
www.allitebooks.com

http://www.allitebooks.org

CakePHP 2
Application Cookbook

Over 60 useful recipes for rapid application development
with the CakePHP framework

Jorge González

James Watts

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

CakePHP 2 Application Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1040814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-008-3

www.packtpub.com

Cover image by Larry Masters, taken at CakeFest, the annual CakePHP conference

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Jorge González

James Watts

Reviewer
Lubomír Štork

Acquisition Editor
Owen Roberts

Content Development Editors
Joanne Fitzpatrick

Owen Roberts

Technical Editors
Tanvi Bhatt

Faisal Siddiqui

Copy Editors

Roshni Banerjee

Sayanee Mukherjee

Karuna Narayanan

Project Coordinator
Danuta Jones

Proofreaders
Simran Bhogal

Sandra Hopper

Amy Johnson

Indexer
Priya Subramani

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

Foreword

It's been almost 10 years now since I first worked on what would be known as CakePHP, one
of the most popular PHP frameworks available today. Over the years, I've been involved and
have also seen through other developers how it's evolved and advanced with contributions
from the amazing community that's grown up around the project. I'm so proud of all the work
that has gone into the framework; this work has helped make it such a powerful contender
when it comes to choosing an open source solution.

As the latest version of the framework, 2.5 represents the best of CakePHP to date, and truly
reflects the goals we had right from the very beginning: to make building web applications
simpler, faster, and require less code. I believe we've done a lot to keep this promise in making
CakePHP a framework that really is an "out-of-the-box" solution, while also maintaining a strong
backward compatibility, which allows developers to keep using it without worrying about us
totally abandoning legacy or significantly changing the code base they know best and love.

We've also been very serious about maintaining a migration path so that our community
can move between versions of the framework, providing not only a clear outline of the new
features and updates expected between versions, but also a migration shell, which handles
most of the work for you. This has always been a trademark of CakePHP that I've been
consistent in supporting, as it sends a clear message to our community that we have no
intentions of leaving anyone behind and think about them every step of the way.

There's no doubt that the community drive behind CakePHP is what makes it such a popular
option in the PHP framework's space, and it has been the principal factor in determining its
success. If you're looking to build a great web application in record time that supports industry
standards and common integrations through thousands of plugins, while also being backed
by extensive documentation and a thorough API reference as well as a huge community for
support and discussion, then look no further than CakePHP.

This book will help you jump right in and get a clear idea of how the framework can solve
those typical issues you'll encounter when building an application. It provides a great
head-first dive into CakePHP and will advance your knowledge of the framework by
approaching the problems that will likely matter most early on.

Larry Masters
Founder of CakePHP

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Jorge González has a degree in Computer Science and Engineering as well as extensive
experience in different positions from development to consulting and management, allowing
him to quickly understand problems and provide effective solutions. He started using
CakePHP many years ago and has never looked back since, applying the framework to several
projects and domains, specifically, the hospitality and tourism sector, where he has worked
for over 8 years before joining the Cake Development Corporation (CakeDC). He also runs the
official CakePHP standard training course for the Cake Software Foundation and the basic
workshop at CakeFest since 2013.

This book is dedicated to the girls in my life: my mother, Ana, and my wife,
Kathrin. Thank you for your endless love and support.

I'd also like to thank Larry Masters and José Lorenzo for giving me the
opportunity to start working in CakeDC, the best team and the best people
I've ever met.

www.allitebooks.com

http://www.allitebooks.org

James Watts is an experienced enterprise PHP architect, with a long track record in open
source development. He is a core member of CakePHP and also handles community efforts,
such as organizing CakeFest, the annual conference dedicated to the framework. He has also
authored various technical specifications such as the Extended Hypertext Transfer Protocol
(XHTTP) and the Documentation Markup Language (DocML). Professionally, he is the acting
director of the Cake Development Corporation (CakeDC), the commercial entity behind the
framework, where he works alongside Larry Masters, the founder of CakePHP.

It's impossible to not thank the CakePHP community around the world for
making the project what it is today. I would also like to thank Larry Masters,
Mark Story, Jose Lorenzo, Andy Dawson, Mark Scherer, Adnan Sarela, Marc
Ypes, Jose Gonzalez, Christian Winther, Rachman Chavik, Juan Basso,
Renan Gonçalves, Pierre Martin, Marc Würth, Bryan Crowe, and the rest of
the core team and amazing people who have come and gone, and dedicated
their time and passion to the framework; you guys are truly awesome.

I also want to thank my beautiful wife, Laura, for supporting me at every
step of the way, and also our baby (work in progress), who, when born,
will become the most important project in my life.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Lubomír Štork is an experienced software and database architect at the Cake
Development Corporation (CakeDC) and has been actively using CakePHP since 2005.
He is an author of TranslateBehavior in Version 1.2 of the framework and has also
contributed to several other software libraries as well as provided help in open source
community support channels.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Lightning Introduction	 7

Introduction	 7
Listing and viewing records	 8
Adding and editing records	 17
Deleting records	 23
Adding a login	 26
Including a plugin	 32

Chapter 2: Advanced Routing	 41
Introduction	 41
Adding a prefix	 41
Handling languages	 51
Custom route class	 53
Dispatch filter	 59

Chapter 3: HTTP Negotiation	 65
Introduction	 65
Parsing extensions	 65
Processing Ajax requests	 68
Building a response	 72
Uploading a file	 74
Using a detector	 80
Working with cookies	 82
Cache control	 87
Error handling	 90

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 4: API Strategies	 95
Introduction	 95
RESTful resources	 95
Exposing a web service	 99
Consuming a service	 104
Authentication API	 108
API versioning	 114

Chapter 5: Using Authentication	 121
Introduction	 121
The HTTP authentication	 121
Custom authorize class	 127
Facebook authentication	 134
Custom RBAC	 141
Working with ACL	 146

Chapter 6: Model Layer	 163
Introduction	 163
Has and belongs to many (HABTM)	 163
Joining through	 169
Containing models	 171
Custom finders	 176
On-the-fly associations	 180
Using transactions	 184

Chapter 7: Search and Pagination	 187
Introduction	 187
Pagination	 187
Basic search and filter	 193
The Search plugin	 198
Advanced search	 205

Chapter 8: Events System	 213
Introduction	 213
Listeners and subscribers	 213
Event-driven process	 217
Event stacking	 225
Managing event priorities	 234

iii

Table of Contents

Chapter 9: Creating Shells	 241
Introduction	 241
Console API	 241
Import parser	 246
Running cron shells	 251
Using the I18n shell	 255

Chapter 10: View Templates	 263
Introduction	 263
Using blocks	 263
Building an XML view	 266
Generating a PDF	 268
Writing some PDF content to a file	 271
Translations	 272
View caching	 275
The AssetCompress plugin	 279

Chapter 11: Unit Tests	 283
Introduction	 283
Dependency Injection	 283
Creating a fixture	 286
Mock objects	 291
Stub method configuration	 294
Model unit testing	 297

Chapter 12: Migrations	 305
Introduction	 305
Schema handling	 306
Syncing changes	 310
The Migrations plugin	 312
Injecting data	 316

Index	 323

iv

Table of Contents

Preface
With this book, we've aimed to cover and resolve the typically common tasks when working
with CakePHP. To do this, we collected the most popular questions from support websites
around the Web on how to use certain features or perform common actions with the
framework, and ranked them in order of frequency. We then proposed a solution for each
of these; once this was done, we put together what we considered to be a comprehensive
guide to how to get the job done fast, and right, in each scenario.

While we've done our best to approach each topic with a sound solution, we have been
aware of the possibly uneven level of technical knowledge each reader may have. So, where
possible, we've tried to keep our examples in line with simple or reasonably understandable
parameters so as to reduce any additional knowledge that would potentially be required in
each case.

We've dedicated many hours to reviewing each case and hope that you find something
useful throughout the scenarios we've outlined. Where it's been obvious, we've relied on
basic knowledge of the framework so as to not overburden each tutorial with additional
instructions. However, for anyone completely new to the framework, after completing the
blog tutorial included in the CakePHP documentation (http://book.cakephp.org),
you should feel quite comfortable with the assumptions we've made along the way.

What this book covers
Chapter 1, Lightning Introduction, is a set of quick-start recipes to dive head first into using
the framework and build out a simple CRUD around product management.

Chapter 2, Advanced Routing, looks at a couple of routing solutions and how to achieve them
with the framework.

Chapter 3, HTTP Negotiation, looks at various scenarios where working with HTTP is greatly
simplified by CakePHP.

Chapter 4, API Strategies, looks at a couple of ways to expose an API using CakePHP, so you
can then decide which fits best with your application.

Preface

2

Chapter 5, Using Authentication, looks at various ways of handling authentication and access
control when using the framework.

Chapter 6, Model Layer, looks at the various aspects of models and tells us how to wield
their power.

Chapter 7, Search and Pagination, revises some recipes to help you get familiar with Search
and Pagination in the framework.

Chapter 8, Events System, looks at the fundamentals of the events system, with a couple of
recipes to get you handling events.

Chapter 9, Creating Shells, outlines some common use cases when using shell tasks as well
as some built-in shell commands that come with the framework.

Chapter 10, View Templates, looks at various aspects of the view layer in CakePHP and tells
us how to get the most out of templates, code reuse, translations, caching, and more.

Chapter 11, Unit Tests, looks at how CakePHP leverages the PHPUnit library to provide a solid
base for unit testing, including handling dependencies, fixtures, as well as using the bake
shell for testing.

Chapter 12, Migrations, looks at how simple it is to build and maintain your database while
keeping your schema changes up to date with your code base.

What you need for this book
You should have comprehensive knowledge of PHP, understanding of the object-oriented nature
of the language, as well as the base syntax and language constructs. You will also need a basic
understanding of the CakePHP framework, which, for this book, should be enough after having
set up and configured the framework to work on a local server (we use a Linux environment
throughout the content of the book). You should also have completed at least the blog tutorial
included in the CakePHP documentation (http://book.cakephp.org).

Who this book is for
We'd expect you to have some experience as a PHP developer and some level of knowledge of
CakePHP, the solutions it provides, and the features it offers. If you have experience working
in other frameworks that follow the MVC architecture, you should also find the content of this
book accessible.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Preface

3

Code words in text are shown as follows: "Now, create a directory named Products/ in app/
View/. Then, in this directory, create one file named index.ctp and another named
view.ctp."

A block of code is set as follows:

CREATE TABLE products (
 id VARCHAR(36) NOT NULL,
 name VARCHAR(100),
 details TEXT,
 available TINYINT(1) UNSIGNED DEFAULT 1,
 created DATETIME,
 modified DATETIME,
 PRIMARY KEY(id)
);

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

public function index() {
 $this->Category->recursive = 0;
 $this->Prg->commonProcess(null, array(
 'paramType' => 'querystring'
));
 $this->Paginator->settings = array(
 'Category' => array(
 'paramType' => 'querystring',
 'conditions' => $this->Category->parseCriteria($this->Prg-
>parsedParams())
)
);
 $this->set('categories', $this->Paginator->paginate());
}

Any command-line input or output is written as follows:

$ Console/cake bake all Gift

$ Console/cake bake all Recipient

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "If we fill the search box
with the example text and then hit the Submit button."

Preface

4

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website, or added to any list of existing errata, under the Errata section of
that title.

Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Lightning Introduction

In this chapter, we will cover the following recipes:

ff Listing and viewing records

ff Adding and editing records

ff Deleting records

ff Adding a login

ff Including a plugin

Introduction
CakePHP is a web framework for rapid application development (RAD), which admittedly
covers a wide range of areas and possibilities. However, at its core, it provides a solid
architecture for the CRUD (create/read/update/delete) interface.

This chapter is a set of quick-start recipes to dive head first into using the framework and
build out a simple CRUD around product management.

www.allitebooks.com

http://www.allitebooks.org

Lightning Introduction

8

If you want to try the code examples on your own, make sure that you have CakePHP 2.5.2
installed and configured to use a database—you should see something like this:

Listing and viewing records
To begin, we'll need a way to view the products available and also allow the option to select and
view any one of those products.

In this recipe, we'll create a listing of products as well as a page where we can view the details
of a single product.

Chapter 1

9

Getting ready
To go through this recipe, we'll first need a table of data to work with. So, create a table
named products using the following SQL statement:

CREATE TABLE products (
 id VARCHAR(36) NOT NULL,
 name VARCHAR(100),
 details TEXT,
 available TINYINT(1) UNSIGNED DEFAULT 1,
 created DATETIME,
 modified DATETIME,
 PRIMARY KEY(id)
);

We'll then need some sample data to test with, so now run this SQL statement to insert
some products:

INSERT INTO products (id, name, details, available, created, modified)
VALUES
('535c460a-f230-4565-8378-7cae01314e03', 'Cake', 'Yummy and sweet', 1,
NOW(), NOW()),
('535c4638-c708-4171-985a-743901314e03', 'Cookie', 'Browsers love
cookies', 1, NOW(), NOW()),
('535c49d9-917c-4eab-854f-743801314e03', 'Helper', 'Helping you all
the way', 1, NOW(), NOW());

Before we begin, we'll also need to create ProductsController. To do so, create a file
named ProductsController.php in app/Controller/ and add the following content:

<?php
App::uses('AppController', 'Controller');

class ProductsController extends AppController {

 public $helpers = array('Html', 'Form');

 public $components = array('Session', 'Paginator');

}

Now, create a directory named Products/ in app/View/. Then, in this directory, create one
file named index.ctp and another named view.ctp.

Lightning Introduction

10

How to do it...
Perform the following steps:

1.	 Define the pagination settings to sort the products by adding the following property
to the ProductsController class:
public $paginate = array(
 'limit' => 10
);

2.	 Add the following index() method in the ProductsController class:
public function index() {
 $this->Product->recursive = -1;
 $this->set('products', $this->paginate());
}

3.	 Introduce the following content in the index.ctp file that we created:
<h2><?php echo __('Products'); ?></h2>
<table>
 <tr>
 <th><?php echo $this->Paginator->sort('id'); ?></th>
 <th><?php echo $this->Paginator->sort('name'); ?></th>
 <th><?php echo $this->Paginator->sort('created'); ?></th>
 </tr>
 <?php foreach ($products as $product): ?>
 <tr>
 <td><?php echo $product['Product']['id']; ?></td>
 <td>
 <?php
 echo $this->Html->link($product['Product']['name'],
array('controller' => 'products', 'action' => 'view',
$product['Product']['id']));
 ?>
 </td>
 <td><?php echo $this->Time->nice($product['Product']
['created']); ?></td>
 </tr>
 <?php endforeach; ?>
</table>
<div>

Chapter 1

11

 <?php echo $this->Paginator->counter(array('format' => __('Page
{:page} of {:pages}, showing {:current} records out of {:count}
total, starting on record {:start}, ending on {:end}'))); ?>
</div>
<div>
 <?php
 echo $this->Paginator->prev(__('< previous'), array(), null,
array('class' => 'prev disabled'));
 echo $this->Paginator->numbers(array('separator' => ''));
 echo $this->Paginator->next(__('next >'), array(), null,
array('class' => 'next disabled'));
 ?>
</div>

4.	 Returning to the ProductsController class, add the following view()
method to it:
public function view($id) {
 if (!($product = $this->Product->findById($id))) {
 throw new NotFoundException(__('Product not found'));
 }
 $this->set(compact('product'));
}

5.	 Introduce the following content in the view.ctp file:
<h2><?php echo h($product['Product']['name']); ?></h2>
<p>
 <?php echo h($product['Product']['details']); ?>
</p>
<dl>
 <dt><?php echo __('Available'); ?></dt>
 <dd><?php echo __((bool)$product['Product']['available'] ? 'Yes'
: 'No'); ?></dd>
 <dt><?php echo __('Created'); ?></dt>
 <dd><?php echo $this->Time->nice($product['Product']
['created']); ?></dd>
 <dt><?php echo __('Modified'); ?></dt>
 <dd><?php echo $this->Time->nice($product['Product']
['modified']); ?></dd>
</dl>

Lightning Introduction

12

6.	 Now, navigating to /products in your web browser will display a listing of the
products, as shown in the following screenshot:

7.	 Clicking on one of the product names in the listing will redirect you to a detailed view
of the product, as shown in the following screenshot:

Chapter 1

13

How it works...
We started by defining the pagination setting in our ProductsController class, which
defines how the results are treated when returning them via the Paginator component
(previously defined in the $components property of the controller). Pagination is a powerful
feature of CakePHP, which extends well beyond simply defining the number of results or
sort order.

Lightning Introduction

14

We then added an index() method to our ProductsController class, which returns the
listing of products. You'll first notice that we accessed a $Product property on the controller.
This is the model that we are acting against to read from our table in the database. We didn't
create a file or class for this model, as we're taking full advantage of the framework's ability
to determine the aspects of our application through convention. Here, as our controller is
called ProductsController (in plural), it automatically assumes a Product (in singular)
model. Then, in turn, this Product model assumes a products table in our database.
This alone is a prime example of how CakePHP can speed up development by making use
of these conventions.

You'll also notice that in our ProductsController::index() method, we set the
$recursive property of the Product model to -1. This is to tell our model that we're not
interested in resolving any associations on it. Associations are other models that are related to
this one. This is another powerful aspect of CakePHP. It allows you to determine how models
are related to each other, allowing the framework to dynamically generate those links so
that you can return results with the relations already mapped out for you. We then called the
paginate() method to handle the resolving of the results via the Paginator component.

It's common practice to set the $recursive property of all models to -1
by default. This saves heavy queries where associations are resolved to
return the related models, when it may not be necessary for the query at
hand. This can be done via the AppModel class, which all models extend,
or via an intermediate class that you may be using in your application.

We had also defined a view($id) method, which is used to resolve a single product and
display its details. First, you probably noticed that our method receives an $id argument. By
default, CakePHP treats the arguments in methods for actions as parts of the URL. So, if we
have a product with an ID of 123, the URL would be /products/view/123. In this case, as
our argument doesn't have a default value, in its absence from the URL, the framework would
return an error page, which states that an argument was required. You will also notice that our
IDs in the products table aren't sequential numbers in this case. This is because we defined
our id field as VARCHAR(36). When doing this, CakePHP will use a Universally Unique
Identifier (UUID) instead of an auto_increment value.

To use a UUID instead of a sequential ID, you can use either CHAR(36) or
BINARY(36). Here, we used VARCHAR(36), but note that it can be less
performant than BINARY(36) due to collation.
The use of UUID versus a sequential ID is usually preferred due to
obfuscation, where it's harder to guess a string of 36 characters, but also
more importantly, if you use database partitioning, replication, or any other
means of distributing or clustering your data.

Chapter 1

15

We then used the findById() method on the Product model to return a product by it's ID
(the one passed to the action). This method is actually a magic method. Just as you can return
a record by its ID, by changing the method to findByAvailable(). For example, you would
be able to get all records that have the given value for the available field in the table. These
methods are very useful to easily perform queries on the associated table without having to
define the methods in question.

We also threw NotFoundException for the cases in which a product isn't found for the given
ID. This exception is HTTP aware, so it results in an error page if thrown from an action.

Finally, we used the set() method to assign the result to a variable in the view. Here
we're using the compact() function in PHP, which converts the given variable names into
an associative array, where the key is the variable name, and the value is the variable's value.
In this case, this provides a $product variable with the results array in the view. You'll find
this function useful to rapidly assign variables for your views.

We also created our views using HTML, making use of the Paginator, Html, and Time
helpers. You may have noticed that the usage of TimeHelper was not declared in the
$helpers property of our ProductsController. This is because CakePHP is able to find
and instantiate helpers from the core or the application automatically, when it's used in the
view for the first time. Then, the sort() method on the Paginator helper helps you create
links, which, when clicked on, toggle the sorting of the results by that field. Likewise, the
counter(), prev(), numbers(), and next() methods create the paging controls for the
table of products.

You will also notice the structure of the array that we assigned from our controller. This is the
common structure of results returned by a model. This can vary slightly, depending on the
type of find() performed (in this case, all), but the typical structure would be as follows
(using the real data from our products table here):

Array
(
 [0] => Array
 (
 [Product] => Array
 (
 [id] => 535c460a-f230-4565-8378-7cae01314e03
 [name] => Cake
 [details] => Yummy and sweet
 [available] => true
 [created] => 2014-06-12 15:55:32
 [modified] => 2014-06-12 15:55:32
)
)
 [1] => Array

Lightning Introduction

16

 (
 [Product] => Array
 (
 [id] => 535c4638-c708-4171-985a-743901314e03
 [name] => Cookie
 [details] => Browsers love cookies
 [available] => true
 [created] => 2014-06-12 15:55:33
 [modified] => 2014-06-12 15:55:33
)
)
 [2] => Array
 (
 [Product] => Array
 (
 [id] => 535c49d9-917c-4eab-854f-743801314e03
 [name] => Helper
 [details] => Helping you all the way
 [available] => true
 [created] => 2014-06-12 15:55:34
 [modified] => 2014-06-12 15:55:34
)
)
)

We also used the link() method on the Html helper, which provides us with the ability
to perform reverse routing to generate the link to the desired controller and action, with
arguments if applicable. Here, the absence of a controller assumes the current controller,
in this case, products.

Finally, you may have seen that we used the __() function when writing text in our views.
This function is used to handle translations and internationalization of your application.
When using this function, if you were to provide your application in various languages,
you would only need to handle the translation of your content and would have no need
to revise and modify the code in your views.

There are other variations of this function, such as __d() and __n(), which allow you to
enhance how you handle the translations. Even if you have no initial intention of providing
your application in multiple languages, it's always recommended that you use these functions.
You never know, using CakePHP might enable you to create a world class application, which is
offered to millions of users around the globe!

Chapter 1

17

See also
ff A complete detail of the conventions in CakePHP can be found at http://book.

cakephp.org/2.0/en/getting-started/cakephp-conventions.html

ff A complete overview of the pagination options available can be found at
http://book.cakephp.org/2.0/en/core-libraries/components/
pagination.html

Note that multiple components can be defined in a controller by
simply defining them in the array of the $components property.
More information on Components in CakePHP can be found here:
http://book.cakephp.org/2.0/en/controllers/
components.html

ff Additional information on reading data from Models can be found at
http://book.cakephp.org/2.0/en/models/retrieving-your-data.html

ff For more details on Helpers in CakePHP, see the documentation at
http://book.cakephp.org/2.0/en/views/helpers.html

ff The Translations recipe from Chapter 10, View Templates

Adding and editing records
While listing and viewing records is handy, the ability to create and edit records allows you
to build up and maintain your data.

In this recipe, we'll create actions to both add new products and edit the existing ones in
our database.

Getting ready
For this recipe, we'll continue using the products table from the previous recipe. We'll also
extend the ProductsController that was created.

For the views, we'll add add.ctp and edit.ctp files to our app/View/Products/
directory, and also a form.ctp file in the Products/ directory that we'll create in app/
View/Elements/.

www.allitebooks.com

http://www.allitebooks.org

Lightning Introduction

18

How to do it...
Perform the following steps:

1.	 Add the following add() method to the ProductsController class:
public function add() {
 if ($this->request->is('post')) {
 $this->Product->create();
 if ($this->Product->save($this->request->data)) {
 $this->Session->setFlash(__('New product created'));
 return $this->redirect(array('action' => 'index'));
 }
 $this->Session->setFlash(__('Could not create product'));
 }
}

2.	 Just below the add() method, also add an edit() method:
public function edit($id) {
 $product = $this->Product->findById($id);
 if (!$product) {
 throw new NotFoundException(__('Product not found'));
 }
 if ($this->request->is('post')) {
 $this->Product->id = $id;
 if ($this->Product->save($this->request->data)) {
 $this->Session->setFlash(__('Product updated'));
 return $this->redirect(array('action' => 'index'));
 }
 $this->Session->setFlash(__('Could not update product'));
 } else {
 $this->request->data = $product;
 }
}

3.	 Introduce the following content in the form.ctp element file:
<?php
echo $this->Form->create('Product');
echo $this->Form->inputs();
echo $this->Form->end(__('Submit'));

4.	 Introduce the following content in the add.ctp file:
<?php echo $this->element('Products/form'); ?>

Chapter 1

19

5.	 The edit.ctp file will also take the same content, but the header text will be
changed to the following code:
<?php echo $this->element('Products/form'); ?>

6.	 Return to the index.ctp file, and change it's content to the following:
<h2><?php echo __('Products'); ?></h2>
<div>
 <?php echo $this->Html->link(__('Add new product'),
array('action' => 'add')); ?>
</div>
<table>
 <tr>
 <th><?php echo $this->Paginator->sort('id'); ?></th>
 <th><?php echo $this->Paginator->sort('name'); ?></th>
 <th><?php echo $this->Paginator->sort('created'); ?></th>
 <th><?php echo __('Actions'); ?></th>
 </tr>
 <?php foreach ($products as $product): ?>
 <tr>
 <td><?php echo $product['Product']['id']; ?></td>
 <td><?php echo $this->Html->link($product['Product']
['name'], array('action' => 'view', $product['Product']['id']));
?></td>
 <td><?php echo $this->Time->nice($product['Product']
['created']); ?></td>
 <td><?php echo $this->Html->link(__('Edit'), array('action'
=> 'edit', $product['Product']['id'])); ?></td>
 </tr>
 <?php endforeach; ?>
</table>
<div>
 <?php echo $this->Paginator->counter(array('format' => __('Page
{:page} of {:pages}, showing {:current} records out of {:count}
total, starting on record {:start}, ending on {:end}'))); ?>
</div>
<div>
 <?php
 echo $this->Paginator->prev(__('< previous'), array(), null,
array('class' => 'prev disabled'));
 echo $this->Paginator->numbers(array('separator' => ''));
 echo $this->Paginator->next(__('next >'), array(), null,
array('class' => 'next disabled'));
 ?>
</div>

Lightning Introduction

20

7.	 Navigate to /products in your web browser, and click one of the Edit links to modify
a product. The following screenshot shows the screen that will appear:

Chapter 1

21

8.	 Return to /products, and click on the Add new product link to create a new
product. The following screenshot shows the screen that will appear:

Lightning Introduction

22

How it works...
Here, we extended our previous recipe by adding some extra methods to create new products
and edit the existing ones. The add() method first checks whether the current request has
been made using the HTTP POST method. If that's the case, we call the create() method
on the Product model. This doesn't create a new record yet, but instead it prepares our
model object for a new record to be created. We then call the save() method, passing the
data provided in the request to it. The framework handles this internally through the Form
helper, which we'll see in a moment. The condition checks whether the save is successful
(here, a new record is created), and if so, it calls the setFlash() method on our Session
component to register a success message to be displayed on the page that follows. We do
the same in the event that the record could not be saved, and it provided a failure message.
We then wrap up the method by redirecting the request to our index() action.

For the edit() method, we first check that the product for the given ID actually exists using
the findById() method on the Product model. See the previous recipe, Listing and viewing
records, for details on finding records. If the product doesn't exist, a NotFoundException
is thrown; this is rendered as an error page. As with the add() method, we first check that
the request was made via POST. However, instead of calling the create() method on our
Product model, we set the $id property with the $id argument passed to our action. We
then follow the same process of calling the save() method with the request data, as well
as setting the result messages for the view and redirecting the request.

We finalize our edit action by populating the request data if it does not exist so that when you
visit the form for editing, it's populated with the existing values from the products table.

For our views, we've taken the initiative to use an element. These are reusable sections of our
views, which allow us to segment and organize our visual interface and cut down on duplicate
code. Here, we've done this to avoid declaring the same form twice and reuse the same one
instead. The framework is able to distinguish between the two (adding a record and editing
a record) by the presence of an ID. In which case, it assumes that we're editing a record
instead of creating one. In this file, we use the Form helper to generate a new form using the
create() method and passing the name of the model to it, it will act against. We also called
the inputs() method to create the required inputs based on the table schema and then
called the end() method to complete the form.

For our add.ctp and edit.ctp view files, we included our element using the element()
method, passing it the location of our form.ctp file. You'll notice that we created our element
in the Products/ directory, as the form is intended for a product. We could change the
contents of our element to receive the model name via an element parameter, making it
more dynamic and, therefore, reusable even further. Finally, we updated the index.ctp
view to include an Edit option using the link() method from the Html helper.

Chapter 1

23

You'll also see that we passed the ID of each product to this method in our foreach()
statement, thus generating a link for each product with its unique ID as part of the URL.
We also added a link to "add a new product", which redirects you to the new add() action
to create a new record in the products table.

See also
ff You can read more on working with the session in CakePHP at http://book.

cakephp.org/2.0/en/core-libraries/components/sessions.html

ff More details on saving data in Models can be found at http://book.cakephp.
org/2.0/en/models/saving-your-data.html

ff For a complete overview of the Form helper in CakePHP, go to http://book.
cakephp.org/2.0/en/core-libraries/helpers/form.html

ff The Html helper in CakePHP will become a common tool used in all of your views;
read more about it at http://book.cakephp.org/2.0/en/core-libraries/
helpers/html.html

ff The Listing and viewing records recipe

Deleting records
Just as we can list and view records, as well as edit and create new ones, you'll also want to
be familiar with how to delete records using CakePHP.

In this recipe, we'll create an action that allows us to delete records from our table.

Getting ready
As with the previous recipe, we'll continue using the products table and also extend the
ProductsController that we created.

How to do it...
Perform the following steps:

1.	 Add the following delete() method to the ProductsController class:
public function delete($id) {
 if (!$this->request->is('post')) {
 throw new MethodNotAllowedException();
 }
 if ($this->Product->delete($id)) {

Lightning Introduction

24

 $this->Session->setFlash(__('Product removed: %s', $id));
 return $this->redirect(array('action' => 'index'));
 }
 $this->Session->setFlash(__('Could not remove product'));
 return $this->redirect($this->referer());
}

2.	 Change the content of the index.ctp file to the following:
<h2><?php echo __('Products'); ?></h2>
<div>
 <?php echo $this->Html->link(__('Add new product'),
array('action' => 'add')); ?>
</div>
<table>
 <tr>
 <th><?php echo $this->Paginator->sort('id'); ?></th>
 <th><?php echo $this->Paginator->sort('name'); ?></th>
 <th><?php echo $this->Paginator->sort('created'); ?></th>
 <th><?php echo __('Actions'); ?></th>
 </tr>
 <?php foreach ($products as $product): ?>
 <tr>
 <td><?php echo $product['Product']['id']; ?></td>
 <td><?php echo $this->Html->link($product['Product']
['name'], array('action' => 'view', $product['Product']['id']));
?></td>
 <td><?php echo $this->Time->nice($product['Product']
['created']); ?></td>
 <td>
 <?php
 echo $this->Html->link(__('Edit'), array('action' =>
'edit', $product['Product']['id']));
 echo $this->Form->postLink(__('Delete'), array('action' =>
'delete', $product['Product']['id']), array('confirm' => 'Delete
this product?'));
 ?>
 </td>
 </tr>
 <?php endforeach; ?>
</table>
<div>
 <?php echo $this->Paginator->counter(array('format' => __('Page
{:page} of {:pages}, showing {:current} records out of {:count}
total, starting on record {:start}, ending on {:end}'))); ?>

Chapter 1

25

</div>
<div>
 <?php
 echo $this->Paginator->prev(__('< previous'), array(), null,
array('class' => 'prev disabled'));
 echo $this->Paginator->numbers(array('separator' => ''));
echo $this->Paginator->next(__('next >'), array(), null,
array('class' => 'next disabled'));
 ?>
</div>

How it works...
In this recipe, we added a delete() method to our ProductsController class. This first
checks whether the HTTP method used to call the action was POST. In the event it wasn't,
we throw a MethodNotAllowedException exception, which is presented as an error
page when it is thrown from an action. This is to protect our application against attempts to
delete data via a simple URL. If the HTTP method is correct, we proceed to call the delete()
method on the Product model, passing to it the ID of the record to delete. If it is successful,
we call the setFlash() method on our Session component with a message confirming
the removal or with a failure message if the delete() method fails. Finally, we redirect the
request to the index() action if the record was deleted successfully—if not, then we are
redirecting the user back to the URL where the delete() method was called from. It may
also be worth mentioning that the delete() action itself doesn't have a view associated
with it, as nothing is displayed to the user as part of the request.

We then returned to the index.ctp view to add an option to delete a product using the
postLink() method of the Form helper. This creates a form with a link that allows us to
use POST when clicking on the link which submits the form. You will notice that this takes
a third argument, which is an array with a confirm key. This prompts the user to confirm
the action before submitting the request to delete the record. This is always recommended
when dealing with actions that delete records, in case of a mistake on the user's behalf.

See also
ff More details on deleting data in your Models can be found at

http://book.cakephp.org/2.0/en/models/deleting-data.html

ff The Adding and editing records recipe

Lightning Introduction

26

Adding a login
It's not going to be long before you need to control access to certain areas of your application.

In this recipe, we'll look at adding a basic authentication layer to our existing products section,
with a login view to enter your credentials.

Getting ready
For this recipe, we'll need a table for our users. Create a table named users, using the
following SQL statement:

CREATE TABLE users (
 id VARCHAR(36) NOT NULL,
 username VARCHAR(20),
 password VARCHAR(100),
 created DATETIME,
 modified DATETIME,
 PRIMARY KEY(id)
);

We'll then create a User.php file in app/Model/, which will have the following content:

<?php
App::uses('AppModel', 'Model');
App::uses('SimplePasswordHasher', 'Controller/Component/Auth');

class User extends AppModel {
}

We'll also need a UsersController.php file in app/Controller/ with the
following content:

<?php
App::uses('AppController', 'Controller');

class UsersController extends AppController {
}

Finally, also create a Users directory in app/View/, and create register.ctp and login.
ctp files in the new directory.

Chapter 1

27

How to do it...
Perform the following steps:

1.	 Add the validation rules to the User model in app/Model/User.php with the
following $validate property:
public $validate = array(
 'username' => array(
 'required' => array(
 'rule' => 'notEmpty',
 'message' => 'Please enter a username'
)
),
 'password' => array(
 'required' => array(
 'rule' => 'notEmpty',
 'message' => 'Please enter a password'
)
)
);

2.	 In the same class, add this beforeSave() method:
public function beforeSave($options = array()) {
 if (!parent::beforeSave($options)) {
 return false;
 }
 if (isset($this->data[$this->alias]['password'])) {
 $hasher = new SimplePasswordHasher();
 $this->data[$this->alias]['password'] = $hasher->hash($this-
>data[$this->alias]['password']);
 }
 return true;
}

3.	 Locate the AppController.php file in app/Controller/, and add the following
$components property to the same class:
public $components = array(
 'Session',
 'Auth' => array(
 'loginRedirect' => array('controller' => 'products'),
 'logoutRedirect' => array(
 'controller' => 'users',
 'action' => 'login'
)
)
);

www.allitebooks.com

http://www.allitebooks.org

Lightning Introduction

28

4.	 Open the UsersController.php file and add the following methods:
public function beforeFilter() {
 parent::beforeFilter();
 $this->Auth->allow();
}

public function register() {
 if ($this->request->is('post')) {
 $this->User->create();
 if ($this->User->save($this->request->data)) {
 $this->Session->setFlash(__('New user registered'));
 return $this->redirect(array('action' => 'login'));
 }
 $this->Session->setFlash(__('Could not register user'));
 }
}

public function login() {
 if ($this->request->is('post')) {
 if ($this->Auth->login()) {
 return $this->redirect($this->Auth->redirectUrl());
 }
 $this->Session->setFlash(__('Incorrect username or
password'));
 }
}

public function logout() {
 return $this->redirect($this->Auth->logout());
}

5.	 Locate the register.ctp file in app/View/Users/ and introduce the
following content:
<h2><?php echo __('Register'); ?></h2>
<?php
echo $this->Form->create('User');
echo $this->Form->inputs();
echo $this->Form->end(__('Register'));

6.	 In the same directory, open the login.ctp file, and add the following content:
<h2><?php echo __('Login'); ?></h2>
<?php
echo $this->Session->flash('auth');

Chapter 1

29

echo $this->Form->create('User');
echo $this->Form->inputs(array(
 'username',
 'password',
 'legend' => __('Login, please')
));
echo $this->Form->end(__('Sign In'));

How it works...
For this recipe, we first included a $validate property in our User model. This array is used
to define the validation rules applied when creating or modifying records. Here, we simply
defined the username and password fields as required, not allowing an empty value and
specifying some custom messages to be returned by the model if the fields fail to validate
correctly. There are plenty more validation rules such as alphaNumeric, minLength,
between, date, and email. You can also create your own rules for custom validation.

After setting up our validation, we also added a beforeSave() method. This is one of the
callback methods available on all models, to hook into a certain point of the process. These
are beforeFind(), afterFind(), beforeSave(), afterSave(), beforeDelete(),
afterDelete(), beforeValidate(), afterValidate(), and onError(). In our
method, we added some logic to process the password and generated a hash value before
saving it to our users table. This way, we store a representation of the password, instead
of the password itself. This is very important as you don't want anyone viewing the actual
passwords in your database.

The SimplePasswordHasher class helps us here by providing an easy API to quickly
generate hashes of any value. You will also notice our use of $this->alias. This is the
recommended method of referring to the model, to allow for extensions or aliasing of a
model without impacting the internal logic.

We then added the Auth component to the $components array of AppController, with
some global settings. This controller acts as a base controller for your application, so behavior
or functionality that needs to be propagated to your entire application should be added in this
class. Here, we defined the loginRedirect and logoutRedirect settings, which define
the controller and action to redirect to in each case (after login or after logout). Where the
action is not defined, index will be assumed by default.

After that, we proceeded to add some methods to our UsersController. The first of
these is the beforeFilter() method. This is one of the callback methods available on
all controllers, which include beforeFilter(), afterFilter(), beforeRender(),
and beforeRedirect(). Here, we first called parent::beforeFilter() to make sure
that we included any logic that has been defined by AppController. We then called the
allow() method on the Auth component to allow access to the methods in the controller.
Here, you could also pass some method names to only allow certain action, or also use the
deny() method to explicitly deny some actions and require login.

Lightning Introduction

30

After that, we added a register() method, using the same logic to create a record as we
did in the ProductsController from a previous recipe, in order to allow the creation of new
users. Here, we've only used a simple example, without contemplating any postregistration
checks, such as a token via e-mail for confirmation. You can easily include this and many more
features using a plugin, such as the CakeDC Users plugin, found at https://github.com/
CakeDC/users.

We also included both the login() and logout() methods, which use the API exposed by
the Auth component to process the user login. As we're following convention by creating a
users table with the username and password fields, we take advantage of the framework's
ability to configure most of the sign-in process for us. In our login action, we first called the
login() method on the Auth component, which internally checks the data passed in the
request. If this is successful, we redirect the user using the redirect() method from the
Auth component, which takes the target we previously defined in the loginRedirect
setting. If the process were to fail, we stay in the same action but use the setFlash()
method from the Session component to display a message to the user that the sign in was
unsuccessful. The logout() method is even easier, simply calling the logout() method
on the Auth component and redirecting the user to that location. Here, as with the login()
method, we use the logoutRedirect setting we had previously defined. As you can see so
far, authentication in CakePHP is really a piece of cake.

We then went on to create our views to register a new user and sign in. In our first view,
register.ctp, we used the create() method of the Form helper to create a form for the
User model. We then used the inputs() methods to render the required inputs and finally
called end(), passing our text for the submit button. In our login.ctp view, we did almost
the same; except here, we also enlisted required inputs, added custom form legend, and
called the flash() method on the Session helper, passing auth as the argument to it.
This renders a location to collect the flash messages sent from the Auth component, such as
the message we display when the login fails. The use of the auth value allows you to easily
manage the messages being collected, in case you'd like them to be displayed differently or
in different locations of your view.

If you go to /products in your browser now, you will be automatically redirected to the login
page, and the default message for unauthorized access will be displayed, as shown in the
following screenshot:

Chapter 1

31

Of course, to log in, you'll have to register a new user account first by going to the /users/
register URL in your browser.

Lightning Introduction

32

See also
ff Read more on data validation in CakePHP at http://book.cakephp.org/2.0/

en/models/data-validation.html

ff More details on callback methods in Models can be found at http://book.
cakephp.org/2.0/en/models/callback-methods.html

ff More settings available for the Auth component can be found at http://book.
cakephp.org/2.0/en/core-libraries/components/authentication.html

ff The Authentication API recipe in Chapter 4, API Strategies
ff Chapter 5, Using Authentication

Including a plugin
One of the greatest benefits of using CakePHP is its extensibility. Using plugins, you can
extend and enhance the core functionality, which provides you with even more cake than
you bargained for!

In this recipe, we'll look at loading a plugin using DebugKit, the official development and
debugging tool for the framework, as an example.

Getting ready
We'll need to have DebugKit included in the application file structure before we begin.
There are a couple of ways to do this.

Git clone or submodule

If you use Git, you can create a clone of the code by executing the following command from
your app/ directory on the command line:

$ git clone https://github.com/cakephp/debug_kit.git Plugin/DebugKit

If you already have your application under version control using Git, you can also add it as a
submodule. Assuming that the base of your repository is the app/ folder, you would run the
following command:

$ git submodule add https://github.com/cakephp/debug_kit.git app/Plugin/
DebugKit

Chapter 1

33

Using Composer

If you're using Composer as your dependency manager, you can simply include DebugKit as a
plugin by adding the following code to your composer.json file:

{
 "require": {
 "cakephp/debug_kit": "2.2.*"
 }
}

After updating your composer.json file, simply update your application's dependencies
using Composer.

Downloading files

An alternative method is to simply download the files and include them manually in your
application from the following location:

https://github.com/cakephp/debug_kit/archive/master.zip

How to do it...
Perform the following steps:

1.	 Add the following code to your bootstrap.php file, found in app/Config/:
CakePlugin::load('DebugKit');

2.	 Add the following code to your AppController in app/Controller/:
public $components = array(
 'Session',
 'Auth',
 'DebugKit.Toolbar'
);

3.	 Open your core.php file in app/Config/, and check if the following configuration
value is set to a value higher than 0:
Configure::write('debug', 2);

Lightning Introduction

34

4.	 Now, load your application in your browser, and you'll find an icon in the top
right-hand corner of the screen, as shown in the following screenshot:

Chapter 1

35

5.	 Click on the icon to see various panels (shown in the following screenshots) with data
related to the current request:

Lightning Introduction

36

Chapter 1

37

www.allitebooks.com

http://www.allitebooks.org

Lightning Introduction

38

How it works...
When we call CakePlugin::load(), we request the framework to load the plugin by the
given name, which also accepts an optional second argument, which is the configuration
array for the plugin. We had already included the DebugKit/ directory in app/Plugin/,
which is where plugins are located. You can change the location of where the plugins are
loaded from using the path option in the plugin configuration array.

Chapter 1

39

After loading the plugin, we included the Toolbar component in our AppController so
it's available in all applications. This is a component included with the DebugKit plugin, which
allows us to display a toolbar in the browser, thus providing a range of panels to introspect
the application, the current request, SQL queries, and more. You'll notice that we included
both the Session and Auth components here as well to propagate them in our application.
The plugin itself is also extensible, allowing additional panels to be added. Once our plugin
was loaded and the Toolbar component available, we made sure that the debug mode was
enabled in our core.php file; we then navigated to the application in the browser to view the
loaded toolbar.

Plugins may also load their own bootstrap.php and routes.php files to set up
configurations and define routing settings. However, when a plugin is loaded, you must
specify to load these configurations and settings. For example, if you had a Reports plugin
that used these, you would load the plugin using the plugin configuration array as follows:

CakePlugin::load('Reports', array(
 'bootstrap' => true,
 'routes' => true
));

You can also load all plugins in your app/Plugin/ directory at once by calling
CakePlugin::loadAll().

See also
ff For a complete overview of plugins in CakePHP, go to

http://book.cakephp.org/2.0/en/plugins.html

ff The The Search plugin recipe in Chapter 7, Search and Pagination

ff The Generating a PDF and The AssetCompress plugin recipes in
Chapter 10, View Templates

2
Advanced Routing

In this chapter, we will cover:

ff Adding a prefix

ff Handling languages

ff Custom route class

ff Dispatch filter

Introduction
By convention, URLs in CakePHP are formed by the controller name, followed by the action,
and then any parameters passed to the action. Routing allows you to customize this by
defining exactly how a certain controller or action is called via the URL.

In this chapter, we'll look at a couple of routing solutions and how to achieve them with
the framework.

Adding a prefix
Prefixes are additional values prepended to the URL, which allow you to clearly separate
collections of actions in your controllers. This is typically used to rapidly create an admin
area for an application.

In this recipe, we'll create an inventory management area to a books controller, where the
standard actions will simply display details of books and the inventory area will be used to
manage our books.

Advanced Routing

42

Getting ready
For this recipe, we'll need a table for our books, so create a table named books by using the
following SQL statement:

CREATE TABLE books (
 id VARCHAR(36) NOT NULL,
 name VARCHAR(100),
 stock INT(4),
 created DATETIME,
 modified DATETIME,
 PRIMARY KEY(id)
);

We'll then need some sample data, so run the following SQL statement to insert some books:

INSERT INTO books (id, name, stock, created, modified)
VALUES
('635c460a-f230-4565-8378-7cae01314e03', 'CakePHP Application', 2,
NOW(), NOW()),
('635c4638-c708-4171-985a-743901314e03', 'PHP for Beginners', 3,
NOW(), NOW()),
('635c49d9-917c-4eab-854f-743801314e03', 'Server Administration', 0,
NOW(), NOW());

We'll also need to create a BooksController. So, create a file named BooksController.
php in app/Controller/ with the following content:

<?php
App::uses('AppController', 'Controller');

class BooksController extends AppController {

 public $helpers = array('Html', 'Form');

}

Then create a directory named Books/ in app/View/, and create the following files in that
directory: index.ctp, view.ctp, inventory_stock.ctp, and inventory_edit.ctp.

