
JD Graffam

CSS for Print
Designers

CSS for Print Designers

Book Level: Beginning / Intermediate
Computer Book Shelf Category: Web Design / CSS
Cover Design: Aren Howell Straiger

US $29.99 Canada $30.99

Getting started designing Web sites is rather like learning
a new language—in fact, that’s what you’re doing! And
many of the same principles apply: There’s a lot to learn,
but just a handful of basics can see you through quite a
few situations. This book will show you that learning
HTML and CSS isn’t hard or painful, and you’ll use many
of the same tools and techniques that print designers work
with every day. You’ll learn how to:

•	 Hand-code	Web	pages	with	HTML	and	CSS—the	
keys to skillful Web design

•	 Work	with	HTML5	and	CSS3,	the	most	current	
Web standards

•	 Design	Web	pages	to	look	the	way	you	want	with	
style	sheets

•	 Slice	and	dice	image	files	so	they	look	clean	and	
load	quickly

jd graffam	runs	the	award-winning	Web	design	firm	
Simple	Focus,	www.simplefocus.com.	He	also	serves	
on	the	editorial	review	board	of	the	Web	site	Smashing	
Magazine	and	is	vice	president	of	AIGA	Memphis.	His	
workshops	on	designing	for	the	Web	sell	out	around	
the	country.

“CSS for Print Designers perfectly bridges the gap between traditional
print and Web design, with clear explanations forged through years
of JD’s experience in the industry.”

—Gene	Crawford, editor, unmatchedstyle.com

www.newriders.com

C
S

S
 for P

rin
t D

esig
n

ers
G

raffam

0321765885_CSSforPrintDesigners_Cvr.indd 1

www.allitebooks.com

http://www.allitebooks.org

JD Graffam

CSS/or Print
Designers

www.allitebooks.com

http://www.allitebooks.org

CSS for Print Designers
JD Graffam

New Riders
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.newriders.com
To report errors, please send a note to errata@peachpit.com.

New Riders is an imprint of Peachpit, a division of Pearson Education.

Copyright © 2011 by JD Graffam

Acquisition Editor: Wendy Sharp
Project Editor: Becca Freed
Production Editor: Danielle Foster
Development Editor: Judy Ziajka
Copyeditor: Naomi Adler Dancis
Proofreader: Suzie Nasol
Compositor: Danielle Foster
Indexer: Rebecca Plunkett
Cover design: Aren Howell Straiger
Interior design: Danielle Foster

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form
by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher. For information on getting permission for
reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis without warranty. While
every precaution has been taken in the preparation of the book, neither the author nor
Peachpit shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the instructions contained in this
book or by the computer software and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Peachpit
was aware of a trademark claim, the designations appear as requested by the owner of
the trademark. All other product names and services identified throughout this book are
used in editorial fashion only and for the benefit of such companies with no intention of
infringement of the trademark. No such use, or the use of any trade name, is intended to
convey endorsement or other affiliation with this book.

ISBN-13 978-0-321-76588-8
ISBN-10 0-321-76588-5

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.allitebooks.com

www.newriders.com
http://www.allitebooks.org

Dedication
I’m renting a cabin near Pickwick Lake, where Tennessee, Mississippi, and Alabama touch. I’m
here by myself to finish writing this book—to focus. The cabin is a one-room A-frame with a
little back porch that overlooks a deep hollow.

Rather than waking up to the Rock 103 deejays, early morning bird songs get me up. I’m not
chasing new business throughout the day; squirrels are chasing each other across the tin roof.
And at midnight, instead of police sirens, packs of coyotes yip in the distance.

It’s been nice to be alone, focusing on my writing. But today, I need to get out of this cabin and
on the water to write. There are two reasons for this.

The first reason is practical: It’s March and I need to take half a day to make sure our pontoon boat
is ready for the summer season. After a quick wipe-down and a two-minute drive from dry storage to
the state park, I put her in the water and turn the key—she fires right up without a problem.

The second reason is to dedicate this book to my family. I cannot think of a more appropriate
place to write a dedication to my family than on the water, because the special memories I have
with everyone in my family are surrounded by water: Lake D’Arbonne, Lake Claiborne, Lake
Travis, and Lake Acworth; the Gulf of Mexico, the Pacific Ocean, and the Atlantic; the Ouachita
River, Mississippi River, Red River, Tennessee River, and last, but not least, the Loutre Bottom.

I idle slowly across the choppy water into a cove, drop anchor, and start writing. It’s windy. Ten
minutes in, the boat is banging up against the shore and tangled in lost fishing line. I adjust,
drop anchor again. This time the anchor holds.

I write the dedication: “To family, the single important thing in life.”

The wind is picking up—waves are slapping against the rocks on the shore, floating docks are
squeaking, and the birds are flying low. A thunderstorm will settle over the lake tonight. But for
now, I’m enjoying the water. I’m hundreds of miles away from my family, but I’m connected to
them. I fold up my laptop and float.

Acknowledgments
I want to acknowledge these people for their inspiration and for helping make this book possible:

Denise Jacobs, author of The CSS Detective’s Guide, for introducing me to Peachpit Press. She is
the primary reason this book exists.

AIGA chapters and print designers across the country, for letting me lead my CSS for Print
Designers workshops.

My Peachpit friends, for sticking with me as I went through the process of writing my first book.
I learned a lot, mostly how patient y’all are.

And finally, the wonderful people I work with every day. To my team at Simple Focus, to our cli-
ents who trust us to make their Web sites the right way, and to the Memphis design community.

www.allitebooks.com

http://www.allitebooks.org

Contentsiv

Contents

 Introduction vii

 Chapter 1 Coding in Plain English 1
CSS Is Easy to Memorize . 2

You Already Know How to Read CSS. 2

 Chapter 2 From Picas to Pixels 5
Three Steps to Thinking Like a Web Designer 6

Setting Up Your Web Design Files 11

 Chapter 3 Dump Drag and Drop 17
Why You Shouldn’t Rely on Software to Set Up Your Paths 18

Web Sites Have Folders Like Your Computer 18

How FTP Works (the Oversimplified Version) 20

Navigating Folders on the Internet 21

It’s Like Packaging InDesign Projects 21

Absolute Paths . 23

Relative Paths . 24

Moving Within the Same Folder 25

Moving Into Deeper Folders . 25

Moving Into Higher Folders. . 25

Putting It Together . 25

Starting at Home . 26

Leaving Off Index . 26

Trailing Slashes . 26

This Chapter Will Fix 89.6 Percent of Your Problems—
Read It Again . 26

 Chapter 4 You Have to Read the Words 27
It’s the Whole Purpose of Coding 28

So What Does HTML Do, Exactly? 29

www.allitebooks.com

http://www.allitebooks.org

Contents v

 Chapter 5 Boxes Inside Boxes 33
Learning CSS Happens Fast, Once You Know the Secret 34

HTML Is Made Up of Tags . 35

A Dozen Tags You Need to Know. 36

New HTML vs. Old HTML . 38

Tag Groups (Also Known as Lists) 39

Nesting Tags . 44

Adding Attributes to Tags . 46

Five Attributes You Need to Know 47

Self-Closing Tags . 49

Formatting Code Is Like Setting Type. 50

Block and Inline Tags . 53

HTML Looks Like a Word Doc 56

 Chapter 6 Sculpting with CSS 57
First Things First: Syntax . 58

Formatting Your CSS . 60

Getting Fancy with Selectors . 62

Reading Selectors in Plain English 66

Commenting Your CSS . 67

Let’s Write Some CSS . 68

Setting Type with CSS. . 68

Laying Out a Web Page . 74

Designing for Interaction . 85

Let’s Make a Web Page Together 88

You Already Know a Lot . 92

 Chapter 7 Designing with CSS 93
Using Background Images . 94

Cropping Images with CSS . 101

Making Columns with Background Images. 108

Designing with CSS3—Without Images 112

Putting It All Together . 119

Making Design Happen. 122

www.allitebooks.com

http://www.allitebooks.org

Contentsvi

 Chapter 8 Improving Lives with CSS 123
Empathy Through CSS . 124

Designing for Print (with CSS) 124

Designing for Accessibility . 127

Writing CSS That Loads Fast 129

Thinking Beyond Visual Design 132

 Chapter 9 Starting from Scratch 133
Copying and Pasting Saves Time 134

More HTML Tags . 134

The HTML Framework . 137

 Chapter 10 Prepress for the Web 139
Image Production for Web Design 140

Starting by Planning . 140

Understanding Image Formats 144

Saving Your Images . 148

Measure Twice, Slice Once . 149

 Chapter 11 Tools of the Trade 151
Web Design Doesn’t Require Many Tools 152

The Web Designer’s Toolbox 152

Putting It All Together . 155

 Chapter 12 Any Questions? 157
Frequently Asked Questions 158

Coding Is an Art . 162

There Is No Wrong Way to Learn. 162

 Index 163

www.allitebooks.com

http://www.allitebooks.org

Video Contents

 Chapter 2 Things You Can Do with Web Design
That You Can’t Do With Print

 Chapter 3 How Paths Work on Your
Computer and In a Browser

 Chapter 5 How to Start Writing HTML from Scratch

 Chapter 6 How to Lay Out a Web Page with CSS

 Chapter 7 How to Add Style to a Web Page with CSS

 Chapter 8 Making a Web Page Accessible
and Printable with CSS

 Chapter 9 Similarities Between InDesign, HTML, and CSS

 Chapter 10 How to Slice and Dice a Photoshop File

 Chapter 11 How to Update a Live Web Site

www.allitebooks.com

http://www.allitebooks.org

IntroduCtIon

A while back, I volunteered to lead a CSS workshop in Memphis. I came up
with the idea because it seemed like I kept having the same conversation
with print designers, especially after a couple rounds of beer at AIGA mix-
ers. The conversations would go something like this:

Me: “This beer is pretty good.”

Print Designer: “Yeah, I’m a little buzzed. Geez, I wish I could code Web
sites by hand.”

Me: “I bet you could learn it pretty quickly. It’s easy. I’m buzzed, too.”

Print Designer: “No way. My mind just doesn’t work like yours. I’m more of
a visual kind of person.”

Me: “No, seriously—I used to be a print designer. I could show you the
basics in a few minutes. Coding is a lot more visual than you might think.”

Print Designer: “Yeah, right.”

Me: “I’m not kidding.”

Print Designer: “You should do a workshop about this, then. I bet it’d do
really well. And you should serve beer at it.”

After a while, I started thinking a little more about the idea of teaching CSS
to print designers. I was convinced that with three hours I could teach CSS
to someone who’d never hand-coded before. It would have to be basic. It’d
have to move fast. Print designers are pretty tech-savvy people—they can
learn this stuff.

So with the help of AIGA Memphis, I organized a workshop. We called it
CSS for Print Designers. It sold out after only a few days of promotion, so
we organized a second one, which sold out within 48 hours. A few weeks
later, I got an email about doing a workshop in a different city. Then I got
another email, and another, and another.

I think the timing of this book is perfect. Five years ago there were print
designers who didn’t touch Web projects, and Web designers who didn’t
code. Now there’s hardly a single print designer who hasn’t been asked to
design something for the Web, and almost every Web designer knows how
to code CSS by hand.

www.allitebooks.com

http://www.allitebooks.org

IntroduCtIonviii

The gap between designer and coder is closing, and fast. There’s an entire
generation of pixel-native designers coming up. To them, CSS is just
another design tool. When you’re done reading this book, I want you to
feel the same way.

Who This Book Is For
This book covers the basics of how to code Web sites by hand with a plain
text editor. It’s deliberately short and written in a casual voice, without jar-
gon or geek-speak.

Who should read it?

 • A designer or visual thinker who’s ready to take the first step toward
finally learning how to code by hand

 • A designer who has tried to read other books or online tutorials about
coding Web sites, but came away overwhelmed and frustrated

 • A designer looking for a way to communicate better with coders when
handing off projects to them

 • An art or design student who wants to make Web sites but isn’t inter-
ested in a computer science degree

 • A design professor who needs to teach students the latest Web stan-
dards and technology

What This Book Is Not
This book is not a comprehensive resource. For example, there are over 100
HTML elements, but this book covers only the dozen or so that are used the
most and instructs the reader to search for the rest. It doesn’t cover every-
thing there is to know about Web design—that’s what the Internet is for.

This book is not philosophical. While this book is perfect for students and
professors, it does not cover the why of code. Instead, it focuses on the how.
It’s just practical like that.

This book is not a workbook. While there are practical examples scattered
throughout, this book doesn’t start with Chapter 1 and walk you through
step-by-step how to build a Web site. Instead, it teaches concepts in a logi-
cal order with contextual examples that help explain those concepts.

This book is not for computer novices. Print designers work with specialized
software and know all about the Internet, so the readers of this book need
to be comfortable working with applications like Photoshop, InDesign, or
Illustrator and making their way around online.

www.allitebooks.com

http://www.allitebooks.org

1
Coding in

Plain English
Coding CSS Is Like Learning the

Simplest Language Ever

I Took aN embarrassingly high number of Spanish courses

over the years (eight in total) for someone who can’t speak

Spanish very well. While I can read it with a Spanish-to-English

dictionary handy, I’m at a loss if asked to come up with it from

scratch. If I ever get left behind by a cruise boat in Cancún,

I know just enough to find the restroom, hospital, or library.

In the fourth grade I learned what I needed to know—20 or 30

words, some basic syntax, and upside-down question marks.

Hola. Mi nombre es... ¿Donde esta la biblioteca?

At some point, you’ll be handed a change order for a Web site

update, and just like me with my Spanish-to-English dictionary,

you already know enough (with Google as a resource) to get

along, making simple changes to an existing Web site. If you

were given font-size: 12px; or width: 200px; you’d easily decipher

what it means and how to manipulate it.

Css for PrInt desIgners2

CSS Is Easy to Memorize
The most helpful lesson I learned in my Spanish classes was about cog-
nates. A cognate is a word that has a similar meaning (and usually looks
or sounds similar) across multiple languages, such as education in English
and educacíon in Spanish. That lesson helped me to see a lot of similarities
between Spanish and English: We’re saying the same thing, just with slightly
different words and some funny characters sprinkled throughout. If you’re
just reading another language, memorizing cognates is often unnecessary
because they already look like words you know.

Check out TabLe 1.1, which breaks down some common CSS into
plain English:

table 1.1 CSS–Typography Cognates

CSS eNgLISh

font-size The size of the font

color The color of something

height The height of something

letter-spacing Kerning (the horizontal space between letters)

line-height Leading (the vertical space taken up by a line of text)

See? This stuff’s easy. Way easier than a real language, in fact, because
there are fewer vocabulary terms in total—and no verb conjugations.

You Already Know How to Read CSS
Let’s take a look at what some real CSS looks like. For now, I don’t want
you to worry about the funny characters, or the spaces, or the formatting,
or anything else that’s confusing or intimidating. Those are just CSS’s ver-
sion of upside-down question marks. All they do is tell you what to expect
next, and they don’t change the meaning. Just read it like it’s plain English.

.mexican-restaurant{

 font-family: georgia;

 font-size: 16px;

 background-image: url(margarita.gif);

 background-color: lime;

 }

1 : CodIng In PlaIn englIsh : You alreadY Know how to read Css 3

A noncoder could easily describe how this code would render in plain
English: Something like, “This thing called Mexican Restaurant uses the
Georgia typeface set at 16 pixels. There’d be a graphic of a margarita on a
lime-colored background.”

We’ll take a closer look at this code later. For now, just relax a little, know-
ing how easy it is to pick apart CSS. You can read code like it’s plain Eng-
lish, even if you can’t write it from scratch.

This page intentionally left blank

2
From Picas

to Pixels
Learning and Embracing the

Medium of the Internet

We pRINT deSIgNeRS are the type of people who like to turn

things over in our hands and see them from all angles. We care

about paper selection for the way it feels and how the ink will

react. We run our fingers down the binding. We ensure that

our most important jobs have a press check in the budget. And

when we’re out to dinner with our families, they roll their eyes

when we drag our fingernails across the varnish of the menu

to see if it leaves a mark.

When it comes to Web design, we might feel out of our ele-

ment because we can’t put our hands on a finished product

and touch it. There’s a tactile quality to print design that’s

missing from the Internet—there’s no doubt about that. But

as you read through these pages, you’ll learn about a new way

of seeing Web design that will help you see coding as a way of

sculpting: how it has symmetry, balance, and form.

Css for PrInt desIgners6

Think about when you spec paper for a project, how you have total control
over the way your design turns out. You choose specific typefaces, solid-
metallic inks, different paper stocks, varnishes, die-cuts, emboss, deboss,
trimmed dimensions—everything comes together to create the final form.

One major difference between the medium you’re used to and the Internet
is that when you release a Web design project into the wild, you relinquish
control over that final form. Your design will be rendered in oodles of differ-
ent screen sizes; some viewers will have jacked up the color settings on their
monitors; and certain fonts may not be available.

But it’s not all doomy and gloomy. It’s actually empowering to think of how
your design can be flexible and work effectively in spite of these inconsistencies.
The trick is a mental one for designers—learning to embrace the flexibility of the
Web. As you start coding in the next few chapters, you will be introduced to
concepts for flexible designs that don’t even exist in print design.

And that’s the fun stuff: things like variable widths, positioning images with
percentages, font sizes that scale up or down gracefully, and more. Before
you can learn to code, you will need to embrace the medium of the Internet.

thIngs web desIgn Can do that PrInt desIgn Can’t

I wish I could show you some of these techniques in print, but I can’t—
that’s sort of the point. Go to cssforprintdesigners.com/tactileweb to see
a few examples of things you can do with Web design that you can’t do
with print design.

Three Steps to Thinking
Like a Web Designer
When I started designing for the Web, I struggled to understand three things.

First and foremost, I struggled to accept that I, the designer, was not in
control of everything any more. I scolded coders who told me my design
was impractical. I came to terms with letting go after I started coding my
own designs, which helped me gain an understanding of what goes in to a
finished Web design and how it comes out.

What goes in is CSS and HTML—I can control this.

What comes out is the way the design looks on everyone’s screen—I cannot
control this.

2 : from PICas to PIxels : three stePs to thInKIng lIKe a web desIgner 7

By understanding these two things, I am able to see new opportunities to
make my Web designs better for everyone. It will take time to move past
thinking like a print designer, but with practice you can do it.

Step 1: Stop Being Such a Control Freak
Coder: “Is that 3200-pixel radial gradient necessary? It’s going to make
the page load really slow. And do you really want your body copy, all 5000
words of it, to be in Trajan?”

Me: “It’s in the design, man. The client already signed off on it. Just figure
it out.”

Coder: “I hate my life. Do you care about IE6?”

Me: “What’s IE6?”

Coder: “The blue e on the desktop.”

Me: “Shyeah.”

Coder: “I need a case of Mountain Dew. I’m going to be here for the next
six nights. Again.”

I tell you this for a good reason. While the end product of print design is
a finished, precise, physical object, the Internet doesn’t produce a finished
thing; it’s optimized to change form and adapt to its context. Since our job
as designers is to strengthen ideas visually, we need to design for the Inter-
net so information can change form gracefully (FIguRe 2.1).

fIgure 2.1 Notice how on ethanmarcotte.com the same Web site looks different on
different-size screens. The graphics stretch to fill the larger screen and shrink to fill the
smaller screen. Additionally, Ethan has accounted for mobile browsers with his design.
You can’t do this with print design.

Css for PrInt desIgners8

We need to stop being control freaks not because we can’t control Web
designs the way we’re used to in page layout (though sometimes we really
can’t), but because the nature of the Internet means the design is going to
change, no matter what we do. We need to accept this reality and design
for flexibility.

This is the medium of the Internet. It’s not just different screen sizes; it’s
different contexts and user empowerment. It’s not just look and feel; it’s
the meaning of the words on the screen.

Step 2: What Goes In: Meaning Through HTML
If paper-and-ink is the medium of print design, the medium of the Internet
is HTML and CSS. HTML gives meaning to the content, while CSS tells it
what to look like.

Understanding how your designs will change from screen to screen is the
first step to taking control over your design. We do this by writing HTML,
before we ever start using CSS to tell it how to look.

HTML, while familiar sounding as a Web design language, is something
print designers aren’t used to thinking about. That’s because print design-
ers don’t read the words their copywriters give to them. Okay, well, some
of you do. But I’m here to tell you as a Web designer, whether you currently
read the content your copywriter gives you or not, you need to start reading
it. That’s because you can’t write HTML without reading your content.

So What Is This HTML Anyway?
Let’s take a moment to understand what exactly HTML stands for: Hyper-
text Markup Language. Ouch, that sounds complicated. Do you really
need to know what that means? Nope, not in my book you don’t. Should
you memorize it? Nah. Just know that sometimes HTML is referred to as
markup, and sometimes coders will talk about “marking up” a page, which
means “writing HTML.”

Before you started this chapter, you may or may not have been familiar
with HTML. A lot of print designers have at least heard of it and under-
stand HTML as the coding language that you use to make things bold, or
that’s used for search engine optimization (SEO) with <h1> tags. Some of
you might have even known that HTML and CSS need to hook together to
work. That’s a good start, but HTML is much more meaningful than that,
as I hinted above.

2 : from PICas to PIxels : three stePs to thInKIng lIKe a web desIgner 9

We’ll take a deeper dive into this later. For now, in short, HTML is how
you tell the world what your content means. As an example, <h1> is a very
important snippet of HTML that gets used on almost every Web site. It’s an
abbreviation for “Heading 1” and tells Google what your most important
headline is.

Step 3: What Comes Out: Screen Sizes
For the purpose of this book, we’re not going to discuss every possible con-
figuration of screen sizes. Exploring all those combinations would be like
trying to introduce you to every paper line by every paper manufacturer in
the world. That is to say, it would be impossible and not very helpful. At
some point, it becomes redundant (FIguRe 2.2).

fIgure 2.2 There are tons of screen sizes and resolutions out there, everything from
big computer screens to small mobile devices.

Instead, we’ll focus on learning the easiest, most important 80 percent.
Let’s start with a normal Web site. That is to say, let’s not worry about the
expanding world of the mobile Web or your grandma’s WebTV, or your
iPad-optimized Web app. Let’s focus on a plain ol’ normal Web site.

We’re starting with the basics because that’s really all you need to know
right now. And it’s fundamental and simpler. Also, currently there’s more
traditional Web design work out there than other types of design work. And
those other mobile devices are introducing new resolution technologies that
make what you are about to learn seem like child’s play. Baby steps.

Css for PrInt desIgners10

How Big Should We Make Our Designs?
When we design for the Internet, we have to decide how big to make our
designs. If we make them too big, users have to scroll left and right, which
is annoying. If we make them too small, we’re not taking advantage of the
real estate that our users’ larger screens afford us. So how do we decide?

By now, most of the modern world is on a computer with a resolution at
or above 1024 pixels wide. We sit with our faces just a couple of feet away
from them, so even with the larger screens out there, there’s a lot of evi-
dence that we don’t need to keep designing bigger and bigger Web sites.

horIzontal and VertICal resolutIons

You’re probably used to hearing screen sizes referred to with both hori-
zontal and vertical dimensions, such as “1024 by 768.” I’m intention-
ally avoiding this, and opting instead to refer only to the width, for
two reasons.

First, it’s simpler and potentially less confusing to refer just to the width,
because screens with different proportions will have different vertical
resolutions.

But more importantly, I want you to stop thinking about making Web
pages that “fit” on a certain resolution. That’s an old school remnant
from the days of AOL where users were trained not to scroll because they
had everything on the screen in a Web portal view. We’re living in a time
where our users are in the habit of scrolling down long pages. As long as
there’s an indication that there’s something down below, they’ll scroll.

Most people with big screens are taking advantage of the extra screen
real estate by running multiple applications with multiple windows open.
What this means is that a user who’s browsing the Web on her 2560-pixel
27-inch iMac will likely have other windows open and scattered across her
screen. For the most part, her browser window will be set to the size most
Web sites are designed for, which is to say her browser will be around 1024
pixels wide (FIguRe 2.3).

Let’s simplify this for you. Even for screens that are 1024 pixels wide,
we wouldn’t actually design our Web sites to be exactly 1024 pixels across
because vertical scroll bars take up around 30 pixels of space. In addition,
each user has idiosyncrasies that will impact the actual dimensions of her
windows, such as whether or not she hides her dock or task bar by default,
or whether she has additional toolbars installed on her browser.

www.allitebooks.com

http://www.allitebooks.org

2 : from PICas to PIxels : settIng uP Your web desIgn fIles 11

With all of these variables out there, my recommendation is to pick a size
slightly under 1024. There’s been a lot of fuss in the Web design world over
the last few years about the 960 grid. Not every site should adhere to a 960
grid, but, as a general-purpose starting place for typical Web sites, a 960
grid is great because it gives you a lot of mathematical options for mak-
ing columns. It’s divisible by 2, 3, 4, 5, 6, 8, 10, 12, 15 and 16. With that
math, the grid possibilities are almost endless.

Sometimes, you should design bigger layouts, or layouts that expand to
fill a screen. This can be helpful for complicated Web applications and
super sexy marketing sites. On the other hand, simple Web applications or
marketing sites might not need to take up 960 pixels across. Use your best
judgment when deciding which resolution is best for your design. There’s
no single answer for every situation.

Setting Up Your Web Design Files
I am always asked in my workshops what tools I use to design. I use Photo-
shop when it comes to comping out finished page layouts. But when it comes
to planning your Web site before you start designing graphics, you need to
know what tools are at your disposal.

fIgure 2.3 I take
advantage of my large
monitor by multitasking,
often listening to music
while browsing and
working at the same time.
In the past, smaller screen
sizes limited people to
working in one application
at a time, so screen size
correlated to how big we
should design our pages.
Not so any more.

Css for PrInt desIgners12

The Toolkit for Web Designers
Believe it or not, there’s a place in the Web design process for the apps
you’re accustomed to using day in and day out for page layout. You see,
before you can start designing the finished graphics, you need to have a
road map for the page layout. You might have heard this called storyboard-
ing, wireframes, or a site flow.

I use InDesign (and even Illustrator) from time to time to quickly mock up
a rough idea of what elements go on the page and where they go. These
programs help me to work faster. As you know, InDesign is very good at
flowing long body copy, and it has the added benefit of easily creating a
multipage PDF for client reviews (FIguRe 2.4).

fIgure 2.4 Wireframes can be created in Illustrator or InDesign to save time. They are
useful in planning out your Web site before you start designing in a raster-based program
like Photoshop.

Sometimes, though, InDesign wireframes have the unintended consequence
of looking too finished. This can lead to confusion with clients, who think my
clean, finished-looking grey wireframes mean I’m proposing a minimal, grey
interface for their site. I have to admit, I can see why they’d be confused.

PhotoshoP Vs. fIreworKs

Both Photoshop and Fireworks are used by a lot of people for Web
design. Some people feel very strongly about one over the other. I use
Photoshop for mocking up Web pages, but you can use whichever one
you prefer. I default to Photoshop in this book because more print design-
ers are familiar with it. Either way, the principles in this chapter hold true
for both applications.

2 : from PICas to PIxels : settIng uP Your web desIgn fIles 13

When that’s likely to happen, I’ll use Balsamiq to create rough page layout
ideas for client reviews (FIguRe 2.5). This handy application lets me pres-
ent ideas to clients without running the risk of them interpreting my work
as designed at all. It uses a pencil sketch graphic interface so that there’s
no doubt as to how preliminary the ideas are.

fIgure 2.5
An application like
Balsamiq can help
keep your clients from
confusing functionality
with design aesthetics.

Once the site structure has been determined, that’s when I’ll open Photo-
shop to lay out the pages with the final graphics at the size they’ll be in the
finished Web design.

A New Workflow
You have the creative brief in hand, signed-off wireframes paper-clipped
on your desk, a strong concept in mind, and an unlimited iStockPhoto
account. It’s go time.

You close down the print designer’s trusty version of InDesign and fire up
your Web design application of choice. As you move your mouse to the top
left of your screen and click File, New Document, you consider the options
before you. You are frozen with anxiety. A wrong step now can be a huge
waste of time. Inches? Pixels? Points? Color Mode? Ten-twenty-who?

Let’s take a break here to talk about the way you’ve been designing. As a
print designer, you only open Photoshop to edit the color of an image or
remove a stray nosehair from the CEO’s headshot. From your days as a
pre-presser (the best around, when you ran that department, we all know),
your Photoshop workspace is optimized for a print workflow.

Css for PrInt desIgners14

And it makes sense. It’s literal. You likely have your Color Settings set to
CMYK for four-color offset printing with real ink. Your units are something
you understand—inches (or even picas, if you kick it old school). The size
of your document has a direct correlation to the physical size of your end
product. Five inches across by seven inches tall is five inches across by seven
inches tall. Simple.

But with the Web, you need to change your workflow. Photoshop is mostly
a raster graphics application, and Web graphics are, for the most part,
raster as well, since they’re output to a pixel-based monitor rather than a
plate for a printing press. Also, Photoshop is great at saving graphics for
the Web. The way you save your graphics when you export them matters—
this can mean the difference between a crisp looking file that downloads at
lightning speed or an artifacted JPEG that takes eight seconds to download
on a corporate network.

