePair<TK, TV> object by using the following constructor:

public KeyValuePair(TK k, TV v)

Here, k is the key and v is the value.

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 779

The Generic Collection Classes
As mentioned at the start of this section, the generic collection classes largely parallel their
non-generic relatives, although in some cases the names have been changed. Also, some
differences in organization and functionality exist. The generic collections are defined in
System.Collections.Generic. The ones described in this chapter are shown in Table 24-13.
These classes form the core of the generic collections.

NOTENOTE System.Collections.Generic also includes the following classes: SynchronizedCollection<T>
is a synchronized collection based on IList<T>. SynchronizedReadOnlyCollection<T> is a
read-only synchronized collection based on IList<T>. SynchronizedKeyCollection<K, V> is
an abstract class used as a base class by System.ServiceModel.UriSchemeKeyedCollection.
KeyedByTypeCollection<T> is a collection that uses types as keys.

The List<T> Collection
The List<T> class implements a generic dynamic array and is conceptually similar to the
non-generic ArrayList class. List<T> implements the ICollection, ICollection<T>, IList,
IList<T>, IEnumerable, and IEnumerable<T> interfaces. List<T> has the constructors
shown here:

public List()
public List(IEnumerable<T> c)
public List(int capacity)

The first constructor builds an empty List with a default initial capacity. The second
constructor builds a List that is initialized with the elements of the collection specified by c
and with an initial capacity at least equal to the number of elements. The third constructor
builds an array list that has the specified initial capacity. The capacity is the size of the
underlying array that is used to store the elements. The capacity grows automatically as
elements are added to a List<T>. Each time the list must be enlarged, its capacity is increased.

Class Description

Dictionary<TK, TV> Stores key/value pairs. Provides functionality similar to that
found in the non-generic Hashtable class.

HashSet<T> Stores a set of unique values using a hash table.

LinkedList<T> Stores elements in a doubly linked list.

List<T> A dynamic array. Provides functionality similar to that found in
the non-generic ArrayList class.

Queue<T> A first-in, first-out list. Provides functionality similar to that
found in the non-generic Queue class.

SortedDictionary<TK, TV> A sorted list of key/value pairs.

SortedList<TK, TV> A sorted list of key/value pairs. Provides functionality similar
to that found in the non-generic SortedList class.

Stack<T> A first-in, last-out list. Provides functionality similar to that
found in the non-generic Stack class.

TABLE 24-13 The Core Generic Collection Classes

780 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

In addition to the methods defined by the interfaces that it implements, List<T> defines
several methods of its own. A sampling is shown in Table 24-14.

Method Description

public void AddRange(IEnumerable<T> c) Adds the elements in c to the end of the invoking list.

public virtual int BinarySearch(T v) Searches the invoking collection for the value passed
in v. The index of the matching element is returned. If
the value is not found, a negative value is returned. The
invoking list must be sorted.

public int
 BinarySearch(T v, IComparer<T>

comp)

Searches the invoking collection for the value passed in
v using the comparison object specified by comp. The
index of the matching element is returned. If the value
is not found, a negative value is returned. The invoking
list must be sorted.

public int
 BinarySearch(int startIdx, int count,
 T v, IComparer<T> comp)

Searches the invoking collection for the value passed in
v using the comparison object specified by comp. The
search begins at startIdx and runs for count elements.
The index of the matching element is returned. If the
value is not found, a negative value is returned. The
invoking list must be sorted.

public List<T>
 GetRange(int idx, int count)

Returns a portion of the invoking list. The range
returned begins at idx and runs for count elements.
The returned object refers to the same elements as the
invoking object.

public int IndexOf(T v) Returns the index of the first occurrence of v in the
invoking collection. Returns –1 if v is not found.

public void
 InsertRange(int startIdx,
 IEnumerable<T> c)

Inserts the elements of c into the invoking collection,
starting at the index specified by startIdx.

public int LastIndexOf(T v) Returns the index of the last occurrence of v in the
invoking collection. Returns –1 if v is not found.

public void
 RemoveRange(int idx, int count)

Removes count elements from the invoking collection,
beginning at idx.

public void Reverse() Reverses the contents of the invoking collection.

public void
 Reverse(int startIdx, int count)

Reverses count elements of the invoking collection,
beginning at startIdx.

public void Sort() Sorts the collection into ascending order.

public void Sort(IComparer<T> comp) Sorts the collection using the specified comparison
object. If comp is null, the default comparer for each
object is used.

public void Sort(Comparison<T> comp) Sorts the collection using the specified comparison
delegate.

TABLE 24-14 A Sampling of Methods Defi ned by List<T>

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 781

In addition to the properties defined by the interfaces that it implements, List<T> adds
Capacity, shown here:

public int Capacity { get; set; }

Capacity gets or sets the capacity of the invoking list. The capacity is the number of elements
that can be held before the list must be enlarged. Because a list grows automatically, it is not
necessary to set the capacity manually. However, for efficiency reasons, you might want to
set the capacity when you know in advance how many elements the list will contain. This
prevents the overhead associated with the allocation of more memory.

The following indexer, defined by IList<T>, is implemented by List<T>, as shown here:

public T this[int idx] { get; set; }

It sets or gets the value of the element at the index specified by idx.
Here is a program the demonstrates List<T>. It reworks the first ArrayList program

shown earlier in this chapter. The only changes necessary are to substitute the name List for
ArrayList and to use the generic type parameters.

// Demonstrate List<T>.

using System;
using System.Collections.Generic;

class GenListDemo {
 static void Main() {
 // Create a list.
 List<char> lst = new List<char>();

 Console.WriteLine("Initial number of elements: " +
 lst.Count);

 Console.WriteLine();

 Console.WriteLine("Adding 6 elements");
 // Add elements to the list.
 lst.Add('C');
 lst.Add('A');

public void
 Sort(int startIdx, int count,
 IComparer<T> comp)

Sorts a portion of the collection using the specified
comparison object. The sort begins at startIdx and
runs for count elements. If comp is null, the default
comparer for each object is used.

public T[] ToArray() Returns an array that contains copies of the elements
of the invoking object.

public void TrimExcess() Reduces the capacity of the invoking list so that it is
no more than 10 percent greater than the number of
elements that it currently holds.

TABLE 24-14 A Sampling of Methods Defi ned by List<T> (continued)

Method Description

782 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 lst.Add('E');
 lst.Add('B');
 lst.Add('D');
 lst.Add('F');

 Console.WriteLine("Number of elements: " +
 lst.Count);

 // Display the list using array indexing.
 Console.Write("Current contents: ");
 for(int i=0; i < lst.Count; i++)
 Console.Write(lst[i] + " ");
 Console.WriteLine("\n");

 Console.WriteLine("Removing 2 elements");
 // Remove elements from the list.
 lst.Remove('F');
 lst.Remove('A');

 Console.WriteLine("Number of elements: " +
 lst.Count);

 // Use foreach loop to display the list.
 Console.Write("Contents: ");
 foreach(char c in lst)
 Console.Write(c + " ");
 Console.WriteLine("\n");

 Console.WriteLine("Adding 20 more elements");
 // Add enough elements to force lst to grow.
 for(int i=0; i < 20; i++)
 lst.Add((char)('a' + i));
 Console.WriteLine("Current capacity: " +
 lst.Capacity);
 Console.WriteLine("Number of elements after adding 20: " +
 lst.Count);
 Console.Write("Contents: ");
 foreach(char c in lst)
 Console.Write(c + " ");
 Console.WriteLine("\n");

 // Change contents using array indexing.
 Console.WriteLine("Change first three elements");
 lst[0] = 'X';
 lst[1] = 'Y';
 lst[2] = 'Z';

 Console.Write("Contents: ");
 foreach(char c in lst)
 Console.Write(c + " ");
 Console.WriteLine();

 // Because of generic type-safety,

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 783

 // the following line is illegal.
// lst.Add(99); // Error, not a char!
 }
}

The output, shown here, is the same as that produced by the non-generic version of the
program:

Initial number of elements: 0

Adding 6 elements
Number of elements: 6
Current contents: C A E B D F

Removing 2 elements
Number of elements: 4
Contents: C E B D

Adding 20 more elements
Current capacity: 32
Number of elements after adding 20: 24
Contents: C E B D a b c d e f g h i j k l m n o p q r s t

Change first three elements
Contents: X Y Z D a b c d e f g h i j k l m n o p q r s t

LinkedList<T>
The LinkedList<T> class implements a generic doubly linked list. It implements
ICollection, ICollection<T>, IEnumerable, IEnumerable<T>, ISerializable, and
IDeserializationCallback. (The last two interfaces support the serialization of the list.)
LinkedList<T> defines two public constructors, shown here:

public LinkedList()
public LinkedList(IEnumerable<T> c)

The first creates an empty linked list. The second creates a list initialized with the elements in c.
Like most linked list implementations, LinkedList<T> encapsulates the values stored in

the list in nodes that contain links to the previous and next elements in the list. These nodes
are objects of type LinkedListNode<T>. LinkedListNode<T> provides the four properties
shown here:

public LinkedListNode<T> Next { get; }

public LinkedListNode<T> Previous { get; }

public LinkedList<T> List { get; }

public T Value { get; set; }

Next and Previous obtain a reference to the next or previous node in the list, respectively.
You can use these properties to traverse the list in either direction. A null reference is
returned if no next or previous node exists. You can obtain a reference to the list itself via
List. You can get or set the value within a node by using Value.

784 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

LinkedList<T> defines many methods. A sampling is shown in Table 24-15. In addition
to the properties defined by the interfaces that it implements, LinkedList<T> defines these
properties:

public LinkedListNode<T> First { get; }

public LinkedListNode<T> Last { get; }

First obtains the first node in the list. Last obtains the last node in the list.

Method Description

public LinkedListNode<T>
 AddAfter(LinkedListNode<T> n, T v)

Adds a node with the value v to the list immediately
after the node specified by n. The node passed in n
must not be null. Returns a reference to the node
containing the value v.

public void
 AddAfter(LinkedListNode<T> n,

LinkedListNode<T> new)

Adds the node passed in new to the list immediately
after the node specified by n. The node passed in n
must not be null. Throws an InvalidOperationException
if n is not in the list or if new is part of another list.

public LinkedListNode<T>
 AddBefore(LinkedListNode<T> n, T v)

Adds a node with the value v to the list immediately
before the node specified by n. The node passed in
n must not be null. Returns a reference to the node
containing the value v.

public void
 AddBefore(LinkedListNode<T> n,
 LinkedListNode<T> new)

Adds the node passed in new to the list immediately
before the node specified by n. The node passed in n
must not be null. Throws an InvalidOperationException
if n is not in the list or if new is part of another list.

public LinkedList<T> AddFirst(T v) Adds a node with the value v to the start of the list.
Returns a reference to the node containing the value v.

public void AddFirst(LinkedListNode new) Adds new to the start of the list. Throws an
InvalidOperationException if new is part of another list.

public LinkedList<T> AddLast(T v) Adds a node with the value v to the end of the list.
Returns a reference to the node containing the value v.

public void AddLast(LinkedListNode new) Adds new to the end of the list. Throws an
InvalidOperationException if new is part of another list.

public LinkedList<T> Find(T v) Returns a reference to the first node in the list that has
the value v. null is returned if v is not in the list.

public LinkedList<T> FindLast(T v) Returns a reference to the last node in the list that has
the value v. null is returned if v is not in the list.

public bool Remove(T v) Removes the first node in the list that has the value
v. Returns true if the node was removed. (That is,
if a node with the value v was in the list and it was
removed.) Returns false otherwise.

TABLE 24-15 A Sampling of Methods Defi ned by LinkedList<T>

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 785

Here is an example that demonstrates the LinkedList<T> class:

// Demonstrate LinkedList<T>.

using System;
using System.Collections.Generic;

class GenLinkedListDemo {
 static void Main() {
 // Create a linked list.
 LinkedList<char> ll = new LinkedList<char>();

 Console.WriteLine("Initial number of elements: " +
 ll.Count);

 Console.WriteLine();

 Console.WriteLine("Adding 5 elements.");
 // Add elements to the linked list
 ll.AddFirst('A');
 ll.AddFirst('B');
 ll.AddFirst('C');
 ll.AddFirst('D');
 ll.AddFirst('E');

 Console.WriteLine("Number of elements: " +
 ll.Count);

 // Display the linked list by manually walking
 // through the list.
 LinkedListNode<char> node;

 Console.Write("Display contents by following links: ");
 for(node = ll.First; node != null; node = node.Next)
 Console.Write(node.Value + " ");

 Console.WriteLine("\n");

 //Display the linked list by use of a foreach loop.
 Console.Write("Display contents with foreach loop: ");
 foreach(char ch in ll)
 Console.Write(ch + " ");

 Console.WriteLine("\n");

public void Remove(LinkedList<T> n) Removes the node that matches n. Throws an
InvalidOperationException if n is not in the list.

public void RemoveFirst() Removes the first node in the list.

public void RemoveLast() Removes the last node in the list.

TABLE 24-15 A Sampling of Methods Defi ned by LinkedList<T> (continued)

Method Description

786 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 // Display the list backward by manually walking
 // from last to first.
 Console.Write("Follow links backwards: ");
 for(node = ll.Last; node != null; node = node.Previous)
 Console.Write(node.Value + " ");

 Console.WriteLine("\n");

 // Remove two elements.
 Console.WriteLine("Removing 2 elements.");
 // Remove elements from the linked list.
 ll.Remove('C');
 ll.Remove('A');

 Console.WriteLine("Number of elements: " +
 ll.Count);

 // Use foreach loop to display the modified list.
 Console.Write("Contents after deletion: ");
 foreach(char ch in ll)
 Console.Write(ch + " ");

 Console.WriteLine("\n");

 // Add three elements to the end of the list.
 ll.AddLast('X');
 ll.AddLast('Y');
 ll.AddLast('Z');

 Console.Write("Contents after addition to end: ");
 foreach(char ch in ll)
 Console.Write(ch + " ");

 Console.WriteLine("\n");
 }
}

Here is the output:

Initial number of elements: 0

Adding 5 elements.
Number of elements: 5
Display contents by following links: E D C B A

Display contents with foreach loop: E D C B A

Follow links backwards: A B C D E

Removing 2 elements.
Number of elements: 3
Contents after deletion: E D B

Contents after addition to end: E D B X Y Z

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 787

Perhaps the most important thing to notice in this program is that the list is traversed in
both the forward and backward direction by following the links provided by the Next and
Previous properties. The bidirectional property of doubly linked lists is especially important
in applications such as databases in which the ability to move efficiently through the list in
both directions is often necessary.

The Dictionary<TK, TV> Class
The Dictionary<TK, TV> class stores key/value pairs. In a dictionary, values are accessed
through their keys. In this regard, it is similar to the non-generic Hashtable class.
Dictionary<TK, TV> implements IDictionary, IDictionary<TV, TV>, ICollection,
ICollection<KeyValuePair<TK, TV>>, IEnumerable, IEnumerable<KeyValuePair<TK, TV>>,
ISerializable, and IDeserializationCallback. (The last two interfaces support the
serialization of the list.) Dictionaries are dynamic, growing as needed.

Dictionary<TK, TV> provides many constructors. Here is a sampling:

public Dictionary()

public Dictionary(IDictionary<TK, TV> dict)

public Dictionary(int capacity)

The first constructor creates an empty dictionary with a default capacity. The second creates
a dictionary that contains the same elements as those in dict. The third lets you specify an
initial capacity. If you know in advance that you will need a dictionary of a certain size, then
specifying that capacity will prevent the resizing of the dictionary at runtime, which is a
costly process.

Dictionary<TK, TV> defines several methods. Some commonly used ones are shown in
Table 24-16.

Method Description

public void Add(TK k, TV v) Adds the key/value pair specified by k and v to the
dictionary. If k is already in the dictionary, then its
value is unchanged and an ArgumentException is
thrown.

public bool ContainsKey(TK k) Returns true if k is a key in the invoking dictionary.
Returns false otherwise.

public bool ContainsValue(TV v) Returns true if v is a value in the invoking
dictionary. Returns false otherwise.

public IDictionary.Enumerator<TK, TV>
 GetEnumerator()

Returns an enumerator for the invoking dictionary.

public bool Remove(TK k) Removes k from the dictionary. Returns true
if successful. Returns false if k was not in the
dictionary.

TABLE 24-16 Several Commonly Used Methods Defi ned by Dictionary<TK, TV>

788 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

In addition to the properties defined by the interfaces that it implements,
Dictionary<TK, TV> defines these properties:

Property Description

public IEqualityComparer<TK>
 Comparer { get; }

Obtains the comparer for the invoking dictionary.

public Dictionary<TK, TV>.KeyCollection
 Keys { get; }

Obtains a collection of the keys.

public Dictionary<TK, TV>.ValueCollection
 Values { get; }

Obtains a collection of the values.

Notice that the keys and values contained within the collection are available as separate lists
through the Keys and Values properties. The types Dictionary<TK, TV>.KeyCollection
and Dictionary<TK, TV>.ValueCollection are collections that implement both the generic
and non-generic forms of ICollection and IEnumerable.

The following indexer, defined by IDictionary<TK, TV>, is implemented by
Dictionary<TK, TV> as shown here:

public TV this[TK key] { get; set; }

You can use this indexer to get or set the value of an element. You can also use it to add a
new element to the collection. Notice that the “index” is not actually an index, but rather the
key of the item.

When enumerating the collection, Dictionary<TK, TV> returns key/value pairs in the
form of a KeyValuePair<TK, TV> structure. Recall that this structure defines the following
two fields:

public TK Key;
public TV Value;

These fields hold the key or value associated with an entry. Most of the time you won’t need
to use KeyValuePair<TK, TV> directly because Dictionary<TK, TV> allows you to work
the keys and values individually. However, when enumerating a Dictionary<TK, TV>, such
as in a foreach loop, the objects being enumerated are KeyValuePairs.

In a Dictionary<TK, TV>, all keys must be unique, and a key must not change while it
is in use as a key. Values need not be unique. The objects in a Dictionary<TK, TV> are not
stored in sorted order.

Here is an example that demonstrates Dictionary<TK, TV>:

// Demonstrate the generic Dictionary<TK, TV> class.

using System;
using System.Collections.Generic;

class GenDictionaryDemo {

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 789

 static void Main() {
 // Create a Dictionary that holds employee
 // names and their corresponding salary.
 Dictionary<string, double> dict =
 new Dictionary<string, double>();

 // Add elements to the collection.
 dict.Add("Butler, John", 73000);
 dict.Add("Swartz, Sarah", 59000);
 dict.Add("Pyke, Thomas", 45000);
 dict.Add("Frank, Ed", 99000);

 // Get a collection of the keys (names).
 ICollection<string> c = dict.Keys;

 // Use the keys to obtain the values (salaries).
 foreach(string str in c)
 Console.WriteLine("{0}, Salary: {1:C}", str, dict[str]);
 }
}

Here is the output:

Butler, John, Salary: $73,000.00
Swartz, Sarah, Salary: $59,000.00
Pyke, Thomas, Salary: $45,000.00
Frank, Ed, Salary: $99,000.00

The SortedDictionary<TK, TV> Class
The SortedDictionary<TV, TK> class stores key/value pairs and is similar to Dictionary<TK,
TV> except that it is sorted by key. SortedDictionary<TK, TV> implements IDictionary,
IDictionary<TK, TV>, ICollection, ICollection<KeyValuePair<TK, TV>>, IEnumerable,
and IEnumerable<KeyValuePair<TK, TV>>. SortedDictionary<TK, TV> provides the
following constructors:

public SortedDictionary()

public SortedDictionary(IDictionary<TK, TV> dict)

public SortedDictionary(IComparer<TK> comp)

public SortedDictionary(IDictionary<TK, TV> dict, IComparer<TK> comp)

The first constructor creates an empty dictionary. The second creates a dictionary that
contains the same elements as those in dict. The third lets you specify the IComparer that
the dictionary will use for sorting, and the fourth lets you initialize the dictionary and
specify the IComparer.

SortedDictionary<TK, TV> defines several methods. A sampling is shown in Table 24-17.

790 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

In addition to the properties defined by the interfaces that it implements,
SortedDictionary<TK, TV> defines the following properties:

Property Description

public IComparer<TK> Comparer { get; } Obtains the comparer for the invoking
dictionary.

public
 SortedDictionary<TK, TV>.KeyCollection
 Keys { get; }

Obtains a collection of the keys.

public
 SortedDictionary<TK, TV>.ValueCollection
 Values { get; }

Obtains a collection of the values.

Notice that the keys and values contained within the collection are available as separate lists
through the Keys and Values properties. The types

SortedDictionary<TK, TV>.KeyCollection
SortedDictionary<TK, TV>.ValueCollection

are collections that implement both the generic and non-generic forms of ICollection and
IEnumerable.

SortedDictionary<TK, TV> defines the following indexer (which is specified by
IDictionary<TK, TV>):

public TV this[TK key] { get; set; }

You can use this indexer to get or set the value of an element. You can also use it to add a
new element to the collection. Notice that the “index” is not actually an index, but rather the
key of the item.

Method Description

public void Add(TK k, TV v) Adds the key/value pair specified by k and
v to the dictionary. If k is already in the
dictionary, then its value is unchanged and
an ArgumentException is thrown.

public bool ContainsKey(TK k) Returns true if k is a key in the invoking
dictionary. Returns false otherwise.

public bool ContainsValue(TV v) Returns true if v is a value in the invoking
dictionary. Returns false otherwise.

public SortedDictionary.Enumerator<TK, TV>
 GetEnumerator()

Returns an enumerator for the invoking
dictionary.

public bool Remove(TK k) Removes k from the dictionary. Returns true
if successful. Returns false if k was not in
the dictionary.

TABLE 24-17 A Sampling of Methods Defi ned by SortedDictionary<TK, TV>

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 791

When enumerated, SortedDictionary<TK, TV> returns key/value pairs in the form of a
KeyValuePair<TK, TV> structure. Recall that this structure defines the following two fields:

public TK Key;
public TV Value;

These fields hold the key or value associated with an entry. Most of the time you won’t need
to use KeyValuePair<TK, TV> directly because SortedDictionary<TK, TV> allows you to
work the keys and values individually. However, when enumerating a
SortedDictionary<TK, TV>, such as in a foreach loop, the objects being enumerated are
KeyValuePairs.

In a SortedDictionary<TK, TV>, all keys must be unique, and a key must not change
while it is in use as a key. Values need not be unique.

Here is an example that demonstrates SortedDictionary<TK, TV>. It reworks the
Dictionary<TK, TV> example shown in the preceding section. In this version, the database
of employees and salaries is sorted based on name (which is the key).

// Demonstrate the generic SortedDictionary<TK, TV> class.

using System;
using System.Collections.Generic;

class GenSortedDictionaryDemo {
 static void Main() {
 // Create a Dictionary that holds employee
 // names and their corresponding salary.
 SortedDictionary<string, double> dict =
 new SortedDictionary<string, double>();

 // Add elements to the collection.
 dict.Add("Butler, John", 73000);
 dict.Add("Swartz, Sarah", 59000);
 dict.Add("Pyke, Thomas", 45000);
 dict.Add("Frank, Ed", 99000);

 // Get a collection of the keys (names).
 ICollection<string> c = dict.Keys;

 // Use the keys to obtain the values (salaries).
 foreach(string str in c)
 Console.WriteLine("{0}, Salary: {1:C}", str, dict[str]);
 }
}

The output is shown here:

Butler, John, Salary: $73,000.00
Frank, Ed, Salary: $99,000.00
Pyke, Thomas, Salary: $45,000.00
Swartz, Sarah, Salary: $59,000.00

As you can see, the list is now sorted based on the key, which is the employee’s name.

792 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

The SortedList<TK, TV> Class
The SortedList<TK, TV> class stores a sorted list of key/value pairs. It is the generic
equivalent of the non-generic SortedList class. SortedList<TK, TV> implements
IDictionary, IDictionary<TK, TV>, ICollection, ICollection< KeyValuePair<TK, TV>>,
IEnumerable, and IEnumerable< KeyValuePair<TK, TV>>. The size of a SortedList<TK,
TV> is dynamic and will automatically grow as needed. SortedList<TV, TK> is similar to
SortedDictionary<TK, TV> but has different performance characteristics. For example, a
SortedList<TK, TV> uses less memory, but a SortedDictionary<TK, TV> is faster when
inserting out-of-order elements.

SortedList<TK, TV> provides many constructors. Here is a sampling:

public SortedList()

public SortedList(IDictionary<TK, TV> dict)

public SortedList(int capacity)

public SortedList(IComparer<TK> comp)

The first constructor creates an empty list with a default capacity. The second creates a list
that contains the same elements as those in dict. The third lets you specify an initial capacity.
If you know in advance that you will need a list of a certain size, then specifying that capacity
will prevent the resizing of the list at runtime, which is a costly process. The fourth form lets
you specify a comparison method that will be used to compare the objects contained in the list.

The capacity of a SortedList<TK, TV> list grows automatically as needed when elements
are added to a list. When the current capacity is exceeded, the capacity is increased. The
advantage of specifying a capacity is that you can prevent or minimize the overhead
associated with resizing the collection. Of course, it makes sense to specify an initial
capacity only if you have some idea of how many elements will be stored.

In addition to the methods defined by the interfaces that it implements, SortedList<TK,
TV> also defines several methods of its own. A sampling is shown in Table 24-18. Notice
that the enumerator returned by GetEnumerator() enumerates the key/value pairs stored
in the list as objects of type KeyValuePair.

Method Description

public void Add(TK k, TV v) Adds the key/value pair specified by k and v to
the list. If k is already in the list, then its value is
unchanged and an ArgumentException is thrown.

public bool ContainsKey(TK k) Returns true if k is a key in the invoking list. Returns
false otherwise.

public bool ContainsValue(TV v) Returns true if v is a value in the invoking list.
Returns false otherwise.

public IEnumerator<KeyValuePair<TK, TV>>
 GetEnumerator()

Returns an enumerator for the invoking list.

public int IndexOfKey(TK k) Returns the index of the key specified by k. Returns
–1 if the key is not in the list.

TABLE 24-18 Several Commonly Used Methods Defi ned by SortedList<TK, TV>

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 793

In addition to the properties defined by the interfaces that it implements, SortedList<TK,
TV> defines the following properties:

Property Description

public int Capacity { get; set; } Obtains or sets the capacity of the invoking list.

public IComparer<TK> Comparer { get; } Obtains the comparer for the invoking list.

public IList<TK> Keys { get; } Obtains a collection of the keys.

public IList<TV> Values { get; } Obtains a collection of the values.

SortedList<TK, TV> defines the following indexer (which is defined by
IDictionary<TK, TV>):

public TV this[TK key] { get; set; }

You can use this indexer to get or set the value of an element. You can also use it to add a
new element to the collection. Notice that the “index” is not actually an index, but rather
the key of the item.

Here is an example that demonstrates SortedList<TK, TV>. It reworks the employee
database example one more time. In this version, the database is stored in a SortedList.

// Demonstrate a SortedList<TK, TV>.

using System;
using System.Collections.Generic;

class GenSLDemo {
 static void Main() {
 // Create a sorted SortedList for
 // employee names and salary.
 SortedList<string, double> sl =
 new SortedList<string, double>();

public int IndexOfValue(TV v) Returns the index of the first occurrence of the
value specified by v. Returns –1 if the value is not in
the list.

public bool Remove(TK k) Removes the key/value pair associated with k from
the list. Returns true if successful. Returns false if k
is not in the list.

public void RemoveAt(int idx) Removes the key/value pair at the index specified
by idx.

public void TrimExcess() Removes the excess capacity of the invoking list.

TABLE 24-18 Several Commonly Used Methods Defi ned by SortedList<TK, TV> (continued)

Method Description

794 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 // Add elements to the collection.
 sl.Add("Butler, John", 73000);
 sl.Add("Swartz, Sarah", 59000);
 sl.Add("Pyke, Thomas", 45000);
 sl.Add("Frank, Ed", 99000);

 // Get a collection of the keys.
 ICollection<string> c = sl.Keys;

 // Use the keys to obtain the values.
 foreach(string str in c)
 Console.WriteLine("{0}, Salary: {1:C}", str, sl[str]);

 Console.WriteLine();
 }
}

The output is shown here:

Butler, John, Salary: $73,000.00
Frank, Ed, Salary: $99,000.00
Pyke, Thomas, Salary: $45,000.00
Swartz, Sarah, Salary: $59,000.00

As the output shows, the list is sorted based on employee name, which is the key.

The Stack<T> Class
Stack<T> is the generic equivalent of the non-generic Stack class. Stack<T> supports a
first-in, last-out stack. It implements the ICollection, IEnumerable, and IEnumerable<T>
interfaces. Stack<T> directly implements the Clear(), Contains(), and CopyTo() methods
defined by ICollection<T>. (The Add() and Remove() methods are not supported, nor is
the IsReadOnly property.) Stack<T> is a dynamic collection that grows as needed to
accommodate the elements it must store. It defines the following constructors:

public Stack()
public Stack(int capacity)
public Stack(IEnumerable<T> c)

The first form creates an empty stack with a default initial capacity. The second form creates
an empty stack with the initial capacity specified by capacity. The third form creates a stack
that contains the elements of the collection specified by c.