Chapter 2

43

How to do it...
Perform the following steps:

1.	 First, open your core.php file in app/Config/ and make sure the following line is
uncommented and has the following value:
Configure::write('Routing.prefixes', array('inventory'));

2.	 Create the following index() and view() methods in your BooksController:
public function index() {
 $this->set('books', $this->Book->find('all', array(
 'conditions' => array(
 'Book.stock >' => 0
)
)));
}

public function view($id) {
 if (!($book = $this->Book->findById($id))) {
 throw new NotFoundException(__('Book not found'));
 }
 if ($book['Book']['stock'] < 1) {
 throw new CakeException(__('Book not in stock'));
 }
 $this->set(compact('book'));
}

3.	 In the BooksController class, add the following inventory_stock() and
inventory_edit() methods:
public function inventory_stock() {
 $this->set('books', $this->Book->find('all'));
}

public function inventory_edit($id) {
 $book = $this->Book->findById($id);
 if (!$book) {
 throw new NotFoundException(__('Book not found'));
 }
 if ($this->request->is('post')) {
 $this->Book->id = $id;

Advanced Routing

44

 if ($this->Book->save($this->request->data)) {
 $this->Session->setFlash(__('Book stock updated'));
 return $this->redirect(array(
 'prefix' => 'inventory',
 'action' => 'stock'
));
 }
 $this->Session->setFlash(__('Could not update book stock'));
 } else {
 $this->request->data = $book;
 }
}

4.	 Introduce the following content into your app/View/Books/index.ctp file:
<h2><?php echo __('Books'); ?></h2>
<table>
 <tr>
 <th><?php echo __('Name'); ?></th>
 <th><?php echo __('Created'); ?></th>
 <th><?php echo __('Modified'); ?></th>
 </tr>
 <?php foreach ($books as $book): ?>
 <tr>
 <td>
 <?php
 echo $this->Html->link($book['Book']['name'],
array('controller' => 'books', 'action' => 'view', $book['Book']
['id']));
 ?>
 </td>
 <td>
 <?php
 echo $this->Time->nice($book['Book']['created']);
 ?>
 </td>
 <td>
 <?php
 echo $this->Time->nice($book['Book']['modified']);
 ?>
 </td>
 </tr>
 <?php endforeach; ?>
</table>

Chapter 2

45

5.	 Add the following content to your app/View/Books/view.ctp file:
<h2><?php echo h($book['Book']['name']); ?></h2>
<dl>
 <dt><?php echo __('Stock'); ?></dt>
 <dd><?php echo $book['Book']['stock']; ?></dd>
 <dt><?php echo __('Created'); ?></dt>
 <dd><?php echo $this->Time->nice($book['Book']['created']); ?></
dd>
 <dt><?php echo __('Modified'); ?></dt>
 <dd><?php echo $this->Time->nice($book['Book']['modified']);
?></dd>
</dl>

6.	 Introduce the following content into your app/View/Books/inventory_stock.
ctp file:
<h2><?php echo __('Books Stock'); ?></h2>
<table>
 <tr>
 <th><?php echo __('Name'); ?></th>
 <th><?php echo __('Stock'); ?></th>
 <th><?php echo __('Created'); ?></th>
 </tr>
 <?php foreach ($books as $book): ?>
 <tr>
 <td>
 <?php
 echo $this->Html->link($book['Book']['name'],
array('prefix' => 'inventory', 'controller' => 'books', 'action'
=> 'edit', $book['Book']['id']));
 ?>
 </td>
 <td>
 <?php echo $book['Book']['stock']); ?>
 </td>
 <td>
 <?php
 echo $this->Time->nice($book['Book']['created']);
 ?>
 </td>
 </tr>
 <?php endforeach; ?>
</table>

Advanced Routing

46

7.	 Once more, with the following content into your app/View/Books/inventory_
edit.ctp file.
<h2><?php echo __('Edit Stock'); ?></h2>
<p>
 <?php echo __('Book') . ':' . h($this->request->data('Book.
name')); ?>
</p>
<?php
echo $this->Form->create('Book');
echo $this->Form->input('id');
echo $this->Form->input('stock');
echo $this->Form->end(__('Submit'));
?>

8.	 Now when we enabled the inventory routing prefix, we have to adjust the
settings for AuthComponent so that it correctly redirects to the non-prefixed
methods of UsersController even from any prefixed method. Open the file
named app/Controller/AppController.php and adjust settings for
AuthComponent like this:
public $components = array(
 ...
 'Auth' => array(
 'loginRedirect' => array(
 'inventory' => false,
 'controller' => 'products'
),
 'logoutRedirect' => array(
 'inventory' => false,
 'controller' => 'users',
 'action' => 'login'
),
 'loginAction' => array(
 'inventory' => false,
 'controller' => 'users',
 'action' => 'login'
)
),
 ...
);

Chapter 2

47

Note that we added inventory to all settings related to URLs and
added the loginAction setting, as we're no longer going to use a
default nonprefixed URL.

9.	 Finally, navigate to /books/index, /books/view/635c460a-f230-4565-
8378-7cae01314e03, /inventory/books/stock, or /inventory/books/
edit/635c460a-f230-4565-8378-7cae01314e03 in your browser.
The respective screenshots are shown as follows:

www.allitebooks.com

http://www.allitebooks.org

Advanced Routing

48

Chapter 2

49

Advanced Routing

50

How it works...
In this recipe, we first set up the prefix settings for our routing. Specifically, we created a prefix
named inventory. In this case, you could also define more prefixes by simply adding more
values to the array of the Routing.prefixes configuration value.

We then created some index() and view() actions in our BooksController. These simply
read the books available and show the details of a book, although the find('all') call of
our index() method filters the results via the conditions option to not include any books
with stock at 0 (out of stock). We also defined some inventory_stock() and inventory_
edit() methods. You'll notice that these are prefixed with inventory_. This was intentional,
as this is how the framework maps the router prefix with the action by convention. So, when
calling any action of a controller prefixed with /inventory/ in the URL, the router will search
for the requested action where the prefix is prepended with inventory_.

Chapter 2

51

You probably also saw that while generating the URL for our links in our inventory
management area, we included the prefix option in our call to the link() method
on the Html helper. This tells the router to create a link using that prefix. Without it,
the router would simply create a URL to a normal action on the controller.

Here, we simply prefixed some actions. However, you could easily extend this controller
now so that it requires some special attribute of the currently logged-in user account in
order to use the inventory actions.

Handling languages
When building a multi-language application, you may want to allow your users to change the
language of the content they're viewing through the URL.

In this recipe, we'll look at how you can use routing to deliver content in different languages.

Getting ready
First, we'll need a controller to work with, so create an ExampleController.php file in
app/Controller/ with the following content:

<?php
App::uses('AppController', 'Controller');

class ExampleController extends AppController {
}

We'll then need a view, so create a file named language.ctp in app/View/Example/.

How to do it...
Perform the following steps:

1.	 Open the routes.php file in app/Config/ and add the following lines to it:
Router::connect('/:language/:controller/:action/*', array(),
array(
 'language' => '[a-zA-Z]{3}',
 'persist' => array('language')
));

2.	 Open your AppController.php file in app/Controller/ and add the following
beforeFilter() method:
public function beforeFilter() {
 parent::beforeFilter();

Advanced Routing

52

 if (!empty($this->request->params['language'])) {
 Configure::write('Config.language', $this->request-
>params['language']);
 }
}

3.	 Edit the ExampleController.php file in app/Controller/ and add the
following language() method to it:
public function language() {
 $this->set('language', Configure::read('Config.language'));
}

4.	 Edit the language.ctp file in app/View/Example/ and introduce the
following content:
<h2><?php echo __('Language Setting'); ?></h2>
<p>
 <?php echo __('The current language is: %s', $language); ?>
</p>

5.	 Finally, navigate to /eng/example/language and then navigate to /esp/
example/language to see the website change language. This can be seen
in the following screenshot:

Chapter 2

53

How it works...
Here, we first defined a route to handle our language setting via the URL. For this we used the
Router::connect() method to register a new route. The first argument is the route template.
You'll notice that we defined parts of the URL starting with a :. This character delimits a named
element, which we'll want to capture. The second argument was left as an empty array, as we're
not specifying any default route parameters. Finally, the third argument had two keys. The first,
language, defines the regular expression for our language route element. Here, we're simply
stating that it must be a three character string, which matches with the locale codes in the
framework. The second key, persist, tells CakePHP that we want all URLs to have this element
included. This helps keep our application consistent for all links.

We then added a beforeFilter() method to our AppController class, which reads the
CakeRequest::$params array to get the value of language passed via the URL. This is
then set to the Config.language configuration option, which sets the default language for
the application.

To test the functionality that we added, we created a language() method on our
ExampleController. This method reads the value of the Config.language configuration
option and sets it to a view variable named $language. Then, in our view, we output some
translated strings, as well as the $language variable. When changing the value of the
language in your URL, you'll see how it updates the default setting in the framework. Then,
if you create some translations of your strings for the given URLs, you would see the view
change language.

To further extend the functionality of the language setting, you could add a list of default
languages that your applications support. Bear in mind that when a translation is not found,
the strings using __() or any other various translation functions will simply default to the
given string.

See also
ff The Using the I18n shell recipe from Chapter 9, Creating Shells.

ff The Translations recipe from Chapter 10, View Templates.

Custom route class
Although the base routing system provided with CakePHP will cover almost all cases,
there may be times when you need to handle things which are slightly more complex.
For this reason, the framework provides the option to define a custom route class,
which processes more complicated scenarios.

In this recipe, we'll create a custom route class to handle news headlines for given year
and month.

Advanced Routing

54

Getting ready
For this recipe, we'll need to create a custom route class to use in our routing. Therefore, create
a file named HeadlineRoute.php in app/Routing/Route/ with the following content:

<?php
App::uses('CakeRoute', 'Routing/Route');
App::uses('ClassRegistry', 'Utility');

class HeadlineRoute extends CakeRoute {
}

We'll then need some data to work with. So, create a table named headlines using the
following SQL statement:

CREATE TABLE headlines (
 id INT NOT NULL AUTO_INCREMENT,
 title VARCHAR(50),
 year SMALLINT(2) UNSIGNED NOT NULL,
 month SMALLINT(2) UNSIGNED NOT NULL,
 PRIMARY KEY(id)
);

After creating the table, run the following SQL statement to insert some headlines:

INSERT INTO headlines (title, year, month)
VALUES
('CakePHP on top', '2013', '11'),
('CakeFest 2014', '2014', '08'),
('CakePHP going strong', '2014', '08');

We'll also need to create a file named HeadlinesController.php in app/Controller/
and add the following content to it:

<?php
App::uses('AppController', 'Controller');

class HeadlinesController extends AppController {
}

Finally, create a listing.ctp file in app/View/Headlines/ for our view.

Chapter 2

55

How to do it...
Perform the following steps:

1.	 Add the following code to the routes.php file in app/Config/:
App::uses('HeadlineRoute', 'Routing/Route');

Router::connect('/:year/:month', array(
 'controller' => 'headlines',
 'action' => 'listing'
), array(
 'year' => '[0-9]{4}',
 'month' => '[0-1]{0,1}[0-9]{1}',
 'routeClass' => 'HeadlineRoute'
));

2.	 Edit the HeadlineRoute.php file in app/Routing/Route/ and add the
following parse() method to it:
public function parse($url) {
 $params = parent::parse($url);
 if (empty($params)) {
 return false;
 }
 $cacheKey = $params['year'] . '-' . $params['month'];
 $headlines = Cache::remember($cacheKey, function () use
($params) {
 return ClassRegistry::init('Headline')->find('all', array(
 'conditions' => array(
 'Headline.year' => (int)$params['year'],
 'Headline.month' => (int)$params['month']
)
));
 });
 if (!empty($headlines)) {
 return $params;
 }
 return false;
}

3.	 Define the following listing() method in the HeadlinesController.php file:
public function listing() {
 $year = $this->request->params['year'];

Advanced Routing

56

 $month = $this->request->params['month'];
 $headlines = Cache::read($year . '-' . $month);
 $this->set(compact('year', 'month', 'headlines'));
}

4.	 Add the following content to the listing.ctp file:
<h2><?php echo __('Headlines for %s/%s', $year, $month); ?></h2>
<?php
$list = Hash::extract($headlines, '{n}.Headline.title');
echo $this->Html->nestedList($list);

5.	 Finally, navigate to /2014/08 in your browser to see the headlines for that month.
This is shown in the following screenshot:

Chapter 2

57

How it works...
For this recipe, we first created a custom route class to handle our routing logic. This class was
created in a file named HeadlineRoute.php, which is located in app/Routing/Route/.
There is no strict convention for the naming of route classes and they don't need to align with
any controller or model, but it's best to name them wisely so that it's evident what their function
entails. In these calls, we defined a parse() method, which processes the route. Note that the
HeadlineRoute is only actioned when the /:year/:month template we defined matches. In
this case, we also added some validation to our route, making sure that the year and month are
valid for our request. The routeClass then defines that we want to use our custom route class
for these routes. This is where our parse() method comes into play.

For our routing logic, we first resolve the parent::parse() call to obtain the underlying
routing, and then check that we're in a valid route. We then build a cache key from the year
and month values passed from our template in the request. Then, we use this key to call
Cache::remember(), passing it an anonymous function that initializes the Headline
model by calling the ClassRegistry::init() method and returns the headlines based
on the values provided from our route. This greatly improves our application performance,
as we will have the results cached for subsequent requests for the same year and month. If
there are headlines, we return the $params array to signal that our route class has matched
successfully. To the contrary, we return false, which means the route class did not resolve a
possible resource.

When the route is successfully matched, we had defined in our configuration array for the
request to be routed to the listing() action of the HeadlinesController. In this
method, we only used the year and month values provided in the CakeRequest::$params
array to construct our cache key and read the headlines our custom route class previously
stored for us. Then, we just set those values as view variables using the set() method of our
controller and used the compact() function to generate the key => value array from our
variables.

Our view is just as simple. We created a header by using the $year and $month values
passed via the URL, and we also processed the headlines to generate a list. For this,
we first used the Hash::extract() method to parse our array of records to return an
array of headline titles, and then we used the nestedList() method of the Html helper
to build our HTML list.

There's more...
So far, we've successfully set up the logic to resolve the URL to a collection of headlines.
However, it would now be ideal to also define the logic for reverse routing. This is where
we generate a link based on the values of a headline.

www.allitebooks.com

http://www.allitebooks.org

Advanced Routing

58

For this, we want to be able to simply create a URL from the unique ID of a headline to
generate the required path for the month's headlines. For this, we'll add a match()
method to our HeadlineRoute class with the following logic:

public function match($url) {
 if ($url['controller'] === 'headlines' && $url['action'] ===
'listing' && !empty($url[0])) {
 $headline = ClassRegistry::init('Headline')->find('first', array(
 'conditions' => array(
 'id' => $url[0]
)
));
 if (!empty($headline)) {
 $url['year'] = $headline['Headline']['year'];
 $url['month'] = $headline['Headline']['month'];
 unset($url[0]);
 return parent::match($url);
 }
 }
 return false;
}

In the preceding code, we've first checked that the URL configuration specified the
controller as Headline and the action as listing, with the ID of the headline.
We then instantiate the Headline model via ClassRegistry::init() method,
using the ID provided. If a record is found, we set the year and month keys in the URL
configuration and remove the ID. Finally, we call the parent::match() method to complete
the translation of the route. To see how it works, add the following line to the app/View/
Headlines/listing.ctp file:

debug(Router::url(array('controller' => 'headlines', 'action' =>
'listing', 1)));

It will output matching the /2013/11 URL.

See also
ff The View caching recipe from Chapter 10, View Templates.

Chapter 2

59

Dispatch filter
The dispatch filters allow you to intercept the dispatch cycle, run code before or after the
controller is built and dispatched, and even return early without completing the full cycle.

In this recipe, we'll create a dispatch filter that exposes an API without requiring the full
dispatch cycle.

Getting ready
First, we'll create a file named ApiDispatcher.php in app/Routing/Filter/ as shown
in the following code:

<?php
App::uses('DispatcherFilter', 'Routing');
App::uses('ClassRegistry', 'Utility');

class ApiDispatcher extends DispatcherFilter {
}

We'll then need some data to serve from our API. For that, create a libraries table with the
following SQL statement:

CREATE TABLE libraries (
 id INT NOT NULL AUTO_INCREMENT,
 name VARCHAR(100),
 details TEXT,
 created DATETIME,
 modified DATETIME,
 PRIMARY KEY(id)
);

Finally, populate the libraries table with the following SQL statement:

INSERT INTO libraries (name, details, created, modified)
VALUES
('Cake', 'Yummy and sweet', NOW(), NOW()),
('Cookie', 'Browsers love cookies', NOW(), NOW()),
('Helper', 'Helping you all the way', NOW(), NOW());

Advanced Routing

60

How to do it...
Perform the following steps:

1.	 Add the ApiDispatcher class name in the Dispatcher.filters configuration
of your bootstrap.php file:
Configure::write('Dispatcher.filters', array(
 'AssetDispatcher',
 'CacheDispatcher',
 'ApiDispatcher'
));

2.	 Add the following $priority property to the ApiDispatcher class in
app/Routing/Filter/:
public $priority = 9;

3.	 In the same ApiDispatcher class, add the following beforeDispatch() method;
public function beforeDispatch(CakeEvent $event) {
 $request = $event->data['request'];
 $response = $event->data['response'];
 $url = $request->url;
 if (substr($url, 0, 4) === 'api/') {
 try {
 switch (substr($url, 4)) {
 case 'libraries':
 $object = array(
 'status' => 'success',
 'data' => ClassRegistry::init('Library')->find('all')
);
 break;
 default:
 throw new Exception('Unknown end-point');
 }
 } catch (Exception $e) {
 $response->statusCode(500);
 $object = array(
 'status' => 'error',
 'message' => $e->getMessage(),
 'code' => $e->getCode()
);
 if (Configure::read('debug') > 0) {
 $object['data'] = array(
 'file' => $e->getFile(),
 'trace' => $e->getTrace()

Chapter 2

61

);
 }
 }
 $response->type('json');
 $response->body(json_encode($object));
 $event->stopPropagation();

 return $response;
 }
}

4.	 Navigating to /api/libraries in your browser will return the libraries in a JSON
formatted response, as shown in the following screenshot:

Advanced Routing

62

How it works...
In the first step, we added the ApiDispatcher class to the Dispatch.filter
configuration array. When adding a class name, by setting it as a key of the Dispatch.
filters array, you can pass an array of constructor $settings as the value. The class
name may also use dot notation to load dispatch filters from a plugin.

The order here is also important, as the filters are executed in order of definition. However,
we also set the $priority property on the class to a value of 9. The default priority is 10,
with lower priorities executing first.

We then defined a beforeDispatch() method. The DispatchFilter class has two
callback methods, beforeDisptach() and afterDisptach(), which executes before and
after the dispatch cycle. These methods receive a single argument, which is the CakeEvent
object. This contains the request and response objects, and it can also contain an array that
is passed when the dispatch is triggered by a call to requestAction().

In our callback method, we first extracted the request and response objects from
$event['reqesut'] and $event['response'] respectively. We then read the URL of
the request from CakeRequest::$url, which gave us the end-point for our API. We checked
that we're dealing with an API call by confirming that the URL starts with api/. The remaining
part of the URL string then represents the name of our endpoint. We then used a switch()
statement to allow future extensions to the API, where adding a new endpoint would be as
simple as just adding another case to our switch().

In our case for libraries, we defined an array in an $object variable, which will later
serve as our JSON object, following the Jsend spec. In this case, we define a status key with
the value of success, and then use the ClassRegistry utility class to load our Library
model on the fly, calling the find() method to return all records. These are stored in the
data key of our JSON object. You'll notice that we defined all of this inside a try/catch
statement. This is useful, as it allows us to capture and format any exceptions as a JSON
formatted response. The default case for our switch throws an Exception, which advises
that an end-point does not exist.

We finally prepare our response by calling the CakeResponse::type() method to
set the Content-Type parameter of the HTTP response to application/json. The
CakeResponse class has a significant list of predefined content types, which can be easily
applied on demand. You can also define new content types if your application needs to
support them. Following this, we use the json_encode() function to format our $object
variable as a JSON object, and then apply that to the body of the HTTP response by using
CakeResponse::body(). We then call stopPropagation() to stop any further dispatch
filters from being executed and return the $response object to be returned to the client.

Chapter 2

63

There's more…
If you didn't want to create a class for your dispatch filter, you can also define it as a PHP
callable, for example:

Configure::write('Dispatcher.filters', array(
 'AssetDispatcher',
 'CacheDispatcher',
 'example' => array(
 'callable' => function(CakeEvent $event) {
 // your code here
 },
 'on' => 'before',
 'priority' => 9
)
));

In the preceding code, the key is the name of your filter, while the array contains the
configuration. callable is the function that is executed. This could be an anonymous
function or any valid callable type. The exception here is that a string is not interpreted as a
function name, but instead it is interpreted as a class name. The on setting defines the point
at which the function is executed. This can either be before or after, to run before or after
the dispatch cycle. Finally, the priority setting is the same as the $priority property we
set in our class, and defines the execution order in relation to other dispatch filters.

3
HTTP Negotiation

In this chapter, we will cover the following topics:

ff Parsing extensions

ff Processing Ajax requests

ff Building a response

ff Uploading a file

ff Using a detector

ff Working with cookies

ff Cache control

ff Error handling

Introduction
Interpreting and manipulating HTTP is a fundamental area for any web-based application
framework. Luckily, the framework comes well prepared to handle and work with HTTP.

In this chapter, we'll look at various scenarios where working with HTTP is greatly simplified
by CakePHP.

Parsing extensions
It's common for applications to use a file extension as part of the URL. This can sometimes
help orientate the user to the type of content found in that location or for your application to
easily deal with data types such as JSON or XML.

In this recipe, we'll look at how easy it is to parse extensions using the framework.

HTTP Negotiation

66

Getting ready
For this recipe, we'll use a books controller from previous chapter, which will return
a listing of books from the books database table as a JSON response. So, find a file
named BooksController.php in app/Controller/.

How to do it...
Perform the following steps:

1.	 First, add the following line to your routes.php file located in app/Config/:
Router::parseExtensions('json');

2.	 Then, we'll load the RequestHandler component in our BooksController
class using the following code:
public $components = array('RequestHandler');

3.	 We'll also add a listing() method with the following code:
public function listing() {
 $books = $this->Book->find('all', array('fields' =>
array('name', 'stock')));
 $this->set(array(
 'books' => Hash::extract($books, '{n}.Book'),
 '_serialize' => array('books')
));
}

4.	 Now, navigating to /books/listing.json in your browser will return a JSON listing
of books similar to the following code:

{'books':[{'title':'1984','author':'George Orwell'},{'title':'
Neuromancer','author':'William Gibson'},{'title':'The Cuckoo\'s
Egg','author':'Cliff Stoll'}]}
{
 "books": [
 {
 "name": "CakePHP Application",
 "stock": "2"
 },
 {
 "name": "PHP for Beginners",
 "stock": "3"
 },
 {

Chapter 3

67

 "name": "Server Administration",
 "stock": "0"
 }
]
}

How it works...
We first added a call to the static parseExtensions() method of the Router class.
This method allows you to easily define extensions, which will be detected and handled
automatically by the framework. By default, CakePHP provides both XML and JSON out
of the box, but you can define any extension you like. You can also define multiple extensions
by simply specifying the different extensions in the method call. An example can be seen in
the following code:

Router::parseExtensions('xml', 'json');

Next, we included the RequestHandler component in our BooksController class, as this
handles the internal logic to process the extension routing. You must include this component
in any controller where you want extensions to be parsed correctly.

We then created a listing() action in our controller, which serves a list of books from the
database for our JSON format. Here you'll notice our use of a _serialize key in our call to
set(). This is a special view variable that defines other view variables to be serialized for
use in data views. The value of _serialize can be a string, as the name of another view
variable, or an array of various view variables to use. All variables defined for _serialize
must also be defined using the set() method in the controller.

Internally, with the json extension defined to be parsed with Router::parseExtensions(),
on every request with a .json URL extension or with the Accept header set to application/
json, the framework will switch the standard view class for JsonView. This then handles the
correct encoding and display of the JSON format.

See also
ff Example usage of the Hash class is described at http://book.cakephp.

org/2.0/en/core-utility-libraries/hash.html.

ff More details on request handling can be found at http://book.cakephp.
org/2.0/en/core-libraries/components/request-handling.html

HTTP Negotiation

68

Processing Ajax requests
It's no secret that Ajax has revolutionized web development and helped developers build and
deliver engaging applications which have a real-time feel to them.

In this recipe, we'll look at how easy it is to handle Ajax requests in CakePHP and give you an
introduction to the possibilities at your fingertips.

Getting ready
For this recipe, we'll reuse the books database table from the previous chapter. We'll also
need a view for our inventory_index(). action, so create a file named inventory_
index.ctp in app/View/Books/.

How to do it...
Perform the following steps:

1.	 Add the following beforeFilter() method to the BooksController class:
public function beforeFilter() {
 parent::beforeFilter();
 if ($this->request->is('ajax')) {
 $this->response->disableCache();
 }
}

2.	 In the same class, add the following inventory_index() method
(we will utilize the inventory prefix added in the previous chapter):
public function inventory_index() {
 $this->set('books', $this->Book->find('all'));
}

3.	 In the same class, add the following inventory_update() method:
public function inventory_update() {
 $this->request->allowMethod('ajax');
 if (!$this->request->is('post')
 || !isset($this->request->data['id'])
 || !$this->Book->hasAny(array('id' => $this->request-
>data['id']))
 || !isset($this->request->data['stock'])
 || !is_numeric($this->request->data['stock'])

Chapter 3

69

) {
 throw new BadRequestException();
 }
 $this->autoRender = false;
 $this->Book->id = $this->request->data['id'];
 $this->Book->saveField('stock', $this->request->data['stock']);
 return true;
}

4.	 Introduce the following content into the inventory_index.ctp file in
app/View/Books/:
<?php
 $this->Html->script('https://code.jquery.com/jquery-2.1.1.min.
js', array('block' => 'script'));
?>
<h2><?php echo __('Books stock'); ?></h2>

 <?php foreach ($books as $book): ?>

 <?php echo h($book['Book']['name']); ?>:
 <input id="<?php echo $book['Book']['id']; ?>" name="stock"
type="text" value="<?php echo $book['Book']['stock']; ?>"/>
 <?php
 echo $this->Html->scriptBlock(
 '$("#' . $book['Book']['id'] . '").keyup(function(e) { if
(e.keyCode === 13) { update($(this)); } });'
);
 ?>

 <?php endforeach; ?>

<?php
$url = $this->Html->url(array('action' => 'update'));
$success = __('Updated!');
$error = __('Could not update stock');
$script = <<<JS
function update(node) {
 var stock = node.val();
 if (stock === '' || stock.match(/[^\d]+/)) {
 node.val('0');
 stock = '0';
 }
 var data = {
 id: node.attr('id'),

HTTP Negotiation

70

 stock: stock
 };
 $.post("$url", data)
 .done(function() { alert("$success"); })
 .fail(function() { alert("$error"); });
}
JS;

$this->Html->scriptBlock($script, array('block' => 'script'));

5.	 Finally, navigate to /inventory/books in your browser and update the stock
number of any book—just change some stock number and press the Enter key.
The result can be seen in the following screenshot:

Chapter 3

71

How it works...
In this recipe, we first defined a beforeFilter() callback method. This checks that
the request was made via Ajax using the is() method of the CakeRequest object and
passing the ajax value. If this is the case, we'll disable caching, as we always want to
serve our Ajax calls fresh. Here, you could also consider turning debugging off by setting
Configure::write('debug', 0) or any other feature you may have in your application
which could output content.

We then defined our inventory_index() action, which simply reads all of the records in
our books table and sets them to a $books variable in our view, which we'll see in a moment.

After that, we also added an inventory_update() action, which serves as our exclusive
Ajax call. Here, we first restricted the request to only allow ajax calls. You could define HTTP
methods here, but the framework provides a special ajax type that checks whether the call was
made via Ajax, specifically by checking for an X_REQUESTED_WITH header in the HTTP request.

You'll notice that we subsequently checked whether the parsing body of the POST request was
successful by checking whether the structure of that content, if it exists, is as we expect. In
case it isn't, we throw BadRequestException, which is translated into a 400 HTTP status
code, thus resulting in the Ajax call from the browser that understands the request as failed.

After parsing the content of the request, we updated the model with the ID and value of the
stock to update with. Here, we not only validate that id and stock values exist in posted
data, but also that a proper record exists and stock is numeric, to make sure that the data
provided by the user is in line with what we would expect. The golden rule is to never trust
data submitted by the users, ever!

We finally set the $autoRender property to false to avoid rendering a view and layout,
after which we simply return true. Note that PHP would actually return 1 in the response
body, as that's the way Boolean true is cast (the string true is not the same as a Boolean
true, as the string false would also be true).

Once we had all of our logic in place, we created the view for our inventory_index()
action. First, we called the script() method of the Html helper to include jQuery from the
public CDN in our view. Notice that we set the block option to script, to make sure that
the script wasn't included inline and, instead, was added to the view block named script.
This isn't the best practice, as you should really include these assets in your layout or they
should be delegated via a package/asset manager. We've included it in our view simply for
this tutorial.

Following on, we then just output a list of the products available, with an input to update the
stock value. Here, we included some JavaScript code using the scriptBlock() method,
again from the Html helper, to output some jQuery code for each book.

HTTP Negotiation

72

After that, we again used the scriptBlock() method to output the update() JavaScript
function used by our previous JavaScript code. Here, you probably noticed the use of heredoc
syntax to specify the JavaScript code. This can help improve your code, especially if you find
the need to inject PHP into your client-side scripts (try to avoid that as much as possible).
It's always a much better practice to keep your JavaScript APIs and CSS styles in external files,
as this greatly helps with development and maintenance down the road.

See also
ff More details on heredoc syntax can be found at http://www.php.net/manual/

en/language.types.string.php#language.types.string.syntax.
heredoc

ff The Building a response recipe

Building a response
CakePHP is designed to take most of the work out of building applications. However,
sometimes you may want to handle things yourself, which the framework can also facilitate.

In this recipe we'll process a response ourselves, generating it exactly as we want.

Getting ready
As this recipe is straight to the point, we'll simply enhance an existing example controller to build
our response. For this, open a file named ExampleController.php in app/Controller/
and add the following respond() method to the ExampleController class:

public function respond() {
 if (!$this->request->query('text')) {
 $this->response->statusCode(404);
 }
 $this->response->header('X-Timestamp', date('H:i:s'));
 $this->response->type('txt');
 $this->response->body($this->request->query('text'));
 $this->response->send();
 $this->_stop();
}

Chapter 3

73

Navigate to /example/respond?text=Hello in your browser, which should output
Hello, as shown in the following screenshot:

How it works...
The framework usually handles the building of the response output as part of its dispatch
cycle; however, here we configured the response to our liking. First, in our respond() action,
we checked whether the request was sent with a query string parameter named text by
calling the query() method on the CakeRequest object. If the parameter is not found, we
update the status code of the response to 404 by calling the statusCode() method of the
CakeResponse object. Note that we update the status code, as its set to 200 by default.

HTTP Negotiation

74

Both the request and response objects are instantiated on the controller on the $request
and $response properties, respectively. It's also possible to intercept these via a controller's
__construct() method before they're set to the properties.

We then called the type() method to set the type of the content we're returning in the
response. As we'll simply output the value of the text parameter, we'll set the type to txt.
The HTTP header that's set by the type() method is named Content-Type. This header is
responsible for defining the type of content the browser or client calling the URL should expect
to be returned. In this case, we used txt, which CakePHP translates as plain/text. As
many of the values used for the Content-Type header are long or have various alternatives,
the framework helps by letting you simply reference the type by its associated file extension.

After handling the query string parameter and setting the Content-Type of the response,
we also set a custom X-Timestamp header to the response via the header() method.
You can also override standard headers or use the equivalent methods provided through
the CakeResponse object's API, as we did with type().

The body() method was then used to assign the actual content for the body of the
response. In our example, this was the value of the text parameter, which we access via
$this->request->query('text'). This can be any type of content, as long as it's
a string or can be cast to a string in PHP. However, remember to set the Content-Type
correctly if you're returning anything other than HTML (the default content type).

Now that our response object was configured as we wanted it, we just call send() to send
it to the browser. It's important to note here that there are certain things that cannot be
done after sending a response from PHP to the browser, and they become caveats for new
developers, such as setting headers.

Finally, we also called the _stop() method. You might have seen others use die() or
exit(), or you might even do so yourself. However, the correct way to stop the framework's
execution is via the _stop() method. This is like correctly shutting down your computer,
instead of just turning it off from the power button. This also allows you to hook in at a future
point in time to perform certain operations before stopping the dispatch process.

Uploading a file
Creating forms and submitting data is usually easy until you have to deal with file uploads.
Luckily, the framework doesn't tread on any toes here and lets you build the process as your
application demands.

In this recipe, we'll look at a file upload scenario and build a process that is clean and helps
maintain the separation of concerns in our application.

Chapter 3

75

Getting ready
To begin with, we'll need to create a table to track our file uploads. For this, create a table
named uploads with the following SQL statement:

CREATE TABLE uploads (
 id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(100) NOT NULL,
 size INT(4) UNSIGNED NOT NULL,
 mime VARCHAR(50) NOT NULL,
 path TEXT NOT NULL,
 created DATETIME,
 modified DATETIME,
 PRIMARY KEY(id)
);

We'll also need a model for our uploads table, so create a file named Upload.php in
app/Model/ with the following content:

<?php
App::uses('AppModel', 'Model');

class Upload extends AppModel {
}

We're still missing a controller to deal with our file uploads and view the files
uploaded. So, create a file named UploadsController.php in app/Controller/,
and introduce the following content:

<?php
App::uses('AppController', 'Controller');

class UploadsController extends AppController {
}

We will use SessionComponent in this controller, but we have its usage already declared
in the AppController parent class. Finally, we'll also need some views for our controller,
so also create two files named index.ctp and upload.ctp in app/View/Uploads/.

HTTP Negotiation

76

How to do it...
Perform the following steps:

1.	 Define an index() method in our UploadsController class as
shown in the following code:
public function index() {
 $this->set('uploads', $this->Upload->find('all'));
}

2.	 Define an upload() method in the same class:
public function upload() {
 if ($this->request->is('post')) {
 $this->Upload->create();
 if ($this->Upload->save($this->request->data)) {
 $this->Session->setFlash(__('New file uploaded'));
 return $this->redirect(array('action' => 'index'));
 }
 $this->Session->setFlash(__('Could not upload file'));
 }
}

3.	 Add a protected _processFile() method to our Upload model:
protected function _processFile() {
 $file = $this->data['Upload']['file'];
 if ($file['error'] === UPLOAD_ERR_OK) {
 $name = md5($file['name']);
 $path = WWW_ROOT . 'files' . DS . $name;
 if (is_uploaded_file($file['tmp_name'])
 && move_uploaded_file($file['tmp_name'], $path)
) {
 $this->data['Upload']['name'] = $file['name'];
 $this->data['Upload']['size'] = $file['size'];
 $this->data['Upload']['mime'] = $file['type'];
 $this->data['Upload']['path'] = '/files/' . $name;
 unset($this->data['Upload']['file']);
 return true;
 }
 }
 return false;
}

Chapter 3

77

4.	 Add the beforeSave() callback method to the same model:
public function beforeSave() {
 if (!parent::beforeSave($options)) {
 return false;
 }
 return $this->_processFile();
}

5.	 Add the following content to your index.ctp file in app/View/Uploads/:
<h2><?php echo __('Uploads'); ?></h2>
<p>
 <?php echo $this->Html->link(__('Upload'), array('action' =>
'upload')); ?>
</p>
<table>
 <tr>
 <th><?php echo __('Name'); ?></th>
 <th><?php echo __('Uploaded'); ?></th>
 </tr>
 <?php foreach ($uploads as $upload): ?>
 <tr>
 <td>
 <?php
 echo $this->Html->link($upload['Upload']['name'],
$upload['Upload']['path'], array('target' => '_blank'));
 ?>
 </td>
 <td>
 <?php
 echo $this->Time->nice($upload['Upload']['created']);
 ?>
 </td>
 </tr>
 <?php endforeach; ?>
</table>

6.	 In your upload.ctp file, add the following content:
<h2><?php echo __('Upload file'); ?></h2>
<?php
 echo $this->Form->create('Upload', array('type' => 'file'));
 echo $this->Form->file('file');
 echo $this->Form->end(__('Upload'));

HTTP Negotiation

78

7.	 Finally, make the app/webroot/files/ folder writable for web server's user account.
The easiest way to do this is by executing chmod 777 app/webroot/files from the
console, navigating to /uploads to view the files, and clicking on the Upload button to
add a file.

How it works...
For this recipe, we built a small application to upload and store files of any type. Note that you
cannot create a model class named File, so we named ours Upload.

We started by creating an index() action, which shows us a listing of all the uploaded files
by calling the find() method on our Upload model requesting all records. We then set this
data as a variable for our view using the set() method on our controller. We didn't preload
any data into our uploads table, so this starts blank.

Next, we also created an upload() action, which handles our file uploads. Here, we first
checked if the HTTP method used is "post", by calling the is() method on the CakeRequest
object, located in the $request property of our controller. If this was the case, we then called
the create() method on our Upload model, which tells it that we're about to define the
data for a new record. We followed this by calling the save() method on our model, passing
it the $data property of our CakeRequest object. If saving was successful, we call the
setFlash() method of our Session component to send a notification to the user that the
upload was completed and then redirect to our index() action. If the uploads fails, we simply
notify the user of the issue.

After setting up our controller, we created a protected _processFile() method on our
Upload model. This method handles all of the upload logic required for our file. We start by
extracting information about our file from the data array sent by our form. The error key
informs us of any problems encountered when handling the upload. Usually checking against
the UPLOAD_ERR_OK constant is enough, but there are other PHP constants available for
finer tuning, which are as follows:

ff UPLOAD_ERR_INI_SIZE: This shows that the uploaded file exceeds the
upload_max_filesize directive in your php.ini file

ff UPLOAD_ERR_FORM_SIZE: This shows that the uploaded file exceeds the
MAX_FILE_SIZE directive that was specified in the HTML form

ff UPLOAD_ERR_PARTIAL: This shows that the uploaded file was only partially uploaded

ff UPLOAD_ERR_NO_FILE: This shows that no file was uploaded

ff UPLOAD_ERR_NO_TMP_DIR: This shows that a temporary folder is missing

ff UPLOAD_ERR_CANT_WRITE: This shows that the writing operation to the disk
has failed

ff UPLOAD_ERR_EXTENSION: This shows that a PHP extension stopped the file upload

Chapter 3

79

If no error was reported, we then proceeded to create a unique filename for our file
(stored on the filesystem). For this, we simply used the md5() function, but you could use
anything to name your files, even a composition of the file information. After that, we defined
a $path for where we want to store the file as, by default, PHP uploads files to a temporary
location, which by default is usually your system's temp directory. Here, we're moving our
files to the files/ directory in webroot/. We then used the is_uploaded_file() and
move_uploaded_file() functions to validate and move the uploaded file to our new path.
The remaining logic simply populates the new record, unsets the file data originally uploaded,
and returns true. You may have also noticed that we didn't use the $path variable as the value
of our path field. This is because the $path variable is a filesystem path, while we want the
URL to view or download the file. It's also worth noting here that you should remember to handle
postprocessing on file upload, not on every request for a file. This reduces the load on your
server to only when the file is initially uploaded and not continuously afterwards.

Now, we had our file processing defined; it needed to be called when saving a new file. To do
this, we used the beforeSave() callback method to execute the logic before the record is
saved. This helps avoid saving records where the file upload fails, as the callback would halt
the process in case of a failure. We could even improve this user experience by adding some
validation to our model and providing explicit details on failure. This is obviously down to each
application to specify, as not all apps are built the same.

For the view for our index() action, we simply list the uploaded files in a table using the
link() method of the Html helper to open the file. We set the target option to _blank
here so that it opens in a new browser tab. Our upload() view was also quite simple, where
we just output the form used to upload the file using the Form helper. You would have seen
that we set the Upload model as the target but also specified the form type as file. This is
important as it tells CakePHP to create a form capable of handling file uploads. We also used
the file() method of the Form helper to create a file input for us.

There's more…
In this recipe, we saw what was required to deal with a basic file upload. However, you can
save yourself a lot of time simply using an existing plugin to do most of the work for you.
Additionally, there are some plugins available that offer extensive configuration options and
features to build powerful and robust upload systems. Some of them are listed as follows:

ff CakePHP Upload: The Upload plugin is a feature-rich option to help take the
pain out of handling single and multifile uploads, while also providing some
extensive behaviors, image, and even PDF thumbnail processing, and a wide
range of validation rules for models.

You can find more info on the Upload plugin at https://github.com/
josegonzalez/cakephp-upload.

HTTP Negotiation

80

ff CakePHP File Storage: The FileStorage plugin is not just another upload plugin, but
a complete solution for file handling in your CakePHP applications. Instead of putting
file metadata directly into tables, it organizes them into a separate table. All other
entities can then use associations to access their associated files. For example, a
User might have an Avatar, a Product may have many Images, or a Gallery
could have and belong to many Pictures.

At its core, the plugin wraps the Gaufrette library, which is an abstraction layer for
virtually any kind of storage backend. It doesn't matter where you want to store a file;
you can store it in a local drive, over FTP, on Amazon S3 or Dropbox, or even in a zip
file. Another bonus is that you can very easily migrate files between different storage
backends, which are configured via an array. You can find more on the FileStorage
plugin at https://github.com/burzum/cakephp-file-storage.

ff CakePHP Imagine: Image processing is not directly included in the plugin but can
be with the Imagine plugin, which wraps the Imagine library. Image processing
follows the best practice and is built with enterprise-level scalability in mind. Each
version of the image is represented as a unique file and directly created after
upload. Information on the Imagine plugin can be found at https://github.com/
burzum/cakephp-imagine-plugin.

Using a detector
Detectors are used by the framework to analyze a request and make quick assertions
about the incoming data or petition. CakePHP provides a set of default request detectors,
such as post, ajax, or ssl. However, you can easily extend the available detectors using
CakeRequest::addDetector(). There are four different types of detectors that you
can create:

ff Environment Value Comparison: This compares a value from env() for equality
with the given value

ff Pattern Value Comparison: This compares a value from env() with a
regular expression

ff Options-based Comparison: This uses a list of options to create a regular
expression (options will be merged for subsequent calls to add an already
defined options-based detector)

ff Callback: This uses a callable type to handle the comparison (the callback
function receives the request object as the first and only argument)

We'll focus on the callback detector here, as it's by far the most powerful.

Chapter 3

81

Getting ready
For this recipe, we'll define a controller that uses a detector to verify access to a private API,
requiring a shared key to be provided on all requests.

We'll create an ApiController class in a file named app/Controller/ApiController.
php with the following code.

<?php
App::uses('AppController', 'Controller');

class ApiController extends AppController {
}

This controller won't be using a view file, as we'll be using it exclusively to handle API requests.

How to do it...
Perform the following steps:

1.	 Define a detector that checks for a certain header in the HTTP request:
public function __construct($request = null, $response = null) {
 parent::__construct($request, $response);

 $this->request->addDetector('verified', array(
 'callback' => function ($request) {
 $header = $request->header('X-Api-Key');
 return ($header === Configure::read('Api.key'));
 }
));
}

2.	 Create a beforeFilter() callback method in our ApiController:

public function beforeFilter() {
 parent::beforeFilter();

 $this->Components->disable(array('Auth', 'Session'));

 if (!$this->request->is('verified')) {
 throw new ForbiddenException('Request not verified');
 }
}

Now, you can implement any number of actions in this controller, and all of them will require a
valid API key passed in the X-Api-Key request header.

HTTP Negotiation

82

How it works...
In this recipe, we first defined a callback detector, which checks whether a certain HTTP
header (X-Api-Key) was provided with the request and whether the value of that header
was identical to the key that is stored locally on the server which exposes the API.

We then created the beforeFilter() callback method, which uses the
CakeRequest::is() method to call the verified detector. If it fails, returning false,
we throw a ForbiddenException, signaling that the request had not been authenticated
earlier. We're also disabling the Session and Auth components for this particular
controller—it inherits them from the AppController parent class, but we have no
use for them in a private API authenticated against a key from the configuration.

See also
ff The Authentication API recipe from Chapter 4, API Strategies

ff The The HTTP authorization recipe from Chapter 5, Using Authentication

Working with cookies
Cookies allow you to persist data across requests, thus allowing you to keep track of
certain aspects of the navigation, user, or anything that needs to be referenced from
one action to another.

In this recipe, we'll create a basic example scenario that shows how to use cookies in
the framework.

Getting ready
For this recipe, we'll use a controller to work with, so let's use our existing
ExampleController.php file in app/Controller/. We'll also need a view for
one of our actions, so also create a file named cookie.ctp in app/View/Example/.

How to do it...
Perform the following steps:

1.	 Add the $components property to the ExampleController class with the
Cookie component, as shown in the following code:
public $components = array(
 'Cookie' => array(

Chapter 3

83

 'time' => '+1 day'
)
);

2.	 Define the following cookie() method:
public function cookie() {
 $value = __('No value defined');
 if ($this->Cookie->check('value')) {
 $value = $this->Cookie->read('value');
 }
 $this->set('value', $value);
}

3.	 Define the following cookie_update() method:
public function cookie_update($value) {
 $this->Cookie->write('value', $value);
 $this->redirect(array('action' => 'cookie'));
}

4.	 You also need to define the following cookie_remove() method:

public function cookie_remove() {
 $this->Cookie->delete('value');
 $this->redirect(array('action' => 'cookie'));
}
Finally, view app/View/Example/cookie.ctp
<h2>Cookie example</h2>
<p>
 Value: <?php echo h($value); ?>
</p>

How it works...
For this recipe, we've created a simple example that demonstrates how cookie handling
works in CakePHP.

HTTP Negotiation

84

To test it out, visit /example/cookie in your browser. You should see a view similar to
the following screenshot:

Chapter 3

85

The view will state No value defined. This is because we haven't yet populated our cookie.
So, now visit /example/cookie_update/test. The same view that you saw earlier will
load, but this time, it will show Value: test, as shown in the following screenshot:

HTTP Negotiation

86

Likewise, if you now navigate to /example/cookie_remove, the view will reload again
and again display No value defined.

Here, we first loaded the Cookie component in our controller. We also defined a time
setting with the value of +1 day. This determines the expiry of the cookie. There are various
configuration options, which can be set upon including the component or as properties of the
Cookie component, typically in the beforeFilter() callback of the controller. Some of
them are as follows:

ff name: This is the name of the cookie.

ff time: This is the duration the cookie will remain valid for.

ff path: This is the server path that the cookie is available from. Default to the
whole domain.

ff domain: This is the domain the cookie applies to. To include subdomains,
use .example.com.

ff secure: This defines if the cookie is only available via HTTPS.

ff key: This is the encryption key to use.

ff httpOnly: This determines if the cookie is only available via HTTP
(no access via JavaScript).

Then, in our cookie() method, we first defined a default text in our $value variable. We
then called the check() method of the Cookie component to determine if a value key has
been set earlier on the cookie. If so, we update the $value variable with the content of the
value key in our cookie. We then finally used the set() method to register the $value
variable to the view.

It's worth mentioning that there is no convention as to the naming of the keys in cookies;
however, you can use the dot notation to define depths and namespace values. This way, if you
were to define a Product.status key, you could only modify or delete the value of status by
calling Product.status, or all values stored under Product by providing only that.