So put away your loupe, your steel ruler, and your X-Acto knife. Let’s push
some pixels. You need to decide how big you want your Web site to be,
what units of measurement to use, and what the color settings need to be.
The problem is, as you well know, not everyone has a 27-inch iMac like
you: Your site’s viewers will have 15-inch Dells, 10-inch netbooks, monitors
set to 1024 pixels or 1280, and so on. Will it fit on everyone’s screen? Let’s
take a detour here to learn a little about how screens work so we can make
an informed decision on how to proceed.

Understanding Resolution:
From Billboards to Computer Screens
In the print design world, when we’re not using solid colors, we have a dot
pattern. We love going to press checks and staring at dot patterns through
our trusty loupes. We grumble under our breath at pressmen when the reg-
istration’s off and our crisp edges get fuzzy. When we hold a finished piece
in our hands, assuming the registration is right, the dots are small and
indistinguishable from one another—this makes the imagery crisp.

When we design for billboards, we have very large files because of the
physical dimensions of the project. These files can become unwieldy, so we
have figured out ways to make file sizes smaller. We know dots-per-inch can
be much lower and still look crisp from the road since bigger dots are indis-
tinguishable when viewed from a distance, so we have a lot lower setting
for dots-per-inch when designing billboards. No sense in making a large file
just so it looks crisp up close if no one will ever see it up close. If you were
to fling a grappling hook over a billboard one night and climb up there

2 : from PICas to PIxels : settIng uP Your web desIgn fIles 15

to look at it from a couple of feet away (this is unsafe, illegal, and I don’t
recommend it), you would see the lower dots-per-inch and notice how the
billboard doesn’t look crisp up close like it does from down at street level.

With computer screens, we are working with the same basic laws. We want
to make the files as small as possible for download speed, but make them
high enough resolution so imagery looks crisp. For a typical Web site, you
need to set up your files at 72 dots per inch (dpi). This is sometimes called
pixels per inch (ppi).

Trust me, there’s a lot of science behind this; it’s all very complicated and
makes my brain ooze out through my eye sockets just thinking about it. In
short, it’s the same in principle as the billboard scenario described above:
We go with 72 dpi for Web design because it creates smaller files for down-
loading and looks pretty good to the naked eye from a couple of feet away
(the distance from your screen to your face).

Understanding Color: From PANTONE to RGB
As print designers, we’re familiar with PANTONE’s Matching System (PMS)
for colors. Basically, we have this little book we all use that gives professional
printers the ingredients to make colors exceptionally consistent. It’s awesome.

Sadly, there’s no universal color matching system for Web design. Backlit
screens, for the most part, use three colors (red, blue, and green) to make
up the images that display on them. But just like the light bulbs in your
house might have different tones if you bought different brands at different
times, computer screens from different manufacturers don’t all have the
exact same red, blue, and green. Some are brighter, some are warmer, and
some are cooler.

Furthermore, even if screen manufacturers standardized their colors, users
have different preferences and will change the settings of their screens to
suit themselves. Some will turn up the brightness, some will make every-
thing cooler, and some will prefer a warmer display.

Colors that You reallY should be Careful wIth

 • Light yellows and tans are really difficult colors to work with. They may
look great on your screen and green on someone else’s.

 • Because of different brightness settings, extremely light or dark colors
are always hard to get right. A deep charcoal grey texture might look
black on one screen and too light on another. Often, a subtle hairline
rule might not be visible on some screens.

Css for PrInt desIgners16

Since every manufacturer has slightly different colors and every user has
slightly different color settings, your colors will look slightly different across
everyone’s computer screen. There’s no way to control this. So, if your com-
pany has a purple PMS for its logo, you can match it pretty closely online,
but it’s always going to look slightly different on different people’s screens.

Finally, Setting Up Your First Web Design File
Now that I’ve given you the background, let’s cut to the chase. After setting
your document preferences to use pixels instead of inches for your unit of
measurement, here’s all you need to know: 72 dpi, RGB (FIguRe 2.6).

fIgure 2.6 Here are
the settings for most of
my Web design projects in
Photoshop.

I could have just told you that in the beginning, but who’s going to pay for
a book with a two-word-long chapter?

Play
Video

3
Dump Drag

and Drop
Learn How to Hook Things

Together with Paths

WheN I TeaCh my workshops, I only have three hours to

teach print designers how to code Web sites by hand. For this

reason we spend a lot of time talking about the high-level stuff.

This works out great for me because when the workshop’s over,

everyone is super excited about how much they learned in such

a short time, and by how easy it was. The attendees give me

credit for this. But the truth is, as soon as they get back to

their desks and play with a Web site, they soon have questions

about things I didn’t cover in detail. Fortunately, the high-level

approach gives them what they need to go forth and Google.

The workshops are designed this way intentionally. I’m more

concerned with lowering barriers to entry than I am with covering

everything in detail. In a lot of ways, this book is designed the same

way—I don’t expect you to know everything you need to know

about coding Web sites by hand when you’re done reading it.

Css for PrInt desIgners18

In this book, though, I can take a little more time to explain a couple of
things I have to breeze through in my workshops. One of these topics is
how to write paths: I usually gloss over it because you can understand how
to think about coding Web sites without understanding paths in depth. But
the subject always bubbles up when you actually start to code a site. This
chapter will give you the know-how to navigate a folder structure for a Web
site and write efficient navigation links in HTML—in other words, it will
teach you how to find your way around in a Web site.

Why You Shouldn’t Rely on
Software to Set Up Your Paths
Sure, there are tools that let you drag and drop Web pages and files into
directories (which creates paths), but that’s not hand-coding, is it? You
bought this book to learn how to hand-code Web sites, and I intend to
give you your money’s worth.

Plus, when you’re troubleshooting something that’s broken, if you don’t
know how to do this you will be helpless. Trust me, you will be trouble-
shooting broken things very soon, and you will feel helpless.

It’s best to pay special attention to this chapter. It will give you the tools
you need to fix 89.6 percent of the things that will break during your first
two weeks of coding.

Web Sites Have Folders
Like Your Computer
To understand paths, let’s start with what you already know: organizing
files and folders on your computer. When you’re coding a Web site, you
hook things together by typing their paths rather than by clicking into fold-
ers and files. You’ve probably heard this word path before.

A path looks like this on your Mac:

/Users/jdgraffam/Downloads/somefile.pdf

You start at the top level and go into folders by typing their name. You
follow each folder name with a backslash. Then you go into another folder
by typing its name. And on and on until you get the filename you want to
open. That’s really all there is to it.

3 : dumP drag and droP : web sItes haVe folders lIKe Your ComPuter 19

gIVe It a trY

On a Mac: In Firefox, type /Users/username/, making sure to replace
username with your username (FIguRe 3.1).

On a PC: In Internet Explorer, type C:\Users\username, making sure to
replace username with your username.

Both of the examples above should pull up a listing of files and folders in
your user folder. Notice how your browser will let you click around and
navigate the folders and open some files. As you click around, pay special
attention to the address bar where you typed in the path initially. Notice
how the path changes based on where you are. All of this happens behind
the scenes when you’re browsing folders on your computer.

Microsoft’s Windows and Apple’s Mac OS X are so easy to use because
they give you a visual representation of your computer’s file structure using
folder icons that are nested hierarchically. Some of you are in the habit of
creating new folders constantly to help organize your stuff; some of you
prefer to dump everything into a single folder (FIguRe 3.2).

fIgure 3.1 Typing a
file path directly into Firefox
lets you see how paths are
formed by your computer
behind the scenes.

Css for PrInt desIgners20

In either case, you’re a working professional in the twenty-first century,
so you know what folders are for and how to get around on your com-
puter. You’ve probably even used a File Transfer Protocol (FTP) client at
some point to upload large files to a file server.

what’s a serVer, exaCtlY?

A server is nothing more than a special computer that shares files or Web
sites with the rest of the world. Your computer can run Web sites on it,
but unless you know what you’re doing, the stuff on your computer is only
accessible by you.

How FTP Works (the
Oversimplified Version)
In case you haven’t used FTP before, or if you need a refresher, it’s simple.
Technically, FTP is just a method of moving files around the Internet—from
a hard drive to a server (or vice versa) or from server to server.

Print designers often use FTP applications to transmit very large files that
are too big to e-mail and when there’s not enough time to burn the files to
a DVD and mail it. Web designers use FTP to place files on a Web server
so that they can go live on the Internet. Generally, when you deposit a file
somewhere via FTP, it’s referred to as uploading. When you retrieve a file via
FTP, it’s called downloading.

fIgure 3.2 This is
an example of a typical
system folder.

www.allitebooks.com

http://www.allitebooks.org

3 : dumP drag and droP : It’s lIKe PaCKagIng IndesIgn ProjeCts 21

Popular FTP software for the Mac includes Transmit, Cyberduck, Fetch,
and FileZilla. Popular FTP utilities for Windows include WS_FTP,
SmartFTP, and FileZilla.

You’ll typically connect to a Web server with an FTP address, username, and
password. Once you have successfully logged in, you’ll drag your files and
folders from your computer (also called your local drive) to the Web server
(also called the remote drive). Once they’re on the Web server, your site is live.

You need to be careful as you work on your local drive editing your Web
site that you use the most updated files from the remote drive.

Navigating Folders on the Internet
Basically, a Web site is a folder on a Web server with stuff inside it. It uses
folders (also called directories) just as your computer does. The only differ-
ence is that when you’re coding a Web page and you want to link or hook
to another file, you can’t click around to it—you need to know how to navi-
gate to it by typing text paths, as you practiced in the previous section.

some thIngs You need to hooK together

If you want your site’s home page to link to the style definitions in your
CSS file, you need to link them together by typing the path where your
CSS file is saved. If you want to pull in your logo, you need to identify the
path to it. If you want to link to another Web page, you need to point
to it. Here’s what that looks like:

CSS: src=”css/base.css”
Images: src=”images/logo.gif”
Link: href=”login/”

The path is the text string between the double tick marks. Sometimes you’ll
describe the path using src= and other times you’ll use href=. Don’t worry
about that right now, though; you’ll learn all about that in a later chapter.

It’s Like Packaging InDesign Projects
Let me explain it in a way that’s always made sense to me with my print
design background. Linking files on the Internet is similar to packag-
ing InDesign files (FIguRe 3.3). InDesign creates folders for your fonts
and images so that everything’s all in one place for the next designer
who’s going to work on your project. When you import the package from

Css for PrInt desIgners22

someone else into your computer, you need to make sure everything gets
relinked so that the paths are right. If the paths are wrong, you aren’t able
to use the fonts you want and the images aren’t print-ready (FIguRe 3.4).

fIgure 3.3 You are already familiar with the way InDesign packages files for
delivery (as shown here). The Internet requires us to package files similarly, but you
have to do it by hand.

fIgure 3.4 InDesign helps
you relink files without you
having to know how to type
the file path by hand.

InDesign is smarter than the Internet; so if you link something incorrectly
you at least get a low-res preview and a warning that your fonts are missing
(FIguRe 3.5) and a walk-through for fixing the problem (FIguRe 3.6). On
the Internet, you don’t get a low-res preview or any warnings. It just looks
broken (FIguRe 3.7).

When it’s time to start linking files together in your HTML page, you just
need to type its path, rather than clicking to it, as you would do in InDesign.
It’s not as hard as it sounds, so there’s no need to panic. There are two ways
to go about this: You can use absolute paths or relative paths.

fIgure 3.5 InDesign warns you when
your fonts cannot be located.

fIgure 3.6 InDesign helps you relink
your fonts without having to type their paths
by hand.

fIgure 3.7
On the Internet,
when something is
broken there aren’t
any warnings. It’s
just broken.

3 : dumP drag and droP : absolute Paths 23

KeePIng Your fIles and folders organIzed

With InDesign you have the liberty to keep your files spread out all over
your computer because it pulls all your files into a nice clean folder when
you’re ready to package them. When you’re coding by hand, you need to
manage this from the start of your project by saving everything in a single
parent folder (FIguRe 3.8).

It’s OK to have multiple folders: You just need a single parent folder where
your site lives. It’s also a good idea to keep stuff that isn’t part of the fin-
ished Web site in another folder. This way the finished Web site files are
separate from the working files.

Absolute Paths
Absolute paths are easier to understand for beginners because that’s how
we’re used to seeing links on the Internet. If your Web site is located at
cssforprintdesigners.com and you have a file in the main folder called
mysecretfile.html, you would be able to navigate to that file using a Web
browser by typing the following:

cssforprintdesigners.com/mysecretfile.html

The only thing you need to know is that files and folders are always fol-
lowed with a backslash. If mysupersecretfile.html is located in a folder
called supersecretfolder, you would navigate to it by going to

cssforprintdesigners.com/supersecretfolder/mysupersecretfile.html

When typing absolute paths in HTML, you need to type http:// at the
beginning of the address, as follows:

http://cssforprintdesigners.com/supersecretfolder/mysupersecretfile.html

fIgure 3.8
When you’re packaging
files for the Internet, keep
your design files separate
from your final assets.

http://cssforprintdesigners.com/supersecretfolder/mysupersecretfile.html

Css for PrInt desIgners24

Relative Paths
Absolute paths are easy to understand because you’re typing the entire
path to the file from the very beginning, including the domain name. But
this can be problematic if you want to move a site to a new domain. This
happens a lot when your firm develops a site on its own server, like this:

myfirm.com/clients/ourclient/

When it comes time to move the site live to ourclient.com, you would
need to find every instance of myfirm.com/clients/ourclient/ and change it
to ourclient.com. While this is doable using a simple find and replace, it’s
easy to make a mistake; plus, there’s a better way with relative paths.

Relative paths are just what they sound like. The file you are looking for is
found not by an absolute path, but by its relation to where you’re at currently.

Assume you have this folder structure (FIguRe 3.9):

 • mydomain.com (folder)

 • images (folder)

 • logo.gif (file)

 • index.html (file)

 • pages (folder)

 • about.html (file)

 • contact.com (file)

 • private (folder)

 • index.html (file)

tIP Relative
paths always

assume you’re starting
inside the folder that
contains the file you’re
editing.

fIgure 3.9 Use this
example to help you
understand the relative
path exercises on the
next page.

3 : dumP drag and droP : PuttIng It together 25

Moving Within the Same Folder
Let’s say you’re editing about.html in the pages folder. You want to link to
contact.html in the same pages folder. All you’d need to type is contact.html
since it’s in the same folder. Simple.

Moving Into Deeper Folders
Let’s try one that’s a little more difficult. If you’re editing index.html in the
main folder (also called the root folder), and you want to link to about.html
in the pages folder, you do it just as you did with the absolute paths, but
you leave off the domain name. In fact you’d leave off anything above where
you’re currently at. Since you’re at the root folder, all you have to leave off is
the root folder. You’d just type pages/about.html.

Moving Into Higher Folders
Let’s say you’re editing contact.html and you want to link to index.html in
the root folder. In other words, what we just did, but in reverse. Just as a
backslash provides a shorthand way to go deeper into our folder structure,
relative paths give us a shorthand way of going up one level. You type ../
to navigate up one folder. So what you’d type would be ../index.html to
locate the index.html file that’s one folder above where you’re currently at.

If you need to go up two folders at once, you just type ./ instead of ../.
You can also combine these to go up several folders at a time. ../../ is
the same as ./ and ././ goes up four folders. Don’t ask me why two dots
means one folder and one dot means two folders—it just does.

Putting It Together
Now let’s go crazy. Say you’re editing about.html and you want to link to
logo.gif in the images folder. Since we’re going up a folder, then back
deeper into another folder, we have to combine what we’ve learned up to
this point. It helps to start by saying what we want to do in plain English
first, so let’s give that a try.

What we want to do is navigate up one folder, then we want to go deeper
into the images folder so we can get to logo.gif. So we’d start by typing ../
to go up one folder, then we’d type the name of the folder we want to go
in. So far we’ve gotten to ../images/. Now we just name the file and we’re
done: ../images/logo.gif. We went up one, we went into the proper folder,
then we typed the name of the file.

Css for PrInt desIgners26

Starting at Home
No matter where you’re at, you can jump to the root folder by leading your
path off with a backslash. For example, /images/logo.gif will link to the
logo graphic no matter where you’re at in the folder structure.

Leaving Off Index
The Internet has a special filename called index (or sometimes default) that
you don’t always need to include. So if you wanted to navigate to /login/
index.html you could just put /login/ and leave off index.html.

Trailing Slashes
When you end with a folder, you should end with a trailing slash. When
you end with a file, don’t put the trailing slash—this will cause the Web
server to treat your file like a folder, which you don’t want.

These are correct:

/login/

/pages/about.html

This is wrong:

/pages/about.html/

This example would treat about.html like a folder name and cause the
Web server to look for the index file in a folder named about.html, which
doesn’t exist.

This Chapter Will Fix 89.6 Percent
of Your Problems—Read It Again
You’ll remember I said 89.6 percent of your problems and frustrations will
come from having the wrong paths. I know this because when I teach my
workshops, I often have two assistants who help me out. Aside from help-
ing everyone get on the wireless network at the university or hotel where
we’re having the workshop, which is way harder than it should be, their
only job is to walk around during the part where everyone’s coding their
sites and help troubleshoot issues the attendees are having. After in-depth
quantitative research (not really), I have confirmed that 89.6 percent of the
time the problem is a wrong path.

Trust me, this chapter is worth a second or third read. I’d recommend
bending the corner back on this chapter and coming back to it when you’ve
finished the book.

Play
Video

4
You Have to

Read the Words
This Is Not About Proofreading

TheRe’S a ReaSoN we designers are not allowed to send

anything to the printer without having it proofread by a quali-

fied individual. For designers, words and letters aren’t much

more than shapes interacting with one another. When we’re in

the zone, kerning our little hearts out, our minds aren’t focused

on meaning (FIguRe 4.1).

I’m not saying designers don’t read—there’s no way to art-direct

a magazine layout or annual report without understanding the

information being communicated. But let’s be honest: Some-

times we skim. I mean, sure, headlines can be fun, but long

copy is boring.

When we’re setting type, we’re thinking more about the aes-

thetic and readability of the words than we are about their

grammatical significance.

Css for PrInt desIgners28

fIgure 4.1 Kerning is fun. Reading is not.

It’s the Whole Purpose of Coding
Before we start telling our Web pages what to look like with CSS, we code
Web sites with HTML so the content we’re designing can be shared in
different ways. Additionally, CSS (the language that controls look and feel),
is built on the structure of HTML—until you have a way of saying, “This is
body copy,” you can’t write CSS to tell the body copy what to look like.
HTML is that framework.

Let me explain this by demonstrating a problem you have probably faced
from the print design world. If you need to lay out two brochures at
different dimensions, you create a separate InDesign file and bring the
content into each file separately. From then on, when your proofreader
discovers a typo, you have to fix it in two places.

There’s a concept in the Web design world where we separate content from
the way it looks. You might hear of this as the separation of presentation
from content. In short, it means that we maintain the content in one place
and just reskin it with CSS to reuse it in different forms (FIguRe 4.2).

4 : You haVe to read the words : so what does html do, exaCtlY? 29

fIgure 4.2 The content on Apple’s homepage looks a certain way when you browse
the Web site, but it looks different if you view it in an RSS reader.

So What Does HTML Do, Exactly?
HTML just tells us what sort of content we’re looking at. To write HTML,
you need to read the content from your copywriter so that you can identify
what each chunk of content is. It’s actually pretty simple, so don’t freak
out; here’s a list of the main types of content you’ll need to identify:

 • paragraph: A chunk of text; ideally it’s a series of related sentences that
create a unified thought.

 • HTML also lets you put breaks between chunks of content to mimic a
soft return. Don’t be fooled: Adding space below a chunk of text with
a soft break is not the same as identifying it as a paragraph. HTML is
not about what something looks like; it’s about what it is.

 • headline: Summarizes the chunk of content that follows it.

 • Main headlines summarize the overall meaning of the following
content, while the lesser headlines progressively summarize smaller,
less global ideas.

 • HTML gives you six levels of headlines to pick from.

 • Typically, the more important the headline, the bigger it is. This is
not always the case, though, which is why HTML exists. HTML helps
you establish what the content is before you tell it what to look like.
For example, you should work hard to ensure that <h3> tags are not
above <h2> tags.

tIP When you
cheat with HTML

to get the look you want,
you handcuff yourself
because CSS isn’t able to
control the look and feel
any more. One of the big-
gest advantages of using
CSS to control look and
feel is that look and feel is
controlled in a single place.

Css for PrInt desIgners30

 • List: A series of related items.

 • HTML lets you work with a few different types of lists:

 • Unordered lists are what we typically call bulleted lists. But don’t
be fooled; not all unordered lists have bullet points. They might
have arrows, or dashes, or squares. They might not even have
these graphics at all. For example, navigation, which is a list of
page links, does not. In case I haven’t convinced you already,
HTML isn’t about what something looks like. It’s about what it is.

 • Ordered lists are what we might call numbered lists. They can be
1., 2., 3… or i., ii., iii., etc. Use them when you’re ordering items
deliberately.

 • Definition lists have an item that’s followed by some sort of
definition or clarification. For example, a glossary of terms would
use a definition list.

 • other stuff: There are other little HTML chunks that you’ll need to learn
about that will let you emphasize, link, or group things together. But
for now, paragraphs, headlines, and lists are the main ones I want you
thinking about.

Using just the tags described above, your content can be displayed in an
RSS feed or mobile-optimized Web site that has its own look and feel. It
won’t use the same typography or colors as your Web site, but it will be
readable because it has HTML telling it which chunks of text are headings,
paragraphs, and lists.

When your copywriter gives you a Word document, the document typically
reads from top to bottom. It isn’t pretty, but it’s logical. Next time you get
content from your copywriter, refer back to this section and try to identify
each chunk of text the way HTML asks us to identify it. Just mark in the
margins what each chunk of text is (FIguRe 4.3).

www.allitebooks.com

http://www.allitebooks.org

4 : You haVe to read the words : so what does html do, exaCtlY? 31

fIgure 4.3 When you
start writing HTML, it
might help to put pen to
paper and mark up the
chunks of content.

If you ever get stuck trying to figure out how to identify a chunk of content,
it wouldn’t be a bad idea to check with your copywriter. Copywriters often
use styles to format their documents, which you know can be mapped
to InDesign. Similarly, this sort of structure could make your HTML
writing easier.

Just like there’s no flow content button that works for a 60-page techni-
cal manual you’re designing with InDesign (boy, wouldn’t that be nice!),
there’s no magic button that does this for coding Web sites—you have to
use your brain.

This page intentionally left blank

5
Boxes Inside

Boxes
Labeling Things Visually with HTML

IN My WoRkShopS I’m often asked how long it took me to

learn CSS. Here’s the story I tell.

I had been staring at code for several months before any of it

made any sense to me. In fact, I bet a lot of you are in that spot

right now. You can crack open Dreamweaver or WordPress and

change the colors and widths of some things, but you’re not

sure exactly how it all works or what you might be breaking.

I’ve been there.

Css for PrInt desIgners34

Learning CSS Happens Fast,
Once You Know the Secret
It all came together for me during some training that Hilton Worldwide,
my employer at the time, sent me to. You see, I sort of lied on my résumé
and said I could do some things I couldn’t. I say “sort of” for a reason.
On my résumé I said I could code Web pages. I mean, I thought I could
because I had a copy of Dreamweaver and could click Insert > Table. I
could even update the year of the copyright in the footer once I found the
right place. I knew how to upload files via FTP. Man, I was set.

Since I didn’t realize I was lying at the time, I was only “sort of” lying.

At the time I had one of those rare bosses who knew what he was doing.
He knew how to do my job as well as his own. He was reviewing my work
one day just a few weeks after I started and clicked View > Source in a
browser to look at my code.

Uh-oh, busted.

 “Go to training,” he said, “Hilton will pay.” So I went.

I found a two-day CSS for Beginners course in Atlanta, Georgia. This
meant I got to get on a plane for work. My family was very impressed.

I, on the other hand, was nervous about losing my job. I didn’t think
the training would do me any good because the books I read on CSS
made me feel like I was being dropped into the middle of a race that was
already underway, like I was missing some foundational knowledge—where
to begin.

So I landed in Atlanta, rented a car and drove out to a shaded business
park where the training was happening. There was nothing especially
remarkable about the building, the classroom, or the teacher. But after sev-
eral hours of asking dumb questions, two basic things finally clicked for me
and my entire career opened up:

1. To write CSS, you have to know how to write HTML.

2. HTML is made up of tags.

Let me repeat those two things again, because this is the foundational
knowledge you need to write CSS: You have to know how to write HTML first,
and HTML is made up of tags.

5 : boxes InsIde boxes : html Is made uP of tags 35

On the second day of class, I left for lunch and didn’t bother coming back
for the rest of the training—I had what I needed. Within two weeks, I was
coding sites by hand on my own.

And you can learn it that quickly, too.

I had to trap myself in a room and ask a lot of dumb questions to get
what I needed. Hopefully, you and your employer can avoid that expense
and waste of time—the trick to writing CSS is knowing how to write HTML.

Once you know HTML, CSS doesn’t take any time at all to learn. Yep, that’s
the secret to learning CSS—learning a completely different language.

HTML Is Made Up of Tags
Just as a tag on your luggage identifies whom the contents belong to, a tag
in HTML identifies the stuff it contains. It must open, and it must close. It
opens with a less-than and greater-than sign. It closes the same way, but
with a slash.

HTML has three main parts:

1. An opening tag with an abbreviation inside it

2. The content that the abbreviation describes

3. A closing tag, with the same abbreviation inside it

I explain coding to print designers with varying levels of familiarity all the
time. The one method I have used over and over with success is to pull out
a stack of sticky notes and write HTML in a thick marker (FIguRe 5.1).
Something about seeing HTML outside a computer, separated from the
high-tech codeyness, makes the code more human and less intimidating.

fIgure 5.1
These sticky notes show
how writing HTML
is nothing more than
surrounding chunks of
content with an opening
tag and a closing tag.

Css for PrInt desIgners36

don’t let funnY CharaCters sCare You

One thing that’s so intimidating about learning to code Web sites that I
want to address here is all the funny characters. When you’re looking at
code you see curly braces, semicolons, commas, angle brackets, single
quotes, double quotes, tick marks, and more. Don’t let that stuff bother
you. Once we crack the code, one piece at a time, you’ll have them all
memorized without even trying.

So here’s what those sticky notes might look like as code.

<p>

 This topic sentence begins a paragraph. It is a topic sentence

 because it summarizes an idea. A collection of sentences is

 called a paragraph. In HTML-speak, p means paragraph.

</p>

A Dozen Tags You Need to Know
There are about a hundred tags in all.

OK, stop hyperventilating. There’s good news too.

The good news is that for the most part they’re easy to remember because
they’re abbreviations of something that resembles plain English. The even
better news is that you only need to know these 13 tags to get by.

These tags get me through 90 percent of my work day-to-day. If you
know them, you will have a better understanding of what HTML is sup-
posed to do.

 • <p>

We covered this already.

 • <header>

It’s just what it sounds like. This tag surrounds the header for a section
or an entire page. Most Web designers use this to surround their logo
and primary navigation, but it can also surround the header of a smaller
section of the page.

 • <footer>

Similar to header, this tag surrounds the footer of a section or an
entire page.

5 : boxes InsIde boxes : a dozen tags You need to Know 37

 • <h1>, <h2>, <h3>, <h4>, <h5>, <h6>

Headings, or headlines, are usually short chunks of text that summarize
what follows them. <h1> is the most important headline, and <h6> is the
least important. You use your best judgment to identify heading levels,
but ideally each page will have at least one <h1>.

 • and

Some tags come in pairs (more on this below). An unordered list, or
, is always paired with list items, or tags. You would sometimes
call this a bulleted list, though bullet points are not necessary.

 • and

This is another paired set of tags. An ordered list, or , is always
paired with list items, or tags. You would call this a numbered list.

 • <div>

<div> is short for division. It doesn’t imply any grammatical context
like a paragraph or a headline; it’s just a way to group large chunks of
related things. It’s usually used, in fact, to group paragraphs and head-
lines. What it surrounds is limited only by your imagination.

 • <a>

<a> stands for anchor. Anchor is HTML’s way of saying link, so an <a> tag
is just a link.

 •

The tag is what we use to surround short bits of text we think
deserve a little more attention. Often, this is how we’d go about making
something bold.

 •

The tag is what we use to surround short bits of text that we
think deserve emphasis. Often, this is how we’d go about making some-
thing italic.

 •

Like its big brother the <div> tag, the tag is for grouping things. It’s
just used to separate out smaller groups, mostly just little bits of text.

 •

 is short for image. This is how you bring in an image with HTML.

Css for PrInt desIgners38

New HTML vs. Old HTML
HTML is undergoing some big changes right now. No need to worry,
though, for you it’s not that big of a deal. Basically, some new tags have
been added (such as <header> and <footer>), which didn’t exist before. Since
you didn’t know the previous tags, they’re all new to you.

Here’s the thing: HTML5 is being developed to replace HTML4—you should
be learning HTML5, not HTML4. Simple as that.

It’s just like how Adobe CS5 replaced CS4: It’s just a newer version. As
with Adobe’s Creative Suite, HTML5 has some backward compatibility, but
it’s a little limited. But unlike Adobe’s Creative Suite, the new HTML is an
open standard that doesn’t directly make money for anyone, so there’s less
incentive to update it than with a for-profit product. In fact, the new stan-
dard for HTML5 isn’t finished, and it won’t be for a long time.

