The
Complete
Reference

Schildts classic
reference—fully
revised and updated
for C# 3.0

C# 3.0

“For answers about using C# in the real world, just pull this off the bookshelf. Indispensable!”

—Michael Howard, Microsoft

Comprehensive coverage of the entire
C# language

Covers the new 3.0 features, including
LINQ, lambda expressions, and anonymous

types

Includes hundreds of easy-to-understand
examples

Ivww .allitebooks.con

Herbert
Schildt

Top-selling programming
author with millions of
books sold worldwide

.

http://www.allitebooks.org

C# 3.0
The Complete Reference

Presented By: Oronno - "The ONE"

www.thel.co.nr

vww allitebooks.cond

http://www.allitebooks.org

About the Author

Herbert Schildt is a leading authority on C#, C++, C,
and Java. His programming books have sold more than
3.5 million copies worldwide and have been translated
into all major foreign languages. He is the author of
numerous bestsellers, including Java: The Complete
Reference, C++: The Complete Reference, C: The Complete
Reference, and C#: A Beginner’s Guide. Although interested
in all facets of computing, his primary focus is computer
languages, including compilers, interpreters, and robotic
control languages. He also has an active interest in the
standardization of languages. Schildt holds both graduate
and undergraduate degrees from the University of Illinois.
He can be reached at his consulting office at (217) 586-4683.
His web site is www.HerbSchildt.com.

About the Technical Editor

Michael Howard (Austin, Texas) is a principal security
program manager on the Trustworthy Computing
(TwC) Group’s Security Engineering team at Microsoft,
where he is responsible for managing secure design,
programming, and testing techniques across the
company. Howard is an architect of the Security
Development Lifecycle (SDL), a process for improving
the security of Microsoft’s software. Howard speaks
regularly on the topic of securing code for Microsoft
and at conferences worldwide. He regularly publishes
articles on security design and is the co-author of six
security books, including the award-winning Writing
Secure Code, 19 Deadly Sins of Software Security, The Security
Development Lifecycle, and his most recent release, Writing
Secure Code for Windows Vista.

M.al litebooks. cogl

www.HerbSchildt.com
http://www.allitebooks.org

C# 3.0:
The Gomplete Reference

Herbert Schildt

T

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

M.al litebooks. cogl

http://www.allitebooks.org

The McGraw-Hill Companies

Copyright © 2009 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without
the prior written permission of the publisher.

ISBN: 978-0-07-159842-2
MHID: 0-07-159842-6
The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-158841-6, MHID: 0-07-158841-8.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name,
we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where
such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. To contact a representative please visit the Contact Us page at www.mhprofessional.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”’) and its licensors reserve all rights in and to the work. Use
of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to
comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DIS-
CLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the
functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor
its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages
resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances
shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from
the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

M.al litebooks. cogl

www.mhprofessional.com
http://www.allitebooks.org

O O ISDNUT b WN =

-
= o

12
13
14
15
16
17
18
19
20

21
22
23
24
25
26

Contents at a Glance

The C# Language

The Creation of CH# ... ittt ittt i ittt eeeeneneanannns 3
An Overview of CH ... ittt it ittt ittt teeeneneneeaaaenenns 11
Data Types, Literals, and Variables, 35
Operators ...ttt i i i i i it i i 63
Program Control Statements i, 85
Introducing Classes and Objects, 109
Arraysand Strings il 137
A Closer Look at Methods and Classesccciiiiinenennnnnnn. 165
Operator Overloading , 213
Indexers and Propertieso it 245
Inheritance ...ttt ittt ittt ittt ittt e, 269
Interfaces, Structures, and Enumerationscciiiiininnnn. 311
Exception Handling i 337
Using I/O .o i e 363
Delegates, Events, and Lambda Expressions 399
Namespaces, the Preprocessor, and Assemblies 437
Runtime Type ID, Reflection, and Attributes 459
@31 =) A 495
0 11 545
Unsafe Code, Pointers, Nullable Types, and Miscellaneous Topics 585

Exploring the C# Library

Exploring the System Namespaceccciiiiiiiiiiinnineeennn. 615
Strings and Formattingcoiiiiiiiiiiiiiiiiiiiiiiiiiiiee 663
Multithreaded Programmingciiiiiiiiiiiiiinnneeeenn. 703
Collections, Enumerators, and Iteratorsccoiiiiiiuinennn.. 749
Networking Through the Internet Using System.Net 821
Use System.Windows.Forms to Create Form-Based Windows
Applications ... i it e 847
Documentation Comment Quick Referencecevvienenn.. 867
Index oo e e 871
v

M.al litebooks. cogl

http://www.allitebooks.org

This page intentionally left blank

M.al litebooks. cogl

http://www.allitebooks.org

Contents

Special Thanks xxi
Preface xxiii

Part | The C# Language

1 TheCreationof C#ttt 3
C#sFamily Tree 3
C: The Beginning of the Modern Age of Programming 5

The Creation of OOPand C++o .. 4

The Internet and Java Emerge 4

The Creationof C# 5

The Evolutionof C# 7

How C# Relates to the NET Framework 7
What Is the NET Framework? 8

How the Common Language Runtime Works 8
Managed vs. Unmanaged Code 9
The Common Language Specification 9

2 AnOverview of C# e 11
Object-Oriented Programming 11
Encapsulation 12
Polymorphism 12
Inheritance 13
AFirst Simple Program 13
Using csc.exe, the C# Command-Line Compiler 14

Using the Visual Studio IDE 15

The First Sample Program, Line by Line 19
Handling Syntax Errors i 22
ASmall Variation o o o oo 22
ASecond Simple Program 23
Another Data Type 25
Two Control Statements — 26
Theif Statement 27

The for Loop ... o 28

Using Code Blocks 29
Semicolons, Positioning, and Indentation 31
The C#Keywords 32
Identifiers 33
The .NET Framework Class Library —............ 34

vii

M.al litebooks. cogl

http://www.allitebooks.org

viii

C# 3.0: The Complete Reference

3 Data Types, Literals, and Variablest 35
Why Data Types Are Important 35
C#sValue Types 35
Integers 36
Floating-Point Types 38
Thedecimal Type ... 40
Characters ... 41
Thebool Type 42
Some Output Options i 43
Literals 46

Hexadecimal Literals 47
Character Escape Sequences 47
String Literals 48
ACloser Look at Variables 49
Initializing a Variable o il 50
Dynamic Initialization L. 50
Implicitly Typed Variables 51
The Scope and Lifetime of Variables 52
Type Conversion and Casting 55
Automatic Conversions L 55
Casting Incompatible Types 56
Type Conversion in Expressions 59
Using Casts in Expressions o it 60
Operators ...t i i i e et et s 63
Arithmetic Operators i i i 63
Increment and Decrement 64
Relational and Logical Operators —......... oiiio.. 67
Short-Circuit Logical Operators 70
The Assignment Operator 71
Compound Assignments 72
The Bitwise Operators i i i i 73
The Bitwise AND, OR, XOR, and NOT Operators 73
The Shift Operators i 79
Bitwise Compound Assignments 81
The ? Operator ... 82
Spacing and Parentheses L. 83
Operator Precedence i i 84
Program Control Statementsl 85
Theif Statement 85
Nestedifs ... 86
Theif-else-if Ladder i 87
The switch Statement i 88
Nested switch Statements 92
The for Loop ...t 92
Some Variations on the forLoop 94

M.al litebooks. cogl

http://www.allitebooks.org

Contents

ThewhileLoop i 99
Thedo-whileLoop 101
TheforeachLoop i 102
Using break to ExitaLoop i 102
Usingcontinue i 104
TetUrn 105
Thegoto 105
Introducing Classes and Objectst 109
Class Fundamentals 109
The General FormofaClass 109
DefineaClass 110

How Objects Are Created 114
Reference Variables and Assignment 115
Methods 116
Add a Method to the Building Class 117
Return fromaMethodl 119
ReturnaValue 120

Use Parameters i 122

Add a Parameterized Method to Building 125
Avoiding Unreachable Code 126
Constructors 126
Parameterized Constructors 128

Add a Constructor to the Building Class 129

The new Operator Revisited 130
Using new with Value Types 130
Garbage Collection and Destructors 131
Destructors 131

The this Keyword 133
Arraysand Strings i i e 137
ATTAYS ..o 137
One-Dimensional Arrays, 137
Multidimensional Arrays —..........l 141
Two-Dimensional Arrays —................. 141
Arrays of Three or More Dimensions 142
Initializing Multidimensional Arrays —.......................... 143
Jagged Arrays ... 144
Assigning Array References L 146
Using the Length Property 148
Using Length with Jagged Arrays 150
Implicitly Typed Arrays i 151
The foreachLoop 152
Strings ... 156
Constructing Strings — 156
Operatingon Strings il 157
Arraysof Strings 160

M.al litebooks. cogl

http://www.allitebooks.org

X

C# 3.0: The Complete Reference

8

10

Strings Are Immutable o oo 161
Strings Can Be Used in switch Statements 162
A Closer Look at Methods and Classesooe.... 165
Controlling Access to Class Members 165
C#'s Access Modifiersl 165
Applying Public and Private Access 167
Controlling Access: ACase Study 168
Pass References to Methods L. 172
How Arguments Are Passed 174
Useref and out Parameters 176
Useref ... 177
Useout 178
Useref and out on References 181
Use a Variable Number of Arguments 182
Return Objects 185
Returnan Array il 187
Method Overloading 188
Overload Constructors 194
Invoke an Overloaded Constructor Through this 197
Object Initializers 199
The Main() Method 200
Return Values from Main() ..., 200
Pass Argumentsto Main() L 200
Recursion 202
Understanding static 205
Static Constructors i 210
StaticClasses 211
Operator Overloadingttt iiiiiiiineeennn 213
Operator Overloading Fundamentals 213
Overloading Binary Operators 214
Overloading Unary Operators 216
Handling Operations on C# Built-in Types 220
Overloading the Relational Operators 224
Overloading trueand false 226
Overloading the Logical Operators 229
A Simple Approach to Overloading the Logical Operators 229
Enabling the Short-Circuit Operators 231
Conversion Operators —.............t 235
Operator Overloading Tips and Restrictions 239
Another Example of Operator Overloading 240
Indexers and Propertiesccoiiiiiiiiiiiiiiiiiiiiiiii e 245
Indexers 245
Creating One-Dimensional Indexers 245

Indexers Can Be Overloaded 249

11

12

Contents

Indexers Do Not Require an Underlying Array 251
Multidimensional Indexers L. 252
Properties 254
Auto-Implemented Properties 259

Use Object Initializers with Properties 260
Property Restrictions il 261

Use Access Modifiers with Accessors 261
Using Indexers and Properties 264
Inheritance i 269
Inheritance Basics i 269
Member Access and Inheritance o ool 272
Using Protected Accessl 275
Constructors and Inheritance L 276
Calling Base Class Constructors 278
Inheritance and Name Hiding 282
Using base to Access a Hidden Name 283
Creating a Multilevel Hierarchy 285
When Are Constructors Called? 288
Base Class References and Derived Objects 289
Virtual Methods and Overriding 294
Why Overridden Methods? 297
Applying Virtual Methods o oL 298

Using Abstract Classes i 301
Using sealed to Prevent Inheritance 305
The object Class 305
Boxing and Unboxingl 307

Is object a Universal Data Type? 309
Interfaces, Structures, and Enumerationsc.ciiiien.n.. 311
Interfaces 311
Implementing Interfaces oL 312

Using Interface References 316
Interface Properties 318
Interface Indexers i 320
Interfaces Can Be Inherited il 322
Name Hiding with Interface Inheritance 323
Explicit Implementations L 323
Choosing Between an Interface and an Abstract Class 326
The .NET Standard Interfaces 326
Structures 326
Why Structures? 330
Enumerations 332
Initialize an Enumeration o o ool 333
Specify the Underlying Type of an Enumeration 334

Use Enumerations 334

Xi

Xii

C# 3.0: The Complete Reference

13

14

Exception Handling oo il 337
The System.Exception Class 337
Exception Handling Fundamentals 338
Usingtryandcatch il 338
A Simple Exception Example oL 338
A Second Exception Example o L. 340
The Consequences of an Uncaught Exception 341
Exceptions Let You Handle Errors Gracefully 343
Using Multiple catch Clauses 344
Catching All Exceptions —......... i i i 345
Nesting try Blocks ... 346
Throwing an Exception 347
Rethrowing an Exception 348
Using finally ... 349
A Closer Look at the Exception Class 351
Commonly Used Exceptions 352
Deriving Exception Classes 354
Catching Derived Class Exceptions 358
Using checked and unchecked L. 360
Using I/O oo i i e 363
C#s1/OIsBuilt Upon Streams 363
Byte Streams and Character Streams 363
The Predefined Streams L 363
The Stream Classes i 364
The Stream Class i 364
The Byte Stream Classes 365
The Character Stream Wrapper Classes 365
Binary Streams ... 367
Console I/ O o 367
Reading Console Input L 367
Using ReadKey() ... i 369
Writing Console Output 371
FileStream and Byte-Oriented File I/O 371
Opening and Closinga File 372
Reading Bytes from a FileStream 374
WritingtoaFile 375
Using FileStream to CopyaFile 376
Character-Based File I/O ..ot 378
Using StreamWriter i 378
Using a StreamReader 380
Redirecting the Standard Streams L. 381
Reading and Writing Binary Data 383
BinaryWriter 383
BinaryReader il 384

Demonstrating Binary [/O L 386

15

16

Contents

Random Access Files 390
Using MemoryStream —t 392
Using StringReader and StringWriter 394
Converting Numeric Strings to Their Internal Representation 396
Delegates, Events, and Lambda Expressions 399
Delegates 399
Delegate Method Group Conversion — 402

Using Instance Methods as Delegates 402
Multicasting 404
Covariance and Contravariance 406
System.Delegate L 408

Why Delegates 408
Anonymous Functions o oo ool 408
Anonymous Methods 409
Pass Arguments to an Anonymous Method 410
Return a Value from an Anonymous Method 410

Use Outer Variables with Anonymous Methods 412
Lambda Expressions — 413
The Lambda Operator 413
Expression Lambdas 414
Statement Lambdas ool 416
Bvents ... 419
A Multicast Event Example 421
Instance Methods vs. Static Methods as Event Handlers 422

Using Event Accessors i i 424
Miscellaneous Event Features 429

Use Anonymous Methods and Lambda Expressions with Events 429
NET Event Guidelines, 430
Use EventHandler 432
Applying Events: ACaseStudy 433
Namespaces, the Preprocessor, and Assemblies 437
Namespaces 437
Declaring a Namespace, 438
Namespaces Prevent Name Conflicts 440

USINE oo 441
ASecond Formofusingl 443
Namespaces Are Additive 444
Namespaces CanBe Nested 446

The Global Namespace 447

Using the :: Namespace Alias Qualifier 447

The Preprocessor — 451
#idefine 452
#ifand#endif oo 452
#elseand #elif 454

#undef .. 455

xiii

Xiv C# 3.0: The Complete Reference

17

18

HEITOT L 456
HWAINING 456
#line ... 456
firegion and #endregion oL 456
Hpragma 457
Assemblies and the internal Access Modifier —......................... 457
The internal Access Modifier, 458
Runtime Type ID, Reflection, and Attributes 459
Runtime Type Identification 459
Testing a Type withis 459
USINgas 460
Using typeof ... 462
Reflection 463
The Reflection Core: System.Type 463
Using Reflection 465
Obtaining Information About Methods 465
Calling Methods Using Reflection 469
Obtaining a Type’s Constructors 471
Obtaining Types from Assemblies 475
Fully Automating Type Discovery 481
Attributes ... 483
Attribute Basics o o o oo 483
Positional vs. Named Parameters 487
Three Built-in Attributes 491
AttributeUsage 491
The Conditional Attribute 491
The Obsolete Attribute 493
L) 1T T 495
What Are Generics? 495
A Simple Generics Example L 496
Generic Types Differ Based on Their Type Arguments 499
How Generics Improve Type Safety 499
A Generic Class with Two Type Parameters 502
The General Form of a Generic Class 503
Constrained Types 503
Using a Base Class Constraint 504
Using an Interface Constraint 512
Using the new() Constructor Constraint 516
The Reference Type and Value Type Constraints 517

Using a Constraint to Establish a Relationship Between Two Type
Parameters 520
Using Multiple Constraints 521
Creating a Default Value of a Type Parameter 522
Generic Structures 523

Creating a Generic Method 524

19

20

Contents

Using Explicit Type Arguments to Call a Generic Method 527
Using a Constraint with a Generic Method 527
Generic Delegates 527
Generic Interfaces 530
Comparing Instances of a Type Parameter 534
Generic Class Hierarchies 537
Using a GenericBase Class 537
A Generic Derived Class 539
Overriding Virtual Methods in a GenericClass 540
Overloading Methods That Use Type Parameters 542
How Generic Types Are Instantiated 543
Some Generic Restrictions L 544
Final Thoughts on Generics , 544
0 545
What Is LINQ? 545
LINQ Fundamentals i 546
ASimple Query ... 546
A Query Can Be Executed More ThanOnce 548
How the Data Types in a Query Relate 549
The General FormofaQuery 550
Filter Values withwhere 551
Sort Results with orderby l 552
ACloser Look atselect i 556
Use Nested from Clauses 560
Group Results with groupl 561
Use into to Create a Continuation 563
Use let to Create a Variableina Query 565
Join Two Sequences withjoinl 566
Anonymous Types il 569
CreateaGroup Join 571
The Query Methods 574
The Basic Query Methods 574
Create Queries by Using the Query Methods 575
Query Syntax vs. Query Methods 577
More Query-Related Extension Methods 577
Deferred vs. Immediate Query Execution 580
ExpressionTrees i 581
Extension Methods 582
Unsafe Code, Pointers, Nullable Types, and Miscellaneous Topics 585
UnsafeCode 585
Pointer Basics i 586
Usingunsafe 587
Usingfixed 588

Accessing Structure Members Through a Pointer 589

XV

Xvi C# 3.0: The Complete Reference

Part Il
21

Pointer Arithmetic i
Pointer Comparisons il
Pointers and Arrays
Pointers and Strings
Multiple Indirection L
Arraysof Pointers
stackalloc ...
Creating Fixed-Size Buffers
Nullable Types
Nullable Basics
Nullable Objects in Expressions
The?? Operator ...
Nullable Objects and the Relational and Logical Operators
Partial Types ...
Partial Methods
Friend Assemblies
Miscellaneous Keywords —
lock oo
readonly ...
constandvolatile o o ool
The using Statement
eXTEIrN ..

Exploring the C# Library
Exploring the System Namespacecoiiiiiiiiiiiiien...
The Members of System
TheMath Class
The .NET Structures Corresponding to the Built-in Value Types
The Integer Structures
The Floating-Point Structures
Decimal
Char ...
The Boolean Structure
The Array Class ...
Sorting and Searching Arrays
Reversing an Array —
Copying an Array ooiiiiiiii
Using a Predicate L.
Usingan Action i
BitConverter
Generating Random Numbers with Random
Memory Management and the GCClass
Object ...
The IComparable and IComparable<T> Interfaces
The IEquatable<T> Interface

22

23

Contents

The IConvertible Interface 660
The ICloneable Interface, 660
[FormatProvider and IFormattable 662
Strings and Formattingcooiiiiiiiiiiiiiiiiiiiii 663
Strings inCH# ... 663
The String Class 664
The String Constructors 664

The String Field, Indexer, and Property 665

The String Operators 665

The String Methods l 665
Padding and Trimming Strings 681
Inserting, Removing, and Replacing 682
Changing Case i 683

Using the Substring() Method 684

The String Extension Methods 684
Formatting 684
Formatting Overview 685

The Numeric Format Specifiers 686
Understanding Argument Numbers 687

Using String.Format() and ToString() to Format Data 688
Using String.Format() to Format Values 688

Using ToString() to Format Data 691
Creating a Custom Numeric Format 692
The Custom Format Placeholder Characters 692
Formatting Dateand Time 695
Creating a Custom Date and Time Format 698
Formatting Enumerations oo ool 700
Multithreaded Programmingccoiiiiiiiiiiiiiiineennnn. 703
Multithreading Fundamentals 703
The Thread Class i i i, 704
Creating and Startinga Thread 704

Some Simple Improvements 707
Creating Multiple Threads 708
Determining When a Thread Ends 710
Passing an Argument toa Thread 713
The IsBackground Property L. 715
Thread Priorities 715
Synchronization —........ 717
An Alternative Approach 721

The Monitor Classand lock 723
Thread Communication Using Wait(), Pulse(), and PulseAll() 723
An Example That Uses Wait() and Pulse() 724
Deadlock and Race Conditions 727
Using MethodImplAttribute 728

Using a Mutex and a Semaphore 730

Xvii

Xviii

C# 3.0: The Complete Reference

24

25

The Mutex ... 730
The Semaphore 734
UsingEvents 737
The Interlocked Class i, 739
Terminatinga Thread 741
An Abort() Alternative ... 742
Canceling Abort() 743
Suspending and Resuming a Thread 745
Determining a Thread’s State 745
Using the Main Thread 746
Multithreading Tips 747
Starting a Separate Task L 747
Collections, Enumerators, and Iteratorsccciiiiiiinenn.. 749
Collections OVerviewttt 749
The Non-Generic Collections 750
The Non-Generic Interfaces 751
The DictionaryEntry Structure 755
The Non-Generic Collection Classes 755
Storing Bits with BitArray 771
The Specialized Collections 774
The Generic Collections 774
The Generic Interfaces 775
The KeyValuePair<TK, TV> Structure 778
The Generic Collection Classes 779
Storing User-Defined Classes in Collections 799
Implementing IComparable 801
Implementing IComparable for Non-Generic Collections 802
Implementing IComparable<T> for Generic Collections 803
Using an IComparer 805
Using a Non-Generic IComparer 805
Using a Generic IComparer<T> 806
Accessing a Collection via an Enumerator 808
Using an Enumerator ool 808
Using the IDictionaryEnumerator 809
Implementing IEnumerable and IEnumerator — 811
Using Iterators —........... . 813
Stopping an Iterator o 815
Using Multiple yield Directives 815
Creating a Named Iterator —...................... 816
Creating a Generic Iterator 818
Collection Initializers 819
Networking Through the Internet Using System.Net 821
The System.Net Members 821

Uniform Resource Identifiers 823

26

Contents
Internet Access Fundamentals 823
WebRequest 824
WebResponse —......... 826
HttpWebRequest and HttpWebResponse 826
ASimple First Examplel 827
Handling Network Errors, 830
Exceptions Generated by Create() 830
Exceptions Generated by GetReponse() 830
Exceptions Generated by GetResponseStream() 831
Using Exception Handling 831
The UriClass ... 833
Accessing Additional HTTP Response Information 834
Accessing the Header —................ 834
Accessing Cookies 836
Using the LastModified Property — 838
MiniCrawler: ACase Study 839
Using WebClient 842
Use System.Windows.Forms to Create Form-Based
Windows Applications i iiiiiiiiiiiiiii i, 847
A Brief History of Windows Programming 847
Two Ways to Write a Form-Based Windows Application 848
How Windows Interacts withthe User 848
Windows Forms 849
The Form Class i 849
A Skeletal Form-Based Windows Program — 849
Compiling the Windows Skeleton 851
AddingaButton 852
Button Basics 852
Adding a ButtontoaForm oL 852
A Simple Button Example 853
Handling Messages —ttt 853
An Alternative Implementation oL 856
UsingaMessage Box o i 856
AddingaMenu 859
Creating a Traditional-Style Main Menu 859
Creating a New-Style Menu with MenuStrip 863
Documentation Comment Quick Referenceccvvuen... 867
The XML Comment Tags i, 867
Compiling Documentation Comments 868
An XML Documentation Example 869
Index 871

M.al litebooks. cogl

Xix

http://www.allitebooks.org

This page intentionally left blank

Special Thanks

pecial thanks go to Michael Howard for his excellent technical edit of this book. His
expertise, insights, suggestions, and advice were of great value.

XXi

This page intentionally left blank

Preface

performance, efficiency, and portability of our programs. We also demand much

from the tools we use, especially when it comes to programming languages.
There are many programming languages, but only a few are great. A great programming
language must be powerful, yet flexible. Its syntax must be terse, but clear. It must facilitate
the creation of correct code while not getting in our way. It must support state-of-the-art
features, but not trendy dead ends. Finally, a great programming language must have one
more, almost intangible quality: It must feel right when we use it. C# is such a language.

Created by Microsoft to support its NET Framework, C# builds on a rich programming
heritage. Its chief architect was long-time programming guru Anders Hejlsberg. C# is
directly descended from two of the world’s most successful computer languages: C and
C++. From C, it derives its syntax, many of its keywords, and its operators. It builds upon
and improves the object model defined by C++. C# is also closely related to another very
successful language: Java.

Sharing a common ancestry, but differing in many important ways, C# and Java are
more like cousins. Both support distributed programming and both use intermediate code
to achieve safety and portability, but the details differ. They both also provide a significant
amount of runtime error checking, security, and managed execution, but again, the details
differ. However, unlike Java, C# also gives you access to pointers—a feature supported by
C++. Thus, C# combines the raw power of C++ with the type safety of Java. Furthermore,
the trade-offs between power and safety are carefully balanced and are nearly transparent.

Throughout the history of computing, programming languages have evolved to
accommodate changes in the computing environment, advances in computer language theory,
and new ways of thinking about and approaching the job of programming. C# is no exception.
In the ongoing process of refinement, adaptation, and innovation, C# has demonstrated its
ability to respond rapidly to the changing needs of the programmer. This fact is testified to
by the many new features added to C# since its initial 1.0 release in 2000.

Consider the first major revision, C# 2.0. It added several features that made it easier for
programmers to write more resilient, reliable, and nimble code. Without question, the most
important 2.0 addition was generics. Through the use of generics, it became possible to create
type-safe, reusable code in C#. Thus, the addition of generics fundamentally expanded the
power and scope of the language.

Now consider the second major revision, C# 3.0. This is the latest version of C# and is the
version described in this book. It is not an exaggeration to say that C# 3.0 has added features
that have redefined the very core of C#, raising the bar in computer language development in
the process. Of its many innovative features, two stand out: LINQ and lambda expressions.
LINQ, which stands for Language Integrated Query, enables you to create database-style
queries by using elements of the C# language. Lambda expressions implement a functional-
style syntax that uses the => lambda operator, and lambda expressions are frequently used in
LINQ expressions.

As you will see in the course of this book, the combination of LINQ and lambda expressions
represents a radically powerful subset of C#. Furthermore, they are revolutionary features that

We programmers are a demanding bunch, always looking for ways to improve the

XXiii

XXiv

C# 3.0: The Complete Reference

are redefining how solutions are crafted for many different types of programming tasks, not just
database queries. In essence, they let you approach old problems in new ways. Their use not
only streamlines a solution, but also helps you conceptualize a problem from a different point
of view. Simply put, the addition of LINQ and lambda expressions is both significant and far
reaching. They are changing the way we think about the job of programming.

Because of its ability to adapt rapidly to the changing demands of the programming
landscape, C# has remained a vibrant and innovative language. As a result, it defines one
of the most powerful, feature-rich languages in modern computing. It is also a language
that no programmer can afford to ignore. This book is designed to help you master it.

What’s Inside

This book describes C# 3.0. It is divided into two parts. Part I provides a comprehensive
discussion of the C# language, including the new features added by version 3.0. This is the
largest part in the book, and it describes the keywords, syntax, and features that define the
language. 1/0, file handling, reflection, and the preprocessor are also discussed in Part I.

Part II explores the C# class library, which is the NET Framework class library. This
library is huge! Because of space limitations, it is not possible to cover the entire .NET
Framework class library in one book. Instead, Part II focuses on the core library, which is
contained in the System namespace. Also covered are collections, multithreading,
networking, and Windows Forms. These are the parts of the library that nearly every C#
programmer will use.

A Book for All Programmers

This book does not require any previous programming experience. If you already know
C++ or Java, you will be able to advance quite rapidly because C# has much in common
with those languages. If you don’t have any previous programming experience, you will
still be able to learn C# from this book, but you will need to work carefully through the
examples in each chapter.

Required Software

To compile and run C# 3.0 programs, you must use Visual Studio 2008 or later.

Don’t Forget: Code on the Web

Remember, the source code for all of the programs in this book is available free-of-charge on
the Web at www.mhprofessional.com.

www.mhprofessional.com

Preface XXV

For Further Study

C# 3.0: The Complete Reference is your gateway to the Herb Schildt series of programming
books. Here are some others that you will find of interest.

For a carefully paced introduction to C#, try
C# 3.0: A Beginner’s Guide
To learn about Java programming, we recommend the following;:
Java: The Complete Reference
Java: A Beginner’s Guide
Swing: A Beginner's Guide
The Art of Java
Herb Schildt’s Java Programming Cookbook
To learn about C++, you will find these books especially helpful:
C++: The Complete Reference
C++: A Beginner’s Guide
C++ From the Ground Up
STL Programming From the Ground Up
The Art of C++
Herb Schildt’s C++ Programming Cookbook

If you want to learn about the C language, the foundation of all modern programming, the
following title will be of interest:

C: The Complete Reference

When you need solid answers, fast, turn to Herbert Schildt,
the recognized authority on programming.

This page intentionally left blank

PART

The C# Language

art I discusses the elements of the C# language, including its

keywords, syntax, and operators. Also described are several

foundational C# techniques, such as using I/O and reflection,
which are tightly linked with the C# language.

Chaprer 1
The Creation of C#

Craprer 2
An Overview of C#

Cunprer 3

Data Types, Literals, and Variables
Craprer s

Operators

Cunprer s

Program Control Statements
Cuaprer 6

Introducing Classes and Objects
Cunpren7

Arrays and Strings

Craprer s

A Closer Look at Methods and Classes
Cunprer

Operator Overloading

Cuaprer 10

Indexers and Properties

Cunprer 1

Inheritance

Craprer 12

Interfaces, Structures, and Enumerations
Crnpren 13

Exception Handling

Craprer 14

Using I/O

Crnpren 15

Delegates, Events, and Lambda
Expressions

Cunprer 16

Namespaces, the Preprocessor, and
Assemblies

Cunprer 7

Runtime Type ID, Reflection, and
Attributes

Chaprer 18
Generics

Cuaprer 19

LINQ

Crnprer 20

Unsafe Code, Pointers, Nullable Types,
and Miscellaneous Topics

This page intentionally left blank

CHAPTER
The Creation of G#

is Microsoft’s premier language for .NET development. It leverages time-tested

features with cutting-edge innovations and provides a highly usable, efficient way

to write programs for the modern enterprise computing environment. It is, by any
measure, one of the most important languages of the 21st century.

The purpose of this chapter is to place C# into its historical context, including the forces
that drove its creation, its design philosophy, and how it was influenced by other computer
languages. This chapter also explains how C# relates to the .NET Framework. As you will
see, C# and the NET Framework work together to create a highly refined programming
environment.

C#’s Family Tree

Computer languages do not exist in a void. Rather, they relate to one another, with each new
language influenced in one form or another by the ones that came before. In a process akin to
cross-pollination, features from one language are adapted by another, a new innovation is
integrated into an existing context, or an older construct is removed. In this way, languages
evolve and the art of programming advances. C# is no exception.

C# inherits a rich programming legacy. It is directly descended from two of the world’s
most successful computer languages: C and C++. It is closely related to another: Java.
Understanding the nature of these relationships is crucial to understanding C#. Thus, we
begin our examination of C# by placing it in the historical context of these three languages.

C: The Beginning of the Modern Age of Programming

The creation of C marks the beginning of the modern age of programming. C was invented
by Dennis Ritchie in the 1970s on a DEC PDP-11 that used the UNIX operating system.
While some earlier languages, most notably Pascal, had achieved significant success, C
established the paradigm that still charts the course of programming today.

C grew out of the structured programming revolution of the 1960s. Prior to structured
programming, large programs were difficult to write because the program logic tended to
degenerate into what is known as “spaghetti code,” a tangled mass of jumps, calls, and
returns that is difficult to follow. Structured languages addressed this problem by adding
well-defined control statements, subroutines with local variables, and other improvements.
Through the use of structured techniques programs became better organized, more reliable,
and easier to manage. 3

M.al litebooks. cogl

http://www.allitebooks.org

Part I: The C# Language

Although there were other structured languages at the time, C was the first to successfully
combine power, elegance, and expressiveness. Its terse, yet easy-to-use syntax coupled with
its philosophy that the programmer (not the language) was in charge quickly won many
converts. It can be a bit hard to understand from today’s perspective, but C was a breath of
fresh air that programmers had long awaited. As a result, C became the most widely used
structured programming language of the 1980s.

However, even the venerable C language had its limits. One of the most troublesome
was its inability to handle large programs. The C language hits a barrier once a project
reaches a certain size, and after that point, C programs are difficult to understand and
maintain. Precisely where this limit is reached depends upon the program, the programmer,
and the tools at hand, but there is always a threshold beyond which a C program becomes
unmanageable.

The Creation of OOP and C++

By the late 1970s, the size of many projects was near or at the limits of what structured
programming methodologies and the C language could handle. To solve this problem, a
new way to program began to emerge. This method is called object-oriented programming
(OOP). Using OOP, a programmer could handle much larger programs. The trouble was
that C, the most popular language at the time, did not support object-oriented programming.
The desire for an object-oriented version of C ultimately led to the creation of C++.

C++ was invented by Bjarne Stroustrup beginning in 1979 at Bell Laboratories in Murray
Hill, New Jersey. He initially called the new language “C with Classes.” However, in 1983 the
name was changed to C++. C++ contains the entire C language. Thus, C is the foundation
upon which C++ is built. Most of the additions that Stroustrup made to C were designed to
support object-oriented programming. In essence, C++ is the object-oriented version of C. By
building upon the foundation of C, Stroustrup provided a smooth migration path to OOP.
Instead of having to learn an entirely new language, a C programmer needed to learn only
a few new features before reaping the benefits of the object-oriented methodology.

C++ simmered in the background during much of the 1980s, undergoing extensive
development. By the beginning of the 1990s, C++ was ready for mainstream use, and its
popularity exploded. By the end of the decade, it had become the most widely used
programming language. Today, C++ is still the preeminent language for the development of
high-performance system code.

It is critical to understand that the invention of C++ was not an attempt to create an
entirely new programming language. Instead, it was an enhancement to an already highly
successful language. This approach to language development—beginning with an existing
language and moving it forward—established a trend that continues today.

The Internet and Java Emerge

The next major advance in programming languages is Java. Work on Java, which was
originally called Oak, began in 1991 at Sun Microsystems. The main driving force behind
Java’s design was James Gosling. Patrick Naughton, Chris Warth, Ed Frank, and Mike
Sheridan also played a role.

Java is a structured, object-oriented language with a syntax and philosophy derived from
C++. The innovative aspects of Java were driven not so much by advances in the art of
programming (although some certainly were), but rather by changes in the computing
environment. Prior to the mainstreaming of the Internet, most programs were written,

Chapter 1: The Creation of C#

compiled, and targeted for a specific CPU and a specific operating system. While it has always
been true that programmers like to reuse their code, the ability to port a program easily from
one environment to another took a backseat to more pressing problems. However, with the
rise of the Internet, in which many different types of CPUs and operating systems are
connected, the old problem of portability reemerged with a vengeance. To solve the problem
of portability, a new language was needed, and this new language was Java.

Although the single most important aspect of Java (and the reason for its rapid acceptance)
is its ability to create cross-platform, portable code, it is interesting to note that the original
impetus for Java was not the Internet, but rather the need for a platform-independent
language that could be used to create software for embedded controllers. In 1993, it became
clear that the issues of cross-platform portability found when creating code for embedded
controllers are also encountered when attempting to create code for the Internet. Remember:
the Internet is a vast, distributed computing universe in which many different types of
computers live. The same techniques that solved the portability problem on a small scale
could be applied to the Internet on a large scale.

Java achieved portability by translating a program’s source code into an intermediate
language called bytecode. This bytecode was then executed by the Java Virtual Machine
(JVM). Therefore, a Java program could run in any environment for which a JVM was
available. Also, since the JVM is relatively easy to implement, it was readily available for
a large number of environments.

Java’s use of bytecode differed radically from both C and C++, which were nearly
always compiled to executable machine code. Machine code is tied to a specific CPU and
operating system. Thus, if you wanted to run a C/C++ program on a different system, it
needed to be recompiled to machine code specifically for that environment. Therefore, to
create a C/C++ program that would run in a variety of environments, several different
executable versions of the program would be needed. Not only was this impractical, it was
expensive. Java’s use of an intermediate language was an elegant, cost-effective solution.

It is also a solution that C# would adapt for its own purposes.

As mentioned, Java is descended from C and C++. Its syntax is based on C, and its object
model is evolved from C++. Although Java code is neither upwardly nor downwardly
compatible with C or C++, its syntax is sufficiently similar that the large pool of existing
C/C++ programmers could move to Java with very little effort. Furthermore, because Java
built upon and improved an existing paradigm, Gosling, et al., were free to focus their
attention on the new and innovative features. Just as Stroustrup did not need to “reinvent
the wheel” when creating C++, Gosling did not need to create an entirely new language
when developing Java. Moreover, with the creation of Java, C and C++ became an accepted
substrata upon which to base a new computer language.

The Creation of C#

While Java has successfully addressed many of the issues surrounding portability in the
Internet environment, there are still features that it lacks. One is cross-language interoperability,
also called mixed-language programming. This is the ability for the code produced by one
language to work easily with the code produced by another. Cross-language interoperability
is needed for the creation of large, distributed software systems. It is also desirable for
programming software components because the most valuable component is one that can
be used by the widest variety of computer languages, in the greatest number of operating
environments.

Part I: The C# Language

Another feature lacking in Java is full integration with the Windows platform. Although
Java programs can be executed in a Windows environment (assuming that the Java Virtual
Machine has been installed), Java and Windows are not closely coupled. Since Windows is
the most widely used operating system in the world, lack of direct support for Windows is a
drawback to Java.

To answer these and other needs, Microsoft developed C#. C# was created at Microsoft
late in the 1990s and was part of Microsoft’s overall .NET strategy. It was first released in its
alpha version in the middle of 2000. C#'s chief architect was Anders Hejlsberg. Hejlsberg is
one of the world’s leading language experts, with several notable accomplishments to his
credit. For example, in the 1980s he was the original author of the highly successful and
influential Turbo Pascal, whose streamlined implementation set the standard for all future
compilers.

C# is directly related to C, C++, and Java. This is not by accident. These are three of
the most widely used—and most widely liked—programming languages in the world.
Furthermore, at the time of C#'s creation, nearly all professional programmers knew C, C++,
and/or Java. By building C# upon a solid, well-understood foundation, C# offered an easy
migration path from these languages. Since it was neither necessary nor desirable for Hejlsberg
to “reinvent the wheel,” he was free to focus on specific improvements and innovations.

The family tree for C# is shown in Figure 1-1. The grandfather of C# is C. From C, C#
derives its syntax, many of its keywords, and its operators. C# builds upon and improves
the object model defined by C++. If you know C or C++, then you will feel at home with C#.

C# and Java have a bit more complicated relationship. As explained, Java is also
descended from C and C++. It too shares the C/C++ syntax and object model. Like Java, C#
is designed to produce portable code. However, C# is not descended from Java. Instead, C#
and Java are more like cousins, sharing a common ancestry, but differing in many important
ways. The good news, though, is that if you know Java, then many C# concepts will be
familiar. Conversely, if in the future you need to learn Java, then many of the things you
learn about C# will carry over.

C# contains many innovative features that we will examine at length throughout the
course of this book, but some of its most important relate to its built-in support for software
components. In fact, C# has been characterized as being a component-oriented language
because it contains integral support for the writing of software components. For example,

Ficure 1-1
The C# family tree C

C++

Java Ci#

Chapter 1: The Creation of C#

C# includes features that directly support the constituents of components, such as
properties, methods, and events. However, C#’s ability to work in a secure, mixed-language
environment is perhaps its most important component-oriented feature.

The Evolution of C#

Since its original 1.0 release, C# has been evolving at a rapid pace. Not long after C# 1.0,
Microsoft released version 1.1. It contained many minor tweaks but added no major
features. However, the situation was much different with the release of C# 2.0.

C# 2.0 was a watershed event in the lifecycle of C# because it added many new features,
such as generics, partial types, and anonymous methods, that fundamentally expanded
the scope, power, and range of the language. Version 2.0 firmly put C# at the forefront of
computer language development. It also demonstrated Microsoft’s long-term commitment
to the language.

The next major release of C# was 3.0, and this is the version of C# described by this book.
Because of the many new features added by C# 2.0, one might have expected the development
of C# to slow a bit, just to let programmers catch up, but this was not the case. With the release
of C# 3.0, Microsoft once again put C# on the cutting edge of language design, this time
adding a set of innovative features that redefined the programming landscape. Here is
a list of what 3.0 has added to the language:

¢ Anonymous types

e Auto-implemented properties

¢ Extension methods

e Implicitly typed variables

e Lambda expressions

¢ Language-integrated query (LINQ)
® Object and collection initializers

e Partial methods

Although all of these features are important and have significant impact on the language,
the two that are the most exciting are language-integrated query (LINQ) and lambda
expressions. LINQ enables you to write database-style queries using C# programming
elements. However, the LINQ syntax is not limited to only databases. It can also be used
with arrays and collections. Thus, LINQ offers a new way to approach several common
programming tasks. Lambda expressions are often used in LINQ expressions, but can also be
used elsewhere. They implement a functional-style syntax that uses the lambda operator =>.
Together, LINQ and lambda expressions add an entirely new dimension to C# programming.
Throughout the course of this book, you will see how these features are revolutionizing the
way that C# code is written.

How C# Relates to the .NET Framework

Although C# is a computer language that can be studied on its own, it has a special
relationship to its runtime environment, the .NET Framework. The reason for this is
twofold. First, C# was initially designed by Microsoft to create code for the .NET

8 Partl: The C# Language

Framework. Second, the libraries used by C# are the ones defined by the NET Framework.
Thus, even though it is theoretically possible to separate C# the language from the NET
environment, in practice the two are closely linked. Because of this, it is important to have a
general understanding of the .NET Framework and why it is important to C#.

What Is the .NET Framework?

The .NET Framework defines an environment that supports the development and execution
of highly distributed, component-based applications. It enables differing computer languages
to work together and provides for security, program portability, and a common programming
model for the Windows platform. As it relates to C#, the NET Framework defines two very
important entities. The first is the Common Language Runtime (CLR). This is the system that
manages the execution of your program. Along with other benefits, the Common Language
Runtime is the part of the .NET Framework that enables programs to be portable, supports
mixed-language programming, and provides for secure execution.

The second entity is the .NET class library. This library gives your program access to the
runtime environment. For example, if you want to perform I/0O, such as displaying something
on the screen, you will use the .NET class library to do it. If you are new to programming,
then the term class may be new. Although it is explained in detail later in this book, for now
a brief definition will suffice: a class is an object-oriented construct that helps organize
programs. As long as your program restricts itself to the features defined by the .NET class
library, your programs can run anywhere that the .NET runtime system is supported. Since
C# automatically uses the NET Framework class library, C# programs are automatically
portable to all NET environments.

How the Common Language Runtime Works

The Common Language Runtime manages the execution of .NET code. Here is how it
works: When you compile a C# program, the output of the compiler is not executable code.
Instead, it is a file that contains a special type of pseudocode called Microsoft Intermediate
Language (MSIL). MSIL defines a set of portable instructions that are independent of any
specific CPU. In essence, MSIL defines a portable assembly language. One other point:
although MSIL is similar in concept to Java’s bytecode, the two are not the same.

It is the job of the CLR to translate the intermediate code into executable code when a
program is run. Thus, any program compiled to MSIL can be run in any environment for
which the CLR is implemented. This is part of how the NET Framework achieves portability.

Microsoft Intermediate Language is turned into executable code using a JIT compiler.
“JIT” stands for “Just-In-Time.” The process works like this: When a .NET program is
executed, the CLR activates the JIT compiler. The JIT compiler converts MSIL into native
code on demand as each part of your program is needed. Thus, your C# program actually
executes as native code even though it is initially compiled into MSIL. This means that your
program runs nearly as fast as it would if it had been compiled to native code in the first
place, but it gains the portability benefits of MSIL.

In addition to MSIL, one other thing is output when you compile a C# program:
metadata. Metadata describes the data used by your program and enables your code to
interact easily with other code. The metadata is contained in the same file as the MSIL.

Chapter 1: The Creation of C# 9

Managed vs. Unmanaged Code

In general, when you write a C# program, you are creating what is called managed code.
Managed code is executed under the control of the Common Language Runtime as just
described. Because it is running under the control of the CLR, managed code is subject to
certain constraints—and derives several benefits. The constraints are easily described and
met: the compiler must produce an MSIL file targeted for the CLR (which C# does) and use
the .NET class library (which C# does). The benefits of managed code are many, including
modern memory management, the ability to mix languages, better security, support for
version control, and a clean way for software components to interact.

The opposite of managed code is unmanaged code. Unmanaged code does not execute
under the Common Language Runtime. Thus, all Windows programs prior to the creation of
the .NET Framework use unmanaged code. It is possible for managed code and unmanaged
code to work together, so the fact that C# generates managed code does not restrict its ability
to operate in conjunction with preexisting programs.

The Common Language Specification

Although all managed code gains the benefits provided by the CLR, if your code will be
used by other programs written in different languages, then for maximum usability, it should
adhere to the Common Language Specification (CLS). The CLS describes a set of features
that different NET-compatible languages have in common. CLS compliance is especially
important when creating software components that will be used by other languages. The
CLS includes a subset of the Common Type System (CTS). The CTS defines the rules
concerning data types. Of course, C# supports both the CLS and the CTS.

This page intentionally left blank

CHAPTER
An Overview of C#

element exists in isolation. Instead, the components of the language work together.

This interrelatedness makes it difficult to discuss one aspect of C# without involving
another. To help overcome this problem, this chapter provides a brief overview of several
C# features, including the general form of a C# program, some basic control statements, and
operators. It does not go into too many details, but rather concentrates on the general concepts
common to any C# program. Most of the topics discussed here are examined in greater
detail in the remaining chapters of Part I.

By far, the hardest thing about learning a programming language is the fact that no

Object-Oriented Programming

At the center of C# is object-oriented programming (OOP). The object-oriented methodology is
inseparable from C#, and all C# programs are to at least some extent object oriented. Because
of its importance to C#, it is useful to understand OOP’s basic principles before you write
even a simple C# program.

OOP is a powerful way to approach the job of programming. Programming methodologies
have changed dramatically since the invention of the computer, primarily to accommodate
the increasing complexity of programs. For example, when computers were first invented,
programming was done by toggling in the binary machine instructions using the computer’s
front panel. As long as programs were just a few hundred instructions long, this approach
worked. As programs grew, assembly language was invented so that a programmer could
deal with larger, increasingly complex programs, using symbolic representations of the
machine instructions. As programs continued to grow, high-level languages such as
FORTRAN and COBOL were introduced that gave the programmer more tools with which
to handle complexity. When these early languages began to reach their breaking point,
structured programming languages, such as C, were invented.

At each milestone in the history of programming, techniques and tools were created to
allow the programmer to deal with increasingly greater complexity. Each step of the way,
the new approach took the best elements of the previous methods and moved forward. The
same is true of object-oriented programming. Prior to OOP, many projects were nearing (or
exceeding) the point where the structured approach no longer worked. A better way to
handle complexity was needed, and object-oriented programming was the solution.

12

Part I: The C# Language

Object-oriented programming took the best ideas of structured programming and
combined them with several new concepts. The result was a different and better way of
organizing a program. In the most general sense, a program can be organized in one of two
ways: around its code (what is happening) or around its data (what is being affected). Using
only structured programming techniques, programs are typically organized around code.
This approach can be thought of as “code acting on data.”

Object-oriented programs work the other way around. They are organized around data,
with the key principle being “data controlling access to code.” In an object-oriented language,
you define the data and the code that is permitted to act on that data. Thus, a data type
defines precisely the operations that can be applied to that data.

To support the principles of object-oriented programming, all OOP languages, including
C#, have three traits in common: encapsulation, polymorphism, and inheritance. Let’s
examine each.

Encapsulation

Encapsulation is a programming mechanism that binds together code and the data it
manipulates, and that keeps both safe from outside interference and misuse. In an object-
oriented language, code and data can be bound together in such a way that a self-contained
black box is created. Within the box are all necessary data and code. When code and data are
linked together in this fashion, an object is created. In other words, an object is the device
that supports encapsulation.

Within an object, the code, data, or both may be private to that object or public. Private code
or data is known to and accessible by only another part of the object. That is, private code or
data cannot be accessed by a piece of the program that exists outside the object. When code
or data is public, other parts of your program can access it even though it is defined within
an object. Typically, the public parts of an object are used to provide a controlled interface to
the private elements.

C#'s basic unit of encapsulation is the class. A class defines the form of an object. It specifies
both the data and the code that will operate on that data. C# uses a class specification to
construct objects. Objects are instances of a class. Thus, a class is essentially a set of plans
that specify how to build an object.

Collectively, the code and data that constitute a class are called its members. The data
defined by the class is referred to as fields. The terms member variables and instance variables
also are used. The code that operates on that data is contained within function members, of
which the most common is the method. Method is C#’s term for a subroutine. (Other
function members include properties, events, and constructors.) Thus, the methods of a
class contain code that acts on the fields defined by that class.

Polymorphism

Polymorphism (from Greek, meaning “many forms”) is the quality that allows one interface
to access a general class of actions. A simple example of polymorphism is found in the
steering wheel of an automobile. The steering wheel (the interface) is the same no matter
what type of actual steering mechanism is used. That is, the steering wheel works the same
whether your car has manual steering, power steering, or rack-and-pinion steering. Thus,
turning the steering wheel left causes the car to go left no matter what type of steering is
used. The benefit of the uniform interface is, of course, that once you know how to operate
the steering wheel, you can drive any type of car.

Chapter 2: An Overview of C# 13

The same principle can also apply to programming. For example, consider a stack
(which is a first-in, last-out list). You might have a program that requires three different
types of stacks. One stack is used for integer values, one for floating-point values, and one
for characters. In this case, the algorithm that implements each stack is the same, even
though the data being stored differs. In a non-object-oriented language, you would be
required to create three different sets of stack routines, with each set using different names.
However, because of polymorphism, in C# you can create one general set of stack routines
that works for all three specific situations. This way, once you know how to use one stack,
you can use them all.

More generally, the concept of polymorphism is often expressed by the phrase “one
interface, multiple methods.” This means that it is possible to design a generic interface to
a group of related activities. Polymorphism helps reduce complexity by allowing the same
interface to be used to specify a general class of action. It is the compiler’s job to select the
specific action (that is, method) as it applies to each situation. You, the programmer, don’t
need to do this selection manually. You need only remember and utilize the general interface.

Inheritance

Inheritance is the process by which one object can acquire the properties of another object.
This is important because it supports the concept of hierarchical classification. If you
think about it, most knowledge is made manageable by hierarchical (that is, top-down)
classifications. For example, a Red Delicious apple is part of the classification apple, which
in turn is part of the fruit class, which is under the larger class food. That is, the food class
possesses certain qualities (edible, nutritious, and so on) which also, logically, apply to its
subclass, fruit. In addition to these qualities, the fruit class has specific characteristics (juicy,
sweet, and so on) that distinguish it from other food. The apple class defines those qualities
specific to an apple (grows on trees, not tropical, and so on). A Red Delicious apple would,
in turn, inherit all the qualities of all preceding classes and would define only those qualities
that make it unique.

Without the use of hierarchies, each object would have to explicitly define all of its
characteristics. Using inheritance, an object need only define those qualities that make it
unique within its class. It can inherit its general attributes from its parent. Thus, the
inheritance mechanism makes it possible for one object to be a specific instance of a more
general case.

A First Simple Program

It is now time to look at an actual C# program. We will begin by compiling and running the
short program shown here:

/*

This is a simple C# program.

Call this program Example.cs.

*/
using System;

class Example {

M.al litebooks. cogl

http://www.allitebooks.org

14

Part I: The C# Language

// A C# program begins with a call to Main() .
static void Main () {
Console.WriteLine ("A simple C# program.");
}
}

The primary development environment for C# is Microsoft’s Visual Studio. To compile
all of the programs in this book, including those that use the new C# 3.0 features, you will
need to use a version of Visual Studio 2008 (or later) that supports C#. A good choice for
learning C# 3.0 is Visual C# 2008 Express Edition because (at the time of this writing) it is
available free of charge from Microsoft. Visual C# 2008 Express Edition contains a full-
featured compiler that supports all of C# 3.0 and is, therefore, able to compile all of the code
in this book. It also includes Visual Studio, which is Microsoft’s integrated programming
environment (IDE). Although the Express Edition does not supply all of the tools that a
commercial developer will want, it is perfect for learning C#. At the time of this writing,
Visual C# 2008 Express Edition can be downloaded from microsoft.com/express/. All
of the code in this book has been tested against this compiler.

Using Visual C#, there are two general approaches that you can take to creating, compiling,
and running a C# program. First, you can use the Visual Studio IDE. Second, you can use
the command-line compiler, csc.exe. Both methods are described here.

Using csc.exe, the C# Command-Line Compiler

Although the Visual Studio IDE is what you will probably be using for your commercial
projects, some readers will find the C# command-line compiler more convenient, especially
for compiling and running the sample programs shown in this book. The reason is that you
don’t have to create a project for the program. You can simply create the program and then
compile it and run it—all from the command line. Therefore, if you know how to use the
Command Prompt window and its command-line interface, using the command-line
compiler will be faster and easier than using the IDE.

CAUTION If you are not familiar with the Command Prompt window, then it is probably better to
use the Visual Studio IDE. Although its commands are not difficult to learn, trying to learn both
the Command Prompt and C# at the same time will be a challenging experience.

To create and run programs using the C# command-line compiler, follow these three steps:

1. Enter the program using a text editor.
2. Compile the program using csc.exe.

3. Run the program.

Entering the Program

The source code for programs shown in this book are available at www.mhprofessional.com.
However, if you want to enter the programs by hand, you are free to do so. In this case, you
must enter the program into your computer using a text editor, such as Notepad. Remember,

www.mhprofessional.com

Chapter 2: An Overview of C#

you must create text-only files, not formatted word-processor files, because the format
information in a word processor file will confuse the C# compiler. When entering the
program, call the file Example.cs.

Compiling the Program
To compile the program, execute the C# compiler, csc.exe, specifying the name of the source
file on the command line, as shown here:

C:\>csc Example.cs

The csc compiler creates a file called Example.exe that contains the MSIL version of the
program. Although MSIL is not executable code, it is still contained in an exe file. The
Common Language Runtime automatically invokes the JIT compiler when you attempt to
execute Example.exe. Be aware, however, that if you try to execute Example.exe (or any
other exe file that contains MSIL) on a computer for which the NET Framework is not
installed, the program will not execute because the CLR will be missing.

NOTE Prior to running csc.exe you will need to open a Command Prompt window that is
configured for Visual Studio. The easiest way to do this is to select Visual Studio 2008
Command Prompt under Visual Studio Tools in the Start menu. Alternatively, you can start
an unconfigured Command Prompt window and then run the batch file vsvars32.bat, which
is provided by Visual Studio. You may, however, encounter a problem with the command-line
approach. At the time of this writing, Visual C# 2008 Express Edition does not provide the
Visual Studio Tools menu or the vsvars32.bat file. Therefore, if you are using Visual C# 2008
Express, you may not be able to configure a command prompt window automatically. In this
case, use the Visual Studio IDE instead. However, Visual C++ 2008 Express Edition does supply
both vsvars32.bat and the Visual Studio 2008 Command Prompt menu selection. Therefore, if
you also install Visual C++ 2008 Express Edition, you will be able to start a properly configured
command prompt window that will also work for C#.

Running the Program
To actually run the program, just type its name on the command line, as shown here:

C:\>Example
When the program is run, the following output is displayed:
A simple C# program.

Using the Visual Studio IDE

Visual Studio is Microsoft’s integrated programming environment. It lets you edit, compile,
run, and debug a C# program, all without leaving its well-thought-out environment. Visual
Studio offers convenience and helps manage your programs. It is most effective for larger
projects, but it can be used to great success with smaller programs, such as those that
constitute the examples in this book.

15

16 Partl: The C# Language

The steps required to edit, compile, and run a C# program using the Visual Studio 2008
IDE are shown here. These steps assume the IDE provided by Visual C# 2008 Express
Edition. Slight differences may exist with other versions of Visual Studio 2008.

1. Create a new, empty C# project by selecting File | New Project. Next, select Empty
Project:

New Project

Templates: ||
¥isual Studio installed lates
= ¢ =
Windows Class Library WPF "WPF Browser Console
Farms &... Application Application Application
My Templates

Search onling
Templates...

An empty project for creating a local application { MET Framework 3.5) |

Marne: Projectl |

L Ok][Cancel]

Then, press OK to create the project.
2. Once the new project is created, the Visual Studio IDE will look like this:

& Projectd| - Microsoft Visual C# 2008 Express Edition E”E”z|
File Edit Wiew Project Buld Debueg Data Tools Window Help
RZRA=0" B IR R R ==Y 3|

Start Page.

Blas
(5 soution Hrojectl’ (1 project)

=

@ =51 References

- xpress Edition
| et ews o

Download the latest ir
Click here ko enable an B2
shout new technologies, |
live Feed also includes infc—
technology provicws, anc
technologies. To view the
Tools/OptionsfEnvironmer
statement.

OpEn: Prjert....
Create: Project...

Getting Started
——T———r———]|

18] |

v

Ready

Chapter 2: An Overview of C#

If for some reason you do not see the Solution Explorer window, activate it by
selecting Solution Explorer from the View menu.

3. At this point, the project is empty and you will need to add a C# source file to it. Do
this by right-clicking on Projectl in the Solution Explorer and then selecting Add.
You will see the following:

B project] - Microsoit Visual C# 2008 Express Edition

SIS

Flle Edt Wew Froject EBuld Debug Data Tools window Help
G- Ha | 4@ 9-o- 3-8
Start Page R "3l Solution Explover - Projectl
28
[Solution 'Praject’ (1 project)
B
3 Rl
Rebuild
Downlo! | -] New lkem... Add »
Clickhere =] Evisting Tkem,.. R? Add Refarenre. .
about ne
fvefeed 4§ Mew Folder Add Service Reference. ..
technolo
technolor =] Windows Form... el &s startlp Froject
Taols,
statemr.;pr # user Contral,.. Debug »
O PrujeLL... g Class.., Y
Ureate: Project... 5
Hename
Getting Started B | Propertios
Ready

4. Next, select New Item. This causes the Add New Item dialog to be displayed. Select
Code File and then change the name to Example.cs, as shown here:

Add New Item - Project]

Templates: || E
¥isual Studio installed templates 2
- [[G @_
= 5 (;:_ G&])= #
About Box Application Application Assambly Class : [ratasSet Debugger
Configurati,.. Marnifest File InFormati... Wisualizer
o o = = =
Interface LIMG ko SGL Local MDI Parent Resources File Service-based Settings File Text File L
Classes Database Farm Database

I &= =5 =

User Control User Control Windows Form XML File

B4

A blank C# code file

Mame: | Example.cs |

[Add J [Cancel

18 Partl: The C# Language

5. Next, add the file to the project by pressing Add. Your screen will now look like this:

E projectq - Microsoft Visual C# 2008 Express Edition E”E”ZJ
File Edit Wiew Refactor Project Build Debug Dsta Tools Window Help
-G E @ %G R=R=al] &
ElfR b el &Es8 =2 000 A0
Example.cs start Pags » X | Solution Explorer - Projecti - 0 x
| Y| IR =R NET NS
| —1 || (5 Selikinn Prajectt’ (1 project)
A | = [Project1
[# gl Referenres
#] Example.cs
]
< | >
Ready Ln1 Col 1 chi INS

6. Next, type the example program into the Example.cs window and then save
the file. (You can download the source code to the programs in this book from

www.mhprofessional.com so you won’t have to type in each example manually.)
When done, your screen will look like this:

= projecti - Microsoft Visual C# 2008 Express Edition

Fid= Edit Wiew Refactor Project Build Debug Dsta Tools Window Help

DiE-SHS sB9.-0-2-5])) il
BRbaaelE=E=2 003 @850
Example.cs® | Start page w X Solution Explorer - Projectl ~ 0 x
S Example v||ﬂ\i - —:=l' 2 2
1| [Solution 'Project1’ (1 project)
- ~| = [Project1
This is a simple CH# program. — = !
[=3] References
2] Example.cs
Cwll Lhis progran Example.cs.

*
uzing Svstem?
Heclass Example {

/f A C# program begins with a call to Maing
= static void Maini) {
Console.WriteLine ("4 simple CH# program.™)
-
=1

www.mhprofessional.com

Chapter 2: An Overview of C#

7. Compile the program by selecting Build Solution from the Build menu.

8. Run the program by selecting Start Without Debugging from the Debug menu.
When you run the program, you will see the window shown here.

e CAWINDOWSsystem3 Pemd. exe

A simple CH program. a
Prezs any key to continue . . .

-
1| | »

As the preceding instructions show, compiling short sample programs using the IDE
involves a number of steps. However, you don’t need to create a new project for each
example program in this book. Instead, you can use the same C# project. Just delete the
current source file and add the new file. Then recompile and run. This approach greatly
simplifies the process. Understand, however, that for real-world applications, each program
will use its own project.

NoOTE Although the preceding instructions are sufficient to compile and run the programs in this
book, if you will be using the Visual Studio IDE for your main work environment, you should
become familiar with all of its capabilities and features. It is a very powerful development
environment that helps make large projects manageable. The IDE also provides a way of
organizing the files and resources associated with a project. It is worth the time and effort
that you spend to become proficient at running Visual Studio.

The First Sample Program, Line by Line
Although Example.cs is quite short, it includes several key features that are common to all
C# programs. Let’s closely examine each part of the program, beginning with its name.

The name of a C# program is arbitrary. Unlike some computer languages (most notably,
Java) in which the name of a program file is very important, this is not the case for C#. You
were told to call the sample program Example.cs so that the instructions for compiling and
running the program would apply, but as far as C# is concerned, you could have called the
file by another name. For example, the preceding sample program could have been called
Sample.cs, Test.cs, or even X.cs.

19

20

Part I: The C# Language

By convention, C# programs use the .cs file extension, and this is a convention that you
should follow. Also, many programmers call a file by the name of the principal class defined
within the file. This is why the filename Example.cs was chosen. Since the names of C#
programs are arbitrary, names won't be specified for most of the sample programs in this
book. Just use names of your own choosing.

The program begins with the following lines:

/*

This is a simple C# program.

Call this program Example.cs.
*/

This is a comment. Like most other programming languages, C# lets you enter a remark into
a program’s source file. The contents of a comment are ignored by the compiler. Instead, a
comment describes or explains the operation of the program to anyone who is reading its
source code. In this case, the comment describes the program and reminds you to call the
source file Example.cs. Of course, in real applications, comments generally explain how
some part of the program works or what a specific feature does.

C# supports three styles of comments. The one shown at the top of the program is called
a multiline comment. This type of comment must begin with /* and end with */. Anything
between these two comment symbols is ignored by the compiler. As the name suggests, a
multiline comment can be several lines long.

The next line in the program is

using System;

This line indicates that the program is using the System namespace. In C#, a namespace
defines a declarative region. Although we will examine namespaces in detail later in this
book, a brief description is useful now. Through the use of namespaces, it is possible to keep
one set of names separate from another. In essence, names declared in one namespace will
not conflict with names declared in a different namespace. The namespace used by the
program is System, which is the namespace reserved for items associated with the NET
Framework class library, which is the library used by C#. The using keyword simply states
that the program is using the names in the given namespace.

The next line of code in the program is shown here:

class Example {

This line uses the keyword class to declare that a new class is being defined. As mentioned,
the class is C#'s basic unit of encapsulation. Example is the name of the class. The class
definition begins with the opening curly brace ({) and ends with the closing curly brace (}).
The elements between the two braces are members of the class. For the moment, don’t
worry too much about the details of a class except to note that in C#, most program activity
occurs within one.

The next line in the program is the single-line comment, shown here:

// A C# program begins with a call to Main().

Chapter 2: An Overview of C# 21

This is the second type of comment supported by C#. A single-line comment begins with
a // and ends at the end of the line. Although styles vary, it is not uncommon for programmers
to use multiline comments for longer remarks and single-line comments for brief, line-by-
line descriptions. (The third type of comment supported by C# aids in the creation of
documentation and is described in Appendix A.)

The next line of code is shown here:

static void Main() {

This line begins the Main() method. As mentioned earlier, in C#, a subroutine is called a
method. As the comment preceding it suggests, this is the line at which the program will
begin executing. All C# applications begin execution by calling Main(). The complete
meaning of each part of this line cannot be given now, since it involves a detailed
understanding of several other C# features. However, since many of the examples in

this book will use this line of code, we will take a brief look at it here.

The line begins with the keyword static. A method that is modified by static can be
called before an object of its class has been created. This is necessary because Main() is
called at program startup. The keyword void indicates that Main() does not return a value.
As you will see, methods can also return values. The empty parentheses that follow Main
indicate that no information is passed to Main(). Although it is possible to pass information
into Main(), none is passed in this example. The last character on the line is the {. This
signals the start of Main()’s body. All of the code that comprises a method will occur
between the method’s opening curly brace and its closing curly brace.

The next line of code is shown here. Notice that it occurs inside Main().

Console.WriteLine ("A simple C# program.");

This line outputs the string “A simple C# program.” followed by a new line on the screen.
Output is actually accomplished by the built-in method WriteLine(). In this case, WriteLine()
displays the string that is passed to it. Information that is passed to a method is called an
argument. In addition to strings, WriteLine() can be used to display other types of information.
The line begins with Console, which is the name of a predefined class that supports console
I/0. By connecting Console with WriteLine(), you are telling the compiler that WriteLine()
is a member of the Console class. The fact that C# uses an object to define console output is
further evidence of its object-oriented nature.

Notice that the WriteLine() statement ends with a semicolon, as does the using System
statement earlier in the program. In general, statements in C# end with a semicolon. The
exception to this rule are blocks, which begin with a { and end with a }. This is why those
lines in the program don’t end with a semicolon. Blocks provide a mechanism for grouping
statements and are discussed later in this chapter.

The first } in the program ends Main(), and the last } ends the Example class definition.
One last point: C# is case-sensitive. Forgetting this can cause serious problems. For
example, if you accidentally type main instead of Main, or writeline instead of WriteLine,
the preceding program will be incorrect. Furthermore, although the C# compiler will compile

classes that do not contain a Main() method, it has no way to execute them. So, had you
mistyped Main, you would see an error message that states that Example.exe does not have
an entry point defined.

22

Part I: The C# Language

Handling Syntax Errors

If you are new to programming, it is important to learn how to interpret and respond to errors
that may occur when you try to compile a program. Most compilation errors are caused by
typing mistakes. As all programmers soon find out, accidentally typing something incorrectly
is quite easy. Fortunately, if you type something wrong, the compiler will report a syntax error
message when it tries to compile your program. This message gives you the line number at
which the error is found and a description of the error itself.

Although the syntax errors reported by the compiler are, obviously, helpful, they
sometimes can also be misleading. The C# compiler attempts to make sense out of your
source code no matter what you have written. For this reason, the error that is reported
may not always reflect the actual cause of the problem. In the preceding program, for
example, an accidental omission of the opening curly brace after the Main() method
generates the following sequence of errors when compiled by the csc command-line
compiler. (Similar errors are generated when compiling using the IDE.)

EX1.CS(12,21): error CS1002: ; expected

EX1.CS(13,22): error CS1519: Invalid token '(' in class, struct, or
interface member declaration

EX1.CS(15,1): error CS1022: Type or namespace definition, or
end-of-file expected

Clearly, the first error message is completely wrong, because what is missing is not a
semicolon, but a curly brace. The second two messages are equally confusing.

The point of this discussion is that when your program contains a syntax error, don’t
necessarily take the compiler’s messages at face value. They may be misleading. You may need
to “second guess” an error message in order to find the problem. Also, look at the last few lines
of code immediately preceding the one in which the error was reported. Sometimes an error
will not be reported until several lines after the point at which the error really occurred.

A Small Variation

Although all of the programs in this book will use it, the line
using System;

at the start of the first example program is not technically needed. It is, however, a valuable
convenience. The reason it’s not necessary is that in C# you can always fully qualify a name
with the namespace to which it belongs. For example, the line

Console.WriteLine ("A simple C# program.");

can be rewritten as

System.Console.WriteLine ("A simple C# program.");
Thus, the first example could be recoded as shown here:

// This version does not include "using System;".

class Example ({

Chapter 2: An Overview of C# 23

// A C# program begins with a call to Main() .
static void Main () {

// Here, Console.WriteLine is fully qualified.
System.Console.WriteLine ("A simple C# program.");

}

Since it is quite tedious to always specify the System namespace whenever a member
of that namespace is used, most C# programmers include using System at the top of their
programs, as will all of the programs in this book. It is important to understand, however,
that you can explicitly qualify a name with its namespace if needed.

A Second Simple Program

Perhaps no other construct is as important to a programming language as the variable. A
variable is a named memory location that can be assigned a value. It is called a variable
because its value can be changed during the execution of a program. In other words, the
content of a variable is changeable, not fixed.

The following program creates two variables called x and y.

// This program demonstrates variables.
using System;
class Example2 {
static void Main () {
int x; // this declares a variable
int y; // this declares another variable
x = 100; // this assigns 100 to x
Console.WriteLine ("x contains " + x);

y =x/ 2;

Console.Write("y contains x / 2: ");
Console.WriteLine (y);

When you run this program, you will see the following output:

x contains 100
y contains x / 2: 50

This program introduces several new concepts. First, the statement
int x; // this declares a variable

declares a variable called x of type integer. In C#, all variables must be declared before they
are used. Further, the kind of values that the variable can hold must also be specified. This
is called the type of the variable. In this case, x can hold integer values. These are whole

M.al litebooks. cogl

http://www.allitebooks.org

2

Part I: The C# Language

numbers. In C#, to declare a variable to be of type integer, precede its name with the
keyword int. Thus, the preceding statement declares a variable called x of type int.
The next line declares a second variable called y.

int y; // this declares another variable

Notice that it uses the same format as the first except that the name of the variable is
different.
In general, to declare a variable, you will use a statement like this:

type var-name;

Here, type specifies the type of variable being declared, and var-name is the name of the
variable. In addition to int, C# supports several other data types.
The following line of code assigns x the value 100:

x = 100; // this assigns 100 to x

In C#, the assignment operator is the single equal sign. It copies the value on its right side
into the variable on its left.
The next line of code outputs the value of x preceded by the string “x contains ”.

Console.WriteLine ("x contains " + x);

In this statement, the plus sign causes the value of x to be displayed after the string that
precedes it. This approach can be generalized. Using the + operator, you can chain together
as many items as you want within a single WriteLine() statement.

The next line of code assigns y the value of x divided by 2:

y =x/ 2;

This line divides the value in x by 2 and then stores that result in y. Thus, after the line
executes, y will contain the value 50. The value of x will be unchanged. Like most other
computer languages, C# supports a full range of arithmetic operators, including those
shown here:

+ Addition

- Subtraction

* Multiplication
/ Division

Here are the next two lines in the program:

Console.Write("y contains x / 2: ");
Console.WriteLine (y);

Two new things are occurring here. First, the built-in method Write() is used to display the
string “y contains x / 2: ”. This string is not followed by a new line. This means that when
the next output is generated, it will start on the same line. The Write() method is just like
WriteLine(), except that it does not output a new line after each call. Second, in the call

Chapter 2: An Overview of C# 25

to WriteLine(), notice that y is used by itself. Both Write() and WriteLine() can be used to
output values of any of C#'s built-in types.

One more point about declaring variables before we move on: It is possible to declare
two or more variables using the same declaration statement. Just separate their names by
commas. For example, x and y could have been declared like this:

int x, y; // both declared using one statement

NoOTE C# 3.0 includes a new feature called an implicitly typed variable. Implicitly typed
variables are variables whose type is automatically determined by the compiler. Implicitly typed
variables are discussed in Chapter 3.

Another Data Type

In the preceding program, a variable of type int was used. However, an int variable can
hold only whole numbers. It cannot be used when a fractional component is required. For
example, an int variable can hold the value 18, but not the value 18.3. Fortunately, int is
only one of several data types defined by C#. To allow numbers with fractional components,
C# defines two floating-point types: float and double, which represent single- and double-
precision values, respectively. Of the two, double is the most commonly used.

To declare a variable of type double, use a statement similar to that shown here:

double result;

Here, result is the name of the variable, which is of type double. Because result has a
floating-point type, it can hold values such as 122.23, 0.034, or —19.0.
To better understand the difference between int and double, try the following program:

/*
This program illustrates the differences
between int and double.

*/
using System;

class Example3 {
static void Main () {
int ivar; // this declares an int variable
double dvar; // this declares a floating-point variable

ivar 100; // assign ivar the wvalue 100
dvar = 100.0; // assign dvar the value 100.0

Console.WriteLine ("Original value of ivar: " + ivar);
Console.WriteLine ("Original value of dvar: " + dvar);

Console.WriteLine(); // print a blank line
// Now, divide both by 3.

ivar = ivar / 3;
dvar = dvar / 3.0;

26

Part I: The C# Language

Console.WriteLine ("ivar after division: " + ivar);
Console.WriteLine ("dvar after division: " + dvar);
}
}

The output from this program is shown here:

Original value of ivar: 100
Original value of dvar: 100

ivar after division: 33
dvar after division: 33.3333333333333

As you can see, when ivar (an int variable) is divided by 3, a whole-number division is
performed, and the outcome is 33—the fractional component is lost. However, when dvar
(a double variable) is divided by 3, the fractional component is preserved.

As the program shows, when you want to specify a floating-point value in a program,
you must include a decimal point. If you don't, it will be interpreted as an integer. For
example, in C#, the value 100 is an integer, but the value 100.0 is a floating-point value.

There is one other new thing to notice in the program. To print a blank line, simply call
WriteLine() without any arguments.

The floating-point data types are often used when working with real-world quantities
where fractional components are commonly needed. For example, this program computes
the area of a circle. It uses the value 3.1416 for pi.

// Compute the area of a circle.
using System;

class Circle {
static void Main () {
double radius;
double area;

radius = 10.0;
area = radius * radius * 3.1416;
Console.WriteLine ("Area is " + area);

The output from the program is shown here:
Area is 314.16

Clearly, the computation of a circle’s area could not be satisfactorily achieved without the
use of floating-point data.

Two Control Statements

Inside a method, execution proceeds from one statement to the next, top to bottom. It

is possible to alter this flow through the use of the various program control statements
supported by C#. Although we will look closely at control statements later, two are briefly
introduced here because we will be using them to write sample programs.

Chapter 2: An Overview of C# 27

The if Statement

You can selectively execute part of a program through the use of C#'s conditional statement:
the if. The if statement works in C# much like the IF statement in any other language. For
example, it is syntactically identical to the if statements in C, C++, and Java. Its simplest
form is shown here:

if(condition) statement;

Here, condition is a Boolean (that is, true or false) expression. If condition is true, then the
statement is executed. If condition is false, then the statement is bypassed. Here is an
example:

1if (10 < 11) Console.WriteLine("10 is less than 11");

In this case, since 10 is less than 11, the conditional expression is true, and WriteLine() will
execute. However, consider the following:

if(10 < 9) Console.WriteLine("this won’t be displayed");

In this case, 10 is not less than 9. Thus, the call to WriteLine() will not take place.
C# defines a full complement of relational operators that can be used in a conditional
expression. They are shown here:

Operator Meaning

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to
== Equal to

1= Not equal

Here is a program that illustrates the if statement:
// Demonstrate the if.
using System;
class IfDemo {
static void Main() {

int a, b, c;

a = 2;
b = 3;

if(a < b) Console.WritelLine("a is less than b");

// This won’t display anything.
if(a == b) Console.WritelLine ("you won’t see this");

Console.WriteLine () ;

28

Part I: The C# Language

c =a-Db; // c contains -1

Console.WriteLine ("¢ contains -1");
if(c >= 0) Console.WriteLine("c is non-negative");
if(c < 0) Console.WriteLine("c is negative");

Console.WriteLine () ;

c =Db - a; // c now contains 1
Console.WriteLine ("c contains 1");

if(c >= 0) Console.WriteLine("c is non-negative");
if(c < 0) Console.WriteLine("c is negative");

The output generated by this program is shown here:

a is less than b

c contains -1
c is negative

c contains 1
c is non-negative

Notice one other thing in this program. The line
int a, b, c;

declares three variables, a, b, and ¢, by use of a comma-separated list. As mentioned earlier,
when you need two or more variables of the same type, they can be declared in one statement.
Just separate the variable names with commas.

The for Loop

You can repeatedly execute a sequence of code by creating a loop. C# supplies a powerful
assortment of loop constructs. The one we will look at here is the for loop. Like the if
statement, the C# for loop is similar to its counterpart in C, C++, and Java. The simplest
form of the for loop is shown here:

for(initialization; condition; iteration) statement;

In its most common form, the initialization portion of the loop sets a loop control variable
to an initial value. The condition is a Boolean expression that tests the loop control variable. If
the outcome of that test is true, the for loop continues to iterate. If it is false, the loop terminates.
The iteration expression determines how the loop control variable is changed each time the
loop iterates. Here is a short program that illustrates the for loop:

// Demonstrate the for loop.
using System;
class ForDemo {

static void Main () {
int count;

Chapter 2: An Overview of C# 29

for (count = 0; count < 5; count = count+1l)
Console.WriteLine ("This is count: " + count);

Console.WriteLine ("Done!"™);

}

The output generated by the program is shown here:

This is count:
This is count:
This is count:
This is count:
This is count:
Done!

sw N e O

In this example, count is the loop control variable. It is set to zero in the initialization portion
of the for. At the start of each iteration (including the first one), the conditional test count < 5
is performed. If the outcome of this test is true, the WriteLine() statement is executed. Next,
the iteration portion of the loop is executed, which adds 1 to count. This process continues
until count reaches 5. At this point, the conditional test becomes false, causing the loop to
terminate. Execution picks up at the bottom of the loop.

As a point of interest, in professionally written C# programs you will almost never see
the iteration portion of the loop written as shown in the preceding program. That is, you
will seldom see statements like this:

count = count + 1;

The reason is that C# includes a special increment operator that performs this operation.
The increment operator is ++ (that is, two consecutive plus signs). The increment operator
increases its operand by one. By use of the increment operator, the preceding statement can
be written like this:

count++;

Thus, the for in the preceding program will usually be written like this:
for (count = 0; count < 5; count++)

You might want to try this. As you will see, the loop still runs exactly the same as it did before.
C# also provides a decrement operator, which is specified as — —. This operator decreases
its operand by one.

Using Code Blocks

Another key element of C# is the code block. A code block is a grouping of statements. This is
done by enclosing the statements between opening and closing curly braces. Once a block of
code has been created, it becomes a logical unit that can be used any place a single statement
can. For example, a block can be a target for if and for statements. Consider this if statement:

if(w < h) {
v = w * h;

30

Part I: The C# Language

Here, if w is less than h, then both statements inside the block will be executed. Thus, the two
statements inside the block form a logical unit, and one statement cannot execute without the
other also executing. The key point here is that whenever you need to logically link two or
more statements, you do so by creating a block. Code blocks allow many algorithms to be
implemented with greater clarity and efficiency.

Here is a program that uses a code block to prevent a division by zero:

// Demonstrate a block of code.
using System;
class BlockDemo {
static void Main () {
int i, j, d;

i =5;
j = 10;

// The target of this if is a block.

if(i !'= 0) {
Console.WriteLine ("i does not equal zero");
d=13/ i;
Console.WriteLine("j / 1 is " + d);

}

The output generated by this program is shown here:

i does not equal zero
j / 1iis 2
In this case, the target of the if statement is a block of code and not just a single statement.
If the condition controlling the if is true (as it is in this case), the three statements inside the
block will be executed. Try setting i to zero and observe the result.

Here is another example. It uses a code block to compute the sum and the product of the
numbers from 1 to 10.

// Compute the sum and product of the numbers from 1 to 10.
using System;

class ProdSum {
static void Main () {
int prod;
int sum;
int i;

sum = 0;
prod = 1;

Chapter 2: An Overview of C#

for(i=1; 1 <= 10; i++) {
sum = sum + i;
prod = prod * i;
}
Console.WriteLine ("Sum is " + sum);
Console.WriteLine ("Product is " + prod);

The output is shown here:

Sum is 55
Product is 3628800

Here, the block enables one loop to compute both the sum and the product. Without the use
of the block, two separate for loops would have been required.

One last point: Code blocks do not introduce any runtime inefficiencies. In other words,
the { and } do not consume any extra time during the execution of a program. In fact, because
of their ability to simplify (and clarify) the coding of certain algorithms, the use of code blocks
generally results in increased speed and efficiency.

Semicolons, Positioning, and Indentation

In C#, the semicolon signals the end of a statement. That is, each individual statement must
end with a semicolon.

As you know, a block is a set of logically connected statements that are surrounded by
opening and closing braces. A block is not terminated with a semicolon. Since a block is a
group of statements, it makes sense that a block is not terminated by a semicolon; instead,
the end of the block is indicated by the closing brace.

C# does not recognize the end of the line as the end of a statement—only a semicolon
terminates a statement. For this reason, it does not matter where on a line you put a
statement. For example, to C#,

X = y;
y=y +1;
Console.WriteLine(x + " " + y);

is the same as
x =vy; y =y + 1; Console.WriteLine(x + " " + y);

Furthermore, the individual elements of a statement can also be put on separate lines. For
example, the following is perfectly acceptable:

Console.WriteLine ("This is a long line of output" +
X+ vy + z +
"more output");

Breaking long lines in this fashion is often used to make programs more readable. It can also
help prevent excessively long lines from wrapping.

31

32

Part I: The C# Language

You may have noticed in the previous examples that certain statements were indented.
C# is a free-form language, meaning that it does not matter where you place statements
relative to each other on a line. However, over the years, a common and accepted indentation
style has developed that allows for very readable programs. This book follows that style,
and it is recommended that you do so as well. Using this style, you indent one level after
each opening brace and move back out one level after each closing brace. There are certain
statements that encourage some additional indenting; these will be covered later.

The C# Keywords

At its foundation, a computer language is defined by its keywords because they determine
the features built into the language. C# defines two general types of keywords: reserved and
contextual. The reserved keywords cannot be used as names for variables, classes, or methods.
They can be used only as keywords. This is why they are called reserved. The terms reserved
words or reserved identifiers are also sometimes used. There are currently 77 reserved keywords
defined by version 3.0 of the C# language. They are shown in Table 2-1.

C# 3.0 defines 13 contextual keywords that have a special meaning in certain contexts.
In those contexts, they act as keywords. Outside those contexts, they can be used as names
for other program elements, such as variable names. Thus, they are not technically reserved.
As a general rule, however, you should consider the contextual keywords reserved and
avoid using them for any other purpose. Using a contextual keyword as a name for some
other program element can be confusing and is considered bad practice by many
programmers. The contextual keywords are shown in Table 2-2.

abstract as base bool break

byte case catch char checked
class const continue decimal default
delegate do double else enum
event explicit extern false finally
fixed float for foreach goto

if implicit in int interface
internal is lock long namespace
new null object operator out
override params private protected public
readonly ref return sbyte sealed
short sizeof stackalloc static string
struct switch this throw true

try typeof uint ulong unchecked
unsafe ushort using virtual volatile
void while

TaBLe 2-1 The C# Reserved Keywords

Chapter 2: An Overview of C# 33
from get group into join
let orderby partial select set
value where yield

TaBLe 2-2 The C# Contextual Keywords

Identifiers

In C#, an identifier is a name assigned to a method, a variable, or any other user-defined
item. Identifiers can be one or more characters long. Variable names may start with any
letter of the alphabet or an underscore. Next may be a letter, a digit, or an underscore. The
underscore can be used to enhance the readability of a variable name, as in line_count.
However, identifers containing two consecutive underscores, such as max_ _value, are
reserved for use by the compiler. Uppercase and lowercase are different; that is, to C#,
myvar and My Var are separate names. Here are some examples of acceptable identifiers:

Test X y2 MaxLoad

sample23

up _top my_var

Remember, you can’t start an identifier with a digit. Thus, 12x is invalid, for example. Good
programming practice dictates that you choose identifiers that reflect the meaning or usage
of the items being named.