Now, in the cookie_update() method, we called the write() method of the Cookie
component, to write the $value argument passed via the URL to the value key of the cookie
after which, we redirect back to the cookie() action to display the result. The write method
takes key as the first argument, and the value to write as the second. There are additionally
two optional arguments, the first being a Boolean to determine if the value should be
encrypted, and the other a specific timeout for this value. This can be an integer representing
the number of seconds, or a string compatible with strtotime().

Finally, we also created a cookie_remove() action, which calls the delete() method of
the Cookie component to completely remove the value key from our cookie. This then also
redirects to the cookie() method to again display that no value is defined.

Chapter 3

87

Cache control
Manipulating the HTTP cache is a great way to control the impact of visitors and users on your
application's resources. CakePHP provides a range of options to control both expiration and
validation, and manage how clients and proxies engage with your content.

In this recipe, we'll look at the various ways you can handle the HTTP cache to your advantage.

Getting ready
In this recipe, we'll use a simple controller to show each of the caching options available.
So, create a file named CacheController.php in app/Controller/, with the
following content:

<?php
App::uses('AppController', 'Controller');

class CacheController extends AppController {

 public $autoRender = false;
}

How to do it...
Perform the following steps:

1.	 Add a cached() method to the CacheController class, as shown in the
following code:
public function cached() {
 $this->response->cache('-1 hour', '+1 day');
 return __('I am cached!');
}

2.	 In the same class, also add an expire() method:
public function expire() {
 $this->response->expires('+2 days');
 return __('We all expire');
}

3.	 In the same class, add a modified() method:
public function modified() {
 $record = array(
 'content' => __('Some old content'),

HTTP Negotiation

88

 'modified' => '2013-08-29 17:31:49'
);
 $this->response->modified($record['modified']);
 if ($this->response->checkNotModified($this->request)) {
 return $this->response;
 }
 return $record['content'];
}

4.	 Again, add an etagged() method:
public function etagged() {
 $record = array(
 'content' => __('Some old content'),
 'modified' => '2013-08-29 17:31:49'
);
 $this->response->etag(md5($record['content']));
 if ($this->response->checkNotModified($this->request)) {
 return $this->response;
 }
 return $record['content'];
}

5.	 Finally, add a cache_control() method:

public function cache_control() {
 $this->response->sharable(true, 86400);
 return __('Caching under control');
}

How it works...
In this recipe, we've created a couple of actions, each of which show off how you can control
the HTTP cache through the framework. In our first example, the cached() action, we used the
cache() method of the CakeResponse object. This is the most general form of cache control
in CakePHP, which sets a couple of HTTP together. The value of the first argument is used as the
Last-Modified header value, which tells the browser when the content was last updated. In
our example, we set this to a negative value (in the past), so it's not interpreted as new content.
It also sets the Cache-Control header with the public directive and also sets the max-age
directive with the value of the second argument. Even though the Cache-Control header
overrides the Expires header, this is also set as a precaution.

Chapter 3

89

In our next example, the expire() action, we used the expires() method of the
CakeResponse object to directly set the value of the Expires header in the HTTP
response. Here, the returned content would be cached by the client for two days.

Following on, we then created a modified() action, which used the last_modified()
method to set the Last-Modified header in the HTTP response. Here, we created a
record to use in our example. This would typically be a record from a model or some content
you generate for the response. We first set the timestamp of the last time this content was
modified (you would generally know this some way, such as the date a post was published in a
blog, for example) by calling the modified() method of the CakeResponse object. We then
checked if that date is stale (is old content, not fresh) by calling the checkNotModified()
method and passing it the instance of the CakeRequest object found in the $request
property of the controller. If the content has not been modified since the current date and
time, we return $response as the content. If not, we return the content to be cached, in this
case, the value in $record['content'].

For the next example, in the etagged() action, we used an Etag (entity tag). This works in
a way that is similar to the last_modified() method, except here, we call the etag()
method, passing it our value (in this case, a hash of the content). In HTTP, an Etag is used to
reference a resource, so the client can determine if it has changed by a change in the Etag.
You can also share Etags across common content with the W/ prefix that specifies the Etag as
weak. We then called the checkNotModified() method, again passing it the instance of
the CakeRequest object. If the content has not been modified, as the Etags match, we return
$response as the content. If not, as we did earlier, we return the content to be cached, which
is the value in $record['content'].

For our final example, the cache_control() action, we used the sharable() method
of the CakeResponse object to set the Cache-Control header in the HTTP response.
This header provides a couple of directives to define how the cache is controlled. The first
argument defines that we want this cache to be public. This means that it will be shared
between users. For user-specific content, you would set this to false, making it private.
The second argument then sets the timeout in seconds for the cache, before it must be
revalidated. This value is set as the max-age directive of this header. The CakeResponse
object also provides the maxAge(), sharedMaxAge(), and mustRevalidate() methods
to control the values of the Cache-Control header independently.

HTTP Negotiation

90

It's also worth noting that you can also disable the cache just as easily, by simply calling
the disableCache() method of the CakeResponse object, as we did in another recipe
earlier. Additionally, in cases where we called the checkNotModified() method, you
can also achieve the same by simply including the RequestHandler component in your
controller. You can disable the automatic cache check in the component by setting the
checkHttpCache configuration option to false, for example:

public $components = array(
 'RequestHandler' => array(
 'checkHttpCache' => false
)
);

For most of the methods where a date and time is required, you can also use an instance of
the DateTime object in PHP or a string that is strtotime() compatible and can be parsed
by the class.

See also
ff The View caching recipe from Chapter 10, View Templates

Error handling
By default, the framework handles most situations where errors occur, displaying an error
page to the user when 4xx and 5xx HTTP exceptions are thrown, with a backtrace and code
preview when the debug mode is enabled.

In this recipe, we'll see how you can customize this experience for your users and also some
more advanced techniques to gain full control over error handling.

Getting ready
As we'll simply use this recipe to demonstrate a custom exception, let's create a controller
that will serve as an example. So, create a file named BrokenController.php in app/
Controller/, and introduce the following code in it:

<?php
App::uses('AppController', 'Controller');

class BrokenController extends AppController {
}

Chapter 3

91

How to do it...
Perform the following steps:

1.	 Create a file named CustomException.php in app/Error/ with the
following content:
<?php
class CustomException extends HttpException {
 public function __construct($message = null, $code = 417,
Exception $previous = null) {
 if (empty($message)) {
 $message = 'This is a custom error message';
 }
 parent::__construct($message, $code, $previous);
 }
}

2.	 Open the error400.ctp file in app/View/Errros/error400.ctp, and modify
it with the following content:
<h2><?php echo $message; ?></h2>
<p class="error">
 <?php echo __d('cake', 'Error'); ?>:
 <?php echo __('Uh oh, it looks like something went wrong!'); ?>
</p>
<?php
if (Configure::read('debug') > 0) {
 echo $this->element('exception_stack_trace');
}

3.	 Include the following code at the beginning of the BrokenController.php file:
<?php
App::uses('CustomException', 'Error');

4.	 Also, in the BrokenController class, add the following index() method:
public function index() {
 throw new CustomException(__('Break all the things'));
}

HTTP Negotiation

92

5.	 Finally, calling /broken in your browser will return our modified error page with a
custom exception, as shown in the following screenshot:

How it works...
The first thing we did in this recipe was to create our own custom exception. CakePHP comes
with a selection of default out-of-the-box exceptions, which extend the CakeException
class and include:

ff MissingConnectionException

ff MissingDatabaseException

ff MissingTableException

Chapter 3

93

ff MissingBehaviorException

ff MissingControllerException

ff MissingComponentException

ff MissingActionException

ff PrivateActionException

ff MissingLayoutException

ff MissingViewException

ff MissingHelperException

ff MissingTaskException

ff MissingShellException

ff MissingShellMethodException

Here, we created a class named CustomException, which extends the HttpException
base. These are special exceptions that are HTTP aware, allowing you to not only show an
error page but also have your responses keep inline with the HTTP status codes. This makes
your responses all the more RESTful. The exceptions available include:

ff BadRequestException

ff ForbiddenException

ff NotFoundException

ff MethodNotAllowedException

ff InternalErrorException

ff NotImplementedException

It's worth noting that all exception classes should aim to either extend the CakeException
or HttpException class, which in turn extends the CakeBaseException class. This, of
course, extends the core Exception class in PHP. Doing so allows the framework to make
assumptions about your errors; otherwise, it will treat anything as an Internal Server Error.

Once we created our custom exception class, we then proceeded to modify the error400.
ctp view file in app/View/Errors/ (we're rendering the exception_stack_trace.
ctp CakePHP core element in it). This file, as well as the error500.ctp file, is the template
used to display errors to the user. You can customize these directly to adapt them to your
application. Additionally, if you wanted to display them with a different layout, simply add the
following to the view files themselves:

<?php $this->layout = 'custom_layout'; ?>

HTTP Negotiation

94

It's probably clear from the naming of these files that the 400 file is used for HTTP 4xx status
codes while the other is used for 5xx. As mentioned earlier, anything that isn't clear about the
status code it refers to or doesn't extend the HttpException class will use the error500.
ctp template.

We then included our custom exception class in our controller using App::uses(),
and created an index() action to test our new toys. Note that if you wanted to avoid
calling App::uses() to load your custom exceptions, you could preload these via your
bootstrap.php file in app/Config/.

See also
ff More details on error handling and advanced options can be found at

http://book.cakephp.org/2.0/en/development/errors.html

ff More details on exceptions in CakePHP can be found at http://book.cakephp.
org/2.0/en/development/exceptions.html

4
API Strategies

In this chapter, we will cover the following recipes:

ff RESTful resources

ff Exposing a web service

ff Consuming a service

ff Authentication API

ff API versioning

Introduction
When building web applications, you will almost always find yourself building an API at some
point. This is a data interface to your application; it is exposed via endpoints, which are
consumed by another application or script, instead of a normal user.

Here, we'll look at a couple of ways to expose an API using CakePHP, so you can then decide
which fits best with your application.

RESTful resources
You may have heard of REST at some point during your time in development. Representational
State Transfer is an API architecture design which exposes resources over a stateless
communication, using the HTTP methods of the protocol to facilitate polymorphism through
a simplified and uniform API interface.

In this recipe we'll look at how easily REST can be implemented in CakePHP by leveraging
the functionality provided by the framework.

API Strategies

96

Getting ready
For this recipe, we'll set up some standard and custom REST endpoints, which will act
against a model. For this, create a table named posts using the following SQL statement:

CREATE TABLE posts (
 id INT NOT NULL AUTO_INCREMENT,
 title VARCHAR(255) NOT NULL,
 content TEXT,
 created DATETIME,
 modified DATETIME,
 PRIMARY KEY(id)
);

Then, we'll add some sample data using the following SQL statement:

INSERT INTO posts (title, content, created, modified)
VALUES
('Baking cakes', 'Baking is easy with CakePHP', NOW(), NOW()),
('How to create cookies', 'Browsers love cookies', NOW(), NOW()),
('Consuming a cake', 'Extra tasty with JSON', NOW(), NOW());

We'll also need a posts controller, so create a file named PostsController.php
in app/Controller/ with the following content:

<?php

App::uses('AppController', 'Controller');

class PostsController extends AppController {
}

How to do it...
Perform the following steps:

1.	 Add the following lines to the beginning of your routes.php file in app/Config/:
Router::mapResources('posts');
Router::parseExtensions();

2.	 Edit your PostController.php file, and add the following $components property:
public $components = array('RequestHandler');

3.	 In the same class, add the following methods:
public function index() {
 $this->set(array(

Chapter 4

97

 'posts' => $this->Post->find('all'),
 '_serialize' => array('posts')
));
}

public function view($id) {
 $this->set(array(
 'post' => $this->Post->findById($id),
 '_serialize' => array('post')
));
}

public function edit($id) {
 $this->Post->id = $id;
 $status = $this->Post->save($this->request->data);
 $this->set(array(
 'status' => ($status)? 'Post updated' : 'Error updating post',
 '_serialize' => array('status')
));
}

public function delete($id) {
 $status = $this->Post->delete($id);
 $this->set(array(
 'status' => ($status)? 'Post deleted' : 'Error deleting post',
 '_serialize' => array('status')
));
}

4.	 Navigate to /posts.xml to see the XML of the posts data or to /posts/1.xml to
view the first post, as shown in the following screenshot:

API Strategies

98

How it works...
In this recipe, we've created a basic REST interface to our posts table. To do this,
we first mapped posts as a resource exposed by the framework. For this, we called the
static mapResources() method of the Router class, passing the name of our resource
to it, in this case, our PostsController.

When a resource is mapped, a collection of routes are automatically set up for it; they
respond to a certain URL and HTTP method and route through to a specific action of the
mapped controller.

The /posts.xml URL requested with GET maps to the index() action. The /posts/
{$id}.xml requested with GET maps to the view($id) action, expecting an ID. The /
posts.xml URL requested with POST maps to the add() action. The /posts/{$id}.
xml URL requested with POST or PUT maps to the edit($id) action, expecting an ID.
The /posts/{$id}.xml URL requested with DELETE maps to the delete($id) action,
expecting an ID.

If you didn't want to use these settings, you could also configure the resource map to use
different default actions. For this, you can call the static resourceMap() method of the
Router class, passing an array of arrays to it; which contain the action name, the HTTP
method, and whether an ID is expected. For example:

Router::resourceMap(array(
 array('action' => 'index', 'method' => 'GET', 'id' => false),
 array('action' => 'view', 'method' => 'GET', 'id' => true),
 array('action' => 'add', 'method' => 'POST', 'id' => false),
 array('action' => 'edit', 'method' => 'PUT', 'id' => true),
 array('action' => 'delete', 'method' => 'DELETE', 'id' => true)
));

Additionally, the way in which the HTTP method is resolved for these routes can depend
on a couple of factors. Based on preference, the framework first checks for a _method
parameter in the request. If this parameter is set, the value of this is used to emulate the
defined request method. Otherwise, first, the X_HTTP_METHOD_OVERRIDE header is
considered, or finally, in it's absence, the value of REQUEST_METHOD is considered.

In this recipe we're using XML, but you can also use JSON out of the box or even create your
own formats. When a format is requested, it's linked to a custom View class. For example,
.json is linked to the JsonView class, which is included by default in the framework. In our
examples, we're using the _serialize view variable to automatically process the variables
we include for the view, but you can also handle the formatting of the output manually by
simply creating a view for your action, as you typically would.

Chapter 4

99

We also enabled extensions in the URL to be parsed by CakePHP, using the static
parseExtensions() method of the Router class. There is a recipe included for this,
which will provide you with details on how to process file extensions in your URL.

After setting up our resource, we proceeded to create the logic for our REST actions in the
PostsController. We first made sure that the RequestHandler component is included.
This is important, as it handles much of the processing logic internally for your actions.
You can also take advantage of this component to accept content in different formats. For
example, request formats such as XML and JSON are automatically processed by CakePHP
with this component; they simply provide the resulting content in the $data property of the
CakeRequest object located in the $request property of the controller. You can even define
your own input content types using the addInputType() method of the RequestHandler
component, as shown in the following code:

$this->RequestHandler->addInputType('foo', array(function() {
 // parsing logic for "foo" input types
}));

Once our component was in place, we simply created the methods for each REST action,
as defined by our default resource map. Here, you'll notice that our logic is minimal; however,
this could be particular to each resource, where some may even affect other resources in
your business layer.

As you can see, setting up REST endpoints is not only simple but flexible; it allows you to
easily build and maintain your RESTful interfaces without hassle.

See also
ff The definition of REST can be found at http://www.ics.uci.edu/~fielding/

pubs/dissertation/rest_arch_style.htm

ff The Parsing extensions recipe from Chapter 3, HTTP Negotiation

ff The Building an XML view recipe from Chapter 10, View Templates

Exposing a web service
When you first build an application, you'll most likely imagine how the user will interact with it
and how it will be designed and structured for your content and features. However, there also
comes a time when you'll want to expose certain functionality of your website as web services.

CakePHP comes well-prepared for this, so in this recipe, we'll look at how you can easily create
a data-focused controller to serve certain functionality of your application via a service.

API Strategies

100

Getting ready
For this recipe, we'll start with a basic controller to serve as our endpoint. So, create a file
named ApiController.php in app/Controller/ with the following content:

<?php
App::uses('AppController', 'Controller');

class ApiController extends AppController {
}

How to do it...
Perform the following steps:

1.	 Add the following line to your routes.php file in app/Config/:
Router::connect('/api/:object/:command', array(
 'controller' => 'api',
 'action' => 'delegate'
), array(
 'pass' => array(
 'object',
 'command'
)
));

2.	 Add the following delegate() method to the ApiController class:
public function delegate($object, $command) {
 $result = null;
 try {
 if ($this->request->is('post') || $this->request->is('put')) {
 $args = $this->request->data;
 } else {
 $args = $this->request->query;
 }
 $component = Inflector::camelize($object);
 $this->{$component} = $this->Components->load($component);
 $this->{$component}->initialize($this);
 $action = Inflector::camelize($command);
 $return = $this->{$component}->{$action}($args);
 if ($this->{$component}->status === 'success') {

Chapter 4

101

 $result = $this->_success($return);
 } else {
 $result = $this->_fail($return);
 }
 } catch(Exception $e) {
 $result = $this->_error($e->getMessage(), $e->getCode(),
$result);
 }
 $this->response->type('json');
 $this->response->statusCode(200);
 $this->response->body($result);
 $this->response->send();
 $this->_stop();
}

3.	 Also, add the following protected utility methods to the same class:
protected function _format($status, $response = array()) {
 $object = new stdClass();
 $object->status = $status;
 foreach ($response as $param => $value) {
 $object->{$param} = $value;
 }
 return json_encode($object);
}

protected function _success($data = null) {
 return $this->_format('success', array('data' => $data));
}

protected function _fail($data = null) {
 return $this->_format('fail', array('data' => $data));
}

protected function _error($message = 'Unknown', $code = 0, $data =
array()) {
 return $this->_format('error', array(
 'message' => $message,
 'code' => $code,
 'data' => $data
));
}

API Strategies

102

4.	 Now, create a file named ExampleComponent.php in app/Controller/
Component/ with the following content:
<?php
App::uses('Component', 'Controller');

class ExampleComponent extends Component {

 public $status = 'success';

 public function hello($args) {
 return 'Hello World';
 }

 public function say($args) {
 if (empty($args['text'])) {
 throw new Exception('Missing argument: text');
 }
 return 'You said: ' . $args['text'];
 }
}

5.	 Navigate to /api/example/hello in your browser to see the following output:

6.	 Alternatively, go to /api/example/say?text=Bingo to see the following output:

If you were to call the same URL, but without passing the ?text=Bingo query string,
you would get the following error response:

Chapter 4

103

How it works...
When building an API, there are many ways you can approach the design. CakePHP is flexible,
in that it doesn't lock you into any specific architecture or pattern; instead, it allows you to
tackle the design as you see fit. In this recipe, we've used a component-based approach;
it serves well for extensive APIs, which work well in object/command design.

For this example, we created a base ApiController class, which serves as the foundation
to delegate calls to our components to the API. We also defined a route template in our
app/Config/routes.php file for calls to the API, namespacing it with /api/ to avoid
clashing with the other URLs in our web application.

The delegate() method in the ApiController class is the receiving action that processes
the actual calls to the API. The $object and $command arguments here are passed through
from our route template, which captures them via the :object and :command tokens. You
may have noticed that a significant part of our method's logic is encapsulated in a try/catch
statement. This is important, as it allows our API to catch unforeseen exceptions that could
potentially come from a component and process them accordingly.

We then captured the arguments passed to our API from the $data property of the
CakeRequest object in $this->request if the HTTP request method was post or put, or
from the $query property if any other HTTP method was used. The name of the component
that is passed as the $object argument to the delegate() method is then formatted using
the static camelize() method of the Inflector utility class. This changes the format of
the component name from a URL value to a class name. You'll notice that we do the same
with the action from the $command argument further below that.

We then use the load() method of the ComponentCollection class to correctly load
our component, followed by a call to initialize() to process any setup logic that the
component may have. The return value of the action is stored in a variable after the execution
of the method, passing the arguments provided to the API call to it. As we're using the Jsend
spec in this example, we also check the result of the call. In this case, the spec allows for
success or fail, and we're reserving error for any exceptions we capture in our try/catch.
Each of these is treated and built using our formatting helper methods to process the content
for the HTTP response body.

Finally, the response object is configured. First, set the response content type to json, and
the status code to 200. We do this even for exceptions, as the response from the server is
valid, with the result of the API call detailed in the response body. We then just send our
response to the client and stop the framework's dispatch cycle when we're done.

API Strategies

104

The great thing about this design is it easily allows for extensibility. You can include auth
validation, arguments processing, HTTP method checks, and much more in your delegate()
method, with very little effort. It also allows growth and modularity, as areas of your API are
broken into components, thus helping you maintain your code with ease. However, this is just
one approach. You might prefer to have your API calls in each of their relevant controllers or,
maybe, hack it and build out your endpoints in a dispatch filter or even a custom route class.
You could also take the REST approach from a previous recipe. As always, CakePHP provides
the tools to build your code as you see fit, thus offering flexibility and power at your fingertips.

See also
ff The hyper-text transfer protocol at http://www.w3.org/Protocols/rfc2616/

rfc2616.html

ff The Jsend spec at http://labs.omniti.com/labs/jsend

ff The RESTful resources recipe

Consuming a service
While it's great that you can expose certain functionality of your application via web
services, you'll also want to consume services of your own or by other third parties.
CakePHP comes equipped with a very useful HTTP socket class, which allows you to
easily interact with other resources.

In this recipe, we'll consume the service from our previous example, which exposes
its interface as JSON, and see how easy it is to quickly get the results you need.

Getting ready
For this recipe, we'll use a simple test controller to interact with our API. Create a file named
ServiceController.php in app/Controller/ with the following content:

<?php
App::uses('AppController', 'Controller');
App::uses('HttpSocket', 'Network/Http');

class ServiceController extends AppController {
}

We'll also need a view file for the action we'll define, so create a file named call.ctp in
app/View/Service.

Chapter 4

105

How to do it...
Perform the following steps:

1.	 Create a file named JsonResponse.php in app/Lib/Network/Http/
with the following content:
<?php
App::uses('HttpSocketResponse', 'Network/Http');

class JsonResponse extends HttpSocketResponse {

 public function __toString() {
 return json_encode($this->body);
 }

 public function body() {
 return $this->body;
 }

 public function isOk() {
 if (parent::isOk()) {
 return ($this->body['status'] === 'success');
 }
 return false;
 }

 public function parseResponse($message) {
 parent::parseResponse($message);
 $this->body = json_decode($this->body, true);
 }
}

2.	 Add the following call() method to your ServiceController class:
public function call($value) {
 $config = array(
 'request' => array(
 'uri' => array(
 'host' => env('HTTP_HOST')
)
)
);

API Strategies

106

 $http = new HttpSocket($config);
 $http = new HttpSocket();
 $http->responseClass = 'JsonResponse';
 $response = $http->get('/api/example/say', array('text' =>
$value));
 if ($response->isOk()) {
 $this->set('result', $response->body['data']);
 } else {
 throw new CakeException('Web service error');
 }
}

3.	 Introduce the following content into the call.ctp file in app/View/Service/:
<h2><?php echo __('Service Response'); ?></h2>
<p><?php echo $result; ?></p>

4.	 Navigate to /service/call/Hello in your browser to see the
following output:

How it works...
In this recipe, we interfaced with the web service we set up in our previous example. For this,
we first created a custom response class, so we can transparently handle the JSON returned
by the API endpoint. To do this, we created a file named JsonResponse.php in app/Lib/
Network/Http/, which overrides a couple of methods.

The most relevant method here is the parseResponse() method, which handles the
processing of the HTTP response message. Here, we called the parent method to execute
the underlying logic and then made sure that the $body property of the response is correctly
a JSON-decoded value. In this case, it is an associative array through our use of true as
the second argument of the json_decode() function to force an array over an object
representation of the JSON string.

Chapter 4

107

We then also changed body() to return an array, instead of forcing it to be cast as a string as
it does by default, and also json_encode() the array again in any case where the response
object is cast to string with the __toString() method.

The final method that we override is isOk(). By default, this method simply checks whether
the HTTP status code is within the expected range for a successful response. However, as
the Jsend spec includes the actual result in the body of the response, we want our isOk()
method to be more intelligent and check this too. For this, we first call the parent::isOk()
method to make sure that the HTTP status code is within an acceptable range, and if it is,
then check whether the status key of the JSON response also has the success value.

Once we had our custom response class ready, we proceeded to create our call() action,
which serves to test our API call. Here, we first created a new instance of the HttpSocket
class and set up our new JsonResponse class through the $responseClass property.
When then made our call to the API using the get() method of the HttpSocket class,
passing the URL of the endpoint, followed by an array with the query string parameter to pass
in the call. Here, we could also pass the query string as an actual string. This then returns an
instance of our JsonResponse class, with the specifics of the HTTP response.

We continue by calling our isOk() method on the $response object to determine if the
request was successful. If it was, we assign a view variable named result with the value
returned in the JSON response. Otherwise, we throw a nice CakeException. Here, you could
become more explicit with the error message giving the HTTP status code from the $code
property of the $response object or attempting to detail the actual issue if it is provided in
the response from the service provider. Obviously, the more detailed your error messages, the
quicker you're going to get to the bottom of the problems with your requests. Our view then
simply outputs the value from our API call.

This is just an introduction to interfacing with services over HTTP, but the HttpSocket class
provides an extensive interface to customize and control interactions with any HTTP endpoint.
The ability to build your own response objects and manipulate the content returned is just the
beginning to what you can build.

See also
ff Details on the HTTP socket class are available at http://book.cakephp.

org/2.0/en/core-utility-libraries/httpsocket.html

ff More information on JavaScript Object Notation can be found at http://json.org

ff The Exposing a web service recipe

API Strategies

108

Authentication API
When exposing features of your application via web services, you may want to control who
has access. For this, you'll need to keep track of who is making the requests and allow these
parties to authenticate themselves.

In this recipe, we'll look at how you can easily set up an authentication API, which persists the
session through the use of an auth token.

Getting ready
We'll continue to build on our API from the previous recipes, adding a users table to control
access to our services:

CREATE TABLE users (
 id INT NOT NULL AUTO_INCREMENT,
 username VARCHAR(20) NOT NULL,
 password VARCHAR(100) NOT NULL,
 token VARCHAR(32) DEFAULT NULL,
 ip VARCHAR(45) DEFAULT NULL,
 created DATETIME DEFAULT NULL,
 modified DATETIME DEFAULT NULL,
 PRIMARY KEY(id)
);

How to do it...
Perform the following steps:

1.	 Create a file named AccessComponent.php in app/Controller/Component/
with the following content:
<?php
App::uses('Component', 'Controller');
App::uses('Security', 'Utility');
App::uses('ClassRegistry', 'Utility');

class AccessComponent extends Component {

 public $components = array('Cookie');

 public $status = 'success';

Chapter 4

109

 public function register($args) {
 if (empty($args['username'])) {
 throw new Exception('Missing argument: username');
 }
 if (empty($args['password'])) {
 throw new Exception('Missing argument: password');
 }
 $User = ClassRegistry::init('User');
 $User->create();

 return $User->save(array(
 'username' => $args['username'],
 'password' => Security::hash($args['password'], null, true)
));
 }

 public function login($args) {
 if (empty($args['username'])) {
 throw new Exception('Missing argument: username');
 }
 if (empty($args['password'])) {
 throw new Exception('Missing argument: password');
 }
 $User = ClassRegistry::init('User');
 $data = $User->find('first', array(
 'conditions' => array(
 'User.username' => $args['username'],
 'User.password' => Security::hash($args['password'], null,
true)
)
));
 if (!empty($data)) {
 if (empty($data['User']['token'])) {
 $request = $this->_Collection->getController()->request;
 $data['User']['token'] = md5(uniqid());
 $data['User']['ip'] = $request->clientIp(false);
 $User->save($data);
 }
 $this->Cookie->write('auth_token', $data['User']['token']);

 return true;
 }

API Strategies

110

 return false;
 }

 public function logout($args) {
 if ($this->Cookie->check('auth_token')) {
 $request = $this->_Collection->getController()->request;
 $User = ClassRegistry::init('User');
 $data = $User->find('first', array(
 'conditions' => array(
 'User.token' => $this->Cookie->read('auth_token'),
 'User.ip' => $request->clientIp(false)
)
));
 if (!empty($data)) {
 $data['User']['token'] = null;
 $data['User']['ip'] = null;
 $User->save($data);
 $this->Cookie->delete('auth_token');

 return true;
 }
 }

 return false;
 }

 public function validate($args) {
 if ($this->Cookie->check('auth_token')) {
 $request = $this->_Collection->getController()->request;
 $User = ClassRegistry::init('User');
 $data = $User->find('first', array(
 'conditions' => array(
 'User.token' => $this->Cookie->read('auth_token'),
 'User.ip' => $request->clientIp(false)
)
));
 if (!empty($data)) {
 return true;
 }
 }

 return false;
 }
}

Chapter 4

111

2.	 Update the delegate() method in your ApiController with the following
change (highlighted):
public function delegate($object, $command) {
 $result = null;
 try {
 if ($this->request->is('post') || $this->request->is('put')) {
 $args = $this->request->data;
 } else {
 $args = $this->request->query;
 }
 $component = Inflector::camelize($object);
 if ($component !== 'Access') {
 $this->_validateAccess($args);
 }
 $this->{$component} = $this->Components->load($component);
 $this->{$component}->initialize($this);
 $action = Inflector::camelize($command);
 $return = $this->{$component}->{$action}($args);
 if ($this->{$component}->status === 'success') {
 $result = $this->_success($return);
 } else {
 $result = $this->_fail($return);
 }
 } catch (Exception $e) {
 $result = $this->_error($e->getMessage(), $e->getCode(),
$result);
 }
 $this->response->type('json');
 $this->response->statusCode(200);
 $this->response->body($result);
 $this->response->send();
 $this->_stop();
}

3.	 Add the following protected _validateAccess() method to the same class:
protected function _validateAccess($args) {
 $this->Access = $this->Components->load('Access');
 if (!$this->Access->validate($args)) {
 throw new ForbiddenException();
 }
}

API Strategies

112

4.	 Make sure that you have no model named User in your application (or check out
its callbacks) and then navigate to /api/example/hello—it will return an error,
as access is forbidden, as shown in the following screenshot:

5.	 Register a user by navigating to /api/access/register?username=test&pass
word=12345.

6.	 Login by navigating to /api/access/login?username=test&password=12345.
This will register the auth_token cookie by the web service.

7.	 Navigate again to /api/example/hello to see the following output:

How it works...
In this recipe, we've extended the scope of our web service from the previous recipes to
include an authentication layer that requires a consumer of the API to identify themselves.
For this, we've kept with the modular architecture of our API and created an authentication
service called Access. This provisions the actions necessary for users to register, log in, and
log out, as well as provide us with a means to test whether a user has a valid session.

To track the user, we're using an auth_token, which we're persisting via a cookie. You'll
notice that we're loading the Cookie component in our Access component. This is a great
feature of CakePHP; it allows maximum reuse of your code through the likes of components.

In our first method, register(), we first checked whether the required username and
password arguments have been provided with the API call, and if not, we throw an exception.
We then used the static init() method of the ClassRegistry class to create an instance
of the User model. In a real application, validate data in the model layer. After this, we called
the create() method of our model to notify the framework of our intent to create a new row
in the users table. Finally, we simply returned the result of saving the new data, hashing the
password in the process with the hash() method of the Security utility class. Note that this
method automatically handles the salt in our hash, using the value set in the core.php file in
app/Config/ under the Security.salt configuration setting.

Chapter 4

113

In the login() method, we also checked for the required username and password
arguments. Then, again, we used the static init() method of the ClassRegistry class to
create the instance of our User model. We then called find() to locate the "first" row that
matches the provided username and password, the latter hashed with the hash() method of
the Security utility class. After this, we checked if a result was returned by making sure that
the $data variable is not empty, and we also checked whether $data does not already have
a token defined. For a case where there is no token, we use the uniqid() function to create
a unique ID, and then hash this as an MD5 string and set it to $data['User']['token'].
We also set the user's IP address to $data['User']['ip'], so we can marry the user to
their token; otherwise, the user's auth_token could be easily hijacked. Note that we're setting
the first argument of the clientIp() method of the CakeRequest class to false, as this is
preferable when the request cannot be entirely trusted. We complete the login process by saving
the data and setting the auth_token cookie to persist the user's session.

Our logout() method then checks for the existence of the auth_token cookie using the
check() method of the Cookie component. If it is found, we then check whether the token
is valid by looking up a user that has both the token and a matching IP address stored for that
token. If they are found, we simply save the user by setting both the token and ip fields to
null, and then proceed to delete the auth_token cookie using the Cookie component's
delete() method.

Finally, the validate() method of the Access component is our utility method to determine
if a user who makes a request to our API has a valid token and if it matches a known user with
the same IP address.

To take advantage of our new authentication layer, we then modified the delegate()
method of the ApiController to contemplate an auth check upon every request. For this,
we also checked whether the request isn't for the Access service itself, and if it is not, we
call our protected _validateAccess() method. The great thing about this method is that
it also reuses our authentication service by simply throwing a ForbiddenException if the
user's token doesn't validate. This aligns well with the mantra of "eat your own dog food", in
which you should always aim to consume your own services as any other consumer and avoid
hacking around your API internally or creating back doors for yourself at all costs.

The authentication system outlined in this recipe isn't the greatest and, for sure, isn't the most
secure, but it gives you a heads-up into understanding the options available when securing
your API. If you wanted to build a more robust authentication system, you could also look at
using OAuth or even integrate directly with a third party-service. Either way, you'll find the
token system very common among APIs out there in the wild.

See also
ff The OAuth 2.0 specification at http://tools.ietf.org/html/rfc6749

ff The Exposing a web service recipe

API Strategies

114

API versioning
As time goes by, you'll find that an API changes and evolves. However, when others are
interacting with your API, it's important to be coherent about where certain functionality
exists and maintain a clear versioning of the actions available and their characteristics.

In this recipe, we'll look at how you can implement different API-versioning techniques to
help maintain consistency in your API and promote a stable longevity.

Getting ready
We'll be using the code we created in a previous recipe to create a web service and extend
it to allow for versioning of the API we defined.

How to do it...
Perform the following steps:

1.	 Update the route for the API action that we added in a previous recipe; it will be used
just for authentication purposes:
Router::connect('/api/access/*', array(
 'controller' => 'api',
 'action' => 'delegate',
 '',
 'access'
));

2.	 Add a new route for the versioned API:
Router::connect('/api/:version/:object/:command', array(
 'controller' => 'api',
 'action' => 'delegate'
), array(
 'pass' => array(
 'version',
 'object',
 'command'
)
));

3.	 Change the delegate() action in the ApiController to the following:
public function delegate($version, $object, $command) {
 $result = null;
 try {

Chapter 4

115

 if ($this->request->is('post') || $this->request->is('put')) {
 $args = $this->request->data;
 } else {
 $args = $this->request->query;
 }
 $component = Inflector::camelize($object);
 if ($component !== 'Access') {
 $this->_validateAccess($args);
 $component .= strtoupper($version);
 }
 $this->{$component} = $this->Components->load($component);
 $this->{$component}->initialize($this);
 $action = Inflector::camelize($command);
 $return = $this->{$component}->{$action}($args);
 if ($this->{$component}->status === 'success') {
 $result = $this->_success($return);
 } else {
 $result = $this->_fail($return);
 }
 } catch(Exception $e) {
 $result = $this->_error($e->getMessage(), $e->getCode(),
$result);
 }
 $this->response->type('json');
 $this->response->statusCode(200);
 $this->response->body($result);
 $this->response->send();
 $this->_stop();
}

4.	 Update the file name of the ExampleComponent class to
ExampleV1Component.php and also the class declaration in the file to the following:
<?php
App::uses('Component', 'Controller');

class ExampleV1Component extends Component {

 public $status = 'success';

 public function hello($args) {
 return 'Hello World';
 }

 public function say($args) {

API Strategies

116

 if (empty($args['text'])) {
 throw new Exception('Missing argument: text');
 }
 return 'You said: ' . $args['text'];
 }
}

5.	 We'll also duplicate this file by changing the file name to ExampleV2Component.
php and also the class declaration to the following:
<?php
App::uses('ExampleV1Component', 'Controller/Component');

class ExampleV2Component extends ExampleV1Component {

 public function hello($args) {
 return 'Hey there!';
 }

 public function foo($args) {
 return 'bar';
 }
}

6.	 Navigating to /api/v1/example/hello will return the following output, as it did
in the previous recipe:

However, when you o to /api/v2/example/hello, you will see the new output
we defined, as shown in the following screenshot:

Chapter 4

117

7.	 Navigating to /api/v2/example/foo will return the output (seen in the first
screenshot that follows) we defined, while navigating to /api/v1/example/foo
(notice the change in the API version) will return an error (as seen in the second
screenshot that follows):

How it works...
In this recipe, we built on the web service we created earlier. The first thing you probably
noticed is how easy it was to add versioning to our API. We are not interested in a versioned
AccessComponent now, so we changed our API route to be used just for registration and
authentication purposes. The second step we took was to create our route for the API to
include a new :version token, which captures the version of the API requested. Here, we
simply changed the delegate() method of the ApiController class to contemplate the
new $version argument, as defined in our pass array from the route.

The magic then comes from the component name, which now changes to have the
version added in the file and class names. You may have also noted that we extended the
ExampleV2Component component from the ExampleV1Component class, which allows
us to easily inherit the functionality from the previous version of our API. It's worth pointing
out that if you wanted to deprecate an action in a newer version or remove it all together, you
could have related component method return the 410 Gone HTTP status code. Alternatively,
if you have an upcoming feature, you could also use the 501 Not Implemented status to
communicate it's current unavailability.

You'll now see that by simply changing the version in the URL of the request, the call gets
routed to the relevant component internally by our delegate() method. However, what
happens if we're not a fan of including the version in the URL?

API Strategies

118

There's more...
So, we want to maintain a cleaner URL interface for our API, and not mess it up with
versioning. Not to worry; let's change our implementation to accept the version via the
HTTP request headers.

First, remove the two routes that we added for access control and versioned API, and add the
route for the API endpoint back with its original definition, as shown in the following code:

Router::connect('/api/:object/:command', array(
 'controller' => 'api',
 'action' => 'delegate'
), array(
 'pass' => array(
 'object',
 'command'
)
));

Then, open your ApiController.php file and modify the delegate() method to
the following:

public function delegate($object, $command) {
 $result = null;
 try {
 if ($this->request->is('post') || $this->request->is('put')) {
 $args = $this->request->data;
 } else {
 $args = $this->request->query;
 }
 $component = Inflector::camelize($object);
 if ($component !== 'Access') {
 $this->_validateAccess($args);
 $version = $this->request->header('X-API-Version');
 $component .= strtoupper($version);
 }
 $this->{$component} = $this->Components->load($component);
 $this->{$component}->initialize($this);
 $action = Inflector::camelize($command);
 $return = $this->{$component}->{$action}($args);
 if ($this->{$component}->status === 'success') {
 $result = $this->_success($return);
 } else {

Chapter 4

119

 $result = $this->_fail($return);
 }
 } catch (Exception $e) {
 $result = $this->_error($e->getMessage(), $e->getCode(), $result);
 }
 $this->response->type('json');
 $this->response->statusCode(200);
 $this->response->body($result);
 $this->response->send();
 $this->_stop();
}

Now, we could make a call to the API with a HTTP request as follows (using the domain you
have defined):

GET http://example.com/api/example/hello HTTP/1.1
Host: example.com
X-API-Version: v1

Keep in mind that this method of reading the API version does have drawbacks. For example,
creating an API call now requires that we set a request header, which could be a limiting factor
in some scenarios. Also, earlier, the client that made the call only needed to know the URL
to make the request; now, it needs to also know the specifics of the HTTP request itself.
You may also want to use a more standard format to specifying the version, such as via
the Content-Type header, using something similar to the following line of code:

application/vnd.example.v1+json

See also
ff The Exposing a web service recipe

5
Using Authentication

In this chapter, we will cover the following recipes:

ff The HTTP authentication

ff Custom authorize class

ff Facebook authentication

ff Custom RBAC

ff Working with ACL

Introduction
Not all applications are created equal, and in many scenarios, you'll want to control how your
application is accessed and by whom. It just so happens that CakePHP includes a flexible
authentication system, which aims to take the pain out of users and session handling.

In this chapter, we'll look at various ways of handling authentication and access control
when using the framework.

The HTTP authentication
Authentication logic covers the matching between user credentials (usually, a username
and password combination) and an existing user defined in your system.

CakePHP is packed with several authentication classes, which provide you with the most
widely used types for use in your application:

ff FormAuthenticate: This is used to provide a login page and submit user
credentials via a POST request to your login action.

Using Authentication

122

ff BasicAuthenticate: This lets the browser ask you for the credentials,
using a standard HTTP basic authentication. The credentials are sent in plain text
to the web server. This could be a security risk in your application, so using SSL is
strongly advised.

ff DigestAuthenticate: This uses the HTTP digest authentication method. It is
slightly more secure than the basic HTTP authentication, as the credentials are
hashed before sending them to the server. However, security risk still exists,
so using SSL is suggested.

In this recipe, we'll explore the basic HTTP authentication, which is usually ignored but is
useful when you combine this method with an SSL-protected web server.

Getting ready
For this recipe, we'll create a users table, using the following SQL statement:

CREATE TABLE users (
 id VARCHAR(36) NOT NULL,
 username VARCHAR(255) NOT NULL,
 password VARCHAR(128) NOT NULL,
 active TINYINT(1) DEFAULT '0',
 created DATETIME DEFAULT NULL,
 modified DATETIME DEFAULT NULL,
 PRIMARY KEY(id)
);

Then, optionally, set up SSL for your domain or local virtual host. Check your web server
documentation about setting up SSL certificates. This is strongly recommended but not
required if you're testing this recipe in a development environment.

How to do it...
Perform the following steps:

1.	 Create a new AuthsController in a file named app/Controller/
AuthsController.php using the following code:
<?php
App::uses('AppController', 'Controller');

class AuthsController extends AppController {

 public $components = array(
 'Auth' => array(
 'authenticate' => array('Basic' => array(

Chapter 5

123

 'fields' => array(
 'username' => 'username',
 'password' => 'password'
),
 'userModel' => 'User',
 'scope' => array(
 array('User.active' => 1)
),
 'recursive' => -1,
 'realm' => 'Speak, friend, and enter.'
)),
 'authorize' => array('Controller')
)
);

 public function beforeFilter() {
 parent::beforeFilter();
 AuthComponent::$sessionKey = false;
 $this->Auth->allow('saveTestUser');
 }

 public function isAuthorized($user = null) {
 return true;
 }

 public function saveTestUser() {
 $data = array(
 'id' => 1,
 'username' => 'friend',
 'password' => Security::hash('mellon', null, true),
 'active' => 1
);
 debug(ClassRegistry::init('User')->save($data));
 $this->autoRender = false;
 }

 public function index() {
 }
}

If you have the User model from the previous recipes, it handles password hashing
for you—in this case, send the password in plaintext, mellon, to the User model
(remove the use of Security::hash() from the saveTestUser() method).
Otherwise, your passwords will be hashed twice, and you'll be unable to log in.

Using Authentication

124

2.	 Add a view for the index() action, by convention, in a file named app/View/
Auths/index.ctp, as shown in the following code:
<?php
echo $this->Html->tag('h2', __('You are allowed to pass, %s', Auth
Component::user('username')));

3.	 Now, use the saveTestUser() utility action that we created to generate a new
test user for your application by opening a browser and navigating to /auths/
saveTestUser:

4.	 Open the /auths/index protected page.

You'll get an HTTP basic browser popup that requests the username and password
to access this website. Type the following for each field:
Username: friend
Password: mellon

You'll get access to the index page, and a You are allowed to pass, friend welcome
message will be displayed, as shown in the following screenshot:

5.	 Once you're able to log in, remove the saveTestUser() method from the
AuthsController class.

Chapter 5

125

How it works...
In this recipe, we're using CakePHP basic authentication and controller authorization to
protect the AuthsController::index() action.

We started with an empty users table, so we added a utility action to generate the first user
in our system with the username, friend, and password, mellon.

First, we created a new AuthsController controller and used the $components public
attribute to indicate that we're going to use the core AuthComponent along with a custom
configuration. This configuration will be passed to the component when CakePHP creates the
instance of the component that will be attached to the AuthsController, as shown in the
following code:

public $components = array(
 'Auth' => array(
 'authenticate' => array('Basic' => array(
 'fields' => array(
 'username' => 'username',
 'password' => 'password'
),
 'userModel' => 'User',
 'scope' => array(
 array('User.active' => 1)
),
 'realm' => 'Speak, friend, and enter.',
)),
 'authorize' => array('Controller')
)
);

Here, we're setting how the CakePHP core AuthComponent will manage the authentication
and authorization in this controller. If we want to protect all of our controllers, we could
use the base AppController class instead, so all of the controllers in our application
(extending AppController) will share the same auth settings.

In this case, we're setting the authenticate class as Basic and passing an array of settings
to it:

array(
 'fields' => array(
 'username' => 'username',
 'password' => 'password'
),

Using Authentication

126

 'userModel' => 'User',
 'scope' => array(
 array('User.active' => 1)
),
 'realm' => 'Speak, friend, and enter.'
)

The fields key allows us to change the matching between the username and password
credential fields and the columns present in our users table. In this case, we have columns
with the same name, so we could simply remove the fields key and use CakePHP defaults
by convention. However, we've left this key specifically to show you this setting, in case your
users table has different names for the fields and you need to configure them properly.

The userModel key is used to configure the name of the model that we'll use. In our case,
we haven't even created a class file for it in this recipe (although it was mentioned in the
previous ones), as we don't have any additional business logic to be added to the User model.
CakePHP will use an instance of the AppModel when no model file is present. The scope key
is used to filter our query to the users table; in this case, we'll allow only active users to log
in. The realm parameter is then used to configure the HTTP Basic realm string, displayed to
the user when the credentials are requested (in the username/password popup).

'authorize' => array('Controller')

We also set the authorize option to implement our authorization logic per Controller, using
a callback function named isAuthorized($user). Once logged in, the authorization logic
will determine if the user has the rights to access a given resource or not. Depending on the
$user and the resource requested, we can return true to allow access or false to deny it.
In this case, we are setting the following:

public function isAuthorized($user = null) {
 return true;
}

So here, all authenticated users will have access to all of the actions in this controller.

We've then used the beforeFilter() controller callback that will be executed before any
action in this controller to configure a couple of items related to AuthComponent, as shown
in the following code:

public function beforeFilter() {
 parent::beforeFilter();
 AuthComponent::$sessionKey = false;
 $this->Auth->allow('saveTestUser');
}

By setting the AuthComponent::$sessionKey property to false, we'll ensure that the
session will not be checked and the user credentials will be rechecked again on every request.

