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Preface

Cloud computing is emerging as the most promising technology for software
development, changing the way customers interact with their data and applications.
There are many reasons that drive the choice of moving to cloud:

• companies no longer need to buy, store, and maintain expensive hardware
infrastructures, reducing time and money involved in maintaining, updating, and
repairing their own equipments;

• hardware dimensioning is not to be related to peak workload any more, but the
infrastructure can be dynamically scaled according to the current needs. This
results in a better use of the existing resources;

• customers pay only for the resources they actually use, following a “Pay as you
Go” paradigm;

• using distributed resources, including data centers and computing nodes, can
enhance systems’ resiliency and disaster recovery;

• the possibility to choose among a broad range of available resources and services
can trigger strong competition between cloud providers, thus resulting in better
quality and lower prices for customers.

These are only a few of the possible benefits that could derive from the adoption
of the cloud computing paradigm but, despite the diffusion of cloud technologies,
issues and limitations still exist. A major issue is the lack of portability and
interoperability between cloud platforms at different service levels, affecting the
cloud computing panorama in several ways and aspects. The brokering, negotiation,
management, monitoring, and reconfiguration of cloud resources are nowadays
challenging tasks for the developer or user of cloud applications due to different
business models associated with resource consumption as well as due to the variety
of services—and their features—offered by the variety of cloud providers. These
points become very critical when the landscape is a multicloud environment and the
main concern is represented by the vendor lock-in problem. In fact, cloud providers
usually propose technological solutions that differentiate them from their compet-
itors: these differences have the drawback of locking the customers as no
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alternatives are offered. Thus, once customers have chosen a cloud provider, either
they cannot change to another provider or they can do it but only at a huge cost.
Vendor lock-in risk also includes reduced negotiation power in reaction to price
increases and service discontinuation (if, e.g., the provider goes out of business).

In the following the structure of the book is illustrated.
In Chap. 1, the notions of cloud portability and interoperability are introduced,

together with the issues and limitations arising when such features are lacking or
ignored. The illustration starts with definitions of portability and interoperability as
inherent to the generality of software systems, and then the concepts are tailored,
specialized, and exemplified for the specificity of cloud computing. Some basic
concepts of the cloud and reference architectures are reported to define the recurrent
terms and roles.

A number of use cases, accompanied with a concrete case study, representing a
variety of interoperability and portability scenarios are illustrated. Several defini-
tions and use case scenarios are modeled by means of an n-dimensional feature
space, where features represent the different characteristics and abstraction levels
of the cloud domain.

The feature space, the use case scenarios, and the case study are utilized in the
following chapters in order to position, classify, and demonstrate the different
technologies and solutions presented.

Chapter 2 provides an overview of the state-of-the-art methodologies and
technologies, which are currently used or are being investigated to enable cloud
portability and interoperability. These include: Model-Driven Architecture (MDA)
and languages, semantic technologies, cloud patterns, and agent systems. We
illustrate in detail how the use of cloud patterns can enable robust cloud applica-
tions design and development with respect to portability and interoperability. We
position the different methodologies and technologies illustrated with respect to the
use case scenarios and features defined in Chap. 1, and we test them by analyzing
their application to the case study illustrated in Chap. 1. We also mention and
briefly illustrate the contributions coming from projects funded by the European
Commission FP7 program.

Chapter 3 illustrates the main cross-platform cloud application programming
interfaces and how they can solve interoperability and portability issues by bringing
uniformity and standardization to the cloud. This chapter provides an overview of
initiatives that provide cross-platform-based cloud APIs such as DeltaCloud,
SimpleCloud, JCloud, Libcloud, and research projects whose aim is to provide
multicloud APIs (such as mOSAIC). Such APIs are positioned with respect to the
use case scenarios and features defined in Chap. 1, and tested by analyzing their
application to the case study illustrated in the chapter.

Chapter 4 presents a set of ready-to-go solutions which, either for their wide
diffusion in the cloud computing scenario or because they implement the estab-
lished or emerging standards (see Chap. 5), have a fundamental role in providing
interoperable and portable solutions. In particular, Amazon Web Services (AWS)
and OpenStack have imposed themselves as “de facto standards” at the IaaS level,
since their wide adoption has led other providers to develop APIs and interfaces

viii Preface

www.allitebooks.com

http://dx.doi.org/10.1007/978-3-319-13701-8_1
http://dx.doi.org/10.1007/978-3-319-13701-8_2
http://dx.doi.org/10.1007/978-3-319-13701-8_1
http://dx.doi.org/10.1007/978-3-319-13701-8_1
http://dx.doi.org/10.1007/978-3-319-13701-8_3
http://dx.doi.org/10.1007/978-3-319-13701-8_1
http://dx.doi.org/10.1007/978-3-319-13701-8_4
http://dx.doi.org/10.1007/978-3-319-13701-8_5
http://www.allitebooks.org


which are compatible with their offers. At the PaaS level, Microsoft Azure, Google
App Engine, IBM Bluemix, and OpenShift with their multi-language support and
ability to interface with other platform services, surely enhance the application
portability and thus deserve to be cited here. Such solutions are positioned with
respect to the use case scenarios and features defined in Chap. 1, and tested by
analyzing their application to the case study illustrated in the chapter. Finally, we
also present solutions that have been explicitly created for portability and inter-
operability purposes, such as Docker, ElasticBox, and Cloudify.

Chapter 5 presents an overview of the emerging standards for cloud interoper-
ability and portability. In particular, here we consider efforts moving toward the
definition of shared standards addressing different aspects of the cloud environment,
spanning from services communication to data description. Among these, we
consider standards such as TOSCA, CIMI, OCCI, and CDMI. Some of these
standards are positioned with respect to the use case scenarios and features defined
in Chap. 1, and tested by analyzing their application to the case study illustrated in
the chapter.

We wish to thank Antonio Argenziano, Andrea Barbato, Graziella Carta, Sal-
vatore D’Angelo, Salvatore Maisto, Stefania Nacchia, and Raffaele Sperandeo for
their valuable contribution to the evaluation of the various platforms and solutions
described in the book.

Last but not least, we would like to acknowledge the excellent and relentless
support of the Springer staff members—in particular Viktoria Meyer, Ralf Gerstner,
and Aliaksandr Birukou—during all phases of the development of this book.

Beniamino Di Martino
Giuseppina Cretella
Antonio Esposito
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Chapter 1
Cloud Portability and Interoperability

1.1 Cloud Basics and Reference Architectures

The National Institute of Standards and Technology (NIST) has provided an
accurate definition of cloud computing, which is described as “a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort or service
provider interaction” [1]. The NIST definition, summarized in the reference archi-
tecture reported in Fig. 1.1, describes the roles within the cloud computing scenario
and, for each of them, a set of corresponding capabilities and responsibilities. The
five roles identified by NIST are as follows:

• Cloud Consumer represents either a person or an organization using the services
offered by a cloud provider, generally via an online catalog, and requesting the
desired services. Service level agreements (SLAs) specify the requirements ful-
filled by a certain service or a set of services, in order to let consumers choose the
appropriate ones.

• Cloud Provider represents either a person or an organization offering services
to interested consumers. It is the cloud provider’s responsibility to assure the
availability of the services and the fulfillment of SLAs. One of the activity areas in
which a cloud provider is involved concerns Service Deployment. In particular,
NIST has defined the following four deployment models:

– Public Cloud describes a situation in which resources and infrastructures are
madepublicly available over a public network.Apublic cloud is generally owned
by a provider that sells its resources to a heterogeneous pool of consumers.

– Private Cloud restricts access to services and resources to a single cloud con-
sumer. The cloud infrastructure can be either owned and managed by the cloud
consumer directly or by a third party.

– Community Cloud is similar to a private cloud, since it limits access to
resources that are not publicly available. However, it can serve multiple cloud
consumers, sharing interests and/or objectives, rather than a single organization.

© The Author(s) 2015
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2 1 Cloud Portability and Interoperability

– Hybrid Cloud represents a situation inwhich two ormore cloud infrastructures,
following different deployment models, collaborate to provide complex ser-
vices. Such a composition of cloud services requires the use of standard or
proprietary technologies to enable data and application portability and inter-
operability.

A provider is in charge of Service Orchestration, which is “the composition
of system components to support the Cloud Providers activities in arrangement,
coordination and management of computing resources in order to provide cloud
services to Cloud Consumers”. Particularly interesting are the three service deliv-
erymodels identified byNIST as part of cloud orchestration, in the Service Layer:

– Infrastructure as a Service (IaaS) is a model in which IT infrastructures,
ranging from CPU power to storage, are exposed as a resource over the Internet.
Cloud users can dynamically shape their infrastructure according to their needs,
while resources are provided “on demand”.

– Platform as a Service (PaaS) consists of application development platforms,
remotely accessible through the web and able to connect to locally exe-
cuted frameworks and IDEs, allowing fast development and deployment of
applications.

– Software as a Service (SaaS) allows providers to expose stand-alone appli-
cations, running on a distributed cloud infrastructure completely hidden from
customers, as resources accessible through the Internet.

Service levels and deployment models are represented in the following as dimen-
sions of an n-dimensional features space in order for us to classify, position,
and visually characterize portability and interoperability definitions, use case
scenarios, and technological solutions.
Another responsibility of a provider is represented by Cloud Service Manage-
ment, comprehending all the functionalities needed to correctly manage and oper-
ate services offered to consumers. In this context, a provider should also offer
mechanisms to support data portability, service interoperability, and system porta-
bility (more on these will be discussed in Sect. 1.2).

• Cloud Auditor performs independent examinations of cloud service controls, in
order to verify conformance to standards or to evaluate the provider in terms of
security, privacy, performance, fulfillments of SLAs, and so on.

• Cloud Broker manages service negotiations and relationships between cloud con-
sumers and providers, acting as an intermediary. It deals with request, performance
tuning, and delivery of services. In particular, the services provided by a cloud bro-
ker, as they are defined by NIST, can be divided into three categories mentioned
below:

– Service Intermediation: the broker adds value to a given service by providing
some functional improvements useful to consumers, such as identity manage-
ment, performance reporting, enhanced security, and so on.
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– Service Aggregation: the broker integrates multiple existing services in order
to deliver new services or functionalities. Data integration and security during
transfers across multiple providers is assured by the broker itself.

– Service Arbitrage: the broker aggregates services from multiple providers,
selecting the delivering agency according to a previously assigned score. How-
ever, the selected services are not fixed, which are presented to the consumers
“as they are”. In this respect, it differs from Service Aggregation in which the
broker provides service integration as well.

• Cloud Carrier provides connectivity and transport services, enabling consumers
to access the selected services through different communication devices, generally
represented by the Internet.

Fig. 1.1 NIST reference architecture

The NIST reference architecture represents a good starting point to understand
and learn about the cloud, since many providers have been inspired by it when defin-
ing their solutions. For instance, the IBM Cloud Computing Reference Archi-
tecture (CCRA) [2], reported in Fig. 1.2, has been clearly influenced by the NIST
model. However, IBMbeing very business oriented, there exist important differences
between the CCRA and the NIST architecture.

• The role of Cloud Consumers slightly changes: while in the NIST architecture,
a consumer just uses the services offered by a provider, optionally managed and
organized through a broker, in CCRA she has more control over the consumed
services with the possibility to integrate them with the existing In-house IT.

• Cloud providers can deliver their services following the three models defined by
NIST (IaaS, PaaS, and SaaS), or the Business Process as a Service (BPaaS)
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paradigm, defined by IBM itself. BPaaS consists in the delivery of business
processes through cloud technologies, accessed via Internet-based technologies.

• Management tasks are supported by the Common Cloud Management Platform
(CCMP), used to expose both operational and business support services, which
are exploited by Cloud Service Creators to develop their applications.

• Cloud Service Creator is a new role defined in the IBMCCRA. A service creator
has the responsibility to design, implement, andmaintain runtime andmanagement
artifacts needed to run a specific service, which will then be exposed by providers
and used by consumers. Under this perspective, the service provider and creator
roles can be played by different actors, as long as the interfaces they use (exposed
by the CCMP) are compliant.

Fig. 1.2 IBM Cloud Computing Reference Architecture

The information provided in this brief introduction to cloud computing covers the
basic notions needed to understand the following sections and chapters. See [3] for
an in-depth and more complete discussion of cloud computing and related features.

1.2 Cloud Interoperability and Portability Definitions

Interoperability and portability are both highly desirable qualities that affect the cloud
under different perspectives. Portability and interoperability, alongside the entities
such features are referred to (data, services, applications and systems), represent
two other dimensions of our n-dimensional features space. The n-dimensional space
(Fig. 1.3) is composed of four dimensions: the software entities (data, service, appli-
cation, and system), the service level (non-cloud service level, IaaS, PaaS, and SaaS),
the deploymentmodel (public, private, and hybrid), and the cloud features (portability
and interoperability). A single comprehensive definition of either interoperability or
portability would be too general and would not provide much information. Instead,
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Fig. 1.3 Interoperability and portability dimensions

independent groups such as the already mentioned NIST or the OpenGroup [4] con-
sortium have provided definitions for interoperability and portability in different
cloud domains.

• Data Portability (NIST/OpenGroup-DP) represents the possibility, for con-
sumers, to transfer or copy data objects to or from different cloud platforms.
This property is enabled by the use of common data formats and transfer proto-
cols, together with shared API’s interfaces for data migration. Porting data can be
a difficult task, since storage models and formats often vary between platforms.
Also, we should consider the effort needed to move data between cloud platforms,
which is not free of charge.

• System Portability (NIST-SP) represents the possibility tomigrate virtualmachine
instances, machine images, applications or even services, and their relative con-
tents from one cloud provider to another. Since it also considers applications, even
if not a main focus, this definition partially overlaps that of application portability
proposed by the OpenGroup.

• Application Portability (OpenGroup-AP) enables the reuse and migration of
entire applications, or of some of their components, across cloud PaaS services or
even from on-premise environments to the cloud. Such a definition contemplates
two additional features:

– The first refers to Portability between Development and Operational Envi-
ronments. PaaS is particularly attractive because it avoids the need for invest-
ment in systems that will be dismissed once the development is complete. But,
if a different environment will be used at runtime, it is essential that the appli-
cations are moved unchanged, or at least seamlessly among such environments.

– The second refers to Software Modernization, which is still a significant chal-
lenge in general and evenmore ambitiouswhen a change in the software delivery
paradigm needs to be addressed, such as in the case of cloud computing.
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• Service Interoperability (NIST-SI) is defined as the ability of consumers to use
services across multiple cloud platforms through a unified management interface.

• Application Interoperability (OpenGroup-AI) is defined as the ability of cloud-
enabled applications to collaborate, across different platforms, in order to deliver
their functionalities or create new ones. Application interoperability affects all the
service delivery models: at the SaaS level, it is related to application components
or full software offered by different providers, which rely on each other to deliver
functionalities; at the IaaS and PaaS levels, it is related to the specific services the
involved applications require. In general, service or platform interoperability is
needed to enable application interoperability. An application component may be
a complete monolithic application, or a part of a distributed application.

• Platform Interoperability (OpenGroup-PI) is defined as the ability of platform
components, either deployed upon an IaaS or as part of a PaaS offer, to interoperate.
If we consider components whose functionalities are exposed as services to cloud
consumers, platform and service interoperability definitions tend to coincide.

Using two of the defined dimensions (portability/interoperability vs. data/service/
application/system)we are able to position the above illustrated definitions inFig. 1.4.

Fig. 1.4 Positioning of portability and interoperability definitions

1.2.1 Cloud Computing Use Case Scenarios

Due to the high number of variables that come into play in a complex cloud computing
solution that involves portability and interoperability capabilities, a number of use
case scenarios have been defined in the literature to underline the requirements and
consideration of the particular case. Among the several cloud computing use case
scenarios we report and classify, against our n-dimensional space, some notable
examples that highlight the key aspects of cloud computing interoperability and
portability characteristics. The results of our classification are illustrated in Fig. 1.5,
where arrows represent interoperability/portability among different service levels,
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while squares represent interoperability/portability within the same service level.
All the technologies, methodologies, ready-to-go solutions, and standards presented
in the rest of the book will be placed with respect to such use cases. The use cases
labeled with the acronym “CSCC” are presented in the document Interoperability
and Portability for Cloud Computing: A Guide [5] published by the Cloud Standards
Customer Council. The use cases labeled with the acronym “CCUS” have been
defined by the Cloud Computing Use Case Discussion Group [6].

Fig. 1.5 Use case scenario classification

1.2.1.1 CSCC S1: Customer Switches Providers for a Cloud Service

This scenario addresses the case of a customer currently using a cloud service pro-
vided by provider A, who wishes to switch to an equivalent service from provider B.
This scenario touches many of the issues associated with portability. From the point
of view of application code, the portability strategies depend on the cloud service
level: in the case of SaaS, the application code typically belongs to and is managed by
the provider; in the case of PaaS, portability depends on the programming languages
supported by the involved platforms and on the APIs offered by the cloud platform
services to manage applications (submit the app code, configure, run, and control
the app). Data portability aspects must also be considered. At the IaaS level, storage
functionalities provided by cloud vendors are of typically low level, such as provid-
ing volumes for binary files or object storages, so customers are generally free to
use their preferred data format. While the same sometimes occurs at the PaaS level,
the situation tends to be more complex: a PaaS service provider may offer ready-
to-go instances of databases, which may be sensitive to the data format chosen by
the customer. However, there are some very generalized formats (CSV, XML, etc.)

www.allitebooks.com
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that are supported by many types of databases. For SaaS services, data formats and
contents are handled by the service provider, so major data portability considerations
are needed.

1.2.1.2 CSCC 2: Customer Uses Cloud Services
from Multiple Providers

This scenario addresses the case of a cloud service customer using cloud service 1
from provider A and cloud service 2 from provider B, while requiring to use them
together to achieve business goals. Despite the benefits of mitigating the risk of
data loss and temporary service unavailability, working with multiple cloud service
providers can introduce logistical problems. Open-source or vendor-agnostic tools
and cloud management services can help solve these issues. Not all cloud providers
offer the same services. Storage and virtual machine (VM) instances are often stan-
dard, but services such as messaging or workflow and administration tools may vary
across vendors. Working with multiple cloud providers may force customers to work
with the lowest common denominator of services. Sidestepping this problem is pos-
sible by choosing vendor-agnostic software applications that will run in all of the
target clouds.

1.2.1.3 CSCC 3: Customer Links One Cloud Service
to Another Cloud Service

This scenario addresses the case of an architecture linking cloud services together to
support a single application or an integrated set of applications. The advantages of
multicloud deployments are several, first of all the ability of enterprises to leverage
cloud solutions best fitting their stated needs, remaining within the imposed cost
limits. An example of such a linking is represented by the case of a SaaS application
capable of delivering basic business-related functionalities as needed by a customer,
but it is not able to provide advanced functionalities (i.e., data analytics or business
intelligence related). The customer can leverage the IaaS capabilities from another
cloud service provider by migrating the data from the SaaS to the IaaS solutions,
also in order to combine different data sets and perform more advanced analytics.

1.2.1.4 CSCC 4: Customer Links In-house Capabilities
with Cloud Services

As more enterprises are planning their cloud investment, they will realize how to
leverage their existing in-house IT with their future cloud setting. A proper analy-
sis of the available APIs of both the in-house and cloud services will be required
to understand how the integrated system will function and perform during typical
execution.



1.2 Cloud Interoperability and Portability Definitions 9

1.2.1.5 CSCC 5: Migration of Customer Capabilities into Cloud Services

This scenario addresses the case of a customer, currently running an application or
service on-premise, whowants tomove that capability to a public cloud environment.
For SaaS cloud services, migrating an on-premise application or service to a public
cloud service provider does not involve porting the application code, because the
application is being replaced. What is important in the SaaS case is the compatibil-
ity of the functional interface of the application, of any interfaces presented to end
users and any APIs made available to other customer applications. In order to reduce
undesired side effects, the APIs made available by the SaaS service should be inter-
operable with the interface provided by the on-premise application or the service that
is being replaced. If the APIs are not interoperable any customer applications using
the APIs will need to be changed as part of the migration process. To migrate on a
PaaS cloud, the application must be designed for one of the runtime environments
available in the target PaaS service. Generally a PaaS solution provides the elements
of the particular software stack required by applications such as the operating system,
an application server, and a database, so that the customer only has to be concerned
with the specific application components and data. Some concerns may arise regard-
ing particular configurations required by the application, such as the ability to run
scripts and the presence of certain tools for setup, reporting, or monitoring. At the
IaaS level, the entire software stack is migrated through one or more virtual machine
(VM) images, which can then be copied into the cloud service and executed there.
Some concerns arise if the application makes use of specialized device drivers or
hardware devices that are unlikely to be supported by an IaaS provider.

1.2.1.6 CCUC 1: Changing SaaS Vendors

This scenario addresses the case in which a cloud customer changes SaaS vendors.
The data handled by one vendor’s software should be importable by the second
vendor’s software, which means that both applications need to support common
formats. Standard APIs for different application types will also be required.

1.2.1.7 CCUC 2: Changing Middleware Vendors

This scenario addresses the case inwhich a cloud customer changes cloudmiddleware
vendors. Existing data, queries, message queues, and applicationsmust be exportable
from one vendor and importable by the other. The requirement to achieve this porting
is a common API for cloud middleware. Cloud database vendors have enforced
certain restrictions to make their products more elastic and to limit the possibility of
queries against large data sets taking significant resources to process. For example,
some cloud databases do not allow joins across tables, and some do not support a
true database schema. These restrictions are a major challenge to moving between
cloud database vendors, especially for applications built in a true relational model.
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1.2.1.8 CCUC 3: Changing VM Hosts

This simple scenario addresses the case in which a cloud customer wants to take
virtual machines, built in one cloud vendor’s system, and run them in another cloud
vendor’s system. The main requirement of this operation is a common format for
virtual machines.

1.2.1.9 CSC-CB: Cloud Bursting

The cloud bursting use case, focusing on interoperability issues at the IaaS level,
describes a scenario where multiple cloud platforms need to work together. In par-
ticular, being it the typical situation, the use case describes the collaborations between
public and private clouds and the possibility to move work and data loads between
them. The use case illustrates a situation inwhich a private cloud, running one ormore
virtual machines, needs more computational power from a public cloud in order to
respond to a peak of incoming request from customers or to speed up computation. In
order to do so, VMs are dynamically migrated from one environment to another. The
use case is similar to the CCUC 3: Changing VMHosts scenario, but it differs from it
not only for the dynamic requirements imposed, but also because the migrated VMs
are supposed to collaborate with the one still hosted on the source cloud platform.