Although you cannot use any of the reserved C# keywords as identifiers, C# does allow
you to precede a keyword with an @, allowing it to be a legal identifier. For example, @for
is a valid identifier. In this case, the identifier is actually for and the @ is ignored. Here is a
program that illustrates the use of an @ identifier:

// Demonstrate an @ identifier.
using System;

class IdTest {
static void Main () {
int Qif; // use if as an identifier

for(@if = 0; Q@if < 10; @if++)
Console.WriteLine ("@if is " + @if);

The output shown here proves the @if is properly interpreted as an identifier:

@if is
@if is
@if is
@if is
@if is

Bw N O

M.al litebooks. cogl

http://www.allitebooks.org

34

Part I: The C# Language

@if is 5
@if is 6
@if is 7
@Qif is 8
@if is 9

Frankly, using @-qualified keywords for identifiers is not recommended, except for
special purposes. Also, the @ can precede any identifier, but this is considered bad practice.

The .NET Framework Class Library

The sample programs shown in this chapter make use of two built-in methods: WriteLine()
and Write(). As mentioned, these methods are members of the Console class, which is part
of the System namespace, which is defined by the .NET Framework’s class library. As
explained earlier in this chapter, the C# environment relies on the .NET Framework class
library to provide support for such things as 1/O, string handling, networking, and GUIs.
Thus, C# as a totality is a combination of the C# language itself, plus the .NET standard
classes. As you will see, the class library provides much of the functionality that is part

of any C# program. Indeed, part of becoming a C# programmer is learning to use these
standard classes. Throughout Part I, various elements of the .NET library classes and
methods are described. Part IT examines portions of the .NET library in detail.

CHAPTER

Data Types, Literals,
and Variables

variables. In general, the types of data that a language provides define the kinds of

problems to which the language can be applied. As you might expect, C# offers a rich
set of built-in data types, which makes C# suitable for a wide range of applications. You can
create variables of any of these types, and you can specify constants of each type, which in
the language of C# are called literals.

I I This chapter examines three fundamental elements of C#: data types, literals, and

Why Data Types Are Important

Data types are especially important in C# because it is a strongly typed language. This
means that all operations are type-checked by the compiler for type compatibility. Illegal
operations will not be compiled. Thus, strong type-checking helps prevent errors and
enhances reliability. To enable strong type-checking, all variables, expressions, and values
have a type. There is no concept of a “typeless” variable, for example. Furthermore, a
value’s type determines what operations are allowed on it. An operation allowed on one
type might not be allowed on another.

C#’s Value Types

C# contains two general categories of built-in data types: value types and reference types. The
difference between the two types is what a variable contains. For a value type, a variable
holds an actual value, such 3.1416 or 212. For a reference type, a variable holds a reference
to the value. The most commonly used reference type is the class, and a discussion of classes
and reference types is deferred until later in this book. The value types are described here.
At the core of C# are the 13 value types shown in Table 3-1. Collectively, these are
referred to as the simple types. They are called simple types because they consist of a single
value. (In other words, they are not a composite of two or more values.) They form the
foundation of C#'s type system, providing the basic, low-level data elements upon which
a program operates. The simple types are also sometimes referred to as primitive types.

35

36 Partl: The C# Language

Type Meaning

bool Represents true/false values
byte 8-bit unsigned integer

char Character

decimal Numeric type for financial calculations
double Double-precision floating point
float Single-precision floating point
int Integer

long Long integer

sbyte 8-bit signed integer

short Short integer

uint An unsigned integer

ulong An unsigned long integer
ushort An unsigned short integer

TaBLe 3-1 The C# Value Types

C# strictly specifies a range and behavior for each value type. Because of portability
requirements, C# is uncompromising on this account. For example, an int is the same in all
execution environments. There is no need to rewrite code to fit a specific platform. Although
strictly specifying the size of the value types may cause a small loss of performance in some
environments, it is necessary in order to achieve portability.

NOTE In addition to the simple types, C# defines three other categories of value types. These are
enumerations, structures, and nullable types, all of which are described later in this book.

Integers

C# defines nine integer types: char, byte, sbyte, short, ushort, int, uint, long, and ulong.
However, the char type is primarily used for representing characters, and it is discussed
later in this chapter. The remaining eight integer types are used for numeric calculations.
Their bit-width and ranges are shown here:

Type Width in Bits | Range

byte 8 0 to 255

shyte 8 -128 to 127

short 16 -32,768 to 32,767

ushort 16 0 to 65,535

int 32 -2,147,483,648 to 2,147,483,647

uint 32 0 to 4,294,967,295

long 64 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
ulong 64 0 to 18,446,744,073,709,551,615

Chapter 3: Data Types, Literals, and Variabhles

As the table shows, C# defines both signed and unsigned versions of the various integer
types. The difference between signed and unsigned integers is in the way the high-order
bit of the integer is interpreted. If a signed integer is specified, then the C# compiler will
generate code that assumes the high-order bit of an integer is to be used as a sign flag. If the
sign flag is 0, then the number is positive; if it is 1, then the number is negative. Negative
numbers are almost always represented using the two’s complement approach. In this
method, all bits in the negative number are reversed, and then 1 is added to this number.

Signed integers are important for a great many algorithms, but they have only half the
absolute magnitude of their unsigned relatives. For example, as a short, here is 32,767:

01111111 11111111

For a signed value, if the high-order bit were set to 1, the number would then be interpreted
as -1 (assuming the two’s complement format). However, if you declared this to be a
ushort, then when the high-order bit was set to 1, the number would become 65,535.
Probably the most commonly used integer type is int. Variables of type int are often
employed to control loops, to index arrays, and for general-purpose integer math. When you
need an integer that has a range greater than int, you have many options. If the value you want
to store is unsigned, you can use uint. For large signed values, use long. For large unsigned
values, use ulong. For example, here is a program that computes the distance from the Earth to
the sun, in inches. Because this value is so large, the program uses a long variable to hold it.

// Compute the distance from the Earth to the sun, in inches.
using System;

class Inches {
static void Main () {
long inches;
long miles;

miles = 93000000; // 93,000,000 miles to the sun

// 5,280 feet in a mile, 12 inches in a foot.
inches = miles * 5280 * 12;

Console.WriteLine ("Distance to the sun: " +
inches + " inches.");

Here is the output from the program:
Distance to the sun: 5892480000000 inches.

Clearly, the result could not have been held in an int or uint variable.

The smallest integer types are byte and sbyte. The byte type is an unsigned value
between 0 and 255. Variables of type byte are especially useful when working with raw
binary data, such as a byte stream produced by some device. For small signed integers,
use sbyte. Here is an example that uses a variable of type byte to control a for loop that
produces the summation of the number 100:

// Use byte.

31

38

Part I: The C# Language

using System;

class Use byte {

static void Main() {
byte x;
int sum;
sum = 0;
for(x = 1; x <= 100; x++)

sum = sum + X;

Console.WriteLine ("Summation of 100 is " + sum);

}
The output from the program is shown here:

Summation of 100 is 5050

Since the for loop runs only from 0 to 100, which is well within the range of a byte, there is
no need to use a larger type variable to control it.

When you need an integer that is larger than a byte or sbyte, but smaller than an int or
uint, use short or ushort.

Floating-Point Types

The floating-point types can represent numbers that have fractional components. There are
two kinds of floating-point types, float and double, which represent single- and double-
precision numbers, respectively. The type float is 32 bits wide and has an approximate
range of 1.5E—45 to 3.4E+38. The double type is 64 bits wide and has an approximate range
of 5E-324 to 1.7E+308.

Of the two, double is the most commonly used. One reason for this is that many of the
math functions in C#'s class library (which is the .NET Framework library) use double
values. For example, the Sqrt() method (which is defined by the library class System.Math)
returns a double value that is the square root of its double argument. Here, Sqrt() is used to
compute the radius of a circle given the circle’s area:

// Find the radius of a circle given its area.
using System;

class FindRadius {
static void Main () {
Double r;
Double area;
area = 10.0;

r = Math.Sgrt (area / 3.1416);

Chapter 3: Data Types, Literals, and Variables 39

Console.WriteLine ("Radius is " + r);

The output from the program is shown here:
Radius is 1.78412203012729

One other point about the preceding example. As mentioned, Sqrt() is a member of the
Math class. Notice how Sqrt() is called; it is preceded by the name Math. This is similar to
the way Console precedes WriteLine(). Although not all standard methods are called by
specifying their class name first, several are, as the next example shows.

The following program demonstrates several of C#'s trigonometric functions, which are
also part of C#s math library. They also operate on double data. The program displays the
sine, cosine, and tangent for the angles (measured in radians) from 0.1 to 1.0.

// Demonstrate Math.Sin (), Math.Cos(), and Math.Tan() .
using System;
class Trigonometry {

static void Main () {

Double theta; // angle in radians

for (theta = 0.1; theta <= 1.0; theta = theta + 0.1) {

Console.WriteLine ("Sine of " 4+ theta + " is " +
Math.Sin (theta));

Console.WriteLine ("Cosine of " + theta + " is " +
Math.Cos (theta)) ;

Console.WritelLine ("Tangent of " + theta + " is " +

Math.Tan (theta));
Console.WriteLine () ;

Here is a portion of the program’s output:

Sine of 0.1 is 0.0998334166468282
Cosine of 0.1 is 0.995004165278026
Tangent of 0.1 1is 0.100334672085451

Sine of 0.2 1is 0.198669330795061
Cosine of 0.2 1is 0.980066577841242
Tangent of 0.2 is 0.202710035508673

Sine of 0.3 1is 0.29552020666134
Cosine of 0.3 is 0.955336489125606
Tangent of 0.3 is 0.309336249609623

To compute the sine, cosine, and tangent, the standard library methods Math.Sin(),
Math.Cos(), and Math.Tan() are used. Like Math.Sqrt(), the trigonometric methods
are called with a double argument, and they return a double result. The angles must be
specified in radians.

40

Part I: The C# Language

The decimal Type

Perhaps the most interesting C# numeric type is decimal, which is intended for use in
monetary calculations. The decimal type utilizes 128 bits to represent values within the
range 1E-28 to 7.9E+28. As you may know, normal floating-point arithmetic is subject to a
variety of rounding errors when it is applied to decimal values. The decimal type eliminates
these errors and can accurately represent up to 28 decimal places (or 29 places in some
cases). This ability to represent decimal values without rounding errors makes it especially
useful for computations that involve money.

Here is a program that uses a decimal type in a financial calculation. The program
computes the discounted price given the original price and a discount percentage.

// Use the decimal type to compute a discount.
using System;

class UseDecimal {
static void Main () {
decimal price;
decimal discount;
decimal discounted price;

// Compute discounted price.
price = 19.95m;
discount = 0.15m; // discount rate is 15%

discounted price = price - (price * discount);

Console.WriteLine ("Discounted price: $" + discounted price);

The output from this program is shown here:
Discounted price: $16.9575

In the program, notice that the decimal constants are followed by the m suffix. This
is necessary because without the suffix, these values would be interpreted as standard
floating-point constants, which are not compatible with the decimal data type. You can
assign an integer value, such as 10, to a decimal variable without the use of the m suffix,
though. (A detailed discussion of numeric constants is found later in this chapter.)

Here is another example that uses the decimal type. It computes the future value of an
investment that has a fixed rate of return over a period of years.

/*
Use the decimal type to compute the future value

of an investment.

*/
using System;

class FutVal {

Chapter 3: Data Types, Literals, and Variables 41

static void Main () {
decimal amount;
decimal rate of return;
int years, 1i;

amount = 1000.0M;
rate of return = 0.07M;

years = 10;

Console.WriteLine ("Original investment: $" + amount);

Console.WriteLine ("Rate of return: " + rate of return);
Console.WriteLine ("Over " + years + " years");
for(i = 0; 1 < years; i++)

amount = amount + (amount * rate of return);

Console.WriteLine ("Future value is $" + amount);

Here is the output:

Original investment: $1000

Rate of return: 0.07

Over 10 years

Future value is $1967.151357289565322490000

Notice that the result is accurate to several decimal places—more than you would probably
want! Later in this chapter you will see how to format such output in a more appealing
fashion.

Characters

In C#, characters are not 8-bit quantities like they are in many other computer languages,
such as C++. Instead, C# uses a 16-bit character type called Unicode. Unicode defines a
character set that is large enough to represent all of the characters found in all human
languages. Although many languages, such as English, French, or German, use relatively
small alphabets, some languages, such as Chinese, use very large character sets that cannot
be represented using just 8 bits. To address this situation, in C#, char is an unsigned 16-bit
type having a range of 0 to 65,535. The standard 8-bit ASCII character set is a subset of
Unicode and ranges from 0 to 127. Thus, the ASCII characters are still valid C# characters.

A character variable can be assigned a value by enclosing the character inside single
quotes. For example, this assigns X to the variable ch:

char ch;
ch = 'X';

You can output a char value using a WriteLine() statement. For example, this line outputs
the value in ch:

Console.WriteLine ("This is ch: " + ch);

42 Partl: The C# Language

Although char is defined by C# as an integer type, it cannot be freely mixed with integers
in all cases. This is because there are no automatic type conversions from integer to char.
For example, the following fragment is invalid:

char ch;
ch = 88; // error, won't work

The reason the preceding code will not work is that 10 is an integer value, and it won’t
automatically convert to a char. If you attempt to compile this code, you will see an error
message. To make the assignment legal, you would need to employ a cast, which is
described later in this chapter.

The bool Type

The bool type represents true/false values. C# defines the values true and false using the
reserved words true and false. Thus, a variable or expression of type bool will be one of
these two values. Furthermore, there is no conversion defined between bool and integer
values. For example, 1 does not convert to true, and 0 does not convert to false.

Here is a program that demonstrates the bool type:

// Demonstrate bool values.
using System;
class BoolDemo {
static void Main () {
bool b;
b = false;
Console.WriteLine ("b is " + b);
b = true;

Console.WriteLine ("b is " + b);

// A bool value can control the if statement.

if (b) Console.WritelLine ("This is executed.");
b = false;
if (b) Console.WritelLine ("This is not executed."):;

// Outcome of a relational operator is a bool value.
Console.WriteLine ("10 > 9 is " + (10 > 9));

The output generated by this program is shown here:

b is False

b is True

This is executed.
10 > 9 is True

Chapter 3: Data Types, Literals, and Variabhles

There are three interesting things to notice about this program. First, as you can see,
when a bool value is output by WriteLine(), “True” or “False” is displayed. Second, the
value of a bool variable is sufficient, by itself, to control the if statement. There is no need
to write an if statement like this:

if (b == true)

Third, the outcome of a relational operator, such as <, is a bool value. This is why the
expression 10 > 9 displays the value “True.” Further, the extra set of parentheses around
10 > 9 is necessary because the + operator has a higher precedence than the >.

Some Output Options

Up to this point, when data has been output using a WriteLine() statement, it has been
displayed using the default format. However, the NET Framework defines a sophisticated
formatting mechanism that gives you detailed control over how data is displayed. Although
formatted I/O is covered in detail later in this book, it is useful to introduce some formatting
options at this time. Using these options, you will be able to specify the way values look
when output via a WriteLine() statement. Doing so enables you to produce more appealing
output. Keep in mind that the formatting mechanism supports many more features than
described here.

When outputting lists of data, you have been separating each part of the list with a plus
sign, as shown here:

Console.WriteLine ("You ordered " + 2 + " items at $" + 3 + " each.");

While very convenient, outputting numeric information in this way does not give you any
control over how that information appears. For example, for a floating-point value, you
can’t control the number of decimal places displayed. Consider the following statement:

Console.WriteLine ("Here is 10/3: "™ + 10.0/3.0);
It generates this output:
Here is 10/3: 3.33333333333333

Although this might be fine for some purposes, displaying so many decimal places could
be inappropriate for others. For example, in financial calculations, you will usually want to
display two decimal places.

To control how numeric data is formatted, you will need to use a second form of
WriteLine(), shown here, which allows you to embed formatting information:

WriteLine(“format string”, arg0, argl, ..., argN);

In this version, the arguments to WriteLine() are separated by commas and not + signs. The
format string contains two items: regular, printing characters that are displayed as-is, and
format specifiers. Format specifiers take this general form:

{argnum, width: fmt}

M.al litebooks. cogl

http://www.allitebooks.org

44

Part I: The C# Language

Here, argnum specifies the number of the argument (starting from zero) to display. The
minimum width of the field is specified by width, and the format is specified by fmt. The
width and fmt are optional.

During execution, when a format specifier is encountered in the format string, the
corresponding argument, as specified by argnum, is substituted and displayed. Thus, the
position of a format specification within the format string determines where its matching
data will be displayed. Both width and fmt are optional. Therefore, in its simplest form, a
format specifier simply indicates which argument to display. For example, {0} indicates
arg0, {1} specifies arg1, and so on.

Let’s begin with a simple example. The statement

Console.WriteLine ("February has {0} or {1} days.", 28, 29);
produces the following output:
February has 28 or 29 days.

As you can see, the value 28 is substituted for {0}, and 29 is substituted for {1}. Thus, the
format specifiers identify the location at which the subsequent arguments, in this case 28
and 29, are displayed within the string. Furthermore, notice that the additional values are
separated by commas, not + signs.

Here is a variation of the preceding statement that specifies minimum field widths:

Console.WriteLine ("February has {0,10} or {1,5} days.", 28, 29);
It produces the following output:
February has 28 or 29 days.

As you can see, spaces have been added to fill out the unused portions of the fields.
Remember, a minimum field width is just that: the minimum width. Output can exceed
that width if needed.

Of course, the arguments associated with a format command need not be constants. For
example, this program displays a table of squares and cubes. It uses format commands to
output the values.

// Use format commands.
using System;
class DisplayOptions {
static void Main () {
int i;
Console.WriteLine ("Value\tSquared\tCubed") ;

for(i = 1; i < 10; i++)
Console.WriteLine ("{O}\t{1}\t{2}", i, i*i, i*i*i);

The output is shown here:

Chapter 3: Data Types, Literals, and Variabhles

Value Squared Cubed
1 1 1

2 4 8

3 9 27

4 16 64

5 25 125

6 36 216

7 49 343

8 64 512

9 81 729

In the preceding examples, no formatting was applied to the values themselves. Of
course, the purpose of using format specifiers is to control the way the data looks. The types
of data most commonly formatted are floating-point and decimal values. One of the easiest
ways to specify a format is to describe a template that WriteLine() will use. To do this,
show an example of the format that you want, using #s to mark the digit positions. You can
also specify the decimal point and commas. For example, here is a better way to display 10
divided by 3:

Console.WriteLine ("Here is 10/3: {O:#.##}", 10.0/3.0);
The output from this statement is shown here:
Here is 10/3: 3.33

In this example, the template is #.##, which tells WriteLine() to display two decimal places.
It is important to understand, however, that WriteLine() will display more than one digit
to the left of the decimal point, if necessary, so as not to misrepresent the value.

Here is another example. This statement

Console.WriteLine ("{O:#4#4#, ###.4##1", 123456.56);
generates this output:
123,456.56
If you want to display monetary values, use the C format specifier. For example:
decimal balance;

balance = 12323.09m;
Console.WriteLine ("Current balance is {0:C}", balance);

The output from this sequence is shown here (in U.S. dollar format):
Current balance is $12,323.09

The C format can be used to improve the output from the price discount program
shown earlier:

// Use the C format specifier to output dollars and cents.

using System;

45

46

Part I: The C# Language

class UseDecimal {
static void Main () {
decimal price;
decimal discount;
decimal discounted price;

// Compute discounted price.
price = 19.95m;
discount = 0.15m; // discount rate is 15%

discounted price = price - (price * discount);

Console.WriteLine ("Discounted price: {0:C}", discounted price);

Here is the way the output now looks:

Discounted price: $16.96

Literals

In C#, literals refer to fixed values that are represented in their human-readable form.
For example, the number 100 is a literal. For the most part, literals and their usage are
so intuitive that they have been used in one form or another by all the preceding sample
programs. Now the time has come to explain them formally.

C# literals can be of any simple type. The way each literal is represented depends upon
its type. As explained earlier, character literals are enclosed between single quotes. For
example, ‘a” and ‘%’ are both character literals.

Integer literals are specified as numbers without fractional components. For example,
10 and -100 are integer literals. Floating-point literals require the use of the decimal point
followed by the number’s fractional component. For example, 11.123 is a floating-point literal.
C# also allows you to use scientific notation for floating-point numbers.

Since C# is a strongly typed language, literals, too, have a type. Naturally, this raises the
following question: What is the type of a numeric literal? For example, what is the type of
12, 123987, or 0.23? Fortunately, C# specifies some easy-to-follow rules that answer these
questions.

First, for integer literals, the type of the literal is the smallest integer type that will hold
it, beginning with int. Thus, an integer literal is either of type int, uint, long, or ulong,
depending upon its value. Second, floating-point literals are of type double.

If C#’s default type is not what you want for a literal, you can explicitly specify its type
by including a suffix. To specify a long literal, append an / or an L. For example, 12 is an
int, but 12L is a long. To specify an unsigned integer value, append a u or U. Thus, 100 is
an int, but 100U is a uint. To specify an unsigned, long integer, use ul or UL. For example,
984375UL is of type ulong.

To specify a float literal, append an F or f to the constant. For example, 10.19F is of type
float. Although redundant, you can specify a double literal by appending a D or d. (As just
mentioned, floating-point literals are double by default.)

To specify a decimal literal, follow its value with an m or M. For example, 9.95M is a
decimal literal.

Chapter 3: Data Types, Literals, and Variables 4]

Although integer literals create an int, uint, long, or ulong value by default, they can
still be assigned to variables of type byte, sbyte, short, or ushort as long as the value being
assigned can be represented by the target type.

Hexadecimal Literals

As you probably know, in programming it is sometimes easier to use a number system based
on 16 instead of 10. The base 16 number system is called hexadecimal and uses the digits 0
through 9 plus the letters A through F, which stand for 10, 11, 12, 13, 14, and 15. For example,
the hexadecimal number 10 is 16 in decimal. Because of the frequency with which hexadecimal
numbers are used, C# allows you to specify integer literals in hexadecimal format. A
hexadecimal literal must begin with 0x (a 0 followed by an x). Here are some examples:

count = OxFF; // 255 in decimal
incr = Oxla; // 26 in decimal

Character Escape Sequences
Enclosing character literals in single quotes works for most printing characters, but a few
characters, such as the carriage return, pose a special problem when a text editor is used.
In addition, certain other characters, such as the single and double quotes, have special
meaning in C#, so you cannot use them directly. For these reasons, C# provides special
escape sequences, sometimes referred to as backslash character constants, shown in Table 3-2.
These sequences are used in place of the characters they represent.

For example, this assigns ch the tab character:

ch = "\t';

The next example assigns a single quote to ch:

ch = "\"";
Escape Sequence Description
\a Alert (bell)
\b Backspace
\f Form feed
\n New line (linefeed)
\r Carriage return
\t Horizontal tab
\V Vertical tab
\O Null
\' Single quote
\" Double quote
\\ Backslash

TaBLe 3-2 Character Escape Sequences

48

Part I: The C# Language

String Literals

C# supports one other type of literal: the string. A string literal is a set of characters enclosed
by double quotes. For example,

"this is a test"

is a string. You have seen examples of strings in many of the WriteLine() statements in the
preceding sample programs.

In addition to normal characters, a string literal can also contain one or more of the
escape sequences just described. For example, consider the following program. It uses
the \n and \t escape sequences.

// Demonstrate escape sequences in strings.
using System;
class StrDemo {
static void Main () {
Console.WriteLine ("Line One\nlLine Two\nLine Three");
Console.WriteLine ("One\tTwo\tThree") ;
(

Console.WriteLine ("Four\tFive\tSix");

// Embed quotes.
Console.WriteLine ("\"Why?\", he asked.");

The output is shown here:

Line One

Line Two

Line Three

One Two Three
Four Five Six

"Why?", he asked.

Notice how the \n escape sequence is used to generate a new line. You don’t need to use
multiple WriteLine() statements to get multiline output. Just embed \n within a longer
string at the points where you want the new lines to occur. Also note how a quotation mark
is generated inside a string.

In addition to the form of string literal just described, you can also specify a verbatim
string literal. A verbatim string literal begins with an @, which is followed by a quoted string.
The contents of the quoted string are accepted without modification and can span two or
more lines. Thus, you can include newlines, tabs, and so on, but you don’t need to use the
escape sequences. The only exception is that to obtain a double quote (*), you must use two
double quotes in a row (“”). Here is a program that demonstrates verbatim string literals:

// Demonstrate verbatim literal strings.
using System;

class Verbatim {

Chapter 3: Data Types, Literals, and Variabhles

static void Main () {
Console.WriteLine (@"This is a verbatim
string literal
that spans several lines.
")
Console.WriteLine (@"Here is some tabbed output:

1 2 3 4
5 6 7 8
") ;
Console.WriteLine (@"Programmers say, ""I like C#.""");

}
The output from this program is shown here:

This is a verbatim
string literal
that spans several lines.

Here is some tabbed output:
1 2 3 4
5 6 7 8

Programmers say, "I like C#."

The important point to notice about the preceding program is that the verbatim string
literals are displayed precisely as they are entered into the program.

The advantage of verbatim string literals is that you can specify output in your program
exactly as it will appear on the screen. However, in the case of multiline strings, the
wrapping will obscure the indentation of your program. For this reason, the programs in
this book will make only limited use of verbatim string literals. That said, they are still a
wonderful benefit for many formatting situations.

One last point: Don’t confuse strings with characters. A character literal, such as 'X/,
represents a single letter of type char. A string containing only one letter, such as "X", is still
a string.

A Closer Look at Variables

Variables are declared using this form of statement:
type var-name;

where fype is the data type of the variable and var-name is its name. You can declare a variable
of any valid type, including the value types just described. It is important to understand that a
variable’s capabilities are determined by its type. For example, a variable of type bool cannot
be used to store floating-point values. Furthermore, the type of a variable cannot change
during its lifetime. An int variable cannot turn into a char variable, for example.

All variables in C# must be declared prior to their use. This is necessary because the
compiler must know what type of data a variable contains before it can properly compile
any statement that uses the variable. It also enables C# to perform strict type-checking.

C# defines several different kinds of variables. The kind that we have been using are
called local variables because they are declared within a method.

30

Part I: The C# Language

Initializing a Variable

One way to give a variable a value is through an assignment statement, as you have already
seen. Another way is by giving it an initial value when it is declared. To do this, follow the
variable’s name with an equal sign and the value being assigned. The general form of
initialization is shown here:

type var-name = value;

Here, value is the value that is given to the variable when it is created. The value must be
compatible with the specified type.
Here are some examples:
int count = 10; // give count an initial value of 10
char ch = 'X'; // initialize ch with the letter X
float £ = 1.2F; // £ is initialized with 1.2

When declaring two or more variables of the same type using a comma-separated list,
you can give one or more of those variables an initial value. For example:

int a, b =8, ¢ =19, d; // b and ¢ have initializations
In this case, only b and c are initialized.

Dynamic Initialization

Although the preceding examples have used only constants as initializers, C# allows
variables to be initialized dynamically, using any expression valid at the point at which
the variable is declared. For example, here is a short program that computes the hypotenuse
of a right triangle given the lengths of its two opposing sides.

// Demonstrate dynamic initialization.
using System;

class DynInit {

static void Main() {
// Length of sides.
double sl = 4.0;
double s2 = 5.0;

// Dynamically initialize hypot.
double hypot = Math.Sqgrt((sl * sl) + (s2 * s2));

Console.Write ("Hypotenuse of triangle with sides " +
sl + " by " + s2 + "™ is ");

Console.WriteLine ("{0:#.###}.", hypot);

Here is the output:

Hypotenuse of triangle with sides 4 by 5 is 6.403.

Chapter 3: Data Types, Literals, and Variables 51

Here, three local variables—s1, s2, and hypot—are declared. The first two, s1 and s2, are
initialized by constants. However, hypot is initialized dynamically to the length of the
hypotenuse. Notice that the initialization involves calling Math.Sqrt(). As explained, you can
use any expression that is valid at the point of the initialization. Since a call to Math.Sqrt()
(or any other library method) is valid at this point, it can be used in the initialization of
hypot. The key point here is that the initialization expression can use any element valid

at the time of the initialization, including calls to methods, other variables, or literals.

Implicitly Typed Variables
As explained, in C# all variables must be declared. Normally, a declaration includes the
type of the variable, such as int or bool, followed by the name of the variable. However,
beginning with C# 3.0, it is possible to let the compiler determine the type of a local variable
based on the value used to initialize it. This is called an implicitly typed variable.

An implicitly typed variable is declared using the keyword var, and it must be initialized.
The compiler uses the type of the initializer to determine the type of the variable. Here is an
example:

var e = 2.7183;

Because e is initialized with a floating-point literal (whose type is double by default), the
type of e is double. Had e been declared like this:

var e = 2.7183F;

then e would have the type float, instead.
The following program demonstrates implicitly typed variables. It reworks the program
shown in the preceding section so that all variables are implicitly typed.

// Demonstrate implicitly typed variables.
using System;

class ImplicitlyTypedVar {
static void Main () {

// These are now implicitly typed variables. They
// are of type double because their initializing
// expressions are of type double.

var sl = 4.0;

var s2 = 5.0;

// Now, hypot is implicitly typed. Its type is double
// because the return type of Sqgrt() is double.
var hypot = Math.Sgrt((sl * sl) + (s2 * s2));

Console.Write ("Hypotenuse of triangle with sides " +
sl + " by " + s2 + "™ is ");

Console.WriteLine ("{0:#.###}.", hypot);

// The following statement will not compile because
// sl is a double and cannot be assigned a decimal value.

32

Part I: The C# Language

// sl = 12.2M; // Error!
}
}

The output is the same as before.
It is important to emphasize that an implicitly typed variable is still a strongly typed
variable. Notice this commented-out line in the program:

// sl = 12.2M; // Error!

This assignment is invalid because s1 is of type double. Thus, it cannot be assigned a
decimal value. The only difference between an implicitly typed variable and a “normal”
explicitly typed variable is how the type is determined. Once that type has been determined,
the variable has a type, and this type is fixed throughout the lifetime of the variable. Thus,
the type of s1 cannot be changed during execution of the program.

Implicitly typed variables were not added to C# to replace “normal” variable declarations.
Instead, implicitly typed variables are designed to handle some special-case situations, the
most important of which relate to Language-Integrated Query (LINQ), which is described
in Chapter 19. Therefore, for most variable declarations, you should continue to use explicitly
typed variables because they make your code easier to read and easier to understand.

One last point: Only one implicitly typed variable can be declared at any one time.
Therefore, the following declaration,

var sl = 4.0, s2 = 5.0; // Error!

is wrong and won’t compile because it attempts to declare both s1 and s2 at the same time.

The Scope and Lifetime of Variables

So far, all of the variables that we have been using are declared at the start of the Main()
method. However, C# allows a local variable to be declared within any block. As explained
in Chapter 1, a block begins with an opening curly brace and ends with a closing curly
brace. A block defines a scope. Thus, each time you start a new block, you are creating a new
scope. A scope determines what names are visible to other parts of your program without
qualification. It also determines the lifetime of local variables.

The most important scopes in C# are those defined by a class and those defined by a
method. A discussion of class scope (and variables declared within it) is deferred until later
in this book, when classes are described. For now, we will examine only the scopes defined
by or within a method.

The scope defined by a method begins with its opening curly brace and ends with its
closing curly brace. However, if that method has parameters, they too are included within
the scope defined by the method.

As a general rule, local variables declared inside a scope are not visible to code that
is defined outside that scope. Thus, when you declare a variable within a scope, you are
protecting it from access or modification from outside the scope. Indeed, the scope rules
provide the foundation for encapsulation.

Scopes can be nested. For example, each time you create a block of code, you are creating
a new, nested scope. When this occurs, the outer scope encloses the inner scope. This means
that local variables declared in the outer scope will be visible to code within the inner scope.

Chapter 3: Data Types, Literals, and Variabhles

However, the reverse is not true. Local variables declared within the inner scope will not be
visible outside it.

To understand the effect of nested scopes, consider the following program:
// Demonstrate block scope.
using System;
class ScopeDemo {

static void Main () {

int x; // known to all code within Main ()

x = 10;

if(x =
int y

10) { // start new scope
= 20; // known only to this block

// x and y both known here.
Console.WriteLine("x and y: " + x + " " + vy);
X =y * 2;

}

// y = 100; // Error! y not known here.

// x is still known here.
Console.WriteLine ("x is " + x);

}

As the comments indicate, the variable x is declared at the start of Main()’s scope and is
accessible to all subsequent code within Main(). Within the if block, y is declared. Since a
block defines a scope, y is visible only to other code within its block. This is why outside of
its block, the line y = 100; is commented out. If you remove the leading comment symbol,
a compile-time error will occur because y is not visible outside of its block. Within the if
block, x can be used because code within a block (that is, a nested scope) has access to
variables declared by an enclosing scope.

Within a block, variables can be declared at any point, but are valid only after they are
declared. Thus, if you define a variable at the start of a method, it is available to all of the
code within that method. Conversely, if you declare a variable at the end of a block, it is
effectively useless, because no code will have access to it.

If a variable declaration includes an initializer, then that variable will be reinitialized
each time the block in which it is declared is entered. For example, consider this program:

// Demonstrate lifetime of a variable.
using System;
class VarInitDemo {
static void Main () {
int x;
for(x = 0; x < 3; x++) {

int y -1; // y 1s initialized each time block is entered
Console.WriteLine("y is: " + y); // this always prints -1

a3

4

Part I: The C# Language

y = 100;
Console.WriteLine ("y is now: " + vy);

}

The output generated by this program is shown here:

y is: -1
y is now: 100
y is: -1
y is now: 100
y is: -1
y is now: 100

As you can see, y is always reinitialized to -1 each time the inner for loop is entered. Even
though it is subsequently assigned the value 100, this value is lost.

There is one quirk to C#'s scope rules that may surprise you: Although blocks can be
nested, no variable declared within an inner scope can have the same name as a variable
declared by an enclosing scope. For example, the following program, which tries to declare
two separate variables with the same name, will not compile.

/*
This program attempts to declare a variable
in an inner scope with the same name as one
defined in an outer scope.

*** This program will not compile. ***

*/
using System;

class NestVar {
static void Main () {
int count;

for (count = 0; count < 10; count = count+l) {
Console.WriteLine ("This is count: " + count);

int count; // illegal!!!
for (count = 0; count < 2; count++)
Console.WriteLine ("This program is in error!");

If you come from a C/C++ background, then you know that there is no restriction on
the names you give variables declared in an inner scope. Thus, in C/C++ the declaration of
count within the block of the outer for loop is completely valid. However, in C/C++, such
a declaration hides the outer variable. The designers of C# felt that this type of name hiding
could easily lead to programming errors and disallowed it.

Chapter 3: Data Types, Literals, and Variables 55

Type Conversion and Casting

In programming, it is common to assign one type of variable to another. For example, you
might want to assign an int value to a float variable, as shown here:

int i;
float £;

i = 10;
i; // assign an int to a float

=
Il

When compatible types are mixed in an assignment, the value of the right side is
automatically converted to the type of the left side. Thus, in the preceding fragment, the
value in i is converted into a float and then assigned to f. However, because of C#'s strict
type-checking, not all types are compatible, and thus, not all type conversions are implicitly
allowed. For example, bool and int are not compatible. Fortunately, it is still possible to
obtain a conversion between incompatible types by using a cast. A cast performs an explicit
type conversion. Both automatic type conversion and casting are examined here.

Automatic Conversions

When one type of data is assigned to another type of variable, an implicit type conversion
will take place automatically if

e The two types are compatible.

¢ The destination type has a range that is greater than the source type.

When these two conditions are met, a widening conversion takes place. For example, the int
type is always large enough to hold all valid byte values, and both int and byte are compatible
integer types, so an implicit conversion can be applied.

For widening conversions, the numeric types, including integer and floating-point
types, are compatible with each other. For example, the following program is perfectly
valid since long to double is a widening conversion that is automatically performed.

// Demonstrate implicit conversion from long to double.
using System;
class LtoD {
static void Main() {
long L;

double D;

L = 100123285L;
D = L;

Console.WriteLine("L and D: " + L + " " 4+ D);

36

Part I: The C# Language

Although there is an implicit conversion from long to double, there is no implicit
conversion from double to long since this is not a widening conversion. Thus, the following
version of the preceding program is invalid:

// *** This program will not compile. ***
using System;

class LtoD {
static void Main () {
long L;
double D;

D = 100123285.0;
L =D; // Illegal!!!

Console.WriteLine("L and D: " + L + " " 4+ D);

In addition to the restrictions just described, there are no implicit conversions between
decimal and float or double, or from the numeric types to char or bool. Also, char and bool
are not compatible with each other.

Casting Incompatible Types

Although the implicit type conversions are helpful, they will not fulfill all programming
needs because they apply only to widening conversions between compatible types. For all
other cases you must employ a cast. A cast is an instruction to the compiler to convert the
outcome of an expression into a specified type. Thus, it requests an explicit type conversion.
A cast has this general form:

(target-type) expression

Here, target-type specifies the desired type to convert the specified expression to. For
example, given

double x, y;
if you want the type of the expression x/y to be int, you can write
(int) (x / y)

Here, even though x and y are of type double, the cast converts the outcome of the expression
to int. The parentheses surrounding x / y are necessary. Otherwise, the cast to int would
apply only to the x and not to the outcome of the division. The cast is necessary here
because there is no implicit conversion from double to int.

When a cast involves a narrowing conversion, information might be lost. For example,
when casting a long into an int, information will be lost if the long’s value is greater than
the range of an int because its high-order bits are removed. When a floating-point value is
cast to an integer type, the fractional component will also be lost due to truncation. For

Chapter 3:

Data Types, Literals, and Variables

51

example, if the value 1.23 is assigned to an integer, the resulting value will simply be 1.

The 0.23 is lost.

The following program demonstrates some type conversions that require casts. It also
shows some situations in which the casts cause data to be lost.

// Demonstrate casting.
using System;

class CastDemo {
static void Main () {
double x, y;
byte b;
int i;
char ch;
uint u;
short s;
long 1;

x = 10.0;
y = 3.0;

// Cast double to int,
(int) (x / y):

fractional component
i =

Console.WriteLine ("Integer outcome of x / y:

Console.WriteLine () ;

// Cast an int into a byte, no data lost.

i = 255;

b = (byte) i;

Console.WriteLine ("b after assigning 255: "
" -- no data lost.");

// Cast an int into a byte, data lost.
i = 257;
b = (byte) i;

Console.WriteLine ("b after assigning 257: "
" —-- data lost.");

Console.WriteLine () ;

// Cast a uint into a short, no data lost.

u 32000;

s (short) u;

Console.WritelLine ("s after assigning 32000:
" -- no data lost.");

// Cast a uint into a short, data lost.
u = 64000;
s = (short) u;

Console.WritelLine ("s after assigning 64000:
" —-- data lost.");
Console.WriteLine () ;

lost.

")

"+ s +

"+ s +

Part I: The C# Language

// Cast a long into a uint, no data lost.

1 = 64000;
u = (uint) 1;
Console.WriteLine ("u after assigning 64000: " + u +

"

-- no data lost.");

// Cast a long into a uint, data lost.

1 =-12;
u = (uint) 1;
Console.WriteLine ("u after assigning -12: " + u +

" —-- data lost.");
Console.WriteLine () ;

// Cast an int into a char.
b = 88; // ASCII code for X

ch = (char) b;
Console.WriteLine ("ch after assigning 88: " + ch);

The output from the program is shown here:

Integer outcome of x / y: 3

b after assigning 255: 255 -- no data lost.

b after assigning 257: 1 -- data lost.

s after assigning 32000: 32000 -- no data lost.
s after assigning 64000: -1536 -- data lost.

u after assigning 64000: 64000 -- no data lost.
u after assigning -12: 4294967284 -- data lost.

ch after assigning 88: X

Let’s look at each assignment. The cast of (x/ y) to int results in the truncation of the
fractional component, and information is lost.

No loss of information occurs when b is assigned the value 255 because a byte can hold
the value 255. However, when the attempt is made to assign b the value 257, information
loss occurs because 257 exceeds a byte’s range. In both cases the casts are needed because
there is no implicit conversion from int to byte.

When the short variable s is assigned the value 32,000 through the uint variable u, no
data is lost because a short can hold the value 32,000. However, in the next assignment, u
has the value 64,000, which is outside the range of a short, and data is lost. In both cases the
casts are needed because there is no implicit conversion from uint to short.

Next, u is assigned the value 64,000 through the long variable 1. In this case, no data is
lost because 64,000 is within the range of a uint. However, when the value —12 is assigned
to u, data is lost because a uint cannot hold negative numbers. In both cases the casts are
needed because there is no implicit conversion from long to uint.

Finally, no information is lost, but a cast is needed when assigning a byte value to
a char.

Chapter 3: Data Types, Literals, and Variabhles

Type Conversion in Expressions

In addition to occurring within an assignment, type conversions also take place within an
expression. In an expression, you can freely mix two or more different types of data as long
as they are compatible with each other. For example, you can mix short and long within an
expression because they are both numeric types. When different types of data are mixed
within an expression, they are converted to the same type, on an operation-by-operation basis.

The conversions are accomplished through the use of C#'s type promotion rules. Here is
the algorithm that they define for binary operations:

IF one operand is a decimal, THEN the other operand is promoted to decimal
(unless it is of type float or double, in which case an error results).

ELSE IF one operand is a double, the second is promoted to double.
ELSE IF one operand is a float, the second is promoted to float.

ELSE IF one operand is a ulong, the second is promoted to ulong (unless it is
of type sbyte, short, int, or long, in which case an error results).

ELSE IF one operand is a long, the second is promoted to long.

ELSE IF one operand is a uint and the second is of type sbyte, short, or int,
both are promoted to long.

ELSE IF one operand is a uint, the second is promoted to uint.
ELSE both operands are promoted to int.

There are a couple of important points to be made about the type promotion rules. First,
not all types can be mixed in an expression. Specifically, there is no implicit conversion from
float or double to decimal, and it is not possible to mix ulong with any signed integer type.
To mix these types requires the use of an explicit cast.

Second, pay special attention to the last rule. It states that if none of the preceding rules
applies, then all other operands are promoted to int. Therefore, in an expression, all char,
sbyte, byte, ushort, and short values are promoted to int for the purposes of calculation.
This is called integer promotion. It also means that the outcome of all arithmetic operations
will be no smaller than int.

It is important to understand that type promotions only apply to the values operated
upon when an expression is evaluated. For example, if the value of a byte variable is
promoted to int inside an expression, outside the expression, the variable is still a byte.
Type promotion only affects the evaluation of an expression.

Type promotion can, however, lead to somewhat unexpected results. For example, when
an arithmetic operation involves two byte values, the following sequence occurs. First, the
byte operands are promoted to int. Then the operation takes place, yielding an int result.
Thus, the outcome of an operation involving two byte values will be an int. This is not what
you might intuitively expect. Consider the following program.

59

60

Part I: The C# Language

// A promotion surprise!
using System;

class PromDemo {

static void Main () {
byte b;
b = 10;
b = (byte) (b * b); // cast needed!!

Console.WriteLine ("b: "+ b);
}

Somewhat counterintuitively, a cast to byte is needed when assigning b * b back to b! The
reason is because in b * b, the value of b is promoted to int when the expression is evaluated.
Thus, b * b results in an int value, which cannot be assigned to a byte variable without a
cast. Keep this in mind if you get unexpected type-incompatibility error messages on
expressions that would otherwise seem perfectly correct.

This same sort of situation also occurs when performing operations on chars. For
example, in the following fragment, the cast back to char is needed because of the
promotion of ch1 and ch2 to int within the expression

char chl = 'a', ch2 = 'b';
chl = (char) (chl + ch2);

Without the cast, the result of adding ch1 to ch2 would be int, which can’t be assigned to
a char.

Type promotions also occur when a unary operation, such as the unary -, takes place.
For the unary operations, operands smaller than int (byte, sbyte, short, and ushort) are
promoted to int. Also, a char operand is converted to int. Furthermore, if a uint value is
negated, it is promoted to long.

Using Casts in Expressions

A cast can be applied to a specific portion of a larger expression. This gives you fine-grained
control over the way type conversions occur when an expression is evaluated. For example,
consider the following program. It displays the square roots of the numbers from 1 to 10. It
also displays the whole number portion and the fractional part of each result, separately. To
do so, it uses a cast to convert the result of Math.Sqrt() to int.

// Using casts in an expression.
using System;
class CastExpr {

static void Main () {

double n;

for(n = 1.0; n <= 10; n++) {

Chapter 3: Data Types, Literals, and Variabhles

Console.WriteLine ("The square root of {0} is {1}1",

n, Math.Sqgrt(n));

Console.WritelLine ("Whole number part: {0}"
(int) Math.Sqgrt(n));

Console.WritelLine ("Fractional part:

{oy",

Math.Sgrt (n) - (int) Math.Sqrt(n));
Console.WriteLine () ;

Here is the output from the program:

The square root of
Whole number part:
Fractional part: 0

The square root of
Whole number part:
Fractional part: O

The square root of
Whole number part:

Fractional part: O.

The square root of
Whole number part:
Fractional part: 0

The square root of
Whole number part:

Fractional part: O.

The square root of
Whole number part:

Fractional part: O.

The square root of
Whole number part:

Fractional part: 0.

The square root of
Whole number part:

Fractional part: O.

The square root of
Whole number part:
Fractional part: O

The square root of
Whole number part:

Fractional part: O.

1 is 1
1

2 is 1.4142135623731
1
.414213562373095

3 is 1.73205080756888
1
732050807568877

4 is 2

5 is 2.23606797749979
2
23606797749979

6 is 2.44948974278318
2
449489742783178

7 is 2.64575131106459
2
645751311064591

8 1s 2.82842712474619
2
82842712474619

9 is 3

10 is 3.16227766016838
3
16227766016838

61

62

Part I: The C# Language

As the output shows, the cast of Math.Sqrt() to int results in the whole number component
of the value. In this expression

Math.Sgrt(n) - (int) Math.Sgrt (n)

the cast to int obtains the whole number component, which is then subtracted from the
complete value, yielding the fractional component. Thus, the outcome of the expression
is double. Only the value of the second call to Math.Sqrt() is cast to int.

CHAPTER
Operators

over the construction and evaluation of expressions. Most of C#’s operators fall into

the following categories: arithmetic, bitwise, relational, and logical. These operators are
examined in this chapter. Also discussed are the assignment operator and the ? operator. C#
also defines several other operators that handle specialized situations, such as array indexing,
member access, and the lambda operator. These special operators are examined later in this
book, when the features to which they apply are described.

(i# provides an extensive set of operators that give the programmer detailed control

Arithmetic Operators

C# defines the following arithmetic operators:

Operator Meaning

+ Addition

- Subtraction (also unary minus)
* Multiplication

/ Division

% Modulus

++ Increment

- - Decrement

The operators +, —, *, and / all work in the expected way. These can be applied to any built-
in numeric data type.

Although the actions of arithmetic operators are well known to all readers, a few special
situations warrant some explanation. First, remember that when / is applied to an integer,
any remainder will be truncated; for example, 10/3 will equal 3 in integer division. You can
obtain the remainder of this division by using the modulus operator, %. The % is also
referred to as the remainder operator. It yields the remainder of an integer division. For
example, 10 % 3 is 1. In C#, the % can be applied to both integer and floating-point types.

63

64

Part I: The C# Language

Thus, 10.0 % 3.0 is also 1. (This differs from C/C++, which allow modulus operations only
on integer types.) The following program demonstrates the modulus operator:

)

// Demonstrate the % operator.
using System;

class ModDemo {
static void Main () {
int iresult, irem;
double dresult, drem;

iresult = 10 / 3;
irem = 10 % 3;

dresult = 10.0 / 3.0;
drem = 10.0 % 3.0;

Console.WriteLine ("Result and remainder of 10 / 3: " +
iresult + " " + irem);

Console.WriteLine ("Result and remainder of 10.0 / 3.0: "™ +
dresult + " " + drem);

The output from the program is shown here:

Result and remainder of 10 / 3: 3 1
Result and remainder of 10.0 / 3.0: 3.33333333333333 1

As you can see, the % yields a remainder of 1 for both integer and floating-point operations.

Increment and Decrement

Introduced in Chapter 2, the ++ and the — — are the increment and decrement operators. As
you will see, they have some special properties that make them quite interesting. Let’s begin
by reviewing precisely what the increment and decrement operators do.

The increment operator adds 1 to its operand, and the decrement operator subtracts 1.
Therefore,

X = x + 1;
is the same as
X++;

and

is the same as

x==;

Chapter 4: Operators 65

Understand, however, that in the increment or decrement forms, x is evaluated only once,
not twice. This can improve efficiency in some cases.

Both the increment and decrement operators can either precede (prefix) or follow
(postfix) the operand. For example

x =x + 1;

can be written as

++x; // prefix form
or as

x++; // postfix form

In the foregoing example, there is no difference whether the increment is applied as a
prefix or a postfix. However, when an increment or decrement is used as part of a larger
expression, there is an important difference. When an increment or decrement operator
precedes its operand, the result of the operation is the value of the operand after the increment.
If the operator follows its operand, the result of the operation is the value of the operand
before the increment. Consider the following:

x = 10;
y = ++x;

In this case, y will be set to 11. This is because x is first incremented and then its value is
returned. However, if the code is written as

x = 10;
v xX++;

then y will be set to 10. In this case, the value of x is first obtained, x is incremented, and
then the original value of x is returned. In both cases, x is still set to 11. The difference is
what is returned by the operation.

There are significant advantages in being able to control when the increment or decrement
operation takes place. Consider the following program, which generates a series of numbers:

// Demonstrate the difference between prefix and
// postfix forms of ++.

using System;

class PrePostDemo {
static void Main () {
int x, y;
int i;
x = 1;
Console.WriteLine ("Series generated using y = x + x++;");

for(i = 0; i < 10; i++) {

y = x + x++; // postfix ++

66 Part l: The C# Language

Console.WriteLine(y + " ");

}

Console.WriteLine () ;

x = 1;
Console.WriteLine ("Series generated using y = x + ++x;");
for(i = 0; i < 10; i++) {

y = x + ++x; // prefix ++

Console.WriteLine(y + " ");

}

Console.WriteLine () ;

The output is shown here:

Series generated using y = x + x++;
2
4
6
8
10
12
14
16
18
20

Series generated using y = x + ++x;
3
5
7
9
11
13
15
17
19
21

As the output confirms, the statement
y = X + X++;

adds the original value of x to x and assigns this result to y. The value of x is incremented
after its value has been obtained. However, the statement

y = X + ++x;

obtains the value of x, increments x, and then adds that value to the original value of x.
The result is assigned to y. As the output shows, simply changing ++x to x++ changes the
number series from even to odd.

Chapter 4: Operators

One other point about the preceding example: Don’t let expressions like

X + ++x

intimidate you. Although having two operators back-to-back is a bit unsettling at first
glance, the compiler keeps it all straight. Just remember, this expression simply adds the
value of x to the value of x incremented.

Relational and Logical Operators

In the terms relational operator and logical operator, relational refers to the relationships that

values can have with one another, and logical refers to the ways in which true and false values

can be connected together. Since the relational operators produce true or false results, they

often work with the logical operators. For this reason they will be discussed together here.
The relational operators are as follows:

Operator Meaning

== Equal to

1= Not equal to

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

The logical operators are shown next:

Operator Meaning

& AND

I OR

A XOR (exclusive OR)
Il Short-circuit OR
&& Short-circuit AND

! NOT

The outcome of the relational and logical operators is a bool value.

In general, objects can be compared for equality or inequality using == and !=.
However, the comparison operators, <, >, <=, or >=, can be applied only to those types
that support an ordering relationship. Therefore, all of the relational operators can be
applied to all numeric types. However, values of type bool can only be compared for
equality or inequality since the true and false values are not ordered. For example,
true > false has no meaning in C#.

68

Part I:

The C# Language

For the logical operators, the operands must be of type bool, and the result of a logical
operation is of type bool. The logical operators, &, |, A, and !, support the basic logical

operations AND, OR, XOR, and NOT, according to the following truth table:

P q p&q plq Phq p
False False False False False True
True False False True True False
False True False True True True
True True True True False False

As the table shows, the outcome of an exclusive OR operation is true when one and only
one operand is true.
Here is a program that demonstrates several of the relational and logical operators:

// Demonstrate the relational and logical operators.
using System;
class RellLogOps {

static void Main () {

int i, j;
bool bl, b2;

i = 10;

j = 11;

if(i < j) Console.WriteLine("1i < j");

if (i <= j) Console.WriteLine ("1 <= j");

if(i !'= j) Console.WriteLine ("1 != 3");

if (i == j) Console.WriteLine("this won't execute");
if (i >= j) Console.WriteLine ("this won't execute");
if(i > j) Console.WriteLine("this won't execute");
bl = true;

b2 = false;

if (bl & b2) Console.WriteLine("this won't execute");
if (! (bl & b2)) Console.WriteLine("! (bl & b2) is true");
if (bl | b2) Console.WriteLine ("bl | b2 is true"):;

if (bl ~ b2) Console.WriteLine ("bl ~ b2 is true");

The output from the program is shown here:

BB b
A
I

2 L u

b2) is true
b2 is true
bl ~ b2 is true

Chapter 4: Operators

The logical operators provided by C# perform the most commonly used logical
operations. However, several other operations are defined by the rules for formal logic. These
other logical operations can be constructed using the logical operators supported by C#.

Thus, C# supplies a set of logical operators sufficient to construct any other logical operation.

For example, another logical operation is implication. Implication is a binary operation in
which the outcome is false only when the left operand is true and the right operand is false.
(The implication operation reflects the idea that true cannot imply false.) Thus, the truth
table for the implication operator is shown here:

p q p implies q
True True True

True False False

False False True

False True True

The implication operation can be constructed using a combination of the ! and the |
operator, as shown here:

'p |
‘Plq
The following program demonstrates this implementation:

// Create an implication operator in C#.
using System;

class Implication {
static void Main () {
bool p=false, g=false;
int i, j;

for(i = 0; 1 < 2; 1i++) {
for(j = 0; J < 2; j++) |
if (i==0) p = true;
if(i==1) p = false;
if (3==0) g = true;
if(j==1) g = false;
Console.WriteLine("p is " + p + ", g is " + q);
if(!p | gq) Console.WriteLine(p + " implies " + gq +
" is " + true);

Console.WriteLine () ;

The output is shown here:

p is True, g is True
True implies True is True

p is True, g is False

69

10

Part I: The C# Language

p is False, g is True
False implies True is True

p is False, g is False
False implies False is True

Short-Circuit Logical Operators

C# supplies special short-circuit versions of its AND and OR logical operators that can be
used to produce more efficient code. To understand why, consider the following. In an AND
operation, if the first operand is false, then the outcome is false no matter what value the
second operand has. In an OR operation, if the first operand is true, then the outcome of the
operation is true no matter what the value of the second operand. Thus, in these two cases
there is no need to evaluate the second operand. By not evaluating the second operand,
time is saved and more efficient code is produced.

The short-circuit AND operator is && and the short-circuit OR operatoris | |. As
described earlier, their normal counterparts are & and |. The only difference between the
normal and short-circuit versions is that the normal operands will always evaluate each
operand, but short-circuit versions will evaluate the second operand only when necessary.

Here is a program that demonstrates the short-circuit AND operator. The program
determines if the value in d is a factor of n. It does this by performing a modulus operation.
If the remainder of n/ d is zero, then d is a factor. However, since the modulus operation
involves a division, the short-circuit form of the AND is used to prevent a divide-by-zero
error.

// Demonstrate the short-circuit operators.
using System;
class SCops {

static void Main () {
int n, d;

n = 10;
d = 2;
if(d '= 0 && (n $ d) == 0)
Console.WriteLine(d + " is a factor of " + n);
d = 0; // now, set d to zero

// Since d is zero, the second operand is not evaluated.
if(d '= 0 && (n $ d) == 0)
Console.WritelLine(d + " is a factor of " + n);

// Now, try the same thing without short-circuit operator.
// This will cause a divide-by-zero error.
if(d '=0 & (n $ d) == 0)

Console.WriteLine(d + " is a factor of " + n);

To prevent a divide-by-zero error, the if statement first checks to see if d is equal to zero.
If it is, then the short-circuit AND stops at that point and does not perform the modulus

Chapter 4: Operators Tl

division. Thus, in the first test, d is 2 and the modulus operation is performed. The second
test fails because d is set to zero, and the modulus operation is skipped, avoiding a divide-
by-zero error. Finally, the normal AND operator is tried. This causes both operands to be
evaluated, which leads to a runtime error when the division-by-zero occurs.

Since the short-circuit operators are, in some cases, more efficient than their normal
counterparts, you might be wondering why C# still offers the normal AND and OR
operators. The answer is that in some cases you will want both operands of an AND or OR
operation to be evaluated because of the side effects produced. Consider the following;:

// Side effects can be important.
using System;

class SideEffects {

static void Main () {
int i;
bool someCondition = false;
i =0;

// Here, i is still incremented even though the if statement fails.
if (someCondition & (++1 < 100))

Console.WriteLine ("this won't be displayed");
Console.WriteLine ("if statement executed: " + 1i); // displays 1

// In this case, 1 is not incremented because the short-circuit
// operator skips the increment.
if (someCondition && (++1 < 100))

Console.WriteLine ("this won't be displayed");
Console.WriteLine ("if statement executed: " + 1i); // still 1 !!

}

First, notice that the bool variable someCondition is initialized to false. Next, examine each
if statement. As the comments indicate, in the first if statement, i is incremented despite the
fact that someCondition is false. When the & is used, as it is in the first if statement, the
expression on the right side of the & is evaluated no matter what value the expression on
the left has. However, in the second if statement, the short-circuit operator is used. In this
case, the variable i is not incremented because the left operand, someCondition, is false,
which causes the expression on the right to be skipped. The lesson here is that if your code
expects the right-hand operand of an AND or OR operation to be evaluated, then you must
use C#’s non-short-circuit forms for these operations.

One other point: The short-circuit AND is also known as the conditional AND, and the
short-circuit OR is also called the conditional OR.

The Assignment Operator

The assignment operator is the single equal sign, =. The assignment operator works in C#
much as it does in other computer languages. It has this general form:

var-name = expression;

Here, the type of var-name must be compatible with the type of expression.

12

Part I: The C# Language

The assignment operator does have one interesting attribute that you may not be
familiar with: It allows you to create a chain of assignments. For example, consider this
fragment:

int x, vy, z;
x =y =2z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This works
because the = is an operator that yields the assigned value. Thus, the value of z = 100 is 100,
which is then assigned to y, which in turn is assigned to x. Using a “chain of assignment” is
an easy way to set a group of variables to a common value.

Compound Assignments

C# provides special compound assignment operators that simplify the coding of certain
assignment statements. Let’s begin with an example. The assignment statement shown here:

x =x + 10;
can be written using a compound assignment as
x += 10;

The operator pair += tells the compiler to assign to x the value of x plus 10.
Here is another example. The statement

x = x - 100;
is the same as
x —= 100;

Both statements assign to x the value of x minus 100.
There are compound assignment operators for many of the binary operators (that is,
those that require two operands). The general form of the shorthand is

var-name op = expression;

Thus, the arithmetic and logical assignment operators are

+= —= *= /=

%: &: |= A=

Because the compound assignment statements are shorter than their noncompound
equivalents, the compound assignment operators are also sometimes called the shorthand
assignment operators.

The compound assignment operators provide two benefits. First, they are more compact
than their “longhand” equivalents. Second, they can result in more efficient executable code
(because the left-hand operand is evaluated only once). For these reasons, you will often see
the compound assignment operators used in professionally written C# programs.

Chapter 4: Operators

The Bitwise Operators

C# provides a set of bitwise operators that expand the types of problems to which C# can be
applied. The bitwise operators act directly upon the bits of their operands. They are defined
only for integer operands. They cannot be used on bool, float, or double.

They are called the bitwise operators because they are used to test, set, or shift the bits
that comprise an integer value. Among other uses, bitwise operations are important to a
wide variety of systems-level programming tasks, such as analyzing status information
from a device. Table 4-1 lists the bitwise operators.

The Bitwise AND, OR, XOR, and NOT Operators

The bitwise operators AND, OR, XOR, and NOT are &, |, A, and ~. They perform the same
operations as their Boolean logic equivalents described earlier. The difference is that the
bitwise operators work on a bit-by-bit basis. The following table shows the outcome of each
operation using 1s and Os:

p q p&q plq prq ~p
0 0 0 0 0 1
1 0 0 1 1 0
0 1 0 1 1 1
1 1 1 1 0 0

In terms of its most common usage, you can think of the bitwise AND as a way to turn
bits off. That is, any bit that is 0 in either operand will cause the corresponding bit in the
outcome to be set to 0. For example

11010011
& 10101010

10000010
Operator Result
& Bitwise AND
| Bitwise OR
A Bitwise exclusive OR (XOR)
>> Shift right
<< Shift left
~ One’s complement (unary NOT)

TaeLe 4-1 The Bitwise Operators

[

Part I: The C# Language

The following program demonstrates the & by using it to convert odd numbers into
even numbers. It does this by turning off bit zero. For example, the low-order byte of the
number 9 in binary is 0000 1001. When bit zero is turned off, this number becomes 8,
or 0000 1000 in binary.

// Use bitwise AND to make a number even.
using System;
class MakeEven {
static void Main () {
ushort num;

ushort 1i;

for(i = 1; 1 <= 10; i++) {

num = i;
Console.WriteLine ("num: " + num);
num = (ushort) (num & OXFFFE);

Console.WriteLine ("num after turning off bit zero: "
+ num + "\n");

The output from this program is shown here:

num: 1
num after turning off bit zero: O

num: 2
num after turning off bit zero: 2

num: 3
num after turning off bit zero: 2

num: 4
num after turning off bit zero: 4

num: 5
num after turning off bit zero: 4

num: 6
num after turning off bit zero: 6

num: 7
num after turning off bit zero: 6

num: 8
num after turning off bit zero: 8

num: 9
num after turning off bit zero: 8

Chapter 4: Operators 75

num: 10
num after turning off bit zero: 10

The value OXFFFE used in the AND statement is the hexadecimal representation of
1111 1111 1111 1110. Therefore, the AND operation leaves all bits in num unchanged except
for bit zero, which is set to zero. Thus, even numbers are unchanged, but odd numbers are
made even by reducing their value by 1.

The AND operator is also useful when you want to determine whether a bit is on or off.
For example, this program determines if a number is odd:

// Use bitwise AND to determine if a number is odd.
using System;
class IsOdd {
static void Main () {
ushort num;

num = 10;

if((num & 1) == 1)
Console.WriteLine ("This won't display.");

num = 11;

if((num & 1) == 1)
Console.WriteLine (num + " is odd.");

The output is shown here:
11 is odd.

In the if statements, the value of num is ANDed with 1. If bit zero in num is set, the result
of num & 11is 1; otherwise, the result is zero. Therefore, the if statement can succeed only
when the number is odd.

You can use the bit-testing capability of the bitwise & to create a program that uses the
bitwise & to show the bits of a byte value in binary format. Here is one approach:

// Display the bits within a byte.
using System;

class ShowBits {
static void Main () {
int t;
byte val;

val = 123;
for (t=128; t > 0; t = t/2) {
if((val & t) != 0) Console.Write("1 ");

16

Part I: The C# Language

if((val & t) == 0) Console.Write ("0 ");

The output is shown here:
01111011

The for loop successively tests each bit in val, using the bitwise AND, to determine if it is on
or off. If the bit is on, the digit 1 is displayed; otherwise, 0 is displayed.

The bitwise OR can be used to turn bits on. Any bit that is set to 1 in either operand will
cause the corresponding bit in the variable to be set to 1. For example

11010011
l 10101010

11111011

You can make use of the OR to change the make-even program shown earlier into a
make-odd program, as shown here:

// Use bitwise OR to make a number odd.
using System;
class MakeOdd {
static void Main () {
ushort num;

ushort 1i;

for(i = 1; i <= 10; i++) {

num = 1i;
Console.WriteLine ("num: " + num);
num = (ushort) (num | 1);

Console.WriteLine ("num after turning on bit zero:
+ num + "\n");

The output from this program is shown here:

num: 1
num after turning on bit zero: 1

num: 2
num after turning on bit zero: 3

num: 3
num after turning on bit zero: 3

Chapter 4: Operators

num: 4
num after turning on bit zero: 5

num: 5
num after turning on bit zero: 5

num: 6
num after turning on bit zero: 7

num: 7
num after turning on bit zero: 7

num: 8
num after turning on bit zero: 9

num: 9
num after turning on bit zero: 9

num: 10
num after turning on bit zero: 11

The program works by ORing each number with the value 1, because 1 is the value that
produces a value in binary in which only bit zero is set. When this value is ORed with any
other value, it produces a result in which the low-order bit is set and all other bits remain
unchanged. Thus, a value that is even will be increased by 1, becoming odd.

An exclusive OR, usually abbreviated XOR, will set a bit on if, and only if, the bits being
compared are different, as illustrated here:

01111111
~"10111001

11000110

The XOR operator has an interesting property that is useful in a variety of situations.
When some value X is XORed with another value Y, and then that result is XORed with Y
again, X is produced. That is, given the sequence

R1=X7Y;
R2=R17Y;

R2 is the same value as X. Thus, the outcome of a sequence of two XORs using the same
value produces the original value. This feature of the XOR can be put into action to create

a simple cipher in which some integer is the key that is used to both encode and decode a
message by XORing the characters in that message. To encode, the XOR operation is applied
the first time, yielding the ciphertext. To decode, the XOR is applied a second time, yielding
the plaintext. Of course, such a cipher has no practical value, being trivially easy to break.

It does, however, provide an interesting way to demonstrate the effects of the XOR, as the
following program shows:

// Demonstrate the XOR.

using System;

m

18

Part I: The C# Language

class Encode {

static void Main () {
char chl = '"H';
char ch2 = 'i';
char ch3 = '!'";

int key = 88;
Console.WriteLine ("Original message: " + chl + ch2 + ch3);

// Encode the message.

chl = (char) (chl »~ key);
ch2 = (char) (ch2 » key);
ch3 = (char) (ch3 » key);
Console.WriteLine ("Encoded message: " + chl + ch2 + ch3);

// Decode the message.

chl = (char) (chl © key);
ch2 = (char) (ch2 » key);
ch3 = (char) (ch3 » key);
Console.WriteLine ("Encoded message: " + chl + ch2 + ch3);

Here is the output:

Original message: Hi!
Encoded message: dly
Encoded message: Hi!

As you can see, the result of two XORs using the same key produces the decoded message.
(Remember, this simple XOR cipher is not suitable for any real-world, practical use because
it is inherently insecure.)

The unary one’s complement (NOT) operator reverses the state of all the bits of the
operand. For example, if some integer called A has the bit pattern 1001 0110, then ~A
produces a result with the bit pattern 0110 1001.

The following program demonstrates the NOT operator by displaying a number and its
complement in binary:

// Demonstrate the bitwise NOT.
using System;

class NotDemo {
static void Main () {
sbyte b = -34;

for (int t=128; t > 0; t = t/2) {
if((b & t) != 0) Console.Write ("1
if((b & t) == 0) Console.Write ("0 ");
}

Console.WriteLine () ;

Chapter 4: Operators 79

// reverse all bits
b = (sbyte) ~b;

for (int t=128; t > 0; t = t/2) {
if((b & t) != 0) Console.Write ('
if((b & t) == 0)

oy,
Console.Write ("0 ") ;
}

Here is the output:
10
01

1 1
0 0

= O

1 11
0 00

The Shift Operators

In C# it is possible to shift the bits that comprise an integer value to the left or to the right by
a specified amount. C# defines the two bit-shift operators shown here:

<< Left shift
>> Right shift

The general forms for these operators are shown here:

value << num-bits
value >> num-bits

Here, value is the value being shifted by the number of bit positions specified by num-bits.

Aleft shift causes all bits within the specified value to be shifted left one position and a
zero bit to be brought in on the right. A right shift causes all bits to be shifted right one
position. In the case of a right shift on an unsigned value, a zero is brought in on the left.
In the case of a right shift on a signed value, the sign bit is preserved. Recall that negative
numbers are represented by setting the high-order bit of an integer value to 1. Thus, if
the value being shifted is negative, each right shift brings in a 1 on the left. If the value
is positive, each right shift brings in a 0 on the left.

For both left and right shifts, the bits shifted out are lost. Thus, a shift is not a rotate and
there is no way to retrieve a bit that has been shifted out.

Here is a program that graphically illustrates the effect of a left and right shift. Here, an
integer is given an initial value of 1, which means that its low-order bit is set. Then, eight
shifts are performed on the integer. After each shift, the lower eight bits of the value are
shown. The process is then repeated, except that a 1 is put in the eighth bit position, and
right shifts are performed.

// Demonstrate the shift << and >> operators.
using System;
class ShiftDemo {

static void Main () {
int val = 1;

80 Partl: The C# Language

for(int 1 = 0; 1 < 8
for(int t=128; t >
if((val & t) !=
if((val & t) ==

;i) |
0; t =t/2) {
0) Console.Write ("1 ");
0) Console.Write ("0 ");
}
Console.WriteLine () ;
val = val << 1; // left shift
}

Console.WriteLine () ;

val = 128;
for(int 1 = 0; 1 < 8; 1i++) {
for (int t=128; t > 0; t = t/2) {
if((val & t) != 0) Console.Write ("
if((val & t) == 0) Console.Write ("

1
0"
}

Console.WriteLine () ;
val = val >> 1; // right shift

The output from the program is shown here:

0000O0OO0CO0T1
00000010
00000100
00001000
00010000
00100000
01000000
1000000O
10000000
0100000O0O
00100000
00010000
00001000
00000100
00000010
0000O0OOCOT1

Since binary is based on powers of 2, the shift operators can be used as a way to multiply
or divide an integer by 2. A shift left doubles a value. A shift right halves it. Of course, this
works only as long as you are not shifting bits off one end or the other. Here is an example:

// Use the shift operators to multiply and divide by 2.
using System;
class MultDiv {

static void Main () {

int n;

n = 10;

Chapter 4: Operators 81

Console.WriteLine ("Value of n: " + n);
// Multiply by 2.
n=n<<1;
Console.WriteLine ("Value of n after n = n * 2: " + n);
// Multiply by 4.
n =n << 2;
Console.WriteLine ("Value of n after n = n * 4: " + n);
// Divide by 2.
n=mn>>1;
Console.WriteLine ("Value of n after n =n / 2: " + n);
// Divide by 4.
n=mn > 2;
Console.WriteLine ("Value of n after n = n / 4: ™ + n);
Console.WriteLine () ;
// Reset n.
n = 10;
Console.WriteLine ("Value of n: " + n);
// Multiply by 2, 30 times.
n =n << 30; // data is lost
Console.WriteLine ("Value of n after left-shifting 30 places: " + n);
The output is shown here:
Value of n: 10
Value of n after n n* 2: 20
Value of n after n n * 4: 80
Value of n after n n / 2: 40
Value of n after n n / 4: 10
Value of n: 10
Value of n after left-shifting 30 places: -2147483648

Notice the last line in the output. When the value 10 is left-shifted 30 times, information

is lost because bits are shifted out of the range of an int. In this case, the garbage value
produced is negative because a 1 bit is shifted into the high-order bit, which is used as a
sign bit, causing the number to be interpreted as negative. This illustrates why you must be
careful when using the shift operators to multiply or divide a value by 2. (See Chapter 3 for
an explanation of signed vs. unsigned data types.)

Bitwise Compound Assignments

All of the binary bitwise operators can be used in compound assignments. For example, the
following two statements both assign to x the outcome of an XOR of x with the value 127:

= X
S

X
X =

A

127;
127;

82

Part I: The C# Language

The ? Operator

One of C#'s most fascinating operators is the ?, which is C#'s conditional operator. The ?
operator is often used to replace certain types of if-then-else constructions. The ? is called
a ternary operator because it requires three operands. It takes the general form

Expl ? Exp2 : Exp3;

where Exp1 is a bool expression, and Exp2 and Exp3 are expressions. The type of Exp2 and
Exp3 must be the same. Notice the use and placement of the colon.

The value of a ? expression is determined like this: Exp1 is evaluated. If it is true, then
Exp2 is evaluated and becomes the value of the entire ? expression. If Exp1 is false, then
Exp3 is evaluated, and its value becomes the value of the expression. Consider this example,
which assigns absval the absolute value of val:

absval = val < 0 ? -val : val; // get absolute value of val

Here, absval will be assigned the value of val if val is zero or greater. If val is negative, then
absval will be assigned the negative of that value (which yields a positive value).

Here is another example of the ? operator. This program divides two numbers, but will
not allow a division by zero.

// Prevent a division by zero using the 2.
using System;
class NoZeroDiv {

static void Main () {
int result;

for(int 1 = -5; 1 < 6; 1i++) {
result = i !'= 0 2 100 / i : 0;
if(i !'= 0)
Console.WriteLine ("100 / " + 1 4+ "™ is " + result);

The output from the program is shown here:

100 / -5 is =20
100 / -4 is =25
100 / -3 is -33
100 / -2 is =50
100 / -1 is -100
100 / 1 is 100
100 / 2 is 50
100 / 3 is 33
100 / 4 is 25
100 / 5 is 20

Chapter 4: Operators

Pay special attention to this line from the program:
result =i != 0 ? 100 / i : 0;

Here, result is assigned the outcome of the division of 100 by i. However, this division takes
place only if i is not 0. When i is 0, a placeholder value of 0 is assigned to result.

You don’t actually have to assign the value produced by the ? to some variable. For
example, you could use the value as an argument in a call to a method. Or, if the expressions
are all of type bool, the ? can be used as the conditional expression in a loop or if statement.
For example, the following program displays the results of dividing 100 by only even, non-
zero values:

// Divide by only even, non-zero values.
using System;

class NoZeroDiv2 {

static void Main () {
for(int i = =-5; 1 < 6; 1i++)
if(i !'= 0 2 (1i%2 == 0) : false)

Console.WriteLine("100 / ™ + i + " is ™ + 100 / 1i);

}

Notice the if statement. If i is zero, then the outcome of the if is false. Otherwise, if i is non-
zero, then the outcome of the if is true if i is even and false if i is odd. Thus, only even, non-
zero divisors are allowed. Although this example is somewhat contrived for the sake of
illustration, such constructs are occasionally very useful.

Spacing and Parentheses

An expression in C# can have tabs and spaces in it to make it more readable. For example,
the following two expressions are the same, but the second is easier to read:

x=10/y* (127+x) ;
x =10 / y * (127 + x);

Parentheses can be used to group subexpressions, thereby effectively increasing the
precedence of the operations contained within them, just like in algebra. Use of redundant
or additional parentheses will not cause errors or slow down execution of the expression.
You are encouraged to use parentheses to make clear the exact order of evaluation, both for
yourself and for others who may have to figure out your program later. For example, which
of the following two expressions is easier to read?

X y/3-34*temp+127;

by
I

(y/3) - (34*temp) + 127;

84 Part I:

Operator Precedence

The C# Language

Table 4-2 shows the order of precedence for all C# operators, from highest to lowest. This

table includes several operators that will be discussed later in this book.

Highest

() (1 ++ -— checked new sizeof typeof unchecked
(postfix) (postfix)

! ~ (cast) + - ++ -
(unary) (unary) (prefix) (prefix)

* / %

+ _

<< >>

< > <= >= is

== 1=

&

A

|

&6

I

2?7

?:

= op= =>

Lowest

TaeLe 4-2 The Precedence of the C# Operators

The

CHAPTER
Program Control Statements

program control statements: selection statements, which are the if and the switch;

iteration statements, which consist of the for, while, do-while, and foreach loops; and
jump statements, which include break, continue, goto, return, and throw. Except for throw,
which is part of C#'s exception-handling mechanism and is discussed in Chapter 13, the
others are examined here.

I I This chapter discusses C#'s program control statements. There are three categories of

if Statement

Chapter 2 introduced the if statement. It is examined in detail here. The complete form of
the if statement is

if(condition) statement;
else statement;

where the targets of the if and else are single statements. The else clause is optional. The
targets of both the if and else can be blocks of statements. The general form of the if using
blocks of statements is

if(condition)
{

statement sequence

}

else

{

statement sequence

}

If the conditional expression is true, the target of the if will be executed; otherwise, if it
exists, the target of the else will be executed. At no time will both of them be executed.
The conditional expression controlling the if must produce a bool result.

Here is a simple example that uses an if and else to report if a number is positive or
negative:

// Determine if a value is positive or negative.

using System;

85

86

Part I: The C# Language

class PosNeg {
static void Main () {
int i;

for(i=-5; 1 <= 5; i++) {
Console.Write ("Testing " + i + ": ");

if(i < 0) Console.WriteLine ("negative");
else Console.WriteLine ("positive");

}

The output is shown here:

Testing -5: negative
Testing -4: negative
Testing -3: negative
Testing -2: negative
Testing -1: negative

Testing 0: positive
Testing 1: positive
Testing 2: positive
Testing 3: positive
Testing 4: positive
Testing 5: positive

In this example, if i is less than zero, then the target of the if is executed. Otherwise, the
target of the else is executed. In no case are both executed.

Nested ifs

A nested if is an if statement that is the target of another if or else. Nested ifs are very
common in programming. The main thing to remember about nested ifs in C# is that an
else clause always refers to the nearest if statement that is within the same block as the
else and not already associated with an else. Here is an example:

if(i == 10) {

if(j < 20) a = b;

if(k > 100) ¢ = d;

else a = c¢; // this else refers to if(k > 100)
}
else a = d; // this else refers to if (i == 10)

As the comments indicate, the final else is not associated with if(j < 20) because it is not
in the same block (even though it is the nearest if without an else). Rather, the final else
is associated with if(i == 10). The inner else refers to if(k > 100) because it is the closest if
within the same block.

The following program demonstrates a nested if. In the positive/negative program
shown earlier, zero is reported as positive. However, as a general rule, zero is considered
signless. The following version of the program reports zero as being neither positive nor
negative.

Chapter 5: Program Control Statements 87

// Determine if a value is positive, negative, or zero.
using System;

class PosNegZero {
static void Main () {
int 1i;

for(i=-5; i <= 5; i++) {
Console.Write ("Testing " + i + ": ");

if(i < 0) Console.WriteLine ("negative");
else if(i == 0) Console.WriteLine ("no sign");
else Console.WriteLine ("positive");

Here is the output:

Testing -5: negative
Testing -4: negative
Testing -3: negative
Testing -2: negative
Testing -1: negative

Testing 0: no sign
Testing 1: positive
Testing 2: positive
Testing 3: positive
Testing 4: positive
Testing 5: positive

The if-else-if Ladder

A common programming construct that is based upon the nested if is the if-else-if ladder. It
looks like this:

if(condition)
statement;

else if(condition)
statement;

else if(condition)
statement;

else
statement;

The conditional expressions are evaluated from the top downward. As soon as a true condition
is found, the statement associated with it is executed, and the rest of the ladder is bypassed.

88

Part I: The C# Language

If none of the conditions is true, then the final else clause will be executed. The final else
often acts as a default condition. That is, if all other conditional tests fail, then the last else
clause is executed. If there is no final else and all other conditions are false, then no action
will take place.

The following program demonstrates the if-else-if ladder. It finds the smallest single-
digit factor (other than 1) for a given value.

// Determine smallest single-digit factor.
using System;
class Ladder {

static void Main () {

int num;

for (num = 2; num < 12; num++) {
if((num % 2) == 0)

Console.WriteLine ("Smallest factor of " + num + " is 2.");
else if((num % 3) == 0)
Console.WriteLine ("Smallest factor of "™ 4+ num + " is 3.");
else if((num % 5) == 0)
Console.WriteLine ("Smallest factor of " 4+ num + " is 5.");
else if((num % 7) == 0)
Console.WriteLine ("Smallest factor of " + num + " is 7.");
else
Console.WriteLine (num + " is not divisible by 2, 3, 5, or 7.");

The program produces the following output:

Smallest factor of 2 is 2.
Smallest factor of 3 is 3.
Smallest factor of 4 is 2.
Smallest factor of 5 is 5.
Smallest factor of 6 is 2.
Smallest factor of 7 is 7.
Smallest factor of 8 is 2.
Smallest factor of 9 is 3.

Smallest factor of 10 is 2.
11 is not divisible by 2, 3, 5, or 7.

As you can see, the else is executed only if none of the preceding if statements succeeds.

The switch Statement

The second of C#'s selection statements is switch. The switch provides for a multiway branch.
Thus, it enables a program to select among several alternatives. Although a series of nested
if statements can perform multiway tests, for many situations the switch is a more efficient
approach. It works like this: The value of an expression is successively tested against a list
of constants. When a match is found, the statement sequence associated with that match is
executed. The general form of the switch statement is

switch(expression)
case constantl:

{

Statement sequence

break;
case constant2:

statement sequence

break;
case constant3:

Statement sequence

break;

default:

statement sequence

break;
}

Chapter 5: Program Control Statements 89

The switch expression must be of an integer type, such as char, byte, short, or int, of
an enumeration type, or of type string. (Enumerations and the string type are described
later in this book.) Thus, floating-point expressions, for example, are not allowed.
Frequently, the expression controlling the switch is simply a variable. The case constants
must be of a type compatible with the expression. No two case constants in the same
switch can have identical values.

The default sequence is executed if no case constant matches the expression. The default
is optional; if it is not present, no action takes place if all matches fail. When a match is
found, the statements associated with that case are executed until the break is encountered.

The following program demonstrates the switch:

// Demonstrate the switch.

using System;

class SwitchDemo {

static void Main () {

int i;

for (1=0; i<10;
switch (i) {
case 0:
Console
break;
case 1:
Console
break;
case 2:
Console
break;
case 3:
Console
break;

it++4)

.WriteLine ("1i

.WriteLine ("1i

.WriteLine ("1i

.WriteLine ("1i

is

is

is

is

zero") ;

one");

two") ;

three");

90

Part I: The C# Language

case 4:
Console.WriteLine ("i is four");
break;
default:
Console.WriteLine ("i is five or more");
break;

The output produced by this program is shown here:

is zero

is one

is two

is three

is four

is five or more
is five or more
is five or more
is five or more
is five or more

e e S T T e O s

As you can see, each time through the loop, the statements associated with the case constant
that matches i are executed. All others are bypassed. When i is five or greater, no case constants
match, so the default is executed.

In the preceding example, the switch was controlled by an int variable. As explained,
you can control a switch with any integer type, including char. Here is an example that uses
a char expression and char case constants:

// Use a char to control the switch.
using System;

class SwitchDemo2 {
static void Main () {
char ch;

for(ch='A'; ch<= 'E'; ch++)
switch (ch) {

case 'A':
Console.WriteLine ("ch is A");
break;

case 'B':
Console.WriteLine ("ch is B");
break;

case 'C':
Console.WriteLine ("ch is C");
break;

case 'D':
Console.WriteLine ("ch is D");
break;

case 'E':
Console.WriteLine ("ch is E");

Chapter 5: Program Control Statements 91

break;

The output from this program is shown here:

ch is A
ch is B
ch is C
ch is D
ch is E

Notice that this example does not include a default case. Remember, the default is optional.
When not needed, it can be left out.