In addition to the methods defined by the interfaces that it implements (and those
methods defined by ICollection<T> that it implements on its own), Stack<T> defines the
methods shown in Table 24-19. Stack<T> works just like its non-generic counterpart. To put an
object on the top of the stack, call Push(). To remove and return the top element, call Pop().
You can use Peek() to return, but not remove, the top object. An InvalidOperationException
is thrown if you call Pop() or Peek() when the invoking stack is empty.

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 795

The following program demonstrates Stack<T>:

// Demonstrate the Stack<T> class.

using System;
using System.Collections.Generic;

class GenStackDemo {
 static void Main() {
 Stack<string> st = new Stack<string>();

 st.Push("One");
 st.Push("Two");
 st.Push("Three");
 st.Push("Four");
 st.Push("Five");

 while(st.Count > 0) {
 string str = st.Pop();
 Console.Write(str + " ");
 }

 Console.WriteLine();
 }
}

The output is shown here:

Five Four Three Two One

The Queue<T> Class
Queue<T> is the generic equivalent of the non-generic Queue class. It supports a first-in,
first-out list. Queue<T> implements the ICollection, IEnumerable, and IEnumerable<T>
interfaces. Queue<T> directly implements the Clear(), Contains(), and CopyTo() methods

Method Description

public T Peek() Returns the element on the top of the stack, but does not
remove it.

public T Pop() Returns the element on the top of the stack, removing it in the
process.

public void Push(T v) Pushes v onto the stack.

public T[] ToArray() Returns an array that contains copies of the elements of the
invoking stack.

public void TrimExcess() Removes the excess capacity of the invoking stack.

TABLE 24-19 The Methods Defi ned by Stack<T>

796 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

defined by ICollection<T>. (The Add() and Remove() methods are not supported, nor is
the IsReadOnly property.) Queue<T> is a dynamic collection that grows as needed to
accommodate the elements it must store. It defines the following constructors:

public Queue()
public Queue(int capacity)
public Queue(IEnumerable<T> c)

The first form creates an empty queue with an initial default capacity. The second form
creates an empty queue with the initial capacity specified by capacity. The third form creates
a queue that contains the elements of the collection specified by c.

In addition to the methods defined by the interfaces that it implements (and those
methods defined by ICollection<T> that it implements on its own), Queue<T> defines the
methods shown in Table 24-20. Queue<T> works just like its non-generic counterpart. To
put an object in the queue, call Enqueue(). To remove and return the object at the front of
the queue, call Dequeue(). You can use Peek() to return, but not remove, the next object.
An InvalidOperationException is thrown if you call Dequeue() or Peek() when the
invoking queue is empty.

Here is an example that demonstrates Queue<T>:

// Demonstrate the Queue<T> class.

using System;
using System.Collections.Generic;

class GenQueueDemo {
 static void Main() {
 Queue<double> q = new Queue<double>();

 q.Enqueue(98.6);
 q.Enqueue(212.0);
 q.Enqueue(32.0);
 q.Enqueue(3.1416);

 double sum = 0.0;
 Console.Write("Queue contents: ");
 while(q.Count > 0) {
 double val = q.Dequeue();
 Console.Write(val + " ");
 sum += val;
 }

 Console.WriteLine("\nTotal is " + sum);
 }
}

The output is shown here:

Queue contents: 98.6 212 32 3.1416
Total is 345.7416

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 797

HashSet<T>
HashSet<T> is a new collection added to the .NET Framework by version 3.5. It supports a
collection that implements a set. It uses a hash table for storage. HashSet<T> implements
the ICollection<T>, IEnumerable, IEnumerable<T>, ISerializable, and
IDeserializationCallback interfaces. HashSet<T> implements a set in which all elements
are unique. In other words, duplicates are not allowed. The order of the elements is not
specified. HashSet<T> defines a full complement of set operations, such as intersection,
union, and symmetric difference. This makes HashSet<T> the perfect choice for working
with sets of objects. HashSet<T> is a dynamic collection that grows as needed to
accommodate the elements it must store.

Here are four commonly used constructors defined by HashSet<T>:

public HashSet()
public HashSet(IEnumerable<T> c)
public HashSet(IEqualityCompare comp)
public HashSet(IEnumerable<T> c, IEqualityCompare comp)

The first form creates an empty set. The second creates a set that contains the elements of
the collection specified by c. The third lets you specify the comparer. The fourth creates a set
that contains the elements in the collection specified by c and uses the comparer specified
by comp. There is also a fifth constructor that lets you initialize a set from serialized data.

In addition to the methods defined by the interfaces that it implements, HashSet<T>
defines several of its own, most of which support various set operations. The set operation
methods defined by HashSet<T> are shown in Table 24-21. Notice that the arguments to
these methods are IEnumerable<T>. This means you can pass something other than
another HashSet<T> as the second set. Most often, however, both operands will be
instances of HashSet<T>.

In addition to the properties defined by ICollection<T>, HashSet<T> adds Comparer,
shown here:

public IEqualityComparer<T> Comparer { get; }

It obtains the comparer for the invoking hash set.

Method Description

public T Dequeue() Returns the object at the front of the invoking queue. The
object is removed in the process.

public void Enqueue(T v) Adds v to the end of the queue.

public T Peek() Returns the object at the front of the invoking queue, but does
not remove it.

public T[] ToArray() Returns an array that contains copies of the elements of the
invoking queue.

public void TrimExcess() Removes the excess capacity of the invoking stack.

TABLE 24-20 The Methods Defi ned by Queue<T>

798 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Here is an example that shows HashSet<T> in action:

// Demonstrate the HashSet<T> class.

using System;
using System.Collections.Generic;

class HashSetDemo {

 static void Show(string msg, HashSet<char> set) {
 Console.Write(msg);
 foreach(char ch in set)
 Console.Write(ch + " ");
 Console.WriteLine();
 }

 static void Main() {
 HashSet<char> setA = new HashSet<char>();
 HashSet<char> setB = new HashSet<char>();

 setA.Add('A');

Method Description

public void ExceptWith(IEnumerable<T> set2) Removes the elements in set2 from the
invoking set.

public void IntersectWith(IEnumerable<T> set2) Removes from the invoking set those elements
not common to both the invoking set and set2.

public bool
 IsProperSubsetOf(IEnumerable<T> set2)

Returns true if the invoking set is a proper
subset of set2.

public bool
 IsProperSupersetOf(IEnumerable<T> set2)

Returns true if the invoking set is a proper
superset of set2.

public bool IsSubsetOf(IEnumerable<T> set2) Returns true if the invoking set is a subset
of set2.

public bool IsSuperSetOf(IEnumerable<T> set2) Returns true if the invoking set is a superset
of set2.

public bool SetEquals(IEnumerable<T> set2) Returns true if the invoking set is equivalent to
set2. This determination is independent of the
order of the elements.

public void
 SymmetricExceptWith(IEnumerable<T> set2)

Changes the invoking set so that it contains all
elements from both the invoking set and set2,
except for those elements common to both sets.
This is usually called the symmetric difference
of the two sets.

public void UnionWith(IEnumerable<T> set2) Adds the elements from set2 to the invoking
set. Duplicates are not included. Thus, it creates
a union of the two sets.

TABLE 24-21 The Set Operations Defi ned by HashSet<T>

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 799

 setA.Add('B');
 setA.Add('C');

 setB.Add('C');
 setB.Add('D');
 setB.Add('E');

 Show("Initial content of setA: ", setA);
 Show("Initial content of setB: ", setB);

 setA.SymmetricExceptWith(setB);
 Show("setA after Symmetric difference with SetB: ", setA);

 setA.UnionWith(setB);
 Show("setA after union with setB: ", setA);

 setA.ExceptWith(setB);
 Show("setA after subtracting setB: ", setA);

 Console.WriteLine();
 }
}

The output is shown here:

Initial content of setA: A B C
Initial content of setB: C D E
setA after Symmetric difference with SetB: A B D E
setA after union with setB: A B D E C
setA after subtracting setB: A B

Storing User-Defined Classes in Collections
For the sake of simplicity, the foregoing examples have stored built-in types, such as int,
string, or char, in a collection. Of course, collections are not limited to the storage of built-in
objects. Quite the contrary. The power of collections is that they can store any type of object,
including objects of classes that you create.

Let’s begin with an example that uses the non-generic class ArrayList to store inventory
information that is encapsulated by the Inventory class:

// A simple inventory example.

using System;
using System.Collections;

class Inventory {
 string name;
 double cost;
 int onhand;

 public Inventory(string n, double c, int h) {
 name = n;
 cost = c;
 onhand = h;

800 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 }

 public override string ToString() {
 return
 String.Format("{0,-10}Cost: {1,6:C} On hand: {2}",
 name, cost, onhand);
 }
}

class InventoryList {
 static void Main() {
 ArrayList inv = new ArrayList();

 // Add elements to the list
 inv.Add(new Inventory("Pliers", 5.95, 3));
 inv.Add(new Inventory("Wrenches", 8.29, 2));
 inv.Add(new Inventory("Hammers", 3.50, 4));
 inv.Add(new Inventory("Drills", 19.88, 8));

 Console.WriteLine("Inventory list:");
 foreach(Inventory i in inv) {
 Console.WriteLine(" " + i);
 }
 }
}

The output from the program is shown here:

Inventory list:
 Pliers Cost: $5.95 On hand: 3
 Wrenches Cost: $8.29 On hand: 2
 Hammers Cost: $3.50 On hand: 4
 Drills Cost: $19.88 On hand: 8

In the program, notice that no special actions were required to store objects of type
Inventory in a collection. Because all types inherit object, any type of object can be stored in
any non-generic collection. Thus, using a non-generic collection, it is trivially easy to store
objects of classes that you create. Of course, it also means the collection is not type-safe.

To store objects of classes that you create in a type-safe collection, you must use one of
the generic collection classes. For example, here is a version of the preceding program
rewritten to use List<T>. The output is the same as before.

// Store Inventory Objects in a List<T> collection.

using System;
using System.Collections.Generic;

class Inventory {
 string name;
 double cost;
 int onhand;

 public Inventory(string n, double c, int h) {
 name = n;

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 801

 cost = c;
 onhand = h;
 }

 public override string ToString() {
 return
 String.Format("{0,-10}Cost: {1,6:C} On hand: {2}",
 name, cost, onhand);
 }
}

class TypeSafeInventoryList {
 static void Main() {
 List<Inventory> inv = new List<Inventory>();

 // Add elements to the list.
 inv.Add(new Inventory("Pliers", 5.95, 3));
 inv.Add(new Inventory("Wrenches", 8.29, 2));
 inv.Add(new Inventory("Hammers", 3.50, 4));
 inv.Add(new Inventory("Drills", 19.88, 8));

 Console.WriteLine("Inventory list:");
 foreach(Inventory i in inv) {
 Console.WriteLine(" " + i);
 }
 }
}

In this version, notice the only real difference is the passing of the type Inventory as a
type argument to List<T>. Other than that, the two programs are nearly identical. The fact
that the use of a generic collection requires virtually no additional effort and adds type
safety argues strongly for its use when storing a specific type of object within a collection.

In general, there is one other thing to notice about the preceding programs: Both are
quite short. When you consider that each sets up a dynamic array that can store, retrieve,
and process inventory information in less than 40 lines of code, the power of collections
begins to become apparent. As most readers will know, if all of this functionality had to be
coded by hand, the program would have been several times longer. Collections offer ready-
to-use solutions to a wide variety of programming problems. You should use them
whenever the situation warrants.

There is one limitation to the preceding programs that may not be immediately apparent:
The collection can’t be sorted. The reason for this is that neither ArrayList nor List<T> has a
way to compare two Inventory objects. There are two ways to remedy this situation. First,
Inventory can implement the IComparable interface. This interface defines how two objects
of a class are compared. Second, an IComparer object can be specified when comparisons
are required. The following sections illustrate both approaches.

Implementing IComparable
If you want to sort a collection that contains user-defined objects (or if you want to store
those objects in a collection such as SortedList, which maintains its elements in sorted
order), then the collection must know how to compare those objects. One way to do this is

802 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

for the object being stored to implement the IComparable interface. The IComparable
interface comes in two forms: generic and non-generic. Although the way each is used is
similar, there are some small differences. Each is examined here.

Implementing IComparable for Non-Generic Collections
If you want to sort objects that are stored in a non-generic collection, then you will implement
the non-generic version of IComparable. This version defines only one method, CompareTo(),
which determines how comparisons are performed. The general form of CompareTo() is
shown here:

int CompareTo(object obj)

CompareTo() compares the invoking object to obj. To sort in ascending order, your
implementation must return zero if the objects are equal, a positive value if the invoking
object is greater than obj, and a negative value if the invoking object is less than obj. You can
sort in descending order by reversing the outcome of the comparison. The method can
throw an ArgumentException if the type of obj is not compatible for comparison with the
invoking object.

Here is an example that shows how to implement IComparable. It adds IComparable
to the Inventory class developed in the preceding section. It implements CompareTo() so
that it compares the name field, thus enabling the inventory to be sorted by name. By
implementing IComparable, it allows a collection of Inventory objects to be sorted, as the
program illustrates.

// Implement IComparable.

using System;
using System.Collections;

// Implement the non-generic IComparable interface.
class Inventory : IComparable {
 string name;
 double cost;
 int onhand;

 public Inventory(string n, double c, int h) {
 name = n;
 cost = c;
 onhand = h;
 }

 public override string ToString() {
 return
 String.Format("{0,-10}Cost: {1,6:C} On hand: {2}",
 name, cost, onhand);
 }

 // Implement the IComparable interface.
 public int CompareTo(object obj) {
 Inventory b;
 b = (Inventory) obj;

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 803

 return name.CompareTo(b.name);
 }
}

class IComparableDemo {
 static void Main() {
 ArrayList inv = new ArrayList();

 // Add elements to the list.
 inv.Add(new Inventory("Pliers", 5.95, 3));
 inv.Add(new Inventory("Wrenches", 8.29, 2));
 inv.Add(new Inventory("Hammers", 3.50, 4));
 inv.Add(new Inventory("Drills", 19.88, 8));

 Console.WriteLine("Inventory list before sorting:");
 foreach(Inventory i in inv) {
 Console.WriteLine(" " + i);
 }
 Console.WriteLine();

 // Sort the list.
 inv.Sort();

 Console.WriteLine("Inventory list after sorting:");
 foreach(Inventory i in inv) {
 Console.WriteLine(" " + i);
 }
 }
}

Here is the output. Notice that after the call to Sort(), the inventory is sorted by name.

Inventory list before sorting:
 Pliers Cost: $5.95 On hand: 3
 Wrenches Cost: $8.29 On hand: 2
 Hammers Cost: $3.50 On hand: 4
 Drills Cost: $19.88 On hand: 8

Inventory list after sorting:
 Drills Cost: $19.88 On hand: 8
 Hammers Cost: $3.50 On hand: 4
 Pliers Cost: $5.95 On hand: 3
 Wrenches Cost: $8.29 On hand: 2

Implementing IComparable<T> for Generic Collections
If you want to sort objects that are stored in a generic collection, then you will implement
IComparable<T>. This version defines the generic form of CompareTo() shown here:

int CompareTo(T obj)

CompareTo() compares the invoking object to obj. To sort in ascending order, your
implementation must return zero if the objects are equal, a positive value if the invoking
object is greater than obj, and a negative value if the invoking object is less than obj. To

804 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

sort in descending order, reverse the outcome of the comparison. When implementing
IComparable<T>, you will usually pass the type name of the implementing class as a type
argument.

The following example reworks the preceding program so that it uses IComparable<T>.
Notice it uses the generic List<T> collection rather than the non-generic ArrayList.

// Implement IComparable<T>.

using System;
using System.Collections.Generic;

// Implement the generic IComparable<T> interface.
class Inventory : IComparable<Inventory> {
 string name;
 double cost;
 int onhand;

 public Inventory(string n, double c, int h) {
 name = n;
 cost = c;
 onhand = h;
 }

 public override string ToString() {
 return
 String.Format("{0,-10}Cost: {1,6:C} On hand: {2}",
 name, cost, onhand);
 }

 // Implement the IComparable<T> interface.
 public int CompareTo(Inventory obj) {
 return name.CompareTo(obj.name);
 }
}

class GenericIComparableDemo {
 static void Main() {
 List<Inventory> inv = new List<Inventory>();

 // Add elements to the list.
 inv.Add(new Inventory("Pliers", 5.95, 3));
 inv.Add(new Inventory("Wrenches", 8.29, 2));
 inv.Add(new Inventory("Hammers", 3.50, 4));
 inv.Add(new Inventory("Drills", 19.88, 8));

 Console.WriteLine("Inventory list before sorting:");
 foreach(Inventory i in inv) {
 Console.WriteLine(" " + i);
 }
 Console.WriteLine();

 // Sort the list.
 inv.Sort();

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 805

 Console.WriteLine("Inventory list after sorting:");
 foreach(Inventory i in inv) {
 Console.WriteLine(" " + i);
 }
 }
}

This program produces the same output as the previous, non-generic version.

Using an IComparer
Although implementing IComparable for classes that you create is often the easiest way to
allow objects of those classes to be sorted, you can approach the problem in a different way
by using IComparer. To use IComparer, first create a class that implements IComparer, and
then specify an object of that class when comparisons are required.

There are two versions of IComparer: generic and non-generic. Although the way each
is used is similar, there are some small differences, and each approach is examined here.

Using a Non-Generic IComparer
The non-generic IComparer defines only one method, Compare(), which is shown here:

int Compare(object obj1, object obj2)

Compare() compares obj1 to obj2. To sort in ascending order, your implementation must
return zero if the objects are equal, a positive value if obj1 is greater than obj2, and a negative
value if obj1 is less than obj2. You can sort in descending order by reversing the outcome of
the comparison. The method can throw an ArgumentException if the type of obj is not
compatible for comparison with the invoking object.

An IComparer can be specified when constructing a SortedList, when calling
ArrayList.Sort(IComparer), and at various other places throughout the collection classes.
The main advantage of using IComparer is that you can sort objects of classes that do not
implement IComparable.

The following program reworks the non-generic inventory program so that it uses an
IComparer to sort the inventory list. It first creates a class called CompInv that implements
IComparer and compares two Inventory objects. An object of this class is then used in a call
to Sort() to sort the inventory list.

// Use IComparer.

using System;
using System.Collections;

// Create an IComparer for Inventory objects.
class CompInv : IComparer {
 // Implement the IComparer interface.
 public int Compare(object obj1, object obj2) {
 Inventory a, b;
 a = (Inventory) obj1;
 b = (Inventory) obj2;
 return a.name.CompareTo(b.name);
 }
}

806 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

class Inventory {
 public string name;
 double cost;
 int onhand;

 public Inventory(string n, double c, int h) {
 name = n;
 cost = c;
 onhand = h;
 }

 public override string ToString() {
 return
 String.Format("{0,-10}Cost: {1,6:C} On hand: {2}",
 name, cost, onhand);
 }
}

class IComparerDemo {
 static void Main() {
 CompInv comp = new CompInv();
 ArrayList inv = new ArrayList();

 // Add elements to the list.
 inv.Add(new Inventory("Pliers", 5.95, 3));
 inv.Add(new Inventory("Wrenches", 8.29, 2));
 inv.Add(new Inventory("Hammers", 3.50, 4));
 inv.Add(new Inventory("Drills", 19.88, 8));

 Console.WriteLine("Inventory list before sorting:");
 foreach(Inventory i in inv) {
 Console.WriteLine(" " + i);
 }
 Console.WriteLine();

 // Sort the list using an IComparer.
 inv.Sort(comp);

 Console.WriteLine("Inventory list after sorting:");
 foreach(Inventory i in inv) {
 Console.WriteLine(" " + i);
 }
 }
}

The output is the same as the previous version of the program.

Using a Generic IComparer<T>
The IComparer<T> interface is the generic version of IComparer. It defines the generic
version of Compare(), shown here:

int Compare(T obj1, T obj2)

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 807

This method compares obj1 with obj2 and returns greater than zero if obj1 is greater than
obj2, zero if the two objects are the same, and less than zero if obj1 is less that obj2.

Here is a generic version of the preceding program that uses IComparer<T>. It
produces the same output as the previous versions of the program.

// Use IComparer<T>.

using System;
using System.Collections.Generic;

// Create an IComparer<T> for Inventory objects.
class CompInv<T> : IComparer<T> where T : Inventory {

 // Implement the IComparer<T> interface.
 public int Compare(T obj1, T obj2) {
 return obj1.name.CompareTo(obj2.name);
 }
}

class Inventory {
 public string name;
 double cost;
 int onhand;

 public Inventory(string n, double c, int h) {
 name = n;
 cost = c;
 onhand = h;
 }

 public override string ToString() {
 return
 String.Format("{0,-10}Cost: {1,6:C} On hand: {2}",
 name, cost, onhand);
 }
}

class GenericIComparerDemo {
 static void Main() {
 CompInv<Inventory> comp = new CompInv<Inventory>();
 List<Inventory> inv = new List<Inventory>();

 // Add elements to the list.
 inv.Add(new Inventory("Pliers", 5.95, 3));
 inv.Add(new Inventory("Wrenches", 8.29, 2));
 inv.Add(new Inventory("Hammers", 3.50, 4));
 inv.Add(new Inventory("Drills", 19.88, 8));

 Console.WriteLine("Inventory list before sorting:");
 foreach(Inventory i in inv) {
 Console.WriteLine(" " + i);
 }
 Console.WriteLine();

808 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 // Sort the list using an IComparer.
 inv.Sort(comp);

 Console.WriteLine("Inventory list after sorting:");
 foreach(Inventory i in inv) {
 Console.WriteLine(" " + i);
 }
 }
}

Accessing a Collection via an Enumerator
Often you will want to cycle through the elements in a collection. For example, you might
want to display each element. One way to do this is to use a foreach loop, as the preceding
examples have done. Another way is to use an enumerator. An enumerator is an object that
implements either the non-generic IEnumerator or the generic IEnumerator<T> interface.

IEnumerator defines one property called Current. The non-generic version is shown here:

object Current { get; }

For IEnumerator<T>, Current is declared like this:

T Current { get; }

In both cases, Current obtains the current element being enumerated. Since Current is a
read-only property, an enumerator can only be used to retrieve, but not modify, the objects
in a collection.

IEnumerator defines two methods. The first is MoveNext():

bool MoveNext()

Each call to MoveNext() moves the current position of the enumerator to the next element
in the collection. It returns true if the next element is available, or false if the end of the
collection has been reached. Prior to the first call to MoveNext(), the value of Current is
undefined. (Conceptually, prior to the first call to MoveNext(), the enumerator refers to the
nonexistent element that is just before the first element. Thus, you must call MoveNext() to
move to the first element.)

You can reset the enumerator to the start of the collection by calling Reset(), shown here:

void Reset()

After calling Reset(), enumeration will again begin at the start of the collection. Thus, you
must call MoveNext() before obtaining the first element.

In IEnumerator<T>, the methods MoveNext() and Reset() work in the same way.
Two other points: First, you cannot use an enumerator to change the collection that it is

enumerating. Thus, enumerators are read-only relative to the collection. Second, any change
to the collection under enumeration invalidates the enumerator.

Using an Enumerator
Before you can access a collection through an enumerator, you must obtain one. Each of the
collection classes provides a GetEnumerator() method that returns an enumerator to the
start of the collection. Using this enumerator, you can access each element in the collection,
one element at a time. In general, to use an enumerator to cycle through the contents of a
collection, follow these steps:

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 809

 1. Obtain an enumerator to the start of the collection by calling the collection’s
GetEnumerator() method.

 2. Set up a loop that makes a call to MoveNext(). Have the loop iterate as long as
MoveNext() returns true.

 3. Within the loop, obtain each element through Current.

Here is an example that implements these steps. It uses an ArrayList, but the general
principles apply to any type of collection, including the generic collections.

// Demonstrate an enumerator.

using System;
using System.Collections;

class EnumeratorDemo {
 static void Main() {
 ArrayList list = new ArrayList(1);

 for(int i=0; i < 10; i++)
 list.Add(i);

 // Use enumerator to access list.
 IEnumerator etr = list.GetEnumerator();
 while(etr.MoveNext())
 Console.Write(etr.Current + “ “);

 Console.WriteLine();

 // Re–enumerate the list.
 etr.Reset();
 while(etr.MoveNext())
 Console.Write(etr.Current + “ “);

 Console.WriteLine();
 }
}

The output is shown here:

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9

In general, when you need to cycle through a collection, a foreach loop is more
convenient to use than an enumerator. However, an enumerator gives you a little extra
control by allowing you to reset the enumerator at will.

Using the IDictionaryEnumerator
When using a non-generic IDictionary, such as Hashtable, you will use an
IDictionaryEnumerator instead of an IEnumerator when cycling through the collection.
The IDictionaryEnumerator inherits IEnumerator and adds three properties. The first is

DictionaryEntry Entry { get; }

810 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Entry obtains the next key/value pair from the enumerator in the form of a DictionaryEntry
structure. Recall that DictionaryEntry defines two properties, called Key and Value, which
can be used to access the key or value contained within the entry. The other two properties
defined by IDictionaryEnumerator are shown here:

object Key { get; }
object Value { get; }

These allow you to access the key or value directly.
An IDictionaryEnumerator is used just like a regular enumerator, except that you will

obtain the current value through the Entry, Key, or Value properties rather than Current.
Thus, after obtaining an IDictionaryEnumerator, you must call MoveNext() to obtain the
first element. Continue to call MoveNext() to obtain the rest of the elements in the collection.
MoveNext() returns false when there are no more elements.

Here is an example that enumerates the elements in a Hashtable through an
IDictionaryEnumerator:

// Demonstrate IDictionaryEnumerator.

using System;
using System.Collections;

class IDicEnumDemo {
 static void Main() {
 // Create a hash table.
 Hashtable ht = new Hashtable();

 // Add elements to the table.
 ht.Add("Tom", "555–3456");
 ht.Add("Mary", "555–9876");
 ht.Add("Todd", "555–3452");
 ht.Add("Ken", "555–7756");

 // Demonstrate enumerator.
 IDictionaryEnumerator etr = ht.GetEnumerator();
 Console.WriteLine("Display info using Entry.");
 while(etr.MoveNext())
 Console.WriteLine(etr.Entry.Key + ": " +
 etr.Entry.Value);

 Console.WriteLine();

 Console.WriteLine("Display info using Key and Value directly.");
 etr.Reset();
 while(etr.MoveNext())
 Console.WriteLine(etr.Key + ": " +
 etr.Value);

 }
}

The output is shown here:

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 811

Display info using Entry.
Ken: 555–7756
Mary: 555–9876
Tom: 555–3456
Todd: 555–3452

Display info using Key and Value directly.
Ken: 555–7756
Mary: 555–9876
Tom: 555–3456
Todd: 555–3452

Implementing IEnumerable and IEnumerator
As mentioned earlier, normally it is easier (and better) to use a foreach loop to cycle through
a collection than it is to explicitly use IEnumerator methods. However, understanding the
operation of these interfaces is important for another reason: If you want to create a class that
contains objects that can be enumerated via a foreach loop, then that class must implement
IEnumerator. It must also implement IEnumerable. In other words, to enable an object of a
class that you create to be used in a foreach loop, you must implement IEnumerator and
IEnumerable, using either their generic or non-generic form. Fortunately, because these
interfaces are so small, they are easy to implement.

NOTENOTE Technically, in order for a class to be used with a foreach loop, it does not actually have to
specify IEnumerator or IEnumerable as implemented interfaces. It does, however, have to
provide their methods, which are GetEnumerator(), Reset(), MoveNext(), and the property
Current. However, not specifying these interfaces reduces the usability of the class in a mixed-
language environment.

Here is an example that implements the non-generic versions of IEnumerable and
IEnumerator so that the contents of the array encapsulated within MyClass can be
enumerated:

// Implement IEnumerable and IEnumerator.
using System;
using System.Collections;

class MyClass : IEnumerator, IEnumerable {
 char[] chrs = { 'A', 'B', 'C', 'D' };
 int idx = -1;

 // Implement IEnumerable.
 public IEnumerator GetEnumerator() {
 return this;
 }

 // The following methods implement IEnumerator.

 // Return the current object.
 public object Current {
 get {

812 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 return chrs[idx];
 }
 }

 // Advance to the next object.
 public bool MoveNext() {
 if(idx == chrs.Length-1) {
 Reset(); // reset enumerator at the end
 return false;
 }

 idx++;
 return true;
 }

 // Reset the enumerator to the start.
 public void Reset() { idx = -1; }
}

class EnumeratorImplDemo {
 static void Main() {
 MyClass mc = new MyClass();

 // Display the contents of mc.
 foreach(char ch in mc)
 Console.Write(ch + " ");

 Console.WriteLine();

 // Display the contents of mc, again.
 foreach(char ch in mc)
 Console.Write(ch + " ");

 Console.WriteLine();
 }
}

Here is the output:

A B C D
A B C D

In the program, first examine MyClass. It encapsulates a small char array that contains
the characters A through D. An index into this array is stored in idx, which is initialized to –1.
MyClass then implements both IEnumerator and IEnumerable. GetEnumerator() returns a
reference to the enumerator, which in this case is the current object. The Current property
returns the next character in the array, which is the object at idx. The MoveNext() method
advances idx to the next location. It returns false if the end of the collection has been reached
and true otherwise. Reset() sets idx to –1. Recall that an enumerator is undefined until after
the first call to MoveNext(). Thus, in a foreach loop, MoveNext() is automatically called
before Current. This is why idx must initially be –1; it is advanced to zero when the foreach
loop begins. A generic implementation would work in a similar fashion.