Chapter 5

127

Using $this->Auth->allow('saveTestUser'), we ensure that the action named
saveTestUser will be available for all users, even for those not logged in. This is important
if we want to run this utility action while the AuthComponent is protecting the controller.

public function saveTestUser() {
 $data = array(
 'id' => 1,
 'username' => 'friend',
 'password' => Security::hash('mellon', null, true),
 'active' => 1
);
 debug(ClassRegistry::init('User')->save($data));
 $this->autoRender = false;
}

Once we've created an initial user, we can safely delete this method from our controller.
Then, the only action present in the AuthsController class is an empty index() action,
which will render the associated view file in app/View/Auths/index.ctp. The content of
this file is as follows:

<?php
echo $this->Html->tag('h2', __('You are allowed to pass, %s', AuthComp
onent::user('username')));

Here, we use the tag() method of the Html helper to render a <h2> tag with a content
message. We're using the static AuthComponent::user() method to retrieve the
username of the currently logged-in user. You can use this static method from any place in
your CakePHP application to inspect and retrieve any user data.

Using this recipe, you can easily protect any controller action to log in users, or even your
complete application if you apply the same recipe directly to your base AppController class.

See also
ff http://en.wikipedia.org/wiki/Basic_access_authentication

Custom authorize class
As we saw in our previous recipe, CakePHP provides several core authorization classes out of
the box, but it also provides the ability to customize the process using your own authorization
and authentication classes.

In this recipe, we'll introduce a custom authorization process based on an is_admin flag in
our users table, where we'll restrict access to all our admin-prefixed routes.

Using Authentication

128

Getting ready
For this recipe, we'll be using the basic authenticate protected controller from our previous
tutorial. So, first create a users table using the following SQL statement, or update it with the
highlighted field:

CREATE TABLE users (
 id VARCHAR(36) NOT NULL,
 username VARCHAR(255) NOT NULL,
 password VARCHAR(128) NOT NULL,
 active TINYINT(1) DEFAULT '0',
 is_admin TINYINT(1) DEFAULT '0',
 created DATETIME DEFAULT NULL,
 modified DATETIME DEFAULT NULL,
 PRIMARY KEY(id)
);

As suggested in our previous recipe, it's strongly recommended that you set up SSL for your
domain. Check your web server documentation about setting up SSL certificates

Now, create a file named AuthsController.php in app/Controller/ if you don't have
it already:

<?php
App::uses('AppController', 'Controller');

class AuthsController extends AppController {

 public $components = array(
 'Auth' => array(
 'authenticate' => array('Basic' => array(
 'fields' => array(
 'username' => 'username',
 'password' => 'password'
),
 'userModel' => 'User',
 'scope' => array(
 array('User.active' => 1)
),
 'recursive' => -1,
 'realm' => 'Speak, friend, and enter.'
)),
 'authorize' => array('Controller')
)
);

 public function beforeFilter() {

Chapter 5

129

 parent::beforeFilter();
 AuthComponent::$sessionKey = false;
 }

 public function isAuthorized($user = null) {
 return true;
 }

 public function index() {
 }
}

Then, add the view file for the index() action, by convention, in a file named app/View/
Auths/index.ctp:

<?php
echo $this->Html->tag('h2', __('You are allowed to pass, %s', AuthComp
onent::user('username')));

How to do it...
Perform the following steps:

1.	 First, ensure that your admin prefixes are enabled in the core.php file in
app/Config/ by uncommenting this line:
Configure::write('Routing.prefixes', array('admin'));

2.	 Create a new custom authorization class file named AdminAuthorize.php in
app/Controller/Component/Auth/ with the following content:
<?php
App::uses('BaseAuthorize', 'Controller/Component/Auth');

class AdminAuthorize extends BaseAuthorize {

 public function authorize($user, CakeRequest $request) {
 $isAdminPrefix = (Hash::get($request->params, 'prefix') ===
'admin');
 if (!$isAdminPrefix) {
 return true;
 }

 $isAdminUser = (bool)Hash::get($user, 'is_admin');
 return $isAdminUser;
 }
}

Using Authentication

130

3.	 Update your AuthsController controller in app/Controller/
AuthsController.php as follows:
<?php
App::uses('AppController', 'Controller');

class AuthsController extends AppController {

 public $components = array(
 'Auth' => array(
 'authenticate' => array('Basic' => array(
 'fields' => array(
 'username' => 'username',
 'password' => 'password'
),
 'userModel' => 'User',
 'scope' => array(
 array('User.active' => 1)
),
 'recursive' => -1,
 'contain' => null,
 'realm' => 'Speak, friend, and enter'
)),
 'authorize' => array('Admin')
)
);

 public function beforeFilter() {
 AuthComponent::$sessionKey = false;
 $this->Auth->allow('saveTestUser');
 }

 public function saveTestUser() {
 $User = ClassRegistry::init('User');
 $data = array(
 'id' => 1,
 'username' => 'admin',
 'password' => Security::hash('admin', null, true),
 'active' => 1,
 'is_admin' => 1
);

Chapter 5

131

 $User->create();
 $User->save($data);
 $data = array(
 'id' => 2,
 'username' => 'user',
 'password' => Security::hash('user', null, true),
 'active' => 1,
 'is_admin' => 0
);
 $User->create();
 $User->save($data);
 $this->autoRender = false;
 }

 public function index() {
 // all logged in users should have access
 }

 public function admin_index() {
 // all admin users should have access
 $this->render('index');
 }
}

4.	 Use the saveTestUser() utility action to generate two new test users for your
application by opening a browser, and navigate to /auths/saveTestUser.

5.	 Open the protected page, /admin/auths/index.

You'll get an HTTP basic browser popup that requests the username/password to
access this website. Type the following for each field:
Username: admin
Password: admin

You'll then get access to the admin index page, and a You are allowed to pass,
friend welcome message will be displayed:

6.	 Once you're able to log in, remove the saveTestUser() method from the
AuthsController.php file in app/Controller/.

7.	 Finally, open a new browser window and log in again, but instead of using the admin
user, try user. You'll get a You are not authorized to access that location message.

Using Authentication

132

How it works...
In this recipe, we first enabled the admin prefix routing option for our application, using the
following code:

Configure::write('Routing.prefixes', array('admin'));

Prefixes are useful here to add a layer of actions that are only accessible by the admin user.
The admin prefixes are managed by the framework transparently, using admin/ in this case
prior to the controller name in your URL. CakePHP will then match this string with the admin
prefix (we could have several prefixes configured) and then resolve the specific action with
this prefix by convention, for example, admin_index(). This action would be called in your
controller, instead of the regular index() action. So, in our recipe, we are using the following:

/admin/auths/index

The magic then happens in our newly customized authorize class. Let's focus on the
following method:

public function authorize($user, CakeRequest $request) {
 $isAdminPrefix = (Hash::get($request->params, 'prefix') ===
'admin');
 if (!$isAdminPrefix) {
 return true;
 }

 $isAdminUser = (bool)Hash::get($user, 'is_admin');
 return $isAdminUser;
}

The authorize() method takes two parameters: the currently logged-in $user (after our
authentication logic was executed) and the current $request object. We'll be able to inspect
the $request object to determine the current action and parameters, and based on this
information as well as the user, return true for authorized or false for denied.

In our scenario, we're first inspecting the $request object to determine if the current prefix is
an admin or not:

$isAdminPrefix = (Hash::get($request->params, 'prefix') === 'admin');

Remember to always use the Hash::get() function to safely retrieve an array value. In using
it this way, we'll avoid getting warnings if the key is not set in the $request->params array
and cut down on the typical logic for this. Here, we expect this value to be string, so we
compare it to our admin prefix to cast it to a (bool) value.

Chapter 5

133

Here, we'll return true for all nonadmin-prefixed actions, so users logged in will have access
to all of the actions except for the admin-prefixed ones. We then perform a similar check to
inspect the $user data and determine if the user is an admin or not:

$isAdminUser = (bool)Hash::get($user, 'is_admin');

After that, we'll return true only in case the user is an admin.

We then updated the AuthsController to use our newly created AdminAuthorize class:

'authorize' => array('Admin')

As we're following the CakePHP conventions for the naming and placing of our custom Auth
classes, we only need to specify the name, and the full path will be assumed as the following:

app/Controller/Component/Auth/AdminAuthorize.php

Now, we could also remove the unused isAuthorized() method of AuthsController.
Once everything was in place, we updated the saveTestUser() method to save two test
users instead of one. Note that the admin user is saved with the is_admin flag set to 1.
We also added the following new admin prefixed admin_index() action to our controller:

public function admin_index() {
 // all admin users should have access
 $this->render('index');
}

This new action is reusing the index view but will allow us to test the admin prefix
authentication we just created.

Testing our auth-protected URLs would be the next step:

ff /admin/auths/index is allowed for admin but not allowed for user, as this is
prefixed with admin/

ff /auths/index is allowed for any logged-in user, either admin or user

Using Authentication

134

See also
ff For more details on routing prefixes, visit http://book.cakephp.org/2.0/en/

development/routing.html#prefix-routing

ff The The HTTP authentication recipe

Facebook authentication
These days, you don't always need to worry about creating user accounts; you can simply use
an external service instead, and let the user connect their third-party or social account with
your application.

Popular services such as Facebook, Google, and Twitter all provide an API to define and
connect a new application. Focusing on Facebook, their services rely on OAuth for a token-
based authorization system. OAuth is an open protocol for authentication and authorization;
it allows you to use a third-party service to identify a user without directly accessing their
credentials (password).

In this recipe, we'll be using Opauth to connect our CakePHP application with Facebook.

Getting ready
For this recipe, we'll need a table for our users, so create one with the following
SQL statement:

CREATE TABLE users (
 id VARCHAR(36) NOT NULL,
 username VARCHAR(255) NOT NULL,
 password VARCHAR(128) DEFAULT NULL,
 email VARCHAR(255) DEFAULT NULL,
 active TINYINT(1) DEFAULT '1',
 created DATETIME DEFAULT NULL,
 modified DATETIME DEFAULT NULL,
 remote_id VARCHAR(255) NOT NULL,
 PRIMARY KEY(id)
);

We'll also need a Facebook app, which you can create at https://developers.
facebook.com/apps/. Log in using your Facebook credentials. Click on Create New
Application and fill in the name, namespace, and category. In the Settings tab, fill App
Domains and use the domain name you've set up for your application, such as myapp.com.
Click on + Add platform and select Website; fill Site URL with myapp.com. Click on Save
Changes. Copy the Application ID and App Secret values; we'll need them later.

Chapter 5

135

How to do it...
Perform the following steps:

1.	 First, download and install the Opauth plugin for CakePHP by running the following
commands (we'll use git for this):
$ git submodule add git://github.com/uzyn/cakephp-opauth.git app/
Plugin/Opauth

$ git submodule update --init --recursive

Submodule 'Vendor/Opauth' (git://github.com/uzyn/opauth.git)
registered for path 'Vendor/Opauth'

Cloning into 'Vendor/Opauth'...

remote: Counting objects: 2611, done.

remote: Compressing objects: 100% (1155/1155), done.

remote: Total 2611 (delta 1111), reused 2609 (delta 1110)

Receiving objects: 100% (2611/2611), 507.36 KiB | 275.00 KiB/s,
done.

Resolving deltas: 100% (1111/1111), done.

Checking connectivity... done.

Submodule path 'app/Plugin/Opauth/Vendor/Opauth': checked out
'bea7c46f7568c2f37301f284c1e907cffa03bb6b

2.	 Install the Facebook strategy for Opauth:
$ cd app/Plugin/Opauth/Strategy

$ git clone https://github.com/opauth/facebook.git Facebook

3.	 Add this line at the end of your bootstrap.php file in app/Config/:
CakePlugin::load('Opauth', array(
 'routes' => true,
 'bootstrap' => true
));
Configure::write('Opauth.Strategy.Facebook', array(
 'app_id' => 'YOUR APP ID',
 'app_secret' => 'YOUR APP SECRET',
 'scope' => 'email'
));

4.	 Also, add this line to your routes.php file, again in app/Config/:
Router::connect('/opauth-complete/*', array(
 'controller' => 'users',
 'action' => 'opauth_complete'
));

Using Authentication

136

5.	 Now, create a file named UsersController.php in app/Controller/ with the
following content:
<?php
App::uses('AppController', 'Controller');

class UsersController extends AppController {

 public function beforeFilter() {
 parent::beforeFilter();
 $this->Auth->allow('opauth_complete');
 }

 public function opauth_complete() {
 $uid = $this->request->data('auth.uid');
 $username = $this->request->data('auth.info.email');
 $user = $this->User->getRemote($uid, $username);
 $this->Auth->login($user['User']);
 $this->redirect(array('action' => 'dashboard'));
 }

 public function dashboard() {
 }
}

6.	 Also, create a file named User.php in app/Model/ with the following content:
<?php
App::uses('AppModel', 'Model');

class User extends AppModel {

 public function getRemote($remoteId, $username) {
 $user = $this->find('first', array(
 'conditions' => array(
 'remote_id' => $remoteId,
 'username' => $username
)
));
 if (empty($user)) {
 // register a new user
 $user = $this->save(array(
 'remote_id' => $remoteId,
 'username' => $username,
 'password' => md5(String::uuid())
));

Chapter 5

137

 }
 return $user;
 }
}

7.	 Create a file named dashboard.ctp in app/View/Users/ with the following
content:
<?php
echo $this->Html->tag('h2', __('Welcome back, %s', AuthComponent::
user('username')));

8.	 Now, configure the Auth component in your AppController in app/Controller/
AppController.php:
<?php
App::uses('Controller', 'Controller');

class AppController extends Controller {

 public $components = array(
 'Auth' => array(
 'authorize' => array('Controller'),
 'loginAction' => '/auth/facebook'
)
);

 public function isAuthorized($user = null) {
 return true;
 }
}

9.	 Finally, log in using Facebook by navigating to /auth/facebook from your
application in your browser.

You'll be redirected to Facebook to enter your user credentials and authorize the
application you created earlier in this recipe to access your basic data and e-mail.
Click on Accept on this page to be redirected back to your application by Facebook.

10.	 After redirection, you'll land on the /users/dashboard view where a Welcome
back, your@facebook.email.here.com welcome message will be displayed:

Using Authentication

138

How it works...
Opauth uses strategies to provide vendor-specific logic, which you can use to implement
multiple vendors in your applications such as Twitter or Linkedin. In this recipe, we're only
covering Facebook.

We first created a new Facebook app and configured the application to allow our domain
name as an authorization source. In this step, it's important to note that you'll need to set
up a virtual host in your web server to allow your application to work using a real (or test)
domain instead of localhost. Check out the details on this at http://book.cakephp.
org/2.0/en/installation/url-rewriting.html. Also ensure that you can access
your application using a domain such as http://myapp.com, as we'll need to use myapp.
com to identify our application in the Facebook application's list of domain names.

CakePlugin::load('Opauth', array(
 'routes' => true,
 'bootstrap' => true
));

Configure::write('Opauth.Strategy.Facebook', array(
 'app_id' => 'YOUR APP ID',
 'app_secret' => 'YOUR APP SECRET',
 'scope' => 'email'
));

The scope is important to request Facebook to share the e-mail of the user, as we're going to
use this e-mail address to fill in the users table when a new Facebook user is accessing our
application but does not have an associated row in our users table.

We then configured the application routes with the following:

Router::connect('/opauth-complete/*', array(
 'controller' => 'users',
 'action' => 'opauth_complete'
));

This route is used by the Opauth plugin to redirect to any application-specific code once
the user has been validated and we have the data provided by Facebook. In this case,
we're redirecting to the opauth_complete() action of the UsersController.

In the same controller, we first set the Auth component to allow access to the
opauth_complete() action, even for nonauthenticated users:

public function beforeFilter(){
 parent::beforeFilter();
 $this->Auth->allow('opauth_complete');
}

Chapter 5

139

We then implement the opauth_complete() action itself in the following way:

public function opauth_complete() {
 $uid = $this->request->data('auth.uid');
 $username = $this->request->data('auth.info.email');
 $user = $this->User->getRemote($uid, $username);
 $this->Auth->login($user['User']);
 $this->redirect(array('action' => 'dashboard'));
}

Here, we're inspecting the returned user data (from the Facebook API) to get the unique
ID and e-mail address; then, we retrieve or create a new user in our users table linked to
the Facebook user, and redirect to the dashboard() action. We then log in the user, thus
effectively managing the user data from the Auth component.

The dashboard() action then simply presents a welcome message to the user:

echo $this->Html->tag('h2', __('Welcome back, %s', AuthComponent::user
('username')));

The user has now been logged in, so we have their data available through the Auth
component.

In the User model, we then created a method to retrieve a Facebook user or create a new
one if the user data is not found in our users table:

public function getRemote($remoteId, $username) {
 $user = $this->find('first', array(
 'conditions' => array(
 'remote_id' => $remoteId,
 'username' => $username
)
));
 if (empty($user)) {
 // register a new user
 $user = $this->save(array(
 'remote_id' => $remoteId,
 'username' => $username,
 'password' => md5(String::uuid())
));
 }
 return $user;
}

Note that we're storing a random password here, as we don't have access to the Facebook
password. This new user will only be able to log in to our system using the Facebook callback.

Using Authentication

140

We've also configured the Auth component in our AppController class to enable auth in
all of the controllers application wide:

public $components = array(
 'Auth' => array(
 'authorize' => array('Controller'),
 'loginAction' => '/auth/facebook'
)
);

Setting loginAction will redirect the browser to /auth/facebook when we visit any page
of our website and we're not authenticated yet. This page is managed by the Opauth plugin to
trigger the Facebook redirect by passing all of the required parameters to Facebook to identify
our application and redirect back to the right URL once the user is authenticated:

public function isAuthorized($user = null) {
 return true;
}

We're also setting all pages as authorized, so any user currently logged in will be allowed to
access it.

Of course, there are several things needed before we can finish a full Facebook integration,
such as the ability to log a user out, set a local password, enable additional vendors, and
improve security. However, in this recipe, we focused on the minimum steps you'll need
to be able to link your application to Facebook and log in users via this service.

See also
ff The steps for installation of Opauth for CakePHP can found at

https://github.com/uzyn/cakephp-opauth#how-to-use

ff Information on the Facebook API is found at https://developers.facebook.
com/docs/facebook-login/overview/v2.0

ff Read more about the OAuth protocol at http://oauth.net

ff More details on Opauth can be found at http://opauth.org

ff The list of Opauth strategies are available at https://github.com/opauth/
opauth/wiki/List-of-strategies

ff The The HTTP authentication recipe

Chapter 5

141

Custom RBAC
Role Based Access Control (RBAC) is where a user belongs to one or several roles. There are
then permissions assigned to a specific role; they allow or deny user access to subjects.

In this recipe, we're going to use a simplified approach, where users will belong to exactly one
role, and permissions will be set to allow access to controller actions. By default, all actions
will be denied, and we'll configure which roles can access which actions in our application. For
this, we'll use a custom authenticate class and a configuration file to define the permissions.
Easy to maintain and human readable.

Getting ready
For this recipe, we'll again create a users table, using the following SQL statement:

CREATE TABLE users (
 id VARCHAR(36) NOT NULL,
 username VARCHAR(255) NOT NULL,
 password VARCHAR(128) NOT NULL,
 active TINYINT(1) DEFAULT '0',
 created DATETIME DEFAULT NULL,
 modified DATETIME DEFAULT NULL,
 PRIMARY KEY(id)
);

How to do it...
Perform the following steps:

1.	 First, add the following content to your AppController.php file in app/
Controller/:
<?php
App::uses('Controller', 'Controller');

class AppController extends Controller {

 public $components = array(
 'Auth' => array(
 'authenticate' => array('Basic' => array(
 'fields' => array(

Using Authentication

142

 'username' => 'username',
 'password' => 'password'
),
 'userModel' => 'User',
 'scope' => array(
 array('User.active' => 1)
),
 'recursive' => -1,
 'contain' => null,
 'realm' => 'Speak, friend, and enter'
)),
 'authorize' => array('SimpleRbac')
)
);

 public function beforeFilter() {
 parent::beforeFilter();
 AuthComponent::$sessionKey = false;
 }
}

2.	 Create a new custom authorize class named SimpleRbacAuthorize.php
in app/Controller/Component/Auth/:
<?php
App::uses('BaseAuthorize', 'Controller/Component/Auth');

class SimpleRbacAuthorize extends BaseAuthorize {

 public function authorize($user, CakeRequest $request) {
 $role = Hash::get($user, 'role');
 if ($role === ROLE_ADMIN) {
 return true;
 }
 $permissions = Configure::read('app.permissions.' . $this-
>action($request));
 if (empty($permissions)) {
 return false;
 } elseif ($permissions === '*') {
 return true;
 }
 $roles = is_array($permissions) ? $permissions : explode(',',
$permissions);
 return in_array($role, $roles);
 }
}

Chapter 5

143

3.	 Add the following line to the end of your bootstrap.php file in app/Config/:
config('permissions');

4.	 Create a new configuration file named permissions.php in app/Config/,
with the following content:
<?php
define('ROLE_ADMIN', 'admin');
define('ROLE_MANAGER', 'manager');
define('ROLE_REGISTERED', 'registered');

Configure::write('app.permissions', array(
 'Auths/index' => '*',
 'Auths/admin_index' => array(ROLE_MANAGER)
));

5.	 Add a role column to the users table, using the following SQL statement:
ALTER TABLE users ADD role VARCHAR(255) DEFAULT NULL;

6.	 Create a file named AuthsController.php in app/Controller/ with the
following content:
<?php
App::uses('AppController', 'Controller');

class AuthsController extends AppController {

 public function beforeFilter() {
 parent::beforeFilter();
 $this->Auth->allow('saveTestUser');
 }

 public function saveTestUser() {
 $User = ClassRegistry::init('User');
 $data = array(
 'id' => 1,
 'username' => 'admin',
 'password' => Security::hash('admin', null, true),
 'active' => 1,
 'role' => ROLE_ADMIN
);
 $User->create();
 $User->save($data);
 $data = array(
 'id' => 2,

Using Authentication

144

 'username' => 'registered',
 'password' => Security::hash('registered', null, true),
 'active' => 1,
 'role' => ROLE_REGISTERED
);
 $User->create();
 $User->save($data);
 $this->autoRender = false;
 }

 public function index() {
 }

 public function admin_index() {
 $this->render('index');
 }
}

7.	 Create a view for the index() action, by convention, in a file named app/View/
Auths/index.ctp:
<?php
echo $this->Html->tag('h2', __('You are allowed to pass, %s', Auth
Component::user('username')));

8.	 Create a couple of test users, using the saveTestUser() utility action by navigating
to /auths/saveTestUser in your browser.

9.	 Check whether you're able to access all the configured pages as the user admin
(password = admin):
/auths/index
/admin/auths/index

10.	 Also, check whether you're able to access only the nonprefixed index action as the
registered user (password = registered):
/auths/index

How it works...
In this recipe, we've implemented a custom, quick, and easy RBAC authorization class.
We started by adding application-wide Auth component settings as follows:

'Auth' => array(
 'authenticate' => array('Basic' => array(
 'fields' => array(

Chapter 5

145

 'username' => 'username',
 'password' => 'password'
),
 'userModel' => 'User',
 'scope' => array(
 array('User.active' => 1)
),
 'recursive' => -1,
 'contain' => null,
 'realm' => 'Speak, friend, and enter'
)),
 'authorize' => array('SimpleRbac')
)

As all of our application controllers extend the AppController class, we effectively
protected our entire application using basic HTTP authentication, using a new authorization
custom class named SimpleRbac.

By reviewing the authorize() method (shown in the following code) in this class, we can
inspect how the roles and users are managed to determine whether we're allowed to access
the current action or not:

public function authorize($user, CakeRequest $request) {
 $role = Hash::get($user, 'role');
 if ($role === ROLE_ADMIN) {
 return true;
 }
 $permissions = Configure::read('app.permissions.' . $this-
>action($request));
 if (empty($permissions)) {
 return false;
 } elseif ($permissions === '*') {
 return true;
 }
 $roles = is_array($permissions) ? $permissions : explode(',',
$permissions);
 return in_array($role, $roles);
}

The role field in our users table is used to extract a role name for every user. We then
compare this role's name with the specific array of allowed roles in a configuration file named
permissions.php in app/Config/, loaded at bootstrap time.

Using Authentication

146

The permissions.php file contains a list of role names and an array of permissions that
match the current controller name (capitalized) and the action requested. If the name of the
role is not listed in the controller+action key in the permissions array, the current user
will not be allowed. There is a special * key defined in roles that allows any role to access
specific actions. We're also detecting ROLE_ADMIN and allowing them to access any action
in the application, as shown in the following code:

Configure::write('app.permissions', array(
 'Auths/index' => '*',
 'Auths/admin_index' => array(ROLE_MANAGER)
));

Note that we're also using the beforeFilter() callback method in the AuthsController
class to ensure that we can access the saveTestUser() action even if we aren't logged in.

With the permission configuration that we set up, the registered users will be allowed to
access the /auths/index page but not allowed to access /admin/auths/index (note the
admin prefix used). You can read more about routing prefixes at http://book.cakephp.
org/2.0/en/development/routing.html#prefix-routing.

The good thing about this implementation is its simplicity. You got a centralized place to set up
your permissions application wide, and it's very easy to understand when a user is allowed to
access a specific action. The main flaw in this is the lack of flexibility, as adding a new role to
an existing (complex) application would be tedious. However, from here, you can extend and
build out this base implementation to suit your needs.

See also
ff RBAC definition at http://en.wikipedia.org/wiki/Role-based_access_

control

ff The The HTTP Basic authentication recipe

Working with ACL
When your application needs a powerful and flexible authentication mechanism, it's probably
time to use the Access Control Lists (ACL) component, included with CakePHP.

Although you can use a file to manage your ACL configuration, storing all of the data in the
database is the most common option, as we'll see in this recipe.

Chapter 5

147

Getting ready
For this recipe, we'll use a users table as well as a roles table to allow us to define roles
and inherit their permissions. For this, we'll use the following SQL statements:

CREATE TABLE users (
 id VARCHAR(36) NOT NULL,
 username VARCHAR(255) NOT NULL,
 password VARCHAR(128) NOT NULL,
 active TINYINT(1) DEFAULT '0',
 role_id VARCHAR(36) DEFAULT NULL,
 created DATETIME DEFAULT NULL,
 modified DATETIME DEFAULT NULL,
 PRIMARY KEY(id)
);

CREATE TABLE roles (
 id VARCHAR(36) NOT NULL,
 name VARCHAR(255) NOT NULL,
 role_id VARCHAR(36) DEFAULT NULL,
 created DATETIME DEFAULT NULL,
 modified DATETIME DEFAULT NULL,
 PRIMARY KEY(id)
);

We'll also create a file named AuthsController.php (shown in the following code)
in app/Controller/ to test our ACL application later:

<?php
App::uses('AppController', 'Controller');

class AuthsController extends AppController {

 public function index() {
 }

 public function admin_index() {
 $this->render('index');
 }
}

Using Authentication

148

We'll also need a view file for the index() action, which is created by convention in a file
named app/View/Auths/index.ctp, with the following content:

<?php
echo $this->Html->tag('h2', __('You are allowed to pass, %s', AuthComp
onent::user('username')));

Next, install the AclExtras plugin, which you can download from https://github.com/
markstory/acl_extras/archive/master.zip.

Then, uncompress the file contents into a directory named AclExtras in app/Plugin/
and load the plugin in your bootstrap.php file by adding this line:

CakePlugin::load('AclExtras');

How to do it...
Perform the following steps:

1.	 First, initialize the ACL related tables, using the ACL shell provided by CakePHP:
$ Console/cake acl initdb

Welcome to CakePHP v2.5.2 Console

--

App : app

Path: /home/user/app/

--

Welcome to CakePHP v2.5.2 Console

--

App : app

Path: /home/user/app/

--

Cake Schema Shell

--

The following table(s) will be dropped.

acos

aros

aros_acos

Chapter 5

149

Are you sure you want to drop the table(s)? (y/n)

[n] > y

Dropping table(s).

acos updated.

aros updated.

aros_acos updated.

The following table(s) will be created.

acos

aros

aros_acos

Are you sure you want to create the table(s)? (y/n)

[y] > y

Creating table(s).

acos updated.

aros updated.

aros_acos updated.

End create.

2.	 Create a file named User.php in app/Model/, with the following content:
<?php
App::uses('AppModel', 'Model');
App::uses('SimplePasswordHasher', 'Controller/Component/Auth');

class User extends AppModel {

 public $belongsTo = array('Role');

 public $actsAs = array('Acl' => array('type' => 'requester'));

 public function parentNode() {
 if (empty($this->id)) {
 return null;
 }
 $roleId = Hash::get($this->data, 'User.role_id');
 if (empty($roleId)) {
 $roleId = $this->field('role_id');
 }
 if (empty($roleId)) {
 return null;

Using Authentication

150

 } else {
 return array('Role' => array('id' => $roleId));
 }
 }

 public function beforeSave($options = array()) {
 if (!parent::beforeSave($options)) {
 return false;
 }

 if (isset($this->data[$this->alias]['password'])) {
 $hasher = new SimplePasswordHasher();
 $this->data[$this->alias]['password'] = $hasher->hash($this-
>data[$this->alias]['password']);
 }

 return true;
 }
}

3.	 Also, create a file named Role.php, again, in app/Model/, with the following content:
<?php
App::uses('AppModel', 'Model');

class Role extends AppModel {

 public $hasMany = array('User');

 public $actsAs = array('Acl' => array('type' => 'requester'));

 public function parentNode() {
 if (empty($this->id)) {
 return null;
 }
 $roleId = Hash::get($this->data, 'Role.role_id');
 if (empty($roleId)) {
 $roleId = $this->field('role_id');
 }
 if (empty($roleId)) {
 return null;
 } else {
 return array('Role' => array('id' => $roleId));
 }
 }
}

Chapter 5

151

4.	 Now, configure the Auth component in app/Controller/AppController.php
with the following setup:
<?php
App::uses('Controller', 'Controller');

class AppController extends Controller {

 public $components = array(
 'Acl',
 'Auth' => array(
 'authenticate' => array('Basic' => array(
 'fields' => array(
 'username' => 'username',
 'password' => 'password'
),
 'userModel' => 'User',
 'scope' => array(
 array('User.active' => 1)
),
 'recursive' => -1,
 'contain' => null,
 'realm' => 'Speak, friend, and enter'
)),
 'authorize' => array('Actions' => array('actionPath' =>
'controllers'))
)
);

 public function beforeFilter() {
 parent::beforeFilter();
 AuthComponent::$sessionKey = false;
 }
}

5.	 Update the content in the AuthsController with the following code:
<?php
App::uses('AppController', 'Controller');

class AuthsController extends AppController {

 public function beforeFilter() {
 parent::beforeFilter();

Using Authentication

152

 $this->Auth->allow('saveTestUser');
 }

 public function saveTestUser() {
 $Role = ClassRegistry::init('Role');
 $Role->create();
 $Role->save(array(
 'id' => 1,
 'name' => 'registered',
 'role_id' => null
));
 $Role->create();
 $Role->save(array(
 'id' => 2,
 'name' => 'manager',
 'role_id' => 1
));
 $Role->create();
 $Role->save(array(
 'id' => 3,
 'name' => 'admin',
 'role_id' => 2
));
 $User = ClassRegistry::init('User');
 $User->create();
 $User->save(array(
 'id' => 1,
 'username' => 'admin',
 'password' => 'admin',
 'active' => 1,
 'role_id' => 3
));
 $User->create();
 $User->save(array(
 'id' => 2,
 'username' => 'manager',
 'password' => 'manager',
 'active' => 1,
 'role_id' => 2
));
 $User->create();
 $User->save(array(

Chapter 5

153

 'id' => 3,
 'username' => 'registered',
 'password' => 'registered',
 'active' => 1,
 'role_id' => 1
));
 $this->autoRender = false;
 }

 public function index() {
 // all logged in users should have access
 }

 public function admin_index() {
 // all admin users should have access
 $this->render('index');
 }
}

Ensure that your users and roles tables are empty, using the following
SQL statement:

TRUNCATE users;
TRUNCATE roles;

Be warned that the table contents will be removed.

6.	 Create a couple of test users and roles using the saveTestUser() utility action by
navigating to /auths/saveTestUser in your browser.

7.	 Verify that the users and roles were created correctly using the ACL console shell
as follows:
$ Console/cake acl view aro

Welcome to CakePHP v2.5.2 Console

--

App : app

Path: /home/user/app/

--

Using Authentication

154

Aro tree:

--

 [1] Role.1

 [2] Role.2

 [3] Role.3

 [4] User.1

 [5] User.2

 [6] User.3

--

8.	 Use the AclExtras plugin to generate the ACOs for all of your controller actions,
using the plugin's shell:
$ Console/cake AclExtras.acl_extras aco_sync

Welcome to CakePHP v2.5.2 Console

--

App : app

Path: /home/user/app/

--

Created Aco node: controllers/Auths

Created Aco node: controllers/Auths/saveTestUser

Created Aco node: controllers/Auths/index

Created Aco node: controllers/Auths/admin_index

Aco Update Complete

9.	 Check whether the ACOs were created successfully with the following command:
$ Console/cake acl view aco

Welcome to CakePHP v2.5.2 Console

--

App : app

Path: /home/user/app/

--

Aco tree:

--

 [1] controllers

 [2] Auths

Chapter 5

155

 [3] saveTestUser

 [4] index

 [5] admin_index

--

10.	 Grant some permissions using the ACL shell as follows:
$ Console/cake acl grant Role.3 controllers/Auths/admin_index

$ Console/cake acl grant Role.2 controllers/Auths/index

11.	 Check the permissions for your AuthsController actions by either logging in
as the test user or using the ACL console shell.

For example, logging in as the manager user:
http://yoursite.com/auths/index
username: manager
password: manager
User is allowed to access this page

http://yoursite.com/admin/auths/index
username: manager
password: manager
User is NOT allowed to access this page

http://yoursite.com/auths/index
username: admin
password: admin
User is allowed to access this page

http://yoursite.com/admin/auths/index
username: admin
password: admin
User is allowed to access this page

http://yoursite.com/auths/index
username: registered
password: registered
User is NOT allowed to access this page

http://yoursite.com/admin/auths/index
username: registered
password: registered
User is NOT allowed to access this page

Using Authentication

156

Alternatively, you can use the ACL shell:
Admin user (User.id = 1)

$ Console/cake acl check User.1 controllers/Auths/index

User.1 is allowed.

$ Console/cake acl check User.1 controllers/Auths/admin_index

User.1 is allowed.

Manager user (User.id = 2)

$ Console/cake acl check User.2 controllers/Auths/index

User.2 is allowed.

$ Console/cake acl check User.2 controllers/Auths/admin_index

User.2 is not allowed.

Registered user (User.id = 3)

$ Console/cake acl check User.3 controllers/Auths/index

User.3 is not allowed.

$ Console/cake acl check User.3 controllers/Auths/admin_index

User.3 is not allowed.

How it works...
In this recipe, we implemented a flexible access-control system using the CakePHP core ACL
component and behaviors.

In the ACL world, there are the following:

ff Subjects to be managed, called Access Control Objects (ACO). A subject could be
a controller action, a model method, or a high-level abstract definition such as PDF
Reports or Export to external FTP server that does not directly match any of your
actions, objects, or methods in your code but represents a feature that needs to be
managed in your application.

ff Requesters to be allowed or denied when accessing a specific subject, called Access
Request Objects (ARO). A requester is usually a user logged in to your application
after your authentication logic validates their credentials.

ff Permissions, matching AROs with ACOs. Note that all of the permission checks return
denied access unless an allowed permission is set.

Chapter 5

157

ff Both ACOs and AROs are saved using a tree structure, thus allowing us to inherit
permissions. When the closer permission set to any ARO is used, we can override
permissions for specific nodes. For example, we could define a denied permission
for all users in a given group and allow one specific user to access the ACO. The
ACL-related logic will determine if a given ARO is allowed to access a specific ACO.

Here, we're managing all of our controllers and actions as ACOs, using one main node for all
of the controllers and then a child node for each controller and specific actions:

/controllers
 /AuthsController
 /index
 /admin_index

All of our roles and users are AROs to let the roles inherit permissions from parent roles.
In this example, all of the allowed permissions set to registered users will be inherited
by the manager users:

/Registered
 /Manager
 /Admin
 /User1 (is an admin)
 /User2 (is a manager)
 /User3 (is a registered user)

We've started initializing the ACOs and AROs tables using the ACL shell. Both tables will
store the respective ACO and ARO entities in a tree-like structure.

$ Console/cake acl initdb

Once the tables are created, we configured ACL to link both our User and Role models into
the AROs table. Setting our models with a requester behavior as shown in the following code
in ACL will ensure that every time a new user or role is created, a related ARO entry will also
be created:

<?php
App::uses('AppModel', 'Model');
App::uses('SimplePasswordHasher', 'Controller/Component/Auth');

class User extends AppModel {

 public $belongsTo = array('Role');

 public $actsAs = array('Acl' => array('type' => 'requester'));

 public function parentNode() {

Using Authentication

158

 if (empty($this->id)) {
 return null;
 }
 $roleId = Hash::get($this->data, 'User.role_id');
 if (empty($roleId)) {
 $roleId = $this->field('role_id');
 }
 if (empty($roleId)) {
 return null;
 }else {
 return array('Role' => array('id' => $roleId));
 }
 }

 public function beforeSave($options = array()) {
 if (!parent::beforeSave($options)) {
 return false;
 }

 if (isset($this->data[$this->alias]['password'])) {
 $hasher = new SimplePasswordHasher();
 $this->data[$this->alias]['password'] = $hasher->hash($this-
>data[$this->alias]['password']);
 }

 return true;
 }
}

We also defined the parentNode() method to let the ACL system know who is the parent of
this specific node. In this case, the parent node of any user will be the associated role.

We've also defined a beforeSave() callback to automatically hash the password for newly
created users.

The same approach is taken in the Role model, but in this case, the parent node is configured
to return the role associated as the parent role to the current one. We're doing it this way
because we want to be able to create roles "below" other roles in our ACO tree structure.

public $components = array(
 'Acl',
 'Auth' => array(
 'authenticate' => array('Basic' => array(
 'fields' => array(
 'username' => 'username',

Chapter 5

159

 'password' => 'password'
),
 'userModel' => 'User',
 'scope' => array(
 array('User.active' => 1)
),
 'recursive' => -1,
 'contain' => null,
 'realm' => 'Speak, friend, and enter'
)),
 'authorize' => array('Actions' => array('actionPath' =>
'controllers'))
)
);

We also set up our base AppController class to use both the Acl and Auth components
and configured the Auth component to use the Actions authorization, using a root path
called controller. The actionPath configuration will allow us to check all of the actions
under the /controllers root path in our ACO tree structure. This way, we don't populate the
root path of our ACO tree structure but keep all of the controller-related ACOs well organized
below a unique root path.

We then prepared the following utility method in our AuthsController class to create the
roles and users we'll have available in our application:

public function saveTestUser() {
 $Role = ClassRegistry::init('Role');
 $Role->create();
 $Role->save(array(
 'id' => 1,
 'name' => 'registered',
 'role_id' => null
));
 $Role->create();
 $Role->save(array(
 'id' => 2,
 'name' => 'manager',
 'role_id' => 1
));
 $Role->create();
 $Role->save(array(
 'id' => 3,
 'name' => 'admin',
 'role_id' => 2
));

Using Authentication

160

 $User = ClassRegistry::init('User');
 $User->create();
 $User->save(array(
 'id' => 1,
 'username' => 'admin',
 'password' => 'admin',
 'active' => 1,
 'role_id' => 3
));
 $User->create();
 $User->save(array(
 'id' => 2,
 'username' => 'manager',
 'password' => 'manager',
 'active' => 1,
 'role_id' => 2
));
 $User->create();
 $User->save(array(
 'id' => 3,
 'username' => 'registered',
 'password' => 'registered',
 'active' => 1,
 'role_id' => 1
));
 $this->autoRender = false;
}

Saving new roles now will create and link a new ARO row too. The AROs will be saved using the
model alias and the foreign key of the model saved. For example, the ARO row for the first role
created will be saved as Role.1 and will be the parent node of the Role.2 node. Note that
the roles and users tables have a role_id column filled with the ID of the parent role to
be assigned.

As we did in our previous recipes, the beforeFilter() callback allows us to execute the
saveTestUser() method even for users who are not logged in. Once we've run this action,
we can safely delete the saveTestUser() method from the AuthsController class.

Note that we need to ensure that no users or roles are created earlier in their respective
tables. If not, an ACL-related exception will be raised, as the related row is not present in
the aros table.

We then used the ACL console shell to inspect our ARO entries, with the following command:

$ Console/cake acl view aro

Chapter 5

161

The ACL shell can be used to inspect both AROs and ACOs and also to create new nodes as well
as grant or check the current permissions. We could use the ACL console to generate our ACO
nodes, but instead, we're using a smarter approach to sync all of the controllers and actions we
have in our application to the acos table. For this, we used the AclExtras plugin as follows:

$ Console/cake AclExtras.acl_extras aco_sync

The aco_sync task inspects all our controllers and actions, and checks if they're already
created in our acos table, under the root key, "controllers." Once executed, you could inspect
your ACOs using the following command:

$ Console/cake acl view aco

With this, you'll get the tree of all of your controllers and actions (below their respective
controller). These ACOs will then be used to check if the current user is allowed to access it.

The Actions authenticate class will extract the currently requested controller and action
name, and match it against the related ACO row. Based on the permissions assigned to the
current user and parent role(s), we'll return true or false to allow or deny access.

The last thing that we did is to actually create the permissions:

$ Console/cake acl grant Role.3 controllers/Auths/admin_index

$ Console/cake acl grant Role.2 controllers/Auths/index

This allows Role.3 (admin) to access the admin_index() action in AuthsController
and also allows Role.2 (manager) to access the index() action.

Once done, we've granted access to all of the child nodes too, for example:

User.1 (admin) is allowed to access controllers/Auths/admin_index
because his parent role Role.3 (admin) is allowed.
User.1 (admin) is allowed to access controllers/Auths/index because
one of his parent roles Role.2 (manager) is allowed.

Remember that our ARO tree is as follows:

/Role.1 (=Registered)
 /Role.2 (=Manager)
 /Role.3 (=Admin)
 /User.1

We've used this ARO structure because we want the roles in our application to inherit all
parent role permissions, but this may not be the case for you. Nothing stops us now from
creating new top-level roles and starting clean with a new permission list.

Using Authentication

162

See also
ff The RBAC definition at http://en.wikipedia.org/wiki/Role-based_

access_control

ff The The HTTP Basic authentication recipe

6
Model Layer

In this chapter, we will cover the following topics:

ff Has and belongs to many (HABTM)

ff Joining through

ff Containing models

ff Custom finders

ff On-the-fly associations

ff Using transactions

Introduction
The model layer is the driving factor behind applications in CakePHP. It offers a powerful
abstraction of your database by exposing your tables as model objects, allowing the
framework to make assumptions about your data structure through conventions and
for you to work on a business-domain level instead of raw SQL.

In this chapter, we will take a look at the various aspects of the models and how to wield
their power.

Has and belongs to many (HABTM)
Has and belongs to many (HABTM) is the most complex model association available in
CakePHP. This association type allows you to define many-to-many relationships in your
data model, for example, in an inventory management application, where packages might
be stored in different warehouses, and each warehouse might have several packages.
This is a typical many-to-many relationship between packages and warehouses.

Model Layer

164

To model this association, you'll need to use three tables in your database: the packages
table to store the data related to your packages, the warehouses table, and the packages_
warehouses table, where the association itself is defined. The packages_warehouses
table will have three columns by convention: id, package_id, and warehouse_id. We'll use
this table to store the IDs of the associated models.

Of course, you could manage this table manually, keeping track of the association data and
performing the changes that are required. However, CakePHP provides a way to easily manage
this association using the framework's model layer to translate your models and associations
into the SQL statement, which is required to retrieve and update the model and associated data.

There are simpler association types you could use, where the association data is stored
in a column added to one of the models belonging to the association. You can learn more
about simple CakePHP associations at http://book.cakephp.org/2.0/en/models/
associations-linking-models-together.html.

In this recipe, we'll be focusing on the HABTM association.

Getting ready
First, we'll create the two new database tables, packages and warehouses,
using the following SQL statement:

CREATE TABLE packages (
 id INT NOT NULL AUTO_INCREMENT,
 recipient VARCHAR(255) NOT NULL,
 address VARCHAR(255) NOT NULL,
 created DATETIME,
 modified DATETIME,
 PRIMARY KEY(id)
);

CREATE TABLE warehouses (
 id INT NOT NULL AUTO_INCREMENT,
 name VARCHAR(255) NOT NULL,
 created DATETIME,
 modified DATETIME,
 PRIMARY KEY(id)
);

We'll also insert some sample data into our tables with the following SQL statement:

INSERT INTO packages (recipient, address, created, modified)
VALUES
('John Doe', 'Sunset Boulevard 1, Los Angeles, CA', NOW(), NOW());

Chapter 6

165

INSERT INTO warehouses (name, created, modified)
VALUES
('Main Warehouse', NOW(), NOW()),
('Auxiliar Warehouse 1', NOW(), NOW());

Then, create the models for both tables in app/Model/ (the first in a file named
Package.php), as shown in the following code:

<?php
App::uses('AppModel', 'Model');

class Package extends AppModel {
}

Create another file named Warehouse.php:

<?php
App::uses('AppModel', 'Model');

class Warehouse extends AppModel {
}

How to do it...
Perform the following steps:

1.	 First, create a new table to hold the HABTM association data. Following the
name conventions, you'll use the existing table names, separated by an
underscore character:
CREATE TABLE packages_warehouses (
 id INT NOT NULL AUTO_INCREMENT,
 package_id INT NOT NULL,
 warehouse_id INT NOT NULL,
 PRIMARY KEY(id)
);

2.	 Then, add a new association in the Package model by adding a new
$hasAndBelongsToMany property to the Package model class in app/Model/
Package.php:
public $hasAndBelongsToMany = array(
 'Warehouse' => array(
 'className' => 'Warehouse',
 'joinTable' => 'packages_warehouses',
 'foreignKey' => 'package_id',
 'associationForeignKey' => 'warehouse_id',

Model Layer

166

 'unique' => 'keepExisting',
 'conditions' => '',
 'fields' => '',
 'order' => '',
 'limit' => '',
 'offset' => '',
 'finderQuery' => ''
)
);

3.	 Now, add a new association in the Warehouse model by adding the following code
to the Warehouse class declared in app/Model/Warehouse.php:

public $hasAndBelongsToMany = array(
 'Package' => array(
 'className' => 'Package',
 'joinTable' => 'packages_warehouses',
 'foreignKey' => 'warehouse_id',
 'associationForeignKey' => 'package_id',
 'unique' => 'keepExisting',
 'conditions' => '',
 'fields' => '',
 'order' => '',
 'limit' => '',
 'offset' => '',
 'finderQuery' => ''
)
);

How it works...
In this recipe, we first created a new table to store the association data (many-to-many
relationship) between our packages and warehouses. Following the CakePHP conventions for
the HABTM associations, this new table consists of three columns: an id for the row and the
id of each member of the association, in this case, package_id and warehouse_id.