In C#, it is an error for the statement sequence associated with one case to continue on
into the next case. This is called the “no fall-through” rule. This is why case sequences end
with a break statement. (You can avoid fall-through in other ways, such as by using the
goto discussed later in this chapter, but break is by far the most commonly used approach.)
When encountered within the statement sequence of a case, the break statement causes
program flow to exit from the entire switch statement and resume at the next statement
outside the switch. The default sequence also must not “fall through,” and it too usually
ends with break.

The no fall-through rule is one point on which C# differs from C, C++, and Java. In
those languages, one case may continue on (that is, fall through) into the next case. There
are two reasons that C# instituted the no fall-through rule for cases: First, it allows the
compiler to freely rearrange the order of the case sequences, perhaps for purposes of
optimization. Such a rearrangement would not be possible if one case could flow into the
next. Second, requiring each case to explicitly end prevents a programmer from accidentally
allowing one case to flow into the next.

Although you cannot allow one case sequence to fall through into another, you can have
two or more case labels refer to the same code sequence, as shown in this example:

// Empty cases can fall through.
using System;

class EmptyCasesCanFall {
static void Main () {
int i;

for(i=1; i < 5; 1i++)
switch (1) {

case 1:

case 2:

case 3: Console.WriteLine("i is 1, 2 or 3");
break;

case 4: Console.WriteLine("i is 4");
break;

92

Part I: The C# Language

The output is shown here:

i is 1, 2 or 3
i is 1, 2 or 3
iis 1, 2 or 3
i is 4

In this example, if i has the value 1, 2, or 3, then the first WriteLine() statement executes. If i
is 4, then the second WriteLine() statement executes. The stacking of cases does not violate
the no fall-through rule, because the case statements all use the same statement sequence.
Stacking case labels is a commonly employed technique when several cases share
common code. This technique prevents the unnecessary duplication of code sequences.

Nested switch Statements

It is possible to have a switch as part of the statement sequence of an outer switch. This is
called a nested switch. The case constants of the inner and outer switch can contain common
values and no conflicts will arise. For example, the following code fragment is perfectly
acceptable:

switch(chl) {

case 'A': Console.WriteLine("This A is part of outer switch.");
switch (ch2) {
case 'A':
Console.WriteLine ("This A is part of inner switch");
break;

case 'B': //
} // end of inner switch
break;
case 'B': //

The for Loop

The for loop was introduced in Chapter 2. Here, it is examined in detail. You might be
surprised at just how powerful and flexible the for loop is. Let’s begin by reviewing the
basics, starting with the most traditional forms of the for.

The general form of the for loop for repeating a single statement is

for(initialization; condition; iteration) statement;
For repeating a block, the general form is

for(initialization; condition; iteration)
{

statement sequence

}

The initialization is usually an assignment statement that sets the initial value of the loop
control variable, which acts as the counter that controls the loop. The condition is a Boolean
expression that determines whether the loop will repeat. The iteration expression defines the
amount by which the loop control variable will change each time the loop is repeated. Notice
that these three major sections of the loop must be separated by semicolons. The for loop will

Chapter 5: Program Control Statements

continue to execute as long as the condition tests true. Once the condition becomes false, the
loop will exit, and program execution will resume on the statement following the for.

The for loop can proceed in a positive or negative fashion, and it can change the loop
control variable by any amount. For example, the following program prints the numbers
100 to -100, in decrements of 5:

// A negatively running for loop.
using System;

class DecrFor {

static void Main () {
int x;
for(x = 100; x > -100; x —-= 5)

Console.WritelLine (x);

An important point about for loops is that the conditional expression is always tested at
the top of the loop. This means that the code inside the loop may not be executed at all if the
condition is false to begin with. Here is an example:

for (count=10; count < 5; count++)
x += count; // this statement will not execute

This loop will never execute because its control variable, count, is greater than 5 when the
loop is first entered. This makes the conditional expression, count < 5, false from the outset;
thus, not even one iteration of the loop will occur.

The for loop is most useful when you will be iterating a known number of times. For
example, the following program uses two for loops to find the prime numbers between 2
and 20. If the number is not prime, then its largest factor is displayed.

// Determine if a number is prime. If it is not, then
// display its largest factor.

using System;

class FindPrimes {
static void Main() {
int num;
int i;
int factor;
bool isprime;

for (num = 2; num < 20; num++) {
isprime = true;
factor = 0;

// See if num is evenly divisible.
for(i=2; 1 <= num/2; i++) {

o

if((num % i) == 0) {

93

94 Partl: The C# Language

// num is evenly divisible. Thus, it is not prime.
isprime = false;
factor = 1i;

}

if (isprime)

Console.WriteLine (num + " is prime.");
else
Console.WritelLine ("Largest factor of " + num +
" is " + factor);

The output from the program is shown here:

2 is prime.

3 is prime.

Largest factor of 4 is 2
5 is prime.

Largest factor of 6 is 3
7 is prime.

Largest factor of 8 is 4
Largest factor of 9 is 3
Largest factor of 10 is 5
11 is prime.

Largest factor of 12 is 6
13 is prime.

Largest factor of 14 is 7
Largest factor of 15 is 5
Largest factor of 16 is 8
17 is prime.

Largest factor of 18 is 9
19 is prime.

Some Variations on the for Loop
The for is one of the most versatile statements in the C# language because it allows a wide
range of variations. They are examined here.

Using Multiple Loop Control Variables

The for loop allows you to use two or more variables to control the loop. When using
multiple loop control variables, the initialization and increments statements for each
variable are separated by commas. Here is an example:

// Use commas in a for statement.
using System;
class Comma {

static void Main () {
int 1, 7

Chapter 5: Program Control Statements 95

for (i=0, 3=10; i < j; i++, j--)
Console.WriteLine("i and j: " + 1 + " " + J);

The output from the program is shown here:

i and j: 0 10
i and j: 1 9
i and j: 2 8
i and j: 3 7
i and j: 4 6

Here, commas separate the two initialization statements and the two iteration expressions.
When the loop begins, both i and j are initialized. Each time the loop repeats, i is incremented
and j is decremented. Multiple loop control variables are often convenient and can simplify
certain algorithms. You can have any number of initialization and iteration statements, but
in practice, more than two make the for loop unwieldy.

Here is a practical use of multiple loop control variables in a for statement. This
program uses two loop control variables within a single for loop to find the largest and
smallest factor of a number, in this case 100. Pay special attention to the termination
condition. It relies on both loop control variables.

// Use commas in a for statement to find the largest and
// smallest factor of a number.

using System;
class Comma {
static void Main () {
int i, 7
int smallest, largest;
int num;

num = 100;

smallest = largest = 1;

for(i=2, j=num/2; (i <= num/2) & (j >= 2); i++, j--) {
if((smallest == 1) & ((num % i) == 0))
smallest = 1i;
if((largest == 1) & ((num % j) == 0))

largest = j;
}

Console.WritelLine ("Largest factor: " + largest);
Console.WriteLine ("Smallest factor: " + smallest);

96

Part I: The C# Language

Here is the output from the program:

Largest factor: 50
Smallest factor: 2

Through the use of two loop control variables, a single for loop can find both the smallest
and the largest factor of a number. The control variable i is used to search for the smallest
factor. It is initially set to 2 and incremented until its value exceeds one half of num. The
control variable j is used to search for the largest factor. Its value is initially set to one half
the num and decremented until it is less than 2. The loop runs until both i and j are at their
termination values. When the loop ends, both factors will have been found.

The Conditional Expression

The conditional expression controlling a for loop can be any valid expression that produces
a bool result. It does not need to involve the loop control variable. For example, in the next
program, the for loop is controlled by the value of done.

// Loop condition can be any bool expression.
using System;

class forDemo {

static void Main () {
int i, j;
bool done = false;
for (i=0, 3=100; !done; i++, j--) {
if(i*i >= j) done = true;
Console.WriteLine("1i, Jj: " + 1 + " "™ + J);

}

The output is shown here:

i, §: 0 100
i, §: 1 99
i, §: 2 98
i, §: 3 97
i, §: 4 96
i, j: 5 95
i, §: 6 94
i, §: 7 93
i, §: 8 92
i, §: 9 91
i, §: 10 90

In this example, the for loop iterates until the bool variable done is true. This variable is set
to true inside the loop when i squared is greater than or equal to j.

Chapter 5: Program Control Statements 97

Missing Pieces

Some interesting for loop variations are created by leaving pieces of the loop definition
empty. In C#, it is possible for any or all of the initialization, condition, or iteration portions
of the for loop to be empty. For example, consider the following program:

// Parts of the for can be empty.
using System;

class Empty {
static void Main () {
int i;

for(i = 0; 1 < 10;) |
Console.WriteLine ("Pass #" + 1i);
i++; // increment loop control var

}

Here, the iteration expression of the for is empty. Instead, the loop control variable i is
incremented inside the body of the loop. This means that each time the loop repeats, i is tested
to see whether it equals 10, but no further action takes place. Of course, since i is incremented
within the body of the loop, the loop runs normally, displaying the following output:

Pass #0
Pass #1
Pass #2
Pass #3
Pass #4
Pass #5
Pass #6
Pass #7
Pass #8
Pass #9

In the next example, the initialization portion is also moved out of the for:

// Move more out of the for loop.
using System;

class Empty2 {

static void Main () {
int i;
i = 0; // move initialization out of loop
for(; 1 < 10;) {

Console.WriteLine ("Pass #" + 1);
i++; // increment loop control var

98

Part I: The C# Language

In this version, i is initialized before the loop begins, rather than as part of the for.
Normally, you will want to initialize the loop control variable inside the for. Placing the
initialization outside of the loop is generally done only when the initial value is derived
through a complex process that does not lend itself to containment inside the for statement.

The Infinite Loop

You can create an infinite loop (a loop that never terminates) using the for by leaving the
conditional expression empty. For example, the following fragment shows the way many
C# programmers create an infinite loop:

for(;;) // intentionally infinite loop
{

/]
}

This loop will run forever. Although there are some programming tasks, such as operating
system command processors, that require an infinite loop, most “infinite loops” are really
just loops with special termination requirements. (See “Using break to Exit a Loop,” later in
this chapter.)

Loops with No Body

In C#, the body associated with a for loop (or any other loop) can be empty. This is because
a empty statement is syntactically valid. Bodyless loops are often useful. For example, the
following program uses a bodyless loop to sum the numbers 1 through 5:

// The body of a loop can be empty.
using System;
class Empty3 {
static void Main () {
int i;
int sum = 0;

// Sum the numbers through 5.
for(i = 1; 1 <= 5; sum += i++) ;

Console.WriteLine ("Sum is " + sum);
}
The output from the program is shown here:
Sum is 15

Notice that the summation process is handled entirely within the for statement, and no
body is needed. Pay special attention to the iteration expression:

sum += i++

Don’t be intimidated by statements like this. They are common in professionally written
C# programs and are easy to understand if you break them down into their parts. In words,

Chapter 5: Program Control Statements 99

this statement says “add to sum the value of sum plus i, then increment i.” Thus, it is the
same as this sequence of statements:

sum = sum + i;
i++;

Declaring Loop Control Variables Inside the for Loop

Often the variable that controls a for loop is needed only for the purposes of the loop and

is not used elsewhere. When this is the case, it is possible to declare the variable inside the
initialization portion of the for. For example, the following program computes both the
summation and the factorial of the numbers 1 through 5. It declares its loop control variable
iinside the for:

// Declare loop control variable inside the for.
using System;

class ForVar {
static void Main () {
int sum = 0;
int fact = 1;

// Compute the factorial of the numbers 1 through 5.
for(int i = 1; 1 <= 5; i++) {

sum += i; // 1 is known throughout the loop.

fact *= i;

}
// But, 1 is not known here.

Console.WriteLine ("Sum is " + sum);
Console.WriteLine ("Factorial is " + fact);

When you declare a variable inside a for loop, there is one important point to remember:
The scope of that variable ends when the for statement does. (That is, the scope of the variable
is limited to the for loop.) Outside the for loop, the variable will cease to exist. Thus, in the
preceding example, i is not accessible outside the for loop. If you need to use the loop control
variable elsewhere in your program, you will not be able to declare it inside the for loop.

Before moving on, you might want to experiment with your own variations on the for
loop. As you will find, it is a fascinating loop.

The while Loop
Another of C#'s loops is the while. The general form of the while loop is
while(condition) statement;

where statement can be a single statement or a block of statements, and condition defines the
condition that controls the loop and may be any valid Boolean expression. The statement is
performed while the condition is true. When the condition becomes false, program control
passes to the line immediately following the loop.

100

Part I: The C# Language

Here is a simple example in which a while is used to compute the order of magnitude of
an integer:

// Compute the order of magnitude of an integer
using System;

class WhileDemo {
static void Main () {
int num;
int mag;

num = 435679;
mag = 0;

Console.WriteLine ("Number: " + num);

while (num > 0) {
mag++;
num = num / 10;

}i

Console.WriteLine ("Magnitude: " + magqg);

The output is shown here:

Number: 435679
Magnitude: 6

The while loop works like this: The value of num is tested. If num is greater than 0, the mag
counter is incremented, and num is divided by 10. As long as the value in num is greater
than 0, the loop repeats. When num is 0, the loop terminates and mag contains the order of
magnitude of the original value.

As with the for loop, the while checks the conditional expression at the top of the loop,
which means that the loop code may not execute at all. This eliminates the need for performing
a separate test before the loop. The following program illustrates this characteristic of the while
loop. It computes the integer powers of 2 from 0 to 9.

// Compute integer powers of 2.
using System;

class Power {
static void Main () {
int e;
int result;

for (int 1=0; 1 < 10; 1i++) {
result = 1;
e = 1i;

Chapter 5: Program Control Statements 101

while(e > 0) {
result *= 2;
e--;

}

Console.WriteLine ("2 to the "™ + i + " power is " + result);

}

The output from the program is shown here:

2 to the 0 power is 1

2 to the 1 power is 2

2 to the 2 power is 4

2 to the 3 power is 8

2 to the 4 power is 16
2 to the 5 power is 32
2 to the 6 power is 64
2 to the 7 power is 128
2 to the 8 power is 256
2 to the 9 power is 512

Notice that the while loop executes only when e is greater than 0. Thus, when e is 0, as it is
in the first iteration of the for loop, the while loop is skipped.

The do-while Loop

The third C# loop is the do-while. Unlike the for and the while loops, in which the condition
is tested at the top of the loop, the do-while loop checks its condition at the bottom of the
loop. This means that a do-while loop will always execute at least once. The general form of
the do-while loop is

do {
statements;
} while(condition);

Although the braces are not necessary when only one statement is present, they are often
used to improve readability of the do-while construct, thus preventing confusion with the
while. The do-while loop executes as long as the conditional expression is true.

The following program uses a do-while loop to display the digits of an integer in
reverse order:

// Display the digits of an integer in reverse order.
using System;
class DoWhileDemo {
static void Main () {
int num;

int nextdigit;

num = 198;

102 Partl: The C# Language

Console.WriteLine ("Number: " + num);
Console.Write ("Number in reverse order: ");

do {
nextdigit = num % 10;
Console.Write (nextdigit);
num = num / 10;

} while (num > 0);

Console.WriteLine () ;

The output is shown here:

Number: 198
Number in reverse order: 891

Here is how the loop works: With each iteration, the leftmost digit is obtained by computing
the remainder of an integer division by 10. This digit is then displayed. Next, the value in
num is divided by 10. Since this is an integer division, this results in the leftmost digit being
removed. This process repeats until num is 0.

The foreach Loop

The foreach loop cycles through the elements of a collection. A collection is a group of objects.
C# defines several types of collections, of which one is an array. The foreach loop is examined
in Chapter 7, when arrays are discussed.

Using break to Exit a Loop

It is possible to force an immediate exit from a loop, bypassing any code remaining in the
body of the loop and the loop’s conditional test, by using the break statement. When a
break statement is encountered inside a loop, the loop is terminated, and program control
resumes at the next statement following the loop. Here is a simple example:

// Using break to exit a loop.
using System;

class BreakDemo {
static void Main () {

// Use break to exit this loop.

for (int 1i=-10; i <= 10; i++) {
if (i > 0) break; // terminate loop when i is positive
Console.Write(i + "™ ");

}

Console.WriteLine ("Done") ;

Chapter 5: Program Control Statements

This program generates the following output:

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 Done

As you can see, although the for loop is designed to run from 10 to 10, the break statement

causes it to terminate early, when i becomes positive.

The break statement can be used with any of C#'s loops. For example, here is the

previous program recoded to use a do-while loop:
// Using break to exit a do-while loop.
using System;

class BreakDemo2 {

static void Main () {
int i;
i = -10;
do {
if(i > 0) break;
Console.Write(i + "™ ™);
i++;

} while (i <= 10);

Console.WriteLine ("Done") ;

Here is a more practical example of break. This program finds the smallest factor of a

number.
// Find the smallest factor of a value.
using System;

class FindSmallestFactor {
static void Main () {
int factor = 1;
int num = 1000;

for(int i=2; 1 <= num/i; 1i++) {
if ((num%i) == 0) {
factor = 1i;
break; // stop loop when factor is found
}
}

Console.WriteLine ("Smallest factor is " + factor);

The output is shown here:

Smallest factor is 2

103

104

Part I: The C# Language

The break stops the for loop as soon as a factor is found. The use of break in this situation
prevents the loop from trying any other values once a factor has been found, thus preventing
inefficiency.

When used inside a set of nested loops, the break statement will break out of only the
innermost loop. For example:

// Using break with nested loops.
using System;

class BreakNested {
static void Main () {

for (int 1=0; 1i<3; 1i++) {
Console.WriteLine ("Outer loop count: " + 1i);
Console.Write (" Inner loop count: ");

int t = 0;

while(t < 100) {
if(t == 10) break; // terminate loop if t is 10
Console.Write(t + " ");
t++;

}

Console.WriteLine();

}
Console.WriteLine ("Loops complete.");

This program generates the following output:

Outer loop count: 0

Inner loop count: 0 1 2 3 45 6 7 8 9
Outer loop count: 1

Inner loop count: 0 1 2 3 45 6 7 8 9
Outer loop count: 2

Inner loop count: 0 1 2 3 456 7 8 9
Loops complete.

As you can see, the break statement in the inner loop causes only the termination of that
loop. The outer loop is unaffected.

Here are two other points to remember about break: First, more than one break statement
may appear in a loop. However, be careful. Too many break statements have the tendency
to destructure your code. Second, the break that exits a switch statement affects only that
switch statement and not any enclosing loops.

Using continue

It is possible to force an early iteration of a loop, bypassing the loop’s normal control structure.
This is accomplished using continue. The continue statement forces the next iteration of the
loop to take place, skipping any code in between. Thus, continue is essentially the complement
of break. For example, the following program uses continue to help print the even numbers
between 0 and 100.

Chapter 5: Program Control Statements 105

// Use continue.
using System;

class ContDemo {
static void Main () {

// Print even numbers between 0 and 100.
for(int 1 = 0; 1 <= 100; i++) {
if((i%2) != 0) continue; // iterate
Console.WriteLine (i) ;

}
}

Only even numbers are printed, because an odd number will cause the loop to iterate early,
bypassing the call to WriteLine().

In while and do-while loops, a continue statement will cause control to go directly to
the conditional expression and then continue the looping process. In the case of the for, the
iteration expression of the loop is evaluated, then the conditional expression is executed,
and then the loop continues.

Good uses of continue are rare. One reason is that C# provides a rich set of loop statements
that fit most applications. However, for those special circumstances in which early iteration
is needed, the continue statement provides a structured way to accomplish it.

return

The return statement causes a method to return. It can also be used to return a value. It is
examined in Chapter 6.

The goto

The goto is C#'s unconditional jump statement. When encountered, program flow jumps to
the location specified by the goto. The statement fell out of favor with programmers many
years ago because it encouraged the creation of “spaghetti code.” However, the goto is still
occasionally—and sometimes effectively—used. This book will not make a judgment
regarding its validity as a form of program control. It should be stated, however, that there
are no programming situations that require the use of the goto statement—it is not necessary
for making the language complete. Rather, goto is a convenience that, if used wisely, can be
a benefit in certain programming situations. As such, the goto is not used in this book
outside of this section. The chief concern most programmers have about the goto is its
tendency to clutter a program and render it nearly unreadable. However, there are times
when the use of the goto can clarify program flow rather than confuse it.

The goto requires a label for operation. A label is a valid C# identifier followed by a
colon. The label must be in the same method as the goto that uses it and within scope. For
example, a loop from 1 to 100 could be written using a goto and a label, as shown here:

x = 1;
loopl:
X++;
if(x < 100) goto loopl;

106 Part1: The C# Language

The goto can also be used to jump to a case or default statement within a switch.
Technically, the case and default statements of a switch are labels. Thus, they can be targets
of a goto. However, the goto statement must be executed from within the switch. That is,
you cannot use the goto to jump into a switch statement. Here is an example that illustrates
goto with a switch:

// Use goto with a switch.
using System;

class SwitchGoto {
static void Main () {

for(int i=1; 1 < 5; i++) {
switch (1) {

case 1:
Console.WriteLine ("In case 1");
goto case 3;

case 2:
Console.WriteLine ("In case 2");
goto case 1;

case 3:
Console.WriteLine ("In case 3");
goto default;

default:
Console.WriteLine ("In default");
break;

}

Console.WriteLine () ;

// goto case 1; // Error! Can't jump into a switch.

}

The output from the program is shown here:

In case 1
In case 3
In default

In case 2
In case 1
In case 3
In default

In case 3
In default

In default

Chapter 5: Program Control Statements 107

Inside the switch, notice how the goto is used to jump to other case statements or the
default statement. Furthermore, notice that the case statements do not end with a break.
Since the goto prevents one case from falling through to the next, the no fall-through rule
is not violated, and there is no need for a break statement. As explained, it is not possible
to use the goto to jump into a switch. If you remove the comment symbols from the start
of this line

// goto case 1; // Error! Can't jump into a switch.

the program will not compile. Frankly, using a goto with a switch can be useful in some
special-case situations, but it is not recommended style in general.

One good use for the goto is to exit from a deeply nested routine. Here is a simple
example:

// Demonstrate the goto.
using System;
class Use goto {
static void Main () {
int 1=0, j=0, k=0;
for (i=0; i < 10; i++) {

for (§=0; j < 10; j++) |
for(k=0; k < 10; k++) {

Console.WriteLine ("1, J, k: "™ + 1 + ™ " 4+ 35 + " " + k);
if(k == 3) goto stop;
}
}
}
stop:
Console.WriteLine ("Stopped! i, j, k: " + i + ", "+ J + " " + k);

The output from the program is shown here:

i, 3, k: 00 O
i, 3, k: 00 1
i, 3, k: 0 0 2
i, 3, k: 00 3
Stopped! i, j, k: 0, 0 3

Eliminating the goto would force the use of three if and break statements. In this case, the
goto simplifies the code. While this is a contrived example used for illustration, you can
probably imagine situations in which a goto might be beneficial.

One last point: Although you can jump out of a block (as the preceding example shows),
you can’t use the goto to jump into a block.

This page intentionally left blank

CHAPTER

Introducing Classes and
Objects

the nature of an object. Furthermore, the class forms the basis for object-oriented

programming. Within a class are defined both code and data. Because classes and
objects are fundamental to C#, they constitute a large topic, which spans several chapters.
This chapter begins the discussion by covering their main features.

I I This chapter introduces the class. The class is the foundation of C# because it defines

Class Fundamentals

We have been using classes since the start of this book. Of course, only extremely simple
classes have been used, and we have not taken advantage of the majority of their features.
Classes are substantially more powerful than the limited ones presented so far.

Let’s begin by reviewing the basics. A class is a template that defines the form of an
object. It specifies both the data and the code that will operate on that data. C# uses a class
specification to construct objects. Objects are instances of a class. Thus, a class is essentially a
set of plans that specify how to build an object. It is important to be clear on one issue: A
class is a logical abstraction. It is not until an object of that class has been created that a
physical representation of that class exists in memory.

The General Form of a Class

When you define a class, you declare the data that it contains and the code that operates on
it. While very simple classes might contain only code or only data, most real-world classes
contain both.

In general terms, data is contained in data members defined by the class, and code is
contained in function members. It is important to state at the outset that C# defines several
specific flavors of data and function members. For example, data members (also called
fields) include instance variables and static variables. Function members include methods,
constructors, destructors, indexers, events, operators, and properties. For now, we will limit
our discussion of the class to its essential elements: instance variables and methods. Later in
this chapter constructors and destructors are discussed. The other types of members are
described in later chapters.

109

110

Part I: The C# Language

A class is created by use of the keyword class. Here is the general form of a simple class
definition that contains only instance variables and methods:

class classname {
// declare instance variables
access type varl;
access type var2;
// -

access type varN;

// declare methods
access ret-type methodl(parameters) {
// body of method
}
access ret-type method2(parameters) {
// body of method
}
/] .
access ret-type methodN(parameters) {
// body of method
}
)

Notice that each variable and method declaration is preceded with access. Here, access
is an access specifier, such as public, which specifies how the member can be accessed. As
mentioned in Chapter 2, class members can be private to a class or more accessible. The
access specifier determines what type of access is allowed. The access specifier is optional,
and if absent, then the member is private to the class. Members with private access can be
used only by other members of their class. For the examples in this chapter, all members
(except for the Main() method) will be specified as public, which means that they can be
used by all other code—even code defined outside the class. We will return to the topic of
access specifiers in Chapter 8.

NOTE [n addition to an access specifier, the declaration of a class member can also contain one or
more type modifiers. These modifiers are discussed later in this book.

Although there is no syntactic rule that enforces it, a well-designed class should define
one and only one logical entity. For example, a class that stores names and telephone
numbers will not normally also store information about the stock market, average rainfall,
sunspot cycles, or other unrelated information. The point here is that a well-designed class
groups logically connected information. Putting unrelated information into the same class
will quickly destructure your code.

Up to this point, the classes that we have been using have had only one method: Main().
However, notice that the general form of a class does not specify a Main() method. A Main()
method is required only if that class is the starting point for your program.

Define a Class

To illustrate classes, we will be evolving a class that encapsulates information about buildings,
such as houses, stores, offices, and so on. This class is called Building, and it will store three

Chapter 6: Introducing Classes and Objects

items of information about a building: the number of floors, the total area, and the number
of occupants.

The first version of Building is shown here. It defines three instance variables: Floors,
Area, and Occupants. Notice that Building does not contain any methods. Thus, it is
currently a data-only class. (Subsequent sections will add methods to it.)

class Building {
public int Floors; // number of floors
public int Area; // total square footage of building
public int Occupants; // number of occupants

}

The instance variables defined by Building illustrate the way that instance variables are
declared in general. The general form for declaring an instance variable is shown here:

access type var-name;

Here, access specifies the access; type specifies the type of variable; and var-name is the
variable’s name. Thus, aside from the access specifier, you declare an instance variable in
the same way that you declare local variables. For Building, the variables are preceded by
the public access modifier. As explained, this allows them to be accessed by code outside
of Building.

A class definition creates a new data type. In this case, the new data type is called
Building. You will use this name to declare objects of type Building. Remember that a class
declaration is only a type description; it does not create an actual object. Thus, the preceding
code does not cause any objects of type Building to come into existence.

To actually create a Building object, you will use a statement like the following;:

Building house = new Building(); // create an object of type building

After this statement executes, house will be an instance of Building. Thus, it will have
“physical” reality. For the moment, don’t worry about the details of this statement.

Each time you create an instance of a class, you are creating an object that contains its
own copy of each instance variable defined by the class. Thus, every Building object will
contain its own copies of the instance variables Floors, Area, and Occupants. To access
these variables, you will use the member access operator, which is a period. It is commonly
referred to as the dot operator. The dot operator links the name of an object with the name of
a member. The general form of the dot operator is shown here:

object.member

Thus, the object is specified on the left, and the member is put on the right. For example, to
assign the Floors variable of house the value 2, use the following statement:

house.Floors = 2;

In general, you can use the dot operator to access both instance variables and methods.
Here is a complete program that uses the Building class:

// A program that uses the Building class.

using System;

m

112

Part I: The C# Language

class Building {
public int Floors; // number of floors
public int Area; // total square footage of building
public int Occupants; // number of occupants

}

// This class declares an object of type Building.
class BuildingDemo {
static void Main () {
Building house = new Building(); // create a Building object
int areaPP; // area per person

// Assign values to fields in house.
house.Occupants = 4;

house.Area = 2500;

house.Floors = 2;

// Compute the area per person.
areaPP = house.Area / house.Occupants;

Console.WriteLine ("house has:\n " +
house.Floors + " floors\n " +
house.Occupants + " occupants\n " +
house.Area + " total area\n " +

areaPP + " area per person");

This program consists of two classes: Building and BuildingDemo. Inside BuildingDemo,
the Main() method creates an instance of Building called house. Then the code within
Main() accesses the instance variables associated with house, assigning them values and
using those values. It is important to understand that Building and BuildingDemo are two
separate classes. The only relationship they have to each other is that one class creates an
instance of the other. Although they are separate classes, code inside BuildingDemo can
access the members of Building because they are declared public. If they had not been
given the public access specifier, their access would have been limited to the Building
class, and BuildingDemo would not have been able to use them.

Assume that you call the preceding file UseBuilding.cs. Compiling this program creates
a file called UseBuilding.exe. Both the Building and BuildingDemo classes are automatically
part of the executable file. The program displays the following output:

house has:
2 floors
4 occupants
2500 total area
625 area per person

It is not necessary for the Building and the BuildingDemo classes to actually be in
the same source file. You could put each class in its own file, called Building.cs and
BuildingDemo.cs, for example. Just tell the C# compiler to compile both files and link

Chapter 6: Introducing Classes and Objects 113

them together. For example, you could use this command line to compile the program if
you split it into two pieces as just described:

csc Building.cs BuildingDemo.cs

If you are using the Visual C++ IDE, you will need to add both files to your project and then
build.

Before moving on, let’s review a fundamental principle: Each object has its own copies
of the instance variables defined by its class. Thus, the contents of the variables in one object
can differ from the contents of the variables in another. There is no connection between the
two objects except for the fact that they are both objects of the same type. For example, if
you have two Building objects, each has its own copy of Floors, Area, and Occupants, and
the contents of these can (and often will) differ between the two objects. The following
program demonstrates this fact:

// This program creates two Building objects.
using System;

class Building {
public int Floors; // number of floors
public int Area; // total square footage of building
public int Occupants; // number of occupants

}

// This class declares two objects of type Building.
class BuildingDemo {
static void Main () {
Building house = new Building();
Building office = new Building();

int areaPP; // area per person

// Assign values to fields in house.
house.Occupants = 4;

house.Area = 2500;

house.Floors = 2;

// Assign values to fields in office.
office.Occupants = 25;

office.Area = 4200;

office.Floors = 3;

// Compute the area per person in house.
areaPP = house.Area / house.Occupants;

Console.WriteLine ("house has:\n " +
house.Floors + " floors\n " +
house.Occupants + " occupants\n " +
house.Area + " total area\n " +

areaPP + " area per person");

114

Part I: The C# Language

Console.WriteLine();

// Compute the area per person in office.

areaPP = office.Area / office.Occupants;
Console.WritelLine ("office has:\n " +
office.Floors + " floors\n " +
office.Occupants + " occupants\n " +
office.Area + " total area\n " +

areaPP + " area per person");

The output produced by this program is shown here:

house has:
2 floors
4 occupants
2500 total area
625 area per person

office has:
3 floors
25 occupants
4200 total area
168 area per person

As you can see, house’s data is completely separate from the data contained in office.
Figure 6-1 depicts this situation.

How Objects Are Created

In the preceding programs, the following line was used to declare an object of type
Building:

Building house = new Building();

This declaration performs three functions. First, it declares a variable called house of the
class type Building. This variable is not, itself, an object. Instead, it is simply a variable that
can refer to an object. Second, the declaration creates an actual, physical copy of the object.

Figure 6-1 house ——» Floors 2
One object’s Area 5500
instance variables o) ¢
are separate from ccupants 4
another’s.
office ——» Floors 3
Area 4200

Occupants 25

Chapter 6: Introducing Classes and Objects 115

This is done by using the new operator. Finally, it assigns to house a reference to that object.
Thus, after the line executes, house refers to an object of type Building.

The new operator dynamically allocates (that is, allocates at runtime) memory for an
object and returns a reference to it. This reference is then stored in a variable. Thus, in C#,
all class objects must be dynamically allocated.

As you might expect, it is possible to separate the declaration of house from the creation
of the object to which it will refer, as shown here:

Building house; // declare reference to object
house = new Building(); // allocate a Building object

The first line declares house as a reference to an object of type Building. Thus, house is a

variable that can refer to an object, but it is not an object, itself. The next line creates a new

Building object and assigns a reference to it to house. Now, house is linked with an object.
The fact that class objects are accessed through a reference explains why classes are

called reference types. The key difference between value types and reference types is what

a variable of each type means. For a value type variable, the variable, itself, contains the

value. For example, given

int x;
x = 10;

x contains the value 10 because x is a variable of type int, which is a value type. However, in
the case of

Building house = new Building();

house does not, itself, contain the object. Instead, it contains a reference to the object.

Reference Variables and Assignment

In an assignment operation, reference variables act differently than do variables of a value
type, such as int. When you assign one value type variable to another, the situation is
straightforward. The variable on the left receives a copy of the value of the variable on the
right. When you assign one object reference variable to another, the situation is a bit more
complicated because the assignment causes the reference variable on the left to refer to the
same object to which the reference variable on the right refers. The object, itself, is not
copied. The effect of this difference can cause some counterintuitive results. For example,
consider the following fragment:

Building housel = new Building();
Building house2 = housel;

At first glance, it is easy to think that housel and house2 refer to separate and distinct objects,
but this is not the case. Instead, housel and house2 will both refer to the same object. The
assignment of housel to house2 simply makes house2 refer to the same object that housel
does. Thus, the object can be acted upon by either housel or house2. For example, after the
assignment

housel.Area = 2600;

116

Part I: The C# Language

executes, both of these WriteLine() statements

Console.WriteLine (housel.Area);
Console.WriteLine (house2.Area) ;

display the same value: 2600.

Although housel and house2 both refer to the same object, they are not linked in any
other way. For example, a subsequent assignment to house2 simply changes what object
house?2 refers to. For example:

Building housel = new Building();

Building house2 = housel;

Building house3 = new Building();

house2 = house3; // now house2 and house3 refer to the same object.

After this sequence executes, house2 refers to the same object as house3. The object referred
to by housel is unchanged.

Methods

As explained, instance variables and methods are two of the primary constituents of classes.
So far, the Building class contains data, but no methods. Although data-only classes are
perfectly valid, most classes will have methods. Methods are subroutines that manipulate
the data defined by the class and, in many cases, provide access to that data. Typically, other
parts of your program will interact with a class through its methods.

A method contains one or more statements. In well-written C# code, each method
performs only one task. Each method has a name, and it is this name that is used to call
the method. In general, you can name a method using any valid identifier that you please.
However, remember that Main() is reserved for the method that begins execution of your
program. Also, don’t use C#’s keywords for method names.

When denoting methods in text, this book has used and will continue to use a
convention that has become common when writing about C#. A method will have
parentheses after its name. For example, if a method’s name is GetVal, then it will be
written GetVal() when its name is used in a sentence. This notation will help you
distinguish variable names from method names in this book.

The general form of a method is shown here:

access ret-type name(parameter-list) {
// body of method
}

Here, access is an access modifier that governs what other parts of your program can call the
method. As explained earlier, the access modifier is optional. If not present, then the method
is private to the class in which it is declared. For now, we will declare methods as public so
that they can be called by any other code in the program. The ret-type specifies the type of
data returned by the method. This can be any valid type, including class types that you
create. If the method does not return a value, its return type must be void. The name of the
method is specified by name. This can be any legal identifier other than those that would
cause conflicts within the current declaration space. The parameter-list is a sequence of type

Chapter 6: Introducing Classes and Objects

and identifier pairs separated by commas. Parameters are variables that receive the value of
the arguments passed to the method when it is called. If the method has no parameters, then
the parameter list will be empty.

Add a Method to the Building Class

As just explained, the methods of a class typically manipulate and provide access to the
data of the class. With this in mind, recall that Main() in the preceding examples computed
the area-per-person by dividing the total area by the number of occupants. Although
technically correct, this is not the best way to handle this computation. The calculation of
area-per-person is something that is best handled by the Building class, itself. The reason
for this conclusion is easy to understand: The area-per-person of a building is dependent
upon the values in the Area and Occupants fields, which are encapsulated by Building.
Thus, it is possible for the Building class to perform this calculation on its own. Furthermore,
by adding this calculation to Building, you prevent each program that uses Building from
having to perform this calculation manually. This prevents the unnecessary duplication of
code. Finally, by adding a method to Building that computes the area-per-person, you are
enhancing its object-oriented structure by encapsulating the quantities that relate directly
to a building inside Building.

To add a method to Building, specify it within Building’s declaration. For example, the
following version of Building contains a method called AreaPerPerson() that displays the
area-per-person for a building:

// Add a method to Building.
using System;

class Building {
public int Floors; // number of floors
public int Area; // total square footage of building
public int Occupants; // number of occupants

// Display the area per person.
public void AreaPerPerson() {
Console.WriteLine(" " + Area / Occupants + " area per person");
}
}

// Use the AreaPerPerson () method.
class BuildingDemo {
static void Main () {
Building house = new Building();
Building office = new Building();

// Assign values to fields in house.
house.Occupants = 4;

house.Area = 2500;

house.Floors = 2;

// Assign values to fields in office.
office.Occupants = 25;

17

118

Part I: The C# Language

office.Area = 4200;

office.Floors = 3;

Console.WriteLine ("house has:\n " +
house.Floors + " floors\n " +
house.Occupants + " occupants\n " +
house.Area + " total area");

house.AreaPerPerson () ;

Console.WriteLine () ;

Console.WriteLine ("office has:\n " +
office.Floors + " floors\n " +
office.Occupants + " occupants\n " +
office.Area + " total area");

office.AreaPerPerson();

This program generates the following output, which is the same as before:

house has:
2 floors
4 occupants
2500 total area
625 area per person

office has:
3 floors
25 occupants
4200 total area
168 area per person

Let’s look at the key elements of this program, beginning with the AreaPerPerson()
method, itself. The first line of AreaPerPerson() is

public void AreaPerPerson() {

This line declares a method called AreaPerPerson that has no parameters. It is specified as
public, so it can be used by all other parts of the program. Its return type is void. Thus,
AreaPerPerson() does not return a value to the caller. The line ends with the opening curly
brace of the method body.

The body of AreaPerPerson() consists solely of this statement:

Console.WriteLine (" " + Area / Occupants + " area per person");

This statement displays the area-per-person of a building by dividing Area by Occupants.
Since each object of type Building has its own copy of Area and Occupants, when
AreaPerPerson() is called, the computation uses the calling object’s copies of those
variables.

The AreaPerPerson() method ends when its closing curly brace is encountered. This
causes program control to transfer back to the caller.

Chapter 6: Introducing Classes and Objects 119

Next, look closely at this line of code from inside Main():
house.AreaPerPerson() ;

This statement invokes the AreaPerPerson() method on house. That is, it calls
AreaPerPerson() relative to the object referred to by house, by use of the dot operator.
When a method is called, program control is transferred to the method. When the method
terminates, control is transferred back to the caller, and execution resumes with the line
of code following the call.

In this case, the call to house.AreaPerPerson() displays the area-per-person of the
building defined by house. In similar fashion, the call to office.AreaPerPerson() displays
the area-per-person of the building defined by office. Each time AreaPerPerson() is
invoked, it displays the area-per-person for the specified object.

There is something very important to notice inside the AreaPerPerson() method: The
instance variables Area and Occupants are referred to directly, without use of the dot
operator. When a method uses an instance variable that is defined by its class, it does so
directly, without explicit reference to an object and without use of the dot operator. This is
easy to understand if you think about it. A method is always invoked relative to some object
of its class. Once this invocation has occurred, the object is known. Thus, within a method,
there is no need to specify the object a second time. This means that Area and Occupants
inside AreaPerPerson() implicitly refer to the copies of those variables found in the object
that invokes AreaPerPerson().

NOTE Asa point of interest, in the AreaPerPerson() method, Occupants must not equal zero
(which it won't for all of the examples in this chapter). If Occupants were zero, then a division-
by-zero error would occur. In Chapter 13, you will learn about exceptions, which are C#’s
approach to handling errors, and see how to watch for errors that can occur at runtime.

Return from a Method

In general, there are two conditions that cause a method to return. The first, as the
AreaPerPerson() method in the preceding example shows, is when the method’s closing
curly brace is encountered. The second is when a return statement is executed. There are
two forms of return: one for use in void methods (those that do not return a value) and one
for returning values. The first form is examined here. The next section explains how to
return values.

In a void method, you can cause the immediate termination of a method by using this
form of return:

return ;

When this statement executes, program control returns to the caller, skipping any remaining
code in the method. For example, consider this method:

public void MyMeth () {
int i;

for (i=0; i<10; i++) {
if (i == 5) return; // stop at 5
Console.WriteLine () ;

}

120

Part I: The C# Language

Here, the for loop will only run from 0 to 5, because once i equals 5, the method returns.
It is permissible to have multiple return statements in a method, especially when there
are two or more routes out of it. For example,

public void MyMeth () {
//
if (done) return;
//
if (error) return;

}

Here, the method returns if it is done or if an error occurs. Be careful, however. Having
too many exit points in a method can destructure your code, so avoid using them
casually.

To review: A void method can return in one of two ways—its closing curly brace is
reached, or a return statement is executed.

Return a Value

Although methods with a return type of void are not rare, most methods will return a value.
In fact, the ability to return a value is one of a method’s most useful features. You have
already seen an example of a return value when we used the Math.Sqrt() function in
Chapter 3 to obtain a square root.

Return values are used for a variety of purposes in programming. In some cases, such as
with Math.Sqrt(), the return value contains the outcome of some calculation. In other cases,
the return value may simply indicate success or failure. In still others, it may contain a
status code. Whatever the purpose, using method return values is an integral part of C#
programming.

Methods return a value to the calling routine using this form of return:

return value;

Here, value is the value returned.

You can use a return value to improve the implementation of AreaPerPerson(). Instead
of displaying the area-per-person, a better approach is to have AreaPerPerson() return this
value. Among the advantages to this approach is that you can use the value for other
calculations. The following example modifies AreaPerPerson() to return the area-per-
person rather than displaying it:

// Return a value from AreaPerPerson().
using System;

class Building {
public int Floors; // number of floors
public int Area; // total square footage of building
public int Occupants; // number of occupants

// Return the area per person.

public int AreaPerPerson() {
return Area / Occupants;

}

Chapter 6: Introducing Classes and Objects 121

// Use the return value from AreaPerPerson().
class BuildingDemo {
static void Main () {
Building house = new Building();
Building office = new Building();
int areaPP; // area per person

// Assign values to fields in house.
house.Occupants = 4;

house.Area = 2500;

house.Floors = 2;

// Assign values to fields in office.
office.Occupants = 25;

office.Area = 4200;

office.Floors = 3;

// Obtain area per person for house.
areaPP = house.AreaPerPerson();

Console.WriteLine ("house has:\n " +
house.Floors + " floors\n " +
house.Occupants + " occupants\n " +
house.Area + " total area\n " +

areaPP + " area per person");

Console.WriteLine();

// Obtain area per person for office.

areaPP = office.AreaPerPerson();

Console.WritelLine ("office has:\n " +
office.Floors + " floors\n " +
office.Occupants + " occupants\n " +
office.Area + " total area\n " +

areaPP + " area per person");

The output is the same as shown earlier.

In the program, notice that when AreaPerPerson() is called, it is put on the right side
of an assignment statement. On the left is a variable that will receive the value returned by
AreaPerPerson(). Thus, after

areaPP = house.AreaPerPerson();

executes, the area-per-person of the house object is stored in areaPP.

Notice that AreaPerPerson() now has a return type of int. This means that it will return
an integer value to the caller. The return type of a method is important because the type of
data returned by a method must be compatible with the return type specified by the method.
Thus, if you want a method to return data of type double, then its return type must be type
double.

122

Part I: The C# Language

Although the preceding program is correct, it is not written as efficiently as it could be.
Specifically, there is no need for the areaPP variable. A call to AreaPerPerson() can be used
in the WriteLine() statement directly, as shown here:

Console.WriteLine ("house has:\n " +
house.Floors + " floors\n " +
house.Occupants + " occupants\n " +
house.Area + " total area\n " +
house.AreaPerPerson() + " area per person");

In this case, when WriteLine() is executed, house.AreaPerPerson() is called automatically,
and its value will be passed to WriteLine(). Furthermore, you can use a call to AreaPerPerson()
whenever the area-per-person of a Building object is needed. For example, this statement
compares the per-person areas of two buildings:

if (bl.AreaPerPerson() > b2.AreaPerPerson())
Console.WriteLine ("bl has more space for each person");

Use Parameters

It is possible to pass one or more values to a method when the method is called. A value
passed to a method is called an argument. Inside the method, the variable that receives
the argument is called a formal parameter, or just parameter, for short. Parameters are
declared inside the parentheses that follow the method’s name. The parameter declaration
syntax is the same as that used for variables. The scope of a parameter is the body of its
method. Aside from its special task of receiving an argument, it acts like any other local
variable.

Here is a simple example that uses a parameter. Inside the ChkNum class, the method
IsPrime() returns true if the value that it is passed is prime. It returns false otherwise.
Therefore, IsPrime() has a return type of bool.

// A simple example that uses a parameter.
using System;

class ChkNum {
// Return true if x is prime.
public bool IsPrime (int x) {
if(x <= 1) return false;

x/1i; 1++)

for (int 1i=2; i <=
= 0) return false;

if((x %1) =
return true;
}
class ParmDemo {
static void Main() {

ChkNum ob = new ChkNum() ;

for (int 1i=2; 1 < 10; 1i++)
if (ob.IsPrime(i)) Console.WriteLine(i + " is prime.");

Chapter 6: Introducing Classes and Objects 123

else Console.WriteLine(i + " is not prime.");

Here is the output produced by the program:

is prime.
is prime.
is not prime.
is prime.
is not prime.
is prime.
is not prime.
is not prime.

W 00 3 o U W

In the program, IsPrime() is called nine times, and each time a different value is passed.
Let’s look at this process closely. First, notice how IsPrime() is called. The argument is
specified between the parentheses. When IsPrime() is called the first time, it is passed value
1. Thus, when IsPrime() begins executing, the parameter x receives the value 1. In the
second call, 2 is the argument, and x then has the value 2. In the third call, the argument
is 3, which is the value that x receives, and so on. The point is that the value passed as an
argument when IsPrime() is called is the value received by its parameter, x.

A method can have more than one parameter. Simply declare each parameter, separating
one from the next with a comma. For example, here the ChkNum class is expanded by
adding a method called LeastComFactor(), which returns the smallest factor that its two
arguments have in common. In other words, it returns the smallest whole number value
that can evenly divide both arguments.

// Add a method that takes two arguments.
using System;
class ChkNum {

// Return true if x is prime.

public bool IsPrime (int x) {

if(x <= 1) return false;

for (int i=2; 1 <= x/1i; 1i++)
if((x %1i) == 0) return false;

return true;

}

// Return the least common factor.

public int LeastComFactor (int a, int b) {
int max;
if (IsPrime(a) || IsPrime (b)) return 1;

max = a < b ? a : b;

for (int i=2; 1 <= max/2; 1i++)

if(((a%i) == 0) && ((b%i) == 0)) return i;

124 Part 1: The C# Language

return 1;

class ParmDemo {
static void Main () {
ChkNum ob = new ChkNum() ;
int a, b;

for (int i=2; i < 10; i++)

if (ob.IsPrime(i)) Console.WriteLine(i + " is prime.");
else Console.WriteLine(i + " is not prime.");

a = 17;

b = 8;

Console.WriteLine ("Least common factor for " +

a+ " and " + b + " is " +
ob.LeastComFactor(a, b));

a = 100;

b = 8;

Console.WriteLine ("Least common factor for " +
a+ " and " + b + " is " +
ob.LeastComFactor(a, b));

a = 100;

b = 75;

Console.WriteLine ("Least common factor for " +

a+ " and " + b + " is " +
ob.LeastComFactor(a, b));

Notice that when LeastComFactor() is called, the arguments are also separated by
commas. The output from the program is shown here:

is prime.

is prime.

is not prime.

is prime.

is not prime.

is prime.

is not prime.

is not prime.

Least common factor for 7 and 8 is 1
Least common factor for 100 and 8 is 2
Least common factor for 100 and 75 is 5

O o J o U Wi

When using multiple parameters, each parameter specifies its own type, which can
differ from the others. For example, this is perfectly valid:

int MyMeth (int a, double b, float c) {
//

Chapter 6: Introducing Classes and Objects 125

Add a Parameterized Method to Building

You can use a parameterized method to add a new feature to the Building class: the ability

to compute the maximum number of occupants for a building assuming that each occupant
must have a certain minimal space. This new method is called MaxOccupant(). It is shown
here:

// Return the maximum number of occupants if each
// 1is to have at least the specified minimum area.
public int MaxOccupant (int minArea) {

return Area / minArea;

}

When MaxOccupant() is called, the parameter minArea receives the minimum space
needed for each occupant. The method divides the total area of the building by this value
and returns the result.

The entire Building class that includes MaxOccupant() is shown here:

/*
Add a parameterized method that computes the
maximum number of people that can occupy a
building assuming each needs a specified
minimum space.

*/
using System;

class Building {
public int Floors; // number of floors
public int Area; // total square footage of building
public int Occupants; // number of occupants

// Return the area per person.
public int AreaPerPerson() {
return Area / Occupants;

}

// Return the maximum number of occupants if each
// 1s to have at least the specified minimum area.
public int MaxOccupant (int minArea) {
return Area / minArea;
}
}

// Use MaxOccupant () .
class BuildingDemo {
static void Main () {
Building house = new Building();
Building office = new Building();
// Assign values to fields in house.
house.Occupants = 4;
house.Area = 2500;
house.Floors = 2;

126 Part I: The C# Language

// Assign values to fields in office.

office.Occupants = 25;

office.Area = 4200;

office.Floors = 3;

Console.WriteLine ("Maximum occupants for house if each has " +
300 + " square feet: " +

house.MaxOccupant (300)) ;

Console.WriteLine ("Maximum occupants for office if each has " +
300 + " square feet: " +
office.MaxOccupant (300)) ;

The output from the program is shown here:

Maximum occupants for house if each has 300 square feet: 8
Maximum occupants for office if each has 300 square feet: 14

Avoiding Unreachable Code

When creating methods, you should avoid causing a situation in which a portion of code
cannot, under any circumstances, be executed. This is called unreachable code, and it is
considered incorrect in C#. The compiler will issue a warning message if you create a
method that contains unreachable code. For example:

public void MyMeth () {
char a, b;

//

if (a==b) {
Console.WriteLine ("equal");
return;

} else {
Console.WriteLine ("not equal");
return;

}
Console.WriteLine ("this is unreachable");

Here, the method MyMeth() will always return before the final WriteLine() statement is
executed. If you try to compile this method, you will receive a warning. In general, unreachable
code constitutes a mistake on your part, so it is a good idea to take unreachable code
warnings seriously.

Constructors
In the preceding examples, the instance variables of each Building object had to be set
manually using a sequence of statements, such as

Chapter 6: Introducing Classes and Objects 127

house.Occupants = 4;
house.Area = 2500;
house.Floors = 2;

An approach like this would never be used in professionally written C# code. Aside from
this approach being error prone (you might forget to set one of the fields), there is simply a
better way to accomplish this task: the constructor.

A constructor initializes an object when it is created. It has the same name as its class and
is syntactically similar to a method. However, constructors have no explicit return type. The
general form of a constructor is shown here:

access class-name(param-list) {
// constructor code

}

Typically, you will use a constructor to give initial values to the instance variables defined
by the class or to perform any other startup procedures required to create a fully formed
object. Also, usually, access is public because constructors are normally called from outside
their class. The param-list can be empty, or it can specify one or more parameters.

All classes have constructors, whether you define one or not, because C# automatically
provides a default constructor that causes all member variables to be initialized to their
default values. For most value types, the default value is zero. For bool, the default is false.
For reference types, the default is null. However, once you define your own constructor, the
default constructor is no longer used.

Here is a simple example that uses a constructor:

// A simple constructor.
using System;

class MyClass {
public int x;

public MyClass () {
x = 10;
}
}

class ConsDemo {
static void Main () {
MyClass tl = new MyClass();
MyClass t2 = new MyClass();

Console.WriteLine(tl.x + " " + t2.x);

In this example, the constructor for MyClass is

public MyClass () {
x = 10;
}

128

Part I: The C# Language

Notice that the constructor is specified as public. This is because the constructor will be
called from code defined outside of its class. This constructor assigns the instance variable
x of MyClass the value 10. This constructor is called by new when an object is created. For
example, in the line

MyClass tl = new MyClass();

the constructor MyClass() is called on the t1 object, giving t1.x the value 10. The same is
true for t2. After construction, t2.x has the value 10. Thus, the output from the program is

10 10

Parameterized Constructors

In the preceding example, a parameterless constructor was used. While this is fine for some
situations, most often you will need a constructor that accepts one or more parameters.
Parameters are added to a constructor in the same way they are added to a method: just
declare them inside the parentheses after the constructor’s name. For example, here
MyClass is given a parameterized constructor:

// A parameterized constructor.
using System;

class MyClass {
public int x;

public MyClass (int 1) {
x = 1i;
}
}

class ParmConsDemo {
static void Main () {
MyClass tl = new MyClass(10);
MyClass t2 = new MyClass (88);

Console.WriteLine(tl.x + " " + t2.x);
}
The output from this program is shown here:
10 88

In this version of the program, the MyClass() constructor defines one parameter called i,
which is used to initialize the instance variable, x. Thus, when the line

MyClass tl = new MyClass(10);

executes, the value 10 is passed to i, which is then assigned to x.

Chapter 6: Introducing Classes and Objects 129

Add a Constructor to the Building Class

We can improve the Building class by adding a constructor that automatically initializes the
Floors, Area, and Occupants fields when an object is constructed. Pay special attention to
how Building objects are created.

// Add a constructor to Building.
using System;

class Building {
public int Floors; // number of floors
public int Area; // total square footage of building
public int Occupants; // number of occupants

// A parameterized constructor for Building.
public Building(int £, int a, int o) {
Floors = £f;
Area = a;
Occupants = o;
}

// Display the area per person.
public int AreaPerPerson() {
return Area / Occupants;

}

// Return the maximum number of occupants if each
// 1s to have at least the specified minimum area.
public int MaxOccupant (int minArea) {
return Area / minArea;
}
}

// Use the parameterized Building constructor.
class BuildingDemo {
static void Main () {
Building house = new Building (2, 2500, 4);
Building office = new Building (3, 4200, 25);

Console.WriteLine ("Maximum occupants for house if each has " +
300 + " square feet: " +
house.MaxOccupant (300)) ;

Console.WriteLine ("Maximum occupants for office if each has " +

300 + " square feet: " +
office.MaxOccupant (300)) ;

The output from this program is the same as for the previous version.

130

Part I: The C# Language

Both house and office were initialized by the Building() constructor when they were
created. Each object is initialized as specified in the parameters to its constructor. For
example, in the following line,

Building house = new Building (2, 2500, 4);

the values 2, 2500, and 4 are passed to the Building() constructor when new creates the
object. Thus, house’s copy of Floors, Area, and Occupants will contain the values 2, 2500,
and 4, respectively.

The new Operator Revisited

Now that you know more about classes and their constructors, let’s take a closer look at the
new operator. As it relates to classes, the new operator has this general form:

new class-name(arg-list)

Here, class-name is the name of the class that is being instantiated. The class name followed
by parentheses specifies the constructor for the class. If a class does not define its own
constructor, new will use the default constructor supplied by C#. Thus, new can be used
to create an object of any class type.

Since memory is finite, it is possible that new will not be able to allocate memory for an
object because insufficient memory exists. If this happens, a runtime exception will occur.
(You will learn how to handle exceptions in Chapter 13.) For the sample programs in this
book, you won’t need to worry about running out of memory, but you may need to consider
this possibility in real-world programs that you write.

Using new with Value Types

At this point, you might be asking why you don’t need to use new for variables of the value
types, such as int or float? In C#, a variable of a value type contains its own value. Memory
to hold this value is automatically provided when the program is run. Thus, there is no
need to explicitly allocate this memory using new. Conversely, a reference variable stores

a reference to an object. The memory to hold this object must be allocated dynamically,
during execution.

Not making the fundamental types, such int or char, into reference types greatly
improves your program’s performance. When using a reference type, there is a layer of
indirection that adds overhead to each object access. This layer of indirection is avoided by
a value type.

As a point of interest, it is permitted to use new with the value types, as shown here:

int 1 = new int();

Doing so invokes the default constructor for type int, which initializes i to zero. For example:
// Use new with a value type.

using System;

class newValue {

static void Main() {
int 1 = new int(); // initialize i to zero

Chapter 6: Introducing Classes and Objects 131

Console.WriteLine ("The value of i is: " + 1i);

}

The output from this program is
The value of i is: O

As the output verifies, i is initialized to zero. Remember, without the use of new, i would be
uninitialized, and it would cause an error to attempt to use it in the WriteLine() statement
without explicitly giving it a value first.

In general, invoking new for a value type invokes the default constructor for that type.
It does not, however, dynamically allocate memory. Frankly, most programmers do not use
new with the value types.

Garbage Collection and Destructors

As you have seen, objects are dynamically allocated from a pool of free memory by using
the new operator. Of course, memory is not infinite, and the free memory can be exhausted.
Thus, it is possible for new to fail because there is insufficient free memory to create the
desired object. For this reason, one of the key components of any dynamic allocation scheme
is the recovery of free memory from unused objects, making that memory available for
subsequent reallocation. In many programming languages, the release of previously allocated
memory is handled manually. For example, in C++, the delete operator is used to free
memory that was allocated. However, C# uses a different, more trouble-free approach:
garbage collection.

C#'s garbage collection system reclaims objects automatically—occurring transparently,
behind the scenes, without any programmer intervention. It works like this: When no
references to an object exist, that object is assumed to be no longer needed, and the memory
occupied by the object is eventually released and collected. This recycled memory can then
be used for a subsequent allocation.

Garbage collection occurs only sporadically during the execution of your program. It
will not occur simply because one or more objects exist that are no longer used. Thus, you
can’t know, or make assumptions about, precisely when garbage collection will take place.

Destructors
It is possible to define a method that will be called just prior to an object’s final destruction
by the garbage collector. This method is called a destructor, and it can be used in some highly
specialized situations to ensure that an object terminates cleanly. For example, you might
use a destructor to ensure that a system resource owned by an object is released. It must be
stated at the outset that destructors are a very advanced feature that are applicable only to
certain rare cases. They are not normally needed. They are briefly described here for
completeness.

Destructors have this general form:

~class-name() {
// destruction code

}

132

Part I: The C# Language

Here, class-name is the name of the class. Thus, a destructor is declared like a constructor
except that it is preceded with a ~ (tilde). Notice it has no return type and takes no
arguments.

To add a destructor to a class, you simply include it as a member. It is called whenever
an object of its class is about to be recycled. Inside the destructor, you will specify those
actions that must be performed before an object is destroyed.

It is important to understand that the destructor is called just prior to garbage collection.
It is not called when a variable containing a reference to an object goes out of scope, for
example. (This differs from destructors in C++, which are called when an object goes out
of scope.) This means that you cannot know precisely when a destructor will be executed.
Furthermore, it is possible for your program to end before garbage collection occurs, so a
destructor might not get called at all.

The following program demonstrates a destructor. It works by creating and destroying
a large number of objects. During this process, at some point the garbage collector will be
activated, and the destructors for the objects will be called.

// Demonstrate a destructor.
using System;

class Destruct ({
public int x;

public Destruct (int i) {
X = 1i;

}

// Called when object is recycled.
~Destruct () {
Console.WriteLine ("Destructing " + x);

}

// Generates an object that is immediately destroyed.
public void Generator (int i) {
Destruct o = new Destruct (i);

}
}

class DestructDemo {
static void Main () {
int count;

Destruct ob = new Destruct (0);

/* Now, generate a large number of objects. At
some point, garbage collection will occur.
Note: You might need to increase the number
of objects generated in order to force
garbage collection. */

for (count=1; count < 100000; count++)

Chapter 6: Introducing Classes and Objects 133

ob.Generator (count) ;

Console.WriteLine ("Done") ;

}

Here is how the program works. The constructor sets the instance variable x to a known
value. In this example, x is used as an object ID. The destructor displays the value of x when
an object is recycled. Of special interest is Generator(). This method creates and then promptly
destroys a Destruct object. The DestructDemo class creates an initial Destruct object called
ob. Then using ob, it creates 100,000 objects by calling Generator() on ob. This has the net
effect of creating and destroying 100,000 objects. At various points in the middle of this
process, garbage collection will take place. Precisely how often or when is dependent upon
several factors, such as the initial amount of free memory, the operating system, and so on.
However, at some point, you will start to see the messages generated by the destructor. If
you don’t see the messages prior to program termination (that is, before you see the “Done”
message), try increasing the number of objects being generated by upping the count in the
for loop.

One important point: The call to WriteLine() inside ~Destruct() is purely for the sake of
illustration in this rather contrived example. Normally, a destructor should act only on the
instance variables defined by its class.

Because of the nondeterministic way in which destructors are called, they should not
be used to perform actions that must occur at a specific point in your program. One other
point: It is possible to request garbage collection. This is described in Part II, when C#'s class
library is discussed. However, manually initiating garbage collection is not recommended
for most circumstances, because it can lead to inefficiencies. Also, because of the way the
garbage collector works, even if you explicitly request garbage collection, there is no way
to know precisely when a specific object will be recycled.

The this Keyword

Before concluding this chapter, it is necessary to introduce this. When a method is called,

it is automatically passed a reference to the invoking object (that is, the object on which the
method is called). This reference is called this. Therefore, this refers to the object on which
the method is acting. To understand this, first consider a program that creates a class called
Rect that encapsulates the width and height of a rectangle and that includes a method
called Area() that returns its area.

using System;

class Rect {
public int Width;
public int Height;

public Rect (int w, int h) {
Width = w;
Height = h;

}

public int Area() {

134

Part I: The C# Language

return Width * Height;
}
}

class UseRect {
static void Main () {
Rect rl = new Rect (4, 5);
Rect r2 = new Rect (7, 9);

Console.WriteLine ("Area of rl: " 4+ rl.Area());

Console.WriteLine ("Area of r2: " + r2.Area());

As you know, within a method, the other members of a class can be accessed directly,
without any object or class qualification. Thus, inside Area(), the statement

return Width * Height;

means that the copies of Width and Height associated with the invoking object will be
multiplied together and the result returned. However, the same statement can also be
written like this:

return this.Width * this.Height;

Here, this refers to the object on which Area() was called. Thus, this.Width refers to that
object’s copy of Width, and this.Height refers to that object’s copy of Height. For example,
if Area() had been invoked on an object called x, then this in the preceding statement
would have been referring to x. Writing the statement without using this is really just
shorthand.

It is also possible to use this inside a constructor. In this case, this refers to the object
that is being constructed. For example, inside Rect(), the statements

Width = w;
Height = h;

can be written like this:

this.Width = w;
this.Height = h;

Of course, there is no benefit in doing so in this case.
For the sake of illustration, here is the entire Rect class written using the this reference:

using System;
class Rect {
public int Width;

public int Height;

public Rect (int w, int h) {

Chapter 6: Introducing Classes and Objects

this.Width = w;
this.Height = h;
}

public int Area() {
return this.Width * this.Height;

}
}

class UseRect {
static void Main () {
Rect rl = new Rect (4, 5);
Rect r2 = new Rect (7, 9);

Console.WriteLine ("Area of rl: " 4+ rl.Area());

Console.WriteLine ("Area of r2: " + r2.Area());

Actually, no C# programmer would use this as just shown because nothing is gained
and the standard form is easier. However, this has some important uses. For example, the
C# syntax permits the name of a parameter or a local variable to be the same as the name of
an instance variable. When this happens, the local name hides the instance variable. You can
gain access to the hidden instance variable by referring to it through this. For example, the
following is a syntactically valid way to write the Rect() constructor:

public Rect (int Width, int Height) {
this.Width = Width;
this.Height = Height;

}

In this version, the names of the parameters are the same as the names of the instance
variables, thus hiding them. However, this is used to “uncover” the instance variables.

135

This page intentionally left blank

CHAPTER
Arrays and Strings

his chapter returns to the subject of C#'s data types. It discusses arrays and the string
type. The foreach loop is also examined.

Arrays

An array is a collection of variables of the same type that are referred to by a common name.
In C#, arrays can have one or more dimensions, although the one-dimensional array is the
most common. Arrays are used for a variety of purposes because they offer a convenient
means of grouping together related variables. For example, you might use an array to hold
a record of the daily high temperature for a month, a list of stock prices, or your collection
of programming books.

The principal advantage of an array is that it organizes data in such a way that it can
be easily manipulated. For example, if you have an array containing the dividends for a
selected group of stocks, it is easy to compute the average income by cycling through the
array. Also, arrays organize data in such a way that it can be easily sorted.

Although arrays in C# can be used just like arrays in many other programming languages,
they have one special attribute: They are implemented as objects. This fact is one reason that
a discussion of arrays was deferred until objects had been introduced. By implementing
arrays as objects, several important advantages are gained, not the least of which is that
unused arrays can be garbage-collected.

One-Dimensional Arrays

A one-dimensional array is a list of related variables. Such lists are common in programming.
For example, you might use a one-dimensional array to store the account numbers of the
active users on a network. Another array might store the current batting averages for a
baseball team.

Because arrays in C# are implemented as objects, two steps are needed to obtain an
array for use in your program. First, you must declare a variable that can refer to an array.
Second, you must create an instance of the array by use of new. Therefore, to declare a one-
dimensional array, you will typically use this general form:

typel | array-name = new type[size];

131

138

Part I: The C# Language

Here, type declares the element type of the array. The element type determines the data type
of each element that comprises the array. Notice the square brackets that follow type. They
indicate that a one-dimensional array is being declared. The number of elements that the
array will hold is determined by size.

NOoTE If you come from a C or C++ background, pay special attention to the way arrays are
declared. Specifically, the square brackets follow the type name, not the array name.

Here is an example. The following creates an int array of ten elements and links it to an
array reference variable named sample.

int[] sample = new int[10];

The sample variable holds a reference to the memory allocated by new. This memory is
large enough to hold ten elements of type int.

As is the case when creating an instance of a class, it is possible to break the preceding
declaration in two. For example:

int[] sample;
sample = new int[10];

In this case, when sample is first created, it refers to no physical object. It is only after the
second statement executes that sample refers to an array.

An individual element within an array is accessed by use of an index. An index describes
the position of an element within an array. In C#, all arrays have 0 as the index of their first
element. Because sample has 10 elements, it has index values of 0 through 9. To index an
array, specify the number of the element you want, surrounded by square brackets. Thus,
the first element in sample is sample[0], and the last element is sample[9]. For example, the
following program loads sample with the numbers 0 through 9:

// Demonstrate a one-dimensional array.
using System;

class ArrayDemo {

static void Main () {
int[] sample = new int[10];
int i;

for(i = 0; i < 10; 1 = i+1)
sample[i] = i;

for(i = 0; i < 10; 1 = i+1)
Console.WriteLine ("sample[" + i + "]: " + sample[il]);

The output from the program is shown here:

sample[0]: O
sample[1]: 1
sample[2]: 2

Chapter 7: Arrays and Strings 139

sample[3]: 3

sample[4]: 4

sample[5]: 5

sample[6]: 6

sample[7]: 7

sample[8]: 8

sample[9]: 9

Conceptually, the sample array looks like this:
0 1 2 3 4 5 6 7 8 9
= =z ¥ ¥ T ¥ ©¥ E ¥ &
B o o ° o < 9 B B o
= S, S, = = = = = = S,
g g g = g g g g g g
& 8 8 B B G & & & 8

Arrays are common in programming because they let you deal easily with large numbers

of related variables. For example, the following program finds the average of the set of values
stored in the nums array by cycling through the array using a for loop:

// Compute the average of a set of values.

using System;

class Average {

static void Main () {
int[] nums = new int[10];
int avg = 0;
nums [0] = 99;
nums [1] = 10;
nums [2] = 100;
nums [3] = 18;
nums[4] = 78;
nums [5] = 23;
nums[6] = 63;
nums|[7] = 9;
nums [8] = 87;
nums [9] = 49;
for (int i=0; i < 10; i++)
avg = avg + nums[i];
avg = avg / 10;
Console.WriteLine ("Average: " + avg);

The output from the program is shown here:

Average: 53

140

Part I: The C# Language

Initializing an Array

In the preceding program, the nums array was given values by hand, using ten separate
assignment statements. While that is perfectly correct, there is an easier way to accomplish
this. Arrays can be initialized when they are created. The general form for initializing a one-
dimensional array is shown here:

typel 1 array-name = { vall, val2, val3, ..., valN };

Here, the initial values are specified by vall through valN. They are assigned in sequence,
left to right, in index order. C# automatically allocates an array large enough to hold the
initializers that you specify. There is no need to use the new operator explicitly. For example,
here is a better way to write the Average program:

// Compute the average of a set of values.
using System;

class Average {
static void Main () {
int[] nums = { 99, 10, 100, 18, 78, 23,
63, 9, 87, 49 };
int avg = 0;

for(int i=0; i < 10; i++)
avg = avg + nums[i];

avg = avg / 10;

Console.WriteLine ("Average: " + avg);

As a point of interest, although not needed, you can use new when initializing an array.
For example, this is a proper, but redundant, way to initialize nums in the foregoing
program:

int[] nums = new int[] { 99, 10, 100, 18, 78, 23,
63, 9, 87, 49 };

Although redundant here, the new form of array initialization is useful when you are
assigning a new array to an already-existent array reference variable. For example:

int[] nums;
nums = new int([] { 99, 10, 100, 18, 78, 23,
63, 9, 87, 49 };

In this case, nums is declared in the first statement and initialized by the second.

One last point: It is permissible to specify the array size explicitly when initializing an
array, but the size must agree with the number of initializers. For example, here is another
way to initialize nums:

int[] nums = new int[10] { 99, 10, 100, 18, 78, 23,
63, 9, 87, 49 };

In this declaration, the size of nums is explicitly stated as 10.

Chapter 7: Arrays and Strings 141

Boundaries Are Enforced

Array boundaries are strictly enforced in C#; it is a runtime error to overrun or underrun
the ends of an array. If you want to confirm this for yourself, try the following program that
purposely overruns an array:

// Demonstrate an array overrun.
using System;

class ArrayErr {

static void Main () {
int[] sample = new int[10];
int 1i;

// Generate an array overrun.
for(i = 0; i < 100; i = i+1)
sample[i] = i;

}

As soon as i reaches 10, an IndexOutOfRangeException is generated and the program is
terminated. (See Chapter 13 for a discussion of exceptions and exception handling.)

Multidimensional Arrays

Although the one-dimensional array is the most commonly used array in programming,
multidimensional arrays are certainly not rare. A multidimensional array is an array that has
two or more dimensions, and an individual element is accessed through the combination
of two or more indices.

Two-Dimensional Arrays
The simplest form of the multidimensional array is the two-dimensional array. In a two-
dimensional array, the location of any specific element is specified by two indices. If you
think of a two-dimensional array as a table of information, one index indicates the row, the
other indicates the column.

To declare a two-dimensional integer array table of size 10, 20, you would write

int[,] table = new int[10, 20];

Pay careful attention to the declaration. Notice that the two dimensions are separated from
each other by a comma. In the first part of the declaration, the syntax

(/]

indicates that a two-dimensional array reference variable is being created. When memory is
actually allocated for the array using new, this syntax is used:

int[10, 20]

This creates a 10x20 array, and again, the comma separates the dimensions.

122

Part I: The C# Language

To access an element in a two-dimensional array, you must specify both indices,
separating the two with a comma. For example, to assign the value 10 to location 3, 5
of array table, you would use

table[3, 5] = 10;

Here is a complete example. It loads a two-dimensional array with the numbers 1
through 12 and then displays the contents of the array.

// Demonstrate a two-dimensional array.
using System;

class TwoD {
static void Main () {
int t, 1i;
int[,] table = new int[3, 4];

for (t=0; t < 3; ++t) {
for (i=0; i < 4; ++i) {
table[t,i] = (t*4)+i+1;
Console.Write(table[t,1i] + " ");
}
Console.WriteLine () ;
}
}

In this example, table[0, 0] will have the value 1, table[0, 1] the value 2, table[0, 2] the
value 3, and so on. The value of table[2, 3] will be 12. Conceptually, the array will look like

the one shown in Figure 7-1.

NOTE If you have previously programmed in C, C++, or Java, be careful when declaring or accessing

multidimensional arrays in C#. In these other languages, array dimensions and indices are
specified within their own set of brackets. C# separates dimensions using commas.

Arrays of Three or More Dimensions

C# allows arrays with more than two dimensions. Here is the general form of a
multidimensional array declaration:

typel, ...,] name = new type[sizel, size2, ..., sizeN];

Ficure 7-1 0 1 2 34— right index
A conceptual view

of the table array 0 1 2 3 4

created by the

TwoD program 1 5 6 @ 8

2 9 10 Tll 12

left index
table[1][2]

Chapter 7: Arrays and Strings

For example, the following declaration creates a 4x10x3 three-dimensional integer array:
int[,,] multidim = new int[4, 10, 3];

To assign element 2, 4, 1 of multidim the value 100, use this statement:

multidim[2, 4, 1] = 100;

Here is a program that uses a three-dimensional array that holds a 3x3x3 matrix of
values. It then sums the value on one of the diagonals through the cube.

// Sum the values on a diagonal of a 3x3x3 matrix.
using System;

class ThreeDMatrix {
static void Main () {
int[,,] m = new int[3, 3, 31;
int sum = 0;
int n = 1;

for (int x=0; x < 3
for(int y=0; y < 3; y++)
for (int z=0; z

mix, y, z] n++;
sum = m[0, O, 0] + m[1, 1, 1] + m[2, 2, 2];
Console.WriteLine ("Sum of first diagonal: " + sum);

The output is shown here:

Sum of first diagonal: 42

Initializing Multidimensional Arrays

A multidimensional array can be initialized by enclosing each dimension’s initializer list
within its own set of curly braces. For example, the general form of array initialization for a
two-dimensional array is shown here:

typel,] array_name = {
{val, val, val, ..., val },
{val, val, val, ..., val },

{ val, val, val, ..., val }
7
Here, val indicates an initialization value. Each inner block designates a row. Within each
row, the first value will be stored in the first position, the second value in the second position,
and so on. Notice that commas separate the initializer blocks and that a semicolon follows
the closing }.

143

144 Part 1: The C# Language

For example, the following program initializes an array called sqrs with the numbers 1
through 10 and their squares.

// Initialize a two-dimensional array.
using System;

class Squares {

static void Main () {
int[,] sqrs = {

{1, 11},

r 4 }I
’ 9 }!
, 16},
’ 25 }I
4 36 }I
;49 1},
’ 64 }I
, 81},
0, 100 }

for(i=0; i < 10; i++) {
for (3=0; j < 2; j++)
Console.Write(sqrs[i,j] + " ");
Console.WriteLine () ;

}

Here is the output from the program:

Jagged Arrays

In the preceding examples, when you created a two-dimensional array, you were creating
what C# calls a rectangular array. Thinking of two-dimensional arrays as tables, a rectangular
array is a two-dimensional array in which the length of each row is the same for the entire
array. However, C# also allows you to create a special type of two-dimensional array called
a jagged array. A jagged array is an array of arrays in which the length of each array can differ.
Thus, a jagged array can be used to create a table in which the lengths of the rows are not
the same.

Chapter 7: Arrays and Strings 145

Jagged arrays are declared by using sets of square brackets to indicate each dimension.
For example, to declare a two-dimensional jagged array, you will use this general form:

typel 1 [] array-name = new type[size][|;

Here, size indicates the number of rows in the array. The rows, themselves, have not been
allocated. Instead, the rows are allocated individually. This allows for the length of each row
to vary. For example, the following code allocates memory for the first dimension of jagged
when it is declared. It then allocates the second dimensions manually.

int[][] jagged = new int[3][];
jagged[0] = new int[4];
jagged[1l] = new int([3];
jagged[2] = new int[5];

After this sequence executes, jagged looks like this:

jagged [O][0] | | jagged [O][1]| | jagged [O][2]| | jagged [O][3]

jagged [1][0] | | jagged [1][1]| | jagged [1][2]

jagged [21[0] | | jagged [21[1]| | jagged [2]12]] | jagged [2](3]] | jagged [2][4]

It is easy to see how jagged arrays got their name!

Once a jagged array has been created, an element is accessed by specifying each index
within its own set of brackets. For example, to assign the value 10 to element 2, 1 of jagged,
you would use this statement:

jagged[2] [1] = 10;

Note that this differs from the syntax that is used to access an element of a rectangular array.
The following program demonstrates the creation of a jagged two-dimensional array:

// Demonstrate jagged arrays.
using System;

class Jagged {
static void Main () {
int[][] jagged = new int[3]1[];
jagged[0] = new int[4];
jagged[1l] = new int([3];
jagged[2] = new int[5];

int i;

// Store values in first array.
for (i=0; i < 4; i++)
jagged[0] [1] = i;

// Store values in second array.
for (i=0; i < 3; i++)
jagged[1][i] = i;

146 Partl: The C# Language

// Store values in third array.
for(i=0; 1 < 5; i++)

jagged[2] [1] = i;
// Display values in first array.
for (i=0; 1 < 4; i++)

Console.Write (jagged[0] [1i] + ™ ");
Console.WriteLine () ;
// Display values in second array.
for (i=0; 1 < 3; i++)

Console.Write (jagged[1][i] + ™ ");
Console.WriteLine () ;
// Display values in third array.
for (i=0; 1 < 5; i++)

Console.Write(jagged[2][i] + " ™);

Console.WriteLine () ;

The output is shown here:

3

o
[
NN N

3 4

Jagged arrays are not used by all applications, but they can be effective in some
situations. For example, if you need a very large two-dimensional array that is sparsely
populated (that is, one in which not all of the elements will be used), then a jagged array
might be a perfect solution.

One last point: Because jagged arrays are arrays of arrays, there is no restriction that
requires that the arrays be one-dimensional. For example, the following creates an array
of two-dimensional arrays:

int{][,] jagged = new int[3][,];

The next statement assigns jagged[0] a reference to a 4x2 array:
jagged[0] = new int[4, 2];

The following statement assigns a value to jagged[0]1[1,0]:

jagged[0][1,0] = i;

Assigning Array References

As with other objects, when you assign one array reference variable to another, you are
simply making both variables refer to the same array. You are neither causing a copy of the

Chapter 7: Arrays and Strings 147

array to be created, nor are you causing the contents of one array to be copied to the other.
For example, consider this program:

// Assigning array reference variables.
using System;

class AssignARef ({

static void Main () {
int i;
int[] numsl = new int[10];
int[] nums2 = new int[10];
for(i=0; i < 10; i++) numsl[i] = i;
for (i=0; i < 10; i++) nums2[i] = -1i;
Console.Write ("Here is numsl: ");
for (i=0; i < 10; i++)
Console.Write (numsl[i] + "™ "M);

Console.WriteLine () ;

Console.lWrite ("Here is nums2: ");
for (i=0; i < 10; i++)
Console.Write (nums2[i] + "™ ");

Console.WriteLine () ;
nums?2 = numsl; // now nums2 refers to numsl
Console.Write ("Here is nums2 after assignment: ");
for (i=0; i < 10; i++)

Console.Write (nums2[i] + " ");

Console.WriteLine () ;

// Next, operate on numsl array through nums2.

nums2[3] = 99;
Console.Write ("Here is numsl after change through nums2: ");
for (i=0; i < 10; i++)

Console.Write (numsl[i] + "™ ");

Console.WriteLine () ;

The output from the program is shown here:

Here is numsl: 0 1 2 3 4 5 6 7 8 9

Here is nums2: 0 -1 -2 -3 -4 -5 -6 -7 -8 -9

Here is nums2 after assignment: 0 1 2 3 4 56 7 8 9

Here is numsl after change through nums2: 0 1 2 99 4 5 6 7 8 9

As the output shows, after the assignment of nums1 to nums2, both array reference
variables refer to the same object.

148

Part I: The C# Language

Using the Length Property

A number of benefits result because C# implements arrays as objects. One comes from the
fact that each array has associated with it a Length property that contains the number of
elements that an array can hold. Thus, each array provides a means by which its length can
be determined. Here is a program that demonstrates this property:

// Use the Length array property.
using System;

class LengthDemo {
static void Main () {
int[] nums = new int[10];

Console.WriteLine ("Length of nums is " + nums.Length);

// Use Length to initialize nums.
for (int i=0; i < nums.Length; i++)
nums[i] = 1 * 1;

// Now use Length to display nums.

Console.Write ("Here is nums: ");

for(int i=0; i < nums.Length; i++)
Console.Write (nums[i] + " ");

Console.WriteLine () ;

This program displays the following output:

Length of nums is 10
Here is nums: 0 1 4 9 16 25 36 49 64 81

In LengthDemo notice the way that nums.Length is used by the for loops to govern the
number of iterations that take place. Since each array carries with it its own length, you can
use this information rather than manually keeping track of an array’s size. Keep in mind
that the value of Length has nothing to do with the number of elements that are actually in
use. Length contains the number of elements that the array is capable of holding.

When the length of a multidimensional array is obtained, the total number of elements
that can be held by the array is returned. For example:

// Use the Length array property on a 3D array.
using System;
class LengthDemo3D {

static void Main () {

int[,,] nums = new int[10, 5, 6];

Console.WriteLine ("Length of nums is " + nums.Length);

}

Chapter 7: Arrays and Strings 149

The output is shown here:
Length of nums is 300

As the output verifies, Length obtains the number of elements that nums can hold, which
is 300 (10x5x6) in this case. It is not possible to use Length to obtain the length of a specific
dimension.

The inclusion of the Length property simplifies many algorithms by making certain
types of array operations easier—and safer—to perform. For example, the following
program uses Length to reverse the contents of an array by copying it back-to-front into
another array:

// Reverse an array.
using System;

class RevCopy {
static void Main () {
int 1i,73;
int[] numsl = new int[10];
int[] nums2 = new int[10];

for (i=0; i < numsl.Length; i++) numsl[i] = 1i;

Console.Write ("Original contents: ");
for (i=0; i < nums2.Length; i++)
Console.Write (numsl[i] + " ");

Console.WriteLine();

// Reverse copy numsl to nums2.
if (nums2.Length >= numsl.Length) // make sure nums2 is long enough
for (i=0, j=numsl.Length-1; i < numsl.Length; i++, j--)
nums2[j] = numsl[i];

Console.Write ("Reversed contents: ");
for(i=0; i < nums2.Length; i++)
Console.Write (nums2[i] + " ");

Console.WriteLine () ;

Here is the output:

Original contents:

01234567829
Reversed contents: 9 8 7 6 54 3 2 10
Here, Length helps perform two important functions. First, it is used to confirm that the
target array is large enough to hold the contents of the source array. Second, it provides
the termination condition of the for loop that performs the reverse copy. Of course, in this
simple example, the size of the arrays is easily known, but this same approach can be

applied to a wide range of more challenging situations.