1.2.2 A Case Study

Let us consider a typical architecture of a business intelligence application inwhich an
ETL process (extraction, transformation and loading) retrieves data from a database
(DBMS), a customer relationship management (CRM) and an enterprise resource
planning (ERP) system, and preprocesses them for further analysis after their storage
in a data warehouse system (See Fig. 1.6).

The CRM and ERP components use data coming from their own databases. The
data recorded in the data warehouse are used by the OLAP system for the creation
of business reports on sales, marketing, management, budget, and so on. The data
mining component uses the same data to perform market analysis to identify new
product bundles tofind the root cause ofmanufacturingproblems, to prevent customer
attrition and acquire new customers, to cross-sell to existing customers, and to profile
customers with more accuracy. The first concern arising when we introduce such an
architecture in the cloud computing environment is interoperability, since several
application components need to interoperate to achieve the business goal. This could
introduce problems when such components are distributed among several clouds:
the cloud services hosting the components must share a compatible programming
interface in order to avoid rewriting the entire application. Furthermore, nothing
prevents cloud platform providers from limiting access to offered storage services
to applications residing on their own platform. Another important aspect to handle
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Fig. 1.6 Architecture of a Business Intelligence application

is migration to and portability among clouds. Suppose that the application is built
in a particular cloud service or on an in-house system and, for cost, performance,
or other reasons, the owner wishes to move it to another service provider. In a fully
interoperable setting, the application could access data from both in-house and public
cloud databases through a common interface. In a real situation, differences in API,
data, and message formats or communication protocols represent a concrete obstacle
to achieve such a feature.

1.2.2.1 Motivating Example: Portability and Interoperability
Consideration

The most important dimension to consider is the Service Level. Starting from the
lower value of this dimension, we can consider the case in which the application
is built in an in-house IT and its owner wants to migrate it to the cloud (Fig. 1.7).
We need to distinguish the target cloud service models because the problems that
arise are different. In the case of a target IaaS platform, the requirements are to
package the entire software stack in a set of VM images and load these images on
the target resources acquired. The migration process in this case may be prevented
by incompatibilities between virtual image formats or particular requirements at the
infrastructural level. In our example, the software (ERP, CRM, ETL, data warehouse)
delivered on-premise in the in-house solution will be packaged jointly to the entire
software stack. Additional storage systems may be attached to the VMs to offer stor-
age capabilities to the databases and DataWarehouse. In case of migration to a PaaS,
the processes constituting the application can be deployed in the platform, provided
that a compatible environment is offered. The databases, the Data Warehouse, the
ERP and CRM module can be supplied by platform services if present in the plat-
form or offered in a multicloud environment by other providers at the SaaS level. In



12 1 Cloud Portability and Interoperability

Fig. 1.7 Porting of an in-house system to multiple clouds

this case a certain importance is held by the compatibility of the functional interface
between the old and new software.

When porting occurs among providers at the same level, the main concerns are
related to the lack of common interfaces to access the different services. For instance,
at the PaaS level cloud vendors generally provide their own solutions and APIs for
handling databases. Consider that the databases of the ERP and CRM can reside
on different platforms: if such platforms were fully interoperable, the ERP service
would be able to freely access information regarding all the databases. But rarely, if
ever, this happens because of the lack of common interfaces, for security reasons or
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simply due to commercial strategies adopted by cloud providers. Interface standard-
ization is required for porting applications/software systems to the cloud, or among
cloud platforms, in order to enable applications to use services and protocols pro-
vided by the platform(s), as well as to provide access to the capabilities supporting
the application. This means that, even when standard languages are used, portabil-
ity at the PaaS level is not guaranteed, since implementations of platform services
may vary between providers. Interoperability issues may arise even when portability
is achieved. Assuming that portability among clouds is feasible and that the appli-
cation is distributed among several clouds, there is still no guarantee that various
parts of the application are able to interoperate, due to a lack of shared data format,
communication interfaces, security requirements, or providers’ commercial policies.
Another interesting example is represented by the case of a Hybrid Cloud solution,
in which some resources are offered by a Public Cloud, for example the databases
and the ERP process, while other critical components, such as the data mining and
OLAP processes, are internally managed by the organization following a Private
Cloud model. This approach allows organizations to take advantage of the scalabil-
ity and cost-effectiveness of public cloud offers, without exposing mission-critical
applications and data, which can be dealt with in-house. However, no matter how
similarly a public and private cloud are built, design and implementation differences
will inevitably exist and interoperability issues may occur. For what concerns issues
related to data portability which can arise in our example application, if the data
are not stored in a PaaS storage but are stored in a database installed on a VM, the
problem of incompatibility of the export formats of data is certainly minor. Consider
instead the possibility that the ETL process uses data stored in a three columnar
database offered by a cloud provider A, or even three different cloud providers A,
B, C for redundancy. What if, for security reasons, the application needs to migrate
data to a new provider X? What happens if the cloud providers A, B, C, and X do
not support the same export and import formats? And even more, can we assume
that provider A offers export mechanisms? The situation is even worse if the data are
stored at the SaaS level, because in this case the format and the content of the cloud
service customer data are totally in the hands of the cloud service provider. Suppose
that our business application works for a very large enterprise and, for this reason, it
manages a lot of data, needs to be decentralized and some of its components need to
be replicated over different providers for security. Referring to our motivating exam-
ple, we can have a duplicated data warehouse hosted by different providers and data
mining andOLAP processes that would like to access dynamically themost available
storage each time. This scenario surely requires the use of a common API to access
the different data warehouse copies, but this situation involves also the compatibility
of data representation (not to mention problems related to data localization).
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Chapter 2
Methodologies for Cloud Portability
and Interoperability

2.1 Model-Driven Approach for Design, Provisioning,
Execution, or Migration to the Cloud

The OMG model-driven architecture (MDA) [1] is a model-based approach for the
development of software systems that aims at separating the platform-independent
design of a software application from its implementation on a given platform. The
main feature and benefits of MDA from the cloud perspective are the enablement of
portability, interoperability, and reusability of (parts of) the system, as well as its easy
maintenance, through human-readable and reusable specifications at various levels
of abstraction. In the context of cloud computing, model-driven development allows
developers to design software systems in a cloud-agnostic way, and to be supported
by model transformation techniques into the process of instantiating the system
into specific and multiple clouds. This approach, which is commonly summarized as
“model once, generate anywhere”, is particularly relevant when it comes to designing
and managing applications across multiple clouds, as well as migrating them from
one cloud to another. Combiningmodel-driven application engineering and the cloud
computing domain is currently the focus of several research groups and projects,
among others,MODAClouds [2], ARTIST [3], PaaSage [4], and REMICS [5], which
we are briefly illustrating in the following.

2.1.1 MDA in MODAClouds

MODAClouds—MOdel-Driven Approach for design and execution of appli-
cations on multiple Clouds [6] is an EC-funded research project that proposes a
model-driven approach aimed at supporting system developers and operators in uti-
lizing multiple clouds and in migrating parts of their systems from cloud to cloud
as needed. The MODACloudML platform relies on a domain-specific language
for the design and execution of applications on multiple clouds. The model-driven
engineering approach adopted by the MODACloudML platform allows developers
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to build the system at various levels of abstraction. The three envisioned levels are:
the Cloud-enabled Computation Independent Model (CCIM) to describe an applica-
tion and its data, the Cloud-Provider Independent Model (CPIM) to describe cloud
aspects related to the application in a cloud-agnostic way, and the Cloud-Provider
Specific Model (CPSM) to describe the cloud details needed to deploy and provision
the application in a specific cloud. Each layer of the architecture contains various
models that can be manipulated within the MODACloudML environment.

MODAClouds provides developers and operators with the following tools to sup-
port the application lifecycle management:

• the decision-making toolkit to compare and analyze different cloud solutions;
• the IDE to support a cloud-agnostic design of software systems, a partial code
generation, and the deployment in the selected target;

• the runtime layer to monitor the execution of the system on multiple clouds.

2.1.1.1 Engagement with Case Study and Positioning with Respect
to Use Case Scenarios and Features

To evaluate the real usability of the MDA approaches, we try to use the MODA-
Clouds on the application example reported in Fig. 1.6. Following theMODAClouds
methodology, each part of the application can be represented by a generic resource
with specific needs and capabilities (Fig. 2.1).

Fig. 2.1 Application design through MODAClouds

http://dx.doi.org/10.1007/978-3-319-13701-8_1
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Every resource in the model created above can be replaced by a service offered
by different cloud providers. Through the application of the concept “Model Once,
Generate Anywhere”, MDA enables the portability from a cloud provider to another,
dramatically reducing the complexity of developing an application all over again.
One of the key features of these methodologies is the support of high-level design,
early prototyping, and semiautomatic code generation. Considered as the high
level of abstraction, the porting of an application modeled using MDA to a cloud
provider cannot be done without the use of existing or emerging standards: such
as TOSCA. These kinds of standards are essential for transforming a platform-
independent model to a platform-specific model. This approach can be helpful in
the scenarios CSCC S1 and CSCC S2. In particular, the MODAClouds IDE will
support a cloud-agnostic design of software systems, the semiautomatic translation
of design artifacts into code, and their deployment in the selected target clouds.
Some support to interoperability is provided by some components such as the
multicloud load balancer and the resource allocator. The first is a load balancer
used by the applications and handles the case when the same application runs
in two clouds (as distinct instances), and which is able to route traffic toward
the multiple instances. The resource allocator is a centralized service, mediating
resource allocations from various cloud providers, enabling asynchronous interac-
tions, and tracking. MODAClouds-targeted applications are mainly the PaaS and
IaaS. The positioning of this solution according to our dimensional space is illus-
trated in Fig. 2.2.

Fig. 2.2 MODAClouds solution positioning

2.1.2 MDA in ARTIST

ARTIST—Advanced software-based seRvice provisioning and migraTIon of
legacy SofTware [7] is an EC-funded research project that proposes a software
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modernization approach covering business and technical aspects. In particular,
ARTIST employsmodel-driven engineering techniques to automate the reverse engi-
neering of legacy software and the forward engineering of cloud-based software in
a way that modernized software truly benefits from targeted cloud environments.

Fig. 2.3 The ARTIST software modernization process [8]

The proposed modernization process (Fig. 2.3) consists of a premigration, migra-
tion, and postmigration phase.

Before migration is performed, the legacy software is analyzed in the premi-
gration phase, considering the technical and nontechnical consequences of possible
migration strategies. This analysis results in well-defined migration goals constitut-
ing the input for the decision-making on how the migration should be performed
in the subsequent phases. In a first step of the migration phase, models are reverse
engineered from the legacy software. These legacy platform-specific models include
all specifics imposed by the platform on which the legacy software is built. To enable
the coverage of a wide range of current and future modernization scenarios and the
reuse of reoccurring platform-independent migration patterns across several mod-
ernization scenarios, the legacy PSM is transformed into a higher level representa-
tion, called PIM (platform-independent model). The PIM abstracts from platform-
specifics, such as software runtime environments and data management capabilities.
These platform-specifics need to be adapted to the offerings of cloud providers, as
their cloud environments are typically unique and operate on different virtualization
layers, i.e., from infrastructure to platform to software as a service. PIMs are then
subject to model transformations, which are selected based on the migration goals
defined in the premigration phase.

These transformations implement the actual migration by applying optimiza-
tion patterns and integrating cloud-specific modernization opportunities. As a result,
model-based representations of themigrated software that include platform-specifics
compatiblewith the selected cloud environment are produced. Such a cloudified PSM
is transformed into the executable migrated software hosted in a cloud environment.
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In the postmigration phase, model-based representations of the legacy and the
migrated software are employed to derive equivalence tests. They aim at verifying
that the migrated software behaves as expected. Furthermore, nonfunctional proper-
ties are evaluated to certify if the migration goals are fulfilled. This is achieved by
analyzing the execution of the migrated software to obtain quality measures that are
checked against the defined migration goals.

2.1.2.1 Positioning with Respect to Use Case Scenarios and Features

ARTIST accomplishes the use case scenario CSCC S5. In fact, this solution has
been implemented to enable the effective migration of legacy applications to cloud
environments. The ARTIST methodology comprises all the phases needed to per-
form modernization. It defines the life cycle of the migration process including its
phases, purpose, activities to be performed, inputs, outputs, tools, or techniques
suited for each phase and the templates to use. Several software tools are provided
by the project to support the methodology and assist the developers in the migration
process. Reverse engineering tools, cloud metamodeling language, forward engi-
neering tools, testing framework, and technical/business feasibility tools are some of
the tools provided by the project. The positioning in our dimensional model of this
methodology is illustrated in Fig. 2.4.

Fig. 2.4 ARTIST solution positioning
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2.1.3 MDA in REMICS

REMICS—Reuse and Migration of legacy applications to Interoperable Cloud
Services [9] is an EC-funded research project aimed at supporting the migration of
legacy systems to service clouds by providing amodel-drivenmethodology and tools.

The software products are built with subsequent model refinements and transfor-
mations frombusinessmodels (process, rules,motivation), down to component archi-
tectures (e.g., SOA), detailed platform-specific design, and finally implementation.
REMICS proposes to improve existing approaches and extend them when needed,
to provide a holistic view of migration that covers the whole process with a method-
ology, tools, languages, and transformations. One main objective of REMICS is to
provide its solutions based on standards and open-source tools as much as possible to
facilitate reuse and shorten the barrier for users to take advantage of the innovations.

The project intends to significantly enhance this generic process by proposing a
set of advanced technologies for architecture recovery andmigration, including inno-
vative technologies such as model-driven interoperability and Models@Runtime.

Model-driven interoperability is a rather new domain, which builds on top of
a long history on data and service interoperability. Semiautomated methods that
assist users to handle interoperability issues between services are also addressed in
REMICS. In general, the REMICS migration methodology is focused mainly on
the evolution of the technology model. There are seven activity areas defined in the
REMICSmethodology, which cover the full life cycle of a legacy systemmoderniza-
tion andmigration to the cloud:Requirements and Feasibility (requirements for the
system are gathered and the main components of the solution and their implementa-
tion strategy are identified); Recover (recovery of the knowledge from those legacy
components that during the feasibility analysis have been pointed as candidates to
be reengineered); Migrate (the target system is defined and implemented using the
elements identified during the requirement and recover phases); Validate (define
the testing strategy to verify that the migrated system implements the requirements
identified and that the components (including those not reengineered) and services
work properly); Control and Supervise (provides elements to monitor and control
the performance of the system when deployed in the cloud and to modify that perfor-
mance); Withdraw and Interoperability (provides tools that solve interoperability
problems with third-party providers or any external components and services).

2.1.3.1 Positioning with Respect to Use Case Scenarios and Features

The REMICS project falls under the objectives described in the use case scenario
CSCC S5, but covers also some objectives of use cases CSCC S4 and CSCC S2.

The migration process defined in REMICS consists of understanding the legacy
system in terms of its requirements, architecture, and functions, designing a new
SOA that provides the same or better functionality and quality of service, and veri-
fying and implementing the new application in a cloud computing platform suitable
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for the purpose. The positioning in our dimensional model of this methodology is
illustrated in Fig. 2.5.

Fig. 2.5 REMICS solution positioning

2.1.4 MDA in PaaSage

PaaSage—Model-based Cloud Platform Upperware [4] is an EC-funded research
project that aims at delivering a development and deployment platform, sustained by a
proper methodology, through which software engineers, and in particular developers
of enterprise systems, can access services of cloud platforms in a technology neutral
environment. The platform will abstract all the technical details, while guiding the
developer during the entire life cycle of her applications, allowing for a model-based
development and an optimal configuration of the software, independent from of the
underlying cloud infrastructure. This will enhance cloud portability since the appli-
cation development, deployment, and execution will be independent of the reference
cloud platform, and migration of obsolete or legacy applications to the cloud will
also be supported.

2.2 Semantic Approaches

One of the contributory factors of interoperability and portability problems is the
difference in the semantics of the resources offered, since no uniform representation
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exists. As stated in [10], semantic models are helpful in three aspects of cloud com-
puting:

• Functional and nonfunctional definitions, that is, the ability to define application
functionalities and quality-of-service details in a platform-agnostic manner;

• Datamodeling, includingmeta-data added through annotations pointing to generic
operational models, which plays a key role in consolidating API’s descriptions;

• Service description enhancement, in particular regarding service interfaces that
differ between vendors even if the operations’ semantics are similar.

Existing technologies inherited from the Semantic Web field can be useful to
address these aspects. In particular:

• Web Ontology Language (OWL) [11] can define a common, machine-readable
dictionary that is able to express resources, services, APIs and related parameters,
service level agreements, requirements, offers, and related key performance indi-
cators (KPIs). Listing 2.1 reports an example of OWL description for a “Compute”
cloud resource.

<http:// publicaddress.org/ontology#CloudResource >
rdf:type owl:Class ;
rdfs:subClassOf <http:// publicaddress.org/ontology#

Resources > .
<http:// publicaddress.org/ontology#Compute > rdf:type

owl:Class ;
rdfs:subClassOf <http:// publicaddress.org/ontology#

CloudResource > .
<http:// publicaddress.org/ontology#cpu> rdf:type

owl:DatatypeProperty ;
rdfs:domain <http:// publicaddress.org/ontology#

Compute > ;
rdfs:range xsd:integer ;
rdfs:subPropertyOf owl:topDataProperty .

Listing 2.1 OWL description of a cloud resource

• OWL for Services (OWL-S) [12] adds semantic to cloud services in order to
enable users and software agents to automatically discover, invoke, and compose
them.

• SPARQL [13] is anRDFquery language that is able to retrieve andmanipulate data
stored in resource description framework format onwhichOWL is based. SPARQL
queries can be used to retrieve RDF described resources, filtered according to
selected constraints. Listing 2.2 reports an example of a SPARQL query, executed
on the same database used for example in Listing 2.1, where only computing
resources with a minimum number of CPUs are selected.
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SELECT ?Compute_Resource ?CPU_Number
WHERE {? Compute_Resource rdf:type ontology:Compute.

?Compute_Resources ontology:cpu ?CPU_Number.
FILTER (? CPU_Number >=3)}

Listing 2.2 SPARQL query executed on an RDF database

• Semantic Web Rule Language (SWRL) [14] expresses additional rules and
heuristics.

Owing to the aforementioned potential of semantic technologies, a number of
works represent cloud resources, services, and in general cloud concepts in OWL
producing so-called Cloud Ontologies. Particularly in [15] an ontology is pro-
posed which focuses on the technologies involved in the cloud phenomenon and
describes the different layers of cloud computing, the relationships between them,
and the users of each cloud layer, while in [16] an ontology is proposed built on
existing standards, developed to improve interoperability between existing cloud
solutions, platforms, and services, both from end user and developer sides. In
[17] a unified OWL of cloud resources is described at the PaaS and SaaS levels,
which focuses on the classification and categorization based on a functional analy-
sis, of cloud services and virtual appliances. In [18, 19], the description of func-
tional and nonfunctional characteristics of some specific cloud services is proposed,
alongside information related to exchanged parameters and collaboration between
services.

2.2.1 Semantics in mOSAIC

The EC (FP7)-funded project mOSAIC—Open-Source API and Platform for
Multiple Clouds [20] addresses the issues related to cloud portability and interop-
erability with a number of technologies. In particular, it applies semantic technology
in two components of the mOSAIC framework, the semantic engine [21] and the
dynamic discovery and mapping system [22].

The Semantic Engine and associated ontologies were developed to support the
cloud application developer in the tasks of discovering the needed functionalities and
resources for application development through vendor-independent representations
of such application components, and representation of generic programming con-
cepts and patterns, including application domain related ones. The semantic engine
introduces a high level of abstraction over cloud APIs and cloud resources, by pro-
viding a semantic-based (namely OWL) representation of abstract functionalities
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and resources, related by properties and constraints, and application domain level
concepts and application patterns. Inference rules representing developer experts’
knowledge and reasoners are also used.

The semantic engine overcomes syntactical differences representing the API
semantically, independently from the programming model. It offers a catalog of
functionalities related to the cloud domain, and patterns related to design and spe-
cific application domains, representing services and resources in an agnostic way.
From the viewpoint of the developer, the application is designed (by using the asso-
ciated GUI) starting from the application domain concepts (which are not related to
cloud computing).

In such a way, the developer can reach a suitable design for the cloud applica-
tion. Following this, the developer can use the semantic engine to obtain the actual
application descriptors needed by the mOSAIC platform to successfully deploy the
application in a selected IaaS provider.

The Dynamic Discovery Service is the mOSAIC answer to the need for automat-
ing discovery mechanisms and alignment facilities due to the growing number of
cloud providers that deploy their offers. A possible solution to this problem is pro-
posed through the application of semantic and matchmaking technologies.

The Discovery andMapping Service’s target is to discover cloud providers’ func-
tionalities and resources, compare and align them to the mOSAIC API, thus support-
ing agnostic and interoperable access to cloud providers’ offers. This module of the
mOSAIC framework is mainly based on and supports already existing languages for
the semantic description of Web services, and it utilizes both node level and struc-
tural level matching to discover the mapping between cloud providers’ services and
mOSAIC APIs.