Inside Main(), an object of type MyClass called mc is created and the contents of the
object are twice displayed by use of a foreach loop.

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 813

Using Iterators
As the preceding example shows, it is not difficult to implement IEnumerator and
IEnumerable. However, it can be made even easier through the use of an iterator. An iterator
is a method, operator, or accessor that returns the members of a set of objects, one member at
a time, from start to finish. For example, assuming some array that has five elements, then an
iterator for that array will return those five elements, one at a time. By implementing an
iterator, you make it possible for an object of a class to be used in a foreach loop.

Let’s begin with an example of a simple iterator. The following program is a modified
version of the preceding program that uses an iterator rather than explicitly implementing
IEnumerator and IEnumerable.

// A simple example of an iterator.

using System;
using System.Collections;

class MyClass {
 char[] chrs = { 'A', 'B', 'C', 'D' };

 // This iterator returns the characters
 // in the chrs array.
 public IEnumerator GetEnumerator() {
 foreach(char ch in chrs)
 yield return ch;
 }
}

class ItrDemo {
 static void Main() {
 MyClass mc = new MyClass();

 foreach(char ch in mc)
 Console.Write(ch + " ");

 Console.WriteLine();
 }
}

The output is shown here:

A B C D

As you can see, the contents of mc.chrs were enumerated.
Let’s examine this program carefully. First, notice that MyClass does not specify

IEnumerator as an implemented interface. When creating an iterator, the compiler
automatically implements this interface for you. Second, pay special attention to the
GetEnumerator() method, which is shown again here for your convenience.

814 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

// This iterator returns the characters
// in the chrs array.
public IEnumerator GetEnumerator() {
 foreach(char ch in chrs)
 yield return ch;
}

This is the iterator for MyClass. Notice that it implicitly implements the GetEnumerator()
method defined by IEnumerable. Now, look at the body of the method. It contains a
foreach loop that returns the elements in chrs. It does this through the use of a yield return
statement. The yield return statement returns the next object in the collection, which in this
case is the next character in chrs. This feature enables mc (a MyClass object) to be used
within the foreach loop inside Main().

The term yield is a contextual keyword in the C# language. This means that it only has
special meaning inside an iterator block. Outside of an iterator, yield can be used like any
other identifier.

One important point to understand is that an iterator does not need to backed by an
array or other type of collection. It simply must return the next element in a group of
elements. This means the elements can be dynamically constructed using an algorithm. For
example, here is a version of the previous program that returns all uppercase letters in the
alphabet. Instead of using an array, it generates the letters using a for loop.

// Iterated values can be dynamically constructed.

using System;
using System.Collections;

class MyClass {
 char ch = 'A';

 // This iterator returns the letters of the alphabet.
 public IEnumerator GetEnumerator() {
 for(int i=0; i < 26; i++)
 yield return (char) (ch + i);
 }
}

class ItrDemo2 {
 static void Main() {
 MyClass mc = new MyClass();

 foreach(char ch in mc)
 Console.Write(ch + " ");

 Console.WriteLine();
 }
}

The output is shown here:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 815

Stopping an Iterator
You can stop an iterator early by using this form of the yield statement:

yield break;

When this statement executes, the iterator signals that the end of the collection has been
reached, which effectively stops the iterator.

The following program modifies the preceding program so that it displays only the first
ten letters in the alphabet.

// Use yield break.

using System;
using System.Collections;

class MyClass {
 char ch = 'A';

 // This iterator returns the first 10
 // letters of the alphabet.
 public IEnumerator GetEnumerator() {
 for(int i=0; i < 26; i++) {
 if(i == 10) yield break; // stop iterator early
 yield return (char) (ch + i);
 }
 }
}

class ItrDemo3 {
 static void Main() {
 MyClass mc = new MyClass();

 foreach(char ch in mc)
 Console.Write(ch + " ");

 Console.WriteLine();
 }
}

The output is shown here:

A B C D E F G H I J

Using Multiple yield Directives
You can have more than one yield statement in an iterator. However, each yield must return
the next element in the collection. For example, consider this program:

// Multiple yield statements are allowed.

using System;
using System.Collections;

816 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

class MyClass {
 // This iterator returns the letters
 // A, B, C, D, and E.
 public IEnumerator GetEnumerator() {
 yield return 'A';
 yield return 'B';
 yield return 'C';
 yield return 'D';
 yield return 'E';
 }
}

class ItrDemo5 {
 static void Main() {
 MyClass mc = new MyClass();

 foreach(char ch in mc)
 Console.Write(ch + " ");

 Console.WriteLine();
 }
}

The output is shown here:

A B C D E

Inside GetEnumerator(), five yield statements occur. The important thing to understand
is that they are executed one at a time, in order, each time another element in the collection
is obtained. Thus, each time through the foreach loop in Main(), one character is returned.

Creating a Named Iterator
Although the preceding examples have shown the easiest way to implement an iterator,
there is an alternative: the named iterator. In this approach, you create a method, operator,
or accessor that returns a reference to an IEnumerable object. Your code will use this object
to supply the iterator. A named iterator is a method with the following general form:

public IEnumerable itr-name(param-list) {
 // ...
 yield return obj;

}
Here, itr-name is the name of the method, param-list specifies zero or more parameters that
will be passed to the iterator method, and obj is the next object returned by the iterator. Once
you have created a named iterator, you can use it anywhere that an iterator is needed. For
example, you can use the named iterator to control a foreach loop.

Named iterators are very useful in some circumstances because they allow you to pass
arguments to the iterator that control what elements are obtained. For example, you might
pass the iterator the beginning and ending points of a range of elements to iterate. This form
of iterator can also be overloaded, further adding to its flexibility. The following program

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 817

illustrates two ways that a named iterator can be used to obtain elements. One enumerates a
range of elements given the endpoints. The other enumerates the elements beginning at the
start of the sequence and ending at the specified stopping point.

// Use named iterators.

using System;
using System.Collections;

class MyClass {
 char ch = 'A';

 // This iterator returns the letters
 // of the alphabet, beginning at A and
 // stopping at the specified stopping point.
 public IEnumerable MyItr(int end) {
 for(int i=0; i < end; i++)
 yield return (char) (ch + i);
 }

 // This iterator returns the specified
 // range of letters.
 public IEnumerable MyItr(int begin, int end) {
 for(int i=begin; i < end; i++)
 yield return (char) (ch + i);
 }
}

class ItrDemo4 {
 static void Main() {
 MyClass mc = new MyClass();

 Console.WriteLine("Iterate the first 7 letters:");
 foreach(char ch in mc.MyItr(7))
 Console.Write(ch + " ");

 Console.WriteLine("\n");

 Console.WriteLine("Iterate letters from F to L:");
 foreach(char ch in mc.MyItr(5, 12))
 Console.Write(ch + " ");

 Console.WriteLine();
 }
}

The output is shown here:

Iterate the first 7 letters:
A B C D E F G

Iterate letters from F to L:
F G H I J K L

818 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Creating a Generic Iterator
The preceding examples of iterators have been non-generic, but it is, of course, also possible
to create generic iterators. Doing so is quite easy: Simply return an object of the generic
IEnumerator<T> or IEnumerable<T> type. Here is an example that creates a generic iterator:

// A simple example of a generic iterator.

using System;
using System.Collections.Generic;

class MyClass<T> {
 T[] array;

 public MyClass(T[] a) {
 array = a;
 }

 // This iterator returns the characters
 // in the chrs array.
 public IEnumerator<T> GetEnumerator() {
 foreach(T obj in array)
 yield return obj;
 }
}

class GenericItrDemo {
 static void Main() {
 int[] nums = { 4, 3, 6, 4, 7, 9 };
 MyClass<int> mc = new MyClass<int>(nums);

 foreach(int x in mc)
 Console.Write(x + " ");

 Console.WriteLine();

 bool[] bVals = { true, true, false, true };
 MyClass<bool> mc2 = new MyClass<bool>(bVals);

 foreach(bool b in mc2)
 Console.Write(b + " ");

 Console.WriteLine();
 }
}

The output is shown here:

4 3 6 4 7 9
True True False True

In this example, the array containing the objects to be iterated is passed to MyClass
through its constructor. The type of the array is specified as a type argument to MyClass.

PART II

C h a p t e r 2 4 : C o l l e c t i o n s , E n u m e r a t o r s , a n d I t e r a t o r s 819

The GetEnumerator() method operates on data of type T and returns an IEnumerator<T>
enumerator. Thus, the iterator defined by MyClass can enumerate any type of data.

Collection Initializers
C# 3.0 includes a new feature called the collection initializer, which makes it easier to initialize
certain collections. Instead of having to explicitly call Add(), you can specify a list of
initializers when a collection is created. When this is done, the compiler automatically calls
Add() for you, using these values. The syntax is similar to an array initialization. Here is an
example. It creates a List<char> that is initialized by the characters C, A, E, B, D, and F.

List<char> lst = new List<char>() { 'C', 'A', 'E', 'B', 'D', 'F' };

After this statement executes, lst.Count will equal 6, because there are six initializers, and
this foreach loop

foreach(ch in lst)
 Console.Write(ch + " ");

will display

C A E B D F

When using a collection such as LinkedList<TK, TV> that store key/value pairs, you
will need to supply pairs of initializers, as shown here:

SortedList<int, string> lst =
 new SortedList<int, string>() { {1, "One"}, {2, "Two" }, {3, "Three"} };

The compiler passes each group of values as arguments to Add(). Thus, the first pair of
initializers is translated into a call to Add(1, “One”) by the compiler.

Because the compiler automatically calls Add() to add initializers to a collection,
collection initializers can be used only with collections that support a public implementation
of Add(). Therefore, collection initializers cannot be used with the Stack, Stack<T>, Queue,
or Queue<T> collections because they don’t support Add(). You also can’t use a collection
initializer with a collection such as LinkedList<T>, which provides Add() as an explicit
interface implementation.

This page intentionally left blank

25
Networking Through the

Internet Using System.Net

C# is a language designed for the modern computing environment, of which the
Internet is, obviously, an important part. A main design criteria for C# was,
therefore, to include those features necessary for accessing the Internet. Although

earlier languages, such as C and C++, could be used to access the Internet, support server-
side operations, download files, and obtain resources, the process was not as streamlined as
most programmers would like. C# remedies that situation. Using standard features of C#
and the .NET Framework, it is easy to “Internet-enable” your applications and write other
types of Internet-based code.

Networking support is contained in several namespaces defined by the .NET Framework.
The primary namespace for networking is System.Net. It defines a large number of high-
level, easy-to-use classes that support the various types of operations common to the Internet.
Several namespaces nested under System.Net are also provided. For example, low-level
networking control through sockets is found in System.Net.Sockets. Mail support is found
in System.Net.Mail. Support for secure network streams is found in System.Net.Security.
Several other nested namespaces provide additional functionality. Another important
networking-related namespace is System.Web. It (and its nested namespaces) support
ASP.NET-based network applications.

Although the .NET Framework offers great flexibility and many options for networking,
for many applications the functionality provided by System.Net is a best choice. It offers
both convenience and ease-of-use. For this reason, System.Net is the namespace we will be
using in this chapter.

The System.Net Members
System.Net is a large namespace that contains many members. It is far beyond the scope of
this chapter to discuss them all or to discuss all aspects related to Internet programming. (In
fact, an entire book is needed to fully cover networking and C#’s support for it in detail.)
However, it is worthwhile to list the members of System.Net so you have an idea of what
is available for your use.

821

CHAPTER

822 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

The classes defined by System.Net are shown here:

AuthenticationManager Authorization

Cookie CookieCollection

CookieContainer CookieException

CredentialCache Dns

DnsPermission DnsPermissionAttribute

DownloadDataCompletedEventArgs DownloadProgressChangedEventArgs

DownloadStringCompletedEventArgs EndPoint

EndpointPermission FileWebRequest

FileWebResponse FtpWebRequest

FtpWebResponse HttpListener

HttpListenerBasicIdentity HttpListenerContext

HttpListenerException HttpListenerPrefixCollection

HttpListenerRequest HttpListenerResponse

HttpVersion HttpWebRequest

HttpWebResponse IPAddress

IPEndPoint IPEndPointCollection

IPHostEntry IrDAEndPoint

NetworkCredential OpenReadCompletedEventArgs

OpenWriteCompletedEventArgs ProtocolViolationException

ServicePoint ServicePointManager

SocketAddress SocketPermission

SocketPermissionAttribute UploadDataCompletedEventArgs

UploadFileCompletedEventArgs UploadProgressChangedEventArgs

UploadStringCompletedEventArgs UploadValuesCompletedEventArgs

WebClient WebException

WebHeaderCollection WebPermission

WebPermissionAttribute WebProxy

WebRequest WebRequestMethods

WebRequestMethods.File WebRequestMethods.Ftp

WebRequestMethods.Http WebResponse

System.Net defines the following interfaces:

IAuthenticationModule ICertificatePolicy ICredentialPolicy

ICredentials ICredentialsByHost IWebProxy

IWebProxyScript IWebRequestCreate

PART II

C h a p t e r 2 5 : N e t w o r k i n g T h r o u g h t h e I n t e r n e t U s i n g S y s t e m . N e t 823

It defines these enumerations:

AuthenticationSchemes DecompressionMethods FtpStatusCode

HttpRequestHeader HttpResponseHeader HttpStatusCode

NetworkAccess SecurityProtocolType TransportType

WebExceptionStatus

System.Net also defines several delegates.
Although System.Net defines many members, only a few are needed to accomplish most

common Internet programming tasks. At the core of networking are the abstract classes
WebRequest and WebResponse. These classes are inherited by classes that support a
specific network protocol. (A protocol defines the rules used to send information over a
network.) For example, the derived classes that support the standard HTTP protocol are
HttpWebRequest and HttpWebResponse.

Even though WebRequest and WebResponse are easy to use, for some tasks you can
employ an even simpler approach based on WebClient. For example, if you only need to
upload or download a file, then WebClient is often the best way to accomplish it.

Uniform Resource Identifiers
Fundamental to Internet programming is the Uniform Resource Identifier (URI). A URI
describes the location of some resource on the network. A URI is also commonly called a
URL, which is short for Uniform Resource Locator. Because Microsoft uses the term URI when
describing the members of System.Net, this book will do so, too. You are no doubt familiar
with URIs because you use one every time you enter an address into your Internet browser.

A URI has the following general form:

Protocol://ServerID/FilePath?Query

Protocol specifies the protocol being used, such as HTTP. ServerID identifies the specific
server, such as mhprofessional.com or HerbSchildt.com. FilePath specifies the path to a
specific file. If FilePath is not specified, the default page at the specified ServerID is obtained.
Finally, Query specifies information that will be sent to the server. Query is optional. In C#,
URIs are encapsulated by the Uri class, which is examined later in this chapter.

Internet Access Fundamentals
The classes contained in System.Net support a request/response model of Internet interaction.
In this approach, your program, which is the client, requests information from the server
and then waits for the response. For example, as a request, your program might send to the
server the URI of some website. The response that you will receive is the hypertext associated
with that URI. This request/response approach is both convenient and simple to use
because most of the details are handled for you.

The hierarchy of classes topped by WebRequest and WebResponse implement what
Microsoft calls pluggable protocols. As most readers know, there are several different types of
network communication protocols. The most common for Internet use is HyperText Transfer
Protocol (HTTP). Another is File Transfer Protocol (FTP). When a URI is constructed, the

824 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

prefix of the URI specifies the protocol. For example, http://www.HerbSchildt.com uses the
prefix http, which specifies hypertext transfer protocol.

As mentioned earlier, WebRequest and WebResponse are abstract classes that define the
general request/response operations that are common to all protocols. From them are derived
concrete classes that implement specific protocols. Derived classes register themselves, using
the static method RegisterPrefix(), which is defined by WebRequest. When you create a
WebRequest object, the protocol specified by the URI’s prefix will automatically be used, if it
is available. The advantage of this “pluggable” approach is that most of your code remains the
same no matter what type of protocol you are using.

The .NET runtime automatically defines the HTTP, HTTPS, file, and FTP protocols.
Thus, if you specify a URI that uses the HTTP prefix, you will automatically receive the
HTTP-compatible class that supports it. If you specify a URI that uses the FTP prefix, you
will automatically receive the FTP-compatible class that supports it.

Because HTTP is the most commonly used protocol, it is the only one discussed in this
chapter. (The same techniques, however, will apply to all supported protocols.) The classes
that support HTTP are HttpWebRequest and HttpWebResponse. These classes inherit
WebRequest and WebResponse and add several members of their own, which apply to
the HTTP protocol.

System.Net supports both synchronous and asynchronous communication. For many
Internet uses, synchronous transactions are the best choice because they are easy to use.
With synchronous communications, your program sends a request and then waits until
the response is received. For some types of high-performance applications, asynchronous
communication is better. Using the asynchronous approach, your program can continue
processing while waiting for information to be transferred. However, asynchronous
communications are more difficult to implement. Furthermore, not all programs benefit
from an asynchronous approach. For example, often when information is needed from
the Internet, there is nothing to do until the information is received. In cases like this, the
potential gains from the asynchronous approach are not realized. Because synchronous
Internet access is both easier to use and more universally applicable, it is the only type
examined in this chapter.

Since WebRequest and WebResponse are at the heart of System.Net, they will be
examined next.

WebRequest
The WebRequest class manages a network request. It is abstract because it does not
implement a specific protocol. It does, however, define those methods and properties
common to all requests. The methods defined by WebRequest that support synchronous
communications are shown in Table 25-1. The properties defined by WebRequest are shown
in Table 25-2. The default values for the properties are determined by derived classes.
WebRequest defines no public constructors.

To send a request to a URI, you must first create an object of a class derived from
WebRequest that implements the desired protocol. This is done by calling Create(), which
is a static method defined by WebRequest. Create() returns an object of a class that inherits
WebRequest and implements a specific protocol.

http://www.HerbSchildt.com

PART II

C h a p t e r 2 5 : N e t w o r k i n g T h r o u g h t h e I n t e r n e t U s i n g S y s t e m . N e t 825

Method Description

public static WebRequest Create(string uri) Creates a WebRequest object for the URI
specified by the string passed by uri. The object
returned will implement the protocol specified by
the prefix of the URI. Thus, the object will be an
instance of a class that inherits WebRequest. A
NotSupportedException is thrown if the requested
protocol is not available. A UriFormatException is
thrown if the URI format is invalid.

public static WebRequest Create(Uri uri) Creates a WebRequest object for the URI specified
by uri. The object returned will implement the
protocol specified by the prefix of the URI. Thus,
the object will be an instance of a class that
inherits WebRequest. A NotSupportedException is
thrown if the requested protocol is not available.

public virtual Stream GetRequestStream() Returns an output stream associated with the
previously requested URI.

public virtual WebResponse GetResponse() Sends the previously created request and waits
for a response. When a response is received, it is
returned as a WebReponse object. Your program
will use this object to obtain information from the
specified URI.

TABLE 25-1 The Methods Defi ned by WebRequest that Support Synchronous Communications

Property Description

public AuthenticationLevel
 AuthenticationLevel(get; set; }

Obtains or sets the authentication level.

public virtual RequestCachePolicy
 CachePolicy { get; set; }

Obtains or sets the cache policy, which controls
when a response can be obtained from the cache.

public virtual string
 ConnectionGroupName { get; set; }

Obtains or sets the connection group name.
Connection groups are a way of creating a set of
requests. They are not needed for simple Internet
transactions.

public virtual long ContentLength { get; set; } Obtains or sets the length of the content.

public virtual string ContentType { get; set; } Obtains or sets the description of the content.

public virtual ICredentials
 Credentials { get; set; }

Obtains or sets credentials.

public static RequestCachePolicy
 DefaultCachePolicy { get; set; }

Obtains or sets the default cache policy, which
controls when a request can be obtained from the
cache.

TABLE 25-2 The Properties Defi ned by WebRequest

826 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

WebResponse
WebResponse encapsulates a response that is obtained as the result of a request. WebResponse
is an abstract class. Inheriting classes create specific, concrete versions of it that support a
protocol. A WebResponse object is normally obtained by calling the GetResponse() method
defined by WebRequest. This object will be an instance of a concrete class derived from
WebResponse that implements a specific protocol. The methods defined by WebResponse
that are most commonly used are shown in Table 25-3. The properties defined by WebResponse
are shown in Table 25-4. The values of these properties are set based on each individual
response. WebResponse defines no public constructors.

HttpWebRequest and HttpWebResponse
The classes HttpWebRequest and HttpWebResponse inherit the WebRequest and
WebResponse classes and implement the HTTP protocol. In the process, both add several
properties that give you detailed information about an HTTP transaction. Some of these

public static IWebProxy
 DefaultWebProxy { get; set; }

Obtains or sets the default proxy.

public virtual WebHeaderCollection
 Headers{ get; set; }

Obtains or sets a collection of the headers.

public TokenImpersonationLevel
 ImpersonationLevel { get; set; }

Obtains or sets the impersonation level.

public virtual string Method { get; set; } Obtains or sets the protocol.

public virtual bool PreAuthenticate { get; set; } If true, authentication information is included
when the request is sent. If false, authentication
information is provided only when requested by
the URI.

public virtual IWebProxy Proxy { get; set; } Obtains or sets the proxy server. This applies only
to environments in which a proxy server is used.

public virtual Uri RequestUri { get; } Obtains the URI of the request.

public virtual int Timeout { get; set; } Obtains or sets the number of milliseconds that
a request will wait for a response. To wait forever,
use Timeout.Infinite.

public virtual bool
 UseDefaultCredential { get; set; }

Obtains or sets a value that determines if default
credentials are used for authentication. If true,
the default credentials (i.e., those of the user) are
used. They are not used if false.

TABLE 25-2 The Properties Defi ned by WebRequest (continued)

Property Description

PART II

C h a p t e r 2 5 : N e t w o r k i n g T h r o u g h t h e I n t e r n e t U s i n g S y s t e m . N e t 827

properties are used later in this chapter. However, for simple Internet operations, you will
not often need to use these extra capabilities.

A Simple First Example
Internet access centers around WebRequest and WebResponse. Before we examine the
process in detail, it will be useful to see an example that illustrates the request/response
approach to Internet access. After you see these classes in action, it is easier to understand
why they are organized as they are.

The following program performs a simple, yet very common, Internet operation. It
obtains the hypertext contained at a specific website. In this case, the content of McGraw-
Hill.com is obtained, but you can substitute any other website. The program displays the

Method Description

public virtual void Close() Closes the response. It also closes
the response stream returned by
GetResponseStream().

public virtual Stream GetResponseStream() Returns an input stream connected to the
requested URI. Using this stream, data can
be read from the URI.

TABLE 25-3 Commonly Used Methods Defi ned by WebResponse

Property Description

public virtual long ContentLength { get; set; } Obtains or sets the length of the content
being received. This will be –1 if the content
length is not available.

public virtual string ContentType { get; set; } Obtains or sets a description of the content.

public virtual WebHeaderCollection
 Headers { get; }

Obtains a collection of the headers
associated with the URI.

public virtual bool IsFromCache { get; } If the response came from the cache, this
property is true. It is false if the response
was delivered over the network.

public virtual bool
 IsMutuallyAuthenticated { get; }

If the client and server are both authenticated,
then this property is true. It is false otherwise.

public virtual Uri ResponseUri { get; } Obtains the URI that generated the response.
This may differ from the one requested if the
response was redirected to another URI.

TABLE 25-4 The Properties Defi ned by WebResponse

828 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

hypertext on the screen in chunks of 400 characters, so you can see what is being received
before it scrolls off the screen.

// Access a website.

using System;
using System.Net;
using System.IO;

class NetDemo {
 static void Main() {
 int ch;

 // First, create a WebRequest to a URI.
 HttpWebRequest req = (HttpWebRequest)
 WebRequest.Create("http://www.McGraw-Hill.com");

 // Next, send that request and return the response.
 HttpWebResponse resp = (HttpWebResponse)
 req.GetResponse();

 // From the response, obtain an input stream.
 Stream istrm = resp.GetResponseStream();

 /* Now, read and display the html present at
 the specified URI. So you can see what is
 being displayed, the data is shown
 400 characters at a time. After each 400
 characters are displayed, you must press
 ENTER to get the next 400. */

 for(int i=1; ; i++) {
 ch = istrm.ReadByte();
 if(ch == -1) break;
 Console.Write((char) ch);
 if((i%400)==0) {
 Console.Write("\nPress Enter.");
 Console.ReadLine();
 }
 }

 // Close the response. This also closes istrm.
 resp.Close();
 }
}

The first part of the output is shown here. (Of course, over time this content will differ
from that shown here.)

<html>
<head>
<title>Home - The McGraw-Hill Companies</title>
<meta name="keywords" content="McGraw-Hill Companies,McGraw-Hill, McGraw Hill,
Aviation Week, BusinessWeek, Standard and Poor’s, Standard & Poor’s,CTB/Mc-

PART II

C h a p t e r 2 5 : N e t w o r k i n g T h r o u g h t h e I n t e r n e t U s i n g S y s t e m . N e t 829

Graw-Hill,Glencoe/McGraw-Hill,The Grow Network/McGraw-Hill,Macmillan/McGraw-
Hill,McGraw-Hill Contemporary,McGraw-Hill Digital Learning,McGraw-Hill Professional
Development,SRA/McGraw-Hi
Press Enter.
ll,Wright Group/McGraw-Hill,McGraw-Hill Higher Education,McGraw-Hill/Irwin,McGraw-
Hill/Primis Custom Publishing,McGraw-Hill/Ryerson,Tata/McGraw-Hill,McGraw-Hill
Interamericana,Open University Press, Healthcare Information Group, Platts, McGraw-
Hill Construction, Information & Media Services" />
<meta name="description" content="The McGraw-Hill Companies Corporate Website." />
<meta http-equiv="Con
Press Enter.
tent-Type" content="text/html; charset=iso-8859-1">
<META HTTP-EQUIV="Refresh" CONTENT="900">
<META HTTP-EQUIV="EXPIRES" CONTENT="-1">
<META HTTP-EQUIV="Pragma" CONTENT="no-cache">
<link rel="stylesheet" href="stylesheet.css" type="text/css" media="screen,projecti
on">
<link rel="stylesheet" href="print.css" type"text/css" media="print">

<script language="JavaScript1.2" src="scripts.js"></script>

Press Enter.

This is part of the hypertext associated with the McGraw-Hill.com website. Because the
program simply displays the content character-by-character, it is not formatted as it would
be by a browser; it is displayed in its raw form.

Let’s examine this program line-by-line. First, notice that the System.Net namespace is
used. As explained, this is the namespace that contains the networking classes. Also notice
that System.IO is included. This namespace is needed because the information from the
website is read using a Stream object.

The program begins by creating a WebRequest object that contains the desired URI.
Notice that the Create() method, rather than a constructor, is used for this purpose. Create()
is a static member of WebRequest. Even though WebRequest is an abstract class, it is still
possible to call a static method of that class. Create() returns a WebRequest object that has
the proper protocol “plugged in,” based on the protocol prefix of the URI. In this case, the
protocol is HTTP. Thus, Create() returns an HttpWebRequest object. Of course, its return
value must still be cast to HttpWebRequest when it is assigned to the HttpWebRequest
reference called req. At this point, the request has been created, but not yet sent to the
specified URI.

To send the request, the program calls GetResponse() on the WebRequest object. After
the request has been sent, GetResponse() waits for a response. Once a response has been
received, GetResponse() returns a WebResponse object that encapsulates the response.
This object is assigned to resp. Since, in this case, the response uses the HTTP protocol, the
result is cast to HttpWebResponse. Among other things, the response contains a stream that
can be used to read data from the URI.

Next, an input stream is obtained by calling GetResponseStream() on resp. This is a
standard Stream object, having all of the attributes and features of any other input stream.
A reference to the stream is assigned to istrm. Using istrm, the data at the specified URI can
be read in the same way that a file is read.

Next, the program reads the data from McGraw-Hill.com and displays it on the screen.
Because there is a lot of information, the display pauses every 400 characters and waits for
you to press ENTER. This way the first part of the information won’t simply scroll off the

830 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

screen. Notice that the characters are read using ReadByte(). Recall that this method returns
the next byte from the input stream as an int, which must be cast to char. It returns –1 when
the end of the stream has been reached.

Finally, the response is closed by calling Close() on resp. Closing the response stream
automatically closes the input stream, too. It is important to close the response between
each request. If you don’t, it is possible to exhaust the network resources and prevent the
next connection.

Before leaving this example, one other important point needs to be made: It was not
actually necessary to use an HttpWebRequest or HttpWebResponse object to display the
hypertext received from the server. Because the preceding program did not use any HTTP-
specific features, the standard methods defined by WebRequest and WebResponse were
sufficient to handle this task. Thus, the calls to Create() and GetResponse() could have
been written like this:

// First, create a WebRequest to a URI.
WebRequest req = WebRequest.Create("http://www.McGraw-Hill.com");

// Next, send that request and return the response.
WebResponse resp = req.GetResponse();

In cases in which you don’t need to employ a cast to a specific type of protocol implementation,
it is better to use WebRequest and WebResponse because it allows protocols to be changed
with no impact on your code. However, since all of the examples in this chapter will be using
HTTP, and a few will be using HTTP-specific features, the programs will use HttpWebRequest
and HttpWebResponse.