Now don’t go asking me why you should be learning something that’s not
finished. I want you learning the HTML of the future, not of the past. In my
opinion there are no roadblocks to prevent you from using HTML5 for all
your projects going forward.

Dealing with Older Browsers
As I mentioned above, HTML5 has a handful of tags that didn’t exist
before, including <header> and <footer>. I mention this because older
browsers like IE and Firefox 2 don’t acknowledge these newer HTML tags,
which causes them to break your layout.

But don’t worry, just as you can save back to an older version of InDesign,
you can put some code in place on your Web pages that makes the older
browsers play nice. These fixes rely on JavaScript to work.

You Mean I Need to Learn JavaScript?
God, no. I barely even know JavaScript. Since JavaScript is a little advanced
for this book, I’m going to avoid talking about it much. All you need to
know is there’s a snippet of JavaScript that you can add to a Web site that
helps older browsers understand the new tags from HTML5.

But right now, honestly, you don’t need to worry about it. When it comes
up, you can just have one of your coder friends help you out or Google for
the snippet of code. That’s what I do.

5 : boxes InsIde boxes : tag grouPs (also Known as lIsts) 39

Tag Groups (Also Known as Lists)
You might have noticed I slipped in a couple of different looking tags:
 and and and . Those were for lists. Some tags, like lists,
require you to use a couple of tags in combination for them to work.

This means you have to write some HTML that says, “I’m about to write
a list.” Then you have to write some more HTML inside that tag that says,
“This is an individual list item.” You can write all the list items you want,
then you have to close the tag that started the list.

Unordered Lists (or Bullet Lists)
Okay, that’s a lot to take in, so let’s start with an unordered list. You’ll
remember an unordered list is made using the tag mentioned earlier.
You’d write:

But that doesn’t really make sense because it’s an unordered list without any
items, also known as list items, in it. There’s a tag for that, called , but it
has to go inside of the unordered list tag, which means it has to open after
the opening tag and close before the closing tag. See for yourself:

Notice how we have moved the closing tag down and added the
 on a single line, indented, between the opening and closing
 tags.

While formatting this way is completely optional, keep in mind that being
able to easily match opening and closing tags visually by keeping consistent
formatting will be very helpful as your HTML gets more complicated.

So we still only have one list item. Let’s add a few more.

Notice how each opening tag closes with a closing tag before we
open a new list item.

Css for PrInt desIgners40

Now, we still don’t have a real list, all we have is some HTML tags waiting
for content. Let’s put something in there. Here’s an example of what a print
designer’s grocery list might look like:

 Whole wheat bread

 Locally-brewed beer

 Organic cigarettes

Let’s review. The outer tag, , tells us that we’re about to start making
an unordered list. The inner tag, , defines each item for that list. So
what you’d get would look something like this:

 • Whole wheat bread

 • Locally-brewed beer

 • Organic cigarettes

Breakfast of champions.

You can change the way your bullet points look later (or get rid of them
entirely) with CSS.

Ordered Lists (or Numbered Lists)
As you’ll remember, there’s another option when creating a list, called an
ordered list. Let’s look at what a list of your favorite bands, in order of pref-
erence, might look like:

 Mogwai

 Mouse Rat

 Lucero

This would render like so:

1. Mogwai

2. Mouse Rat

3. Lucero

With CSS, you can change this to render as:

i. Mogwai

ii. Mouse Rat

iii. Lucero

www.allitebooks.com

http://www.allitebooks.org

5 : boxes InsIde boxes : tag grouPs (also Known as lIsts) 41

We could go on all day about that musical awesomeness, but we’re just
here to learn how to make lists—move along.

Definition Lists (or Glossary Listings)
There’s one final kind of list. So far we’ve covered bullet lists and numbered
lists (unordered and ordered lists, respectively). The other kind of list,
called a definition list, is less common but very useful.

First, let’s take a look at what a definition list is, precisely. A definition list
is made up of three tags:

1. <dl>, which defines that we’re about to write a definition list.

2. <dt>, which defines the content it surrounds as a definition title.

3. <dd>, which defines the content it surrounds as a definition description.
This tag follows the dt tag, but there can be more than one—think
of it as similar to a paragraph. Once you see it in action, this will be
more clear.

Definition lists can be used for a couple of things. Most often you’ll see
them used to mark up a glossary, but sometimes I have seen them used for
Frequently Asked Questions. While we know we can change the appearance
of anything with CSS, a typical definition list created by a print designer
might look something like this:

photoemulsion

A special liquid mixture that you put on screens. When it dries and
you expose it to light it hardens. It’s used to block the flow of ink
through the screen. It’s magic.

Image area

If you block off part of the emulsion when exposing it to light, so
that light doesn’t get to all the photoemulsion, you can wash that
area out since it doesn’t harden.

This is the area where ink can pass through the screen to create
your image.

positive

A clear sheet with opaque black printed or drawn on it. This black
area is what blocks the light from getting to the photoemulsion,
keeping that area from hardening when exposed to light.

Css for PrInt desIgners42

Here’s how you would mark this up without the content inside.

<dl>

 <dt></dt>

 <dd></dd>

 <dt></dt>

 <dd></dd>

 <dd></dd>

 <dt></dt>

 <dd></dd>

</dl>

If you looked at that HTML closely (you did look at it closely, right? No? Go
look again…), you noticed how the second grouping has one dt tag, but two
dd tags. That’s because the “Image Area” item has two blocks of text describ-
ing it. This is what I meant when I said it was like a paragraph.

Let’s see how this would look with the content inside of it:

<dl>

 <dt>Photoemulsion</dt>

 <dd>

 A special liquid mixture that you put on screens. When it dries and

 you expose it to light it hardens. It’s used to block the flow of

 ink through the screen. It’s magic.

 </dd>

 <dt>Image Area</dt>

 <dd>

 If you block off part of the emulsion when exposing it to light, so

 that light doesn’t get to all of the photoemulsion, you can wash

 that area out since it doesn’t harden.

 </dd>

 <dd>

 This is the area where ink can pass through the screen to create your

 image.

 </dd>

 <dt>Positive</dt>

 <dd>

 A clear sheet with opaque black printed or drawn on it. This black

 area is what blocks the light from getting to the photoemulsion,

 keeping that area from hardening when exposed to light.

 </dd>

</dl>

5 : boxes InsIde boxes : tag grouPs (also Known as lIsts) 43

That doesn’t look as scary as it did before you started reading this book,
now does it? By now you should be able to read through the code on the
preceding page and pick apart its tags and see how they’re in the right
order. The less-than and greater-than symbols aren’t nearly as confusing,
now that you know what they do and how they work.

And the best part is: Most of it’s English—it’s really not that much to remember.

Sometimes, when code starts to look like too much for me, I’ll highlight the
code parts, to help simplify things. The preceding code block begins to look
much less complicated when you focus on only the simple tags.

Here’s what that might look like:

<dl>

 <dt>Photoemulsion</dt>

 <dd>

 A special liquid mixture that you put on screens. When it dries and

 you expose it to light it hardens. It’s used to block the flow of

 ink through the screen. It’s magic.

 </dd>

 <dt>Image Area</dt>

 <dd>

 If you block off part of the emulsion when exposing it to light, so

 that light doesn’t get to all of the photoemulsion, you can wash

 that area out since it doesn’t harden.

 </dd>

 <dd>

 This is the area where ink can pass through the screen to create your

 image.

 </dd>

 <dt>Positive</dt>

 <dd>

 A clear sheet with opaque black printed or drawn on it. This black

 area is what blocks the light from getting to the photoemulsion,

 keeping that area from hardening when exposed to light.

 </dd>

</dl>

Whenever you start reading HTML, the most important thing to watch for
is the opening and closing of tags. Try to ignore everything else; read slowly;
don’t skim. Over time, you’ll be able to skim well-formatted HTML and
quickly spot errors. But right now, slow down. I want you to focus on reading
HTML deliberately and finding each closing tag for each opening tag.

Css for PrInt desIgners44

Nesting Tags
Since you’ve just been introduced to tag groups (or lists), now’s a good
time to zoom out and see what HTML looks like from 30,000 feet.

You see, a Web site is made up of lots and lots of HTML tags. Some of the
tags are for defining each individual piece of content, like list items, and
some HTML is there for defining much larger sections of content.

To make it all work, you’re going to have to start nesting your HTML.

Nesting Tags Is Like Drawing
Boxes Inside of Boxes
You just did this with lists. HTML tags nest inside of each other, much like
the fancy nesting tables you might pick out from a CB2 catalogue. Print
designers often understand this better when they look at a graphic that
shows what nesting HTML looks like (FIguRe 5.2).

<div>

<h1>

<p>

<p>

<a>

</h1>

</div>

</p>

</p>

fIgure 5.2 A diagram
like this helps me to
visualize nested HTML
as boxes drawn inside
of boxes.

In code, it would look like this:

<div>

 <h1>My Very Own Headline</h1>

 <p>With a paragraph following it.</p>

 <p>

 Learn more

 </p>

</div>

That’s what nesting looks like when it’s all clean and tidy. I’ll do this exercise
on the whiteboard when I’m trying to solve larger problems. Take a look at
the same thing, using a little shorthand on a whiteboard (FIguRe 5.3).

5 : boxes InsIde boxes : nestIng tags 45

fIgure 5.3 When I am
figuring out complicated
HTML, I’ll often mark
it up visually on a
whiteboard.

Breaking the Internet
When you make a mistake writing your HTML, it’s often because you didn’t
open or close your tags the right way—which leads to a broken Internet, the
whole thing, and it’s all your fault.

Not really. But it will break your Web site almost every time. When you’re
nesting tags, they must close in the reverse order that they were opened
(FIguRe 5.4).

<div>

<h1>

<p>

<p>

<a>

</h1>

</div>

</p>

</p>

fIgure 5.4 You have
to make sure you open
and close your tags in the
right order. They can’t
overlap like the a and p
tags at the bottom of this
diagram.

Everything looks good until you get to the place where the <p> tag and the
<a> tag cross each other. In code, that might look like this:

<div>

 <h1>My Very Own Headline</h1>

 <p>With a paragraph following it.</p>

 <p>

 <a =”http://mysite.com”>Learn more</p>

</div>

Css for PrInt desIgners46

Did you catch that? In this example, the <p> tag closes before the <a> tag,
which is wrong because the <a> tag opened inside the <p> tag. Since it
opened inside the <p> tag, it should close inside the <p> tag.

I don’t think any of us wants Al Gore knocking on our door demanding we
fix his Internet. So take some time with this, be sure to open and close your
tags in the right order.

Adding Attributes to Tags
The word attribute is kind of a big word, but I bet most of you know what it
means without having to look it up. But just in case, and to keep you from
having to haul out your dictionary, here’s my definition: An attribute is a
characteristic of something or someone.

If I asked you to describe the attributes of this fellow (FIguRe 5.5), you
might say his hair is red and that he has cute cheeks. An attribute has to
identify something and then describe it. With this image, I’ve chosen to
identify two things about the boy and describe them.

In HTML, we use attributes to give more meaning or definition to tags.

fIgure 5.5 This little
boy has red hair and cute
cheek attributes.

iS
to

ck
Ph

ot
o.

co
m

5 : boxes InsIde boxes : fIVe attrIbutes You need to Know 47

Attribute Syntax (Yes, a Few More
Funny Characters to Memorize)
Attributes have a syntax that might look intimidating until you break it down.
After you have cracked the code, they’re just like HTML tags—that is, they’re
mostly English with a couple of funny characters to memorize. No big deal. As an
example, let’s take a look at what a fake attribute for this boy might look like:

hair=”red”

cheeks=”cute”

First, we identify what we’re talking about: his hair and his cheeks. Then,
we say it equals something, which we put in double tick marks.

But that’s not the whole story. We have to put this somewhere, so you
might be asking, “Where does this go?” An attribute in HTML goes inside
the opening tag. Let’s continue to use a fake HTML tag to describe this:

<boy hair=”red” cheeks=”cute”>This boy has red hair and cute cheeks.</boy>

A few things to take note of:

 • The attribute goes inside the opening tag. Nothing ever goes inside a
closing tag.

 • There is a single space before the attribute begins.

 • There are no spaces once the attribute begins. There are a couple of
exceptions to this rule, but nothing we need to worry about right now.

 • We’re using double tick marks, not curly quotes. If you’re typing them
directly into your text editor of choice (like Dreamweaver, Text Wrangler,
or Coda, for example), you’ll be fine because those applications won’t
automatically turn your tick marks into curly quotes. But if you copy and
paste from Word, you might run into issues with curly quotes showing up.

Five Attributes You Need to Know
Just like the 13 tags that get used more than others, there are five attributes
you absolutely must know by heart when writing HTML. There are more,
but these are the most important ones I want you to know about—they’ll
get you through 90 percent of your coding.

 • href

This attribute is for making links and goes with the <a> tag. When we start
hooking CSS to HTML, we’ll see how this attribute is used on the <link>
tag, too. The string that goes inside this tag is either an absolute or relative
path. (We discussed absolute and relative paths in Chapter 3.)

tIP Why would
you be coding a

Web site in Word anyway?

Css for PrInt desIgners48

 • class

This attribute is for CSS hooks, and you can have many per page
that match.

 • id

This attribute is for CSS hooks, and you can have only one per page.
It’s also used for jump links, where you click a link and it jumps the
browser to a certain part of the page.

 • src

Every tag requires this. It’s for bringing an image into HTML.

 • alt

Every tag requires this. It’s for describing the image with words in
case the image doesn’t load. It’s for Google, blind or low-vision users
who listen to Web pages being read to them, and for really slow connec-
tions or images that don’t load for some reason.

You can always go to the almighty Google to learn about the rest.

Attributes in Action
This is a link to my company website

<div id=”something”>Something goes in here</div>

Something else goes in here

The cool thing about attributes is that, for the most part, what goes inside
of the double quotes isn’t code. It’s not something you need to memo-
rize. You can make up your own class and id attributes. You can have
class=”bibbledibob” if you want, it doesn’t matter.

Don’t Go Crazy with Attributes
You do need to keep in mind that your class attributes should make sense
to other people, though, because one day someone may work on your
site after you. Or, even more likely, you’ll come after yourself and wonder,
“What was I thinking? That class attribute is just silly!”

As a responsible Web designer, I have to tell you to use good naming prac-
tices when you come up with id and class attributes. In the industry, this
is called writing semantic HTML. Semantic is another big ugly word. But you
might know what it means because print designers love to get into semantic
arguments with each other on things like God and the kerning of Archer.

5 : boxes InsIde boxes : self-ClosIng tags 49

The word semantic in the Web design world has a similar definition. It
means, ironically, meaning. Your class and id attributes shouldn’t describe
what something looks like; rather, they should describe what something is—
remember the luggage tag analogy.

table 5.1 Meaningful class Attributes (Also Applies to ids)

bad good

class=”yellow-background” class=”highlight”

class=”left” class=”sidebar”

class=”italic-headline” class=”embellished”

class=”rounded-corner-effect” class=”wrap”

class=”bigger-text” class=”callout”

Self-Closing Tags
So far you have learned about tags that open and close such as <header>,
<p>, and <div>. What if I told you there were a few tags that can close them-
selves? Would that blow your mind?

Some tags don’t need to wrap anything. Some tags are the information
themselves, like the tag.

If you were paying attention, you’d have noticed I slipped one of those into
the section on attributes.

Notice how this tag doesn’t have a separate closing tag. Instead, the
opening tag is self-closing because there is a slash right before the closing
angle bracket (or greater-than sign). This is called a self-closing tag. There
are actually two correct ways to do this with HTML5:

1.

or

2.

Technically speaking, neither way is more correct since HTML5 supports
both methods of self-closing a tag. I have a personal preference, but I do
encourage you to consider both and make your own decision.

I prefer to use the trailing slash method (number 1 above) because it makes
it easier for me to scan for tags that have been properly closed. I’ve trained
myself to watch for an opening tag and search for its closing partner.

Css for PrInt desIgners50

On the other hand, there’s a good reason to go with the non-slash method
(number 2): It has fewer characters to type.

It’s up to you. Just pick one and stick with it.

Formatting Code Is Like Setting Type
A great question that always comes up in my workshops is about
formatting.

 • How do I know when to press Return and go to the next line?

 • How do I know where it’s safe to put spaces and where it’s not safe to
put spaces?

 • How do I know when, or how far, to indent? Do I use tabs or spaces?

These are great questions. And while there is technically a correct answer
from the powers that be about every bit of formatting, it comes in the
form of recommendations. For you, here’s what I want you to know about
formatting.

However You Do It, Be Consistent
Although you are writing code for computers to understand, you have to
remember it’s for human consumption too. Establishing your own little
nuances with formatting your HTML is fine. You’re a designer, so think of
this as an exercise in setting type for readability using only indents and a
monospace typeface (FIguRe 5.6).

 • If you prefer to indent with spaces instead of tabs, that’s fine, just be
consistent. Having too many spaces typically won’t cause things to
break, so don’t sweat it.

 • If you use hyphens when creating multiword class attributes, stick with
hyphens. Don’t randomly switch to underscores.

 • Err on the side of human readability. If you can fit a couple of tags on
one line because the content’s short, do it. If you are doing some very
heavy nesting, be careful to make sure your closing tags line up with
your opening tags, so it’s easier to see which tag is closing.

www.allitebooks.com

http://www.allitebooks.org

5 : boxes InsIde boxes : formattIng Code Is lIKe settIng tYPe 51

<header>

 <div class=”utility-links”>

 <li class=”login”>

 Login

 <li class=”help”>

 Help

 </div>

 <div class=”wrap”>

 <div class=”logo”>

 </div>

 <nav>

 <li class=”home”>

 Home

 <li class=”about”>

 About

 <li class=”services”>

 Services

 <li class=”portfolio”>

 Portfolio

 <li class=”contact”>

 Contact

 </nav>

 </div>

</header>

fIgure 5.6 HTML is
easier to read if you indent
in a logical and consistent
manner.

Css for PrInt desIgners52

Using Comments to Stay Organized
Sometimes a coder needs to remind herself what she was thinking or com-
municate with another coder who will follow her work later. Rather than
writing these notes somewhere else, HTML has a way for coders to write
notes that are not rendered by the browser. These are called comments.

<!-- Comment goes here -->

The opening of the comment is indicated by <!--, which is where the
browser stops paying attention. Whatever goes in there will not show up on
your Web site. When you’re done with your comment, just type --> to let
the browser know to start paying attention again.

There are plenty of good reasons to use comments.

To indicate where a tag is closing. If you have a bunch of <div> tags nested
with unique id or class attributes, you can remind yourself which one
you’re closing.

<div class=”wrap”>

 <div class=”intro”>

 <div class=”summary”>

 <p>

 Comments are helpful to developers because they facilitate clear

 ➥ communication.

 </p>

 </div><!-- close summary -->

 <div class=”extended”>

 <p>

 Some developers use comments to describe a complex area of the

 ➥ code, while other developers use them to help themselves

 ➥ remember what they were thinking when they came up with

 ➥ something. And finally, some developers use them to crack

 ➥ mom jokes about their colleagues (which is not appropriate and

 ➥ can be embarrassing if it makes it into a production site).

 </p>

 </div><!-- close extended -->

 </div><!-- close intro -->

</div><!-- close wrap -->

5 : boxes InsIde boxes : bloCK and InlIne tags 53

To communicate with another developer. Sometimes more than one person
is working on the code, and they will need to communicate with each other.

<!-- Tom, I was thinking while we wait on content from the client,

➥ we could use CSS to put a drop shadow and round these corners around

➥ the content. What do you think? -->

<div class=”content”>

 <p>Waiting on content from the client.</p>

</div>

To remind yourself what you were thinking. Sometimes you come up with
a great way to do something and you want to remind yourself how it works
so you don’t break it later.

<!-- Added an extra div with post class below so that I can have a

➥ divider between each blog post. Removing this breaks vertical

➥ spacing. -->

<div class=”post”>

<h2>Hello world!</h2>

 <p>

 Welcome to Wordpress. This is your first post. Edit or delete it,

 ➥ then start blogging!

 </p>

 <p>

 Read more

 </p>

</div>

A comment can be whatever you want it to be. You just type a few characters
to tell the browser to start ignoring what you’re about to type, then you type
a few characters to tell the browser you’re done with the comment.

Block and Inline Tags
Of all the hundred or so tags out there, they all fall into one of two catego-
ries: They are either block tags or inline tags.

As simply as I can put it, block tags are for surrounding larger chunks of
text, and inline tags are for surrounding smaller chunks of text. I like to
think of block tags as energetic and inline tags as lethargic.

Block tags are energetic because they run as far as they can across the page
from left to right. Inline tags are lethargic because they only go as far as
they have to, then they quit.

Css for PrInt desIgners54

In other words, a block tag’s job is to take up as much horizontal space as
it can within its parent container (it stretches as far as it can until it hits a
dead end). An inline tag’s job is to take up as little horizontal space as pos-
sible (FIguRe 5.7).

Block tag

Inline tag

Inline tag with more text

Inline inside a block

fIgure 5.7 Block tags
go as far as they can;
inline tags only go as far
as they have to.

Of the tags I have shown you already, these are block-level tags:

 • <p>

 • <header>

 • <footer>

 • <h1>, <h2>, <h3>, <h4>, <h5>, <h6>

 • and

 • and

 • <div>

And these are the inline-level tags:

 • <a>

 •

 •

 •

 •

Headlines and paragraphs, for example, should generally run the width
of their parent container. On the other hand, an anchor (link) or tag
should not run the width of its parent container because those tags are
typically found inside a larger string of text.

If you think about it, this would wreak havoc on a layout (FIguRe 5.8). An
anchor tag that behaved like a block tag in the middle of a sentence would
cause the line of text to break to a new line and the anchor would take up

5 : boxes InsIde boxes : bloCK and InlIne tags 55

an entire line on its own. Then, whatever followed the anchor would start
on the line after the anchor. In effect, it would create a hard break with the
link on a line all by itself.

fIgure 5.8 Block tags
are meant to surround
bigger chunks of text;
inline tags are meant to
surround smaller pieces
of text.

The Order of Inline and Block Tags
You remember the concept of nesting, right? The way it works is that some-
thing smaller goes inside something bigger. If we think of block tags as
bigger than inline tags, then it doesn’t make sense for us to put block tags
inside inline tags, does it (FIguRe 5.9)?

Block inside inline

fIgure 5.9 You cannot
put a block tag inside an
inline tag; it will break things!

There’s one simple rule you need to know: Inline tags cannot surround
block tags.

Changing the Appearance of Inline and Block Tags
You can change the appearance of block tags to behave like inline tags, or
to make inline tags behave like block tags.

Using CSS, you can tell a block tag to display: inline; and it would behave
like an inline tag. Or, you could tell an inline tag to display: block; and it
would behave like a block tag. This can be a very useful trick, for example,
if you want to make a link that has a defined width or is bigger and easier
to click, like in your navigation.

Css for PrInt desIgners56

But, you still have to follow the rule that states native block tags cannot go
inside inline tags. Sorry, rules are rules—plus, your site needs to work prop-
erly for users before CSS comes in and makes everything pretty.

More on CSS ahead. Stay calm. We’ll get there.

One last thing you should know about HTML: Since its purpose is nothing
more than structuring content, when you finish writing HTML, it’s pretty
easy to tell if you did it right.

HTML Looks Like a Word Doc
When you’re done writing HTML with a text editor, you can save the file on
your computer somewhere and open it with your browser (Firefox, Chrome,
Safari, or Internet Explorer) by choosing File > Open and then browsing
to the file.

When you pull up your HTML file, if everything’s in order, your HTML docu-
ment will pretty much resemble your copy writer’s Word doc (FIguRe 5.10).

fIgure 5.10
When you’re done writing
HTML, it should look
pretty much like the Word
doc you started with.

Now that we’ve gotten that out of the way, we have something that looks
exactly like what we started with.

No, the irony is not lost on me. Unfortunately, learning this stuff is the
unavoidable prerequisite to writing CSS.

Let’s move on.

Play
Video

6
Sculpting
with CSS

Making Something That Looks
Like a Real Web Page

I ThINk oF writing CSS as being a lot like creating a sculpture

because both CSS and sculptures are deliberate, planned pro-

cesses of whittling a basic structure into a more beautiful form.

The sculptor starts with a big square block of stone, or wood, or

some other material. When we write CSS, we start with an HTML

structure that reads top to bottom like a basic Word document.

The sculptor starts by planning the big picture: Where do the

different elements belong (things like the head, arms, torso, and

feet), and how big should each one be? When we write CSS, we

rough out the layout by pushing HTML tags around to create

columns and a general layout for a page, making decisions along

the way about elements like borders, widths, and dimensions.

Css for PrInt desIgners58

After carving out the general form, the sculptor works in greater and
greater detail on each section of the piece: introducing realistic details like
wrinkles, folds in the skin, and muscle tone. With CSS, we slowly enhance
the header, navigation, sidebar, footer, and so on with design treatments
like color, gradients, typography, and shadows.

Finally, the sculptor preps the work for display, polishing and fine-tuning
the overall composition. With CSS, we put finishing touches on our work
as well: for instance, making sure it works for every visitor in every scenario,
and that it loads fast.

In this chapter, we’re finally going to start seeing how everything comes
together in CSS by looking at the big picture. We’re done with all the
behind the scenes stuff and ready to make something that looks like a
real Web page.

First Things First: Syntax
Ah yes, the funny characters. Just like the HTML we learned earlier in the
book, CSS is a programming language with its own special syntax. It can be
very forgiving, but we still need to learn the fundamentals.

You will remember in our first chapter that we looked at how easy CSS is to
read and that I promised later to explain those funny characters. Well, it’s time.

Consider this CSS rule:

p { color : white ; }

As you can imagine, this CSS rule tells us that every paragraph tag on the
page should be white.

don’t stress oVer the VoCabularY

I need to come clean: I had to look up these terms while writing this book.
I’ve been writing CSS for a long time without knowing these things by
heart. I mean, the language is familiar to me, and it should be familiar to
you, too, but don’t bother trying to memorize terms like selector, property,
and value.

Instead, spend your brainpower recognizing the form and syntax. The first
part identifies what we’re targeting, and everything else goes inside squig-
glies. The colon connects the two things that describe what we’re targeting,
and the semicolon tells us we’re done with that declaration and ready to
describe the first part some more with another declaration.

6 : sCulPtIng wIth Css : fIrst thIngs fIrst: sYntax 59

TabLe 6.1 will help you understand what each character in the code
block means.

table 6.1 CSS Syntax Elements

CSS eNgLISh

p This first element is the selector. The selector tells us what type of item
we’re selecting to target with CSS. In our example, it’s a familiar HTML
abbreviation—p for paragraph—that targets every paragraph.

Notice that it doesn’t have any of the other special characters from HTML
such as < or >. It’s just the abbreviation. You can put almost anything in this
spot: another HTML tag such as <div>, a class attribute from your HTML
like .teaser, or an id attribute from your HTML such as #logo (the period
and hash tag mean something, which I’ll cover later).

{ This element is called many things—curly bracket, definite bracket, swirly
bracket, and chicken lips (no, I did not make that up, check Wikipedia)—but
I just call it a squiggly. This is an opening squiggly; you’ll notice a closing
squiggly to signify the end of this declaration. The CSS you write inside of
these squigglies describes what your selector should look like.

color This element is known as the property. Remember that in HTML we discussed
attributes? Well, this element is very similar to an attribute; it defines what
property of the selector we’re about to describe. In this example, we’re about
to change the color of all paragraphs.

: The colon connects the property and the value. In our example, it connects
the property color and the specified value of white. It just needs to be
between the property and the value—it doesn’t matter whether you surround
it with spaces or no spaces; it just needs to be on the same line.

white This element is known as the value of the property. It describes what the property
should look like. In our example, the value of the color property is white.

; This semicolon tells us the declaration is over. You can add more declarations
after this (a declaration is any property-and-value combination).

} Finally, the closing squiggly as promised above. This indicates the end of a
CSS rule.

Here’s an example of a CSS rule with more than one declaration:

div{

 background-color: red;

 padding: 10px;

 }

This CSS rule tells us that every <div> tag should have a background-color
value of red and 10 pixels of space around it.

Css for PrInt desIgners60

PICKIng Colors for web desIgn

You’ve probably noticed by now that I’m using plain English terms to
identify colors instead of a hexadecimal value like #DCD87E. CSS lets you do
this for common colors, but you’ll probably want more detailed control
over your color values, so you will likely be using hexadecimals in your real
projects. I’m just using words here because it’s easier on the eyes.

See the section “Tweaking the Color” later in this chapter to find the hexa-
decimal value for your colors in Photoshop.

Formatting Your CSS
A question that always comes up in my workshops, just as with HTML,
is how much of the text formatting is required, versus how much of it is
just personal preference?

All that’s required by CSS is that each CSS rule begins with a selector and
ends with one or more declarations surrounded by opening and closing
squigglies. Inside the squigglies, each declaration must have a property and
value separated by a colon, and a semicolon must separate declarations
from each other.