2.2.1.1 Engagement with Case Study and Positioning with Respect
to Use Case Scenarios and Features

The semantic engine’s main aim is to support the user in selecting cloud APIs’
components and functionalities needed for building the application in the cloud,
and the list of needed resources to be acquired from the cloud providers. Thus,
we can apply our case study (Fig. 1.6 in the context of the use case scenarios illus-
trated in Sects. 1.2.1.5 and 1.2.1.1). The application example contains a structure that
invokes a pipe and filter style. Through the use of the semantic engine, it is possible
to describe semantically the application by using an application pattern (Fig. 2.6).
This application pattern can be mapped on specific mOSAIC components and API
or on other providers equivalent to API. In a scenario in which the application is
built in an in-house system, the semantic engine suggests the component to use to
deploy the application in the cloud, while if the application is already in the cloud
the engine will suggest, by using inference rules and the implemented discovery
mechanisms, the components of other providers to be useful to replace the in-use
components. The positioning of this solution in our n-dimensional space is illustrated
in Fig. 2.7.

http://dx.doi.org/10.1007/978-3-319-13701-8_1
http://dx.doi.org/10.1007/978-3-319-13701-8_1
http://dx.doi.org/10.1007/978-3-319-13701-8_1
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Fig. 2.6 Application design through Semantic Engine

2.2.2 Semantics in Cloud4SOA

The EC-funded project Cloud4SOA [23] focuses on resolving the semantic inter-
operability issues that exist in current cloud infrastructures and on introducing a
user-centric approach for applications which are built upon and deployed using cloud
resources. The aim of Cloud4SOA is to facilitate cloud-based application developers
in searching for, deploying and governing their business applications on the PaaS
offerings that bestmatch their needs. Additionally, through the semantic interconnec-
tion of heterogeneous PaaS offers, the framework supports the switching between
PaaS providers. Cloud4SOA supports searching between the existing PaaS offer-
ings for those that best match the developers’ needs. The matchmaking algorithm
computes the degree of similarity between the semantic descriptions of the PaaS
offerings and application profiles. The Cloud4SOA framework aims to support a
seamless migration between platforms, tackling semantic interoperability conflicts
to allow for portability of an application and its data.
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Fig. 2.7 Semantic Engine solution positioning

2.2.3 Semantic Sky

Semantic Sky [24] is a semantic environment born to interconnect cloud-based ser-
vices through semantic technologies. The platform relies on Semantic Web tech-
nologies to deliver a uniform vision of cloud services and resources, enabling users
to exploit a common and familiar interface to interact with them. Semantic Sky
provides an API that compliant applications must implement in order to be interop-
erable with other supported software. In particular, for each compatible application
Semantic Sky provides an Application Plug-in, used to determine the user’s work-
ing context and infer additional meta-data, when possible. In order to do so, the
platform architecture includes a set of components which analyze the data provided
by the plug-ins, generally in the form of a text string, annotate them, and infer new
knowledge.

• The Knowledgebase represents an OWL/RDF database where all user data are
stored and indexed. SPARQL queries can be executed on it in order to retrieve
meaningful information.

• The Context Extractor Module is the core engine of the system. It analyzes
each token (word) the input data has been serialized into by a plug-in, and then
determines all the resources connected to it, exploiting the index present in the
Knowledgebase.

• The Semantic Web Services Repository contains semantically annotated SOAP
and RESTful Web services, which are used to execute actions suggested to the
user on the basis of the detected working context.

• The Action Search Module uses the list of resources detected by the Context
Extractor Module as keys to research Web services inside the Semantic Web
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Services Repository. If the previously detected resources only partially satisfy
the input requests of some Web service, the system iteratively scans the directory
in order to find other services offering the needed resources as output. Once all
the inputs and outputs have been determined, the system proposes a set of Web
services or actions to the customer to use.

• The UI Generator Module is responsible for the production of the graphical
interface of the system, which must be suitable to display different document
typologies.

• The Module for Action Execution is responsible for the correct execution of the
semantically annotated actions.

With such an architecture, the system is able to integrate with existing, widely
adopted applications and software, such as Gmail and Microsoft Office. One major
benefit derives from the possibility to leverage a common, shared interface to interact
with all the supported applications, reducing the users’ learning time.

2.3 Multi-Agent Systems

Multi-Agent Systems (MASs) seem to offer one of the most effective approaches
to solve a number of interoperability issues and automate a number of activities,
in particular brokering, negotiation, management, monitoring, and reconfiguration
in multiple clouds. MAS can be defined as a computerized system composed of
interacting intelligent agents, collaborating within the same environment. An agent
is an autonomous entity, represented by a software program, a robot, or even a
human being. Despite the differences existing between cloud computing and multi-
agent systems, their integration could provide solutions to problems arising in
both environments. According to [25], agent-based solutions can improve cloud
resources and service management and discovery, SLA negotiation, and service
composition.

• As regards brokering, agents can access service and utility markets on behalf of
users, retrieving the most updated resource configuration that satisfies applica-
tions’ requirements. According to the available resources, SLAs are generated and
services are booked from one or evenmultiple cloud providers. Their orchestration
can be left to the user or executed by agents themselves.

• In case the users’ constraints are too strict and no resource configuration can fully
satisfy the requirements, agents can engage in several brokering rounds, loosening
some constraints in order to deliver the best fitting SLA. In this situation, we talk
about negotiation and agents with their dynamic adaptation ability, which are the
perfect candidates for the job.

• Monitoring activities, focused on resource utilization and applications’ require-
ments, can be performed by agents which can also renegotiate SLAs and/or
optimize configurations (resources’ reconfiguration) according to the changing
requirements.

www.allitebooks.com
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• When storage services are involved, agents can be used to search, filter, update,
and query large volumes of data without the user’s direct intervention.

2.3.1 Brokering, Negotiation, and Monitoring
with mOSAIC’s Cloud Agency

The mOSAIC project demonstrates, with its component Cloud Agency [26], the
benefits of adopting such kind of a cloud multi-agent architecture. The mOSAIC’s
Cloud Agency is a service for the deployment and execution of mOSAIC applica-
tion. It is in charge of provisioning, from different providers, a collection of cloud
resources, which fulfills at best the user’s requirements, to be consumed bymOSAIC
applications. The cloud agency aims at advancing the state of the art of using the
clouds by providing a decision-making support to the user for discovery and deci-
sion about the best cloud solution that satisfies his requirements. The cloud customers
need to detect underutilization and overload conditions, and to make decisions on
load balancing and resource reconfiguration. The cloud agency aims at providing
a monitoring service that runs on IaaS under the control of the customer. Imple-
mented as a multi-agent system [27], the cloud agency is based on asynchronous
messaging, as other mOSAIC software prototypes. It offers a RESTful interface
compliant with OCCI [28]. The brokering of the best collection of cloud resources
has been modeled as a multi-criteria optimization problem, with hard and soft con-
straints that can be included by the user in the Call-for-Proposals [29]. Beyond the
provisioning role, the cloud agency also has other resource management function-
alities, like monitoring, which is related to the parameters specified in SLAs (mon-
itoring the quality of service). Details about this role implementation can be found
in [11].

2.3.1.1 Engagement with Case Study and Positioning with Respect
to Use Case Scenarios and Features

Multi-agent systems represent a meaningful support in multi-cloud environment due
to their ability to automatize operation such as brokering, negotiation, monitoring,
and reconfiguration. In particular, suppose that we have developed the application
example of Fig. 1.6 on a particular cloud or multi-cloud setting. Suppose that this
solution is implemented and hosted in an IaaS solution of a certain provider A.
Using the cloud agency [11] it is possible to monitor the resources in which the
application is deployed through mobile software agents that take measures inside
the cloud resources, make decisions based on monitoring values or using automatic
settings, and eventually decide to migrate the application to another IaaS provider.
An example and the positioning of this mOSAIC component is illustrated in-depth
in Sect. 3.5.1.

http://dx.doi.org/10.1007/978-3-319-13701-8_1
http://dx.doi.org/10.1007/978-3-319-13701-8_3
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Fig. 2.8 Cloud agency management GUI

During the migration phase it is possible to take advantage of the multi-agent
system to manage with agnostic interface resources of different providers (Fig. 2.8
through vendor agentswhich implementwrappers for specific clouds), negotiatewith
other providers, and reconfigure the application in the new chosen cloud provider.

2.3.2 Agent-Based Cloud Resource Management Testbed

Thework presented in [30] shows an interesting example of howmulti-agent systems
can be used to manage resources in a cloud computing environment. In the proposed
testbed, both cloud providers and consumers are represented by agents acting as
their intermediaries. A discovery process, composed of four steps called selection,
evaluation, filtering, and recommendation, brings broker agents to match requests
from users with the providers’ offers.
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1. In the Selection, consumers submit requests to broker agents, which also receive
providers’ specifications about the resources they offer. Consumers and providers
do not communicate with brokers directly, but through proxy agents. The con-
sumers’ requests may contain different information, including the maximum
acceptable price for a resource, its type and characteristics (CPU power, disk
capacity, bandwidth), the time slot for its use, and so on. On the other hand, the
providers’ specifications may contain the minimum price for a resource, its avail-
ability time slots, and a description of its capabilities. Three matching criteria can
be applied to the selection process:

• Select only perfectly matching resources. This criterion may not return results
because of the strict constraints imposed by consumers.

• Select resources closely fulfilling the consumers’ requests.
• Select resources with availability time slots corresponding to the requests and
having small price differences in respect to the requirements.

2. In the Evaluation step, a utility weighted function is applied to the resources’
configurations retrieved in the selection stage in order to present to the user the
most convenient ones. Each characteristic of a resource configuration (availability
time slots, CPU power, disk volume…) is compared with the requests’ details and
an overall score is assigned to the potential matching.

3. The Filtering stage consists of applying a selection criterion to the potential
matches, to which the utility score has been previously assigned. In particular,
the system automatically refuses matches with the lowest score and, among the
remaining results it discards the ones below a certain threshold previously set by
the consumer.

4. Since the testbed is based on amulti-broker agent system,with each broker having
access to different providers’ specifications, it is possible that one ormore of them
cannot find a useful resource configuration to fulfill consumers’ requests. In this
case, a broker can send a Recommendation to the consumer agent, informing
that other brokers may answer the request.

2.4 Cloud Patterns

According to a definition provided by IBM in [31], cloud computing patterns are
“logical descriptions of the physical and virtual assets that comprise a cloud comput-
ing solution”. They have arisen from the need to provide both general and specific
solutions to recurring problems in the definition of architectures for cloud applica-
tions: indeed, while classical design patterns deal with problems related to different
aspects of software development, being the structural view of the application only
one of these aspects, cloud patterns, mainly focuses on the architecture of the cloud
solution. This has led, in many cases, to the development of platform-dependent pat-
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terns, which can be applied only to a specific platform offered by a specific vendor.
Various existing cloud patterns’ catalogs, given their different nature and objectives,
deliver content at different levels of detail and abstraction. Some patterns, like those
presented in [32, 33], are tied to a specific cloud platform, thus being more detailed
in terms of the components they rely on for the implementation, but the solution
they provide is strictly dependent on the reference platform and has poor flexibility.
Catalogs developed by academic efforts, like those defined in [34, 35], are not tied to
industrial proprietary solutions: they describe general functionalities and behaviors
and they propose architectural models that are much less bound to specific cloud
platforms, thus resulting in less details and better flexibility. For this reason we refer
to them using the general term of “Agnostic Patterns”. Here, we provide a brief
introduction to the main cloud pattern-based approaches and cloud patterns’ cata-
logs, with particular emphasis on those published by Amazon for AWS and on the
agnostic patterns.

2.4.1 How Cloud Patterns Can Enable
Interoperability and Portability

Despite the poor flexibility shown by some vendor-specific patterns, cloud patterns
still represent a valuable means to enhance portability and interoperability between
cloud platforms. First of all, patterns can be used to describe and model existing
cloud applications in a very easily understandable manner, tracing back the different
cloud implementations to a set of well-known and stable solutions. In this way,
it becomes easier to understand the exact functionalities and responsibilities of a
specific cloud application component, which can be at a later time substituted with
a compliant one having the same or similar characteristics. This approach can be
also exploited in the case of porting of non-cloud application, describable through
classic design patterns, to a cloud environment, provided a mapping between design
and cloud patterns’ participants exists. Furthermore, using a cloud pattern, and in
particular an agnostic one, as a canvas on which to develop a new application, it
would be possible to implement each of the pattern’s participants with services and
components exposed by different cloud vendors.

2.4.2 IBM Virtual Patterns

According to IBM [36], a pattern is a collection of elements describing a complete
and fully functional software solution, which can involve different interconnected
systems or a single entity. All the knowledge needed to create, configure, and support
every aspect of the solution is already included in the pattern. As a result, IBM
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has developed four categories of patterns [37], whose definitions are reported here
unchanged:

• Virtual System Patterns (VSPs) are repeatable topology definitions that are based
on various virtual images, each containing multiple middleware components and
applications that are configured to work with each other.

• Virtual Application Patterns (VAPs) offer a view of a virtual application with
which the user can focus only on application requirements and not on the under-
lying infrastructure that is needed to support the runtime environment.
A VAP represents a collection of applicative components, behavioral politics, and
relative links. A workload service, which takes advantage of this kind of pattern,
can automatically build the infrastructure and middleware resources needed to
operate and manage the virtual application, which thus becomes an instance of the
pattern.

• Database Patterns are IBM DB2 product extensions that are used to build DB2
databases linked to a virtual application as an existing database component. The
existing database component can be a database pattern instance that is managed
within the cloud environment, or it can be a remote database that was created and
is managed outside the cloud environment.

• Virtual Appliance Patterns are VMs that consist of a single-server workload
instance with a preconfigured operating system and all of the middleware, appli-
cations, and script packages necessary to automatically deploy and configure the
application environment.

In order to use a virtual application pattern, a customer can exploit the pattern
builder service offered by a platform, provided by IBM itself and known as Work-
load Deployer, which can be accessed through both the IBM PureApplication Sys-
tem (Private Cloud) and the Smart Cloud Application Workload Service (Public
Cloud), based on the IaaS platform provided by the IBM Smart Cloud Enterprise.
Figure2.9 shows the tool used to manage a virtual application platform in the IBM
Smart Cloud Application Workload service. The reported VAP is used to build Web
applications and it is composed of three elements:

• An enterprise application component, where the actual application resides. By
clicking on the component a user can add the artifacts needed to run and manage
the application.

• A database component, representing the storage service associated to the applica-
tion. A client can easily customize the database characteristics by accessing the
component’s properties, or she can leverage a database pattern to design it.

• A user registry element represents an existing LDAP service that can be attached
to a Web Application component or to an Enterprise Application component to
manage user accesses and privileges.

All the links existing between couples of components can be customized in order to
specify how they can collaborate or access each other. Through the services provided
by IBM, a user is free to use an existing virtual pattern as it is, just by providing
the artifacts, which are necessary to configure and run applications and databases, or
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Fig. 2.9 Example of IBM VAP: enterprise Web application pattern

she can modify an existing pattern by adding and removing components. Available
components can be chosen from a palette (shown on the left side in Fig. 2.9): the
range of selectable elements varies according to the pattern type being edited. Pattern
components can also be created from scratch using the Plug-in Development Kit
(PDK) delivered by IBM itself.

2.4.3 Azure Cloud Patterns

Thepattern catalog published byWindowsAzure [33] represents a remarkable contri-
bution to the development of cloud applications and components driven by patterns.
The catalog currently contains 24 design patterns and 10 related guidance topics,
accurately describing the benefit of applying patterns to application design, show-
ing how each participant is mapped to a specific platform component. For almost
all Patterns, code samples and snippets are provided and the benefits are discussed
in-depth. The catalog currently comprehends 24 patterns. Some examples of these
patterns are mentioned below:

• External Configuration Store Pattern Move configuration information out of
the application deployment package to a centralized location.

• Health Endpoint Monitoring Pattern Implement functional checks within an
application that external tools can access through exposed endpoints at regular
intervals.

• Pipes and Filters Pattern Decompose a task that performs complex processing
into a series of discrete elements that can be reused.

• Priority Queue Pattern Prioritize requests sent to services, so that requests with
a higher priority are received and processed more quickly than those of a lower
priority.



34 2 Methodologies for Cloud Portability and Interoperability

• Scheduler Agent Supervisor Pattern Coordinate a set of actions across a distrib-
uted set of services and other remote resources, attempt to transparently handle
faults if any of these actions fail, or undo the effects of the work performed if the
system cannot recover from a fault.

While other catalogs (e.g., the one provided by Amazon) define new patterns to be
applied in the cloud environment, Azure’s solutions are to be considered as special-
izations of existing, well-known, design patterns, to the Azure platform. This is a
notable feature, since it is easier to map elements of existing, legacy applications,
designed and implemented according to well-known design patterns, to cloud com-
ponents and services. An example of the classical design pattern considered in the
Azure catalog is represented by pipes and filters.

The main objective of this pattern is to modularize the execution of different tasks
on (a stream of) data, so that single modules can be rearranged or modified sepa-
rately without affecting the others. Two main participants compose the pipes and
filters pattern: the pipe, constituting the communication means between computing
elements and generally represented by some kind of Queue, and the filter, represent-
ing the computation unit that executes the required task(s). An implementation can
instantiate any number of pipes and filters, each pipe connecting two filters and each
filter dedicated to the execution of one or more tasks. The policy adopted by pipes
to pass data from one filter to another strongly depends on the implementation. The
example reported in Fig. 2.10 shows the solution proposed by Azure. Such a solution
maps filter instances with an Azure “WorkerRole”, while pipes can be implemented
through a “Service Bus”. By exploiting the similarities in features exposed by com-
ponents provided by different cloud platforms, it would be easy to instantiate the
pipes and filters pattern using heterogeneous services, since a clear description of its
elements has been already provided in a “cloudified” form.

Fig. 2.10 The pipes and filters pattern in Azure
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2.4.4 Amazon Web Services (AWS) Cloud Design Patterns

The AWS Cloud Design Pattern [32] catalog is a collection of solutions and design
ideas that use the AWS cloud technologies to solve common design problems. These
solutions are strongly connected to the AWS platform, so they are particularly well
detailed and supported by precise diagrams that describe structure and interactions
of the pattern efficiently. For each pattern there is a description that indicates the
problems leading to the creation of the pattern and what difficulties can be resolved
through its implementation. The implementation itself is describedprecisely, defining
step-by-step the procedure of application of the pattern within AWS, specifying
which components should be used and how this should be done. The whole catalog
is organized into nine categories:

• Basic Patterns include basic solutions that can be completely reused or are par-
tially involved in the definition of more complex patterns;

• Patterns for High Availability describe architectural solutions that can be used to
provide highly available resources (including servers, data centers, or networks);

• Patterns for Processing Dynamic Content define how dynamic contents should
be managed and processed in a distributed cloud architecture, using cloning and
replication techniques, together with proxies and caches;

• Patterns for Processing Static Content, on the other hand, exemplify how static
contents should be processed in a cloud environment, focusing on its distribution;

• Patterns for Uploading Data describe solutions for content upload in a cloud
environment;

• Patterns for Relational Database provide solutions for the management of rela-
tional databases, with a focus on data replication and read-write optimizations;

• Patterns for Batch Processing focus on the execution of distributed, loosely
coupled processes, managed through scalable queues;

• Patterns for Operation and Maintenance involve daily maintenance operations
that should be performed without interrupting any running services and thus need
swapping, replication, and monitoring capabilities;

• Patterns for Network describe solutions related to network maintenance and
management, including load balance and firewall setup.

As an example extracted from the AWS catalog, let us consider the “Scale-Out
Pattern”: such pattern, included in the basic patterns’ category, deals with issues
related to resource scaling in case of processes working on high volumes of data
or generating high volumes of traffic on a monitored network. The proposed pattern
contains a brief description of the issues it dealswith and a description of the proposed
solution, together with a presentation of the platform components used to implement
such a solution, in this case represented by:

• a load balancing service (Elastic Load Balancing or ELB);
• a monitoring tool (CloudWatch);
• an automatic scale-out service (Auto-Scaling);
• a set of Web services used to deliver compute capabilities (EC2).
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A description of how these components have to be configured in order to interoperate
is provided through both a textual and graphical description.

2.4.5 Agnostic Patterns: The CloudPatterns.org Community

CloudPatterns.org [34] is a community dedicated to the documentation of a
catalog of patterns that includes a set of design solutions for themodularization of the
relevant technological solutions for the configuration of cloud architectures. Patterns
are here organized according to a hierarchical structure: the various descriptions are
therefore not organized according to the purpose or functional area related to the
problem addressed by the pattern, but essentially on the basis of a hierarchical com-
position of mechanisms and subpatterns, which are in turn defined. Despite the lack
of a strong supporting graphical formalism, the different elements of each pattern
and their iterations are described with good precision. A part of the catalog consists
of “Compound Patterns”, which take into account different models of provision
and distribution of services (public and private clouds, IaaS, PaaS, and SaaS service
models, and so on): such models are decomposed into sets of coexisting patterns,
which define the key and optional features provided. Because a pattern often refers
to others to describe the solution to a problem (the term pattern language is used to
describe such a situation), each of them could be defined as compound. The patterns
are applied through the implementation of technological mechanisms, which can be
also composed of a set of interrelated mechanisms. Mechanisms are well-defined
technological artifacts that have been established in the IT industry and generally
refer to a certain computational model or platform. The nature of cloud requires the
formal definition of a series of mechanisms that can be combined and implemented
in different ways. It also requires the standardization of practices and solutions in
the form of design patterns exploiting these mechanisms. Each provided cloud pat-
tern is associated with one or more mechanisms. The catalog defines, in a specific
section, the template used to describe each cloud pattern. However, compound pat-
terns and mechanisms are not described according to a given, machine-readable,
formalism, but are defined by a textual description sometimes supported by explana-
tory diagrams.

The components of the description are:

• Requirement: a simple and concise sentence that presents the basic requirements
addressed by the pattern, in the form of a question.

• Problem: the causes of the problem addressed by the pattern and its effects are
described in this section, which may be accompanied by a picture that illustrates
it. Part of the description includes common conditions that lead to the birth of the
problem.

• Solution: the design solution presented by the pattern to solve the problem and
meet the requirements.Often the solution is only a short phrase that can be followed
by a diagram that communicates the final solution in a concise manner. The details
are provided in the “Application” section.
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• Application: this part is devoted to describing how the pattern can be applied and
may contain guidelines, implementation details, and sometimes the description of
the entire implementation process.

• Mechanisms: this item contains a complete list of mechanisms that can be imple-
mented to apply the pattern. Generally, some of the mechanisms will have been
nominated in the “Application” section. The application of the pattern is not nec-
essarily limited to the use of these mechanisms.

• NIST Reference Architecture Mapping: this section is provided for those who
are interested in the way in which a pattern is related to the components that
compose the National Institute of Standards (NIST) Cloud Computing Reference
Architecture [38].