Handling Network Errors
Although the program in the preceding section is correct, it is not resilient. Even the
simplest network error will cause it to end abruptly. Although this isn’t a problem for the
example programs shown in this chapter, it is something that must be avoided in real-world
applications. To fully handle all network exceptions that the program might generate, you
must monitor calls to Create(), GetResponse(), and GetResponseStream(). It is important
to understand that the exceptions that can be generated depend upon the protocol being
used. The following discussion describes the errors possible when using HTTP.

Exceptions Generated by Create()
The Create() method defined by WebRequest can generate four exceptions. If the protocol
specified by the URI prefix is not supported, then NotSupportedException is thrown. If the
URI format is invalid, UriFormatException is thrown. If the user does not have the proper
authorization, a System.Security.SecurityException will be thrown. Create() can also
throw an ArgumentNullException if it is called with a null reference, but this is not an
error generated by networking.

Exceptions Generated by GetReponse()
A number of errors can occur when obtaining an HTTP response by calling GetResponse().
These are represented by the following exceptions: InvalidOperationException,
ProtocolViolationException, NotSupportedException, and WebException. Of these,
the one of most interest is WebException.

PART II

C h a p t e r 2 5 : N e t w o r k i n g T h r o u g h t h e I n t e r n e t U s i n g S y s t e m . N e t 831

WebException has two properties that relate to network errors: Response and Status.
You can obtain a reference to the WebResponse object inside an exception handler through
the Response property. For the HTTP protocol, this object describes the error. It is defined
like this:

public WebResponse Response { get; }

When an error occurs, you can use the Status property of WebException to find out what
went wrong. It is defined like this:

public WebExceptionStatus Status {get; }

WebExceptionStatus is an enumeration that contains the following values:

CacheEntryNotFound ConnectFailure ConnectionClosed

KeepAliveFailure MessageLengthLimitExceeded NameResolutionFailure

Pending PipelineFailure ProtocolError

ProxyNameResolutionFailure ReceiveFailure RequestCanceled

RequestProhibitedByCachePolicy RequestProhibitedByProxy SecureChannelFailure

SendFailure ServerProtocolViolation Success

Timeout TrustFailure UnknownError

Once the cause of the error has been determined, your program can take appropriate action.

Exceptions Generated by GetResponseStream()
For the HTTP protocol, the GetResponseStream() method of WebResponse can throw a
ProtocolViolationException, which, in general, means that some error occurred relative to
the specified protocol. As it relates to GetResponseStream(), it means that no valid
response stream is available. An ObjectDisposedException will be thrown if the response
has already been disposed. Of course, an IOException could occur while reading the
stream, depending on how input is accomplished.

Using Exception Handling
The following program adds handlers for all possible network exceptions to the example
shown earlier:

// Handle network exceptions.

using System;
using System.Net;
using System.IO;

class NetExcDemo {
 static void Main() {
 int ch;

 try {

 // First, create a WebRequest to a URI.
 HttpWebRequest req = (HttpWebRequest)

832 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 WebRequest.Create("http://www.McGraw-Hill.com");

 // Next, send that request and return the response.
 HttpWebResponse resp = (HttpWebResponse)
 req.GetResponse();

 // From the response, obtain an input stream.
 Stream istrm = resp.GetResponseStream();

 /* Now, read and display the html present at
 the specified URI. So you can see what is
 being displayed, the data is shown
 400 characters at a time. After each 400
 characters are displayed, you must press
 ENTER to get the next 400. */

 for(int i=1; ; i++) {
 ch = istrm.ReadByte();
 if(ch == -1) break;
 Console.Write((char) ch);
 if((i%400)==0) {
 Console.Write("\nPress Enter.");
 Console.ReadLine();
 }
 }

 // Close the response. This also closes istrm.
 resp.Close();

 } catch(WebException exc) {
 Console.WriteLine("Network Error: " + exc.Message +
 "\nStatus code: " + exc.Status);
 } catch(ProtocolViolationException exc) {
 Console.WriteLine("Protocol Error: " + exc.Message);
 } catch(UriFormatException exc) {
 Console.WriteLine("URI Format Error: " + exc.Message);
 } catch(NotSupportedException exc) {
 Console.WriteLine("Unknown Protocol: " + exc.Message);
 } catch(IOException exc) {
 Console.WriteLine("I/O Error: " + exc.Message);
 } catch(System.Security.SecurityException exc) {
 Console.WriteLine("Security Exception: " + exc.Message);
 } catch(InvalidOperationException exc) {
 Console.WriteLine("Invalid Operation: " + exc.Message);
 }
 }
}

Now the exceptions that the networking methods might generate have been caught. For
example, if you change the call to Create() as shown here,

WebRequest.Create("http://www.McGraw-Hill.com/moonrocket");

PART II

C h a p t e r 2 5 : N e t w o r k i n g T h r o u g h t h e I n t e r n e t U s i n g S y s t e m . N e t 833

and then recompile and run the program, you will see this output:

Network Error: The remote server returned an error: (404) Not Found.
Status code: ProtocolError

Since the McGraw-Hill.com website does not have a directory called “moonrocket,” this
URI is not found, as the output confirms.

To keep the examples short and uncluttered, most of the programs in this chapter will
not contain full exception handling. However, your real-world applications must.

The Uri Class
In Table 25-1, notice that WebRequest.Create() has two different versions. One accepts the
URI as a string. This is the version used by the preceding programs. The other takes the URI
as an instance of the Uri class, which is defined in the System namespace. The Uri class
encapsulates a URI. Using Uri, you can construct a URI that can be passed to Create(). You
can also dissect a Uri, obtaining its parts. Although you don’t need to use Uri for many
simple Internet operations, you may find it valuable in more sophisticated situations.

Uri defines several constructors. Two commonly used ones are shown here:

public Uri(string uri)
public Uri(Uri base, string rel)

The first form constructs a Uri given a URI in string form. The second constructs a Uri by
adding a relative URI specified by rel to an absolute base URI specified by base. An absolute
URI defines a complete URI. A relative URI defines only the path.

Uri defines many fields, properties, and methods that help you manage URIs or that give
you access to the various parts of a URI. Of particular interest are the properties shown here:

Property Description

public string Host { get; } Obtains the name of the server.

public string LocalPath { get; } Obtains the local file path.

public string PathAndQuery { get; } Obtains the absolute path and query string.

public int Port { get; } Obtains the port number for the specified protocol.
For HTTP, the port is 80.

public string Query { get; } Obtains the query string.

public string Scheme { get; } Obtains the protocol.

These properties are useful for breaking a URI into its constituent parts. The following
program demonstrates their use:

// Use Uri.

using System;
using System.Net;

834 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

class UriDemo {
 static void Main() {

 Uri sample = new Uri("http://HerbSchildt.com/somefile.txt?SomeQuery");

 Console.WriteLine("Host: " + sample.Host);
 Console.WriteLine("Port: " + sample.Port);
 Console.WriteLine("Scheme: " + sample.Scheme);
 Console.WriteLine("Local Path: " + sample.LocalPath);
 Console.WriteLine("Query: " + sample.Query);
 Console.WriteLine("Path and query: " + sample.PathAndQuery);

 }
}

The output is shown here:

Host: HerbSchildt.com
Port: 80
Scheme: http
Local Path: /somefile.txt
Query: ?SomeQuery
Path and query: /somefile.txt?SomeQuery

Accessing Additional HTTP Response Information
When using HttpWebResponse, you have access to information other than the content of
the specified resource. This information includes such things as the time the resource was
last modified and the name of the server, and is available through various properties
associated with the response. These properties, which include the six defined by
WebResponse, are shown in Table 25-5. The following sections illustrate how to use
representative samples.

Accessing the Header
You can access the header information associated with an HTTP response through the
Headers property defined by HttpWebResponse. It is shown here:

public WebHeaderCollection Headers{ get; }

An HTTP header consists of pairs of names and values represented as strings. Each name/
value pair is stored in a WebHeaderCollection. This specialized collection stores key/value
pairs and can be used like any other collection. (See Chapter 24.) A string array of the names
can be obtained from the AllKeys property. You can obtain the values associated with a
name by calling the GetValues() method. It returns an array of strings that contains the
values associated with the header passed as an argument. GetValues() is overloaded to
accept a numeric index or the name of the header.

PART II

C h a p t e r 2 5 : N e t w o r k i n g T h r o u g h t h e I n t e r n e t U s i n g S y s t e m . N e t 835

The following program displays headers associated with McGraw-Hill.com:

// Examine the headers.

using System;
using System.Net;

Property Description

public string CharacterSet { get; } Obtains the name of the character set being used.

public string ContentEncoding { get; } Obtains the name of the encoding scheme.

public long ContentLength { get; } Obtains the length of the content being received. This
will be –1 if the content length is not available.

public string ContentType { get; } Obtains a description of the content.

public CookieCollection
 Cookies { get; set; }

Obtains or sets a list of the cookies attached to the
response.

public WebHeaderCollection
 Headers{ get; }

Obtains a collection of the headers attached to the
response.

public bool IsFromCache { get; } If the response came from the cache, this property is
true. It is false if the response was delivered over the
network.

public bool
 IsMutuallyAuthenticated { get; }

If the client and server are both authenticated, then
this property is true. It is false otherwise.

public DateTime LastModified { get; } Obtains the time at which the resource was last
changed.

public string Method { get; } Obtains a string that specifies the response method.

public Version ProtocolVersion { get; } Obtains a Version object that describes the version of
HTTP used in the transaction.

public Uri ReponseUri { get; } Obtains the URI that generated the response. This
may differ from the one requested if the response
was redirected to another URI.

public string Server { get; } Obtains a string that represents the name of the
server.

public HttpStatusCode StatusCode { get; } Obtains an HttpStatusCode object that describes the
status of the transaction.

public string StatusDescription { get; } Obtains a string that represents the status of the
transaction in a human-readable form.

TABLE 25-5 The Properties Defi ned by HttpWebResponse

836 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

class HeaderDemo {
 static void Main() {

 // Create a WebRequest to a URI.
 HttpWebRequest req = (HttpWebRequest)
 WebRequest.Create("http://www.McGraw-Hill.com");

 // Send that request and return the response.
 HttpWebResponse resp = (HttpWebResponse)
 req.GetResponse();

 // Obtain a list of the names.
 string[] names = resp.Headers.AllKeys;

 // Display the header name/value pairs.
 Console.WriteLine("{0,-20}{1}\n", "Name", "Value");
 foreach(string n in names) {
 Console.Write("{0,-20}", n);
 foreach(string v in resp.Headers.GetValues(n))
 Console.WriteLine(v);
 }

 // Close the response.
 resp.Close();
 }
}

Here is the output that was produced. (Remember, all header information is subject to
change, so the precise output that you see may differ.)

Name Value

Transfer-encoding chunked
Content-Type text/html
Date Fri, 27 Jun 2008 20:32:06 GMT
Server Sun-ONE-Web-Server/6.1

Accessing Cookies
You can gain access to the cookies associated with an HTTP response through the Cookies
property defined by HttpWebResponse. Cookies contain information that is stored by a
browser. They consist of name/value pairs, and they facilitate certain types of web access.
The Cookies property is defined like this:

public CookieCollection Cookies { get; set; }

CookieCollection implements ICollection and IEnumerable and can be used like any other
collection. (See Chapter 24.) It has an indexer that allows a cookie to be obtained by specifying
its index or its name.

CookieCollection stores objects of type Cookie. Cookie defines several properties that
give you access to the various pieces of information associated with a cookie. The two that
we will use here are Name and Value, which are defined like this:

public string Name { get; set; }
public string Value { get; set; }

PART II

C h a p t e r 2 5 : N e t w o r k i n g T h r o u g h t h e I n t e r n e t U s i n g S y s t e m . N e t 837

The name of the cookie is contained in Name, and its value is found in Value.
To obtain a list of the cookies associated with a response, you must supply a cookie

container with the request. For this purpose, HttpWebRequest defines the property
CookieContainer, shown here:

public CookieContainer CookieContainer { get; set; }

CookieContainer provides various fields, properties, and methods that let you store cookies.
By default, this property is null. To use cookies, you must set it equal to an instance of
the CookieContainer class. For many applications, you won’t need to work with the
CookieContainer property directly. Instead, you will use the CookieCollection obtained
from the response. CookieContainer simply provides the underlying storage mechanism
for the cookies.

The following program displays the names and values of the cookies associated with
the URI specified on the command line. Remember, not all websites use cookies, so you
might have to try a few until you find one that does.

/* Examine Cookies.

 To see what cookies a website uses,
 specify its name on the command line.
 For example, if you call this program
 CookieDemo, then

 CookieDemo http://msn.com

 displays the cookies associated with msn.com.
*/

using System;
using System.Net;

class CookieDemo {
 static void Main(string[] args) {

 if(args.Length != 1) {
 Console.WriteLine("Usage: CookieDemo <uri>");
 return ;
 }

 // Create a WebRequest to the specified URI.
 HttpWebRequest req = (HttpWebRequest)
 WebRequest.Create(args[0]);

 // Get an empty cookie container.
 req.CookieContainer = new CookieContainer();

 // Send the request and return the response.
 HttpWebResponse resp = (HttpWebResponse)
 req.GetResponse();

 // Display the cookies.
 Console.WriteLine("Number of cookies: " +
 resp.Cookies.Count);
 Console.WriteLine("{0,-20}{1}", "Name", "Value");

838 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 for(int i=0; i < resp.Cookies.Count; i++)
 Console.WriteLine("{0, -20}{1}",
 resp.Cookies[i].Name,
 resp.Cookies[i].Value);

 // Close the response.
 resp.Close();
 }
}

Using the LastModified Property
Sometimes you will want to know when a resource was last updated. This is easy to find
out when using HttpWebResponse because it defines the LastModified property. It is
shown here:

public DateTime LastModifi ed { get; }

LastModified obtains the time that the content of the resource was last modified.
The following program displays the time and date at which the URI entered on the

command line was last updated:

/* Use LastModified.

 To see the date on which a website was
 last modified, enter its URI on the command
 line. For example, if you call this program
 LastModifiedDemo, then to see the date of last
 modification for HerbSchildt.com enter

 LastModifiedDemo http://HerbSchildt.com
*/

using System;
using System.Net;

class LastModifiedDemo {
 static void Main(string[] args) {

 if(args.Length != 1) {
 Console.WriteLine("Usage: LastModifiedDemo <uri>");
 return ;
 }

 HttpWebRequest req = (HttpWebRequest)
 WebRequest.Create(args[0]);

 HttpWebResponse resp = (HttpWebResponse)
 req.GetResponse();

 Console.WriteLine("Last modified: " + resp.LastModified);

 resp.Close();
 }
}

PART II

C h a p t e r 2 5 : N e t w o r k i n g T h r o u g h t h e I n t e r n e t U s i n g S y s t e m . N e t 839

MiniCrawler: A Case Study
To show how easy WebRequest and WebReponse make Internet programming, a skeletal
web crawler called MiniCrawler will be developed. A web crawler is a program that moves
from link to link to link. Search engines use web crawlers to catalog content. MiniCrawler is,
of course, far less sophisticated than those used by search engines. It starts at the URI that
you specify and then reads the content at that address, looking for a link. If a link is found,
it then asks if you want to go to that link, search for another link on the existing page, or
quit. Although this scheme is quite simple, it does provide an interesting example of
accessing the Internet using C#.

MiniCrawler has several limitations. First, only absolute links that are specified using
the href="http hypertext command are found. Relative links are not used. Second, there is
no way to go back to an earlier link. Third, it displays only the links and no surrounding
content. Despite these limitations, the skeleton is fully functional, and you will have no
trouble enhancing MiniCrawler to perform other tasks. In fact, adding features to MiniCrawler
is a good way to learn more about the networking classes and networking in general.

Here is the entire code for MiniCrawler:

/* MiniCrawler: A skeletal Web crawler.

 Usage:
 To start crawling, specify a starting
 URI on the command line. For example,
 to start at McGraw-Hill.com, use this
 command line:

 MiniCrawler http://McGraw-Hill.com

*/

using System;
using System.Net;
using System.IO;

class MiniCrawler {

 // Find a link in a content string.
 static string FindLink(string htmlstr,
 ref int startloc) {
 int i;
 int start, end;
 string uri = null;
 string lowcasestr = htmlstr.ToLower();

 i = lowcasestr.IndexOf("href=\"http", startloc);
 if(i != -1) {
 start = htmlstr.IndexOf(‘"’, i) + 1;
 end = htmlstr.IndexOf(‘"’, start);
 uri = htmlstr.Substring(start, end-start);
 startloc = end;
 }

840 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 return uri;
 }

 static void Main(string[] args) {
 string link = null;
 string str;
 string answer;

 int curloc; // holds current location in response

 if(args.Length != 1) {
 Console.WriteLine("Usage: MiniCrawler <uri>");
 return ;
 }

 string uristr = args[0]; // holds current URI

 try {

 do {
 Console.WriteLine("Linking to " + uristr);

 // Create a WebRequest to the specified URI.
 HttpWebRequest req = (HttpWebRequest)
 WebRequest.Create(uristr);

 uristr = null; // disallow further use of this URI

 // Send that request and return the response.
 HttpWebResponse resp = (HttpWebResponse)
 req.GetResponse();

 // From the response, obtain an input stream.
 Stream istrm = resp.GetResponseStream();

 // Wrap the input stream in a StreamReader.
 StreamReader rdr = new StreamReader(istrm);

 // Read in the entire page.
 str = rdr.ReadToEnd();

 curloc = 0;

 do {
 // Find the next URI to link to.
 link = FindLink(str, ref curloc);

 if(link != null) {
 Console.WriteLine("Link found: " + link);

 Console.Write("Link, More, Quit?");
 answer = Console.ReadLine();

 if(string.Compare(answer, "L", true) == 0) {
 uristr = string.Copy(link);

PART II

C h a p t e r 2 5 : N e t w o r k i n g T h r o u g h t h e I n t e r n e t U s i n g S y s t e m . N e t 841

 break;
 } else if(string.Compare(answer, "Q", true) == 0) {
 break;
 } else if(string.Compare(answer, "M", true) == 0) {
 Console.WriteLine("Searching for another link.");
 }
 } else {
 Console.WriteLine("No link found.");
 break;
 }

 } while(link.Length > 0);

 // Close the response.
 resp.Close();
 } while(uristr != null);

 } catch(WebException exc) {
 Console.WriteLine("Network Error: " + exc.Message +
 "\nStatus code: " + exc.Status);
 } catch(ProtocolViolationException exc) {
 Console.WriteLine("Protocol Error: " + exc.Message);
 } catch(UriFormatException exc) {
 Console.WriteLine("URI Format Error: " + exc.Message);
 } catch(NotSupportedException exc) {
 Console.WriteLine("Unknown Protocol: " + exc.Message);
 } catch(IOException exc) {
 Console.WriteLine("I/O Error: " + exc.Message);
 }

 Console.WriteLine("Terminating MiniCrawler.");
 }
}

Here is a short a sample session that begins crawling at McGraw-Hill.com. (Remember,
the precise output will vary over time as content changes.)

Linking to http://mcgraw-hill.com
Link found: http://sti.mcgraw-hill.com:9000/cgi-bin/query?mss=search&pg=aq
Link, More, Quit? M
Searching for another link.
Link found: http://investor.mcgraw-hill.com/phoenix.zhtml?c=96562&p=irol-irhome
Link, More, Quit? L
Linking to http://investor.mcgraw-hill.com/phoenix.zhtml?c=96562&p=irol-irhome
Link found: http://www.mcgraw-hill.com/index.html
Link, More, Quit? L
Linking to http://www.mcgraw-hill.com/index.html
Link found: http://sti.mcgraw-hill.com:9000/cgi-bin/query?mss=search&pg=aq
Link, More, Quit? Q
Terminating MiniCrawler.

Let’s take a close look at how MiniCrawler works. The URI at which MiniCrawler
begins is specified on the command line. In Main(), this URI is stored in the string called
uristr. A request is created to this URI and then uristr is set to null, which indicates that this
URI has already been used. Next, the request is sent and the response is obtained. The

842 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

content is then read by wrapping the stream returned by GetResponseStream() inside
a StreamReader and then calling ReadToEnd(), which returns the entire contents of the
stream as a string.

Using the content, the program then searches for a link. It does this by calling FindLink(),
which is a static method also defined by MiniCrawler. FindLink() is called with the content
string and the starting location at which to begin searching. The parameters that receive
these values are htmlstr and startloc, respectively. Notice that startloc is a ref parameter.
FindLink() first creates a lowercase copy of the content string and then looks for a substring
that matches href="http, which indicates a link. If a match is found, the URI is copied to uri,
and the value of startloc is updated to the end of the link. Because startloc is a ref
parameter, this causes its corresponding argument to be updated in Main(), enabling the
next search to begin where the previous one left off. Finally, uri is returned. Since uri was
initialized to null, if no match is found, a null reference is returned, which indicates failure.

Back in Main(), if the link returned by FindLink() is not null, the link is displayed, and
the user is asked what to do. The user can go to that link by pressing L, search the existing
content for another link by pressing M, or quit the program by pressing Q. If the user presses
L, the link is followed and the content of the link is obtained. The new content is then
searched for a link. This process continues until all potential links are exhausted.

You might find it interesting to increase the power of MiniCrawler. For example, you
might try adding the ability follow relative links. (This is not hard to do.) You might try
completely automating the crawler by having it go to each link that it finds without user
interaction. That is, starting at an initial page, have it go to the first link it finds. Then, in the
new page, have it go to the first link and so on. Once a dead-end is reached, have it
backtrack one level, find the next link, and then resume linking. To accomplish this scheme,
you will need to use a stack to hold the URIs and the current location of the search within a
URI. One way to do this is to use a Stack collection. As an extra challenge, try creating tree-
like output that displays the links.

Using WebClient
Before concluding this chapter, a brief discussion of WebClient is warranted. As mentioned
near the start of this chapter, if your application only needs to upload or download data to
or from the Internet, then you can use WebClient instead of WebRequest and
WebResponse. The advantage to WebClient is that it handles many of the details for you.

WebClient defines one constructor, shown here:

public WebClient()

WebClient defines the properties shown in Table 25-6. WebClient defines a large number of
methods that support both synchronous and asynchronous communication. Because
asynchronous communication is beyond the scope of this chapter, only those methods that
support synchronous requests are shown in Table 25-7. All methods throw a WebException
if an error occurs during transmission.

The following program demonstrates how to use WebClient to download data into a file:

// Use WebClient to download information into a file.

using System;
using System.Net;
using System.IO;

PART II

C h a p t e r 2 5 : N e t w o r k i n g T h r o u g h t h e I n t e r n e t U s i n g S y s t e m . N e t 843

class WebClientDemo {
 static void Main() {
 WebClient user = new WebClient();
 string uri = "http://www.McGraw-Hill.com";
 string fname = "data.txt";

 try {
 Console.WriteLine("Downloading data from " +
 uri + " to " + fname);
 user.DownloadFile(uri, fname);
 } catch (WebException exc) {
 Console.WriteLine(exc);
 }

 Console.WriteLine("Download complete.");
 }
}

Property Description

public string BaseAddress { get; set; } Obtains or sets the base address of the desired
URI. If this property is set, then addresses
specified by the WebClient methods will be
relative to the base address.

public RequestCachePolicy
 CachePolicy { get; set; }

Obtains or sets the policy that determines when
the cache is used.

public ICredentials Credentials { get; set; } Obtains or sets authentication information. This
property is null by default.

public Encoding Encoding { get; set; } Obtains or sets the character encoding used while
transferring strings.

public WebHeaderCollection
 Headers{ get; set; }

Obtains or sets the collection of the request
headers.

public bool IsBusy(get; } If the request is still transferring information, this
property is true. It is false otherwise.

public IWebProxy Proxy { get; set; } Obtains or sets the proxy.

public NameValueCollection
 QueryString { get; set; }

Obtains or sets a query string consisting of name/
value pairs that can be attached to a request. The
query string is separated from the URI by a ?. If
more than one name/value pair exists, then an @
separates each pair.

public WebHeaderCollection
 ResponseHeaders{ get; }

Obtains a collection of the response headers.

public bool UseDefaultCredentials { get; set; } Obtains or sets a value that determines if default
credentials are used for authentication. If true,
the default credentials (i.e., those of the user)
are used. They are not used if false.

TABLE 25-6 The Properties Defi ned by WebClient

844 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Method Description

public byte[] DownloadData(string uri) Downloads the information at the URI specified by uri and
returns the result in an array of bytes.

public byte[] DownloadData(Uri uri) Downloads the information at the URI specified by uri and
returns the result in an array of bytes.

public void
 DownloadFile(string uri, string fname)

Downloads the information at the URI specified by uri and
stores the result in the file specified by fname.

public void
 DownloadFile(Uri uri, string fname)

Downloads the information at the URI specified by uri and
stores the result in the file specified by fname.

public string DownloadString(string uri) Downloads the information at the URI specified by uri and
returns the result as a string.

public string DownloadString(Uri uri) Downloads the information at the URI specified by uri and
returns the result as a string.

public Stream OpenRead(string uri) Returns an input stream from which the information at
the URI specified by uri can be read. This stream must be
closed after reading is completed.

public Stream OpenRead(Uri uri) Returns an input stream from which the information at
the URI specified by uri can be read. This stream must be
closed after reading is completed.

public Stream OpenWrite(string uri) Returns an output stream to which information can be
written to the URI specified by uri. This stream must be
closed after writing is completed.

public Stream OpenWrite(Uri uri) Returns an output stream to which information can be
written to the URI specified by uri. This stream must be
closed after writing is completed.

public Stream OpenWrite(string uri, string how) Returns an output stream to which information can be
written to the URI specified by uri. This stream must be
closed after writing is completed. The string passed in how
specifies how the information will be written.

public Stream OpenWrite(Uri uri, string how) Returns an output stream to which information can be
written to the URI specified by uri. This stream must be
closed after writing is completed. The string passed in how
specifies how the information will be written.

public byte[]
 UploadData(string uri, byte[] info)

Writes the information specified by info to the URI specified
by uri. The response is returned.

public byte[]
 UploadData(Uri uri, byte[] info)

Writes the information specified by info to the URI specified
by uri. The response is returned.

public byte[]
 UploadData(string uri,
 string how,
 byte[] info)

Writes the information specified by info to the URI specified
by uri. The response is returned. The string passed in how
specifies how the information will be written.

TABLE 25-7 The Synchronous Methods Defi ned by WebClient

This program downloads the information at McGrawHill.com and puts it into a file called
data.txt. Notice how few lines of code are involved. By changing the string specified by uri,
you can download information from any URI, including specific files.

PART II

C h a p t e r 2 5 : N e t w o r k i n g T h r o u g h t h e I n t e r n e t U s i n g S y s t e m . N e t 845

public byte[]
 UploadData(Uri uri,
 string how,
 byte[] info)

Writes the information specified by info to the URI specified
by uri. The response is returned. The string passed in how
specifies how the information will be written.

public byte[]
 UploadFile(string uri, string fname)

Writes the information in the file specified by fname to the
URI specified by uri. The response is returned.

public byte[]
 UploadFile(Uri uri, string fname)

Writes the information in the file specified by fname to the
URI specified by uri. The response is returned.

public byte[]
 UploadFile(string uri,
 string how,
 string fname)

Writes the information in the file specified by fname to the
URI specified by uri. The response is returned. The string
passed in how specifies how the information will be written.

public byte[]
 UploadFile(Uri uri,
 string how,
 string fname)

Writes the information in the file specified by fname to the
URI specified by uri. The response is returned. The string
passed in how specifies how the information will be written.

public string UploadString(string uri, string str) Writes str to the URI specified by uri. The response is
returned.

public string UploadString(Uri uri, string str) Writes str to the URI specified by uri. The response is
returned.

public string UploadString(string uri,
 string how,
 string str)

Writes str to the URI specified by uri. The response is
returned. The string passed in how specifies how the
information will be written.

public string UploadString(Uri uri,
 string how,
 string str)

Writes str to the URI specified by uri. The response is
returned. The string passed in how specifies how the
information will be written.

public byte[]
 UploadValues(string uri,
 NameValueCollection vals)

Writes the values in the collection specified by vals to the
URI specified by uri. The response is returned.

public byte[]
 UploadValues(Uri uri,
 NameValueCollection vals)

Writes the values in the collection specified by vals to the
URI specified by uri. The response is returned.

public byte[]
 UploadValues(string uri,
 string how,
 NameValueCollection vals)

Writes the values in the collection specified by vals to the
URI specified by uri. The response is returned. The string
passed in how specifies how the information will be written.

public byte[]
 UploadValues(Uri uri,
 string how,
 NameValueCollection vals)

Writes the values in the collection specified by vals to the
URI specified by uri. The response is returned. The string
passed in how specifies how the information will be written.

TABLE 25-7 The Synchronous Methods Defi ned by WebClient (continued)

Method Description

Although WebRequest and WebResponse give you greater control and access to more
information, WebClient is all that many applications will need. It is particularly useful
when all you need to do is download information from the Web. For example, you might
use WebClient to allow an application to obtain documentation updates.

This page intentionally left blank

26
Use System.Windows.Forms to

Create Form-Based Windows
Applications

Most of the programs shown in this book are console applications. Console applications
are good for demonstrating the elements of the C# language and are appropriate
for some types of utility programs, such as file filters. Of course, most modern

applications are designed for the Windows’ graphical user interface (GUI) environment, and
this book would seem incomplete without demonstrating how to use C# to create a Windows
application. Therefore, it is the topic of this, the final chapter in the book.