150 Partl: The C# Language

Using Length with Jagged Arrays

A special case occurs when Length is used with jagged arrays. In this situation, it is possible
to obtain the length of each individual array. For example, consider the following program,
which simulates the CPU activity on a network with four nodes:

// Demonstrate Length with jagged arrays.
using System;

class Jagged {

static void Main () {
int[][] network nodes = new int[4][];
network nodes[0] = new int[3];
network nodes[1l] = new int([7];
network nodes[2] = new int[2];
network nodes[3] = new int([5];

int i, j;

// Fabricate some fake CPU usage data.
for (i=0; i < network nodes.Length; i++)
for (j=0; j < network nodes[i].Length; j++)
network nodes[i][j] =1 * j + 70;

Console.WriteLine ("Total number of network nodes: " +
network nodes.Length + "\n") ;

for (i=0; i < network nodes.Length; i++) {
for (j=0; j < network nodes[i].Length; j++) {
Console.Write ("CPU usage at node " + i +
"CPU M+ G+ M)
Console.Write (network nodes[i][j] + "% ")
Console.WriteLine () ;
}

Console.WriteLine();

The output is shown here:
Total number of network nodes: 4
CPU usage at node 0 CPU 0: 70%

CPU usage at node 0 CPU 70%
CPU usage at node 0 CPU 2: 70%

=

CPU usage at node 1 CPU 0: 70%
CPU usage at node 1 CPU 1: 71%
CPU usage at node 1 CPU 2: 72%
CPU usage at node 1 CPU 3: 73%
CPU usage at node 1 CPU 4: 74%

Chapter 7: Arrays and Strings 151

CPU usage at node 1 CPU 5: 75%
CPU usage at node 1 CPU 6: 76%

CPU usage at node 2 CPU 0: 70%

CPU usage at node 2 CPU 1: 72%
CPU usage at node 3 CPU 0: 70%
CPU usage at node 3 CPU 1: 73%
CPU usage at node 3 CPU 2: 76%
CPU usage at node 3 CPU 3: 79%
CPU usage at node 3 CPU 4: 82%

Pay special attention to the way Length is used on the jagged array network_nodes.
Recall, a two-dimensional jagged array is an array of arrays. Thus, when the expression

network nodes.Length

is used, it obtains the number of arrays stored in network_nodes, which is four in this case.
To obtain the length of any individual array in the jagged array, you will use an expression
such as this:

network nodes[0].Length

which, in this case, obtains the length of the first array.

Implicitly Typed Arrays
As explained in Chapter 3, C# 3.0 adds the ability to declare implicitly typed variables by
using the var keyword. These are variables whose type is determined by the compiler, based
on the type of the initializing expression. Thus, all implicitly typed variables must be
initialized. Using the same mechanism, it is also possible to create an implicitly typed array.
As a general rule, implicitly typed arrays are for use in certain types of queries involving
LINQ, which is described in Chapter 19. In most other cases, you will use the “normal”
array declaration approach. Implicitly typed arrays are introduced here for completeness.
An implicitly typed array is declared using the keyword var, but you do not follow var
with []. Furthermore, the array must be initialized because it is the type of the initializers
that determine the element type of the array. All of the initializers must be of the same or
compatible type. Here is an example of an implicitly typed array:

var vals = new[] { 1, 2, 3, 4, 5 };

This creates an array of int that is five elements long. A reference to that array is assigned to
vals. Thus, the type of vals is “array of int” and it has five elements. Again, notice that var is
not followed by [1. Also, even though the array is being initialized, you must include newl].
It’s not optional in this context.

Here is another example. It creates a two-dimensional array of double:

var vals = newl[,] { {1.1, 2.2}, {3.3, 4.4},{ 5.5, 6.6} };

In this case, vals has the dimensions 2x3.

152

Part I: The C# Language

You can also declare implicitly typed jagged arrays. For example, consider the following
program:

// Demonstrate an implicitly typed jagged array.
using System;

class Jagged {

static void Main () {
var jagged = newl[] {
new(] { 1, 2, 3, 4},
new(] { 9, 8, 7 },
new([] { 11, 12, 13, 14, 15 }

for(int j = 0; j < jagged.Length; Jj++) {
for(int i=0; i < jagged[j].Length; i++)
Console.Write (jagged[J][1i] + " ")

Console.WriteLine () ;

}

}

The program produces the following output:

1
9
11 1

Pay special attention to the declaration of jagged:

var jagged = newl[] {
newl[] { 1, 2, 3, 4},
newl[] { 9, 8, 7 },
new[] { 11, 12, 13, 14, 15 }

Notice how newl[] is used in two ways. First, it creates the array of arrays. Second, it creates
each individual array, based on the number and type of initializers. As you would expect,
all of the initializers in the individual arrays must be of the same type. The same general
approach used to declare jagged can be used to declare any implicitly typed jagged array.

As mentioned, implicitly typed arrays are most applicable to LINQ-based queries. They
are not meant for general use. In most cases, you should use explicitly typed arrays.

The foreach Loop

In Chapter 5, it was mentioned that C# defines a loop called foreach, but a discussion of
that statement was deferred until later. The time for that discussion has now come.

The foreach loop is used to cycle through the elements of a collection. A collection is a
group of objects. C# defines several types of collections, of which one is an array. The general
form of foreach is shown here:

Chapter 7: Arrays and Strings 153

foreach(type loopvar in collection) statement;

Here, type loopvar specifies the type and name of an iteration variable. The iteration variable
receives the value of the next element in the collection each time the foreach loop iterates.
The collection being cycled through is specified by collection, which, for the rest of this
discussion, is an array. Thus, type must be the same as (or compatible with) the element
type of the array. Beginning with C# 3.0, type can also be var, in which case the compiler
determines the type based on the element type of the array. This can be useful when
working with certain queries, as described later in this book. Normally, you will explicitly
specify the type.

Here is how foreach works. When the loop begins, the first element in the array is
obtained and assigned to loopvar. Each subsequent iteration obtains the next element from
the array and stores it in loopvar. The loop ends when there are no more elements to obtain.
Thus, the foreach cycles through the array one element at a time, from start to finish.

One important point to remember about foreach is that the iteration variable loopvar is
read-only. This means you can’t change the contents of an array by assigning the iteration
variable a new value.

Here is a simple example that uses foreach. It creates an array of integers and gives it
some initial values. It then displays those values, computing the summation in the process.

// Use the foreach loop.
using System;

class ForeachDemo {

static void Main () {
int sum = 0;
int[] nums = new int[10];

// Give nums some values.
for(int 1 = 0; 1 < 10; i++)
nums [1] = 1i;

// Use foreach to display and sum the values.
foreach (int x in nums) {

Console.WriteLine ("Value is: " + x);

sum += x;
}

Console.WriteLine ("Summation: " + sum);

The output from the program is shown here:

Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:

oUW NP O

154

Part I: The C# Language

Value is: 8
Value is: 9
Summation: 45

As this output shows, foreach cycles through an array in sequence from the lowest index to
the highest.

Although the foreach loop iterates until all elements in an array have been examined, it
is possible to terminate a foreach loop early by using a break statement. For example, this
program sums only the first five elements of nums:

// Use break with a foreach.
using System;

class ForeachDemo {

static void Main () {
int sum = 0;
int[] nums = new int[10];

// Give nums some values.
for(int 1 = 0; 1 < 10; i++)
nums [1] = 1i;

// Use foreach to display and sum the values.
foreach (int x in nums) {

Console.WriteLine ("Value is: " + Xx);
sum += X;
if(x == 4) break; // stop the loop when 4 is obtained
}
Console.WriteLine ("Summation of first 5 elements: " + sum);

This is the output produced:

Value is: O
Value is: 1
Value is: 2
Value is: 3

Value is: 4
Summation of first 5 elements: 10

As is evident, the foreach loop stops after the fifth element has been obtained.
The foreach loop also works on multidimensional arrays. It returns those elements in
row order, from first to last.

// Use foreach on a two-dimensional array.
using System;
class ForeachDemo?2 {

static void Main () {

int sum = 0;
int[,] nums = new int[3,5];

Chapter 7: Arrays and Strings

// Give nums some values.

for(int 1 = 0; i < 3; i++)

for(int j=0; J < 5; J++)
nums [i,3J] = (i+1)*(J+1);

// Use foreach to display and sum the values.
foreach (int x in nums) {

Console.WriteLine ("Value is: " + Xx);

sum += X;
}

Console.WriteLine ("Summation: " + sum);

The output from this program is shown here:

Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is: 12
Value is: 15
Summation: 90

YW oo dN O WN

O

Since the foreach loop can only cycle through an array sequentially, from start to finish,
you might think that its use is limited. However, this is not true. A large number of algorithms
require exactly this mechanism, of which one of the most common is searching. For example,
the following program uses a foreach loop to search an array for a value. It stops if the
value is found.

// Search an array using foreach.
using System;

class Search {

static void Main () {
int[] nums = new int[10];
int val;

bool found = false;
// Give nums some values.
for(int 1 = 0; 1 < 10; i++)

nums [1] = i;

val = 5;

155

156

Part I: The C# Language

// Use foreach to search nums for key.
foreach(int x in nums) {
if(x == val) {
found = true;
break;
}
}

if (found)
Console.WriteLine ("Value found!");

The output is shown here:
Value found!

The foreach loop is an excellent choice in this application because searching an array involves
examining each element. Other types of foreach applications include such things as computing
an average, finding the minimum or maximum of a set, looking for duplicates, and so on.
As you will see later in this book, foreach is especially useful when operating on other types
of collections.

Strings

From a day-to-day programming standpoint, one of the most important of C#'s data types is
string. string defines and supports character strings. In many other programming languages,
a string is an array of characters. This is not the case with C#. In C#, strings are objects. Thus,
string is a reference type. Although string is a built-in data type in C#, a discussion of string
needed to wait until classes and objects had been introduced.

Actually, you have been using the string class since Chapter 2, but you did not know it.
When you create a string literal, you are actually creating a string object. For example, in the
statement

Console.WriteLine ("In C#, strings are objects.");

the string “In C#, strings are objects.” is automatically made into a string object by C#. Thus,
the use of the string class has been “below the surface” in the preceding programs. In this
section, you will learn to handle them explicitly.

Constructing Strings
The easiest way to construct a string is to use a string literal. For example, here stris a
string reference variable that is assigned a reference to a string literal:

string str = "C# strings are powerful.";

In this case, str is initialized to the character sequence “C# strings are powerful.”
You can also create a string from a char array. For example:

char[] charray = {'t', 'e', 's', 't'};
string str = new string(charray);

Chapter 7: Arrays and Strings

Once you have created a string object, you can use it nearly anywhere that a quoted
string is allowed. For example, you can use a string object as an argument to WriteLine(),
as shown in this example:

// Introduce string.
using System;

class StringDemo {
static void Main() {

char[] Charray: {lAl, v v’ lsl, ltl, lr', 'j_', 'I'l', 'g', L };
string strl = new string(charray);
string str2 = "Another string.";

Console.WriteLine (strl);
Console.WriteLine (str2);

The output from the program is shown here:

A string.
Another string.

Operating on Strings
The string class contains several methods that operate on strings. Table 7-1 shows a few. The
string type also includes the Length property, which contains the length of the string.

To obtain the value of an individual character of a string, you simply use an index. For
example:

string str = "test";
Console.WriteLine (str[0]);

//t//

This displays “t”, the first character of “test”. Like arrays, string indexes begin at zero. One
important point, however, is that you cannot assign a new value to a character within a
string using an index. An index can only be used to obtain a character.

Method Description

static string Copy(string str)

Returns a copy of str.

int CompareTo(string str)

Returns less than zero if the invoking string is less than
str, greater than zero if the invoking string is greater than
str, and zero if the strings are equal.

int IndexOf(string str)

Searches the invoking string for the substring specified by
str. Returns the index of the first match, or —1 on failure.

int LastindexOf(string str)

Searches the invoking string for the substring specified by
str. Returns the index of the last match, or —1 on failure.

string ToLower()

Returns a lowercase version of the invoking string.

string ToUpper()

Returns an uppercase version of the invoking string.

TaBLe 7-1 Some Common String Handling Methods

151

158

Part I: The C# Language

To test two strings for equality, you can use the = = operator. Normally, when the = =
operator is applied to object references, it determines if both references refer to the same
object. This differs for objects of type string. When the = = is applied to two string references,
the contents of the strings, themselves, are compared for equality. The same is true for the !=
operator: When comparing string objects, the contents of the strings are compared. For other
types of string comparisons, you will need to use the CompareTo() method.

Here is a program that demonstrates several string operations:

// Some string operations.
using System;
class StrOps {

static void Main() {
string strl =

"When it comes to .NET programming, C# is #1.";

string str2 = string.Copy(strl);

string str3 = "C# strings are powerful.";
string strUp, strLow;

int result, idx;

Console.WriteLine ("strl: " + strl);

Console.WriteLine ("Length of strl: " +
strl.Length);

// Create upper- and lowercase versions of strl.

strLow = strl.ToLower () ;

strUp = strl.ToUpper();

Console.WriteLine ("Lowercase version of strl:\n
strLow) ;

Console.WritelLine ("Uppercase version of strl:\n
strUp) ;

Console.WriteLine () ;

// Display strl, one char at a time.

L

Console.WriteLine ("Display strl, one char at a time.");

for (int i=0; i < strl.Length; i++)
Console.Write(strl[i]):;
Console.WriteLine ("\n") ;

// Compare strings.

if(strl == str2)
Console.WriteLine ("strl == str2");
else
Console.WriteLine ("strl != str2");
if (strl == str3)
Console.WriteLine ("strl == str3");
else

Console.WriteLine ("strl != str3");

result =

if (result

Chapter 7: Arrays and Strings

strl.CompareTo (str3);

== 0)

Console.WriteLine ("strl and str3 are equal");
else if (result < 0)
Console.WriteLine ("strl is less than str3");

else

Console.WriteLine ("strl is greater than str3");

Console.WriteLine () ;

// Assign a new string to str2.
str2 = "One Two Three One";

// Search a string.
idx = str2.IndexOf ("One");

Console.WriteLine ("Index of first occurrence of One: " + idx);
idx = str2.LastIndexOf ("One");
Console.WriteLine ("Index of last occurrence of One: " + 1idx);

This program generates the following output:

strl: When it comes to .NET programming, C# is #1.
Length of strl: 44
Lowercase version of strl:

when it comes to .net programming, c# is #1.
Uppercase version of strl:

WHEN IT COMES TO .NET PROGRAMMING, C# IS #1.

Display strl,

one char at a time.

When it comes to .NET programming, C# is #1.

strl == str2
strl != str3

strl is greater than str3

Index of first occurrence of One: 0
Index of last occurrence of One: 14

You can concatenate (join together) two strings using the + operator. For example, this

statement:

string strl =
string str2 =
string str3 =
string str4 =

"One" ,.

"Two™;

"Three";

strl + str2 + str3;

initializes str4 with the string “OneTwoThree”.

One other point: The string keyword is an alias for (that is, maps directly to) the
System.String class defined by the .NET Framework class library. Thus, the fields and
methods defined by string are those of the System.String class, which includes more
than the sampling described here. System.String is examined in detail in Part II.

159

160 PartI: The C# Language

Arrays of Strings

Like any other data type, strings can be assembled into arrays. For example:

// Demonstrate string arrays.
using System;

class StringArrays {
static void Main () {
string[] str = { "This", "is", "a", "test." };

Console.WriteLine ("Original array: ");

for (int i=0; i < str.Length; i++)
Console.Write (str[i] + " ");

Console.WriteLine ("\n");

// Change a string.
str[1l] = "was";
str[3] = "test, too!";

Console.WriteLine ("Modified array: ");
for(int i=0; i < str.Length; i++)
Console.Write(str[i] + " ");

Here is the output from this program:

Original array:
This is a test.

Modified array:
This was a test, too!

Here is a more interesting example. The following program displays an integer value
using words. For example, the value 19 will display as “one nine”.

// Display the digits of an integer using words.
using System;

class ConvertDigitsToWords {
static void Main () {

int num;

int nextdigit;

int numdigits;

int[] n = new int[20];

string[] digits = { "zero", "one "two",
"three", "four", "five",
"six", "seven", "eight",
"nine" };

"
’

num = 1908;

Chapter 7: Arrays and Strings 161

Console.WriteLine ("Number: " + num);

Console.Write ("Number in words: ");

nextdigit 0;
numdigits = 0;

// Get individual digits and store in n.
// These digits are stored in reverse order.
do {
nextdigit = num % 10;
n[numdigits] = nextdigit;
numdigits++;
num = num / 10;
} while (num > 0);
numdigits--;

// Display the words.
for(; numdigits >= 0; numdigits--)
Console.Write(digits[n[numdigits]] + " ");

Console.WriteLine () ;

The output is shown here:

Number: 1908
Number in words: one nine zero eight

In the program, the string array digits holds in order the word equivalents of the digits
from zero to nine. The program converts an integer into words by first obtaining each digit
of the value and then storing those digits, in reverse order, in the int array called n. Then,
this array is cycled through from back to front. In the process, each integer value in n is
used as an index into digits, with the corresponding string being displayed.

Strings Are Immutable

Here is something that might surprise you: The contents of a string object are immutable.
That is, once created, the character sequence comprising that string cannot be altered. This
restriction allows strings to be implemented more efficiently. Even though this probably
sounds like a serious drawback, it isn’t. When you need a string that is a variation on one
that already exists, simply create a new string that contains the desired changes. Since
unused string objects are automatically garbage-collected, you don’t even need to worry
about what happens to the discarded strings.

It must be made clear, however, that string reference variables may, of course, change
which object they refer to. It is just that the contents of a specific string object cannot be
changed after it is created.

To fully understand why immutable strings are not a hindrance, we will use another of
string’s methods: Substring(). The Substring() method returns a new string that contains
a specified portion of the invoking string. Because a new string object is manufactured that

162

Part I: The C# Language

contains the substring, the original string is unaltered, and the rule of immutability is still
intact. The form of Substring() that we will be using is shown here:

string Substring(int start, int len)

Here, start specifies the beginning index, and len specifies the length of the substring.
Here is a program that demonstrates Substring() and the principle of immutable strings:

// Use Substring() .
using System;

class SubStr {
static void Main() {
string orgstr = "C# makes strings easy.";

// construct a substring
string substr = orgstr.Substring(5, 12);

Console.WriteLine ("orgstr: " + orgstr);
Console.WriteLine ("substr: " + substr);

Here is the output from the program:

orgstr: C# makes strings easy.
substr: kes strings

As you can see, the original string orgstr is unchanged and substr contains the substring.

One more point: Although the immutability of string objects is not usually a restriction
or hindrance, there may be times when it would be beneficial to modify a string. To allow
this, C# offers a class called StringBuilder, which is in the System.Text namespace. It
creates string objects that can be changed. For most purposes, however, you will want to use
string, not StringBuilder.

Strings Can Be Used in switch Statements

A string can be used to control a switch statement. It is the only non-integer type that can
be used in the switch. The fact that strings can be used in switch statements makes it
possible to handle some otherwise challenging situations more easily than you might
expect. For example, the following program displays the digit equivalent of the words

“ 7o

one,” “two,” and “three”:
// A string can control a switch statement.
using System;

class StringSwitch {
static void Main () {
string[] strs = {

"One", "tWO", "three", "tWO", "one" },.

foreach(string s in strs)

switch(s) {
case "one":

Console.Write (1) ;

break;
case "two":

Console.Write(2);

break;
case "three":

Console.Write (3);

break;
}
}

Console.WriteLine () ;

The output is shown here:

12321

{

Chapter 7:

Arrays and Strings

163

This page intentionally left blank

CHAPTER

A CGloser Look at
Methods and Classes

how to control access to the members of a class. It then discusses the passing and
returning of objects, method overloading, the various forms of Main(), recursion,
and the use of the keyword static.

I I This chapter resumes the examination of classes and methods. It begins by explaining

Controlling Access to Class Members

In its support for encapsulation, the class provides two major benefits. First, it links data
with code. You have been taking advantage of this aspect of the class since Chapter 6.
Second, it provides the means by which access to members can be controlled. It is this
second feature that is examined here.

Although C#’s approach is a bit more sophisticated, in essence, there are two basic
types of class members: public and private. A public member can be freely accessed by code
defined outside of its class. This is the type of class member that we have been using up to
this point. A private member can be accessed only by methods defined by its class. It is
through the use of private members that access is controlled.

Restricting access to a class” members is a fundamental part of object-oriented programming
because it helps prevent the misuse of an object. By allowing access to private data only
through a well-defined set of methods, you can prevent improper values from being assigned
to that data—by performing a range check, for example. It is not possible for code outside
the class to set the value of a private member directly. You can also control precisely how
and when the data within an object is used. Thus, when correctly implemented, a class
creates a “black box” that can be used, but the inner workings of which are not open to
tampering.

C#’s Access Modifiers

Member access control is achieved through the use of four access modifiers: public, private,
protected, and internal. In this chapter, we will be concerned with public and private. The
protected modifier applies only when inheritance is involved and is described in Chapter 11.

165

166

Part I: The C# Language

The internal modifier applies mostly to the use of an assembly, which for C# loosely means
a deployable program or library. The internal modifier is examined in Chapter 16.

When a member of a class is modified by the public specifier, that member can be
accessed by any other code in your program. This includes methods defined inside other
classes.

When a member of a class is specified as private, then that member can be accessed only
by other members of its class. Thus, methods in other classes are not able to access a private
member of another class. As explained in Chapter 6, if no access specifier is used, a class
member is private to its class by default. Thus, the private specifier is optional when creating
private class members.

An access specifier precedes the rest of a member’s type specification. That is, it must
begin a member’s declaration statement. Here are some examples:

public string errMsg;
private double bal;
private bool isError (byte status) { //

To understand the difference between public and private, consider the following
program:

// Public vs. private access.
using System;

class MyClass {
private int alpha; // private access explicitly specified
int beta; // private access by default
public int gamma; // public access

// Methods to access alpha and beta. It is OK for a member
// of a class to access a private member of the same class.

public void SetAlpha (int a) {
alpha = a;
}

public int GetAlpha() {
return alpha;

}

public void SetBeta (int a) {
beta = a;

}

public int GetBeta() {
return beta;

}

class AccessDemo {
static void Main () {
MyClass ob = new MyClass();

Chapter 8: A Closer Look at Methods and Classes

// Access to alpha and beta is allowed only through methods.
ob.SetAlpha (-99);

ob.SetBeta (19) ;

Console.WriteLine ("ob.alpha is " + ob.GetAlpha()):;
Console.WriteLine ("ob.beta is " + ob.GetBetal()):;

// You cannot access alpha or beta like this:
// ob.alpha = 10; // Wrong! alpha is private!
// ob.beta = 9; // Wrong! beta is private!

// It is OK to directly access gamma because it is public.
ob.gamma = 99;
}

}

As you can see, inside the MyClass class, alpha is specified as private, beta is private by
default, and gamma is specified as public. Because alpha and beta are private, they cannot
be accessed by code outside of their class. Therefore, inside the AccessDemo class, neither
can be used directly. Each must be accessed through public methods, such as SetAlpha()
and GetAlpha(). For example, if you were to remove the comment symbol from the
beginning of the following line

// ob.alpha = 10; // Wrong! alpha is private!

you would not be able to compile this program because of the access violation. Although
access to alpha by code outside of MyClass is not allowed, methods defined within
MyClass can freely access it, as the SetAlpha() and GetAlpha() methods show. The same
is true for beta.

The key point is this: A private member can be used freely by other members of its class,
but it cannot be accessed by code outside its class.

Applying Public and Private Access

The proper use of public and private access is a key component of successful object-oriented
programming. Although there are no hard and fast rules, here are some general principles
that serve as guidelines:

* Members of a class that are used only within the class itself should be private.

¢ Instance data that must be within a specific range should be private, with access
provided through public methods that can perform range checks.

¢ If changing a member can cause an effect that extends beyond the member itself
(that is, affects other aspects of the object), that member should be private, and
access to it should be controlled.

* Members that can cause harm to an object when improperly used should be private.
Access to these members should be through public methods that prevent improper
usage.

* Methods that get and set the values of private data must be public.

e Public instance variables are permissible when there is no reason for them to be
private.

167

168

Part I: The C# Language

Of course, there are many nuances that the preceding rules do not address, and special
cases cause one or more rules to be violated. But, in general, if you follow these rules, you
will be creating resilient objects that are not easily misused.

Controlling Access: A Case Study

To better understand the “how and why” behind access control, a case study is useful. One
of the quintessential examples of object-oriented programming is a class that implements a
stack. As you probably know, a stack is a data structure that implements a last-in, first-out
list. Its name comes from the analogy of a stack of plates on a table. The first plate on the
table is the last one to be used.

A stack is a classic example of object-oriented programming because it combines storage
for information along with the methods that access that information. Thus, a stack is a data
engine that enforces the last-in, first-out usage. Such a combination is an excellent choice for
a class in which the members that provide storage for the stack are private, and public methods
provide access. By encapsulating the underlying storage, it is not possible for code that uses
the stack to access the elements out of order.

A stack defines two basic operations: push and pop. A push puts a value onto the top of
the stack. A pop removes a value from the top of the stack. Thus, a pop is consumptive; once
a value has been popped off the stack, it has been removed and cannot be accessed again.

The example shown here creates a class called Stack that implements a stack. The
underlying storage for the stack is provided by a private array. The push and pop operations
are available through the public methods of the Stack class. Thus, the public methods enforce
the last-in, first-out mechanism. As shown here, the Stack class stores characters, but the
same mechanism could be used to store any type of data:

// A stack class for characters.
using System;

class Stack {
// These members are private.
char[] stck; // holds the stack
int tos; // index of the top of the stack

// Construct an empty Stack given its size.

public Stack(int size) {
stck = new char[size]; // allocate memory for stack
tos = 0;

}

// Push characters onto the stack.
public void Push (char ch) {
if (tos==stck.Length) {

Console.WriteLine (" -- Stack is full.");
return;

}

stck[tos] = ch;

tos++;

}

// Pop a character from the stack.

Chapter 8: A Closer Look at Methods and Classes 169

public char Pop() {
if (tos==0) {
Console.WriteLine (" -- Stack is empty.");
return (char) O0;

}

tos--;
return stckl[tos];

}

// Return true if the stack is full.
public bool IsFull() {
return tos==stck.Length;

}

// Return true if the stack is empty.
public bool IsEmpty () {
return tos==0;

}

// Return total capacity of the stack.
public int Capacity () {

return stck.Length;
}

// Return number of objects currently on the stack.
public int GetNum() {
return tos;

}

Let’s examine this class closely. The Stack class begins by declaring these two instance
variables:

// These members are private.
char[] stck; // holds the stack
int tos; // index of the top of the stack

The stck array provides the underlying storage for the stack, which in this case holds
characters. Notice that no array is allocated. The allocation of the actual array is handled
by the Stack constructor. The tos member holds the index of the top of the stack.

Both the tos and stck members are private. This enforces the last-in, first-out stack
mechanism. If public access to stck were allowed, then the elements on the stack could
be accessed out of order. Also, since tos holds the index of the top element in the stack,
manipulations of tos by code outside the Stack class must be prevented in order to avoid
corruption of the stack. Access to stck and tos is available, indirectly, to the user of Stack
through the various public methods described shortly.

The stack constructor is shown next:

// Construct an empty Stack given its size.

public Stack(int size) {
stck = new char[size]; // allocate memory for stack
tos = 0;

110

Part I: The C# Language

The constructor is passed the desired size of the stack. It allocates the underlying array and
sets tos to zero. Thus, a zero value in tos indicates that the stack is empty.
The public Push() method puts an element onto the stack. It is shown here:

// Push characters onto the stack.
public void Push (char ch) {
if (tos==stck.Length) {

Console.WriteLine (" -- Stack is full.");
return;

}

stck[tos] = ch;

tos++;

The element to be pushed onto the stack is passed in ch. Before the element is added to
the stack, a check is made to ensure that there is still room in the underlying array. This is
done by making sure that tos does not exceed the length of stck. If there is still room, the
element is stored in stck at the index specified by tos, and then tos is incremented. Thus,
tos always contains the index of the next free element in stck.

To remove an element from the stack, call the public method Pop(). It is shown here:

// Pop a character from the stack.
public char Pop () {
if (tos==0) {
Console.WriteLine (" -- Stack is empty."):;
return (char) 0;
}

tos--;
return stck[tos];

}

Here, the value of tos is checked. If it is zero, the stack is empty. Otherwise, tos is
decremented, and the element at that index is returned.

Although Push() and Pop() are the only methods needed to implement a stack, some
others are quite useful, and the Stack class defines four more. These are IsFull(), ISEmpty(),
Capacity(), and GetNum(), and they provide information about the state of the stack. They
are shown here:

// Return true if the stack is full.
public bool IsFull() {
return tos==stck.Length;

}

// Return true if the stack is empty.
public bool IsEmpty () {
return tos==0;

}

// Return total capacity of the stack.

Chapter 8: A Closer Look at Methods and Classes 171

public int Capacity () {
return stck.Length;
}

// Return number of objects currently on the stack.
public int GetNum() {
return tos;

}

The IsFull() method returns true when the stack is full and false otherwise. The IsSEmpty()
method returns true when the stack is empty and false otherwise. To obtain the total capacity
of the stack (that is, the total number of elements it can hold), call Capacity(). To obtain the
number of elements currently stored on the stack, call GetNum(). These methods are useful
because the information they provide requires access to tos, which is private. They are also
examples of how public methods can provide safe access to private members.

The following program demonstrates the stack:

// Demonstrate the Stack class.
using System;

class StackDemo {
static void Main () {
Stack stkl = new Stack(10);
Stack stk2 = new Stack(10);
Stack stk3 = new Stack(10);
char ch;
int i;

// Put some characters into stkl.
Console.WriteLine ("Push A through J onto stkl.");
for (1i=0; !stkl.IsFull(); i++)

stkl.Push((char) ('A' + 1));

if(stkl.IsFull()) Console.WriteLine("stkl is full.");

// Display the contents of stkl.
Console.Write ("Contents of stkl: ");
while(!stkl.IsEmpty ()) {
ch = stkl.Pop();
Console.Write (ch);

Console.WriteLine ()

if (stkl.IsEmpty()) Console.WriteLine("stkl is empty.\n");
// Put more characters into stkl.

Console.WritelLine ("Again push A through J onto stkl.");
for (i=0; !stkl.IsFull(); i++)

stkl.Push((char) ('A' + 1));

// Now, pop from stkl and push the element in stk2.

172

Part I: The C# Language

// This causes stk2 to hold the elements in reverse order.
Console.WriteLine ("Now, pop chars from stkl and push " +
"them onto stk2.");
while(!stkl.IsEmpty ()) {
ch = stkl.Pop();
stk2.Push (ch) ;
}

Console.Write ("Contents of stk2: ");
while(!stk2.IsEmpty ()) {
ch = stk2.Pop();
Console.Write (ch);

}
Console.WriteLine ("\n");
// Put 5 characters into stack.

Console.WriteLine ("Put 5 characters on stk3.");
for(i=0; i < 5; i++)

stk3.Push ((char) ('A' + 1));
Console.WriteLine ("Capacity of stk3: " + stk3.Capacity()):
Console.WriteLine ("Number of objects in stk3: " +

stk3.GetNum()) ;

The output from the program is shown here:

Push A through J onto stkl.
stkl is full.

Contents of stkl: JIHGFEDCBA
stkl is empty.

Again push A through J onto stkl.
Now, pop chars from stkl and push them onto stk2.
Contents of stk2: ABCDEFGHIJ

Put 5 characters on stk3.
Capacity of stk3: 10
Number of objects in stk3: 5

Pass References to Methods

Up to this point, the examples in this book have been using value types, such as int or
double, as parameters to methods. However, it is both correct and common to use a
reference type as a parameter. Doing so allows an object to be passed to a method. For
example, consider the following program:

// References can be passed to methods.
using System;

class MyClass {
int alpha, beta;

Chapter 8:

public MyClass (int i, int j) {
alpha = i;
beta = j;

}

// Return true if ob contains the same values as the invoking

public bool SameAs (MyClass ob) {
if ((ob.alpha == alpha) & (ob.beta
return true;
else return false;

}

// Make a copy of ob.

public void Copy (MyClass ob) {
alpha = ob.alpha;
beta = ob.beta;

}

public void Show() {
Console.WriteLine ("alpha:
alpha,

{0},
beta) ;

class PassOb {
static void Main () {
MyClass obl = new MyClass (4,
MyClass ob2 = new MyClass (6,

5);
1)

Console.Write ("obl:
obl.Show () ;

")

Console.Write ("ob2:
ob2.Show () ;

")

if (obl.SameAs (ob2))

beta:

A Closer Look at Methods and Classes

object.

== beta))

{1,

Console.WriteLine ("obl and ob2 have the same values.");

else

Console.WriteLine ("obl and ob2 have different values.");

Console.WriteLine () ;

// Now, make obl a copy of ob2.
obl.Copy (0ob2) ;

Console.Write ("obl after copy:
obl.Show () ;

")

if (obl.SameAs (ob2))

Console.WriteLine ("obl and ob2 have the same values.");

else

Console.WriteLine ("obl and ob2 have different values.");

113

174

Part I: The C# Language

This program generates the following output:

obl: alpha: 4, beta: 5
ob2: alpha: 6, beta: 7
obl and ob2 have different values.

obl after copy: alpha: 6, beta: 7
obl and ob2 have the same values.

The SameAs() and Copy() methods each take a reference of type MyClass as an
argument. The SameAs() method compares the values of alpha and beta in the invoking
object with the values of alpha and beta in the object passed via ob. The method returns
true only if the two objects contain the same values for these instance variables. The Copy()
method assigns the values of alpha and beta in the object referred to by ob to alpha and
beta in the invoking object. As this example shows, syntactically, reference types are passed
to methods in the same way as are value types.

How Arguments Are Passed

As the preceding example demonstrated, passing an object reference to a method is a
straightforward task. However, there are some nuances that the example did not show.

In certain cases, the effects of passing a reference type will be different than those experienced
when passing a value type. To see why, let’s review the two ways in which an argument
can be passed to a subroutine.

The first way is call-by-value. This method copies the value of an argument into the formal
parameter of the subroutine. Therefore, changes made to the parameter of the subroutine
have no effect on the argument used in the call. The second way an argument can be passed
is call-by-reference. In this method, a reference to an argument (not the value of the argument)
is passed to the parameter. Inside the subroutine, this reference is used to access the actual
argument specified in the call. This means that changes made to the parameter will affect
the argument used to call the subroutine.

By default, C# uses call-by-value, which means that a copy of the argument is made and
given to the receiving parameter. Thus, when you pass a value type, such as int or double,
what occurs to the parameter that receives the argument has no effect outside the method.
For example, consider the following program:

// Value types are passed by value.
using System;

class Test {
/* This method causes no change to the arguments
used in the call. */
public void NoChange (int i, int j) {
i=1i+ 3;
=3
}
}

class CallByValue {
static void Main () {
Test ob = new Test();

Chapter 8: A Closer Look at Methods and Classes 175

int a = 15, b = 20;

Console.WriteLine ("a and b before call: " +
a+ " " 4+ b);

ob.NoChange (a, b);

Console.WriteLine ("a and b after call: " +
a+ " "+ D)y

The output from this program is shown here:

a and b before call: 15 20
a and b after call: 15 20

As you can see, the operations that occur inside NoChange() have no effect on the values of
a and b used in the call. Again, this is because copies of the value of a and b have been given
to parameters i and j, but a and b are otherwise completely independent of i and j. Thus,
assigning i a new value will not affect a.

When you pass a reference to a method, the situation is a bit more complicated. In this
case, the reference, itself, is still passed by value. Thus, a copy of the reference is made and
changes to the parameter will not affect the argument. (For example, making the parameter
refer to a new object will not change the object to which the argument refers.) However—
and this is a big however—changes made to the object being referred to by the parameter will
affect the object referred to by the argument. Let’s see why.

Recall that when you create a variable of a class type, you are only creating a reference
to an object. Thus, when you pass this reference to a method, the parameter that receives it
will refer to the same object as that referred to by the argument. Therefore, the argument
and the parameter will both refer to the same object. This means that objects are passed to
methods by what is effectively call-by-reference. Thus, changes to the object inside the method
do affect the object used as an argument. For example, consider the following program:

// Objects are passed by reference.
using System;

class Test {
public int a, b;

public Test (int i, int j) {
a = 1i;
b = 73;

}

/* Pass an object. Now, ob.a and ob.b in object
used in the call will be changed. */

public void Change (Test ob) {
ob.a = ob.a + ob.b;
ob.b = -ob.b;

176

Part I: The C# Language

class CallByRef ({
static void Main () {
Test ob = new Test (15, 20);

Console.WriteLine ("ob.a and ob.b before call: " +

ob.a + " " + ob.b);
ob.Change (ob) ;
Console.WriteLine ("ob.a and ob.b after call: " +
ob.a + " " + ob.b);

This program generates the following output:

ob.a and ob.b before call: 15 20
ob.a and ob.b after call: 35 -20

As you can see, in this case, the actions inside Change() have affected the object used as an
argument.

To review: When a reference is passed to a method, the reference itself is passed by use
of call-by-value. Thus, a copy of that reference is made. However, the copy of that reference
will still refer to the same object as its corresponding argument. This means that objects are
implicitly passed using call-by-reference.

Use ref and out Parameters

As just explained, value types, such as int or char, are passed by value to a method. This
means that changes to the parameter that receives a value type will not affect the actual
argument used in the call. You can, however, alter this behavior. Through the use of the ref
and out keywords, it is possible to pass any of the value types by reference. Doing so allows
a method to alter the argument used in the call.

Before going into the mechanics of using ref and out, it is useful to understand why you
might want to pass a value type by reference. In general, there are two reasons: to allow a
method to alter the contents of its arguments or to allow a method to return more than one
value. Let’s look at each reason in detail.

Often you will want a method to be able to operate on the actual arguments that are
passed to it. The quintessential example of this is a Swap() method that exchanges the values
of its two arguments. Since value types are passed by value, it is not possible to write a
method that swaps the value of two ints, for example, using C#’s default call-by-value
parameter passing mechanism. The ref modifier solves this problem.

As you know, a return statement enables a method to return a value to its caller. However, a
method can return only one value each time it is called. What if you need to return two or more
pieces of information? For example, what if you want to create a method that decomposes a
floating-point number into its integer and fractional parts? To do this requires that two pieces
of information be returned: the integer portion and the fractional component. This method
cannot be written using only a single return value. The out modifier solves this problem.

Chapter 8: A Closer Look at Methods and Classes 177

Use ref

The ref parameter modifier causes C# to create a call-by-reference, rather than a call-by-
value. The ref modifier is specified when the method is declared and when it is called. Let’s
begin with a simple example. The following program creates a method called Sqr() that
returns in-place the square of its integer argument. Notice the use and placement of ref.

// Use ref to pass a value type by reference.
using System;

class RefTest {
// This method changes its argument. Notice the use of ref.
public void Sqgr(ref int i) {
i=1*1i;
}
}

class RefDemo {
static void Main () {
RefTest ob = new RefTest();
int a = 10;
Console.WriteLine ("a before call: " + a);
ob.Sqr (ref a); // notice the use of ref
Console.WriteLine ("a after call: " + a);

}

Notice that ref precedes the entire parameter declaration in the method and that it precedes
the argument when the method is called. The output from this program, shown here, confirms
that the value of the argument, a, was indeed modified by Sqr():

a before call: 10
a after call: 100

Using ref, it is now possible to write a method that exchanges the values of its two
value-type arguments. For example, here is a program that contains a method called
Swap() that exchanges the values of the two integer arguments with which it is called:

// Swap two values.
using System;
class ValueSwap {
// This method now changes its arguments.

public void Swap(ref int a, ref int b) {
int t;

178

Part I: The C# Language

t = a;
a = b;
b = t;

}

class ValueSwapDemo {
static void Main () {
ValueSwap ob = new ValueSwap ()

int x = 10, y = 20;
Console.WritelLine ("x and y before call: " + x + " " + y);
ob.Swap (ref x, ref y);

Console.WriteLine ("x and y after call: " + x + " " + y);

The output from this program is shown here:

x and y before call: 10 20
x and y after call: 20 10

Here is one important point to understand about ref: An argument passed by ref must
be assigned a value prior to the call. The reason is that the method that receives such an
argument assumes that the parameter refers to a valid value. Thus, using ref, you cannot
use a method to give an argument an initial value.

Use out

Sometimes you will want to use a reference parameter to receive a value from a method, but
not pass in a value. For example, you might have a method that performs some function,
such as opening a network socket, that returns a success/fail code in a reference parameter.
In this case, there is no information to pass into the method, but there is information to pass
back out. The problem with this scenario is that a ref parameter must be initialized to a
value prior to the call. Thus, to use a ref parameter would require giving the argument a
dummy value just to satisfy this constraint. Fortunately, C# provides a better alternative:
the out parameter.

An out parameter is similar to a ref parameter with this one exception: It can only be
used to pass a value out of a method. It is not necessary (or useful) to give the variable used
as an out parameter an initial value prior to calling the method. The method will give the
variable a value. Furthermore, inside the method, an out parameter is considered unassigned;
that is, it is assumed to have no initial value. This implies that the method must assign the
parameter a value prior to the method’s termination. Thus, after the call to the method, an
out parameter will contain a value.

Here is an example that uses an out parameter. In the class Decompose, the GetParts()
method decomposes a floating-point number into its integer and fractional parts. Notice
how each component is returned to the caller.

Chapter 8: A Closer Look at Methods and Classes

// Use out.
using System;
class Decompose {

/* Decompose a floating-point value into its
integer and fractional parts. */

public int GetParts(double n, out double frac) {
int whole;

whole = (int) n;
frac = n - whole; // pass fractional part back through frac
return whole; // return integer portion

class UseOut {
static void Main () {
Decompose ob = new Decompose () ;
int 1i;
double £f;

i = ob.GetParts(10.125, out f);

Console.WriteLine ("Integer portion is " + 1i);
Console.WriteLine ("Fractional part is " + f);

The output from the program is shown here:

Integer portion is 10
Fractional part is 0.125

The GetParts() method returns two pieces of information. First, the integer portion of n is
returned as GetParts()’s return value. Second, the fractional portion of n is passed back to
the caller through the out parameter frac. As this example shows, by using out, it is possible
for one method to return two values.

Of course, you are not limited to only one out parameter. A method can return as many
pieces of information as necessary through out parameters. Here is an example that uses
two out parameters. The method HasComFactor() performs two functions. First, it determines
if two integers have a common factor (other than 1). It returns true if they do and false
otherwise. Second, if they do have a common factor, HasComFactor() returns the least and
greatest common factors in out parameters.

// Use two out parameters.
using System;

class Num ({
/* Determine if x and v have a common divisor.

179

180 PartI: The C# Language

If so, return least and greatest common factors in
the out parameters. */
public bool HasComFactor (int x, int vy,
out int least, out int greatest) {

int i;

int max = x <y ? x @ y;
bool first = true;

least = 1;

greatest = 1;

// Find least and greatest common factors.
for (i=2; i <= max/2 + 1; i++) {

if(((y%1)==0) & ((x%1)==0)) {
if (first) |
least = 1i;
first = false;
}
greatest = i;
}
}
if (least != 1) return true;

else return false;

class DemoOut {
static void Main () {
Num ob = new Num() ;
int 1lcf, gcf;

if (ob.HasComFactor (231, 105, out lcf, out gcf)) {
Console.WriteLine ("Lcf of 231 and 105 is " 4+ 1lcf);
Console.WriteLine ("Gcf of 231 and 105 is " + gcf);

}

else
Console.WriteLine ("No common factor for 35 and 49.");

if (ob.HasComFactor (35, 51, out 1lcf, out gcf)) {
Console.WriteLine ("Lcf of 35 and 51 " + 1lcf);
Console.WriteLine ("Gecf of 35 and 51 is " + gcf);

}

else
Console.WriteLine ("No common factor for 35 and 51.");

In Main(), notice that lcf and gcf are not assigned values prior to the call to
HasComFactor(). This would be an error if the parameters had been ref rather than
out. The method returns either true or false, depending upon whether the two integers
have a common factor. If they do, the least and greatest common factors are returned
in the out parameters. The output from this program is shown here:

Chapter 8: A Closer Look at Methods and Classes 181

Lcf of 231 and 105 is 3
Gecf of 231 and 105 is 21
No common factor for 35 and 51.

Use ref and out on References

The use of ref and out is not limited to the passing of value types. They can also be used
when a reference is passed. When ref or out modifies a reference, it causes the reference,
itself, to be passed by reference. This allows a method to change the object to which the
reference refers. Consider the following program, which uses ref reference parameters to
exchange the objects to which two references are referring:

// Swap two references.
using System;

class RefSwap {
int a, b;

public RefSwap (int i, int J) {
a = 1i;
b = 73;

}

public void Show() {
Console.WriteLine ("a: {0}, b: {1}", a, b);
}

// This method changes its arguments.
public void Swap (ref RefSwap obl, ref RefSwap ob2) {
RefSwap t;

t = obl;
obl = ob2;
ob2 = t;

class RefSwapDemo {
static void Main () {
RefSwap x = new RefSwap(l, 2);
RefSwap y = new RefSwap (3, 4);

Console.Write ("x before call: ");
x.Show () ;

Console.Write ("y before call: ");
y.Show () ;

Console.WriteLine () ;

// Exchange the objects to which x and y refer.
x.Swap (ref x, ref y);

182 Partl: The C# Language

Console.Write("x after call: ");
x.Show () ;

Console.Write("y after call: ");
y.Show () ;

The output from this program is shown here:

x before call: a: 1, b: 2
y before call: a: 3, b: 4

x after call: a: 3, b: 4
y after call: a: 1, b: 2

In this example, the method Swap() exchanges the objects to which the two arguments to
Swap() refer. Before calling Swap(), x refers to an object that contains the values 1 and 2,
and y refers to an object that contains the values 3 and 4. After the call to Swap(), x refers to
the object that contains the values 3 and 4, and y refers to the object that contains the values
1 and 2. If ref parameters had not been used, then the exchange inside Swap() would have
had no effect outside Swap(). You might want to prove this by removing ref from Swap().

Use a Variable Number of Arguments

When you create a method, you usually know in advance the number of arguments that
you will be passing to it, but this is not always the case. Sometimes you will want to create
a method that can be passed an arbitrary number of arguments. For example, consider a
method that finds the smallest of a set of values. Such a method might be passed as few

as two values, or three, or four, and so on. In all cases, you want that method to return the
smallest value. Such a method cannot be created using normal parameters. Instead, you
must use a special type of parameter that stands for an arbitrary number of parameters.
This is done by creating a params parameter.

The params modifier is used to declare an array parameter that will be able to receive
zero or more arguments. The number of elements in the array will be equal to the number
of arguments passed to the method. Your program then accesses the array to obtain the
arguments.

Here is an example that uses params to create a method called MinVal(), which returns
the minimum value from a set of values:

// Demonstrate params.
using System;
class Min {
public int MinVal (params int[] nums) {

int m;

if (nums.Length == 0) {

Chapter 8: A Closer Look at Methods and Classes

Console.WritelLine ("Error: no arguments.");

return 0;

m = nums[0];
for (int i=1; i < nums.Length;
if(nums[i] < m) m = nums[i];

return m;

class ParamsDemo {

static void Main () {
Min ob = new Min();
int min;

int a = 10, b = 20;

// Call with 2 values.
min = ob.MinVal (a, b);
Console.WriteLine ("Minimum is

// Call with 3 values.
min = ob.MinVal(a, b, -1);
Console.WriteLine ("Minimum is

// Call with 5 values.
min = ob.MinVval (18, 23, 3, 14,
Console.WriteLine ("Minimum is

// Can call with an int array,
int[] args = { 45, 67, 34, 9,
min = ob.MinVal (args) ;

Console.WriteLine ("Minimum is

i++)

" + min);

" + min);

25);
+ min) ;

"

too.
112, 8 };

" + min);

The output from the program is shown here:

Minimum is 10
Minimum is -1
Minimum is 3
Minimum is 8

Each time MinVal() is called, the arguments are passed to it via the nums array. The length
of the array equals the number of elements. Thus, you can use MinVal() to find the minimum

of any number of values.

Notice the last call to MinVal(). Rather than being passed the values individually, it is
passed an array containing the values. This is perfectly legal. When a params parameter
is created, it will accept either a variable-length list of arguments or an array containing the

arguments.

183

184

Part I: The C# Language

Although you can pass a params parameter any number of arguments, they all must
be of a type compatible with the array type specified by the parameter. For example, calling
MinVal() like this:

min = ob.MinVal(l, 2.2); // Wrong!

is illegal because there is no automatic conversion from double (2.2) to int, which is the type
of nums in MinVal().

When using params, you need to be careful about boundary conditions because a
params parameter can accept any number of arguments—euven zero! For example, it is
syntactically valid to call MinVal() as shown here:

min = ob.MinVal(); // no arguments
min = ob.MinVal(3); // 1 argument

This is why there is a check in MinVal() to confirm that at least one element is in the nums
array before there is an attempt to access that element. If the check were not there, then a
runtime exception would result if MinVal() were called with no arguments. (Exceptions are
described in Chapter 13.) Furthermore, the code in MinVal() was written in such a way as to
permit calling MinVal() with one argument. In that situation, the lone argument is returned.

A method can have normal parameters and a variable-length parameter. For example,
in the following program, the method ShowArgs() takes one string parameter and then a
params integer array:

// Use regular parameter with a params parameter.
using System;
class MyClass {
public void ShowArgs (string msg, params int[] nums) {

Console.Write(msg + ": ");

foreach (int i in nums)
Console.Write(i + "™ ");

Console.WriteLine () ;
}
class ParamsDemo2 {
static void Main () {

MyClass ob = new MyClass();

ob.ShowArgs ("Here are some integers",
1, 2/ 3! 4, 5);

ob.ShowArgs ("Here are two more",
17, 20);

This program displays the following output:

Chapter 8: A Closer Look at Methods and Classes 185

Here are some integers: 1 2 3 4 5
Here are two more: 17 20

In cases where a method has regular parameters and a params parameter, the params
parameter must be the last one in the parameter list. Furthermore, in all situations, there
must be only one params parameter.

Return Objects

A method can return any type of data, including class types. For example, the following
version of the Rect class includes a method called Enlarge() that creates a rectangle that
is proportionally the same as the invoking rectangle, but larger by a specified factor:

// Return an object.
using System;

class Rect {
int width;
int height;

public Rect (int w, int h) {
width = w;
height = h;

}

public int Area() {
return width * height;
}

public void Show() {
Console.WriteLine (width + " " + height);
}

/* Return a rectangle that is a specified
factor larger than the invoking rectangle. */
public Rect Enlarge (int factor) {
return new Rect (width * factor, height * factor);
}
}

class RetObj {
static void Main () {
Rect rl = new Rect (4, 5);

Console.Write ("Dimensions of rl: ");
rl.Show () ;
Console.WriteLine ("Area of rl: " 4+ rl.Area());

Console.WriteLine () ;

// Create a rectangle that is twice as big as rl.
Rect r2 = rl.Enlarge(2);

186

Part I: The C# Language

Console.Write ("Dimensions of r2: ");
r2.Show () ;
Console.WriteLine ("Area of r2: " + r2.Areal());

The output is shown here:

Dimensions of rl: 4 5
Area of rl: 20

Dimensions of r2: 8 10
Area of r2: 80

When an object is returned by a method, it remains in existence until there are no more
references to it. At that point, it is subject to garbage collection. Thus, an object won't be
destroyed just because the method that created it terminates.

One application of object return types is the class factory. A class factory is a method that
is used to construct objects of its class. In some situations, you may not want to give users of
a class access to the class’ constructor because of security concerns or because object construction
depends upon certain external factors. In such cases, a class factory is used to construct
objects. Here is a simple example:

// Use a class factory.
using System;

class MyClass {
int a, b; // private

// Create a class factory for MyClass.
public MyClass Factory(int i, int j) {
MyClass t = new MyClass();

t.a = i;
t.b = 3j;
return t; // return an object

public void Show() {
Console.WriteLine("a and b: " + a + " " + b);

}

}

class MakeObjects {
static void Main () {
MyClass ob = new MyClass();
int i, j;

// Generate objects using the factory.
for (1i=0, 3=10; i < 10; i++, j--) {

Chapter 8: A Closer Look at Methods and Classes 187

MyClass anotherOb = ob.Factory(i, Jj); // make an object
anotherOb.Show () ;
}

Console.WriteLine () ;

The output is shown here:

(e}

and
and
and
and
and
and
and
and
and
and

U CR R ORI EE T
OO0 00000000
O JoU WO
N WS U0y~ oo

Let’s look closely at this example. MyClass does not define a constructor, so only the
default constructor is available. Thus, it is not possible to set the values of a and b using a
constructor. However, the class factory Factory() can create objects in which a and b are
given values. Moreover, since a and b are private, using Factory() is the only way to set
these values.

In Main(), a MyClass object is instantiated, and its factory method is used inside the for
loop to create ten other objects. The line of code that creates objects is shown here:

MyClass anotherOb = ob.Factory(i, j); // get an object

With each iteration, an object reference called anotherOb is created, and it is assigned a
reference to the object constructed by the factory. At the end of each iteration of the loop,
anotherOb goes out of scope, and the object to which it refers is recycled.

Return an Array

Since in C# arrays are implemented as objects, a method can also return an array. (This
differs from C++ in which arrays are not valid as return types.) For example, in the
following program, the method FindFactors() returns an array that holds the factors
of the argument that it is passed:

// Return an array.
using System;

class Factor {
/* Return an array containing the factors of num.
On return, numfactors will contain the number of
factors found. */
public int[] FindFactors (int num, out int numfactors) {
int[] facts = new int[80]; // size of 80 is arbitrary
int i, j;

188

Part I: The C# Language

// Find factors and put them in the facts array.
for(i=2, j=0; i1 < num/2 + 1; i++)

if((num%i)==0) {
facts[j] = i;
J++;
}
numfactors = j;

return facts;

}
class FindFactors {
static void Main () {

Factor f = new Factor();
int numfactors;
int[] factors;
factors = f.FindFactors (1000, out numfactors);
Console.WriteLine ("Factors for 1000 are: ");
for (int i=0; 1 < numfactors; 1i++)

Console.Write(factors([i] + " ");

Console.WriteLine();

The output is shown here:

Factors for 1000 are:
2 45 8 10 20 25 40 50 100 125 200 250 500

In Factor, FindFactors() is declared like this:
public int[] FindFactors (int num, out int numfactors) {

Notice how the int array return type is specified. This syntax can be generalized. Whenever
a method returns an array, specify it in a similar fashion, adjusting the type and dimensions
as needed. For example, the following declares a method called someMeth() that returns a
two-dimensional array of double:

public double[,] someMeth() { //

Method Overloading

In C#, two or more methods within the same class can share the same name, as long as
their parameter declarations are different. When this is the case, the methods are said to
be overloaded, and the process is referred to as method overloading. Method overloading is
one of the ways that C# implements polymorphism.

In general, to overload a method, simply declare different versions of it. The compiler
takes care of the rest. You must observe one important restriction: The type and/or number of
the parameters of each overloaded method must differ. It is not sufficient for two methods
to differ only in their return types. They must differ in the types or number of their parameters.

Chapter 8: A Closer Look at Methods and Classes 189

(Return types do not provide sufficient information in all cases for C# to decide which
method to use.) Of course, overloaded methods may differ in their return types, too. When
an overloaded method is called, the version of the method executed is the one whose
parameters match the arguments.

Here is a simple example that illustrates method overloading:

// Demonstrate method overloading.
using System;

class Overload {
public void OvlDemo () {
Console.WriteLine ("No parameters");

}

// Overload OvlDemo for one integer parameter.
public void OvlDemo (int a) {
Console.WriteLine ("One parameter: " + a);

}

// Overload OvlDemo for two integer parameters.

public int OvlDemo (int a, int b) {
Console.WriteLine ("Two parameters: " + a + " " + Db);
return a + b;

}

// Overload OvlDemo for two double parameters.
public double OvlDemo (double a, double b) {
Console.WriteLine ("Two double parameters: " +
a+ " "+ b);
return a + b;

class OverloadDemo {
static void Main () {
Overload ob = new Overload();
int resI;
double resD;

// Call all versions of OvlDemo ().
ob.Ov1Demo () ;
Console.WriteLine () ;

ob.Ov1Demo (2) ;
Console.WriteLine () ;

resI = ob.OvlDemo (4, 6);
Console.WriteLine ("Result of ob.OvlDemo (4, 6): " + resI);
Console.WriteLine () ;

resD = ob.OvlDemo (1.1, 2.32);
Console.WriteLine ("Result of ob.OvlDemo (1.1, 2.32): " + resD);

190

Part I: The C# Language

This program generates the following output:
No parameters
One parameter: 2

Two parameters: 4 6
Result of ob.OvlDemo (4, 6): 10

Two double parameters: 1.1 2.32
Result of ob.OvlDemo (1.1, 2.32): 3.42

As you can see, OvlDemo() is overloaded four times. The first version takes no parameters;
the second takes one integer parameter; the third takes two integer parameters; and the
fourth takes two double parameters. Notice that the first two versions of OvlDemo() return
void and the second two return a value. This is perfectly valid, but as explained, overloading
is not affected one way or the other by the return type of a method. Thus, attempting to use
these two versions of OvlDemo() will cause an error:

// One OvlDemo (int) is OK.

public void OvlDemo (int a) {
Console.WriteLine ("One parameter: " + a);

}

/* Error! Two OvlDemo (int)s are not OK even though
return types differ. */
public int OvlDemo (int a) {
Console.WriteLine ("One parameter: " + a);
return a * a;

}

As the comments suggest, the difference in their return types is an insufficient difference for
the purposes of overloading.

As you will recall from Chapter 3, C# provides certain implicit (i.e., automatic) type
conversions. These conversions also apply to parameters of overloaded methods. For
example, consider the following;:

// Implicit type conversions can affect overloaded method resolution.
using System;

class Overload2 {
public void MyMeth (int x) {
Console.WriteLine ("Inside MyMeth (int): " + x);
}

public void MyMeth (double x) {
Console.WriteLine ("Inside MyMeth (double): " + x);
}

class TypeConv {
static void Main() {

Chapter 8: A Closer Look at Methods and Classes

Overload?2 ob = new Overload2();

int i = 10;
double d = 10.1;

byte b = 99;
short s = 10;
float f 11.5F;

ob.MyMeth (i); // calls ob.MyMeth (int)
ob.MyMeth(d); // calls ob.MyMeth (double)

ob.MyMeth (b); // calls ob.MyMeth (int) -- type conversion
ob.MyMeth(s); // calls ob.MyMeth(int) -- type conversion
ob.MyMeth (f); // calls ob.MyMeth (double) -- type conversion

The output from the program is shown here:

Inside MyMeth (int): 10
Inside MyMeth(double): 10.1
Inside MyMeth (int): 99
Inside MyMeth(lnt): 10
Inside MyMeth (double): 11.5

In this example, only two versions of MyMeth() are defined: one that has an int parameter
and one that has a double parameter. However, it is possible to pass MyMeth() a byte,
short, or float value. In the case of byte and short, C# automatically converts them to int.
Thus, MyMeth(int) is invoked. In the case of float, the value is converted to double and
MyMeth(double) is called.

It is important to understand, however, that the implicit conversions apply only if there
is no exact type match between a parameter and an argument. For example, here is the
preceding program with the addition of a version of MyMeth() that specifies a byte
parameter:

// Add MyMeth (byte) .
using System;

class Overload2 {
public void MyMeth (byte x) {
Console.WriteLine ("Inside MyMeth (byte): " + x);
}

public void MyMeth (int x) {
Console.WriteLine ("Inside MyMeth (int): " + x);
}

public void MyMeth (double x) {
Console.WriteLine ("Inside MyMeth (double): " + x);
}

191

192 Partl: The C# Language

class TypeConv {
static void Main () {
Overload?2 ob = new Overload2();

int 1 = 10;
double d = 10.1;

byte b = 99;
short s = 10;
float £ 11.5F;

ob.MyMeth (i); // calls ob.MyMeth (int)
ob.MyMeth(d); // calls ob.MyMeth (double)

ob.MyMeth(b); // calls ob.MyMeth (byte) -- now, no type conversion
ob.MyMeth(s); // calls ob.MyMeth(int) -- type conversion
ob.MyMeth (f); // calls ob.MyMeth (double) -- type conversion

Now when the program is run, the following output is produced:

Inside MyMeth (int) 10
Inside MyMeth(double): 10.1
Inside MyMeth(byte): 99
Inside MyMeth (int) 10
Inside MyMeth(double): 11.5

In this version, since there is a version of MyMeth() that takes a byte argument, when
MyMeth() is called with a byte argument, MyMeth(byte) is invoked and the automatic
conversion to int does not occur.

Both ref and out participate in overload resolution. For example, the following defines
two distinct and separate methods:

public void MyMeth (int x) {
Console.WriteLine ("Inside MyMeth (int): " + x);
}

public void MyMeth (ref int x) {
Console.WriteLine ("Inside MyMeth (ref int): " + x);
}

Thus,

ob.MyMeth (i)

invokes MyMeth(int x), but
ob.MyMeth (ref 1)

invokes MyMeth(ref int x).

Chapter 8: A Closer Look at Methods and Classes 193

Although ref and out participate in overload resolution, the difference between the two
alone is not sufficient. For example, these two versions of MyMeth() are invalid:

// Wrong!
public void MyMeth (out int x) { //
public void MyMeth (ref int x) { //

In this case, the compiler cannot differentiate between the two version of MyMeth() simply
because one uses an out int parameter and the other uses a ref int parameter.

Method overloading supports polymorphism because it is one way that C#
implements the “one interface, multiple methods” paradigm. To understand how,
consider the following. In languages that do not support method overloading, each
method must be given a unique name. However, frequently you will want to implement
essentially the same method for different types of data. Consider the absolute value
function. In languages that do not support overloading, there are usually three or more
versions of this function, each with a slightly different name. For instance, in C, the
function abs() returns the absolute value of an integer, labs() returns the absolute value
of a long integer, and fabs() returns the absolute value of a floating-point value.

Since C does not support overloading, each function must have its own unique name,
even though all three functions do essentially the same thing. This makes the situation more
complex, conceptually, than it actually is. Although the underlying concept of each function
is the same, you still have three names to remember. This situation does not occur in C#
because each absolute value method can use the same name. Indeed, the .NET Framework
class library includes an absolute value method called Abs(). This method is overloaded by
the System.Math class to handle the numeric types. C# determines which version of Abs()
to call based upon the type of argument.

A principal value of overloading is that it allows related methods to be accessed by use
of a common name. Thus, the name Abs represents the general action that is being performed.
It is left to the compiler to choose the right specific version for a particular circumstance. You,
the programmer, need only remember the general operation being performed. Through the
application of polymorphism, several names have been reduced to one. Although this
example is fairly simple, if you expand the concept, you can see how overloading can help
manage greater complexity.

When you overload a method, each version of that method can perform any activity
you desire. There is no rule stating that overloaded methods must relate to one another.
However, from a stylistic point of view, method overloading implies a relationship. Thus,
while you can use the same name to overload unrelated methods, you should not. For
example, you could use the name Sqr to create methods that return the square of an integer
and the square root of a floating-point value. But these two operations are fundamentally
different. Applying method overloading in this manner defeats its original purpose. In
practice, you should only overload closely related operations.

C# defines the term signature, which is the name of a method plus its parameter
list. Thus, for the purposes of overloading, no two methods within the same class
can have the same signature. Notice that a signature does not include the return type
since it is not used by C# for overload resolution. Also, the params modifier is not part
of the signature.

194 PartI: The C# Language

Overload Constructors

Like methods, constructors can also be overloaded. Doing so allows you to construct objects
in a variety of ways. For example, consider the following program:

// Demonstrate an overloaded constructor.
using System;

class MyClass {
public int x;

public MyClass () {
Console.WriteLine ("Inside MyClass () .");
x = 0;

}

public MyClass (int 1) {
Console.WriteLine ("Inside MyClass (int).");
X = 1i;

public MyClass (double d) {
Console.WritelLine ("Inside MyClass (double) .");
X = (int) d;

public MyClass (int i, int j) {
Console.WriteLine ("Inside MyClass (int, int).");
x =1 *73;

class OverloadConsDemo ({
static void Main () {

MyClass tl = new MyClass();

MyClass t2 = new MyClass (88);
MyClass t3 = new MyClass (17.23);
MyClass t4 = new MyClass (2, 4);
Console.WriteLine ("tl.x: " + tl.x);
Console.WriteLine ("t2.x: " + t2.x);
Console.WriteLine ("t3.x: " + t3.x);
Console.WriteLine ("t4.x: " + t4.x);

The output from the program is shown here:

Inside MyClass

()
Inside MyClass (int) .
Inside MyClass (double) .
Inside MyClass (int, int).

Chapter 8: A Closer Look at Methods and Classes 195

tl.x: O
t2.x: 88
t3.x: 17
td.x: 8

MyClass() is overloaded four ways, each constructing an object differently. The proper
constructor is called based upon the arguments specified when new is executed. By
overloading a class’ constructor, you give the user of your class flexibility in the way
objects are constructed.

One of the most common reasons that constructors are overloaded is to allow one object
to initialize another. For example, here is an enhanced version of the Stack class developed
earlier that allows one stack to be constructed from another:

// A stack class for characters.
using System;

class Stack {
// These members are private.
char[] stck; // holds the stack
int tos; // index of the top of the stack

// Construct an empty Stack given its size.

public Stack(int size) {
stck = new char[size]; // allocate memory for stack
tos = 0;

}

// Construct a Stack from a stack.
public Stack(Stack ob) {
// Allocate memory for stack.
stck = new char[ob.stck.Length];

// Copy elements to new stack.
for (int 1=0; i < ob.tos; i++)
stck[i] = ob.stck[i];

// Set tos for new stack.
tos = ob.tos;

}

// Push characters onto the stack.
public void Push(char ch) {
if (tos==stck.Length) {

Console.WriteLine (" -- Stack is full.");
return;

}

stck([tos] = ch;

tos++;

}

// Pop a character from the stack.

196

Part I: The C# Language

}

public char Pop() {
if (tos==0) {

Console.WriteLine (" -- Stack is empty.");

return (char) O0;

tos--;
return stckl[tos];

}

// Return true if the stack
public bool IsFull() {
return tos==stck.Length;

}

// Return true if the stack
public bool IsEmpty () {
return tos==0;

}

// Return total capacity of

public int Capacity () {
return stck.Length;

}

// Return number of objects
public int GetNum() {
return tos;

}

static void Main () {
Stack stkl = new Stack(10)
char ch;
int i;

is full.

is empty.

the stack.

currently on the stack.

// Demonstrate the Stack class.
class StackDemo {

’

// Put some characters into stkl.

Console.WriteLine ("Push A through J onto stkl.

for (1i=0; !stkl.IsFull(); i++)

stkl.Push((char) ('A' +

// Create a copy of stckl.

i));

Stack stk2 = new Stack(stkl);

// Display the contents of stkl.
Console.Write ("Contents of stkl: ");

while(!stkl.IsEmpty ()) {
ch = stkl.Pop();
Console.Write (ch);

")

Chapter 8: A Closer Look at Methods and Classes 197

Console.WriteLine();

Console.Write ("Contents of stk2: ");
while (!stk2.IsEmpty()) {
ch = stk2.Pop();
Console.Write (ch);

}

Console.WriteLine ("\n");

The output is shown here:

Push A through J onto stkl.
Contents of stkl: JIHGFEDCBA
Contents of stk2: JIHGFEDCBA

In StackDemo, the first stack, stk1, is constructed and filled with characters. This stack is
then used to construct the second stack, stk2. This causes the following Stack constructor
to be executed:

// Construct a Stack from a stack.
public Stack(Stack ob) {
// Allocate memory for stack.
stck = new char[ob.stck.Length];

// Copy elements to new stack.
for(int i=0; i < ob.tos; 1i++)
stck[i] = ob.stck[i];

// Set tos for new stack.
tos = ob.tos;

}

Inside this constructor, an array is allocated that is long enough to hold the elements
contained in the stack passed in ob. Then, the contents of ob’s array are copied to the new
array, and tos is set appropriately. After the constructor finishes, the new stack and the
original stack are separate, but identical.

Invoke an Overloaded Constructor Through this

When working with overloaded constructors, it is sometimes useful for one constructor to
invoke another. In C#, this is accomplished by using another form of the this keyword. The
general form is shown here:

constructor-name(parameter-list1) : this(parameter-list2) {
// ... body of constructor, which may be empty
}

198

Part I: The C# Language

When the constructor is executed, the overloaded constructor that matches the parameter
list specified by parameter-list2 is first executed. Then, if there are any statements inside the
original constructor, they are executed. Here is an example:

// Demonstrate invoking a constructor through this.
using System;

class XYCoord {
public int x, y;

public XYCoord() : this(0, 0) {
Console.WriteLine ("Inside XYCoord()"):;

}

public XYCoord (XYCoord obj) : this(obj.x, obj.y) {
Console.WriteLine ("Inside XYCoord(obj)"):;
}

public XYCoord(int i, int j) {
Console.WriteLine ("Inside XYCoord(int, int)");
X = 1i;
y = 3J;

}

class OverloadConsDemo {
static void Main () {
XYCoord tl = new XYCoord();

XYCoord t2 = new XYCoord(8, 9);

XYCoord t3 = new XYCoord(t2):;

Console.WriteLine ("tl.x, tl.y: " + tl.x + ", " + tl.y);
Console.WriteLine ("t2.x, t2.y: " + t2.x + ", " + t2.y);
Console.WriteLine ("t3.x, t3.y: " + t3.x + ", " + t3.y);

The output from the program is shown here:

Inside XYCoord(int, int)
Inside XYCoord()

Inside XYCoord(int, int)
Inside XYCoord(int, int)
Inside XYCoord (obj)
tl.x, tl.y: 0, O

t2.x, t2.y: 8, 9

t3.x, t3.y: 8, 9

Here is how the program works. In the XYCoord class, the only constructor that actually
initializes the x and y fields is XYCoord(int, int). The other two constructors simply invoke
XYCoord(int, int) through this. For example, when object t1 is created, its constructor,
XYCoord(), is called. This causes this(0, 0) to be executed, which in this case translates
into a call to XYCoord(0, 0). The creation of t2 works in similar fashion.

Chapter 8: A Closer Look at Methods and Classes 199

One reason why invoking overloaded constructors through this can be useful is that
it can prevent the unnecessary duplication of code. In the foregoing example, there is no
reason for all three constructors to duplicate the same initialization sequence, which the use
of this avoids. Another advantage is that you can create constructors with implied “default
arguments” that are used when these arguments are not explicitly specified. For example,
you could create another XYCoord constructor as shown here:

public XYCoord(int x) : this(x, x) { }

This constructor automatically defaults the y coordinate to the same value as the x
coordinate. Of course, it is wise to use such “default arguments” carefully because
their misuse could easily confuse users of your classes.

Object Initializers

C# 3.0 added a new feature called object initializers that provides another way to create an
object and initialize its fields and properties. (See Chapter 10 for a discussion of properties.)
Using object initializers, you do not call a class” constructor in the normal way. Rather, you
specify the names of the fields and/or properties to be initialized, giving each an initial
value. Thus, the object initializer syntax provides an alternative to explicitly invoking a
class” constructor. The primary use of the object initializer syntax is with anonymous types
created in a LINQ expression. (Anonymous types and LINQ are described in Chapter 19.)
However, because the object initializers can be used (and occasionally are used) with a
named class, the fundamentals of object initialization are introduced here.

Let’s begin with a simple example:

// A simple demonstration that uses object initializers.
using System;
class MyClass {

public int Count;

public string Str;
}

class ObjInitDemo {

static void Main () {
// Construct a MyClass object by using object initializers.
MyClass obj = new MyClass { Count = 100, Str = "Testing" };
Console.WriteLine (obj.Count + " " + obj.Str);

}

This produces the following output:
100 Testing

As the output shows, the value of obj.Count has been initialized to 100 and the value of
obj.Str has been initialized to “Testing”. Notice, however, that MyClass does not define any
explicit constructors, and that the normal constructor syntax has not been used. Rather, obj
is created using the following line:

MyClass obj = new MyClass { Count = 100, Str = "Testing" };

200

Part I: The C# Language

Here, the names of the fields are explicitly specified along with their initial values. This
results in a default instance of MyClass being constructed (by use of the implicit default
constructor) and then Count and Str are given the specified initial values.

It is important to understand that the order of the initializers is not important. For
example, obj could have been initialized as shown here:

MyClass obj = new MyClass { Str = "Testing", Count = 100 };

In this statement, the initialization of Str precedes the initialization of Count. In the program,
it was the other way around. However, in either case, the end result is the same.
Here is the general form of object initialization syntax:

new class-name { name = expr, name = expr, name = expr, ... }

Here, name specifies the name of a field or property that is an accessible member of class-
name. Of course, the type of the initializing expression specified by expr must be compatible
with the type of field or property.

Although you can use object initializers with a named class (such as MyClass in the
example), you usually won't. In general, you will use the normal constructor call syntax
when working with named classes. As mentioned, object initializers are most applicable
to anonymous types generated by a LINQ expression.

The Main() Method

Up to this point, you have been using one form of Main(). However, it has several
overloaded forms. Some can be used to return a value, and some can receive arguments.
Each is examined here.

Return Values from Main()

When a program ends, you can return a value to the calling process (often the operating
system) by returning a value from Main(). To do so, you can use this form of Main():

static int Main()

Notice that instead of being declared void, this version of Main() has a return type of int.

Usually, the return value from Main() indicates whether the program ended normally
or due to some abnormal condition. By convention, a return value of zero usually indicates
normal termination. All other values indicate some type of error occurred.

Pass Arguments to Main()

Many programs accept what are called command-line arguments. A command-line argument
is the information that directly follows the program’s name on the command line when it is
executed. For C# programs, these arguments are then passed to the Main() method. To receive
the arguments, you must use one of these forms of Main():

static void Main(string[] args)
static int Main(string[] args)

The first form returns void; the second can be used to return an integer value, as described
in the preceding section. For both, the command-line arguments are stored as strings in the

Chapter 8: A Closer Look at Methods and Classes 201

string array passed to Main(). The length of the args array will be equal to the number of
command-line arguments, which might be zero.

For example, the following program displays all of the command-line arguments that it
is called with:

// Display all command-line information.
using System;

class CLDemo {
static void Main(string[] args) {
Console.WriteLine ("There are " + args.Length +
" command-line arguments.");

Console.WriteLine ("They are: ");
for (int i=0; i < args.Length; i++)
Console.WritelLine (args[i]);

If CLDemo is executed like this:
CLDemo one two three
you will see the following output:

There are 3 command-line arguments.
They are:

one

two

three

To understand the way that command-line arguments can be used, consider the next
program. It uses a simple substitution cipher to encode or decode messages. The message
to be encoded or decoded is specified on the command line. The cipher is very simple: To
encode a word, each letter is incremented by 1. Thus, A becomes B, and so on. To decode,
each letter is decremented. Of course, such a cipher is of no practical value, being trivially
easy to break. But it does provide an enjoyable pastime for children.

// Encode or decode a message using a simple substitution cipher.
using System;

class Cipher {
static int Main(string[] args) {

// See if arguments are present.

if (args.Length < 2) {
Console.WritelLine ("Usage: encode/decode wordl [word2...wordN]");
return 1; // return failure code

}

// 1f args present, first arg must be encode or decode.

202 Partl: The C# Language

if (args[0] != "encode" & args[0] != "decode") {
Console.WritelLine ("First arg must be encode or decode.");
return 1; // return failure code

}

// Encode or decode message.
for (int n=1; n < args.Length; n++) {
for(int i=0; i < args[n].Length; i++) {

if (args[0] == "encode")
Console.Write ((char) (args[n][i] + 1));
else
Console.Write ((char) (args[n][i] - 1));
}
Console.Write(" ") ;

}
Console.WriteLine () ;

return 0;

To use the program, specify either the “encode” or “decode” command followed by the
phrase that you want to encrypt or decrypt. Assuming the program is called Cipher, here
are two sample runs:

C:>Cipher encode one two
pof uxp

C:>Cipher decode pof uxp
one two

There are two interesting things in this program. First, notice how the program checks
that a command-line argument is present before it continues executing. This is very important
and can be generalized. When a program relies on there being one or more command-line
arguments, it must always confirm that the proper arguments have been supplied. Failure to
do this can lead to program malfunctions. Also, since the first command-line argument must
be either “encode” or “decode,” the program also checks this before proceeding.

Second, notice how the program returns a termination code. If the required command
line is not present, then 1 is returned, indicating abnormal termination. Otherwise, 0 is
returned when the program ends.

Recursion

In C#, a method can call itself. This process is called recursion, and a method that calls itself
is said to be recursive. In general, recursion is the process of defining something in terms of
itself and is somewhat similar to a circular definition. The key component of a recursive
method is that it contains a statement that executes a call to itself. Recursion is a powerful
control mechanism.

The classic example of recursion is the computation of the factorial of a number. The
factorial of a number N is the product of all the whole numbers between 1 and N. For
example, 3 factorial is 1x2x3, or 6. The following program shows a recursive way to

Chapter 8: A Closer Look at Methods and Classes 203

compute the factorial of a number. For comparison purposes, a nonrecursive equivalent
is also included.

// A simple example of recursion.
using System;

class Factorial {
// This is a recursive method.
public int FactR(int n) {
int result;

if (n==1) return 1;
result = FactR(n-1) * n;
return result;

// This is an iterative equivalent.
public int FactI(int n) {
int t, result;

result = 1;
for(t=1; t <= n; t++) result *= t;
return result;

class Recursion {
static void Main () {
Factorial f = new Factorial();

Console.WritelLine ("Factorials using recursive method.");
Console.WriteLine ("Factorial of 3 is " + f.FactR(3));

(
(
Console.WriteLine ("Factorial of 4 is " + f.FactR(4));
Console.WriteLine ("Factorial of 5 is " + f.FactR(5));
Console.WriteLine ()

Console.WriteLine
Console.WriteLine
Console.WriteLine
Console.WriteLine

"Factorials using iterative method.");
"Factorial of 3 is " + f.FactI(3));
"Factorial of 4 is " + f.FactI(4));
"Factorial of 5 is " + f.FactI(5));

The output from this program is shown here:

Factorials using recursive method.
Factorial of 3 is 6

Factorial of 4 is 24

Factorial of 5 is 120

Factorials using iterative method.
Factorial of 3 is 6

Factorial of 4 is 24

Factorial of 5 is 120

204

Part I: The C# Language

The operation of the nonrecursive method FactI() should be clear. It uses a loop starting
at 1 and progressively multiplies each number by the moving product.

The operation of the recursive FactR() is a bit more complex. When FactR() is called with
an argument of 1, the method returns 1; otherwise, it returns the product of FactR(n-1)*n. To
evaluate this expression, FactR() is called with n—1. This process repeats until n equals 1 and
the calls to the method begin returning. For example, when the factorial of 2 is calculated, the
first call to FactR() will cause a second call to be made with an argument of 1. This call will
return 1, which is then multiplied by 2 (the original value of n). The answer is then 2. You
might find it interesting to insert WriteLine() statements into FactR() that show the level of
recursion of each call and what the intermediate results are.

When a method calls itself, new local variables and parameters are allocated storage on
the system stack, and the method code is executed with these new variables from the start.
A recursive call does not make a new copy of the method. Only the arguments are new. As
each recursive call returns, the old local variables and parameters are removed from the
stack, and execution resumes at the point of the call inside the method. Recursive methods
could be said to “telescope” out and back.

Here is another example of recursion. The DisplayRev() method uses recursion to
display its string argument backward.

// Display a string in reverse by using recursion.
using System;
class RevStr {

// Display a string backward.
public void DisplayRev(string str) {
if (str.Length > 0)
DisplayRev (str.Substring(l, str.Length-1));
else
return;

Console.Write(str[0]);
}
}
class RevStrDemo {
static void Main () {
string s = "this is a test";
RevStr rsOb = new RevStr();

Console.WriteLine ("Original string: " + s);

Console.Write ("Reversed string: ");
rsOb.DisplayRev(s) ;

Console.WriteLine () ;

Here is the output:

Chapter 8: A Closer Look at Methods and Classes 205

Original string: this is a test
Reversed string: tset a si siht

Each time DisplayRev() is called, it first checks to see if str has a length greater than zero. If
it does, it recursively calls DisplayRev() with a new string that consists of str minus its first
character. This process repeats until a zero-length string is passed. This causes the recursive
calls to start unraveling. As they do, the first character of str in each call is displayed. This
results in the string being displayed in reverse order.

Recursive versions of many routines may execute a bit more slowly than the iterative
equivalent because of the added overhead of the additional method calls. Too many recursive
calls to a method could cause a stack overrun. Because storage for parameters and local
variables is on the system stack, and each new call creates a new copy of these variables, it
is possible that the stack could be exhausted. If this occurs, the CLR will throw an exception.
However, you probably will not have to worry about this unless a recursive routine runs wild.

The main advantage to recursion is that some types of algorithms can be more clearly
and simply implemented recursively than iteratively. For example, the quicksort sorting
algorithm is quite difficult to implement in an iterative way. Also, some problems, especially
Al-related ones, seem to lend themselves to recursive solutions.

When writing recursive methods, you must have a conditional statement, such as an if,
somewhere to force the method to return without the recursive call being executed. If you
don’t do this, once you call the method, it will never return. This type of error is very
common when working with recursion. Use WriteLine() statements liberally so that you
can watch what is going on and abort execution if you see that you have made a mistake.

Understanding static

There will be times when you will want to define a class member that will be used
independently of any object of that class. Normally, a class member must be accessed
through an object of its class, but it is possible to create a member that can be used by itself,
without reference to a specific instance. To create such a member, precede its declaration
with the keyword static. When a member is declared static, it can be accessed before any
objects of its class are created and without reference to any object. You can declare both
methods and variables to be static. The most common example of a static member is
Main(), which is declared static because it must be called by the operating system when
your program begins.

Outside the class, to use a static member, you must specify the name of its class followed
by the dot operator. No object needs to be created. In fact, a static member cannot be accessed
through an object reference. It must be accessed through its class name. For example, if you
want to assign the value 10 to a static variable called count that is part of a class called
Timer, use this line:

Timer.count = 10;

This format is similar to that used to access normal instance variables through an object,
except that the class name is used. A static method can be called in the same way—Dby use
of the dot operator on the name of the class.

Variables declared as static are, essentially, global variables. When objects of its class are
declared, no copy of a static variable is made. Instead, all instances of the class share the same

206

Part I: The C# Language

static variable. A static variable is initialized before its class is used. If no explicit initializer
is specified, it is initialized to zero for numeric types, null in the case of reference types, or
false for variables of type bool. Thus, a static variable always has a value.

The difference between a static method and a normal method is that the static method
can be called through its class name, without any instance of that class being created. You
have seen an example of this already: the Sqrt() method, which is a static method within
C#’s System.Math class.

Here is an example that declares a static variable and a static method:

// Use static.
using System;

class StaticDemo {
// A static variable.
public static int Val = 100;

// A static method.
public static int ValDiv2() {
return Val/2;
}
}

class SDemo {
static void Main () {

Console.WriteLine ("Initial value of StaticDemo.Val is "
+ StaticDemo.Val);

StaticDemo.Val = 8;

Console.WriteLine ("StaticDemo.Val is " + StaticDemo.Val);

Console.WriteLine ("StaticDemo.ValDiv2(): " +
StaticDemo.ValDiv2()) ;

The output is shown here:

Initial value of StaticDemo.Val is 100
StaticDemo.Val is 8
StaticDemo.ValDiv2 () : 4

As the output shows, a static variable is initialized before any object of its class is created.
There are several restrictions that apply to static methods:

e A static method does not have a this reference. This is because a static method does
not execute relative to any object.

e A static method can directly call only other static methods of its class. It cannot
directly call an instance method of its class. The reason is that instance methods
operate on specific objects, but a static method is not called on an object. Thus, on
what object would the static method operate?