The representations of patterns describe different aspects of the pattern, such as its
structure (components and relationships) and behavior (interactions between partic-
ipants), explaining such descriptions often through simple diagrams and pictures,
which use predefined icons. In general, the pattern does not describe exactly how
individual components ormechanisms should be implementedwith respect to a cloud
platform: indeedmany, if not almost all of themechanisms can be implemented with-
out any problems using an IaaS, PaaS, or SaaS model. This is also reflected in the
structure of the compound patterns, which share many components.

2.4.6 Comparison Between Cloud Patterns

The vision of patterns of various providers is therefore different: providers like IBM
see patterns as templates of applications which can be personalized through policies
and constraints, on the basis of existing preconfigured solutions; Amazon offers a
catalog of patterns that are expressed in terms of proprietary services which can be
difficult to generalize to other cloud platforms;Azure, instead, applies existing design
patterns to its cloud offering but, in general, the portrayed solutions that could be eas-
ily implemented in other platforms. As said before, while vendor-specific patterns
provide detailed information on their composing elements, comprehensive of ser-
vices, protocols, and parameters which should be used to implement them, agnostic
patterns aremuchmore general and should be applicable to different target platforms.
However, they tend to provide too much vague information and are mostly limited
to an architectural description of the portrayed solution. Similarities and differences
exist between concepts defined in the different catalogs. For instance, comparing
the definition of pattern composition expressed in the CloudPattern.org catalog and
the description of cloud patterns offered by AWS, we can notice a strong similarity
between the concept of mechanism from CloudPattern.org and the components used
by Amazon patterns. Nevertheless, mechanisms are much more general and never
give details about the actual implementation of the functionalities they offer, follow-
ing the agnostic pattern trend. For example, the auditmonitormechanism specifies the
necessity to instantiate a database to register accesses to the system (a log register), a

www.allitebooks.com
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login monitoring system, and an authentication service. All of these can be provided
as smaller grain mechanisms or even patterns. Nothing is said about the character-
istics of the database or of the access system. Despite their differences, among the
presented catalogs we found patterns that aim at the same objectives offering similar
solutions. Figure2.11 presents some of the equivalences among these patterns and
the catalogs to which they belong. The equivalences marked with an asterisk refer to
the patterns that are not fully equivalent to each other but in which there are common
components and aspects.

2.4.7 Semantic Cloud Patterns

While cloud patterns can be extremely useful to model cloud solutions and applica-
tions and, therefore, can convey meaningful information to support software porting
to the cloud and services’ interoperation, they can be hampered by the lack of a shared
machine-readable formalism for their representation. While for design patterns dif-
ferent formalisms, based on the most disparate technologies, have been proposed
and discussed [39], cloud patterns’ formalisms are still missing. Works aimed at
defining a semantic-based formalism for the accurate description of both static and
behavioral aspects of cloud patterns can be found in [40, 41]. Here, cloud patterns’
components are described using an OWL ontology, while the orchestration between
such components is obtained through OWL-S.

2.4.8 Cloud Patterns: Engagement with Case Study
and Positioning with Respect to Use Case
Scenarios and Features

Using cloud patterns can ease themigration of an in-house complex application to the
cloud and enhance interoperability between different platforms. For these reasons,
the approach based on cloud patterns can be used in the use case scenariosCSCC1 and
CSCC5. Let us consider the example presented in Chap.1: this represents a Business
Intelligence application that can be roughly represented through the pipeline shown
in Fig. 2.12. In particular, by comparing such pipeline with the provided example, it
is possible to clearly map the ETL process that draws data from the CRM and ERP
systems with the data preprocessing activities. Such activities are best represented
through a pipes and filters pattern, presented and discussed in Sect. 2.4.3.

Each of the transformation activities can be executed through a cloud component
owning computing capabilities, while communications can be dealt with through
queue components. In Fig. 2.13, the correspondences existing between ETL steps
(delimited by a blue square) and the filtering tasks defined by the pattern are high-
lighted. At this point, it is clearly possible to instantiate a filter via a compute service
offered either by Amazon through EC2 or Azure through a worker role (more on

http://dx.doi.org/10.1007/978-3-319-13701-8_1


2.4 Cloud Patterns 39

cloudpatterns.org Cloud Pattern 
Amazon

Cloud Pattern Microsoft
                Azure   

Dynamic 
Scalability / Elastic 
Resource Capacity

Elasticity Manager* Scale-Up Pattern Autoscaling Guidance + 
Throttling Pattern

Load Balanced 
Virtual Server 
Instances / Service 
Load Balancing

Elastic Load Balancer Scale-Out Pattern Autoscaling Guidance + 
Throttling Pattern

Node based availability + 
Elastic Infrastructure

Multi Server Pattern Compute partitioning 
Guidance*

Redundant 
Storage

Multi data-center 
Pattern

Multiple Datacenter 
Deployment Guidance

Persistent Virtual 
Network 
configuration

Floating IP Pattern

RealTime 
Resource 
Availability

Deep Health Check 
Pattern

Health Endpoint Monitoring 
Pattern

Managed Configuration State Sharing 
Pattern

External Configuration Store 
Pattern

Hybrid Processing URL Rewriting 
Pattern

Static Content Hosting Pattern

Service State 
Management *

Cache Proxy Pattern Cache-aside Pattern

Hybrid Multimedia Web 
Application

Direct Hosting 
Pattern

Data Partitioning Guidance*

Resource 
Reservation *

Restricted Data Access 
Component

Private Distribution 
Pattern

Valet Key Pattern

Redundant 
Storage

DB Replication 
Pattern

Data Replication and 
Synchronization Guidance

Strict Consistency Read Replica Pattern Command and Query 
Responsibility Segregation 
Pattern

Storage Workload 
Management

Sharding Write 
Pattern

Sharding Pattern

Loose Coupling / Distributed 
Application

Queuing Chain 
Pattern

Pipes and Filters Pattern

Workload 
Distribution

Elastic Queue Job Observer Pattern Queue-based Load Leveling 
Pattern *

Broad Access Three-Tier Cloud 
Application*

Multi Load Balancer 
Pattern

Virtual Server 
Auto-Crash 
Recovery

Resiliency Management 
Process

Circuit Breaker Pattern

cloud computing patterns.
                    org

Fig. 2.11 Comparison between cloud patterns

Amazon and Azure in Sects. 4.1 and 4.5), while pipes can be instances of Azure Ser-
vice Bus or AWS Simple Queue Service (SQS). Applying different patterns to each
of the example, application’s components can help developers to clearly understand
their characteristics and thus correctly choose the cloud services needed to imple-
ment them, even on different platforms. In Fig. 2.13, two pipelines process data from
different data sources, and services from independent providers, working at different
service layers, are used.

http://dx.doi.org/10.1007/978-3-319-13701-8_4
http://dx.doi.org/10.1007/978-3-319-13701-8_4
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Using semantically annotated cloud patterns, users can exploit the available
knowledge base, containing meaningful relationships between patterns’ participants
and possible implementing cloud services, to automatically retrieve the cloud compo-
nents needed tomigrate their applications across cloud platforms or fromon-premises
infrastructure to new cloud environments. Also, the use of services offered by mul-
tiple providers would be automatically suggested and the information necessary for
their interoperation (data and API formats, security protocols, and so on) would be
provided accordingly. As an example, consider the SPARQL query shown in Listing
2.3: here a knowledge base, discussed in [40, 41] and containing information on
cloud patterns and services, is used to retrieve the patterns’ participants and all the
services that can be used to implement them.

SELECT ?participant ?vendor ?component
WHERE {patternOntology:PipesAndFilters patternOntology

:participant ? participant.
?participant patternOntology:equivalent+ ?

component.
?component cloudServiceOntology :hasVendor ?

vendor
}

Listing 2.3 SPARQL query executed on OWL ontologies describing cloud patterns and services

Thanks to the “equivalent” property, defined in such ontology, it is possible to
identify all the services which can be used to implement a specific pattern’s partici-
pant, provided information on such equivalence has been previously included in the
knowledge base.

The positioning of this approach with respect to our n-dimensional space is illus-
trated in Fig. 2.14.

Fig. 2.12 Description of the data mining pipeline
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Fig. 2.13 Application design through cloud patterns
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Fig. 2.14 Cloud patterns’ approach positioning
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Chapter 3
Cross-Platform Cloud APIs

3.1 Introduction to Cross-Platform Cloud APIs

Cross-platform cloud APIs are high-level APIs that provide access to multiple cloud
platforms through a common, shared interface. They enable an abstract description
of the services and functionalities exposed by a set of target platforms, providing
a uniform vision of their offers. Using a cross-platform, API can bring benefits for
both portability and interoperability:

• Applications using cross-platform APIs can be easily ported across multiple plat-
forms, as long as such platforms are supported by the exploited APIs. In general,
a developer would have only to update login information in order to let her appli-
cation access services on a new platform but, other than that, no other changes
would be necessary.

• Cloud platforms supported by a cross-platform API could communicate and
exchange information using such a shared interface, thus enhancing their inter-
operability.

When it comes toworking principles, cross-platformAPIs are generally implemented
either as wrappers or as adapters.

• Wrappers completely hide the actual API calls to a target platform: consumers
see the cross-platform APIs only, and they can use them independently from the
actual vendor involved since the wrapper automatically translates the issued calls.
In many cases, the term Driver can be used interchangeably.

• Adapters act as translators between API calls without imposing a particular inter-
face to a client: a user issues an API call using an interface she knows well and the
adapter translates it to the correct API call for the target platform. Obviously, both
the interface used by the client and the one exposed by the target platform must be
supported by the cross-platform API. Connector is another term describing the
same approach.

© The Author(s) 2015
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As regards the technologies and programming languages used to expose
cross-platformAPIs, we find the same ones used for single platformAPIs. Generally,
librarieswritten in Java, Python,Ruby, andother languages are available to consumers
who can include them in their applications to use the shared API. Also, such APIs
can be exposed through a REST interface or described in WSDL.

3.2 DeltaCloud

DeltaCloud [1] is an open-source Apache project which aims at defining a REST-
based API to access any kind of cloud platform exposing its services at the IaaS
level. Written entirely in Ruby (but with the possibility to exploit client libraries to
use different languages), it offers the user the opportunity to leverage classic Delta-
Cloud, DMTF, CIMI (see Sect. 5.3), and EC2 APIs (see Sect. 4.1) representing the
DeltaCloud abstraction API, to manage different cloud platforms. This API works
as a wrapper around these platforms, abstracting and hiding their differences. For
every cloud provider there is a driver that is able to interpret the cloud provider’s
native API, so that the user does not need to deal with the specific API directly.
This also means that, if a particular API published by a provider was updated and
changed, the user program would not be affected because DeltaCloud specifica-
tions are guaranteed to remain stable. The user could also develop an application
having a specific platform in mind and then decide to migrate to another, Delta-
Cloud compatible, one. A list of the supported providers and of the relative APIs is
provided online and it includes many cloud platforms such as Amazon EC2, IBM
SmartCloud, GoGrid, and OpenStack (see Sect. 4.2). Being an open-source project,
contributors can freely add their custom drivers to the list and modify the existing
ones.

3.2.1 How to Use DeltaCloud

DeltaCloud developers have provided users with a very simple means to leverage
their abstract API or the supported CIMI and EC2 standards. In particular, invocation
of suchAPIs can be done through anHTTP client, which can be represented by aWeb
browser, the providedDeltaCloud Ruby client, or even a custom client. The RESTful
nature of theAPIsmakes themextremelyflexible and easy to invoke. Figure3.1 shows
how a user can connect to a cloud provider using either DeltaCloud or CIMI APIs
through an HTTP client. The client connects to a DeltaCloud instance, which can
be a public one or simply running on a local machine or a private server. The user
just needs the credentials to access such an instance (location is not important). The
DeltaCloud instance selects the correct driver to use, according to the information
received from the client on the target cloud platform, which wraps the API invocation
in order to communicate with the selected cloud provider.

http://dx.doi.org/10.1007/978-3-319-13701-8_5
http://dx.doi.org/10.1007/978-3-319-13701-8_4
http://dx.doi.org/10.1007/978-3-319-13701-8_4
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Fig. 3.1 DeltaCloud usage

3.3 OpenNebula

OpenNebula [2, 3] is a cloud computing toolkit that enables consumers to man-
age heterogeneous and distributed data-center infrastructures, specifically addressing
IaaS platforms and focusing on virtualized infrastructures in data centers or clusters
(private cloud). Support to hybrid solutions, which combine local and public cloud
infrastructures, is also provided together with interfaces to expose public cloud’s
functionalities for virtual machine, storage, and network management. Announced
collaborationswithWindowsAzure and SoftLayerwill improve the support to hybrid
cloud solutions. Apart from a set of native APIs, offered via XML-RPC and Java
or Ruby bindings, OpenNebula also implements Amazon EC2, OGF OCCI, and
vCloud APIs. Interoperability is supported by leveraging and implementing existing
standards, which leads to the development of adapters and transformers for APIs pro-
vided by different cloud providers. Remarkable is the possibility to exploit adapters
for DeltaCloud (Sect. 3.2) and Libcloud (Sect. 3.6), a standard client library for many
popular cloud providers, written in Python.

3.3.1 Different Users’ Perspectives

One of the strongest points of OpenNebula is the extreme flexibility of their exposed
interface and functionalities, which can be adapted to meet the needs of the different
API users. There are four different perspectives to interact with OpenNebula. The
cloud consumers’ perspective provides interfaces such as OCCI, EC2 Query, and
EBS, together with a cloud user view of the Sunstone dashboard. Functionalities
offered to consumers include: image catalogs, network catalogs, VM template cata-
log, virtual resource control and monitoring features, and multitier cloud application
control and monitoring capabilities.

Cloud advanced users and operators can leverage administration-oriented inter-
faces such as a Unix-like command line interface (CLI) and the powerful Sunstone
GUI (as already stated, different views are provided to consumers and operators).
The pool of functionalities and management components that the administrators can

www.allitebooks.com
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Fig. 3.2 Overview of OpenNebula interfaces

choose from is quite rich and includesmanagement of users and groups, virtualization
support, host management capabilities, monitoring and networking functionalities,
storage capabilities, security mechanisms, high performance support, multiple zones
management, support to cloud bursting, and App Market.

Cloud integrators can leverage extensible low-level APIs for Ruby, Java, and
XML-RPC. Appliance builders have full access to the App Marketplace, con-
taining a catalog of virtual appliances ready to run in OpenNebula environments.
An overview of the different available interfaces is provided in Fig. 3.2, extracted
from [2].

3.3.2 OpenNebula Architecture

OpenNebula architecture, visually described in Fig. 3.3, is organized in layers. The
upper layer contains tools used to interact with an OpenNebula instance and manage
virtual machines. The scheduler tool is a component that automatically searches for
physical hosts to deploy newly defined VMs. The command line interface is used
to issue commands to manage the entire life cycle of instantiated VMs. The middle
layer contains the core components of the OpenNebula architecture.
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Fig. 3.3 Overview of OpenNebula architecture

• The Request Manager provides an XML-RPC interface to manage and gets
information about “ONE” entities.

• The SQL Pool is the database that holds the state of “ONE” entities.
• The Virtual Machine Manager takes care of the entire VM lifecycle.
• The Host Manager holds the information about hosts and knows how to interact
with them.

• The Virtual Network Manager component is in charge of generating MAC and
IP addresses.

The bottom layer of the architecture contains the drivers used to communicate with
cloud platforms at different levels.

• Transfer Drivers take care of image processing such as cloning, deleting, and
creating swap locations.

• Virtual Machine Drivers concretely manage the life cycle of a virtual machine
by translating commands issued through the CLI in calls understandable from
the VM. Responsibilities of such drivers comprehend deploying, shutting down,
polling, and migration of VMs.

• Information Drivers execute scripts in physical hosts to gather information about
them such as total memory, free memory, total CPUs, CPU consumed, and so on.

3.4 DeltaCloud and OpenNebula: Engagement
with Case Study and Positioning with Respect
to Use Case Scenarios and Features

As further stated in Sect. 3.8, most of the existing cross-platform APIs support IaaS
functionalities only. So, an implementation of the example Business Intelligence
application provided in Sect. 1.2.2 could be possible only if IaaS resources from
supported providers were used. Figure3.4 shows how it could be possible to map
the different components of our example application, which have been delimited

http://dx.doi.org/10.1007/978-3-319-13701-8_1
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Fig. 3.4 Possible implementation of the Business Intelligence application through cross-platform
APIs

with frames, to IaaS services offering computing and storage capabilities, here
simply denoted as Worker Nodes. In our example, we suppose that the single
application components are independent applications themselves, running either on
different or on the same software systems within an on-premise environment, thus
sharing resources and communicating with each other. In this case, the system(s)
they run on could be encased in a VM and then be deployed elsewhere: resources
necessary for their execution would be provided by the target cloud vendor(s), while
communication could be taken care of by the cross-platform APIs. In the end, we
could find one of the three different situations:

• Only someof the application components, such as theCRMsoftware and its related
storage, are actually migrated to the cloud, thus realizing a hybrid interoperability
scenario.
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• After the migration, some of the application components could be running within
VMshosted ondifferent cloudplatforms, interoperating at the service level through
the shared APIs.

• At a later time, the owner of theBusinessApplication could decide tomove someof
its components (encased in one or more VMs) to another cloud platform: thanks to
the shared APIs, this would be possible without modifying the application’s code
(of course, some configuration changes would be needed). This would enable
application portability.

Because of the lack of PaaS API support, the single application components cannot
be entirely reimplemented for the target platform without the risk of its “lock-in”,
making it difficult to remigrate them to another platform at a later time.

These two solutions address the use case scenario CSCC S1 since they enable
portability among the supported infrastructures. The key aspect of these solutions is
of course the interoperability at the IaaS level. It is possible to use a single API to
access compute resources and storages hosted by different cloud providers and for
this reason these solutions address the use case scenario SCSS S2 only at the IaaS
level. In the context of the use case scenario CSCC S4, OpenNebula would enable the
communication between the private subsystem and the cloudified part of the appli-
cation. In the context of the use case scenario CSCC S5, the use of OpenNebula or
DeltaCloud will enable the migration of non-cloud applications to the IaaS solution.
For what concerns application portability, the use of OpenNebula or DeltaCloud will
enable an automatic portability process among the supported IaaS platforms. The
interoperability features offered by these solutions consist in the transparent usage
of resources offered by different cloud providers and accessible through a common
API. The positioning of these solutions according to our n-dimensional space is
illustrated in Fig. 3.5.

Fig. 3.5 Cross-platform API solution positioning
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3.5 mOSAIC API

The main aim of the mOSAIC project is to offer a solution for application portabil-
ity and interoperability across multiple clouds [4]. To achieve this objective, the
mOSAIC platform offers first of all an API, implemented in Python, Java, and
Erlang, to develop components that run on top of its platform. mOSAIC’s API is
designed to be event-driven, and the communication among mOSAIC components
takes place throughmessagequeues.ThemOSAIC’s basic component is the cloudlet,
an event-driven and stateless component whose functionalities do not depend on the
number of its instances at runtime (has a degree of autonomy). The cloudlets are able
to access cloud services through connectors. The concept of a connector is intro-
duced to ensure the independence from the cloud service interfaces. A connector
is a concrete class that abstracts the access to cloud resources and defines the set
of events to which the cloudlet should react. The connectors access cloud services
using drivers, which actually implement the cloud service interfaces. They can be
interpreted as wrappers of native resource APIs or uniform APIs, like OpenStack.
These wrappers are able to send and receive messages from the mOSAIC’s message
queues. Until now, the mOSAIC software repository includes modules for more than
ten public clouds. Among these, mOSAIC supports well-known providers like Ama-
zon, Rackspace, and GoGrid, as well as European cloud providers including Flexiant
(UK), CloudSigma (Switzerland), NIIFI (Hungary), Arctur and Hostko (Slovenia),
the last two using VMware vCloud. Moreover, private clouds are built using open-
source technologies like Eucalyptus, OpenNebula, CloudStack, and the already cited
OpenStack.

Figure3.6 reports mOSAIC’s stack showing the components of the integration
platform: the already cited APIs belong to the application support level, on which
mOSAIC’s IaaS and PaaS functionalities are based.

3.5.1 Engagement with Case Study and Positioning
with Respect to Use Case Scenarios and Features

Unlike most of the existing cross-platform APIs, mOSAIC API also supports IaaS
functionalities. An implementation of the example Business Intelligence application
provided in Fig. 1.6 could be possible at PaaS and IaaS levels using mOSAIC API
components as illustrated in Fig. 3.7. The mOSAIC support enables the portability of
the solution over several supported IaaS platforms thanks to themOSAIC component
cloud agency, and also enables the use of different kinds of storage solutions for SQL
and NoSQL databases through the use of agnostic connectors.

http://dx.doi.org/10.1007/978-3-319-13701-8_1
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Fig. 3.6 mOSAIC stack

mOSAIC addresses the use case scenario CSCC S1 since it enables portability
among the supported infrastructures at the IaaS level and between the supported
services at the PaaS level. The interoperability is possible thanks to the single API
to access compute resources and storages hosted by different cloud providers and
for this reason this solution addresses the use case scenario SCSS S2 at the IaaS and
PaaS levels. The positioning of these solutions according to our n-dimensional space
is illustrated in Fig. 3.8.
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Fig. 3.7 Possible implementation of the Business Intelligence application through mOSAIC APIs

Fig. 3.8 mOSAIC API solution positioning
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3.6 Apache Libcloud

Libcloud [5] is a library, entirely written in Python, allowing interactions among
several popular cloud service providers. In particular, Libcloud consists of a unified
API that hides differences between different providers thanks to a high-level abstrac-
tion of the services and APIs exposed by the different providers. Its main objective
is to simplify developers’ efforts at building products that are able to work with
services coming fromdifferent cloud vendors, thus easing interoperability issues. The
number of supported providers and functionalities is quite interesting. A complete
list of such providers can be found at [6]. Libcloud API allows the management of
resources belonging to four main categories:

• Cloud Servers and Block Storage such as Amazon EC2 and Rackspace cloud-
servers;

• Cloud Object Storage and CDN, among which are Amazon S3 and Rackspace
CloudFiles;

• Load Balancers as a Service, including Amazon Elastic Load Balancer and
GoGrid LoadBalancers;

• DNS as a Service such as Amazon Route 53 and Zerigo;

For all cited Amazon services, see Sect. 4.1. Each of the categories listed above is
managed through a specific Libcloud component.