In the past, creating a Windows application was a challenging endeavor. It was not
uncommon for a newcomer to spend several weeks just learning the basic elements and
architecture of a Windows application. Fortunately, C# and the .NET Framework changes all
that. The .NET Framework contains an entire subsystem devoted to Windows programming
called Windows Forms. The primary support for Windows Forms is contained in the
System.Windows.Forms namespace. Through the use of Windows Forms, the creation
of a GUI-based Windows program has been greatly simplified, and the entire development
process has been streamlined.

Before we begin it is important to emphasize one point: Windows programming is a
very large topic, with entire series of books devoted to it. It is not possible to describe all
aspects of it in a single chapter, nor is it possible to examine the classes, interfaces, properties,
structures, and events in System.Windows.Forms in detail. There are just far too many. Instead,
this chapter provides a “jump-start” to form-based Windows programming. It explains how
to create a window, create a menu, implement a button, and respond to a message. Although
these topics just scratch the surface of Windows programming, they will give you a base
upon which to advance to other aspects of forms-based Windows programming.

A Brief History of Windows Programming
To appreciate the benefits that C# and the .NET Framework bring to Windows programming,
it is necessary for you to understand a bit of its history. When Windows was first created,
programs interacted directly with the Windows Application Programming Interface (API),

847

CHAPTER

848 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

which is an extensive set of methods defined by Windows that programs call to access the
various functions provided by Windows. API-based programs are very long and complicated.
For example, even a skeletal API-based program requires about 50 lines of code. API-based
programs that perform any useful function have at least several hundred lines of code, and
real applications have several thousand lines of code. Thus, in the early days, Windows
programs were difficult to write and maintain.

In response to this problem, class libraries were created that encapsulated the functionality
of the API. The most important of these is the Microsoft Foundation Classes (MFC). Many
readers of this book will be familiar with MFC. MFC is written in C++, and MFC-based
programs are also written in C++. Because MFC brought object-oriented benefits, the process
of creating a Windows program was simplified. However, MFC programs were still fairly
complicated affairs, involving separate header files, code files, and resource files. Furthermore,
MFC was only a “thin wrapper” around the API, so many Windows-based activities still
required a significant number of explicit program statements.

C# and the .NET Framework’s Forms library offer a fully object-oriented way to approach
Windows programming. Instead of providing just a wrapper around the API, the Forms
library defines a streamlined, integrated, logically consistent way of managing the development
of a Windows application. This level of integration is made possible by the unique features
of the C# language, such as delegates and events. Furthermore, because of C#’s use of garbage
collection, the especially troubling problem of “memory leaks” has been nearly eliminated.

If you have already programmed for Windows using either the API or MFC, you will
find the Windows Forms approach remarkably refreshing. Windows Forms makes it nearly
as easy to create a Windows application as it is to create a console application.

Two Ways to Write a Form-Based Windows Application
Before we begin, an important point needs to be made. Visual Studio includes a sophisticated
set of design tools that automate much of the process of creating a Windows application.
Using these tools, you can visually construct and position the various controls and menus
used by your application. Visual Studio will also “rough in” the classes and methods that
are needed for each feature. Frankly, using the Visual Studio design tools are a good choice
for creating most real-world Windows applications. However, there is no requirement that
you use those tools. You can also create a Windows program by using a text editor and then
compiling it, just like you can do for console-based applications.

Because this book is about C#, not Visual Studio, and because the Windows programs
contained in this chapter are quite short, all programs will be shown in a form in which they
can be entered using a text editor. However, the general structure, design, and organization
of the programs is the same as that created by the design tools. Thus, the material in this
chapter applies to either approach.

How Windows Interacts with the User
The first thing that you must learn about Windows programming is how the user and
Windows interact because this defines the architecture that all Windows programs share.
This interaction is fundamentally different from the console-based programs shown in the
other parts of this book. When you write a console program, it is your program that initiates
interaction with the operating system. For example, it is the program that requests such

PART II

C h a p t e r 2 6 : U s e S y s t e m . W i n d o w s . F o r m s 849

things as input and output by calling Read() or WriteLine(). Thus, console programs call
the operating system. The operating system does not call your program. However, in large
measure, Windows works in the opposite way. It is Windows that calls your program. The
process works like this: A program waits until it is sent a message by Windows. Once a
message is received, your program is expected to take an appropriate action. Your program
may call a method defined by Windows when responding to a message, but it is still
Windows that initiates the activity. More than anything else, it is the message-based
interaction with Windows that dictates the general form of all Windows programs.

There are many different types of messages that Windows may send to your program.
For example, each time the mouse is clicked on a window belonging to your program, a
mouse-clicked message will be sent. Another type of message is sent when a button is
pressed or when a menu item is selected. Keep one fact firmly in mind: As far as your
program is concerned, messages arrive randomly. This is why Windows programs resemble
interrupt-driven programs. You can’t know what message will be next.

Windows Forms
At the core of a C# Windows program is the form. A form encapsulates the basic functionality
necessary to create a window, display it on the screen, and receive messages. A form can
represent any type of window, including the main window of the application, a child window,
or even a dialog box.

When a form is first created, it is empty. To supply functionality, you add menus and
controls, such as pushbuttons, lists, and check boxes. Thus, you can think of a form as a
container for other Windows objects.

When a message is sent to the window, it is translated into an event. Therefore, to
handle a Windows message, you will simply register an event handler for that message
with the form. Then, whenever that message is received, your event handler is automatically
called.

The Form Class
A form is created by instantiating an object of the Form class or of any class derived from
Form. Form contains significant functionality of its own, and it inherits additional functionality.
Two of its most important base classes are System.ComponentModel.Component, which
supports the .NET component model, and System.Windows.Forms.Control. The Control
class defines features common to all Windows controls. Because Form inherits Control, it,
too,
is a control. This fact allows forms to be used to create controls. Several of the members of
Form and Control are used in the examples that follow.

A Skeletal Form-Based Windows Program
We will begin by creating a minimal form-based Windows application. This application
simply creates and displays a window. It contains no other features. However, this skeleton
does show the steps necessary to construct a fully functional window. This framework is the
starting point upon which most types of Windows applications will be built. The skeletal
form-based Windows program is shown next.

850 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

// A form-based Windows Skeleton.

using System;
using System.Windows.Forms;

// WinSkel is derived from Form.
class WinSkel : Form {

 public WinSkel() {
 // Give the window a name.
 Text = "A Windows Skeleton";
 }

 // Main is used only to start the application.
 [STAThread]
 static void Main() {
 WinSkel skel = new WinSkel(); // create a form

 // Enable visual styles.
 Application.EnableVisualStyles();

 // Start the window running.
 Application.Run(skel);
 }
}

The window created by this program is shown in Figure 26-1. Let’s examine this
program line-by-line. First, notice that both System and System.Windows.Forms are
included. System is needed because of the STAThread attribute that precedes
Main(). System.Windows.Forms supports the Windows Forms subsystem, as just explained.

Next, a class called WinSkel is created. It inherits Form. Thus, WinSkel defines a
specific type of form. In this case, it is a minimal form.

Inside the WinSkel constructor is the following line of code:

Text = "A Windows Skeleton";

Text is the property that sets the title of the window. Thus, this assignment causes the title
bar in the window to contain A Windows Skeleton. Text is defined like this:

public override string Text { get; set; }

FIGURE 26-1
The skeletal form-
based window

PART II

C h a p t e r 2 6 : U s e S y s t e m . W i n d o w s . F o r m s 851

Text is inherited from Control.
Next is the Main() method, which is declared much like the Main() methods found

throughout the rest of this book. It is the method at which program execution begins. Notice,
however, that it is preceded by the STAThread attribute. As a general rule, the Main()
method of a Windows program should have this attribute. It sets the threading model for the
program to a single-threaded apartment (STA). (A discussion of threading models and apartments
is beyond the scope of this chapter, but briefly, a Windows application can use one of two
different threading models: single-threaded apartment or multithreaded apartment.)

Inside Main(), a WinSkel object called skel is created. Then, the static method
Application.EnableVisualStyles() is called. This method enables visual styles (themes) if the
operating system supports it. It’s not technically necessary in a Windows Forms application, but
should be used because it enables better looking controls. It should be the first method called by
Main(). The Application class is defined within System.Windows.Forms, and it encapsulates
aspects common to all Windows applications.

Next, skel is passed to the Run() method, which is another method defined by the
Application class, as shown here:

Application.Run(skel);

This starts the window running. The Run() method used by the skeleton is shown here:

public static void Run(Form form)

It takes a reference to a form as a parameter. Since WinSkel inherits Form, an object of type
WinSkel can be passed to Run().

When the program is run, it creates the window shown in Figure 26-1. The window
has the default size and is fully functional. It can be resized, moved, minimized,
maximized, and closed. Thus, the basic features needed by nearly all windows were
achieved by writing only a few lines of form-based code. In contrast, the same program
written using the C language and directly calling the Windows API would have required
approximately five times as many lines of code!

The preceding skeleton defines the outline that most form-based Windows applications
will take. In general, to create a form, you create a class that inherits Form. Initialize the
form to meet your needs, create an object of your derived class, and then call
Application.Run() on that object.

Compiling the Windows Skeleton
You can compile a Windows program using either the command-line compiler or Visual
Studio. For the very short programs shown in this chapter, the command-line compiler is
the easiest way; but for real applications, you will probably want to use the IDE. (Also, as
explained at the start of this chapter, you will probably want to use the design tools provided
by Visual Studio, but that is not the approach described here.) Each way is shown here.

Compiling from the Command Line
Assuming that you call the skeleton WinSkel.cs, then to compile the skeleton from the
command line, use this command:

csc /t:winexe WinSkel.cs

The /t:winexe switch tells the compiler to create a Windows application rather than a
console program. To run the program, simply enter WinSkel at the command line.

852 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Compiling from the IDE
To compile the program using the Visual Studio IDE, first create a new Windows Application
project. Do this by selecting File | New Project. Then select Windows Forms Application in
the New Project dialog box. Call the project WinSkel. Delete all C# source code files that
were automatically created. Next, right-click on the WinSkel project name and select Add
and then select New Item. From the Add New Item dialog box, select C# Code File, and
name the file MyWinProject.cs. Now, enter the skeleton code exactly as shown, and then
build the solution. To run the project, select Debug | Start Without Debugging.

Adding a Button
In general, the functionality of a window is expressed by two types of items: controls and
menus. It is through these items that a user interacts with your program. Menus are
described later in this chapter. Here you will see how to add a control to a window.

Windows defines many different types of controls, including pushbuttons, check boxes,
radio buttons, and list boxes, to name just a few. Although each type of control is different,
they all work in more or the less the same way. Here, we will add a pushbutton to a
window, but the same basic procedure can be used to add other types of controls.

Button Basics
A pushbutton is encapsulated by the Button class. It inherits the abstract class ButtonBase,
which inherits the Control class. Button defines only one constructor, which is shown here:

public Button()

This creates a button that has a default size and location within the window. It contains no
description. Before a button can be used, it will need to be given a description by assigning
a string to its Text property.

To specify the location of the button within the window, you must assign the
coordinates of its upper-left corner to the Location property. The Location property is
inherited from Control and defined like this:

public Point Location { get; set; }

The coordinates are contained within a Point structure, which is defined in the
System.Drawing namespace. It includes these two properties:

public int X { get; set; }
public int Y { get; set; }

Thus, to create a button that contains the description “Press Here” and is positioned at
location 100, 200, use the following sequence:

Button MyButton = new Button();
MyButton.Text = "Press Here";
MyButton.Location = new Point(100, 200);

Adding a Button to a Form
After you have created a button, you must add it to a form. You do this by calling the Add()
method on the collection of controls linked to that form. This collection is available through

PART II

C h a p t e r 2 6 : U s e S y s t e m . W i n d o w s . F o r m s 853

the Controls property, which is inherited from the Control class. The Add() method is
defined like this:

public virtual void Add(Control cntl)

Here, cntl is the control being added. Once a control has been added to a form, it will be
displayed when the form is displayed.

A Simple Button Example
The following program adds a button to the skeleton shown earlier. At this time, the button
does not do anything, but it is present in the form and can be clicked.

// Add a Button.

using System;
using System.Windows.Forms;
using System.Drawing;

class ButtonForm : Form {
 Button MyButton;

 public ButtonForm() {
 Text = "Using a Button";

 MyButton = new Button();
 MyButton.Text = "Press Here";
 MyButton.Location = new Point(100, 200);

 Controls.Add(MyButton);
 }

 [STAThread]
 static void Main() {
 ButtonForm skel = new ButtonForm();

 Application.EnableVisualStyles();
 Application.Run(skel);
 }
}

This program creates a class called ButtonForm, which is derived from Form. It contains
a Button field called MyButton. Inside the constructor, the button is created, initialized, and
added to the form. When run, the program displays the window shown in Figure 26-2. You
can click the button, but nothing will happen. To make the button do something, you must
add a message handler, as described in the next section.

Handling Messages
In order for a program to respond to a button press (or any other type of control interaction),
it must handle the message that the button generates. In general, when a user interacts with
a control, those interactions are passed to your program as messages. In a form-based C#
program, these messages are processed by event handlers. Therefore, to receive messages,

854 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

your program adds its own event handler onto the list of handlers called when a message is
generated. For button-press messages, this means adding your handler to the Click event.

The Click event is specified by Control and defined by Button. It has this general form:

public Event EventHandler Click;

The EventHandler delegate is defined as shown here:

public delegate void EventHandler(object who, EventArgs args)

The object that generated the event is passed in who. Any information associated with that
event is passed in args. For many events, args will be an object of a class derived from
EventArgs. Since a button click does not require any additional information, we don’t need
to worry about event arguments when handling the button.

The following program adds button-response code to the preceding program. Each time
the button is clicked, the location of the button is changed.

// Handle button messages.

using System;
using System.Windows.Forms;
using System.Drawing;

class ButtonForm : Form {
 Button MyButton;

 public ButtonForm() {
 Text = "Respond to a Button";

 MyButton = new Button();
 MyButton.Text = "Press Here";
 MyButton.Location = new Point(100, 200);

 // Add button event handler to list.
 MyButton.Click += MyButtonClick;

 Controls.Add(MyButton);
 }

FIGURE 26-2
Adding a button

PART II

C h a p t e r 2 6 : U s e S y s t e m . W i n d o w s . F o r m s 855

 [STAThread]
 static void Main() {
 ButtonForm skel = new ButtonForm();

 Application.EnableVisualStyles();
 Application.Run(skel);
 }

 // Handler for MyButton.
 void MyButtonClick(object who, EventArgs e) {

 if(MyButton.Top == 200)
 MyButton.Location = new Point(10, 10);
 else
 MyButton.Location = new Point(100, 200);
 }
}

Let’s look closely at the event-handling code in this program. The event handler for the
button click is shown here:

// Handler for MyButton.
void MyButtonClick(object who, EventArgs e) {

 if(MyButton.Top == 200)
 MyButton.Location = new Point(10, 10);
 else
 MyButton.Location = new Point(100, 200);
}

MyButtonClick() is compatible with the EventHandler delegate shown earlier, which
means it can be added to the Click event chain. Notice it is private to ButtonForm. This is
not technically necessary, but it is a good idea because event handlers are not intended to be
called except in response to events.

Inside the handler, the location of the top of the button is determined from the Top
property. All controls define the following properties, which specify the coordinates of the
upper-left and lower-right corners:

public int Top { get; set; }
public int Bottom { get; }
public int Left { get; set; }
public int Right { get; }

Notice that the location of the control can be changed by setting Top and Left, but not by
setting Bottom and Right because they are read-only. (To change the size of a control, you
can use the Width and Height properties.)

When the button click event is received, if the top of the control is at its original location
of 200, the location is changed to 10, 10. Otherwise, it is returned to its original location of
100, 200. Therefore, each time you click the button, the location of the button changes.

Before MyButtonClick() can receive messages, it must be added to the event handler
chain linked to the button’s Click event. This is done inside the ButtonForm constructor,
using this statement:

MyButton.Click += MyButtonClick;

856 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

After the method is added to the Click event, each time the button is clicked,
MyButtonClick() is called.

An Alternative Implementation
As a point of interest, MyButtonClick() could have been written in a slightly different way.
Recall that the who parameter of an event handler receives a reference to the object that
generated the call. In the case of a button click event, this is the button that was clicked.
Thus, MyButtonClick() could have been written like this:

// An Alternative button handler.
void MyButtonClick(object who, EventArgs e) {
 Button b = (Button) who;

 if(b.Top == 200)
 b.Location = new Point(10, 10);
 else
 b.Location = new Point(100, 200);
}

In this version, who is cast to Button, and this reference (rather than the MyButton
field) is used to access the button object. Although there is no advantage to this approach in
this case, it is easy to imagine situations in which it would be quite valuable. For example,
such an approach allows a button event handler to be written independently of any specific
button.

Using a Message Box
One of the most used built-in features of Windows is the message box. A message box is a
predefined window that lets you display a message. You can also obtain simple responses
from the user, such as Yes, No, or OK. In a form-based program, a message box is supported
by the MessageBox class. You don’t create an object of that class, however. Instead, to
display a message box, call the static method Show(), which is defined by MessageBox.

The Show() method has several forms. The one we will be using is shown here:

public static DialogResult Show(string msg, string caption,
 MessageBoxButtons mbb)

The string passed through msg is displayed in the body of the box. The caption of the
message box window is passed in caption. The buttons that will be displayed are specified
by mbb. The user’s response is returned.

MessageBoxButtons is an enumeration that defines the following values:

AbortRetryIgnore OK OKCancel

RetryCancel YesNo YesNoCancel

Each of these values describes the buttons that will be included in a message box. For example,
if mbb contains YesNo, then the Yes and No buttons are included in the message box.

The value returned by Show() indicates which button was pressed. It will be one of
these values, defined by the DialogResult enumeration:

PART II

C h a p t e r 2 6 : U s e S y s t e m . W i n d o w s . F o r m s 857

Abort Cancel Ignore No

None OK Retry Yes

Your program can examine the return value to determine the course of action the user desires.
For example, if the message box prompts the user before overwriting a file, your program can
prevent the overwrite if the user clicks Cancel, and it can allow the overwrite if the user clicks OK.

The following program adds a stop button and a message box to the preceding example.
In the stop button handler, a message box is displayed that asks the user if he or she wants
to stop the program. If the user clicks Yes, the program is stopped. If the user clicks No, the
program continues running.

// Add a stop button.

using System;
using System.Windows.Forms;
using System.Drawing;

class ButtonForm : Form {
 Button MyButton;
 Button StopButton;

 public ButtonForm() {
 Text = "Adding a Stop Button";

 // Create the buttons.
 MyButton = new Button();
 MyButton.Text = "Press Here";
 MyButton.Location = new Point(100, 200);

 StopButton = new Button();
 StopButton.Text = "Stop";
 StopButton.Location = new Point(100, 100);

 // Add the button event handlers to the window.
 MyButton.Click += MyButtonClick;
 Controls.Add(MyButton);
 StopButton.Click += StopButtonClick;
 Controls.Add(StopButton);
 }

 [STAThread]
 static void Main() {
 ButtonForm skel = new ButtonForm();

 Application.EnableVisualStyles();
 Application.Run(skel);
 }

 // Handler for MyButton.
 void MyButtonClick(object who, EventArgs e) {

 if(MyButton.Top == 200)
 MyButton.Location = new Point(10, 10);
 else

858 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 MyButton.Location = new Point(100, 200);
 }

 // Handler for StopButton.
 void StopButtonClick(object who, EventArgs e) {

 // If user answers Yes, terminate the program.
 DialogResult result = MessageBox.Show("Stop Program?",
 "Terminate",
 MessageBoxButtons.YesNo);

 if(result == DialogResult.Yes) Application.Exit();
 }
}

Let’s look closely at how the message box is used. Inside the ButtonForm constructor, a
second button is added. This button contains the text “Stop,” and its event handler is linked
to StopButtonClick().

Inside StopButtonClick(), the message box is displayed by the following statement:

// If user answers Yes, terminate the program.
DialogResult result = MessageBox.Show("Stop Program?",
 "Terminate",
 MessageBoxButtons.YesNo);

Here, the message inside the box is “Stop Program?”, the caption is “Terminate,” and the
buttons to be displayed are Yes and No. When Show() returns, the user’s response is
assigned to result. That response is then examined by the following statement to determine
the course of action:

if(result == DialogResult.Yes) Application.Exit();

If the user clicks the Yes button, the program is stopped by calling Application.Exit(),
which causes the immediate termination of the program. Otherwise, no action is taken, and
the program continues running.

Sample output is shown in Figure 26-3.

FIGURE 26-3
Sample output
from the Stop
Button program

PART II

C h a p t e r 2 6 : U s e S y s t e m . W i n d o w s . F o r m s 859

Adding a Menu
The main window of nearly all Windows applications includes a menu across the top. This
is called the main menu. The main menu typically contains top-level categories, such as File,
Edit, and Tools. From the main menu descend drop-down menus, which contain the actual
selections associated with the categories. When a menu item is selected, a message is generated.
Therefore, to process a menu selection, your program will assign an event handler to each
menu item. Because menus are such a bedrock resource in Windows programming, many
options are available and the topic of menus is quite large. Fortunately, it is easy to create a
simple main menu.

Originally, there was only one way to create a main menu: by using the classes MainMenu
and MenuItem, both of which inherit the Menu class. These classes create the traditional-
style menus that have been used in Windows applications for years. This approach is still
supported. However, version 2.0 of the .NET Framework added a second way to add
menus to a window by using a set of classes based on ToolStrip, such as MenuStrip and
ToolStripMenuItem. Menus based on ToolStrip have many additional capabilities and give
a modern look and feel. Understand, though, that both approaches to menus are currently
valid for new C# applications.

Because there are two ways to create menus, both ways are described here, beginning
with the traditional approach.

Creating a Traditional-Style Main Menu
A traditional-style main menu is constructed from a combination of two classes. The first is
MainMenu, which encapsulates the overall structure of the menu. The second is MenuItem,
which encapsulates an individual selection. A menu selection can either represent a final
action, such as Close, or activate another drop-down menu. As mentioned, both MainMenu
and MenuItem inherit the Menu class.

When a menu item is selected, a Click event is generated. Click is defined by MenuItem.
Therefore, to handle a menu selection, your program will add its handler to the Click event
list for that item.

Each form has a Menu property, which is defined like this:

public MainMenu Menu { get; set; }

By default, no menu is assigned to this property. To display a main menu, this property
must be set to the menu that you create.

Creating a main menu is straightforward, but it does involve several steps. Here is the
approach we will use:

 1. Create a MainMenu object.

 2. To the MainMenu object, add MenuItems that describe the top-level categories.
This is done by calling Add() on the collection referred to by the MenuItems
property.

 3. To each top-level MenuItem, add the list of MenuItems that defines the drop-down
menu associated with that top-level entry. This is also done by calling Add() on the
collection referred to by the MenuItems property.

 4. Add the event handlers for each selection.

 5. Assign the MainMenu object to the Menu property associated with the form.

860 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

The following sequence shows how to create a File menu that contains three selections:
Open, Close, and Exit:

// Create a main menu object.
MainMenu MyMenu = new MainMenu();

// Add a top-level menu item to the menu.
MenuItem m1 = new MenuItem("File");
MyMenu.MenuItems.Add(m1);

// Create File submenu.
MenuItem item1 = new MenuItem("Open");
m1.MenuItems.Add(item1);

MenuItem item2 = new MenuItem("Close");
m1.MenuItems.Add(item2);

MenuItem item3 = new MenuItem("Exit");
m1.MenuItems.Add(item3);

Let’s examine this sequence carefully. It begins by creating a MainMenu object called
MyMenu. This object will be at the top of the menu structure. This object is instantiated by
use of the default constructor for MainMenu. This creates an empty menu.

Next, a menu item called m1 is created. This is the File heading. It is created by using
this MenuItem constructor:

public MenuItem(string caption)

Here, caption specifies the text that is displayed by the item. In this case, it is “File.” This
menu item is then added directly to MyMenu and is a top-level selection.

Notice that when m1 is added to MyMenu, it is done through the read-only MenuItems
property. MenuItems is a collection of the menu items that form a menu. It is defined by
Menu, which means it is part of both the MainMenu and MenuItem classes. It as shown here:

public Menu.MenuItemCollection MenuItems { get; }

To add a menu item to a menu, call Add() on MenuItems, passing in a reference to the item
to add, as the example shows.

Next, the drop-down menu associated with File is created. Notice that these menu items
are added to the File menu item, m1. When one MenuItem is added to another, the added
item becomes part of the drop-down menu associated with the item to which it is added.
Thus, after the items item1 through item3 have been added to m1, selecting File will cause a
drop-down menu containing Open, Close, and Exit to be displayed.

Once the menu has been constructed, the event handlers associated with each entry
must be assigned. As explained, a user making a selection generates a Click event. Thus, the
following sequence assigns the handlers for item1 through item3.

// Add event handlers for the menu items.
item1.Click += MMOpenClick;
item2.Click += MMCloseClick;
item3.Click += MMExitClick;

Therefore, if the user selects Exit, MMExitClick() is executed.

PART II

C h a p t e r 2 6 : U s e S y s t e m . W i n d o w s . F o r m s 861

Finally, the MainMenu object must be assigned to the Menu property of the form, as
shown here:

Menu = MyMenu;

After this assignment takes place, the menu will be displayed when the window is created,
and selections will be sent to the proper handler.

The following program puts together all the pieces and demonstrates how to create a
main menu and handle menu selections.

// Add a Main Menu.

using System;
using System.Windows.Forms;

class MenuForm : Form {
 MainMenu MyMenu;

 public MenuForm() {
 Text = "Adding a Main Menu";

 // Create a main menu object.
 MyMenu = new MainMenu();

 // Add top-level menu items to the menu.
 MenuItem m1 = new MenuItem("File");
 MyMenu.MenuItems.Add(m1);

 MenuItem m2 = new MenuItem("Tools");
 MyMenu.MenuItems.Add(m2);

 // Create File submenu.
 MenuItem item1 = new MenuItem("Open");
 m1.MenuItems.Add(item1);

 MenuItem item2 = new MenuItem("Close");
 m1.MenuItems.Add(item2);

 MenuItem item3 = new MenuItem("Exit");
 m1.MenuItems.Add(item3);

 // Create Tools submenu.
 MenuItem item4 = new MenuItem("Coordinates");
 m2.MenuItems.Add(item4);

 MenuItem item5 = new MenuItem("Change Size");
 m2.MenuItems.Add(item5);

 MenuItem item6 = new MenuItem("Restore");
 m2.MenuItems.Add(item6);

 // Add event handlers for the menu items.
 item1.Click += MMOpenClick;
 item2.Click += MMCloseClick;

862 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 item3.Click += MMExitClick;
 item4.Click += MMCoordClick;
 item5.Click += MMChangeClick;
 item6.Click += MMRestoreClick;

 // Assign the menu to the form.
 Menu = MyMenu;
 }

 [STAThread]
 static void Main() {
 MenuForm skel = new MenuForm();

 Application.EnableVisualStyles();
 Application.Run(skel);
 }

 // Handler for main menu Coordinates selection.
 void MMCoordClick(object who, EventArgs e) {
 // Create a string that contains the coordinates.
 string size =
 String.Format("{0}: {1}, {2}\n{3}: {4}, {5} ",
 "Top, Left", Top, Left,
 "Bottom, Right", Bottom, Right);

 // Display a message box.
 MessageBox.Show(size, "Window Coordinates",
 MessageBoxButtons.OK);
 }

 // Handler for main menu Change selection.
 void MMChangeClick(object who, EventArgs e) {
 Width = Height = 200;
 }

 // Handler for main menu Restore selection.
 void MMRestoreClick(object who, EventArgs e) {
 Width = Height = 300;
 }

 // Handler for main menu Open selection.
 void MMOpenClick(object who, EventArgs e) {

 MessageBox.Show("Inactive", "Inactive",
 MessageBoxButtons.OK);
 }

 // Handler for main menu Close selection.
 void MMCloseClick(object who, EventArgs e) {

 MessageBox.Show("Inactive", "Inactive",
 MessageBoxButtons.OK);
 }

 // Handler for main menu Exit selection.

PART II

C h a p t e r 2 6 : U s e S y s t e m . W i n d o w s . F o r m s 863

 void MMExitClick(object who, EventArgs e) {

 DialogResult result = MessageBox.Show("Stop Program?",
 "Terminate",
 MessageBoxButtons.YesNo);

 if(result == DialogResult.Yes) Application.Exit();
 }
}

Sample output is shown in Figure 26-4.
This program defines two drop-down menus. The first is accessed via the File menu. It

contains the Open, Close, and Exit selections. The menu handlers for Open and Close are
simply placeholders that perform no function other than displaying a message box to that
effect. The Close handler asks if you want to stop the program. If you answer Yes, the
program is terminated.

The Tools menu has these selections: Coordinates, Change Size, and Restore. Selecting
Coordinates causes the coordinates of the upper-left and lower-right corners of the window
to be displayed in a message box. Try moving the window and then displaying its coordinates.
Each time the window is moved to a new location, its coordinates change.

Choosing Change Size causes the window to be reduced in size so its width and height
are both 200 pixels long. This is done through the Width and Height properties, shown here:

public int Width { get; set; }
public int Height { get; set; }

Selecting Restore returns the window to its default size.