We then added a new $hasAndBelongsToMany association property to each model,
as this is the way associations are configured in CakePHP models.

The new HABTM association is configured using an array. Let's take a look at the
configuration used for the Package model:

public $hasAndBelongsToMany = array(
 'Warehouse' => array(
 'className' => 'Warehouse',

Chapter 6

167

 'joinTable' => 'packages_warehouses',
 'foreignKey' => 'package_id',
 'associationForeignKey' => 'warehouse_id',
 'unique' => 'keepExisting',
 'conditions' => '',
 'fields' => '',
 'order' => '',
 'limit' => '',
 'offset' => '',
 'finderQuery' => ''
)
);

Here, we're defining a HABTM association with the name Warehouse and configuring the
association to use the Warehouse class. Note that we may call the association using a
different name (this is called an alias in CakePHP), although in this case, we're using the
same association name (key of the Warehouse array) and the class name of the model
being associated ('className' => 'Warehouse').

We're also configuring packages_warehouses as the table to use to store the association
data and the column names in this table holding the IDs of the models being associated.
The name of the column that stores the id of the model is foreignKey, where the
association is defined (in this case, Package), and associationForeignKey is the
name of the column where the id of each associated model is stored.

You might need to tweak other association parameters, such as using unique, conditions,
fields, order, and so on. For example, you could limit this association to retrieve only
active warehouses by adding the following code:

'conditions' => array('Warehouse.active' => true)

You can find more information on how to use these association keys at http://book.
cakephp.org/2.0/en/models/associations-linking-models-together.
html#hasandbelongstomany-habtm.

In this recipe, we defined the HABTM association on both models, slightly changing
the HABTM association array to cover both sides of the relationship. Also, note that our
association tables are following the CakePHP naming conventions, but you can customize
this using the association properties, for example, by providing custom joinTable and
foreignKey if you're using a legacy database.

Once set up, let's create an example of the data array for a find operation with an example
controller. So, create a new file named PackagesController.php in app/Controllers/
with the following content:

<?php
App::uses('AppController', 'Controller');

Model Layer

168

class PackagesController extends AppController {

 public function debug() {
 debug($this->Package->find('first', array('contain' =>
array('Warehouse'))));
 $this->autoRender = false;
 }
}

If you now call /packages/debug from your browser, the debug output would be
the following:

array(
 'Package' => array(
 'id' => '1',
 'recipient' => 'John Doe',
 'address' => 'Sunset Boulevard 1, Los Angeles, CA',
 'created' => '2014-06-21 13:21:14',
 'modified' => '2014-06-21 13:21:14'
),
 'Warehouse' => array(
 (int) 0 => array(
 'id' => '1',
 'name' => 'Main Warehouse',
 'created' => '2014-06-21 13:18:11',
 'modified' => '2014-06-21 13:18:11',
 'PackagesWarehouse' => array(
 'id' => '1',
 'package_id' => '1',
 'warehouse_id' => '1'
)
),
 (int) 1 => array(
 'id' => '2',
 'name' => 'Auxiliar Warehouse 1',
 'created' => '2014-06-21 13:18:11',
 'modified' => '2014-06-21 13:18:11',
 'PackagesWarehouse' => array(
 'id' => '2',
 'package_id' => '1',
 'warehouse_id' => '2'
)
)
)
)

Chapter 6

169

Note that this is the standard CakePHP array notation for data retrieved from a find
operation on a model. The array that could be read as package id = 1 is associated
with two warehouses, with IDs 1 and 2.

See also
ff The Containing models recipe

Joining through
Sometimes, you'll need to store additional data related to a HABTM association between your
models. In this case, you can use a join-through association type, using a new model to hold
the association details.

Join-through associations are similar to HABTM, but instead of having one table that stores
the IDs of the associated models, we also store additional data related to the specific
association. For example, if we follow our package's HABTM warehouses example from the
previous recipe, we might want to store the number of packages we have stored in each
warehouse, thus adding a new field to our association table to specify the required stock
number for each association,.

Getting ready
Let's define a stock per package in each warehouse and redefine our HABTM association
from our previous recipe to use a join-through association instead.

Note that we are using the tables and models created in our previous recipe.

How to do it...
Perform the following steps:

1.	 First, add a new amount column to the packages_warehouses table with the
following SQL statement:
ALTER TABLE packages_warehouses ADD amount INT NOT NULL DEFAULT
'0';

2.	 Then, create a new model for the association in a file named app/Model/Stock.php:
<?php
App::uses('AppModel', 'Model');

class Stock extends AppModel {

Model Layer

170

 public $useTable = 'packages_warehouses';

 public $belongsTo = array(
 'Package',
 'Warehouse'
);
}

3.	 Now, change the model associations for Package and Warehouse, removing the
current $hasAndBelongsToMany property and adding a new $hasMany property
to define this association type:

public $hasMany = array(
 'Stock'
);

How it works...
In this recipe, we upgraded our HABTM association to a hasMany through association.
We first added a new amount column to the packages_warehouses table to store the
amount of packages stored in a given warehouse.

We then created a new Stock model to hold the association. This new model uses the
$useTable model property to let the CakePHP model's object relational mapper (ORM)
know how to link this model to one of our database tables, as it's not matching the model
name. If we don't use this model property, CakePHP will link this model to the table named
stocks, by convention. However, as this table doesn't exist in our database, an exception
would be thrown.

Note that we've used two $belongsTo associations in the new Stock model, effectively
breaking one HABTM into two belongs-to associations. We're now able to store the stock of
our packages in each associated warehouse.

This way we'd be able to access the Stock itself (as it's a model now) and save or retrieve
the current stock along with the associated packages or warehouses.

See also
ff The Containing models recipe

Chapter 6

171

Containing models
Containable is one of the must-have core behaviors in CakePHP. A behavior is added to
a model to reuse logic, allowing you to configure your models by adding or removing specific
behaviors to dynamically include or modify features or capabilities.

Using Containable allows you to determine which associations are retrieved for a specific
find operation. So, instead of retrieving all the associated models on each find operation,
you have the ability to select which specific associations you need for your next query. This is
especially useful to optimize model queries when a large number of associations are defined.
You also have the power to filter based on specific conditions and define which fields should
be retrieved. When you combine the Containable behavior with associations, you'll resolve
most of your data-retrieval needs.

Getting ready
For this recipe, we'll first define a new table and change our existing one using the following
SQL statements:

CREATE TABLE categories (
 id INT NOT NULL AUTO_INCREMENT,
 name VARCHAR(255) NOT NULL,
 created DATETIME,
 modified DATETIME,
 PRIMARY KEY(id)
);

INSERT INTO categories (name, created, modified)
VALUES
('Paper Box', NOW(), NOW()),
('Wooden Box', NOW(), NOW());

ALTER TABLE packages ADD fragile TINYINT(1) NOT NULL DEFAULT '0';
ALTER TABLE packages ADD category_id INT NOT NULL DEFAULT '0';
UPDATE packages SET category_id = '1' WHERE id = 1;

Then, we'll also need our Package.php and Warehouse.php models with HABTM relations
defined previously. To be able to use our stock model along with the HABTM association, add
the following line of code to the HABTM definitions in the Package and Warehouse models:

'with' => 'Stock',

Model Layer

172

Also, add the following line to the Package model class:

public $belongsTo = array('Category');

Finally, create a file named Category.php in app/Models with the following content:

<?php
App::uses('AppModel', 'Model');

class Category extends AppModel {

 public $hasMany = array(
 'Package'
);
}

Just a quick reminder: these are the associations between these models:

ff Category hasMany Package

ff Package belongsTo Category

ff Package hasAndBelongsToMany Warehouse

ff Warehouse hasAndBelongsToMany Package

ff Package and Warehouse hasMany Stock

ff Stock belongsTo Package and Warehouse

How to do it...
Perform the following steps:

1.	 First, edit the app/Model/AppModel.php file, modify its contents to configure the
models to use the Containable core behavior, and set recursive as -1 by default
for all models, as shown in the following code:
<?php
App::uses('Model', 'Model');

class AppModel extends Model {

 public $recursive = -1;

 public $actsAs = array('Containable');
}

Chapter 6

173

2.	 Now, create a new public function in the Category model:

<?php
App::uses('AppModel', 'Model');

class Category extends AppModel {

 //…

 /** Retrieve the Products and Warehouse array for a given
$categoryId */
 public function getCategoryWarehouses($categoryId) {
 return $this->find('first', array(
 'conditions' => array(
 "{$this->alias}.{$this->primaryKey}" => $categoryId,
),
 'contain' => array(
 'Package' => array(
 'Warehouse' => array(
 'fields' => array(
 'Warehouse.id',
 'Warehouse.name'
)
),
 'conditions' => array(
 'Package.fragile' => false
),
 'fields' => array(
 'Package.id',
 'Package.address'
)
)
)
));
 }

 //…

}

Model Layer

174

How it works...
In this recipe, we first used our AppModel class to set up all of our models to use the
$recursive property as -1 by default and to use the Containable core behavior.
Remember, all our models extend the AppModel class, so they can override these settings
if needed. Setting the $recursive property to -1 will configure the CakePHP model object
relational mapper to retrieve only the requested model on any find operation. Keep in
mind that the default behavior has recursive set to 0 and retrieves all the associated
models when a find operation is executed. For example, performing a $this->Category-
>find('all') would not only retrieve all of the categories, but also the packages
associated with each category. Using recursive could lead to inefficient queries, so the best
practice is to set it to -1 and use Containable to specify exactly what should be retrieved.

Note that behaviors in the framework are lazy loaded, so it's safe to declare them in
AppModel, as they won't be used if not referenced directly in our model logic.

Then, using the Containable behavior, we retrieved an array with the Category model
matching the $categoryId. Here, all of the fields in the categories row will be retrieved,
along with the associated nonfragile packages and all of their associated warehouses.

The following code shows how these conditions are passed, using the containable array
in the find operation:

'contain' => array(
 'Package' => array(
 'Warehouse' => array(
 'fields' => array(
 'Warehouse.id',
 'Warehouse.name'
)
),
 'conditions' => array(
 'Package.fragile' => false
),
 'fields' => array(
 'Package.id',
 'Package.address'
)
)
)

As the Category model is associated to Package, and Package is also associated to
Warehouse, we can cascade the contain to retrieve models associations inside other model
associations, like we're doing in this recipe, deeply retrieving packages and warehouses.

Chapter 6

175

We also set a condition at the Package level to retrieve only nonfragile packages and a field
filter to retrieve only those two fields (id and address) at this level of the contain chain.

Let's quickly add a new controller to debug this new method. Create a file named
CategoriesController.php in app/Controller/, with the following content:

<?php

App::uses('AppController', 'Controller');

class CategoriesController extends AppController {

 public function debug() {
 debug($this->Category->getCategoryWarehouses(1));
 $this->_stop();
 }
}

By calling /categories/debug in your browser, you'll see that the resulting array would be
similar to the following:

array(
 'Category' => array(
 'id' => '1',
 'name' => 'Paper Box',
 'created' => '2014-06-21 14:00:23',
 'modified' => '2014-06-21 14:00:23'
),
 'Package' => array(
 (int) 0 => array(
 'id' => '1',
 'address' => 'Sunset Boulevard 1, Los Angeles, CA',
 'category_id' => '1',
 'Warehouse' => array(
 (int) 0 => array(
 'id' => '1',
 'name' => 'Main Warehouse',
 'Stock' => array(
 'id' => '1',
 'package_id' => '1',
 'warehouse_id' => '1',
 'amount' => '0'
)
),

Model Layer

176

 (int) 1 => array(
 'id' => '2',
 'name' => 'Auxiliar Warehouse 1',
 'Stock' => array(
 'id' => '2',
 'package_id' => '1',
 'warehouse_id' => '2',
 'amount' => '0'
)
)
)
)
)
)

See also
ff The Has and belongs to many (HABTM) recipe

Custom finders
Instead of creating custom getter methods in your models, like we did in our previous recipe
by running find() internally and returning an array of results, you can also use the built-in
feature to define custom finder methods. These can modify the find options before the query
is executed or even fix the returned results before they are used.

Custom finders provide a better interface to reuse common find operation parameters.
Instead of working only with the result arrays (containing the database rows in array format),
we'll be able to work with the find options first.

In this recipe, we'll create a custom finder to retrieve the latest products in our database,
injecting a stored in several warehouses field on the fly, once the results are available.

Getting ready
We'll assume that you have the Package and Warehouse models and tables in place from
our previous recipe, with the Package hasAndBelongsToMany Warehouse association.

Chapter 6

177

How to do it...
Perform the following steps:

1.	 First, modify the Package.php file in app/Model/, add the following
$findMethods property and _findLatest()protected function to the
Package model class:
public $findMethods = array('latest' => true);

protected function _findLatest($state, $query, $results = array())
{
 if ($state === 'before') {
 $query['conditions']['Package.fragile'] = false;
 $query['order'] = array('Package.created' => 'desc');
 $query['contain'] = array('Warehouse');
 return $query;
 }
 foreach ($results as &$result) {
 $warehouseCount = count($result['Warehouse']);
 $result = Hash::insert($result, 'Package.multiple_warehouses',
$warehouseCount > 1);
 }
 return $results;
}

2.	 Now, use your new custom finder in your PackagesController class in the new
latest() public function in app/Controller/PackagesController.php,
as shown in the following code:
public function latest() {
 debug($this->Package->find('latest'));
 $this->_stop();
}

3.	 Finally, when you navigate to /packages/latest, you should expect an array
output in the following format:
array(
 (int) 0 => array(
 'Package' => array(
 'id' => '1',
 'recipient' => 'John Doe',

Model Layer

178

 'address' => 'Sunset Boulevard 1, Los Angeles, CA',
 'created' => '2014-06-21 13:21:14',
 'modified' => '2014-06-21 13:21:14',
 'fragile' => false,
 'category_id' => '1',
 'multiple_warehouses' => true
),	
 'Warehouse' => array(
 (int) 0 => array(
 'id' => '1',
 'name' => 'Main Warehouse',
 'created' => '2014-06-21 13:18:11',
 'modified' => '2014-06-21 13:18:11',
 'Stock' => array(
 'id' => '1',
 'package_id' => '1',
 'warehouse_id' => '1',
 'amount' => '0'
)
),
 (int) 1 => array(
 'id' => '2',
 'name' => 'Auxiliar Warehouse 1',
 'created' => '2014-06-21 13:18:11',
 'modified' => '2014-06-21 13:18:11',
 'Stock' => array(
 'id' => '2',
 'package_id' => '1',
 'warehouse_id' => '2',
 'amount' => '0'
)
)
)
)
)

How it works...
Custom finders let you modify the normal find operation workflow, which consists of two
main steps:

1.	 Before the query, where we're able to modify the query params, we need to add
conditions; fix containable parameters, order, and fields; and so on.

Chapter 6

179

2.	 After the query, where we have the results array available, we can tweak the results
to add new fields and calculate values and inject them into the results array to have
them available along with the database retrieved data.

Keep in mind that custom finders run twice per find operation: once before the query is
executed and once after the results are read from the database.

We've defined a custom finder, which we'll now need to make the model aware of, so we can
execute this logic when the custom find operation is called for this model. This is done by
defining it in the $findMethods property of the model class, as shown in the following code:

public $findMethods = array('latest' => true);

You can define several custom finders per model, and are protected methods, named after the
finder method name, using the _find prefix and camelCase by convention. In our recipe, the
finder method we used is called latest, so the function name we used is _findLatest().

Looking closer at our custom finder code, we started with a check for the "before" step:

if ($state === 'before') {
 $query['conditions']['Package.fragile'] = false;
 $query['order'] = array('Package.created' => 'desc');
 $query['contain'] = array('Warehouse');
 return $query;
}

We then specified a custom condition to retrieve only the nonfragile packages and ordering by
the date on which the descending package was created. We then returned early so that only
the $query is modified.

Then, for the "after" step, we did the following:

foreach ($results as &$result) {
 $warehouseCount = count($result['Warehouse']);
 $result = Hash::insert($result, 'Package.multiple_warehouses',
$warehouseCount > 1);
}
return $results;

Here, we iterated over the results and counted all the warehouses present per package,
injecting this number into the Package.multiple_warehouses key to have it available
later on in the controller or model, or whatever calls this custom finder.

See also
ff The Containing models recipe

Model Layer

180

On-the-fly associations
Sometimes, you'll find it useful to create a new association on the fly before a find operation
to retrieve specific data or filter unwanted result rows from your query.

In this recipe, we'll look at how associations can be defined at runtime on your models.

Getting ready
We'll assume you have the Package, Stock, and Warehouse models in place from our
previous recipes, where Stock belongsTo Warehouse and Stock belongsTo Package.

We'll also add an active field to our packages and warehouses tables with the following
SQL statement:

ALTER TABLE packages ADD active TINYINT(1) NOT NULL DEFAULT '1';
ALTER TABLE warehouses ADD active TINYINT(1) NOT NULL DEFAULT '1';

We want to retrieve only the stocks with a positive amount for both warehouses and packages
that are active, so let's set amount for one join record, as shown in the following code:

UPDATE packages_warehouses SET amount = '1' WHERE id = 1;

Note that the ORM in CakePHP will translate the belongsTo associations to left join SQL
queries by default, so we're going to restrict that to retrieve only the desired rows.

Finally, we'll also want a StocksController to view the output, so create a file named
StocksController.php in app/Controller/ with the following content:

<?php
App::uses('AppController', 'Controller');

class StocksController extends AppController {
}

How to do it...
Perform the following steps:

1.	 First, we'll add a new custom finder to our Stock model in app/Mode/Stock.php:
<?php

App::uses('AppModel', 'Model');

Chapter 6

181

class Stock extends AppModel {

 public $useTable = 'packages_warehouses';

 public $belongsTo = array(
 'Package',
 'Warehouse'
);

 public $findMethods = array('available' => true);

 protected function _findAvailable($state, $query, $results =
array()) {
 if ($state === 'before') {
 $this->bindModel(array(
 'belongsTo' => array(
 'Warehouse' => array(
 'conditions' => array('Warehouse.active' => true),
 'type' => 'inner'
),
 'Package' => array(
 'conditions' => array('Package.active' => true),
 'type' => 'inner'
)
)
));
 $query['conditions'] = array('Stock.amount >' => 0);
 $query['contain'] = array('Warehouse', 'Package');
 return $query;
 }
 return $results;
 }
}

2.	 Now, add a debug() method in the StocksController.php class:

public function debug() {
 debug($this->Stock->find('available'));
 $this->_stop();
}

Model Layer

182

How it works...
In this recipe, we first created a new custom finder for our stocks, using the following addition
to our code:

$this->bindModel(array(
 'belongsTo' => array(
 'Warehouse' => array(
 'conditions' => array('Warehouse.active' => true),
 'type' => 'inner'
),
 'Package' => array(
 'conditions' => array('Package.active' => true),
 'type' => 'inner'
)
)
));
$query['conditions'] = array('Stock.amount >' => 0);
$query['contain'] = array('Warehouse', 'Package');
return $query;

Here, the bindModel() method of our model object is used to dynamically modify the model
associations on the fly. In this recipe, we're binding two new belongsTo associations:

ff Between Stock and Warehouse

ff Between Stock and Package

These associations modify the previous ones with the same alias name. They will be used
in the next find operation only, effectively allowing you to retrieve the required warehouses
and packages using an inner join instead of the default left join with 'type' => 'inner'
and filtering by only active entities using 'conditions' => array('Package.active'
=> true).

Note that we're also filtering to return only stocks greater than 0 and using the Containable
behavior to retrieve our warehouses and packages along with the stocks.

Notice that the array syntax to define on-the-fly associations is the same as defining
associations in the model properties.

When you navigate to /stocks/debug, you should expect an array output in the
following format:

array(
 (int) 0 => array(
 'Stock' => array(

Chapter 6

183

 'id' => '1',
 'package_id' => '1',
 'warehouse_id' => '1',
 'amount' => '1'
),
 'Package' => array(
 'id' => '1',
 'recipient' => 'John Doe',
 'address' => 'Sunset Boulevard 1, Los Angeles, CA',
 'created' => '2014-06-21 13:21:14',
 'modified' => '2014-06-21 13:21:14',
 'fragile' => false,
 'category_id' => '1',
 'active' => true
),
 'Warehouse' => array(
 'id' => '1',
 'name' => 'Main Warehouse',
 'created' => '2014-06-21 13:18:11',
 'modified' => '2014-06-21 13:18:11',
 'active' => true
)
)
)

Also, the SQL generated by the framework for this is as follows:

SELECT
 'Stock'.'id',
 #... rest of the list of fields here
FROM
 myapp'.'packages_warehouses' AS 'Stock'
 inner JOIN
 myapp'.'packages' AS 'Package' ON ('Stock'.'package_id' =
'Package'.'id'
 AND 'Package'.'active' = '1')
 inner JOIN
 myapp'.'warehouses' AS 'Warehouse' ON ('Stock'.'warehouse_id' =
'Warehouse'.'id'
 AND 'Warehouse'.'active' = '1')
WHERE
 'Stock'.'amount' > 0

Once the find operation is executed, this on-the-fly association will be forgotten, and the
association will be restored to the default values configured in the model class properties.

Model Layer

184

See also
ff The Containing models recipe

ff The Custom finders recipe

Using transactions
Saving data for several models at once could lead to orphaned data if some validation breaks
along the way. It's always good practice to use atomic save operations when related data
needs to make it to the database together.

CakePHP provides the saveAssociated(), saveMany(), and saveAll() model methods
to store your data using an atomic operation, but sometimes, you'll want to use a database
transaction to manage it. Find more details on these methods at http://book.cakephp.
org/2.0/en/models/saving-your-data.html#model-savemany-array-data-
null-array-options-array.

Your database tables must allow transactions. For example, the InnoDB
storage engine, which ships with MySQL, implements transactions.
Please check your database documentation to confirm if your current
storage engine allows transactions.

Getting ready
For this recipe, we'll use the packages and warehouses tables and related models
from previous recipes, where Package hasMany Stock (or where Stock is defined as
the 'with' key in HABTM associations between the Package and Warehouse models).

How to do it...
Perform the following steps:

1.	 First, add a saveComplexPackages() method in your Package class in
app/Model/Package.php, as shown in the following code:
public function saveComplexPackages($data) {
 $dataSource = $this->getDataSource();
 try {
 $dataSource->begin();
 $this->_complexSave1($data);
 $this->_complexSave2($data);
 $dataSource->commit();

Chapter 6

185

 } catch (Exception $ex) {
 $dataSource->rollback();
 }
}

2.	 Then, create protected methods to perform every complex save operation,
throwing an exception if validation fails:
protected function _complexSave1($data) {
 $saveResult = $this->saveAssociated($data);
 if (!$saveResult) {
 throw new OutOfBoundsException(__('Unable to save %s', __
METHOD__));
 }
}

protected function _complexSave2($data) {
 // do another complex save operation
 return true;
}

3.	 Now, create a new save() public function in the PackagesController.php file in
app/Controller/ containing the following code:
public function save() {
 $data = array(
 'Package' => array(
 'recipient' => 'John Doe',
 'address' => 'Sunset Boulevard 1, Los Angeles, CA'
),
 'Warehouse' => array(
 array(
 'name' => 'Main Warehouse'
)
)
);
 $this->Package->saveComplexPackages($data);
 $this->_stop();
}

4.	 Finally, be sure to enable the SQL debug (if not already enabled) by setting the
following in your core.php file in app/Config/:

Configure::write('debug', 2);

Model Layer

186

How it works...
Working with database transactions in CakePHP is easy. In this recipe, we've implemented
a complex save method, which uses the following code:

$dataSource = $this->getDataSource();

This starts a transaction block, after which we've used several complex methods to simulate
some complex logic in our application. Each of these methods may throw an exception,
if their internal validation fails.

We detect these exceptions using the following code:

try {
 $dataSource->begin();
 $this->_complexSave1($data);
 $this->_complexSave2($data);
 $dataSource->commit();
} catch (Exception $e) {
 $dataSource->rollback();
}

The transaction is committed if all the complex save operations are executed without errors.
In the case of an exception, the transaction is rolled back, and nothing is saved. You may also
want to log errors at this point or take other measures to keep track of issues that occur.

Database transactions will allow you to break down a complex save operation; they cannot
be processed directly by the CakePHP ORM save methods and save either all of the data
or nothing.

See also
ff More details on transactions in MySQL can be found at http://dev.mysql.com/

doc/refman/5.0/en/ansi-diff-transactions.html

7
Search and Pagination

In this chapter, we will cover the following topics:

ff Pagination

ff Basic search and filter

ff The Search plugin

ff Advanced search

Introduction
Accessing and viewing data in your applications is fundamental to provide an engaging
experience for your users. The model layer in CakePHP greatly simplifies access to data
and relationships while also offering a powerful pagination system, which is painless
to implement.

In this chapter, we'll introduce some recipes to help you get familiar with search and
pagination in the framework.

Pagination
CakePHP provides a core Pagination component to process the request parameters in the
controller and build the model queries to retrieve paginated data. Instead of getting all the
rows from your table, based on the current request parameters, the Pagination component
will retrieve only the current page, defined as a limited amount of rows. Of course, all of the
pagination settings can be configured, such as to define a specific page limit or change the
default ordering of the paginated data.

Search and Pagination

188

Just after creating your initial CRUD for any database table, you'll get a fully paginated
index view. In this recipe, we'll tweak the pagination defaults to use some URL query string
parameters instead of named parameters (named params are deprecated in CakePHP 3.0).

You'll identify named parameters when your website's URL looks something like the following:

http://localhost/myapp/packages/index/page:3

Query string parameters will generate a URL, which instead looks like this:

http://localhost/myapp/packages/index?page=3

We'll also set up some other defaults for a package's index page.

Getting ready
For this recipe, we'll first load some data into our packages table using the following
SQL statement:

INSERT INTO packages (recipient, address, created, modified)
VALUES
('Recipient 1', 'Sunset Boulevard 1, Los Angeles, CA', NOW(), NOW()),
('Recipient 2', 'Sunset Boulevard 2, Los Angeles, CA', NOW(), NOW()),
('Recipient 3', 'Sunset Boulevard 3, Los Angeles, CA', NOW(), NOW()),
('Recipient 4', 'Sunset Boulevard 4, Los Angeles, CA', NOW(), NOW()),
('Recipient 5', 'Sunset Boulevard 5, Los Angeles, CA', NOW(), NOW()),
('Recipient 6', 'Sunset Boulevard 6, Los Angeles, CA', NOW(), NOW()),
('Recipient 7', 'Sunset Boulevard 7, Los Angeles, CA', NOW(), NOW()),
('Recipient 8', 'Sunset Boulevard 8, Los Angeles, CA', NOW(), NOW()),
('Recipient 9', 'Sunset Boulevard 9, Los Angeles, CA', NOW(), NOW()),
('Recipient 10', 'Sunset Boulevard 10, Los Angeles, CA', NOW(),
NOW()),
('Recipient 11', 'Sunset Boulevard 11, Los Angeles, CA', NOW(),
NOW());

How to do it...
Perform the following steps:

1.	 First, add the following properties and method to our existing
PackagesController.php file in app/Controller/:
public $components = array('Paginator');

public $helpers = array('Paginator');

public function index() {

Chapter 7

189

 $this->Paginator->settings = array(
 'Package' => array(
 'paramType' => 'querystring',
 'imit' => 5,
 'order' => array(
 'Package.recipient' => 'asc'
)
)
);
 $this->set('packages', $this->Paginator->paginate());
}

2.	 Then, create a new index view in a file named app/View/Packages/index.ctp
with the following content:

<div class="packages index">
 <h2><?php echo __('Packages'); ?></h2>
 <table>
 <tr>
 <th><?php echo $this->Paginator->sort('recipient'); ?></th>
 <th><?php echo $this->Paginator->sort('address'); ?></th>
 <th><?php echo $this->Paginator->sort('modified'); ?></th>
 <th class="actions"><?php echo __('Actions'); ?></th>
 </tr>
 <?php foreach ($packages as $package): ?>
 <tr>
 <td><?php echo h($package['Package']['recipient']); ?> </
td>
 <td><?php echo h($package['Package']['address']); ?> </
td>
 <td><?php echo h($package['Package']['modified']); ?> </
td>
 <td class="actions">
 <?php echo $this->Html->link(__('View'), array('action' =>
'view', $package['Package']['id'])); ?>
 </td>
 </tr>
<?php endforeach; ?>
 </table>
 <p>
 <?php
 echo $this->Paginator->counter(array(
 'format' => 'range'
));
 ?>

Search and Pagination

190

 </p>
 <div class="paging">
 <?php
 echo $this->Paginator->prev('< ' . __('Previous Page'), array(),
null, array('class' => 'prev disabled'));
 echo $this->Paginator->next(__('Next Page') . ' >', array(),
null, array('class' => 'next disabled'));
 ?>
 </div>
</div>

Chapter 7

191

How it works...
Here, we changed the code of the controller for our packages table and started by including
the Paginator component and helper as follows:

public $components = array('Paginator');

public $helpers = array('Paginator');

Note that when using helpers, we really don't need to add the Paginator helper in the
controller, as helpers are automatically included by CakePHP when first used in a view.

We then added an index() action to our controller. Here, we're using the $settings
property of the Paginator component to set up the pagination configuration for the
Package model. We could also have different pagination settings applied to different
models, using the model alias as the first key in the pagination settings and then using
some configuration settings for each.

The paramType setting with querystring configures the Paginator component to
detect and use paginator-specific query string parameters from the URL. It also configures
the Paginator helper to generate query string parameters when we build the pagination
links on our view.

We also set a limit of 5, so our "pages" of results will have five rows each, with a default
ordering (by recipient, in ascending order). Note that the ordering could change if we click in
the header column for any of our fields in the generated view. The Paginator component
would take care of the newly specified order priority and merge this requested setting with
the default settings before running the database query and retrieving the packages.
You don't need to code that logic yourself, which is great!

Search and Pagination

192

The last line in the controller is the actual call to the Paginator component to retrieve the
packages. Only five packages will be retrieved, based on the paginator's default settings and
the request's querystring values. For example, /packages/index will show records one
to five, while /packages/index?page=2 will show records six to ten. This is shown in the
following screenshot:

Next, we created a view file to display our index() action. The view uses the Paginator
helper to do the following:

ff It displays sortable header links using the sort() method. Clicking on these will
change the query order; clicking on it again would use the inverse order.

ff It displays a pagination counter below the results table using the counter() method
and by setting format to range.

Chapter 7

193

ff It displays the prev and next buttons using the prev() and next()
methods, respectively.

Note that we're tweaking the block formatting, the previous and next button classes,
as well as the strings to be displayed in our view.

The Paginator component will take care of parsing the current pagination-related parameters
in the URL and based on this, append the conditions in order to the find operation. We're using
querystring parameters instead of named parameters in this recipe, mainly because named
parameters will become deprecated in future versions of the framework.

See also
ff http://book.cakephp.org/2.0/en/core-libraries/components/

pagination.html

Basic search and filter
Displaying paginated records can be great to allow your users to easily navigate through large
sets of data. However, it is even better when you can give them the option to search directly.

In this recipe, we're going to add a new search box for our packages. We'll use a LIKE
condition in SQL to filter the resulting packages. This will do the trick for small datasets
as a starting point.

Getting ready
For our recipe, we'll assume that you still have the packages table, Package model, and
PackagesController, with the paginated index() action with the index.ctp view
created from our previous recipe.

How to do it...
Perform the following steps:

1.	 First, add the following search box to index.ctp in app/View/Packages/ right
below the <h2> element:
<?php
 echo $this->Form->create('Package', array('action' =>
'search'));
 if (!isset($searchQuery)) {
 $searchQuery = '';
 }

Search and Pagination

194

 echo $this->Form->input('searchQuery', array('value' =>
h($searchQuery)));
 echo $this->Form->end(__('Search'));
?>

2.	 Then, add the following search() action to the PackagesController class:
public function search() {
 if ($this->request->is('put') || $this->request->is('post')) {
 // poor man's Post Redirect Get behavior
 return $this->redirect(array(
 '?' => array(
 'q' => $this->request->data('Package.searchQuery')
)
));
 }
 $this->Package->recursive = 0;
 $searchQuery = $this->request->query('q');
 $this->Paginator->settings = array(
 'Package' => array(
 'findType' => 'search',
 'searchQuery' => $searchQuery
)
);
 $this->set('packages', $this->Paginator->paginate());
 $this->set('searchQuery', $searchQuery);
 $this->render('index');
}

3.	 Next, in our Package model class, add the following code to the $findMethods
property and the _findSearch() method to implement the search query:

public $findMethods = array('search' => true);

protected function _findSearch($state, $query, $results = array())
{
 if ($state === 'before') {
 $searchQuery = Hash::get($query, 'searchQuery');
 $searchConditions = array(
 'or' => array(
 "{$this->alias}.recipient LIKE" => '%' . $searchQuery .
'%',
 "{$this->alias}.address LIKE" => '%' . $searchQuery . '%'
)
);

Chapter 7

195

 $query['conditions'] = array_merge($searchConditions,
(array)$query['conditions']);
 return $query;
 }
 return $results;
}

How it works…
In this recipe, we created a new search form in app/View/Packages/index.ctp. The form
is configured to send the POST requests to the search() action (by default, CakePHP will use
the current packages controller) upon submission.

Search and Pagination

196

We then created the new search() action in the PackagesController. This method first
detects a POST request and then does a super-quick implementation of the Post/Redirect/
Get design pattern. We switched the posted searchQuery request data (sent using the input
field in our search form) to a query string parameter and then issued a redirect to the same
action, appending the new search query to the URL.

For example, if we fill the search box with the example text and then hit the Submit
button, we'd post the form data to the search() action first and then issue a redirect to
/packages/index?q=example. Using this pattern will provide a better search experience
for users and also remember the query variable in all of the pagination and order columns of
our page.

Following on, we then covered the rest of the implementation in our PackagesController,
configuring the Paginator component using the following settings:

$this->Paginator->settings = array(
 'Package' => array(
 'findType' => 'search',
 'searchQuery' => $searchQuery
)
);

This lets CakePHP use a custom finder to retrieve the packages from the database, instead
of using the standard find() operation. We're passing a searchQuery parameter, with the
query string value retrieved from the POST request. This $searchQuery parameter will be
used in the new custom finder to filter the packages using a LIKE operation in the generated
SQL condition.

Finally, we implemented the custom finder in our Package model. Here, we're using the
custom finder to modify the find query before CakePHP builds the final SQL to be run against
the database to retrieve the rows. Our logic is as follows:

$searchQuery = Hash::get($query, 'searchQuery');
$searchConditions = array(
 'or' => array(
 "{$this->alias}.recipient LIKE" => '%' . $searchQuery . '%',
 "{$this->alias}.address LIKE" => '%' . $searchQuery . '%'
)
);
$query['conditions'] = array_merge($searchConditions,
(array)$query['conditions']);
return $query;

Chapter 7

197

We first retrieve the searchQuery value attached to the find options. You'll remember
that we just added this value in the Paginator settings setup, in the search() action
of our PackagesController. We then built a new array of conditions, using the new
$searchQuery, and merged it with any other possible conditions passed when using
this custom finder.

The Paginator component will call our new custom finder and take care of the page
management for us, filtering and displaying only those package rows that contain the
word used in our search box. That's it; you can now search through your data!

Search and Pagination

198

See also
ff More on the Post/Redirect/Get design pattern at http://en.wikipedia.org/

wiki/Post/Redirect/Get

ff The Custom finders recipe from Chapter 6, Model Layer

ff The Pagination recipe

The Search plugin
Instead of manually doing the implementation of the searching and filtering in your models,
you may be interested in using the CakeDC Search plugin, a powerful and reusable way to
implement database search in your application.

In this recipe, we'll see how easy it can be to include the plugin within an application and add
some search power on the fly.

Getting ready
First, we'll need to download and install the CakeDC Search plugin. We'll use git modules
for the setup, but if you're not using git, you can simply download the ZIP file and place
the contents of the plugin in a folder named app/Plugin/Search/, as shown in the
following command:

$ git submodule add git://github.com/CakeDC/search.git app/Plugin/Search

After that, load the plugin in your bootstrap.php file, which is located in app/Config/,
using the following code:

CakePlugin::load('Search');

In this recipe, we're going to quickly build a search panel to filter our categories by their
names (using LIKE) and by the amount of fragile packages. So, let's change our existing
categories table and adjust its data using the following SQL statement:

ALTER TABLE categories ADD packages_fragile_count INT(20) UNSIGNED NOT
NULL DEFAULT '0';

We'll then update our controller file named CategoriesController.php in app/
Controller/ with the following content:

public $components = array('Paginator');

public function index() {
 $this->set('categories', $this->Paginator->paginate());
}

Chapter 7

199

We will also update the index view file in app/View/Categories/index.ctp with the
following content:

<div class="packages index">
 <h2><?php echo __('Categories'); ?></h2>
 <table>
 <tr>
 <th><?php echo $this->Paginator->sort('name'); ?></th>
 <th><?php echo $this->Paginator->sort('packages_fragile_count');
?></th>
 <th class="actions"><?php echo __('Actions'); ?></th>
 </tr>
 <?php foreach ($categories as $category): ?>
 <tr>
 <td><?php echo h($category['Category']['name']); ?> </td>
 <td><?php echo h($category['Category']['packages_fragile_
count']); ?> </td>
 <td class="actions">
 <?php echo $this->Html->link(__('View'), array('action' =>
'view', $category['Category']['id'])); ?>
 </td>
 </tr>
 <?php endforeach; ?>
 </table>
 <p>
 <?php
 echo $this->Paginator->counter(array(
 'format' => 'range'
));
 ?>
 </p>
 <div class="paging">
 <?php
 echo $this->Paginator->prev('< ' . __('Previous Page'), array(),
null, array('class' => 'prev disabled'));
 echo $this->Paginator->next(__('Next Page') . ' >', array(), null,
array('class' => 'next disabled'));
 ?>
 </div>
</div>

Search and Pagination

200

How to do it...
Perform the following steps:

1.	 First, add a new search form below h2 in the app/View/Categories/index.ctp
file:
<?php
 echo $this->Form->create();
 echo $this->Form->input('name');
 echo $this->Form->input('packages_fragile_count', array('label'
=> __('Minimum fragile packages')));
 echo $this->Form->end(__('Submit'));
?>

2.	 Then, add the Searchable behavior in the $actsAs property of your Category
model class, and configure the search fields in the $filterArgs property:
public $actsAs = array(
 'Search.Searchable'
);

public $filterArgs = array(
 'name' => array(
 'field' => 'Category.name',
 'type' => 'like'
),
 'packages_fragile_count' => array(
 'field' => 'Category.packages_fragile_count >=',
 'type' => 'value'
)
);

3.	 Now, configure your CategoriesController to use the Search.Prg component
as follows:
public $components = array(
 'Paginator',
 'Search.Prg'
);

4.	 Also, in the same controller, change the index() action to process the search form
data as follows:

public function index() {
 $this->Category->recursive = 0;

Chapter 7

201

 $this->Prg->commonProcess(null, array(
 'paramType' => 'querystring'
));
 $this->Paginator->settings = array(
 'Category' => array(
 'paramType' => 'querystring',
 'conditions' => $this->Category->parseCriteria($this->Prg-
>parsedParams())
)
);
 $this->set('categories', $this->Paginator->paginate());
}

Search and Pagination

202

How it works...
In this recipe, we added a new form into the app/View/Categories/index.ctp file,
to issue a POST request to the index() action of our CaterogiesController in our
application. The form has two input fields: one for the category name (we'll be using a LIKE
operation in the SQL condition to filter the categories) and another one for the minimum
amount of fragile packages.

We then configured the Category model to use a behavior called SearchableBehavior
that is distributed as part of the CakeDC Search plugin. We use this behavior in our model by
configuring it in the $actsAs property, as shown in the following code:

public $actsAs = array(
 'Search.Searchable'
);

The SearchableBehavior uses a public property in the model class named $filterArgs,
to configure how the search should be made against our database. In this case, we're setting
up the configuration for two fields:

public $filterArgs = array(
 'name' => array(
 'field' => 'Category.name'
 'type' => 'like'
),
 'packages_fragile_count' => array(
 'field' => 'Category.packages_fragile_count >=',
 'type' => 'value'
)
);

The first field, name, will be filtered using a LIKE condition, while the other field, packages_
fragile_count, will be using a value condition. We use the >= operator in the field name to
determine whether our filter will retrieve rows from the categories table greater or equal to
the given value present.

Chapter 7

203

After setting up our model, we then updated the controller code as follows to use the Prg
component and refactored the index() action to use the component:

public function index() {
 $this->Category->recursive = 0;
 $this->Prg->commonProcess(null, array(
 'paramType' => 'querystring'
));
 $this->Paginator->settings = array(
 'Category' => array(
 'paramType' => 'querystring',
 'conditions' => $this->Category->parseCriteria($this->Prg-
>parsedParams())
)
);
 $this->set('categories', $this->Paginator->paginate());
}

Note that we're setting up both the commonProcess() method of the Prg and Paginator
components to use the query string request parameters, as the default configuration is to use
named parameters (named parameters will be deprecated in CakePHP 3.0).

As we did in our previous recipe, we first detect a POST request and then use the
Post/Redirect/Get implementation provided by the CakeDC Search plugin. We also switch
the posted request data (sent using the input field in the search form) to a query string
parameter list and issue a redirect to the same action, appending the new search query
to the URL. Now, we don't need to take care of implementing the PRG pattern manually,
as it's done in a flexible way through the plugin.

Once we have set up the $filterArgs property in our model, calling the
parseCriteria() method in the controller will detect and build the conditions
based on the passed request data. Those parameters will be parsed by the
parsedParams() method of the Prg component.

You may have noticed that we used the same field names in our search form and our
Category model. However, we could have used any other name in our search form and
then matched it with the Category model using the field configuration option in the
$filterArgs property.

Search and Pagination

204

Finally, searching for categories with minimal fragile packages equal to 7 produces the
following page and SQL query:

See also
ff PRG design pattern at http://en.wikipedia.org/wiki/Post/Redirect/Get

ff The CakeDC Search plugin can be found at https://github.com/CakeDC/search

ff The Pagination recipe

Chapter 7

205

Advanced search
Searching through your data isn't always as simple as filtering a value on a single model;
sometimes, you need to take into account the relationship of a model with other models.

In this recipe, we're going to search and filter using a model association. We'll configure the
CakeDC Search plugin from our previous recipe to create a recipients filter by gift name.
This allows us to display our gift recipients, filtering by the recipient name, address,
and the gift title.

Getting ready
In this recipe, we'll continue using the CakeDC Search plugin, for which you can find
some installation instructions in our previous recipe. Then, we'll create both gifts
and recipients tables in our database, using the following SQL statements:

CREATE TABLE gifts (
 id INT NOT NULL AUTO_INCREMENT,
 title VARCHAR(255) NOT NULL,
 created DATETIME NOT NULL,
 modified DATETIME NOT NULL,
 PRIMARY KEY(id)
);

CREATE TABLE recipients (
 id INT NOT NULL AUTO_INCREMENT,
 name VARCHAR(255) NOT NULL,
 address VARCHAR(255) NOT NULL,
 created DATETIME,
 modified DATETIME,
 gift_id INT NULL,
 PRIMARY KEY(id)
);

We'll also include some data in these tables to work with, using these SQL statements:

INSERT INTO gifts (title, created, modified)
VALUES
 ('T-Shirt Grey', NOW(), NOW()),
 ('T-Shirt Black', NOW(), NOW()),
 ('Mug Small', NOW(), NOW()),
 ('Mug Mega', NOW(), NOW());

Search and Pagination

206

INSERT INTO recipients (name, address, created, modified, gift_id)
VALUES
 ('John Doe', 'Sunset Boulevard 1, Los Angeles, CA', NOW(), NOW(),
1),
 ('Recipient 1', 'Hudson Street, New York', NOW(), NOW(), 2),
 ('Recipient 1', 'Hudson Street, New York', NOW(), NOW(), 3),
 ('Recipient 2', 'Collins Av., Vancouver', NOW(), NOW(), 4);

Now, we'll use the CakePHP bake shell to build all the CRUD files for your newly created
tables, using the following commands from your app/ directory in the shell:

$ Console/cake bake all Gift
$ Console/cake bake all Recipient

Note that the bake shell will generate controllers, models, and views for all the CRUD actions
in your tables. Help on using bake can be found at http://book.cakephp.org/2.0/en/
console-and-shells/code-generation-with-bake.html.

Chapter 7

207

How to do it...
Perform the following steps:

1.	 First, create a new search form in the file named index.ctp in app/View/
Recipients/ by inserting the following code after the <h2> title tag:
<h2><?php echo __('Recipients'); ?></h2>
<!-- insert code below -->
<?php
 echo $this->Form->create();
 echo $this->Form->input('name', array('required' => false));
 echo $this->Form->input('address', array('required' => false));
 echo $this->Form->input('title', array('label' => __('Gift
Title')));
 echo $this->Form->end(__('Submit'));
?>

2.	 Then, include the Paginator and Prg components in the $components property of
the RecipientsController:
public $components = array(
 'Paginator',
 'Search.Prg'
);

3.	 Also, replace the index() action in the same class with the following method:
public function index() {
 $this->Recipient->recursive = 0;
 $this->Prg->commonProcess(null, array(
 'paramType' => 'querystring'
));
 $this->Paginator->settings = array(
 'Recipient' => array(
 'paramType' => 'querystring',
 'conditions' => $this->Recipient->parseCriteria($this->Prg-
>parsedParams())
)
);
 $this->set('recipients', $this->Paginator->paginate());
}

Search and Pagination

208

4.	 Finally, configure your Recipient model to use the Searchable behavior with the
following $actsAs and $filterArgs properties:

public $actsAs = array('Search.Searchable');

public $filterArgs = array(
 'name' => array(
 'field' => 'Recipient.name',
 'type' => 'like'
),
 'address' => array(
 'field' => 'Recipient.address',
 'type' => 'like'
),
 'title' => array(
 'field' => 'Gift.title',
 'type' => 'like'
)
);

How it works...
In this recipe, we first added a new search form in the app/View/Recipients/index.ctp
file, adding three fields. The address and name fields will be used to filter the parent model;
Recipient and title will be used to filter the associated Gift model name. We then
configured the RecipientsController to use the Prg component, as explained in our
previous recipes.