3.7 Apache JClouds

The JClouds’ [7] API shares many features and concepts with those of the Lib-
cloud API, both having the same objective to define a high-level API to access and
manage services provided by different cloud vendors in a uniform manner. In par-
ticular, JClouds offers an open-source library, operable through Java or Clojure [8],
enabling the creation of applications that are portable across different cloud plat-
forms, giving the user the possibility to still use cloud-specific features.The list of
supported providers includes important players such as Amazon, Azure, and Open-
Stack. Using Java and Clojure libraries, users can interact with services offered by
cloud providers without having to deal directly with REST APIs and, at the same
time, using an abstract representation of the target resources. In particular, the library
offers to manage resources included in three different categories:

• ComputeService The portable compute interface allows users to provision their
infrastructure in any supported cloud provider. The entire life cycle of a compute
resource, fromdeployment configuration, provisioning, and bootstrapping, isman-
ageable through JClouds. The API offers the possibility to start multiple machines
at once, thanks to the available configuration templates that specify configura-
tion properties like: the Image used to create the computing node instance; the
Hardware on which the instance will run, comprehensive of CPU speed, available
RAM, and disk space; the Location where the machine will run (in Amazon, the

http://dx.doi.org/10.1007/978-3-319-13701-8_4
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Region and Availability Zone, see Sect. 4.1). Installing software and run deploy-
ment scripts at instantiation time is also possible.

• BlobStore simplifies the management of key-value storages offered by different
providers. It offers both asynchronous and synchronous APIs, as well as Map-
based access to data.

• LoadBalancer provides a common interface to configure load balancers in any
cloud platform that supports them. In order to operate with a load balancer, a
user just has to create an instance of it on the target platform and then to attach
computing nodes to it. The LoadBalancer functionalities are still in beta release at
the time of writing.

Table 3.1 Summary of the presented cross-platform APIs’ capabilities

API Accessible
through

Supported
languages

Supported platform/standard Type

DeltaCloud REST
interface, Ruby
Client (Curl),
C/C++ Library

Ruby, C/C++ Amazon EC2, Eucalyptus, Fujitsu FGCP,
IBM SmartCloud, GoGrid, OpenNebula,
Rackspace, RHEV-M, RimuHosting,
Terremark, vSphere, DigitalOcean,
ArubaCloud, OpenStack, ProfitBricks

Wrapper

OpenNebula XML-RPC Java, Ruby,
Python

Amazon EC2, OCCI Adapter

LibCloud Python Library Python Abiquo, Bluebox Blocks, Brightbox,
CloudFrames, CloudSigma (API v2.0),
CloudStack, DigitalOcean, DreamHost,
Amazon EC2, Enomaly Elastic
Computing Platform, ElasticHosts,
Eucalyptus, Exoscale, Gandi, Google
Compute Engine, GoGrid, HostVirtual,
HP Helion Public Cloud, IBM
SmartCloud Enterprise, Ikoula, Joyent,
Kili Public Cloud, KTUCloud, Libvirt,
Linode, NephoScale, Nimbus, Ninefold,
OpenNebula (v3.8), OpenStack,
OpSource, Outscale INC, Outscale SAS,
Rackspace Cloud, RimuHosting,
ServerLove, SkaliCloud, SoftLayer,
vCloud, VCL, vCloud, Voxel,
VoxCLOUD, VPS.net, VMware vSphere

Wrapper

JClouds Java Library Java AWS, Bluelock, CloudSigma,
DigitalOcean, Docker, ElasticHosts,
Go2Cloud, GoGrid, Google Compute
Engine, Green House Data, vCloud, HP,
Ninefold, Open Hosting, Rackspace,
ServerLove, SkaliCloud, SoftLayer

Wrapper

mOSAIC Java Library Java, Erlang,
Python

Amazon, GoGrid, Rackspace, Flexiant,
CloudSigma, NIIFI, Arctur, Hostko,
Eucalyptus, OpenNebula, CloudStack,
OpenStack

Adapter

http://dx.doi.org/10.1007/978-3-319-13701-8_4
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3.8 Comparative Analysis

Table3.1 reported in this section summarizes the different characteristics of various
APIs introduced in this chapter. Some of such APIs, like LibCloud and JCloud,
support a wide range of platforms, even if they are limited to specific services.
In general, wrapper APIs accessible through libraries which can be directly imported
by developers in their projects offer a wider support in terms of manageable services
and platforms. The possibility to extend the offered APIs in order to include new
platforms and services is a common characteristic, and developers are encouraged to
contribute. This is also endorsed by the open-source license that characterizes these
APIs. Despite the good number of platforms and services managed by the different
cross-platform APIs, the general tendency is to support the IaaS only. The PaaS and
SaaS offers are not contemplated yet by these APIs, even though a series of projects
have been trying to extend the existing libraries. This is probably due to the lack of
a mature standard for the PaaS interfaces, to which such cross-platform APIs could
adhere, while a plethora of solutions exist for IaaS (see Chap. 5 for a list of mature
and emerging standards) even if they are not always adopted by vendors.
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Chapter 4
Ready-to-Go Solutions

4.1 Amazon Web Services (AWS)

Amazon Web Services (AWS) [1] is a comprehensive cloud services platform that
offers compute power, storage, network, content delivery, and other cloud-based
functionalities. The number of services exposed byAWS is impressive and describing
each of them here would be impossible, so we focus on the most popular ones.
Figure4.1 lists AWS by grouping them into different categories.

Fig. 4.1 List of cloud services provided by AWS
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Access to AWS is granted through different means. The AWS Management
Console is a Web-based GUI enabling management of all AWS resources, from
EC2 instances to DynamoDB tables. Through this interface, consumers can schedule
and execute different tasks comprehending instances’ management and applications’
deployment.

Besides the web graphical interface, users can also utilize the command line
interface (CLI) provided by Amazon. Based on Python, such an interface enables
complete control, management, and configuration capabilities over AWS instances.
Themain benefit from using the CLI comes from the possibility to use custom scripts
to control AWS instances.

AWS APIs are available to control instances either throughHTTPmessages (using
a RESTful style) or bymeans of SDKs, enabling the use of a tailoredAPI for a chosen
programming language or platform.

4.1.1 Compute Services

Themost popular services deliveredbyAWSare surely representedbyAmazon Elas-
tic Compute Cloud (EC2), Auto-Scaling, and Elastic Load Balancing. These ser-
vices, often included in developers’ solutions and suggested in many of the Amazon
design patterns (see Sect. 2.4.4), are generally used together to deliver compute
capabilities in an easily scalable and manageable manner. EC2 provides resizable
compute capacity in the cloud, giving consumers the opportunity to leverage the IaaS
infrastructure offered by Amazon at its full. Automatically scalable, EC2 resources
are offered in different flavors:

On-Demand Instances incarnate the cloud philosophy of “You pay for what You
get”, since instances automatically scale with requests and payments are based on
actual consumption only.
Reserved Instances let users reserve a certain amount of resources for a fixed period
of time, giving also the opportunity to resell unused instances (through the Amazon
Marketplace). Reserved instances come in three different dimensions: light, medium,
and heavy.
Spot Instances allow customers to bid on unused Amazon EC2 capacity, paying for
them according to their current price. They are useful when applications can runwith-
out particular time and performance constraints, but at generally much lower prices.

While EC2 instances are natively capable to scale according to the actual compute
power requests, it is also possible to associate the auto-scaling service to them in order
to better specify the custom scaling criteria and policies. Auto-scaling is part of the
CloudWatch service, offering monitoring capabilities on EC2 instances. The elastic
load balancing (ELB) service provides the capability to homogeneously distribute
traffic among EC2 instances, in order not to overwhelm a single compute node with
requests and avoid bottlenecks. Also, it detects faulty instances and redirects traffic

http://dx.doi.org/10.1007/978-3-319-13701-8_2
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through healthy ones, when available. ELB can distribute workloads within the same
Availability Zone (see [2] for more details) or across different ones.

4.1.2 Storage and Database Services

AWS offers several storage services, with peculiar capabilities and objectives.
Simple storage service (S3) is probably one of the most known and supported
storage offers in the whole cloud environment. The service provides storage space
for data of any kind and any dimension, organized in practical structures known as
“Buckets”. High data availability and reliability have made this service extremely
popular among developers. Glacier is another storage offer from AWS, which is
focused on archiving and backing-up infrequently used data at very low prices. The
counterpart is represented by the slow access and retrieve time this kind of storage
offers, making it unsuitable for applications consuming and/or producing data at a
fast pace. Elastic block storage (EBS) provides persistent block level storage vol-
umes for use with Amazon EC2 instances. EBS instances can be either exposed as
devices within an EC2 instance, or they can be attached to and accessed through a
network.

Apart from raw storage capabilities, AWSalso offers different databases as service
functionalities, mainly represented by:

• Relational Database Service (RDS), providing access and management func-
tionalities for a relational database completely delivered in the cloud. RDS is
compliant with popular relational database solutions, including MySQL, Oracle,
and PostgreSQL.

• DynamoDB is a fast NoSQL database service, organized in easily accessible and
retrievable tables. In order to ensure availability and durability, data are stored on
Solid State Drives (SSDs) replicated across three availability zones.

• ElastiCache is aWeb service offering in-memory cache in the cloud. The service is
meant to improve the performance ofWeb applications by allowing you to retrieve
information from fast, managed, in-memory caches, instead of relying entirely on
slower disk-based databases. The service currently supports two open-source in-
cache solutions represented by: Memcached, a memory object caching system;
Redis, an in-memory key-value store supporting data structures such as sorted sets
and lists.

4.1.3 Networking Services

AWS offers network-related services to easily connect and enable communications
among Amazon compute instances and storages. In particular, the Route 53 ser-
vice provides Domain Name System functionalities, allowing connections between
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services running in AWS, such as an EC2 instance, an elastic load balancer, or an
Amazon S3 bucket. Route 53 can also be used to route users to infrastructures outside
of AWS. Using Amazon identity and access management (IAM), it is possible to
control who is able to modify routing tables in AWS. Direct connect makes it pos-
sible to establish a dedicated network connection from on-premise infrastructures to
AWS.

4.1.4 Deployment and Management

Amazon CloudWatch is a monitoring service enabling creation of metrics, policies,
log files, and alarms to have complete control of AWS resources or of applications
running on them. CloudWatch can be used together with other services, such as
auto-scaling, to provide workload balancing functionalities and respond to fluctuat-
ing compute power requests. AWS Elastic Beanstalk allows users to easily deploy
and scale Web applications and services developed with several programming lan-
guages and frameworks such as Java, .NET, PHP,Node.js, Python, Ruby, andDocker.
Target servers include such popular products as Apache HTTP Server, Apache Tom-
cat, Nginx, Passenger, and IIS 7.5/8. Users just have to upload their code, and Elastic
Beanstalk automatically executes all the operations needed to correctly launch the
applications, from resource provisioning to health monitoring. CloudFormation
offers developers and system administrators a means to completely control and man-
age the workflow of a collection of AWS resources, including their provisioning,
running, and updating. CloudFormation offers a set of predefined templates describ-
ing relationships existing between resources and their workflow, but users can create
custom ones.

A list of available templates is available (at the time of writing) at [3].

4.1.5 Engagement with Case Study and Positioning
with Respect to Use Case Scenarios and Features

Amazon offers a huge variety of cloud services that allows to deploy the entire
business application on their cloud. A case of how our example application can
be implemented using Amazon cloud services is illustrated in Fig. 4.2. Some com-
ponents such as the CRM and ERP are provided at the SaaS level, but can also
be deployed through VMs running on Amazon EC2 instances. Amazon Redshift,
specifically designed for OLAP, would be used as the data warehouse, while Amazon
RDS or DynamoDB offers the database component; the CRM and ERP components
are not directly offered by Amazon, but several SaaS solutions can be automati-
cally deployed in the Amazon IaaS via the AWS marketplace. Useful for the ETL
process is the Amazon EMR (ElasticMapReduce) service alongside third-party tools
for data analysis and extraction. Since all components of the application can be
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deployed in AWS, or they can be substituted by third-party SaaS services able to
interoperate, use cases CSCC5 and CCUC1 are supported. Amazon offers the sup-
port for interoperability not only with AWS products. For instance, Amazon RDS
allows to deploy multiple editions of the Oracle Database and it is also possible to
build an OpenShift platform on Amazon EC2: CSCC2 use case is thus supported at
both the IaaS and PaaS levels. Also, since VMs can be transferred to and from AWS
using the available APIs, as long as the right format is used (sometimes a conversion
could be necessary), use case CCUC3 is partially supported. The positioning of the
Amazon solution over our n-dimensional space is illustrated in Fig. 4.3.

Fig. 4.2 Application design through Amazon AWS

Fig. 4.3 Amazon solution positioning
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4.2 OpenStack

OpenStack [4] is an open-source cloud operating system that provides compute,
storage, and networking resources together with virtualization technologies fully
accessible and manageable through a set of powerful APIs, command line interface
(CLI) tools, or software development kits (SDKs) provided for different program-
ming languages. It is also possible to leverage a graphical dashboard that allows users
to manage and monitor resources provided by the platform. Services are offered at
an IaaS level. The current stable OpenStack release is named IceHouse, which was
released in April 2014. OpenStack is based on a set of core services, the organization
of which is shown in Fig. 4.4:

Fig. 4.4 OpenStack services organization. Image taken from [4]

• Compute (Nova) offers on-demand computing resources by provisioning and
managing large networks of virtual machines. The architecture is designed to
scale horizontally on the standard hardware. Compute resources are accessible
via APIs for developers building cloud applications and via Web interfaces for
administrators andusers.When launching computing instance onOpenStack, users
can exploit default configurations to reserve a predefined amount of resources
for their virtual machines to run. Such configurations resemble Amazon flavors
described in Sect. 4.1.1.

• Object Storage (Swift) provides a fully distributed storage platform for data
backup and archiving; it is fully integrated with applications running in the Open-
Stack environment and expands external storage of compute instances. All objects
stored are replicated thrice in as-unique-as-possible zones, which can be defined
as a group of drives, a node, a rack, etc. The service supports dynamical creation
and deletion of nodes and disks, which can be substituted and swapped with no
downtime.

• Block Storage (Cinder) allows the availability of persistent block level storage
devices, directly connected with OpenStack compute instances. Block storage
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allows block devices to be exposed and connected to compute instances for
expanded storage, better performance, and integration with enterprise storage
platforms.

• Networking (Neutron) provides flexible networking models to support IP address
management and traffic control. Networking allows additional functionalities
such as load balancing, virtual private network (VPN) creation, and firewall
configuration.

Togetherwith core services, OpenStack also offers a set of juxtaposed shared services
extending the core functionalities and contributing to their integration. Such a set of
services comprehends:

• Identity Service (Keystone) provides a central directory of users, who are mapped
to the OpenStack services they can access. The service acts as a common authenti-
cation systemacross the entire platform, includingmultiple forms of authentication
such as username-password credentials, tokens, and AWS-style logins.

• Image Service (Glance) provides discovery, registration, and delivery services for
disk and server images, giving the ability to copy, take snapshots of, and store server
images. Stored images can be used as templates to rapidly instantiate multiple
servers with the same characteristics, but they also ease software updating and
modifications. The Image Service supports several image formats, among which
are OVF used by VMWare, VDI from VirtualBox, and VHD used in (Hyper-V).

• Telemetry Service (Ceilometer) allows cloud operators to consult global or indi-
vidual resource relative metrics.

• Orchestration Service (Heat) enables application developers to describe and auto-
mate the deployment of their cloud infrastructure thanks to a template language
that allows users to specify both resources configurations and their workflow. It
implements an orchestration engine to launch multiple composite cloud applica-
tions based on templates in the form of text files that can be treated like code. The
template format defined by OpenStack, named HOT, is formally compliant with
the CloudFormation Template defined by Amazon. An HOT file is an orchestra-
tion document that accurately describes all the elements required for the correct
orchestration of multiple services, comprising: components, an abstract represen-
tation of the capabilities of a cloud service; resources, representing the artifacts of
a deployment; definition of input and output parameters of each resource. Tem-
plates are described using YAML. The main advantage of HOT consists in the
possibility to easily share it between multiple cloud providers, as templates con-
tain vendor-independent specifications for launching a particular application in a
target cloud environment.

• Database Service (Trove) quickly and easily provides relational database
functionalities and capabilities, avoiding complex management issues.

The OpenStack community has also worked on reducing incompatibilities with
Amazon EC2 and S3 APIs, in the attempt to further enhance the platform interoper-
ability. The IBM commitment to the project may lead to interesting developments,
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given its support to the OASIS Topology and Orchestration Specification for Cloud
Applications (TOSCA) TC, which is in sync with the OpenStack Heat project.

4.2.1 Access to OpenStack Services

OpenStack offers different possibilities to access and control its services. Surely the
simplest and most appealing instrument to manage, the OpenStack platform is repre-
sented by theWeb-basedGUI also referred to as theHorizonDashboard. The vista on
resources changes according to the user’s privileges. For system administrators who
want to use scripts to control resources running on an OpenStack-enabled platform,
command line interfaces written in Python are available. Each core service can be
managed through a specific CLI. However, the functionalities offered by the compute
dedicated interface (at the time of writing, the novaclient) are generally sufficient.
Of course, RESTful APIs are also available, even if they frequently change accord-
ing to the different OpenStack releases and some are still experimental. Exchanged
messages are encoded in JSON.

4.2.2 Engagement with Case Study and Positioning
with Respect to Use Case Scenarios and Features

The OpenStack offer includes only the IaaS level resources, so a direct and complete
implementation of our Business Application test case would be impossible. Use case
CSCC5 is thus not supported, unless we do not rely on third-party applications that
can be deployed in the OpenStack infrastructure as virtual appliances. However,
compute resources offered by OpenStack can be exploited to host applications like
Salesforce. The principle of this public Software-as-a-Service is that customers do
not have to purchase computing equipment, and can further reduce their expenses
by sharing the cost of the infrastructure with other customers. Salesforce integration
with OpenStack is made possible thanks to Nova API, which allows communica-
tion between the SaaS and IaaS resources. Through the Salesforce SaaS solution,
it is then possible to interoperate with other cloud platforms such as Oracle, thus
partially supporting CSCC2. In this scenario, OpenStack APIs can be used also to
communicate with external applications through HTTP REST, for example to inter-
face with Amazon EC2 and S3. PaaS solutions, such as Openshift, Cloud Foundry,
and Bluemix, are able to directly interoperate with OpenStack. Use cases CSCC3
and CCSC4 are limited to the IaaS level: a customer can, for instance, substitute the
computing capabilities of her privately managed infrastructure with Nova services
which, in turn, can be easily connected to Amazon storage. Use case CCUC1 can
be realized using OpenStack, since it offers APIs to migrate VMs from or to other
platforms, provided they are packaged using a supported format. Figure4.5 reports
an example of implementation of the Business Intelligence application using the
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Salesforce SaaS as a support. The positioning of the OpenStack solution over our
n-dimensional space is illustrated in Fig. 4.6.

Fig. 4.5 Application design through OpenStack

Fig. 4.6 OpenStack solution positioning
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4.3 Oracle PaaS

The Oracle cloud platform [5] is a portfolio of products that can be used to build
applications to publish as services on both private and public clouds. The platform
is based on the Oracle Grid technologies, as well as on applications that include
WebLogic Server, Coherence in-memory datagrid, and JRockit JVM. In terms of
infrastructure, the platform is based on the Oracle IaaS offer that contains Oracle
Solaris, Oracle Enterprise Linux, and Oracle VM for virtualization, Sun SPARC,
and Storage. Both the IaaS and PaaS services are handled using Oracle Enterprise
Manager, which provides an integrated system for the management of the entire
development life cycle of applications.

Fig. 4.7 Overview of Oracle PaaS offer

Here are listed the main services and functionality provided by the Oracle plat-
form, as they are graphically displayed in Fig. 4.7.

• Storage: Sun Open Storage products combine the open-source software with the
industry standard hardware to provide a platform for open and scalable storage.
Sun provides virtual networks for large-scale computations through InfiniBand,
allowing users to create very large computational grids. The Oracle Exadata Stor-
age Servers provide software intelligence features, with particular affinity to the
Oracle database.

• Server and Operating Systems: Oracle offers several of Sun’s servers (Netra,
Blade Servers, SPARC Enterprise, X64) and support for standard operating sys-
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tems (Solaris, Linux, Windows), which provide a broad range of optimized phys-
ical infrastructures for virtualized and distributed nature of cloud applications.

• Server Virtualization: Oracle VM provides support for both the x86 and SPARC
architecture, making possible the publication of applications in heterogeneous
environments. Users can exploit Oracle VM to consolidate servers, release soft-
ware quickly, recover quickly from system failures, and associate the ability to
workloads.

• VM Templates and Assemblies: OracleVM templates are virtualmachine images
containing preinstalled and configured enterprise software, which can be used
to rapidly develop, package, and deploy applications. Oracle VM templates can
speed up and simplify application deployments and help reduce the risk of errors
in production, development, or test environments. EachVM template is essentially
a software appliance because, like hardware appliances, they are prebuilt and very
easy to deploy. The next level of this type of application packaging is the concept of
VMAssemblies. While software appliances are useful, enterprise applications are
not always self-contained, single-VM entities but are sometimes complex, multi-
tier applications spanning multiple VMs. There may be multiple VMs in the web
tier, other VMs in the middle tier, and other VMs in the database tier. There needs
to be a way for these multi-VM applications to be packaged for easy deployment.
Oracle virtual assembly builder is a tool that takes such a multi-tier, distributed
application and packages it up into an assembly that can be reused in a way similar
to the way appliances are used.

• Database and Storage Grid: Oracle database has offered grid computing
capabilities since the release of Oracle Database 10g in 2003. Since then, Oracle
has continued to enhance the grid capabilities of the database in the areas of clus-
tering with Oracle Real Application Clusters (RAC), storage virtualization and
manageability with Automatic Storage Management (ASM), and database perfor-
mance with In-Memory Database Cache. When lighter-weight database services
are needed, Oracle Berkeley DB and MySQL are also possible options that are
actively developed and supported by Oracle.

• Application Grid: Similar to the grid architecture in Oracle database and storage,
Oracle fusion middleware also supports robust grid functionality in the middle
tier with a group of products called Oracle application grid. The key technologies
that make up Oracle’s application grid are Oracle WebLogic Server as the flagship
application server; Oracle Coherence providing in-memory data grid services,
JRockit JVM providing lightweight, lightning fast Java runtime environments;
and transaction monitoring and management with Oracle Tuxedo.