Creating a New-Style Menu with MenuStrip
Although the traditional approach to creating menus described in the preceding section is still
valid, the .NET Framework offers what is often a better way to manage menus that uses the
MenuStrip control. MenuStrip gives your menus a modern look and additional capabilities,
such as menu merging. Because of the advantages of using MenuStrip, its use is recommended.

The MenuStrip class is the modern equivalent of MainMenu described in the previous
section. It is based on the ToolStrip class, which defines much of the functionality supported
by the new approach to menus. ToolStrip is, essentially, a container for toolbar objects,

FIGURE 26-4
Sample output
from the Menu
program

864 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

including menu items. MenuStrip inherits this functionality and provides specific support
for menus, including the main menu. Items that are stored in a MenuStrip are objects of
type ToolStripMenuItem, which is the modern equivalent of MenuItem, also described in
the previous section.

Using MenuStrip and ToolStripMenuItem is similar to using a MainMenu and
MenuItem as described in the previous section. Here is one way to create and use a
MenuStrip:

 1. Create a MenuStrip control.

 2. To the MenuStrip control, add ToolStripMenuItems that describe the top-level
categories. This is done by calling Add() on the collection referred to by the Items
property provided by MenuStrip.

 3. To each top-level ToolStripMenuItem, add the list of ToolStripMenuItems that
defines the drop-down menu associated with that top-level entry. This is done by
calling Add() on the collection referred to by the DropDownItems property.

 4. Add the event handlers for each selection.

 5. Add the MenuStrip to the list of controls for the form by calling Add() on the
Controls property.

 6. Assign the MenuStrip control to the MainMenuStrip property associated with the
form.

Pay special attention to Steps 2 and 3 because they differ from the parallel steps used
with MainMenu. First, in Step 2, top-level menu items that represent submenus are added
to the collection referred to by Items. Second, in Step 3, individual menu items are added to
the collection referred to by the DropDownItems property. (Both MainMenu and MenuItem
use the MenuItems property for this purpose.) Other than those differences, the two
procedures are essentially the same.

The following program demonstrates MenuStrip by reworking the program shown in
the previous section. Sample output is shown in Figure 26-5. Notice that the menu now has
a modern look.

// Use a MenuStrip.

using System;
using System.Windows.Forms;

class MenuForm : Form {
 MenuStrip MyMenu; // use a MenuStrip

 public MenuForm() {
 Text = "Use a MenuStrip";

 // Create a main menu object.
 MyMenu = new MenuStrip();

 // Add top-level menu items to the menu.
 ToolStripMenuItem m1 = new ToolStripMenuItem("File");
 MyMenu.Items.Add(m1);

 ToolStripMenuItem m2 = new ToolStripMenuItem("Tools");
 MyMenu.Items.Add(m2);

PART II

C h a p t e r 2 6 : U s e S y s t e m . W i n d o w s . F o r m s 865

 // Create File submenu.
 ToolStripMenuItem item1 = new ToolStripMenuItem("Open");
 m1.DropDownItems.Add(item1);

 ToolStripMenuItem item2 = new ToolStripMenuItem("Close");
 m1.DropDownItems.Add(item2);

 ToolStripMenuItem item3 = new ToolStripMenuItem("Exit");
 m1.DropDownItems.Add(item3);

 // Create Tools submenu.
 ToolStripMenuItem item4 = new ToolStripMenuItem("Coordinates");
 m2.DropDownItems.Add(item4);

 ToolStripMenuItem item5 = new ToolStripMenuItem("Change Size");
 m2.DropDownItems.Add(item5);

 ToolStripMenuItem item6 = new ToolStripMenuItem("Restore");
 m2.DropDownItems.Add(item6);

 // Add event handlers for the menu items.
 item1.Click += MMOpenClick;
 item2.Click += MMCloseClick;
 item3.Click += MMExitClick;
 item4.Click += MMCoordClick;
 item5.Click += MMChangeClick;
 item6.Click += MMRestoreClick;

 // Add to list of controls.
 Controls.Add(MyMenu);

 // Assign the menu to the form.
 MainMenuStrip = MyMenu;
 }

 [STAThread]
 static void Main() {
 MenuForm skel = new MenuForm();

 Application.EnableVisualStyles();
 Application.Run(skel);
 }

 // Handler for main menu Coordinates selection.
 void MMCoordClick(object who, EventArgs e) {
 // Create a string that contains the coordinates.
 string size =
 String.Format("{0}: {1}, {2}\n{3}: {4}, {5} ",
 "Top, Left", Top, Left,
 "Bottom, Right", Bottom, Right);

 // Display a message box.
 MessageBox.Show(size, "Window Coordinates",

866 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

 MessageBoxButtons.OK);
 }

 // Handler for main menu Change selection.
 void MMChangeClick(object who, EventArgs e) {
 Width = Height = 200;
 }

 // Handler for main menu Restore selection.
 void MMRestoreClick(object who, EventArgs e) {
 Width = Height = 300;
 }

 // Handler for main menu Open selection.
 void MMOpenClick(object who, EventArgs e) {

 MessageBox.Show("Inactive", "Inactive",
 MessageBoxButtons.OK);
 }

 // Handler for main menu Close selection.
 void MMCloseClick(object who, EventArgs e) {

 MessageBox.Show("Inactive", "Inactive",
 MessageBoxButtons.OK);
 }

 // Handler for main menu Exit selection.
 void MMExitClick(object who, EventArgs e) {

 DialogResult result = MessageBox.Show("Stop Program?",
 "Terminate",
 MessageBoxButtons.YesNo);

 if(result == DialogResult.Yes) Application.Exit();
 }
}

FIGURE 26-5
Sample output
from the MenuStrip
program

A
Documentation Comment

Quick Reference

C# supports three types of comments. The first two are // and /* */. The third type is
based on XML tags and is called a documentation comment. (The term XML comment is
also commonly used.) A single-line documentation comment begins with ///. A multiline

documentation comment begins with /** and ends with */. The lines after the /** can (but
are not required to) start with a single *. If all subsequent lines in the multiline comment
begin with a *, the * is ignored.

Documentation comments precede the declaration of such things as classes, namespaces,
methods, properties, and events. Using documentation comments, you can embed information
about your program into the program itself. When you compile the program, you can have
the documentation comments placed into an XML file. Documentation comments can also
be utilized by the IntelliSense feature of Visual Studio.

The XML Comment Tags
C# supports the XML documentation tags shown in Table A-1. Most of the XML comment
tags are readily understandable, and they work like all other XML tags with which most
programmers are already familiar. However, the <list> tag is more complicated than the
others. A list contains two components: a list header and list items. The general form of a list
header is shown here:

<listheader>
 <term> name </term>
 <description> text </description>
</listheader>

Here, text describes name. For a table, text is not used. The general form of a list item is
shown next:

<item>
 <term> item-name </term>
 <description> text </description>
</item>

Here, text describes item-name. For bulleted or numbered lists or tables, item-name is not
used. There can be multiple <item> entries. 867

APPENDIX

868 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Compiling Documentation Comments
To produce an XML file that contains the documentation comments, specify the /doc option.
For example, to compile a file called DocTest.cs that contains XML comments, use this
command line:

csc DocTest.cs /doc:DocTest.xml

Tag Description

<c> code </c> Specifies the text specified by code as program code.

<code> code </code> Specifies multiple lines of text specified by code as program code.

<example> explanation </example> The text associated with explanation describes a code example.

<exception cref = “name”> explanation
</exception>

Describes an exception. The exception is specified by name.

<include file = ‘fname’ path = ‘path
 [@tagName = “tagID “]’ />

Specifies a file that contains the XML comments for the current
file. The file is specified by fname. The path to the tag, the tag
name, and the tag ID are specified by path, tagName, and tagID,
respectively.

<list type = “type””>
 list-header
 list-items
</list>

Specifies a list. The type of the list is specified by type, which must
be either bullet, number, or table.

<para> text </para> Specifies a paragraph of text within another tag.

<param name = ‘param-name’>
explanation

</param>

Documents the parameter specified by param-name. The text
associated with explanation describes the parameter.

<paramref name = “param-name” /> Specifies that param-name is a parameter name.

<permission cref = “identifier”>
explanation

</permission>

Describes the permission setting associated with the class
members specified by identifier. The text associated with
explanation describes the permission settings.

<remarks> explanation </remarks> The text specified by explanation is a general commentary often
used to describe a type, such as a class or structure.

<returns> explanation </returns> The text specified by explanation documents the return value of a
method.

<see cref = “identifier” /> Declares a link to another element specified by identifier.

<seealso cref = “identifier” /> Declares a “see also” link to identifier.

<summary> explanation </summary> The text specified by explanation is a general commentary often
used to describe a method or other class member.

<typeparam name = “param-name”>
explanation

</typeparam>

Documents the type parameter specified by param-name. The text
associated with explanation describes the type parameter.

<typeparamref name = “param-name”/> Specifies that param-name is the name of a type parameter.

<value> explanation </value> The text specified by explanation documents a property.

TABLE A-1 The XML Comment Tags

PART II

A p p e n d i x A : D o c u m e n t a t i o n C o m m e n t Q u i c k R e f e r e n c e 869

To create an XML output file when using the Visual Studio 2008 IDE, you must activate
the Properties page. Next, select Build. Then, check the XML Documentation File box and
specify the name of the XML file.

An XML Documentation Example
Here is an example that demonstrates several documentation comments. It uses both the
multiline and the single-line forms. As a point of interest, many programmers use a series of
single-line documentation comments rather than a multiline comment even when a comment
spans several lines. (Several of the comments in this example use this approach.) The advantage
is that it clearly identifies each line in a longer documentation comment as being part of a
documentation comment. This is, of course, a stylistic issue, but it is common practice.

// A documentation comment example.

using System;

/** <remark>
 This is an example of multiline XML documentation.
 The Test class demonstrates several tags.
</remark>
*/

class Test {
 /// <summary>
 /// Main is where execution begins.
 /// </summary>
 static void Main() {
 int sum;

 sum = Summation(5);
 Console.WriteLine("Summation of " + 5 + " is " + sum);
 }

 /// <summary>
 /// Summation returns the summation of its argument.
 /// <param name = "val">
 /// The value to be summed is passed in val.
 /// </param>
 /// <see cref="int"> </see>
 /// <returns>
 /// The summation is returned as an int value.
 /// </returns>
 /// </summary>
 static int Summation(int val) {
 int result = 0;

 for(int i=1; i <= val; i++)
 result += i;

 return result;
 }
}

870 P a r t I I : E x p l o r i n g t h e C # L i b r a r y

Assuming the preceding program is called XmlTest.cs, the following line will compile
the program and produce a file called XmlTest.xml that contains the comments:

csc XmlTest.cs /doc:XmlTest.xml

After compiling, the following XML file is produced:

<?xml version="1.0"?>
<doc>
 <assembly>
 <name>DocTest</name>
 </assembly>
 <members>
 <member name="T:Test">
 <remark>
 This is an example of multiline XML documentation.
 The Test class demonstrates several tags.
 </remark>
 </member>
 <member name="M:Test.Main">
 <summary>
 Main is where execution begins.
 </summary>
 </member>
 <member name="M:Test.Summation(System.Int32)">
 <summary>
 Summation returns the summation of its argument.
 <param name="val">
 The value to be summed is passed in val.
 </param>
 <see cref="T:System.Int32"> </see>
 <returns>
 The summation is returned as an int value.
 </returns>
 </summary>
 </member>
 </members>
</doc>

Notice that each documented element is given a unique identifier. These identifiers can be
used by other programs that use the XML documentation.

Index
Symbols
&

bitwise AND, 73–76
logical AND, 67, 68, 70, 71,

229–235
pointer operator, 587

&& (short-circuit or conditional
AND), 67, 70–71, 229, 231–235

*
multiplication operator, 24, 63
pointer operator, 586–587,

594, 595
@ to designate verbatim string

literals, 48–49
@ - qualified keywords, 33–34
|

bitwise OR, 73, 76–77
logical OR, 67, 68, 69–70, 71,

229–235
|| (short-circuit or conditional OR),

67, 70, 71, 229, 231–235
[], 137, 138, 142, 145, 151, 245, 483,

484, 598
^

bitwise exclusive OR, 73, 77–78
logical exclusive OR, 67, 68

: (colon), 271, 278, 334
:: namespace alias qualifier, 447–451
{ }, 20, 21, 29, 31, 52, 118, 140, 143,

414, 416, 569
used with format specifiers, 43–46

=, 24, 71–72
= = (relational operator), 27, 67, 537

overloading, 224, 226, 306
and strings, 158, 665

=> lambda operator, 413–414
!, 67, 68, 69–70, 229–231
!=, 27, 67, 537

overloading, 226
and strings, 158, 665

/, 24, 63
/* */, 20
/** */, 867
//, 21
///, 867
<

I/O redirection operator, 381–382
relational operator, 27, 67,

224–226
< >, 497
<<, 73, 79–81

<=, 27, 67, 226
–, 24, 63
– =

compound assignment
operator, 72

and delegates, 404
and event accessors, 425

–>, 589
– –, 29, 63, 64–65

overloading, 217
%

modulus operator, 63–64
used with custom date and time

placeholder characters, 698
(), 21, 83, 116, 122
. (dot operator), 111, 119, 205, 332, 589
+

addition operator, 24, 63
concatenating strings with,

159, 670
used with WriteLine(), 24

+=
compound assignment

operator, 72
and delegates, 404
and event accessors, 425

++, 29, 63, 64–67
overloading, 217–220

#
used with preprocessor

directive, 451
used with WriteLine(), 45,

692–695
?

conditional operator, 82–83
used with nullable type

declaration, 599
?? null coalescing operator, 601–602
>

I/O redirection operator, 381–382
relational operator, 27, 67,

224–226
>>, 73, 79–81
>=, 27, 67, 226
; (semicolon), 21, 31, 92, 143, 409, 548

used in a custom format
specifier, 693–694, 695

~
bitwise NOT, 73, 78–79
used in destructor declaration,

131–132

AA
Abort(), 741–745
Abs(), 193, 618
abstract type modifier, 294, 301, 305
Access control, 165–172

guidelines for using public and
private, 167–168

Access modifiers/specifiers, 110, 116,
165–166, 261–264, 458

Accessors, 245
event, 424–429
indexer, 246, 248–249
property, 254–255, 259–260
using access modifiers with,

261–264
Acos(), 618
Action delegate, 653–654
add event accessor, 425, 428
Add(), 631, 752, 753, 763, 776, 777,

787, 790, 792, 794, 796, 852–853,
859, 860, 864

and collection initializers, 819
AddAfter(), 784
AddBefore(), 784
AddFirst(), 784
AddLast(), 784
AddMemoryPressure(), 658
AddRange(), 756, 780
ADO.NET Datasets, 546
All() extension method, 578–579
AllKeys property, 834
AllowMultiple named parameter, 491
AND operator

bitwise (&), 73–76
logical (&), 67, 68, 70, 71, 229–235
short-circuit or conditional

(&&), 67, 70–71, 229, 231–235
And(), 772
Any() extension method, 578–579
Application class, 851
Application.EnableVisualStyles(), 851
Application.Exit(), 858
ApplicationException, 354
ArgumentException, 372, 378, 380,

381, 384, 802, 805
ArgumentNullException, 372, 378,

380, 381, 384, 397, 753, 777, 830
ArgumentOutOfRangeException,

372, 758
Arguments, 21, 116, 122

command-line, 200–202

871

872 C # 3 . 0 : T h e C o m p l e t e R e f e r e n c e

Arguments (continued)
passing, 174–176
type. See Type argument(s)
variable number of, using,

182–185
Arithmetic operators, 24, 63–67
Array class, 641–654, 762

methods, table of, 642–647
properties, table of, 641–642

Array.ForEach(). See ForEach()
Array(s), 137–152

array of, 144, 146
boundaries, 141, 338
boundary errors, using indexer

to prevent runtime exceptions
caused by, 246–249, 252–254

boundary errors, using a
property to prevent runtime
exceptions caused by, 256–259,
262–264

copying an, 651–652
custom, using indexers and

properties to create, 264–268
dynamic, 268, 755, 779
and fixed-size buffers, 596–598
foreach to cycle through, using,

153–156
general forms of, 137–138,

141, 142
and the IEnumerable<T>

interface, 546, 547, 550, 566, 576
implemented in C# as objects,

137–138, 148
implicitly typed, 151–152
indexing (accessing elements of),

138–139, 142, 145
initializing, 140, 143–144
I/O using, 392–394
jagged, 144–146, 150–151, 152
Length property of, 148–151
and LINQ, 151, 152, 546
multidimensional, 141–146
null-terminated, 593
one-dimensional, 137–141
parameter params, 182–185
of pointers, 595
pointers and, 591–593
rectangular, 144
reference variables, assigning,

146–147
returned from methods, 187–188
reversing an, 650–651
sorting, 648–650
searching, 155–156, 648–650
of strings, 160–161

ArrayList class, 749, 755–762, 774, 779
methods, table of, 756–758

ArrayTypeMismatchException, 353
Arrow operator (–>), 589
as operator, 459, 460–462
ascending contextual keyword,

550, 553
ASCII character set, 41, 363
ASCIIEncoding, 664
Asin(), 618
ASP.NET, 457, 821
AsQueryable() extension method, 752
AsReadOnly<T>(), 642
Assembly, 166, 457–458

alias, 610–611
and DLL files, 480–481
friend, 605
and reflection, 475–481

Assembly class, 476
Assembly property, 464
Assignment operator(s)

=, 24, 71–72
arithmetic and logical

compound (op=), 72
bitwise compound, 81
and operator overloading,

239–240
Assignments

reference variables and, 115–116,
146–147, 328, 329–330

structure, 328–329
type conversion in, 55–58

Atan(), 618
Atan2(), 618
Attribute class, 483, 484, 485
Attributes, 459, 464, 483–493

attaching, 484–485
built-in, 491–493
creating, 484
and named parameters, 487–490
retrieving, 485–486

Attributes property, 464
AttributeTargets enumeration, 491
AttributeUsage attribute, 484, 491
AuthenticationLevel property, 825
AutoResetEvent class, 737, 739
Average() extension method, 578–579

BB
Backing field, 259, 260
Backslash character constants, 47
base keyword

to access a hidden base class
member, 278, 283–285

to call a base class constructor,
278–282, 288, 355, 358

BaseAddress property, 843
BaseType property, 464
BigMul(), 618
BinaryReader class, 367, 383, 384–390

input methods, table of
common, 385

BinarySearch(), 642, 648, 756,
760–761, 780

BinaryWriter class, 367, 383–384,
386–390

output methods, table of
common, 384

BindingFlags enumeration, 468
Bit-fields, 700
BitArray class, 750, 771–774

methods, table of, 772
BitConverter class, 654–656

methods, table of, 655–656
Bitwise operators, 73–81
Blocks, code, 21, 29–31, 52

and anonymous methods,
409–411

and name hiding, 54
bool value type, 36, 42–43, 623

and logical operators, 67, 68
and relational operators, 43, 67

Boolean expression, 27
Boolean structure, 623, 640–641

methods, table of, 640–641
Bottom property, 855
Boxing and unboxing, 307–309
break statement, 85, 89, 91, 102–104,

107, 154, 815
BufferedStream class, 365
Buffers, fixed-size, 596–598
Button class, 852, 854, 856
ButtonBase class, 852
Byte .NET structure, 396, 397, 623
byte value type, 36, 37, 38, 363,

396, 623
Bytecode, 5, 8

CC
C format specifier, 45–46
C, history of, 3–4
C++, history of, 4
C#

as a component-oriented
language, 6–7

case sensitivity of, 21
history of, 3, 5–7
Internet and, 821
and Java, 3, 6

I n d e x 873

keywords, 32–33
library, 8, 20, 34, 38, 437, 613, 615
and the .NET Framework, 3, 6,

7–8
program compilation, 8, 14–19
as a strongly typed language,

35, 289
version 3.0, new features in, 7

CachePolicy property, 825, 843
Call-by-reference

using ref to create a, 176–178
vs. call-by-value, 174–176

CanRead property, 365
CanSeek property, 365
CanTimeout property, 365
CanWrite property, 365
Capacity property, 758, 781, 793
Case sensitivity and C#, 21
case statement, 89–92

and goto, 106–107
Cast() extension method, 752
Cast(s), 42, 55, 56–58, 60–62, 496,

499, 501, 502
as operator, using the, 460–462
and enumerations, 332–333
and explicit conversion

operators, 235, 237–239, 240
catch clause, 338–345

for catching all exceptions,
345–346

and catching derived class
exceptions, 358–359

and finally, 351
multiple, using, 344–345
variable, 338, 340, 351

Ceiling(), 618, 631
Char structure, 623, 634–640

methods, table of, 635–638
char value type, 36, 41–42, 363, 623
Character(s), 41–42

escape sequences, 47
literals, 46, 47, 49

CharacterSet property, 835
checked keyword, 360–362
checksum #pragma option, 457
Class(es), 109–114

abstract, 302–304, 305, 311, 326
base, definition of, 269
constructor. See Constructor(s)
data type, definition creating a

new, 111
definition of the term, 8, 12,

20, 109
derived, definition of, 269
factory, 186–187, 209–210
general form of, 110, 272

generic. See Generic class
and interfaces, 311, 312–316
library, .NET, 8, 20, 34, 38, 437,

613, 615
member. See Member(s), class
partial, 603–604
sealed, 305
static, 211–212
System, list of, 615–616
well-designed, 110

class keyword, 20, 110, 504, 517,
518, 521

Clear(), 643, 752, 753, 767, 770, 776,
794, 795

Click event, 854, 859, 860
Clone(), 643, 660–662
Close(), 364, 366, 374, 376, 384, 385,

748, 827, 830
CloseMainWindow(), 748
CLR (Common Language Runtime),

8, 9, 15, 337, 352, 585
CLS (Common Language

Specification), 9
Code

blocks. See Blocks, code
managed vs. unmanaged, 9,

585, 586
point, Unicode character, 634–635
section, critical, 606
unreachable, 126
unsafe, 585–598

Collect(), 657, 658
Collection(s), 326, 749–819

bit-based, 749, 750, 771–774
definition of, 102, 152, 749
initializers, 819
specialized, 749, 750, 774
sorting user-defined classes in,

801–808
storing user-defined classes in,

799–801
using an enumerator to access,

808–811
Collection(s), generic, 749, 750,

774–799
classes, 779–799
interfaces, 775–778

Collection(s), non-generic, 749–771
classes, 755–771
interfaces, 751–755

CollectionBase class, 774
CollectionCount(), 658
Collections API, 749, 750, 774
CollectionsUtil class, 774
Comments, 20, 21, 867

Common Language Runtime (CLR),
8, 9, 15, 337, 352, 585

Common Language Specification
(CLS), 9

Common Type System (CTS), 9
Compare(), 631, 641, 665, 666–670,

754, 778, 805, 806–807
comparer property, 763
Comparer property, 788, 790, 793, 797
CompareOrdinal(), 667
CompareTo(), 157–158, 326, 534,

536–537, 624, 626, 628, 631, 635,
640, 648–649, 659, 667, 802

CompareTo(T obj), 536–537, 649, 660,
803–804

Compilation, conditional, 452
Compile(), 581
Compiler

C# command-line, 14–15
JIT, 8, 15, 543

Components, 5
and C#, 6–7
and the internal access

modifier, 458
Concat(), 670–672
Conditional built-in attribute, 491–492
ConnectionGroupName property, 825
Console class, 21, 364, 367, 369,

371, 382
Console.Error, 363, 364, 367, 371
Console.In, 363, 364, 367–371, 381
Console.Out, 363–364, 367, 371, 381
ConsoleKey enumeration, 370
ConsoleKeyInfo structure, 369
ConsoleModifiers enumeration, 370
const modifier, 607
Constants, 35

backslash character, 47
named integer, 311, 332

ConstrainedCopy(), 643
Constraint(s), 503–521

base class, 504–512, 520, 521
constructor, 504, 516–517, 521
and generic interfaces, 534
and generic methods, 527
interface, 504, 512–516, 521
multiple, using, 521
naked type, 504, 520
and overload resolution, 543
reference type, 504, 517,

518–519, 521
value type, 504, 517, 519

Constructed type, 499, 543–544
and method overloading, 543
open vs. closed, 499
and static fields, 544

874 C # 3 . 0 : T h e C o m p l e t e R e f e r e n c e

Constructor(s), 126–130
base clause to call a base class,

278–282, 288
in class hierarchy, order of

calling, 288–289
default, 127, 130–131
and inheritance, 276–282, 288,

291–294
object initializers vs., 199–200
overloading, 194–199, 543
parameterless, 504, 516–517
reflection to obtain a type’s,

using, 471–475
static, 210, 212

ConstructorInfo class, 472
Contains(), 674–675, 752, 753, 767,

770, 776, 794, 795
extension method, 578–579

ContainsKey(), 762, 763, 764, 765,
777, 787, 790, 792

ContainsValue(), 762, 763, 764, 765,
787, 790, 792

ContentEncoding property, 835
ContentLength property, 825, 827, 835
ContentType property, 825, 827, 835
continue statement, 85, 104–105
Contravariance, 406–408
Control class, 849, 851, 852, 853, 854
Control statements. See Statements,

control
Controls property, 853, 864
Controls, Windows, 849, 852, 855
Conversion operators, 235–239,

243–244
implicit vs. explicit, 235, 237, 239

Conversion, type. See Type
conversion

ConvertAll<TFrom, TTo>(), 643
ConvertFromUtf32(), 634, 635
ConvertToUtf32(), 634, 635
Cookie class, 836
CookieCollection, 836, 837
CookieContainer class, 837
CookieContainer property, 837
Cookies, accessing, 836–838
Cookies property, 835, 836
Copy(), 157, 643, 651
CopyTo(), 643, 751, 756–757, 776,

794, 795
Cos(), 39, 618
Cosh(), 618
Count property, 751, 758, 773, 775
Count() extension method, 564,

578–579, 580
Covariance, 406–408

Create(), 824, 825, 829, 830, 833
exceptions, 830
and the Uri class, 833

CreateInstance(), 643
Credentials property, 825, 843
Cross-language interoperability, 5, 457
.cs file extension, 20
csc.exe command-line compiler, 14–15
CTS (Common Type System), 9
CultureInfo class, 638, 666, 667
Current property, 754, 778, 808, 809,

810, 811
CurrentThread property, 746

DD
Data members, class, 109
Data type(s), 24, 25

casting. See Casts
class as a, 111
conversion. See Type conversion
importance of, 35
object as a “universal”, 309–310
promotion of, 59–60
reference. See Reference types
value (simple). See Value types
See also Type

Date and time, formatting, 695–700
custom placeholder characters

for, table of, 699–700
format specifiers for, table of, 696

DateTime structure, 660, 695
Deadlock, 727, 745
Decimal .NET structure, 396, 397,

623, 630–634
constructors, 630
fields, table of, 635
methods, table of, 631–634

decimal value type, 36, 40–41, 396,
623, 630

literal, 46
DeclaringType property, 463
Decrement operator (– –), 29, 63, 64–65

overloading, 217
Decrement(), 739–740
default #line directive option, 456
default statement, 89–91

and goto, 106–107
default(type) and type parameters,

522–523
DefaultCachePolicy property, 825
DefaultWebProxy property, 826
#define directive, 451, 452, 491
delegate keyword, 399, 409, 410
Delegates, 399–413

and anonymous functions,
408–409

and anonymous methods,
408–413

covariance and contravariance
and, 406–408

declaring, 399–400
and events, 419, 420
generic, 527–530
and instance methods, 402–404
and lambda expressions, 413–419
and multicasting, 404–406
reasons to use, 408
System, list of, 617

Delegates, instantiating, 401
using method group conversion,

402, 403
Dequeue(), 769, 770, 796, 797
descending contextual keyword,

550, 553
Destructors, 131–133
DialogResult enumeration, 856–857
Dictionaries, 749, 754, 787
Dictionary<TK,TV> class, 775, 779,

787–789
methods, table of some, 787

Dictionary<TK,TV>.KeyCollection
class, 788

Dictionary<TK,TV>.ValueCollection
class, 788

DictionaryBase class, 774
DictionaryEntry structure, 755, 763,

765, 810
DirectoryNotFoundException, 372,

373, 381
disable warning option, 457
Dispose(), 374, 778

and the using statement, 608
Divide(), 631
DivideByZeroException, 337, 342,

343, 347–348, 353
DivRem(), 618
DllImport attribute, 609, 610
Documentation comments, 867–870
do-while loop, 85, 101–102, 105
Dot operator (.), 111, 119, 205, 332, 589
Double .NET structure, 396, 397,

623, 626
fields, table of, 630
methods, table of, 628–629

double value type, 25–26, 36, 38–39,
46, 396, 623

DoubleToInt64Bits(), 655
DownloadData(), 844
DownloadFile(), 844
DownloadString(), 844
DropDownItems property, 864
Dynamic method dispatch, 294

I n d e x 875

EE
E field, 617
#elif directive, 451, 452, 454–455
else, 85–88
#else directive, 451, 454–455
Empty field, 430, 665
Encapsulation, 12, 20, 52, 165
Encoding class, 664
Encoding property, 843
#endif directive, 451, 452–453, 454
EndOfStream property, 381
EndOfStreamException, 390
#endregion directive, 451, 456
EndsWith(), 552, 673, 675
Enqueue(), 769, 770, 796, 797
Enter(), 723
Entry property, 809–810
enum keyword, 332, 519
Enumerable class, 574, 577, 580,