Spaces and tabs are completely optional in CSS formatting. My suggestion
is to write CSS for readability, keeping in mind that the most important
thing is to be consistent with whatever style of formatting you choose.

formattIng Is lIKe flowIng text

I find that print designers often struggle with formatting. But with a little
practice you’ll begin to see formatting the same way you see typesetting
long copy in a magazine. It’s all about readability and consistency.

I usually write my selector and the opening squiggly on the first line. Then I
go to the next line, tab in once, and write one declaration per line. Finally,
I end with a closing squiggly on a line by itself, tabbed in the same as the
declarations. If I’m feeling extra organized, I’ll indent the entire CSS rule to
match the nesting of the HTML. As an example, consider this HTML:

<div>

 <p>

 Durrr, you need to give us your email address to sign up for our

 email newsletter.

 </p>

</div>

tIP CSS doesn’t
require the final

semicolon in a list of dec-
larations, but I suggest
you use it anyway because
it’s simpler to remember
to end each declaration
with a semicolon than to
split each declaration with
a semicolon. My bet is
you’ll make fewer mistakes
when you follow simple
rules like this.

www.allitebooks.com

http://www.allitebooks.org

6 : sCulPtIng wIth Css : formattIng Your Css 61

Notice how the <p> tag is nested inside the <div> tag (FIguRe 6.1). I format
my CSS like this to visually remind myself of the HTML structure I’m work-
ing with in my CSS file:

<div>

<p>

</div>

</p>

fIgure 6.1
This illustrates simple
nested HTML.

div{

 background-color: red;

 padding: 10px;

 }

 p{

 color: white;

 }

But other ways of formatting are just as acceptable. Notice in the following
example how there are no spaces and each rule is all on one line:

div{background-color:red;padding:10px}

p{color:white}

And here’s another way to do it:

div

{

 background-color: red; padding: 10px

}

p

{

 color: white

}

In the end, the way you format your CSS is up to you. But I promise you
will learn much faster and have fewer problems if you take the time to for-
mat cleanly and consistently.

Css for PrInt desIgners62

White Space Increases File Size
One thing to note about your CSS formatting is that the more white space
you use (the tabs, returns, and spaces), the larger the file size will be. Most
of the time this isn’t a big deal because the file sizes are very small and will
download super fast anyway, which is why I recommend using extra white
space to make your files more readable.

But with a very large Web site or a Web site that gets a lot of traffic, a
bunch of very small files can add up and become costly for the company.
That company would opt for the more compact CSS formatting.

For now, don’t worry about it. Just know that your formatting decision can
matter. Plus, you can sleep easy at night knowing that there are some hard-
core developers on projects like this who can convert human-readable CSS
to very compact, compressed CSS automatically and on the fly. If file size
ever becomes an issue for you, you’ll be reading a more advanced book by
then anyway, so don’t worry about it now.

Getting Fancy with Selectors
Let’s take a look at a real-world example of some HTML and accompany-
ing CSS—focusing on the selector part of the coding. Let’s say we wanted
to code the CSS for an error state for a contact form that wasn’t filled out
correctly (FIguRe 6.2). We might write our HTML like this:

Durrr, you need to give us your email address to sign
up for our email newsletter.

<div id=”form-message”>

 <div class=”error”>

 <p>

 Durrr, you need to give us your email address to sign up for our

 ➥ email newsletter.

 </p>

 </div>

</div>

fIgure 6.2 This is
what a typical error
message might look like
when a user doesn’t fill
out a Web form correctly.

6 : sCulPtIng wIth Css : gettIng fanCY wIth seleCtors 63

Hooking into CSS with class and id Attributes
In the CSS we have seen so far in this chapter, you’ll notice I said we’re
targeting every <div> tag and <p> tag. This is great for broad, sweeping CSS
declarations, but you’ll often find yourself wanting to target just one little
piece of your Web page, as in the preceding HTML example.

We can use class attributes and id attributes from our HTML as hooks that
let us write CSS to control our HTML on a much more granular level. We’d
write our CSS for the HTML in the preceding example like this:

#form-message{

 padding-top: 10px;

 border-top: 2px solid black;

 }

 div.error{

 background-color: red;

 padding: 10px;

 }

 div.error p{

 color: white;

 font-weight: bold;

 }

This might look a little more complex than what we’ve seen before because
we’ve added a couple of funny characters—a period (.) and a hash (#)—and
the selectors are more than just p. Don’t worry, this is easy—let me walk you
through it.

Combining Tags and Hooks
You can choose to be more specific with CSS by writing a selector that
includes the class attribute or id attribute in addition to the tag itself. We do
this by typing the tag you want to target and then stringing it together with
a class attribute or id attribute. We string these together by connecting the
period or hash with the tag, making sure to leave out any space characters.

Notice in the preceding code that we have a selector div.error with no
spaces. This targets any <div> tag with a class attribute you have defined as
error. In other words, it targets <div class=”error”>.

So div.error as a selector in CSS targets only <div class=”error”> in HTML.

tIP The space
character or lack

of space character in selec-
tors is actually very impor-
tant, as opposed to spaces
in the formatting, which
don’t matter.

Css for PrInt desIgners64

The same would hold true for id attributes, but instead of using a period,
you’d use a hash (div#form-message).

TabLe 6.2 shows some examples of how CSS targets HTML.

table 6.2 Using CSS to Target HTML

div .error div.error p.error

<div> ✔

<div class=”error”> ✔ ✔ ✔

<p class=”error”> ✔ ✔

 ✔

The check marks indicate where a CSS selector would match an HTML tag.
Where there’s no check mark, the CSS would not take effect.

Notice that when we reference only the HTML tag (when we want our CSS
to apply to every tag of a certain type) in CSS, the selectors are not pre-
pended with any funny characters such as a period or hash.

Targeting Nested HTML
Let’s say you only want to target a <p> tag that’s nested inside <div
class=”error”> (FIguRe 6.3). CSS gives us a simple way of doing this;
we just need to build on what we’ve already learned.

<div class="error">

<p>

</div>

</p>

fIgure 6.3
We’re getting a little more
specific with our CSS
selectors.

In CSS, you can target HTML by the way it’s nested, in addition to the tag
name, class attribute, and id attribute. The first part of the selector targets
the parent tag, and each chunk of text that follows (with a space before it)
is nested in the parent tag prior to it. Wow, that’s a mouthful. Let’s see how
our nested HTML matches up with some simple CSS selectors (FIguRe 6.4).

tIP You can mix
up these combi-

nations any way you want.
You can connect any tag
(<div>, <p>, , etc.) to
a class attribute or id
attribute.

6 : sCulPtIng wIth Css : gettIng fanCY wIth seleCtors 65

<div class="container">

<div class="wrapper">

<div class="teaser">

</div>

</div>

</div>

You can get as fancy with this as you want.

<div class=”container”>

 <div class=”wrapper”>

 <div class=”teaser”>

 (PDF, 1 Megabyte)

 Download Now

 </div>

 </div>

</div>

You could target the link in this example several ways.

The easiest way would be to target .download, which would find anything
with a class of download. That code would look like this:

.download{

 font-weight: bold;

 color: red;

 }

But let’s say you want to target only links with a class attribute of
download inside a <div> tag with a class attribute of teaser. You’d target
div.teaser .download to do this:

div.teaser .download{

 font-weight: bold;

 color: red;

 }

You could even go crazy and target the link with a selector like this:

div.container div.wrapper div.teaser a.download{

 font-weight: bold;

 color: red;

 }

fIgure 6.4
With HTML you can nest
things as much (or as
little) as you need.

Css for PrInt desIgners66

Usually this is a little extreme, but occasionally I’ll have to do something
like this when I’m working on a larger site I didn’t code originally and I
want to make sure my CSS rule doesn’t affect other parts of the site. In that
case, being overly specific can be helpful.

Reading Selectors in Plain English
An exercise I find helpful when I’m trying to follow a complex selector is to
read it in plain English. Here’s a really hard one (FIguRe 6.5):

<header>

<nav id="primary-nav">

<li class="current">

</header>

</nav>

header nav#primary-nav ul li.current a.contact-us{

 font-weight: bold;

 }

In this example, we want something to be bold, but what exactly do we
want to be bold?

We find out by reading the CSS backwards. I’m inserting line breaks like in
a poem to make the CSS easier to read. So, reading from the end of the line
to the beginning:

We’re targeting an <a> tag with a class attribute of contact-us

¬ that’s inside an tag with a class attribute of current

¬ that’s inside a tag

¬ that’s inside a <nav> tag that has an id attribute of primary-nav

¬ that’s inside a <header> tag.

fIgure 6.5
This illustrates a common
way navigation is marked
up with HTML.

tIP When you
read your CSS as

I’m describing, it just has
to be a true statement
when comparing it with
the HTML. Your selector
doesn’t have to include
every tag in the nested
hierarchy.

6 : sCulPtIng wIth Css : CommentIng Your Css 67

Checking and Double-Checking Your Selectors
If any part of your selector doesn’t match up exactly with the HTML, the
CSS rule will not take effect.

There are two lessons here:

 • CSS is very powerful because you can design your CSS selectors to be
super specific.

 • The more complicated your CSS selectors get, the easier it is to make a
mistake and the more likely you are to get frustrated because your selec-
tors aren’t working the way you think they should.

With great power comes great responsibility. Since you’re a beginner, my
suggestion is to create simple selectors. As you get more comfortable skim-
ming CSS and making sense of it, you’ll know when it’s okay to make some
really complicated selectors.

Commenting Your CSS
You already know how HTML allows you to comment on your work to
communicate with fellow coders and remind yourself what you’re doing.
CSS gives us a way to write comments, too. The syntax is a little different,
though, so you need to keep things straight. Here’s how you add comments
with CSS:

/* Your comment goes here */

You begin a CSS comment with a slash and an asterisk. You end the com-
ment in reverse order with an asterisk and then a slash. The browser will
ignore anything that you put inside the asterisks. Here’s an example:

/*

bigger text for intro paragraphs – multiline comment

*/

.entry p.teaser{

 font-size: 24px;

 color: green; /* need to change this to the brand-standard hex value

 ➥ before we go live */

 /* changed the line-height so the bigger text does not look squished */

 line-height: 30px;

 }

Normally, you wouldn’t need to comment this much in your CSS. I’m just
showing you different ways to format comments. You can put comments
anywhere you want, just don’t break your CSS syntax.

Css for PrInt desIgners68

Let’s Write Some CSS
We’ve spent a lot of time building up to this moment. We’ve learned how
to write HTML that gives meaning and structure to your content. We’ve
learned the funny characters and syntax of HTML and CSS, breaking down
what seems to be very complex into bite-sized chunks. The rest of the way,
my friends, is all downhill.

When I start writing CSS for a Web site, it helps me to think in terms of the
types of CSS I’m writing. While there’s no technical distinction that sets this
forth, I’ve found it makes my job a lot easier to identify the categories of
look and feel that CSS controls:

 • Typography

 • Layout

 • Interaction (for instance, rollover effects)

Setting Type with CSS
Print designers and Web designers alike geek out over typography. It’s uni-
versal. Don’t act like you (or at least one of your designer friends) don’t
have a Helvetica coffee mug sitting on your desk right now.

Heck, the love of typography even rubs off on our families, who like to
impress us by naming the fonts they use in their email signatures and inter-
office memos at work. They try to make fun of Comic Sans with us, even if
their heart’s not in it.

As a print designer, typography will be by far one of the easiest things
for you to pick up when you start writing CSS by hand. So let’s dive right
in. With simple CSS, here are a few of the details we can control with
typography:

 • Font choice

 • Font size

 • Font weight

 • Color

 • Leading

 • Kerning

 • Case of the letters (all uppercase, all lowercase, and mixed case)

6 : sCulPtIng wIth Css : settIng tYPe wIth Css 69

Selecting a Font
You already know how you need a font installed on your computer for it to
work when you import an InDesign project. Typography on the Web works
the same way. The problem is, it’s not realistic or legal for us to prompt
users to install fonts on their computers.

That’s why there are “Web-safe” fonts like Verdana, Georgia, and Times
New Roman. These fonts are on most everyone’s computer already, so it’s a
safe bet that if we use CSS to specify that font, it’ll be there on the visitor’s
computer and the page will display as expected.

Just to be safe, though, we need to write our CSS in a way so that there’s
a backup font or font type, just in case someone doesn’t have the font we
specify first.

sPeCIfYIng sPeCIal fonts

Some recent innovations in technology and font licensing let us specify
fonts that aren’t permanently installed on a visitor’s computer. The font
we specify is installed temporarily on our visitor’s system so they can see
the design the way we want them to. Visit cssforprintdesigners.com/
web-typography to see what options are available and to learn more.

We specify a font by using the font-family property.

h2{

 font-family: helvetica, arial, sans-serif;

 }

We can specify any fonts we want in the string after the colon, as long as
a comma and a space separate each one. The visitor’s computer is going
to try and find the first font on the system. If it finds it, it uses it; if not, it
moves on to the next font in your list, and so on. Finally, you can specify a
font-type like serif or sans-serif for a worst-case fallback in case the user’s
computer doesn’t have any of the fonts you specify.

You will sometimes see a font-family declaration like this:

h2{

 font-family: “Helvetica Neue”, helvetica, arial, sans-serif;

 }

tIP As with all
CSS properties

we’ll be looking at, the
property must be typed
exactly as it’s shown. It
needs to remain lowercase,
the hyphen (if one exists)
is required, and there can
be no errant spaces.

Css for PrInt desIgners70

The only difference between this code and the preceding example is that
one of the fonts is surrounded by double tick marks. If the font you’re spec-
ifying has a space in the name, you need to put double tick marks around
it. Notice that the comma is outside the tick marks.

Selecting Units of Measurement
We can’t get much further without talking about units of measurement
on the Web. There are several units of measurement for Web designers to
select from, just like in print. You’re used to seeing inches, picas, and cen-
timeters. These units of measurement are literal measurements and are the
same no matter what ruler you’re using.

Units on the Web are a little different. You have several options for units of
measurement on the Web, from percentage to pixels to ems. Percentages
are just what they sound like, pixels are the size of the pixel on your user’s
screen, ems are a relative unit of measurement. For the most part, it’s safe
to use pixels, so I recommend that you start there.

the Powerful em

You have probably never heard of the em before, and that’s okay.

One em is equal to the current font size, so that makes it a relative unit
of measurement. It takes a little math to understand, so here’s a simple
example: If your font starts equivalent to 12px and you tell it to be 1.5em,
the font size becomes equivalent to 18px because 12 x 1.5 = 18.
The em can become very useful to you when you want things to scale
relatively. For example, you might want to set the width of an object to be
relative to its font size.

There is no need to learn how the em works now; just keep this unit of
measurement in your back pocket.

Changing Font Size
We set the size of a font online using the font-size property:

h2{

 font-family: “Helvetica Neue”, helvetica, arial, sans-serif;

 font-size: 18px;

 }

You can use any value with any unit of measurement here. You just need to
make sure your unit of measurement is connected to the number without
any spaces.

6 : sCulPtIng wIth Css : settIng tYPe wIth Css 71

Setting Font Weight
We use the font-weight property to set a font to be bold or regular:

h2{

 font-family: “Helvetica Neue”, helvetica, arial, sans-serif;

 font-size: 18px;

 font-weight: bold;

 }

Setting Font Style
We us the font-style property to set a font to be normal or italic:

h2{

 font-family: “Helvetica Neue”, helvetica, arial, sans-serif;

 font-size: 18px;

 font-weight: bold;

 font-style: italic;

 }

Tweaking the Color
You are a print designer, so you know all about color. Being the smart
person that you are, you probably know what hexadecimal values are—
you know, the funny-looking six-character definitions for Web colors with a
hash tag in front of them? These days we’re not constrained to using only
Web-safe colors, so any hexadecimal value is fair game (FIguRe 6.6).

fIgure 6.6
Photoshop’s Color Picker
makes it easy to find
hexadecimal (or RGB)
values.

Css for PrInt desIgners72

We set the color of type online using the color property:

h2{

 font-family: “Helvetica Neue”, helvetica, arial, sans-serif;

 font-size: 18px;

 font-weight: bold;

 font-style: italic;

 color: #333333;

 }

usIng hexadeCImal shorthand

As you get more familiar with CSS and look at other designers’ work, you will
occasionally see a shorter hexadecimal code like #333 or #DDD or #069.
That’s just a way to write the same thing with fewer characters. Here’s how
that works: If the first two, middle two, or last two characters of the full six-
character code match, you can shorten your value by writing the correspond-
ing character just once. In other words, #006699 becomes #069.

You can use other values besides hexadecimals. For example, you can use
RGB values, which are formatted like this: rgb(200, 54, 54). I use hexadeci-
mal values, but either one is fine if you have a preference.

Changing the Line Height
Using line-height with CSS is the same thing as adjusting the leading in
print design. That is to say, this property sets the vertical space that a line
of text takes up (FIguRe 6.7).

Leading and line-height are equal to the

vertical space taken up by a line of text.

line-height: 24px;

font-size: 18px;

We set the leading using the line-height property:

h2{

 font-family: “Helvetica Neue”, helvetica, arial, sans-serif;

 font-size: 18px;

 font-weight: bold;

 font-style: italic;

 color: #333;

 line-height: 24px;

}

Just like with font-size, you can use any value and unit of measurement here.
In our example, the value is 24 and the unit of measurement is pixels, or px.

fIgure 6.7 Don’t
forget to take line-height
into account when you’re
designing for the Web.

6 : sCulPtIng wIth Css : settIng tYPe wIth Css 73

Kerning with CSS
CSS doesn’t give you as much control as Adobe Illustrator or InDesign
when it comes to kerning, but it does give you a rough tool to use in the
letter-spacing property. I say “rough” because CSS kerns the entire string of
characters in the tag you specify, and because the units of measurement are
not nearly as precise, due to the limitations of the pixels on a screen.

We use the letter-spacing property to control the horizontal spacing
between each letter in a string of text:

h2{

 font-family: “Helvetica Neue”, helvetica, arial, sans-serif;

 font-size: 18px;

 font-weight: bold;

 font-style: italic;

 color: #333;

 font-size: 18px;

 line-height: 24px;

 letter-spacing: -1px;

 }

You can use any unit of measurement or value in this spot, including a neg-
ative value if you want to kern the letters in tighter on each other.

Setting ALL UPPERCASE, all
lowercase, and Mixed Case
CSS lets you change the case of the text in the HTML very easily with the
text-transform property:

h2{

 font-family: “Helvetica Neue”, helvetica, arial, sans-serif;

 font-size: 18px;

 font-weight: bold;

 font-style: italic;

 color: #333;

 font-size: 18px;

 line-height: 24px;

 letter-spacing: -1px;

 text-transform: uppercase;

 }

The values can to choose from are uppercase, capitalize, and lowercase. As
with most CSS, you can tell it to lose any inherited CSS by declaring none as
the value.

Css for PrInt desIgners74

don’t use all CaPs In Your html

If your site’s look and feel calls for an ALL-CAPS (or all uppercase) head-
line, there’s no need to type it that way in the HTML. Just write it so it’s
properly title cased. You can use CSS to transform the text later.

Laying Out a Web Page
When a print designer lays out a spread in a magazine, it means she’s
bringing in imagery, wrapping text, creating columns, making gutters, and
defining spaces with graphic treatments like borders. Web design is the
same way, but instead of doing it with a page layout program like InDesign,
we use CSS to push HTML tags around.

Wrapping Text with Floats
If you want an image to have text wrapping, you can use CSS to float it to
the left or right. Simply telling an image to float: right; or float: left;
will do the trick.

Also, you’ll want to make sure there’s some margin around the sides of the
image the text might bump up against. For an image that’s floated to the
left, that means adding margin to the right side (as well as, potentially, the
top and bottom). For an image that’s floating right, it means you’ll want to
add margin to the left side (FIguRe 6.8).

fIgure 6.8 When you
float an image to wrap
text around it, don’t forget
to add margin to the
image so the text doesn’t
butt up against it too
closely.

6 : sCulPtIng wIth Css : laYIng out a web Page 75

Here’s the HTML:

<p>

 Our beloved CEO has years of experience telling us what to do and not

 following through on his own commitments. He is a micromanager, but

 not an annoying one. We sort of like him for his antics in front of

 clients, and he is endearing when he drags in each morning at 11:00

 after a quick nine holes and a six pack of imported beer.

</p>

And here’s the CSS:

img{

 float: right;

 margin-left: 10px;

 margin-bottom: 10px;

 }

Floating for Layout
Most Web designs call for columns to be part of the layout, but CSS
doesn’t have a way to say, “I want to make a column.” So we use floats
instead. When we want to make columns in our layout, we use CSS to
“float” tags to the left or right just like we did with the image example in
the preceding section. Consider the following HTML (FIguRe 6.9):

<div class="wrap">

<div class="main">

</div>

<div class="side">

</div>

</div>

<div class=”wrap”>

 <div class=”main”>

 Make this the left column.

 </div>

 <div class=”side”>

 Make this the right column.

 </div>

</div>

fIgure 6.9 This is
what our HTML looks like
before we write any CSS.

Css for PrInt desIgners76

Creating columns is a three-step process.

1. Set the width. If you don’t set a width for the boxes, floating usually
won’t do any good—and besides, what good is a column that goes the
entire width of a page (FIguRe 6.10)?

<div class="wrap">

<div class="main">

</div>

<div class="side">

</div>

</div>

.wrap{

 width: 960px;

 }

 .main{

 width: 760px;

 }

 .side{

 width: 200px;

 }

2. Set the floats. We use the float property to tell the <div> tags to float
left and right (FIguRe 6.11):

<div class="wrap">

<div class="main">

</div>

<div class="side">

</div>

</div>

.wrap{

 width: 960px;

 }

 .main{

 width: 760px;

fIgure 6.10 This is
what happens when we
set a width for each of the
columns we’re about to
create.

fIgure 6.11 When
we float children tags, the
parent tag collapses on
itself. Don’t ask why, it
just does.

6 : sCulPtIng wIth Css : laYIng out a web Page 77

 float: left;

 }

 .side{

 width: 200px;

 float: right;

 }

Notice that this step causes something odd to happen. The parent
container <div class=”wrap”> is not surrounding the nested boxes any
more—it just collapses on itself. Since 99.9 percent of the time you will
want the parent box to encapsulate its children, we need to know how
to fix this.

3. Clear your floats. To fix the problem introduced in step 2, we have to
do what’s called clearing floats (FIguRe 6.12). The simplest method
that works most of the time is to set the overflow property of the parent
element to hidden like this:

<div class="wrap">

<div class="main">

</div>

<div class="side">

</div>

</div>

.wrap{

 width: 960px;

 overflow: hidden;

 }

 .main{

 width: 760px;

 float: left;

 }

 .side{

 width: 200px;

 float: right;

 }

I wish I had a good reason to share with you why we have to clear
floats, but there’s not one—it’s just something we have to live with.

fIgure 6.12 Once
we clear our floats, the
parent tag encapsulates its
children once more.

tIP There
are many ways

to clear floats; I have
described just one
technique. To learn
more, check out
cssforprintdesigners.com/
clearing-floats.

Css for PrInt desIgners78

Getting Fancy with Floats
If you have a series of tags and you float them in the same direction, they
will float beside each other (FIguRe 6.13). This specification would be use-
ful if you wanted to make a three-column layout, for example.

Spacing with Border, Padding, and Margin
When we specify the border, padding, or margin property in our CSS, it adds
to the width of a tag, which causes us to have to use math when we design,
which can be a hassle. It’s easy to tell when a beginner is responsible for the
PSD I’m coding because the border, padding, and margin properties will be
irregular and inconsistent.

Adding this spacing drives CSS coders crazy, and it will soon drive you
crazy as well. When you want to put space between objects in your designs,
everything is much simpler when you use round numbers.

Let’s say you have a two-column layout with an overall width of 960 pixels
(FIguRe 6.14). The main column needs to add up to 760 pixels, and the
sidebar column needs to total 200 pixels. That’s easy, because 760 + 200 =
960. It will fit.

960px

200px760px

fIgure 6.14
The children both add
up to 960 pixels, so they
will fit inside a 960-pixel
parent tag.

But add any amount of width to either of the interior columns with a bor-
der, padding, or margin property, and your layout will break because the total
width of the interior columns is greater than the parent (FIguRe 6.15).
If you add a 10-pixel border to the sidebar, the total width of the sidebar
becomes 210 pixels. And 970 total pixels will not fit inside 960 pixels.

tIP In print
design, we refer

to the space between col-
umns of text as gutters. In
Web design, we typically
create this type of spacing
with padding or margin.

fIgure 6.13 If you
float three tags to the left,
you can make a simple
three-column layout.

tIP It’s very
common for Web

designers to create hori-
zontal navigation by float-
ing a series of tags to
the left.

tIP When you
float a block-level

element, it automatically
starts acting like an inline
element, so it will take up
as little horizontal space
as possible.

6 : sCulPtIng wIth Css : laYIng out a web Page 79

960px

210px

760px

fIgure 6.15 When
you add any amount of
width, the children add up
to over 960 pixels, so they
don’t fit inside their parent
tag any more.

When a floated object doesn’t have room to float up next to another
object, it just drops down to the next line. Take a look at how the overall
width of a simple object changes when you add border, padding, and margin
to it in increments of 10 pixels (FIguRe 6.16). Then try to imagine how
much fun this would be if you had a three- or four-column layout with 2 pix-
els of border here, 6 pixels of margin there, and so on. It can get ugly real fast.

width: 500px;

width: 500px; border: 10px;

width: 500px; border: 10px; padding: 10px;

width: 500px; border: 10px; margin: 10px;

width: 500px; border: 10px; padding: 10px; margin: 10px;

There are two key takeaways here:

 • Keep it simple. We’re all designers here, not mathematicians.

 • If something seems to be pushed down below where it belongs (as
in Figure 6.15), check the combined width by adding up the width
declared for your object, as well as the width added by border, padding,
and margin on the left and right sides of your tag. Odds are, you have
tried to squish too much width into too small a space.

fIgure 6.16 Border,
padding, and margin make
us do math. Which sucks.

Css for PrInt desIgners80

Setting Borders
We set borders for a tag using the border property. Here’s an example:

nav{

 border: 5px solid #000;

 }

This CSS will set a solid border of 5 pixels on all four sides of the <nav> tag
(FIguRe 6.17).

If you prefer to have more control over your borders than setting the border
to be the same on all sides, you also have the following properties, starting
clockwise from the top (keep this clockwise order in mind; you’re going to
learn something fun in a moment): border-top, border-right, border-bottom,
and border-left. If you leave one of these out, your element won’t have a
border on that side.

If you want a thick dark line at the bottom of your navigation area and a
thin gray line at the top of your navigation area, but nothing on either side
(FIguRe 6.18), you might write your CSS like this:

nav{

 border-bottom: 5px solid #000;

 border-top: 1px solid #DDD;

 }

Notice we’re putting three separate values in the value area of the CSS rule:

 • The first is the thickness, or width, of the border (in our example 5 pixels
and 1 pixel, respectively).

 • The second is the style of border (solid).

 • The third is the color (#000 and #DDD).

You’ll want to leave these values in this order and separate each with a
single space, keeping them all on the same line.

fIgure 6.17 This tag
has 5 pixels of a solid
black border on all sides.

fIgure 6.18 This tag
has 5 pixels of a solid
black border on the
bottom and 1 pixel of a
solid light gray border on
the top. It doesn’t have
any border on either the
left or right side.

6 : sCulPtIng wIth Css : laYIng out a web Page 81

Setting the Style of Borders
If instead of a solid border, you wanted a dotted border, or a dashed border,
or a double border, you can create that as well (FIguRe 6.19):

nav{

 border-bottom: 5px solid #000;

 border-top: 1px dotted #DDD;

 }

more border stYles

There are a lot more border styles available to use, though I rarely use
anything other than solid or dotted. As with the rest of this book, I’m cov-
ering only the most-used stuff and giving you what you need to find the
rest online. Just Google “CSS border-style” if you want the full list.

Inheriting Border Color
If you don’t declare a color, the element will inherit the color property
set by its parent tag. You’ll learn more about this phenomenon (called,
smartly, inheritance) in a later chapter.

Adding Padding
We use the padding property to add space that butts up against the border
on the inside of a tag.

As with the border property, you can set the padding for all four sides of a
tag, like this:

nav{

 border-bottom: 5px solid #000;

 border-top: 1px dotted #DDD;

 padding: 20px;

 }

Or you can go crazy and set a different padding for each of the four sides
with the following properties (notice they work just like the border as dis-
cussed earlier, clockwise starting with the top): padding-top, padding-right,
padding-bottom, and padding-left.

fIgure 6.19 We’ve
changed the border on the
top from solid to dotted.

Css for PrInt desIgners82

nav{

 border-bottom: 5px solid #000;

 border-top: 1px dotted #DDD;

 padding-top: 20px;

 padding-bottom: 15px;

 }

Since the padding is on the inside of the border, if you set a background
color for the tag, it will fill in behind the padding all the way up against the
border (FIguRe 6.20).

nav{

 border-bottom: 5px solid #000;

 border-top: 1px dotted #DDD;

 padding-top: 20px;

 padding-bottom: 15px;

 background-color: #EEE;

 }

Setting Margins
The margin property is similar to padding, in that it also butts up against the
border. The difference is that the margin is the space on the outside of the
border, not the inside. When you set a background color, it doesn’t fill in
behind the margin because it’s outside the border.