• SOA and Business Process Management: Oracle SOA Suite provides a compre-
hensive yet easy-to-use basis for creating the reusable components at the heart of
your PaaS private cloud. Rich drag-and-drop SOA component features in JDevel-
oper and the SCA designer enable rapid creation of components and subsequent
composition of these components into applications. Oracle Service Bus provides
a simple way to make components available to department application creators
using the PaaS cloud. End-to-end instance tracking and Oracle Business Activity
Monitoring provide a range ofmetrics visualizations supporting both the central IT



70 4 Ready-to-Go Solutions

function chargedwith keeping the PaaS up and running and the departmental appli-
cation owners concerned with business-level performance indicators. In addition
to SOA components, many enterprises will want to include business process com-
ponents managed within a unified BPM framework as part of their PaaS. Oracle
BPEL Process Manager provides the federation capability to create BPEL process
components out of new aswell as legacy assets while also supporting the flexibility
to enable multiple departments to incorporate PaaS-based BPEL components into
their respective workflows.

• User Interaction: A centrally managed library of UI components can give depart-
ment application owners a great head start in composing their solutions and gives
the central IT function a desirable level of control over consistency across the
enterprise’s UIs. Oracle WebCenter Suite provides a number of portal and user
interaction capabilities that are ideal for creating reusable UI components as part
of a PaaS.

• Identity Management: Oracle Identity and Access Management Suite provides
an ideal facility for managing access and security in a PaaS environment. Oracle
Access Manager supports corporate directories and single sign-on. Oracle Entitle-
ments Server provides centralized access control policies for a highly decentralized
PaaS environment. Oracle Identity Manager is a best-in-class user provisioning
and administration solution that automates the process of adding, updating, and
deleting user accounts from applications and directories. Oracle Identity Federa-
tion provides a self-contained and flexiblemulti-protocol federation server that can
be rapidly deployed with your existing identity and access management systems.

4.3.1 Engagement with Case Study and Positioning
with Respect to Use Case Scenarios and Features

Oracle cloud allows the deployment of almost all of our Business Intelligence
application’s components, which find an equivalent at the IaaS, PaaS, or SaaS
level. An example of how the test case, illustrated in Fig. 1.6, can be implemented
using Oracle components is reported in Fig. 4.8. Oracle cloud does not include a
data warehouse, which is however offered as a non-cloud solution, while CRM
and ERP are available as SaaS. ETL, OLAP, and Big Data Analysis services
are natively offered as hybrid solutions, making it possible to purchase them as
cloud SaaS services that interact with the non-cloud data warehouse. A customer
wanting to migrate a Business Application to the cloud could decide to retain
her own data warehouse and use CRM, ERP, or ETL services offered by Ora-
cle to work on her data. This kind of solution supports the CSCC4 use case.
She could also decide to leverage the Oracle Data Warehousing offer, completely
migrating all of her application components, thus realizing the CSCC5 use case.
If we focus on CMR and ERP components, they can be mapped to SaaS ser-
vices that can be chosen from the Oracle Marketplace: using services from dif-
ferent vendors is possible, since the Oracle platform takes care of their integration.

http://dx.doi.org/10.1007/978-3-319-13701-8_1
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This enables interoperability between different providers’ services (use case CSCC2)
and it also enhances portability (use case CSCC1), since the customer can sub-
stitute one of the chosen services with another one from the same Marketplace.
However, these possibilities are limited to the third-party services and applica-
tions which can be purchased from the Oracle Marketplace. Thanks to the Ora-
cle support to different programming languages, first of all Java, each of the
components of our Business Application could be developed exploiting the PaaS-
level services. Another remarkable enhancement to interoperability is represented
by OpenStack capabilities to be integrated into a broad range of Oracle products and
cloud services. The positioning of the Oracle solution over our n-dimensional space
is illustrated in Fig. 4.9.

Fig. 4.8 Application design through Oracle

4.4 OpenShift

OpenShift [6] is a cloud computing platform provided by Red Hat, categorized as a
platform service according to the NIST definition of cloud computing [7]. The main
goal of the platform is to provide a cloud environment in which developers can easily
and quickly design, develop, build, host, and scale applications using one or more of
the programming languages and frameworks it supports. The user can choose among
three different kinds of offers:

• a Public PaaS directly managed and supported by Red Hat, under the name of
OpenShift Online;
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Fig. 4.9 Oracle solution positioning

• a Private PaaS, called OpenShift Enterprise, where computing and storage
resources are managed on-premises;

• a free Community PaaS, known as OpenShift Origin, representing the original
open-source project OpenShift is based on.

4.4.1 OpenShift Architecture

OpenShift architecture, a detailed description of which is available at [8], is simple
and, at the same time, effective. The OpenShift platform is composed mainly of one
or more brokers and a series of nodes, which are grouped into sets. A broker acts
as a manager for a single set of nodes, and each set must be managed by a specific
broker. Furthermore, a broker represents the only access point to the applications and
frameworks running on each node: the user can only interact with the broker using the
available OpenShift APIs, which allow the developer to manage every aspect of the
developed applications, from hosting to scaling. Direct interaction with the node is
not possible. A node is an instance of Red Hat Enterprise Linux, which is the foun-
dation of OpenShift, and it represents the place where end-user applications reside.
Every node is logically composed of Gears, which are automatically allocated and
managed by the broker according to the computing and storage needs of the particular
application hosted by the node, together with the policies set by the user through the
provided API. A gear can be seen as a set of resources at the disposal of the node to
execute an application residing on it. A platform administrator can set the dimensions
(in terms of CPU speed, RAM, and disk space) and the number of gears a consumer
can use for its applications, while the user decides to manually allocate them or
let the platform automatically scale. A gear can support one or more cartridges,
depending on the gear’s dimensions and on the cartridge’s requirements. A cartridge
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represents a particular feature or capability a developer can leveragewhen building its
applications. Such features may include support to specific programming languages,
databases, web, and application servers offered at the PaaS level and other services.
Customers can add these features via both standard or custom cartridges, which can
be designed and built by the user himself: this means that the developer can build his
application in any available programming language, exploiting a framework of his
own choice, and then he can host his application on a node of the OpenShift platform
through the broker’s API, which can be also used to select the needed cartridge.

4.4.2 Support to Portability

One major advantage of the architecture provided by OpenShift is represented by
the possibility to run third-party applications on an OpenShift node just by selecting
the correct cartridge and vice versa, thus strongly supporting portability. The limits
imposed by the restricted number of available cartridges are easily overcome by the
possibility to create custom ones. In particular, OpenShift addresses the possibility
to seamlessly switch between development and operative environments, without the
need to modify applications’ code or introduce particular changes in a software’s
architecture.

4.4.3 Engagement with Case Study and Positioning
with Respect to Use Case Scenarios and Features

A Business Intelligence application can be migrated to OpenShift with the use of
a collection of cartridges. An example of how this can be realized is illustrated in
Fig. 4.10. The CRM components can be replaced by the JBoss Business Process
Management cartridge which is able to interoperate with external systems such as
databases or ERP components. The database cartridge can be linked to several kinds
of databases such as MySQL, MongoDB, or PostgreSQL. The ETL process can
be replaced by the JBoss Data Virtualization component that enables the access to
several sources of data such asOracleDB, IBMDB2,Microsoft SQLServer,MySQL,
Teradata, LDAP, SAP, Apache Hive, MongoDB, and others. The data warehouse
systemcan be replaced by the JBoss Data Grid cartridge in combinationwith external
resources for OLAP and data mining analysis. Natively, OpenShift does not offer a
cartridge for an ERP system but it is possible to combine aPostgreSQL cartridge with
a Python cartridge to run on the platform software like Open ERP. An alternative
solution would be to integrate JBoss Data Virtualization with the Amazon solution
RedShift to build the ERP system.

Considering all the different possible deployments of our reference application
onto the OpenShift platform, we can say that scenarios CSCC1-5 are supported,
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even though only the PaaS and SaaS level services can be exploited. The positioning
of the OpenShift solution over our n-dimensional space is illustrated in Fig. 4.11.
The portability features of OpenShift are enabled through DeltaCloud API. Third-
party software can be deployed in the OpenShift platform and are directly interface-
able to OpenShift services. Through CloudFormation the interoperability between
OpenShift and Amazon EC2 infrastructure is enabled. Some OpenShift services are
able to interoperate with other PaaS services such as Bluemix database.

4.5 Microsoft Azure

Microsoft Azure [9] is an operative system considered to support cloud computing
functionalities and capabilities. It enables the connection of several computing nodes,
storages, and other physical/virtual resources to enhance resource sharing and reduce
wastes. The Azure platform covers both the IaaS and PaaS layers. At the IaaS level, it
manages storage and virtualized computation resources allowing users to completely
control their infrastructure, providing a highly flexible environment. At the PaaS
level, it offers a hosting environment for users’ applications, which completely hides
infrastructure details, thus relieving consumers from the burden of controlling and
scaling the available resources.

4.5.1 Azure IaaS Level Services

The set of services provided at the IaaS level comprehends:

• Virtual Machines, the core ofMicrosoftAzure’s IaaS solution, enabling infrastruc-
ture provisioning and the deployment of VMs on demand. Available VMs allow
system administrators to deploy and configure both Linux and Windows Server
images. Hybrid cloud solutions are fully supported thanks to the possibility to con-
nect VMs running on the Azure platform with one running within an in-premise
environment. Also, VM migration is possible, provided the VHD format is used.
Connections with other Microsoft services such as Microsoft SQL Server and
SharePoint Server, and external databases and storages such as Oracle, MySQL,
Redis, and MongoDB are also possible.

• Storage, Backup, and Recovery include a plethora of services dedicated to data
storage, security, and replication. Azure Storage is a scalable, elastic, and ubiq-
uitous storage for massive data, available in different flavors:

– Blob storage is able to store any type of text or binary data, such as a document,
media file, or application installer.
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Fig. 4.10 Application design through OpenShift

Fig. 4.11 OpenShift solution positioning
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– Table storage is aNoSQLkey-value data store that allows for rapid development
and fast access to large quantities of data. The storage comes with a well-defined
tabular structure.

– Queue storage is used for reliable communications basedonmessage exchanges
between components of cloud services.

– File storage offers shared storage capabilities for legacy applications using the
standard SMB 2.1 protocol. This shared storage can be used by both Azure
virtual machines and cloud services and on-premise applications.

• Azure Backup is a backup service offered by Azure that ensures data protection
and encryption. It collaborateswith the Site Recovery service to guarantee disaster
recovery and resiliency for both applications and data.

• Big Compute is a service created to deliver high performance and scalability, typ-
ical of on-premise supercomputers, through the cloud. Highly performant com-
pute instance in the Azure environment can access remote direct access memory
(RDMA) technologies to be used with parallel MPI applications.

4.5.2 Azure PaaS-Level Services

The core of the Azure PaaS offer is represented by cloud services, enabling cus-
tomers to easily deploy applications on the Azure platform which, in turn, manages
their scalability, elasticity, and replication and ensures their availability. Cloud ser-
vices rely on VMs for the execution of applications, but it differs from the virtual
machine service since clients do not need to actually configure and launch the VMs:
the platform requires to configure the application with some basic information and
then it takes charge of creating the needed VMs and managing them. An application
component can be implemented as an instance of two possible roles: Web roles run
a variant of Windows Server with IIS and are able to communicate with external
sources; Web roles run the same Windows Server variant without IIS, so they need
to be associated to a web role in order to communicate through the net. Simple
applications may be composed of just a single web role, containing both the access
interface and the application logic. More complex applications use a Web Role to
handle incoming requests and a worker role to do the actual computation. All the
VMs used by a single application run in the same cloud service, so that the application
can be fully accessed through one single IP address, while requests are automatically
distributed between instances of different worker roles, in order to avoid bottlenecks.
If needed, new instances of the same worker role are automatically spawned. Com-
munications between roles can be managed through other Azure services: apart from
the already mentioned Azure Queues, comprehended in the Azure Store services
at the IaaS level, developers can leverage the functionalities delivered by the PaaS
Service Bus. Service Bus delivers the basic queue functionalities, but also provides
additional functionalities, like the possibility to mark messages, in order to let con-
suming worker roles decide how to act on them. Also, roles can subscribe to the bus
so that they need not continuously poll the queue in order to receive a message.
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4.5.3 Engagement with Case Study and Positioning
with Respect to Use Case Scenarios and Features

An example of how our test application can be deployed in Windows Azure is
reported in Fig. 4.12. In particular, it is possible to leverage a composition of ClearDB
(SQL Database), SugarCRM (compliant with IBM DB2), Sage 300 ERP (offering
a lot of import features from external applications), HdInsight (ELT), Birst Ana-
lytics HdInsight (Data warehouse), and Birst Analytics (Data Mining and OLAP).
The positioning of the Azure solution over our n-dimensional space is illustrated in
Fig. 4.13. Exploiting services mostly at the SaaS level, the portability is guaranteed
by the use of third-party software, mostly compliant with other cloud providers. If
we consider the possibility to develop the application at the PaaS level utilizing a
common programming language supported by the platform (such as Java), the porta-
bility features extend to all the cloud platforms that support the same languages,
assuming to change the code portion that belongs to Windows Azure-specific ser-
vices. Concerning data portability, mechanisms enabling the transfer of data between
azure storage services exist, as well as export/import features for external SQL-based
databases. For what concerns interoperability, through the offered REST API it is
possible to interoperate between different components deployed over private or pub-
lic clouds at the IaaS and PaaS levels. Due to the above-mentioned characteristics,
the Azure solution addresses the use case scenario CSCC S2 for what concerns inter-
operability and some aspects of the use case scenario CSCC S1 for what concerns
portability.

4.6 Google Cloud Platform

Google has been among the first providers to offer a set of PaaS services to con-
sumers. Because of this, they have established as a “de-facto standard” in the PaaS
scenario, much like how the already cited Amazon (Sect. 4.1) has done for IaaS.
Recently, both Google Cloud and Microsoft Azure have added IaaS services to their
portfolio. In the following subsections, we will introduce the services included in the
Google Cloud Platform [10] offer, focusing on the interoperability and portability
features they expose.

4.6.1 Google Compute Engine

Google Compute Engine represents the IaaS offer provided by Google, enabling
users to create VMs of various dimensions and administer them through the Google
Console, a well-documented API or via command line tools. The service, previously
only available through invitation or after a direct contact with the Google sales
team, is now publicly accessible for customers signing up for a Google account and
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Fig. 4.12 Application design through Azure

Fig. 4.13 Azure solution positioning

setting their billing preferences. As time passes, features and services offered by
Compute Engine widen: for example, in previous versions the available operative
systems available only included Google Compute Engine Linux (GCEL), which
is a Debian fork optimized for the use on Google Cloud and CentOS. As of now
different OSs are available (GCEL has been deprecated), including CentOS and
Debian as standard Linux images, while Red Hat Enterprise Linux (RHEL) and
Microsoft Windows Server 2008 R2 are offered as a part of the premier operating
system images available for an additional fee. KVM is the hypervisor used to run
VMs, which need a Persistent Disk to boot. The number of virtual CPUs and the
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amount of memory supported by the VM depend on the machine type selected.
Prices vary according to the selected resources. When a virtual machine instance is
launched, an Instance resource is created that uses other resources, such as:

• Disk, representing a persistent memory completely independent of any connected
VM.

• Snaphot, a backup of the data contained in a persistent disk, which can be used
to restore lost data or to migrate them across different disks.

• Network connects instances with each other and with the outside world, by defin-
ing a range of available addresses and gateways.

• Address represents the IP of an instance. An ephemeral address is automatically
assigned to each launched instance and it is released when the instance is termi-
nated. However, static IPs can also be reserved to VMs.

• Firewall contains rules that filter connections and communications between
instances.

• Route represents a routing table, working similarly to a physical router, managing
traffic and data paths within a network.

Analogous to AWS, also Google Cloud provides a location-based distribution of
resources, which are generally associated to Regions, referencing to geographi-
cal areas where Google facilities reside, and Zones, representing isolated locations
within aRegion. TheGoogleComputeEngine currently supports different third-party
services and software. Interoperable services include:

• CloudAMPQ, a managed service that offers hosted RabbitMQ as a service in the
cloud.

• MongoLab, which manages the open-source NoSQL database known as Mon-
goDB.

• Redis Labs, offering managed Redis databases in the cloud. Redis is an open-
source advanced key-value cache and storage software.

Supported software mostly fall under two categories:

• NoSQL databases, including Apache Cassandra, DataStax Enterprise, and Mon-
goDB.

• Configuration management, including Ansible, Chef, Puppet, and SaltStack.

4.6.2 Google Cloud Storage

Google Cloud Storage is an IaaS Web service, comparable with the Amazon S3
online storage. It can be accessed online through a RESTful interface for storing
and retrieving data on Google’s infrastructure. Other access means are by a web-
based interface, a command line tool, and several language libraries. In order to
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manage controlled accesses to stored data, Google Storage exploits access control
lists (ACLs), consisting of a set of entries granting or limiting certain privileges (for
example, read and write) to users when accessing data. The storage service is fully
compatiblewith other IaaS andPaaS offers fromGoogle, and it offers interoperability
with Amazon S3 and Eucalyptus.

4.6.3 Google App Engine

Google App Engine (also GAE or simply App Engine) represents the core product
of the Google cloud offer and probably the most popular and interesting service from
Google. It is a PaaS product, consisting of a developing platform for hosting applica-
tions written in one of the supported programming languages, such as Python, Java
(and other JVM languages such as Groovy, JRuby, Scala, Clojure), Go, and PHP.
Support for the last two languages is still in an experimental phase. The App Engine
service allows programmers to develop, run, and test their applications in secured
sandboxes, which automatically manage application deployment and resource scal-
ing, according to the current compute power and storage volume requested. The
use of resources is free until a fixed quota is reached: after that, additional fees are
applied. Given its support to Python and Java, the App Engine offer includes support
to a set of notable frameworks, even if workarounds are sometimes needed for Java.
Python web frameworks that run on Google App Engine include Django, CherryPy,
Pyramid, Flask, web2py, and webapp2 but, in general, any Python framework that
supports the WSGI using the CGI adapter can be used to create an application. As
regards Java, App Engine fully supports the open-source Jetty Web Server and its
related technologies (such as JSP). The Java Persistence API (JPA) and Java Data
Objects (JDO) are both provided in order to access, read, and write to datastores.
While the Spring and Struts 1 framework are both supported, JavaServer Faces and
Struts 2 need workarounds to correctly run on App Engine. When developing a Java
application, programmers can leverage the Eclipse IDE: this is possible through the
officially provided plug-in, which extends the IDE enabling users to access tailored
project templates and test code on a simulation environment reproducing the target
platform’s behavior. Different storage solutions, including the already mentioned
Google Storage, are available to developers:

• Google Cloud SQL offers access to aMySQLdatabase, which guarantees to avoid
data lock-in thanks to the standard connections and tools (mysqldump, MySQL
Wire Protocol, and JDBC) which can be used to migrate onto or off the Google
CloudPlatform.Data are automatically replicated acrossmultiple regions to ensure
continuous availability and failure resiliency.

• Google Datastore is a schemaless storage, accessible through a RESTful API
allowing the execution of queries. The datastore holds entities that are data objects
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with associated properties. Entities are categorized (for query support) and are
identifiedbykeys.Thedatastore supports transactions containing several data oper-
ations: in case of failure of a single operation, the entire transaction is rolled back.

• A Blobstore API allows developers to work with large files, called blobs, the
dimension of which exceeds that allowed by the datastore service. Blobs are asso-
ciated to a key, which is used to retrieve them.

Despite the possibility to migrate data from Google stores and databases and the
support to Python and Java frameworks, programmers have often expressed their fear
of being locked-in by Google technologies because of the proprietary/closed APIs
offered by the App Engine, especially for accessing the datastore service. Different
projects have arisen to solve possible portability problems, being AppScale [11] and
TyphoonAE [12], two of the most mature open source efforts.

4.6.4 Google BigQuery

Google BigQuery is a Web service, considered an IaaS, which lets consumers
perform interactive analysis of massive datasets. Access to both BigQuery projects
and datasets is possible through the Google APIs console, browsers, or Command
Line tools. One of the main features of the service is the possibility to load data
directly from the Google cloud storage, ensuring the fast migration of very large
datasets. However, data can also be loaded from external sources, provided they are
formatted using JSON or CVS. Since the analysis of the huge datasets typically
involved in big data applications could require long execution times, queries written
in BigQuery’s SQL dialect can be run asynchronously and customers can access the
system to check their advancement status.

4.6.5 Engagement with Case Study and Positioning
with Respect to Use Case Scenarios and Features

The Business Intelligence application we are using as a case study would be
developed onGoogle platform, usingGoogleCloud Platform,GoogleCloud Storage,
and Google BigQuery for what concerns the data warehouse, ETL and OLAP com-
ponents. The ERP and CRM processes would be implemented using third-party soft-
ware in the Google Compute Engine or using the SaaS such as BaseCRR or Simple
ERP and CRM. A sample design of this application on the Google platform is illus-
trated in Fig. 4.14, thus fully implementing use case CSCC5. Since the Google PaaS
platform offers support to different programming languages, Java in particular, port-
ing of application to and from it should be possible as long as the exploited program-
ming language is supported (use case CSCC1). Google has recently released a pre-
view of itsGoogle Online Cloud Import service, allowing import of data from third-
party databases, Amazon storage included. For what concerns interoperability, the
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use of Google services is strictly related to the use of the Google Cloud Platform, so
interoperability with other providers’ services is not always guaranteed. SaaS prod-
ucts provided by Google generally offer openly accessible APIs to interact with. At
the IaaS level, Google Cloud Storage guarantees interoperability with Amazon Sim-
ple Storage Service (Amazon S3) and Eucalyptus Systems. A user can easily decide
to move only part of her application to the Google platform (use case CSCC4):
for example, databases and data warehouse can be substituted by Google Storage
services. The positioning of the Google solution over our n-dimensional space is
illustrated in Fig. 4.15.