684, 776
Enumerations, 36, 311, 332–335

formatting, 700–701
System, list of, 617

Enumerators, 749, 750, 808–811
Epsilon field, 628, 630
EqualityComparer property, 763
equals, 566, 568
Equals(), 226, 306, 624, 626, 628,

631–632, 635, 640, 644, 659, 660,
754–755, 778

#error directive, 451, 456
Errors

network, handling, 830–833
runtime, 337, 501
syntax, 22
See also Exception handling

Escape sequences, character, 47
event statement, 419, 420, 424–425, 428
Event handlers, 419, 420–421

anonymous methods as, 429, 430
and event accessors, 424–429
and form-based Windows

programs, 853–856
instance methods as, 422–423
lambda expressions as, 429–430,

433–435
.NET guidelines for 430–433
static methods as, 422, 423–424

Event synchronization object, using
an, 737–739

EventArgs class, 430, 432, 433, 854
EventHandler delegate, 432–433, 854
Events, 399, 419–435

and generics, 544
multicasting, 421–422

EventWaitHandle class, 737
Exception class, 337, 347, 351–355,

358, 359
Exception handling, 337–362

blocks, general form of, 338, 349
and creating derived exception

classes, 348, 354–358
inner, 352
network, 830–833
and uncaught exceptions,

341–343
See also catch statement(s)
See also try block(s)

Exceptions, standard built-in, 337,
352–354

table of common, 353
ExceptionState property, 742, 743
ExceptWith(), 798
exe file, 457, 480–481
Exists(), 644, 652–653
Exit(), 723
Exp(), 618
explicit keyword, 235
Expression class, 581
Expression(s)

nullable types in, 600–601
spacing and parentheses in,

using, 83
trees, 581–582
type conversion in, 59–62,

600–601
Extension methods, 7, 211, 564,

582–584
and collections, 776
corresponding to query

keywords, 574–577
definition of, 574
general form of, 583
the inheritance mechanism vs.,

582–583
query-related, 577–581
and String objects, 684

extern
used with methods, 544, 609–610
used to provide an assembly

alias, 451, 610–611

FF
false, 42, 67

overloading, 226–228, 231–235
False displayed as bool value output

by WriteLine(), 43, 640
FalseString field, 640
Field

const, 606, 607

definition of, 12, 109
properties to manage access to,

254–259
readonly, 606–607
static, 208–209, 544
unassigned or unused, 598
volatile, 607

File Transfer Protocol (FTP), 823–824
File(s)

I/O. See I/O, file
position indicator (pointer), 390

FileAccess enumeration, 373
FileMode enumeration, 372

values, table of, 372
FileNotFoundException, 372, 373, 381
FileStream class, 365, 372–378, 382,

384, 390
Finalize(), 306, 659
finally block, 338, 349–351
Find(), 644, 652–653, 784
FindAll(), 644, 652
FindIndex(), 644, 652
FindLast(), 644, 784
FindLastIndex(), 644
First property, 784
First() extension method, 578–579
fixed statement, using the,

588–589, 593
and arrays, 591
to create fixed-size buffers,

596–598
FixedSize(), 757
Flags attribute, 700, 701
float value type, 25, 36, 38, 396, 623

literal, 46
Floating-point(s), 25–26, 38–39

literals, 46
structures, 626–630

Floor(), 618–619, 632
Flush(), 364, 366, 376, 384
for loop, 28–29, 85, 92–99, 105

and code blocks, 29, 30–31, 92
variations, 94–99

foreach loop, 85, 102, 152–156, 749,
750, 754, 808, 809, 811

to execute a query, 546, 548, 550
using named iterator to

control, 816
ForEach(), 644, 653–654
Form, Windows, 849

creating a, 849, 851
Form class, 849, 851
Format specifiers for WriteLine(),

43–46

876 C # 3 . 0 : T h e C o m p l e t e R e f e r e n c e

Format(), 685, 688–691
methods, table of, 689

FormatException, 397
Formatting, 684–701

and cultural settings, 685,
686, 695

date and time. See Date and
time, formatting

enumerations, 700–701
and format providers, 685
and format specifiers, 685
using a picture format, 692

Formatting numeric data
custom, 45, 692
custom format placeholder

characters for, table of, 695
format specifiers for, table of, 687
using String.Format(), 688–691
using ToString(), 691–692
using WriteLine(), 43–46, 686–688

Frank, Ed, 4
from clause, 547, 550

nested, 560–561
FromOACurrency(), 632
FTP (File Transfer Protocol) protocol,

823–824
FullName property, 462, 464
Func delegate types, predefined,

581, 582
Func<T,TResult> delegate, 574
Func<TInner, TKey> type, 575
Func<TOuter, TInner, TResult>

type, 575
Func<TOuter, TKey> type, 575
Function

anonymous, 408–409, 413
members, 12, 109

GG
Garbage collection, 131–133, 186,

596, 657–658, 848
and arrays, 137
and fixed, 588

GC class, 657–658
methods, table of, 658

Generic class
example with one type

parameter, 496–499
example with two type

parameters, 502–503
general form, 503
hierarchies, 537–540
instantiation process for, 543–544
overriding virtual methods in a,

540–542

partial, 604
reference to a, declaring a, 503

Generic method(s), 524–527, 544
and constraints, 527
and explicit type arguments, 527
general form, 526

Generics, 7, 310, 495–544
avoiding runtime errors

through, 501
and casts, 496, 499, 501, 502
and code-bloat, 543–544
restrictions on using, 544
and type safety, 495, 496, 498,

499–502, 506, 526, 529, 544,
641, 649, 660, 750, 775, 800, 801

get accessor
and auto-implemented

properties, 259–260, 262
and access modifiers, 261–264
for indexer, 246, 249, 320
for property, 254, 256, 261,

318–319
get contextual keyword, 33
Get(), 772
GetBits(), 632
GetByIndex(), 764, 765
GetBytes(), 655
GetConstructors(), 464, 472
GetCustomAttribute(), 485
GetCustomAttributes(), 464, 485
GetEnumerator(), 644, 752, 753, 754,

762, 763, 764, 765, 776, 777, 778,
787, 790, 792, 808, 809, 811

and iterators, 813–814, 816, 819
GetEvents(), 464
GetFields(), 464
GetFormat(), 662, 685
GetGeneration(), 658
GetGenericArguments(), 464
GetHashCode(), 226, 306, 624, 626,

628, 632, 636, 640, 644, 659,
754–755, 778

GetKey(), 764, 765
GetKeyList(), 764, 765
GetLength(), 644
GetLongLength(), 644
GetLowerBound(), 644
GetMembers(), 464
GetMethods(), 464, 465, 469

BindingFlags form of,
468–469, 483

GetNumericValue(), 636
GetParameters(), 465, 472
GetProperties(), 464
GetRange(), 757, 780
GetRequestStream(), 825

GetResponse(), 825, 826, 829, 830
exceptions, 830–831

GetResponseStream(), 827, 829, 830
exceptions, 831

GetTotalMemory(), 658
GetType(), 306, 501–502, 659
GetTypeCode(), 624, 626, 628, 632,

636, 640
GetTypes(), 476
GetUnicodeCategory(), 636
GetUpperBound(), 644
GetValue(), 645
GetValueList(), 764, 765
GetValues(), 834
global predefined identifier, 412–413
Gosling, James, 4, 5
goto, 85, 91, 105–107
group clause, 548, 550–551

using into with a, 561–563
GroupBy() extension method,

574, 576

HH
Hash code, 762
Hash table, 762
HashSet<T> class, 779, 797–799

set operation methods, table
of, 798

Hashtable class, 749, 755, 762–764,
774, 809

methods, table of common, 763
HasValue property, 599
hcp property, 763
Headers, accessing HTTP, 834–836
Headers property, 826, 827, 834,

835, 843
Heap, 596
Height property, 855, 863
Hejlsberg, Anders, 6
Hexadecimal literals, 47
hidden option for #line directive, 456
Hierarchical classification, 13, 269
High surrogate, 635
Host property, 833–834
HTTP (HyperText Transfer Protocol),

823–824, 826
cookies, accessing, 836–838
header, accessing, 834–836

HttpStatusCode, 823, 835
HttpWebRequest class, 822, 823, 824,

826–827, 837
HttpWebResponse class, 822, 823,

824, 826–827, 834–839
properties, table of, 834

HybridDictionary class, 774

I n d e x 877

II
ICloneable interface, 641, 660–662,

664, 755, 762, 764, 767, 769, 771
ICollection interface, 326, 641,

 751–752, 753, 754, 755, 758, 762,
764, 767, 769, 771, 779, 783, 787,
789, 792, 794, 795, 836

ICollection<KeyValuePair<TK,TV>>
interface, 777, 787, 789, 792

ICollection<T> interface, 775–776,
779, 783, 794, 796, 797

IComparable interface, 326, 534–536,
537, 624, 626, 630, 635, 640, 648–
649, 659–660, 664

implementing the, 801–803
IComparable<bool> interface, 640
IComparable<char> interface, 635
IComparable<decimal> interface, 630
IComparable<string> interface, 664
IComparable<T> interface, 536–537,

624, 626, 648–649, 659–660
implementing the, 803–805

IComparer interface, 641, 751, 754, 789
using an 805–806

IComparer<T> interface, 641, 775, 778
using an, 806–808

IConvertible interface, 624, 626, 630,
635, 640, 660, 664

Identifiers, 33–34
IDeserializationCallback interface,

762, 783, 787, 797
IDictionary interface, 751, 753–754,

762, 764, 765, 787, 789, 792
methods, table of, 753

IDictionary<TK,TV> interface, 775,
777, 787, 788, 789, 792

IDictionaryEnumerator interface,
751, 754, 762, 764, 809–811

IDisposable interface, 608, 614
IEEERemainder(), 619
IEnumerable interface, 546, 550, 564,

641, 664, 750, 751, 752, 753, 754,
755, 762, 764, 767, 769, 771, 775,
776, 777, 778, 779, 783, 787, 789,
792, 794, 795, 797, 813, 816, 836

implementing the, 811–812
IEnumerable<char> interface, 664
IEnumerable<IGrouping<TKey,

TElement>>, 561
IEnumerable<KeyValuePair<TK,TV>>

interface, 777, 787, 789, 792
IEnumerable<T> interface, 546, 547,

549–550, 566, 574, 576, 577, 750,
775, 776, 777, 778, 779, 783, 794,
795, 797, 818

IEnumerator interface, 326, 750, 751,
754, 778, 808, 809, 813

implementing the, 811–812
IEnumerator<T> interface, 750, 775,

777, 778, 808, 818, 819
IEqualityComparer interface, 751,

754–755
IEqualityComparer<T> interface,

775, 778
IEquatable<bool> interface, 640
IEquatable<char> interface, 635
IEquatable<decimal> interface, 630
IEquatable<string> interface, 664
IEquatable<T> interface, 624,

626, 660
#if directive, 451, 452–454, 491
if statement, 27–28, 85–88

and bool values, 43, 85
and code blocks, 29–30, 85

if-else-if ladder, 87–88
IFormattable interface, 624, 626,

630, 662
IFormatProvider interface, 623,

662, 685
IGrouping<TKey, TElement>, 561
IHashCodeProvider interface, 751
IList interface, 641, 751, 752–753,

755, 779
methods, table of, 752

IList<T> interface, 775, 776, 779
ImpersonationLevel property, 826
Implication operation, 69–70
implicit keyword, 235
Increment operator (++), 29, 63, 64–67

overloading, 217–220
Increment(), 739–740
Indentation style, 32
Indexers, 245–254

abstract, 301
and generics, 544
interface, 320–322
multidimensional, 252–254
one-dimensional, 245–252
overloading, 249–251
overriding, 297
and properties to create a

custom array, using, 262–264
read-only or write-only,

creating, 249
restrictions, 252

IndexOf(), 157, 645, 673, 675–676,
752, 753, 757, 776, 780

IndexOf<T>(), 645
IndexOfAny(), 673
IndexOfKey(), 764, 765, 792

IndexOfValue(), 764, 765, 793
IndexOutOfRangeException, 141,

338–339, 342, 343, 353
Indirection, 586

multiple, 594–595
Inheritance, 12, 13, 269–310

basics of, 269–272
and class member access, 272–276
and constructors, 276–282,

288–289, 291–294
and generic classes, 537–540
and interfaces, 322–323
multilevel hierarchy of, 272,

285–288
name hiding and, 282–285, 323
sealed to prevent, using, 305
structures and, 327
syntax for class, 271

Inherited named parameter, 491
Initialize(), 645
InnerException property, 352
Insert(), 682–683, 752, 753, 776
InsertRange(), 756, 757, 780
Instance of a class, 109, 111

See also Object(s)
Instance variables

accessing, 111, 119
and constructors, 127
declaring, 111
definition of, 12
this to access hidden, using, 135
as unique to their object, 111,

113–114
int value type, 24, 25–26, 36, 37, 38,

396, 623
Int16 .NET structure, 396, 397, 623
Int32 .NET structure, 396, 397, 623
Int64 .NET structure, 396, 397, 623
Int64BitsToDouble(), 655
Integer(s), 23–24, 36–38

literals, 46
promotion, 59

Integer structures, 623–624
methods, table of, 624–626

Interface(s), 311–326
abstract class vs., 326
and events, 429
explicit implementation of,

323–326
general form of, 312
generic, 530–534
implementing, 312–316
indexers, 320–322
and inheritance, 322–323
.NET Framework standard, 326

878 C # 3 . 0 : T h e C o m p l e t e R e f e r e n c e

Interface(s) (continued)
partial, 603
properties, 318–320
reference variables, 316–318
System, list of, 616

interface keyword, 311, 312
Interlocked class, 739
internal access modifier, 165, 166, 458
InternalsVisibleTo attribute, 605
Internet, 4–5, 821

access fundamentals, 823–830
and portability, 5

IntersectWith(), 798
into

to create a continuation, using,
563–564

to create a group join, using,
569, 571–574

InvalidCastException, 353
InvalidOperationException, 599, 601,

767, 769, 794, 796, 830
Invoke(), 469–471, 472
I/O, 363–398

array, 392–394
console, 364. 367–371
memory-based, 392–395
redirection, 364, 371, 381–383, 394
streams. See Streams
string, 394–395

I/O, file, 371–392
and binary data, 383–390
byte-oriented, 371–378
character-based, 372, 378–381
random access, 390–392

IOException, 364, 366, 367, 368, 372,
373, 374, 375, 376, 379, 381, 384,
385, 390, 831

IQueryable<T> interface, 574
is operator, 459–460, 461
IsAbstract property, 462, 464
IsAlive property, 710
IsArray property, 464
IsBackground property, 715
IsBusy property, 843
IsClass property, 462, 464
IsControl(), 636
IsDefined(), 464
IsDigit(), 634, 636
IsEnum property, 464
ISerializable interface, 762, 783,

787, 797
IsFixedSize property, 641, 753, 754
IsFromCache property, 827, 835
IsGenericParameter property, 464
IsGenericType property, 464

IsHighSurrogate(), 636
IsInfinity(), 626, 628
IsLetter(), 636
IsLetterOrDigit(), 636
IsLittleEndian field, 654
IsLower(), 636
IsLowSurrogate(), 637
IsMutuallyAuthenticated property,

827, 835
IsNaN(), 626, 628
IsNegativeInfinity(), 627, 628
IsNumber(), 637
IsPositiveInfinity(), 627, 628
IsProperSubsetOf(), 798
IsProperSupersetOf(), 798
IsPunctuation(), 637
IsReadOnly property, 641, 753, 754,

775, 794, 796
IsSeparator(), 637
IsSubsetOf(), 798
IsSupersetOf(), 798
IsSurrogate(), 637
IsSurrogatePair(), 637
IsSymbol(), 637
IsSynchronized property, 641,

751, 772
IsUpper(), 637
IsWhiteSpace(), 637
Items property, 864
Iterators, 749, 750, 813–819

generic, 818–819
named, 816–817
stopping, 815

JJ
Java

and C#, 3, 6
features lacking in, 5–6
history of, 4–5

Java Virtual Machine (JVM), 5
JIT compiler, 8, 15, 543
join clause, 566–569

using into with a, 569, 571–574
Join(), 677, 678, 710–712, 741, 746, 747

extension method, 574, 577

KK
KeepAlive(), 658
Key, definition of, 753
Key property, 369–370, 561, 755, 778,

788, 791, 810
KeyChar property, 369–370
KeyComparer property, 763
KeysByTypeCollection<T> class, 779
Keys property, 754, 762. 764, 765, 777,

788, 790, 793

Keys<TK> property, 777
KeyValuePair<TK,TV> structure,

778, 788, 791, 792
Keywords, C#, 32, 33
Kill(), 748

LL
Label, 105
Lambda expressions, 7, 399, 408–409,

403–419
as event handlers, 429–430,

433–435
expression, 414–416
and expression trees, 581–582
and LINQ, 546
and query methods to create

queries, 575–577
statement, 414, 416–419

Last property, 784
Last() extension method, 578–579
LastIndexOf(), 157, 562, 645, 646,

673, 676–677, 757, 780
LastIndexOf<T>(), 645, 646
LastIndexOfAny(), 673
LastModified property, 835, 838
Left property, 855
Length property

of arrays, 148–151, 256–258, 642
of BitArray, 773
of Stream, 365
of String, 157, 665

let clause, 565–566
Library, .NET Framework class, 8, 20,

34, 38, 437, 613, 615
#line directive, 451, 457
LinkedList<T> class, 774, 779,

783–787
methods, table of a sampling of,

784–785
LinkedListNode<T> class, 783
LINQ (language-integrated query),

7, 545–584
and ADO.NET Datasets, 546
and anonymous types, 546, 569
and extension methods, 211,

546, 583
fundamentals, 546–551
and implicitly typed arrays,

151, 152
and implicitly typed variables,

52, 547, 571
and lambda expressions, 546
and object initializers, 199,

200, 261
and SQL, 545, 546, 581

I n d e x 879

and XML files, 545, 546
See also Query

List property, 783
List<T> class, 774, 779–783

methods, table of a sampling of,
780–781

ListDictionary class, 774
Literals, 35, 46–49
Little-endian format, 654
LoadFrom(), 476
LocalPath property, 833–834
Location property, 852
lock, 605–606, 718–723, 728, 729,

730, 745
Log(), 619
Log10(), 619
Logical operators, 67–71

and nullable objects, 602–603
overloading the, 229–235

long value type, 36, 37, 396, 623
literal, 46

LongLength property, 642
Loops

break to exit, using, 102–104
do-while, 85, 101–102, 105
for. See for loop
foreach. See foreach loop
infinite, 98
while, 85, 99–101, 105

Low surrogate, 635

MM
M and m suffixes to specify a

decimal, 40, 46
Main(), 21, 110, 116, 200–202, 205,

480–481
and command-line arguments,

200–202
MainMenu class, 859, 860, 862,

863, 864
MainMenuStrip property, 864
Managed code, 9, 585, 586
Manifest, assembly, 457
ManualResetEvent class, 737–739
Math class, 38, 39, 193, 617–623

methods, table of, 618–621
Max(), 619

extension method, 578–579
MaxGeneration property, 657
MaxValue field, 624, 628, 630, 635
Member(s), class, 12, 109

access and inheritance, 272–276
controlling access to, 110,

165–172

dot operator to access, 111,
119, 205

static, 205
MemberInfo class, 463–464, 465,

472, 485
MemberType property, 463
MemberTypes enumeration, 463
MemberwiseClone(), 306, 659,

660, 662
Memory allocation

using new, 115, 130, 131
using stackalloc, 596

Memory management, 657–658
MemoryStream class, 365, 392–394
Menu class, 859, 860
Menu property, 859, 861
Menu(s), Windows, 849, 852, 859–866

creating a new-style, 863–866
creating traditional, 859–863

MenuItem class, 859, 860, 864
MenuItems property, 859, 860, 864
MenuStrip class, 859, 863, 864
Message box, 856–858
Message property of Exception,

351–352
MessageBox class, 856
MessageBoxButtons enumeration, 856
Metadata, 8, 483

type, 457
MetadataToken property, 463
Method property, 826, 835
Method(s), 12, 21, 116–126

abstract, 301–304, 311
anonymous, 408–413, 417,

429, 430
base to access hidden, using,

283, 284–285
calling, 119, 469–471
class factory, 186–187
conditional, 491–492
and covariance and

contravariance, 406–408
delegates and, 399–413
dispatch, dynamic, 294
dot operator (.) and, 111, 119, 205
extension. See Extension

methods
extern, 609–610
general form of, 116
generic. See Generic method(s)
group conversion, 402, 403
and interfaces, 311–312, 313
and multicasting, 404–406
operator, 213–214, 220–224
overloading, 188–193, 542–543

overriding. See Overriding,
method

and parameters. See
Parameter(s)

partial, 7, 604–605
passing objects (reference types)

to, 172–176
private members accessed by

public, 165, 167, 168, 171
recursive, 202–205, 354
reflection to obtain information

about, using, 465–469
return type of, 121
returning arrays from, 187–188
returning from, 119–120
returning objects from, 185–188
returning a value from, 120–122
returning more than one value

from, 176, 178–181
scope defined by, 52–54
signature, 193
static, 21, 205, 206–208, 301
unreachable code and, 126
virtual, 291, 294–301, 305,

540–542
MethodBase class, 465, 472
MethodImplAttribute attribute,

728–729
MethodImplOptions.Synchronized

attribute, 728
MethodInfo class, 465, 469, 472
MFC (Microsoft Foundation

Classes), 848
Microsoft Intermediate Language

(MSIL), 8, 15, 457, 543
Min(), 619–620

extension method, 578–579
MinusOne field, 635
MinValue field, 624, 628, 630, 635
Modifiers property, 369–370
Module property, 463
Modulus operator (%), 63–64
Monitor class, 723
MoveNext(), 754, 778, 808, 809, 810,

811, 812
MSIL (Microsoft Intermediate

Language), 8, 15, 457, 543
Multicasting

delegates and, 404–406
and events, 421–422

Multiply(), 632
Multitasking, 703–704

process-based, using, 747–748
thread-based vs.

process-based, 703

880 C # 3 . 0 : T h e C o m p l e t e R e f e r e n c e

Multithreaded programming,
605–606 703–748

and deadlock, 727, 745
and race conditions, 727
synchronization and. See

Synchronization
and threads. See Thread(s)
tips for effective, 747

Mutex, 730–733, 745
named, 733

MutexSecurity, 733

NN
Name hiding

and code blocks, 54
and inheritance, 282–285, 323

Name property, 463, 465, 707,
836–837

namespace keyword, 438
Namespace property, 464
Namespace(s), 20, 22–23, 437–451

additive characteristic of, 444–446
alias qualifier (::), 447–451
declaring, 438
default global, 437, 447, 450
nested, 446–447
qualification, 22–23, 438, 446, 447

NameValueCollection class, 774
NaN field, 628, 630
Narrowing conversion, 56–58
Naughton, Patrick, 4
Negate(), 632
Negative numbers, representation of,

37, 81
NegativeInfinity field, 628, 630
.NET Framework, 3, 6, 7–8

assemblies, 457–458
class library, 8, 20, 34, 38, 437,

613, 615
event guidelines, 430–433
I/O system, 363, 364, 365, 371
standard interfaces, 326
structures for the built-in

numeric types, 396–397,
623–641

Windows Forms subsystem, 847,
848, 850

.NET Reflection API, 463, 465, 476
Networking, Internet, 821–845

and handling errors, 830–833
simple example program for,

828–830
web crawler program for,

839–842
new, 114–115, 128, 130–131, 137, 138,

140, 141, 327, 328, 348

to hide base class member,
282–283, 285

to hide interface member, 323
and implicitly typed arrays,

151, 152
new{ } to create an anonymous

type, 569
new(), 504, 516–517, 521
Next property, 783, 787
Next(), 657
NextBytes(), 657
NextDouble(), 657
NOT operator

bitwise unary (~), 73, 78–79
logical unary (!), 67, 68, 69–70,

229–231
Not(), 772
NotSupportedException, 364, 372,

374, 375, 390, 752, 776, 825, 830
Null

coalescing operator (??), 601–602
reference, 353

null value, 353, 518, 522, 598, 599,
601, 602, 603

Nullable type, 36, 518, 519, 598–603
Nullable<T> class, 598–599
NullReferenceException, 353–354
NumberStyles enumeration, 623
Nybble, 240

OO
Oak, 4
Object(s), 12, 109

attributes of, obtaining the,
485–486

class factory to construct, using
a, 186–187

copies of, deep vs. shallow,
660, 662

creating, 111, 114–115
to methods, passing, 172–176
reflection for runtime

instantiation of, using, 471–475
returning, 185–188

Object class, 659, 660
object class, 305–310, 467, 495–496,

749–750
methods defined by, table of,

306, 659
reference to value type, 307–309

Object initialization
with another object, 195–198
with constructor, 126–130
with object initialization syntax,

199–200, 260–261

Object.Equals(), 226
Object.HashCode(), 226
Object-oriented programming

(OOP), 4, 11–13, 165
ObjectDisposedException, 374, 375,

376, 831
Obsolete built-in attribute, 491, 493
OfType() extension method, 752
on, 566, 568
One field, 635
One’s complement (unary NOT)

operator (~), 73, 78–79
OpenRead(), 844
OpenWrite(), 844
operator keyword, 213
Operator overloading, 213–244, 543

binary, 213–216, 220–224
logical, 229–235
and overloading an operator

method, 220–224
relational, 224–226
restrictions, 239–240
and true and false, 226–229,

231–235
unary, 213–214, 216–220

Operator(s)
? conditional, 82–83
arithmetic, 24, 63–67
arrow (–>), 589
assignment. See Assignment

operator(s)
bitwise, 73–81
conversion. See Conversion

operators
decrement. See Decrement

operator (– –)
and generics, 544
implication, 69–70
increment. See Increment

operator (++)
lambda (=>), 413–414
logical. See Logical operators
methods, 213–214, 220–224
parentheses and, 83
pointer, 587
precedence, table of, 84
relational. See Relational

operators
OR operator (|)

bitwise, 73, 76–77
logical, 67, 68, 69–70, 71, 229–235

OR operator, short-circuit or
conditional (||), 67, 70, 71, 229,
231–235

Or(), 772
orderby clause, 552–556

I n d e x 881

OrderBy() extension method, 574
OrderedDictionary class, 774
out parameter modifier, 176, 178–181,

192–193, 214, 252, 261
OutOfMemoryException, 353
Overflow in arithmetic

computations, 360
OverflowException, 353, 397

and checked and unchecked,
360–362

Overloading
constructors, 194–199, 543
indexers, 249–251, 543
methods, 188–193, 542–543
operators. See Operator

overloading
override keyword, 294, 297
Overriding, method, 294–304

and dynamic method
dispatch, 294

and virtual methods in a generic
class, 540–541

PP
PadLeft(), 681–682
PadRight(), 681–682
Parameter(s), 116

and constructors, 128
and methods, 122–126
modifiers, ref and out, 176–182
and overloaded methods,

188–193
positional vs. named, 487–490
type. See Type parameter(s)
variable-length, 182–185

ParameterInfo class, 465
ParameterizedThreadStart

delegate, 713
ParameterType property, 465
params parameter modifier,

182–185, 193
Parse() methods, 396–398, 624, 625,

627, 628–629, 632, 638, 640
partial contextual keyword, 33,

603, 604
PathAndQuery property, 833–834
PathTooLongException, 372, 373
Peek(), 366, 767, 769, 770, 794, 795,

796, 797
Permits, semaphore, 734
PI field, 617
Point structure, 852
Pointer(s), 544, 585–595

arithmetic, 589–591, 592
comparisons, 591
indexing, 592–593

multiple indirection and, 594–595
operators, 587, 589
referent type of, 586, 590, 591
and strings, 593–594

Polymorphism, 12–13
and overridden methods,

runtime, 294, 297
and interfaces, 311
and overloaded methods,

188, 193
Pop(), 767, 794, 795
Port property, 833–834
Portability, 5, 8, 36
Position property, 365, 392
PositiveInfinity field, 628, 630
Pow(), 620, 621–623
#pragma directive, 451, 457
PreAuthenticate property, 826
Predicate delegate, 652–653
Preprocessor directives, 451–457
Previous property, 783, 787
Primitive types, 35
Priority property, 715
private access specifier, 165–167

and inheritance, 276
Private class members and

inheritance, 272–275
Projection initializer, 571
Process class, 747
Process, definition of, 703
Programming

mixed-language, 5, 7, 8, 596
multithreaded. See

Multithreaded programming
object-oriented (OOP), 4, 11–13
structured, 3, 11, 12

Properties, 245, 254–268, 276
access private base class

members using, 273–275
abstract, 301
auto-implemented, 7, 255,

259–260, 319
and generics, 544
and indexers to create a custom

array, using, 264–268
interface, 318–320
and object initializers, 260–261
overridden, 297
read-only or write-only,

creating, 256
restrictions on, 261
virtual, 297

protected access specifier, 165, 273,
275–276, 458

Protocol, network, 823
pluggable, 823–824, 829

ProtocolVersion property, 835
ProtocolViolationException, 830, 831
Proxy property, 826, 843
public access specifier, 110, 116,