You set margin the exact same way you do padding—that is, you can set the
margin on all four sides with the margin property, or you can set the mar-
gins individually for each side with margin-top, margin-right, margin-bottom,
and margin-left.

nav{

 border-bottom: 5px solid #000;

 border-top: 1px dotted #DDD;

 padding-top: 20px;

 padding-bottom: 15px;

 background-color: #EEE;

 margin-top: 10px;

 margin-right: 20px;

fIgure 6.20 We’ve
added some padding
so it gets taller, and
we’ve added a gray
background-color.

6 : sCulPtIng wIth Css : laYIng out a web Page 83

 margin-bottom: 30px;

 margin-left: 40px;

 }

As you can see, this coding is all very simple, but it takes a lot of typing. If
only there were a way to shorten this CSS rule a little bit. But wait, there is!

Using CSS Shorthand for Padding and Margins
When you start writing CSS as we’ve been doing here, it can become very
wordy. CSS shorthand gives us a way to accomplish the same thing with
fewer keystrokes.

The padding and margin properties share the same shorthand, so we can kill
two birds with one stone. Remember how I told you earlier to pay attention
to the fact that we were starting the padding and margin properties at the
top and working our way clockwise?

With padding, starting at the top and going clockwise for each side of the
tag, we have padding-top, padding-right, padding-bottom, and padding-left.
And you remember margin works the same way.

Take a look at this CSS:

div{

 padding-top: 10px;

 padding-right: 20px;

 padding-bottom: 30px;

 padding-left: 40px;

 }

CSS shorthand lets us write that CSS like this instead:

div{

 padding: 10px 20px 30px 40px;

 }

You just start typing the first measurement from the top and work your way
around the tag clockwise. We can take this a step further if your top and
bottom match, as well as your left and right sides. For example, you might
want to write something like this:

div{

 padding-top: 0;

 padding-right: 20px;

 padding-bottom: 0;

 padding-left: 20px;

 }

tIP I’ve actually
already given you

the shorthand for border.
I didn’t bother telling you
earlier though, because the
longhand for border is
harder to memorize than
the shorthand, and I don’t
see the value in learning
the hard way when you
can learn the easy way.

tIP Notice that
the value 0

doesn’t need a unit of
measurement because zero
means zero no matter
what unit it’s in.

Css for PrInt desIgners84

Notice how the top and bottom are both 0 and the left and right are both
20px. You could write this shorthand:

div{

 padding: 0 20px;

 }

This CSS zeroes out the padding for the top and bottom and sets the left
and right sides both to 20 pixels.

Using Margins to Center Tags
If you want to center your layout in Web design, you do that by setting the
margin on the right and left of a tag to auto and declaring a width for the
tag. There are several ways to do this:

margin: 10px auto 5px auto;

margin: 0 auto;

margin: auto;

Removing Default Spacing with a CSS Reset
All this math can get pretty frustrating under tight deadlines. Eventually
you’re going to add space to something and the math won’t add up. You’ll
end up scratching your head, wondering what’s wrong. This is a good time
to think about CSS resets.

In Chapter 5, you learned that when you write HTML without any CSS, it
reads like a Word doc. That’s because every browser applies default CSS to
HTML files so they’re readable—there’s already CSS telling your Web page
to look that way before you ever write any CSS. This default CSS controls
the size of your heading tags and paragraph text, the spacing above and
below your headings, paragraphs and lists, and much more.

The problem is every browser disagrees a little bit about exactly how much
space and what font sizes to use. You can override the default CSS by writ-
ing your own CSS, but that can become laborious. To get around this, some
pretty smart CSS developers came up with the idea of resetting the default
CSS from browsers by overriding it with a reset style sheet (FIguRe 6.21)
that they reuse on every project.

I’ve compiled some additional pointers and a list of CSS resets you can use
in your own projects at cssforprintdesigners.com/css-reset.

With a CSS reset like this, every browser is instructed to agree on how much
spacing there should be around each tag, how big each font should be, and a
few other things. What you need to know is this: I recommend you start your
projects with a CSS reset because it will make your math work much better.

6 : sCulPtIng wIth Css : desIgnIng for InteraCtIon 85

fIgure 6.21 With a CSS reset, default spacing and font sizes are replaced with
consistent font sizes and spacing.

Designing for Interaction
A lot of folks out there think print designers don’t really understand interac-
tivity, but that’s just not true. I know from being a print designer and from
talking with print designers all over the country. As a matter of fact, I believe
print designers understand interaction better than a lot of Web designers.

Think about a fancy fold brochure. Your “users” literally interact with
the piece, discovering its contents through exploration, uncovering more
and more the longer they engage with it. Environmental graphics are the
most interactive of all—customers literally walk around them, interacting
with something from all angles, taking in the message based on the way
it’s designed.

So yes, print designers get interactivity.

But often a print designer who has designed a Web site creates interactive
features like hover effects and drop-down menus that end up feeling awkward.
I think the reason for this is more a lack of understanding of the tools of
interactivity on the Web than it is a lack of understanding of the principles
of interaction. As print designers, we’re used to creating interactions in the
physical world—placement matters, how it feels in your hands matters.

When you’re designing for interaction on a Web site, the screen and the
mouse are the tools people use to explore things, so we need to find new
ways to achieve interaction so it feels natural, physical, and responsive.

Css for PrInt desIgners86

There aren’t physical pages to turn on the Internet—just metaphors for
pages. So Web designers have to come up with ways to let users of a Web
site know that something is hidden behind an interaction.

We do this two ways:

 • First, we make things look clickable. That’s why buttons on Web sites often
look like the buttons we see in real life: They often look slightly raised with a
sense of depth, and their appearance changes when they’re clicked.

 • Second, before something is clicked, Web designers need to give users
some indication that the element can be clicked. This helps users under-
stand that they should try clicking it to see what happens.

Using Interactive CSS Commands
Before you can begin thinking about adding interactivity to your Web site,
you need to know what tools you have at your disposal. CSS provides a
simple way to tell the objects on our Web pages how to behave when the
user rolls over them and clicks them with the mouse.

You learned above about creating selectors to target your HTML tags and
change their appearance. Now, we will add a final layer to our CSS selec-
tors, for interactivity.

It’s as simple as adding a colon to a selector and appending a word to it.
There are just a few words to pick from, so this is pretty simple. TabLe 6.3
shows you what your options are, and what they do.

table 6.3 Interactive CSS Commands

CSS eNgLISh

a:hover Use this command to tell your CSS what something should look like
when a user rolls over it with the mouse. It’s useful for letting your users
know when they can interact with something.

a:active Use this command to tell your CSS what something should look like
while your user is clicking a link with the mouse. It’s useful for making
buttons or links look like they’re being pressed down.

a:visited Use this command to tell your CSS what something should look like
after a user has clicked it. It’s useful in long lists of links where you want
your users to know what links they have already clicked.

In Table 6.3 you will notice I am using the <a> tag as an example. You can
use these interactive CSS commands for other tags, class attributes, and
id attributes as well. The problem is that not all browsers recognize these
commands on all tags, but they all recognize them on <a> tags, so you’re
OK sticking with <a> tags for now.

tIP You don’t
have to use each

of these interactive CSS
commands every time you
want to design interaction.
You can pick and choose
which ones to use. For
example, in main naviga-
tion I usually don’t bother
with the :visited state.

6 : sCulPtIng wIth Css : desIgnIng for InteraCtIon 87

more VoCabularY You don’t need to memorIze

These interactive CSS commands have a complicated sounding label to
describe them. They’re known as pseudo-selectors. I’m not telling you
this because I want you to learn how to pronounce it or because you need
to memorize this term to code a Web site. I bring it up because as you
become more mature in your Web coding, you’ll eventually come across it
in more advanced online tutorials and Web design blogs, and I want you
to know what it is, that’s all.

Let’s take a look at a couple examples of how to use these interactive CSS
commands.

In this example, we’re telling all <a> tags to start out set to blue.

a{

 color: blue;

 }

When the user rolls over the link, let’s change color to black to give the user
an indication that it’s something that can be clicked.

a{

 color: blue;

 }

a:hover{

 color: black;

 }

Now, while the user is pressing the mouse button on the link, let’s reverse
the text out by making the background color change to black and the color
of the text change to white. This change confirms for the user that he or she
has hit the target and that something is about to happen.

a{

 color: blue;

 }

a:hover{

 color: black;

 }

a:active{

 background-color: black;

 color: white;

 }

Css for PrInt desIgners88

And finally, after the user has clicked the link, let’s turn it gray to give the
user an indication that he or she has already been there. Next time the user
returns to this page and sees that link, it’ll be gray.

a{

 color: blue;

 }

a:hover{

 color: black;

 }

a:active{

 background-color: black;

 color: white;

 }

a:visited{

 color: gray;

 }

Let’s Make a Web Page Together
Believe it or not, you have learned enough CSS just following along in this
chapter to create a simple Web page layout (FIguRe 6.22). By now the
funny characters should not be as confusing. They may still take a little
more time to read than plain English, and that’s fine. Read through the
code carefully, especially the comments in the CSS.

Here’s the HTML for a simple Web page:

<header>

 <nav>

fIgure 6.22
This shows a simple two-
column layout you can
make with everything
you have learned in this
chapter.

6 : sCulPtIng wIth Css : let’s maKe a web Page together 89

 Home

 About

 Services

 Portfolio

 Contact

 </nav>

</header>

<div id=”content”>

 <div class=”main”>

 <h1>

 A Very Important Headline Goes Here

 </h1>

 <p>

 Page content goes here.

 </p>

 </div>

 <div class=”side”>

 <h2>

 A Less Important Headline Goes Over Here

 </h2>

 <p>

 The sidebar content goes here.

 </p>

 </div>

</div>

<footer>

 <p>

 Legalese

 </p>

</footer>

Css for PrInt desIgners90

And here’s the CSS:

header{

 background-color: #BBB; /* medium gray color */

 width: 900px; /* we want the overall width to be 960, so we’re going to

 ➥ do some math with border and padding next */

 padding: 20px; /* 20 on all four sides means we are adding 40 to the

 ➥ overall width. 900 + 40 = 940 */

 border: 10px solid; /* this adds 20 total to the overall width.

 ➥ 940 + 20 = 960 */

 margin: auto; /* centers header */

 font-family: “Helvetica Neue”, helvetica, arial, sans-serif;

 ➥ /* selecting a font for header and everything inside it */

 font-size: 12px;

 line-height: 20px;

 color: #444; /* dark gray color for text and border */

 overflow: hidden; /* planning ahead to clear floats */

 }

 header img{

 float: left;

 }

 nav ul{

 overflow: hidden; /* planning ahead to clear floats */

 padding: 0;

 float: right;

 }

 nav li{

 float: left; /* float every tag to the left, so they stack

 ➥ in order */

 }

 nav a{

 display: block; /* this is required for the padding on the next

 ➥ line to work */

 padding: 5px; /* put some spacing around the links */

 margin-right: 1px; /* put a pixel of space between each link */

 background-color: #DDD; /* light gray background color */

 color: #444; /* dark gray text color */

 text-decoration: none; /* gets rid of the default underline

 ➥ on links */

 }

6 : sCulPtIng wIth Css : let’s maKe a web Page together 91

 nav a:hover{

 background-color: #FFF; /* white */

 color: #000; /* black */

 }

 nav a:active{

 margin-top: 1px; /* nudges down the nav item by one pixel when

 ➥ it is pressed */

 }

#content{

 overflow: hidden; /* again, planning ahead to clear floats */

 width: 960px; /* matches the width of header above */

 margin: auto; /* centers #content */

 font-family: “Helvetica Neue”, helvetica, arial, sans-serif; /*

 ➥ selecting a font for #content and everything inside it */

 font-size: 12px;

 line-height: 20px;

 color: #444; /* dark gray color for text and border */

 }

 .main{

 width: 740px;

 padding-right: 20px; /* 740 + 20 = 760 */

 float: left;

 }

 h1{

 font-size: 30px; /* big headline */

 font-weight: normal; /* headlines come bold by default, so we set

 ➥ it to normal if we want */

 }

 .side{

 width: 160px;

 padding: 20px; /* 760 + 160 + 40 = 960 so it fits! */

 float: right;

 background-color: #DDD;

 }

 h2{

 font-size: 12px;

 text-transform: uppercase;

 letter-spacing: 1px;

 }

Css for PrInt desIgners92

footer{

 border-top:1px dotted #DDD; /* subtly separate footer from #content

 ➥ visually */

 width: 960px; /* matches the width of header and #content */

 margin: auto; /* centers footer */

 font-family: “Helvetica Neue”, helvetica, arial, sans-serif; /*

 ➥ selecting a font for footer and everything inside it */

 font-size: 12px;

 line-height: 20px;

 color: #444; /* dark gray color for text and border */

 }

You Already Know a Lot
You just looked at 90 percent of a completed Web design project. It’s not
pretty, and the content is just placeholder text, but you did it! TabLe 6.4
provides a list of all the CSS we just learned.

table 6.4 CSS Properties

CSS eNgLISh

font-family This is how we pick our font.

font-size This is how we pick our font size.

font-weight This is how we choose bold or normal for a font.

font-style This is how we choose italic or regular for a font.

color This is how we pick the color.

text-decoration This is how we control underlines.

width This is how we set the width of something.

border This is how we set the border for something.

padding The space on the inside of a border.

margin The space on the outside of a border.

background-color This is how we pick the background color.

overflow We set this to auto to clear floats.

float This is how we wrap text around images, make columns, and
create horizontal navigation.

The last 10 percent, discussed over the next few chapters, is where you get
to have some fun, putting the finishing touches on your work of art now
that you have the overall structure mocked up.

Play
Video

7
Designing
with CSS

How to Make Your Layouts Pop
with Images and CSS3

oNe ThINg ThaT always impresses me when I watch print

designers work (or any designer for that matter) is how every

single one of us uses our design tools in different ways to achieve

our creative vision.

When you take any powerful tool and put it in the hands of

someone with a creative mind, that person will find new ways

to do things. That’s the wonderful thing about tools—when

they’re fully comprehended, there are no limits to what can be

accomplished. All it takes is a little imagination.

CSS is one of those powerful tools. In the previous chapter, we

learned how to create a layout, control typography, and intro-

duce interactivity to your Web designs. In this chapter, we’re

going to learn how to make your layouts beautiful.

Css for PrInt desIgners94

Using Background Images
One of the easiest ways to create a visually interesting, on-brand page is to
bring in graphics that were created in a program like Photoshop.

brIngIng In deCoratIVe Images wIth Css

In previous chapters, I introduced you to the tag in HTML. That tag
is meant to bring in imagery that is considered content, like a headshot or
a logo. In this chapter, we’re going to be bringing in images with CSS, not
HTML. So, if you want to bring in an image for decoration, like a repeat-
ing pattern in the background, or a grungy texture to serve as the base
layer for your page, we’ll do it with CSS using background images, not
the tag.

Rather than using the tag with HTML to bring in a decorative image
or pattern, we use the CSS property background-image in combination
with a few other properties like background-repeat, background-color, and
background-position:

.content{

 background-color: #DDD;

 background-image: url(i/tile.gif);

 background-repeat: repeat-x;

 background-position: right bottom;

 }

Why Define a Background Color?
You already know about the background-color property from the last chapter—
plus it’s pretty self-explanatory.

.content{

 background-color: #DDD;

 background-image: url(i/tile.gif);

 background-repeat: repeat-x;

 background-position: right bottom;

 }

A question I often get in my workshops is, “Why do I need to define a
background color if it’s going to be covered up by a big or repeating back-
ground image?”

It’s really a great question because it brings up a good point about making
the Web a friendlier place for everyone. As Web designers, we’re designing

7 : desIgnIng wIth Css : usIng baCKground Images 95

for flexible content, different-sized screens, and users all over the globe with
different preferences and download speeds. Therefore, we need to design
for the worst-case scenario.

The worst-case scenario when we use images online is that the image
doesn’t load. This could happen for a number of reasons. Perhaps the
Internet tubes are clogged and the image takes a long time to download.
Or, perhaps your user is viewing your site from a place where Internet
access is really slow, such as a third-world country or a lake cabin way out
in the woods.

Before you go writing this off as an unlikely scenario, think of users who are
in these areas to vacation, do mission work, or fight wars. It’s more com-
mon than you might think.

For these users who have to wait a long time for the background image, or
for whom the image doesn’t load at all, we should define a background color
to ensure that any text in that tag remains readable. A common scenario is
when the designer puts white text on top of a dark background image. If the
image doesn’t load, or if it loads slowly, the white text will not be visible on
the default white background color. To fix this, we set a dark background
color to ensure the text is readable without images.

If you don’t fix this, some of your users may not be able to read the text.
I encourage you always to design for the worst-case scenario—being able to
design something to be viewed in different ways by different users is what
makes Web design so rewarding. And it’s always appreciated by these users,
who may not know how much effort went into the design, but who will
remember that this Web site just works.

Specifying Paths for Background Images
In HTML, you learned how to use the src attribute to specify the path to an
image. CSS has its own special way to call images, but paths work exactly
the same way in CSS as they do in HTML:

.content{

 background-color: #DDD;

 background-image: url(i/tile.gif);

 background-repeat: repeat-x;

 background-position: right bottom;

 }

We’re looking at two things here: the syntax we need to learn and the
image path, which you’ll remember from Chapter 3.

Css for PrInt desIgners96

Let’s start with the syntax. Instead of using the src attribute as in HTML,
we write url(). The string url(with the opening parenthesis tells us we’re
about to set the path for an image. The closing parenthesis tells us we’re
done writing the image path:

url(i/tile.gif)

Now for the path. In Chapter 3, we learned how to write paths by navigat-
ing folders to locate the file. The path in the preceding example is a relative
path (you can use absolute paths in CSS as well, but I recommend sticking
with relative paths as a best practice) because it’s relative to the location of
the CSS file:

url(i/tile.gif)

In this example, I have named my CSS images folder i, which is an abbre-
viation I made up for images. Why did I do this? Two reasons. First, it’s
easier and faster to type i/ than it is to type images/. Second, this approach
keeps the file size down—in a very large CSS file, if I write i/ instead of
images/ there are fewer characters and the file size ends up being smaller.

In the preceding example, let’s imagine we have the following folder
structure:

 • index.html (HTML file)

 • css (folder)

 • base.css (CSS file)

 • i (folder)

 • tile.gif (image file)

Since the CSS file base.css is in the css folder, and the i folder is in the css
folder, we just type i/tile.gif to get to tile.gif inside the css/i/ folder.

Repeating Background Images
You have been around the Internet long enough to know what a repeating
background image looks like (FIguRe 7.1). There’s no denying that this
feature of CSS has been way overused.

But being the tasteful designer that you are, you wouldn’t use this sort of
image, would you?

All kidding aside, a repeating background image, when used right, can have
a nice effect and add a layer of depth and texture to your design that makes
it feel a lot more finished and professional.

tIP When you
look at someone

else’s pre-existing CSS you
may notice them using tick
marks in their path name,
like this: url(‘i/tile.gif’).
That’s fine, but the marks
aren’t needed. I don’t type
them because they slow
me down.

tIP The image
path here needs

to be relative to the CSS
file (base.css) that’s call-
ing it, not the HTML file.

7 : desIgnIng wIth Css : usIng baCKground Images 97

fIgure 7.1
Background images are
nothing new as far as the
Internet is concerned.

Our example repeats the background image along the X-axis, but CSS gives
us other options.

.content{

 background-color: #DDD;

 background-image: url(i/tile.gif);

 background-repeat: repeat-x;

 background-position: right bottom;

 }

TabLe 7.1 lists the ways we can repeat a background image with the
background-repeat property.

table 7.1 Values for background-repeat

CSS eNgLISh

repeat This tells the image to repeat up and down, left and right,
in all directions.

no-repeat This tells the image not to repeat. It’s useful if you’re using
a single, larger image or if you are using a single image as a
decoration, like a ghosted logo in the background.

repeat-x This tells the image to repeat on the X-axis.

repeat-y This tells the image to repeat on the, you guessed it, Y-axis.

And I know, I know. X- and Y-axis is hard to remember—so I came up with a
little graphic that helps me keep them straight (FIguRe 7.2).

fIgure 7.2
I remember the Y-axis goes
up and down because of
the way the letter Y lines
up vertically on this graph.

Css for PrInt desIgners98

Positioning Background Images
When you bring in a background image with CSS, the browser starts it at
the left top corner of the tag you tell it to be in. For an image that’s sup-
posed to repeat in all directions, this is fine—it will repeat in every direction
and fill up the container, regardless of the container’s size.

But if you want your image to be placed in a specific place, or to repeat
only in one direction or the other, you need to tell the browser where you
want the image to start.

.content{

 background-color: #DDD;

 background-image: url(i/tile.gif);

 background-repeat: repeat-x;

 background-position: right bottom;

 }

The background-position property lets us use pixels, percentages, and key-
words to control the starting point for our images.

Note that order matters with background-position. As you can see in our example,
the background-position property accepts two values. The first value is the horizontal
(left-right) position and the second value is the vertical (top-bottom) position.

Using Keywords for Position
You can position a background image using plain English. Here’s an exam-
ple of what the code might look like:

.content{

 background-position: right bottom;

 }

Keywords are a nice feature of CSS that let us specify what we want in plain
English. They’re easy to write and easy to read. Top means top, bottom
means bottom, left means left, right means right, and center means center
(whether horizontal or vertical).

TabLe 7.2 lists our options for positioning a background image horizontally.

table 7.2 Horizontal Positioning with Keywords

CSS eNgLISh

left This starts the image on the left side of the tag.

center This centers the image horizontally.

right This starts the image on the right side of the tag.

tIP When you
use keywords, your

user’s browser is smart
enough to know what the
keywords mean regardless
of the order in which you
write them. Just be careful
when declaring center,
because center horizontally
and center vertically are two
different things.

7 : desIgnIng wIth Css : usIng baCKground Images 99

TabLe 7.3 lists our options for positioning a background image vertically.

table 7.3 Vertical Positioning with Keywords

CSS eNgLISh

top This puts the image at the top of the tag.

center This centers the image vertically.

bottom This starts the image at the bottom of the tag.

Using Pixels for Position
You can precisely position a background image by counting in pixels from
the left top corner of the tag specified. Here’s an example of what your
code might look like:

.content{

 background-position: 100px 200px;

 }

We already know that the first value is the horizontal position and the sec-
ond value is the vertical position. So it’s easy to see that this background
image would be placed 100 pixels from the left and 200 pixels from the top
of the tag specified (FIguRe 7.3).

fIgure 7.3
This background image
has been positioned 100
pixels over from the left
and 200 pixels down from
the top.

tIP If you leave
out a keyword,

the browser assumes you
meant to write center for
the other axis. So typing
background-position:

right; is the same as
typing background-position:
right center; in your
declaration. And typing
background-position:

bottom; is the same as
typing background-position:
center bottom; in your
declaration.

Css for PrInt desIgners100

CroPPIng baCKground Images

You can use a negative pixel value to specify the position of a background
image. Whatever “hangs out” of the specified tag will not show, similar to
the way that in InDesign, after you import an image, you can crop out the
parts that you don’t want to use. This cropping is something we’ll make good use
of later in this chapter, so be ready!

Using Percentages for Position
Percentages provide a flexible way to position a background image relative
to the top left of the tag specified. Here’s an example of what the code
might look like:

.content{

 background-position: 30% 70%;

 }

Positioning a background image with percentages can be fun, if a little con-
fusing at first.

The simplest way to understand positioning with percentages is to calibrate
our brains to the way percentages work in this context. If you position a
background-image with 0% 0%, it’s the same as starting in the left top cor-
ner. If you position a background image with 100% 100%, it’s the same as
starting at the right bottom corner. And 50% 50% is the same as centering
the image horizontally and vertically.

You can use any value you want for the percentages and they will be posi-
tioned accordingly.

Using Shorthand for Background Images
I almost always use the shorthand background property for controlling anything
that has to do with the background appearance. The shorthand looks like this.

background: #DDD url(i/tile.gif) repeat-x 10px 40px;

The shorthand saves a lot of time typing out long, redundant CSS properties.
The background property accepts multiple values, each separated by a space.

 • The first value is the background-color of the tag that’s calling the
background-image.

 • The second value is the path to the background image.

7 : desIgnIng wIth Css : CroPPIng Images wIth Css 101

 • The third value tells whether or not the background image should repeat
and, if so, in which direction.

 • The fourth value positions the background image horizontally, from the
left side of the tag.

 • The fifth value positions the background image vertically, from the top
of the tag.

Cropping Images with CSS
Earlier I mentioned that we’d learn how to make good use of our ability to
crop images with CSS. Let’s say you’re laying out a poster with InDesign
and you don’t want to see part of an image—you just crop the image you’ve
imported to get rid of the parts you don’t want to see (FIguRe 7.4).

In the Web design world, we call these big images with parts cropped out sprites.

fIgure 7.4 Cropping
images with InDesign is a
cinch.

Css for PrInt desIgners102

Why Would You Do This?
You might wonder why we’d want to import an image and then display only
part of it, because it means your users are downloading a file that’s bigger
than it needs to be. I’m glad you care so much about performance; you will
do well as a Web designer.

But if you want to use the other part of that image later, this approach can
come in handy.

In addition, each time the server requests a new image it slows the down-
load speed. Downloading one large file is usually quicker than downloading
gobs and gobs of tiny files, since each file is a hit on the server.

Creating Fancy Rollovers with Images
We create sprites by making an image in Photoshop (or whatever graphic-
editing program you want to use) with multiple graphics on a larger canvas
(FIguRe 7.5).

Then we use the background-position property to crop the parts of the
graphic that we don’t want to see (FIguRe 7.6).

Let’s say you want to design a download button that’s monochromatic in
its default state, but changes to orange when you hover over it. You would
use the :hover pseudo-selector we learned about in Chapter 6 to change
the background-position to reveal the color version of the icon and hide the
monochromatic version.

Let me say that without the technical words: To create rollovers with CSS,
all you need to do is change the position of an image when you roll over it
to show the rollover state and hide the default state. Let’s do it.

fIgure 7.5 This is
a sprite for a navigation
menu. It shows a default
state, rollover state, and
pressed state.

fIgure 7.6
By positioning the
background image, we’re
able to show selective
parts of a sprite. Here
we’re showing a pressed
state for the Partners
menu item.

7 : desIgnIng wIth Css : CroPPIng Images wIth Css 103

For this example, let’s make a simple download link for a resume
(FIguRe 7.7).

Download Download

1. Write the HTML and create the image (FIguRe 7.8).

<div class=”download”>

 Download

</div>

2. Use what you learned above to bring in the background image
(FIguRe 7.9).

Download
fIgure 7.9
Before you style the link,
the text overlays the
background image.

.download a{

 background: url(icon-download.gif) no-repeat right top;

 }

Notice how we left out the values for background-color. Doing this
makes it transparent. So what we wrote is the same as if we had
written this:

.download a{

 background: transparent url(icon-download.gif) no-repeat right top;

 }

3. Notice how part of the download icon is sitting behind the link. This is
no good, so add some padding to the right side of the download link
to make room for the icon to be visible. Also add some padding all
the way around the link, and style the text so it starts to look more like
what we want (FIguRe 7.10).

Download
fIgure 7.10
With some padding and
text treatments, this looks
like a nice link.

fIgure 7.7
The default state on the
left changes to orange
when a user rolls over the
links with her mouse.

fIgure 7.8 A small
sprite with the gray and
orange graphics for the
rollover effect.

Css for PrInt desIgners104

.download a{

 background: url(icon-download.gif) no-repeat right top;

 padding: 5px 20px 5px 5px;

 font-size: 12px;

 font-family: “Helvitica Neue”, helvetica, arial, sans-serif;

 text-decoration: none;

 color: #444; /* dark gray text color */

 }

4. The bottom part of the graphic we brought in is not visible because
it’s hanging outside beyond the edges of the tag. Let’s switch out the
graphic on :hover to reveal the rollover state of the graphic and make
the default state hang outside of the tag (FIguRe 7.11). While we’re
at it, let’s also give the link text a matching orange color on :hover.

Download Download

Since the only characteristic of the background image we’re changing
is the background position, we don’t need to use the shorthand to
specify everything again. We’ll just use the background-position property
to override that one part of our previous statement.

.download a{

 background: url(icon-download.gif) no-repeat right top;

 padding: 5px 20px 5px 5px;

 font-size: 12px;

 font-family: “Helvitica Neue”, helvetica, arial, sans-serif;

 text-decoration: none;

 color: #444; /* dark gray text color */

 }

.download a:hover{

 background-position: right bottom;

 color: #E56121;

 }

tIP I make it my
personal goal to

write as little CSS as possi-
ble. You should, too!

fIgure 7.11 On the
left, the orange graphic
is hidden. When a user
rolls over the link, the
background position
changes to reveal the
orange graphic and hide
the gray one.

tIP Overriding
CSS declarations

downstream like this is a
common practice and is
part of what gives CSS its
power. We’ll learn more
about this in Chapter 9.

7 : desIgnIng wIth Css : CroPPIng Images wIth Css 105

Creating Image-Based Rollovers
Now that you’ve seen how to swap out an image when you roll over a link,
let’s take it a step further. Let’s say you wanted to create a big honkin’
“Buy Now” button that looks so delicious your users can’t help but click it
(FIguRe 7.12).