Chapter 8: A Closer Look at Methods and Classes

* A similar restriction applies to static data. A static method can directly access only
other static data defined by its class. It cannot operate on an instance variable of its
class because there is no object to operate on.

For example, in the following class, the static method ValDivDenom() is illegal:

class StaticError {
public int Denom = 3; // a normal instance variable
public static int Val = 1024; // a static variable

/* Error! Can't directly access a non-static variable
from within a static method. */
static int ValDivDenom() {
return Val/Denom; // won't compile!

}

Here, Denom is a normal instance variable that cannot be accessed within a static method.
However, the use of Val is okay since it is a static variable.

The same problem occurs when trying to call a non-static method from within a static
method of the same class. For example:

using System;

class AnotherStaticError {
// A non-static method.
void NonStaticMeth () {
Console.WriteLine ("Inside NonStaticMeth () .");

}

/* Error! Can't directly call a non-static method
from within a static method. */
static void staticMeth () {
NonStaticMeth(); // won't compile

}

In this case, the attempt to call a non-static (that is, instance method) from a static method
causes a compile-time error.

It is important to understand that a static method can call instance methods and access
instance variables of its class if it does so through an object of that class. It is just that it
cannot use an instance variable or method without an object qualification. For example,
this fragment is perfectly valid:

class MyClass {
// A non-static method.
void NonStaticMeth () {
Console.WriteLine ("Inside NonStaticMeth().");
}

/* Can call a non-static method through an
object reference from within a static method. */

201

208

Part I: The C# Language

public static void staticMeth (MyClass ob) {
ob.NonStaticMeth(); // this is OK

}

Here, NonStaticMeth() is called by staticMeth() through ob, which is an object of type
MyClass.

Because static fields are independent of any specific object, they are useful when you
need to maintain information that is applicable to an entire class. Here is an example of
such a situation. It uses a static field to maintain a count of the number of objects that are
in existence.

// Use a static field to count instances.
using System;

class CountInst {
static int count = 0;

// Increment count when object is created.
public CountInst () {
count++;

// Decrement count when object is destroyed.
~CountInst () {
count--;

public static int GetCount () {
return count;

class CountDemo {
static void Main () {
CountInst ob;

for (int 1i=0; i < 10; i++) {
ob = new CountInst();
Console.WriteLine ("Current count: " 4+ CountInst.GetCount());

The output is shown here:

Current count:
Current count:
Current count:
Current count:
Current count:
Current count:

oY U W N

Chapter 8: A Closer Look at Methods and Classes 209

Current count:
Current count:
Current count:
Current count:

= o 0w

0

Each time that an object of type CountInst is created, the static field count is incremented.
Each time an object is recycled, count is decremented. Thus, count always contains a count of
the number of objects currently in existence. This is possible only through the use of a static
field. There is no way for an instance variable to maintain the count because the count relates
to the class as a whole, not to a specific instance.

Here is one more example that uses static. Earlier in this chapter, you saw how a class
factory could be used to create objects. In that example, the class factory was a non-static
method, which meant that it could be called only through an object reference. This meant
that a default object of the class needed to be created so that the factory method could be
called. However, a better way to implement a class factory is as a static method, which
allows the class factory to be called without creating an unnecessary object. Here is the
class factory example rewritten to reflect this improvement:

// Use a static class factory.
using System;

class MyClass {
int a, b;

// Create a class factory for MyClass.
static public MyClass Factory(int i, int j) {
MyClass t = new MyClass();

= i;

t.a
t.b 37

return t; // return an object

}

public void Show() {
Console.WriteLine("a and b: " + a + " " + b);
}
}

class MakeObjects {
static void Main () {

int i, j;

// Generate objects using the factory.

for (i=0, =10; i < 10; i++, j--) {
MyClass ob = MyClass.Factory(i, j); // get an object
ob.Show () ;

}

Console.WriteLine () ;

210

Part I: The C# Language

In this version, Factory() is invoked through its class name in this line of code:
MyClass ob = MyClass.Factory(i, j); // get an object

There is no need to create a MyClass object prior to using the factory.

Static Constructors

A constructor can also be specified as static. A static constructor is typically used to
initialize features that apply to a class rather than an instance. Thus, it is used to initialize
aspects of a class before any objects of the class are created. Here is a simple example:

// Use a static constructor.
using System;
class Cons {

public static int alpha;

public int beta;

// A static constructor.

static Cons () {
alpha = 99;
Console.WriteLine ("Inside static constructor.");

}

// An instance constructor.
public Cons () {
beta = 100;
Console.WriteLine ("Inside instance constructor.");

class ConsDemo {
static void Main () {
Cons ob = new Cons{();

Console.WriteLine ("Cons.alpha: " + Cons.alpha);
Console.WriteLine ("ob.beta: " + ob.beta);
}
}
Here is the output:

Inside static constructor.
Inside instance constructor.
Cons.alpha: 99

ob.beta: 100

Notice that the static constructor is called automatically (when the class is first loaded) and
before the instance constructor. This can be generalized. In all cases, the static constructor
will be executed before any instance constructor. Furthermore, static constructors cannot
have access modifiers (thus, they use default access) and cannot be called by your program.

Chapter 8: A Closer Look at Methods and Classes m

Static Classes

Beginning with C# 2.0, you can declare a class static. There are two key features of a static
class. First, no object of a static class can be created. Second, a static class must contain only
static members. A static class is created by modifying a class declaration with the keyword
static, shown here.

static class class-name { / / ...

Within the cla ss, all members must be explicitly specified as static. Making a class static
does not automatically make its members static.

static classes have two primary uses. First, a static class is required when creating
an extension method, which is a new feature added by C# 3.0. Extension methods relate
mostly to LINQ, and a discussion of extensions methods is found in Chapter 19. Second,

a static class is used to contain a collection of related static methods. This second use is
demonstrated here.

The following example uses a static class called NumericFn to hold a set of static methods
that operate on a numeric value. Because all of the members of NumericFn are declared static,
the class can also be declared static, which prevents it from being instantiated. Thus, NumericFn
serves an organization role, providing a good way to logically group related methods.

// Demonstrate a static class.
using System;

static class NumericFn {
// Return the reciprocal of a value.
static public double Reciprocal (double num) {
return 1/num;

}

// Return the fractional part of a value.
static public double FracPart (double num) {
return num - (int) num;

}

// Return true if num is even.
static public bool IsEven (double num) {

return (num % 2) == 0 ? true : false;

}

// Return true if num is odd.
static public bool IsOdd(double num) {
return !IsEven (num) ;

}
}

class StaticClassDemo {
static void Main () {
Console.WriteLine ("Reciprocal of 5 is " +
NumericFn.Reciprocal (5.0));

212

Part I: The C# Language

Console.WritelLine ("Fractional part of 4.234 is " +
NumericFn.FracPart (4.234));

if (NumericFn.IsEven (10))
Console.WriteLine ("10 is even.");

if (NumericFn.IsOdd(5))
Console.WriteLine ("5 is odd.");

// The following attempt to create an instance of
// NumericFn will cause an error.
// NumericFn ob = new NumericFn(); // Wrong!

The output from the program is shown here.

Reciprocal of 5 is 0.2

Fractional part of 4.234 is 0.234
10 is even.

5 is odd.

Notice that the last line in the program is commented-out. Because NumericFn is a static
class, any attempt to create an object will result in a compile-time error. It would also be an
error to attempt to give NumericFn a non-static member.

One last point: Although a static class cannot have an instance constructor, it can have a
static constructor.

CHAPTER
Operator Overloading

This process is called operator overloading. By overloading an operator, you expand its
usage to your class. The effects of the operator are completely under your control and
may differ from class to class. For example, a class that defines a linked list might use the +
operator to add an object to the list. A class that implements a stack might use the + to push
an object onto the stack. Another class might use the + operator in an entirely different way.
When an operator is overloaded, none of its original meaning is lost. It is simply that a new
operation, relative to a specific class, is added. Therefore, overloading the + to handle a linked
list, for example, does not cause its meaning relative to integers (that is, addition) to be changed.
A principal advantage of operator overloading is that it allows you to seamlessly
integrate a new class type into your programming environment. This type extensibility is an
important part of the power of an object-oriented language such as C#. Once operators are
defined for a class, you can operate on objects of that class using the normal C# expression
syntax. You can even use an object in expressions involving other types of data. Operator
overloading is one of C#’s most powerful features.

(i# allows you to define the meaning of an operator relative to a class that you create.

Operator Overloading Fundamentals

Operator overloading is closely related to method overloading. To overload an operator, use
the operator keyword to define an operator method, which defines the action of the operator
relative to its class.

There are two forms of operator methods: one for unary operators and one for binary
operators. The general form for each is shown here:

// General form for overloading a unary operator
public static ret-type operator op(param-type operand)
{

// operations

}

// General form for overloading a binary operator
public static ret-type operator op(param-typel operandl, param-typel operand?2)
{
// operations
}
23

214

Part I: The C# Language

Here, the operator that you are overloading, such as + or /, is substituted for op. The ret-type
specifies the type of value returned by the specified operation. Although it can be any type
you choose, the return value is often of the same type as the class for which the operator is being
overloaded. This correlation facilitates the use of the overloaded operator in expressions. For
unary operators, the operand is passed in operand. For binary operators, the operands are
passed in operand1 and operand2. Notice that operator methods must be both public and static.

For unary operators, the operand must be of the same type as the class for which the
operator is being defined. For binary operators, at least one of the operands must be of the
same type as its class. Thus, you cannot overload any C# operators for objects that you have
not created. For example, you can’t redefine + for int or string.

One other point: Operator parameters must not use the ref or out modifier.

Overloading Binary Operators

To see how operator overloading works, let’s start with an example that overloads two
binary operators, the + and the —. The following program creates a class called ThreeD,
which maintains the coordinates of an object in three-dimensional space. The overloaded +
adds the individual coordinates of one ThreeD object to another. The overloaded — subtracts
the coordinates of one object from the other.

// An example of operator overloading.
using System;

// A three-dimensional coordinate class.
class ThreeD {
int x, y, z; // 3-D coordinates

public ThreeD() { x =y =2z = 0; }
public ThreeD(int i, int j, int k) { x =1i; v = 3j; z = k; }

// Overload binary +.
public static ThreeD operator + (ThreeD opl, ThreeD op2)

{

ThreeD result = new ThreeD();

/* This adds together the coordinates of the two points
and returns the result. */

result.x = opl.x + op2.x; // These are integer additions
result.y = opl.y + op2.y; // and the + retains its original
result.z = opl.z + op2.z; // meaning relative to them.

return result;

}

// Overload binary -.
public static ThreeD operator - (ThreeD opl, ThreeD op2)

{

ThreeD result = new ThreeD();

/* Notice the order of the operands. opl is the left
operand and op2 is the right. */

Chapter 9: Operator Overloading 215

result.x = opl.x - op2.x; // these are integer subtractions
result.y = opl.y - op2.y;
result.z = opl.z - op2.z;

return result;

// Show X, Y, Z coordinates.
public void Show ()
{

Console.WriteLine(x + ", " + vy + ", " + z);

class ThreeDDemo {
static void Main () {
ThreeD a = new ThreeD(1, 2, 3);
ThreeD b = new ThreeD (10, 10, 10);
ThreeD c;

Console.Write ("Here is a: ");
a.Show () ;
Console.WriteLine () ;
Console.Write ("Here is b: ");
b.Show () ;
Console.WriteLine () ;

c =a+ b; // add a and b together
Console.Write ("Result of a + b: ");
c.Show () ;

Console.WriteLine () ;

c=a+b+c; // add a, b, and c together
Console.Write ("Result of a + b + c: "),
c.Show () ;

Console.WriteLine () ;

c =c - a; // subtract a
Console.Write ("Result of ¢ - a: ");
c.Show () ;

Console.WriteLine();

c =c¢c - b; // subtract b
Console.Write ("Result of ¢ - b: ");

c.Show () ;
Console.WriteLine();

This program produces the following output:
Here is a: 1, 2, 3

Here is b: 10, 10, 10

216

Part I: The C# Language

Result of a + b: 11, 12, 13
Result of a + b + ¢c: 22, 24, 26
Result of ¢ - a: 21, 22, 23
Result of ¢ - b: 11, 12, 13

Let’s examine the preceding program carefully, beginning with the overloaded operator
+. When two objects of type ThreeD are operated on by the + operator, the magnitudes of
their respective coordinates are added together, as shown in operator+(). Notice, however,
that this method does not modify the value of either operand. Instead, a new object of type
ThreeD, which contains the result of the operation, is returned by the method. To understand
why the + operation does not change the contents of either object, think about the standard
arithmetic + operation as applied like this: 10 + 12. The outcome of this operation is 22, but
neither 10 nor 12 is changed by it. Although no rule prevents an overloaded operator from
altering the value of one of its operands, it is best for the actions of an overloaded operator
to be consistent with its usual meaning.

Notice that operator+() returns an object of type ThreeD. Although the method could
have returned any valid C# type, the fact that it returns a ThreeD object allows the +
operator to be used in compound expressions, such as a+b+c. Here, a+b generates a result
that is of type ThreeD. This value can then be added to c¢. Had any other type of value been
generated by a+b, such an expression would not work.

Here is another important point: When the coordinates are added together inside
operator+(), the addition of the individual coordinates results in an integer addition. This
is because the individual coordinates, X, y, and z, are integer quantities. The fact that the +
operator is overloaded for objects of type ThreeD has no effect on the + as it is applied to
integer values.

Now, look at operator—(). The — operator works just like the + operator except that the
order of the parameters is important. Recall that addition is commutative, but subtraction is
not. (That is, A — B is not the same as B — A!) For all binary operators, the first parameter to
an operator method will contain the left operand. The second parameter will contain the
one on the right. When implementing overloaded versions of the noncommutative
operators, you must remember which operand is on the left and which is on the right.

Overloading Unary Operators

The unary operators are overloaded just like the binary operators. The main difference, of
course, is that there is only one operand. For example, here is a method that overloads the
unary minus for the ThreeD class:

// Overload unary -.
public static ThreeD operator - (ThreeD op)
{

ThreeD result = new ThreeD();

result.x = -op.x;
result.y = -op.y;
result.z = -op.z;

return result;

Chapter 9: Operator Overloading

Here, a new object is created that contains the negated fields of the operand. This object
is then returned. Notice that the operand is unchanged. Again, this is in keeping with the
usual meaning of the unary minus. For example, in an expression such as this,

a = -b

a receives the negation of b, but b is not changed.

In C#, overloading ++ and — - is quite easy; simply return the incremented or decremented
value, but don’t change the invoking object. C# will automatically handle that for you,
taking into account the difference between the prefix and postfix forms. For example, here
is an operator++() method for the ThreeD class:

// Overload unary ++.
public static ThreeD operator ++ (ThreeD op)
{

ThreeD result = new ThreeD();

// Return the incremented result.
result.x = op.x + 1;
result.y op.y + 1;
result.z = op.z + 1;

return result;

Here is an expanded version of the previous example program that demonstrates the
unary — and the ++ operator:

// More operator overloading.
using System;

// A three-dimensional coordinate class.
class ThreeD {
int x, y, z; // 3-D coordinates

public ThreeD() { x =y =2z = 0; }
public ThreeD(int i, int j, int k) { x = 1i; v = 3j; z = k; }

// Overload binary +.
public static ThreeD operator +(ThreeD opl, ThreeD op2)
{

ThreeD result = new ThreeD();

/* This adds together the coordinates of the two points
and returns the result. */

result.x = opl.x + op2.x;

result.y = opl.y + op2.y;

result.z = opl.z + op2.z;

return result;

}

// Overload binary -.

21

218 Partl: The C# Language

public static ThreeD operator - (ThreeD opl, ThreeD op2)
{

ThreeD result = new ThreeD();

/* Notice the order of the operands. opl is the left
operand and op2 is the right. */

result.x = opl.x - op2.x;

result.y = opl.y - op2.y;

result.z = opl.z - op2.z;

return result;

// Overload unary -.

public static ThreeD operator - (ThreeD op)
{

ThreeD result = new ThreeD()

result.x = -o0p.x;

result.y = -op.y;

result.z = -op.z;

return result;

// Overload unary ++.
public static ThreeD operator ++(ThreeD op)
{

ThreeD result = new ThreeD();

// Return the incremented result.
result.x = op.x + 1;
result.y = op.y + 1;
result.z = op.z + 1;

return result;
}
// Show X, Y, Z coordinates.
public void Show ()
{

Console.WriteLine(x + ", " + vy + ", " + z);

class ThreeDDemo {
static void Main () {
ThreeD a = new ThreeD(1, 2, 3);
ThreeD b = new ThreeD (10, 10, 10);
ThreeD ¢ = new ThreeD();

Console.Write ("Here is a: ");
a.Show () ;
Console.WriteLine () ;

Chapter 9: Operator Overloading 219

Console.Write ("Here is b: ");
b.Show () ;
Console.WritelLine () ;

c =a+ b; // add a and b together
Console.Write ("Result of a + b: ");
c.Show () ;

Console.WriteLine () ;

c=a+b+c; // add a, b, and ¢ together
Console.Write ("Result of a + b + ¢c: "),
c.Show () ;

Console.WriteLine () ;

c =c¢c - a; // subtract a
Console.Write ("Result of ¢ - a: ");
c.Show () ;

Console.WriteLine () ;

c =c - b; // subtract b
Console.Write ("Result of ¢ - b: ");
c.Show () ;

Console.WriteLine();

c = -a; // assign -a to c
Console.Write ("Result of -a: ");
c.Show () ;

Console.WriteLine();

c = a++; // post-increment a
Console.WriteLine ("Given ¢ = a++");
Console.Write("c is ");

c.Show () ;

Console.Write("a is ");

a.Show () ;

// Reset a to 1, 2, 3

a = new ThreeD(1, 2, 3);
Console.Write ("\nResetting a to ");
a.Show () ;

c = ++a; // pre-increment a
Console.WriteLine ("\nGiven c = ++a");
Console.Write("c is ");

c.Show () ;

Console.Write("a is ");

a.Show () ;

The output from the program is shown here:

Here is a: 1, 2, 3

220

Part I: The C# Language

Here is b: 10, 10, 10

Result of a + b: 11, 12, 13
Result of a + b + ¢c: 22, 24, 26
Result of ¢ - a: 21, 22, 23
Result of ¢ - b: 11, 12, 13

Result of -a: -1, -2, -3

Given c = a++
c is 1, 2, 3
a is 2, 3, 4

Resetting a to 1, 2, 3

Given c = ++a
c is 2, 3, 4
a is 2, 3, 4

Handling Operations on C# Built-in Types

For any given class and operator, an operator method can, itself, be overloaded. One of the
most common reasons for this is to allow operations between a class type and other types
of data, such as a built-in type. For example, once again consider the ThreeD class. To this
point, you have seen how to overload the + so that it adds the coordinates of one ThreeD
object to another. However, this is not the only way in which you might want to define
addition for ThreeD. For example, it might be useful to add an integer value to each
coordinate of a ThreeD object. Such an operation could be used to translate axes. To
perform such an operation, you will need to overload + a second time, as shown here:

// Overload binary + for ThreeD + int.
public static ThreeD operator +(ThreeD opl, int op2)
{

ThreeD result = new ThreeD();

result.x opl.x + op2;
result.y opl.y + op2;
result.z = opl.z + op2;

return result;

}

Notice that the second parameter is of type int. Thus, the preceding method allows an
integer value to be added to each field of a ThreeD object. This is permissible because, as
explained earlier, when overloading a binary operator, one of the operands must be of the
same type as the class for which the operator is being overloaded. However, the other
operand can be of any other type.

Here is a version of ThreeD that has two overloaded + methods:

Chapter 9: Operator Overloading

// Overload addition for ThreeD + ThreeD, and for ThreeD + int.
using System;

// A three-dimensional coordinate class.
class ThreeD {
int x, y, z; // 3-D coordinates

public ThreeD() { x =y =2z = 0; }
public ThreeD(int i, int j, int k) { x = 1i; v = 3; z = k; }

// Overload binary + for ThreeD + ThreeD.
public static ThreeD operator + (ThreeD opl, ThreeD op2)
{

ThreeD result = new ThreeD();

/* This adds together the coordinates of the two points
and returns the result. */

result.x = opl.x + op2.x;

result.y = opl.y + op2.y;

result.z = opl.z + op2.z;

return result;

// Overload binary + for object + int.
public static ThreeD operator +(ThreeD opl, int op2)
{

ThreeD result = new ThreeD()

result.x = opl.x + op2;
result.y = opl.y + op2;
result.z opl.z + op2;

return result;

// Show X, Y, Z coordinates.
public void Show ()

{
Console.WriteLine(x + ", " + vy + ", " + z);

class ThreeDDemo {
static void Main () {
ThreeD a = new ThreeD(1, 2, 3);
ThreeD b = new ThreeD (10, 10, 10);
ThreeD ¢ = new ThreeD();

Console.Write ("Here is a: ");
a.Show () ;
Console.WriteLine () ;
Console.Write ("Here is b: ");

2

Part I: The C# Language

b.Show () ;
Console.WriteLine () ;

c =a + b; // ThreeD + ThreeD
Console.Write ("Result of a + b: ");
c.Show () ;

Console.WriteLine () ;

c =b + 10; // ThreeD + int
Console.Write ("Result of b + 10: ");
c.Show () ;

}

The output from this program is shown here:
Here is a: 1, 2, 3
Here is b: 10, 10, 10
Result of a + b: 11, 12, 13
Result of b + 10: 20, 20, 20

As the output confirms, when the + is applied to two ThreeD objects, their coordinates are
added together. When the + is applied to a ThreeD object and an integer, the coordinates
are increased by the integer value.

While the overloading of + just shown certainly adds a useful capability to the ThreeD
class, it does not quite finish the job. Here is why. The operator+(ThreeD, int) method
allows statements like this:

obl =ob2 + 10;
It does not, unfortunately, allow ones like this:
obl =10 + ob2;

The reason is that the integer argument is the second argument, which is the right-hand
operand, but the preceding statement puts the integer argument on the left. To allow both
forms of statements, you will need to overload the + yet another time. This version must
have its first parameter as type int and its second parameter as type ThreeD. One version of
the operator+() method handles ThreeD + integer, and the other handles integer + ThreeD.
Overloading the + (or any other binary operator) this way allows a built-in type to occur on
the left or right side of the operator. Here is a version ThreeD that overloads the + operator
as just described:

// Overload the + for ThreeD + ThreeD, ThreeD + int, and int + ThreeD.
using System;
// A three-dimensional coordinate class.

class ThreeD {
int x, y, z; // 3-D coordinates

Chapter 9: Operator Overloading

public ThreeD() { x =y =2z = 0; }
public ThreeD(int i, int j, int k) { x =1i; yv = 3j; z = k; }

// Overload binary + for ThreeD + ThreeD.
public static ThreeD operator + (ThreeD opl, ThreeD op2)
{

ThreeD result = new ThreeD();

/* This adds together the coordinates of the two points
and returns the result. */

result.x = opl.x + op2.x;

result.y = opl.y + op2.y;

result.z = opl.z + op2.z;

return result;

// Overload binary + for ThreeD + int.
public static ThreeD operator + (ThreeD opl, int op2)
{

ThreeD result = new ThreeD();

result.x opl.x + op2;
result.y opl.y + op2;
result.z = opl.z + op2;

return result;

// Overload binary + for int + ThreeD.
public static ThreeD operator +(int opl, ThreeD op2)
{

ThreeD result = new ThreeD();

result.x = op2.x + opl;
result.y = op2.y + opl;
result.z = op2.z + opl;

return result;

// Show X, Y, Z coordinates.
public void Show ()
{

Console.WriteLine(x + ", " + vy + ", " + z);

class ThreeDDemo {
static void Main () {
ThreeD a = new ThreeD (1, 2, 3);
ThreeD b = new ThreeD (10, 10, 10);
ThreeD ¢ = new ThreeD();

223

224 Partl: The C# Language

Console.Write ("Here is a: ");
a.Show () ;
Console.WriteLine () ;
Console.Write ("Here is b: ");
b.Show () ;
Console.WriteLine () ;

c =a + b; // ThreeD + ThreeD
Console.Write ("Result of a + b: ");
c.Show () ;

Console.WriteLine () ;

c =b + 10; // ThreeD + int
Console.Write ("Result of b + 10: ");
c.Show () ;

Console.WriteLine () ;

c =15 + b; // int + ThreeD
Console.Write ("Result of 15 + b: ");
c.Show () ;

}

The output from this program is shown here:
Here is a: 1, 2, 3
Here is b: 10, 10, 10
Result of a + b: 11, 12, 13
Result of b + 10: 20, 20, 20

Result of 15 + b: 25, 25, 25

Overloading the Relational Operators

The relational operators, such as = = or <, can also be overloaded and the process is
straightforward. Usually, an overloaded relational operator returns a true or false value.
This is in keeping with the normal usage of these operators and allows the overloaded
relational operators to be used in conditional expressions. If you return a different type
result, then you are greatly restricting the operator’s utility.

Here is a version of the ThreeD class that overloads the < and > operators. In this
example, these operators compare ThreeD objects based on their distance from the origin.
One object is greater than another if its distance from the origin is greater. One object is less
than another if its distance from the origin is less than the other. Given two points, such an
implementation could be used to determine which point lies on the larger sphere. If neither
operator returns true, then the two points lie on the same sphere. Of course, other ordering
schemes are possible.

Chapter 9: Operator Overloading

// Overload < and >.
using System;

// A three-dimensional coordinate class.
class ThreeD {
int x, y, z; // 3-D coordinates

public ThreeD() { x =y =2z = 0; }
public ThreeD(int i, int j, int k) { x = 1i; v = 3; z = k; }

// Overload <.
public static bool operator <(ThreeD opl, ThreeD op2)
{
if (Math.Sgrt(opl.x * opl.x + opl.y * opl.y + opl.z * opl.z) <
Math.Sgrt (op2.x * op2.x + op2.y * op2.y + op2.z * op2.z))
return true;
else
return false;

}

// Overload >.
public static bool operator >(ThreeD opl, ThreeD op2)
{
if (Math.Sgrt(opl.x * opl.x + opl.y * opl.y + opl.z * opl.z) >
Math.Sgrt (op2.x * op2.x + op2.y * op2.y + op2.z * op2.z))
return true;
else
return false;

}

// Show X, Y, Z coordinates.
public void Show ()
{

Console.WriteLine(x + ", " + vy + ", " + z);

class ThreeDDemo {
static void Main () {
ThreeD a = new ThreeD

(5I
ThreeD b = new ThreeD (10, 10, 10);
ThreeD ¢ = new ThreeD(1, 2, 3);
ThreeD d = new ThreeD(6, 7, 5);
Console.Write ("Here is a: ");
a.Show () ;
Console.Write ("Here is b: ");
b.Show () ;
Console.Write ("Here is c: ");
c.Show () ;
Console.Write ("Here is d: ");

d.Show () ;

225

226

Part I: The C# Language

Console.WriteLine();

if(a > c) Console.WritelLine("a > c¢ 1is true");
if(a < c¢) Console.WriteLine("a < c¢ 1is true");
if(a > b) Console.WriteLine("a > b is true");
if(a < b) Console.WritelLine("a < b is true");

if(a > d) Console.WriteLine("a > d is true");
else if(a < d) Console.WriteLine("a < d 1s true");
else Console.WriteLine("a and d are same distance from origin");

}

The output from this program is shown here:

Here is a: 5, 6, 7
Here is b: 10, 10, 10
Here is c: 1, 2, 3
Here is d: 6, 7, 5

a > c is true
a < b is true
a and d are same distance from origin

An important restriction applies to overloading the relational operators: You must
overload them in pairs. For example, if you overload <, you must also overload >, and vice
versa. The operator pairs are

One other point: If you overload the = = and != operators, then you will usually need to
override Object.Equals() and Object.GetHashCode(). These methods and the technique of
overriding are discussed in Chapter 11.

Overloading true and false

The keywords true and false can also be used as unary operators for the purposes of
overloading. Overloaded versions of these operators provide custom determinations of
true and false relative to classes that you create. Once true and false are overloaded for a
class, you can use objects of that class to control the if, while, for, and do-while statements,
or in a ? expression.

The true and false operators must be overloaded as a pair. You cannot overload just one.
Both are unary operators and they have this general form:

public static bool operator true(param-type operand)

{
}

// return true or false

Chapter 9: Operator Overloading

public static bool operator false(param-type operand)

{
}

Notice that each returns a bool result.

The following example shows how true and false can be implemented for the ThreeD
class. Each assumes that a ThreeD object is true if at least one coordinate is non-zero. If all
three coordinates are zero, then the object is false. The decrement operator is also implemented
for the purpose of illustration.

// return true or false

// Overload true and false for ThreeD.
using System;

// A three-dimensional coordinate class.
class ThreeD {
int %, y, z; // 3-D coordinates

public ThreeD() { x =y =2z = 0; }
public ThreeD(int i, int j, int k) { x = 1i; yv = 3j; z = k; }

// Overload true.
public static bool operator true(ThreeD op) {
if((op.x !'= 0) || (op.y !'=0) || (op.z != 0))
return true; // at least one coordinate is non-zero
else
return false;

}

// Overload false.
public static bool operator false(ThreeD op) {
if((op.x == 0) && (op.y == 0) && (op.z == 0))
return true; // all coordinates are zero
else
return false;

}

// Overload unary --.
public static ThreeD operator --(ThreeD op)
{

ThreeD result = new ThreeD();

// Return the decremented result.

result.x = op.x - 1;
result.y = op.y - 1;
result.z = op.z - 1;

return result;

}

// Show X, Y, Z coordinates.
public void Show ()
{

221

228 Partl: The C# Language

Console.WritelLine(x + ", " + y + ", " + z);

class TrueFalseDemo {
static void Main () {
ThreeD a = new ThreeD(5, 6, 7);
ThreeD b = new ThreeD (10, 10, 10);
ThreeD ¢ = new ThreeD(0, 0, 0);

Console.Write ("Here is a: ");
a.Show () ;
Console.Write ("Here is b: ");
b.Show () ;
Console.Write ("Here is c: ");

c.Show () ;
Console.WriteLine () ;

if (a) Console.WriteLine("a 1is true.");
else Console.WriteLine("a is false.");

if (b) Console.WriteLine ("b is true.");
else Console.WriteLine("b is false.");

if (c) Console.WriteLine("c 1is true.");
else Console.WriteLine("c 1is false.");

Console.WriteLine();

Console.WriteLine ("Control a loop using a ThreeD object.");
do {

b.Show () ;

b--;
} while(b);

The output is shown here:

Here is a: 5, 6, 7
Here is b: 10, 10, 10
Here is c: 0, 0, O

a is true.
b is true.

c is false.

Control a loop using a ThreeD object.

10, 10, 10
9, 9, 9
8, 8, 8
T, 7, 7
6, 6, ©
5, 5, 5

’ 4

Chapter 9: Operator Overloading 229

PN W
~ S~ N~ ~
~ ~ 0~ 0~
PN W

PN W

Notice how the ThreeD objects are used to control if statements and a while loop. In the
case of the if statements, the ThreeD object is evaluated using true. If the result of this
operation is true, then the if statement succeeds. In the case of the do-while loop, each
iteration of the loop decrements b. The loop repeats as long as b evaluates as true (that is, it
contains at least one non-zero coordinate). When b contains all zero coordinates, it evaluates
as false when the true operator is applied and the loop stops.

Overloading the Logical Operators

As you know, C# defines the following logical operators: &, |, !, &&, and | |. Of these, only
the &, |, and ! can be overloaded. By following certain rules, however, the benefits of the
short-circuit && and | | can still be obtained. Each situation is examined here.

A Simple Approach to Overloading the Logical Operators

Let’s begin with the simplest situation. If you will not be making use of the short-circuit
logical operators, then you can overload & and | as you would intuitively think, with each
returning a bool result. An overloaded ! will also usually return a bool result.

Here is an example that overloads the !, &, and | logical operators for objects of type
ThreeD. As before, each assumes that a ThreeD object is true if at least one coordinate is
non-zero. If all three coordinates are zero, then the object is false.

// A simple way to overload !, |, and & for ThreeD.
using System;
// A three-dimensional coordinate class.
class ThreeD {
int x, y, z; // 3-D coordinates
public ThreeD() { x =y =2z = 0; }

public ThreeD(int i, int j, int k) { x = 1i; v = 3j; z = k; }

// Overload |.
public static bool operator | (ThreeD opl, ThreeD op2)
{

if(((opl.x !'=0) || (opl.y != 0) || (opl.z !'= 0)) |
((op2.x = 0) || (op2.y != 0) || (op2.z != 0)))
return true;
else

return false;

}

// Overload &.
public static bool operator & (ThreeD opl, ThreeD op2)
{

230 Partl: The C# Language

if(((opl.x != 0) && (opl.y != 0) && (opl.z != 0)) &
((op2.x !'= 0) && (op2.y != 0) && (op2.z != 0)))
return true;
else

return false;

// Overload !.
public static bool operator ! (ThreeD op)
{
if((op.x != 0) || (op.y != 0) || (op.z != 0))
return false;
else return true;

// Show X, Y, Z coordinates.
public void Show ()
{

Console.WriteLine(x + ", " + y + ", " + z);

class TrueFalseDemo {
static void Main() {
ThreeD a = new ThreeD(5, 6, 7);
ThreeD b = new ThreeD (10, 10, 10);
ThreeD ¢ = new ThreeD(0, 0, 0);

Console.Write ("Here is a: ");
a.Show () ;
Console.Write ("Here is b: ");
b.Show () ;
Console.Write ("Here is c: ");

c.Show () ;
Console.WriteLine () ;

if(!a) Console.WriteLine("a is false.");
if (!b) Console.WriteLine("b is false.");
if(!c) Console.WriteLine("c is false.");

Console.WriteLine () ;

if(a & b) Console.WritelLine("a & b is true.");
else Console.WriteLine("a & b is false.");

if(a & c) Console.WriteLine("a & c is true.");
else Console.WriteLine("a & c 1is false.");

if(a | b) Console.WriteLine("a | b is true.");
else Console.WriteLine("a | b is false.");

if(a | c) Console.WriteLine("a | c¢ is true.");
else Console.WriteLine("a | ¢ is false.");

Chapter 9: Operator Overloading

The output from the program is shown here:

Here is a: 5, 6, 7
Here is b: 10, 10, 10
Here is c: 0, 0, O

c is false.

a & b is true.
a & c is false.
a | b is true.
a | ¢ is true.

In this approach, the &, |, and ! operator methods each return a bool result. This is necessary
if the operators are to be used in their normal manner (that is, in places that expect a bool
result). Recall that for all built-in types, the outcome of a logical operation is a value of type
bool. Thus, having the overloaded versions of these operators return type bool is a rational
approach. Unfortunately, this approach works only if you will not be needing the short-
circuit operators.

Enabling the Short-Circuit Operators

To enable the use of the && and | | short-circuit operators, you must follow four rules.
First, the class must overload & and |. Second, the return type of the overloaded & and |
methods must be the same as the class for which the operators are being overloaded. Third,
each parameter must be a reference to an object of the class for which the operator is being
overloaded. Fourth, the true and false operators must be overloaded for the class. When
these conditions have been met, the short-circuit operators automatically become available
for use.

The following program shows how to properly implement the & and | for the ThreeD
class so that the short-circuit operators && and | | are available.

/* A better way to overload !, |, and & for ThreeD.
This version automatically enables the && and || operators. */

using System;

// A three-dimensional coordinate class.
class ThreeD {
int x, y, z; // 3-D coordinates

public ThreeD() { x =y =2z = 0; }
public ThreeD(int i, int j, int k) { x = 1i; v = 3; z = k; }

// Overload | for short-circuit evaluation.
public static ThreeD operator | (ThreeD opl, ThreeD op2)
{

if(((opl.x !'=0) || (opl.y !=0) || (opl.z != 0)) |
((op2.x != 0) || (op2.y != 0) || (op2.z != 0)))
return new ThreeD(1, 1, 1);
else

return new ThreeD(0, 0, 0);

231

232 Partl: The C# Language

// Overload & for short-circuit evaluation.
public static ThreeD operator & (ThreeD opl, ThreeD op2)
{

if(((opl.x != 0) && (opl.y != 0) && (opl.z != 0)) &
((op2.x !'= 0) && (op2.y != 0) && (op2.z != 0)))
return new ThreeD(1, 1, 1);
else

return new ThreeD(0, 0, 0);

}

// Overload !.
public static bool operator ! (ThreeD op)
{

if (op) return false;

else return true;

}

// Overload true.
public static bool operator true(ThreeD op) {
if((op.x != 0) || (op.y != 0) || (op.z != 0))
return true; // at least one coordinate is non-zero
else
return false;

}

// Overload false.
public static bool operator false(ThreeD op) {
if((op.x == 0) && (op.y == 0) && (op.z == 0))
return true; // all coordinates are zero
else
return false;

}

// Show X, Y, Z coordinates.
public void Show ()
{

Console.WriteLine(x + ", " + y + ", " + z);

class TrueFalseDemo {
static void Main() {
ThreeD a = new ThreeD(5, 6, 7);
ThreeD b new ThreeD (10, 10, 10);
ThreeD ¢ = new ThreeD(0, 0, 0);

Console.Write ("Here is a: ");
a.Show () ;
Console.Write ("Here is b: ") ;
b.Show () ;
Console.Write ("Here is c: ");

c.Show () ;
Console.WriteLine () ;

if(a)
if (b)
if(c)

if(la
if (!b)
if(lc)

Chapter 9:

Console.WriteLine ("a is true.");
Console.WriteLine ("b is true.");
Console.WriteLine ("c 1is true.");

) Console.WriteLine("a is false."
Console.WriteLine ("b is false."
Console.WriteLine ("c is false."

Console.WriteLine () ;

Console.WriteLine ("Use & and

if (a
else

if (a
else

if (a
else

if (a
else

") ;
& b)
Console.WriteLine("a & b is

& c) Console.WriteLine("a &
Console.WriteLine("a & c is

| b) Console.WriteLine("a |
Console.WriteLine("a | b is

| ¢) Console.WriteLine("a |
Console.WriteLine("a | c¢ is

Console.WriteLine () ;

// Now use short-circuit ops.
Console.WriteLine ("Use short-circuit &&

if (a
else

if (a
else

if (a
else

if (a
else

&& b) Console.WriteLine("a && b is

Console.WriteLine ("a && b 1s false.

&& c) Console.WriteLine("a && c is

Console.WriteLine ("a && c 1s false.

|| b) Console.WriteLine("a || b is

Console.WriteLine ("a ||
|| ¢) Console.WriteLine("a || c is
Console.WriteLine ("a ||

The output from the program is shown here:

Here is a: 5, 6, 7
Here is b: 10, 10, 10
Here is c: 0, 0, O

a is true.

b is true.

c is false.

Use & and |

a & b is true.

Console.WriteLine ("a & b 1is true.
false."

c is true.
false."

b is true
false."

c is true.
false."

b is false.

c is false.

Operator Overloading

")

")

")

")

P

")

")

")

and [|");
true.");
")
true.");
")
true.");
")
true.");

")

233

234

Part I: The C# Language

b is true.

& c is false.
|
| ¢ is true.

a
a
a

Use short-circuit && and ||
a && b is true.
&& c 1s false.
|l b is true.
|| ¢ is true.

0o oW

Let’s look closely at how the & and | are implemented. They are shown here:

// Overload | for short-circuit evaluation.
public static ThreeD operator | (ThreeD opl, ThreeD op2)
{

if(((opl.x !'=0) || (opl.y !=0) || (opl.z != 0)) |
((op2.x !=0) || (op2.y !=0) || (op2.z !=0)))
return new ThreeD(1, 1, 1);
else

return new ThreeD(0, 0, 0);

}

// Overload & for short-circuit evaluation.
public static ThreeD operator & (ThreeD opl, ThreeD op2)
{

if(((opl.x != 0) && (opl.y != 0) && (opl.z != 0)) &
((op2.x !'= 0) && (op2.y != 0) && (op2.z '=0)))
return new ThreeD(1, 1, 1);
else

return new ThreeD(0, 0, 0);

}

Notice first that both now return an object of type ThreeD. Pay attention to how this object
is generated. If the outcome of the operation is true, then a true ThreeD object (one in which
at least one coordinate is non-zero) is created and returned. If the outcome is false, then a
false object is created and returned. Thus, in a statement like this

if(a & b) Console.WritelLine("a & b is true.");
else Console.WriteLine("a & b is false.");

the outcome of a & b is a ThreeD object, which in this case is a true object. Since the
operators true and false are defined, this resulting object is subjected to the true operator,
and a bool result is returned. In this case, the result is true and the if succeeds.

Because the necessary rules have been followed, the short-circuit operators are now
available for use on ThreeD objects. They work like this. The first operand is tested by using
operator true (for | |) or operator false (for &&). If it can determine the outcome of the
operation, then the corresponding & or | is not evaluated. Otherwise, the corresponding
overloaded & or | is used to determine the result. Thus, using a && or | | causes the
corresponding & or | to be invoked only when the first operand cannot determine the
outcome of the expression. For example, consider this statement from the program:

Chapter 9: Operator Overloading 235

if(a || c¢) Console.WriteLine("a || ¢ is true.");

The true operator is first applied to a. Since a is true in this situation, there is no need to use
the | operator method. However, if the statement were rewritten like this:

if(c || a) Console.WriteLine("c || a is true.");

then the true operator would first be applied to ¢, which in this case is false. Thus, the |
operator method would be invoked to determine if a was true (which it is in this case).

Although you might at first think that the technique used to enable the short-circuit
operators is a bit convoluted, it makes sense if you think about it a bit. By overloading true
and false for a class, you enable the compiler to utilize the short-circuit operators without
having to explicitly overload either. Furthermore, you gain the ability to use objects in
conditional expressions. In general, unless you need a very narrow implementation of &
and |, you are better off creating a full implementation.

Conversion Operators

In some situations, you will want to use an object of a class in an expression involving other
types of data. Sometimes, overloading one or more operators can provide the means of doing
this. However, in other cases, what you want is a simple type conversion from the class type
to the target type. To handle these cases, C# allows you to create a special type of operator
method called a conversion operator. A conversion operator converts an object of your class into
another type. Conversion operators help fully integrate class types into the C# programming
environment by allowing objects of a class to be freely mixed with other data types as long
as a conversion to those other types is defined.

There are two forms of conversion operators, implicit and explicit. The general form for
each is shown here:

public static operator implicit farget-type(source-type v) { return value; }
public static operator explicit target-type(source-type v) { return value; }

Here, target-type is the target type that you are converting to; source-type is the type you
are converting from; and value is the value of the class after conversion. The conversion
operators return data of type target-type, and no other return type specifier is allowed.

If the conversion operator specifies implicit, then the conversion is invoked automatically,
such as when an object is used in an expression with the target type. When the conversion
operator specifies explicit, the conversion is invoked when a cast is used. You cannot define
both an implicit and explicit conversion operator for the same target and source types.

To illustrate a conversion operator, we will create one for the ThreeD class. Suppose
you want to convert an object of type ThreeD into an integer so it can be used in an integer
expression. Further, the conversion will take place by using the product of the three
dimensions. To accomplish this, you will use an implicit conversion operator that looks
like this:

public static implicit operator int (ThreeD opl)

{
return opl.x * opl.y * opl.z;

}

236

Part I: The C# Language

Here is a program that illustrates this conversion operator:
// An example that uses an implicit conversion operator.
using System;

// A three-dimensional coordinate class.
class ThreeD {
int x, y, z; // 3-D coordinates

public ThreeD() { x =y =2z = 0; }
public ThreeD(int i, int J, int k) { x = i; yv = j; z =

// Overload binary +.
public static ThreeD operator + (ThreeD opl, ThreeD op2)
{

ThreeD result = new ThreeD();
result.x = opl.x + op2.x;
result.y = opl.y + op2.y;
result.z opl.z + op2.z;

return result;

// An implicit conversion from ThreeD to int.
public static implicit operator int (ThreeD opl)

{

return opl.x * opl.y * opl.z;

// Show X, Y, Z coordinates.
public void Show ()
{

Console.WriteLine(x + ", " + vy + ", " + z);

class ThreeDDemo {

static void Main () {
ThreeD a new ThreeD(1, 2, 3);
ThreeD b = new ThreeD (10, 10, 10);
ThreeD c new ThreeD() ;
int 1i;
Console.Write ("Here is a: ");

a.Show () ;
Console.WriteLine();
Console.Write ("Here is b: ");
b.Show () ;
Console.WriteLine();

c =a+ b; // add a and b together
Console.Write ("Result of a + b: ");

Chapter 9: Operator Overloading

c.Show () ;
Console.WriteLine () ;

i = a; // convert to int
Console.WriteLine ("Result of 1 = a: " + 1);
Console.WriteLine () ;

i=a* 2 - b; // convert to int
Console.WriteLine ("result of a * 2 - b: " + 1);

This program displays the output:
Here is a: 1, 2, 3
Here is b: 10, 10, 10
Result of a + b: 11, 12, 13
Result of i = a: 6
result of a * 2 - b: -988

As the program illustrates, when a ThreeD object is used in an integer expression, such as

i = a, the conversion is applied to the object. In this specific case, the conversion returns the
value 6, which is the product of coordinates stored in a. However, when an expression does
not require a conversion to int, the conversion operator is not called. This is why c=a +b
does not invoke operator int().

Remember that you can create different conversion operators to meet different needs. You
could define a second conversion operator that converts ThreeD to double, for example.
Each conversion is applied automatically and independently.

An implicit conversion operator is applied automatically when a conversion is required
in an expression, when passing an object to a method, in an assignment, and also when an
explicit cast to the target type is used. Alternatively, you can create an explicit conversion
operator, which is invoked only when an explicit cast is used. An explicit conversion
operator is not invoked automatically. For example, here is the previous program reworked
to use an explicit conversion to int:

// Use an explicit conversion.

using System;

// A three-dimensional coordinate class.
class ThreeD {

int x, y, z; // 3-D coordinates

public ThreeD() { x =y =2z = 0; }
public ThreeD(int i, int j, int k) { x =1i; v = 3j; z = k; }

// Overload binary +.
public static ThreeD operator +(ThreeD opl, ThreeD op2)
{

231

238 Partl: The C# Language

ThreeD result = new ThreeD();

result.x = opl.x + op2.x;
result.y opl.y + op2.y;
result.z opl.z + op2.z;

return result;

// This is now explicit.
public static explicit operator int (ThreeD opl)
{

return opl.x * opl.y * opl.z;

// Show X, Y, Z coordinates.
public void Show ()
{

Console.WriteLine(x + ", " + y + ", " + z);

class ThreeDDemo {
static void Main () {
ThreeD a = new ThreeD(1, 2, 3);
ThreeD b = new ThreeD (10, 10, 10);

ThreeD ¢ = new ThreeD();
int i;
Console.Write ("Here is a: ");

a.Show () ;
Console.WriteLine () ;
Console.Write ("Here is b: ");
b.Show () ;
Console.WriteLine () ;

c =a+ b; // add a and b together
Console.Write ("Result of a + b: ");
c.Show () ;

Console.WriteLine () ;

i = (int) a; // explicitly convert to int -- cast required
Console.WriteLine ("Result of 1 = a: " + 1);
Console.WriteLine () ;

i = (int)a * 2 - (int)b; // casts required
Console.WriteLine ("result of a * 2 - b: " + 1);

}

Because the conversion operator is now marked as explicit, conversion to int must be
explicitly cast. For example, in this line:

i = (int) a; // explicitly convert to int -- cast required

Chapter 9: Operator Overloading 239

if you remove the cast, the program will not compile.
There are a few restrictions to conversion operators:

¢ FEither the target type or the source type of the conversion must be the class in which
the conversion is declared. You cannot, for example, redefine the conversion from
double to int.

* You cannot define a conversion to or from object.

* You cannot define both an implicit and an explicit conversion for the same source
and target types.

* You cannot define a conversion from a base class to a derived class. (See Chapter 11
for a discussion of base and derived classes.)

* You cannot define a conversion from or to an interface. (See Chapter 12 for a
discussion of interfaces.)

In addition to these rules, there are suggestions that you should normally follow when
choosing between implicit and explicit conversion operators. Although convenient, implicit
conversions should be used only in situations in which the conversion is inherently error-
free. To ensure this, implicit conversions should be created only when these two conditions
are met: First, that no loss of information, such as truncation, overflow, or loss of sign,
occurs. Second, that the conversion does not cause an exception. If the conversion cannot
meet these two requirements, then you should use an explicit conversion.

Operator Overloading Tips and Restrictions

The action of an overloaded operator as applied to the class for which it is defined need

not bear any relationship to that operator’s default usage, as applied to C#'s built-in types.
However, for the purposes of the structure and readability of your code, an overloaded
operator should reflect, when possible, the spirit of the operator’s original use. For example,
the + relative to ThreeD is conceptually similar to the + relative to integer types. There would
be little benefit in defining the + operator relative to some class in such a way that it acts
more the way you would expect the / operator to perform, for instance. The central concept
is that while you can give an overloaded operator any meaning you like, for clarity it is best
when its new meaning is related to its original meaning.

There are some restrictions to overloading operators. You cannot alter the precedence of
any operator. You cannot alter the number of operands required by the operator, although
your operator method could choose to ignore an operand. There are several operators that
you cannot overload. Perhaps most significantly, you cannot overload any assignment
operator, including the compound assignments, such as +=. Here are the other operators
that cannot be overloaded. (This list includes several operators that are discussed later in

this book.)
&& 0 . ?
?? [] Il =
=> — as checked
default is new sizeof
typeof unchecked

240

Part I: The C# Language

Although you cannot overload the cast operator () explicitly, you can create conversion
operators, as shown earlier, that perform this function.

It may seem like a serious restriction that operators such as += can’t be overloaded, but
itisn’t. In general, if you have defined an operator, then if that operator is used in a compound
assignment, your overloaded operator method is invoked. Thus, += automatically uses your
version of operator+(). For example, assuming the ThreeD class, if you use a sequence
like this

ThreeD a
ThreeD b

new ThreeD(1, 2, 3);
new ThreeD (10, 10, 10);

b += a; // add a and b together

ThreeD’s operator+() is automatically invoked, and b will contain the coordinate 11, 12, 13.
One last point: Although you cannot overload the [] array indexing operator using an
operator method, you can create indexers, which are described in the next chapter.

Another Example of Operator Overloading

Throughout this chapter we have been using the ThreeD class to demonstrate operator
overloading, and in this regard it has served us well. Before concluding this chapter,
however, it is useful to work through another example. Although the general principles
of operator overloading are the same no matter what class is used, the following example
helps show the power of operator overloading—especially where type extensibility is
concerned.

This example develops a four-bit integer type and defines several operations for it. As
you might know, in the early days of computing, the four-bit quantity was common because
it represented half a byte. It is also large enough to hold one hexadecimal digit. Since four
bits are half a byte, a four-bit quantity is sometimes referred to as a nybble. In the days of
front-panel machines in which programmers entered code one nybble at a time, thinking in
terms of nybbles was an everyday affair! Although not as common now, a four-bit type still
makes an interesting addition to the other C# integers. Traditionally, a nybble is an unsigned
value.

The following example uses the Nybble class to implement a nybble data type. It uses
an int for its underlying storage, but it restricts the values that can be held to 0 through 15.
It defines the following operators:

e Addition of a Nybble to a Nybble
e Addition of an int to a Nybble
e Addition of a Nybble to an int
¢ Greater than and less than
¢ The increment operator
e Conversion to Nybble from int
e Conversion to int from Nybble
These operations are sufficient to show how a class type can be fully integrated into the C#

type system. However, for complete Nybble implementation, you will need to define all of
the other operators. You might want to try adding others on your own.

Chapter 9: Operator Overloading

The complete Nybble class is shown here along with a NybbleDemo, which
demonstrates its use:

// Create a 4-bit type called Nybble.
using System;

// A 4-bit type.
class Nybble {
int val; // underlying storage

public Nybble() { val = 0; }

public Nybble (int 1) {
val = 1i;
val = val & OxF; // retain lower 4 bits

}

// Overload binary + for Nybble + Nybble.
public static Nybble operator + (Nybble opl, Nybble op2)
{

Nybble result = new Nybble();
result.val = opl.val + op2.val;

result.val = result.val & O0xF; // retain lower 4 bits

return result;

}
// Overload binary + for Nybble + int.
public static Nybble operator + (Nybble opl, int op2)
{
Nybble result = new Nybble();

result.val = opl.val + op2;

result.val = result.val & O0xF; // retain lower 4 bits

return result;

}

// Overload binary + for int + Nybble.
public static Nybble operator +(int opl, Nybble op2)

{
Nybble result = new Nybble();

result.val opl + op2.val;
result.val = result.val & O0xF; // retain lower 4 bits

return result;

}

// Overload ++.

24

202 Partl: The C# Language

public static Nybble operator ++ (Nybble op)
{

Nybble result = new Nybble();
result.val = op.val + 1;

result.val = result.val & O0xF; // retain lower 4 bits

return result;

}

// Overload >.
public static bool operator >(Nybble opl, Nybble op2)
{

if (opl.val > op2.val) return true;

else return false;

}

// Overload <.
public static bool operator < (Nybble opl, Nybble op2)
{

if (opl.val < op2.val) return true;

else return false;

}

// Convert a Nybble into an int.
public static implicit operator int (Nybble op)
{

return op.val;

}

// Convert an int into a Nybble.
public static implicit operator Nybble (int op)
{

return new Nybble (op) ;

class NybbleDemo {
static void Main() {
Nybble a = new Nybble (1) ;
Nybble b = new Nybble (10);
Nybble ¢ = new Nybble();

int t;
Console.WriteLine("a: " + (int) a);
Console.WriteLine ("b: " + (int) b);

// Use a Nybble in an if statement.
if(a < b) Console.WritelLine("a is less than b\n");

// Add two Nybbles together.
c = a + b;
Console.WriteLine ("c after ¢ = a + b: " + (int) c);

Chapter 9: Operator Overloading 243

// Add an int to a Nybble.
a += 5;
Console.WriteLine ("a after a += 5: " + (int) a):

Console.WriteLine () ;

// Use a Nybble in an int expression.
t=a* 2+ 3;
Console.WriteLine ("Result of a * 2 + 3: " + t);

Console.WriteLine () ;

// Illustrate int assignment and overflow.
a=19;
Console.WriteLine ("Result of a = 19: " + (int) a);

Console.WriteLine () ;

// Use a Nybble to control a loop.
Console.WriteLine ("Control a for loop with a Nybble.");
for(a = 0; a < 10; a++)

Console.Write((int) a + " ");

Console.WriteLine () ;

The output from the program is shown here:

1
10
a is less than b

o o

c after ¢ = a + b: 11
a after a += 5: 6

Result of a * 2 + 3: 15
Result of a = 19: 3

Control a for loop with a Nybble.
0123456789

Although most of the operation of Nybble should be easy to understand, there is one
important point to make: The conversion operators play a large role in the integration of
Nybble into the C# type system. Because conversions are defined from Nybble to int and
from int to Nybble, a Nybble object can be freely mixed in arithmetic expressions. For
example, consider this expression from the program:

t=a* 2 + 3;

Here, tis an int, as are 2 and 3, but a is a Nybble. These two types are compatible in the
expression because of the implicit conversion of Nybble to int. In this case, since the rest
of the expression is of type int, a is converted to int by its conversion method.

204

Part I: The C# Language

The conversion from int to Nybble allows a Nybble object to be assigned an int value.
For example, in the program, the statement

a=19;

works like this. The conversion operator from int to Nybble is executed. This causes a new
Nybble object to be created that contains the low-order 4 bits of the value 19 (which is 3
because 19 overflows the range of a Nybble). This object is then assigned to a. Without the
conversion operators, such expressions would not be allowed.

The conversion of Nybble to int is also used by the for loop. Without this conversion, it
would not be possible to write the for loop in such a straightforward way.

CHAPTER
Indexers and Properties

to each other: indexers and properties. Each expands the power of a class by

enhancing its integration into C#’s type system and improving its resiliency. Indexers
provide the mechanism by which an object can be indexed like an array. Properties offer a
streamlined way to manage access to a class” instance data. They relate to each other because
both rely upon another feature of C#: the accessor.

I I This chapter examines two special types of class members that have a close relationship

Indexers

As you know, array indexing is performed using the [] operator. It is possible to define the
[1 operator for classes that you create, but you don’t use an operator method. Instead, you
create an indexer. An indexer allows an object to be indexed like an array. The main use of
indexers is to support the creation of specialized arrays that are subject to one or more
constraints. However, you can use an indexer for any purpose for which an array-like
syntax is beneficial. Indexers can have one or more dimensions. We will begin with one-
dimensional indexers.

Creating One-Dimensional Indexers
A one-dimensional indexer has this general form:

element-type this[int index] {
// The get accessor
get {
// return the value specified by index
}

// The set accessor
set {
// set the value specified by index

}

25

246

Part I: The C# Language

Here, element-type is the element type of the indexer. Thus, each element accessed by the
indexer will be of type element-type. This type corresponds to the element type of an array.
The parameter index receives the index of the element being accessed. Technically, this
parameter does not have to be of type int, but since indexers are typically used to provide
array indexing, an integer type is customary.

Inside the body of the indexer two accessors are defined that are called get and set. An
accessor is similar to a method except that it does not declare a return type or parameters.
The accessors are automatically called when the indexer is used, and both accessors receive
index as a parameter. If the indexer is on the left side of an assignment statement, then the
set accessor is called and the element specified by index must be set. Otherwise, the get
accessor is called and the value associated with index must be returned. The set method also
receives an implicit parameter called value, which contains the value being assigned to the
specified index.

One of the benefits of an indexer is that you can control precisely how an array is accessed,
heading off improper access. Here is an example. In the following program, the FailSoftArray
class implements an array that traps boundary errors, thus preventing runtime exceptions if
the array is indexed out-of-bounds. This is accomplished by encapsulating the array as a
private member of a class, allowing access to the array only through the indexer. With this
approach, any attempt to access the array beyond its boundaries can be prevented, with such
an attempt failing gracefully (resulting in a “soft landing” rather than a “crash”). Since
FailSoftArray uses an indexer, the array can be accessed using the normal array notation.

// Use an indexer to create a fail-soft array.
using System;

class FailSoftArray {
int[] a; // reference to underlying array

public int Length; // Length is public
public bool ErrFlag; // indicates outcome of last operation

// Construct array given its size.
public FailSoftArray(int size) {

a = new int[size];

Length = size;

}

// This is the indexer for FailSoftArray.
public int this[int index] {
// This is the get accessor.
get {
if (ok (index)) {
ErrFlag = false;
return al[index];
} else {
ErrFlag = true;
return 0;

Chapter 10:

// This is the set accessor.

set {
if (ok (index)) {
alindex] = value;
ErrFlag = false;
}
else ErrFlag = true;

}
}

// Return true if index is within bounds.

private bool ok (int index) {
if(index >= 0 & index < Length)
return false;

}

return true;

}

// Demonstrate the fail-soft array.
class FSDemo {
static void Main () {
FailSoftArray fs =
int x;

new FailSoftArray(5);

// Show quiet failures.
Console.WriteLine ("Fail quietly.");

for(int i=0; i < (fs.Length * 2); i++)
fs[i] = 1*10;

for(int i=0; i < (fs.Length * 2); i++) {
x = fs[i];
if(x !'= -1) Console.Write(x + " ™);

}

Console.WriteLine () ;

Indexers and Properties

// Now, display failures.
Console.WriteLine ("\nFail with error reports.");
for (int i=0; i < (fs.Length * 2); i++) {
fs[i] = 1*10;
if(fs.ErrFlag)
Console.WriteLine ("fs["™ + 1 + "] out-of-bounds");

}

for (int i=0; i < (fs.Length * 2); 1i++) {
x = fs[i];
if(!fs.ErrFlag) Console.Write(x + " ");
else
Console.WriteLine ("fs[" + 1 + "] out-of-bounds");

The output from the program is shown here:

Fail quietly.
0 10 20 30 40 0 0 0 O O

241

248

Part I: The C# Language

Fail with error reports.

fs[5] out-of-bounds
fs[6] out-of-bounds
fs[7] out-of-bounds
fs[8] out-of-bounds
fs[9] out-of-bounds
0 10 20 30 40 fs[5] out-of-bounds
fs[6] out-of-bounds
fs[7] out-of-bounds
fs[8] out-of-bounds
fs[9] out-of-bounds

The indexer prevents the array boundaries from being overrun. Let’s look closely at
each part of the indexer. It begins with this line:

public int this[int index] {

This declares an indexer that operates on int elements. The index is passed in index. The
indexer is public, allowing it to be used by code outside of its class.
The get accessor is shown here:

get {
if (ok (index)) |
ErrFlag = false;
return al[index];
} else {
ErrFlag = true;
return 0;

The get accessor prevents array boundary errors by first confirming that the index is not
out-of-bounds. This range check is performed by the ok() method, which returns true if the
index is valid and false otherwise. If the specified index is within bounds, the element
corresponding to the index is returned. If it is out of bounds, no operation takes place and
no overrun occurs. In this version of FailSoftArray, a variable called ErrFlag contains the
outcome of each operation. This field can be examined after each operation to assess the
success or failure of the operation. (In Chapter 13, you will see a better way to handle errors
by using C#’s exception subsystem, but for now, using an error flag is an acceptable
approach.)

The set accessor is shown here. It too prevents a boundary error.

set {
if (ok(index)) {
alindex] = value;
ErrFlag = false;
}

else ErrFlag = true;

}

Here, if index is within bounds, the value passed in value is assigned to the corresponding
element. Otherwise, ErrFlag is set to true. Recall that in an accessor method, value is an

Chapter 10: Indexers and Properties 219

implicit parameter that contains the value being assigned. You do not need to (nor can you)
declare it.

It is not necessary for an indexer to support both get and set. You can create a read-only
indexer by implementing only the get accessor. You can create a write-only indexer by
implementing only set.

Indexers Can Be Overloaded

An indexer can be overloaded. The version executed will be the one that has the closest
type-match between its parameter and the argument used as an index. Here is an example
that overloads the FailSoftArray indexer for indexes of type double. The double indexer
rounds its index to the nearest integer value.

// Overload the FailSoftArray indexer.
using System;

class FailSoftArray {
int[] a; // reference to underlying array

public int Length; // Length is public
public bool ErrFlag; // indicates outcome of last operation

// Construct array given its size.
public FailSoftArray(int size) {

a = new int[size];

Length = size;

}

// This is the int indexer for FailSoftArray.
public int this[int index] {
// This is the get accessor.
get {
if (ok (index)) |
ErrFlag = false;
return al[index];
} else {
ErrFlag = true;
return 0;

}

// This is the set accessor.
set {
if (ok(index)) |
alindex] = value;
ErrFlag = false;
}
else ErrFlag = true;
}

250 Partl: The C# Language

/* This is another indexer for FailSoftArray.
This index takes a double argument. It then

rounds that argument to the nearest integer index.

public int this[double idx] {
// This is the get accessor.
get {
int index;

// Round to nearest int.

if((idx - (int) idx) < 0.5) index = (int) idx;
else index = (int) idx + 1;
if (ok (index)) {

ErrFlag = false;

return al[index];
} else {

ErrFlag = true;

return O;

// This is the set accessor.
set {
int index;

// Round to nearest int.

if((idx - (int) idx) < 0.5) index = (int) idx;
else index = (int) idx + 1;
if (ok (index)) |

alindex] = value;

ErrFlag = false;
}

else ErrFlag = true;

// Return true if index is within bounds.
private bool ok (int index) {
if (index >= 0 & index < Length) return true;
return false;

}

// Demonstrate the fail-soft array.
class FSDemo {
static void Main () {
FailSoftArray fs = new FailSoftArray(5);

// Put some values in fs.
for(int i=0; i < fs.Length; i++)
fs[i] = i;

// Now index with ints and doubles.
Console.WriteLine("fs[1]: " + fs[1]);

*/

Chapter 10: Indexers and Properties 251

Console.WriteLine ("fs[2]: " + fs[2]);
Console.WriteLine ("fs[1.1]: " + fs[1.11);
Console.WriteLine ("fs[1l.6]: " + fs[l.6]);

This program produces the following output:

fs[1]: 1
fs[2]: 2
fs[1l.1]: 1
fs[l.6]: 2

As the output shows, the double indexes are rounded to their nearest integer value.
Specifically, 1.1 is rounded to 1, and 1.6 is rounded to 2.

Although overloading an indexer as shown in this program is valid, it is not common.
Most often, an indexer is overloaded to enable an object of a class to be used as an index,
with the index computed in some special way.

Indexers Do Not Require an Underlying Array

It is important to understand that there is no requirement that an indexer actually operate
on an array. It simply must provide functionality that appears “array-like” to the user of the
indexer. For example, the following program has an indexer that acts like a read-only array
that contains the powers of 2 from 0 to 15. Notice, however, that no actual array exists.
Instead, the indexer simply computes the proper value for a given index.

// Indexers don't have to operate on actual arrays.
using System;
class PwrOfTwo {

/* Access a logical array that contains
the powers of 2 from 0 to 15. */
public int this[int index] {
// Compute and return power of 2.
get {
if ((index >= 0) && (index < 16)) return pwr (index);
else return -1;

}

// There is no set accessor.

}

int pwr (int p) {
int result = 1;

for (int i=0; 1 < p; i++)
result *= 2;

return result;

252 Partl: The C# Language

class UsePwrOfTwo {
static void Main () {
PwrOfTwo pwr = new PwrOfTwo () ;

Console.Write ("First 8 powers of 2: ");

for (int i=0; i < 8; i++)
Console.Write(pwr[i] + " ");

Console.WriteLine () ;

Console.Write ("Here are some errors: ");
Console.Write (pwr([-1] + " " + pwr[17]);

Console.WriteLine();

The output from the program is shown here:

First 8 powers of 2: 1 2 4 8 16 32 64 128
Here are some errors: -1 -1

Notice that the indexer for PwrOfTwo includes a get accessor, but no set accessor. As
explained, this means that the indexer is read-only. Thus, a PwrOfTwo object can be used
on the right side of an assignment statement, but not on the left. For example, attempting
to add this statement to the preceding program won’t work:

pwr[0] = 11; // won't compile

This statement will cause a compilation error because no set accessor is defined for the
indexer.

There are two important restrictions to using indexers. First, because an indexer does
not define a storage location, a value produced by an indexer cannot be passed as a ref or
out parameter to a method. Second, an indexer must be an instance member of its class; it
cannot be declared static.

Multidimensional Indexers
You can create indexers for multidimensional arrays, too. For example, here is a two-
dimensional fail-soft array. Pay close attention to the way that the indexer is declared.

// A two-dimensional fail-soft array.

using System;

class FailSoftArray2D {
int[,] a; // reference to underlying 2D array
int rows, cols; // dimensions
public int Length; // Length is public

public bool ErrFlag; // indicates outcome of last operation

// Construct array given its dimensions.
public FailSoftArray2D(int r, int c) {

Chapter 10:

rows = r;
cols = c;

a = new int[rows, cols];
Length = rows * cols;

// This is the indexer for FailSoftArray2D.
public int this[int indexl, int index2] {
// This is the get accessor.
get {
if (ok(indexl, index2)) {
ErrFlag = false;
return alindexl, index2];
} else {
ErrFlag = true;
return 0;

// This is the set accessor.
set {
if (ok (indexl, index2)) {
alindexl, index2] = value;
ErrFlag = false;
}

else ErrFlag = true;

// Return true if indexes are within bounds.
private bool ok (int indexl, int index2) {
if (indexl >= 0 & indexl < rows &
index2 >= 0 & index2 < cols)
return true;

return false;

}

// Demonstrate a 2D indexer.
class TwoDIndexerDemo {

static void Main() {
FailSoftArray2D fs = new FailSoftArray2D (3,
int x;

// Show quiet failures.
Console.WriteLine ("Fail quietly.");
for (int 1=0; 1 < 6; 1i++)

fs[i, 1] = i*10;

for (int 1=0; 1 < 6; 1i++) {
x = fs[i,i];
if(x !'= -1) Console.Write(x + " ™);

Indexers and Properties

253

254

Part I: The C# Language

Console.WriteLine () ;

// Now, display failures.
Console.WriteLine ("\nFail with error reports.");
for (int i=0; i < 6; i++) {
fs[i,i] = 1i*10;
if (fs.ErrFlagqg)
Console.WriteLine ("fs["™ + 1 + ", " + 1 + "] out-of-bounds");

}

for(int i=0; i < 6; i++) {

x = fs[i,1];
if (! fs.ErrFlag) Console.Write(x + " ");
else
Console.WriteLine ("fs[" + 1 + ", " + i + "] out-of-bounds");

The output from this program is shown here:

Fail quietly.
0 10 20000

Fail with error reports.

fs[3, 3] out-of-bounds

fs[4, 4] out-of-bounds

fs[5, 5] out-of-bounds

0 10 20 fs[3, 3] out-of-bounds
fs[4, 4] out-of-bounds

fs[5, 5] out-of-bounds

Properties

Another type of class member is the property. As a general rule, a property combines a field
with the methods that access it. As some examples earlier in this book have shown, you will
often want to create a field that is available to users of an object, but you want to maintain
control over the operations allowed on that field. For instance, you might want to limit the
range of values that can be assigned to that field. While it is possible to accomplish this goal
through the use of a private variable along with methods to access its value, a property
offers a better, more streamlined approach.

Properties are similar to indexers. A property consists of a name along with get and set
accessors. The accessors are used to get and set the value of a variable. The key benefit of a
property is that its name can be used in expressions and assignments like a normal variable,
but in actuality the get and set accessors are automatically invoked. This is similar to the
way that an indexer’s get and set accessors are automatically used.

The general form of a property is shown here:

type name {
get {
// get accessor code

)

Chapter 10: Indexers and Properties 255

set {
// set accessor code
}
}

Here, type specifies the type of the property, such as int, and name is the name of the property.
Once the property has been defined, any use of name results in a call to its appropriate
accessor. The set accessor automatically receives a parameter called value that contains the
value being assigned to the property.

It is important to understand that properties do not define storage locations. Instead, a
property typically manages access to a field. It does not, itself, provide that field. The field
must be specified independently of the property. (The exception is the auto-implemented
property added by C# 3.0, which is described shortly.)

Here is a simple example that defines a property called MyProp, which is used to access
the field prop. In this case, the property allows only positive values to be assigned.

// A simple property example.
using System;

class SimpProp {
int prop; // field being managed by MyProp

public SimpProp() { prop = 0; }

/* This is the property that supports access to
the private instance variable prop. It
allows only positive values. */

public int MyProp {

get {
return prop;
}
set {
if (value >= 0) prop = value;

}
}

// Demonstrate a property.
class PropertyDemo {
static void Main() {
SimpProp ob = new SimpProp();

Console.WriteLine ("Original value of ob.MyProp: " + ob.MyProp);

ob.MyProp = 100; // assign value
Console.WriteLine ("Value of ob.MyProp: " + ob.MyProp);

// Can't assign negative value to prop.

Console.WriteLine ("Attempting to assign -10 to ob.MyProp");
ob.MyProp = -10;

Console.WriteLine ("Value of ob.MyProp: " + ob.MyProp);

256

Part I: The C# Language

Output from this program is shown here:

Original value of ob.MyProp: 0

Value of ob.MyProp: 100

Attempting to assign -10 to ob.MyProp
Value of ob.MyProp: 100

Let’s examine this program carefully. The program defines one private field, called
prop, and a property called MyProp that manages access to prop. As explained, a property
by itself does not define a storage location. Instead, most properties simply manage access
to a field. Furthermore, because prop is private, it can be accessed only through MyProp.

The property MyProp is specified as public so it can be accessed by code outside of its
class. This makes sense because it provides access to prop, which is private. The get accessor
simply returns the value of prop. The set accessor sets the value of prop if and only if that
value is positive. Thus, the MyProp property controls what values prop can have. This is
the essence of why properties are important.

The type of property defined by MyProp is called a read-write property because it allows
its underlying field to be read and written. It is possible, however, to create read-only and
write-only properties. To create a read-only property, define only a get accessor. To define a
write-only property, define only a set accessor.

You can use a property to further improve the fail-soft array class. As you know, all
arrays have a Length property associated with them. Up to now, the FailSoftArray class
simply used a public integer field called Length for this purpose. This is not good practice,
though, because it allows Length to be set to some value other than the length of the fail-
soft array. (For example, a malicious programmer could intentionally corrupt its value.) We
can remedy this situation by transforming Length into a read-only property, as shown in
the following version of FailSoftArray:

// Add Length property to FailSoftArray.
using System;

class FailSoftArray {
int[] a; // reference to underlying array
int len; // length of array -- underlies Length property

public bool ErrFlag; // indicates outcome of last operation

// Construct array given its size.
public FailSoftArray(int size) {

a = new int[size];

len = size;

}

// Read-only Length property.
public int Length {
get {
return len;

}

Chapter 10:

// This is the indexer for FailSoftArray.
public int this[int index] {
// This is the get accessor.
get {
if (ok(index)) {
ErrFlag = false;
return al[index];
} else {
ErrFlag = true;
return 0;

}

// This is the set accessor.
set |
if (ok (index)) {
alindex] = value;
ErrFlag = false;
}
else ErrFlag = true;
}
}

// Return true if index is within bounds.
private bool ok (int index) {
if (index >= 0 & index < Length) return true;
return false;
}
}

// Demonstrate the improved fail-soft array.
class ImprovedFSDemo {
static void Main() {
FailSoftArray fs =

int x;

new FailSoftArray(5);

// Can read Length.

for (int i=0; i < fs.Length; i++)
fs[i] = 1*10;

for(int i=0; i < fs.Length; i++) {
if(x !'= -1) Console.Write(x + " ™);

Console.WriteLine () ;

// fs.Length = 10; // Error, illegal!

}

Indexers and Properties

Length is now a property that uses the private variable len for its storage. Length defines
only a get accessor, which means that it is read-only. Thus, Length can be read, but not

251

258

Part I: The C# Language

changed. To prove this to yourself, try removing the comment symbol preceding this line
in the program:

// fs.Length = 10; // Error, illegal!

When you try to compile, you will receive an error message stating that Length is read-only.

Although the addition of the Length property improves FailSoftArray, it is not the only
improvement that properties can make. The ErrFlag member is also a prime candidate for
conversion into a property since access to it should also be limited to read-only. Here is the
final improvement of FailSafeArray. It creates a property called Error that uses the original
ErrFlag variable as its storage, and ErrFlag is made private to FailSoftArray.

// Convert ErrFlag into a property.
using System;

class FailSoftArray {
int[] a; // reference to underlying array
int len; // length of array

bool ErrFlag; // now private

// Construct array given its size.
public FailSoftArray(int size) {

a = new int[size];

len = size;

}

// Read-only Length property.
public int Length {
get {
return len;
}
}

// Read-only Error property.
public bool Error {
get {
return ErrFlag;
}
}

// This is the indexer for FailSoftArray.
public int this[int index] {
// This is the get accessor.
get {
if (ok (index)) |
ErrFlag = false;
return al[index];
} else {
ErrFlag = true;
return 0;

Chapter 10: Indexers and Properties

// This is the set accessor.
set {
if (ok (index)) {
alindex] = value;
ErrFlag = false;
}

else ErrFlag = true;
}
}

// Return true if index is within bounds.
private bool ok (int index) {
if (index >= 0 & index < Length) return true;
return false;
}
}

// Demonstrate the improved fail-soft array.
class FinalFSDemo {
static void Main () {
FailSoftArray fs = new FailSoftArray(5);

// Use Error property.
for (int i=0; i < fs.Length + 1; i++) {
fs[i] = i*10;
if (fs.Error)
Console.WriteLine ("Error with index " + 1);

}

The creation of the Error property has caused two changes to be made to FailSoftArray.
First, ErrFlag has been made private because it is now used as the underlying storage for
the Error property. Thus, it won't be available directly. Second, the read-only Error property
has been added. Now, programs that need to detect errors will interrogate Error. This is
demonstrated in Main(), where a boundary error is intentionally generated, and the Error
property is used to detect it.

Auto-Implemented Properties

Beginning with C# 3.0, it is possible to implement very simple properties without having
to explicitly define the variable managed by the property. Instead, you can let the compiler
automatically supply the underlying variable. This is called an aufo-implemented property. It
has the following general form:

type name { get; set; }

Here, type specifies the type of the property and name specifies the name. Notice that get
and set are immediately followed by a semicolon. The accessors for an auto-implemented
property have no bodies. This syntax tells the compiler to automatically create a storage
location (sometimes referred to as a backing field) that holds the value. This variable is not
named and is not directly available to you. Instead, it can be accessed only through the

property.

259

260

Part I: The C# Language

Here is how a property called UserCount is declared using an auto-implemented
property:

public int UserCount { get; set; }

Notice that no variable is explicitly declared. As explained, the compiler automatically
generates an anonymous field that holds the value. Otherwise, UserCount acts like and is
used like any other property.

Unlike normal properties, an auto-implemented property cannot be read-only or write-
only. Both the get and set must be specified in all cases. However, you can approximate the
same effect by declaring either get or set as private, as explained in “Use Access Modifiers
with Accessors” later in this chapter.

Although auto-implemented properties offer convenience, their use is limited to those
cases in which you do not need control over the getting or setting of the backing field.
Remember, you cannot access the backing field directly. This means that there is no way
to constrain the value an auto-implemented property can have. Thus, auto-implemented
properties simply let the name of the property act as a proxy for the field, itself. However,
sometimes this is exactly what you want. Also, they can be very useful in cases in which
properties are used to expose functionality to a third party, possibly through a design tool.

Use Object Initializers with Properties

As discussed in Chapter 8, C# 3.0 adds a new feature called an object initializer, which
provides an alternative to explicitly calling a constructor when creating an object. When
using object initializers, you specify initial values for the fields and/or properties that you
want to initialize. Furthermore, the object initializer syntax is the same for both properties
or fields. For example, here is the object initializer demonstration program from Chapter 8,
reworked to show the use of object initializers with properties. Recall that the version
shown in Chapter 8 used fields. The only difference between this version of the program
and the one shown in Chapter 8 is that Count and Str have been converted from fields into
properties. The object initializer syntax is unchanged.

// Use object initializers with properties.
using System;
class MyClass {
// These are now properties.
public int Count { get; set; }
public string Str { get; set; }
}

class ObjInitDemo {

static void Main () {
// Construct a MyClass object by using object initializers.
MyClass obj = new MyClass { Count = 100, Str = "Testing" };

Console.WriteLine (obj.Count + " " + obj.Str);

}

Chapter 10: Indexers and Properties

As you can see, the properties Count and Str are set via object initializer expressions. The
output is the same as that produced by the program in Chapter 8 and is shown here:

100 Testing

As explained in Chapter 8, the object initializer syntax is most useful when working
with anonymous types generated by a LINQ expression. In most other cases, you will use
the normal constructor syntax.

Property Restrictions

Properties have some important restrictions. First, because a property does not define a storage
location, it cannot be passed as a ref or out parameter to a method. Second, you cannot
overload a property. (You can have two different properties that both access the same variable,
but this would be unusual.) Finally, a property should not alter the state of the underlying
variable when the get accessor is called. Although this rule is not enforced by the compiler,
violating it is semantically wrong. A get operation should be nonintrusive.

Use Access Modifiers with Accessors

By default, the set and get accessors have the same accessibility as the indexer or property
of which they are a part. For example, if the property is declared public, then by default the
get and set accessors are also public. It is possible, however, to give set or get its own access
modifier, such as private. In all cases, the access modifier for an accessor must be more
restrictive then the access specification of its property or indexer.

There are a number of reasons why you may want to restrict the accessibility of an
accessor. For example, you might want to let anyone obtain the value of a property, but
allow only members of its class to set the property. To do this, declare the set accessor as
private. For example, here is a property called MyProp that has its set accessor specified
as private.

// Use an access modifier with an accessor.
using System;

class PropAccess {
int prop; // field being managed by MyProp

public PropAccess () { prop = 0; }

/* This is the property that supports access to
the private instance variable prop. It allows
any code to obtain the value of prop, but only
other class members can set the value of prop. */
public int MyProp {
get {
return prop;
}
private set { // now, private
prop = value;

}

262

Part I: The C# Language

// This class member increments the value of MyProp.
public void IncrProp () {
MyProp++; // OK, in same class.
}
}

// Demonstrate accessor access modifier.
class PropAccessDemo {
static void Main () {
PropAccess ob = new PropAccess|();

Console.WriteLine ("Original value of ob.MyProp: " + ob.MyProp);
// ob.MyProp = 100; // can't access set
ob.IncrPropl();

Console.WriteLine ("Value of ob.MyProp after increment:
+ ob.MyProp) ;

}

In the PropAccess class, the set accessor is specified private. This means that it can be
accessed by other class members, such as IncrProp(), but it cannot be accessed by code
outside of PropAccess. This is why the attempt to assign ob.MyProp a value inside
PropAccessDemo is commented out.

Perhaps the most important use of restricting an accessor’s access is found when working
with auto-implemented properties. As explained, it is not possible to create a read-only or
write-only auto-implemented property because both the get and set accessors must be
specified when the auto-implemented property is declared. However, you can gain much
the same effect by declaring either get or set as private. For example, this declares what is
effectively a read-only, auto-implemented Length property for the FailSoftArray class
shown earlier.

public int Length { get; private set; }

Because set is private, Length can be set only by code within its class. Outside its class, an
attempt to change Length is illegal. Thus, outside its class, Length is effectively read-only.
The same technique can also be applied to the Error property, like this:

public bool Error { get; private set; }

This allows Error to be read, but not set, by code outside FailSoftArray.

To try the auto-implemented version of Length and Error with FailSoftArray, first
remove the len and ErrFlag variables. They are no longer needed. Then, replace each use of
len inside FailSoftArray with Length and each use of ErrFlag with Error. Here is the updated
version of FailSoftArray along with a Main() method to demonstrate it:

// Use read-only, auto-implemented properties for Length and Error.

using System;

Chapter 10:

class FailSoftArray {
int[] a; // reference to underlying array

// Construct array given its size.
public FailSoftArray(int size) {

a = new 1int[size];

Length = size;

// An auto-implemented,

public int Length { get; private set; }

read-only Error property.
private set; }

// An auto-implemented,
public bool Error { get;

// This is the indexer for FailSoftArray.
public int this[int index] {
// This is the get accessor.
get {
if (ok(index)) {
Error = false;
return al[index];
} else {
Error = true;
return 0;

// This is the set accessor.

set {
if (ok (index)) {
alindex] = value;
Error = false;

}

else Error = true;

// Return true if index is within bounds.

private bool ok (int index) {
if(index >= 0 & index < Length)
return false;

}

return true;

// Demonstrate the improved fail-soft array.
class FinalFSDemo {
static void Main() {
FailSoftArray fs = new FailSoftArray(5);
// Use Error property.
for(int i=0; 1 < fs.Length + 1;
fs[i] = 1i*10;

i+4) |

Indexers and Properties

read-only Length property.

263

264

Part I: The C# Language

if (fs.Error)
Console.WriteLine ("Error with index " + 1i);

}

This version of FailSoftArray works the same as the previous version, but it does not
contain the explicitly declared backing fields.

Here are some restrictions that apply to using access modifiers with accessors. First,
only the set or get accessor can be modified, not both. Furthermore, the access modifier must
be more restrictive than the access level of the property or indexer. Finally, an access
modifier cannot be used when declaring an accessor within an interface or when implementing
an accessor specified by an interface. (Interfaces are described in Chapter 12.)

Using Indexers and Properties

Although the preceding examples have demonstrated the basic mechanism of indexers and
properties, they haven’t displayed their full power. To conclude this chapter, a class called
RangeArray is developed that uses indexers and properties to create an array type in which
the index range of the array is determined by the programmer.