Fig. 4.14 Application design through Google

4.7 Bluemix

Bluemix [13] is IBM’s cloud-based public PaaS environment for building, manag-
ing, and deploying various kinds of applications, either web or mobile. It delivers
a set of prebuilt services and hosting infrastructures for application deployment,
as well as business logics, development back-ends, and monitoring capabilities.
Bluemix is built in using the CloudFoundry [14] open-source technology, extending
community-related projects with IBM’s set of services. Being a PaaS platform, appli-
cation development, delivery, management, and availability is provided by abstract-
ing and completely hiding the traditional complexities associated with the hosting-
and management-based applications on a cloud infrastructure. It is thus possible
to focus on the application development, without caring about the infrastructure
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management required to host the services exploited by the application. After appli-
cations have been deployed in the Bluemix platform, it is possible to quickly scale
up or down according to the applications’ workload fluctuations.

Fig. 4.15 Google solution positioning

4.7.1 Overview of the Offered Services

Although a very young project, which was launched in beta version at the beginning
of 2014 and just recently released (at the time of writing), Bluemix already offers a
wide catalog of services, classified in the following categories:

• Runtimes include build-packs created by IBM itself, such as Liberty for Java and
Node.js; and community build-packs such as Ruby on Rails and Ruby Sinatra.

• Web and Application comprehends a wide range of services helping in the
application development. These include, but are not limited to, cache services,
queues management, log analysis, and integration (DataCache, Session Cache,
ElasticMQ, Rules, Single-Sign-On, Travel Boundary, Validate Address, Reverse
Geocoding, Geocoding, Redis, RabbitMQ, RapidApps, Cloud Integration,
CloudAMQP, Redis Labs, SendGrid, Application Auto-Scaling, Log Analysis,
Twilio).

• Mobile services are meant for mobile application development, including applica-
tion security, quality assurance, and notification services (Push, Internet of Things
Cloud, Mobile Data, Mobile Application Security, Mobile Quality Assurance,
Square).
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• Data Management includes different kinds of databases (SQLDatabase,Cloudant
NoSQL Database, ClearDB, ElephantSQL, MongoDB, PostgreSQL, MySQL).

• Big Data with analysis services such as Analytics Warehouse, Analytics for
Hadoop, and Time Series Database.

• DevOps includes enterprise capabilities for continuous software delivery and life-
cycle management (Monitoring and Analytics, Git Hosting,Web IDE, Continuous
Integration,ContinuousDeliveryPipeline,AgilePlanning andTracking,BlazeMe-
ter, Load Impact).

4.7.2 Engagement with Case Study and Positioning
with Respect to Use Case Scenarios and Features

An attempt to develop, using the Bluemix platform, the application example of
Fig. 1.6 is illustrated in Fig. 4.16. In Bluemix, the example application would be built
by using the data warehouse service Analytics Warehouse that includes a database
DB2 and the IBM Infosphere Data Architect services that enable database porting
to the cloud. DB2 can be linked to OpenStack through a plug-in or deployed in EC2
through an AMI or migrated to/from Oracle database via the Oracle SQL Developer
or IBM Data Movement Tool. Business services such as ERP, CRM, and ETL are not
directly offered by Bluemix but alternative services are able to interoperate with the
Bluemix platform through the Embeddable Reporting service. The positioning of the
Bluemix solution over our n-dimensional space is illustrated in Fig. 4.17. Bluemix is
a public platform, so only portability toward or frompublic cloud is relevant. Bluemix
allows portability from the PaaS to SaaS, since it is possible to rely on some software
applications without the need for a database configuration, which may be provided
as part of the service itself. Intra- and interportability from the SaaS to PaaS is sup-
ported as well since it is always possible to add a database service to the application.
Bluemix takes advantage of Cloud Foundry portability solutions: in Cloud Foundry,
the components of a PaaS offering that applications depend on (e.g., runtimes, mes-
saging, data access) are built using open development frameworks and technologies
(Java, Ruby, Node.js, MongoDB, MySQL, PostgreSQL, RabbitMQ, Redis). Porta-
bility from a non-cloud application to a PaaS environment is possible in Bluemix
since IBM on-premise services can be easily transferred to the corresponding cloud
service, when an equivalent exists. Migration in a SaaS environment is possible
also since, for example, business intelligence reports derived from on-premise ser-
vices can be integrated into a Bluemix application through the Embedded Reporting
cloud service. In addition, the Bluemix analytics warehouse service includes the IBM
infosphere data architect tool for the quick migration of DBs into the cloud. Inter-
operability with different providers is possible thanks to the possibilities offered by
the DB2 service: in fact, it can be made available in an OpenStack environment and
it is also offered as an Amazon AMI, allowing deployment in EC2 virtual machines.
Thus, interoperability between the PaaS and IaaS is possible, both using public or

http://dx.doi.org/10.1007/978-3-319-13701-8_1
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private infrastructure. Interoperability with the SaaS services is also possible since
each Business Intelligence ETL tool (third-party or not) compatible with DB2 is
also compatible with the Bluemix analytics warehouse service. Some Cognos SaaS
services (also offered as on-premise services) may also rely on different database
systems such as DB2, Microsoft SQL Server, and database Oracle. Note, however,
that the SQL database service running on Bluemix is accessible only to applications
running in Bluemix itself. Bluemix can address some aspects that concerns the use
case scenarioCSCCS1. In particular, portability fromPaaS to PaaS is possible thanks
to the database possibilities since migration between different SQL dialects is possi-
ble through the use of proper conversion tools. Migration toward Oracle databases,
for example, is possible through the Oracle SQL Developer tool, whereas migration
toward IBMDB2 is allowed through the IDM data movement tool. Bluemix can also
address some aspects that concern the use case scenario CSCC S5. In particular, the
Bluemix analytics warehouse service includes the IBM infosphere data architect tool
for quick migration of DBs into the cloud. Also, some interoperability aspects that
concern the use case scenario CSCC S2 can be addressed by Bluemix. In particular,
interoperability with different providers is possible thanks to the possibilities offered
by the DB2 service. In fact, it can be made available in an OpenStack environment,
through the use of some tools and proper settings; and it is also offered as an Amazon
AMI, allowing deployment in EC2 virtual machines. Thus, interoperability between
the PaaS and IaaS is possible, both using public and private infrastructures. Interop-
erability with the SaaS services is also possible since each Business Intelligence ETL
tool (third-party or not) compatible with DB2 is also compatible with the Bluemix
Analytics Warehouse service. For what concerns hybrid scenarios, such as the case
described in CSCC S4, the Bluemix cloud integration service can be used for the
deployment of applications in a hybrid environment. It uses secure connectors to
talk securely to applications running behind a firewall. Once a tunnel is established,
the Bluemix app can use the cloud integration service to access data from the server
behind the firewall. Cloud integration for Bluemix enables you to integrate cloud and
on-premise applications. The cloud code leverages the cloud integration service to
interact with the backend databases such as DB2, Oracle, and SAP to create database
APIs.

4.8 ElasticBox

The approach taken by ElasticBox [15] is to allow enterprises to create and
manage applications using “Boxes,” representing encapsulated, individually config-
ured application stacks, meant to be reusable, easily transferable from platform to
platform, and available as a service. Boxes contain application resources and com-
ponents such as databases, language runtimes, web servers, and middleware. A box
can be created by the user according to her personal needs or built by choosing
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Fig. 4.16 Application design through Bluemix

components from a public catalog, comprehending boxes for Hadoop, Ruby, Mon-
goDB, Python, and others. The creation of a multi-tier application architecture is
possible through the combination (“stacking”) of boxes.

The most appealing feature provided by ElasticBox consists in the possibility to
develop, test, and run applications on different cloud platforms, with the only lim-
itation represented by the actually supported platforms, currently comprehending a
wide range of solutions includingMicrosoftAzure,OpenStack,Rackspace,VMware,
AmazonWeb Services, andGoogle Compute Engine. The selection of the target plat-
form happens after the user has chosen the box to deploy: ElasticBox automatically
configures the selected box in order to run on the specific platform (provided the
user has the right to access it). Boxes also ease updating of applications: the user
only needs to set Box policies to decide how and when updates will be spread and
which applications will be affected. Once boxes have been deployed, there are two
options to interact with them in order to manage and tweak running applications.
The first possibility is to leverage the REST API offered by ElasticBox, which pro-
vides basic functionalities to work with running instances (stop, relaunch, delete),
but also to interact with single boxes. However, in order to gain access to more
advanced options, using the provided Lifecycle Editor tool is mandatory. The editor
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Fig. 4.17 Bluemix solution positioning

offers a single, unified interface to test and refine box configurations in live deploy-
ments. Changesmade to box instances are immediately applied and can bemonitored
through logs. The possible interactions with Box instances include, together with the
basic operations available through the API, the creation of event-based scripts and
modifications of system variables.

4.9 Docker

Docker [16] presents itself as an open platform that both developers and system
administrators can leverage to build, package, and deploy applications, with no lim-
itations regarding the target machine, programming language, or operative system.
Deploying on a cloud platform is only one of the possibilities offered by Docker,
since applications can be packaged in containers that can be deployed anywhere.
Each application can run securely isolated in a container, with multiple containers
potentially running simultaneously on the same host without the intervention of a
hypervisor. Figure 4.18 shows the difference existing between an architecture using
a hypervisor to run a virtual machine (on the left) and Docker (on the right). While
VMs need hypervisors hosted on a local operative system to run one or more guest
OSs, where applications and relative library live, the Docker solution is directly
installed on the local OS and does not need any further software to make containers
work. In particular, the Docker consists of two main elements:

• Docker Engine, representing a portable, lightweight runtime and packaging tool,
operating as a container virtualization platform.



88 4 Ready-to-Go Solutions

Fig. 4.18 Difference
between virtual machines
and Docker

• Docker Hub, a Software-as-a-Service platform for sharing and managing Docker
containers and applications and automating workflows.

Docker’s architecture is based on the client–server paradigm: a Docker Daemon
is responsible for building, running, and distributing Docker containers, while a
Docker Client communicates with it to issue commands through sockets or REST
APIs. Users cannot interact with the daemon directly, but they have to leverage the
functionalities exposed by the client. Client and daemon can run on the same host or
the latter can be contacted remotely indifferently from the users’ point of view.

4.9.1 Internal Components

In order to understand how Docker works, it is necessary to introduce the internal
elements used by the platform to deliver and run containers and applications within.
In particular, Docker defines three main internal components:

• Docker images are read-only templates from which Docker containers are laun-
ched. An image is composed of layers, combined together through the Union
File System (UnionFS) allowing files and directories of separate file systems to
be transparently overlaid. When a Docker image is modified, for example by
updating an application, a new layer is added or an existing one is updated: in this
way Docker avoids to rebuild and redistribute the entire image. Every image is
built on an existing base image, containing a default operative system, which can
be selected from the Docker Hub or uploaded by the user directly.

• Docker registry represents a storage for Docker images. Such storage can be
either public or private. Public registries can be searched from the client and
images stored in them can be freely downloaded and used. Private registries are
excluded from researches and only authorized users can pull images from them.
Docker Hub provides both public and private registry support.
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• Containers are composed of an operating system, some optional user-added files,
and meta-data. Each container is built from an image, which tells Docker what
the container holds, eventual processes to run during start-up of the container,
and configuration data. Since a Docker image is read-only, when instantiating
a container from it, the platform automatically adds a read-write layer on top
(using UnionFS) in which the application can run. Docker extends a common
container format called Linux Containers (LXC), with a high-level API providing
lightweight virtualization that runs processes in isolation, in order to provide an
internal container format. However, LXC is supported and other formats will be
integrated in the future.

4.10 Cloudify

Cloudify [17] can be defined as a CloudApplicationOrchestrator which aims at orga-
nizing theworkflowof any kind of application, from the simplest to themost complex
ones. All processes needing to run an application over a cloud platform can be autom-
atized through Cloudify: this comprehends environment setup, application installa-
tion and update, infrastructure management, auto-scaling, and failure recovery. The
creation of the whole cloud infrastructure needed to run a specific application is thus
completely covered by Cloudify capabilities, starting from provisioning of compute
resources to network and block storage configurations. Cloudify also takes care of the
deployment of the applications to the cloud,with particular attention to theOpenStack
platform, for which it provides native integration. In particular, it offers full support
for OpenStack API and TOSCA templates (see Sect. 5.1) giving the possibility to
test applications in a safe environment before their final deployment to OpenStack.
Thanks to the standard description of cloud components orchestration provided by
TOSCA, Cloudify surely reduces vendor lock-in issues and improves interoperabil-
ity between existing infrastructures and cloud platforms. Cloudify’s architecture,
moving to release 3.0 at the time of writing, is composed of three main elements,
which interact to deliver the platform capabilities. The CLI client is a Python exe-
cutable that can run on Windows, Linux, and Mac OS, representing the main tool at
the users’ disposal to manage the deployed applications and the Cloudify manager
itself. The two main functions provided by the CLI are indeed represented by:

• Manager Bootstrapping—Specific components belonging to the CLI, known as
“Providers”, are responsible for using a particular set of IaaS API to set up the
networking, security, and VM environment required by the Cloudify manager and
install the manager itself. The user is given the option to use the CLI to perform
such a task or to exploit another tool of her choice.

• Managing Applications—The Cloudify manager interface cannot be accessed
directly: the CLI acts as a REST client, providing users with a set of functions to
deploy, manage, and monitor applications through logs.

http://dx.doi.org/10.1007/978-3-319-13701-8_5
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The Manager is a stateful orchestrator taking care of the deployment and manage-
ment of applications, whoseworkflow is fully described in orchestration plans known
as blueprints. The manager interacts with agents defined by the Cloudify platform,
in order to run processes defined in the workflow of an application. It is a complex
element of the Cloudify platform, which contains a set of interacting components:

• Proxy and file server: Cloudify uses Ngnix as its reverse proxy and file server.
• REST API are used to control Cloudify, offering cloud orchestration and man-
agement functions. The API can be used through the provided CLI client, but
customers can also create their own REST API.

• A Web GUI can be used as an alternative to the API, but it also adds additional
functionalities and views on the system. For example, it offers graphical screens
of the available blueprints, of the system and topology, or of the performances of
the running applications.

• The workflow engine is used to manage applications’ behavior through workflow
descriptions. Timing and orchestration of tasks, responsible for creating and man-
aging applications, are taken care of by this component. In order to accomplish
the full orchestration of applications, the engine first interacts with blueprints to
get the necessary information and then issues tasks to a broker, which is based on
the Celery tasks broker.

• The policy engine enforces custom policies to make runtime decisions on avail-
ability, SLA, scalability, and so on.

The execution of the manager’s command is enforced through agents using a set of
plug-ins. Two categories of agents exist in the Cloudify architecture:

• Manager side agents are responsible for the application deployment, since they
handle IaaS-related tasks such as the creation of virtual machines and networks.
A manager side agent is responsible for the deployment of a single application
deployment.

• Application side agents are optionally located on application VMs: the user
decides if a VM will have an agent installed on it by stating this fact in the appli-
cation blueprint. The application-side agents are installed on the VM as part of the
VM creation task by the manager side agent. Plug-in installation and operation
execution, such as task for configuration and deployment of application modules,
are the responsibility of application side agents.

References

1. Amazon web services. http://aws.amazon.com/
2. Amazon web services—regions and availability zones. http://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/using-regions-availability-zones.html
3. Cloudformation templates. http://aws.amazon.com/cloudformation/aws-cloudformation-

templates/
4. Openstack services. http://www.openstack.org/software

http://aws.amazon.com/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://aws.amazon.com/cloudformation/aws-cloudformation-templates/
http://aws.amazon.com/cloudformation/aws-cloudformation-templates/
http://www.openstack.org/software


References 91

5. Demarest, G., Wang, R.: Oracle Cloud Computing. Oracle White Paper p. 22 (2010)
6. Openshift by Red Hat. https://www.openshift.com/
7. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. Recommendations of the

National Institute of Standards and Technology. Computer Security Division, NIST, Gaithers-
burg, MD (2011)

8. Openshift slideshare channel. http://www.slideshare.net/openshift
9. Windows Azure web-site. https://azure.microsoft.com/
10. Google Cloud Platform. https://cloud.google.com/
11. Appscale: freedom for your applications. http://www.appscale.com/
12. Typhoon app engine. https://code.google.com/p/typhoonae/
13. Bluemix web-site. https://ace.ng.bluemix.net/
14. Cloudfoundry foundation. http://cloudfoundry.org/index.html
15. Elasticbox. https://www.elasticbox.com/
16. Docker—build, ship and run any app, anywhere. https://www.docker.com/
17. Cloudify—cloud orchestration and automation made easy. http://getcloudify.org/

https://www.openshift.com/
http://www.slideshare.net/openshift
https://azure.microsoft.com/
https://cloud.google.com/
http://www.appscale.com/
https://code.google.com/p/typhoonae/
https://ace.ng.bluemix.net/
http://cloudfoundry.org/index.html
https://www.elasticbox.com/
https://www.docker.com/
http://getcloudify.org/


Chapter 5
Research Initiatives and Emerging
Standards

5.1 European Commission Initiatives

Establishing a coherent framework and conditions for cloud computing services
in Europe, creating the world’s largest cloud-enabled ICT market, is one of the
objectives of the European Commission’s Digital Agenda for Europe (DAE) [1]. It
aims to reboot Europe’s economy and help Europe’s citizens and businesses to get
the most out of digital technologies. It is the first of seven flagship initiatives under
Europe 2020, the EU’s strategy to deliver smart sustainable and inclusive growth.
Among the actions determined by the DAE, the European Cloud Computing Strategy
[2] is developing the cloud computing vision for Europe and the future research and
policy directions. As part of this strategy, the European Commission has engaged
a group of experts who have analyzed the current technological progress in the
domain of cloud computing, have identified the major gaps and necessities for future
research and development in cloud technologies [3], and have defined a roadmap
for advanced cloud technologies under the Horizon 2020 research framework [4],
including portability and interoperability.

5.2 Topology and Orchestration Specification
for Cloud Applications

Topology and Orchestration Specification for Cloud Applications (TOSCA) [5] is
an OASIS standard language used to describe both a topology of cloud-based Web
services, consisting of their components, relationships, and the processes that man-
age them, and orchestration of such services, which is their complex behavior in
relation to other described services. The combination of topology and orchestra-
tion, in what the standard defines as service template, accurately describes all the
essential elements needed by each service to provide its functionalities, in order to
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ease deployments in different environments and to enable interoperability. Also, the
management of services throughout their complete life cycle (deploying, scaling,
updating, monitoring, ...) when applications using them are ported to different cloud
platforms is also supported. In synthesis, TOSCA’s purpose is to enhance portabil-
ity and interoperability of cloud applications, and related IT services, by defining
an interoperable description of cloud services, of the relationships existing among
components of these services, and of their operational behavior, which in a way
is independent of the cloud provider offering the services and of the technologies
involved. In particular, the TOSCA technical committee has used as a starting point
the “Topology and Orchestration Specification for Cloud Applications” document
submitted by a number of cloud vendors (amongwhich IBMandRedHat are remark-
able contributors) through a process of revision and extension of the existing XML
Schema. The description of orchestration exploits existing workflow languages, with
particular focus on BPEL [6]. The scope of the project also involves the ability to
use virtual images, application artifacts, and off-the-shelf components as deployment
artifacts for parts of a service template. The deliverables of the project include an
extended version of the existing topology proposal, together with a set of sample
cloud service templates to use for testing the conformance of individual TOSCA
implementations as well as interoperability between different implementations. It
is important to remark that TOSCA mainly focuses on the description of services
and of their relationships, not on the IaaS infrastructure. Thus, it could be used to
define cloud components and services at different layers. To specifically manage
the infrastructure, other standards such as CIMI are more suitable: a provider could
easily manage the cloud infrastructure required by a service described using TOSCA
with CIMI (see Sect. 5.3).

5.2.1 TOSCA Architecture and Components

TOSCA defines a metamodel to describe IT services, which includes both its struc-
ture and how to manage it. A topology template (also referred to as the “topology
model” of a service) focuses specifically on the structure. Plans describe the services
orchestration, including the processes used tomanage their entire life cycle from start
to termination. The combination of a topology template and plans constitutes a ser-
vice template.

A topology template can be represented as a directed graph, not necessarily con-
nected, in which nodes are defined by node templates and arcs correspond to rela-
tionship templates. Each node template represents an instance of a node type, which
defines all the properties (node type properties) and operations (interfaces) a cer-
tain component of a service owns and exposes to users for manipulation. In order
to enhance reuse of components, node types are defined separately: a node template
simply references a node type and adds constraints to its use, like the maximum
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number of times the described component can occur in a topology. Figure5.1 shows
the relations existing between templates and types.

Fig. 5.1 TOSCA topology template

Relationship templates play a similar role as node templates, but they specify the
occurrences of relationships existing between nodes in a topology template instead of
nodes themselves. Each relationship template refers to a relationship type, defining
a set of properties and semantics of the relation. Plans included in a service template
define the management processes needed to start, terminate, and operate a service,
generally described as aworkflowof one ormore steps. In order to enhance portability
and interoperability, no new standard has been proposed to represent such workflow:
instead, well-known technologies such as BPEL and BPMN [7] are used. However,
TOSCA allows for any workflow definition language to be used. In order to realize
the deployment of a service, TOSCA allows to associate artifacts to the defined
templates. An artifact can be an executable, a configuration or data file, or even a
library neededby another artifact,which are necessary for the concrete realization of a
service. Attached to an artifact, it is possible to findmeta-data describing information
needed to correctly process it inside the execution environment. Two typologies of
artifacts are available in TOSCA:

• Deployment artifacts describe the operations to execute when instancing a node.
• Implementation artifacts represent the executable of an operation of a node type.
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5.2.2 Composition of Service Templates

One interesting feature provided by TOSCA is represented by the possibility to
compose service templates. In particular, a new template can be based on or built
on top of another one. When including an existing service template definition in a
new one, it can be seen as a simple node template which, at deployment time, will
be substituted by the real service template. In this way, template topology remains
simple and easily manageable, even if multiple services are nested. In general, all
node templates can be substituted by a service template, but in order to do so they
need to share the same properties, requirements, and capabilities. TOSCA allows for
expressing requirements and capabilities of components of a service. This can be
done, for example, to express that one component depends on (requires) a feature
provided by another component, or to express that a component has certain require-
ments against the hosting environment, such as for the allocation of certain resources
or the enablement of a specific mode of operation. Requirements and capabilities
are essential elements to decide over Nodes and Services compatibilities. Each Node
can be annotated with a set of requirement and capability definitions which, in
turn, are occurrences of requirement and capability types. Types are defined sep-
arately and can be reused in the context of different nodes. Node templates, which
are occurrences of node types defining requirement or capability definitions have to
expose representations of such definitions in the context of the specific template. In
other words, while requirements and capabilities defined in a node type represent a
sort of meta-data, those represented in a node template provide concrete values. Also,
requirements and capabilities in a topology template can be explicitly connected by
relationship templates to indicate that a specific requirement of one node is fulfilled
by a specific capability provided by another node.