This button has a special typeface, subtle gradients, depth, and texture. It’s
easy to create in Photoshop—you can do things like this in your sleep. But
to turn this into an interactive button with :hover and :active states will
take some serious CSS skills. Or will it?

All we have to do is use what we’ve learned, plus one little trick. Rather
than trying to style the text to match what we’ve designed, let’s make the
entire link a CSS background image.

Start by writing the HTML and creating a sprite (FIguRe 7.13). We can use
some familiar HTML from our last example.

fIgure 7.13
This sprite has a default
state (top), a rollover state
(center), and a pressed
state (bottom).

<div class=”buy”>

 Buy Now

</div>

fIgure 7.12 It’s hard
not to click this big green
monster.

Css for PrInt desIgners106

With CSS, bring in the background image.

.buy a{

 background: green url(buy-now.gif) no-repeat top;

}

Next, we want to make the <a> tag the same size as the button graphic. The
sprite is 200 pixels wide and 225 pixels tall, but that’s because it contains
all three states for the button. We’ll make the link 200 pixels wide by 75
pixels tall and hide the other states in the sprite for now.

An <a> tag is an inline tag by default, so if we want to specify a width and
height we need to tell it to display: block; before the width and height will
work.

.buy a{

 background: green url(buy-now.gif) no-repeat top;

 display: block;

 width: 200px;

 height: 75px;

}

Uh-oh, the text is overlaying the background image. This happened in our
earlier example for a moment before we added padding to make room for
the icon. In this example, we don’t want the text to show at all. There’s a
simple fix for this called image replacement.

Image replacement is a Web designer’s way of getting rid of the text with
CSS, while keeping it in the HTML. This way, the HTML can still be read
when viewed on a browser that doesn’t support CSS, in an RSS reader, and
by Google.

Here’s one common way to use image replacement:

.buy a{

 background: green url(buy-now.gif) no-repeat top;

 display: block;

 width: 200px;

 height: 75px;

 text-indent: -9999px;

}

Look at that closely. We’re using a new property called text-indent and
we’re setting its value to an obscenely high negative pixel value. This tech-
nique takes the text inside of the tag you target and throws it way out to
the left so it won’t be seen (FIguRe 7.14).

7 : desIgnIng wIth Css : CroPPIng Images wIth Css 107

The words “Buy Now” are still in the HTML, but the CSS has effectively
hidden them and replaced them with an image.

Finally, let’s add some CSS to control the rollover and pressed states.

.buy a{

 background: green url(buy-now.gif) no-repeat top;

 display: block;

 width: 200px;

 height: 75px;

 text-indent: -9999px;

}

.download a:hover{

 background-position: center;

 }

.download a:active{

 background-position: bottom;

 }

A Word of Caution About Image Replacement
We learned earlier why it’s always important to set a background-color
value so text remains readable when a user’s images don’t load. Well,
image replacement isn’t perfect.

The worst-case scenario here is that the image doesn’t load and the text is
negative indented so that it’s not visible. This means a user whose images
don’t load will not be able to see the link. Always be thinking about these
things when designing Web sites—identify the people who will be using your
Web site and design for them.

fIgure 7.14 Image
replacement takes the
text and literally throws it
way off the Web page so
it’s out of the way of the
background image.

tIP There are
other techniques

out there that are much
more advanced than this
with their own pros and
cons. I’ve created a page
at cssforprintdesigners.
com/image-replacement
where you can learn more.

Css for PrInt desIgners108

Use Your Imagination
When it comes to using background images with CSS, you’re limited only
by your imagination. As I’ve said before, I’m only giving you the tips and
tricks that get me through the majority of my workday as a Web designer.
Get creative, practice these techniques, try new things, and see what works.

Making Columns with Background Images
There’s one last concept we need to cover before we move past CSS images:
columns. I know what you’re thinking—we covered floats for columns in the
last chapter. Well, I left something out, conveniently, until now.

CSS doesn’t give us a good way to make columns that stretch all the way
down the page, because tags stretch vertically only as far as they need to.
So if you have a columnar layout, one column may be longer than the other
(FIguRe 7.15). That’s because CSS and HTML were created to let content
flow as long or as short as it needs.

fIgure 7.15 On the Web, vertical height is determined by how much content is
inside a tag.

Tags grow vertically to let the content flow and then stop when the content
ends. There’s no way with CSS to tell both of these columns to be the same
height. They are independent of one another and grow based only on the
content that fills them.

7 : desIgnIng wIth Css : maKIng Columns wIth baCKground Images 109

You Can set a mInImum heIght though

CSS gives us the min-height property, which helps, but doesn’t solve our
problem once the content grows beyond the minimum height. The min-
height property is like the height property in that it sets the height of
a tag. The difference is that with min-height, we’re allowing the area to
expand if content grows longer than the space allotted.

Give Up on Vertical Alignment Already
As print designers, we like things to line up. And it makes sense, because
we’re used to designing for a space that is usually rectangular with a
defined width and height.

As you transition from a print designer into a Web designer, I want you to
come to terms with the fact that vertical alignment in Web design is nearly
impossible. There are too many factors with dynamic content and user set-
tings to control it.

Plus, the Web is optimized for reading top to bottom—it doesn’t have a
fixed height like a magazine or newspaper or brochure. It’s more like a
scroll that unrolls to be as long as it needs to be. Web pages, like these old-
timey scrolls, are optimized to grow in length to accommodate any amount
of content—hence the term scroll bar.

This lack of fixed dimensions is often frustrating for print designers because
it makes it difficult for us to line things up vertically.

Don’t get down on Web design just yet. In a way, it’s liberating—we don’t
have a fixed height! We can make the page as long as we want.

Making Fake Columns
In 2004, Dan Cederholm published an article in A List Apart, No. 167
entitled “Faux Columns” where he describes a simple concept for faking
the vertical alignment of columns. He didn’t invent the technique, but his
article was the first time I encountered the trick, and it blew my mind.

In short, you create a background image in Photoshop and position it to
repeat on the Y-axis behind the columns, which creates the illusion of a col-
umn that always matches the height of its sibling columns.

It’s a hack, but it’s a simple hack, and it works.

To do this, you put a background image inside the parent container for the
columns and repeat it vertically so it stretches the entire height of the lon-
gest column.

Css for PrInt desIgners110

Here’s a sample image you might use; let’s call it column.gif (FIguRe 7.16).
This image matches the width of the column and defines the space with a
subtle gradient to give a sense of depth.

Now let’s write some HTML, which should look familiar to you by now.

<div class=”content”>

 <div class=”main”>

 <p>

 We will put a lot of content in here. That is because we want this

 ➥ column to be much taller than the side column. As this column

 ➥ grows in size, we want the side column to appear to grow with

 ➥ it. We are faking this by repeating a background-image on the

 ➥ parent container.

 </p>

 <p>

 This paragraph is just here for good measure. Are you really

 ➥ reading this?

 </p>

 </div>

 <div class=”side”>

fIgure 7.16 If we
repeat this background
image behind a column,
we can make that column
look like it’s aligned
vertically with other
columns.

7 : desIgnIng wIth Css : maKIng Columns wIth baCKground Images 111

 <p>

 We will put just a little bit of content in here.

 </p>

 </div>

</div>

And we’ll write some CSS to create our columns.

.content{

 overflow: hidden;

 width: 960px;

 }

 .main{

 width: 720px;

 float: left;

 }

 .side{

 width: 200px;

 float: right;

 }

Finally, we’ll add the magic CSS.

.content{

 overflow: hidden;

 width: 960px;

 background: #FFF url(i/column.gif) repeat-y right;

 }

 .main{

 width: 760px;

 float: left;

 }

 .side{

 width: 200px;

 float: right;

 }

Now that we’ve placed the background image you can see how it will grow ver-
tically to fill the space regardless of the height of the content (FIguRe 7.17).
It’s a simple trick, but it helps Web designers every day.

Css for PrInt desIgners112

Designing with CSS3—Without Images
It’s a fact: Designers love things like rounded corners and drop shadows. Who
can blame us? They’re pretty! And until recently, we had to rely on creative uses
of background images to accomplish these things. Now, though, we have bet-
ter browsers (like Firefox, Safari, Chrome, and Internet Explorer 9) that let us
use newer techniques for getting our rounded-corner fix.

I told you in Chapter 5 how HTML5 is the new version of HTML, and that
it’s basically adding a few things on top of the old HTML to make it better.
Well, CSS3 is the same way—all the stuff we’ve learned so far has been part
of CSS for some time, but CSS3 is giving us some new ways to do some cool
things like add rounded corners and drop shadows without using images.

Pros and Cons of CSS3
While there are definitely benefits to using images for decoration (such
as wider browser support), relying on images also has some negative side
effects (such as added load times and production costs for businesses).

You’re just now learning to code Web sites, so I’m going to teach you the
new way—I don’t think there’s much point in teaching you the old way to

fIgure 7.17 This Web
page makes you think
the column heights are
aligned, but they’re not.
We’re just faking it with
a repeating background
image.

tIP CSS3 also
gives us ways to

create simple animations
without using JavaScript.
But that’s some pretty
advanced stuff, so I’m
leaving it out of this book.
You can see some demos
of CSS animations at
cssforprintdesigners.com/
css-animations.

7 : desIgnIng wIth Css : desIgnIng wIth Css3—wIthout Images 113

do things if it’s going to be replaced by something better very soon. As each
day passes, more users are using browsers that support these CSS3 tech-
niques, so I say go for it.

Before we know it, this won’t even be a discussion. But for now, we have to
know the implications of using the latest and greatest.

The biggest concern with using CSS3 is browser support. I still have this
discussion with clients on almost every project: Does it need to look exactly
the same in all browsers? Usually, the immediate response is, “What’s a
browser?” Then, after an explanation, the answer is, “Yes, of course the
content in all browsers should match.”

Graceful Degradation
This is a great time to introduce a Web design concept to your client called
graceful degradation. Graceful degradation is a fancy way of saying that a
Web design looks (or behaves, in some instances) a little different in older
browsers because it’s built for future compatibility. Overall, the layout and
functionality will stay the same—but little things like rounded corners or
drop shadows will not make it to the older browsers.

The Web site won’t look broken to those users, and they’ll never know it’s
different since they’re not going to be looking at the site side by side in dif-
ferent browsers checking to see if the rounded corners match.

If you can sell this idea to your clients, you’re at a point where you can start
using CSS3 to save yourself a lot of time in developing workarounds with back-
ground images for common elements like rounded corners and drop shadows.

Selling Clients on CSS3
Here’s the ideal conversation I would have with my clients.

Me: “For your project, we can save you some money by using CSS3 for
some of the design treatments like rounded corners and drop shadows.
Your Web site will also load faster for everybody. It’s a best practice.”

Client: “Fantastic, I love best practices. Why are you telling me this?”

Me: “You need to know that some of your users on older computers won’t
see the design the exact same way; they’ll get square corners instead, and
they won’t see the shadows. But overall, the design will still look good. Are
you okay with that?”

Client: “Did you say it would save me money?”

Me: “Yes.”

Client: “Why are you still standing here? Get to work!”

Css for PrInt desIgners114

But let’s be honest—sometimes the client will insist that the site look exactly
the same in all browsers. Something about branding. What do you want me
to say? You can’t win ’em all.

The Ugly Truth About CSS3 (For Now)
Remember how I told you CSS3 is new? Yeah, well, it’s not even finished yet.

I’m oversimplifying the problem here, but I doubt you read all the gossip
magazines for Web design, so I’ll leave it oversimplified. The exciting CSS3
properties that create things like rounded corners and drop shadows are
not finalized yet, so browser makers have created their own CSS3 properties
in the meantime.

This means that what makes a corner round in Firefox doesn’t necessar-
ily make it round in Safari and Chrome, so for now we’ve got to write CSS
multiple times to make sure each browser gets the rounded corner. Thank-
fully, the new Internet Explorer 9 does a pretty good job with CSS3.

Still, in my opinion, you need to be learning CSS3 because it’s easier than
creating images for these simple design treatments, and it loads faster—plus
it’s the future, not the past.

That is, of course, assuming your client is OK with older browsers not hav-
ing all the CSS3 awesomeness.

Browser Wars
To understand this issue fully, we need to go off on a slight tangent and
talk about browsers and how browsers are made. Different companies
make different browsers; to be competitive with each other they think it’s
smart to use different rendering engines to display Web pages.

The rendering engine determines the way the browser interprets HTML and
CSS and decides what to display when you visit a Web site.

Since the makers of browsers don’t all use the same rendering engine, Web
designers sometimes need to learn different ways to accomplish the same
thing in different browsers. Add on top of this that each browser has render-
ing bugs and you can see how troubleshooting CSS can become a headache.

Don’t worry; for the most part, modern browsers are starting to agree on
how things should render. But with something as new as CSS3, there are
bound to be differences.

tIP Another
approach is just

to do it without telling
them. I haven’t gotten any
complaints (yet) when I’ve
done that.

7 : desIgnIng wIth Css : desIgnIng wIth Css3—wIthout Images 115

browser-sPeCIfIC PrefIxes

Firefox uses its own rendering engine, so its CSS3 properties are pre-
fixed with -moz-, which is short for Mozilla, the organization that makes
Firefox. Safari and Chrome both use the same rendering engine called
Webkit, so their CSS3 properties are prefixed with -webkit-. Other
browser makers have different rendering engines as well. Learn more at
cssforprintdesigners.com/browsers.

The Best Way Forward with CSS3
Browser makers have thankfully been very deliberate about prefixed CSS
properties. Safari and Chrome will ignore any CSS declaration that begins
with -moz-, Firefox will ignore any declaration that begins with -webkit-, and
so on. This makes it possible for us to write CSS that works well on one
browser without causing problems in another browser.

My recommendation is to write your CSS so that it’s as future-proof as
possible. To do this, we’ll write the vendor-specific CSS properties first, and
then end with the proposed CSS3 property. Here’s a quick example of how
I’d recommend making rounded corners on a tag with CSS3.

.container{

 -moz-border-radius: 10px;

 -webkit-border-radius: 10px;

 border-radius: 10px;

 }

We’ve written basically the same thing three times, with the only difference
being the vendor-specific prefix. Ideally, you’ll be able to come back to your
code in a few years and remove the vendor-specific prefixes to clean up your
code, but these prefixes are designed in a way that it doesn’t hurt anything
to leave them in there—especially if your last CSS declaration is the CSS3
standard without a prefix. That’s because if there’s ever a conflict, your
browser will use the last CSS declaration to override previous declarations.

Using Rounded Corners
Every designer knows rounded corners make things prettier; that’s just the
way it is. We achieve rounded corners with CSS3 using the border-radius
property.

.container{

 border-radius: 10px;

 }

tIP CSS3 sup-
port is changing

so much that your best
resource is the Internet.
I’ve made a page at
cssforprintdesigners.com/
css3 where you can keep
up with the latest browser
support and techniques
for CSS3.

tIP There’s
more to learn

about this thing called
overriding in Chapter 9.

Css for PrInt desIgners116

Just as with the padding and margin properties, we can declare all four cor-
ners at once, or we can declare them individually, clockwise. To do this, we
start with the top-left corner and work our way around the tag clockwise.

.container{

 border-radius: 10px 20px 30px 40px;

 }

In a perfect world, we’d be done. But since we want to make sure as many
browsers as possible see the rounded corners, let’s layer on some vendor-
specific prefixes, just to be safe.

.container{

 -moz-border-radius-topleft: 10px;

 -moz-border-radius-topright: 20px;

 -moz-border-radius-bottomright: 30px;

 -moz-border-radius-bottomleft: 40px;

 -webkit-border-top-left-radius: 10px;

 -webkit-border-top-right-radius: 20px;

 -webkit-border-bottom-right-radius: 30px;

 -webkit-border-bottom-left-radius: 40px;

 border-radius: 10px 20px 30px 40px;

 }

Notice how Mozilla and Webkit browsers slightly differ in their syntax, in
addition to the vendor-specific prefix.

Yuck. OK, seriously. I don’t even try and memorize this stuff. There are
great CSS3 generators online that will help you generate this gobbledygook
without straining your brain.

Adding Shadows
Designers love depth. And clients love things that pop. We can add depth
and pop to our designs with drop-shadows. CSS3 lets us create shadows
for a box with the box-shadow property and shadows for text with the text-
shadow property.

Putting Shadows on Boxes
Using the box-shadow property with CSS3 is similar to using the drop-
shadow layer effect in Photoshop (FIguRe 7.18).

The property accepts several values to make it work (FIguRe 7.19).

.container{

 box-shadow: 5px -5px 8px 2px #888;

 }

tIP A corner with
a border-radius of

0 will be square.

tIP I have
a list of my

favorite CSS3 generators
over at the same link I
mentioned earlier:
cssforprintdesigners.com/
css3.

7 : desIgnIng wIth Css : desIgnIng wIth Css3—wIthout Images 117

fIgure 7.18 Controlling shadows with CSS3 is a lot
like using the drop-shadow layer effect in Photoshop.

fIgure 7.19 A CSS3 box-shadow.

 • The first value moves the shadow left or right. If you use a negative value
like -5px, it moves the shadow to the left. A positive value like 5px moves
it to the right.

 • The second value moves the shadow up or down. If you use a negative
value like -5px, it moves the shadow up. A positive value like 5px moves
the shadow down.

 • The third value controls the blur size of the shadow, which is sort of like
the size of the shadow in Photoshop’s drop-shadow settings.

 • The fourth value is the spread size of the shadow. I usually just play with
this until it looks right.

 • The fifth value is the color of the shadow. If you want it to be more
opaque, choose a darker color; if you want it to be less opaque, choose
a lighter color.

a real transParent shadow

If you want real transparency, you can use an RGBa value in place of a
hexadecimal value. RGBa is the same as RGB, which I mentioned earlier
in the book, but it adds an alpha transparency value to the end, which
controls transparency. A gray shadow at 50% opacity would be written
like this: rgba(0,0,0,0.5). But be careful; older browsers don’t support
RGBa colors.

Css for PrInt desIgners118

In addition, you can add the inset keyword at the beginning of your values
to make the shadow an inner shadow, as in Photoshop (FIguRe 7.20).
You’d do it like this:

fIgure 7.20 A CSS3
box-shadow with the inset
keyword applied.

.container{

 box-shadow: inset 5px -5px 2px 8px #888;

 }

Now, to make sure most browsers will render your beautiful drop shadow,
we need to write our final CSS like this, with vendor-specific prefixes:

.container{

 -moz-box-shadow: inset 5px -5px 2px 8px #888;

 -webkit-box-shadow: inset 5px -5px 2px 8px #888;

 box-shadow: inset 5px -5px 2px 8px #888;

 }

Just as when you’re designing for print, it’s best to play with these values to
get the best results. And don’t worry; I find myself looking up which value
does what every time I make a drop shadow with CSS3. That is, if I’m not
being lazy—most of the time I just start nudging the values up and down to
see which direction the shadow goes and how it looks.

Putting Shadows on Text
With CSS3 we can use the text-shadow property to put a drop shadow
on text (FIguRe 7.21). As if making your boxes pop wasn’t enough, now
there’s no excuse for not having enough pop in your design.

7 : desIgnIng wIth Css : PuttIng It all together 119

fIgure 7.21 A CSS3
text-shadow.

We use the text-shadow property in much the same way that we use the
box-shadow property:

h1{

 text-shadow: 2px 2px 2px #888;

 }

 • The first value moves the shadow left or right. If you use a negative value
like -2px, it moves the shadow to the left. A positive value like 2px moves
it to the right.

 • The second value moves the shadow up or down. If you use a negative
value like -2px, it moves the shadow up. A positive value like 2px moves
the shadow down.

 • The third value controls the blur size of the shadow, which is sort of like
the size of the shadow in Photoshop’s drop-shadow settings.

 • The fourth value is the color of the shadow. If you want it to be more
opaque, choose a darker color; if you want it to be less opaque, choose
a lighter color.

Putting It All Together
Let’s walk through a simple Web page design using background images and
CSS3 to see what we can make (FIguRe 7.22).

First, we’ll need to create a sprite for the big button (FIguRe 7.23).

Css for PrInt desIgners120

fIgure 7.22 With just what you’ve learned in this
chapter, you have the tools you need to start making
attractive Web sites.

fIgure 7.23 A sprite that contains a default state,
rollover state, and pressed state for the download button.

Second, we write the HTML.

<div class=”container”>

 <header>

 <h1>My name is JD.</h1>

 </header>

 <div id=”content”>

 <p class=”intro”>

 I am a Web designer from Memphis, and I run a Web design firm

 ➥ called Simple Focus. I am

 ➥ also on the board for

 ➥ AIGA Memphis. In my spare time I like to fish and write

 ➥ poetry.

 </p>

 <div class=”download”>

 Download My Resume

 </div>

 </div>

</div><!-- close .container -->

Finally, we add the CSS.

.container{

 width: 400px;

 padding: 40px; /* The total width is 480px! */

 margin: 100px auto; /* put space above and below, then center the tag

 ➥ in the browser */

7 : desIgnIng wIth Css : PuttIng It all together 121

 background-color: orange;

 -moz-border-radius: 20px; /* rounded corners for Mozilla */

 -webkit-border-radius: 20px; /* rounded corners for Webkit */

 border-radius: 20px; /* CSS3 rounded corners for new browsers */

 -moz-box-shadow: 0 3px 5px 0 #AAA; /* for Mozilla */

 -webkit-box-shadow: 0 3px 5px 0 #AAA; /* for Webkit */

 box-shadow: 0 3px 5px 0 #AAA; /* CSS3 box-shadow for new browsers */

 -moz-text-shadow: 1px 1px 1px #666; /* for Mozilla */

 -webkit-text-shadow: 1px 1px 1px #666; /* for Webkit */

 text-shadow: 1px 1px 1px #666; /* CSS3 text-shadow for new browsers */

 font-family: “Helvetica Neue”, helvetica, arial, sans-serif; /* since

 ➥ we are putting this on the parent tag, it applies to all the children

 ➥ as well */

 color: #FFF; /* applies to all children */

 text-align: center; /* applies to all children */

 }

 a{

 color: #FFF; /* changing the default blue color */

 }

 a:hover{

 text-decoration: none; /* rollover */

 }

 a:active{

 color: gold; /* pressed */

 }

 h1{

 margin: 0; /* removing unnecessary default spacing for headings */

 font-size: 36px; /* make it bigger */

 font-weight: normal; /* lose the default bold */

 padding-bottom: 20px; /* add some space below */

 }

 p{

 margin: 0; /* removing unnecessary default spacing for paragraphs */

 font-size: 18px; /* make it bigger */

 }

 .download a{

tIP You can
see this Web

page in action at
cssforprintdesigners.com/
mysite.

Css for PrInt desIgners122

 background: url(i/sprite.png) no-repeat top; /* bring in the sprite

 ➥ image */

 display: block; /* changing its appearance from default inline to

 ➥ block */

 width: 400px; /* this width happens to match the width set for

 ➥ .container */

 height: 85px; /* the height of one of the graphics in the sprite,

 ➥ inlcuding shadows */

 text-indent: -9999px; /* get rid of the overlapping text */

 margin-top: 20px; /* add some space above the button */

 }

 .download a:hover{

 background-position: center; /* rollover */

 }

 .download a:active{

 background-position: bottom; /* pressed */

 }

Making Design Happen
So far I have given you the most powerful, reusable, and common prop-
erties and techniques for CSS. But I’m not going to pretend I’ve even
scratched the surface of CSS in this chapter (or in this book, for that mat-
ter). Truth is, I’ve left out hundreds of CSS properties, values, and tech-
niques that wield enormous power.

As with the rest of this book, my goal has been to lay down enough knowl-
edge to empower you to take CSS head-on. With what you know now, you
can accomplish almost anything you want—and Google for the rest.

Think of CSS as just another creative tool like InDesign, Photoshop, or even
just pencil and paper. It’s nothing more than a means for accomplishing
your creative vision. Your creativity, outside of the tools you use, is what
makes design happen.

Play
Video

8
Improving

Lives with CSS
Making the Web a Friendlier Place

I Love CReaTIve people because they’re typically some of

the friendliest people I know. I’m talking about print designers,

Web designers, toy designers, interior designers, illustrators, type

designers, architects, photographers, writers, and fine artists

(I can just as easily be talking about CPAs, doctors, lawyers,

and anyone else who applies creative thinking in their work).

But the creative industry, especially, is full of nice people. People

who may seem complicated, dark, or broody at first: Tattoos,

weird music, and lack of overhead lighting are clear signs you’re

in the creative department.

Creative people have a special ability to use their imaginations

to put themselves in someone else’s shoes and to visualize what

could be. They have the empathy required to feel someone else’s

frustration with a poor design, and then visualize a way to fix it.

And empathy is what we’re going to cover in this chapter.

Css for PrInt desIgners124

Empathy Through CSS
There are some things we should take into consideration when designing
and coding Web sites that may seem unnecessary or optional at first, but
they make the Web a friendlier place for all of our users.

These things may not be apparent early in the design process when you’re
sketching ideas on a whiteboard or laying out your Web page in Photo-
shop. But rest assured, they add up to make your Web page more useful
(and less frustrating) to more people.

Things like

 • How can we control what a Web page looks like when it’s printed?

 • How can we code and design Web sites that are usable by everyone,
including blind, deaf, and mobility-impaired users?

 • How can we write CSS so our Web sites load fast and perform well?

We’re not going to go into great detail on how to accomplish all of
these things in this chapter. But that’s not because it’s not important—
it’s because you already know most of what you need to know from the
previous chapters.

Designing for Print (with CSS)
You heard it right; we’re about to learn how to design for print with CSS!
That’s because your visitors will eventually print out a Web page from your site.

For me, there’s just something about holding the written word in my
hands—I don’t know if it’s usability or nostalgia. I can take it with me,
scratch on it with my favorite pen, and read it on the plane, during a taxi
ride, or in bed with my wonderful wife and spoiled beagle. Paper is real, so
it makes the words feel more real. And finally, it’s easier on the eyes than a
backlit screen.

Since we design Web sites to work on screens that don’t have a fixed verti-
cal height, we have to think about what we want our Web sites to look like
when they’re printed out on letter-sized paper (FIguRe 8.1).

Writing Print Style Sheets
When you write your HTML, you have the ability to link to a separate CSS
file that controls what your Web site looks like when it is printed. To hook
to a CSS file, we use the <link> tag with attributes like rel, href, type, and
media. The media attribute tells the browser to use this particular file when
printing the page.

8 : ImProVIng lIVes wIth Css : desIgnIng for PrInt (wIth Css) 125

Welcome to my blog. This is where I post random thoughts about random things. Glad you could join me.

What I Did Today
There’s really only one central principle of good Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo

consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat

cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.: it should be appropriate for your business, for your

users, and for its context.

My Kitteh Is So Awesome
There’s really only one central principle of good Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo

consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat

cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

I Ate Fish Tacos With My Friends Tonight
There’s really only one central principle of good Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo

consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat

cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo

consequat.

This is my life. You should not copy it.

My Wonderful Life: A Blog

fIgure 8.1 A print
style sheet can be nicely
designed, but it needs
to be all business. Don’t
waste your users’ ink
because you want them
to see that textured
background.

We’ll learn about linking to CSS files in Chapter 9, “Starting from Scratch,”
but here’s a quick preview:

<link rel=”stylesheet” href=”css/print.css” type=”text/css” media=”print” />

What’s great is you don’t have to change your HTML to make a printer-
friendly style sheet. All you have to do is write a separate CSS file.

Let’s go through some of the things you may want to change about your
site’s appearance with a print style sheet.

Typography
Be sure to think about typography when you create a print style sheet.
Odds are your user is printing the page to read it, so you should make a
point to design for readability.

Font Size
You will remember in the Chapter 6 section “Selecting Units of Measure-
ment” that we discussed a few different units of measurement. Pixels work
great for the screen, but I suggest using points when making a print style
sheet. The abbreviation is pt.

Css for PrInt desIgners126

Here’s an example:

p{

 font-size: 10pt;

 }

Color
For readability (and to save ink) I recommend turning all of your type dark
and putting it on a white background.

Width
It’s a good idea to get rid of any fixed widths for your content, so it can
grow horizontally to fill the page, using as little paper as possible.

Printer Ink Is Not Cheap
There’s nothing more frustrating to me than when I click Print on a Web
page and walk over to the printer to realize I just printed seven pages of
solid ink with white text on it that’s barely readable.

A printed Web page should not waste ink by

 • Printing unnecessary colors

 • Printing reversed text (like white text on a black background)

 • Showing sidebars or modules that don’t make sense in a printed context
(like navigation or sign-in forms)

To test your print style sheet without wasting ink and paper, you can just
print a PDF of the page (FIguRe 8.2).

fIgure 8.2 Rather
than testing a print style
sheet by actually printing
the page, you can test it by
printing a PDF file.

tIP You can
learn more about

print style sheets at cssfor-
printdesigners.com/
printer-friendly.

8 : ImProVIng lIVes wIth Css : desIgnIng for aCCessIbIlItY 127

Designing for Accessibility
Everybody should have access to information on the Internet, regardless
of ability or disability. As you design Web sites, don’t forget that there are
different ways that people access the information online than with their
hands, eyes, and ears.