165–167
and inheritance, 276

Pulse(), 723–727
PulseAll(), 723–724
Push(), 767, 794, 795

QQ
Queue class, 749, 755, 769–771

methods, table of, 770
Queue<T> class, 779, 795–797

methods, table of, 797
Query

contextual keywords, list of, 550
continuation, 563–564
data source, 547, 549–550
data types, relationship among,

549–550
definition of a, 546
determining what is obtained by

a, 548, 550, 556–559
general form of a, 550, 551
and group joins, 571–574
group results of a, 561–563
joining two data sources in a,

566–569
property, 833–834
range variable, 547, 549–550, 556
sort results of a, 552–556
values returned by a, filter, 548,

551–552
variable, 547, 548, 549, 550
variable in a, create a, 565–566

Query, creating a
using the query methods,

574–577
using the query syntax,

547–548, 577
Query execution, 546, 548–549, 550

deferred vs. immediate, 580–581
Query methods, 574–579

corresponding to the query
keywords, 574–575

and lambda expressions to
create queries, using, 575–577

Queryable class, 574, 684
QueryString property, 843
Quicksort algorithm, 205

RR
Race condition, 727
Random access file I/O, 390–392

882 C # 3 . 0 : T h e C o m p l e t e R e f e r e n c e

Random class, 656–657
methods, table of, 657

Random numbers, generating,
656–657

Rank property, 642
Read(), 364, 366, 367–368, 371,

374, 385
ReadBlock(), 366
ReadByte(), 364, 374–375, 385, 830
ReadKey(), 367, 368, 369–371
ReadLine(), 366, 367, 368–369, 371,

381, 394, 395
readonly, 606–607
ReadOnly(), 757
ReadOnlyCollectionBase class, 774
ReadString(), 384, 385
ReadTimeout property, 365
ReadToEnd(), 366
Recursion, 202–205, 354
ref parameter modifier, 176–178,

181–182, 192–193, 214, 252, 261
Reference types, 35, 115, 130

default value of, 127, 522
to methods, passing, 172–176
using ref and out with, 181–182

Reference variable(s)
derived class objects and base

class, 289–294, 301
and assignment, 115–116, 146–147
declaring, 114–115
interface, 316–318

ReferenceEquals(), 306, 659
ReflectedType property, 463
Reflection, 459, 463–483

API, .NET, 463, 465, 476
and assemblies, 475–481
to call methods, using, 469–471
and fully automated type

discovery, 481–483
to obtain a type’s constructors,

471–475
#region directive, 451, 456
RegisterPrefix(), 824
Relational operators, 27, 43, 67–68,

226–228
and nullable objects, 602

Release(), 734
ReleaseMutex(), 730, 733
Remainder(), 632
remove event accessor, 425, 428
Remove(), 682–683, 752, 753, 776,

777, 784–785, 787, 790, 793, 794, 796
RemoveAt(), 752, 776, 793
RemoveFirst(), 785
RemoveLast(), 785

RemoveMemoryPressure(), 658
RemoveRange(), 756, 757, 780
Replace(), 401, 682–683
RequestUri property, 826
ReRegisterForFinalize(), 658
Reset(), 737, 739, 754, 778, 808, 811
ResetAbort(), 743–745
Resize<T>(), 646
Response property, 831
ResponseHeaders property, 843
ResponseUri property, 827, 835
restore warning option, 457
return statement, 85, 105, 119–120,

176, 410, 411, 417, 814
ReturnType property, 465
Reverse(), 646, 650, 756, 757, 780
Right property, 855
Ritchie, Dennis, 3
Round(), 620, 632–633
Run(), 851
Runtime type identification (RTTI),

459–463

SS
Sample(), 657
SByte .NET structure, 396, 397, 623
sbyte value type, 36, 37, 38, 396, 623
Scheme property, 833–834
Scopes, 52–54, 438, 457
sealed keyword, 305
Security, 8, 9
SecurityException, 372
Seek(), 364, 365, 390–392, 393–394
SeekOrigin enumeration, 390
select clause, 548, 550, 556–559,

561, 569
using into with a, 563

Select() extension method, 574,
575–576

Selection statements, 85–92
Semaphore, 730, 734–737

named, 736–737
SemaphoreSecurity, 737
SerializationInfo, 352
Server property, 835
set accessor

and accessor modifiers, 261–264
and auto-implemented

properties, 259–260, 262–264
for indexer, 246, 249, 320
for property, 254–255, 256,

318–319
set contextual keyword, 33
Set(), 737, 739, 772
SetAll(), 772

SetByIndex(), 764, 765
SetEquals(), 798
SetError(), 382
SetIn(), 382
SetOut(), 382–383
SetRange(), 756, 757
SetValue(), 646
Sheridan, Mike, 4
Shift operators, bitwise, 73, 79–81
short value type, 36, 37, 38, 396, 623
Show(), 856–857
Sign flag, 37
Sign(), 620
Signature of a method, 193
Simple types, 35
Sin(), 40, 620
Single .NET structure, 396, 397,

623, 626
fields, table of, 628
methods, table of, 626–627

Sinh(), 620
sizeof operator, 595
Sleep(), 706, 746
Sort(), 646, 647, 648, 756, 757,

760–761, 780–781
Sort<T>(), 646, 647
Sort<TK,TV>(), 647
SortedDictionary<TK,TV> class, 779,

789–791
methods, table of some, 790
performance characteristics, 792

SortedDictionary<TK,TV>
.KeyCollection class, 790

SortedDictionary<TK,TV>
.ValueCollection class, 790

SortedList class, 755, 764–767
methods, table of common, 765

SortedList<TK,TV> class, 779,
792–794

methods, table of some, 792–793
performance characteristics

of, 792
Split(), 677–680
SQL (Structured Query Language),

545, 546, 581
Sqrt(), 38–39, 206, 621
Stack

definition of, 13, 168, 767
memory region, 596

Stack class, 749, 755, 767–769
methods, table of, 767

Stack<T> class, 779, 794–795
methods, table of, 795

stackalloc, 596
StackOverflowException, 353,

354, 596

I n d e x 883

StackTrace property of Exception,
351–352

Start(), 705, 747–748
parameterized version of, 713

StartsWith(), 673, 677
Statements, 21, 31

empty, 98
Statements, control, 26

iteration, 85, 92–102
jump, 85, 102–107
selection, 85–92

STAThread attribute, 850, 851
static, 21, 205–212, 252, 294
Status property, 831
StatusCode property, 835
StatusDescription property, 835
Stream(s)

binary, 367
byte, 363, 372–378
character, 363, 364, 365, 367,

378–381
classes, byte, 365
definition of, 363
memory-based, 392–394
predefined, 363–364
redirecting standard, 364, 371,

381–383, 394
wrapper classes, character,

365–367
Stream class, 364–365, 372, 393

byte steam classes derived
from, 365

methods, table of common, 364
properties, table of, 365

StreamingContext, 352
StreamReader class, 367, 378,

380–381, 608
StreamWriter class, 367, 378–380, 382
string

alias for System.String, 159, 663
class. See String class
data type, 156, 617, 663, 664

String class, 156–163, 663–684
comparison methods, table of

common, 666–667
constructors, 664
indexer, 665
search methods, table of, 675–677
string handling methods, table

of common, 157
String(s)

arrays of, 160–161
comparing, 158, 665–670
concatenating, 159, 670–672
constructing, 156–157, 664–665

extension methods, 684
formatting. See Formatting
immutability of, 161–162, 663
indexing, 157
inserting, 682–683
I/O using, 394–395
joining, 677, 678
Length property of, 157, 665
literals, 48–49, 156, 665
numeric, converting, 396–398
as objects, 156, 663
padding, 681–682
pointers and, 593–594
relational operators and, 665
removing, 682–683
replacing, 682–683
searching, 672–677
splitting, 677–680
switch statements and, 162–163
tokenizing, 679–680
trimming, 681–682

String.Format(). See Format()
StringBuilder class, 162, 395, 663
StringCollection class, 774
StringComparison enumeration,

669–670
StringDictionary class, 774
StringReader class, 367, 394–395
StringSplitOptions enumeration, 679
StringWriter class, 367, 394, 395
Stroustrup, Bjarne, 4, 5
struct keyword, 326, 504, 517, 519, 521
Structures, 36, 311, 326–331

C# vs. C++, 331
corresponding to the built-in

value types, .NET, 396–397,
623–641

default value of, 522
efficiency of, 326, 330–331
and fixed-size buffers, 596–598
generic, 523–524
partial, 603
using pointers with, 589
System, list of, 616

Subclass, 275
Substring(), 161–162, 562, 684
Subtract(), 633
Sum() extension method, 578–579
Sun Microsystems, 4
Superclass, 275
SuppressFinalize(), 658
Suspend(), 745
switch statement, 85, 88–92

enumerations and, 89, 332, 335
goto and, 106–107

and no fall-through rule,
91–92, 107

and strings, 89, 162–163
Symbol, #define directive, 452
SymmetricExceptWith(), 798
Synchronization, 704, 717–723

deadlock, 727, 745
interprocess, 733, 737
using an event synchronization

object, 737–739
using the Interlocked class,

739–740
using a lock statement, 718–722,

723, 729
using the MethodImplAttribute

attribute, 728–729
using Monitor methods, 723–727
using a mutex, 730–733
and race conditions, 727
using a semaphore, 730, 734–737

SynchronizationLockException, 724
Synchronized(), 756, 757, 763, 764,

765, 767, 770, 772
SynchronizedCollection<T> class, 779
SynchronizedKeyCollection<K,V>

class, 779
SynchronizedReadOnlyCollection<T>

class, 779
Synchronous vs. asynchronous

Internet communication, 824
SyncRoot property, 642, 751, 772
Syntax errors, 22
System namespace, 20, 337, 352, 353,

363, 364, 396, 437, 581, 613, 615,
664, 833, 850

members, lists of, 615–617
System.Attribute, 483
System.AttributeUsageAttribute

class, 491
System.Collections namespace, 641,

750, 755, 774
See also Collection(s)

System.Collections.Generic, 546, 641,
750, 774, 778, 779

System.Collections.ObjectModel, 750
System.Collections.Specialized

namespace, 750, 774
System.ComponentModel

.Component class, 849
System.Delegate, 408
System.Diagnostics namespace,

491, 747
System.Diagnostics

.ConditionalAttribute class, 491
System.Drawing namespace, 852

884 C # 3 . 0 : T h e C o m p l e t e R e f e r e n c e

System.Exception class. See
Exception class

System.Globalization namespace,
623, 638, 666, 667

System.IDisposable interface, 608
System.IO namespace, 364, 365,

372, 437
System.IO.Stream class. See Stream

class
System.Linq namespace, 547, 584, 684
System.Linq.Enumerable, 574, 752
System.Linq.Queryable, 574, 664, 752
System.Linq.Expressions.

Expression<T>, 581
System.Math class, 38, 193, 206

See also Math class
System.Net namespace, 821

classes, list of, 822
enumerations, list of, 823
interfaces, list of, 822
Internet networking using

members of the, 821–845
System.Net.Mail namespace, 821
System.Net.Security namespace, 821
System.Net.Sockets namespace, 821
System.Nullable<T> class, 598–599
System.Object class, 306

See also object class
System.ObsoleteAttribute, 493
System.Predicate, 652
System.Reflection namespace,

463, 465
System.Reflection.MemberInfo, 463

See also MemberInfo class
System.Runtime.CompilerServices

namespace, 728
System.Runtime.InteropServices

namespace, 609
System.Runtime.Serialization

namespace, 352
System.Security.SecurityException,

830
System.ServiceModel

.UriSchemeKeyedCollection, 779
System.String class, 159, 617, 663

See also String class
System.Text namespace, 162, 663, 664
System.Threading namespace,

704, 723
System.Threading.Mutex class, 730
System.Threading.Semaphore

class, 734
System.Type, 462, 463

See also Type class
System.Web namespace, 821

System.Windows.Forms, 847, 850, 851
System.Windows.Forms.Control

class. See Control class
SystemException, 337, 352

TT
Tan(), 40, 621
Tanh(), 621
TargetSite property of Exception,

351–352
Text property. 850–851, 852
TextReader class, 365–367, 369, 378,

382, 394, 608
methods defined by, table of, 366

TextWriter class, 365, 366–367, 371,
378, 382, 394

this, 133–135, 206
and overloaded constructors,

197–199
Thread class, 704, 705, 706, 710, 715,

745, 746
constructors, 704–705, 713

Thread.Resume(), 745
Thread.Suspend(), 745
Thread.WaitHandle class, 730, 734
Thread(s)

argument to, passing an,
713–714

communication, 723–727
creating and starting, 704–710
deadlock, 727, 745
definition of, 703
end of, determining the, 710–712
foreground and background,

705, 715
main, 704, 706–707, 746–747
multiple child, 606, 708–710
possible states of, 704
priorities, 715–717
and race conditions, 727
state, determining, 745–746
suspending and resuming, 745
synchronization. See

Synchronization
terminating, 741–745

ThreadAbortException, 741, 742, 743
Threading models (Windows), 851
ThreadPriority enumeration, 715
ThreadStart delegate, 704–705, 713
ThreadState

enumeration, 746
property, 745

ThreadStateException, 705, 711
throw, 85, 338, 347–349
Timeout property, 826

ToArray(), 757–758, 761–762, 767,
770, 781, 795, 797

extension method, 580–581
ToBoolean(), 655
ToByte(), 633
ToChar(), 655
ToDouble(), 633, 655
ToInt16(), 633, 655
ToInt32(), 633, 655
ToInt64(), 633, 655
Token, 679
ToList() extension method, 580–581
ToLower(), 157, 638, 683
ToLowerInvariant(), 638, 683
ToOACurrency(), 633
ToolStrip class, 859, 863
ToolStripMenuItem class, 859, 864
Top property, 855
ToSByte(), 633
ToSingle(), 633, 655
ToString(), 306–307, 309, 351, 395,

625, 626, 627, 629, 633–634, 638,
640, 656, 659, 662, 671, 672

used to format data, 685, 688,
691–692, 697

ToUInt16(), 634, 656
ToUInt32(), 634, 656
ToUInt64(), 634, 656
ToUpper(), 157, 634, 688, 683
ToUpperInvariant(), 638, 683
Trim(), 681–682
TrimExcess(), 781, 793, 795, 797
TrimToSize(), 758, 765, 770
true, 42, 67

overloading, 226–229,
231–235

True and false in C#, 42
True displayed as bool value output

by WriteLine(), 43
TrueForAll<T>(), 647
TrueString field, 640
Truncate(), 621, 634
try block(s), 338–344

nested, 346–347
TryEnter(), 723
TryGetValue(), 777
TryParse(), 398, 625, 626, 627, 629,

634, 638, 641
Two’s complement, 37
Type(s)

anonymous, 7, 199, 200, 261,
569–571

casting. See Casts
checking, 35, 49, 309
closed, 499

I n d e x 885

constrained, 504. See also
Constraint(s)

constructed. See Constructed type
data. See Data types
extensibility, 213, 240
identification, runtime, 459–463
inference, 416, 526, 527, 549–550
metadata, 457
nullable, 36, 518, 519
numeric, .NET structures for the

built-in, 397–397
open, 499
parameterized, 495
promotion, 59–60
reference. See Reference types
safety and generics, 495, 496,

498, 499–502, 506, 526, 529,
544, 641, 660, 750, 775, 800, 801

value. See Value types
Type argument(s), 498, 499

and constraints, 503–521. See also
Constraint(s)

and pointer types, 544
to call a generic method, using

explicit, 527
Type class, 462, 463, 465, 485

commonly used methods
defined by the, list of, 464

commonly used properties
defined by the, list of, 464

Type conversion, 42, 55–62
and casting, 55, 56–58, 60–62
implicit (automatic), 55–56, 59,

190–192
Type parameter(s), 497–498, 544

comparing instances of a,
534–537

and constraints, 503–504
creating a default value of a,

522–523
and generic class hierarchies,

537–540
and generic delegates, 527
and generic interfaces, 530,

533, 534
and generic methods, 524–526
overloading methods that use,

542–543
relationship between two,

establishing a, 520
TypeCode enumeration, 624, 626,

628, 632, 636, 640
typeof operator, 462–463,

467, 476

UU
uint value type, 36, 37, 38, 396, 623

literal, 46
UInt16 .NET structure, 396, 397, 623
UInt32 .NET structure, 396, 397, 623
UInt64 .NET structure, 396, 397, 623
ulong value type, 36, 37, 396, 623

literal, 46
Unboxing, 307–309
unchecked keyword, 360–362
#undef directive, 451, 455
Unicode, 41, 363, 378

UTF–16 and UTF–32, 634–635
UnicodeCategory enumeration, 636
Uniform Resource Identifier

(URI), 823
constructing a, 833
dissecting a, 833–834

Uniform Resource Locator (URL), 823
UnionWith(), 798
Unmanaged code, 9, 585, 586
UnmanagedMemoryStream class, 365
/unsafe compiler option, 586
unsafe keyword, using, 587–588
UploadData(), 844, 845
UploadFile(), 845
UploadString(), 845
UploadValues(), 845
Uri class, 823, 833–834
UriFormatException, 825, 830
UseDefaultCredentials property,

826, 843
ushort value type, 36, 37, 38, 396, 623
using directive

to bring a namespace into view,
20, 22–23, 441–443

to create an alias, 443–444
using statement, 374, 607–608

VV
ValidOn property, 491
value

contextual keyword, 33
implicit parameter, 246, 248–249,

255, 425. 428
Value property, 599, 755, 778, 783,

788, 791, 809, 836–837
Value type(s), 35–36, 115

boxing and unboxing, 307–309
and call-by-reference, 176–181
constraints, 504, 517, 519
default value of, 127, 522
new and, 130–131
null and, 518

passed to methods, 174–175
structures as, 311, 326, 330, 331
structures corresponding to the

built-in numeric, .NET,
396–397, 623–641

table of, 36
Values property, 754, 762, 765, 777,

788, 790, 793
Values<TV> property, 777
var keyword, 51, 151, 153, 547, 548,

550, 571
Variable(s)

captured, 412–413, 416
const, 607
declaration, 23–24, 25, 28, 49, 53
definition of, 23
dynamic initialization of, 50–51
implicitly typed, 7, 25, 51–52,

547, 569, 571
initializing, 50–51, 53–54
instance. See Instance variables
local, 49, 52–53
member, 12
names, rules governing, 33–34
outer, 412–413, 416
pointer. See Pointer(s)
query, 547, 548
reference. See Reference

variable(s)
scope and lifetime of, 52–54
static, 205–206, 208–209
volatile, 607

Version class, 835
virtual keyword, 294, 297, 301
Virtual

methods, 291, 294–301, 305,
540–542

properties, 297
Visual C++ 2008 Express Edition, 15
Visual C# 2008 Express Edition, 14, 15
Visual Studio IDE (Integrated

Development Environment), 14,
15–19, 848, 851, 852, 867

void, 21, 116
methods, returning from, 119–120

volatile modifier, 607
vsvars32.bat file, 15

WW
Wait(), 723–727, 746
WaitForExit(), 748
WaitForPendingFinalizers(), 658
WaitHandle class, 730, 734
WaitOne(), 730, 733, 734, 737, 739

886 C # 3 . 0 : T h e C o m p l e t e R e f e r e n c e

#warning directive, 451, 456
warning #pragma option, 457
Warth, Chris, 4
Web crawler

definition of, 839
example program, 839–842

WebClient class, 822, 823, 842–845
methods, table of synchronous,

844–845
properties, table of, 843

WebException, 830–831, 842
WebExceptionStatus

enumeration, 831
WebHeaderCollection collection, 834
WebRequest class, 823, 824–826, 829,

830, 842, 845
methods, table of synchronous

communication, 825
properties, table of, 825–826

WebResponse class, 823, 824, 826,
830, 831, 834, 842, 845

methods, table of commonly
used, 827

properties, table of, 827
where clause, 504, 505, 512, 517,

520, 521
in a LINQ query, 547–548,

551–552
Where() extension method, 574,

575–576

while loop, 85, 99–101, 105
Widening conversion, 55, 56
Width property, 855, 863
Window, form-based

changing default size of, 863
illustration of skeletal, 850

Windows, 6, 8, 9
API, 847–848, 851
controls, 849, 852, 855
form. See Form, Windows
program, compiling, 851

Windows application, form-based
adding button to, 852–853
adding menu to, 859–866
compiling, 851
message handling, 853–856
skeleton, 849–851
threading model, 851
using message box in, 856–858

Windows Forms .NET subsystem,
847, 848, 850

Windows programming
form-based, 847–866
history of, 847–848
and message-based

interaction, 849
using Visual Studio, 848

Write(), 24–25, 364, 366, 371, 375, 384
WriteByte(), 364, 375

WriteLine(), 21, 24–25, 26, 41, 43, 48,
307, 351, 366, 371, 394, 395, 396, 640

formatted output version of,
43–46, 685

using a method within, 122
WriteTimeout property, 365

XX
X property, 852
XML, 545, 546
XML comment, 867

tags, table of, 868
XML file containing, 869–870

XOR (exclusive OR) operator (^)
bitwise, 73, 77–78
logical, 67, 68

Xor(), 772

YY
Y property, 852
yield

break statement, 815
contextual keyword, 33, 814
return statement, 814
statements, multiple, 815–816

ZZ
Zero field, 635

	Contents
	Special Thanks
	Preface
	Part I: The C# Language
	1 The Creation of C#
	C#’s Family Tree
	How C# Relates to the .NET Framework
	How the Common Language Runtime Works
	Managed vs. Unmanaged Code

	2 An Overview of C#
	Object-Oriented Programming
	A First Simple Program
	Handling Syntax Errors
	A Small Variation
	A Second Simple Program
	Another Data Type
	Two Control Statements
	Using Code Blocks
	Semicolons, Positioning, and Indentation
	The C# Keywords
	Identifiers
	The .NET Framework Class Library

	3 Data Types, Literals, and Variables
	Why Data Types Are Important
	C#’s Value Types
	Integers
	Floating-Point Types
	The decimal Type
	Characters
	The bool Type
	Some Output Options
	Literals
	A Closer Look at Variables
	The Scope and Lifetime of Variables
	Type Conversion and Casting
	Type Conversion in Expressions

	4 Operators
	Arithmetic Operators
	Relational and Logical Operators
	The Assignment Operator
	The Bitwise Operators
	The ? Operator
	Spacing and Parentheses
	Operator Precedence

	5 Program Control Statements
	The if Statement
	The switch Statement
	The for Loop
	The while Loop
	The do-while Loop
	The foreach Loop
	Using break to Exit a Loop
	Using continue
	The goto

	6 Introducing Classes and Objects
	Class Fundamentals
	How Objects Are Created
	Reference Variables and Assignment
	Methods
	Constructors
	The new Operator Revisited
	Garbage Collection and Destructors
	The this Keyword

	7 Arrays and Strings
	Arrays
	Multidimensional Arrays
	Jagged Arrays
	Assigning Array References
	Using the Length Property
	Implicitly Typed Arrays
	The foreach Loop
	Strings

	8 A Closer Look at Methods and Classes
	Controlling Access to Class Members
	Pass References to Methods
	Use ref and out Parameters
	Use a Variable Number of Arguments
	Return Objects
	Method Overloading
	Overload Constructors
	Object Initializers
	The Main() Method
	Recursion
	Understanding static
	Static Classes

	9 Operator Overloading
	Operator Overloading Fundamentals
	Handling Operations on C# Built-in Types
	Overloading the Relational Operators
	Overloading true and false
	Overloading the Logical Operators
	Conversion Operators
	Operator Overloading Tips and Restrictions
	Another Example of Operator Overloading

	10 Indexers and Properties
	Indexers
	Properties
	Use Access Modifiers with Accessors
	Using Indexers and Properties

	11 Inheritance
	Inheritance Basics
	Member Access and Inheritance
	Constructors and Inheritance
	Inheritance and Name Hiding
	Creating a Multilevel Hierarchy
	When Are Constructors Called?
	Base Class References and Derived Objects
	Virtual Methods and Overriding
	Using Abstract Classes
	Using sealed to Prevent Inheritance
	The object Class

	12 Interfaces, Structures, and Enumerations
	Interfaces
	Using Interface References
	Interface Properties
	Interface Indexers
	Interfaces Can Be Inherited
	Name Hiding with Interface Inheritance
	Explicit Implementations
	Choosing Between an Interface and an Abstract Class
	The .NET Standard Interfaces
	Structures
	Enumerations

	13 Exception Handling
	The System.Exception Class
	Exception Handling Fundamentals
	The Consequences of an Uncaught Exception
	Exceptions Let You Handle Errors Gracefully
	Using Multiple catch Clauses
	Catching All Exceptions
	Nesting try Blocks
	Throwing an Exception
	Using finally
	A Closer Look at the Exception Class
	Deriving Exception Classes
	Catching Derived Class Exceptions
	Using checked and unchecked

	14 Using I/O
	C#’s I/O Is Built Upon Streams
	The Stream Classes
	Console I/O
	FileStream and Byte-Oriented File I/O
	Character-Based File I/O
	Redirecting the Standard Streams
	Reading and Writing Binary Data
	Random Access Files
	Using MemoryStream
	Using StringReader and StringWriter
	Converting Numeric Strings to Their Internal Representation

	15 Delegates, Events, and Lambda Expressions
	Delegates
	Anonymous Functions
	Anonymous Methods
	Lambda Expressions
	Events
	Use Anonymous Methods and Lambda Expressions with Events
	.NET Event Guidelines
	Applying Events: A Case Study

	16 Namespaces, the Preprocessor, and Assemblies
	Namespaces
	The Preprocessor
	Assemblies and the internal Access Modifier

	17 Runtime Type ID, Reflection, and Attributes
	Runtime Type Identification
	Reflection
	Using Reflection
	Attributes
	Three Built-in Attributes

	18 Generics
	What Are Generics?
	A Simple Generics Example
	A Generic Class with Two Type Parameters
	The General Form of a Generic Class
	Constrained Types
	Creating a Default Value of a Type Parameter
	Generic Structures
	Creating a Generic Method
	Generic Delegates
	Generic Interfaces
	Comparing Instances of a Type Parameter
	Generic Class Hierarchies
	Overriding Virtual Methods in a Generic Class
	Overloading Methods That Use Type Parameters
	How Generic Types Are Instantiated
	Some Generic Restrictions
	Final Thoughts on Generics

	19 LINQ
	What Is LINQ?
	LINQ Fundamentals
	Filter Values with where
	Sort Results with orderby
	A Closer Look at select
	Use Nested from Clauses
	Group Results with group
	Use into to Create a Continuation
	Use let to Create a Variable in a Query
	Join Two Sequences with join
	Anonymous Types
	Create a Group Join
	The Query Methods
	Deferred vs. Immediate Query Execution
	Expression Trees
	Extension Methods

	20 Unsafe Code, Pointers, Nullable Types, and Miscellaneous Topics
	Unsafe Code
	Nullable Types
	Partial Types
	Partial Methods
	Friend Assemblies
	Miscellaneous Keywords

	Part II: Exploring the C# Library
	21 Exploring the System Namespace
	The Members of System
	The Math Class
	The .NET Structures Corresponding to the Built-in Value Types
	The Array Class
	BitConverter
	Generating Random Numbers with Random
	Memory Management and the GC Class
	Object
	The IComparable and IComparable<T> Interfaces
	The IEquatable<T> Interface
	The IConvertible Interface
	The ICloneable Interface
	IFormatProvider and IFormattable

	22 Strings and Formatting
	Strings in C#
	The String Class
	Formatting
	Using String.Format() and ToString() to Format Data
	Creating a Custom Numeric Format
	Formatting Date and Time
	Formatting Enumerations

	23 Multithreaded Programming
	Multithreading Fundamentals
	The Thread Class
	Determining When a Thread Ends
	Passing an Argument to a Thread
	The IsBackground Property
	Thread Priorities
	Synchronization
	Thread Communication Using Wait(), Pulse(), and PulseAll()
	Deadlock and Race Conditions
	Using MethodImplAttribute
	Using a Mutex and a Semaphore
	Using Events
	The Interlocked Class
	Terminating a Thread
	Suspending and Resuming a Thread
	Determining a Thread’s State
	Using the Main Thread
	Multithreading Tips
	Starting a Separate Task

	24 Collections, Enumerators, and Iterators
	Collections Overview
	The Non-Generic Collections
	Storing Bits with BitArray
	The Specialized Collections
	The Generic Collections
	Storing User-Defined Classes in Collections
	Implementing IComparable
	Using an IComparer
	Accessing a Collection via an Enumerator
	Implementing IEnumerable and IEnumerator
	Using Iterators
	Collection Initializers

	25 Networking Through the Internet Using System.Net
	The System.Net Members
	Uniform Resource Identifiers
	Internet Access Fundamentals
	Handling Network Errors
	The Uri Class
	Accessing Additional HTTP Response Information
	MiniCrawler: A Case Study
	Using WebClient

	26 Use System.Windows.Forms to Create Form-Based Windows Applications
	A Brief History of Windows Programming
	Two Ways to Write a Form-Based Windows Application
	How Windows Interacts with the User
	Windows Forms
	A Skeletal Form-Based Windows Program
	Adding a Button
	Handling Messages
	Using a Message Box
	Adding a Menu

	A: Documentation Comment Quick Reference
	The XML Comment Tags
	Compiling Documentation Comments
	An XML Documentation Example

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