As you know, in C# all arrays begin indexing at zero. However, some applications would
benefit from an array that allows indexes to begin at any arbitrary point. For example, in
some situations it might be more convenient for an array to begin indexing with 1. In another
situation, it might be beneficial to allow negative indexes, such as an array that runs from -5
to 5. The RangeArray class developed here allows these and other types of indexing.

Using RangeArray, you can write code like this:

RangeArray ra = new RangeArray (-5, 10); // array with indexes from -5 to 10
for (int i=-5; i <= 10; i++) rali] = i; // index from -5 to 10

As you can guess, the first line constructs a RangeArray that runs from -5 to 10, inclusive.
The first argument specifies the beginning index. The second argument specifies the ending
index. Once ra has been constructed, it can be indexed from -5 to 10.

The entire RangeArray class is shown here, along with RangeArrayDemo, which
demonstrates the array. As implemented here, RangeArray supports arrays of int, but
you can change the data type, if desired.

/* Create a specifiable range array class.
The RangeArray class allows indexing to begin at
some value other than 0. When you create a RangeArray,
you specify the beginning and ending index. Negative
indexes are also allowed. For example, you can create
arrays that index from -5 to 5, 1 to 10, or 50 to 56.
*/

using System;
class RangeArray {

// Private data.
int[] a; // reference to underlying array

Chapter 10: Indexers and Properties 265

int lowerBound; // smallest index
int upperBound; // largest index

// An auto-implemented, read-only Length property.
public int Length { get; private set; }

// An auto-implemented, read-only Error property.
public bool Error { get; private set; }

// Construct array given its size.
public RangeArray(int low, int high) {
high++;
if (high <= low) {
Console.WriteLine ("Invalid Indices");
high = 1; // create a minimal array for safety
low = 0;
}
a = new intf[high - low];
Length = high - low;

lowerBound = low;
upperBound = --high;

// This is the indexer for RangeArray.
public int this[int index] {
// This is the get accessor.
get {
if (ok(index)) {
Error = false;
return al[index - lowerBound];
} else {
Error = true;
return 0;

// This is the set accessor.
set {
if (ok (index)) {
alindex - lowerBound] = value;
Error = false;
}

else Error = true;

// Return true if index is within bounds.

private bool ok (int index) {
if (index >= lowerBound & index <= upperBound) return true;
return false;

266 Partl: The C# Language

// Demonstrate the index-range array.
class RangeArrayDemo {

static void Main () {
RangeArray ra = new RangeArray (-5, 5);
RangeArray ra2 = new RangeArray(l, 10);

RangeArray ra3 = new RangeArray(-20, -12);

// Demonstrate ra.

Console.WriteLine ("Length of ra: " + ra.Length);
for(int 1 = =-5; i <= 5; i++)
ral[i] = 1i;

Console.Write ("Contents of ra: ");
for(int 1 = -5; i <= 5; i++)
Console.Write(rali] + " ");

Console.WriteLine ("\n");

// Demonstrate ra2.
Console.WriteLine ("Length of ra2: " + ra2.Length);

for(int 1 = 1; i <= 10; i++)
ra2l[i] = i;

Console.Write ("Contents of ra2: ");
for(int i = 1; i <= 10; i++)
Console.Write(ra2[i] + " ");

Console.WriteLine ("\n");

// Demonstrate ra3.

Console.WriteLine ("Length of ra3: " + ra3.Length);
for(int i = -20; 1 <= -12; i++)
ra3[i] = i;
Console.Write ("Contents of ra3: ");
for(int 1 = -20; 1 <= -12; 1i++)
Console.Write(ra3[1i] + " "),

Console.WriteLine ("\n");

The output from the program is shown here:

Length of ra: 11
Contents of ra: -5 -4 -3 -2 -1 01 2 3 45

Length of ra2: 10
Contents of ra2: 1 2 345 6 7 8 9 10

Length of ra3: 9
Contents of ra3: -20 -19 -18 -17 -16 -15 -14 -13 -12

Chapter 10: Indexers and Properties 267

As the output verifies, objects of type RangeArray can be indexed in ways other than
starting at zero. Let’s look more closely at how RangeArray is implemented.
RangeArray begins by defining the following private instance variables:

// Private data.

int[] a; // reference to underlying array
int lowerBound; // smallest index

int upperBound; // largest index

The underlying array is referred to by a. This array is allocated by the RangeArray
constructor. The index of the lower bound of the array is stored in lowerBound, and the
index of the upper bound is stored in upperBound.

Next, the auto-implemented, read-only properties Length and Error are declared:

// An auto-implemented, read-only Length property.
public int Length { get; private set; }

// An auto-implemented, read-only Error property.
public bool Error { get; private set; }

Notice that for both properties, the set accessor is private. As explained earlier in this
chapter, this results in what is effectively a read-only, auto-implemented property.
The RangeArray constructor is shown here:

// Construct array given its size.
public RangeArray(int low, int high) {
high++;
if (high <= low) {
Console.WriteLine ("Invalid Indices");

high = 1; // create a minimal array for safety
low = O;

}

a = new intlhigh - low];

Length = high - low;

lowerBound = low;
upperBound = --high;

A RangeArray is constructed by passing the lower bound index in low and the upper
bound index in high. The value of high is then incremented because the indexes specified
are inclusive. Next, a check is made to ensure that the upper index is greater than the lower
index. If not, an error is reported and a one-element array is created. Next, storage for the
array is allocated and assigned to a. Then the Length property is set equal to the number of
elements in the array. Finally, lowerBound and upperBound are set.

Next, RangeArray implements its indexer, as shown here:

// This is the indexer for RangeArray.
public int this[int index] {
// This is the get accessor.
get {
if (ok(index)) {

268

Part I: The C# Language

Error = false;

return al[index - lowerBound];
} else {

Error = true;

return 0;

}

// This is the set accessor.
set {
if (ok (index)) |
alindex - lowerBound] = value;
Error = false;

}

else Error = true;

}

This indexer is similar to the one used by FailSoftArray, with one important exception.
Notice the expression that indexes a. It is

index - lowerBound

This expression transforms the index passed in index into a zero-based index suitable for
use on a. This expression works whether lowerBound is positive, negative, or zero.
The ok() method is shown here:

// Return true if index is within bounds.

private bool ok (int index) {
if (index >= lowerBound & index <= upperBound) return true;
return false;

}

It is similar to the one used by FailSoftArray except that the range is checked by testing it
against the values in lowerBound and upperBound.

RangeArray illustrates just one kind of custom array that you can create through the
use of indexers and properties. There are, of course, several others. For example, you can
create dynamic arrays, which expand and contract as needed, associative arrays, and sparse
arrays. You might want to try creating one of these types of arrays as an exercise.

CHAPTER
Inheritance

because it allows the creation of hierarchical classifications. Using inheritance, you can

create a general class that defines traits common to a set of related items. This class can
then be inherited by other, more specific classes, each adding those things that are unique
to it.

In the language of C#, a class that is inherited is called a base class. The class that does
the inheriting is called a derived class. Therefore, a derived class is a specialized version of a
base class. It inherits all of the variables, methods, properties, and indexers defined by the
base class and adds its own unique elements.

Inheritance is one of the three foundational principles of object-oriented programming

Inheritance Basics

C# supports inheritance by allowing one class to incorporate another class into its declaration.
This is done by specifying a base class when a derived class is declared. Let’s begin with

an example. The following class called TwoDShape stores the width and height of a two-
dimensional object, such as a square, rectangle, triangle, and so on.

// A class for two-dimensional objects.
class TwoDShape {

public double Width;

public double Height;

public void ShowDim () {
Console.WriteLine ("Width and height are " +
Width + " and " + Height);

TwoDShape can be used as a base class (that is, as a starting point) for classes that
describe specific types of two-dimensional objects. For example, the following program uses
TwoDShape to derive a class called Triangle. Pay close attention to the way that Triangle is
declared.

// A simple class hierarchy.

269

210

Part I: The C# Language

using System;

// A class for two-dimensional objects.
class TwoDShape {

public double Width;

public double Height;

public void ShowDim () {
Console.WriteLine ("Width and height are " +
Width + " and " + Height);

}

// Triangle is derived from TwoDShape.
class Triangle : TwoDShape {
public string Style; // style of triangle

// Return area of triangle.
public double Area() {

return Width * Height / 2;
}

// Display a triangle's style.
public void ShowStyle () {
Console.WriteLine ("Triangle is " + Style);

}

class Shapes {

static void Main () {
Triangle tl = new Triangle();
Triangle t2 = new Triangle();

tl.Width = 4.0;
tl.Height = 4.0;
tl.Style = "isosceles";

t2.Width = 8.0;
t2.Height = 12.0;
t2.3tyle = "right";

Console.WriteLine ("Info for tl: ");
tl.ShowStyle();

tl.ShowDim() ;

Console.WriteLine ("Area is " + tl.Area());

Console.WriteLine () ;

Console.WriteLine ("Info for t2: ");
t2.ShowStyle () ;

t2.ShowDim() ;

Console.WriteLine ("Area is " + t2.Areal());

Chapter 11: Inheritance yJil

The output from this program is shown here:

Info for tl:

Triangle is isosceles

Width and height are 4 and 4
Area is 8

Info for t2:

Triangle is right

Width and height are 8 and 12
Area is 48

The Triangle class creates a specific type of TwoDShape, in this case, a triangle. The
Triangle class includes all of TwoDShape and adds the field Style, the method Area(), and
the method ShowStyle(). A description of the type of triangle is stored in Style; Area()
computes and returns the area of the triangle; and ShowStyle() displays the triangle style.

Notice the syntax that Triangle uses to inherit TwoDShape:

class Triangle : TwoDShape {

This syntax can be generalized. Whenever one class inherits another, the base class name
follows the name of the derived class, separated by a colon. In C#, the syntax for inheriting
a class is remarkably simple and easy to use.

Because Triangle includes all of the members of its base class, TwoDShape, it can access
Width and Height inside Area(). Also, inside Main(), objects t1 and t2 can refer to Width
and Height directly, as if they were part of Triangle. Figure 11-1 depicts conceptually how
TwoDShape is incorporated into Triangle.

Even though TwoDShape is a base for Triangle, it is also a completely independent,
stand-alone class. Being a base class for a derived class does not mean that the base class
cannot be used by itself. For example, the following is perfectly valid:

TwoDShape shape = new TwoDShape () ;

shape.Width = 10;
shape.Height = 20;

shape.ShowDim () ;

Of course, an object of TwoDShape has no knowledge of or access to any classes derived
from TwoDShape.

Width)
TwoDShape Height

ShowDim()

> Triangle
Style

Area()

ShowStyle() Y,

Ficure 11-1 A conceptual depiction of the Triangle class

212

Part I: The C# Language

The general form of a class declaration that inherits a base class is shown here:

class derived-class-name : base-class-name {
// body of class
}

You can specify only one base class for any derived class that you create. C# does not
support the inheritance of multiple base classes into a single derived class. (This differs
from C++, in which you can inherit multiple base classes. Be aware of this when converting
C++ code to C#.) You can, however, create a hierarchy of inheritance in which a derived
class becomes a base class of another derived class. (Of course, no class can be a base class
of itself, either directly or indirectly.) In all cases, a derived class inherits all of the members
of its base class. This includes instance variables, methods, properties, and indexers.

A major advantage of inheritance is that once you have created a base class that defines
the attributes common to a set of objects, it can be used to create any number of more
specific derived classes. Each derived class can precisely tailor its own classification. For
example, here is another class derived from TwoDShape that encapsulates rectangles:

// A derived class of TwoDShape for rectangles.
class Rectangle : TwoDShape {
// Return true if the rectangle is square.
public bool IsSquare() {
if (Width == Height) return true;
return false;

}

// Return area of the rectangle.
public double Area() {

return Width * Height;
}

The Rectangle class includes TwoDShape and adds the methods IsSquare(), which
determines if the rectangle is square, and Area(), which computes the area of a rectangle.

Member Access and Inheritance

As explained in Chapter 8, members of a class are often declared private to prevent their
unauthorized use or tampering. Inheriting a class does not overrule the private access
restriction. Thus, even though a derived class includes all of the members of its base class,
it cannot access those members of the base class that are private. For example, if, as shown
here, Width and Height are made private in TwoDShape, then Triangle will not be able to
access them:

// Access to private members is not inherited.

// This example will not compile.
using System;

// A class for two-dimensional objects.
class TwoDShape {

Chapter 11: Inheritance 273

double Width; // now private
double Height; // now private

public void ShowDim () {
Console.WriteLine ("Width and height are " +
Width + " and " + Height);

}

// Triangle is derived from TwoDShape.
class Triangle : TwoDShape {
public string Style; // style of triangle

// Return area of triangle.
public double Area() {
return Width * Height / 2; // Error, can't access private member

}

// Display a triangle's style.
public void ShowStyle () {
Console.WriteLine ("Triangle is " + Style);

}

The Triangle class will not compile because the use of Width and Height inside the
Area() method is illegal. Since Width and Height are now private, they are accessible only
to other members of their own class. Derived classes have no access to them.

REMEMBER A private class member will remain private to its class. It is not accessible to any code
outside its class, including derived classes.

At first, you might think that it is a serious restriction that derived classes do not have
access to the private members of base classes because it would prevent the use of private
members in many situations. However, this is not true; C# provides various solutions. One
is to use protected members, which is described in the next section. A second is to use public
properties to provide access to private data.

As explained in the previous chapter, a property allows you to manage access to an
instance variable. For example, you can enforce constraints on its values, or you can make
the variable read-only. By making a property public, but declaring its underlying variable
private, a derived class can still use the property, but it cannot directly access the underlying
private variable.

Here is a rewrite of the TwoDShape class that makes Width and Height into properties.
In the process, it ensures that the values of Width and Height will be positive. This would
allow you, for example, to specify the Width and Height using the coordinates of the shape
in any quadrant of the Cartesian plane without having to first obtain their absolute values.

// Use public properties to set and get private members.
using System;

// A class for two-dimensional objects.

214 Partl: The C# Language

class TwoDShape {
double pri width; // now private
double pri height; // now private

// Properties for width and height.
public double Width {
get { return pri width; }
set { pri width = value < 0 ? -value : value; }

public double Height ({
get { return pri height; }
set { pri height = value < 0 ? -value : value; }

}

public void ShowDim () {
Console.WriteLine ("Width and height are " +
Width + " and " + Height);

}

// A derived class of TwoDShape for triangles.
class Triangle : TwoDShape {
public string Style; // style of triangle

// Return area of triangle.
public double Area() {

return Width * Height / 2;
}

// Display a triangle's style.
public void ShowStyle () {
Console.WriteLine ("Triangle is " + Style);
}
}

class Shapes2 {

static void Main () {
Triangle tl = new Triangle();
Triangle t2 = new Triangle();

tl.Width = 4.0;
tl.Height = 4.0;
tl.Style = "isosceles";

t2.Width = 8.0;
t2.Height = 12.0;
t2.Style = "right";

Console.WriteLine ("Info for tl: ");
tl.ShowStyle ()

tl.ShowDim() ;

Console.WriteLine ("Area is " + tl.Area()):;

Chapter 11: Inheritance 275

Console.WriteLine () ;

Console.WriteLine ("Info for t2: ");
t2.ShowStyle () ;

t2.ShowDim () ;

Console.WriteLine ("Area is " + t2.Areal());

}

In this version, the properties Width and Height provide access to the private members,
pri_width and pri_height, which actually store the values. Therefore, even though
pri_width and pri_height are private to TwoDShape, their values can still be set and
obtained through their corresponding public properties.

When referring to base and derived classes, sometimes the terms superclass and subclass
are used. These terms come from Java programming. What Java calls a superclass, C# calls
a base class. What Java calls a subclass, C# calls a derived class. You will commonly hear
both sets of terms applied to a class of either language, but this book will continue to use
the standard C# terms. C++ also uses the base-class/derived-class terminology.

Using Protected Access

As just explained, a private member of a base class is not accessible to a derived class. This
would seem to imply that if you wanted a derived class to have access to some member in
the base class, it would need to be public. Of course, making the member public also makes
it available to all other code, which may not be desirable. Fortunately, this implication is
untrue because C# allows you to create a protected member. A protected member is public
within a class hierarchy, but private outside that hierarchy.

A protected member is created by using the protected access modifier. When a member
of a class is declared as protected, that member is, with one important exception, private.
The exception occurs when a protected member is inherited. In this case, a protected member
of the base class becomes a protected member of the derived class and is, therefore, accessible
to the derived class. Therefore, by using protected, you can create class members that are
private to their class but that can still be inherited and accessed by a derived class.

Here is a simple example that uses protected:

// Demonstrate protected.
using System;

class B {
protected int i, j; // private to B, but accessible by D

public void Set(int a, int b) {
i = a;
J = b;

}

public void Show() {
Console.WriteLine(i + "™ " + J);

216

Part I: The C# Language

class D : B {
int k; // private

// D can access B's i and j

public void Setk() {
k=1*73;

}

public void Showk () {
Console.WriteLine (k) ;
}
}

class ProtectedDemo {
static void Main () {
D ob = new D();

ob.Set (2, 3); // OK, known to D
ob.Show () ; // OK, known to D

ob.Setk(); // OK, part of D
ob.Showk(); // OK, part of D

}

In this example, because B is inherited by D and because i and j are declared as protected in
B, the Setk() method can access them. If i and j had been declared as private by B, then D
would not have access to them, and the program would not compile.

Like public and private, protected status stays with a member no matter how many
layers of inheritance are involved. Therefore, when a derived class is used as a base class for
another derived class, any protected member of the initial base class that is inherited by the
first derived class is also inherited as protected by a second derived class.

Although protected access is quite useful, it doesn’t apply in all situations. For example,
in the case of TwoDShape shown in the preceding section, we specifically want the Width
and Height values to be publicly accessible. It’s just that we want to manage the values they
are assigned. Therefore, declaring them protected is not an option. In this case, the use of
properties supplies the proper solution by controlling, rather than preventing, access.
Remember, use protected when you want to create a member that is accessible throughout a
class hierarchy, but otherwise private. To manage access to a value, use a property.

Constructors and Inheritance

In a hierarchy, it is possible for both base classes and derived classes to have their own
constructors. This raises an important question: What constructor is responsible for building
an object of the derived class? The one in the base class, the one in the derived class, or both?
Here is the answer: The constructor for the base class constructs the base class portion of the
object, and the constructor for the derived class constructs the derived class part. This makes
sense because the base class has no knowledge of or access to any element in a derived
class. Thus, their construction must be separate. The preceding examples have relied upon
the default constructors created automatically by C#, so this was not an issue. However, in
practice, most classes will define constructors. Here you will see how to handle this situation.

Chapter 11: Inheritance 271

When only the derived class defines a constructor, the process is straightforward:
Simply construct the derived class object. The base class portion of the object is constructed
automatically using its default constructor. For example, here is a reworked version of

Triangle that defines a constructor. It also makes Style private since it is now set by the
constructor.

// Add a constructor to Triangle.
using System;

// A class for two-dimensional objects.
class TwoDShape {

double pri width;

double pri height;

// Properties for Width and Height.
public double Width {
get { return pri width; }
set { pri width = value < 0 ? -value : value; }

}

public double Height {
get { return pri height; }
set { pri height = value < 0 ? -value : value; }

}

public void ShowDim() {
Console.WriteLine ("Width and height are " +
Width + " and " + Height);

}

// A derived class of TwoDShape for triangles.
class Triangle : TwoDShape {
string Style;

// Constructor.

public Triangle(string s, double w, double h) {
Width = w; // init the base class
Height = h; // init the base class

Style = s; // init the derived class
}

// Return area of triangle.
public double Area() {

return Width * Height / 2;
}

// Display a triangle's style.
public void ShowStyle () {
Console.WriteLine ("Triangle is " + Style);

}

218

Part I: The C# Language

class Shapes3 {
static void Main () {
Triangle tl = new Triangle("isosceles", 4.0, 4.0);
Triangle t2 = new Triangle ("right", 8.0, 12.0);

Console.WriteLine ("Info for tl: ");
tl.ShowStyle();

t1.ShowDim () ;

Console.WriteLine ("Area is " + tl.Area()):;

Console.WriteLine () ;

Console.WriteLine ("Info for t2: ");
t2.ShowStyle () ;

t2.ShowDim () ;

Console.WriteLine ("Area is " + t2.Areal());

}

Here, Triangle’s constructor initializes the members of TwoDShape that it inherits along
with its own Style field.

When both the base class and the derived class define constructors, the process is a
bit more complicated because both the base class and derived class constructors must be
executed. In this case, you must use another of C#'s keywords, base, which has two uses.
The first use is to call a base class constructor. The second is to access a member of the base
class that has been hidden by a member of a derived class. Here, we will look at its first use.

Calling Base Class Constructors

A derived class can call a constructor defined in its base class by using an expanded form
of the derived class’ constructor declaration and the base keyword. The general form of this
expanded declaration is shown here:

derived-constructor(parameter-list) : base(arg-list) {
// body of constructor
}

Here, arg-list specifies any arguments needed by the constructor in the base class. Notice the
placement of the colon.

To see how base is used, consider the version of TwoDShape in the following program.
It defines a constructor that initializes the Width and Height properties. This constructor is
then called by the Triangle constructor.

// Add constructor to TwoDShape.

using System;

// A class for two-dimensional objects.
class TwoDShape {

double pri width;
double pri height;

Chapter 11: Inheritance 279

// Constructor for TwoDShape.

public TwoDShape (double w, double h) {
Width = w;
Height = h;

}

// Properties for Width and Height.
public double Width {
get { return pri width; }
set { pri width = value < 0 ? -value : value; }

}

public double Height {
get { return pri height; }
set { pri height = value < 0 ? -value : value; }

}

public void ShowDim() {
Console.WriteLine ("Width and height are " +
Width + " and " + Height);

// A derived class of TwoDShape for triangles.
class Triangle : TwoDShape {
string Style;

// Call the base class constructor.

public Triangle(string s, double w, double h) : base(w, h) {
Style = s;

}

// Return area of triangle.
public double Area() {

return Width * Height / 2;
}

// Display a triangle's style.
public void ShowStyle () {
Console.WriteLine ("Triangle is " + Style);

}

class Shapes4 {
static void Main() {
Triangle tl = new Triangle("isosceles"™, 4.0, 4.0);
Triangle t2 = new Triangle ("right", 8.0, 12.0);

Console.WriteLine ("Info for tl: ");
tl.ShowStyle();

tl.ShowDim() ;

Console.WriteLine ("Area is " + tl.Areal());

280

Part I: The C# Language

Console.WriteLine () ;

Console.WriteLine ("Info for t2: ");
t2.ShowStyle () ;

t2.ShowDim () ;

Console.WriteLine ("Area is " + t2.Areal());

}
Notice that the Triangle constructor is now declared as shown here.
public Triangle(string s, double w, double h) : base(w, h) {

In this version, Triangle() calls base with the parameters w and h. This causes the
TwoDShape() constructor to be called, which initializes Width and Height using these
values. Triangle no longer initializes these values itself. It need only initialize the value
unique to it: Style. This leaves TwoDShape free to construct its subobject in any manner
that it chooses. Furthermore, TwoDShape can add functionality about which existing
derived classes have no knowledge, thus preventing existing code from breaking.

Any form of constructor defined by the base class can be called by base. The constructor
executed will be the one that matches the arguments. For example, here are expanded
versions of both TwoDShape and Triangle that include default constructors and constructors
that take one argument.

// Add more constructors to TwoDShape.
using System;

class TwoDShape {
double pri width;
double pri height;

// Default constructor.
public TwoDShape () {

Width = Height = 0.0;
}

// Constructor for TwoDShape.

public TwoDShape (double w, double h) {
Width = w;
Height = h;

}

// Construct object with equal width and height.
public TwoDShape (double x) {

Width = Height = x;
}

// Properties for Width and Height.
public double Width ({
get { return pri width; }
set { pri width = value < 0 ? -value : value; }

Chapter 11: Inheritance 281

public double Height {
get { return pri height; }
set { pri height = value < 0 ? -value : value; }

}

public void ShowDim() {
Console.WriteLine ("Width and height are " +
Width + " and " + Height);

}

// A derived class of TwoDShape for triangles.
class Triangle : TwoDShape {
string Style;

/* A default constructor. This automatically invokes
the default constructor of TwoDShape. */

public Triangle () {
Style = "null";

}

// Constructor that takes three arguments.

public Triangle(string s, double w, double h) : base(w, h) {
Style = s;

}

// Construct an isosceles triangle.
public Triangle (double x) : base(x) {
Style = "isosceles";

}

// Return area of triangle.
public double Area() {

return Width * Height / 2;
}

// Display a triangle's style.
public void ShowStyle () {

Console.WriteLine ("Triangle is " + Style);
}

class Shapesb5 {
static void Main () {
Triangle tl = new Triangle();
Triangle t2 = new Triangle ("right", 8.0, 12.0);
Triangle t3 = new Triangle(4.0);

tl = t2;

Console.WriteLine ("Info for tl: ");
tl.ShowStyle();

tl.ShowDim() ;

Console.WriteLine ("Area is " + tl.Area());

282

Part I: The C# Language

Console.WriteLine () ;

Console.WriteLine ("Info for t2: ");
t2.ShowStyle () ;

t2.ShowDim () ;

Console.WriteLine ("Area is " + t2.Areal());

Console.WriteLine () ;

Console.WriteLine ("Info for t3: ");
t3.ShowStyle () ;

t3.ShowDim () ;

Console.WriteLine ("Area is " + t3.Areal());

Console.WriteLine () ;

Here is the output from this version:

Info for tl:

Triangle is right

Width and height are 8 and 12
Area is 48

Info for t2:

Triangle is right

Width and height are 8 and 12
Area is 48

Info for t3:

Triangle is isosceles

Width and height are 4 and 4
Area is 8

Let’s review the key concepts behind base. When a derived class specifies a base
clause, it is calling the constructor of its immediate base class. Thus, base always refers
to the base class immediately above the calling class. This is true even in a multileveled
hierarchy. You pass arguments to the base constructor by specifying them as arguments to
base. If no base clause is present, then the base class” default constructor is called
automatically.

Inheritance and Name Hiding

It is possible for a derived class to define a member that has the same name as a member in
its base class. When this happens, the member in the base class is hidden within the derived
class. While this is not technically an error in C#, the compiler will issue a warning message.
This warning alerts you to the fact that a name is being hidden. If your intent is to hide a
base class member, then to prevent this warning, the derived class member must be preceded
by the new keyword. Understand that this use of new is separate and distinct from its use
when creating an object instance.

Chapter 11: Inheritance

Here is an example of name hiding;:
// An example of inheritance-related name hiding.
using System;

class A {
public int i = 0;
}

// Create a derived class.
class B : A {
new int i; // this i hides the i in A

public B(int b) {
i=Db; // i in B
}

public void Show() {
Console.WriteLine ("1 in derived class: " + 1);
}
}

class NameHiding {
static void Main () {
B ob = new B(2);

ob.Show () ;
}

First, notice the use of new in this line.
new int i; // this i hides the i in A

In essence, it tells the compiler that you know a new variable called i is being created that
hides the i in the base class A. If you leave new out, a warning is generated.
The output produced by this program is shown here:

i in derived class: 2

Since B defines its own instance variable called i, it hides the i in A. Therefore, when Show()
is invoked on an object of type B, the value of i as defined by B is displayed—not the one
defined in A.

Using base to Access a Hidden Name
There is a second form of base that acts somewhat like this, except that it always refers to the
base class of the derived class in which it is used. This usage has the following general form:

base.member

Here, member can be either a method or an instance variable. This form of base is most
applicable to situations in which member names of a derived class hide members by the

283

284 Partl: The C# Language

same name in the base class. Consider this version of the class hierarchy from the preceding
example:

// Using base to overcome name hiding.
using System;

class A {
public int i = 0;
}

// Create a derived class.
class B : A {
new int i; // this i hides the i in A

public B(int a, int b) {
base.i = a; // this uncovers the i in A
i=Db; // 1 in B

}

public void Show() {
// This displays the i in A.

Console.WriteLine ("1 in base class: " + base.i);

// This displays the i in B.
Console.WriteLine ("1 in derived class: " + 1i);

}
class UncoverName
static void Main () {

B ob = new B(1l, 2);

ob.Show () ;

This program displays the following:

i in base class: 1
i in derived class: 2

Although the instance variable i in B hides the i in A, base allows access to the i defined in
the base class.

Hidden methods can also be called through the use of base. For example, in the
following code, class B inherits class A, and both A and B declare a method called Show().
Inside, B’s Show(), the version of Show() defined by A is called through the use of base.

// Call a hidden method.
using System;

class A {

Chapter 11: Inheritance 285

public int i = 0;

// Show() in A
public void Show() {
Console.WriteLine ("1 in base class: " + 1i);
}
}

// Create a derived class.
class B : A {
new int i; // this i hides the i in A

public B(int a, int b) {
base.i = a; // this uncovers the i in A
i=Db; // 1 in B

}

// This hides Show () in A. Notice the use of new.
new public void Show() {
base.Show(); // this calls Show() in A

// this displays the i in B
Console.WriteLine ("1 in derived class: " + 1);
}
}

class UncoverName {
static void Main () {
B ob = new B(1l, 2);

ob.Show () ;

The output from the program is shown here:

i in base class: 1
i in derived class: 2

As you can see, base.Show() calls the base class version of Show().
One other point: Notice that new is used in this program to tell the compiler that you
know a new method called Show() is being declared that hides the Show() in A.

Creating a Multilevel Hierarchy

Up to this point, we have been using simple class hierarchies consisting of only a base class
and a derived class. However, you can build hierarchies that contain as many layers of
inheritance as you like. As mentioned, it is perfectly acceptable to use a derived class as a
base class of another. For example, given three classes called A, B, and C, C can be derived
from B, which can be derived from A. When this type of situation occurs, each derived class
inherits all of the traits found in all of its base classes. In this case, C inherits all aspects of B
and A.

286 Partl: The C# Language

To see how a multilevel hierarchy can be useful, consider the following program.
In it, the derived class Triangle is used as a base class to create the derived class called
ColorTriangle. ColorTriangle inherits all of the traits of Triangle and TwoDShape and
adds a field called color, which holds the color of the triangle.

// A multilevel hierarchy.
using System;

class TwoDShape {
double pri width;
double pri height;

// Default constructor.
public TwoDShape () {

Width = Height = 0.0;
}

// Constructor for TwoDShape.

public TwoDShape (double w, double h) {
Width = w;
Height = h;

}

// Construct object with equal width and height.
public TwoDShape (double x) {

Width = Height = x;
}

// Properties for Width and Height.
public double Width {
get { return pri width; }
set { pri width = value < 0 ? -value : value; }

}

public double Height {
get { return pri height; }
set { pri height = value < 0 ? -value : value; }

}

public void ShowDim() {
Console.WriteLine ("Width and height are " +
Width + " and " + Height);

}

// A derived class of TwoDShape for triangles.
class Triangle : TwoDShape {
string Style; // private

/* A default constructor. This invokes the default
constructor of TwoDShape. */

public Triangle () {
Style = "null";

}

Chapter 11:

// Constructor.

public Triangle(string s, double w, double h) : base(w,

Style = s;
}

// Construct an isosceles triangle.
public Triangle (double x) : base(x) {
Style = "isosceles";

}

// Return area of triangle.
public double Area() {

return Width * Height / 2;
}

// Display a triangle's style.
public void ShowStyle () {
Console.WriteLine ("Triangle is " + Style);
}
}

// Extend Triangle.
class ColorTriangle : Triangle {
string color;

public ColorTriangle(string c, string s,
double w, double h) : base(s, w,
color = c;

}

// Display the color.
public void ShowColor () {
Console.WriteLine ("Color is " + color);
}
}

class Shapes6 {
static void Main () {
ColorTriangle tl =
new ColorTriangle ("Blue", "right", 8.0, 12.0);
ColorTriangle t2 =

h)

new ColorTriangle ("Red", "isosceles", 2.0, 2.0);

Console.WriteLine ("Info for tl: ");
tl.ShowStyle ()

tl.ShowDim() ;

tl.ShowColoxr () ;

Console.WriteLine ("Area is " + tl.Areal());

Console.WriteLine () ;

Console.WriteLine ("Info for t2: ");
t2.ShowStyle () ;

t2.ShowDim() ;

t2.ShowColor () ;

h)

{

Inheritance

281

288

Part I: The C# Language

Console.WriteLine ("Area is " + t2.Areal());

The output of this program is shown here:

Info for tl:

Triangle is right

Width and height are 8 and 12
Color is Blue

Area is 48

Info for t2:

Triangle is isosceles

Width and height are 2 and 2
Color is Red

Area is 2

Because of inheritance, ColorTriangle can make use of the previously defined classes of
Triangle and TwoDShape, adding only the extra information it needs for its own, specific
application. This is part of the value of inheritance; it allows the reuse of code.

This example illustrates one other important point: base always refers to the constructor
in the closest base class. The base in ColorTriangle calls the constructor in Triangle. The
base in Triangle calls the constructor in TwoDShape. In a class hierarchy, if a base class
constructor requires parameters, then all derived classes must pass those parameters “up
the line.” This is true whether or not a derived class needs parameters of its own.

When Are Constructors Called?

In the foregoing discussion of inheritance and class hierarchies, an important question may
have occurred to you: When a derived class object is created, whose constructor is executed
tirst? The one in the derived class or the one defined by the base class? For example, given a
derived class called B and a base class called A, is A’s constructor called before B’s, or vice
versa? The answer is that in a class hierarchy, constructors are called in order of derivation,
from base class to derived class. Furthermore, this order is the same whether or not base is
used. If base is not used, then the default (parameterless) constructor of each base class will
be executed. The following program illustrates the order of constructor execution:

// Demonstrate when constructors are called.
using System;

// Create a base class.
class A {
public A() {
Console.WriteLine ("Constructing A.");
}
}

// Create a class derived from A.
class B : A {
public B() {

Chapter 11: Inheritance 289

Console.WriteLine ("Constructing B.");
}
}

// Create a class derived from B.
class C : B {
public C() {
Console.WriteLine ("Constructing C.");
}
}

class OrderOfConstruction {
static void Main () {
C c = new C();

}

The output from this program is shown here:

Constructing A.
Constructing B.
Constructing C.

As you can see, the constructors are called in order of derivation.

If you think about it, it makes sense that constructors are executed in order of derivation.
Because a base class has no knowledge of any derived class, any initialization it needs to
perform is separate from and possibly prerequisite to any initialization performed by the
derived class. Therefore, it must be executed first.

Base Class References and Derived Objects

As you know, C# is a strongly typed language. Aside from the standard conversions and
automatic promotions that apply to its value types, type compatibility is strictly enforced.
Therefore, a reference variable for one class type cannot normally refer to an object of
another class type. For example, consider the following program that declares two classes
that are identical in their composition:

// This program will not compile.

class X {
int a;

public X(int i) { a = i; }
}

class Y {
int a;

public Y(int i) { a = i; }
}

class IncompatibleRef {
static void Main () {

290 Partl: The C# Language

X x = new X(10);
Y y = new Y(5);
x2 = x; // OK, both of same type

X2

y: // Error, not of same type
}

Here, even though class X and class Y are physically the same, it is not possible to assign a
reference of type Y to a variable of type X because they have different types. Therefore, this
line is incorrect because it causes a compile-time type mismatch:

x2 = y; // Error, not of same type

In general, an object reference variable can refer only to objects of its type.

There is, however, an important exception to C#’s strict type enforcement. A reference
variable of a base class can be assigned a reference to an object of any class derived from
that base class. This is legal because an instance of a derived type encapsulates an instance
of the base type. Thus, a base class reference can refer to it. Here is an example:

// A base class reference can refer to a derived class object.
using System;

class X {
public int a;

public X (int i) {
a = 1i;

}
class Y : X {
public int Db;
public Y(int i, int j) : base(j) {

b =1i;
}

class BaseRef {

static void Main() {
X x = new X(10);
X x2;

Y v = new Y(5, 6);

x2 = x; // OK, both of same type
Console.WriteLine ("x2.a: " + x2.a);

x2 = vy; // OK because Y is derived from X
Console.WriteLine ("x2.a: " + x2.a);

Chapter 11: Inheritance 291

// X references know only about X members
x2.a = 19; // OK
// x2.b = 27; // Error, X doesn't have a b member
}
}

In this program, Y is derived from X. Now, the assignment
x2 = vy; // OK because Y is derived from X

is permissible because a base class reference, x2 in this case, can refer to a derived class
object (which is the object referred to by y).

It is important to understand that it is the type of the reference variable—not the type of
the object that it refers to—that determines what members can be accessed. That is, when a
reference to a derived class object is assigned to a base class reference variable, you will
have access only to those parts of the object defined by the base class. This is why x2 can’t
access b even when it refers to a Y object. This makes sense because the base class has no
knowledge of what a derived class adds to it. This is why the last line of code in the program
is commented out.

Although the preceding discussion may seem a bit esoteric, it has some important
practical applications. One is described here. The other is discussed later in this chapter,
when virtual methods are covered.

An important place where derived class references are assigned to base class variables
is when constructors are called in a class hierarchy. As you know, it is common for a class
to define a constructor that takes an object of its class as a parameter. This allows the class to
construct a copy of an object. Classes derived from such a class can take advantage of this
feature. For example, consider the following versions of TwoDShape and Triangle. Both
add constructors that take an object as a parameter.

// Pass a derived class reference to a base class reference.
using System;

class TwoDShape {
double pri width;
double pri height;

// Default constructor.
public TwoDShape () {

Width = Height = 0.0;
}

// Constructor for TwoDShape.

public TwoDShape (double w, double h) {
Width = w;
Height = h;

}

// Construct object with equal width and height.
public TwoDShape (double x) {

Width = Height = x;
}

292

Part I: The C# Language

}

// Construct a copy of a TwoDShape object.

public TwoDShape (TwoDShape ob) {
Width = ob.Width;
Height = ob.Height;

}

// Properties for Width and Height.
public double Width {
get { return pri width; }

set { pri width = value < 0 ? -value : value;

}

public double Height {
get { return pri height; }

set { pri height = value < 0 ? -value

}

public void ShowDim() {

Console.WriteLine ("Width and height are " +
Width + " and " + Height);

string Style;

// A default constructor.
public Triangle() {

Style = "null";
}

// Constructor for Triangle.

public Triangle(string s, double w,
Style = s;

}

// Construct an isosceles triangle.
public Triangle (double x) : base(x)
Style = "isosceles";

}

// A derived class of TwoDShape for triangles.
class Triangle : TwoDShape {

double h)

{

// Construct a copy of a Triangle object.
public Triangle(Triangle ob) : base(ob) {

Style = ob.Style;
}

// Return area of triangle.
public double Area() {

return Width * Height / 2;
}

}

value; }

base (w,

h)

Chapter 11: Inheritance

// Display a triangle's style.
public void ShowStyle () {
Console.WriteLine ("Triangle is " + Style);

}

class Shapes7 {
static void Main () {
Triangle tl = new Triangle("right", 8.0, 12.0);

// Make a copy of tl.
Triangle t2 = new Triangle (tl);

Console.WriteLine ("Info for tl: ");
tl.ShowStyle();

tl.ShowDim() ;

Console.WriteLine ("Area is " + tl.Area()):;

Console.WriteLine () ;

Console.WriteLine ("Info for t2: ");
t2.ShowStyle () ;

t2.ShowDim () ;

Console.WriteLine ("Area is " + t2.Areal());

In this program, t2 is constructed from t1 and is, thus, identical. The output is shown here:

Info for tl:

Triangle is right

Width and height are 8 and 12
Area is 48

Info for t2:

Triangle is right

Width and height are 8 and 12
Area is 48

Pay special attention to this Triangle constructor:

public Triangle(Triangle ob) : base(ob) {
Style = ob.Style;
}

It receives an object of type Triangle, and it passes that object (through base) to this
TwoDShape constructor:

public TwoDShape (TwoDShape ob) {
Width = ob.Width;
Height = ob.Height;

293

294

Part I: The C# Language

The key point is that TwoDShape() is expecting a TwoDShape object. However,
Triangle() passes it a Triangle object. As explained, the reason this works is because a base
class reference can refer to a derived class object. Thus, it is perfectly acceptable to pass
TwoDShape() a reference to an object of a class derived from TwoDShape. Because the
TwoDShape() constructor is initializing only those portions of the derived class object
that are members of TwoDShape, it doesn’t matter that the object might also contain other
members added by derived classes.

Virtual Methods and Overriding

A virtual method is a method that is declared as virtual in a base class. The defining
characteristic of a virtual method is that it can be redefined in one or more derived classes.
Thus, each derived class can have its own version of a virtual method. Virtual methods are
interesting because of what happens when one is called through a base class reference. In
this situation, C# determines which version of the method to call based upon the type of the
object referred to by the reference—and this determination is made at runtime. Thus, when
different objects are referred to, different versions of the virtual method are executed. In
other words, it is the type of the object being referred to (not the type of the reference) that
determines which version of the virtual method will be executed. Therefore, if a base class
contains a virtual method and classes are derived from that base class, then when different
types of objects are referred to through a base class reference, different versions of the
virtual method are executed.

You declare a method as virtual inside a base class by preceding its declaration with the
keyword virtual. When a virtual method is redefined by a derived class, the override modifier
is used. Thus, the process of redefining a virtual method inside a derived class is called method
overriding. When overriding a method, the name, return type, and signature of the overriding
method must be the same as the virtual method that is being overridden. Also, a virtual
method cannot be specified as static or abstract (discussed later in this chapter).

Method overriding forms the basis for one of C#'s most powerful concepts: dynamic
method dispatch. Dynamic method dispatch is the mechanism by which a call to an
overridden method is resolved at runtime, rather than compile time. Dynamic method
dispatch is important because this is how C# implements runtime polymorphism.

Here is an example that illustrates virtual methods and overriding:

// Demonstrate a virtual method.
using System;

class Base {
// Create virtual method in the base class.
public virtual void Who() {
Console.WriteLine ("Who() in Base");
}
}

class Derivedl : Base {
// Override Who() in a derived class.
public override void Who () {

Console.WriteLine ("Who () in Derivedl");

}

Chapter 11: Inheritance

class Derived2 : Base {
// Override Who () again in another derived class.
public override void Who () {
Console.WriteLine ("Who () in Derived2");

}
}

class OverrideDemo {
static void Main () {
Base baseOb = new Base();
Derivedl dObl = new Derivedl () ;
Derived2 dOb2 = new Derived2();

Base baseRef; // a base class reference

baseRef = baseOb;
baseRef.Who () ;

baseRef = dObl;
baseRef.Who () ;

baseRef = dOb2;
baseRef.Who () ;

The output from the program is shown here:

Who () 1in Base
Who () in Derivedl
Who () in Derived2

This program creates a base class called Base and two derived classes, called Derived1
and Derived2. Base declares a method called Who(), and the derived classes override it.
Inside the Main() method, objects of type Base, Derived1, and Derived2 are declared. Also,
a reference of type Base, called baseRef, is declared. The program then assigns a reference
to each type of object to baseRef and uses that reference to call Who(). As the output
shows, the version of Who() executed is determined by the type of object being referred to
at the time of the call, not by the class type of baseRef.

It is not necessary to override a virtual method. If a derived class does not provide its
own version of a virtual method, then the one in the base class is used. For example:

/* When a virtual method is not overridden,
the base class method is used. */

using System;

class Base {
// Create virtual method in the base class.
public virtual void Who() {
Console.WriteLine ("Who () in Base");

}

295

296

Part I: The C# Language

class Derivedl : Base {
// Override Who() in a derived class.
public override void Who () {
Console.WriteLine ("Who () in Derivedl");
}
}
class Derived2 : Base {

// This class does not override Who () .

}

class NoOverrideDemo {
static void Main () {
Base baseOb = new Base();
Derivedl dObl = new Derivedl () ;
Derived2 dOb2 = new Derived2();

Base baseRef; // a base class reference

baseRef = baseOb;
baseRef.Who () ;

baseRef = dObl;
baseRef.Who () ;

baseRef = dOb2;
baseRef.Who(); // calls Base's Who ()

The output from this program is shown here:

Who () in Base
Who () in Derivedl
Who () 1in Base

Here, Derived2 does not override Who(). Thus, when Who() is called on a Derived2
object, the Who() in Base is executed.

In the case of a multilevel hierarchy, if a derived class does not override a virtual
method, then, while moving up the hierarchy, the first override of the method that is
encountered is the one executed. For example:

/* In a multilevel hierarchy, the first override of a virtual
method that is found while moving up the hierarchy is the
one executed. */

using System;

class Base {
// Create virtual method in the base class.
public virtual void Who() {
Console.WriteLine ("Who () in Base");

Chapter 11: Inheritance

}

class Derivedl : Base {
// Override Who() in a derived class.
public override void Who () {
Console.WriteLine ("Who () in Derivedl");
}
}
class Derived2 : Derivedl {

// This class also does not override Who ().

}

class Derived3 : Derived2 {
// This class does not override Who ().

}

class NoOverrideDemo?2 {
static void Main () {
Derived3 dOb = new Derived3();
Base baseRef; // a base class reference

baseRef = dOb;
baseRef.Who(); // calls Derivedl's Who ()

The output is shown here:
Who () in Derivedl

Here, Derived3 inherits Derived2, which inherits Derived1, which inherits Base. As the
output verifies, since Who() is not overridden by either Derived3 or Derived?2, it is the
override of Who() in Derived1 that is executed, since it is the first version of Who() that
is found.

One other point: Properties can also be modified by the virtual keyword and overridden
using override. The same is true for indexers.

Why Overridden Methods?

Overridden methods allow C# to support runtime polymorphism. Polymorphism is essential
to object-oriented programming for one reason: It allows a general class to specify methods
that will be common to all of its derivatives, while allowing derived classes to define the
specific implementation of some or all of those methods. Overridden methods are another
way that C# implements the “one interface, multiple methods” aspect of polymorphism.

Part of the key to applying polymorphism successfully is understanding that the base
classes and derived classes form a hierarchy that moves from lesser to greater specialization.
Used correctly, the base class provides all elements that a derived class can use directly. Through
virtual methods, it also defines those methods that the derived class can implement on its
own. This allows the derived class flexibility, yet still enforces a consistent interface. Thus,
by combining inheritance with overridden methods, a base class can define the general
form of the methods that will be used by all of its derived classes.

291

298

Part I: The C# Language

Applying Virtual Methods

To better understand the power of virtual methods, we will apply them to the TwoDShape
class. In the preceding examples, each class derived from TwoDShape defines a method
called Area(). This suggests that it might be better to make Area() a virtual method of the
TwoDShape class, allowing each derived class to override it, defining how the area is
calculated for the type of shape that the class encapsulates. The following program does
this. For convenience, it also adds a name property to TwoDShape. (This makes it easier

to demonstrate the classes.)

// Use virtual methods and polymorphism.
using System;

class TwoDShape {
double pri width;
double pri height;

// A default constructor.

public TwoDShape () {
Width = Height = 0.0;
name = "null";

}

// Parameterized constructor.
public TwoDShape (double w, double h, string n) {

Width = w;
Height = h;
name = n;

}

// Construct object with equal width and height.
public TwoDShape (double x, string n) {

Width = Height = x;

name = n;

}

// Construct a copy of a TwoDShape object.
public TwoDShape (TwoDShape ob) {

Width = ob.Width;

Height = ob.Height;

name = ob.name;

}

// Properties for Width and Height.
public double Width {
get { return pri width; }
set { pri width = value < 0 ? -value : value; }

}

public double Height {
get { return pri height; }
set { pri height = value < 0 ? -value : value; }

Chapter 11: Inheritance 299

public string name { get; set; }

public void ShowDim() {
Console.WriteLine ("Width and height are " +
Width + " and " + Height);

public virtual double Area() {
Console.WriteLine ("Area () must be overridden");
return 0.0;

}

// A derived class of TwoDShape for triangles.
class Triangle : TwoDShape {
string Style;

// A default constructor.
public Triangle() {

Style = "null";
}

// Constructor for Triangle.
public Triangle(string s, double w, double h)
base(w, h, "triangle") {
Style = s;
}

// Construct an isosceles triangle.
public Triangle (double x) : base(x, "triangle") ({
Style = "isosceles";

}

// Construct a copy of a Triangle object.

public Triangle(Triangle ob) : base(ob) {
Style = ob.Style;

}

// Override Area() for Triangle.

public override double Area () {
return Width * Height / 2;

}

// Display a triangle's style.
public void ShowStyle () {
Console.WriteLine ("Triangle is " + Style);
}
}

// A derived class of TwoDShape for rectangles.
class Rectangle : TwoDShape {

// Constructor for Rectangle.
public Rectangle (double w, double h)
base(w, h, "rectangle"){ }

300

Part I: The C# Language

// Construct a square.

public Rectangle (double x)

base (x, "rectangle") {

}

// Construct a copy of a Rectangle object.

public Rectangle (Rectangle ob)

base (ob) { }

// Return true if the rectangle is square.

public bool IsSquare() {
if (Width == Height)
return false;

}
// Override Area()
return Width * Height;

}

class DynShapes {

{

return true;

for Rectangle.
public override double Area()

static void Main () {
TwoDShape[] shapes = new TwoDShape[5];
shapes[0] = new Triangle("right", 8.0, 12.0);
shapes[1l] = new Rectangle (10);
shapes[2] = new Rectangle (10, 4);
shapes[3] = new Triangle(7.0);
shapes[4] = new TwoDShape (10, 20, "generic");
for(int i=0; i < shapes.Length; i++) {
Console.WriteLine ("object is " + shapes[i].name);

Console.WriteLine ("Area is

Console.WriteLine();

" + shapes|[i].Area());

The output from the program is shown here:

object is triangle
Area is 48

object is rectangle
Area is 100

object is rectangle
Area is 40

object is triangle
Area is 24.5

object is generic
Area () must be overridden
Area is O

Chapter 11: Inheritance

Let’s examine this program closely. First, as explained, Area() is declared as virtual in
the TwoDShape class and is overridden by Triangle and Rectangle. Inside TwoDShape,
Area() is given a placeholder implementation that simply informs the user that this method
must be overridden by a derived class. Each override of Area() supplies an implementation
that is suitable for the type of object encapsulated by the derived class. Thus, if you were to
implement an ellipse class, for example, then Area() would need to compute the area of an
ellipse.

There is one other important feature in the preceding program. Notice in Main() that
shapes is declared as an array of TwoDShape objects. However, the elements of this array
are assigned Triangle, Rectangle, and TwoDShape references. This is valid because a base
class reference can refer to a derived class object. The program then cycles through the array,
displaying information about each object. Although quite simple, this illustrates the power
of both inheritance and method overriding. The type of object stored in a base class reference
variable is determined at runtime and acted on accordingly. If an object is derived from
TwoDShape, then its area can be obtained by calling Area(). The interface to this operation
is the same no matter what type of shape is being used.

Using Abstract Classes

Sometimes you will want to create a base class that defines only a generalized form that will
be shared by all of its derived classes, leaving it to each derived class to fill in the details.
Such a class determines the nature of the methods that the derived classes must implement,
but does not, itself, provide an implementation of one or more of these methods. One way
this situation can occur is when a base class is unable to create a meaningful implementation
for a method. This is the case with the version of TwoDShape used in the preceding example.
The definition of Area() is simply a placeholder. It will not compute and display the area of
any type of object.

You will see as you create your own class libraries that it is not uncommon for a method
to have no meaningful definition in the context of its base class. You can handle this situation
two ways. One way, as shown in the previous example, is to simply have it report a warning
message. Although this approach can be useful in certain situations—such as debugging—it
is not usually appropriate. You may have methods that must be overridden by the derived
class in order for the derived class to have any meaning. Consider the class Triangle. It is
incomplete if Area() is not defined. In such a case, you want some way to ensure that a
derived class does, indeed, override all necessary methods. C#'s solution to this problem is
the abstract method.

An abstract method is created by specifying the abstract type modifier. An abstract
method contains no body and is, therefore, not implemented by the base class. Thus, a
derived class must override it—it cannot simply use the version defined in the base class.
As you can probably guess, an abstract method is automatically virtual, and there is no
need to use the virtual modifier. In fact, it is an error to use virtual and abstract together.

To declare an abstract method, use this general form:

abstract type name(parameter-list);

As you can see, no method body is present. The abstract modifier can be used only on
instance methods. It cannot be applied to static methods. Properties and indexers can also
be abstract.

301

302

Part I: The C# Language

A class that contains one or more abstract methods must also be declared as abstract by
preceding its class declaration with the abstract specifier. Since an abstract class does not
define a complete implementation, there can be no objects of an abstract class. Thus, attempting
to create an object of an abstract class by using new will result in a compile-time error.

When a derived class inherits an abstract class, it must implement all of the abstract
methods in the base class. If it doesn’t, then the derived class must also be specified as
abstract. Thus, the abstract attribute is inherited until such time as a complete implementation
is achieved.

Using an abstract class, you can improve the TwoDShape class. Since there is no meaningtul
concept of area for an undefined two-dimensional figure, the following version of the preceding
program declares Area() as abstract inside TwoDShape and TwoDShape as abstract. This,
of course, means that all classes derived from TwoDShape must override Area().

// Create an abstract class.
using System;

abstract class TwoDShape {
double pri width;
double pri height;

// A default constructor.

public TwoDShape () {
Width = Height = 0.0;
name = "null";

}

// Parameterized constructor.
public TwoDShape (double w, double h, string n) {

Width = w;
Height = h;
name = n;

}

// Construct object with equal width and height.
public TwoDShape (double x, string n) {

Width = Height = x;

name = n;

}

// Construct a copy of a TwoDShape object.
public TwoDShape (TwoDShape ob) {

Width = ob.Width;

Height = ob.Height;

name = ob.name;

}

// Properties for Width and Height.
public double Width {
get { return pri width; }
set { pri width = value < 0 ? -value : value; }

Chapter 11: Inheritance 303

public double Height {
get { return pri height; }
set { pri height = value < 0 ? -value : value; }

}
public string name { get; set; }

public void ShowDim () {
Console.WriteLine ("Width and height are " +
Width + " and " + Height);
}

// Now, Area() is abstract.
public abstract double Area();
}

// A derived class of TwoDShape for triangles.
class Triangle : TwoDShape {
string Style;

// A default constructor.
public Triangle() {

Style = "null";
}

// Constructor for Triangle.
public Triangle(string s, double w, double h)
base(w, h, "triangle") {
Style = s;
}

// Construct an isosceles triangle.
public Triangle (double x) : base(x, "triangle") ({
Style = "isosceles";

}

// Construct a copy of a Triangle object.

public Triangle(Triangle ob) : base(ob) {
Style = ob.Style;

}

// Override Area() for Triangle.

public override double Area () {
return Width * Height / 2;

}

// Display a triangle's style.
public void ShowStyle () {
Console.WriteLine ("Triangle is " + Style);
}
}

// A derived class of TwoDShape for rectangles.
class Rectangle : TwoDShape {

304

Part I: The C# Language

// Constructor for Rectangle.
public Rectangle (double w, double h)
base(w, h, "rectangle"){ }

// Construct a square.
public Rectangle (double x)
base (x, "rectangle"™) { }

// Construct a copy of a Rectangle object.
public Rectangle (Rectangle ob) : base(ob) { }

// Return true if the rectangle is square.
public bool IsSquare() {

if (Width == Height) return true;

return false;

}

// Override Area() for Rectangle.
public override double Area () {
return Width * Height;
}
}

class AbsShape {
static void Main () {
TwoDShape[] shapes = new TwoDShape[4];

shapes[0] = new Triangle("right", 8.0, 12.0);
shapes[1] = new Rectangle(10);

shapes[2] = new Rectangle (10, 4);

shapes[3] = new Triangle(7.0);

for (int i=0; i < shapes.Length; i++) {
Console.WriteLine ("object is " + shapes[i].name);
Console.WriteLine ("Area is " + shapes[i].Area());

Console.WriteLine();

As the program illustrates, all derived classes must override Area() (or also be declared
abstract). To prove this to yourself, try creating a derived class that does not override Area().
You will receive a compile-time error. Of course, it is still possible to create an object reference
of type TwoDShape, which the program does. However, it is no longer possible to declare
objects of type TwoDShape. Because of this, in Main() the shapes array has been shortened
to 4, and a generic TwoDShape object is no longer created.

One other point: Notice that TwoDShape still includes the ShowDim() method and
that it is not modified by abstract. It is perfectly acceptable—indeed, quite common—for an
abstract class to contain concrete methods that a derived class is free to use as-is. Only those
methods declared as abstract must be overridden by derived classes.

Chapter 11: Inheritance 305

Using sealed to Prevent Inheritance

As powerful and useful as inheritance is, sometimes you will want to prevent it. For
example, you might have a class that encapsulates the initialization sequence of some
specialized hardware device, such as a medical monitor. In this case, you don’t want users
of your class to be able to change the way the monitor is initialized, possibly setting the
device incorrectly. Whatever the reason, in C# it is easy to prevent a class from being
inherited by using the keyword sealed.

To prevent a class from being inherited, precede its declaration with sealed. As you
might expect, it is illegal to declare a class as both abstract and sealed because an abstract
class is incomplete by itself and relies upon its derived classes to provide complete
implementations.

Here is an example of a sealed class:

sealed class A {
//
}

// The following class is illegal.

class B : A { // ERROR! Can't derive from class A
//

}

As the comments imply, it is illegal for B to inherit A because A is declared as sealed.
One other point: sealed can also be used on virtual methods to prevent further
overrrides. For example, assume a base class called B and a derived class called D. A
method declared virtual in B can be declared sealed by D. This would prevent any class
that inherits D from overriding the method. This situation is illustrated by the following;:

class B {
public virtual void MyMethod () { /* ... */ }
}

class D : B {
// This seals MyMethod() and prevents further overrides.
sealed public override void MyMethod () { /* ... */ }

}

class X : D {

// Error! MyMethod() is sealed!

public override void MyMethod() { /* ... */ }
}

Because MyMethod() is sealed by D, it can’t be overridden by X.

The object Class
C# defines one special class called object that is an implicit base class of all other classes and
for all other types (including the value types). In other words, all other types are derived
from object. This means that a reference variable of type object can refer to an object of any

306 Partl: The C# Language

other type. Also, since arrays are implemented as objects, a variable of type object can also
refer to any array. Technically, the C# name object is just another name for System.Object,
which is part of the NET Framework class library.

The object class defines the methods shown in Table 11-1, which means that they are

available in every object.

A few of these methods warrant some additional explanation. By default, the Equals(object)
method determines if the invoking object refers to the same object as the one referred to by
the argument. (That is, it determines if the two references are the same.) It returns true if the
objects are the same, and false otherwise. You can override this method in classes that you
create. Doing so allows you to define what equality means relative to a class. For example,
you could define Equals(object) so that it compares the contents of two objects for equality.
The Equals(object, object) method invokes Equals(object) to compute its result.

The GetHashCode() method returns a hash code associated with the invoking object.
This hash code can be used with any algorithm that employs hashing as a means of

accessing stored objects.

As mentioned in Chapter 9, if you overload the = = operator, then you will usually need
to override Equals(object) and GetHashCode() because most of the time you will want
the = = operator and the Equals(object) methods to function the same. When Equals()
is overridden, you should also override GetHashCode(), so that the two methods are

compatible.

The ToString() method returns a string that contains a description of the object on
which it is called. Also, this method is automatically called when an object is output using

Method

Purpose

public virtual bool Equals(object ob)

Determines whether the invoking object is the
same as the one referred to by ob.

public static bool Equals(object ob1, object ob2)

Determines whether ob1 is the same as ob2.

protected virtual Finalize()

Performs shutdown actions prior to garbage
collection. In C#, Finalize() is accessed through
a destructor.

public virtual int GetHashCode()

Returns the hash code associated with the
invoking object.

public Type GetType()

Obtains the type of an object at runtime.

protected object MemberwiseClone()

Makes a “shallow copy” of the object. This
is one in which the members are copied, but
objects referred to by members are not.

public static bool ReferenceEquals(object ob1,
object ob2)

Determines whether ob1 and ob2 refer to the
same object.

public virtual string ToString()

Returns a string that describes the object.

TaBLe 11-1 Methods of the object Class

Chapter 11: Inheritance 307

WriteLine(). Many classes override this method. Doing so allows them to tailor a
description specifically for the types of objects that they create. For example:

// Demonstrate ToString/()
using System;

class MyClass {
static int count = 0;
int id;

public MyClass () {
id = count;
count++;

}

public override string ToString() {
return "MyClass object #" + id;
}
}

class Test {
static void Main () {
MyClass obl = new MyClass();
MyClass ob2 = new MyClass () ;
MyClass ob3 = new MyClass();

Console.WriteLine (obl) ;
Console.WriteLine (0b2) ;
Console.WriteLine (0b3);

The output from the program is shown here:

MyClass object #0
MyClass object #1
MyClass object #2

Boxing and Unboxing

As explained, all C# types, including the value types, are derived from object. Thus, a
reference of type object can be used to refer to any other type, including value types. When
an object reference refers to a value type, a process known as boxing occurs. Boxing causes
the value of a value type to be stored in an object instance. Thus, a value type is “boxed”
inside an object. This object can then be used like any other object. In all cases, boxing occurs
automatically. You simply assign a value to an object reference. C# handles the rest.

Unboxing is the process of retrieving a value from a boxed object. This action is performed
using an explicit cast from the object reference to its corresponding value type. Attempting
to unbox an object into a different type will result in a runtime error.

308

Part I: The C# Language

Here is a simple example that illustrates boxing and unboxing:
// A simple boxing/unboxing example.
using System;

class BoxingDemo {
static void Main () {
int x;
object obj;

x = 10;
obj = x; // box x into an object

int y = (int)obj; // unbox obj into an int
Console.WriteLine (y);

}

This program displays the value 10. Notice that the value in x is boxed simply by assigning
it to obj, which is an object reference. The integer value in obj is retrieved by casting obj
to int.

Here is another, more interesting example of boxing. In this case, an int is passed as an
argument to the Sqr() method, which uses an object parameter.

// Boxing also occurs when passing values.
using System;

class BoxingDemo {
static void Main () {
int x;

x = 10;
Console.WriteLine ("Here is x: " + Xx);

// x 1s automatically boxed when passed to Sqr().
x = BoxingDemo.Sqr (x) ;
Console.WriteLine ("Here is x squared: " + x);

}

static int Sqgr (object o) {
return (int)o * (int)o;

}

The output from the program is shown here:

Here is x: 10
Here is x squared: 100

Here, the value of x is automatically boxed when it is passed to Sqr().
Boxing and unboxing allow C#’s type system to be fully unified. All types derive from
object. A reference to any type can be assigned to a variable of type object. Boxing and

Chapter 11: Inheritance 309

unboxing automatically handle the details for the value types. Furthermore, because all
types are derived from object, they all have access to object’s methods. For example,
consider the following rather surprising program:

// Boxing makes it possible to call methods on a value!
using System;

class MethOnValue {
static void Main () {

Console.WriteLine (10.ToString());

}

This program displays 10. The reason is that the ToString() method returns a string
representation of the object on which it is called. In this case, the string representation
of 10 is 10!

Is object a Universal Data Type?

Given that object is a base class for all other types and that boxing of the value types takes
place automatically, it is possible to use object as a “universal” data type. For example,
consider the following program that creates an array of object and then assigns various
other types of data to its elements:

// Use object to create a "generic" array.
using System;
class GenericDemo {
static void Main () {

object[] ga = new object[10];

// Store ints.

for (int 1i=0; 1 < 3; i++)

gali] = i;
// Store doubles.

for (int 1i=3; i < 6; i++)
gal[i] = (double) i / 2;

// Store two strings, a bool, and a char.

gal[6] = "Hello";
gal[7] = true;
gal8] = 'X';
gal[9] = "end";

for(int i = 0; i < ga.Length; i++)
Console.WriteLine ("ga["™ + 1 + "]: " + gali] + " ");

310

Part I: The C# Language

The output is shown here:

gal[0]: O
gall]: 1
gal2]: 2
gal[3]: 1.5
gald4]: 2
gal[5]: 2.5
gal[6]: Hello
gal[7]: True
gal[8]: X
gal[9]: end

As this program illustrates, because an object reference can hold a reference to any other
type of data, it is possible to use an object reference to refer to any type of data. Thus, an array
of object as used by the program can store any type of data. Expanding on this concept, it is
easy to see how you could construct a stack class, for example, that stored object references.
This would enable the stack to store any type of data.

Although the universal-type feature of object is powerful and can be used quite effectively
in some situations, it is a mistake to think that you should use object as a way around C#’s
otherwise strong type checking. In general, when you need to store an int, use an int variable;
when you need to store a string, use a string reference; and so on.

More importantly, since version 2.0, true generic types are available to the C# programmer.
(Generics are described in Chapter 18.) The addition of generics enables you to easily define
classes and algorithms that automatically work with different types of data in a type-safe
manner. Because of generics, you will normally not need to use object as a universal type
when creating new code. Today; it’s best to reserve object’s universal nature for specialized
situations.

CHAPTER

Interfaces, Structures, and
Enumerations

defines a set of methods that will be implemented by a class. An interface does not,
itself, implement any method. Thus, an interface is a purely logical construct that
describes functionality without specifying implementation.

Also discussed in this chapter are two more C# data types: structures and enumerations.
Structures are similar to classes except that they are handled as value types rather than
reference types. Enumerations are lists of named integer constants. Structures and enumerations
contribute to the richness of the C# programming environment.

I I This chapter discusses one of C#'s most important features: the interface. An interface

Interfaces

In object-oriented programming it is sometimes helpful to define what a class must do, but
not how it will do it. You have already seen an example of this: the abstract method. An
abstract method declares the return type and signature for a method, but provides no
implementation. A derived class must provide its own implementation of each abstract
method defined by its base class. Thus, an abstract method specifies the interface to the
method, but not the implementation. Although abstract classes and methods are useful, it is
possible to take this concept a step further. In C#, you can fully separate a class’ interface
from its implementation by using the keyword interface.

Interfaces are syntactically similar to abstract classes. However, in an interface, no
method can include a body. That is, an interface provides no implementation whatsoever.

It specifies what must be done, but not how. Once an interface is defined, any number of
classes can implement it. Also, one class can implement any number of interfaces.

To implement an interface, a class must provide bodies (implementations) for the
methods described by the interface. Each class is free to determine the details of its own
implementation. Thus, two classes might implement the same interface in different ways,
but each class still supports the same set of methods. Therefore, code that has knowledge of
the interface can use objects of either class since the interface to those objects is the same. By
providing the interface, C# allows you to fully utilize the “one interface, multiple methods”
aspect of polymorphism.

31

312

Part I: The C# Language

Interfaces are declared by using the interface keyword. Here is a simplified form of an
interface declaration:

interface name {
ret-type method-namel(param-list);
ret-type method-name2(param-list);
/]
ret-type method-nameN (param-list);
}

The name of the interface is specified by name. Methods are declared using only their return
type and signature. They are, essentially, abstract methods. As explained, in an interface,
no method can have an implementation. Thus, each class that includes an interface must
implement all of the methods. In an interface, methods are implicitly public, and no explicit
access specifier is allowed.

Here is an example of an interface. It specifies the interface to a class that generates a
series of numbers.

public interface ISeries {

int GetNext (); // return next number in series
void Reset(); // restart
void SetStart (int x); // set starting value

}

The name of this interface is ISeries. Although the prefix I is not necessary, many
programmers prefix interfaces with I to differentiate them from classes. ISeries is
declared public so that it can be implemented by any class in any program.

In addition to methods, interfaces can specify properties, indexers, and events. Events
are described in Chapter 15, and we will be concerned with only methods, properties, and
indexers here. Interfaces cannot have data members. They cannot define constructors,
destructors, or operator methods. Also, no member can be declared as static.

Implementing Interfaces

Once an interface has been defined, one or more classes can implement that interface. To
implement an interface, the name of the interface is specified after the class name in just
the same way that a base class is specified. The general form of a class that implements an
interface is shown here:

class class-name : interface-name {
// class-body
}

The name of the interface being implemented is specified in interface-name. When a class
implements an interface, the class must implement the entire interface. It cannot pick and
choose which parts to implement, for example.

A class can implement more than one interface. When a class implements more than one
interface, specify each interface in a comma-separated list. A class can inherit a base class
and also implement one or more interfaces. In this case, the name of the base class must
come first in the comma-separated list.

Chapter 12: Interfaces, Structures, and Enumerations 313

The methods that implement an interface must be declared public. The reason for this is
that methods are implicitly public within an interface, so their implementation must also be
public. Also, the return type and signature of the implementing method must match exactly
the return type and signature specified in the interface definition.

Here is an example that implements the ISeries interface shown earlier. It creates a class
called ByTwos, which generates a series of numbers, each two greater than the previous one.

// Implement ISeries.
class ByTwos : ISeries {
int start;
int val;

public ByTwos () {
start = 0;
val = 0;

public int GetNext () {
val += 2;
return val;

}

public void Reset () {
val = start;

}

public void SetStart (int x) {
start = x;
val = start;

}

As you can see, ByTwos implements all three methods defined by ISeries. As explained,
this is necessary since a class cannot create a partial implementation of an interface.
Here is a class that demonstrates ByTwos:

// Demonstrate the ByTwos interface.
using System;
class SeriesDemo {
static void Main () {
ByTwos ob = new ByTwos () ;
for (int 1=0; 1 < 5; i++)
Console.WriteLine ("Next value is " +

ob.GetNext ());

Console.WriteLine ("\nResetting");

ob.Reset () ;
for (int 1=0; 1 < 5; i++)
Console.WriteLine ("Next value is " +

ob.GetNext ());

314

Part I: The C# Language

Console.WriteLine ("\nStarting at 100");
ob.SetStart (100) ;
for (int i=0; 1 < 5; i++)
Console.WriteLine ("Next value is " +
ob.GetNext ());

To compile SeriesDemo, you must include the files that contain ISeries, ByTwos, and
SeriesDemo in the compilation. The compiler will automatically compile all three files to
create the final executable. For example, if you called these files ISeries.cs, ByTwos.cs, and
SeriesDemo.cs, then the following command line will compile the program:

>csc SeriesDemo.cs ISeries.cs ByTwos.cs

If you are using the Visual C++ IDE, simply add all three files to your C# project. One other
point: It is perfectly valid to put all three of these classes in the same file, too.
The output from this program is shown here:

Next value is
Next value is
Next value is
Next value is
Next value is

= 0 o N

Resetting

Next value is
Next value is
Next value is
Next value is

= oo o BN

Next value is

Starting at 100

Next value is 102
Next value is 104
Next value is 106
Next value is 108
Next value is 110

It is both permissible and common for classes that implement interfaces to define
additional members of their own. For example, the following version of ByTwos adds
the method GetPrevious(), which returns the previous value:

// Implement ISeries and add GetPrevious() .
class ByTwos : ISeries ({

int start;

int val;

int prev;

public ByTwos () {
start = 0;
val = 0;
prev = -2;

Chapter 12: Interfaces, Structures, and Enumerations

public int GetNext () {
prev = val;
val += 2;
return val;

}

public void Reset () {
val = start;
prev = start - 2;

}

public void SetStart (int x) {

start = x;
val = start;
prev = val - 2;

}

// A method not specified by ISeries.
public int GetPrevious() {
return prev;
}
}

Notice that the addition of GetPrevious() required a change to the implementations of the
methods defined by ISeries. However, since the interface to those methods stays the same,
the change is seamless and does not break preexisting code. This is one of the advantages
of interfaces.

As explained, any number of classes can implement an interface. For example, here is a
class called Primes that generates a series of prime numbers. Notice that its implementation
of ISeries is fundamentally different than the one provided by ByTwos.

// Use ISeries to implement a series of prime numbers.
class Primes : ISeries {

int start;

int val;

public Primes () {
start = 2;
val = 2;

}

public int GetNext () {
int i, j;
bool isprime;

val++;
for(i = val; i < 1000000; i++) {
isprime = true;
for(3 = 2; 3 <= 1/3; J++) |
1f((1%3)==0) {
isprime = false;

break;

315

316 Partl: The C# Language

if (isprime) {
val = 1i;
break;
}
}

return val;

}

public void Reset () {
val = start;

}

public void SetStart (int x) {
start = x;
val = start;

The key point is that even though ByTwos and Primes generate completely unrelated
series of numbers, both implement ISeries. As explained, an interface says nothing about
the implementation, so each class is free to implement the interface as it sees fit.

Using Interface References

You might be somewhat surprised to learn that you can declare a reference variable of an
interface type. In other words, you can create an interface reference variable. Such a variable
can refer to any object that implements its interface. When you call a method on an object
through an interface reference, it is the version of the method implemented by the object
that is executed. This process is similar to using a base class reference to access a derived
class object, as described in Chapter 11.

The following example illustrates the use of an interface reference. It uses the same
interface reference variable to call methods on objects of both ByTwos and Primes. For
clarity, it shows all pieces of the program, assembled into a single file.

// Demonstrate interface references.
using System;

// Define the interface.
public interface ISeries {

int GetNext (); // return next number in series
void Reset(); // restart
void SetStart(int x); // set starting value

}

// Use ISeries to implement a series in which each
// value is two greater than the previous one.
class ByTwos : ISeries {

int start;

int val;

Chapter 12: Interfaces, Structures, and Enumerations

public ByTwos () {
start = 0;
val = 0;

}

public int GetNext () {
val += 2;
return val;

public void Reset () {
val = start;

}

public void SetStart (int x) {
start = x;
val = start;

}

// Use ISeries to implement a series of prime numbers.
class Primes : ISeries {

int start;

int val;

public Primes () {
start = 2;
val = 2;

}

public int GetNext () {
int i, j;
bool isprime;

val++;
for(i = val; i < 1000000; i++) |
isprime = true;
for(3j = 2; 3 <= 1/3; J++) |
1f((1%3)==0) {
isprime = false;
break;

}

if (isprime) {
val = 1i;
break;

}

return val;

}

public void Reset () {
val = start;

}

317

318 Part I:

The C# Language

public void SetStart (int x) {

}

start = x;
val = start;

class SeriesDemo2 {
static void Main ()

ByTwos twoOb
Primes primeO
ISeries ob;

for (int 1=0;
ob = twoOb;

{

= new ByTwos ()

b =

i<

new Primes () ;

5; i++) {

Console.WriteLine ("Next ByTwos value is " +

ob = primeO

b;

ob.GetNext ()) ;

Console.WriteLine ("Next prime number is " +

ob.GetNext ()) ;

The output from the program is shown here:

Next
Next
Next
Next
Next
Next
Next
Next
Next
Next

ByTwos value
prime number
ByTwos value
prime number
ByTwos value
prime number
ByTwos value
prime number
ByTwos value
prime number

is
is
is
is
is
is
is
is
is
is

~ oUW N

8

11
10
13

In Main(), ob is declared to be a reference to an ISeries interface. This means that it can be
used to store references to any object that implements ISeries. In this case, it is used to refer
to twoODb and primeOb, which are objects of type ByTwos and Primes, respectively, which
both implement ISeries.

One other point: An interface reference variable has knowledge only of the methods
declared by its interface declaration. Thus, an interface reference cannot be used to access
any other variables or methods that might be supported by the object.

Interface Properties

Like methods, properties are specified in an interface without any body. Here is the general
form of a property specification:

// interface property

type name {

}

get;
set;

Chapter 12: Interfaces, Structures, and Enumerations 319

Of course, only get or set will be present for read-only or write-only properties, respectively.

Although the declaration of a property in an interface looks similar to how an auto-
implemented property is declared in a class, the two are not the same. The interface
declaration does not cause the property to be auto-implemented. It only specifies the name
and type of the property. Implementation is left to each implementing class. Also, no access
modifiers are allowed on the accessors when a property is declared in an interface. Thus,
the set accessor, for example, cannot be specified as private in an interface.

Here is a rewrite of the ISeries interface and the ByTwos class that uses a property
called Next to obtain and set the next element in the series:

// Use a property in an interface.
using System;

public interface ISeries {
// An interface property.
int Next {
get; // return the next number in series
set; // set next number

}

// Implement ISeries.
class ByTwos : ISeries {
int val;

public ByTwos () {
val = 0;

}

// Get or set value.
public int Next {
get {
val += 2;
return val;
}
set |
val = value;

}

// Demonstrate an interface property.
class SeriesDemo3 {
static void Main () {
ByTwos ob = new ByTwos () ;

// Access series through a property.
for (int i=0; 1 < 5; i++)
Console.WriteLine ("Next value is " + ob.Next);

Console.WriteLine ("\nStarting at 21");
ob.Next = 21;

320 Partl: The C# Language

for (int 1i=0; 1 < 5; i++)
Console.WriteLine ("Next value is " + ob.Next);

The output from this program is shown here:

Next value is
Next value is
Next value is
Next value is
Next value is

= 0 o N

Starting at 21

Next value is 23
Next value is 25
Next value is 27
Next value is 29
Next value is 31

Interface Indexers

An interface can specify an indexer. A one-dimensional indexer declared in an interface has
this general form:

// interface indexer
element-type this[int index] {
get;
set;

}

As before, only get or set will be present for read-only or write-only indexers, respectively.
Also, no access modifiers are allowed on the accessors when an indexer is declared in an
interface.

Here is another version of ISeries that adds a read-only indexer that returns the i-th
element in the series.

// Add an indexer in an interface.
using System;

public interface ISeries {
// An interface property.
int Next {
get; // return the next number in series
set; // set next number

}

// An interface indexer.
int this[int index] {
get; // return the specified number in series

Chapter 12: Interfaces, Structures, and Enumerations n

// Implement ISeries.
class ByTwos : ISeries {
int val;

public ByTwos () {
val = 0;

// Get or set value using a property.
public int Next {
get {
val += 2;
return val;
}
set {
val = value;

// Get a value using an index.
public int this[int index] {
get {
val = 0;
for(int i=0; 1 < index; 1i++)
val += 2;
return val;

// Demonstrate an interface indexer.
class SeriesDemo4d {
static void Main() {
ByTwos ob = new ByTwos () ;

// Access series through a property.
for (int 1i=0; i < 5; i++)
Console.WriteLine ("Next value is " + ob.Next);

Console.WriteLine ("\nStarting at 21");
ob.Next = 21;
for (int 1=0; 1 < 5; i++)
Console.WriteLine ("Next value is " +
ob.Next) ;

Console.WriteLine ("\nResetting to 0");
ob.Next = 0;

// Access series through an indexer.
for (int 1=0; i < 5; i++)
Console.WriteLine ("Next value is " + ob[i]);

322 Partl: The C# Language

The output from this program is shown here:

Next value is
Next value is
Next value is
Next value is
Next value is

= 0 o N

Starting at 21

Next value is 23
Next value is 25
Next value is 27
Next value is 29
Next value is 31

Resetting to 0
Next value is
Next value is
Next value is
Next value is
Next value is

W o N O

Interfaces Can Be Inherited

One interface can inherit another. The syntax is the same as for inheriting classes. When a
class implements an interface that inherits another interface, it must provide implementations
for all the members defined within the interface inheritance chain. Here is an example:

// One interface can inherit another.
using System;

public interface IA {

void Methl () ;

void Meth2 () ;
}
// B now includes Methl () and Meth2() -- it adds Meth3().
public interface IB : IA {

void Meth3 () ;

// This class must implement all of IA and IB.
class MyClass : IB {
public void Methl () {
Console.WriteLine ("Implement Methl ().");

public void Meth2 () {
Console.WriteLine ("Implement Meth2().");

public void Meth3 () {
Console.WriteLine ("Implement Meth3().");

Chapter 12: Interfaces, Structures, and Enumerations 323

}

class IFExtend {
static void Main () {
MyClass ob = new MyClass();

ob.Methl () ;
ob.Meth2 () ;
ob.Meth3 () ;

As an experiment, you might try removing the implementation for Meth1() in MyClass.
This will cause a compile-time error. As stated earlier, any class that implements an interface
must implement all methods defined by that interface, including any that are inherited from
other interfaces.

Name Hiding with Interface Inheritance

When one interface inherits another, it is possible to declare a member in the derived
interface that hides one defined by the base interface. This happens when a member in a
derived interface has the same declaration as one in the base interface. In this case, the base
interface name is hidden. This will cause a warning message unless you specify the derived
interface member with new.

Explicit Implementations

When implementing a member of an interface, it is possible to fully qualify its name with
its interface name. Doing this creates an explicit interface member implementation, or explicit
implementation, for short. For example, given

interface IMyIF ({
int MyMeth (int x);
}

then it is legal to implement IMyIF as shown here:

class MyClass : IMyIF {
int IMyIF.MyMeth (int x) {
return x / 3;
}
}

As you can see, when the MyMeth() member of IMyIF is implemented, its complete name,
including its interface name, is specified.

There are two reasons that you might need to create an explicit implementation of an
interface method. First, when you implement an interface method using its fully qualified
name, you are providing an implementation that cannot be accessed through an object of the
class. Instead, it must be accessed via an interface reference. Thus, an explicit implementation
gives you a way to implement an interface method so that it is not a public member of the

3%

Part I: The C# Language

class that provides the implementation. Second, it is possible for a class to implement two
interfaces, both of which declare methods by the same name and type signature. Qualifying
the names with their interfaces removes the ambiguity from this situation. Let’s look at an
example of each.

The following program contains an interface called IEven, which defines two methods,
IsEven() and IsOdd(), which determine if a number is even or odd. MyClass then implements
IEven. When it does so, it implements IsOdd() explicitly.

// Explicitly implement an interface member.
using System;

interface IEven ({
bool IsOdd(int x);
bool IsEven (int x);

class MyClass : IEven {

// Explicit implementation. Notice that this member is private
// by default.
bool IEven.IsOdd (int x) {

1f((x%2) != 0) return true;

else return false;

}

// Normal implementation.
public bool IsEven (int x) {
IEven o = this; // Interface reference to the invoking object.

return !o.IsOdd(x);

class Demo {
static void Main() {
MyClass ob = new MyClass();
bool result;

result = ob.IsEven (4);
if (result) Console.WriteLine ("4 is even.");

// result = ob.IsOdd(4); // Error, IsOdd not exposed.

// But, this is OK. It creates an IEven reference to a MyClass object
// and then calls IsOdd() through that reference.

IEven iRef = (IEven) ob;

result = iRef.Is0Odd (3);

if (result) Console.WriteLine ("3 is odd.");

Chapter 12: Interfaces, Structures, and Enumerations 325

Since IsOdd() is implemented explicitly, it is not exposed as a public member of MyClass.
Instead, IsOdd() can be accessed only through an interface reference. This is why it is
invoked through o (which is a reference variable of type IEven) in the implementation for
IsEven().

Here is an example in which two interfaces are implemented and both interfaces declare
a method called Meth(). Explicit implementation is used to eliminate the ambiguity inherent
in this situation.

// Use explicit implementation to remove ambiguity.
using System;

interface IMyIF A {
int Meth (int x);
}

interface IMyIF B {
int Meth (int x);
}

// MyClass implements both interfaces.
class MyClass : IMyIF A, IMyIF B {

// Explicitly implement the two Meth()s.
int IMyIF A.Meth (int x) {
return x + x;
}
int IMyIF B.Meth (int x) {
return x * x;

}

// Call Meth() through an interface reference.
public int MethA (int x) {

IMyIF A a ob;

a ob = this;

return a ob.Meth(x); // calls IMyIF A
}

public int MethB (int x) {

IMyIF B b ob;

b ob = this;

return b _ob.Meth(x); // calls IMyIF B
}

class FQIFNames {
static void Main () {
MyClass ob = new MyClass();

Console.Write("Calling IMyIF A.Meth(): ");
Console.WriteLine (ob.MethA (3));

326

Part I: The C# Language

Console.Write("Calling IMyIF B.Meth(): ");
Console.WriteLine (ob.MethB(3));
}
}

The output from this program is shown here:

Calling IMyIF A.Meth(): 6
Calling IMyIF B.Meth(): 9

Looking at the program, first notice that Meth() has the same signature in both IMyIF_A
and IMyIF_B. Thus, when MyClass implements both of these interfaces, it explicitly
implements each one separately, fully qualifying its name in the process. Since the only way
that an explicitly implemented method can be called is on an interface reference, MyClass
creates two such references, one for IMyIF_A and one for IMyIF_B. It then calls two of its
own methods, which call the interface methods, thereby removing the ambiguity.