Switch our POST request data into query string parameters, using the following code:

$this->Prg->commonProcess(null, array(
 'paramType' => 'querystring'
));

Parse the request parameters into conditions for the Paginator component, as shown in the
following code:

$this->Paginator->settings = array(
 'Recipient' => array(
 'paramType' => 'querystring',
 'conditions' => $this->Recipient->parseCriteria($this->Prg-
>parsedParams())
)
);

Chapter 7

209

Then, run the paginate() method, as shown in the following code, to retrieve the fields
from the recipients table, using the pagination request parameters to filter the number
of rows retrieved:

$this->set('recipients', $this->Paginator->paginate());

We also configured the Recipient model to use the Searchable behavior. Note that we're
using an associated model field to filter the query using Gift.title. Using this notation
is how we use associated models in the $filterArgs property. In this case, Recipient
belongs to Gift.

public $actsAs = array('Search.Searchable');

public $filterArgs = array(
 'name' => array(
 'field' => 'Recipient.name',
 'type' => 'like'
),
 'address' => array(
 'field' => 'Recipient.address',
 'type' => 'like'
),
 'title' => array(
 'field' => 'Gift.title',
 'type' => 'like'
)
);

Once set up, if we navigate to /recipients and fill in the search form, setting Gift Title
to mug, and Name to 1, we'll generate the following URL:

/recipients?name=1&address=&title=mug

Search and Pagination

210

The SQL generated by this URL is as follows:

SELECT `Recipient`.`id`, `Recipient`.`name`, `Recipient`.`address`,
`Recipient`.`created`, `Recipient`.`modified`, `Recipient`.`gift_id`,
`Gift`.`id`, `Gift`.`title`, `Gift`.`created`, `Gift`.`modified`
FROM `book_25`.`recipients` AS `Recipient`
LEFT JOIN `book_25`.`gifts` AS `Gift` ON (`Recipient`.`gift_id` =
`Gift`.`id`)
WHERE `Recipient`.`name` LIKE '%1%' AND `Gift`.`title` LIKE '%mug%'
LIMIT 20

Note the LIKE conditions applied to both the Recipient and Gift models. From here, you
can extend the scope of your search criteria to cover as much of your data set as needed.

Chapter 7

211

See also
ff PRG design pattern at http://en.wikipedia.org/wiki/Post/Redirect/Get

ff The CakeDC Search plugin can be found at https://github.com/CakeDC/search

ff The Pagination recipe

8
Events System

In this chapter, we will cover the following recipes:

ff Listeners and subscribers

ff Event-driven process

ff Event stacking

ff Managing event priorities

Introduction
Included in CakePHP is a powerful events system, which allows you to rapidly hook up callbacks
through event objects within your application. This provides an event-driven model within your
business logic; it can greatly improve the design and architecture of your application.

In this chapter, we'll look at the fundamentals of the events system, with a couple of recipes to
get you handling events.

Listeners and subscribers
Listeners in the framework implement the observer pattern, as described at
http://en.wikipedia.org/wiki/Observer_pattern. A listener object waits
to be notified of a new event. If notified, it will then check if the event can be handled,
and if so, it will run the event-handling method based on the event name.

In CakePHP, anything can be a listener; the only requirement is to implement the
CakeEventListener interface and provide a public implementedEvents() method, which
returns the names of the exposed events with their respective methods to process the event.

Events System

214

If you have significant processing logic in your event listeners for a live service, consider using
a job queue. Refer to the Event stacking recipe later in this chapter.

In this recipe, we identified some e-mail sending logic in one of our models as a candidate to
use events. Decoupling the e-mail processing logic from the model itself allows us to switch
the event processing implementation in the future to something more complex, such as a
process queue.

Getting ready
For this recipe, we'll work with packages. So, we'll reuse our existing packages table:

CREATE TABLE packages (
 id INT NOT NULL AUTO_INCREMENT,
 recipient VARCHAR(255) NOT NULL,
 address VARCHAR(255) NOT NULL,
 created DATETIME,
 modified DATETIME,
 PRIMARY KEY(id)
);

Update the file named Package.php in app/Model/ with the following content
(events-free code):

<?php
App::uses('AppModel', 'Model');

class Package extends AppModel {

 public function afterSave($created, $options = array()) {
 parent::afterSave($created, $options);
 if ($created) {
 CakeEmail::deliver('admin@myapp.com',
 __('New Package was created id: %s', Hash::get($this->data,
'Package.id')),
 __('New package was created'),
 'default'
);

 }
 }
}

Chapter 8

215

How to do it...
Perform the following steps:

1.	 Create a new listener to process our e-mail alerts, in a file named app/Lib/Event/
EmailAlert.php:
<?php
App::uses('CakeEventListener', 'Event');
App::uses('CakeEmail', 'Network/Email');

class EmailAlert extends Object implements CakeEventListener {

 public function implementedEvents() {
 return array(
 'App.Model.Package.afterSave' => 'sendEmailAlert'
);
 }

 public function sendEmailAlert($event) {
 $alias = $event->subject->alias;
 $id = $event->subject->data[$alias][$event->subject-
>primaryKey];
 CakeEmail::deliver('admin@myapp.com',
 __('New %s created id: %s', $alias, $id),
 __('New %s was created', $alias),
 'default'
);
 }
}

2.	 Create a new configuration file named events.php to hold our events
configuration in app/Config/ (note that we're using the common Package
model's event manager):
<?php
App::uses('ClassRegistry', 'Utility');
App::uses('EmailAlert', 'Lib/Event');

ClassRegistry::init('Package')->getEventManager()->attach(new
EmailAlert());

3.	 Include your new events config file by adding this line at the end of the
bootstrap.php file in app/Config/:
config('events');

Events System

216

4.	 Modify the afterSave() method in the Package model class to emit a new
event instead of handling the e-mail sending logic:

public function afterSave($created, $options = array()) {
 parent::afterSave($created, $options);
 if ($created) {
 // create a new event
 $event = new CakeEvent('App.Model.Package.afterSave',
$this);
 // dispatch the event to the Package event manager
 $this->getEventManager()->dispatch($event);
 }
}

How it works...
In this recipe, we created a new class that follows the CakePHP convention to store all
listeners in app/Lib/Event. The listener implements the CakeEventListener interface
and is composed of two main parts:

ff The implementedEvents() method, which defines the event names processed by
this listener, with the methods to be executed for each one

ff The specific event processor methods themselves

The event processor method contains a simple CakeEmail::deliver() method to send a
plain text e-mail to the sysadmin when a new e-mail alert is triggered.

We then created an events.php file in app/Config/ to allow all event-related configuration
to be stored separately from our other configurations and to allow it to be used by the
framework's Configure utility class to include this file if it's present in the app/Config/
directory. We'll update this file with new listeners later when we'll demonstrate how to add
event-driven functionality without changes in the code of models.

We also refactored the afterSave() callback logic in the Package model to dispatch an
event, instead of handling the e-mail instance creation and delivery directly. Here, we're
dispatching an event named App.Model.Product.afterSave to be processed elsewhere.

Note that the event name dispatched and the implementedEvents() event name matches.
This is required to detect if the event should be processed by this listener or not.

To dispatch an event, we first need to get an instance to the event manager as follows:

$this->getEventManager()->dispatch($event);

Chapter 8

217

In this case, we're using the model's event manager. Note that there's a local event
manager per model and also a local event manager shared between the controller and view.
There is also a global event manager available.

Once the event has been dispatched to the event manager, the event system will check all
listeners attached to this event and run the listener logic to process the event.

Events have a name, subject, and an optional data array. Events usually get $this as the
subject, and we also have the option to pass some related data, for example:

$event = new CakeEvent('event-name-here', $this, array(
 'key1' => $value1,
 'key2' => $value2
));

All the necessary context would be provided using the $data property of the $event that is
retrieved from the listener code using the following code:

public function sendEmailAlert($event) {
 $data1 = $event->data['key1'];
 $data2 = $event->data['key2'];
}

As you can tell, working with and handling events in CakePHP is probably a lot simpler than
you imagined and opens a whole world of possibilities in your applications.

See also
ff A detailed description about the event system and its examples can be found at

http://book.cakephp.org/2.0/en/core-libraries/events.html

Event-driven process
Events in CakePHP can also be used to define complex workflows in your application.
In this recipe, we'll process a package, which was just created, to generate a PDF order
and send the resulting file by e-mail (attachment) for further manual processing.

We'll chain the execution of two listeners for a specific event. The partial results of each
listener will be stacked in our event, thus allowing listeners to use partial results from
listeners that were executed earlier in the event manager queue.

Note that as discussed earlier, sending e-mails and generating PDF files are slow operations,
so you should consider moving this logic to a job queue, instead of running them while the
user waits.

Events System

218

Getting ready
For this recipe, we'll need to set up the CakePDF plugin and the related templates to generate
a PDF file based on a Package model. We'll use git modules for the setup, but if you're not
using git, you can simply download the ZIP file using the following command and place the
contents of the plugin in a folder named app/Plugin/CakePdf/:

$ git submodule add git://github.com/ceeram/CakePdf.git app/Plugin/CakePdf

Then, edit your bootstrap.php file in app/Config/, and add the following code at the end
of the file to load the plugin, process the plugin's bootstrap configuration file, and include the
plugin's routes:

CakePlugin::load('CakePdf', array(
 'bootstrap' => true,
 'routes' => true
));

After this, we'll set up the PDF engine we want to use (as shown in the following code), as the
plugin provides different options to render a PDF. For this example, we'll use dompdf, so we'll
also add the following to the bootstrap.php file. Also, we'll configure the default e-mail
recipient address here.

Configure::write('CakePdf', array(
 'engine' => 'CakePdf.DomPdf',
 'download' => true // forces PDF file download
));
Configure::write('App.defaultSender', 'app@example.com');
Configure::write('App.defaultRecipient', 'me@example.com');

We'll then need a PDF layout file named order.ctp in app/View/Layouts/pdf/,
with the following content:

<div id="pdf">
 <h1><?php echo __('Order'); ?></h1>
 <?php echo $this->fetch('content'); ?>
</div>

This new layout will be used for all our orders to reuse headers, footers, and other common
elements in our PDF orders.

Now, create a file named package.ctp in app/View/Packages/pdf/ with the
following content:

<h3><?php echo __('This is your new Package order'); ?>
<table>

Chapter 8

219

 <?php
 echo $this->Html->tableHeaders(array(
 'Id',
 'Address'
));
 echo $this->Html->tableCells(array(
 array(
 $package['Package']['id'],
 $package['Package']['address']
)
));
 ?>
</table>

We'll also reuse our packages table; currently, it could be recreated with the following
SQL statement:

CREATE TABLE packages (
 id INT NOT NULL AUTO_INCREMENT,
 recipient VARCHAR(255) NOT NULL,
 address VARCHAR(255) NOT NULL,
 created DATETIME DEFAULT NULL,
 modified DATETIME DEFAULT NULL,
 fragile TINYINT(1) NOT NULL DEFAULT '0',
 category_id INT NOT NULL DEFAULT '0',
 active TINYINT(1) NOT NULL DEFAULT '1',
 PRIMARY KEY (id)
);

Finally, we will reuse the Package model, with the following afterSave() callback
(and EmailAlert event listener) from the previous example:

public function afterSave($created, $options = array()) {
 parent::afterSave($created, $options);
 if ($created) {
 // create a new event
 $event = new CakeEvent('App.Model.Package.afterSave', $this);
 // dispatch the event to the Package event manager
 $this->getEventManager()->dispatch($event);
 }
}

Events System

220

How to do it...
Perform the following steps:

1.	 Dispatch a new event in the afterSave() method of our Package model:
public function afterSave($created, $options = array()) {
 parent::afterSave($created, $options);
 if ($created) {
 // create a new event
 $event = new CakeEvent('App.Model.Package.afterSave',
$this);
 // dispatch the event to the local event manager
 $this->getEventManager()->dispatch($event);
 }
}

2.	 Create or update the file named events.php in app/Config/ with the
following content:
<?php
App::uses('ClassRegistry', 'Utility');
App::uses('PDFGenerator', 'Lib/Event');
App::uses('EmailAlert', 'Lib/Event');

ClassRegistry::init('Package')->getEventManager()->attach(new
PDFGenerator());
ClassRegistry::init('Package')->getEventManager()->attach(new
EmailAlert());

3.	 Make sure that you have the following line at the end of your bootstrap.php in
app/Config/:
config('events');

4.	 Add a new PDFGenerator listener in a file named PDFGenerator.php in app/
Lib/Event/ with the following content:
<?php
App::uses('CakeEventListener', 'Event');
App::uses('CakePdf', 'CakePdf.Pdf');

class PDFGenerator extends Object implements CakeEventListener {

 public function implementedEvents() {
 return array(

Chapter 8

221

 'App.Model.Package.afterSave' => 'generatePDF'
);
 }

 public function generatePDF($event) {
 $CakePdf = new CakePdf();
 $CakePdf->template('/Packages/pdf/package', 'order');
 $CakePdf->viewVars(array(
 'package' => $event->subject->data
));
 $filePath = APP . 'files' . DS . String::uuid() . '.pdf';
 if ($CakePdf->write($filePath)) {
 $results = (array)$event->result;
 $results['PDFGenerator']['generatedPDF'] = $filePath;
 return $results;
 }
 throw new CakeException(__('Unable to generate PDF File for
Package'));
 }
}

5.	 Update the sendEmailAlert() method of our existing EmailAlert listener in the
file named EmailAlert.php in the same location with the following content:
<?php
App::uses('CakeEventListener', 'Event');
App::uses('CakeEmail', 'Network/Email');

class EmailReport extends Object implements CakeEventListener {

 public function implementedEvents() {
 return array(
 'App.Model.Package.afterSave' => 'sendEmailAlert'
);
 }

 public function sendEmailAlert($event) {
 $results = (array)$event->result;
 $filePath = Hash::get($results, 'PDFGenerator.generatedPDF');
 if (!empty($filePath)) {
 // send attachment
 $Email = new CakeEmail();
 $Email->template('attachment', 'default')

Events System

222

 ->emailFormat('html')
 ->from(Configure::read('App.defaultSender'))
 ->to(Configure::read('App.defaultRecipient'))
 ->subject(__('Your new package'))
 ->attachments(array('Package.pdf' => $filePath))
 ->send();
 }
 }
}

6.	 Finally, create a file named attachment.ctp in app/View/Emails/html/ with
the following content:

<?php echo __('Please check the attached file'); ?>

This is how the generated PDF attachment appears:

How it works...
In this recipe, we're setting up two chained listeners, waiting for any new App.Model.
Product.afterSave events and working together to perform the following:

ff Generate a PDF file, based on the new package contents

ff Send an e-mail to the Configure::read('App.defaultRecipient')
address, attaching the PDF file that was generated

Chapter 8

223

Our first step was to check the following in our Package model:

public function afterSave($created, $options = array()) {
 parent::afterSave($created, $options);
 if ($created) {
 // create a new event
 $event = new CakeEvent('App.Model.Package.afterSave', $this);
 // dispatch the event to the local event manager
 $this->getEventManager()->dispatch($event);
 }
}

We then created a new CakeEvent with the name, App.Model.Package.afterSave,
and set the subject as $this. As the current object reference is the Package model,
we set the current package instance as the subject for this new event.

Next, we got an instance of the local event manager, tied to this model, and dispatched the
event to the manager. The dispatch($event) method will check for any listener registered
in this event manager and run the associated logic if the event name matches the listener
events configured.

We then created a new configuration file to store our event-related settings (using the
following code) and ensured that we attached the two listeners to the Package model's
event manager:

ClassRegistry::init('Package')->getEventManager()->attach(new
PDFGenerator());
ClassRegistry::init('Package')->getEventManager()->attach(new
EmailAlert());

We also created a PDFGenerator event listener class that follows the CakePHP convention
for listeners, which implemented the CakeEventListener interface and defined it in our
implementedEvents() method (shown in the following code):

public function implementedEvents() {
 return array(
 'App.Model.Package.afterSave' => 'generatePDF'
);
}

Note that we're matching the App.Model.Package.afterSave event name to the
generatePDF method in the listener class we want to use when a new event is processed.

Following on, we implemented the event processing logic itself:

public function generatePDF($event) {
 $CakePdf = new CakePdf();
 $CakePdf->template('/Packages/pdf/package', 'order');
 $CakePdf->viewVars(array(

Events System

224

 'package' => $event->subject->data
));
 $filePath = APP . 'files' . DS . String::uuid() . '.pdf';
 if ($CakePdf->write($filePath)) {
 $results = (array)$event->result;
 $results['PDFGenerator']['generatedPDF'] = $filePath;
 return $results;
 }
 throw new CakeException(__('Unable to generate PDF File for
Package'));
}

Here, we created a new CakePDF instance, set the template view file to be used, and called
the viewVars() method with the data array of the event subject:

$CakePdf->viewVars(array(
 'package' => $event->subject->data
));

This sends our event subject to the view and makes it available as a $package variable.
Remember that the subject of the event will be the instance to the Package model, and
the model data property will hold the array of the fields just saved for the Package model.
So, we're passing the contents of the model we just saved to use them in the PDF view we're
going to generate; this will allow us to use the address in our PDF.

We then created a new semirandom file in our app/files/ path to write the PDF contents
being generated. We append to the results array in $filePath if the write()method of the
$CakePdf object runs without issues.

We return $results to let the event manager know that the listener logic is complete and
that there are results to be attached to the event and passed to the next event listener. Here,
the results will be passed along with the event to the EmailAlert listener, as it's attached to
the same event manager and is also listening for events with the same name.

We changed the EmailAlert listener class the same way we did with the PDFGenerator
listener. In this case, the implemented event processor will check and use the previous results
attached to this event.

$results = (array)$event->result;
$filePath = Hash::get($results, 'PDFGenerator.generatedPDF');

This gets the generated file path with the PDF contents. The listener will then use this file to
send a new e-mail.

$Email = new CakeEmail();
$Email->template('attachment', 'default')
 ->emailFormat('html')
 ->from(Configure::read('App.defaultSender'))
 ->to(Configure::read('App.defaultRecipient'))

Chapter 8

225

 ->subject(__('Your new package'))
 ->attachments(array('Package.pdf' => $filePath))
 ->send();

Note that we're attaching the PDF file contents to the e-mail sent using
attachments(array('Package.pdf' => $filePath)). Once the e-mail is sent to the
configured user, which in our case is me@example.com, the latest attached listener finishes
its execution, and the application flow continues after the following line:

$this->getEventManager()->dispatch($event);

See also
ff The CakeEmail class is described in detail at http://book.cakephp.org/2.0/

en/core-utility-libraries/email.html

ff The Listeners and subscribers recipe

Event stacking
Once we have the events in place, we could start thinking about dispatching events to an
event queue to let another one process, possibly in a different server, pick up the payload,
and process the task. This is a useful technique to move your background processing away
from the runtime process, thus giving faster response times and allowing resource-intensive
jobs to be queued and executed by an optimized server.

In this recipe, we're going to use the CakeResque plugin to create a job queue, using Redis
and a worker to process your tasks.

Getting ready
First, make sure you have Redis 2.2 or later installed. Check the detailed setup instructions in
the Redis documentation at http://redis.io/.

Then, download and install the CakeResque plugin. We'll do the setup using git and Composer,
but if you're not using git, you can simply download the ZIP file, using the following command,
and place the contents of the plugin in a folder named app/Plugin/CakeResque/:

$ git submodule add git://github.com/kamisama/Cake-Resque.git app/Plugin/
CakeResque

$ cd app/Plugin/CakeResque

$ curl -s https://getcomposer.org/installer | php

$ php composer.phar install

Events System

226

Afterwards, load the plugin in your bootstrap.php file located in app/Config/ using the
following code:

CakePlugin::load('CakeResque', array('bootstrap' => true));
// load CakeResque config overrides
Configure::load('cake_resque');

We'll reuse our database table named packages, shown in the following code, from the
previous recipes:

CREATE TABLE packages (
 id INT NOT NULL AUTO_INCREMENT,
 recipient VARCHAR(255) NOT NULL,
 address VARCHAR(255) NOT NULL,
 created DATETIME,
 modified DATETIME,
 PRIMARY KEY(id)
);

Make sure that you also have a model named Package.php in app/Model/, with the
following content:

<?php
App::uses('AppModel', 'Model');
	
class Package extends AppModel {
}

You should also have a controller named PackagesController.php in app/
Controller/, with the following content:

<?php
App::uses('AppController', 'Controller');

class PackagesController extends AppController {
}

How to do it...
Perform the following steps:

1.	 Add your own config file to tweak the CakeResque parameters in a file named
cake_resque.php in app/Config/. Note that we've copied the default config
file provided in the app/Plugin/CakeResque/Config/ directory:
<?php
$config['CakeResque'] = array(

Chapter 8

227

 'Redis' => array(
 'host' => 'localhost', // Redis server hostname
 'port' => 6379, // Redis server port
 'database' => 0, // Redis database number
 'namespace' => 'resque' // Redis keys namespace
),
 'Worker' => array(
 'queue' => 'default', // Name of the default queue
 'interval' => 5, // Number of second between each poll
 'workers' => 1, // Number of workers to create
 'log' => TMP . 'logs' . DS . 'resque-worker-error.log',
 'verbose' => false
),
 'Job' => array(
 'track' => true
),
 // NOTE: to restart, use
 // echo "all" | Console/cake CakeResque.CakeResque stop &&
Console/cake CakeResque.CakeResque load
 'Queues' => array(
 array(
 'queue' => 'pdf', // Use default values from above for
missing interval and count indexes
 'interval' => 1
),
),
 'Resque' => array(
 'lib' => 'kamisama/php-resque-ex',
 'tmpdir' => App::pluginPath('CakeResque') . 'tmp' . DS
),
 'Env' => array(),
 'Log' => array(
 'handler' => 'RotatingFile',
 'target' => TMP . 'logs' . DS . 'resque.log'
),
 'Scheduler' => array(
 'enabled' => false,
 'lib' => 'kamisama/php-resque-ex-scheduler',
 'log' => TMP . 'logs' . DS . 'resque-scheduler-error.log',
 'Env' => array(),
 'Worker' => array(
 'interval' => 3
),
 'Log' => array(

Events System

228

 'handler' => 'RotatingFile',
 'target' => TMP . 'logs' . DS . 'resque-scheduler.log'
)
),
 'Status' => array(
 'lib' => 'kamisama/resque-status'
)
);

2.	 Add a worker class to process jobs in the PDF queue by creating a file named
PdfShell.php in app/Console/Command/ with the following content:
<?php
App::uses('AppShell', 'Console/Command');

class PdfShell extends AppShell {

 public function main() {
 $this->out($this->getOptionParser()->help());
 }

 public function perform(){
 $this->initialize();
 $this->{array_shift($this->args)}();
 }

 public function processPdfJob() {
 list($modelName, $id) = $this->args;
 $Model = ClassRegistry::init($modelName);
 $Model->id = $id;
 if (!$Model->exists()) {
 throw new OutOfBoundsException(__('%s not found',
$modelName));
 }
 // process PDF generation
 $this->out('<info>Starting PDF Generation...</info>');
 // slow processing takes place here...
 // Save status of the pdf generation to the database
 }
}

3.	 Change your event dispatch logic by adding this code to your events.php
file in app/Config/, creating it if it doesn't already exist:
<?php
App::uses('ClassRegistry', 'Utility');

Chapter 8

229

App::uses('CakeResque', 'CakeResque.Lib');

ClassRegistry::init('Package')->getEventManager()-
>attach(function($event) {
 CakeResque::enqueue('pdf', 'PdfShell', array(
 'processPdfJob',
 $event->subject->alias,
 $event->subject->id
));
}, 'App.Model.Package.afterSave');

4.	 Ensure that your events.php file is loaded in your bootstrap, by adding this line at
the end of your bootstrap.php file in app/Config/:
config('events');

5.	 Make sure that you dispatch a new event in the afterSave() method of the
Package model class:
public function afterSave($created, $options = array()) {
 parent::afterSave($created, $options);
 if ($created) {
 // create a new event
 $event = new CakeEvent('App.Model.Package.afterSave', $this);
 // dispatch the event to the Package event manager
 $this->getEventManager()->dispatch($event);
 }
}

6.	 We'll also add a debug_queue() method to our PackagesController:
public function debug_queue() {
 $result = $this->Package->save(array(
 'Package' => array(
 'recipient' => 'John Smith',
 'address' => 'Collins Ave., Dallas, TX'
)
));
 debug('just saved a new package');
 debug($result);
 $this->_stop();
}

7.	 Start your worker processes with the following command:
$ Console/cake CakeResque.CakeResque load

Loading predefined workers

Starting worker ... Done

Events System

230

8.	 Check that the workers started alright with the following command:

$ Console/cake CakeResque.CakeResque stats

Resque Statistics

--

	

Jobs Stats

 Processed Jobs: 0

 Failed Jobs: 0

Queues Stats

 Queues count: 0

Workers Stats

 Workers count: 1

 REGULAR WORKERS

 * mirror-12:21545: pdf

 - Started on: Wed Jun 04 15:26:26 CEST 2014

 - Processed Jobs: 0

 - Failed Jobs: 0

How it works...
For this recipe, we downloaded the CakeResque plugin and loaded it in our bootstrap.php
file, thus creating a specific file to override the plugin's default configuration.

The configuration in app/Config/cake_resque.php holds the Redis server instance
information. You'll need to tweak this file if your application isn't able to connect to the Redis
server located in your environment. The default values are provided, so you shouldn't have any
issues connecting to Redis as long as it's listening to the connections on localhost:6379.

Note that you should have the Redis server process enabled. Check the Redis documentation
(http://redis.io/topics/quickstart) to start the Redis server in your environment.
Usually, this is done using the following command (in Linux):

$ sudo service redis-server start

Also, note that we defined a new queue in the cake_resque.php file using the following
configuration key:

'Queues' => array(
 array(

Chapter 8

231

 'queue' => 'pdf',
 'interval' => 1
)
)

Here, we're setting a default pdf queue, and setting one second as the polling time to detect
if there are new jobs in the queue that are ready to be processed.

We then added our worker. The worker is a CakePHP console shell that will be executed by
CakeResque when a new job is being processed. The new shell file located in app/Console/
Command/PdfShell.php holds a method to process the PDF generation logic.

This worker also has a perform() method, which is required by the CakeResque plugin, to
adapt the input parameters. This is something managed internally by the CakeResque plugin,
so you only need to worry about configuring this method to be available to all the worker
shells, as stated in the CakeResque setup documentation.

CakeResque will then pass the job parameters as arguments to the shell, so we first need to
get these arguments in our processing logic.

public function processPdfJob() {
 list($modelName, $id) = $this->args;
 $Model = ClassRegistry::init($modelName);
 $Model->id = $id;
 if (!$Model->exists()) {
 throw new OutOfBoundsException(__('%s not found', $modelName));
 }
 // process PDF generation
 $this->out('<info>Starting PDF Generation...</info>');
 // slow processing takes place here…
 // Save status of the pdf generation to the database
}

Here, we get an instance of the model, check if the model exists, and process the PDF
generation logic. We're not dealing with this logic, as the main focus of this recipe is to
learn how to manage a job queue, but you can use our previous PDF generation recipe
if you're interested in generating a real PDF file and attaching it to an e-mail.

The next step then is to configure our event system to enqueue a new job into the Redis job
queue every time an App.Model.Package.afterSave event is triggered. For this, we use the
CakeResque::enqueue() method, passing the queue name, the shell to process the job, and
an array of parameters for the job itself. The first parameter will be the name of the method in
the shell class to process the job, and the rest of the parameters will be passed as arguments to
the processing method. In this case, we're sending the model alias and model ID.

Events System

232

We're going to use the model instance as the subject of the event, so we will pass the
following as parameters, using the alias and id properties of the model instance:

$event->subject->alias,

$event->subject->id

You may have noticed that we attached an anonymous function to the Package event
manager. This function will be executed on the dispatch of any event named App.Model.
Package.afterSave to the Package event manager. So, this code could be read as
"Enqueue a new job into the pdf queue for every new event named App.Model.Package.
afterSave dispatched to the Package event manager":

ClassRegistry::init('Package')->getEventManager()-
>attach(function($event) {
 CakeResque::enqueue('pdf', 'PdfShell', array(
 'processPdfJob',
 $event->subject->alias,
 $event->subject->id
));
}, 'App.Model.Package.afterSave');

The last action that we perform in this recipe is to configure the event dispatching in the
afterSave() callback of the Package model class. Here, we get an instance of the local
event manager and dispatch a new event to it. The event is configured to have the model
instance as the subject (using $this) and the App.Model.Package.afterSave name.

If we start adding packages now, jobs will be enqueued to the pdf job queue, but we need to
start at least one worker to listen to this queue and start processing jobs. This is done from
the command line, using the CakeResque plugin tools:

$ Console/cake CakeResque.CakeResque load

This plugin shell will start one worker for every queue configured in the app/Config/
cake_resque.php file. The worker will be listening for jobs, and as soon as the first job is
enqueued in the pdf queue, it will be processed by the worker.

Now that we have our recipe's code in place, let's recap the application flow.

First, you'll save a new record in the Package model. Once saved, the afterSave() callback
is triggered. We then dispatch a new event to the local event manager as follows:

$event = new CakeEvent('App.Model.Package.afterSave', $this);

Chapter 8

233

Based on the app/Config/events.php configuration file, on dispatch, we enqueue a new
job in the CakeResque pdf queue:

CakeResque::enqueue('pdf', 'PdfShell', array(
 'processPdfJob',
 $event->subject->alias,
 $event->subject->id
));

Here, we're using the following setup:

ff Queue name = pdf

ff Worker shell class name = PdfShell

ff Parameters:

�� The first parameter, processPdfJob, is the name of the function to execute
in our worker shell class

�� The remaining parameters will be passed as a $this->args array to the
worker method

Once this new CakeResque job is enqueued, it's saved into the Redis pdf queue. Then, a
new worker is assigned to process this task (in a separate process). The worker will create
an instance of the PdfShell class and run the processPdfJob method. When the pdf
generation is completed, we could then save the result into a products table to let the
application know that the task is completed and conditionally display a download button
based in the status value.

Testing how it works is simple—just point your browser to /packages/debug_queue and
you'll get output similar to this:

Now, if you check the log, you'll see the following output from your new PdfShell there:

$ cat app/tmp/logs/resque-worker-error.log

Starting PDF Generation...

Events System

234

See also
ff http://cakeresque.kamisama.me

ff http://redis.io

ff https://github.com/nicolasff/phpredis

ff The Generating a PDF recipe from Chapter 10, View Templates

ff The Event-driven process recipe

Managing event priorities
When a new event is dispatched in CakePHP, all the listeners which match the event name
that are attached to the event manager where the event was dispatched will be triggered to
process the event in order. Sometimes, we need to ensure that a specific order is followed
when several listeners are triggered for a specific event. This can be done through the event
manager API. We also have the ability to stop the event propagation and force the rest of the
listeners to be ignored after the current listener finishes.

In this recipe, we look at how you can control the event dispatch process to keep your events
executing accordingly.

Getting ready
We'll continue to use our packages table for this recipe. If you don't have it, create it with the
following SQL statement:

CREATE TABLE packages (
 id INT NOT NULL AUTO_INCREMENT,
 recipient VARCHAR(255) NOT NULL,
 address VARCHAR(255) NOT NULL,
 created DATETIME,
 modified DATETIME,
 PRIMARY KEY(id)
);

Also, make sure that you have the related model file named Package.php in app/Model/
with the following content:

<?php
App::uses('AppModel', 'Model');

class Package extends AppModel {

Chapter 8

235

 public function afterSave($created, $options = array()) {
 parent::afterSave($created, $options);
 if ($created) {
 // create a new event
 $event = new CakeEvent('App.Model.Package.afterSave', $this);
 // dispatch the event to the local event manager
 $this->getEventManager()->dispatch($event);
 }
 }
}

As we've done in the previous recipes, update the existing configuration file for our event
named events.php in app/Config/ with the following content (at least):

<?php
App::uses('ClassRegistry', 'Utility');
App::uses('PDFGenerator', 'Lib/Event');
App::uses('EmailReport', 'Lib/Event');

ClassRegistry::init('Package')->getEventManager()->attach(new
PDFGenerator());
ClassRegistry::init('Package')->getEventManager()->attach(new
EmailAlert());

Then, load your configuration file in your bootstrap.php file, also in app/Config/,
by adding the following to the end of the file:

config('events');

Now, add a new PDFGenerator listener in a file named PDFGenerator.php in app/Lib/
Event/ with the following content:

<?php
App::uses('CakeEventListener', 'Event');

class PDFGenerator extends Object implements CakeEventListener {

 public function implementedEvents() {
 return array(
 'App.Model.Package.afterSave' => 'generatePDF'
);
 }

 public function generatePDF($event) {
 debug('we should be generating a PDF file now ...');
 }
}

Events System

236

Note that we're not generating a PDF file now; this is just a listener example to show you how
to alter the priorities for the listeners attached to the same event.

Also, add a new EmailAlert listener in a file named EmailAlert.php in the same
directory, with the following content:

<?php
App::uses('CakeEventListener', 'Event');

class EmailAlert extends Object implements CakeEventListener {

 public function implementedEvents() {
 return array(
 'App.Model.Package.afterSave' => 'sendEmailAlert'
);
 }

 public function sendEmailAlert($event) {
 debug('we should be sending an email here ...');
 }
}

We'll also create a file named PackagesController.php in app/Controller/ with the
following content:

<?php
App::uses('AppController', 'Controller');

class PackagesController extends AppController {

 public function debug_events() {
 $result = $this->Package->save(array(
 'Package' => array(
 'recipient' => 'John Smith',
 'address' => 'Collins Ave., Dallas, TX'
)
));
 debug('just saved a new package');
 debug($result);
 $this->_stop();
 }
}

Chapter 8

237

How to do it...
Perform the following steps:

1.	 Alter the listener priority for the EmailAlert listener in app/Lib/Event/
EmailAlert.php:
public function implementedEvents() {
 return array(
 'App.Model.Package.afterSave' => array(
 'callable' => 'sendEmailAlert',
 'priority' => 5
)
);
}

2.	 Modify the sendEmailAlert() method to stop any other listener from triggering
after this one:
public function sendEmailAlert($event) {
 debug('we should be sending an email here ...');
 debug('and now we are not processing the PDF generation logic');
 $event->stopPropagation();
}

3.	 After dispatching the event, you might be interested in detecting if the event finished
processing or it was stopped along the way. So, update the afterSave() method in
the Package model class, as shown in the following code:

public function afterSave($created, $options = array()) {
 parent::afterSave($created, $options);
 if ($created) {
 $event = new CakeEvent('App.Model.Product.afterSave', $this);
 $this->getEventManager()->dispatch($event);
 if ($event->isStopped()) {
 debug('event propagation stopped');
 }
 }
}

Events System

238

How it works...
The event managers in CakePHP assign a default priority of 10 to all listeners. You can tweak
the priority to a lower value (higher priority) or a higher value (lesser priority) where required.

In this recipe, we used two listeners attached to the same event named App.Model.
Package.afterSave through the Package model's event manager. The listeners used
are just for testing purposes, as they print a debug message when processing the event.

Saving a package at this point should display the following output:

Here, we changed the priority of the e-mail listener using the following configuration setting in
the app/Lib/Event/EmailReport.php file:

public function implementedEvents() {
 return array(
 'App.Model.Package.afterSave' => array(
 'callable' => 'sendEmailAlert',
 'priority' => 5
)
);
}

Note that the array sets the priority and the callable public function, which is implemented in
this listener class to process the event.

Chapter 8

239

After this, we modified the called method for the event and stopped the event propagation
using the stopPropagation() method:

public function sendEmailAlert($event) {
 debug('we should be sending an email here ...');
 debug('and now we are not processing the PDF generation logic');
 $event->stopPropagation();
}

After calling this method, any subsequent events would not be triggered.

We also added a detection in the Package model to check whether the dispatch method
is running successfully or has been stopped along the way in the afterSave() callback
method of our Package model:

$this->getEventManager()->dispatch($event);
if ($event->isStopped()) {
 debug('event propagation stopped');
}

Saving a new package will now display the following debug messages:

As you can see, the PDFGenerator listener was not processed, and we've detected that the
event was stopped.

Defining priorities can sometimes be tricky, as the configuration is scattered throughout
the listener classes. Another option is to have all of your event configuration in one file,
using anonymous listeners and packing them into one single events.php file in
app/Config/, for example:

<?php
App::uses('ClassRegistry', 'Utility');

Events System

240

App::uses('EmailAlert', 'Lib/Event');

//Attaching anonymous Listener, including priority
ClassRegistry::init('Product')->getEventManager()-
>attach(function($event) {
 $EmailAlert = new EmailAlert();
 return $EmailAlert->sendEmailAlert($event);
}, 'App.Model.Product.afterSave', array('priority' => 5));

See also
ff The Event-driven process recipe

9
Creating Shells

In this chapter, we will cover the following topics:

ff Console API

ff Import parser

ff Running cron shells

ff Using the I18n shell

Introduction
While CakePHP is a framework aimed at developing web applications, it also exposes
a feature-rich console API to build shell-based scripts. These can be used for anything,
from filesystem tasks, to database- and process-intensive operations.

In this chapter, we'll outline some common use cases when using shell tasks, as well as
some built-in shell commands that come with the framework.

Console API
CakePHP provides a rich console API to let you create and reuse specific project tasks that
are more suited to being executed in a console environment. Keep in mind that when running
commands from shell, you're not restricted by the same limitations the web server typically
puts on server resources such as memory use and execution time. You can also have a less
restrictive PHP configuration for your CLI environment, allow additional PHP extensions,
and do more.

In this recipe, we'll create a new console shell and task to explore some of the features of the
console shell API. Note that we'll be using a shell named PdfShell as an example, but no
real PDF generation will happen.

Creating Shells

242

How to do it...
Perform the following steps:

1.	 First, update our existing file named PdfShell.php in app/Console/Command/
with the following content:
<?php
App::uses('AppShell', 'Console/Command');

class PdfShell extends AppShell {

 public $tasks = array('Generate');

 public function main() {
 $this->out($this->getOptionParser()->help());
 }

 public function getOptionParser() {
 $parser = parent::getOptionParser();
 return $parser->description('My App PDF Shell')
 ->addSubcommand('generate', array(
 'help' => __('Generates a new PDF file'),
 'parser' => $this->Generate->getOptionParser()
));
 }
}

2.	 Then, create a new task in a file named GenerateTask.php in app/Console/
Command/Task/:
<?php
App::uses('AppShell', 'Console/Command');
App::uses('String', 'Utility');

class GenerateTask extends AppShell {

 public $tasks = array('Generate');

 public function execute() {
 $modelName = $this->args[0];
 $id = $this->args[1];
 $Model = ClassRegistry::init($modelName);
 $Model->id = $id;
 if (!$Model->exists()) {

Chapter 9

243

 throw new OutOfBoundsException(__('%s not found',
$modelName));
 }
 // process PDF generation
 $this->out('<info>Starting PDF Generation...</info>');
 }

 public function getOptionParser() {
 $parser = parent::getOptionParser();
 return $parser->description('Generate a PDF file')
 ->addArgument('model', array(
 'required' => true,
 'help' => __('Model name, example: Package')))
 ->addArgument('id', array(
 'required' => true,
 'help' => __('ID of the model being generated')))
 ->addOption('output', array(
 'short' => 'o',
 'default' => APP . 'files' . DS . String::uuid() . '.pdf',
 'help' => __('Full path for the output PDF file to be
generated')
)
);
 }
}

3.	 Now, show the help for your new console shell with the following command:
$ Console/cake pdf

Welcome to CakePHP v2.5.2 Console

--

App : myapp

Path: /home/user/myapp/

--

My App PDF Shell

Usage:

cake pdf [subcommand] [-h] [-v] [-q]

Subcommands:

Creating Shells

244

generate Generates a new PDF file

To see help on a subcommand use 'cake pdf [subcommand] --help'

Options:

--help, -h Display this help.

--verbose, -v Enable verbose output.

--quiet, -q Enable quiet output.

4.	 Also show help for your new PDF task:
$ Console/cake pdf generate -h

Welcome to CakePHP v2.5.2 Console

--

App : myapp

Path: /home/user/myapp/

--

Generate a PDF file

Usage:

cake pdf generate [-h] [-v] [-q] [-o /home/user/myapp/
files/538c7082-a578-4982-893d-24e3ebcde0a1.pdf] <model> <id>

Options:

--help, -h Display this help.

--verbose, -v Enable verbose output.

--quiet, -q Enable quiet output.

--output, -o Full path for the output PDF file to be generated

 (default:

 /home/user/myapp/files/538c7082-a578-4982-893d-
24e3ebcde0a1.pdf)

Arguments:

model Model name, example: Package

id id of the model being generated

Chapter 9

245

5.	 Finally, run your shell from the command line:

$ Console/cake pdf generate Package 1

Welcome to CakePHP v2.5.2 Console

--

App : myapp

Path: /home/user/myapp/

--

Starting PDF Generation...

How it works...
In this recipe, we've created a new Shell as well as a specific Task to generate PDF files
from the command line.

Using Tasks to encapsulate shell logic allows you to keep your classes clean and focused,
instead of writing a super-long file with all of the PDF-related features packed inside.
The parent class, PdfShell, holds all of the logic related to PDF files, but we could
also generate tasks and reuse them in other Shell classes.

Using the out() method is the correct way to send data to the console's standard output.
The out() method allows formatting and is compatible with color terminals.

Here, we also overwrote the getOptionParser() method in our main PdfShell
and GenerateTask classes to provide context-sensitive help and validate the console
input parameters:

ff At the PdfShell level, we're specifying one available subcommand

ff At the GenerateTask level, we're providing validation for our two required
arguments, model and id, and setting an output option with a default value

Command-line arguments are processed in order. We can access these arguments from
the $this->args array, starting at position 0 for the first argument, model, and position 1
for id.

Options can also be set using long and short formats, for example:

$ Console/cake pdf generate --output ./out.pdf Package 1

$ Console/cake pdf generate Package 1 -o ./out.pdf

Additionally, options can have a default value. In our recipe, the output file is set as default.
Of course, the default value can be overridden by the --output argument.

Creating Shells

246

Shells in CakePHP use the main() method as the default entry point. In our case, we're
printing the autogenerated help text to the standard output, as shown in the following code:

public function main() {
 $this->out($this->getOptionParser()->help());
}

You're also free to use models, third-party vendor libraries, or any other resource from our
application. In our example, we used ClassRegistry to get a dynamic instance of a model
alias passed as a console argument.

Remember that you can also output styled text to the console, using any of the predefined
styles: <error>, <warning>, <info>, <comment>, or <question>. You can even define
new styles to be used, for example:

$this->out('<info>Starting PDF Generation...</info>');

See also
ff More info on the CakePHP console API can be found at http://book.cakephp.

org/2.0/en/console-and-shells.html

Import parser
One benefit of using shells in CakePHP is to handle process-intensive tasks, which take a long
time to run. In this recipe, we'll create a CakePHP console shell to deal with a mass CSV data
import. We'll process a data file and import all rows, while logging import errors to another file.

Getting ready
As this is the only task in our shell, we're not using Task this time.

First, if you don't have it already, create the packages database table using the following
SQL statement:

CREATE TABLE packages (
 id INT NOT NULL AUTO_INCREMENT,
 recipient VARCHAR(255) NOT NULL,
 address VARCHAR(255) NOT NULL,
 created DATETIME,
 modified DATETIME,
 PRIMARY KEY(id)
);

Chapter 9

247

Then, create the associated model in a file named Package.php in app/Model/ with the
following content:

<?php
App::uses('AppModel', 'Model');

class Package extends AppModel {
}

How to do it...
Perform the following steps:

1.	 Create a file named ImportShell.php in app/Console/Command/ to
import CSV files with the following code:
<?php
App::uses('AppShell', 'Console/Command');

class ImportShell extends AppShell {

 public function main() {
 $this->out($this->getOptionParser()->help());
 }

 public function getOptionParser() {
 $parser = parent::getOptionParser();
 return $parser->description('Import shell')
 ->addArgument('inputFilePath', array(
 'required' => true,
 'help' => __('Full path for the input file')))
 ->addArgument('model', array(
 'required' => true,
 'help' => __('Model name')))
 ->addSubcommand('csv', array(
 'help' => __('Import a CSV file'),
)
);
 }

 public function csv() {
 list($inputFilePath, $modelName) = $this->args;
 $Model = ClassRegistry::init($modelName);
 $file = new File($inputFilePath);

Creating Shells

248

 if (!$file->exists() || !$file->open()) {
 throw new OutOfBoundsException(__('File %s does not exist',
$inputFilePath));
 }
 $errorFile = new File($inputFilePath . '.error.log');
 $this->out(__('Start CSV import: %s', $inputFilePath));
 $db = $Model->getDataSource();
 $db->begin($Model);
 $headers = fgetcsv($file->handle);
 while (($row = fgetcsv($file->handle)) !== false) {
 $data = array();
 foreach ($row as $index => $fieldValue) {
 $header = $headers[$index];
 $data[$header] = $fieldValue;
 }
 $Model->create();
 $Model->set($data);
 if (!$Model->validates()) {
 $errorFile->append(__('error in line "%s", %s', $index,
print_r($Model->validationErrors, true)));
 } else {
 $Model->save($data);
 }
 }
 $db->commit($Model);
 $this->out(__('End import CSV'));
 }
}

2.	 Then, display the help for your new Console shell with the following command:
$ Console/cake import

Import shell

Usage:

cake import [subcommand] [-h] [-v] [-q] <inputFilePath> <model>

Subcommands:

csv Import a CSV file

Chapter 9

249

To see help on a subcommand use 'cake import [subcommand] --help'

Options:

--help, -h Display this help.

--verbose, -v Enable verbose output.

--quiet, -q Enable quiet output.

Arguments:

inputFilePath Full path for the input file

model Model name

3.	 Now, edit a new CSV file named newPackages.csv, introducing the
following content:
"recipient","address"
"recipient 91","address 91"
"recipient 92","address 92"

4.	 Finally, import the new file with the following command:

$ Console/cake import csv newPackages.csv Package

Welcome to CakePHP v2.5.2 Console

--

App : myapp

Path: /home/user/myapp/

--

Start import CSV: newPackages.csv

End import CSV

How it works...
In this recipe, we created an import shell to process valid records, reading them from a
(potentially) large CSV file. In this Shell, there's only one subcommand available: csv.
Both the file path and the model name are passed as required arguments to our console
Shell, allowing us to use this shell with any model in our application.