Vision Impairments
Not everyone who gets online can see your design, so you need to account
for these visitors by designing accessible Web sites. “But wait,” you ask,
“How can I design for someone who can’t see?”

Some People Can See, Just Not Well
A lot of people online have eyesight that’s not very good, especially now
that the plus-50 crowd is online—computers and the Internet are not just
for young people any more. Be sure to design type that’s readable by being
big enough with plenty of contrast.

Blind Users Get Online, Too
Braille gives blind people the ability to read the written word. For reading
online, there’s software called screen readers that reads content aloud to
people who are unable to see it.

Using HTML Attributes for Accessibility
You’re already familiar with the alt attribute in the tag, which
describes the content of the image in case the image doesn’t load. It’s also
what’s read to a blind user by screen reading software.

There’s another attribute we haven’t discussed previously for <a> tags called
title. The title attribute is like the alt attribute in that it tells a little more
about the link, specifically where it’s going to take the user when she clicks
it. It’s useful when the link text doesn’t do a good job of describing its des-
tination. An example of this is the overused “Click here,” which doesn’t tell
the user where she’s going.

Hearing Impairments
Captioning on television helps ensure that deaf people can watch television
and know what’s being said.

If your Web site has video or audio content, you can make captioning avail-
able to deaf users by providing alternate access to that content.

Css for PrInt desIgners128

Making Captions and Transcripts Available
It doesn’t take any CSS tricks to make captions available. You just embed
subtitles into a video or provide a link to a transcript of an audio or video
clip nearby where the media controls are located.

Mobility Impairments
Some users of the Internet have physical limitations that prevent them from
being able to use a mouse effectively or at all.

Designing for Easy Targets
Since some users might have difficulty using a mouse, we should design
links, buttons, and other hit areas in our designs so that they’re big enough
that clicking something isn’t a challenge. About 30 pixels or more in size
is a good start if you’re making hit areas that are easy to click. The bigger
the better.

Designing for Users Who Don’t Use a Mouse
Some users of the Internet are unable to use a mouse. They navigate the
Internet by giving commands some other way—usually through some sort
of input device that accepts a command to tab to the next clickable item
on the page.

In fact, this is a lot like using the Tab key on your own keyboard to navigate
a Web site. Using the Tab key is actually a really good way to test your Web
site’s accessibility.

When you’re testing your Web site for accessibility using the Tab key to nav-
igate, it should be apparent at all times where you are on the page. You’ve
seen this location information before on Web sites when there’s a dotted
outline around a link you’ve focused on.

If you can navigate your Web site using only the Tab and Return keys on
your keyboard, your Web site is probably pretty accessible.

Using CSS to Show You Where You Are
Previously we learned about the :hover and :active pseudo-selectors for
making Web pages more interactive. There’s another pseudo-selector called
:focus that lets you define what something should look like when a user has
tabbed onto it with the keyboard instead of rolling over it with the mouse
(FIguRe 8.3).

8 : ImProVIng lIVes wIth Css : wrItIng Css that loads fast 129

Here’s some sample CSS that helps accessibility:

a:focus{

 outline: 1px dotted;

 }

Notice we’re using the outline property, not border. The difference between
the outline property and the border property is that outline is drawn on the
outside of the border.

Writing CSS That Loads Fast
One last point to consider when you’re trying to make a Web site that’s
pleasant to use is how fast it loads. The download speed can be affected by
a number of things beyond your control such as server speed and the Inter-
net connection.

I want to equip you for those things you can control.

Keep Your Images as Small as Possible
As you start using background images with CSS, don’t go overboard. Think
of creative ways to accomplish your design treatment with a smaller back-
ground image.

fIgure 8.3 The dotted
outline shows where
you are when navigating
this Web page without a
mouse.

tIP I’ll go into
detail on export-

ing images for the Web in
Chapter 10.

Css for PrInt desIgners130

When saving your images, always use the best format for the type of image
it is (FIguRe 8.4).

Remember, the smaller your images are, the faster the page will load. Plus,
optimizing your images will make the biggest difference in page speed by
far. If you don’t do this, the rest won’t matter.

Write Your CSS as Efficiently as Possible
Take the time to think ahead and plan your CSS before you start writing it.
Writing your CSS to make it as compact as possible doesn’t just save on file
size and download speeds, it also saves you from a lot of unnecessary typing.

Stringing Together Selectors
One of the best ways to make your CSS more efficient is to string together
selectors into a single CSS rule. It’s a good idea to do this when several tags on
your page need the same properties, like the header, content, and footer areas.

Consider this CSS, which isn’t very efficient because it repeats the same
declarations for each CSS rule:

header{

 width: 960px;

 margin: auto;

 overflow: hidden;

 }

fIgure 8.4
Photoshop’s Save for Web
dialog box (File > Save
for Web & Devices) gives
you plenty of options for
optimizing your graphics
when you export them.

8 : ImProVIng lIVes wIth Css : wrItIng Css that loads fast 131

#content{

 width: 960px;

 margin: auto;

 overflow: hidden;

 }

footer{

 width: 960px;

 margin: auto;

 overflow: hidden;

 }

By stringing together our selectors with commas, we can write the same
thing with a lot fewer keystrokes, saving time and file size.

header, #content, footer{

 width: 960px;

 margin: auto;

 overflow: hidden;

 }

You can put each selector on one line as in the preceding example, or you
can put the selectors on separate lines with commas, like this:

header,

#content,

footer{

 width: 960px;

 margin: auto;

 overflow: hidden;

 }

Using Greater Specificity to Override Other CSS
You can override one CSS declaration with another by being more specific
with the selector.

To see what I mean, take a look at this HTML:

<div id=”content”>

 <p class=”teaser”>What color am I?</p>

</div>

Let’s say I wanted to make every paragraph in my design black. I might
write my CSS like this:

p{

 color: black;

 }

Css for PrInt desIgners132

But let’s say I also wanted every paragraph with a class attribute of teaser
to be purple. I’d write my CSS like this:

p{

 color: black;

 }

p.teaser{

 color: purple;

 }

In this CSS, every paragraph that doesn’t have a class attribute of teaser
will remain black. But those paragraphs with a class attribute of teaser will
turn purple, since p.teaser is more specific than p by itself.

Now let’s write a rule that’s even more specific:

p{

 color: black;

 }

p.teaser{

 color: purple;

 }

div#content p.teaser{

 color: orange;

 }

Here we’re telling any paragraph with a class attribute of teaser that is also
inside a <div> tag with an id attribute of content to be orange.

Thinking Beyond Visual Design
The Internet is an amazing tool for keeping people connected to one
another. When it comes to making Web sites, Web designers hold in their
hands the ability to make the Internet more enjoyable for everyone.

My hope is that as you start coding Web sites by hand, you continue to
learn more about CSS as a craft—as well as a way to make peoples’ lives
better, even if only by a little bit.

Play
Video

9
Starting from

Scratch
Copying and Pasting Repeated

Elements for Each Project

NoT eveRyThINg IN print design is terribly creative. Don’t

get me wrong—some of the things we get to work on are excit-

ing and innovative and highly rewarding. But we spend a lot

of time performing repetitive or mundane tasks like flowing 80

pages of text for an annual report; sure, the cover is fun, and

maybe even the first ten pages. But the last 70 are, well, work.

I wish I could tell you these types of tasks don’t exist in Web

design, but the truth is they do, especially when it comes time

to start a new project. There’s HTML you have to write over and

over again for almost every project you work on. That’s why I

say you should copy and paste it when you start a new project.

Css for PrInt desIgners134

Copying and Pasting Saves Time
As a beginning Web coder, it’s not important to get very deep into what
every line of code means. All you need to know is that there’s a bunch of
code you need to put at the top of your HTML to make it a valid HTML
file. I’ll show you where in the code you need to make adjustments so that
your code works on your Web site.

we’re goIng to flY through thIs seCtIon

In my workshops, I cover this topic in about 60 seconds by waving my
hand over about 20 lines of dense HTML on a projector screen and tell-
ing the print designers, “You don’t need to worry about what any of this
means—just copy and paste this stuff.”

More HTML Tags
So far in this book, we’ve been looking at HTML tags like <div>, <p>, <h1>,
and so on. But there are a handful of other tags that don’t really have any-
thing to do with the content of a Web site—they’re just required for every
site we make and they do things like help with search-engine optimization
(SEO) and identify which CSS file to use.

These tags mostly go at the very beginning of an HTML file in a <head> tag—
but a couple of them (the <html> tag and the <body> tag, to be precise) even
wrap all the HTML you write on your own (FIguRe 9.1).

<html>
<head>

A bunch of other tags go in here.

Everything you write from
scratch goes in here.

</head>
<body>

</body>
</html>

fIgure 9.1 This is the
entire structure of a real
HTML document, other
than what you need to write
from scratch every time.

tIP You can
download

these code samples at
cssforprintdesigners.com/
copy-and-paste.

9 : startIng from sCratCh : more html tags 135

Let’s dig in and take a look at what it takes to make a proper HTML file.
First, you need to save a text file with the .html extension. Then, inside of
that file, put the following code:

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”/>

 <title>Page Title</title>

 <meta name=”description” content=”Web site description” />

 <meta name=”keywords” content=”SEO keywords “ />

 <link href=”css/screen.css” rel=”stylesheet” type=”text/css”

 ➥ media=”screen” />

 <link href=”css/print.css” rel=”stylesheet” type=”text/css”

 ➥ media=”print” />

 <link href=”favicon.ico” rel=”shortcut icon” type=”image/ico” />

 </head>

 <body>

 This is where you put the HTML that you write

 </body>

</html>

I’ve highlighted the parts of this HTML you need to concern yourself with.
Simply adjust the values of these attributes for your own Web site and
you’re good to go.

Page Title
The page title is what shows up in the top of a browser window or tab to
identify the Web page (FIguRe 9.2).

fIgure 9.2 Page titles
in our HTML help to identify
what each tab is for.

Css for PrInt desIgners136

Web Site Description
The Web site description is what search engines show in the preview of
search results. Keep it short, no more than a sentence or two.

SEO Keywords
This comma-separated string of characters is part of what search engines
look at when determining your site’s relevance. Don’t use more than 20 or
so keywords and keyword phrases, and try not to repeat the same word
more than three times.

CSS File
We call CSS with the <link> tag. The path inside the href attribute should
lead to a CSS file, which is a text file that ends with the .css extension.

In this example, we have two CSS files. They are both in the css folder,
and the files are named screen.css and print.css respectively. You can link
to as many CSS files as you want by adding more <link> tags with these
attributes.

CSS Media Attribute
The two <link> tags call different CSS files: one for screen viewing and one
for printing on paper. The media attribute tells the browser whether to use
the CSS file for the screen or for print.

Favicon
A favicon is a small graphic file (16 pixels by 16 pixels in size) that goes in
the address bar, tab, or bookmarks bar for your Web site. The file should
be saved as a .ico file type. The file should be in the root of your Web site
and named favicon.ico.

The <body> Tag
The <body> tag is where you put all of the CSS you write yourself. When I
give examples throughout this book, I type something like this:

<div id=”content”>

 <div class=”main”>

 Main content area

 </div>

 <div class=”side”>

 Sidebar area

9 : startIng from sCratCh : the html frameworK 137

 </div>

</div>

In a functioning Web site, that code would need to be inside the <body> tag,
like this, to work in a real environment:

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”/>

 <title>Page Title</title>

 <meta name=”description” content=”Web site description” />

 <meta name=”keywords” content=”SEO keywords “ />

 <link href=”css/screen.css” rel=”stylesheet” type=”text/css”

 ➥ media=”screen” />

 <link href=”favicon.ico” rel=”shortcut icon” type=”image/ico” />

 </head>

 <body>

 <div id=”content”>

 <div class=”main”>

 Main content area

 </div>

 <div class=”side”>

 Sidebar area

 </div>

 </div>

 </body>

</html>

The HTML Framework
In 2009, when I started leading my workshops, I developed and released
The HTML Framework (htmlframework.com), a free set of starting files to
help Web designers spend less time setting up their HTML files and CSS
layouts and more time designing with CSS.

I think this framework is a great starting place for rookies and seasoned Web
designers alike because it saves time and prevents some silly typing mistakes.

And trust me, silly typing mistakes are common in the Web-coding world.
We can use all the help we can get.

Play
Video

This page intentionally left blank

10
Prepress for

the Web
Slicing and Dicing Images so They

Load Fast and Look Good

pRepReSS WoRk IS an art that takes patience and experience.

To make a design look good when it comes off the press, print

designers need to understand the way designs are produced

after the files leave the hard drive. This means being familiar

with the equipment that produces the plates, the inks that will

be used, and the machinery that ultimately spits out digital files

and makes them real.

Prepress work also requires a comprehensive understand-

ing of the realities and limitations of the way a piece will be

printed—whether it’s a gig poster with a short run on a screen

press, a print ad that runs on an ancient web press for a local

newspaper, or an editorial layout in a glossy magazine that’s

printed in multiple facilities across the country and distributed

to hundreds of thousands of subscribers.

Css for PrInt desIgners140

Image Production for Web Design
Web designers have to prep their designs for a production environment,
too. But the Web’s production environment is all about file size and down-
load speed. On big Web sites with lots of traffic, image size can even have
a cost factor.

I’m certain you’re used to seeing Web sites with poorly optimized images—
which might make you think image production for the Web means you have
to save images at a low quality to make them load fast. This might seem
frustrating and leave you asking, “Why did I spend so much time making
everything look nice in my design if the coder’s just going to save it down
and make it look cruddy?”

You shouldn’t feel that way, because with the right tools and a little
patience you don’t have to compromise on quality to ensure that your
images come out crisp and load fast.

There are a couple of questions that often come up in my workshops:
“With all of the image file formats, how do I know which one’s the best?”
And, “How small should the file size be?”

In this chapter I’m going to demystify image production for the Web and
give you the confidence and knowledge you need to start slicing and dicing
images that load fast and look good.

Starting by Planning
The first step of image production for the Web is to take a good look at
your design and figure out which images need to be cut up and pieced
together to make the design work. I do this by visualizing two layers of
my HTML: the layout and the content. After that, it becomes clear which
graphics need to be extracted from the design.

For this chapter, we’ll be looking at a sample Web site that has all the ele-
ments of a typical Web site (FIguRe 10.1).

10 : PrePress for the web : startIng bY PlannIng 141

Start with the Layout
When I start a project, the first thing I do is visualize the layout with boxes.
Which tags do I need to accomplish my layout? Which tags should float
and in which direction? What order should they be in? Let’s take a look at
our sample Web design with HTML boxes overlaying it (FIguRe 10.2).

fIgure 10.1
Our environmentally
friendly Web site.

fIgure 10.2 It helps
to start by visualizing the
layout and floats.

Css for PrInt desIgners142

Figuring Out the Layout
Figure 10.2 shows six nested boxes with arrows showing our floats.

In the header area, we have two main containers: one for the logo and one
for the site’s navigation.

In the content area, we have a main column for content with two smaller
columns of text below it. Beside the main content area, we have a sidebar.

Identify the Chunks of Content
After I’ve identified the major components and can see what HTML is
needed to accomplish my layout, I identify all the content that needs to go
in each section or module (FIguRe 10.3). This helps me write the rest of
my HTML and plan my CSS.

IMage

h1

paRagRaphS

h3

uNoRdeRed LIST ???

uNoRdeRed LIST

h2

aNChoRS

fIgure 10.3 Don’t forget to think through how you might mark up the content.

Marking Up HTML Is Not a Science
Figure 10.3 shows where I’m identifying most of the HTML tags that will
need to be written to identify the content of the Web page. I’ve left some
things out, to keep it simple. For example, you know that an unordered list
has list items nested inside, and the navigation will have <a> tags inside of
each tag.

I’ve even marked the Latest Tweets section with question marks—that’s
because sometimes which HTML to use is not clear. In a real-world

10 : PrePress for the web : startIng bY PlannIng 143

scenario you may not have any control over these tweets because they
might be coming in from a third party. But even if you do have control
over the markup, it’s difficult to know which HTML tag is best to use. Are
they paragraphs? Or is this a list of tweets? Should we just use <div> tags if
they’re not really paragraphs or a list?

Decide What Images Are Required
Finally, let’s overlay some boxes on our design to look at what images are
required to make the layout work (FIguRe 10.4). We’ll be looking at CSS
images and content images—remember, content images are what we call
with HTML using the tag; decorative images are what we call with
CSS using the background property.

a b C d

eFg

Look at the design closely—details matter.

a. Notice how we have a subtle gradient across the top of the page, with
a darker border at the top. We can repeat the section I have high-
lighted on the x-axis to create this effect.

b. This image is the logo, so it’s different from the rest—it’s considered
page content. We’ll bring it into our design with HTML using the
tag, not CSS.

fIgure 10.4 Zero in
on the images you need to
export to make the design
work. Pay attention to the
details.

Css for PrInt desIgners144

C. The navigation bar will be a large sprite with hover states. It uses
Gotham, a font most users won’t have installed on their computers,
so we’ll also use the image replacement technique we learned about
in Chapter 7 to keep the text from overlaying the background image.
We’ll also need to remember to include the hover effect for each menu
item when we make the sprite.

d. To create the fake column that extends all the way down the page
vertically on the right, we can cut out this gray bar and repeat it on
the y-axis.

e. Like the navigation elements above, this button will be a sprite and
we’ll use image replacement. We’ll need to make sure to remember
to design a rollover state.

F. The stroke that divides the main content from the two small columns
beneath it can be a background image.

g. This headline uses Gotham, so we’ll use image replacement to bring
it in as a background image on the <h1> tag.

Understanding Image Formats
Instead of saving everything as a 20-megabyte TIF file as we do for print proj-
ects, we need to save our files in formats that have smaller file sizes so they
load fast on the Web. There are three formats that are widely used by Web
designers: GIF, JPEG, and PNG. Each is good for certain types of images. The
way to decide which file format works best is to try all three and see which
one produces the best balance of file size and image quality.

The Trusty GIF
The little GIF file format is my favorite, because it gives me the most control
over file size. It supports transparency, too, which means it can be great for
overlaying on top of a background color or creating subtle texture.

It has limitations though. It supports only 256 colors, which means it’s usu-
ally not good for photographs. And it has only one level of transparency;
each pixel in a GIF is either transparent or opaque. This single-level trans-
parency can lead to graphics with cruddy borders.

The GIF is a great format for graphics like logos, simple illustrations, and
gradients that don’t have a lot of color variation.

10 : PrePress for the web : understandIng Image formats 145

Optimizing GIFs
The GIF file format supports up to 256 colors, but that doesn’t mean you
need to use all of them. When you go into Photoshop and choose File >
Save for Web & Devices and then select GIF from the drop-down list, there
will be a little area on the right showing a color table. This color table lists
all the colors your graphic uses.

Try reducing the number of colors in the Color option and watching the
results live in the left panel under the Optimized tab. When you have made
the number of colors as low as possible without sacrificing image quality,
you can see how big your file is (FIguRe 10.5).

General Rules for GIFs
I know from experience what typically works when optimizing GIF files, so I
want to give you a few shortcuts. Remember, I’m speaking in general terms
here because your projects will always be different. The best way to learn
what works is to try something and see what happens.

 • A small GIF image (say, 100 by 20 pixels) should come in under 1 KB.

 • A larger GIF image (say, 300 pixels squared) should not be more than
20 KB or so.

fIgure 10.5
Pay attention to file
size (which appears at
the bottom left of this
Photoshop dialog) when
exporting a GIF. The
fewer colors you have, the
smaller the file size will
be. This one comes in well
under 1 KB.

Css for PrInt desIgners146

 • A two-color graphic should be fine with eight colors.

 • GIFs sometimes work for photography or larger textures, if the image is
intentionally grungy. A JPEG image is typically a better choice for pho-
tography, though.

Getting Rid of That Cruddy Outline on GIFs
There’s a feature in Photoshop’s Save for Web & Devices dialog box called
Matte that always goes over well in my workshops. I’m always surprised by
how many print designers have never heard of this feature of Photoshop.
But then again, I guess I shouldn’t be surprised. It has no practical use
for print designers. And it’s on the Save for Web & Devices panel. A print
designer would have no reason to go exploring there.

When you choose File > Save for Web & Devices in Photoshop and select
GIF from the drop-down list, you’ll see an option on the right side labeled
Matte. If you have transparency in your GIF, selecting Matte will give you
some options for selecting a color to use as a matte color for the edges of
your GIF image (FIguRe 10.6).

You will want to choose the background color behind your transparent GIF
image. Photoshop will then put a horrible-looking, jagged border around
the edges of your GIF image that has transparent pixels beside it.

But don’t worry—that’s what you want. Because if you take that graphic
and lay it on top of the color you selected in your Matte settings, something

fIgure 10.6
The Matte feature in
Photoshop’s Save for Web
& Devices dialog box helps
transparent GIFs match
up with the background
color.

10 : PrePress for the web : understandIng Image formats 147

magical happens. Photoshop has blended the edges of your graphic with the
matte color and now it looks seamless, just like in our design.

Be careful, though, because you can set only one matte color. A GIF image
with a matte color can look great when it matches the background color,
but if the background color doesn’t match, it won’t look good at all.

The All-Mighty JPEG
JPEGs are good for images that have a lot of colors, like photography.

We control a JPEG’s file size by adjusting the overall quality of the image by
entering a percentage in Photoshop’s Save for Web & Devices dialog box
(FIguRe 10.7).

fIgure 10.7 Adjust
the quality and file size
of a JPEG in Photoshop’s
Save for Web & Devices
dialog box.

Typically, the human eye can’t tell a difference in quality until the quality
gets down to about 65 or 70 percent. The lower the percentage, the junkier
your JPEG image will look, but the smaller the file size will be.

JPEGs that aren’t saved with a high enough quality setting will begin to
show something called artifacting, which will usually be apparent where one
color transitions to another.

The Last-Resort PNG
PNGs are great at maintaining the quality of an image, and they do a
pretty decent job of keeping file size down. They also support 256 levels of
transparency, which is much better than the GIF. If you have images with
rounded corners or drop shadows embedded in them, and you don’t know
what background color they will sit on, or whether they will show up on dif-
ferent background colors, the PNG format can be a lifesaver.

two tYPes of Png format

There are two types of PNG formats to pick from: PNG-8 and PNG-24.
PNG-24 is the one that supports full transparency. I rarely use PNG-8
because the results are typically the same as using a GIF. When I talk
about PNGs, I’m talking about PNG-24.

tIP Don’t con-
fuse the Save for

Web & Devices JPEG set-
tings with the JPEG saving
options you get in Photo-
shop’s regular File > Save
As dialog box. Save for
Web & Devices gives you
much greater control over
your JPEG quality.

Css for PrInt desIgners148

We can save graphics as PNGs by going into Photoshop’s Save for Web &
Devices dialog box and choosing PNG-24.

The problem with PNGs is that we don’t have a lot of control over their
file size or quality settings (FIguRe 10.8), which is why I use PNGs as a
last resort when the quality I want cannot be achieved with a GIF or JPEG
image. Occasionally a PNG will surprise me and come in with a smaller file
size than a GIF or JPEG, but it’s a rare occurrence.

fIgure 10.8 There
aren’t any options for
controlling the file size of a
PNG image.

Saving Your Images
Now that we’ve identified which images we need for our design to work and
we have a better understanding of the file types, you can fire up Photoshop
and start exporting the images (FIguRe 10.9).

tIP Internet
Explorer 6 does

not support PNG trans-
parency. If you’re design-
ing a Web site that
requires IE6 support, God-
speed—and try to use GIFs
whenever possible. There
are some workarounds
that use JavaScript, but I
avoid them whenever pos-
sible. You should Google
“IE6 PNG fix” if you need
to go that route.

fIgure 10.9 Now that
we’ve extracted all the
images from the design,
we can start piecing them
together using CSS.

10 : PrePress for the web : measure twICe, slICe onCe 149

When you’re done, you should keep your CSS and HTML images sepa-
rate from each other. This helps keep your files organized, but it also
makes it much easier to type relative paths when coding CSS. For example,
i/graphic.gif is easier to type than ../css/i/graphic.gif.

Save the CSS images into a folder specifically for CSS images. Previously,
I suggested putting them in css/i/.

Web designers typically put HTML images in a folder called images or img.
By now I’m sure you know my vote is for the shorter name.

Measure Twice, Slice Once
The best advice I can give when it comes to image production for the Web
is to plan, plan, and plan some more.

You’ll save yourself a lot of grief by making your Photoshop comps nice and
orderly before you start slicing images. It really is worth the extra time in
your design process to name your layers clearly and group them logically.

don’t worK from the orIgInal Psd fIle

I’m embarrassed to admit this, but more than once I’ve been in a hurry
and have flattened a gorgeous Photoshop design without saving it, losing
the ability to edit the original. D’oh!

My advice? Don’t work from the original PSD file when you’re slicing and
dicing—you might wind up like me, working all night to rebuild the file,
crazy layer effects and all.

Also, since we’re working with pixels, not vectors, turn on Photoshop’s
Snap to Pixels feature (FIguRe 10.10). This will keep your shapes aligned
on the pixel grid and will prevent fuzzy edges in your final graphics
(FIguRe 10.11). It also makes measuring easier.

fIgure 10.10 Photoshop’s Snap to Pixels feature is a time
saver. Use it.

fIgure 10.11 The left side shows what a
graphic should look like when your pixels are aligned
properly—it will come out looking crisp. The right
side, when viewed at 100 percent, will look fuzzy.

Play
Video

Css for PrInt desIgners150

Finally, take your time. Don’t rush through this critical stage. Try differ-
ent file formats to see what produces the smallest file size and the highest
image quality.

And don’t stress if you don’t get it perfect the first time—while mistakes in
prepress for print design can lead to costly reprints, the Web is forgiving.
If you take something live with a less-than-ideal graphic, you can always
come back and fix it later.

11
Tools of the

Trade
A Quick Guide to the Software

You Need for Web Design

eveRy CRaFT haS a toolset. That’s why art school is so

expensive. Each class requires different tools—$200 worth of

pencils and charcoal for drawing; $400 worth of brushes, paint,

canvas, wood, and staples for painting; and $600 worth of film,

lenses, and chemicals for photography.

Print designers have tools, too. In addition to software like

InDesign, Illustrator, and Photoshop, our desks are cluttered

with X-Acto knives, spray adhesive, loupes, and other imple-

ments of creation. There’s no way around it—we’ll need these

tools eventually.

Css for PrInt desIgners152

Web Design Doesn’t Require Many Tools
You don’t need expensive software to transition from a print designer to
a Web designer—at least, not yet. Maybe later, when you’re marking up
complex layouts and coding CSS in your sleep. For now, I want you to
focus on the basics.

Those basics are

 • The software you already have

 • A text editor

 • A few plug-ins for your Web browser

Yep. That’s it. You can become a Web designer without forking out much
extra cash, if any at all.

The Web Designer’s Toolbox
Before you start making a Web site, you need to know what tools are out
there. I’m not providing a comprehensive list here—I’m just giving you
places to start looking. I’m keeping the list intentionally short and focusing
only on what you need to get started.

As you work more and more on Web design projects, you’ll find great tools
that I haven’t listed here—even some I haven’t heard of. Just remember, when
it comes down to it, it’s what you do with the tools, not the tools themselves.

Photoshop (or Fireworks)
I said this previously, but it’s worth reiterating here: Photoshop is not the
only application for designing Web sites. A lot of Web designers will tell you
Fireworks is the way to go, and they have some good points. But I’m more
familiar with Photoshop, and you probably are, too. Plus, you probably
already own a copy of Photoshop.

what about desIgnIng wIth Illustrator?

I have designed in Illustrator a couple of times, but have stayed away
from it recently. Illustrator does have a pixel view, which can be helpful for
Web design projects, but overall it’s optimized for vector graphics. Plus,
I always have a much easier time exporting graphics with Photoshop than
with Illustrator.

Use the program you’re more comfortable with to get your overall con-
cept down, but my recommendation is to finish everything in Photoshop.

11 : tools of the trade : the web desIgner’s toolbox 153

FTP
We learned about FTP in Chapter 3. Odds are, at some point, you’ve used FTP
to upload large files for a print job rather than burning and shipping a disc.

When we’re done building our Web site on our computer, we need to
upload it to a Web server to make the site live. That’s where FTP comes in.
If you don’t have an FTP application already, here are some of my favorites.

For Mac users

 • Panic’s Transmit ($35, at panic.com/transmit)

 • Fetch ($30, at fetchsoftworks.com)

 • Cyberduck (free, at cyberduck.ch)

For Windows users

 • SmartFTP ($40, at smartftp.com)

 • CoffeeCup’s Free FTP (free, at coffeecup.com/free-ftp/)

Text Editor
Everything we’ve learned in this book has involved typing text. And no,
we don’t type code in Microsoft Word. We type it in a plain text editor.