Choosing Between an Interface and an Abstract Class

One of the more challenging parts of C# programming is knowing when to create an interface
and when to use an abstract class in cases in which you want to describe functionality but
not implementation. The general rule is this: When you can fully describe the concept in
terms of “what it does” without needing to specify any “how it does it,” then you should
use an interface. If you need to include some implementation details, then you will need to
represent your concept in an abstract class.

The .NET Standard Interfaces

The .NET Framework defines a large number of interfaces that a C# program can use. For
example, System.IComparable defines the CompareTo() method, which allows objects to be
compared when an ordering relationship is required. Interfaces also form an important part
of the Collections classes, which provide various types of storage (such as stacks and queues)
for groups of objects. For example, System.Collections.ICollection defines the functionality
of a collection. System.Collections.IEnumerator offers a way to sequence through the
elements in a collection. These and many other interfaces are described in Part II.

Structures

As you know, classes are reference types. This means that class objects are accessed through
a reference. This differs from the value types, which are accessed directly. However, sometimes
it would be useful to be able to access an object directly, in the way that value types are. One
reason for this is efficiency. Accessing class objects through a reference adds overhead onto
every access. It also consumes space. For very small objects, this extra space might be
significant. To address these concerns, C# offers the structure. A structure is similar to a
class, but is a value type, rather than a reference type.

Structures are declared using the keyword struct and are syntactically similar to classes.
Here is the general form of a struct:

Chapter 12: Interfaces, Structures, and Enumerations

struct name : interfaces {
// member declarations

}

The name of the structure is specified by name.

Structures cannot inherit other structures or classes or be used as a base for other
structures or classes. (Of course, like all C# types, structures do inherit object.) However, a
structure can implement one or more interfaces. These are specified after the structure name
using a comma-separated list. Like classes, structure members include methods, fields,
indexers, properties, operator methods, and events. Structures can also define constructors,
but not destructors. However, you cannot define a default (parameterless) constructor for a
structure. The reason for this is that a default constructor is automatically defined for all
structures, and this default constructor can’t be changed. The default constructor initializes
the fields of a structure to their default value. Since structures do not support inheritance,
structure members cannot be specified as abstract, virtual, or protected.

A structure object can be created using new in the same way as a class object, but it is
not required. When new is used, the specified constructor is called. When new is not used,
the object is still created, but it is not initialized. Thus, you will need to perform any
initialization manually.

Here is an example that uses a structure to hold information about a book:

// Demonstrate a structure.
using System;

// Define a structure.
struct Book {
public string Author;
public string Title;
public int Copyright;

public Book(string a, string t, int c) {
Author = a;
Title = t;
Copyright = c;

}

// Demonstrate Book structure.
class StructDemo {
static void Main() {
Book bookl = new Book ("Herb Schildt",
"C# 3.0: The Complete Reference",
2009); // explicit constructor

Book book2 = new Book(); // default constructor
Book book3; // no constructor

Console.WriteLine (bookl.Title + " by " + bookl.Author +
", (c) " + bookl.Copyright);
Console.WriteLine () ;

321

328

Part I: The C# Language

if (book2.Title == null)
Console.WriteLine ("book2.Title is null.");

// Now, give book2 some info.

book2.Title = "Brave New World";

book2.Author = "Aldous Huxley";

book2.Copyright = 1932;

Console.Write ("book2 now contains: ");
Console.WriteLine (book2.Title + " by " + book2.Author +

", (c) " + book2.Copyright);
Console.WriteLine () ;
// Console.WriteLine (book3.Title); // error, must initialize first
book3.Title = "Red Storm Rising";

Console.WritelLine (book3.Title); // now OK

The output from this program is shown here:
C# 3.0: The Complete Reference by Herb Schildt, (c) 2009

book2.Title is null.
book2 now contains: Brave New World by Aldous Huxley, (c) 1932

Red Storm Rising

As the program shows, a structure can be initialized either by using new to invoke a
constructor or by simply declaring an object. If new is used, then the fields of the structure
will be initialized either by the default constructor, which initializes all fields to their default
value, or by a user-defined constructor. If new is not used, as is the case with book3, then
the object is not initialized, and its fields must be set prior to using the object.

When you assign one structure to another, a copy of the object is made. This is an
important way in which struct differs from class. As explained earlier in this book, when
you assign one class reference to another, you are simply making the reference on the left
side of the assignment refer to the same object as that referred to by the reference on the
right. When you assign one struct variable to another, you are making a copy of the object on
the right. For example, consider the following program:

// Copy a struct.

using System;

// Define a structure.

struct MyStruct {
public int x;

}

// Demonstrate structure assignment.
class StructAssignment {

Chapter 12: Interfaces, Structures, and Enumerations

static void Main () {
MyStruct a;
MyStruct b;

a.x = 10;
b.x = 20;
Console.WriteLine("a.x {0}, b.x {1}", a.x, b.x);
a = b;
b.x =

Console.WriteLine ("a.x {0}, b.x {1}", a.x, b.x);

The output is shown here:

a.x 10, b.x 20
a.x 20, b.x 30

As the output shows, after the assignment
a = b;

the structure variables a and b are still separate and distinct. That is, a does not refer to or
relate to b in any way other than containing a copy of b’s value. This would not be the case
if a and b were class references. For example, here is the class version of the preceding
program:

// Use a class.
using System;

// Now a class.
class MyClass {
public int x;

}

// Now show a class object assignment.
class ClassAssignment {
static void Main () {
MyClass a = new MyClass();
MyClass b = new MyClass();

a.x = 10;
b.x = 20;
Console.WriteLine("a.x {0}, b.x {1}", a.x, b.x);

a = b;
b.x =

329

330

Part I: The C# Language

Console.WriteLine ("a.x {0}, b.x {1}", a.x, b.x);

The output from this version is shown here:

a.x 10, b.x 20
a.x 30, b.x 30

As you can see, after the assignment of b to a, both variables refer to the same object—the
one originally referred to by b.

Why Structures?

At this point, you might be wondering why C# includes the struct since it seems to be a
less-capable version of a class. The answer lies in efficiency and performance. Because
structures are value types, they are operated on directly rather than through a reference.
Thus, a struct does not require a separate reference variable. This means that less memory

is used in some cases. Furthermore, because a struct is accessed directly, it does not suffer
from the performance loss that is inherent in accessing a class object. Because classes are
reference types, all access to class objects is through a reference. This indirection adds
overhead to every access. Structures do not incur this overhead. In general, if you need

to simply store a group of related data, but don’t need inheritance and don’t need to operate
on that data through a reference, then a struct can be a more efficient choice.

Here is another example that shows how a structure might be used in practice. It
simulates an e-commerce transaction record. Each transaction includes a packet header that
contains the packet number and the length of the packet. This is followed by the account
number and the amount of the transaction. Because the packet header is a self-contained
unit of information, it is organized as a structure. This structure can then be used to create
a transaction record, or any other type of information packet.

// Structures are good when grouping small amounts of data.
using System;

// Define a packet structure.
struct PacketHeader {
public uint PackNum; // packet number
public ushort PackLen; // length of packet
}

// Use PacketHeader to create an e-commerce transaction record.
class Transaction {
static uint transacNum = 0;

PacketHeader ph; // incorporate PacketHeader into Transaction
string accountNum;
double amount;

Chapter 12: Interfaces, Structures, and Enumerations 31

public Transaction(string acc, double wval) {
// create packet header
ph.PackNum = transacNum++;
ph.PackLen = 512; // arbitrary length

accountNum = acc;
amount = val;

}

// Simulate a transaction.

public void sendTransaction () {
Console.WriteLine ("Packet #: " + ph.PackNum +
", Length: " + ph.PackLen +
", \n Account #: " 4+ accountNum +

", Amount: {0:C}\n", amount);

}

// Demonstrate Packet.
class PacketDemo {
static void Main () {
Transaction t = new Transaction("31243", -100.12);
Transaction t2 = new Transaction ("AB4655", 345.25);
Transaction t3 = new Transaction("8475-09", 9800.00);

t.sendTransaction () ;
t2.sendTransaction() ;
t3.sendTransaction ()

’

The output from the program is shown here:

Packet #: 0, Length: 512,
Account #: 31243, Amount: ($100.12)

Packet #: 1, Length: 512,
Account #: AB4655, Amount: $345.25

Packet #: 2, Length: 512,
Account #: 8475-09, Amount: $9,800.00

PacketHeader is a good choice for a struct because it contains only a small amount of data
and does not use inheritance or even contain methods. As a structure, PacketHeader does
not incur the additional overhead of a reference, as a class would. Thus, any type of
transaction record can use PacketHeader without affecting its efficiency.

As a point of interest, C++ also has structures and uses the struct keyword. However,
C# and C++ structures are not the same. In C++, struct defines a class type. Thus, in C++,
struct and class are nearly equivalent. (The difference has to do with the default access of
their members, which is private for class and public for struct.) In C#, a struct defines a
value type, and a class defines a reference type.

332 Partl: The C# Language

Enumerations

An enumeration is a set of named integer constants. The keyword enum declares an
enumerated type. The general form for an enumeration is

enum name { enumeration list };

Here, the type name of the enumeration is specified by name. The enumeration list is a
comma-separated list of identifiers.

Here is an example. It defines an enumeration called Apple that enumerates various
types of apples:

enum Apple { Jonathan, GoldenDel, RedDel, Winesap,
Cortland, McIntosh };

A key point to understand about an enumeration is that each of the symbols stands for
an integer value. However, no implicit conversions are defined between an enum type and
the built-in integer types, so an explicit cast must be used. Also, a cast is required when
converting between two enumeration types. Since enumerations represent integer values,
you can use an enumeration to control a switch statement or as the control variable in a for
loop, for example.

Each enumeration symbol is given a value one greater than the symbol that precedes it.
By default, the value of the first enumeration symbol is 0. Therefore, in the Apple enumeration,
Jonathan is 0, GoldenDel is 1, RedDel is 2, and so on.

The members of an enumeration are accessed through their type name via the dot
operator. For example

Console.WriteLine (Apple.RedDel + " has the value " +
(int)Apple.RedDel) ;

displays
RedDel has the value 2

As the output shows, when an enumerated value is displayed, its name is used. To obtain
its integer value, a cast to int must be employed.
Here is a program that illustrates the Apple enumeration:

// Demonstrate an enumeration.
using System;

class EnumDemo {
enum Apple { Jonathan, GoldenDel, RedDel, Winesap,
Cortland, McIntosh };

static void Main ()
string[] color =
"Red" ,
"Yellow",

{
{

Chapter 12: Interfaces, Structures, and Enumerations

"Red" ,

llRedll ,

llRedll ,

"Reddish Green"
}i

Apple 1i; // declare an enum variable

// Use i to cycle through the enum.
for (i = Apple.Jonathan; i <= Apple.McIntosh; i++)
Console.WriteLine (i + " has value of " + (int)i);

Console.WriteLine () ;

// Use an enumeration to index an array.
for (i = Apple.Jonathan; i <= Apple.McIntosh; i++)
Console.WriteLine ("Color of " + i + " is " +
color[(int)i]);

The output from the program is shown here:

Jonathan has wvalue of 0
GoldenDel has value of 1
RedDel has value of 2
Winesap has value of 3
Cortland has value of 4
McIntosh has value of 5

Color of Jonathan is Red

Color of GoldenDel is Yellow

Color of RedDel is Red

Color of Winesap is Red

Color of Cortland is Red

Color of McIntosh is Reddish Green

Notice how the for loops are controlled by a variable of type Apple. Because the
enumerated values in Apple start at zero, these values can be used to index color to obtain
the color of the apple. Notice that a cast is required when the enumeration value is used to
index the color array. As mentioned, there are no implicit conversions defined between
integers and enumeration types. An explicit cast is required.

Initialize an Enumeration

You can specify the value of one or more of the symbols by using an initializer. Do this by
following the symbol with an equal sign and an integer value. Symbols that appear after
initializers are assigned values greater than the previous initialization value. For example,
the following code assigns the value of 10 to RedDel:

enum Apple { Jonathan, GoldenDel, RedDel = 10, Winesap,
Cortland, McIntosh };

333

334

Part I: The C# Language

Now the values of these symbols are

Jonathan

GoldenDel

RedDel 10
Winesap 11
Cortland 12
Mclintosh 13

Specify the Underlying Type of an Enumeration

By default, enumerations are based on type int, but you can create an enumeration of any
integral type, except for type char. To specify a type other than int, put the desired type
after the enumeration name, separated by a colon. For example, this statement makes
Apple an enumeration based on byte:

enum Apple : byte { Jonathan, GoldenDel, RedDel, Winesap,
Cortland, McIntosh };

Now Apple.Winesap, for example, is a byte quantity.

Use Enumerations

At first glance you might think that enumerations are an interesting but relatively
unimportant part of C#, yet this is not the case. Enumerations are very useful when your
program requires one or more specialized symbols. For example, imagine that you are
writing a program that controls a conveyor belt in a factory. You might create a method
called Conveyor() that accepts the following commands as parameters: start, stop, forward,
and reverse. Instead of passing Conveyor() integers, such as 1 for start, 2 for stop, and so
on, which is error-prone, you can create an enumeration that assigns words to these values.
Here is an example of this approach:

// Simulate a conveyor belt.

using System;

class ConveyorControl {
// Enumerate the conveyor commands.
public enum Action { Start, Stop, Forward, Reverse };
public void Conveyor (Action com) {

switch (com) {
case Action.Start:

Console.WriteLine ("Starting conveyor.");
break;

case Action.Stop:
Console.WriteLine ("Stopping conveyor.");

break;

Chapter 12: Interfaces, Structures, and Enumerations

case Action.Forward:
Console.WriteLine ("Moving forward.");
break;

case Action.Reverse:
Console.WriteLine ("Moving backward.");
break;

class ConveyorDemo {
static void Main () {
ConveyorControl ¢ = new ConveyorControl () ;

.Conveyor
.Conveyor
.Conveyor
.Conveyor

ConveyorControl.Action.Start);
ConveyorControl.Action.Forward) ;
ConveyorControl.Action.Reverse) ;
ConveyorControl.Action.Stop) ;

C
C
C
C

The output from the program is shown here:

Starting conveyor.
Moving forward.
Moving backward.
Stopping conveyor.

Because Conveyor() takes an argument of type Action, only the values defined by Action
can be passed to the method. For example, here an attempt is made to pass the value 22 to
Conveyor():

c.Conveyor (22); // Error!

This won’t compile because there is no predefined conversion from int to Action. This prevents
the passing of invalid commands to Conveyor(). Of course, you could use a cast to force
a conversion, but this would require a premeditated act, not an accidental misuse. Also,
because commands are specified by name rather than by number, it is less likely that a
user of Conveyor() will inadvertently pass the wrong value.

There is one other interesting thing in this example: Notice that an enumeration type
is used to control the switch statement. As mentioned, because enumerations are integral
types, they are perfectly valid for use in a switch.

335

This page intentionally left blank

CHAPTER
Exception Handling

subsystem, you can, in a structured and controlled manner, handle runtime errors.

A principal advantage of exception handling is that it automates much of the error-
handling code that previously had to be entered “by hand” into any large program. For
example, in a computer language without exception handling, error codes must be returned
when a method fails, and these values must be checked manually each time the method is
called. This approach is both tedious and error-prone. Exception handling streamlines error-
handling by allowing your program to define a block of code, called an exception handler,
that is executed automatically when an error occurs. It is not necessary to manually check
the success or failure of each specific operation or method call. If an error occurs, it will be
processed by the exception handler.

Exception handling is also important because C# defines standard exceptions for common
program errors, such as divide-by-zero or index-out-of-range. To respond to these errors,
your program must watch for and handle these exceptions. In the final analysis, to be a
successful C# programmer means that you are fully capable of navigating C#'s exception-
handling subsystem.

ﬁ n exception is an error that occurs at runtime. Using C#’s exception handling

The System.Exception Class

In C#, exceptions are represented by classes. All exception classes must be derived from the
built-in exception class Exception, which is part of the System namespace. Thus, all exceptions
are subclasses of Exception.

One very important subclass of Exception is SystemException. This is the exception
class from which all exceptions generated by the C# runtime system (that is, the CLR) are
derived. SystemException does not add anything to Exception. It simply defines the top
of the standard exceptions hierarchy.

The .NET Framework defines several built-in exceptions that are derived from
SystemException. For example, when a division-by-zero is attempted, a DivideByZeroException
exception is generated. As you will see later in this chapter, you can create your own
exception classes by deriving them from Exception.

331

338

Part I: The C# Language

Exception Handling Fundamentals

C# exception handling is managed via four keywords: try, catch, throw, and finally.
They form an interrelated subsystem in which the use of one implies the use of another.
Throughout the course of this chapter, each keyword is examined in detail. However, it
is useful at the outset to have a general understanding of the role each plays in exception
handling. Briefly, here is how they work.

Program statements that you want to monitor for exceptions are contained within a
try block. If an exception occurs within the try block, it is thrown. Your code can catch this
exception using catch and handle it in some rational manner. System-generated exceptions
are automatically thrown by the runtime system. To manually throw an exception, use the
keyword throw. Any code that absolutely must be executed upon exiting from a try block is
put in a finally block.

Using try and catch
At the core of exception handling are try and catch. These keywords work together, and you

can’t have a catch without a try. Here is the general form of the try/catch exception-handling
blocks:

try {
// block of code to monitor for errors

}

catch (ExcepTypel exOb) {
// handler for ExcepTypel

}

catch (ExcepType2 exOD) {
// handler for ExcepType2

?

Here, ExcepType is the type of exception that has occurred. When an exception is thrown,
it is caught by its corresponding catch clause, which then processes the exception. As the
general form shows, more than one catch clause can be associated with a try. The type of
the exception determines which catch is executed. That is, if the exception type specified
by a catch matches that of the exception, then that catch is executed (and all others are
bypassed). When an exception is caught, the exception variable exOb will receive its value.
Actually, specifying exOb is optional. If the exception handler does not need access to the
exception object (as is often the case), there is no need to specify exOb. The exception type
alone is sufficient. For this reason, many of the examples in this chapter will not specify exOb.
Here is an important point: If no exception is thrown, then a try block ends normally,
and all of its catch clauses are bypassed. Execution resumes with the first statement
following the last catch. Thus, a catch is executed only if an exception is thrown.

A Simple Exception Example

Here is a simple example that illustrates how to watch for and catch an exception. As you
know, it is an error to attempt to index an array beyond its boundaries. When this error
occurs, the CLR throws an IndexOutOfRangeException, which is a standard exception

Chapter 13: Exception Handling

defined by the .NET Framework. The following program purposely generates such an
exception and then catches it:

// Demonstrate exception handling.
using System;

class ExcDemol {

static void Main () {
int[] nums = new int[4];
try {
Console.WritelLine ("Before exception is generated.");

// Generate an index out-of-bounds exception.
for(int 1i=0; 1 < 10; 1i++) {

nums [1] = 1i;

Console.WriteLine ("nums[{0}]: {1}", i, nums[i]);
}

Console.WriteLine ("this won't be displayed");
}
catch (IndexOutOfRangeException) {

// Catch the exception.

Console.WriteLine ("Index out-of-bounds!");

}
Console.WriteLine ("After catch block.");

This program displays the following output:

Before exception is generated.

nums [0]: O
nums[1]: 1
nums[2]: 2
nums [3]: 3

Index out-of-bounds!
After catch block.

Notice that nums is an int array of four elements. However, the for loop tries to index nums
from 0 to 9, which causes an IndexOutOfRangeException to occur when an index value of
4 is tried.

Although quite short, the preceding program illustrates several key points about exception
handling. First, the code that you want to monitor for errors is contained within a try block.
Second, when an exception occurs (in this case, because of the attempt to index nums
beyond its bounds inside the for loop), the exception is thrown out of the try block and
caught by the catch. At this point, control passes to the catch block, and the try block is
terminated. That is, catch is not called. Rather, program execution is transferred to it. Thus,
the WriteLine() statement following the out-of-bounds index will never execute. After the
catch block executes, program control continues with the statements following the catch.
Thus, it is the job of your exception handler to remedy the problem that caused the
exception so program execution can continue normally.

339

340

Part I: The C# Language

Notice that no exception variable is specified in the catch clause. Instead, only the type
of the exception (IndexOutOfRangeException in this case) is required. As mentioned, an
exception variable is needed only when access to the exception object is required. In some
cases, the value of the exception object can be used by the exception handler to obtain
additional information about the error, but in many cases, it is sufficient to simply know
that an exception occurred. Thus, it is not unusual for the catch variable to be absent in the
exception handler, as is the case in the preceding program.

As explained, if no exception is thrown by a try block, no catch will be executed and
program control resumes after the catch. To confirm this, in the preceding program, change
the for loop from

for (int 1=0; 1 < 10; i++) {
to
for (int i=0; i < nums.Length; i++) {

Now, the loop does not overrun nums’ boundary. Thus, no exception is generated, and the
catch block is not executed.

A Second Exception Example

It is important to understand that all code executed within a try block is monitored for
exceptions. This includes exceptions that might be generated by a method called from
within the try block. An exception thrown by a method called from within a try block
can be caught by that try block, assuming, of course, that the method itself did not catch
the exception.

For example, consider the following program. Main() establishes a try block from which
the method GenException() is called. Inside GenException(), an IndexOutOfRangeException
is generated. This exception is not caught by GenException(). However, since GenException()
was called from within a try block in Main(), the exception is caught by the catch statement
associated with that try.

/* An exception can be generated by one
method and caught by another. */

using System;

class ExcTest {
// Generate an exception.

public static void GenException() {
int[] nums = new int[4];
Console.WriteLine ("Before exception is generated.");

// Generate an index out-of-bounds exception.
for (int 1i=0; i < 10; i++) {
nums [1] = 1i;
Console.WriteLine ("nums[{0}]: {1}", i, nums[i]);

}

Chapter 13: Exception Handling

Console.WriteLine ("this won't be displayed");
}
}

class ExcDemo2 {
static void Main () {

try |
ExcTest.GenException () ;
}
catch (IndexOutOfRangeException) {
// Catch the exception.
Console.WriteLine ("Index out-of-bounds!");

}
Console.WriteLine ("After catch block.");

This program produces the following output, which is the same as that produced by the
first version of the program shown earlier:

Before exception is generated.

nums[0]: O
nums[1]: 1
nums [2]: 2
nums[3]: 3

Index out-of-bounds!
After catch block.

As explained, because GenException() is called from within a try block, the exception that
it generates (and does not catch) is caught by the catch in Main(). Understand, however,
that if GenException() had caught the exception, then it never would have been passed
back to Main().

The Consequences of an Uncaught Exception

Catching one of the standard exceptions, as the preceding program does, has a side benefit:
It prevents abnormal program termination. When an exception is thrown, it must be caught
by some piece of code, somewhere. In general, if your program does not catch an exception,
it will be caught by the runtime system. The trouble is that the runtime system will report
an error and terminate the program. For instance, in this example, the index out-of-bounds
exception is not caught by the program:

// Let the C# runtime system handle the error.
using System;
class NotHandled {

static void Main () {
int[] nums = new int([4];

|

342

Part I: The C# Language

Console.WriteLine ("Before exception is generated.");

// Generate an index out-of-bounds exception.
for (int 1i=0; i < 10; i++) {
nums [1] = i;
Console.WriteLine ("nums[{0}]: {1}", i, nums[i]);

When the array index error occurs, execution is halted and the following error message
is displayed:

Unhandled Exception: System.IndexOutOfRangeException:
Index was outside the bounds of the array.
at NotHandled.Main ()

Although such a message is useful while debugging, you would not want others to see it, to
say the least! This is why it is important for your program to handle exceptions itself.

As mentioned earlier, the type of the exception must match the type specified in a catch.
If it doesn’t, the exception won't be caught. For example, the following program tries to
catch an array boundary error with a catch for a DivideByZeroException (another built-in
exception). When the array boundary is overrun, an IndexOutOfRangeException is
generated, but it won’t be caught by the catch. This results in abnormal program termination.

// This won't work!
using System;

class ExcTypeMismatch {

static void Main () {
int[] nums = new int([4];
try {
Console.WriteLine ("Before exception is generated.");

// Generate an index out-of-bounds exception.
for (int 1i=0; i < 10; i++) {
nums[1] = 1i;
Console.WriteLine ("nums[{0}]: {1}", i, nums[i]);

Console.WriteLine ("this won't be displayed");

}

/* Can't catch an array boundary error with a
DivideByZeroException. */
catch (DivideByZeroException) {
// Catch the exception.
Console.WritelLine ("Index out-of-bounds!");

Chapter 13: Exception Handling 343

Console.WriteLine ("After catch block.");

The output is shown here:

Before exception is generated.

nums [0] 0
nums [1] 1
nums [2]: 2
nums [3] 3

Unhandled Exception: System.IndexOutOfRangeException:
Index was outside the bounds of the array.
at ExcTypeMismatch.Main ()

As the output demonstrates, a catch for DivideByZeroException won't catch an
IndexOutOfRangeException.

Exceptions Let You Handle Errors Gracefully

One of the key benefits of exception handling is that it enables your program to respond
to an error and then continue running. For example, consider the following example that
divides the elements of one array by the elements of another. If a division-by-zero occurs, a
DivideByZeroException is generated. In the program, this exception is handled by reporting
the error and then continuing with execution. Thus, attempting to divide by zero does not
cause an abrupt runtime error resulting in the termination of the program. Instead, it is
handled gracefully, allowing program execution to continue.

// Handle error gracefully and continue.

using System;

class ExcDemo3 {
static void Main

(
int[] numer = {
int[] denom = {

)
4, 8, 16, 32, 64, 128 };
2, 0, 4, 4, 0, 8 };

for (int i=0; i < numer.Length; i++) {
try {

Console.WriteLine (numer[i] + " / " +
denom[i] + " is " +
numer [1]/denom[i]) ;

}
catch (DivideByZeroException) {
// Catch the exception.
Console.WriteLine ("Can't divide by Zero!");

}

344

Part I: The C# Language

The output from the program is shown here:

4 / 2 is 2

Can't divide by Zero!
le / 4 is 4

32 / 4 is 8

Can't divide by Zero!
128 / 8 is 16

This example makes another important point: Once an exception has been handled, it is

removed from the system. Therefore, in the program, each pass through the loop enters the
try block anew—any prior exceptions have been handled. This enables your program to
handle repeated errors.

Using Multiple catch Clauses

You can associate more than one catch clause with a try. In fact, it is common to do so.
However, each catch must catch a different type of exception. For example, the program
shown here catches both array boundary and divide-by-zero errors:

// Use multiple catch clauses.
using System;

class ExcDemo4 {
static void Main () {

// Here, numer is longer than denom.
int[] numer = { 4, 8, 16, 32, 64, 128, 256, 512 };
int[] denom = { 2, 0, 4, 4, 0, 8 };

for (int i=0; i < numer.Length; i++) {
try {

Console.WriteLine (numer([i] + " / " +
denom([i] + " is " +
numer [i]/denom[i]) ;

}

catch (DivideByZeroException) {
Console.WriteLine ("Can't divide by Zero!");

}

catch (IndexOutOfRangeException) {
Console.WriteLine ("No matching element found.");

}

This program produces the following output:

4 / 2 is 2

Can't divide by Zero!
16 / 4 is 4

32 / 4 is 8

Can't divide by Zero!
128 / 8 is 16

Chapter 13: Exception Handling

No matching element found.
No matching element found.

As the output confirms, each catch clause responds only to its own type of exception.
In general, catch clauses are checked in the order in which they occur in a program.
Only the first matching clause is executed. All other catch blocks are ignored.

Catching All Exceptions

Occasionally, you might want to catch all exceptions, no matter the type. To do this, use a
catch clause that specifies no exception type or variable. It has this general form:

catch {
// handle exceptions

}

This creates a “catch all” handler that ensures that all exceptions are caught by your
program.

Here is an example of a “catch all” exception handler. Notice that it catches both the
IndexOutOfRangeException and the DivideByZeroException generated by the program:

// Use the "catch all" catch.
using System;

class ExcDemo5 {
static void Main() {
// Here, numer is longer than denom.
int[] numer = { 4, 8, 16, 32, 64, 128, 256, 512 };
int[] denom = { 2, O, 4, 4, 0, 8 };

for(int i=0; i < numer.Length; i++) {
try |

Console.WriteLine (numer[i] + " / " +
denom[i] + " is " +
numer [i]/denom[i]) ;

}
catch { // A "catch-all" catch.
Console.WriteLine ("Some exception occurred.");

}

The output is shown here:

4 / 2 is 2

Some exception occurred.
16 / 4 is 4

32 / 4 is 8

Some exception occurred.
128 / 8 is 16

Some exception occurred.
Some exception occurred.

346 Partl: The C# Language

There is one point to remember about using a catch-all catch: It must be the last catch
clause in the catch sequence.

NOTE In the vast majority of cases you should not use the “catch all” handler as a means of dealing
with exceptions. It is normally better to deal individually with the exceptions that your code can
generate. The inappropriate use of the “catch all” handler can lead to situations in which errors
that would otherwise be caught during testing are masked. It is also difficult to correctly handle
all types of exceptions with a single hander. That said, a “catch all” handler might be appropriate
in certain specialized circumstances, such as in a runtime code analysis tool.

Nesting try Blocks

One try block can be nested within another. An exception generated within the inner try
block that is not caught by a catch associated with that try is propagated to the outer try block.
For example, here the IndexOutOfRangeException is not caught by the inner try block, but
by the outer try:

// Use a nested try block.
using System;

class NestTrys {
static void Main () {
// Here, numer is longer than denom.
int[] numer = { 4, 8, 16, 32, 64, 128, 256, 512 };
int[] denom = { 2, 0, 4, 4, 0, 8 };

try { // outer try
for (int i=0; i < numer.Length; i++) {
try { // nested try

Console.WriteLine (numer[i] + " / " +
denom[i] + " is " +
numer[i]/denom([i]) ;

}
catch (DivideByZeroException) {
Console.WritelLine ("Can't divide by Zero!");
}
}
}
catch (IndexOutOfRangeException) {
Console.WriteLine ("No matching element found.");
Console.WriteLine ("Fatal error -- program terminated.");

}

The output from the program is shown here:

4 / 2 is 2
Can't divide by Zero!
16 / 4 is 4

Chapter 13: Exception Handling

32 / 4 is 8

Can't divide by Zero!

128 / 8 is 16

No matching element found.

Fatal error -- program terminated.

In this example, an exception that can be handled by the inner try—in this case a divide-by-
zero error—allows the program to continue. However, an array boundary error is caught by
the outer try, which causes the program to terminate.

Although certainly not the only reason for nested try statements, the preceding program
makes an important point that can be generalized. Often, nested try blocks are used to
allow different categories of errors to be handled in different ways. Some types of errors
are catastrophic and cannot be fixed. Some are minor and can be handled immediately.
Many programmers use an outer try block to catch the most severe errors, allowing inner
try blocks to handle less serious ones. You can also use an outer try block as a “catch all”
block for those errors that are not handled by the inner block.

Throwing an Exception

The preceding examples have been catching exceptions generated automatically by the
runtime system. However, it is possible to throw an exception manually by using the throw
statement. Its general form is shown here:

throw exceptOb;

The exceptOb must be an object of an exception class derived from Exception.
Here is an example that illustrates the throw statement by manually throwing a
DivideByZeroException:

// Manually throw an exception.
using System;

class ThrowDemo {
static void Main () {
try |
Console.WriteLine ("Before throw.");
throw new DivideByZeroException () ;
}
catch (DivideByZeroException) {
Console.WriteLine ("Exception caught.");
}
Console.WriteLine ("After try/catch statement.");
}

The output from the program is shown here:

Before throw.
Exception caught.
After try/catch statement.

348

Part I: The C# Language

Notice how the DivideByZeroException was created using new in the throw statement.
Remember, throw throws an object. Thus, you must create an object for it to throw. That
is, you can’t just throw a type. In this case, the default constructor is used to create a
DivideByZeroException object, but other constructors are available for exceptions.

Most often, exceptions that you throw will be instances of exception classes that you
created. As you will see later in this chapter, creating your own exception classes allows you
to handle errors in your code as part of your program'’s overall exception handling strategy.

Rethrowing an Exception

An exception caught by one catch can be rethrown so that it can be caught by an outer
catch. The most likely reason for rethrowing an exception is to allow multiple handlers
access to the exception. For example, perhaps one exception handler manages one aspect of
an exception, and a second handler copes with another aspect. To rethrow an exception, you
simply specify throw, without specifying an expression. That is, you use this form of throw:

throw ;

Remember, when you rethrow an exception, it will not be recaught by the same catch
clause. Instead, it will propagate to an outer catch.

The following program illustrates rethrowing an exception. In this case, it rethrows an
IndexOutOfRangeException.

// Rethrow an exception.
using System;

class Rethrow {
public static void GenException() {
// Here, numer is longer than denom.
int[] numer = { 4, 8, 16, 32, 64, 128, 256, 512 };
int[] denom = { 2, 0, 4, 4, 0, 8 };

for (int i=0; i<numer.Length; i++) {
try f
Console.WriteLine (numer[i] + " / " +
denom[i] + " is " +
numer [i] /denom[i]) ;
}
catch (DivideByZeroException) {
Console.WriteLine ("Can't divide by Zero!");
}
catch (IndexOutOfRangeException) {
Console.WriteLine ("No matching element found.");
throw; // rethrow the exception

}

class RethrowDemo {
static void Main () {
try |

Chapter 13: Exception Handling

Rethrow.GenException () ;
}
catch (IndexOutOfRangeException) {
// recatch exception
Console.WriteLine ("Fatal error -- " + "program terminated.");
}
}
}

In this program, divide-by-zero errors are handled locally, by GenException(), but an array
boundary error is rethrown. In this case, the IndexOutOfRangeException is handled by
Main().

Using finally

Sometimes you will want to define a block of code that will execute when a try/catch block
is left. For example, an exception might cause an error that terminates the current method,
causing its premature return. However, that method may have opened a file or a network
connection that needs to be closed. Such types of circumstances are common in programming,
and C# provides a convenient way to handle them: finally.

To specify a block of code to execute when a try/catch block is exited, include a finally
block at the end of a try/catch sequence. The general form of a try/catch that includes
finally is shown here:

try {
/ / block of code to monitor for errors

}

catch (ExcepTypel exOb) {
// handler for ExcepTypel

}

catch (ExcepType2 exOD) {
// handler for ExcepType2
}

finally {
// finally code

)

The finally block will be executed whenever execution leaves a try/catch block, no
matter what conditions cause it. That is, whether the try block ends normally, or because
of an exception, the last code executed is that defined by finally. The finally block is also
executed if any code within the try block or any of its catch blocks returns from the method.

Here is an example of finally:

// Use finally.
using System;

class UseFinally {
public static void GenException (int what) {

330

Part I: The C# Language

int t;
int[] nums = new int([2];

Console.WriteLine ("Receiving " + what);
try {
switch (what) {
case 0:
t = 10 / what; // generate div-by-zero error
break;
case 1:
nums [4] = 4; // generate array index error
break;
case 2:
return; // return from try block

}

catch (DivideByZeroException) {
Console.WriteLine ("Can't divide by Zero!");
return; // return from catch

}

catch (IndexOutOfRangeException) {
Console.WritelLine ("No matching element found.");

}

finally {
Console.WriteLine ("Leaving try.");

}
}

class FinallyDemo {
static void Main () {

for (int 1=0; 1 < 3; 1i++) {
UseFinally.GenException (i) ;
Console.WriteLine () ;

Here is the output produced by the program:

Receiving 0
Can't divide by Zero!
Leaving try.

Receiving 1
No matching element found.

Leaving try.

Receiving 2
Leaving try.

As the output shows, no matter how the try block is exited, the finally block executed.

Chapter 13: Exception Handling

One other point: Syntactically, when a finally block follows a try block, no catch clauses
are technically required. Thus, you can have a try followed by a finally with no catch

clauses. In this case, the finally block is executed when the try exits, but no exceptions
are handled.

A Closer Look at the Exception Class

Up to this point, we have been catching exceptions, but we haven’t been doing anything
with the exception object itself. As explained earlier, a catch clause allows you to specify an
exception type and a variable. The variable receives a reference to the exception object. Since
all exceptions are derived from Exception, all exceptions support the members defined by
Exception. Here we will examine several of its most useful members and constructors, and
put the exception variable to use.

Exception defines several properties. Three of the most interesting are Message,
StackTrace, and TargetSite. All are read-only. Message contains a string that describes the
nature of the error. StackTrace contains a string that contains the stack of calls that lead to
the exception. TargetSite obtains an object that specifies the method that generated the
exception.

Exception also defines several methods. One that you will often use is ToString(),
which returns a string that describes the exception. ToString() is automatically called
when an exception is displayed via WriteLine(), for example.

The following program demonstrates these properties and this method:

// Using Exception members.
using System;

class ExcTest {
public static void GenException() {
int[] nums = new int([4];

Console.WriteLine ("Before exception is generated.");

// Generate an index out-of-bounds exception.
for(int 1i=0; i < 10; 1i++) {
nums [i] = i;
Console.WriteLine ("nums[{0}]: {1}", i, nums[i]);

}

Console.WriteLine ("this won't be displayed");
}
}

class UseExcept {
static void Main () {

try {
ExcTest.GenException() ;
}
catch (IndexOutOfRangeException exc) {

351

352

Part I: The C# Language

Console.WritelLine ("Standard message is: ");
Console.WritelLine (exc); // calls ToString()
Console.WriteLine ("Stack trace: " + exc.StackTrace);
Console.WriteLine ("Message: " + exc.Message);
Console.WriteLine ("TargetSite: " + exc.TargetSite);

}
Console.WriteLine ("After catch block.");

The output from this program is shown here:

Before exception is generated.

nums [0]: O
nums[1]: 1
nums [2]: 2
nums [3]: 3

Standard message is:

System.IndexOutOfRangeException: Index was outside the bounds of the array.
at ExcTest.GenException ()
at UseExcept.Main ()

Stack trace: at ExcTest.GenException ()
at UseExcept.Main ()

Message: Index was outside the bounds of the array.

TargetSite: Void GenException ()

After catch block.

Exception defines the following four constructors:
public Exception()

public Exception(string str)

public Exception(string str, Exception inner)

protected Exception(System.Runtime.Serialization.SerializationInfo si,
System.Runtime.Serialization.StreamingContext sc)

The first is the default constructor. The second specifies the string associated with the
Message property associated with the exception. The third specifies what is called an inner
exception. It is used when one exception gives rise to another. In this case, inner specifies the
tirst exception, which will be null if no inner exception exists. (The inner exception, if it
exists, can be obtained from the InnerException property defined by Exception.) The last
constructor handles exceptions that occur remotely and require deserialization.

One other point: In the fourth Exception constructor shown above, notice that the types
SerializationInfo and StreamingContext are contained in the System.Runtime.Serialization
namespace.

Commonly Used Exceptions

The System namespace defines several standard, built-in exceptions. All are derived from
SystemException since they are generated by the CLR when runtime errors occur. Several
of the more commonly used standard exceptions are shown in Table 13-1.

Chapter 13: Exception Handling

Exception

Meaning

ArrayTypeMismatchException

Type of value being stored is incompatible with the type of
the array.

DivideByZeroException

Division by zero attempted.

IndexOutOfRangeException

Array index is out of bounds.

InvalidCastException

A runtime cast is invalid.

OutOfMemoryException Insufficient free memory exists to continue program
execution. For example, this exception will be thrown if
there is not sufficient free memory to create an object via
new.

OverflowException An arithmetic overflow occurred.

NullReferenceException

An attempt was made to operate on a null reference—that
is, a reference that does not refer to an object.

StackOverflowException

The stack was overrun.

TaBLe 13-1 Commonly Used Exceptions Defined Within the System Namespace

Most of the exceptions in Table 13-1 are self-explanatory, with the possible exception of
NullReferenceException. This exception is thrown when there is an attempt to use a null
reference as if it referred to an object—for example, if you attempt to call a method on a null
reference. A null reference is a reference that does not point to any object. One way to create a
null reference is to explicitly assign it the value null by using the keyword null. Null references
can also occur in other ways that are less obvious. Here is a program that demonstrates the

NullReferenceException:

// Use the NullReferenceException.

using System;

class X {

int x;
public X (int a) {
X = aj;

}

public int Add(X o) {
return x + 0.x;
}
}

// Demonstrate NullReferenceException.

class NREDemo {
static void Main() {
X p new X(10);
X gq
int val;

null; // gq is explicitly assigned null

353

354

Part I: The C# Language

try {
val = p.Add(q); // this will lead to an exception
} catch (NullReferenceException) {
Console.WriteLine ("NullReferenceException!");
Console.WriteLine ("fixing...\n");

// Now, fix it.

g = new X(9);

val = p.Add(q);
}

Console.WriteLine ("val is {0}", wval);

The output from the program is shown here:

NullReferenceException!
fixing...

val is 19

The program creates a class called X that defines a member called x and the Add()
method, which adds the invoking object’s x to the x in the object passed as a parameter. In
Main(), two X objects are created. The first, p, is initialized. The second, q, is not. Instead, it
is explicitly assigned null. Then p.Add() is called with q as an argument. Because q does
not refer to any object, a NullReferenceException is generated when the attempt is made to
obtain the value of q.x.

An interesting exception is StackOverflowException, which is thrown when the system
stack is overrun. One situation in which this can happen is when a recursive method runs
wild. Because the stack is exhausted, a StackOverflowException can’t be caught by your
program. Instead, a stack overflow results in the abnormal termination of your program.

Deriving Exception Classes

Although C#’s built-in exceptions handle most common errors, C#’s exception handling
mechanism is not limited to these errors. In fact, part of the power of C#'s approach to
exceptions is its ability to handle exceptions that you create. You can use custom exceptions
to handle errors in your own code. Creating an exception is easy. Just define a class derived
from Exception. Your derived classes don’t need to actually implement anything—it is their
existence in the type system that allows you to use them as exceptions.

NOTE In the past, custom exceptions were derived from ApplicationException since this is the
hierarchy that was originally reserved for application-related exceptions. However, Microsoft
no longer recommends this. Instead, at the time of this writing, Microsoft recommends deriving
custom exceptions from Exception. For this reason, this approach is used here.

Chapter 13: Exception Handling 355

The exception classes that you create will automatically have the properties and methods
defined by Exception available to them. Of course, you can override one or more of these
members in exception classes that you create.

When creating your own exception class, you will generally want your class to support
all of the constructors defined by Exception. For simple custom exception classes, this is
easy to do because you can simply pass along the constructor’s arguments to the corresponding
Exception constructor via base. Of course, technically, you need to provide only those
constructors actually used by your program.

Here is an example that makes use of a custom exception type. At the end of Chapter 10
an array class called RangeArray was developed. As you may recall, RangeArray supports
single-dimensional int arrays in which the starting and ending index is specified by the
user. For example, an array that ranges from -5 to 27 is perfectly legal for a RangeArray.

In Chapter 10, if an index was out of range, a special error variable defined by RangeArray
was set. This meant that the error variable had to be checked after each operation by the
code that used RangeArray. Of course, such an approach is error-prone and clumsy. A far
better design is to have RangeArray throw a custom exception when a range error occurs.
This is precisely what the following version of RangeArray does:

// Use a custom Exception for RangeArray errors.
using System;

// Create a RangeArray exception.
class RangeArrayException : Exception {

/* Implement all of the Exception constructors. Notice that
the constructors simply execute the base class constructor.
Because RangeArrayException adds nothing to Exception,
there is no need for any further actions. */

public RangeArrayException() : base() { }

public RangeArrayException(string str) : base(str) { }

public RangeArrayException(string str, Exception inner)

base (str, inner) { }

protected RangeArrayException (

System.Runtime.Serialization.SerializationInfo si,
System.Runtime.Serialization.StreamingContext sc)
base(si, sc) { }

// Override ToString for RangeArrayException.
public override string ToString () {
return Message;
}
}

// An improved version of RangeArray.
class RangeArray {
// Private data.
int[] a; // reference to underlying array
int lowerBound; // smallest index
int upperBound; // largest index

// An auto-implemented, read-only Length property.
public int Length { get; private set; }

Part I: The C# Language

// Construct array given its size.
public RangeArray (int low, int high) {

high++;
if (high <= low) {
throw new RangeArrayException ("Low index not less than high.");
}
a = new intl[high - low];

Length = high - low;

lowerBound = low;
upperBound = --high;

// This is the indexer for RangeArray.
public int this[int index] {
// This is the get accessor.

get {
if (ok (index)) |
return a[index - lowerBound];
} else {

throw new RangeArrayException ("Range Error.");

// This is the set accessor.
set {
if (ok (index)) {
alindex - lowerBound] = value;
}

else throw new RangeArrayException ("Range Error.");

// Return true if index is within bounds.

private bool ok (int index) {
if (index >= lowerBound & index <= upperBound) return true;
return false;

// Demonstrate the index-range array.
class RangeArrayDemo {

static void Main () {
try {
RangeArray ra = new RangeArray (-5, 5);
RangeArray ra2 = new RangeArray(l, 10);

// Demonstrate ra.
Console.WriteLine ("Length of ra: " + ra.Length);

for(int 1 = =-5; 1 <= 5; 1i++4)
rali]l = 1i;

Chapter 13: Exception Handling 35/

Console.Write ("Contents of ra: ");
for(int 1 = -5; 1 <= 5; i++)
Console.Write(rafl[i] + "™ ");

Console.WriteLine ("\n");

// Demonstrate ra2.
Console.WriteLine ("Length of ra2: " + ra2.LlLength);

for(int i = 1; i <= 10; 1i++)
raz2[i] = 1i;

Console.Write ("Contents of ra2: ");
for(int i = 1; i <= 10; i++)
Console.Write(ra2[i] + " ");

Console.WriteLine ("\n");

} catch (RangeArrayException exc) {
Console.WriteLine (exc) ;

// Now, demonstrate some errors.
Console.WriteLine ("Now generate some range errors.");

// Use an invalid constructor.
try {
RangeArray ra3 = new RangeArray (100, -10); // Error
} catch (RangeArrayException exc) {
Console.WriteLine (exc) ;

// Use an invalid index.

try |
RangeArray ra3 = new RangeArray (-2, 2);
for(int i = =-2; i <= 2; 1i++)
ra3[i] = 1i;
Console.Write ("Contents of ra3: ");
for(int i = -2; i <= 10; i++) // generate range error

Console.Write(ra3[i] + " ");

} catch (RangeArrayException exc) {
Console.WriteLine (exc) ;

The output from the program is shown here:

Length of ra: 11
Contents of ra: -5 -4 -3 -2 -1 01 2 3 45

358

Part I: The C# Language

Length of ra2: 10
Contents of ra2: 1 2 345 6 7 8 9 10

Now generate some range errors.
Low index not less than high.
Contents of ra3: -2 -1 0 1 2 Range Error.

When a range error occurs, RangeArray throws an object of type RangeArrayException.
Notice there are three places in RangeArray that this might occur: in the get indexer accessor,
in the set indexer accessor, and by the RangeArray constructor. To catch these exceptions
implies that RangeArray objects must be constructed and accessed from within a try block,
as the program illustrates. By using an exception to report errors, RangeArray now acts like
one of C#'s built-in types and can be fully integrated into a program’s exception-handling
mechanism.

Notice that none of the RangeArrayException constructors provide any statements
in their body. Instead, they simply pass their arguments along to Exception via base. As
explained, in cases in which your exception class does not add any functionality, you can
simply let the Exception constructors handle the process. There is no requirement that your
derived class add anything to what is inherited from Exception.

Before moving on, you might want to experiment with this program a bit. For example,
try commenting-out the override of ToString() and observe the results. Also, try creating an
exception using the default constructor, and observe what C# generates as its default message.

Catching Derived Class Exceptions

You need to be careful how you order catch clauses when trying to catch exception types that
involve base and derived classes, because a catch for a base class will also match any of its
derived classes. For example, because the base class of all exceptions is Exception, catching
Exception catches all possible exceptions. Of course, using catch without an exception type
provides a cleaner way to catch all exceptions, as described earlier. However, the issue of
catching derived class exceptions is very important in other contexts, especially when you
create exceptions of your own.

If you want to catch exceptions of both a base class type and a derived class type, put
the derived class first in the catch sequence. This is necessary because a base class catch will
also catch all derived classes. Fortunately, this rule is self-enforcing because putting the base
class first causes a compile-time error.

The following program creates two exception classes called ExceptA and ExceptB.
ExceptA is derived from Exception. ExceptB is derived from ExceptA. The program then
throws an exception of each type. For brevity, the custom exceptions supply only one
constructor (which takes a string that describes the exception). But remember, in commercial
code, your custom exception classes will normally provide all four of the constructors
defined by Exception.

// Derived exceptions must appear before base class exceptions.
using System;
// Create an exception.

class ExceptA : Exception ({
public ExceptA(string str) : base(str) { }

Chapter 13: Exception Handling 359

public override string ToString() {
return Message;
}
}

// Create an exception derived from ExceptA.
class ExceptB : ExceptA {
public ExceptB(string str) : base(str) { }

public override string ToString() {
return Message;

}

class OrderMatters {
static void Main () {
for(int x = 0; x < 3; x++) {

try {
if (x==0) throw new ExceptA ("Caught an ExceptA exception");
else if(x==1) throw new ExceptB("Caught an ExceptB exception");

else throw new Exception();

}
catch (ExceptB exc) {
Console.WriteLine (exc) ;

}

catch (ExceptA exc) {
Console.WriteLine (exc) ;

}

catch (Exception exc) {
Console.WritelLine (exc);

The output from the program is shown here:

Caught an ExceptA exception

Caught an ExceptB exception

System.Exception: Exception of type 'System.Exception' was thrown.
at OrderMatters.Main ()

Notice the type and order of the catch clauses. This is the only order in which they can
occur. Since ExceptB is derived from ExceptA, the catch for ExceptB must be before the one
for ExceptA. Similarly, the catch for Exception (which is the base class for all exceptions)
must appear last. To prove this point for yourself, try rearranging the catch clauses. Doing
so will result in a compile-time error.

One good use of a base class catch clause is to catch an entire category of exceptions. For
example, imagine you are creating a set of exceptions for some device. If you derive all of
the exceptions from a common base class, then applications that don’t need to know precisely
what problem occurred could simply catch the base class exception, avoiding the unnecessary
duplication of code.

360

Part I: The C# Language

Using checked and unchecked

A special feature in C# relates to the generation of overflow exceptions in arithmetic
computations. As you know, it is possible for some types of arithmetic computations to
produce a result that exceeds the range of the data type involved in the computation. When
this occurs, the result is said to overflow. For example, consider the following sequence:

byte a, b, result;

a = 127;
b =127;
result = (byte) (a * b);

Here, the product of a and b exceeds the range of a byte value. Thus, the result overflows
the type of the result.

C# allows you to specify whether your code will raise an exception when overflow
occurs by using the keywords checked and unchecked. To specify that an expression be
checked for overflow, use checked. To specify that overflow be ignored, use unchecked.
In this case, the result is truncated to fit into the target type of the expression.

The checked keyword has these two general forms. One checks a specific expression
and is called the operator form of checked. The other checks a block of statements and is
called the statement form.

checked (expr)

checked {
// statements to be checked
}

Here, expr is the expression being checked. If a checked expression overflows, then an
OverflowException is thrown.

The unchecked keyword also has two general forms. The first is the operator form,
which ignores overflow for a specific expression. The second ignores overflow for a block
of statements.

unchecked (expr)

unchecked {
// statements for which overflow is ignored

}

Here, expr is the expression that is not being checked for overflow. If an unchecked
expression overflows, then truncation will occur.
Here is a program that demonstrates both checked and unchecked:

// Using checked and unchecked.
using System;
class CheckedDemo {

static void Main() {
byte a, b;

Chapter 13: Exception Handling

byte result;

a = 127;

b =127;

try {
result = unchecked((byte) (a * b));
Console.WriteLine ("Unchecked result: " + result);

result = checked((byte) (a * b)); // this causes exception
Console.WriteLine ("Checked result: " + result); // won't execute
}
catch (OverflowException exc) {
Console.WriteLine (exc) ;

The output from the program is shown here:

Unchecked result: 1
System.OverflowException: Arithmetic operation resulted in an overflow.
at CheckedDemo.Main ()

As is evident, the unchecked expression resulted in a truncation. The checked expression
caused an exception.

The preceding program demonstrated the use of checked and unchecked for a single
expression. The following program shows how to check and uncheck a block of statements.

// Using checked and unchecked with statement blocks.
using System;

class CheckedBlocks {
static void Main () {
byte a, b;
byte result;

a = 127;
b =127;

try {
unchecked {
a = 127;
b =127;
result = unchecked((byte) (a * b));
Console.WriteLine ("Unchecked result: " + result);

a = 125;

b =5;

result = unchecked((byte) (a * b));
Console.WriteLine ("Unchecked result: " + result);

361

362 Partl: The C# Language

checked {
a = 2;
b =17;
result = checked((byte) (a * b)); // this is OK
Console.WriteLine ("Checked result: " + result);

a = 127;

b =127;

result = checked((byte) (a * b)); // this causes exception
Console.WriteLine ("Checked result: " + result); // won't execute

}
catch (OverflowException exc) {
Console.WriteLine (exc) ;

The output from the program is shown here:

Unchecked result: 1

Unchecked result: 113

Checked result: 14

System.OverflowException: Arithmetic operation resulted in an overflow.
at CheckedBlocks.Main ()

As you can see, the unchecked block results in the overflow being truncated. When
overflow occurred in the checked block, an exception was raised.

One reason that you may need to use checked or unchecked is that the default
checked /unchecked status of overflow is determined by the setting of a compiler option
and the execution environment, itself. Thus, for some types of programs, it is best to specify
the overflow check status explicitly.

CHAPTER
Using 1/0

he earlier chapters of this book have used parts of the C#1/0 system, such as
TConsole.WriteLine(), but have done so without much formal explanation. Because

the I/O system is built upon a hierarchy of classes, it was not possible to present its
theory and details without first discussing classes, inheritance, and exceptions. Now it is
time to examine I/O in detail. Because C# uses the I/O system and classes defined by the
.NET Framework, a discussion of I/O under C# is also a discussion of the NET I/O system,
in general.

This chapter examines both console I/O and file I/O. Be forewarned that the I/O system

is quite large. This chapter describes the most important and commonly used features.

C#'s 1/0 Is Built Upon Streams

C# programs perform I/0O through streams. A stream is an abstraction that either produces or
consumes information. A stream is linked to a physical device by the I/O system. All streams
behave in the same manner, even if the actual physical devices they are linked to differ. Thus,
the I/O classes and methods can be applied to many types of devices. For example, the same
methods that you use to write to the console can also be used to write to a disk file.

Byte Streams and Character Streams

At the lowest level, all C#1/0 operates on bytes. This makes sense because many devices are
byte oriented when it comes to I/O operations. Frequently, though, we humans prefer to
communicate using characters. Recall that in C#, char is a 16-bit type, and byte is an 8-bit type.
If you are using the ASCII character set, then it is easy to convert between char and byte; just
ignore the high-order byte of the char value. But this won’t work for the rest of the Unicode
characters, which need both bytes (and possibly more). Thus, byte streams are not perfectly
suited to handling character-based I/O. To solve this problem, the .NET Framework defines
several classes that convert a byte stream into a character stream, handling the translation of
byte-to-char and char-to-byte automatically.

The Predefined Streams

Three predefined streams, which are exposed by the properties called Console.In,
Console.Out, and Console.Error, are available to all programs that use the System
namespace. Console.Out refers to the standard output stream. By default, this is the

363

364

Part I: The C# Language

console. When you call Console.WriteLine(), for example, it automatically sends
information to Console.Out. Console.In refers to standard input, which is, by default,
the keyboard. Console.Error refers to the standard error stream, which is also the console
by default. However, these streams can be redirected to any compatible I/O device. The
standard streams are character streams. Thus, these streams read and write characters.

The Stream Classes

The NET Framework defines both byte and character stream classes. However, the character
stream classes are really just wrappers that convert an underlying byte stream to a character
stream, handling any conversion automatically. Thus, the character streams, while logically
separate, are built upon byte streams.

The core stream classes are defined within the System.IO namespace. To use these
classes, you will usually include the following statement near the top of your program:

using System.IO;

The reason that you don’t have to specify System.IO for console input and output is that
the Console class is defined in the System namespace.

The Stream Class

The core stream class is System.IO.Stream. Stream represents a byte stream and is a base
class for all other stream classes. It is also abstract, which means that you cannot instantiate
a Stream object. Stream defines a set of standard stream operations. Table 14-1 shows
several commonly used methods defined by Stream.

Several of the methods shown in Table 14-1 will throw an IOException if an I/O error
occurs. If an invalid operation is attempted, such as attempting to write to a stream that is
read-only, a NotSupportedException is thrown. Other exceptions are possible, depending
on the specific method.

Method Description

void Close() Closes the stream.

void Flush() Writes the contents of the stream to the physical device.

int ReadByte() Returns an integer representation of the next available
byte of input. Returns —1 when the end of the file is
encountered.

int Read(byte[] buf, int offset, Attempts to read up to numBytes bytes into buf starting

int numBytes) at bufoffset], returning the number of bytes successfully

read.

long Seek(long offset, SeekOrigin origin) | Sets the current position in the stream to the specified

offset from the specified origin. It returns the new position.

void WriteByte(byte b) Writes a single byte to an output stream.
int Write(byte[] buf, int offset, Writes a subrange of numBytes bytes from the array buf,
int numBytes) beginning at buf[offset]. The number of bytes written is
returned.

TasLe 14-1 Some of the Methods Defined by Stream

Chapter 14: Using 1/0

Notice that Stream defines methods that read and write data. However, not all streams
will support both of these operations because it is possible to open read-only or write-only
streams. Also, not all streams will support position requests via Seek(). To determine the
capabilities of a stream, you will use one or more of Stream’s properties. They are shown in
Table 14-2. Also shown are the Length and Position properties, which contain the length of
the stream and its current position.

The Byte Stream Classes

Several concrete

byte streams are derived from Stream. Those defined in the System.IO

namespace are shown here:

Stream Class Description

BufferedStream Wraps a byte stream and adds buffering. Buffering provides
a performance enhancement in many cases.

FileStream A byte stream designed for file 1/0.

MemoryStream A byte stream that uses memory for storage.

UnmanagedMemoryStream A byte stream that uses unmanaged memory for storage.

Several other concrete stream classes are also supported by the .NET framework, which

provide support

for compressed files, sockets, and pipes, among others. It is also possible to

derive your own stream classes. However, for the vast majority of applications, the built-in

streams will be s

ufficient.

The Character Stream Wrapper Classes

To create a character stream, wrap a byte stream inside one of the character stream
wrappers. At the top of the character stream hierarchy are the abstract classes TextReader
and TextWriter. TextReader handles input and TextWriter handles output. The methods

defined by these
a minimal set of

two abstract classes are available to all of their subclasses. Thus, they form
I/0 functions that all character streams will have.

Method

Description

bool CanRead

This property is true if the stream can be read. This property is read-only.

bool CanSeek

This property is true if the stream supports position requests. This property is
read-only.

bool CanTimeout

This property is true if the stream can time out. This property is read-only.

bool CanWrite

This property is true if the stream can be written. This property is read-only.

long Length

This property contains the length of the stream. This property is read-only.

long Position

This property represents the current position of the stream. This property is
read/write.

int ReadTimeout

This property represents the length of time before a time-out will occur for
read operations. This property is read/write.

int WriteTimeout

This property represents the length of time before a time-out will occur for
write operations. This property is read/write.

TaBLe 14-2 The Properties Defined by Stream

365

366 Partl: The C# Language

Table 14-3 shows the input methods in TextReader. In general, these methods can throw
an IOException on error. (Some can throw other types of exceptions, too.) Of particular
interest is the ReadLine() method, which reads an entire line of text, returning it as a string.
This method is useful when reading input that contains embedded spaces.

TextWriter defines versions of Write() and WriteLine() that output all of the built-in
types. For example, here are just a few of their overloaded versions:

Method Description

void Write(int val) Writes an int.

void Write(double val) Writes a double.

void Write(bool val) Writes a bool.

void WriteLine(string val) Writes a string followed by a newline.
void WriteLine(uint val) Writes a uint followed by a newline.

void WriteLine(char val) Writes a character followed by a newline.

All throw an IOException if an error occurs while writing.
TextWriter also defines the Close() and Flush() methods shown here:

virtual void Close()
virtual void Flush()

Flush() causes any data remaining in the output buffer to be written to the physical
medium. Close() closes the stream.

Method Description

int Peek() Obtains the next character from the input stream,
but does not remove that character. Returns -1 if no
character is available.

int Read() Returns an integer representation of the next
available character from the invoking input stream.
Returns -1 when the end of the stream

is encountered.

int Read(char|] buf, int offset, Attempts to read up to numChars characters into
int numChars) buf starting at buf[offset], returning the number of
characters successfully read.
int ReadBlock(char|] buf, int offset, Attempts to read up to numChars characters into
int numChars) buf starting at buf[offset], returning the number of
characters successfully read.
string ReadLine() Reads the next line of text and returns it as a string.
Null is returned if an attempt is made to read at end-
offile.
string ReadToEnd() Reads all of the remaining characters in a stream

and returns them as a string.

TasLe 14-3 The Input Methods Defined by TextReader

Chapter 14: Using 1/0 367

The TextReader and TextWriter classes are implemented by several character-based
stream classes, including those shown here. Thus, these streams provide the methods and
properties specified by TextReader and TextWriter.

Stream Class Description

StreamReader Read characters from a byte stream. This class wraps a byte input stream.

StreamWriter Write characters to a byte stream. This class wraps a byte output stream.
StringReader Read characters from a string.
StringWriter Write characters to a string.

Binary Streams

In addition to the byte and character streams, there are two binary stream classes that can
be used to read and write binary data directly. These streams are called BinaryReader and
BinaryWriter. We will look closely at these later in this chapter when binary file I/O is
discussed.

Now that you understand the general layout of the I/O system, the rest of this chapter
will examine its various pieces in detail, beginning with console 1/0O.

Console 1/0

Console I/0O is accomplished through the standard streams Console.In, Console.Out, and
Console.Error. Console I/O has been used since Chapter 2, so you are already familiar with
it. As you will see, it has some additional capabilities.

Before we begin, however, it is important to emphasize a point made earlier in this book:
Most real applications of C# will not be text-based, console programs. Rather, they will be
graphically oriented programs or components that rely upon a windowed interface for
interaction with the user, or will be server-side code. Thus, the portion of the I/O system
that relates to console input and output is not widely used. Although text-based programs
are excellent as teaching examples, for short utility programs, and for some types of
components, they are not suitable for most real-world applications.

Reading Console Input

Console.In is an instance of TextReader, and you can use the methods and properties
defined by TextReader to access it. However, you will generally use the methods provided
by Console, which automatically read from Console.In. Console defines three input methods.
The first two, Read() and ReadLine(), have been available since .NET Framework 1.0. The
third, ReadKey(), was added by .NET Framework 2.0.

To read a single character, use the Read() method:

static int Read()

Read() returns the next character read from the console. It waits until the user presses a key
and then returns the result. The character is returned as an int, which must be cast to char.
Read() returns -1 on error. This method will throw an IOException on failure. When using
Read(), console input is line-buffered, so you must press ENTER before any character that
you type will be sent to your program.

368

Part I: The C# Language

Here is a program that reads a character from the keyboard using Read():
// Read a character from the keyboard.
using System;

class KbIn {

static void Main() {
char ch;
Console.Write ("Press a key followed by ENTER: ");
ch = (char) Console.Read(); // get a char
Console.WriteLine ("Your key is: " + ch);

}

Here is a sample run:

Press a key followed by ENTER: t
Your key is: t

The fact that Read() is line-buffered is a source of annoyance at times. When you press
ENTER, a carriage-return, line-feed sequence is entered into the input stream. Furthermore,
these characters are left pending in the input buffer until you read them. Thus, for some
applications, you may need to remove them (by reading them) before the next input operation.
(To read keystrokes from the console in a non-line-buffered manner, you can use ReadKey(),
described later in this section.)

To read a string of characters, use the ReadLine() method. It is shown here:

static string ReadLine()

ReadLine() reads characters until you press ENTER and returns them in a string object. This
method will also throw an IOException on failure.

Here is a program that demonstrates reading a string from Console.In by using
ReadLine():

// Input from the console using ReadLine() .
using System;
class ReadString {

static void Main () {
string str;

Console.WriteLine ("Enter some characters.");
str = Console.ReadLine () ;
Console.WriteLine ("You entered: " + str);

Here is a sample run:

Chapter 14: Using 1/0

Enter some characters.
This is a test.
You entered: This is a test.

Although the Console methods are the easiest way to read from Console.In, you can
call methods on the underlying TextReader. For example, here is the preceding program
rewritten to use the ReadLine() method defined by TextReader:

// Read a string from the keyboard, using Console.In directly.
using System;
class ReadChars?2 {

static void Main() {
string str;

Console.WriteLine ("Enter some characters.");
str = Console.In.ReadLine(); // call TextReader's ReadLine () method
Console.WriteLine ("You entered: " + str);

}
}

Notice how ReadLine() is now invoked directly on Console.In. The key point here is that
if you need access to the methods defined by the TextReader that underlies Console.In, you
will invoke those methods as shown in this example.

Using ReadKey()

Beginning with version 2.0, the NET Framework has included a method in Console that

enables you to read individual keystrokes directly from the keyboard in a non-line-buffered

manner. This method is called ReadKey(). When it is called, it waits until a key is pressed.

When a key is pressed, ReadKey() returns the keystroke immediately. The user does not need

to press ENTER. Thus, ReadKey() allows keystrokes to be read and processed in real time.
ReadKey() has these two forms.

static ConsoleKeyInfo ReadKey()
static ConsoleKeyInfo ReadKey(bool noDisplay)

The first form waits for a key to be pressed. When that occurs, it returns the key and also
displays the key on the screen. The second form also waits for and returns a keypress.
However, if noDisplay is true, then the key is not displayed. If noDisplay is false, the key
is displayed.

ReadKey() returns information about the keypress in an object of type ConsoleKeyInfo,
which is a structure. It contains the following read-only properties.

char KeyChar
ConsoleKey Key
ConsoleModifiers Modifiers

369

310

Part I: The C# Language

KeyChar contains the char equivalent of the character that was pressed. Key contains a
value from the ConsoleKey enumeration, which is an enumeration of all the keys on the
keyboard. Modifiers describes which, if any, of the keyboard modifiers ATL, CTRL, Or SHIFT
were pressed when the keystroke was generated. These modifiers are represented by the
ConsoleModifiers enumeration, which has these values: Control, Shift, and Alt. More than
one modifier value might be present in Modifiers.

The major advantage to ReadKey() is that it provides a means of achieving interactive
keyboard input because it is not line buffered. To see the effect of this, try the following
program:

// Read keystrokes from the console by using ReadKey () .
using System;
class ReadKeys {

static void Main () {
ConsoleKeyInfo keypress;

Console.WriteLine ("Enter keystrokes. Enter Q to stop.");
do {
keypress = Console.ReadKey(); // read keystrokes
Console.WriteLine (" Your key is: " + keypress.KeyChar);

// Check for modifier keys.

if ((ConsoleModifiers.Alt & keypress.Modifiers) != 0)
Console.WriteLine ("Alt key pressed.");

if ((ConsoleModifiers.Control & keypress.Modifiers) != 0)
Console.WriteLine ("Control key pressed.");

if ((ConsoleModifiers.Shift & keypress.Modifiers) != 0)
Console.WriteLine ("Shift key pressed.");

} while (keypress.KeyChar != 'Q'");
}
A sample run is shown here:

Enter keystrokes. Enter Q to stop.
a Your key is: a

b Your key is: b

d Your key is: d

A Your key is: A
Shift key pressed.

B Your key is: B
Shift key pressed.

C Your key is: C
Shift key pressed.

e Your key is:
Control key pressed.
Q Your key is: Q
Shift key pressed.

Chapter 14: Using 1/0

As the output confirms, each time a key is pressed, ReadKey() immediately returns the
keypress. As explained, this differs from Read() and ReadLine(), which use line-buffered
input. Therefore, if you want to achieve interactive responses from the keyboard, use
ReadKey().

Writing Console Output

Console.Out and Console.Error are objects of type TextWriter. Console output is most easily
accomplished with Write() and WriteLine(), with which you are already familiar. Versions
of these methods exist that output for each of the built-in types. Console defines its own
versions of Write() and WriteLine() so they can be called directly on Console, as you have
been doing throughout this book. However, you can invoke these (and other) methods on
the TextWriter that underlies Console.Out and Console.Error if you choose.

Here is a program that demonstrates writing to Console.Out and Console.Error. By
default, both write to the console.

// Write to Console.Out and Console.Error.
using System;

class ErrOut {
static void Main () {
int a=10, b=0;
int result;

Console.Out.WriteLine ("This will generate an exception.");
try |
result = a / b; // generate an exception
} catch (DivideByZeroException exc) {
Console.Error.WriteLine (exc.Message) ;

}

The output from the program is shown here:

This will generate an exception.
Attempted to divide by zero.

Sometimes newcomers to programming are confused about when to use Console.Error.
Since both Console.Out and Console.Error default to writing their output to the console,
why are there two different streams? The answer lies in the fact that the standard streams
can be redirected to other devices. For example, Console.Error can be redirected to write to
a disk file, rather than the screen. Thus, it is possible to direct error output to a log file, for
example, without affecting console output. Conversely, if console output is redirected and
error output is not, then error messages will appear on the console, where they can be seen.
We will examine redirection later, after file I/O has been described.

FileStream and Byte-Oriented File 1/0

The .NET Framework provides classes that allow you to read and write files. Of course,
the most common type of files are disk files. At the operating system level, all files are byte

312

Part I: The C# Language

oriented. As you would expect, there are methods to read and write bytes from and to a file.
Thus, reading and writing files using byte streams is very common. You can also wrap a
byte-oriented file stream within a character-based object. Character-based file operations
are useful when text is being stored. Character streams are discussed later in this chapter.
Byte-oriented I/O is described here.

To create a byte-oriented stream attached to a file, you will use the FileStream class.
FileStream is derived from Stream and contains all of Stream’s functionality.

Remember, the stream classes, including FileStream, are defined in System.IO. Thus,
you will usually include

using System.IO;

near the top of any program that uses them.

Opening and Closing a File
To create a byte stream linked to a file, create a FileStream object. FileStream defines
several constructors. Perhaps its most commonly used is the one shown here:

FileStream(string filename, FileMode mode)

Here, filename specifies the name of the file to open, which can include a full path specification.
The mode parameter specifies how the file will be opened. It must be one of the values
defined by the FileMode enumeration. These values are shown in Table 14-4. In general,
this constructor opens a file for read /write access. The exception is when the file is opened
using FileMode.Append. In this case, the file is write-only.

If a failure occurs when attempting to open the file, an exception will be thrown. If the file
cannot be opened because it does not exist, FileNotFoundException will be thrown. If the
file cannot be opened because of some type of I/O error, IOException will be thrown. Other
possible exceptions are ArgumentNullException (the filename is null), ArgumentException
(the filename is invalid), ArgumentOutOfRangeException (the mode is invalid),
SecurityException (user does not have access rights), PathTooLongException (the filename/
path is too long), NotSupportedException (the filename specifies an unsupported device),
and DirectoryNotFoundException (specified directory is invalid).

Value Description

FileMode.Append Output is appended to the end of file.

FileMode.Create Creates a new output file. Any preexisting file by the same name
will be destroyed.

FileMode.CreateNew Creates a new output file. The file must not already exist.

FileMode.Open Opens a preexisting file.

FileMode.OpenOrCreate Opens a file if it exists, or creates the file if it does not already
exist.

FileMode.Truncate Opens a preexisting file, but reduces its length to zero.

TaeLe 14-4 The FileMode Values

Chapter 14: Using 1/0 373

The exceptions PathTooLongException, DirectoryNotFoundException, and
FileNotFoundException are subclasses of IOException. Thus, it is possible to catch
all three by catching IOException.

The following shows one way to open the file test.dat for input:

FileStream fin;

try {
fin = new FileStream("test", FileMode.Open) ;

}

catch (IOException exc) { // catch all I/0 exceptions
Console.WritelLine (exc.Message) ;
// Handle the error.

}

catch (Exception exc { // catch any other exception.
Console.WritelLine (exc.Message) ;
// Handle the error.

}

Here, the first catch clause handles situations in which the file is not found, the path is too
long, the directory does not exist, or other I/O errors occur. The second catch, which is a
“catch all” clause for all other types of exceptions, handles the other possible errors (possibly
by rethrowing the exception). You could also check for each error individually, reporting
more specifically the problem that occurred and taking remedial action specific to that error.

For the sake of simplicity, the examples in this book will catch only IOException, but
your real-world code may (probably will) need to handle the other possible exceptions,
depending upon the circumstances. Also, the exception handlers in this chapter simply
report the error, but in many cases, your code should take steps to correct the problem when
possible. For example, you might reprompt the user for a filename if the one previously
entered is not found.

REMEMBER To keep the code simple, the examples in this chapter catch only IOException, but
your own code may need to handle other possible exceptions or handle each type of I/O exception
individually.

As mentioned, the FileStream constructor just described opens a file that has read/
write access. If you want to restrict access to just reading or just writing, use this constructor
instead:

FileStream(string filename, FileMode mode, FileAccess how)

As before, filename specifies the name of the file to open, and mode specifies how the file will
be opened. The value passed in how determines how the file can be accessed. It must be one
of the values defined by the FileAccess enumeration, which are shown here:

‘ FileAccess.Read FileAccess.Write FileAccess.ReadWrite

For example, this opens a read-only file:

FileStream fin = new FileStream("test.dat", FileMode.Open, FileAccess.Read);

314

Part I: The C# Language

When you are done with a file, you should close it by calling Close(). Its general form is
shown here:

void Close()

Closing a file releases the system resources allocated to the file, allowing them to be used by
another file. As a point of interest, Close() works by calling Dispose(), which actually frees
the resources.

NOTE The using statement, described in Chapter 20, offers a way to automatically close a file when
it is no longer needed. This approach is beneficial in many file-handling situations because it
provides a simple means to ensure that a file is closed when it is no longer needed. However, to
clearly illustrate the fundamentals of file handling, including the point at which a file can be
closed, this chapter explicitly calls Close() in all cases.

Reading Bytes from a FileStream

FileStream defines two methods that read bytes from a file: ReadByte() and Read(). To
read a single byte from a file, use ReadByte(), whose general form is shown here:

int ReadByte()

Each time it is called, it reads a single byte from the file and returns it as an integer
value. It returns -1 when the end of the file is encountered. Possible exceptions include
NotSupportedException (the stream is not opened for input) and ObjectDisposedException
(the stream is closed).

To read a block of bytes, use Read(), which has this general form:

int Read(byte[] buf, int offset, int numBytes)

Read() attempts to read up to numBytes bytes into buf starting at buf[offset]. It returns the
number of bytes successfully read. An IOException is thrown if an I/O error occurs. Several
other types of exceptions are possible, including NotSupportedException, which is thrown
if reading is not supported by the stream.

The following program uses ReadByte() to input and display the contents of a text file,
the name of which is specified as a command-line argument. Note the program handles two
errors that might occur when this program is first executed: the specified file not being
found or the user forgetting to include the name of the file.

/* Display a text file.
To use this program, specify the name of the file that you
want to see. For example, to see a file called TEST.CS,

use the following command line.

ShowFile TEST.CS
*/

using System;
using System.IO;

class ShowFile {
static void Main(string[] args) {

Chapter 14: Using 1/0 375

int i;
FileStream fin;

if (args.Length != 1) {
Console.WriteLine ("Usage: ShowFile File");
return;

}

try {

fin = new FileStream(args[0], FileMode.Open) ;
} catch (IOException exc) {

Console.WriteLine ("Cannot Open File");

Console.WritelLine (exc.Message) ;

return;

}

// Read bytes until EOF is encountered.
do {
try {
i = fin.ReadByte();
} catch (IOException exc) {
Console.WriteLine ("Error Reading File");
Console.WriteLine (exc.Message) ;

break;
}
if(i !'= -1) Console.Write((char) 1i);
} while(i != -1);

fin.Close () ;

}

Writing to a File

To write a byte to a file, use the WriteByte() method. Its simplest form is shown here:
void WriteByte(byte val)

This method writes the byte specified by val to the file. If the underlying stream is
not opened for output, a NotSupportedException is thrown. If the stream is closed,
ObjectDisposedException is thrown.

You can write an array of bytes to a file by calling Write(). It is shown here:

void Write(byte[] buf, int offset, int numBytes)

Write() writes numBytes bytes from the array buf, beginning at buf[offset], to the file. The
number of bytes written is returned. If an error occurs during writing, an IOException is
thrown. If the underlying stream is not opened for output, a NotSupportedException is
thrown. Several other exceptions are also possible.

As you may know, when file output is performed, often that output is not immediately
written to the actual physical device. Instead, output is buffered by the operating system
until a sizable chunk of data can be written all at once. This improves the efficiency of the
system. For example, disk files are organized by sectors, which might be anywhere from 128
bytes long, on up. Output is usually buffered until an entire sector can be written all at once.

316

Part I: The C# Language

However, if you want to cause data to be written to the physical device whether the buffer
is full or not, you can call Flush(), shown here:

void Flush()

An IOException is thrown on failure. If the stream is closed, ObjectDisposedException is
thrown.

Once you are done with an output file, you must remember to close it using Close().
Doing so ensures that any output remaining in a disk buffer is actually written to the disk.
Thus, there is no reason to call Flush() before closing a file.

Here is a simple example that writes to a file:

// Write to a file.

using System;
using System.IO;

class WriteToFile {
static void Main(string[] args) {
FileStream fout;

// Open output file.
try {
fout = new FileStream("test.txt", FileMode.Create);
} catch (IOException exc) {
Console.WriteLine ("Cannot Open File");
Console.WritelLine (exc.Message) ;
return;

}

// Write the alphabet to the file.
try {
for(char ¢ = '"A'; c <= 'Z'; c++)
fout.WriteByte ((byte) c);
} catch (IOException exc) {
Console.WritelLine ("Error Writing File");
Console.WritelLine (exc.Message) ;

}

fout.Close();

The program first opens a file called test.txt for output. It then writes the uppercase
alphabet to the file. Finally, it closes the file. Notice how possible I/O errors are handled by
the try/catch blocks. After this program executes, test.txt will contain the following output:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Using FileStream to Copy a File

One advantage to the byte-oriented 1/O used by FileStream is that you can use it on any
type of file—not just those that contain text. For example, the following program copies
any type of file, including executable files. The names of the source and destination files
are specified on the command line.

Chapter 14:

/* Copy a file.

To use this program, specify the name of the source
file and the destination file. For example, to copy a
file called FIRST.DAT to a file called SECOND.DAT, use
the following command line:

CopyFile FIRST.DAT SECOND.DAT
*/

using System;
using System.IO;

class CopyFile {
static void Main(string[] args) {
int i;
FileStream fin;
FileStream fout;

if (args.Length != 2) {
Console.WriteLine ("Usage: CopyFile From To");
return;

// Open input file.
try {
fin = new FileStream(args[0], FileMode.Open) ;
} catch (IOException exc) {
Console.WritelLine ("Cannot Open Input File");
Console.WriteLine (exc.Message) ;
return;

// Open output file.
try {
fout = new FileStream(args[l], FileMode.Create);
} catch (IOException exc) {
Console.WriteLine ("Cannot Open Output File");
Console.WriteLine (exc.Message) ;
fin.Close () ;
return;

// Copy File

try {
do {
i = fin.ReadByte();
if(i !'= -1) fout.WriteByte ((byte)i);
} while(i '= -1);

} catch (IOException exc) {
Console.WriteLine ("Error Copying File");
Console.WritelLine (exc.Message) ;

fin.Close();

Using 1/0

3

318

Part I: The C# Language

fout.Close();

Character-Based File 1/0

Although byte-oriented file handling is quite common, it is possible to use character-based
streams for this purpose. The advantage to the character streams is that they operate directly
on Unicode characters. Thus, if you want to store Unicode text, the character streams are
certainly your best option. In general, to perform character-based file operations, you will wrap
a FileStream inside either a StreamReader or a StreamWriter. These classes automatically
convert a byte stream into a character stream, and vice versa.

Remember, at the operating system level, a file consists of a set of bytes. Using a
StreamReader or StreamWriter does not alter this fact.

StreamWriter is derived from TextWriter. StreamReader is derived from TextReader.
Thus, StreamWriter and StreamReader have access to the methods and properties defined
by their base classes.

Using StreamWriter

To create a character-based output stream, wrap a Stream object (such as a FileStream)
inside a StreamWriter. StreamWriter defines several constructors. One of its most popular
is shown here:

StreamWriter(Stream strean)

Here, stream is the name of an open stream. This constructor throws an ArgumentException
if stream is not opened for output and an ArgumentNullException if stream is null. Once
created, a StreamWriter automatically handles the conversion of characters to bytes.

Here is a simple key-to-disk utility that reads lines of text entered at the keyboard and
writes them to a file called “test.txt.” Text is read until the user enters the word “stop”. It
uses a FileStream wrapped in a StreamWriter to output to the file.

// A simple key-to-disk utility that demonstrates a StreamWriter.

using System;
using System.IO;

class KtoD {
static void Main() {
string str;
FileStream fout;

try {
fout = new FileStream("test.txt", FileMode.Create);
}
catch (IOException exc) {
Console.WritelLine ("Cannot Open File");
Console.WriteLine (exc.Message) ;
return ;
}
StreamWriter fstr out = new StreamWriter (fout);

Console.WritelLine ("Enter text ('stop' to quit).
do {
Console.Write(": ");

str = Console.ReadLine();

if(str != "stop") {
str = str + "\r\n"; // add newline
try {

fstr out.Write(str);
} catch (IOException exc) {

Chapter 14: Using 1/0 379

Console.WritelLine ("Error Writing File");

Console.WriteLine (exc.Message) ;
break;
}
}
} while(str != "stop");

fstr out.Close();

In some cases, it might be more convenient to open a file directly using StreamWriter.

To do so, use one of these constructors:

StreamWriter(string filename)
StreamWriter(string filename, bool appendFlag)

Here, filename specifies the name of the file to open, which can include a full path specifier.
In the second form, if appendFlag is true, then output is appended to the end of an existing
file. Otherwise, output overwrites the specified file. In both cases, if the file does not exist,
it is created. Also, both throw an IOException if an I/O error occurs. Other exceptions are

also possible.

Here is the key-to-disk program rewritten so that it uses StreamWriter to open the

output file:
// Open a file using StreamWriter.

using System;
using System.IO;

class KtoD {
static void Main () {
string str;
StreamWriter fstr out;

try {
fstr out = new StreamWriter ("test.txt");
}
catch (IOException exc) {
Console.WritelLine ("Cannot Open File");
Console.WritelLine (exc.Message) ;
return ;

}

Console.WriteLine ("Enter text ('stop' to quit).

380

Part I: The C# Language

do {
Console.Write(": ");
str = Console.ReadLine () ;

if (str != "stop") {
str = str + "\r\n"; // add newline
try {

fstr out.Write(str);

} catch (IOException exc) {
Console.WritelLine ("Error Writing File");
Console.WritelLine (exc.Message) ;
break;

}

}
} while(str != "stop");

fstr out.Close();

Using a StreamReader

To create a character-based input stream, wrap a byte stream inside a StreamReader.
StreamReader defines several constructors. A frequently used one is shown here:

StreamReader(Stream stream)

Here, stream is the name of an open stream. This constructor throws an ArgumentNullException
if stream is null. It throws ArgumentException if stream is not opened for input. Once created,
a StreamReader will automatically handle the conversion of bytes to characters.