Creating Shells

250

If we look at the following code for the app/Console/Command/ImportShell.php file,
we defined a main entry point, displaying the help for this shell if no task is defined:

public function main() {
 $this->out($this->getOptionParser()->help());
}

Then, we implemented the getOptionParser() method to provide context-sensitive help
for our shell.

The main task implemented is the csv() method, which is divided into various blocks of
logic, as seen in the following code:

list($inputFilePath, $modelName) = $this->args;
$Model = ClassRegistry::init($modelName);
$file = new File($inputFilePath);
if (!$file->exists() || !$file->open()) {
 throw new OutOfBoundsException(__('File %s does not exist',
$inputFilePath));
}
$errorFile = new File($inputFilePath . '.error.log');
$this->out(__('Start import CSV: %s', $inputFilePath));

Here, in this fist block, we use the arguments passed to the console task. The first argument
passed will be the input file path and then the model name to import the data into. We then
get an instance to the model using ClassRegistry::init($modelName), after which we
check if the input file exists in the filesystem, and we throw an exception if it is not found.

We also prepare a new file handler to use in case of validation errors found while importing
the CSV file.

$db = $Model->getDataSource();
$db->begin($Model);
$headers = fgetcsv($file->handle);
while (($row = fgetcsv($file->handle)) !== false) {
 $data = array();
 foreach ($row as $index => $fieldValue) {
 $header = $headers[$index];
 $data[$header] = $fieldValue;
 }

Chapter 9

251

In this second block, we start a database transaction to ensure that the entire import
operation, or nothing, will be executed. For this, we call $db->begin($Model) and prepare
a $data array with the contents to be saved. Based on the headers present in the CSV file
(the first line), we'll define the $data keys in the array (as shown in the following code), so
it's important to match the CSV header line columns with the model fields to be saved, in this
case, "address" and "recipient":

 $Model->create();
 $Model->set($data);
 if (!$Model->validates()) {
 $errorFile->append(__('error in line "%s", %s', $index,
print_r($Model->validationErrors, true)));
 } else {
 $Model->save($data);
 }
}
$db->commit($Model);
$this->out(__('End import CSV'));

Then, in the last block, we call $Model->set($data) to prepare the model data for
validation and check that the data is valid to be saved. If we find validation errors, we append
the resulting errors in $Model->validationErrors to the error logfile, and if not, we save
our model to the database.

Once all of the CSV rows are processed, we issue $db->commit($Model) to commit the
transaction, and save only the valid models.

See also
ff The Using Transactions recipe from Chapter 6, Model Layer

Running cron shells
Another typical scenario to use CakePHP console shells is to implement a data warehouse
and a time-intensive and recurring task.

In this recipe, we'll create a recurring job to calculate our package ratings, based on some
complex logic.

Creating Shells

252

Getting ready
For this recipe, we'll assume that you have a packages table and the related model that we
created in our previous recipe. However, we'll also add a new column to store our ratings per
package with the following SQL statement:

ALTER TABLE packages ADD rating INT(20) UNSIGNED NOT NULL DEFAULT '0';

How to do it...
Perform the following steps:

1.	 First, create a file named RatingShell.php in app/Console/Command/ with the
following content:
<?php
App::uses('AppShell', 'Console/Command');

class RatingShell extends AppShell {

 public function main() {
 $this->out($this->getOptionParser()->help());
 }

 public function getOptionParser() {
 $parser = parent::getOptionParser();
 return $parser->description('Rating Shell')
 ->addSubcommand('calculate', array(
 'help' => __('Calculate ratings'),
)
);
 }

 public function calculate() {
 $this->_checkLockFile();
 try {
 $Package = ClassRegistry::init('Package');
 // potentially slow operation, data intensive
 $status = $Package->calculateRatings();
 } catch (Exception $e) {
 $this->_removeLockFile();
 throw $e;
 }

Chapter 9

253

 $this->_removeLockFile();
 return $status;
 }

 protected function _checkLockFile() {
 $lock = $this->_getLockFile();
 if ($lock->exists()) {
 $this->error('Job is already working, please wait until
calculate job finishes');
 }
 $lock->create();
 }

 protected function _getLockFile() {
 return new File(TMP . 'RatingShell.calculate.lock');
 }

 protected function _removeLockFile() {
 $lock = $this->_getLockFile();
 $lock->delete();
 }
}

2.	 Then, in the file named Package.php in app/Model/, add the following methods:
public function calculateRatings() {
 $totalPackages = $this->find('count');
 $index = 0;
 while ($index < $totalPackages) {
 $package = $this->find('first', array(
 'fields' => array(
 'id'
),
 'recursive' => -1,
 'limit' => $totalPackages,
 'page' => 0,
 'offset' => $index
));
 $this->calculateRating(Hash::get($package, 'Package.id'));
 $index++;
 }
 return true;
}

public function calculateRating($packageId) {
 // your complex rating calculation logic here...
}

Creating Shells

254

3.	 Now, schedule a new cronjob to run your shell. For this, we'll use a standard Linux
distribution as an example:
$ crontab -e

#add this line to the end of the file

0 * * * * cd /home/user/myapp && Console/cake rating
calculate 2>> /home/user/myapp/tmp/myapp.cron.log > /dev/null

4.	 Finally, press Ctrl + X and then S to save changes, and apply the new crontab.

How it works...
Dealing with time-intensive tasks that need to run periodically in your system is always
tricky. You need to ensure that your job keeps running and that you don't consume too
many resources along the way.

In this recipe, we've created a Shell task with a calculate() method, as well as a couple
of utility methods to take care of the following:

ff _checkLockFile() will detect if a lock file exists and create a lock file if not

ff _removeLockFile() will remove the current lock file

ff _getLockFile() will get the name of the lock file

In this case, we've implemented a simple lock file check, to detect if there's another
instance of this job running, so as to not overlap. Note that you could use environment-specific
options for this too, such as the Flock tool in Linux. Here, we've used a CakePHP-specific
solution, based on a lock file under the tmp/ folder. It's not 100 percent perfect, but it will
save the day.

In the calculate() method, we're using the related Package model, as it is a part of our
business, to delegate the rating calculation logic. We're following the "fat models" mantra this
time, by moving all of our business logic to our model layer. This will help us unit test our code
and keep it reusable and organized.

By looking over the logic from the calculateRatings() method in app/Model/Package.
php, even if it's slower, it's important that we process all of the packages one by one to prevent
future out of memory errors when the packages table becomes (possibly) huge. If speed is
important, which it almost always is, we could add an is_rating_modified field to our
packages table to filter and process only the changed packages. Although this scenario has
served to show how cron shells can work in CakePHP, the best approach here would be to use a
worker queue and push a new job when the Package rating needs an update.

Chapter 9

255

See also
ff The Flock tool for Linux and file-locking information can be found at

http://en.wikipedia.org/wiki/File_locking

ff The Event stacking recipe from Chapter 8, Events System

Using the I18n shell
CakePHP provides a powerful console shell to help you in the first steps of internationalizing
your application. Addressing i18N is not an easy task, as there are many details to consider,
such as dates and times, number and currency formats, dynamic content translation, and
distinct dialects.

In this recipe, we're going to use the CakePHP I18n shell to prepare our application for
translations with a simple flash message example.

Getting ready
First, we'll define a base language for our application. For this, we'll assume the base
language will be English. All of your static content will then be displayed using any of
the __() functions.

We'll assume you have the gifts and recipients tables created from our previous
recipes, but also ensure that you create all of the CRUD-related classes using the bake
shell as follows:

Console/cake bake all Gift

Console/cake bake all Recipient

Then, in your app/Controller/RecipientsController.php file, add the
following method:

public function translations() {
 $defaultLang = Configure::read('Config.language');
 // switch to use English
 Configure::write('Config.language', 'eng');
 $message = __('This is my message') . ' in english';
 // switch to use Spanish
 Configure::write('Config.language', 'spa');
 $message .= '
' . __('This is my message') . ' en español';
 $this->Session->setFlash($message);
 Configure::write('Config.language', $defaultLang);
 return $this->redirect(array('action' => 'index'));
}

Creating Shells

256

Note that when running this action, initially, you'll get a flash message with incorrect content:

This is my message in english

This is my message en español

How to do it...
Perform the following steps:

1.	 Run the i18n shell to extract all the translation keys with the following command:
$ Console/cake i18n extract --exclude-plugins --merge no
--extract-core no

Welcome to CakePHP v2.5.2 Console

--

App : myapp

Path: /home/user/myapp

--

Current paths: None

What is the path you would like to extract?

[Q]uit [D]one

[/home/user/myapp/] >

Current paths: /home/user/myapp/

What is the path you would like to extract?

[Q]uit [D]one

[D] > d

What is the path you would like to output?

[Q]uit

[/home/user/myapp/Locale] >

Chapter 9

257

Extracting...

--

Paths:

/home/user/myapp/

Output Directory: /home/user/myapp/Locale/

--

Processing /home/user/myapp/Controller/RecipientsController.php...

Processing /home/user/myapp/Model/AppModel.php…

…

…

…

Error: default.pot already exists in this location. Overwrite? [Y]
es, [N]o, [A]ll (y/n/a)

[y] > y

Done.

2.	 Now, create the following directories for your available languages:

�� app/Locale/eng/LC_MESSAGES

�� app/Locale/spa/LC_MESSAGES

3.	 Then, copy the .pot template file generated into the following available language
directories as .po (notice the output file extension is .po and not .pot):

�� app/Locale/eng/LC_MESSAGES/default.po

�� app/Locale/spa/LC_MESSAGES/default.po

4.	 Edit the spa language file, and provide a translation to key for this message:
#: Controller/RecipientsController.php:124;127
msgid "This is my message"
msgstr "Este es mi mensaje"

Creating Shells

258

5.	 Finally, navigate to /recipients/translations in your browser to check the
translated messages, as shown in the following screenshots:

Chapter 9

259

Creating Shells

260

How it works...
Once your application is using the __() functions, it's easy to use the i18n console shell to
extract the translation keys. The shell uses several options to restrict the folders to be parsed
or to ignore translation keys from plugins or specific translation domains.

In this recipe, we used the following options:

ff --exclude-plugins to ignore plugin translations

ff --merge no to keep translation keys from different domains in separate files

ff --extract-core no to ignore translation keys from the CakePHP core files

The shell will now parse each file under the selected directory and generate the app/
Locale/default.pot file, with all of our translation keys ready to be processed.

Once we move the template .pot file to each of our available language directories,
we can proceed to translate each key. As our default language is English, we can ignore
the /eng directory, as the translation keys are the English translated values.

We then proceed to translate all our keys to Spanish, where we can use the Poedit tool,
and benefit from automated fuzzy translations based on our previously translated keys.
Please check the Poedit documentation to set up and use the tool in your system.

Once we finish editing the .po file per language, we then only need to set up or switch to a
language, using the following configuration setting:

Configure::write('Config.language', 'spa');

If the language file is not found or the specific key is empty, the key will be used in its place.
As we're using English as the base language to create our keys, the text will be displayed in
English. For example, consider the following code:

echo __('this key does not exist in translation file or language not
found');

This code would output the following:

this key does not exist in translation file or language not found

Chapter 9

261

See also
ff Learn more on internationalization of CakePHP applications at http://book.

cakephp.org/2.0/en/core-libraries/internationalization-and-
localization.html

ff The Poedit tool (http://poedit.net)

ff The Translations recipe from Chapter 10, View Templates

10
View Templates

In this chapter, we will cover the following topics:

ff Using blocks

ff Building an XML view

ff Generating a PDF

ff Writing some PDF content to a file

ff Translations

ff View caching

ff The AssetCompress plugin

Introduction
Views are files that render the final output for a user to possibly be consumed by a service.
They can be plain text, HTML, XML, JSON, or even a format that you define for your application.
In CakePHP, these files are stored in a directory, which by convention is named after the
controller it belongs to, with the .ctp extension in app/View/.

Using blocks
View blocks are snippets of content, which are captured at runtime, and then manipulated
and rendered to a view.

In this recipe, we'll look at how to extend a view, and then use view blocks to populate certain
areas of it.

View Templates

264

Getting ready
For this recipe, we'll reuse the existing controller, which is ProductsController.
If you don't have it, create a file named ProductsController.php in app/Controller/,
and introduce the following content:

<?php
App::uses('AppController', 'Controller');

class ProductsController extends AppController {
}

Then, we'll create a base view, which we'll extend with our view. Create a file named
base.ctp in app/View/Common/, and add the following content:

<h2><?php echo h($this->fetch('name')); ?></h2>
<div>
 <?php echo $this->fetch('content'); ?>
</div>

How to do it...
Perform the following steps:

1.	 First, add a details() method to ProductsController with the following
content:
public function details() {
 $this->set(array(
 'product' => 'Chocolate Cake',
 'details' => 'An awesome product!'
));
}

2.	 Then, create a file named details.ctp in app/View/Products/ with the
following content:
<?php
$this->extend('/Common/base');
$this->assign('name', $product);
?>
<p>
 <?php echo $this->get('details', __('No details found')); ?>
</p>

Chapter 10

265

3.	 Navigate to /products/details in your browser to view the resulting output,
as shown in the following screenshot:

How it works...
Here, we first created an action in our ProductsController to define some view variables
for use in our view. We then created a view for the action, following the conventions of file
naming. It's worth noting that when using the set() method in a controller, you can pass two
arguments: the first is the name of the view variable and the second is its value. Also, as we
did here, we can pass an associative array, where the key is the variable name and the value
is its corresponding value.

In our details.ctp view, the first thing we did was extend the base.ctp file in app/View/
Common/ using the View::extend() method. This informed the framework that we expect
to build on the content of the view, populating the blocks it provides and contemplating the
rest of our view as the content for the content block. Beware that there are certain block
names that CakePHP handles by convention. For example, the content block is used to
capture the view content for the layout and the content inherited through extended views. The
title, meta, css, and script blocks are also used by the default layout to render the title
of the page and the <meta>, <link>, and <script> HTML tags.

After extending the base.ctp view, we assigned a value to the name block. You'll notice that
although we assigned this value from the details.ctp view by calling View::assign(),
the resulting value populates in the extended view, as it extends a parent view that renders
this block using View::fetch().

We finally rendered some additional HTML in our view, also using the $details variable we
set from our controller. In this case, we used the View::get() method instead of reading
the variable directly, and thus we could define a second argument. This is used as a default
value if the $details variable is not set. This will then allow us to handle the situation where
a product exists, but it may not have any detail defined. This HTML content is then stored in
the content block, which is rendered in the parent view via View::fetch().

View Templates

266

Extending views and using the block API is a powerful way to cut down on code in the view
layer of your application, and it avoids repeating content elements unnecessarily. The ability to
simply update content through blocks also allows you to easily create dynamic areas of your
application, which reacts with the current being rendered. It's also good to know that there
is no limit to extending views, so the complexity of your application can be assumed by the
framework without issue.

Building an XML view
You may want to return your data at some point in a format other than HTML. For this,
CakePHP comes with the ability to use data views. By default, the framework includes data
view for XML, JSON, and RSS, but you can also build your own, handling content as required
by your output format.

In this recipe, we'll use XmlView to generate an XML output of some records from a model.

Getting ready
We first need a table of data to work with. Create a table named news using the following
SQL statement:

CREATE TABLE news (
 id INT NOT NULL AUTO_INCREMENT,
 title VARCHAR(50),
 summary TEXT,
 created DATETIME,
 PRIMARY KEY(id)
);

Then, run the following SQL statement to insert some news into our table:

INSERT INTO news (title, summary, created)
VALUES
('CakePHP on top', 'Nominated as the best framework!', NOW()),
('Facebook buys Twitter', 'Mark becomes the first zillionaire',
NOW()),
('The Larry peak', 'Founder of CakePHP admits beer helped his code',
NOW());

Before we start, we'll need to create a file named NewsController.php in app/
Controller/, and then add the following content:

<?php
App::uses('AppController', 'Controller');

class NewsController extends AppController {
}

Chapter 10

267

How to do it...
Perform the following steps:

1.	 First, locate your routes.php file in app/Config/, and add the following line
before any other code:
Router::parseExtensions('xml');

2.	 Then, add a $components property and load the RequestHandler component in
the NewsController.php file, as shown in the following code:
public $components = array('RequestHandler');

3.	 In the same controller, add the following latest() method:
public function latest() {
 $this->set(array(
 'news' => $this->News->find('all'),
 '_serialize' => 'news',
 '_rootNode' => 'latest'
));
}

4.	 Now, navigate to /news/latest.xml in your browser to view the XML output, as
shown in the following screenshot:

View Templates

268

How it works...
In this recipe, we first set up our router to parse the .xml extension. This hooks up
XmlView whenever a URL is called with this extension appended to it. We also added the
RequestHandler component to NewsController, which is needed to handle the view.

We then created a latest() method on the controller to provide an action that returns the
headlines. Here, we called the find() method on our News model (which we don't have
actually, CakePHP created and configured an instance of AppModel for us), using the all
find type to retrieve all records. We also defined a _serialize key with the value of news.
This view variable determines if view variables are serialized for use with data views. The
value of this variable can be a string with the name of another view variable, or an array of
various view variables defined using the set() method in the controller.

Here, we also defined a _rootNode key with the value of latest. This is another special
view variable, which allows you to specify the name of the root node used in the XML output.
If this value is not specified, the framework will use <response> by default.

See also
ff The Parsing extensions recipe from Chapter 3, HTTP Negotiation

ff The Generating a PDF recipe

Generating a PDF
There comes a time when you'll want to create a PDF document in many applications. In this
recipe, we'll look at how to output some content in a PDF document.

Getting ready
For this recipe, we'll use a plugin called CakePdf, which can be found at https://github.
com/ceeram/CakePdf.

The contents of this plugin should be added to app/Plugin/CakePdf/ and loaded
by the application. To do so, add the following code to your bootstrap.php file located
in app/Config/:

CakePlugin::load('CakePdf', array(
 'bootstrap' => true,
 'routes' => true
));

Chapter 10

269

Then, we need a controller to generate a PDF document. Create a file named
ReportsController.php in app/Controller/, and introduce the following content:

<?php
App::uses('AppController', 'Controller');

class ReportsController extends AppController {
}

Then, we'll set up some configuration options for the plugin. The most important of all is the
PDF engine we want to use, as the plugin provides a few. For this example, we'll use dompdf.
So, we'll add the following code to bootstrap.php, where we previously loaded our plugin:

Configure::write('CakePdf', array(
 'engine' => 'CakePdf.DomPdf',
 'download' => true // forces PDF file download
));

Finally, we'll also create a PDF layout file named report.ctp in app/View/Layouts/
pdf/, and then create a view file named download.ctp in a directory named app/View/
Reports/pdf/ that we'll create.

How to do it...
Perform the following steps:

1.	 First, in ReportsController, add a $components property and load the
RequestHandler component, as shown in the following code:
public $components = array('RequestHandler');

2.	 In the same controller, add a $layout property because we don't want to use a
default one, as shown in the following code:
public $layout = 'report';

3.	 Also, in the same controller, add the following download() method:
public function download() {
 $this->pdfConfig = array(
 'filename' => 'report.pdf'
);
 $this->set('report', array(
 array('Cake', 1337, 999),
 array('Cookie', 123, 0),
 array('Helper', 101, 69)
));
}

View Templates

270

4.	 Then, enter the following content into your report.ctp layout file in app/View/
Layouts/pdf/:
<div id="pdf">
 <h1><?php echo __('Report'); ?></h1>
 <?php echo $this->fetch('content'); ?>
</div>

5.	 Finally, introduce the following code into your download.ctp view file in app/View/
Reports/pdf/:
<table>
 <?php
 echo $this->Html->tableHeaders(array(
 __('Product'),
 __('Stock'),
 __('Sales')
));
 echo $this->Html->tableCells($report);
 ?>
</table>

6.	 Navigate to /reports/download.pdf in your browser to download the generated
PDF, which will then look like the following screenshot:

How it works...
The first thing we did in this recipe was to add the RequestHandler component, which is
required by the CakePdf plugin. We then created a download() method to expose an action
that allows a report to be downloaded. In this case, we set up some additional options for the
plugin, specifically the filename of the generated content to download. There are numerous
other options available, such as pageSize, orientation, and margin.

Chapter 10

271

You can also overwrite the settings that we previously defined from our bootstrap.php file.
The data we defined for the report was static in this example, but it could easily have been
retrieved from a model, or even via an API to an external source (for example, when pulling
data for the report from a third party).

We then added some HTML to our report.ctp layout file for the PDF. You'll notice that we
used the View::fetch() method to load the content block. This contains the content
from the view; in this case, the generated content from the PDF view. Our download.ctp
view then created the HTML table for the report data. Here, the Html helper did the work of
building the required HTML for the table rows and cells through the tableHeaders() and
tableCells() methods.

For both the layout and the view, you saw that we placed these files in a pdf/ directory.
This is a convention used when dealing with extensions; in this case, .pdf. Additionally,
remember that PDF documents expect to work with absolute URLs. You can also handle
this by setting the full URL base for images and files, or you can use the <base> element
in your HTML document.

Writing some PDF content to a file
You may want to create a PDF and save it to a file on your server. The CakePdf plugin can
handle this with just the few following lines of code:

App::uses('CakePdf', 'CakePdf.Pdf');

$CakePdf = new CakePdf();
$CakePdf->template('example', 'report');
$CakePdf->write(WWW_ROOT . 'files' . DS . 'report.pdf');

First, we create an instance of the CakePdf class. The template() method then lets you
define the view to use, followed by the optional layout. Note that the view, in this case, will be
located in app/View/Pdf/.

If you wanted to handle the PDF output some other way, you can use the output() method
on the CakePdf class to return the raw output that was generated.

See also
ff The Including a plugin recipe from Chapter 1, Lightning Introduction

ff The Using blocks recipe

View Templates

272

Translations
Offering your content in various languages is an important step many applications face
at some point in their life cycle. Fortunately for you, CakePHP comes well prepared for
internationalized applications.

In this recipe, we'll look at how to handle translations in your views, showing the various
functions available to deal with different scenarios, and provide a simple interface to the
framework's I18n class.

Getting ready
For this recipe, we will create ArticlesController to display a list of articles. So, create a
file named ArticlesController.php in app/Controller/ with the following content:

<?php
App::uses('AppController', 'Controller');

class ArticlesController extends AppController {
}

We'll also need a table of articles, so create one with the following SQL statement:

CREATE TABLE articles (
 id INT NOT NULL AUTO_INCREMENT,
 title VARCHAR(100),
 content TEXT,
 created DATETIME,
 PRIMARY KEY(id)
);

Also, create some articles using the following SQL statement:

INSERT INTO articles (title, content, created)
VALUES
('Rapid application development', 'Article content ...', NOW()),
('How to upload files', 'Article content ...', NOW()),
('Creating a plugin', 'Article content ...', NOW());

Finally, create an index.ctp view file in app/View/Articles/.

Chapter 10

273

How to do it...
Perform the following steps:

1.	 Create an index() method in your ArticlesController.php file with the
following code:
public function index() {
 $articles = $this->Article->find('all');
 $count = count($articles);
 $this->set(compact('articles', 'count'));
}

2.	 Then, open your index.ctp file in app/View/Articles/, and introduce the
following content:
<h2><?php echo __d('articles', 'Latest Articles'); ?></h2>
<p>
 <?php echo __dn('articles', 'There is %s article', 'There are %s
articles', $count, $count); ?>
</p>
<?php echo $this->Html->nestedList(Hash::extract($articles, '{n}.
Article')); ?>

3.	 Now, navigate to /articles in your controller to view the generated content, as
shown in the following screenshot:

View Templates

274

How it works
In this recipe, we set up a simple example that demonstrates the usage of the translation
functions in CakePHP. We first created an index() method that reads the all records from
our articles table through the find() method of the autogenerated Article model. We
also used the count() function to give us the number of records returned. Also, there's a
count find type, which we could call with $this->Article->find('count'); however,
this would incur an additional hit to our database, which is unnecessary when we already
have the results from the previous query.

We then created a view for our action, which first used the __d() function to print out the
Latest Articles header. This is similar to the __() function you saw in other recipes,
except that it allows the translated message to be defined under a domain. Here, the first
argument is the domain, which in this case we called articles. This doesn't necessarily
have to match with the controller or the model, but it should be a logical container for the
message. When no domain is specified, the default domain is assumed. The message is
then the second argument, which is the element that is translated. This is a sprintf formatted
string, which can take additional arguments as an optional third argument.

For example, if you wanted to show a message that includes the user's name, you could run
the following code:

<?php echo __d('example', 'Hello, %s', 'Mark'); ?>

This results in Hello, Mark being printed to the view. All translation functions use a sprintf
formatted string as their message, allowing any value to be easily injected. These messages
are stored in files located in app/Locale/. See the recipe Using the I18n shell, in Chapter 9,
Creating Shells, for details on how to generate translation files.

After this, we used the __dn() function to print the number of articles available. This is used
to dynamically show a singular or plural message, based on a provided value. It works similar
to the __d() function, except that it accepts five arguments. The first is the domain, which
acts the same as before. The second and third arguments are the singular and plural versions
of the message, which are displayed based upon the fourth argument, which is the number
of records or items. The fifth argument is the values to use in the sprintf formatted messages.
Finally, we made use of the nestedList() method of the Html helper to quickly render a
list of our slightly reformatted array of articles.

There are three more translation functions to make a note of: __c(), __dc(), and __dcn().
These act similar to __(), __d(), and __dn(), except that they allow for a category to be
specified. The categories are defined as constants of the I18n class.

ff I18n::LC_ALL

ff I18n::LC_COLLATE

Chapter 10

275

ff I18n::LC_CTYPE

ff I18n::LC_MONETARY

ff I18n::LC_NUMERIC

ff I18n::LC_TIME

ff I18n::LC_MESSAGES

The definition of the category to use should always be via the provided constants.
For example, to call a translation for use with time, with the Time helper for instance,
you should call one of the previous functions using I18n::LC_TIME as the category type.

There's more...
Models in CakePHP also allow translated validation messages. These use the default domain,
unless a validation domain is set on the $validationDomain property of the model.

The translation messages set on validation rules can also use sprintf formatting
as described for the previous translation functions. For example, if you have a rule that
requires a minimum length, you can define your validation rule as follows:

public $validate = array(
 'title' => array(
 'size' => array(
 'rule' => array('minLength', 10),
 'message' => 'Your title must be at least %d characters long'
)
)
);

See also
ff The Using the I18n shell recipe from Chapter 9, Creating Shells

View caching
Caching your views is an important step towards improving the loading time of your
application as content is served faster. This can have a noticeable effect on users,
as they get to content and features quicker, making them a bit happier.

In this recipe, we'll build an example scenario that shows off some of the base caching
features of CakePHP.

View Templates

276

Getting ready
First, open your core.php file in app/Config/, make sure the following line is not
commented out, and set it to true:

Configure::write('Cache.check', true);

This configuration option enables and generates cached view files for requests.

Also, in your bootstrap.php file in app/Config/, make sure that CacheDispatcher is
set in your Dispatcher.filters configuration. Take a look at the following example:

Configure::write('Dispatcher.filters', array(
 'AssetDispatcher',
 'CacheDispatcher'
));

We'll then need a controller to work with. So, create a TimestampsController.php
file in app/Controller/, and add the following content:

<?php
App::uses('AppController', 'Controller');

class TimestampsController extends AppController {

 public $components = array('Session');
}

We'll also need a view. So, create a file named index.ctp in app/View/Timestamps/.

How to do it...
Perform the following steps:

1.	 First, add the following $helpers property to the TimestampsController class:
public $helpers = array(
 'Session',
 'Cache'
);

2.	 Then, in the same class, add the following $cacheAction property:
public $cacheAction = array(
 'index' => '+1 day'
);

Chapter 10

277

3.	 Now, define the following index() method:
public function index() {
 $this->set('timestamp', date('Y-m-d H:i:s'));
}

4.	 Also, define the following change() method:
public function change($text) {
 $this->Session->write('text', $text);
 $this->redirect(array('action' => 'index'));
}

5.	 Again, define the following clear() method:
public function clear() {
 clearCache('timestamps');
 $this->redirect(array('action' => 'index'));
}

6.	 Then, open the index.ctp file in app/View/Timestamps/, and add the
following content:

<h2>Caching example</h2>
<p>
 Cache: <?php echo $timestamp; ?>
</p>
<p>
 <!--nocache-->
 <?php if ($this->Session->check('text')): ?>
 Text: <?php echo h($this->Session->read('text')); ?>
 <?php else: ?>
 <?php echo __('No text defined'); ?>
 <?php endif; ?>
 <!--/nocache-->
</p>

How it works...
In this recipe, we set up an example that shows how the caching of views can be handled.
So, let's quickly review how it works.

View Templates

278

First, visit /timestamps in your browser. You will see something similar to the following
screenshot, but with a different cache timestamp, which will be today's date and the current
time of your server:

You'll notice that the view will state No text defined. So, now navigate to /timestamps/
change/hello in your browser. It will show you the same view as before, but with the display
Text: hello. However, you'll notice that the cache time has remained the same, as shown in
the following screenshot:

Now, if you navigate to /timestamps/clear, the same view will load again with Text: hello
(as shown in the following screenshot), but with a newly updated cache timestamp. So what
just happened?

Chapter 10

279

In our index() method, we set the $timestamp view variable to the view that contains a
formatted date and time, using the date() function. The Y-m-d H:i:s string provided uses
the formatting options available for that function. Then, in the change() method, we first
define a $text argument in the method's signature to receive a value. We use the Session
component to store this value in the session associated with the text key. We then proceed
to redirect the action back to index(). Finally, our clear() method contains a call to the
clearCache() function, with the name of the controller to clear. This global function allows
you to clear the view cache any time. If no argument is provided, the entire cache will be cleared.

In our view for the index() action, we first print the $timestamp variable to the view,
which was previously set in our controller method. We have an if condition, which calls
the check() method of the Session component to determine if the text key has been
set. If it has been, it prints it out to the view; if not set, it simply prints No text defined.

So why is it that the timestamp does not update when we change the value of text? This is
because in our index.ctp view file, we used the <--nocache--> and <--/nocache-->
tags to define an area of our view that is not cached. The rest is being cached due to the
settings we provided in the $cacheAction property of our controller. This array accepts
the keys as the action names (methods), the value as a numeric value that represents the
number of minutes, a string value that is compatible with strtotime(), an array that has
a duration key for the previously mentioned values, and an additional callbacks key that
defines if components and models should be set up on the controller to call the component's
initialize() and startup() callback methods and the controller's beforeFilter()
callback method. Bear in mind that setting callbacks to true (the default is false) means
the caching of the view is less effective.

In this example, if /timestamps/clear was not called, the view for the index() action
would be cached for 24 hours, as defined by the +1 day value of the $cacheAction setting.

See also
ff More detail on caching in the framework can be found at http://book.cakephp.

org/2.0/en/core-libraries/caching.html

The AssetCompress plugin
The handling of static assets, such as scripts and stylesheets, is an important aspect of
applications that are expected to perform and deliver content quickly.

In this recipe, we'll look at how to include and set up the AssetCompress plugin to make sure
we're serving content quickly and efficiently, without putting a burden on the server when the
users are coming.

View Templates

280

Getting ready
The AssetCompress plugin can be found at https://github.com/markstory/asset_
compress.

The content of this plugin needs to be added in app/Plugin/AssetCompress/ and then
loaded in your application. To do so, add the following code in your bootstrap.php file
located in app/Config/:

CakePlugin::load('AssetCompress', array('bootstrap' => true));

This should be added before the section of the file that calls the following:

Configure::write('Dispatcher.filters', array(
 'AssetDispatcher',
 'CacheDispatcher'
));

Now, create an app.js file in app/webroot/js/, and create an app.css file in app/
webroot/css/. Also, create a cache directory in app/webroot/, and create the js/
and css/ directories in this directory. Make sure that all three directories are writable
by your web server.

How to do it...
Perform the following steps:

1.	 First, create the folders app/webroot/cache/css and app/webroot/cache/
js, and then add the following code to your asset_compress.ini file in app/
Config/:
[General]
cacheConfig = false

[js]
cachePath = WEBROOT/cache/js/

[all.js]
files[] = app.js

[css]
cachePath = WEBROOT/cache/css/

[all.css]
files[] = app.css

Chapter 10

281

2.	 Then, locate the AppController.php file in app/Controller/, and add the
following code to the class:
public $helpers = array('AssetCompress.AssetCompress');

3.	 Now, edit your default.ctp layout file in app/View/Layouts/, and replace the
line with the $this->fetch('css') echo, using the following content:
echo $this->AssetCompress->css('all.css', array(
 'raw' => (bool)Configure::read('debug')
));
echo $this->AssetCompress->includeCss();

4.	 Also, remove the line with the $this->fetch('script') echo, and add the
following content before the </body> tag:
<?php
echo $this->AssetCompress->script('all.js', array(
 'raw' => (bool)Configure::read('debug')
));
echo $this->AssetCompress->includeJs();
echo $this->Js->writeBuffer();
?>

5.	 Finally, go to your console and execute the following commands:

$ Console/cake AssetCompress.AssetCompress clear

$ Console/cake AssetCompress.AssetCompress build --force

How it works...
In this recipe, we set up the AssetCompress plugin with an asset_compress.ini file, which
outlines the configuration settings for the plugin. In this file, we first defined a [general]
section. The cacheConfig option here states that we don't yet want to use our caching
configuration to store our asset settings. If you use APC, Xcache, Memcached, or any other
caching engine, you may want to take advantage of this feature to speed up access to the
plugin settings. The next section, [js], defined the cachePath option that configures the
path where the compressed assets will be stored. After this, we defined an [all.js] file that
holds the files defined in the files[] array. In this case, we currently only have app.js, but
more scripts can be added here to compress them together. We then repeated the same for
[css] and [all.css] for our stylesheets.

View Templates

282

After setting up our .ini file, we included the AssetCompress helper in our AppController
so that it's available across our whole application. We then used the helper in the default.
ctp layout file to load our assets instead of including the files manually or via the css and
script view blocks. The includeCss() and includeJs() methods of the helper handle
the loading of the assets. In this case, we defined each of the files to load using the css()
and script() methods, and we also set the raw setting with the Boolean value of our debug
configuration. This is a useful check that forces the assets to be loaded separately when in
debug mode (that is, during development) so that you can work against live CSS and JavaScript
files as you update them. You'll also notice that we called the writeBuffer() method of the
Js helper in case any script was previously buffered in the view.

We then proceeded to use the shell script included with the plugin to clear any previously
compressed files using the clear command, the build command, and the --force option.
This requests that the script run and generate the compressed files regardless of whether
they have been changed. After running these commands, you will see the app/webroot/
cache/css/all.css and app/webroot/cache/js/all.js files. When debug is set to
0, you will see that your application loads these files instead of the raw files in your css/ and
js/ directories.

See also
ff The Including a plugin recipe from Chapter 1, Lightning Introduction

11
Unit Tests

In this chapter, we will cover the following topics:

ff Dependency Injection

ff Creating a fixture

ff Mock objects

ff Stub method configuration

ff Model unit testing

Introduction
An application can become complex over time, and it can become difficult to introduce
changes without affecting other areas of your code base. The concept of unit testing helps
reduce this burden by allowing you to define tests that check and confirm the integrity of your
application at any time.

In this chapter, we'll look at how CakePHP leverages the PHPUnit library to provide a solid
base for unit testing, including handling dependencies, fixtures, and using the bake shell
for testing.

Dependency Injection
The testing of tightly coupled objects is hard. You may end up testing code from other objects,
and you'll also need to configure them to allow any testing at all. Tightly coupled objects are
those that know too much information about each other, for example, their internals, or they
know how to instantiate each other. In an object-oriented paradigm, this should be avoided,
and all objects should only care about themselves. This follows the single responsibility
principle, which says one class should have only one responsibility, and the related code
should be encapsulated by the class.

Unit Tests

284

Through the technique of injecting dependencies, objects can be provided with their
dependencies by various means:

ff Constructor: This passes the dependent object as a parameter to the constructor

ff Method (setDependencyName(), for example): This passes the dependent object
as a parameter and sets a protected or private property with the object, to be used
later in other methods

ff Field: This manipulates a public field to set the dependent object

In this recipe, we'll look at how dependency injection is handled in CakePHP and what you
need to get it under control.

Getting ready
Let's first create a new database table named tasks using the following SQL code:

CREATE TABLE tasks (
 id INT NOT NULL AUTO_INCREMENT,
 name VARCHAR(255) NOT NULL,
 description TEXT NOT NULL,
 created DATETIME NOT NULL,
 modified DATETIME NOT NULL,
 priority TINYINT(4) NOT NULL DEFAULT '1',
 PRIMARY KEY (id)
);

We'll also create a Task model in a file named app/Model/Task.php, which sends an
e-mail to the administrator upon every new task being created, using the afterSave()
callback. This callback is executed by the framework every time the model is saved if it is
present in the model class.

<?php
App::uses('AppModel', 'Model');
App::uses('CakeEmail', 'Network/Email');

class Task extends AppModel {

 public function afterSave($created, $options = array()) {
 parent::afterSave($created, $options);
 if ($created) {
 $adminEmail = Configure::read('App.adminEmail');
 $replyEmail = Configure::read('App.replyEmail');
 $Email = new CakeEmail();

Chapter 11

285

 $Email->from($replyEmail)
 ->to($adminEmail)
 ->subject(__('New Task created'))
 ->send(__('A new task was created'));
 }
 }
}

Note that there are two things wrong with this code:

ff The code is tightly coupled with the CakeEmail class, because the Task model
knows how to instantiate a new CakeEmail object. The model should not know
this much about another object.

ff The e-mail is being sent at runtime. This should be refactored to send e-mails
through an e-mail queue, as users don't like to wait while we perform slow operations.
We covered using a job queue in the Event Stacking recipe from
Chapter 8, Events System.

So, we'll refactor the afterSave() method in our Task model to allow for dependency
injection later on.

How to do it...
Perform the following steps:

1.	 First, add a protected $_email property, as shown in the following code, into the
Task model class in app/Model/Task.php:
protected $_email = null;

2.	 We'll also add the getEmail() and setEmail() methods:
public function getEmail() {
 return $this->_email;
}

public function setEmail(CakeEmail $email) {
 $this->_email = $email;
}

3.	 Now, we'll update the afterSave() callback method, as shown in the following
code, to use the new getEmail() method instead of directly calling the constructor:

public function afterSave($created, $options = array()) {
 parent::afterSave($created, $options);
 if ($created) {
 $adminEmail = Configure::read('App.adminEmail');

Unit Tests

286

 $replyEmail = Configure::read('App.replyEmail');
 $Email = $this->getEmail(); // notice the new call here
 $Email->from($replyEmail)
 ->to($adminEmail)
 ->subject(__('New Task created'))
 ->send(__('A new task was created'));
 }
}

How it works...
We first added a protected $_email property to our Task model class. The dependent
CakeEmail object will be stored here to be used later on. We'll manage this protected
property with a setter and getter method in the model class. For this, we then created two
additional methods to set and retrieve the dependency. You'll notice here that we added a
type hint in the signature of the setEmail() method. This is important, as it ensures that
any dependency passed to the method is an instance of the CakeEmail class, thus allowing
us to make assumptions about the functionality available on that object.

When testing this object, you would now call the setEmail(CakeEmail $email) method to
pass an instance that is used for testing. The Task model is no longer aware of the CakeEmail
object's instantiation logic, so we'll be able to create and configure the instance from outside the
model or use a stub (we'll talk about stubs in a later recipe in this chapter). This would typically
be an e-mail object that logs the message or sends it to an internal e-mail address.

See also
ff The Stub method configuration recipe

Creating a fixture
When you're testing your code, it's important to have a static and defined state before you
start every test to ensure that every test is isolated and does not impact further testing logic
upon execution. Fixtures help you configure the database state before every unit test is
executed. These are simply files that describe database tables and contents, and they are
located by convention in app/Test/Fixture/.

CakePHP provides both a fixture generation tool using the bake console shell as well as a
test database configuration (the test database is used automatically when you run your tests).
This way, you can keep your real data and test data in two different databases to avoid any
unwanted interactions.

In this recipe, we'll build a fixture using the bake shell for a given model.

Chapter 11

287

Getting ready
We'll first need a table of data to work with. So, create a table named blogs, using the
following SQL statement:

CREATE TABLE blogs (
 id INT NOT NULL AUTO_INCREMENT,
 title VARCHAR(255) NOT NULL,
 content TEXT,
 created DATETIME,
 modified DATETIME,
 PRIMARY KEY(id)
);

We'll also create a Blog.php file in app/Model/, with the following content:

<?php
App::uses('AppModel', 'Model');

class Blog extends AppModel {
}

How to do it...
Perform the following steps:

1.	 First, bake a new fixture for the Blog model using the CakePHP console and the
bake interactive shell. Using the -t default option will select the default template,
in case we have multiple bake templates installed. Also note that Windows users will
use cake.bat instead from the command prompt.
$ Console/cake bake fixture -t default

Welcome to CakePHP v2.5.2 Console

--

App : app

Path: /home/user/app/

--

--

Bake Fixture

Path: /home/user/app/Test/Fixture/

--

Unit Tests

288

Possible Models based on your current database:

1. Blog

Enter a number from the list above,

type in the name of another model, or 'q' to exit

[q] >

2.	 Then, select the Blog model from the list of all available models in your application.
[q] > 1

Would you like to import schema for this fixture? (y/n)

[n] >

3.	 Answer no (n) to inspect the database and generate a static schema array, based on
the blogs table. If the blogs table changes, we'll need to update this file to reflect
those changes in the schema.
[n] > n

Would you like to use record importing for this fixture? (y/n)

[n] >

4.	 Also answer no (n) because we don't want to retrieve real data from the blogs table
every time we run our tests, as we want static data that we can configure in this file
to keep our database state consistent with our unit tests.
[n] > n

Would you like to build this fixture with data from Blog's table?
(y/n)

[n] >

5.	 Again, answer no (n) because we don't want data examples retrieved from the current
data in the blogs table, as we're going to define the records manually for this fixture.
[n] > n

Baking test fixture for Blog...

Creating file /home/user/app/Test/Fixture/BlogFixture.php

Wrote '/home/user/app/Test/Fixture/BlogFixture.php'

$

6.	 Now, open the newly generated file in app/Test/Fixture/BlogFixture.php.
You should see the following:
<?php
/**

Chapter 11

289

 * BlogFixture
 *
 */
class BlogFixture extends CakeTestFixture {

/**
 * Fields
 *
 * @var array
 */
 public $fields = array(
 'id' => array('type' => 'integer', 'null' => false, 'default'
=> null, 'unsigned' => false, 'key' => 'primary'),
 'title' => array('type' => 'string', 'null' => false,
'default' => null, 'collate' => 'utf8_general_ci', 'charset' =>
'utf8'),
 'content' => array('type' => 'text', 'null' => false,
'default' => null, 'collate' => 'utf8_general_ci', 'charset' =>
'utf8'),
 'created' => array('type' => 'datetime', 'null' => false,
'default' => null),
 'modified' => array('type' => 'datetime', 'null' => false,
'default' => null),
 'indexes' => array(
 'PRIMARY' => array('column' => 'id', 'unique' => 1)
),
 'tableParameters' => array('charset' => 'utf8', 'collate' =>
'utf8_general_ci', 'engine' => 'InnoDB')
);

/**
 * Records
 *
 * @var array
 */
 public $records = array(
 array(
 'id' => 1,
 'title' => 'Lorem ipsum dolor sit amet',
 'content' => 'Lorem ipsum dolor ...',
 'created' => '2014-05-20 12:06:40',
 'modified' => '2014-05-20 12:06:40'
),
 // there are 9 more generated records
);
}

Unit Tests

290

7.	 Finally, edit the $records property and set the array data that you want in the
blogs table when you run your tests. For example, we'll create two records.

public $records = array(
 array(
 'id' => 1,
 'title' => 'Title of the first Blog',
 'content' => 'Contents for the first Blog',
 'created' => '2014-05-24 12:06:40',
 'modified' => '2014-05-24 12:06:40'
),
 array(
 'id' => 2,
 'title' => 'Title of the second Blog',
 'content' => 'Contents for the second Blog',
 'created' => '2014-05-24 12:06:40',
 'modified' => '2014-05-24 12:06:40'
)
);

How it works...
In this recipe, we're using fixture data, instead of real data, when running our tests. You can
tweak the fixture data to allow edge cases to be present in your database, model real-world
data, check for valid contents, and so on.

Once we had our model and table in place, we started using the bake shell to generate the
new fixture class. The bake shell has an interactive mode for fixture generation, and we're
using it in this case to customize the way our fixture is being generated. In the interactive
mode, bake will ask some questions along the way.

The bake shell can use several templates to generate the fixture files. Based on our currently
installed plugins, there could be others apart from the default template, so we're using -t
default to choose the default template.

The first question we need to answer is the model we want to use for fixture generation, 1.
Blog, in this case. Then, we were asked if we want to import schema for this fixture, and
we answered no because we want to have the table schema written into our fixture file. The
table schema is written into the $fields property array in the fixture, and it represents the
structure of our table in the database in an array format. This array describes the columns
and types present in our table.

If we had answered yes to this question, instead of having the table schema written to the
fixture file every time we use this fixture, CakePHP would read the blogs table again and use
the updated schema. If we want to keep our schema under control, it's better to say no and
write it to the fixture file.

Chapter 11

291

The next question is related to record importing. In this case, we've answered no
because we don't want to use live data in our tests; we want to write the contents of the
blogs table in the fixture file and be able to manipulate this file to configure the data. If we
answered yes, when using this fixture, CakePHP would connect to the blogs table in the live
database and retrieve those records.

The last question was whether we need to build this fixture with data from the blogs table.
To this, we've answered no, because we don't want to copy rows from our live table. If we had
answered yes, we'd be able to filter using a WHERE condition and retrieve real rows from our
live table; then, that data would be copied into the fixture, so we'd be able to use those rows
or modify them. Real data will not be used in any case; this is just a quick way to get some real
data into our fixtures, so we don't need to write those record arrays with the table contents
from scratch.

After we create our Fixture file, CakePHP will refresh the records in our blogs table (in the
test database) before every test run, so the database state is fixed and consistent for every
unit test. The bake console shell allows us to generate the fixture's main structure for all our
fixtures, so we can then manually tweak the contents to allow specific data to be present.

Mock objects
Once you've used dependency injection to ensure you're only testing the code contained in
your target object and don't test (again) the code from external dependencies, you can create
and configure mock objects to replace a real object with a test double.

Test doubles are objects that behave exactly the same as other objects, but allow you to
configure their methods to return any desired value (or simply return null), so you don't need
to worry about their internal logic. You only need to define by contract the public interface
of the double test object, the input method parameters, and their expected output results.
You could even configure the behavior of the mock object to allow methods to call the original
logic, while the rest of the methods return null by default.