For Mac users

 • TextWrangler (free, at barebones.com/products/TextWrangler/)

 • BBEdit ($100, at barebones.com/products/bbedit/)

 • Panic’s Coda ($100, at panic.com/coda/)

For Windows users

 • CoffeeCup’s Free HTML Editor (free, at coffeecup.com/free-editor/)

 • CoffeeCup’s The HTML Editor ($50, at coffeecup.com/html-editor/)

 • Notepad++ (free, at notepad-plus-plus.org)

saVe html and Css fIles wIth the rIght fIle extensIons

When you’re using a plain text editor and you go to save your file, you
have the option to decide what file extension to use. In case you didn’t
know, when you’re making HTML files, you need to save the files with the
.html extension. When you’re making CSS files, you need to save the files
with the .css extension.

tIP A lot of
print designers

already have a copy of
Dreamweaver. Contrary to
what many Web coders
may say, it’s not a bad text
editor. If you have it, use
it. If not, don’t feel com-
pelled to fork out the cash
to get it—there are other,
less expensive options.

Css for PrInt desIgners154

Browsers and Plug-ins
As you know, there are several Web browsers to choose from these
days—and they’re all pretty good. When you start coding Web pages from
scratch, it’s a good idea to download all of the major browsers and have
them all handy to make sure your Web page looks good in each of them.

But you need to pick a browser to use when building your Web site. Firefox
is my go-to browser when developing sites because it has a lively commu-
nity of developers who have built plug-ins that make coding much easier.

Here are a couple of my favorite plug-ins.

Firebug
Firebug (addons.mozilla.org/en-US/firefox/addon/firebug/) is a Web devel-
opment tool that extends Firefox by letting you inspect the HTML and CSS
of a Web page (FIguRe 11.1).

fIgure 11.1 Firebug
saves Web developers a
lot of time by giving them
a visual way to browse a
Web page’s code.

11 : tools of the trade : PuttIng It all together 155

Firebug is good for troubleshooting your own code, but it can be especially
helpful if want to look at someone else’s Web site to see how that person
accomplished a treatment with CSS. It shows you the HTML and CSS that
applies just to that element so you don’t have to go swimming through
hundreds or thousands of lines of code to piece together what’s happening.

MeasureIt
MeasureIt (addons.mozilla.org/en-US/firefox/addon/measureit/) is a handy
little tool for measuring anything on your Web page (FIguRe 11.2).

Putting It All Together
Now you know everything you need to know to make a Web site on your
own. We’ve covered everything: screen sizes, paths, HTML, CSS layout,
CSS3, accessibility, image production, and the tools of the trade.

All you have to do now is get to work.

fIgure 11.2
MeasureIt makes it easy to
take measurements on a
Web page.

Play
Video

This page intentionally left blank

12
Any Questions?

A Collection of Real Questions
from Real Print Designers

WheN I Lead my workshops, I make sure to gear my pre-

sentation toward beginners—I want to avoid using technical

jargon that means something in the Web design community

but doesn’t mean anything to print designers.

The way I teach HTML and CSS to print designers is basic: You

need to know HTML; HTML is made up of tags; a tag looks

like this; now, here’s what CSS looks like and some tips and

tricks on how to use it.

See? I just put the entire book in a compound sentence.

Since it’s such a simple way of talking about hand coding, the

attendees start raising their hands halfway through the work-

shop and asking some pretty advanced questions. I’m always

impressed by the quality of the questions.

I reserved this chapter of the book to address those questions.

These are the real questions I have been asked over several years

of leading my CSS for Print Designers workshops.

Css for PrInt desIgners158

Frequently Asked Questions
These questions range from basic to advanced. I won’t go into great detail
in my answers. Instead, I’m going to give you enough information to under-
stand the basic concept and then you can go to Google to figure out the rest.

Which Web sites are good resources?
The World Wide Web Consortium (w3.org) tells you the proper way to
code Web sites, though the site is pretty technical. Go there when you’re
looking for the technical definition of something, or when you’re trying to
fall asleep.

A List Apart (alistapart.com) is an online magazine that publishes a couple
of new articles every two weeks. The topics are sometimes for advanced
coders, but often resonate with beginners as well. The writing is always
superb, and the thinking is always progressive.

Chris Coyier’s CSS Tricks (css-tricks.com) is a Web design community. Chris
is always posting inventive ways to accomplish things with CSS. He also
writes in a way that’s easy to understand.

Smashing Magazine (smashingmagazine.com) belongs in this list simply
because of the volume of articles this magazine puts out. It’s not exclusive
to Web design, because it also posts articles on print design. I check in here
a couple times each week.

The Photoshop Etiquette Manifesto for Web Designers (photoshopeti-
quette.com) is a list of helpful and subtle suggestions for organizing Pho-
toshop documents, making transfer of them less painful. Read this—it’s
essential for staying organized.

There are thousands of great Web design blogs and resources out there—
I couldn’t possibly list them all. Beyond these, I suggest following Web
designers on Twitter to see what they’re talking about and linking to.

I’ve heard you can use only one <h1>
tag per page for SEO. Is that true?
Remember how I told you there’s new HTML and old HTML? Well, the
newer version, HTML5, doesn’t care how many <h1> tags you have, as long
as you only have one <h1> tag per container. With HTML4, you’re supposed
to have only one <h1> tag per page.

To make sure you’re using HTML5, use the DOCTYPE you learned about
in Chapter 9. If your document doesn’t have the HTML5 DOCTYPE listed
here, you can only use one <h1> tag per page:
<!DOCTYPE html>

12 : anY QuestIons? : freQuentlY asKed QuestIons 159

HTML4 DOCTYPES
Other, older DOCTYPES will look a lot more complicated than the HTML5
DOCTYPE. Here are a few you might come across. Notice they’re only
slightly different from each other, but they’re all way more complicated
than the HTML5 DOCTYPE:
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”

“http://www.w3.org/TR/html4/strict.dtd”>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”

“http://www.w3.org/TR/html4/loose.dtd”>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

See? You don’t want to learn that, do you?

What’s wrong with using tables for layout?
When you use tables for layout, you’re not properly identifying the content.
Content needs to be properly identified to make it easier to maintain and
more reusable.

Fifteen years ago while I was mourning the loss of Kurt Cobain, Web coders
were thinking up inventive ways to mimic print design on the screen. Web
browsers sucked back then, even more than IE6. They couldn’t handle floats,
and CSS was just a little bitty baby.

Anyway, coders at that time figured out that by using the <table> tag, along
with table rows (the <tr> tag) and table data cells (the <td> tag), they could
create more complex layouts, just like in the print design world. It worked,
but it sacrificed meaning.

Fast-forward to today. We don’t need no stinkin’ tables. We have good
browsers.

Is there a proper time to use tables
when coding Web sites?
Absolutely. When your content is made up of tabular data, you should use
tables to flow the content. Tables can get pretty complex, so I don’t cover
them in my workshops, and I left them out of this book.

If you want to learn more about how to make proper tables with HTML,
you can Google “HTML table.” Remember, HTML tables are just made up
of tags, so you can hook into them with CSS to make them more attractive.

Css for PrInt desIgners160

How should we design for the “fold”
when we design Web sites?
The fold is a figment of your imagination. It’s a concept from print design
(newspapers, to be precise) based on a fixed height. The Web, as you know,
doesn’t have a fixed height.

But we still have to deal with the fact that your Web content will be cut off at
different heights by different peoples’ screens. We may not know where exactly,
but we can make a pretty good guess as to the range of where it might be.

This imaginary “fold” is typically 500–700 pixels from the top of the page.
I design around it by making sure my design has something that starts and
ends outside that range (FIguRe 12.1).

Web designers don’t need to try and make everything on the homepage fit
“above the fold.” Instead, we need to design so that there’s some indica-
tion that there’s more content below.

fIgure 12.1 Instead
of cramming everything
above the fold, just give
users an indication there’s
something below it.

The FoLd IS SoMeWheRe
IN ThIS aRea.

What is div-based layout?
Is that the same as CSS layout?
Yes. When someone says “div layout” they mean CSS layout. Don’t forget
that there are other tags besides <div> tags that can be used for layout.

With HTML5 we now have <header>, <section>, <article>, <aside>, <footer>,
and more. As a general rule, I called it CSS layout.

How do you deal with IE6?
First, my firm doesn’t support IE6 without charging extra. It’s a really old
browser and hardly anyone uses it any more. Plus, most of the really frus-
trating bugs come from IE6 and it can take quite some time to figure them
out. Dealing with IE6 is not child’s play.

tIP The scroll
bar in the browser

is not enough. Users don’t
pay attention to it until
they realize they need it.

12 : anY QuestIons? : freQuentlY asKed QuestIons 161

Sometimes, though, IE6 support is a requirement. Some of the most frus-
trating and bizarre IE6 bugs and simple workarounds are listed here:

 • Depending which DOCTYPE you’re using, IE6 may not calculate the
width of an object with padding or borders correctly. I avoid putting
padding and border on the left and right sides of tags that are used for
layout to sidestep this problem. You can learn more than you need to
know if you Google “IE6 box model.”

 • When something is floated in IE6, don’t put a margin on the right side
of it. If you do, that right margin’s value will double. You can learn more
if you Google “IE6 double margin.”

 • When you float objects in IE6, make sure the parent container has line-
height: 0; to make sure each tag aligns horizontally. Google “stepdown
bug” to learn more.

How do we make special characters like
em dashes, curly quotes, and such?
It’s best not to copy and paste special characters into your HTML, because
text has to be encoded properly to work on every computer. Instead, you’ll
need to learn about HTML character entities. They look funny, and you’ve
probably seen them before.

Basically, an HTML character entity is made up of an ampersand and a
semi-colon with some sort of number or text string inside. You just type the
entity, and the browser renders the proper character.

TabLe 12.1 gives you some of the most common HTML character entities.

table 12.1 Common HTML Character Entities

eNTITy WhaT IT LookS LIke eNTITy WhaT IT LookS LIke

© © “ “

™ ™ ” ”

‘ ‘ — —

’ ’ – –

Is there a way to check our code to
make sure we’re doing it right?
Yes, HTML and CSS can be checked automatically to see if they follow all
the rules. I use the W3C’s Validator (validator.w3.org) to check my code. If
you have a layout that doesn’t look right, check to make sure your code is
valid. Fixing errors will usually fix something you think should work.

Css for PrInt desIgners162

But remember, just because your code is valid doesn’t mean it’s good. Good
HTML properly identifies the content it surrounds, is formatted cleanly, and
has class and id attributes that don’t imply how something should look.

What books do you recommend?
After this book, I recommend Designing with Web Standards, Third Edition by
Jeffrey Zeldman and Bulletproof Web Design, Second Edition by Dan Cederholm.

Coding Is an Art
Print designers work in communication, advertising, and marketing. They’re
online all day. They even help plan and execute online marketing strate-
gies for clients and read blog posts about “user experience.” Furthermore,
almost every single print designer out there has, at some point, designed
something for the Web. Knowing about the Web is just part of the job.

Regardless of this level of familiarity with Web technologies, the thought
of coding something by hand makes some print designers break out into
a sweat. That’s because print designers have never been taught code in a
visual way, so it hasn’t made sense to them.

There are just so many questions: Can I do this? Should I do that? How would
you make these? If I try this, will my design break? Can I fix it if it breaks?

Every question about coding has one source—print designers are scared
of doing it the “wrong way.” Every single step of the process is daunting,
intimidating, unknown. But learning to code shouldn’t be that way.

There Is No Wrong Way to Learn
Coding is art. And just like art, you have to experiment with it to see what
works and what doesn’t. Think of HTML and CSS as materials like clay,
and you want to make a clay bowl for your mom. How nice!

There are tools and techniques for spinning clay into a beautiful bowl. And
those tools and techniques take practice. You can read up on and research
the tools until you know everything there is to know about them. And I’d
still bet money that the first time you sit down to spin clay, regardless of
your research and planning, you make a mess.

That’s OK; it’s even the point. Coding should be fun to learn. When you try
something new that you think might work, and it actually works, your face
will light up with joy at your creation.

I want you to make a mess with code. Play with it, have fun, get your hands dirty.

Index

Symbols
\ (backslash), 23, 25, 26
: (colon), 58, 59
{ } (curly brackets), 58, 59
“” (curly quotes), 47, 161
(hash), 63
- (hyphens), 69
. (period), 63
; (semicolon), 58, 59, 60
tick marks ("), 47, 70, 96

A
absolute paths, 23
accessibility, 127–129
active command, 86
attributes

adding class and id, 63
HTML’s accessibility, 127
<media>, 136
using, 46–49

B
background images, 94–101

cropping, 100
defining background color for, 94–95
 tag vs. background-image property, 94
incorporating in design, 119–122
making columns with, 108–112
positioning, 98–100
repeating, 96–97, 109–112
shorthand for CSS coding, 100–101
specifying paths for, 95–96

block tags, 53–56, 78
<body> tag, 136–137
borders, 78–81
boxes

adding drop-shadows to, 116–118
nesting tags as boxes within, 44–45
visualizing image production with, 141–142

browsers
interacting with CSS3, 113–115
PNG transparency and Internet Explorer 6, 148
resetting default CSS for, 84–85
selecting development, 154
supporting Internet Explorer 6, 160–161
using newer HTML with older, 38
viewing HTML files in, 56

bulleted lists, 30, 37, 39–40

C
Cascading Style Sheets. See CSS
class attribute, 63
closing tags (<forewardslash >), 35, 36
coding

background images, 100–101
comments for organizing, 52–53
consistency in, 50
HTML before adding CSS, 28–29
margins and padding, 83–84
marking up page in HTML, 8, 142–143
reading CSS, 2
RGB color, 72
sample CSS web page, 90–91, 119–122
tables, 150

color
cautions for, 15
choosing text, 71–72
defining background for background images, 94–95
GIF images with matte, 146–147
identifying in CSS, 60, 72
optimizing for GIF files, 145
RGB, 15–16, 72
selecting for print style sheets, 126
using with interactive commands, 87–88

columns, 75–79, 108–112
comments, 52–53, 67
content

copying and pasting in HTML, 134
designing for “fold” in site design, 160
identifying for layout, 142
setting minimum height for, 109
using tables for laying out, 159
viewing on page vs. RSS reader, 29

cropping images, 101–108
CSS (Cascading Style Sheets). See also background images;

selectors
accessibility features with, 127–129
adding shadows in CSS3, 116–119
adjusting line height, 72
calling with HTML tags, 136
changing case of HTML text with, 73
coding in HTML before adding, 8, 28–29, 34–35
commenting in, 67
controlling page printing, 124–126
creating interactive features, 85–88
cropping images with, 101–108
.css file extension, 136, 153
designing page layout, 74–85, 124
downloading speeds for, 129–132

164 Index

CSS (Cascading Style Sheets) continued
formatting, 60–61
hooking into with class and id attributes, 63
how to read, 2–3
identifying colors in, 60, 72
image replacement with, 106–107
kerning with, 73
linking home page to CSS styles, 21
lowercase specificity in, 69
navigating without a mouse, 128–129
overriding declarations in, 104, 131–132
properties demonstrated for, 92
pros and cons of CSS3, 112–115
resetting browser defaults, 84–85
rounded corners in CSS3, 115–116
sculpting HTML with, 57–58
setting content height, 109
shorthand for margins and padding, 83–84
specifying fonts with, 69–72, 125–126
sprites in, 101, 102, 105, 119–120
syntax elements for, 58–59
typesetting with, 2, 68–74
units of measurement with, 70
white space and file size, 62
writing Web page in HTML and, 88–92

CSS3 generators, 116

D
definition lists, 30, 41–43
designers

accepting design variation, 6–8, 9–11, 14
adapting to CSS formatting, 60
adjusting to new workflow, 13–14
color design in RGB, 15–16, 72
designing for Web vs. paper, 5–6
developing interactive features, 85–86
faking vertical alignment on Web, 108–112
frequently asked questions from, 158–162
learning art of Web design, 162
points to consider in CSS, 124
producing images for Web, 139–140
pros and cons of CSS3 for, 112–115
selling clients on CSS3, 113–114
understanding screen resolution, 14–15
using HTML, 8–9
writing text in HTML, 27–31

division tag (<div>), 37, 160
downloading

defined, 20
increasing CSS speeds for, 129–132
videoclips for book, 26

E
ems

 tag, 36
measuring, 70
using em dashes, 161

F
favicon, 136
files. See also paths

.css extension for, 136, 153
favicon, 136
GIF, 144–147
.html extension for, 56, 135, 153
HTML Framework, The, 137
.ico extension for, 136
JPEG, 146, 147
packaging Web, 21–23
paths to, 18–20
Photoshop settings for design, 16
PNG, 147–148
uploading and downloading, 20
viewing HTML, 56
white space and size of, 62

Fireworks, 12, 152
floats

clearing, 77
making three-column layout with, 78
planning production by visualizing, 141–142
setting up columns with, 75–77
using float property, 74–75

folders
absolute and relative paths to, 23–24
adding trailing slash on path to, 26
jumping to root, 26
moving in and between path, 25
navigating Internet, 21
organizing files into, 23
saving production images in separate, 149
setting up paths to, 18–20

fonts
color of, 71–72
selecting for print style sheets, 125–126
size of, 70
specifying with CSS, 69–70
using temporary, 69
weight and style of, 71

<footer> tags, 36
formatting

code in HTML, 50–51
CSS, 60–61

FTP (File Transfer Protocol), 20–21, 153

G
GIF file format, 144–147
glossary listings, 41–43

H
headlines

about, 29, 37
<h1> tag for, 36, 158–159
<header> tag for, 36

hexadecimal codes, 60, 72, 117

165Index

home folder, 26
horizontal positioning keywords, 98
hover command, 86
HTML Framework, The, 137
HTML (HyperText Markup Language). See also tags

about, 8–9
accessibility attributes in, 127
avoiding HTML4 DOCTYPEs, 159
calling CSS with tags, 136
case in code for, 73, 74
coding pages in, 28–29, 88–89
copying and pasting, 134
formatting code in, 50–51
.html file extension, 135, 153
linking with anchors in, 37
lists in, 30, 37, 39–43
marking up page in, 8, 142–143
navigating to index file, 26
organizing code with comments, 52–53
saving and viewing, 56
sculpting with CSS, 57–58
special characters in, 161–162
styling with CSS, 29
tables in, 150
tags in, 29–31, 34, 35–37, 136
targeting nested selectors in, 64–66
timesaving with HTML Framework files, 137
understanding before writing CSS, 34–35
using version HTML5, 38
writing semantic, 48–49

I
.ico file extension, 136
id attribute, 63
images. See also background images; Web image

production
about tag, 36, 94
creating simple Web page using, 119–122
cropping with CSS, 101–108
designing rollovers with, 102–104
floating and wrapping text around, 74–75
making columns with background, 108–112
preserving original Photoshop, 149
replacing for rollovers, 105–107
size and speeds of downloading, 129–130
slicing, 149–150
sprites, 101, 102, 105, 119–120

InDesign, 12, 21–23
index files, 26
inline tags, 53, 55–56
interactive features, 85–88

creating rollovers with images, 102–104
designing for, 85–86
using interactive CSS commands, 86–88

Internet
finding CSS3 support on, 115
navigating folders on, 21, 25

packaging linked files for, 21–23
variation of Web design on, 6–8

Internet Explorer 6, 148, 160–161

J
JavaScript, 38
JPEG file format, 146, 147

K
kerning, 73
keywords

positioning images with, 98–99
SEO, 136

L
layout, 74–85

about Web, 74
adding padding, 81–82
adjusting margins, 82–83
background images in, 94–101
borders in, 80–81
centering with margin declarations, 84
considering size of, 9, 10–11
designing with tables, 159
identifying content for, 142
inheriting border color, 81
planning for image production, 140–142
removing default spacing with CSS reset, 84–85
setting up columns with floats, 75–77, 78
spacing with border, padding, and margin, 78–79
using div, 160
wrapping text with floats, 74–75

leading, 72
linking

CSS with HTML via <link> tag, 136
with HTML anchor tags, 37
page files on Internet, 21–23

lists
definition, 30, 41–43
navigating using series of floating tags, 78
ordered (numbered), 30, 37, 40–41
tagging, 29, 30, 39–43
unordered (bulleted), 30, 37, 39–40

M
margins

centering design using, 84
CSS shorthand for, 83–84
padding vs., 82
setting for layout, 82–83
spacing page with border, padding, and, 78–79

marking up pages in HTML, 8, 142–143
MeasureIt, 155
<media> attribute, 136
mouse

designing interactive buttons for, 86–88
users who don’t use a, 128

166 Index

N
navigating

in and between folders on path, 25
cueing users about, 86
designing Web page for, 144
to index, 26
Internet folders, 21
multiple folders with ./ and ../, 25
using series of floating tags, 78
without a mouse, 128–129

nested tags
applying CSS within HTML, 61
can’t nest block tag within inline tag, 55
targeting nested selectors in, 64–66
using, 44–46

numbered lists, 30, 37, 40–41

O
opening tags (< >), 35, 36
ordered lists, 30, 37, 40–41
overriding declarations in CSS, 104, 131–132

P
 <p> tag. See selectors
padding

adding, 81–82, 103
CSS shorthand for, 83–84
margins vs., 82
spacing with padding property, 78–79

page title for Web pages, 135
paper vs. Web design, 5–6
paragraph tags (<p>), 29, 36
parent and child tags, 76–77
paths

absolute, 23
importance of setting up, 18, 26
jumping to root folder, 26
linking page files on InDesign, 21–23
navigating folders on, 21, 25
relative, 24
specifying background image, 95–96
trailing slashes after folder name, 26
understanding Web folders, 18–20

percentages for image positioning, 100
Photoshop

adding matte color to GIF images in, 146–147
Color Picker in, 71
designing with, 11, 152
Fireworks vs., 12, 152
preserving originals in, 149
Save for Web & Devices dialog, 145, 146, 147, 148
saving selected images for production, 148–149
setting up design projects in, 16
slicing images, 149–150

pixels, 10, 99–100, 149
plug-ins, 154–155
PNG file format, 147–148

positioning background images, 98–100, 102
printing

identifying CSS file for, 136
Web pages, 124–126

pseudo-selectors, 87

R
relative paths, 24
rendering engines, 114–115
resolution

horizontal and vertical, 10
understanding computer, 14–15

RGB color, 15–16, 72
rollovers

accessibility concerns for, 128
changing default state of, 103–104
designing with images, 102–104
replacing images in, 105–107

rounded corners in CSS3, 115–116

S
saving

CSS files, 136, 153
HTML files, 56, 135
images for production, 148–149

screen readers, 127
screen size variation, 6–8, 9–11, 14
scrolling pages, 10, 109
selectors

checking, 67
defined, 59
hooks and tags with, 63–64
making interactive, 86
overriding declarations with, 104, 131–132
reading, 66
stringing together, 130–131
targeting nested, 64–66
using, 62–66

self-closing tags, 49–50
SEO (search-engine optimization), 134, 135, 136
servers, 20
shadows, 116–119
slicing images, 149–150
spaces in CSS, 69
 tag, 36
special characters, 161–162
sprites, 101, 102, 105, 119–120
states

changing rollover’s, 103–104
creating multiple rollover, 105, 119–120

 tag, 36
syntax

comment, 67
elements for CSS, 58–59
HTML attribute, 47

167Index

T
tables for layout, 159
tags. See also lists

adding attributes to, 46–49
basic HTML, 29–31, 36–37
block and inline, 53–56
<body>, 136–137
calling CSS with, 136
centering with margin declarations, 84
comment, 52–53
definition list, 41–43
errors in opening/closing, 45–46
floating children, 76–77
frequency of <h1> tags per page, 158–159
importance in HTML, 34
including Web site description in, 136
lists, 29, 30, 37, 39–43
nesting, 44–46
page title for Web pages, 135
parts of HTML, 35–36
self-closing, 49–50
structuring HTML files with, 134–137
using selectors with hooks and, 63–64
vertical height of columns and HTML, 108

text
case of HTML, 73, 74
changing leading, 72
clearing floats, 77
coding special characters, 161–162
color selection for, 71–72
CSS cognates for, 2
designating units of measurement, 70
editing software for, 153
kerning, 73
reusing and reformatting, 28
setting with CSS, 68
shadows for, 118–119
tips for writing in HTML, 27–31
working with fonts, 69–72, 125–126
wrapping with floats, 74–75

text editors, 153
transparencies

adding transparent shadows, 117
PNG files supporting, 147, 148

troubleshooting
cautions about image replacement, 107
checking opening/closing tags, 45–46
inline tags nested in block tag, 55
organizing files for Web pages, 21–23
using Firebug for, 154–155

type. See text

U
units of measurement, 70
unordered lists, 30, 37, 39–40
uploading files, 20

V
vertical alignment, 99, 108–112
vertical resolution, 10

viewing
content on page vs. RSS reader, 29
HTML files in browsers, 56
identifying CSS file for, 136

visited command, 86

W
Web design. See also Web image production; Web pages

art of, 162
challenges for designers, 5–6
color design in RGB, 15–16
considering layout size, 9, 10–11
content design for “fold,” 160
controlling page printing, 124–126
creating files for, 11–16
div layouts for, 160
frequently asked questions about, 158–162
linking page files on Internet, 21–23
Photoshop settings for files, 16
points to consider in CSS, 124
recommended books on, 162
tools needed for, 11–16, 151–155
understanding computer resolution, 14–15
using HTML for, 8–9
using tables for layout, 159
variations in screen size and, 6–8, 9–11, 14
workflow for, 13–14

Web image production, 139–150
choosing final images for, 143–144
GIF images for, 144–147
JPEG images for, 146, 147
planning layouts for, 140–142
PNG images for, 147–148
saving selected images for, 148–149
slicing images, 149–150

Web pages. See also coding; Web image production
accessibility of, 127–129
browsing code for bugs, 154–155
creating files for, 11–16
CSS coding for sample, 90–91, 119–122
designing with InDesign, 12
errors in opening/closing tags, 45–46
formatting in HTML, 50–51
frequency of <h1> tags per, 158–159
HTML tags needed for, 134–135
linking files for, 21–23
marking up mockups in HTML, 8, 142–143
measuring, 155
page title for, 135
planning final layouts for, 140–144
resources for, 81, 158
saving and viewing HTML, 56
scrolling, 10, 109
structure of HTML, 134
white space and file size of, 62
writing example, 88–92

X
X- and Y-axis, 97

creative

Unlimited online access to all Peachpit, Adobe

Press, Apple Training and New Riders videos

and books, as well as content from other

leading publishers including: O'Reilly Media,

Focal Press, Sams, Que, Total Training, John

Wiley & Sons, Course Technology PTR, Class

on Demand, VTC and more.

No time commitment or contract required!

Sign up for one month or a year.

All for $19.99 a month

SIGN UP TODAY
peachpit.com/creativeedge

WATCH
READ

CREATE

edge

	Contents
	Introduction
	CHAPTER 1 Coding in Plain English
	CSS Is Easy to Memorize
	You Already Know How to Read CSS

	CHAPTER 2 From Picas to Pixels
	Three Steps to Thinking Like a Web Designer
	Setting Up Your Web Design Files

	CHAPTER 3 Dump Drag and Drop
	Why You Shouldn’t Rely on Software to Set Up Your Paths
	Web Sites Have Folders Like Your Computer
	How FTP Works (the Oversimplified Version)
	Navigating Folders on the Internet
	It’s Like Packaging InDesign Projects
	Absolute Paths
	Relative Paths
	Moving Within the Same Folder
	Moving Into Deeper Folders
	Moving Into Higher Folders
	Putting It Together
	Starting at Home
	Leaving Off Index
	Trailing Slashes
	This Chapter Will Fix 89.6 Percent of Your Problems—Read It Again

	CHAPTER 4 You Have to Read the Words
	It’s the Whole Purpose of Coding
	So What Does HTML Do, Exactly?

	CHAPTER 5 Boxes Inside Boxes
	Learning CSS Happens Fast, Once You Know the Secret
	HTML Is Made Up of Tags
	A Dozen Tags You Need to Know
	New HTML vs. Old HTML
	Tag Groups (Also Known as Lists)
	Nesting Tags
	Adding Attributes to Tags
	Five Attributes You Need to Know
	Self-Closing Tags
	Formatting Code Is Like Setting Type
	Block and Inline Tags
	HTML Looks Like a Word Doc

	CHAPTER 6 Sculpting with CSS
	First Things First: Syntax
	Formatting Your CSS
	Getting Fancy with Selectors
	Reading Selectors in Plain English
	Commenting Your CSS
	Let’s Write Some CSS
	Setting Type with CSS
	Laying Out a Web Page
	Designing for Interaction
	Let’s Make a Web Page Together
	You Already Know a Lot

	CHAPTER 7 Designing with CSS
	Using Background Images
	Cropping Images with CSS
	Making Columns with Background Images
	Designing with CSS3—Without Images
	Putting It All Together
	Making Design Happen

	CHAPTER 8 Improving Lives with CSS
	Empathy Through CSS
	Designing for Print (with CSS)
	Designing for Accessibility
	Writing CSS That Loads Fast
	Thinking Beyond Visual Design

	CHAPTER 9 Starting from Scratch
	Copying and Pasting Saves Time
	More HTML Tags
	The HTML Framework

	CHAPTER 10 Prepress for the Web
	Image Production for Web Design
	Starting by Planning
	Understanding Image Formats
	Saving Your Images
	Measure Twice, Slice Once

	CHAPTER 11 Tools of the Trade
	Web Design Doesn’t Require Many Tools
	The Web Designer’s Toolbox
	Putting It All Together

	CHAPTER 12 Any Questions?
	Frequently Asked Questions
	Coding Is an Art
	There Is No Wrong Way to Learn

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