The following program creates a simple disk-to-screen utility that reads a text file called
“test.txt” and displays its contents on the screen. Thus, it is the complement of the key-to-disk
utility shown in the previous section:

// A simple disk-to-screen utility that demonstrates a StreamReader.

using System;
using System.IO;

class DtoS {
static void Main () {
FileStream fin;
string s;

try {
fin = new FileStream("test.txt", FileMode.Open);
}
catch (IOException exc) {
Console.WriteLine ("Error Opening File");
Console.WritelLine (exc.Message) ;
return ;

StreamReader fstr in = new StreamReader (fin);

Chapter 14: Using 1/0 381

try |
while((s = fstr in.ReadLine()) != null) {
Console.WriteLine (s);
}
} catch (IOException exc) {
Console.WriteLine ("Error Reading File");
Console.WritelLine (exc.Message) ;

}

fstr in.Close();

In the program, notice how the end of the file is determined. When the reference returned
by ReadLine() is null, the end of the file has been reached. Although this approach works,
StreamReader provides an alternative means of detecting the end of the stream: the
EndOfStream property. This read-only property is true when the end of the stream has been
reached and false otherwise. Therefore, you can use EndOfStream to watch for the end of a
file. For example, here is another way to write the while loop that reads the file:

while (!fstr in.EndOfStream) {
s = fstr in.ReadLine();
Console.WriteLine(s);

}

In this case, the use of EndOfStream makes the code a bit easier to understand but does
not change the overall structure of the sequence. There are times, however, when the use
of EndOfStream can simplify an otherwise tricky situation, adding clarity and improving
structure.

As with StreamWriter, in some cases, you might find it easier to open a file directly
using StreamReader. To do so, use this constructor:

StreamReader(string filename)

Here, filename specifies the name of the file to open, which can include a full path specifier.
The file must exist. If it doesn’t, a FileNotFoundException is thrown. If filename is null, then
an ArgumentNullException is thrown. If filename is an empty string, ArgumentException is
thrown. IOException and DirectoryNotFoundException are also possible.

Redirecting the Standard Streams

As mentioned earlier, the standard streams, such as Console.In, can be redirected. By far, the
most common redirection is to a file. When a standard stream is redirected, input and/or
output is automatically directed to the new stream, bypassing the default devices. By
redirecting the standard streams, your program can read commands from a disk file, create
log files, or even read input from a network connection.

Redirection of the standard streams can be accomplished in two ways. First, when you
execute a program on the command line, you can use the < and > operators to redirect
Console.In and/or Console.Out, respectively. For example, given this program:

using System;

382

Part I: The C# Language

class Test {
static void Main () {
Console.WriteLine ("This is a test.");
}
}

executing the program like this
Test > log

will cause the line “This is a test.” to be written to a file called log. Input can be redirected in
the same way. The thing to remember when input is redirected is that you must make sure
that what you specify as an input source contains sufficient input to satisfy the demands of
the program. If it doesn’t, the program will hang.

The < and > command-line redirection operators are not part of C#, but are provided by
the operating system. Thus, if your environment supports I/O redirection (as is the case with
Windows), you can redirect standard input and standard output without making any changes
to your program. However, there is a second way that you can redirect the standard streams
that is under program control. To do so, you will use the SetIn(), SetOut(), and SetError()
methods, shown here, which are members of Console:

static void SetIn(TextReader input)
static void SetOut(TextWriter output)
static void SetError(TextWriter output)

Thus, to redirect input, call SetIn(), specifying the desired stream. You can use any input
stream as long as it is derived from TextReader. To redirect output, call SetOut (),
specifying the desired output stream, which must be derived from TextWriter. For example,
to redirect output to a file, specify a FileStream that is wrapped in a StreamWriter. The
following program shows an example:

// Redirect Console.Out.

using System;
using System.IO;

class Redirect {
static void Main () {
StreamWriter log out;

try |
log out = new StreamWriter ("logfile.txt");
}
catch (IOException exc) {
Console.WriteLine ("Error Opening Log File");
Console.WritelLine (exc.Message) ;
return ;

}

// Redirect standard out to logfile.txt.
Console.SetOut (log out);

Chapter 14: Using 1/0 383

try |
Console.WriteLine ("This is the start of the log file.");

for(int i=0; i<10; i++) Console.WriteLine (i)
Console.WriteLine ("This is the end of the log file.");
} catch (IOException exc) {
Console.WriteLine ("Error Writing Log File");
Console.WritelLine (exc.Message) ;

}

log out.Close();

When you run this program, you won't see any of the output on the screen, but the file
logfile.txt will contain the following:

This is the start of the log file.

O 0 Jo U WN P O

This is the end of the log file.

On your own, you might want to experiment with redirecting the other built-in streams.

Reading and Writing Binary Data

So far, we have just been reading and writing bytes or characters, but it is possible—indeed,
common—to read and write other types of data. For example, you might want to create a
file that contains the ints, doubles, or shorts. To read and write binary values of the C#
built-in types, you will use BinaryReader and BinaryWriter. When using these streams, it is
important to understand that this data is read and written using its internal, binary format,
not its human-readable text form.

BinaryWriter

A BinaryWriter is a wrapper around a byte stream that manages the writing of binary data.
Its most commonly used constructor is shown here:

BinaryWriter(Stream outputStream)

384

Part I:

The C# Language

Here, outputStream is the stream to which data is written. To write output to a file, you
can use the object created by FileStream for this parameter. If outputStream is null, then
an ArgumentNullException is thrown. If outputStream has not been opened for writing,
ArgumentException is thrown.

BinaryWriter defines methods that can write all of C#'s built-in types. Several are
shown in Table 14-5. Notice that a string is written using its internal format, which includes
a length specifier. BinaryWriter also defines the standard Close() and Flush() methods,
which work as described earlier.

BinaryReader

A BinaryReader is a wrapper around a byte stream that handles the reading of binary data.
Its most commonly used constructor is shown here:

BinaryReader(Stream inputStream)

Here, inputStream is the stream from which data is read. To read from a file, you can use
the object created by FileStream for this parameter. If inputStream has not been opened for
reading or is otherwise invalid, ArgumentException is thrown.

BinaryReader provides methods for reading all of C#'s simple types. Several commonly
used methods are shown in Table 14-6. Notice that ReadString() reads a string that is stored
using its internal format, which includes a length specifier. These methods throw an
IOException if an error occurs. (Other exceptions are also possible.)

Method

Description

void Write(sbyte val)

Writes a signed byte.

void Write(byte val)

Writes an unsigned byte.

void Write(byte[] buf)

Writes an array of bytes.

void Write(short val)

Writes a short integer.

void Write(ushort val)

Writes an unsigned short integer.

void Write(int val)

Writes an integer.

void Write(uint val)

Writes an unsigned integer.

void Write(long val)

Writes a long integer.

void Write(ulong val)

Writes an unsigned long integer.

void Write(float val)

Writes a float.

void Write(double val)

Writes a double.

void Write(char val)

Writes a character.

void Write(char[] buf)

Writes an array of characters.

(
(
(
(
(
(
(
(
(
(
(
(
(
(

void Write(string val)

Writes a string using its internal representation, which includes a
length specifier.

TaBLe 14-5 Commonly Used Output Methods Defined by BinaryWriter

Chapter 14: Using 1/0

BinaryReader also defines three versions of Read(), which are shown here:

Method

Description

int Read()

Returns an integer representation of the next
available character from the invoking input stream.
Returns -1 when attempting to read at the end of
the file.

int Read(byte[] buf, int offset, int num) Attempts to read up to num bytes into buf starting

at bufloffset], returning the number of bytes
successfully read.

int Read(char[] buf, int offset, int num) | Attempts to read up to num characters into buf

starting at buf[offset], returning the number of
characters successfully read.

These methods will throw an IOException on failure. Other exceptions are possible. Also
defined is the standard Close() method.

Method Description
bool ReadBoolean() Reads a bool.
byte ReadByte() Reads a byte.

sbyte ReadSByte()

Reads an shyte.

byte[] ReadBytes(int num)

Reads num bytes and returns them as an array.

char ReadChar()

Reads a char.

char[] ReadChars(int num)

Reads num characters and returns them as an array.

double ReadDouble()

Reads a double.

float ReadSingle()

Reads a float.

short ReadInt16()

Reads a short.

int ReadInt32()

Reads an int.

long ReadInt64()

Reads a long.

ushort ReadUInt16()

Reads a ushort.

uint ReadUInt32()

Reads a uint.

ulong ReadUInt64()

Reads a ulong.

string ReadString()

Reads a string that is represented in its internal, binary
format, which includes a length specifier. This method
should only be used to read a string that has been written
using a BinaryWriter.

TaBLe 14-6 Commonly Used Input Methods Defined by BinaryReader

385

386 PartI: The C# Language

Demonstrating Binary 1/0

Here is a program that demonstrates BinaryReader and BinaryWriter. It writes and then
reads back various types of data to and from a file.

// Write and then read back binary data.

using System;
using System.IO;

class RWDhata {
static void Main() {
BinaryWriter dataOut;
BinaryReader dataln;

int i = 10;
double d = 1023.56;
bool b = true;
string str = "This is a test";
try {
dataOut = new
BinaryWriter (new FileStream("testdata", FileMode.Create));
}
catch (IOException exc) {
Console.WriteLine ("Cannot Open File For Output");
Console.WriteLine (exc.Message) ;
return;

}

// Write data to a file.

try {
Console.WriteLine ("Writing " + 1i);
dataOut.Write (i) ;

Console.WriteLine ("Writing " + d);
dataOut.Write (d) ;

Console.WriteLine ("Writing " + b);
dataOut.Write (b) ;

Console.WriteLine ("Writing " + 12.2 * 7.4);
dataOut.Write (12.2 * 7.4);

Console.WriteLine ("Writing " + str);
dataOut.Write (str);

}

catch (IOException exc) {
Console.WritelLine ("Error Writing File");
Console.WritelLine (exc.Message) ;

dataOut.Close();

Console.WriteLine();

Chapter 14: Using 1/0

// Now, read the data.
try {
dataln = new
BinaryReader (new FileStream("testdata", FileMode.Open))
}
catch (IOException exc) {
Console.WritelLine ("Cannot Open File For Input");
Console.WritelLine (exc.Message) ;
return;

try {
i = dataIn.ReadInt32();
Console.WriteLine ("Reading " + 1i);

d = dataIn.ReadDouble () ;
Console.WriteLine ("Reading " + d);

b = dataIn.ReadBoolean();
Console.WriteLine ("Reading " + b);

d = dataIn.ReadDouble () ;
Console.WriteLine ("Reading " + d);

str = dataIn.ReadString();
Console.WritelLine ("Reading " + str);

}

catch (IOException exc) {
Console.WritelLine ("Error Reading File");
Console.WriteLine (exc.Message) ;

}

dataIn.Close();

The output from the program is shown here:

Writing 10

Writing 1023.56
Writing True

Writing 90.28

Writing This is a test

Reading 10

Reading 1023.56
Reading True

Reading 90.28

Reading This is a test

If you examine the testdata file produced by this program, you will find that it contains
binary data, not human-readable text.

Here is a more practical example that shows how powerful binary 1/O is. The following
program implements a very simple inventory program. For each item in the inventory, the

381

388 Partl: The C# Language

program stores the item’s name, the number on hand, and its cost. Next, the program prompts
the user for the name of an item. It then searches the database. If the item is found, the
inventory information is displayed.

/* Use BinaryReader and BinaryWriter to implement
a simple inventory program. */

using System;
using System.IO;

class Inventory {
static void Main () {
BinaryWriter dataOut;
BinaryReader dataln;

string item; // name of item
int onhand; // number on hand
double cost; // cost

try |
dataOut = new
BinaryWriter (new FileStream("inventory.dat",
FileMode.Create)) ;
}
catch (IOException exc) {
Console.WritelLine ("Cannot Open Inventory File For Output");
Console.WriteLine (exc.Message) ;
return;

// Write some inventory data to the file.
try |
dataOut.Write ("Hammers") ;
dataOut.Write (10);
dataOut.Write (3.95);

dataOut.Write ("Screwdrivers") ;
dataOut.Write (18);
dataOut.Write (1.50);

dataOut.Write ("Pliers");
dataOut.Write (5);
dataOut.Write (4.95);

dataOut.Write ("Saws") ;
dataOut.Write (8) ;
dataOut.Write (8.95);
}
catch (IOException exc) {
Console.WritelLine ("Error Writing Inventory File");
Console.WritelLine (exc.Message) ;

dataOut.Close() ;

Chapter 14: Using 1/0 389

Console.WriteLine();

// Now, open inventory file for reading.
try |
datalIn = new
BinaryReader (new FileStream("inventory.dat",
FileMode.Open)) ;
}
catch (IOException exc) {
Console.WritelLine ("Cannot Open Inventory File For Input");
Console.WritelLine (exc.Message) ;
return;

// Lookup item entered by user.
Console.Write ("Enter item to lookup: ");
string what = Console.ReadLine();
Console.WriteLine () ;

try {
for(;;) |
// Read an inventory entry.
item = dataIn.ReadString();
onhand = dataIn.ReadInt32();
cost = datalIn.ReadDouble () ;

// See 1f the item matches the one requested.
// If so, display information.
if (item.CompareTo (what) == 0) {
Console.WriteLine (onhand + " " + item + " on hand. " +
"Cost: {0:C} each", cost);
Console.WriteLine ("Total value of {0}: {1:C}." ,
item, cost * onhand);
break;

}
catch (EndOfStreamException) {
Console.WriteLine ("Item not found.");

}

catch (IOException exc) {
Console.WriteLine ("Error Reading Inventory File");
Console.WritelLine (exc.Message) ;

dataIn.Close () ;

Here is a sample run:
Enter item to look up: Screwdrivers

18 Screwdrivers on hand. Cost: $1.50 each
Total value of Screwdrivers: $27.00.

390

Part I: The C# Language

In the program, notice how inventory information is stored in its binary format. Thus, the
number of items on hand and the cost is stored using their binary format rather than their
human-readable text-based equivalents. This makes it is possible to perform computations
on the numeric data without having to convert it from its human-readable form.

There is one other point of interest in the inventory program. Notice how the end of the
file is detected. Since the binary input methods throw an EndOfStreamException when the
end of the stream is reached, the program simply reads the file until either it finds the
desired item or this exception is generated. Thus, no special mechanism is needed to detect
the end of the file.

Random Access Files

Up to this point, we have been using sequential files, which are files that are accessed in a
strictly linear fashion, one byte after another. However, you can also access the contents of a
file in random order. One way to do this is to use the Seek() method defined by FileStream.
This method allows you to set the file position indicator (also called the file pointer or simply
the current position) to any point within a file.

The method Seek() is shown here:

long Seek(long newPos, SeekOrigin origin)

Here, newPos specifies the new position, in bytes, of the file pointer from the location specified
by origin. The origin will be one of these values, which are defined by the SeekOrigin
enumeration:

Value Meaning

SeekOrigin.Begin Seek from the beginning of the file.
SeekOrigin.Current Seek from the current location.
SeekOrigin.End Seek from the end of the file.

After a call to Seek(), the next read or write operation will occur at the new file position.
The new position is returned. If an error occurs while seeking, an IOException is thrown.
If the underlying stream does not support position requests, a NotSupportedException is
thrown. Other exceptions are possible.

Here is an example that demonstrates random access I/O. It writes the uppercase
alphabet to a file and then reads it back in nonsequential order.

// Demonstrate random access.

using System;
using System.IO;

class RandomAccessDemo {

static void Main () {
FileStream f;
char ch;
try {

f = new FileStream("random.dat", FileMode.Create);

}

Chapter 14:

catch (IOException exc) {
Console.WriteLine ("Cannot Open File");
Console.WriteLine (exc.Message) ;
return ;

// Write the alphabet.
for (int 1i=0; i < 26; i++) {
try {
f.WriteByte ((byte) ("A'+i));
}
catch (IOException exc) {
Console.WriteLine ("Error Writing File");
Console.WriteLine (exc.Message) ;
f.Close();
return ;

try {
// Now, read back specific values.
f.Seek (0, SeekOrigin.Begin); // seek to first byte
ch = (char) f.ReadByte();
Console.WriteLine ("First value is " + ch);

f.Seek(l, SeekOrigin.Begin); // seek to second byte
ch = (char) f.ReadByte();
Console.WriteLine ("Second value is " + ch);

f.Seek (4, SeekOrigin.Begin); // seek to 5th byte
ch = (char) f.ReadByte();
Console.WriteLine ("Fifth value is " + ch);

Console.WriteLine();

// Now, read every other value.
Console.WritelLine ("Here is every other value: ");
for(int i=0; i < 26; 1 += 2) {
f.Seek (i, SeekOrigin.Begin); // seek to ith character
ch = (char) f.ReadByte():;
Console.Write(ch + "™ ");

}

catch (IOException exc) {
Console.WriteLine ("Error Reading or Seeking");
Console.WritelLine (exc.Message) ;

Console.WriteLine();
f.Close();

Using 1/0

391

392

Part I: The C# Language

The output from the program is shown here:

First value is A
Second value is B
Fifth value is E

Here is every other value:
ACEGIEKMOQSUWY

Although Seek() offers the greatest flexibility, there is another way to set the current file
position. You can use the Position property. As shown previously in Table 14-2, Position is
a read /write property. Therefore, you can use it to obtain the current position or to set the
current position. For example, here is the code sequence from the preceding program that
reads the “random.dat” file, rewritten to use the Position property:

// Use Position rather than Seek() to set the current
// file position.

try |

f.Position = 0;

ch = (char) f.ReadByte();

Console.WriteLine ("First value is " + ch);
f.Position = 1;

ch = (char) f.ReadByte();

Console.WriteLine ("Second value is " + ch);
f.Position = 4;

ch = (char) f.ReadByte();

Console.WriteLine ("Fifth value is " + ch);

Console.WriteLine () ;

// Now, read every other value.
Console.WritelLine ("Here is every other value: ");
for(int i=0; 1 < 26; 1 += 2) {
f.Position = i; // seek to ith character
ch = (char) f.ReadByte();
Console.Write(ch + "™ ");
}
}
catch (IOException exc) {
Console.WriteLine ("Error Reading or Seeking");
Console.WritelLine (exc.Message) ;

}

Using MemoryStream

Sometimes it is useful to read input from or to write output to an array, rather than directly
from or to a device. To do this, you will use MemoryStream. MemoryStream is an
implementation of Stream that uses an array of bytes for input and/or output.
MemoryStream defines several constructors. Here is the one we will use:

MemoryStream(byte|[] buf)

Chapter 14: Using 1/0 393

Here, buf is an array of bytes that will be used for the source and/or target of I/O requests.
The stream created by this constructor can be written or read, and supports Seek(). When
using this constructor, you must remember to make buf large enough to hold whatever
output you will be directing to it.

Here is a program that demonstrates the use of MemoryStream:

// Demonstrate MemoryStream.

using System;
using System.IO;

class MemStrDemo {
static void Main () {
byte[] storage = new byte[255];

// Create a memory-based stream.
MemoryStream memstrm = new MemoryStream(storage);

// Wrap memstrm in a reader and a writer.
StreamWriter memwtr = new StreamWriter (memstrm);
StreamReader memrdr = new StreamReader (memstrm) ;

// Write to storage, through memwtr.
for (int 1=0; 1 < 10; 1++)
memwtr.WriteLine ("byte [" + 1 + "]: " + 1i);

// Put a period at the end.
memwtr.WriteLine (".");

memwtr.Flush () ;
Console.WriteLine ("Reading from storage directly: ");

// Display contents of storage directly.
foreach (char ch in storage) {
if (ch == '.'") break;
Console.Write (ch);

Console.WriteLine ("\nReading through memrdr: ");

// Read from memstrm using the stream reader.
memstrm.Seek (0, SeekOrigin.Begin); // reset file pointer

string str = memrdr.ReadLine () ;
while(str != null) {
str = memrdr.ReadLine () ;
if (str.CompareTo(".") == 0) break;
Console.WriteLine (str);

394

Part I: The C# Language

The output from the program is shown here:

Reading from storage directly:
byte 0

byte
byte
byte
byte
byte
byte
byte
byte
byte

o

O 00 J o Ul b W N
O 00 J o Ul b W N

Reading through memrdr:
byte 1

byte
byte
byte
byte
byte
byte
byte
byte

=

O J o Ul Wi
O J o Ul Wi

In the program, an array of bytes called storage is created. This array is then used as the
underlying storage for a MemoryStream called memstrm. From memstrm are created a
StreamReader called memrdr and a StreamWriter called memwtr. Using memwtr, output
is written to the memory-based stream. Notice that after the output has been written, Flush()
is called on memwtr. This is necessary to ensure that the contents of memwtr’s buffer are
actually written to the underlying array. Next, the contents of the underlying byte array are
displayed manually, using a foreach loop. Then, using Seek(), the file pointer is reset to the
start of the stream, and the memory stream is read using memrdr.

Memory-based streams are quite useful in programming. For example, you can construct
complicated output in advance, storing it in the array until it is needed. This technique is
especially useful when programming for a GUI environment, such as Windows. You can
also redirect a standard stream to read from an array. This might be useful for feeding test
information into a program, for example.

Using StringReader and StringWriter

For some applications, it might be easier to use a string rather than a byte array for the
underlying storage when performing memory-based I/O operations. When this is the case,
use StringReader and StringWriter. StringReader inherits TextReader, and StringWriter
inherits TextWriter. Thus, these streams have access to methods defined by those two
classes. For example, you can call ReadLine() on a StringReader and WriteLine() on a
StringWriter.

The constructor for StringReader is shown here:

StringReader(string str)

Chapter 14: Using 1/0 395

Here, str is the string that will be read from.
StringWriter defines several constructors. Here is the one that we will use:

StringWriter()

This constructor creates a writer that will put its output into a string. This string (in the form
of a StringBuilder) is automatically created by StringWriter. You can obtain the contents of
this string by calling ToString().

Here is an example that uses StringReader and StringWriter:

// Demonstrate StringReader and StringWriter.

using System;
using System.IO;

class StrRdrDemo {
static void Main() {
// Create a StringWriter.
StringWriter strwtr = new StringWriter();

// Write to StringWriter.
for (int i=0; i < 10; i++)

strwtr.WriteLine ("This is 1i: " + 1);

// Create a StringReader.
StringReader strrdr = new StringReader (strwtr.ToString());

// Now, read from StringReader.

string str = strrdr.ReadLine();
while(str != null) {
str = strrdr.ReadLine () ;

Console.WritelLine (str);

The output is shown here:

This is i: 1
This is i: 2
This is 1i: 3
This is i: 4
This is i: 5
This is 1i: 6
This is i: 7
This is i: 8
This is i: 9

The program first creates a StringWriter called strwtr and outputs to it using WriteLine().
Next, it creates a StringReader using the string contained in strwtr. This string is obtained
by calling ToString() on strwtr. Finally, the contents of this string are read using ReadLine().

396 Partl: The C# Language

Converting Numeric Strings to Their Internal Representation

Before leaving the topic of I/O, we will examine a technique useful when reading numeric
strings. As you know, WriteLine() provides a convenient way to output various types of

data to the console, including numeric values of the built-in types, such as int and double.
Thus, WriteLine() automatically converts numeric values into their human-readable form.
However, a parallel input method that reads and converts strings containing numeric
values into their internal, binary format is not provided. For example, there is no version of

Read() that reads from the keyboard a string such as “100” and then automatically converts

it into its corresponding binary value that can be stored in an int variable. Instead, there are
other ways to accomplish this task. Perhaps the easiest is to use a method that is defined for

all of the built-in numeric types: Parse().
Before we begin, it is necessary to state an important fact: All of C#’s built-in types, such
as int and double, are actually just aliases (that is, other names) for structures defined by the

NET framework. In fact, the C# type and .NET structure type are indistinguishable. One is
just another name for the other. Because C#'s value types are supported by structures, the

value types have members defined for them.

For the numeric types, the .NET structure names and their C# keyword equivalents are

shown here:
.NET Structure Name C# Name
Decimal decimal
Double double
Single float
Int16 short
Int32 int
Int64 long
Uint16 ushort
UInt32 uint
Uint64 ulong
Byte byte
SByte shyte

These structures are defined inside the System namespace. Thus, the fully qualified
name for Int32 is System.Int32. These structures offer a wide array of methods that help
fully integrate the value types into C#’s object hierarchy. As a side benefit, the numeric
structures also define a static method called Parse() that converts a numeric string into

its corresponding binary equivalent.

There are several overloaded forms of Parse(). The simplest version for each numeric
structure is shown here. It performs the conversion using the default locale and numeric
style. (Other versions let you perform locale-specific conversions and specify the numeric
style.) Notice that each method returns a binary value that corresponds to the string.

Chapter 14: Using 1/0 397

Structure Conversion Method

Decimal static decimal Parse(string str)
Double static double Parse(string str)
Single static float Parse(string str)
Int64 static long Parse(string str)
Int32 static int Parse(string str)
Int16 static short Parse(string str)
Uint64 static ulong Parse(string str)
Uint32 static uint Parse(string str)
Uint16 static ushort Parse(string str)
Byte static byte Parse(string str)
SByte static sbyte Parse(string str)

The Parse() methods will throw a FormatException if str does not contain a valid
number as defined by the invoking type. ArgumentNullException is thrown if str is null, and
OverflowException is thrown if the value in str exceeds the bounds of the invoking type.

The parsing methods give you an easy way to convert a numeric value, read as a string
from the keyboard or a text file, into its proper internal format. For example, the following
program averages a list of numbers entered by the user. It first asks the user for the number
of values to be averaged. It then reads that number using ReadLine() and uses Int32.Parse()
to convert the string into an integer. Next, it inputs the values, using Double.Parse() to convert
the strings into their double equivalents.

// This program averages a list of numbers entered by the user.

using System;
using System.IO;

class AvgNums {
static void Main() {
string str;
int n;
double sum = 0.0;
double avg, t;

Console.Write ("How many numbers will you enter: ");
str = Console.ReadLine () ;
try {
n Int32.Parse(str);
} catch (FormatException exc) {
Console.WritelLine (exc.Message) ;
return;
} catch (OverflowException exc) {
Console.WritelLine (exc.Message) ;
return;

398 Partl: The C# Language

Console.WriteLine ("Enter " + n + " values.");
for(int 1i=0; i < n ; 1i++) {
Console.Write(": ");
str = Console.ReadLine () ;
try {
t = Double.Parse (str);
} catch(FormatException exc) {
Console.WriteLine (exc.Message) ;
t = 0.0;
} catch(OverflowException exc) {
Console.WriteLine (exc.Message) ;
t = 0;
}
sum += t;
}
avg = sum / n;
Console.WriteLine ("Average is " + avg);

}

Here is a sample run:

How many numbers will you enter: 5
Enter 5 values.
1.1
2.2
3.3
4.4
: 5.5
Average is 3.3

One other point: You must use the right parsing method for the type of value you
are trying to convert. For example, trying to use Int32.Parse() on a string that contains
a floating-point value will not produce the desired result.

As explained, Parse() will throw an exception on failure. You can avoid generating an
exception when converting numeric strings by using the TryParse() method, which is defined
for all of the numeric structures. Here is an example. It shows one version of TryParse() as
defined by Int32.

static bool TryParse(string str, out int result)

The numeric string is passed in str. The result is returned in result. It performs the
conversion using the default locale and numeric style. (A second version of TryParse()

is available that lets you specify the numeric style and locale.) If the conversion fails, such
as when str does not contain a numeric string in the proper form, TryParse() returns false.
Otherwise, it returns true. Therefore, you must check the return value to confirm that a
successful conversion has occurred.

CHAPTER

Delegates, Events, and
Lambda Expressions

expressions. A delegate provides a way to encapsulate a method. An event is a

notification that some action has occurred. Delegates and events are related because
an event is built upon a delegate. Both expand the set of programming tasks to which C#
can be applied. The lambda expression is a new syntactic feature provided by C# 3.0. It offers
a streamlined, yet powerful way to define what is, essentially, a unit of executable code.
Lambda expressions are often used when working with delegates and events because a
delegate can refer to a lambda expression. (Lambda expressions are also very important to
LINQ, which is described in Chapter 19.) Also examined are anonymous methods, covariance,
contravariance, and method group conversions.

I I This chapter examines three innovative C# features: delegates, events, and lambda

Delegates

Let’s begin by defining the term delegate. In straightforward language, a delegate is an object
that can refer to a method. Therefore, when you create a delegate, you are creating an object
that can hold a reference to a method. Furthermore, the method can be called through this
reference. In other words, a delegate can invoke the method to which it refers. As you will
see, this is a very powerful concept.

It is important to understand that the same delegate can be used to call different
methods during the runtime of a program by simply changing the method to which the
delegate refers. Thus, the method that will be invoked by a delegate is not determined at
compile time, but rather at runtime. This is the principal advantage of a delegate.

NOTE If you are familiar with C/C++, then it will help to know that a delegate in C# is similar to a
function pointer in C/C++.

A delegate type is declared using the keyword delegate. The general form of a delegate
declaration is shown here:

delegate ret-type name(parameter-list);

399

400 PartI: The C# Language

Here, ret-type is the type of value returned by the methods that the delegate will be calling.
The name of the delegate is specified by name. The parameters required by the methods
called through the delegate are specified in the parameter-list. Once created, a delegate
instance can refer to and call methods whose return type and parameter list match those
specified by the delegate declaration.

A key point to understand is that a delegate can be used to call any method that agrees
with its signature and return type. Furthermore, the method can be either an instance method
associated with an object or a static method associated with a class. All that matters is that
the return type and signature of the method agree with those of the delegate.

To see delegates in action, let’s begin with the simple example shown here:

// A simple delegate example.
using System;

// Declare a delegate type.
delegate string StrMod(string str);

class DelegateTest {
// Replaces spaces with hyphens.
static string ReplaceSpaces (string s) {
Console.WriteLine ("Replacing spaces with hyphens.");
return s.Replace(' ', '-');

}

// Remove spaces.

static string RemoveSpaces (string s) {
string temp = "";
int i;

Console.WriteLine ("Removing spaces.");
for(i=0; i < s.Length; i++)
if(s[i] != " ') temp += s[i];

return temp;

}

// Reverse a string.

static string Reverse(string s) {
string temp = "";
int i, j;

Console.WriteLine ("Reversing string.");
for (j=0, i=s.Length-1; i >= 0; i--, Jj++)
temp += s[i];

return temp;

}

static void Main () {
// Construct a delegate.
StrMod strOp = new StrMod(ReplaceSpaces);
string str;

Chapter 15: Delegates, Events, and Lambda Expressions 401

// Call methods through the delegate.

str = strOp("This is a test.");
Console.WriteLine ("Resulting string: " + str);
Console.WriteLine () ;

strOp = new StrMod(RemoveSpaces) ;

str = strOp("This is a test.");
Console.WriteLine ("Resulting string: " + str);
Console.WriteLine () ;

strOp = new StrMod (Reverse);
str = strOp("This is a test.");
Console.WriteLine ("Resulting string: " + str);

The output from the program is shown here:

Replacing spaces with hyphens.
Resulting string: This-is-a-test.

Removing spaces.
Resulting string: Thisisatest.

Reversing string.
Resulting string: .tset a si sihT

Let’s examine this program closely. The program declares a delegate type called
StrMod, shown here:

delegate string StrMod(string str);

Notice that StrMod takes one string parameter and returns a string.

Next, in DelegateTest, three static methods are declared, each with a single parameter
of type string and a return type of string. Thus, they match the StrMod delegate. These
methods perform some type of string modification. Notice that ReplaceSpaces() uses one
of string’s methods, called Replace(), to replace spaces with hyphens.

In Main(), a StrMod reference called strOp is created and assigned a reference to
ReplaceSpaces(). Pay close attention to this line:

StrMod strOp = new StrMod(ReplaceSpaces);

Notice how the method ReplaceSpaces() is passed as a parameter. Only its name is used;
no parameters are specified. This can be generalized. When instantiating a delegate, you
specify only the name of the method to which you want the delegate to refer. Of course, the
method’s signature must match that of the delegate’s declaration. If it doesn’t, a compile-
time error will result.

Next, ReplaceSpaces() is called through the delegate instance strOp, as shown here:

str = strOp("This is a test.");

Because strOp refers to ReplaceSpaces(), ReplaceSpaces() is invoked.

402

Part I: The C# Language

Next, strOp is assigned a reference to RemoveSpaces(), and then strOp is called again.
This time, RemoveSpaces() is invoked.

Finally, strOp is assigned a reference to Reverse() and strOp is called. This results in
Reverse() being called.

The key point of the example is that the invocation of strOp results in a call to the method
referred to by strOp at the time at which the invocation occurs. Thus, the method to call is
resolved at runtime, not compile time.

Delegate Method Group Conversion
Beginning with version 2.0, C# has included an option that significantly simplifies the
syntax that assigns a method to a delegate. This feature is called method group conversion,
and it allows you to simply assign the name of a method to a delegate, without using new
or explicitly invoking the delegate’s constructor.

For example, here is the Main() method of the preceding program rewritten to use
method group conversions:

static void Main () {
// Construct a delegate using method group conversion.
StrMod strOp = ReplaceSpaces; // use method group conversion
string str;

// Call methods through the delegate.

str = strOp("This is a test.");
Console.WriteLine ("Resulting string: " + str);
Console.WriteLine () ;

strOp = RemoveSpaces; // use method group conversion
str = strOp("This is a test.");

Console.WriteLine ("Resulting string: " + str);
Console.WriteLine () ;

strOp = Reverse; // use method group conversion
str = strOp("This is a test.");
Console.WriteLine ("Resulting string: " + str);

Pay special attention to the way that strOp is created and assigned the method
ReplaceSpaces in this line:

StrMod strOp = ReplaceSpaces; // use method group conversion

The name of the method is assigned directly to strOp. C# automatically provides a
conversion from the method to the delegate type. This syntax can be generalized to any
situation in which a method is assigned to (or converted to) a delegate type.

Because the method group conversion syntax is simpler than the old approach, it is used
throughout the remainder of this book.

Using Instance Methods as Delegates

Although the preceding example used static methods, a delegate can also refer to instance
methods. It must do so, however, through an object reference. For example, here is a rewrite
of the previous example, which encapsulates the string operations inside a class called

Chapter 15: Delegates, Events, and Lambda Expressions

StringOps. Notice that the method group conversion syntax can also be applied in this

situation.

// Delegates can refer to instance methods,

using System;

// Declare a delegate type.
delegate string StrMod(string str);

class StringOps {
// Replaces spaces with hyphens.

public string ReplaceSpaces (string s) {

Console.WriteLine ("Replacing spaces with hyphens.");

return s.Replace(' ', '-');

// Remove spaces.

public string RemoveSpaces (string s) {

string temp = "";
int i;
Console.WriteLine ("Removing spaces.");

for(i=0; i < s.Length; i++)
if(s[i] != " ') temp += s[i];

return temp;

// Reverse a string.

public string Reverse(string s) {
string temp = "";
int i, j;

Console.WriteLine ("Reversing string.");
for (j=0, i=s.Length-1; i >= 0; i--,

temp += s[i];

return temp;

class DelegateTest {
static void Main() {
StringOps so = new StringOps () ;

// Initialize a delegate.
StrMod strOp = so.ReplaceSpaces;
string str;

// create an instance of StringOps

// Call methods through delegates.

str = strOp("This is a test.");

Console.WriteLine ("Resulting string: "

Console.WriteLine () ;

too.

j++)

+ str);

403

404

Part I: The C# Language

strOp = so.RemoveSpaces;

str = strOp("This is a test.");
Console.WriteLine ("Resulting string: " + str);
Console.WriteLine () ;

strOp = so.Reverse;
str = strOp("This is a test.");
Console.WriteLine ("Resulting string: " + str);

This program produces the same output as the first, but in this case, the delegate refers
to methods on an instance of StringOps.

Multicasting

One of the most exciting features of a delegate is its support for multicasting. In simple
terms, multicasting is the ability to create an invocation list, or chain, of methods that will be
automatically called when a delegate is invoked. Such a chain is very easy to create. Simply
instantiate a delegate, and then use the + or += operator to add methods to the chain. To
remove a method, use — or — =. If the delegate returns a value, then the value returned by
the last method in the list becomes the return value of the entire delegate invocation. Thus,
a delegate that makes use of multicasting will often have a void return type.

Here is an example of multicasting. Notice that it reworks the preceding examples by
changing the string manipulation method’s return type to void and using a ref parameter to
return the altered string to the caller. This makes the methods more appropriate for multicasting.

// Demonstrate multicasting.
using System;

// Declare a delegate type.
delegate void StrMod(ref string str);

class MultiCastDemo {
// Replaces spaces with hyphens.
static void ReplaceSpaces (ref string s) {
Console.WriteLine ("Replacing spaces with hyphens.");
s = s.Replace(' ', '=-");

}

// Remove spaces.

static void RemoveSpaces (ref string s) {
string temp = "";
int i;
Console.WriteLine ("Removing spaces.");
for(i=0; i < s.Length; i++)

if(s[i] !'= " ") temp += s[i];

s = temp;

Chapter 15: Delegates, Events, and Lambda Expressions 405

// Reverse a string.

static void Reverse (ref string s) {
string temp = "";
int i, j;

Console.WriteLine ("Reversing string.");
for (j=0, i=s.Length-1; i >= 0; i--, Jj++)
temp += s[i];

s = temp;

static void Main () {
// Construct delegates.
StrMod strOp;
StrMod replaceSp = ReplaceSpaces;
StrMod removeSp = RemoveSpaces;
StrMod reverseStr = Reverse;
string str = "This is a test";

// Set up multicast.
strOp = replaceSp;
strOp += reverseStr;

// Call multicast.

strOp (ref str);

Console.WriteLine ("Resulting string: " + str);
Console.WriteLine () ;

// Remove replace and add remove.
strOp -= replaceSp;
strOp += removeSp;

str = "This is a test."; // reset string

// Call multicast.

strOp (ref str);

Console.WriteLine ("Resulting string: " + str);
Console.WriteLine () ;

Here is the output:

Replacing spaces with hyphens.
Reversing string.
Resulting string: tset-a-si-sihT

Reversing string.
Removing spaces.
Resulting string: .tsetasisihT

406

Part I: The C# Language

In Main(), four delegate instances are created. One, strOp, is null. The other three refer to
specific string modification methods. Next, a multicast is created that calls RemoveSpaces()
and Reverse(). This is accomplished via the following lines:

strOp = replaceSp;
strOp += reverseStr;

First, strOp is assigned replaceSp. Next, using +=, reverseStr is added. When strOp is
invoked, both methods are invoked, replacing spaces with hyphens and reversing the
string, as the output illustrates.

Next, replaceSp is removed from the chain, using this line:

strOp —-= replaceSp;
and removeSP is added using this line:
strOp += removeSp;

Then, strOp is again invoked. This time, spaces are removed and the string is reversed.

Delegate chains are a powerful mechanism because they allow you to define a set of
methods that can be executed as a unit. This can increase the structure of some types of
code. Also, as you will soon see, delegate chains have a special value to events.

Covariance and Contravariance

There are two features that add flexibility to delegates: covariance and contravariance. Normally,
the method that you pass to a delegate must have the same return type and signature as the
delegate. However, covariance and contravariance relax this rule slightly, as it pertains to
derived types. Covariance enables a method to be assigned to a delegate when the method’s
return type is a class derived from the class specified by the return type of the delegate.
Contravariance enables a method to be assigned to a delegate when a method’s parameter
type is a base class of the class specified by the delegate’s declaration.

Here is an example that illustrates both covariance and contravariance:

// Demonstrate covariance and contravariance.
using System;
class X {

public int Val;

}

// Y is derived from X.
class Y : X { }

// This delegate returns X and takes a Y argument.
delegate X ChangelIt (Y obj);

class CoContraVariance {

// This method returns X and has an X parameter.

Chapter 15:

static X IncrA (X obj) {
X temp = new X();
temp.Val = obj.val + 1;
return temp;

}

Delegates, Events, and Lambda Expressions

// This method returns Y and has a Y parameter.

static Y IncrB(Y obj) {
Y temp = new Y ();
temp.Val = obj.val + 1;
return temp;

static void Main () {
Y Yob = new Y();

// In this case, the parameter to IncrA
// is X and the parameter to ChangelIt is Y.
// Because of contravariance, the following

// line is OK.
ChangeIt change = IncrA;

X Xob = change (Yob) ;

Console.WriteLine ("Xob:

+ Xob.Val) ;

// In the next case, the return type of

// IncrB is Y and the return type of
// Changelt is X. Because of covariance,
// the following line is OK.

change = IncrB;
Yob = (Y) change(Yob);
Console.WriteLine ("Yob: " + Yob.Val);

The output from the program is shown here:

Xob: 1
Yob: 1

In the program, notice that class Y is derived from class X. Next, notice that the delegate

Changelt() is declared like this:

delegate X ChangelIt (Y obj);

Changelt() returns X and has a Y parameter. Next, notice that the methods IncrA() and

IncrB() are declared as shown here:

static X IncrA (X obj)
static Y IncrB(Y obj)

407

408

Part I: The C# Language

The IncrA() method has an X parameter and returns X. The IncrB() method has a Y
parameter and returns Y. Given covariance and contravariance, either of these methods
can be passed to Changelt, as the program illustrates.

Therefore, this line

ChangeIt change = IncrA;

uses contravariance to enable IncrA() to be passed to the delegate because IncrA() has an X
parameter, but the delegate has a Y parameter. This works because, with contravariance, if
the parameter type of the method passed to a delegate is a base class of the parameter type
used by the delegate, then the method and the delegate are compatible.

The next line is also legal, but this time it is because of covariance:

change = IncrB;

In this case, the return type of IncrB() is Y, but the return type of Changelt() is X. However,
because the return type of the method is a class derived from the return type of the delegate,
the two are compatible.

System.Delegate

All delegates are classes that are implicitly derived from System.Delegate. You don’t normally
need to use its members directly, and this book makes no explicit use of System.Delegate.
However, its members may be useful in certain specialized situations.

Why Delegates

Although the preceding examples show the “how” behind delegates, they don’t really
illustrate the “why.” In general, delegates are useful for two main reasons. First, as shown
later in this chapter, delegates support events. Second, delegates give your program a way
to execute methods at runtime without having to know precisely what those methods are at
compile time. This ability is quite useful when you want to create a framework that allows
components to be plugged in. For example, imagine a drawing program (a bit like the
standard Windows Paint accessory). Using a delegate, you could allow the user to plug in
special color filters or image analyzers. Furthermore, the user could create a sequence of
these filters or analyzers. Such a scheme could be easily handled using a delegate.

Anonymous Functions

You will often find that the method referred to by a delegate is used only for that purpose.
In other words, the only reason for the method is so it can be invoked via a delegate. The
method is never called on its own. In such a case, you can avoid the need to create a
separate method by using an anonymous function. An anonymous function is, essentially, an
unnamed block of code that is passed to a delegate constructor. One advantage to using an
anonymous function is simplicity. There is no need to declare a separate method whose only
purpose is to be passed to a delegate.

Beginning with version 3.0, C# defines two types of anonymous functions: anonymous
methods and lambda expressions. The anonymous method was added by C# 2.0. The lambda
expression was added by C# 3.0. In general, the lambda expression improves on the concept

Chapter 15: Delegates, Events, and Lambda Expressions 409

of the anonymous method and is now the preferred approach to creating an anonymous
function. However, anonymous methods are widely used in existing C# code. Therefore,
they are still an important part of C#. Furthermore, anonymous methods are the precursor
to lambda expressions and a clear understanding of anonymous methods makes it easier to
understand aspects of the lambda expression. Also, there is a narrow set of cases in which
an anonymous method can be used, but a lambda expression cannot. Therefore, both
anonymous methods and lambda expressions are described in this chapter.

Anonymous Methods

An anonymous method is one way to create an unnamed block of code that is associated
with a specific delegate instance. An anonymous method is created by following the
keyword delegate with a block of code. To see how this is done, let’s begin with a simple
example. The following program uses an anonymous method that counts from 0 to 5.

// Demonstrate an anonymous method.
using System;

// Declare a delegate type.
delegate void CountIt();

class AnonMethDemo {
static void Main () {

// Here, the code for counting is passed
// as an anonymous method.
CountIt count = delegate {
// This is the block of code passed to the delegate.
for(int i=0; 1 <= 5; 1i++)
Console.WriteLine (1) ;
}; // notice the semicolon

count () ;

This program first declares a delegate type called Countlt that has no parameters and
returns void. Inside Main(), a CountIt instance called count is created, and it is passed the
block of code that follows the delegate keyword. This block of code is the anonymous
method that will be executed when count is called. Notice that the block of code is followed
by a semicolon, which terminates the declaration statement. The output from the program is
shown here:

g w N o

J10 Part1: The C# Language

Pass Arguments to an Anonymous Method

It is possible to pass one or more arguments to an anonymous method. To do so, follow the
delegate keyword with a parenthesized parameter list. Then, pass the argument(s) to the
delegate instance when it is called. For example, here is the preceding program rewritten
so that the ending value for the count is passed:

// Demonstrate an anonymous method that takes an argument.
using System;

// Notice that CountIt now has a parameter.
delegate void CountIt (int end);

class AnonMethDemo2 {
static void Main () {

// Here, the ending value for the count
// is passed to the anonymous method.
CountIt count = delegate (int end) {
for(int i=0; 1 <= end; 1i++)
Console.WriteLine (1) ;

}i

count (3) ;
Console.WriteLine () ;
count (5) ;

In this version, CountIt now takes an integer argument. Notice how the parameter list
is specified after the delegate keyword when the anonymous method is created. The code
inside the anonymous method has access to the parameter end in just the same way it would
if a named method were being created. The output from this program is shown next:

w N = o

g w N O

Return a Value from an Anonymous Method

An anonymous method can return a value. The value is returned by use of the return
statement, which works the same in an anonymous method as it does in a named method.
As you would expect, the type of the return value must be compatible with the return type

Chapter 15: Delegates, Events, and Lambda Expressions

specified by the delegate. For example, here the code that performs the count also computes
the summation of the count and returns the result:

// Demonstrate an anonymous method that returns a value.

using System;

// This delegate returns a value.
delegate int CountIt (int end);

class AnonMethDemo3 {

static void Main () {

int result;

// Here, the ending value for the count
// is passed to the anonymous method.
// A summation of the count is returned.
CountIt count = delegate (int end) {

int sum = 0;

for(int i=0; 1 <= end; i++) {
Console.WriteLine (i) ;
sum += 1i;
}
return sum; // return a value from an anonymous method

}i

result = count(3);
Console.WriteLine ("Summation of 3 is " + result);
Console.WriteLine () ;

result = count (5);
Console.WriteLine ("Summation of 5 is " + result);

In this version, the value of sum is returned by the code block that is associated with the

count delegate instance. Notice that the return statement is used in an anonymous method
in just the same way that it is used in a named method. The output is shown here:

w N PO

Summation of 3 is 6

g w N e O

Summation of 5 is 15

m

42

Part I: The C# Language

Use Outer Variables with Anonymous Methods

A local variable or parameter whose scope includes an anonymous method is called an outer
variable. An anonymous method has access to and can use these outer variables. When an
outer variable is used by an anonymous method, that variable is said to be captured. A
captured variable will stay in existence at least until the delegate that captured it is subject
to garbage collection. Thus, even though a local variable will normally cease to exist when
its block is exited, if that local variable is being used by an anonymous method, then that
variable will stay in existence at least until the delegate referring to that method is destroyed.

The capturing of a local variable can lead to unexpected results. For example, consider
this version of the counting program. As in the previous version, the summation of the
count is computed. However, in this version, a CountIt object is constructed and returned
by a static method called Counter(). This object uses the variable sum, which is declared in
the enclosing scope provided by Counter(), rather than in the anonymous method, itself.
Thus, sum is captured by the anonymous method. Inside Main(), Counter() is called to
obtain a Countlt object. Thus, sum will not be destroyed until the program finishes.

// Demonstrate a captured variable.
using System;

// This delegate returns int and takes an int argument.
delegate int CountIt (int end);

class VarCapture {

static CountIt Counter () {
int sum = 0;

// Here, a summation of the count is stored
// in the captured variable sum.
CountIt ctObj = delegate (int end) {
for(int i=0; i <= end; i++) {
Console.WriteLine (1) ;
sum += i;
}
return sum;
}i
return ctObj;
}

static void Main() {
// Get a counter.
CountIt count = Counter();

int result;

result = count(3);
Console.WriteLine (
(

'Summation of 3 is " + result);
Console.WriteLine () ;

result = count (5);

Console.WriteLine ("Summation of 5 is " + result);

Chapter 15: Delegates, Events, and Lambda Expressions 413

The output is shown here. Pay special attention to the summation value.

ummation of 3 is 6

ummation of 5 is 21

As you can see, the count still proceeds normally. However, notice the summation value for
5. It shows 21 instead of 15! The reason for this is that sum is captured by ctObj when it is
created by the Counter() method. This means it remains in existence until count is subject
to garbage collection at the end of the program. Thus, its value is not destroyed when
Counter() returns or with each call to the anonymous method when count is called in Main().

Although captured variables can result in rather counterintuitive situations, such as the
one just shown, it makes sense if you think about it a bit. The key point is that when an
anonymous method captures a variable, that variable cannot go out of existence until the
delegate that captures it is no longer being used. If this were not the case, then the captured
variable could be undefined when it is needed by the delegate.

Lambda Expressions

Although anonymous methods are a valuable feature, they have been largely superceded

by a better approach: the lambda expression. It is not an overstatement to say that the lambda
expression is one of the two most important features added by C# 3.0 (the other being LINQ).
Based on an entirely new syntactic element, the lambda expression provides a powerful
alternative to the anonymous method. Although a principal use of lambda expressions is
found when working with LINQ (see Chapter 19), they are also applicable to (and commonly
used with) delegates and events. This use of lambda expressions is described here.

Alambda expression is the second way that an anonymous function can be created.
(The other type of anonymous function is the anonymous method, described in the
preceding section.) Thus, a lambda expression can be assigned to a delegate. Because a
lambda expression is more streamlined than the equivalent anonymous method, lambda
expressions are now the recommended approach in almost all cases.

The Lambda Operator

All lambda expressions use the new lambda operator, which is =>. This operator divides
a lambda expression into two parts. On the left the input parameter (or parameters) is
specified. On the right is the lambda body. The => operator is sometimes verbalized as
“goes to” or “becomes.”

414

Part I: The C# Language

C# supports two types of lambda expressions, and it is the lambda body that determines
what type is being created. If the lambda body consists of a single expression, then an
expression lambda is being created. In this case, the body is free-standing—it is not enclosed
between braces. If the lambda body consists of a block of statements enclosed by braces,
then a statement lambda is being created. A statement lambda can contain multiple statements
and include such things as loops, method calls, and if statements. The following sections
describe both kinds of lambdas.

Expression Lambdas
In an expression lambda, the expression on the right side of the => acts on the parameter (or
parameters) specified by the left side. The result of the expression becomes the result of the
lambda operator and is returned.

Here is the general form of an expression lambda that takes only one parameter:

param => expr
When more than one parameter is required, then the following form is used:
(param-list) => expr

Therefore, when two or more parameters are needed, they must be enclosed by parentheses.
If no parameters are needed, then empty parentheses must be used.
Here is a simple expression lambda:

count => count + 2

Here count is the parameter that is acted on by the expression count + 2. Thus, the result is
the value of count increased by two. Here is another example:

n=>n%2==

In this case, this expression returns true if n is even and false if it is odd.

To use a lambda expression involves two steps. First, declare a delegate type that
is compatible with the lambda expression. Second, declare an instance of the delegate,
assigning to it the lambda expression. Once this has been done, the lambda expression can
be executed by calling the delegate instance. The result of the lambda expression becomes
the return value.

The following program shows how to put the two expression lambdas just shown into
action. It declares two delegate types. The first, called Incr, takes an int argument and
returns an int result. The second, called IsEven, takes an int argument and returns a bool
result. It then assigns the lambda expressions to instances of those delegates. Finally, it
executes the lambda expressions through the delegate instances.

// Use two simple lambda expressions.

using System;

// Declare a delegate that takes an int argument
// and returns an int result.

delegate int Incr(int v);

// Declare a delegate that takes an int argument
// and returns a bool result.

Chapter 15: Delegates, Events, and Lambda Expressions

delegate bool IsEven (int v);
class SimpleLambdaDemo {
static void Main () {
// Create an Incr delegate instance that refers to
// a lambda expression that increases its parameter by 2.

Incr incr = count => count + 2;

// Now, use the incr lambda expression.
Console.WriteLine ("Use incr lambda expression: ");

int x = -10;
while(x <= 0) {
Console.Write(x + " ");
x = incr(x); // increase x by 2

Console.WriteLine ("\n");

// Create an IsEven delegate instance that refers to
// a lambda expression that returns true if its parameter
// is even and false otherwise.

o)

IsEven isEven = n =>n % 2 == 0;

// Now, use the isEven lambda expression.
Console.WriteLine ("Use isEven lambda expression: ");
for (int i=1; i <= 10; i++)

if (isEven(i)) Console.WriteLine (i +

is even.");

The output is shown here:

Use incr lambda expression:
-10 -8 -6 -4 -2 0

Use isEven lambda expression:
2 is even.

4 is even.

6 is even.

8 is even.

10 is even.

In the program, pay special attention to these declarations:

Incr incr = count => count + 2;
IsEven isEven = n =>n % 2 == 0;

The first assigns to incr a lambda expression that returns the result of increasing the value
passed to count by 2. This expression can be assigned to an Incr delegate because it is

compatible with Incr’s declaration. The argument used in the call to incr is passed to count.

The result is returned. The second declaration assigns to isEven an expression that returns

45

416

Part I: The C# Language

true if the argument is even and false otherwise. Thus, it is compatible with the IsEven
delegate declaration.

At this point, you might be wondering how the compiler knows the type of the data
used in a lambda expression. For example, in the lambda expression assigned to incr, how
does the compiler know that count is an int? The answer is that the compiler infers the type
of the parameter and the expression’s result type from the delegate type. Thus, the lambda
parameters and return value must be compatible with the parameter type(s) and return type
of the delegate.

Although type inference is quite useful, in some cases, you might need to explicitly
specify the type of a lambda parameter. To do so, simply include the type name. For
example, here is another way to declare the incr delegate instance:

Incr incr = (int count) => count + 2;

Notice now that count is explicitly declared as an int. Also notice the use of parentheses.
They are now necessary. (Parentheses can be omitted only when exactly one parameter is
specified and no type specifier is used.)

Although the preceding two lambda expressions each used one parameter, lambda
expressions can use any number, including zero. When using more than one parameter you
must enclose them within parentheses. Here is an example that uses a lambda expression to
determine if a value is within a specified range:

(low, high, wval) => val >= low && val <= high;

Here is a delegate type that is compatible with this lambda expression:
delegate bool InRange (int lower, int upper, int v);

Thus, you could create an InRange delegate instance like this:

InRange rangeOK = (low, high, wval) => val >= low && val <= high;
After doing so, the lambda expression can be executed as shown here:

if (rangeOK (1, 5, 3)) Console.WriteLine ("3 is within 1 to 5.");

One other point: Lambda expressions can use outer variables in the same way as
anonymous methods, and they are captured in the same way.

Statement Lambdas

As mentioned, there are two basic flavors of the lambda expression. The first is the expression
lambda, which was discussed in the preceding section. As explained, the body of an
expression lambda consists solely of a single expression. The second type of lambda
expression is the statement lambda. A statement lambda expands the types of operations that
can be handled within a lambda expression because it allows the body of lambda to contain
multiple statements. For example, using a statement lambda you can use loops, if statements,
declare variables, and so on. A statement lambda is easy to create. Simply enclose the body
within braces. Aside from allowing multiple statements, it works much like the expression
lambdas just discussed.

Chapter 15: Delegates, Events, and Lambda Expressions

Here is an example that uses a statement lambda to compute and return the factorial of
an int value:

// Demonstrate a statement lambda.
using System;

// IntOp takes one int argument and returns an int result.
delegate int IntOp(int end);

class StatementLambdaDemo {
static void Main () {

// A statement lambda that returns the factorial
// of the value it is passed.
IntOp fact = n => {
int r = 1;
for(int i=1; 1 <= n; 1i++)
r =1 * r;
return r;

}i

Console.WriteLine ("The factorial of 3 is " 4+ fact(3));
Console.WriteLine ("The factorial of 5 is " + fact (5));

The output is shown here:

The factorial of 3 is 6
The factorial of 5 is 120

In the program, notice that the statement lambda declares a variable called r, uses a for
loop, and has a return statement. These are legal inside a statement lambda. In essence, a
statement lambda closely parallels an anonymous method. Therefore, many anonymous
methods will be converted to statement lambdas when updating legacy code. (As mentioned,
as of C# 3.0, lambda expressions are the preferred way of creating anonymous functions.)
One other point: When a return statement occurs within a lambda expression, it simply
causes a return from the lambda. It does not cause the enclosing method to return.

Before concluding, it is worthwhile to see another example that shows the statement
lambda in action. The following program reworks the first delegate example in this chapter
so it uses statement lambdas (rather than standalone methods) to accomplish various string
modifications:

// The first delegate example rewritten to use
// statement lambdas.

using System;

// Declare a delegate type.
delegate string StrMod(string s);

a1

418 Partl: The C# Language

class UseStatementLambdas {

static void Main () {
// Create delegates that refer to lambda expressions
// that perform various string modifications.

// Replaces spaces with hyphens.

StrMod ReplaceSpaces = s => {
Console.WriteLine ("Replacing spaces with hyphens.");
return s.Replace(' ', '-'");

bi

// Remove spaces.

StrMod RemoveSpaces = s => {
string temp = "";
int 1i;

Console.WriteLine ("Removing spaces.");
for(i=0; 1 < s.Length; i++)
if(s[i] !'= " ') temp += s[i];

return temp;

bi

// Reverse a string.

StrMod Reverse = s => {
string temp = "";
int 1, 37

Console.WriteLine ("Reversing string.");
for (j=0, i=s.Length-1; i >= 0; i--, J++)
temp += s[i];

return temp;

}i
string str;

// Call methods through the delegate.

StrMod strOp = ReplaceSpaces;

str = strOp("This is a test.");
Console.WriteLine ("Resulting string: " + str);
Console.WriteLine () ;

strOp = RemoveSpaces;

str = strOp("This is a test.");
Console.WriteLine ("Resulting string: " + str);
Console.WriteLine () ;

strOp = Reverse;
str = strOp("This is a test.");

Chapter 15: Delegates, Events, and Lambda Expressions 419

Console.WriteLine ("Resulting string: " + str);

The output, which is the same as the original version, is shown here:

Replacing spaces with hyphens.
Resulting string: This-is-a-test.

Removing spaces.
Resulting string: Thisisatest.

Reversing string.
Resulting string: .tset a si sihT

Events

Another important C# feature is built upon the foundation of delegates: the event. An event
is, essentially, an automatic notification that some action has occurred. Events work like this:
An object that has an interest in an event registers an event handler for that event. When the
event occurs, all registered handlers are called. Event handlers are represented by delegates.

Events are members of a class and are declared using the event keyword. Its most
commonly used form is shown here:

event event-delegate event-name;

Here, event-delegate is the name of the delegate used to support the event, and event-name is
the name of the specific event object being declared.
Let’s begin with a very simple example:

// A very simple event demonstration.
using System;

// Declare a delegate type for an event.
delegate void MyEventHandler () ;

// Declare a class that contains an event.
class MyEvent {
public event MyEventHandler SomeEvent;

// This is called to fire the event.
public void OnSomeEvent () {
if (SomeEvent != null)
SomeEvent () ;

class EventDemo ({
// An event handler.
static void Handler () {
Console.WriteLine ("Event occurred");

420

Part I: The C# Language

static void Main() {
MyEvent evt = new MyEvent () ;

// Add Handler () to the event list.
evt.SomeEvent += Handler;

// Fire the event.
evt.OnSomeEvent () ;

This program displays the following output:
Event occurred

Although simple, this program contains all the elements essential to proper event
handling. Let’s look at it carefully. The program begins by declaring a delegate type for
the event handler, as shown here:

delegate void MyEventHandler () ;

All events are activated through a delegate. Thus, the event delegate type defines the return
type and signature for the event. In this case, there are no parameters, but event parameters
are allowed.

Next, an event class, called MyEvent, is created. Inside the class, an event called
SomeEvent is declared, using this line:

public event MyEventHandler SomeEvent;

Notice the syntax. The keyword event tells the compiler that an event is being declared.
Also declared inside MyEvent is the method OnSomeEvent(), which is the method a

program will call to signal (or “fire”) an event. (That is, this is the method called when the

event occurs.) It calls an event handler through the SomeEvent delegate, as shown here:

if (SomeEvent != null)
SomeEvent () ;

Notice that a handler is called if and only if SomeEvent is not null. Since other parts of your
program must register an interest in an event in order to receive event notifications, it is
possible that OnSomeEvent() could be called before any event handler has been registered.
To prevent calling on a null reference, the event delegate must be tested to ensure that it is
not null.

Inside EventDemo, an event handler called Handler() is created. In this simple example,
the event handler simply displays a message, but other handlers could perform more
meaningful actions. In Main(), a MyEvent object is created, and Handler() is registered
as a handler for this event, by adding it as shown here:

MyEvent evt = new MyEvent();

// Add Handler () to the event list.
evt.SomeEvent += Handler;

Chapter 15: Delegates, Events, and Lambda Expressions

Notice that the handler is added using the += operator. Events support only += and - =. In
this case, Handler() is a static method, but event handlers can also be instance methods.

Finally, the event is fired as shown here:

// Fire the event.
evt.OnSomeEvent () ;

Calling OnSomeEvent() causes all registered event handlers to be called. In this case, there
is only one registered handler, but there could be more, as the next section explains.

A Multicast Event Example

Like delegates, events can be multicast. This enables multiple objects to respond to an event

notification. Here is an event multicast example:
// An event multicast demonstration.
using System;

// Declare a delegate type for an event.
delegate void MyEventHandler () ;

// Declare a class that contains an event.
class MyEvent {
public event MyEventHandler SomeEvent;

// This is called to fire the event.
public void OnSomeEvent () {
if (SomeEvent != null)
SomeEvent () ;

class X {
public void Xhandler () {

Console.WriteLine ("Event received by X object");

}

class Y {
public void Yhandler () {

Console.WriteLine ("Event received by Y object");

}

class EventDemo?2 {
static void Handler () {

Console.WriteLine ("Event received by EventDemo") ;

static void Main () {
MyEvent evt = new MyEvent();
X x0b = new X();
Y yOb = new Y();

422

Part I:

The C# Language

// Add handlers to the event list.
evt.SomeEvent += Handler;

evt.SomeEvent
evt.SomeEvent += yOb.Yhandler;

+= x0Ob.Xhandler;

// Fire the event.
evt.OnSomeEvent () ;
Console.WriteLine () ;

// Remove a handler.
evt.SomeEvent -= x0b.Xhandler;
evt.OnSomeEvent () ;

The output from the program is shown here:

Event
Event
Event

Event
Event

received by
received by
received by

received by
received by

EventDemo
X object
Y object

EventDemo
Y object

This example creates two additional classes, called X and Y, which also define event
handlers compatible with MyEventHandler. Thus, these handlers can also become part

of the event chain. Notice that the handlers in X and Y are not static. This means that objects
of each must be created, and the handler linked to each instance must be added to the event
chain. The differences between instance and static handlers is examined in the next section.

Instance Methods vs. Static Methods as Event Handlers

Although both instance methods and static methods can be used as event handlers, they do
differ in one important way. When a static method is used as a handler, an event notification
applies to the class. When an instance method is used as an event handler, events are sent to
specific object instances. Thus, each object of a class that wants to receive an event notification
must register individually. In practice, most event handlers are instance methods, but, of
course, this is subject to the specific application. Let’s look at an example of each.

The following program creates a class called X that defines an instance method as an
event handler. This means that each X object must register individually to receive events.
To demonstrate this fact, the program multicasts an event to three objects of type X.

/* Individual objects receive notifications when instance
event handlers are used. */

using System;

// Declare a delegate type for an event.
delegate void MyEventHandler () ;

// Declare a class that contains an event.

class

MyEvent {

Chapter 15: Delegates, Events, and Lambda Expressions 423

public event MyEventHandler SomeEvent;

// This is called to fire the event.
public void OnSomeEvent () {
if (SomeEvent != null)
SomeEvent () ;

class X {
int id;

public X(int x) { id = x; }

// This is an instance method that will be used as an event handler.
public void Xhandler () {
Console.WriteLine ("Event received by object " + id);

class EventDemo3 {
static void Main() {
MyEvent evt =
X ol = new X(
X 02 = new X(
X 03 = new X(

evt.SomeEvent += ol.Xhandler;
evt.SomeEvent += o2.Xhandler;
evt.SomeEvent += o3.Xhandler;

// Fire the event.
evt.OnSomeEvent () ;

The output from this program is shown here:

Event received by object 1
Event received by object 2
Event received by object 3

As the output shows, each object registers its interest in an event separately, and each
receives a separate notification.

Alternatively, when a static method is used as an event handler, events are handled
independently of any object, as the following program shows:

/* A class receives the notification when
a static method is used as an event handler. */

using System;

// Declare a delegate type for an event.

424

Part I: The C# Language

delegate void MyEventHandler () ;

// Declare a class that contains an event.
class MyEvent {
public event MyEventHandler SomeEvent;

// This is called to fire the event.
public void OnSomeEvent () {
if (SomeEvent != null)
SomeEvent () ;

}
class X {

/* This is a static method that will be used as
an event handler. */
public static void Xhandler () {
Console.WriteLine ("Event received by class.");
}
}

class EventDemo4d {
static void Main () {
MyEvent evt = new MyEvent();

evt.SomeEvent += X.Xhandler;

// Fire the event.
evt.OnSomeEvent () ;

The output from this program is shown here:
Event received by class.

In the program, notice that no object of type X is ever created. However, since Xhandler() is
a static method of X, it can be attached to SomeEvent and executed when OnSomeEvent()
is called.

Using Event Accessors

The form of event used in the preceding examples created events that automatically manage

the event handler invocation list, including the adding and subtracting of event handlers

to and from the list. Thus, you did not need to implement any of the list management

functionality yourself. Because they manage the details for you, these types of events are

by far the most commonly used. It is possible, however, to provide the event handler list

operations yourself, perhaps to implement some type of specialized event storage mechanism.
To take control of the event handler list, you will use an expanded form of the event

statement, which allows the use of event accessors. The accessors give you control over how

the event handler list is implemented. This form is shown here:

Chapter 15: Delegates, Events, and Lambda Expressions 425

event event-delegate event-name {
add {
// code to add an event to the chain

}

remove {
// code to remove an event from the chain
}
}

This form includes the two event accessors add and remove. The add accessor is called
when an event handler is added to the event chain, by using +=. The remove accessor is
called when an event handler is removed from the chain, by using — =.

When add or remove is called, it receives the handler to add or remove as a parameter.
As with other types of accessors, this parameter is called value. By implementing add and
remove, you can define a custom event-handler storage scheme. For example, you could
use an array, a stack, or a queue to store the handlers.

Here is an example that uses the accessor form of event. It uses an array to hold the
event handlers. Because the array is only three elements long, only three event handlers
can be held in the chain at any one time.

// Create a custom means of managing the event invocation list.
using System;

// Declare a delegate type for an event.
delegate void MyEventHandler () ;

// Declare a class that holds up to 3 events.
class MyEvent {
MyEventHandler[] evnt = new MyEventHandler[3];

public event MyEventHandler SomeEvent ({
// Add an event to the list.
add {
int i;

for (i=0; 1 < 3; i++)
] =

-~

if (evnt[1i null) {
evnt[i] = wvalue;
break;
}
if (i == 3) Console.WriteLine ("Event list full.");

}

// Remove an event from the list.
remove {
int i;

for (i=0; i < 3; i++)
if (evnt[i] == value) {

426 Partl: The C# Language

evnt[i] = null;
break;
}
if (i == 3) Console.WriteLine ("Event handler not found.");

// This is called to fire the events.

public void OnSomeEvent () {
for(int 1i=0; i < 3; i++)
if (evnt[i] !'= null) evnt[i] ();

// Create some classes that use MyEventHandler.
class W {
public void Whandler () {
Console.WriteLine ("Event received by W object");

}

class X {
public void Xhandler () {
Console.WritelLine ("Event received by X object");

}

class Y {
public void Yhandler () {
Console.WriteLine ("Event received by Y object");

}

class 7Z {
public void Zhandler () {
Console.WritelLine ("Event received by Z object");

}

class EventDemo5 {
static void Main() {
MyEvent evt = new MyEvent();

W wOb = new W();
X xOb = new X();
Y yOb = new Y();
Z zOb = new Z();

// Add handlers to the event list.
Console.WriteLine ("Adding events.");
evt.SomeEvent += wOb.Whandler;
evt.SomeEvent += x0Ob.Xhandler;
evt.SomeEvent += yOb.Yhandler;

// Can't store this one --
evt.SomeEvent += zOb.Zhandler;

Chapter 15:

Console.WriteLine () ;

// Fire the events.
evt.OnSomeEvent () ;
Console.WriteLine () ;

// Remove a handler.

Console.WriteLine ("Remove xOb.Xhandler.");
= x0b.Xhandler;

evt.SomeEvent

evt.OnSomeEvent () ;

Console.WriteLine () ;

// Try to remove it again.

Console.WriteLine ("Try to remove xOb.Xhandler again.");
= xOb.Xhandler;

evt.SomeEvent

evt.OnSomeEvent () ;

Console.WriteLine () ;

// Now, add Zhandler.

Console.WriteLine ("Add zOb.Zhandler.");
+= zOb.Zhandler;

evt.SomeEvent

evt.OnSomeEvent () ;

The output from the program is shown here:

Adding events.
Event list full.

Event received by
Event received by
Event received by

W object
X object
Y object

Remove xOb.Xhandler.

Event received by
Event received by

Try to remove xOb.

Event handler not
Event received by
Event received by

Add zOb.Zhandler.
Event received by
Event received by
Event received by

W object
Y object

Xhandler
found.

W object
Y object

W object
Z object
Y object

again.

Delegates, Events, and Lambda Expressions

full.

421

428

Part I: The C# Language

Let’s examine this program closely. First, an event handler delegate called MyEventHandler
is defined. Next, the class MyEvent is declared. It begins by defining a three-element array
of event handlers called evnt, as shown here:

MyEventHandler[] evnt = new MyEventHandler[3];

This array will be used to store the event handlers that are added to the event chain. The
elements in evnt are initialized to null by default.

Next, the event SomeEvent is declared. It uses the accessor form of the event statement,
as shown here:

public event MyEventHandler SomeEvent {
// Add an event to the list.
add {
int i;

for (i=0; i < 3; i++)

if(evnt[i] == null) {
evnt[i] = wvalue;
break;
}
if (i == 3) Console.WritelLine ("Event queue full.");

}
// Remove an event from the list.
remove {

int i;

for (i=0; i < 3; i++)

if (evnt[i] == value) {
evnt[i] = null;
break;
}
if (i == 3) Console.WritelLine ("Event handler not found.");

}

When an event handler is added, add is called and a reference to the handler (contained in
value) is put into the first unused (that is, null) element of evnt. If no element is free, then
an error is reported. (Of course, throwing an exception when the list is full would be a better
approach for real-world code.) Since evnt is only three elements long, only three event
handlers can be stored. When an event handler is removed, remove is called and the evnt
array is searched for the reference to the handler passed in value. If it is found, its element
in the array is assigned null, thus removing the handler from the list.

When an event is fired, OnSomeEvent() is called. It cycles through the evnt array,
calling each event handler in turn.

As the preceding example shows, it is relatively easy to implement a custom event-
handler storage mechanism if one is needed. For most applications, though, the default
storage provided by the non-accessor form of event is better. The accessor-based form of
event can be useful in certain specialized situations, however. For example, if you have a
program in which event handlers need to be executed in order of their priority and not in
the order in which they are added to the chain, then you could use a priority queue to store
the handlers.

Chapter 15: Delegates, Events, and Lambda Expressions 429

NoOTE In multithreaded applications, you will usually need to synchronize access to the event
accessors. For information on multithreaded programming, see Chapter 23.

Miscellaneous Event Features

Events can be specified in interfaces. Implementing classes must supply the event.

Events can also be specified as abstract. A derived class must implement the event.
Accessor-based events cannot, however, be abstract.

An event can be specified as sealed.

Finally, an event can be virtual, which means that it can be overridden in a derived class.

Use Anonymous Methods and Lambda Expressions with Events

Anonymous methods and lambda expressions are especially useful when working with
events because often the event handler is not called by any code other than the event
handling mechanism. As a result, there is usually no reason to create a standalone method.
Thus, the use of lambda expressions or anonymous methods can significantly streamline
event handling code.

Since lambda expressions are now the preferred approach, we will start there. Here is an
example that uses a lambda expression as an event handler:

// Use a lambda expression as an event handler.
using System;

// Declare a delegate type for an event.
delegate void MyEventHandler (int n);

// Declare a class that contains an event.
class MyEvent ({
public event MyEventHandler SomeEvent;

// This is called to fire the event.
public void OnSomeEvent (int n) {
if (SomeEvent != null)
SomeEvent (n) ;

}

class LambdaEventDemo {
static void Main () {
MyEvent evt = new MyEvent();

// Use a lambda expression as an event handler.
evt.SomeEvent += (n) =>
Console.WriteLine ("Event received. Value is " + n);

// Fire the event twice.
evt.OnSomeEvent (1) ;
evt.OnSomeEvent (2) ;

430

Part I: The C# Language

The output is shown here:

Event received. Value is 1
Event received. Value is 2

In the program, pay special attention to the way the lambda expression is used as an
event handler, as shown here:

evt.SomeEvent += (n) =>
Console.WriteLine ("Event received. Value is " + n);

The syntax for using a lambda expression event handler is the same as that for using a
lambda expression with any other type of delegate.

Although lambda expressions are now the preferred way to construct an anonymous
function, you can still use an anonymous method as an event handler if you so choose. For
example, here is the event handler from the previous example rewritten to use an
anonymous method:

// Use an anonymous method as an event handler.
evt.SomeEvent += delegate(int n) {
Console.WriteLine ("Event received. Value is" + n);

i

As you can see, the syntax for using an anonymous event handler is the same as that for any
anonymous method.

.NET Event Guidelines

C# allows you to write any type of event you desire. However, for component compatibility
with the NET Framework, you will need to follow the guidelines Microsoft has established
for this purpose. At the core of these guidelines is the requirement that event handlers have
two parameters. The first is a reference to the object that generated the event. The second is

a parameter of type EventArgs that contains any other information required by the handler.
Thus, NET-compatible event handlers will have this general form:

void handler(object source, EventArgs arg) {
/] .
}

Typically, the source parameter is passed this by the calling code. The EventArgs parameter
contains additional information and can be ignored if it is not needed.

The EventArgs class itself does not contain fields that you use to pass additional data to
a handler. Instead, EventArgs is used as a base class from which you will derive a class that
contains the necessary fields. EventArgs does include one static field called Empty, which is
an EventArgs object that contains no data.

Here is an example that creates a .NET-compatible event:

// A .NET-compatible event.
using System;
// Derive a class from EventArgs.

class MyEventArgs : EventArgs {
public int EventNum;

Chapter 15: Delegates, Events, and Lambda Expressions

// Declare a delegate type for an event.

delegate void MyEventHandler (object source, MyEventArgs arg);

// Declare a class that contains an event.
class MyEvent {
static int count = 0;

public event MyEventHandler SomeEvent;

// This fires SomeEvent.
public void OnSomeEvent () {
MyEventArgs arg = new MyEventArgs();

if (SomeEvent != null) {
arg.EventNum = count++;
SomeEvent (this, arg);

class X {
public void Handler (object source, MyEventArgs arg)

Console.WriteLine ("Event " + arg.EventNum +
" received by an X object.");
Console.WriteLine ("Source 1s " + source);

Console.WriteLine () ;

class Y {
public void Handler (object source, MyEventArgs arg)

Console.WriteLine ("Event " + arg.EventNum +
" received by a Y object.");
Console.WriteLine ("Source is " + source);

Console.WriteLine () ;

class EventDemo6 {
static void Main() {
X obl = new X();
Y ob2 = new Y();
MyEvent evt = new MyEvent();

// Add Handler () to the event list.
evt.SomeEvent += obl.Handler;
evt.SomeEvent += ob2.Handler;

// Fire the event.
evt.OnSomeEvent () ;
evt.OnSomeEvent () ;

431

432

Part I: The C# Language

Here is the output:

Event 0 received by an X object.
Source 1is MyEvent

Event 0 received by a Y object.
Source is MyEvent

Event 1 received by an X object.
Source 1is MyEvent

Event 1 received by a Y object.
Source 1is MyEvent

In this example, MyEventArgs is derived from EventArgs. MyEventArgs adds just one
field of its own: EventNum. The event handler delegate MyEventHandler now takes the
two parameters required by the .NET Framework. As explained, the first is an object
reference to the generator of the event. The second is a reference to EventArgs or a class
derived from EventArgs. The event handlers in the X and Y classes, Handler(), also have
the same types of parameters.

Inside MyEvent, a MyEventHandler called SomeEvent is declared. In the OnSomeEvent()
method, SomeEvent is called with the first argument being this, and the second argument
being a MyEventArgs instance. Thus, the proper arguments are passed to MyEventHandler
to fulfill the requirements for .NET compatibility.

Use EventHandler

For many events, the EventArgs parameter is unused. To help facilitate the creation of code in
these situations, the NET Framework includes a built-in delegate type called EventHandler,
which can be used to declare event handlers in which no extra information is needed. Here
is an example that uses EventHandler:

// Use the built-in EventHandler delegate.
using System;

// Declare a class that contains an event.
class MyEvent {
public event EventHandler SomeEvent; // uses EventHandler delegate

// This is called to fire SomeEvent.
public void OnSomeEvent () {
if (SomeEvent != null)
SomeEvent (this, EventArgs.Empty);

}

class EventDemo7 {
static void Handler (object source, EventArgs arg) {
Console.WriteLine ("Event occurred");
Console.WriteLine ("Source 1s " + source);

}

Chapter 15: Delegates, Events, and Lambda Expressions 433

static void Main() {
MyEvent evt = new MyEvent () ;

// Add Handler () to the event list.
evt.SomeEvent += Handler;

// Fire the event.
evt.OnSomeEvent () ;

}

In this case, the EventArgs parameter is unused and is passed the placeholder object
EventArgs.Empty. The output is shown here:

Event occurred
Source 1is MyEvent

Applying Events: A Case Study

Events are frequently used in message-based environments such as Windows. In such an
environment, a program simply waits until it receives a message, and then it takes the
appropriate action. Such an architecture is well suited for C#-style event handling because it
is possible to create event handlers for various messages and then simply invoke a handler
when a message is received. For example, the left-button mouse click message could be tied
to an event called LButtonClick. When a left-button click is received, a method called
OnLButtonClick() can be called, and all registered handlers will be notified.

Although developing a Windows program that demonstrates this approach is beyond
the scope of this chapter, it is possible to give an idea of how such an approach would work.
The following program creates an event handler that processes keystrokes. The event is
called KeyPress, and each time a key is pressed, the event is fired by calling OnKeyPress().
Notice that NET-compatible events are created and that lambda expressions provide the
event handlers.

// A keypress event example.
using System;

// Derive a custom EventArgs class that holds the key.
class KeyEventArgs : EventArgs {

public char ch;
}

// Declare a delegate type for an event.
delegate void KeyHandler (object source, KeyEventArgs arg);

// Declare a keypress event class.
class KeyEvent ({
public event KeyHandler KeyPress;

// This 1is called when a key is pressed.
public void OnKeyPress (char key) {

434 Partl: The C# Language

KeyEventArgs k = new KeyEventArgs();

if (KeyPress != null) {
k.ch = key;
KeyPress (this, k);

}

}

// Demonstrate KeyEvent.
class KeyEventDemo ({
static void Main () {
KeyEvent kevt = new KeyEvent();
ConsoleKeyInfo key;
int count = 0;

// Use a lambda expression to display the keypress.
kevt.KeyPress += (source, arg) =>
Console.WriteLine (" Received keystroke: " + arg.ch);

// Use a lambda expression to count keypresses.
kevt.KeyPress += (source, arg) =>
count++; // count is an outer variable

Console.WriteLine ("Enter some characters. " +
"Enter a period to stop.");
do {
key = Console.ReadKey () ;
kevt.OnKeyPress (key.KeyChar) ;
} while (key.KeyChar != "'.");

Console.WriteLine (count + " keys pressed.");

Here is a sample run:

Enter some characters. Enter a period to stop.
t Received keystroke:
e Received keystroke:
s Received keystroke:
t Received keystroke:

t »n O

. Received keystroke:
5 keys pressed.

The program begins by deriving a class from EventArgs called KeyEventArgs, which is
used to pass a keystroke to an event handler. Next, a delegate called KeyHandler defines
the event handler for keystroke events. The class KeyEvent encapsulates the keypress event.
It defines the event KeyPress.

In Main(), a KeyEvent object called kevt is created. Next, an event handler based on
a lambda expression is added to kvet.KeyPress that displays each key as it is entered, as
shown here:

Chapter 15: Delegates, Events, and Lambda Expressions 435

kevt.KeyPress += (source, arg) =>
Console.WriteLine (" Received keystroke: " + arg.ch);

Next, another lambda expression-based handler is added to kvet.KeyPress by the
following code. It counts the number of keypresses.

kevt.KeyPress += (source, arg) =>
count++; // count is an outer variable

Notice that count is a local variable declared in Main() that is initialized to zero.

Next, a loop is started that calls kevt.OnKeyPress() when a key is pressed. This causes
the registered event handlers to be notified. When the loop ends, the number of keypresses
is displayed. Although quite simple, this example illustrates the essence of event handling.
The same basic approach will be used for other event handling situations. Of course, in
some cases, anonymous event handlers will not be appropriate and named methods will
need to be employed.

This page intentionally left blank

CHAPTER

Namespaces, the
Preprocessor, and Assemblies

organization and accessibility of a program. These are namespaces, the preprocessor,

I I This chapter discusses three C# features that give you greater control over the
and assemblies.

Namespaces

The namespace was mentioned briefly in Chapter 2 because it is a concept fundamental to
C#. In fact, every C# program makes use of a namespace in one way or another. We didn’t
need to examine namespaces in detail before now because C# automatically provides a
default, global namespace for your program. Thus, the programs in earlier chapters simply
used the global namespace. In the real world, however, many programs will need to create
their own namespaces or interact with other namespaces. Here, they are examined in detail.

A namespace defines a declarative region that provides a way to keep one set of names
separate from another. In essence, names declared in one namespace will not conflict with
the same names declared in another. The namespace used by the NET Framework library
(which is the C# library) is System. This is why you have included

using System;

near the top of every program. As explained in Chapter 14, the I/O classes are defined
within a namespace subordinate to System called System.IO. There are many other
namespaces subordinate to System that hold other parts of the C# library.

Namespaces are important because there has been an explosion of variable, method,
property, and class names over the past few years. These include library routines, third-
party code, and your own code. Without namespaces, all of these names would compete
for slots in the global namespace and conflicts would arise. For example, if your program
defined a class called Finder, it could conflict with another class called Finder supplied by
a third-party library that your program uses. Fortunately, namespaces prevent this type of
problem because a namespace restricts the visibility of names declared within it.

431

438

Part I: The C# Language

Declaring a Namespace
A namespace is declared using