Getting ready
For this recipe we'll first need to create a Blog model in a file named app/Model/Blog.
php, with the following content:

<?php
App::uses('AppModel', 'Model');

class Blog extends AppModel {
}

Unit Tests

292

We'll also need to create an empty test file in app/Test/Case/Model/AnotherTest.php.
This test file will use the Blog model class as a dependency, and we'll refactor this code to
use a mock object instead of the real Blog model.

<?php
App::uses('Blog', 'Model');

class AnotherTest extends CakeTestCase {

 public function testDummy() {
 App::uses('Blog', 'Model');
 // using the real Blog model now
 $Blog = ClassRegistry::init('Blog');
 // we use $Blog object as a dependency for other objects in this
test
 // $this->Another->setBlog($Blog);
 // run some test code in $this->Another object
 }
}

How to do it...
Perform the following step:

1.	 First, use the getMockBuilder() method to create a mock object. Replace
the implementation of the testDummy() method in app/Test/Case/Model/
AnotherTest.php file with the following code:

public function testDummy() {
 App::uses('Blog', 'Model');
 // using the mock object now
 $Blog = $this->getMockBuilder('Blog')
 ->disableOriginalConstructor()
 ->setMethods(array('save', 'find'))
 ->setMockClassName('Blog')
 ->setConstructorArgs(array())
 ->getMock();
 // we use $Blog object as a dependency for other objects in this
test
 // $this->Another->setBlog($Blog);
 // run some test code in $this->Another object
}

Chapter 11

293

Note that we further customized the way the mock object is created, using the
following code:

// modify the class name of the new Mock Object
->setMockClassName($name)
// pass params to the constructor
->setConstructorArgs(array())

How it works...
We changed our unit test code to generate an instance of a mock object. Here, the mock
object will behave as a test double of the Blog model. All of the methods in the Blog model
will be available in the mock object instance.

The getMockBuilder('Blog') method is part of the PHPUnit framework itself, and it will
inspect the Blog model class definition and create a fake object (extending Blog) to mimic
all of the Blog methods. We're using the MockBuilder fluent interface to disable the call
to the original constructor, because we don't really need to call the original Blog model's
constructor, as we're going to use this model as a mock object.

We also called the setMethods(array('save', 'find')) method to configure our
mock object and return null by default, if the save() or find() method is called. These
two methods are referred to as stub methods.

If we were to call any other method in the $Blog object, we'd use their "real" logic, as the
call will be passed to the real Blog model object. Only the save() and find()methods
are faked and, therefore, will return null by default on every call. We can configure them to
return anything we need in our tests. We'll delve into stub method configuration in the next
recipe of this chapter.

Now, we can use the newly created "fake" instance of $Blog to inject this object into our real
test target and ignore the original Blog model logic.

See also
ff More details about test doubles can be found at http://en.wikipedia.org/

wiki/Test_double

ff The Dependency injection recipe

ff The Stub method configuration recipe

Unit Tests

294

Stub method configuration
Mock objects have the ability to customize the return values for specific methods. Instead of
returning null by default, you can configure the mock object methods to return a specific
value, something that you'll find useful in your unit tests to check for specific edge cases when
calling other objects (dependencies).

These also have the ability to define expectations on the methods called, to check if the right
methods were called with the expected parameters or if they were called in the right order,
and so on. This way, we don't need to actually test an external dependent class, but we can
define a contract between the tested object and the dependencies.

Mock object methods can be configured to act as stub methods:

Stub methods will return null by default, but you can configure the return value using
the will() method. They are defined in the setMethods() array, or you don't call
setMethods() or call it using array().

Getting ready
In this recipe, we'll be using the previously defined Blog model in app/Model/Blog.php:

<?php
App::uses('AppModel', 'Model');

class Blog extends AppModel {
}

We'll also use the following test file in app/Test/Case/Model/AnotherTest.php
(this test file will use the Blog model class as a dependency):

<?php
App::uses('Blog', 'Model');

class AnotherTest extends CakeTestCase {

 public function testDummy() {
 App::uses('Blog', 'Model');
 $Blog = $this->getMockBuilder('Blog')
 ->disableOriginalConstructor()
 ->setMethods(array('save', 'find'))
 ->getMock();

Chapter 11

295

 // we use $Blog object as a dependency for other objects in
this test
 // $this->Another->setBlog($Blog);
 // run some test code in $this->Another object
 }
}

How to do it...
Perform the following steps:

1.	 First, configure the expectation for a stub method by calling expects()
on the Blog model:
$Blog->expects($this->once());

2.	 Extend that configuration by calling method() to set the method name:
$Blog->expects($this->once())
 ->method('save');

3.	 Then, also configure the parameter's expectation by calling with(), as shown
in the following code:
$Blog->expects($this->once())
 ->method('save')
 ->with($this->equalTo(array(
 'Blog' => array(
 'title' => 'My Blog Title',
 'content' => 'Blog contents here...'
)
)));

4.	 Finally, we'll also define a return value:

$Blog->expects($this->once()) // we expect to be called once
 ->method('save')
 ->with($this->equalTo(array(
 'Blog' => array(
 'title' => 'My Blog Title',
 'content' => 'Blog contents here...'
)
)))
 ->will($this->returnValue(array(
 'Blog' => array(
 'id' => 1,

Unit Tests

296

 'title' => 'My Blog Title',
 'content' => 'Blog contents here...',
 'created' => '2015-01-01 10:00:00',
 'modified' => '2015-01-01 10:00:00',
)
)));

How it works...
Once the stub methods are configured and the test is executed, our $Blog mock object will
call the original Blog model logic for all methods except find() and save().

The first step was to configure the expectation of the number of calls to be made to this
method. If, during the unit test, we didn't call this method once, we would detect this as an
issue and mark the test as failed. We're using the $this->once() matcher function to
detect if this method is called once. Depending on our test, we could use any other matcher
function provided by the PHPUnit framework, such as any(), at(), atLeastOnce(),
never(), or once().

We then set the method name we're using for this expectation, in this case, save. Calls to
the save() method on the $Blog mock object will instead return null by default, using this
mock configuration.

After that, we set the parameter expectations for this method call to detect if the calls
to the save() method are using the correct parameters. We're using with($this-
>equalsTo(array(…))) to define this, specifying that it should pass one parameter,
and that the parameter must be an array with the given values. There are many constraints
available to define our expectations, for example, anything(), equalTo(), or isTrue().
If we were to call this method in our tested code and we didn't use exactly the same array as
defined for the parameter, the test will be marked as failed, and we'll get a nice error message
saying that the parameter expected was not used for the $Blog->save() method call.

The last option we defined was the desired return value we want to get from the method call,
if the rest of the expectations are valid. The expectations are that the method is called once,
the method's name is save, and only one parameter should be passed, which is expected to
be an array, with a value equal to the following:

array(
 'Blog' => array(
 'title' => 'My Blog Title',
 'content' => 'Blog contents here...'
)
)

Chapter 11

297

Any calls to the find() method will return null, as this method's stub was not configured. If
no calls are made to the save() method, an assertion error will be raised, as we're expecting
this method to be called exactly once. If called using the expected parameters, the "fake"
Blog array result will be returned, allowing us to mimic the save method even without saving
anything to our test database!

See also
ff More info on the matcher functions available in PHPUnit can be found at

http://phpunit.de/manual/3.7/en/test-doubles.html#test-doubles.
mock objects.tables.matchers

ff The Dependency injection recipe

ff The Mock objects recipe

Model unit testing
You might have already heard that using "fat models, skinny controllers" is a best practice.
One of the main benefits of keeping all your business logic inside your model layer is the
ability to develop simpler unit tests for your application. Model classes usually depend only on
other models, behaviors, or utility classes (libs), allowing you to quickly start coding your unit
tests without a ton of mock object configurations.

CakePHP integrates with PHPUnit and provides several tools to help you build your unit tests:

ff Base classes

ff CakeTestCase

ff ControllerTestCase or you can use PHPUnit_Framework_TestCase

ff Fixture integration

ff Test datasource configuration

ff Bake shell to build test files and fixtures

In this recipe, we'll go over most of these, and build a unit test for a CakePHP model.

Getting ready
First, we'll reuse the table named tasks from this chapter or create a new one using the
following SQL statement:

CREATE TABLE tasks (
 id INT NOT NULL AUTO_INCREMENT,

Unit Tests

298

 name VARCHAR(255) NOT NULL,
 description TEXT NOT NULL,
 created DATETIME NOT NULL,
 modified DATETIME NOT NULL,
 priority TINYINT(4) NOT NULL DEFAULT '0',
 PRIMARY KEY (id)
);

We'll also create a Task model in a file named app/Model/Task.php; this model sends an
e-mail to the administrator upon every new high-priority task created using the afterSave()
callback. This callback is executed by the framework every time the model is saved, if it is
present in the model class, and is shown in the following code:

<?php
App::uses('AppModel', 'Model');
App::uses('CakeEmail', 'Network/Email');

class Task extends AppModel {

 protected $_email = null;

 const PRIORITY_LOW = 0;

 const PRIORITY_HIGH = 1;

 public function getEmail() {
 return $this->_email;
 }

 public function setEmail(CakeEmail $email) {
 $this->_email = $email;
 }

 public function afterSave($created, $options = array()) {
 parent::afterSave($created, $options);
 if ($created) {
 $priority = (int)Hash::get($this->data, "{$this->alias}.
priority");
 if ($priority === self::PRIORITY_HIGH) {
 $this->_sendEmail();
 }
 }
 }

Chapter 11

299

 protected function _sendEmail() {
 $adminEmail = Configure::read('App.adminEmail');
 $replyEmail = Configure::read('App.replyEmail');
 $Email = $this->getEmail();
 $Email->from($replyEmail)
 ->to($adminEmail)
 ->subject(__('New Task created'))
 ->send(__('A new task was created'));
 }
}

Also, add the following configuration to your bootstrap.php file located in app/Config/:

Configure::write('App.adminEmail', 'user@localhost.com');
Configure::write('App.replyEmail', 'user@localhost.com');

Note that CakePHP requires PHPUnit 3.7+ installed on your system. Follow the setup
instructions for PHPUnit at http://phpunit.de/manual/3.7/en/installation.html.

How to do it…
Perform the following steps:

1.	 First, add the following new test case file named TaskTest.php in app/Test/
Case/Model/:
<?php
App::uses('Task', 'Model');

class TaskTest extends CakeTestCase {

 public function setUp() {
 parent::setUp();
 $this->Task = ClassRegistry::init('Task');
 }

 public function tearDown() {
 unset($this->Task);
 parent::tearDown();
 }

/**
 * testAfterSaveShouldSendEmailForNewPriorityHighTask
 *

Unit Tests

300

 * @covers Task::afterSave
 */
 public function
testAfterSaveShouldSendEmailForNewPriorityHighTask() {
 $this->Task = $this->getMockForModel('Task', array('_
sendEmail'));
 $this->Task->expects($this->once())
 ->method('_sendEmail')
 ->will($this->returnValue(true));
 $data = array(
 'Task' => array(
 'name' => 'priority task',
 'description' => 'description1',
 'priority' => Task::PRIORITY_HIGH,
)
);
 $this->Task->set($data);
 $this->Task->afterSave(true);
 }

/**
 * testAfterSaveShouldNotSendEmailForNewPriorityLowTask
 *
 * @covers Task::afterSave
 */
 public function
testAfterSaveShouldNotSendEmailForNewPriorityLowTask() {
 $this->Task = $this->getMockForModel('Task', array('_
sendEmail'));
 $this->Task->expects($this->never())
 ->method('_sendEmail');
 $data = array(
 'Task' => array(
 'name' => 'low priority task',
 'description' => 'description1',
 'priority' => Task::PRIORITY_LOW,
)
);
 $this->Task->set($data);
 $this->Task->afterSave(true);
 }
}

Chapter 11

301

2.	 Then, run your test using the CakePHP console test runner with the
following command:

$ Console/cake test app Model/Task --testdox

Welcome to CakePHP v2.5.2 Console

App : myapp

Path: /home/user/myapp/

CakePHP Test Shell

Task

 [x] After save should send email for new priority high task

 [x] After save should not send email for new priority low task

How it works…
In this recipe, we built a unit test for our Task model. The unit test class is placed in the
file named TaskTest.php (by convention) in app/Test/Case/Model/ and extends the
CakeTestCase base class. This is the default base class used for unit testing all CakePHP
classes except for controllers, as the framework provides a special ControllerTestCase
class with specific features to make controller testing easier.

Our test class has a setUp() method, where we create a new instance of the Task model.
It also has a tearDown() method, where all of our cleanup code will be placed, to ensure
that there are no leftovers when the test finishes.

The setUp() method will be executed for all our test methods in this class before each
test, and then, it will be followed by the tearDown() method. This will provide a clean
environment for all of our test methods, without allowing for any undesired interactions
between each test.

In the first test method named
testAfterSaveShouldSendEmailForNewPriorityHighTask(), we check whether
we're sending an e-mail only when a high priority task is created. To do so, we first generate
a mock of our Task model and set the _sendEmail() method as a stub method:

$this->Task = $this->getMockForModel('Task', array('_sendEmail'));

Unit Tests

302

Stub methods will allow us to configure expectations and hardcode output in our tests. In our
test, we focus on covering the afterSave() model logic, so we don't really need to test the
protected _sendEmail() method in this case.

The following code then defines an expectation for the _sendEmail() stub method:

$this->Task->expects($this->once())
 ->method('_sendEmail')
 ->will($this->returnValue(true));

We expect to call this method exactly once, and we'll force it to return true when called.

We then prepare the model data prior to executing the afterSave() callback. We don't
really care to save the data to the database in our test, so we set the data to the model to
simulate that it's being saved with the following code:

$data = array(
 'Task' => array(
 'name' => 'priority task',
 'description' => 'description1',
 'priority' => Task::PRIORITY_HIGH,
)
);
$this->Task->set($data);

We finally run the method to be tested using the following code:

$this->Task->afterSave(true);

In this test, the only and most important assertion is the expectation of the _sendEmail()
method only being called once. We also added a second test to ensure that we don't send an
e-mail when the priority of the task is set to Task::PRIORITY_LOW.

We used the CakePHP console to run our tests, and using the --testdox output, we can
retrieve a checklist of the passing tests. The reason for using those long names in the test
methods is to get a human readable checklist of the expected behavior for our tests. It's good
practice to always keep your tests short and focused, and cover specific edge cases with
different tests. Using long names can help you quickly identify the expected behavior and
why it's not working, for any test case you write.

Chapter 11

303

It is also possible to run unit tests and examine their results in browser—navigate
to /test.php?case=Model/Task, and you'll get following output:

Now, click on Show Passes, and you'll get a list of all the passed tests:

Unit Tests

304

If you have xdebug installed and configured, you might even display the code coverage of your
unit tests in the browser. Click on Analyze Code Coverage, and you'll see which lines were
executed during this unit test:

See also
ff More details about test doubles can be found at http://en.wikipedia.org/

wiki/Test_double

ff The Stub method configuration recipe

12
Migrations

In this chapter, we will cover the following topics:

ff Schema handling

ff Syncing changes

ff The Migrations plugin

ff Injecting data

Introduction
Working with the database that powers your application can become a task in itself. Luckily,
CakePHP provides a set of tools to easily handle your database schema and migrations.

In this chapter, we'll look at how simple it is to build and maintain your database while keeping
your schema changes up to date with your code base.

Note that even if you use the schema and migrations plugin tool, you should
take regular and automated backups of your live databases and store the
backups on another host to avoid any loss in case of a server crash. The tools
described in this chapter will help you save the changes you perform on your
database schema, but you'll need to provide additional backup and recovery
procedures, just in case of any issues.

Migrations

306

Schema handling
CakePHP is packed with a console shell for schema management, which gives you the ability
to keep your database structure defined in a schema file in your version control system. This
schema file keeps track of the changes made to your database and applies schema changes
without touching your current data.

A schema file is a regular PHP file, located by convention in app/Config/Schema/schema.
php. This file describes your database tables using properties as one property per table. Each
property holds an array with all the columns in your table, their type, and other metadata
required to fully describe the table.

Getting ready
You'll need to create at least one table in your database and its associated model. The shell
schema processes models defined in your application, not the actual tables in your database.

So, create a profiles table in your database, using the following SQL statement:

CREATE TABLE profiles (
 id INT NOT NULL AUTO_INCREMENT,
 title VARCHAR(100) NOT NULL,
 content TEXT,
 created DATETIME,
 modified DATETIME,
 PRIMARY KEY(id)
);

Then, we'll also create the app/Model/Profile.php file, with the following content:

<?php
App::uses('AppModel', 'Model');

class Profile extends AppModel {
}

How to do it...
Perform the following steps:

1.	 Use the CakePHP console schema shell to generate a schema of your application
model as follows:
$ Console/cake schema generate

Welcome to CakePHP v2.5.2 Console

Chapter 12

307

--

App : myapp

Path: /home/user/myapp/

--

Cake Schema Shell

--

Generating Schema...

Schema file: schema.php generated

2.	 Inspect the newly generated schema:
$ Console/cake schema view

Welcome to CakePHP v2.5.2 Console

--

App : skelapp

Path: /home/user/html/skelapp/

--

Cake Schema Shell

--

<?php

class SkelappSchema extends CakeSchema {

 public function before($event = array()) {

 return true;

 }

 public function after($event = array()) {

 }

 public $profiles = array(

 'id' => array('type' => 'integer', 'null' => false, 'default'
=> null, 'unsigned' => false, 'key' => 'primary'),

 'title' => array('type' => 'string', 'null' => false,
'default' => null, 'collate' => 'utf8_general_ci', 'charset' =>
'utf8'),

 'content' => array('type' => 'text', 'null' => false,
'default' => null, 'collate' => 'utf8_general_ci', 'charset' =>
'utf8'),

Migrations

308

 'created' => array('type' => 'datetime', 'null' => false,
'default' => null),

 'modified' => array('type' => 'datetime', 'null' => false,
'default' => null),

 'indexes' => array(

 'PRIMARY' => array('column' => 'id', 'unique' => 1)

),

 'tableParameters' => array('charset' => 'utf8', 'collate' =>
'utf8_general_ci', 'engine' => 'InnoDB')

);

}

3.	 After generating the first schema, you may need to modify your database by adding
new tables, columns, and so on. Once you're done with your changes, save your
schema again to keep the schema file consistent with your database structure.
$ Console/cake schema generate

Welcome to CakePHP v2.5.2 Console

--

App : myapp

Path: /home/user/myapp/

--

Cake Schema Shell

--

Generating Schema...

Schema file exists.

[O]verwrite

[S]napshot

[Q]uit

Would you like to do? (o/s/q)

[s] >

4.	 Pick O (Overwrite) if you're using a source versioning system such as git (best
practice), or keep several file snapshots on disk if you want to use files to track
schema changes.
[s] > o

Schema file: schema.php generated

Chapter 12

309

How it works...
The CakePHP schema shell first checks for models defined in your application. It then extracts
the associated table description from the database, reading all of the tables using the model
file configuration. In this case, there is only one model, Profile, so the cake schema shell
will look for a table in your database named profiles and retrieve the metadata information
about columns and properties for that table. This then writes all table metadata to a schema
file by default in app/Config/Schema/schema.php.

This file contains an array per table, describing the table columns, indexes, and parameters in
a database agnostic syntax, which is shown as follows:

public $profiles = array(
 'id' => array('type' => 'integer', 'null' => false, 'default' =>
null, 'unsigned' => false, 'key' => 'primary'),
 'title' => array('type' => 'string', 'null' => false, 'default' =>
null, 'collate' => 'utf8_general_ci', 'charset' => 'utf8'),
 'content' => array('type' => 'text', 'null' => false, 'default' =>
null, 'collate' => 'utf8_general_ci', 'charset' => 'utf8'),
 'created' => array('type' => 'datetime', 'null' => false, 'default'
=> null),
 'modified' => array('type' => 'datetime', 'null' => false, 'default'
=> null),
 'indexes' => array(
 'PRIMARY' => array('column' => 'id', 'unique' => 1)
),

This is a unique property, as we only have one table and model. Several properties would be
generated if more tables and models were present in your application.

It's always important to first generate an initial schema to be used as a base state to compare
against. Keeping the schema updated will help you detect only the latest changes when a new
migration is generated.

See also
ff More details on schemas and migrations can be found at http://book.cakephp.

org/2.0/en/console-and-shells/schema-management-and-migrations.
html

Migrations

310

Syncing changes
Now that we have a base schema file from our previous recipe, let's do a few changes in our
database and schema file and apply those changes.

Getting ready
Set up the profiles table and Profile model, as described in the previous recipe.
Then generate a starting migration using the schema console:

$ Console/cake schema generate

You can check whether the schema was generated correctly using the following command:

$ Console/cake schema view

How to do it...
Perform the following steps:

1.	 Let's make some changes to our profiles table. Change the length of the title
column to 100 characters, and add a new column to store the published
date of our profiles with the following SQL statement:
ALTER TABLE profiles CHANGE COLUMN title title VARCHAR(100) NOT
NULL, ADD COLUMN date_published DATETIME NULL AFTER modified;

2.	 We'll update our schema file with those changes as follows:
$ Console/cake schema generate

Welcome to CakePHP v2.5.2 Console

--

App : myapp

Path: /home/user/myapp/

--

Cake Schema Shell

--

Generating Schema...

Schema file exists.

[O]verwrite

[S]napshot

[Q]uit

Chapter 12

311

Would you like to do? (o/s/q)

[s] > o

Schema file: schema.php generated

3.	 We'll now do another manual modification to our database, dropping the
date_published column:
ALTER TABLE profiles DROP COLUMN date_published;

4.	 We then want to revert this manual change and sync our database with our
schema file:
$ Console/cake schema update

Welcome to CakePHP v2.5.2 Console

--

App : myapp

Path: /home/user/myapp/

--

Cake Schema Shell

--

Comparing Database to Schema...

The following statements will run.

ALTER TABLE `myapp`.`profiles`

 ADD `date_published` datetime DEFAULT NULL AFTER `modified`;

Are you sure you want to alter the tables? (y/n)

[n] >

5.	 Enter y to apply changes and sync your database with your schema file:
Are you sure you want to alter the tables? (y/n)

[n] > y

Updating Database...

profiles updated.

End update.

How it works...
Once we had our first schema generated, we made some changes to our database structure,
adding a new date_published field and modifying the title column in the profiles
table. We then dropped the date_published field as an example change done in your
development cycle.

Migrations

312

Running cake schema update will read your last schema status (in your schema file) and
compare it with your current database schema, providing the list of changes to be done in
your database (via SQL). If you approve those changes, your database will be modified to
match your schema file.

Adding the schema file to your source code repository (such as git, for example) will allow you
to share the right database schema with your team and let them update it with no manual
intervention or data loss. You can even edit this file manually and then update the changes
to modify your database tables without using any SQL code at all.

See also
ff The Schema Handling recipe

The Migrations plugin
The CakePHP schema shell provides basic database change management, but when your
project complexity grows and you need more control over database changes, the CakeDC
Migrations plugin is the way to go. Distributed under the MIT License, it's open source and
totally free to use in your commercial projects.

Getting ready
We'll assume that you have a profiles table created in the database and the Profile
model file in app/Model/Profile.php from our previous recipes.

First, install the CakeDC Migrations plugin either as a git submodule or by downloading the
ZIP file and dropping the file contents under the app/Plugin/Migrations folder. Refer
to the Including a plugin recipe from Chapter 1, Lightning Introduction, for more details.

Remember to also load this plugin in your app/Config/bootstrap.php file, adding the
following line at the end of the file:

CakePlugin::load('Migrations');

Once the plugin is loaded, you'll have a new CakePHP shell provided by the plugin. You can
check whether the shell is available and the plugin is correctly installed by running the
following command:

$ Console/cake Migrations.migration status

Chapter 12

313

How to do it...
Perform the following steps:

1.	 Create your first migration with the following command:
$ Console/cake Migrations.migration generate

Cake Migration Shell

--

Do you want generate a dump from current database? (y/n)

2.	 We'll generate a dump, so answer with y (yes):
[y] > y

--

Generating dump from current database...

Do you want to preview the file before generation? (y/n)

3.	 We also want to check the contents of the migration file prior to its generation, so this
also answer with y (yes):
[y] > y

<?php

class PreviewMigration extends CakeMigration {

/**

 * Migration description

 *

 * @var string

 */

 public $description = '';

/**

 * Actions to be performed

 *

 * @var array $migration

 */

 public $migration = array(

 'up' => array(

 'create_table' => array(

 'profiles' => array(

Migrations

314

 'id' => array('type' => 'integer', 'null' => false,
'default' => null, 'unsigned' => false, 'key' => 'primary'),

 'title' => array('type' => 'string', 'null' => false,
'default' => null, 'length' => 255, 'collate' => 'utf8_general_
ci', 'charset' => 'utf8'),

 'content' => array('type' => 'text', 'null' => false,
'default' => null, 'collate' => 'utf8_general_ci', 'charset' =>
'utf8'),

 'created' => array('type' => 'datetime', 'null' =>
false, 'default' => null),

 'modified' => array('type' => 'datetime', 'null' =>
false, 'default' => null),

 'indexes' => array(

 'PRIMARY' => array('column' => 'id', 'unique' => 1),

),

 'tableParameters' => array('charset' => 'utf8',
'collate' => 'utf8_general_ci', 'engine' => 'InnoDB'),

),

),

),

 'down' => array(

 'drop_table' => array(

 'profiles'

),

),

);

/**

 * Before migration callback

 *

 * @param string $direction, up or down direction of migration
process

 * @return boolean Should process continue

 */

 public function before($direction) {

 return true;

 }

Chapter 12

315

/**

 * After migration callback

 *

 * @param string $direction, up or down direction of migration
process

 * @return boolean Should process continue

 */

 public function after($direction) {

 return true;

 }

}

Please enter the descriptive name of the migration to generate:

4.	 Enter a custom description for your migration step as follows:
> initial migration

Generating Migration...

Done.

Do you want update the schema.php file? (y/n)

5.	 The plugin will manage the schema file to keep it updated and use it to compare
future changes done in your database, so again answer with y (yes):
[y] > y

Welcome to CakePHP v2.5.2 Console

--

App : myapp

Path: /home/user/myapp/

--

Cake Schema Shell

--

Generating Schema...

Schema file: schema.php generated

Migrations

316

How it works...
Once the plugin was installed, we started by generating our first migration using the
Console/cake Migrations.migration.generate command from the shell. In this
step, the CakeDC Migrations plugin checked our database schema and created the following:

ff A new app/Config/Migrations folder to store all migration files

ff A new app/Config/Migration/1400843285_initial_migration.php file
to hold the first migration

ff A new schema_migrations database table to manage the migrations that have
been successfully run

Note that you may use the -f parameter to generate a migration for all your database tables,
ignoring the restriction to have a model associated.

The last step in the process is to update our schema file. The database schema file is placed
by default in app/Config/Schema/ and is generated using the CakePHP schema shell.
Refer to the previous recipes in this chapter for details on schema generation.

From now on, you can manage specific changes to your database and allow other developers
to work on their changes at the same time. The CakeDC Migrations plugin will take care
of detecting pending migrations and running them the next time you use the run all
option, because all migrations that are already executed are consistently stored in the new
schema_migrations database table. This new table will allow several developers working
on the same project to share their database changes safely.

See also
ff The Including a plugin recipe from Chapter 1, Lightning Introduction

ff The Schema handling recipe

Injecting data
Sometimes you need to save initial data for your newly created tables or ensure that old data
is consistent with one of your migrations right after you applied it.

The CakeDC Migrations plugin provides a way to alter your database contents while running
a migration, so you can execute custom logic before or after a given migration. This custom
code can be used to insert or update data in your database to keep your changes consistent.

Chapter 12

317

Getting ready
In this recipe, we'll add a new feature to our blog which involves setting up a unique group
for our profiles. We'll want to allow groups to be dynamic, so a new groups table and Group
model will be created and associated with our Profile model.

We'll first create a table for our groups using the following SQL statement:

CREATE TABLE groups (
 id INT NOT NULL AUTO_INCREMENT,
 name VARCHAR(255) NOT NULL,
 created DATETIME,
 modified DATETIME,
 PRIMARY KEY(id)
);

Now, we will use our profiles table created earlier (shown in the following code):

CREATE TABLE profiles (
 id INT NOT NULL AUTO_INCREMENT,
 title VARCHAR(100) NOT NULL,
 content TEXT,
 created DATETIME,
 modified DATETIME,
 PRIMARY KEY(id)
);

We will add a new group_id field to it:

ALTER TABLE profiles ADD COLUMN group_id INT NULL;

We will also add a new Group.php model file in app/Model/:

<?php
App::uses('AppModel', 'Model');

class Group extends AppModel {
}

How to do it...
Perform the following steps:

1.	 Add a new migration to sync the new groups and profiles changes:
$ Console/cake Migrations.migration generate

:) ~/html/skelapp $ mig generate

Cake Migration Shell

Migrations

318

--

Do you want compare the schema.php file to the database? (y/n)

[y] > y

--

Comparing schema.php to the database...

Do you want to preview the file before generation? (y/n)

[y] > n

Please enter the descriptive name of the migration to generate:

> adding groups

Generating Migration...

Done.

Do you want update the schema.php file? (y/n)

[y] > y

Welcome to CakePHP v2.5.2 Console

--

App : myapp

Path: /home/user/myapp/

--

Cake Schema Shell

--

Generating Schema...

Schema file exists.

[O]verwrite

[S]napshot

[Q]uit

Would you like to do? (o/s/q)

[s] > o

Schema file: schema.php generated

2.	 Now we have a new migration file generated in the app/Config/Migrations/
folder; edit this new migration file and locate the after method:
/**
 * After migration callback
 *
 * @param string $direction, up or down direction of migration
process

Chapter 12

319

 * @return boolean Should process continue
 */
 public function after($direction) {
 return true;
 }

3.	 Introduce the following content into this method to insert data once the migration has
been run (we'll be inserting four groups in our new groups table):
public function after($direction) {
 $groups = array(
 'CakePHP',
 'PHP',
 'Servers',
 'Personal'
);
 $data = array();
 if ($direction === 'up') {
 //now adding all missing products
 foreach ($groups as $name) {
 $data[] = compact('name');
 }
 $Group = $this->generateModel('Group');
 $saveResult = $Group->saveMany($data);
 return $saveResult;
 }
 return true;
}

4.	 Test your migration by running the migrations down and up:
$ Console/cake Migrations.migration run down

Cake Migration Shell

--

Running migrations:

 [1400846198] 1400846198_adding_groups

 > Dropping table groups.

 > Dropping field group_id from profiles.

--

All migrations have completed.

$ Console/cake Migrations.migration run all

Cake Migration Shell

Migrations

320

--

Running migrations:

 [1400846198] 1400846198_adding_groups

 > Creating table groups.

 > Adding field group_id to profiles.

--

All migrations have completed.

5.	 Finally, check the data in the groups table of your database using the following code:
mysql> select * from myapp.groups;

+----+----------+---------------------+---------------------+

| id | name | created | modified |

+----+----------+---------------------+---------------------+

| 1 | CakePHP | 2014-05-23 16:55:00 | 2014-05-23 16:55:00 |

| 2 | PHP | 2014-05-23 16:55:00 | 2014-05-23 16:55:00 |

| 3 | Servers | 2014-05-23 16:55:00 | 2014-05-23 16:55:00 |

| 4 | Personal | 2014-05-23 16:55:00 | 2014-05-23 16:55:00 |

+----+----------+---------------------+---------------------+

4 rows in set (0.00 sec)

How it works...
We first generated a new migration using the Console/cake Migrations.migration
generate command. Once generated, we then used the after() callback method present
in the migration file to run some custom logic as part of the migration process.

On every migration, you have the option to run custom code before and after the migration
process. You can also execute different code depending on the direction of the migration
("up" or "down"). Going "up" means applying a migration you hadn't applied earlier in your
database, while going "down" is the opposite.

This is the perfect place to update your legacy data or load default data based on a
configuration file. In our case, for example:

foreach ($groups as $name) {
 $data[] = compact('name');
}
$Group = $this->generateModel('Group');
$saveResult = $Group->saveMany($data);

Chapter 12

321

This code will return an instance of the $Group model, where you can then use the array of
$groups previously defined with a list of names to save them all in one shot, by calling the
saveMany() method:

$Group->saveMany($data)

Note that we're using the generateModel() method to get a new AppModel instance,
instead of ClassRegistry::init(). This is useful to allow migrations to use a custom
database configuration, if required by the project. For this, you can always use the
--connection option to set the database configuration you want to use, for example:

$ Console/cake Migrations.migration run all --connection admin

The "default" database configuration will be used if no --connection option is set.

See also
ff https://github.com/CakeDC/migrations

ff The The Migrations plugin recipe

Index
Symbols
$findMethods property 179
$hasMany property 170
$layout property 269
$path variable 79
$priority property 63
$product variable 15
$recursive property 14, 174
$responseClass property 107
$searchQuery parameter 196
$settings property 191
$validate property 29
_checkLockFile() method 254
--connection option 321
__construct() method 74
__d() function 16, 274
__dn() function 274
--exclude-plugins option 260
--extract-core no option 260
_findSearch() method 194
--force option 282
-f parameter 316
_getLockFile() method 254
* key 146
--merge no option 260
__n() function 16
--output argument 245
_processFile() method 78
_removeLockFile() method 254
_serialize key 67, 268
_stop() method 74
-t default option 287

A
Access 112
Access Control Lists. See ACL
Access Control Objects (ACO) 156
Access Request Objects (ARO) 156
ACL

working with 146-161
AclExtras plugin

URL 148
aco_sync task 161
Actions authenticate class 161
add() action 23
addInputType() method 99
add() method 22
advanced search 205-211
afterDisptach() method 62
afterSave() callback 284, 298
Ajax requests

processing 68-72
allow() method 29
API

versioning 114-119
App::uses() 94
ARO tree 161
AssetCompress plugin

setting up 279-282
URL 280

association keys
using, URL 167

associations
defining, at runtime 180-183

324

Auth component
URL 32

AuthComponent::user() method 127
authentication API

setting up 108-113
authentication classes

BasicAuthenticate 122
DigestAuthenticate 122
FormAuthenticate 121

authorize() method 132, 145

B
bake shell

about 290
URL 206

BasicAuthenticate, authentication
classes 122

beforeDisptach() method 62
beforeFilter() callback

method 71, 82, 146, 160
beforeSave() callback method 79
bindModel() method 182
block option 71
blocks

using 263-266
body() method 74
build command 282

C
Cache::remember() 57
cacheConfig option 281
cachePath option 281
caching

URL 279
CakeDC Search plugin

about 198-203
URL 204, 211

CakeDC Users plugin
URL 30

CakeEmail::deliver() method 216
CakeEmail class

URL 225

CakePdf plugin
about 271
URL 268

CakePHP associations
URL 164

CakePHP File Storage plugin
about 80
URL 80

CakePHP Imagine plugin
about 80
URL 80

CakePHP model
model unit testing, building for 297-304

CakePHP Upload plugin
about 79
URL 79

CakeRequest::is() method 82
CakeRequest::$params array 57
CakeResponse::type() method 62
CakeResponse class 62
CakeResque::enqueue() method 231
CakeResque plugin

used, for creating job queue 225-233
calculate() method 254
callback detector 80
callback methods

URL 32
change() method 279
changes, schema file

applying 310, 311
check() method 86
checkNotModified() method 89
ClassRegistry::init() method 57, 58
ClassRegistry utility class 62
clear() method 279
commonProcess() method 203
compact() function 15, 57
components, CakePHP

URL 17
Composer

using 33
conditions option 50
console API

creating 241-246
URL 246

325

containable 171
containable behavior

used, for configuring models 171-175
content block 265
controller 159
conventions, CakePHP

URL 17
cookie() method 86
cookie_remove() action 86
cookies

configuration options 86
working with 82-86

cookies, configuration options
domain 86
httpOnly 86
key 86
name 86
path 86
secure 86
time 86

counter() method 15, 192
count() function 274
create() method 22, 30, 78, 112
cron shells

implementing 251-254
CRUD (create/read/update/delete) 7
custom authorize class 127-133
custom finder

creating 176-179
custom RBAC 141-146
custom route class

creating 53-58

D
dashboard() action 139
data

deleting, URL 25
inserting, in database 316-321
reading, URL 17
saving, URL 23

database
data, inserting 316-321

data validation, CakePHP
URL 32

delegate() method 103, 104, 113
delete() method 25, 86
deny() method 29
Dependency Injection

about 283-286
constructor 284
field 284
method 284

detector
using 80, 81

detector types
callback detector 80
Environment Value Comparison detector 80
Options-based Comparison detector 80
Pattern Value Comparison detector 80

DigestAuthenticate, authentication
classes 122

disableCache() method 90
dispatch($event) method 223
dispatch filter

creating 59-63
download() method 270

E
edit() method 22
element() method 22
end() method 22
Environment Value Comparison detector 80
error handling

about 90-94
URL 94

error key 78
Etag 89
event-driven process

using 217-225
event priorities

managing 234-239
event stacking 225
event system

URL 217
exceptions, CakePHP

URL 94
expires() method 89
extensions

parsing 65-67

326

F
Facebook API

URL 140
Facebook app

URL 134
Facebook authentication 134-140
fields key 126
file-locking

URL 255
file() method 79
files

downloading 33
PDF content, writing to 271
uploading 74-80

filter option 193-197
findById() method 15, 22
find() method 62, 78, 268, 274
fixture

creating 286-291
flash() method 30
FormAuthenticate, authentication

classes 121
form helper, CakePHP

URL 23

G
generateModel() method 321
getMockBuilder() method 292
getOptionParser() method 245, 250
Git clone

using 32

H
HABTM 163
HABTM association

about 164-169
URL 164

Has and belongs to many. See HABTM
Hash::extract() method 57
Hash::get() function 132
Hash class usage

examples, URL 67
hash() method 112

header() method 74
helpers, CakePHP

URL 17
heredoc syntax

URL 72
Html helper, CakePHP

URL 23
HTTP authentication

about 121-127
URL 127

HTTP cache
handling 87-90

HTTP header 74
HTTP socket class

URL 107
hyper-text transfer protocol

URL 104

I
I18n shell

using 255-260
implementedEvents() method 213, 216
includeCss() method 282
includeJs() method 282
index() method 14, 50, 274
init() method 112
inputs() method 22
internationalization, CakePHP

URL 261
inventory_update() action 71
is_rating_modified field 254
is_uploaded_file() function 79

J
JavaScript Object Notation

URL 107
job queue

creating, CakeResque plugin used 225-233
join through association type

using 169, 170
Jsend spec

URL 104
json_decode() function 106
json_encode() function 62

327

L
language() method 53
languages

handling 51-53
Last-Modified header 88
last_modified() method 89
latest() method 268
link() method 16, 22, 79
listeners 213-217
listing() action 67
load() method 103
login

adding 26-31
login() method 30
logout() method 30, 113

M
mapResources() method 98
matcher functions, PHPUnit

URL 297
md5() function 79
Migrations plugin

installing 312-316
mock objects

configuring 291-293
models

configuring, containable behavior
used 171-175

model unit testing
building, for CakePHP model 297-304

modified() action 89
move_uploaded_file() function 79

N
nestedList() method 57, 274
next() method 15, 193
numbers() method 15

O
OAuth 2.0 specification

URL 113
OAuth protocol

URL 140

object relational mapper (ORM) 170
observer pattern

URL 213
on setting 63
Opauth

URL 140
Opauth installation, CakePHP

URL 140
Opauth strategies

URL 140
Options-based Comparison detector 80
out() method 245
output() method 271

P
paginate() method 14, 209
pagination

about 13, 187-193
URL 193

pagination options
URL 17

Paginator component 193
Paginator helper 192
paramType setting 191
parent::match() method 58
parent::parse() 57
parentNode() method 158
parseCriteria() method 203
parseExtensions() method 67, 99
parse() method 57
parser

importing 246-251
parseResponse() method 106
Pattern Value Comparison detector 80
PDF content

writing, to file 271
PDF document

generating 268-271
perform() method 231
permissions.php file 146
PHP constants

UPLOAD_ERR_CANT_WRITE 78
UPLOAD_ERR_EXTENSION 78
UPLOAD_ERR_FORM_SIZE 78
UPLOAD_ERR_INI_SIZE 78

328

UPLOAD_ERR_NO_FILE 78
UPLOAD_ERR_NO_TMP_DIR 78
UPLOAD_ERR_PARTIAL 78

PHPUnit installation
URL 299

plugins
CakePHP File Storage plugin 80
CakePHP Imagine plugin 80
CakePHP Upload plugin 79
Composer, using 33
files, downloading 33
Git clone, using 32
using 32-39

plugins, CakePHP
URL 39

Poedit tool
URL 261

postLink() method 25
Post/Redirect/Get design pattern

URL 198
prefix

adding 41-51
prefix option 51
prev() method 15, 193
PRG design pattern

URL 204, 211
processPdfJob parameter 233
ProductsController class 13

R
rapid application development (RAD) 7
RBAC definition

URL 146, 162
realm parameter 126
records

adding 17-22
deleting 23-25
editing 17-22
listing 8-16
viewing 8-16

redirect() method 30
Redis documentation

URL 225, 230

register() method 30
request handling

URL 67
resourceMap() method 98
respond() action 73
response

building 72-74
REST

URL 99
RESTful resources 95-99
Role Based Access Control (RBAC) 141
role field 145
routeClass 57
Router::connect() method 53
routing prefixes

URL 134, 146
routing solutions

custom route class, creating 53-58
dispatch filter, creating 59-63
languages, handling 51-53
prefix, adding 41-51

S
saveAll() method 184
saveAssociated() method 184
saveMany() method 184, 321
save() method 22
saveTestUser() method 133
schema

handling 306-309
schemas and migrations

URL 309
scope key 126
scriptBlock() method 71
script() method 71
SearchableBehavior 202
search option 193-197
sendEmailAlert() method 237
sequential ID

versus UUID 14
service

consuming 104-107

329

session, CakePHP
URL 23

Session component 279
setFlash() method 22, 25, 30, 78
set() method 15, 57, 67, 78, 86, 265, 268
setUp() method 301
sharable() method 89
SimplePasswordHasher class 29
sort() method 15, 192
statusCode() method 73
stopPropagation() method 62, 239
stub method

configuring 294-297
submodule. See Git clone
subscribers 213-217
switch() statement 62

T
tag() method 127
tearDown() method 301
template() method 271
test doubles

about 291
URL 293, 304

transactions, MySQL
URL 186
using 184-186

translation functions
__c() function 274
__dc() function 274
__dcn() function 274

translations
handling 272-275

type() method 74

U
uniqid() function 113
Universally Unique Identifier. See UUID
upload() action 78
UPLOAD_ERR_CANT_WRITE 78
UPLOAD_ERR_EXTENSION 78
UPLOAD_ERR_FORM_SIZE 78
UPLOAD_ERR_INI_SIZE 78
UPLOAD_ERR_NO_FILE 78
UPLOAD_ERR_NO_TMP_DIR 78
UPLOAD_ERR_PARTIAL 78
userModel key 126
UUID

versus sequential ID 14

V
validate() method 113
View::extend() method 265
View::fetch() method 271
view($id) method 14
view() method 50
views

caching 275-279

W
web service

exposing 99-104
will() method 294

X
XML view

building 266-268

Thank you for buying

CakePHP 2 Application Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Object-Oriented JavaScript
Second Edition
ISBN: 978-1-84969-312-7 Paperback: 382 pages

Learn everything you need to know about OOJS in this
comprehensive guide

1.	 Think in JavaScript.

2.	 Make object-oriented programming accessible
and understandable to web developers.

3.	 Apply design patterns to solve JavaScript
coding problems.

4.	 Learn coding patterns that unleash the
unique power of the language.

Instant CakePHP Starter
ISBN: 978-1-78216-260-5 Paperback: 76 pages

Learn everything you need to develop a feature-rich
CakePHP app, from installation to deployment

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2.	 Focus on an iterative practical approach to learn
the myriad features of CakePHP.

3.	 Learn about Models, Views, and Controllers
as well as scaffolding, themes, behaviors,
and routing.

Please check www.PacktPub.com for information on our titles

HTML5 and CSS3 Transition,
Transformation, and
Animation
ISBN: 978-1-84951-994-6 Paperback: 136 pages

A handy guide to understanding Microdata, the new
JavaScript APIs, and the form elements in HTML5
and CSS3 along with transition, transformation, and
animation using lucid code samples

1.	 Discover the semantics of HTML5 and Microdata.

2.	 Understand the concept of the CSS3 Flexible
Box model.

3.	 Explore the main features of HTML5 such as
canvas, offline web application, geolocation,
audio and video elements, and web storage.

PHPUnit Essentials
ISBN: 978-1-78328-343-9 Paperback: 314 pages

Get started with PHPUnit and learn how to write and test
code using advanced technologies

1.	 Learn how to install PHPUnit as well as how
to write and execute tests.

2.	 Understand the advanced concepts of
testing using test doubles and the continuous
integration process.

3.	 A hands-on, step-by-step guide full of real-life
examples to help you learn quickly and effectively.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Lightning Introduction
	Introduction
	Listing and viewing records
	Adding and editing records
	Deleting records
	Adding a login
	Including a plugin

	Chapter 2: Advanced Routing
	Introduction
	Adding a prefix
	Handling languages
	Custom route class
	Dispatch filter

	Chapter 3: HTTP Negotiation
	Introduction
	Parsing extensions
	Processing Ajax requests
	Building a response
	Uploading a file
	Using a detector
	Working with cookies
	Cache control
	Error handling

	Chapter 4: API Strategies
	Introduction
	RESTful resources
	Exposing a web service
	Consuming a service
	Authentication API
	API versioning

	Chapter 5: Using Authentication
	Introduction
	The HTTP authentication
	Custom authorize class
	Facebook authentication
	Custom RBAC
	Working with ACL

	Chapter 6: Model Layer
	Introduction
	Has and belongs to many (HABTM)
	Joining through
	Containing models
	Custom finders
	On-the-fly associations
	Using transactions

	Chapter 7: Search and Pagination
	Introduction
	Pagination
	Basic search and filter
	The Search plugin
	Advanced search

	Chapter 8: Events System
	Introduction
	Listeners and subscribers
	Event-driven process
	Event stacking
	Managing event priorities

	Chapter 9: Creating Shells
	Introduction
	Console API
	Import parser
	Running cron shells
	Using the I18n shell

	Chapter 10: View Templates
	Introduction
	Using blocks
	Building an XML view
	Generating a PDF
	Writing some PDF content to a file
	Translations
	View caching
	The AssetCompress plugin

	Chapter 11: Unit Tests
	Introduction
	Dependency Injection
	Creating a fixture
	Mock objects
	Stub method configuration
	Model unit testing

	Chapter 12: Migrations
	Introduction
	Schema handling
	Syncing changes
	The Migrations plugin
	Injecting data

	Index