5.2.3 TOSCA Container: CSAR

In order to allow execution and management of a cloud application within an envi-
ronment, the service template and all the relative artifacts must be available to the
target platform. TOSCA defines the cloud service archive (CSAR), which is an
archive format defined with the objective of ensuring availability of all the artifacts
and templates needed to execute a certain application within a single file. Being a
container file, a CSAR can contain files of multiple types, organized in hierarchi-
cal subdirectories that are specific for a particular cloud application. However, a
TOSCA-meta-data subdirectory, containing a “TOSCA” meta-file, is always manda-
tory. The meta-file represents all meta-data relative to other files in the CSAR, in the
form of name/value pairs organized in blocks, each of which provides information
for a specific artifact. The first block of the meta-file provides global information
about the CSAR itself, while the others always begin with a name/value pair point-
ing to an artifact within the CSAR, followed by properties relative to that particular
artifact.
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5.2.4 Implementing Tools: Winery, OpenTosca, and Vinothek

TOSCA can take advantage of some interesting implementing tools that allow to
manipulate definitions of templates, types, and artifacts through graphical interfaces,
to deploy them to a target platform, or to simply publish them for users. The three
tools listed below are strictly related and belong to the “OpenTOSCA ecosystem.”

• Winery [8] is a graphic environment, accessible through Web browsers, which
supports modeling of both TOSCA topologies and plans. In particular, Winery
provides the possibility to create and modify, through a very intuitive and easily
accessible graphical interface, node and relationship types and templates. Two
dedicated graphical components support topology manipulation and creation of
BPMN workflows (via the BPMN4TOSCA plug-in). All information is stored
in a repository that allows importing and exporting using the TOSCA packaging
format (CSAR). A set of node types, comprising most of Amazon Web Services
and some additional cloud available services, is already defined in Winery and is
ready for the user. Figure5.2 reports a snapshot of the Winery web-based tool. In
particular, the picture portrays the graphical composition of a topology template,
containing both node templates and relationship templates. On the left, the palette
of predefined node types available for immediate use is clearly shown.

Fig. 5.2 Winery: example of topology graphical composition

• OpenTOSCA [9], also referred to as “TOSCA container”, is an open-source
browser-based runtime environment for running applications described using
TOSCA specifications. In particular, while Winery can be used to graphically
model TOSCA service templates to describe a cloud application, OpenTOSCA
can be used to deploy such applications by importing and installing a Cloud Ser-
vice Archives (CSAR), containing all files needed to instantiate the service, from
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templates to plans and including both implementation and deployment artifacts.
Based on these archives, the management plans are used to create, operate, and
manage instances of the corresponding application. Figure5.3 shows a snapshot
of the OpenTOSCA tab to import CSAR containers.

Fig. 5.3 OpenTOSCA: importing a CSAR container

• Vinothek [10] is another interesting tool that is used as a repository for TOSCA
configurations. In particular, Vinothek offers deployed CSARs to users for an
easy installation. Figure5.4 reports the description of a CSAR for a “Moodle”
application, as it is available in Vinothek.

5.2.5 Engagement with Case Study and Positioning
with Respect to Use Case Scenarios and Features

TOSCA and its supporting tools, presented in Sect. 5.2, can be used to easily imple-
ment the Business Intelligence example application described in Sect. 1.2.2. In order
to do so, the hypothetical owner of the Business Intelligence application catches its
structure in a TOSCAService Topology, a graphwith nodes and relationships. Nodes
represent the application components implemented as services and provided either
as SaaS, PaaS, or IaaS, while relationships connect nodes and define the topology’s
structure. In particular, a possible implementation of our Business Application may
contain the following nodes (Fig. 5.5):

http://dx.doi.org/10.1007/978-3-319-13701-8_1
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• SugarCRM implements the CRM functionalities needed by the application,
enabling users (whether in sales, marketing, or support) to create extraordinary
customer relationships. Users can use it as a SaaS or host it as a virtual appliance
on a Virtual Machine (provided by a vendor of their choice).

• SAP ERP represents a possible implementation of the ERP component. The cho-
sen application, offered either as a SaaS or as a virtual appliance, is an enterprise

Fig. 5.4 Vinothek: CSAR for application “Moodle”

resource planning software developed by theGerman company SAPSE. It consists
of several modules, including utilities for marketing and sales, field service, prod-
uct design and development, production and inventory control, human resources,
finance, and accounting.

• Ironcluster ETL takes care of the extraction-transformation-loading steps required
by the ETL component. It takes away the complexity of data integration, delivering
a much more agile ETL environment with the capacity you need. It is deployed in
Amazon EMR.

• Amazon EMR (Elastic MapReduce) is an Amazon services that analyzes and
processes vast amounts of data. It does this process by distributing the computa-
tional work across a cluster of virtual servers running in the Amazon cloud. The
cluster is managed using an open-source framework called Hadoop.
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• Amazon Redshift is a data warehouse solution that makes it simple and cost-
effective to efficiently analyze all data using existing Business Intelligence tools.

• MySQL Database can be used to store organized collections of data, either in
public or in private infrastructures. The database service can be directly offered as
a SaaS or a PaaS, or be included in a virtual machine hosted on a cloud platform.

Both nodes and relationships are typed entities and hold a set of type-specific
capacities, giving a subject and variability to generic TOSCA elements. Each node

Fig. 5.5 Implementation of the Business Intelligence example in TOSCA
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is matched with an index of operations it offers to manage itself. One key to
support interoperability and reusability is that nodes expose their management oper-
ations explicitly as part of the topology. Management plans combine these manage-
ment operations to create higher-level management tasks, which can then be fully
automated and performed to deploy, configure, manage, and operate the application.
Management plans are the key to access the interoperability capabilities offered by
TOSCA. In particular:

• Plans orchestrate the management interfaces and operations defined in TOSCA
nodes. Operations can be described using theWeb Services Description Language
(WSDL), through Representational State Transfer (REST) APIS, or by means of
scripts that implement specific management operations on the respective node.
These operations might be external services, or their implementation might be
included in the service template as an implementation artifact: in the latter case,
the management environment guarantees that such implementations are settled
before the service template is instantiated. The orchestration provided by plans
fully supports services’ interoperability at all levels.

• Plans can inspect the topology model to access nodes and relationships used to
describe a service or set of services: in this way, each change affecting the topol-
ogy is reflected on the orchestrating plan, which flexibly adapts itself to the new
configuration. In this way, if one or more nodes were to be substituted or modified,
for example in order to replace a service offered by a provider with another one
hosted on a different platform, the application’s deployment would be still possible
without major modifications. Application portability surely benefits from such a
feature.

• Plans read and write a service instance information (the nodes instance state, such
as properties containing credentials, IP addresses, and so on). Theworkflow engine
manages the state inside a plan and releases it to the different activities.

Fig. 5.6 TOSCA approach positioning
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TOSCA plans’ portability derives from the workflow language and engines used
to describe and run them.Workflow languages, such as BPMN [7] and BPEL [6], are
generally portable between different engines. In [11, 12], it is possible to find further
considerations of TOSCA’s ability to support both the portability and interoperability
of cloud applications. In particular, the positioning of the TOSCA standard according
to our n-dimensional space is illustrated in Fig. 5.6. The TOSCA model is flexible
enough to be seamlessly applied to different use cases at all service levels. The imple-
mentation of our test application demonstrates the TOSCA capability to support the
migration of a whole software system to the cloud (CSCC5). Considering that the
TOSCA model can be used to represent in-house capabilities, CSCC4 can also be
realized. An application that has been ported to the cloud by means of TOSCA, can
be composed of services provided by different cloud providers (CSCC2) and a user
can decide to substitute a specific service with a similar one from a different vendor
(CSCC1).

5.3 Cloud Infrastructure Management Interface

Cloud Infrastructure Management Interface (CIMI) [13] is a standard proposed by
the Distributed Management Task Force (DMTF) which specifies an interface, rep-
resented by a set of RESTful APIs, to manage cloud platforms operating at an
infrastructure as a service layer. The specification documents focus on the description
of a RESTful interface, but the standard separates the API design from the particu-
lar communication protocols to use: in particular, future developments will include
SOAP and RPC implementations of the same interface. The interface mostly focuses
on the management of the IaaS infrastructure, not on the services such infrastructure
offers. The CIMI model defines a set of resources, associated templates, and con-
figurations, which can be accessed, operated, and managed through the basic HTTP
methods in a RESTful fashion. These include cloud entry points to access lists of all
available assets, virtual machines, storage, network, andmonitoring resources. Secu-
rity issues are also addressed by the interface, with a focus on client’s identification.
The documentation offers a precise description of all the steps required to access
and manage such resources, including the exact sequence of HTTP calls needed to
operate on each resource.

5.3.1 Scope

It is important to understand CIMI’s scope, in order to determine when and how it is
possible to use it. Essentially, CIMI focuses on the description of the management
interface of a cloud infrastructure, but it does not go beyond that. The consumer
of an IaaS platform can create, wire up, and control the infrastructure for an entire
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system, and even instantiate virtual machines with software preinstalled on them,
but all the following interactions with such software could not be handled through
CIMI. The consumer must use other means to install and manage complex services
implemented in an IaaS cloud: in this case, other standards like TOSCA can be
extremely useful. SinceCIMI focuses on themanagement interface only, not all kinds
of resources in an IT infrastructure are modeled: for example, operative systems are
not represented even if they are generally preinstalled on a virtual machine (which is
instead manageable through CIMI). The CIMI specification focuses on a REST-style
protocol but, thanks to its design which separates the management interface from the
communication protocol, different solutions will be available in the future.

5.3.2 CIMI Model

The core of the CIMI interface is represented by a set of resources used to rep-
resent the IaaS components. In particular, the standard describes two sets of ele-
ments: infrastructure components like machines, storage volumes, and networks;
monitoring-related concepts and artifacts, like events,meters, and logs. Each resource
description consists of three main elements: a template resource, a configuration
resource, and the resource itself. A template represents a description of a resource
with a preexisting configuration that can be used as the basis to define new resources
or can be directly instantiated. Providers could offer catalogs of preconfigured tem-
plates which consumers could choose from, or let users define the desired resource
from scratch. A typical template contains information likeCPU type and speed, avail-
able memory, disk space, and network configurations. Configuration resources are
supplied with templates and are used when a consumer wants to modify the default
template with his own customizations. For instance, if a user wants to add more
CPU power to an existing template, he can do that through a configuration resource
associated to that specific template. The combination of configuration and template
resources composes the final service the provider will instantiate and offer to the
client. CIMI resources represent the infrastructural element of the IaaS platform at
the disposal of a consumer, which are modeled as fully accessible REST resources:
a user can reach them through URIs, found in their description, and operate on them
using the basic HTTP methods. A list of the available resources on a provider’s
cloud is accessible through a cloud entry point, which can be used by providers to
hide or show resources according to the users’ privileges and roles. When defining
a resource the CIMI standard describes a usage pattern common to almost all the
elements of the specification, which includes all the steps and messages (with HTTP
examples) users have to exchange with the platform in order to instantiate that par-
ticular resource. When a user wants to instantiate a resource, he needs to gain access
to the cloud entry point, the address of which should have been previously provided
by the vendor. Registration and login policies can be enforced by the specific vendor,
but the standard does not provide support to this. Once the user has access to the entry
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point, she can retrieve a list of available templates for a specific resource, or issue a
command to instantiate it without a default configuration. The resources described
by the CIMI standard include the main infrastructural elements needed to configure
and manage an IaaS cloud and they consist of:

• Machines define single computer systems usually referring to virtual machines,
but sometimes also describing physical hardware according to the provider’s needs.
The user, once inside the Cloud Entry Point, can act in two ways: she can retrieve a
list of machine images and configurations to launch and instantiate; alternatively,
she can request the instantiation of a template, if available.

• Volumes represent storage resources. Their instantiation is very similar to that of
machines but, in order to access and use them, they need to be associated to an
existing machine or network.

• A Network represents an abstraction of a transportation network, consisting of
interfaces, ports, and links, but its definition is not related to a physical realization.

• Jobs are monitoring resources related to CIMI operations: a consumer can query
jobs to determine the state of an operation. While it is not mandatory for providers
to define job resources, if they decide to do so they need to expose a job for every
operation able to alter the state of a component inside the system.

• Meters are used to monitor the health and performance of the system, as they rep-
resent, for a certain resource, the specific property to check and how to monitor it.

• Event resources are directly created by providers and not by the client, who can
only consult event logs through the cloud entry point. They represent information
tracked by the provider and exposed to the consumer, consisting of a time stamp,
a type, contents, a severity indicator, and an outcome of the event.

• System and system template recall concepts represented by the OVF system and
the TOSCA service template, as they represent groups of resources designed to
work together to provide a certain service or to accomplish a set of tasks. System
templates can be considered as patterns that describe the infrastructure of a com-
plex service, composed of multiple machines, networks, routing groups, storage,
and monitoring resources. Each template can be used to replicate the same system
multiple times.

5.3.3 Security

The CIMI specifications indicate which points of the management interface must be
secured and suggest other areas where security may be necessary, without enforcing
it. In particular, the CIMI security model defines two security domains: API security,
dealing with the management interface and in full scope of CIMI; resource security,
related to safety of instantiated resources and thus only partially covered by the
specification.

• Resource security relates, according to the CIMI model, to all resources running
on a cloud platform using the CIMI interface. While security of the management
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interface is handled by the CIMI specification, ensuring only authorized accesses
to management functionalities, functional interfaces of instantiated resources are
the consumer’s responsibility. As mentioned before, CIMI introduces the Cre-
dential resource in order to identify clients who instantiate a system component
(a machine, a volume, and so on), but everything else is left to the user.

• When considering API security, the CIMI specification focuses on five security
areas, namely that are: authentication, message integrity, message confidentiality,
authorization, and multi-tenancy. Of these, particular focus is on authentication
and authorization. The consumer of a systemmust always be securely identified in
order to access themanagement interface.Also, the available resources and relative
operations are exposed to the client according to her permissions and privileges.
Use of secure protocols to exchange messages is encouraged, but not imposed: for
example, use of the HTTPS protocol is suggested, but the specification does not
require providers to implement it nor directly supports its use.

5.4 Cloud Data Management Interface

Cloud Data Management Interface (CDMI) [14] is a standard for managing data on
cloud platforms, proposed by the Storage Networking Industry Association (SNIA).
CDMI defines a functional interface that users and applications can use to create,
retrieve, update, and delete data elements from cloud storages. Using the interface,
clients can also discover the capabilities offered by the cloud platform andmanage the
containers and the data that is placed in them, together with meta-data associated to
both containers and data. Other capabilities supported by the standard are the creation
of queries to retrieve data, management of user permissions and groups, access con-
trol, queue usage, and so on. Administrative and management applications can lever-
age these capabilities to manage containers, accounts, security accesses, and moni-
toring/billing information.All the elements needed to describe the data store offering,
which includes containers andmeta-data, are fully described in the standard, together
with APIs used to access them. The CDMI interface is RESTful and, currently, no
other implementations are included in the standard nor have plans been made to do
so in the near future. Unlike other standard interfaces using both XML and JSON to
code messages, CDMI only supports JSON in order to reduce payload dimensions.

5.4.1 Core Concepts

The standard defines a set of components which are used to represent entities in a
cloud storage. Figure5.7 reports the main elements defined in the CDMI model and
their relations.

Among the different entities defined by the standard, the concept of capability
is central for the exact description of a cloud storage’s characteristics. Capabilities
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describe the functionality implemented by a CDMI server and are used by a client
to discover supported functionality, represented through a set of configuration para-
meters. The usefulness of a capability description is clear: a client who wants to use
a certain functionality just has to check if the target cloud storage exposes

Fig. 5.7 Overview of the object defined in the CDMI model

that particular capability. The CDMI standard describes cloud storages through a
filesystem-like structure, in which Data Objects contain the stored data and are
organized as files in a hierarchical directory, where folders are instead represented
by Containers. A container can virtually contain any number of data objects, but
limitations may be imposed by the cloud provider. CDMI also defines resources to
manage data accesses and user/group policies. In particular, the standard supports
the concept of Domain. Domain objects define a logical grouping of objects that are
meant to be managed together or by a specific set of users, enabling an administrative
management of the cloud storage. They can also be hierarchically organized, so
that parent and child domains can exist to better delimit objects’ ownership. Users
and groups belonging to the same domain can refer to each other directly, without
reference to any other domain or system. Domains also work as containers for usage
and billing summary data: measures about objects’ use, associated to each domain,
produce information that can be passed from child to parent, thus simplifying billing
and management operations that are typical of a cloud storage environment.

5.4.2 Queue Objects

CDMImodels’Queue Objects are used to store zero ormore values and are accessed
in a first-in-first-out manner. POST HTTPmessages are used by object writers to put
data in a queue, while the reader uses GET messages to retrieve value(s) from the
queue object and subsequently deletes them to acknowledge their receipt. Queues
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provide a simple but effective mechanism for one or more writers to send data to
a single reader in a reliable way. CDMI defines Notification Queue Objects, used
to allow clients to discover changes in the system efficiently. The standard supports
persistent queues, which can be between clients or are specific for certain users
who can operate on them independently. The discriminating factor between simple
queues and notification queues is represented by the attachedmeta-data.When defin-
ing a notification queue, clients define a standard one and then add meta-data with
instructions regarding the type of queue to instantiate and the notifications they want
to receive, with the information to be attached. Clients can also create notification
queues even if the CDMI server does not expose the relative capability: simply, no
notification will ever be put in that queue, which will be treated as a standard one.

5.4.3 Security

The CDMI specification addresses different protective measures to apply in order to
manage and access data and storages safely. However, not all security measures are
mandatory in the CDMI standard: before exploiting a CDMI server, a user should
verify which security methods that specific server applies by analyzing its capabil-
ities description and only then should he take a risk-based decision on whether to
use it or not. This is particularly important if objects to be stored on the server con-
tain sensitive or regulated data, requiring some particular protection (encryption, for
instance) or the use of which needs to be accurately tracked. CDMI considers several
security aspects:

• Protection of communications between CDMI clients and servers (confidentiality
and integrity of messages).

• Mutual identification of CDMI clients and servers.
• Restrictions on CDMI clients’ permissions and actions based on their domain and
privileges.

• Auditing and tracking of actions performed by a client on a server.
• Protection of stored data, not currently used by a client (data at rest).
• Strong control on data elimination to prevent loss due to malicious interventions.
• Discovery of a CDMI server’s security capability.

CDMI servers are obliged to offer transport security and to expose their security
capabilities to users, while other measures may vary from one implementation to
another. HTTP is the mandatory transport mechanism, and HTTP over TLS (i.e.,
HTTPS) is themechanism used to secure the communications between CDMI clients
and servers. To ensure both security and interoperability, all CDMI implementations
implement the Transport Layer Security (TLS) protocol, but its use by CDMI clients
and servers is optional. As for access control, CDMI follows the ACL and ACE
model used for file authorization operations by NFSv4.
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5.5 Open Cloud Computing Interface

The Open Cloud Computing Interface (OCCI) [15] is a RESTful protocol and API,
published by the Open Grid Forum (OGF), as a result of a community effort. The
objective of the proposed standard is to define a shareable and homogeneous interface
to support all kinds ofmanagement tasks in the cloud environment.While the original
scope of OCCI covered the creation of a remote management API for IaaS platforms,
at themoment the proposed interface is suitable to represent other cloudmodels, such
as PaaS and SaaS, but it could also be applied to other programming paradigms. The
OCCI specification is released as a set of complementary documents, classifiable
under three categories:

• OCCI core specification consists of a single document defining the whole OCCI
core model. More on this model will be presented in the following sections. The
core model can be expanded and interacted with.

• OCCI rendering specifications comprise several documents, each of which
describes a specific interaction model to communicate with the OCCI Core. Multi-
ple renderings can interact with the same instance of the OCCI coremodel and will
automatically support any additions to the model which follow the extension rules
defined in OCCI core. The OGF currently proposes a rendering for HTTP, defining
how to communicate with and serialize the Core, using the HTTP protocol.

• OCCI extension specifications describe extensions to the OCCI core model,
introducing additions to the OCCI core model defined within the OCCI specifica-
tion suite. The OGF has proposed an IaaS extension with specific resource types
described through sets of operations, attributes, and relationships.

5.5.1 The OCCI Core Model

The OCCI core document describes the standard model at a high level of abstrac-
tion: in this way, no specific application domain is ever addressed and no limitation
is given to its use. Furthermore, the specification itself claims its applicability to
either the PaaS, SaaS, or IaaS. The model defines a hierarchical set of elements,
which can be further extended and specialized through OCCI extension specifica-
tions. Figure5.8, extracted from the OCCI core specification available at [16] reports
a UML Class Diagram describing the elements of the model. The root element of
the core model is represented by Entity, an abstract class containing the base char-
acteristics shared by all other components of the specification, like properties such
as ID, name, and inclusion in Mixin instances (more on this below). Being abstract,
it cannot be directly instantiated.

The concrete classes deriving from Entity are represented by:

• Resource represents the focus of the specification. In order to be OCCI compliant,
the resource class has to implement all the attributes from the Entity class, plus
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other properties defining a summarizing description of the resource and a set of
Links to other resources.

• Kind represents a repository of type-specific information. A resource’s or link’s
properties are not directly defined in their description: the properties unique to

Fig. 5.8 UML class diagram of the OCCI core model

a descendant of Entity (either a resource or a link) belong to the kind class it is asso-
ciated with. Each resourcemust be associated with one and only one kind instance.

• Link represents the base relationship existing between two resources. Deriving
from Entity, it inherits its basic properties but also specifies a target and source
attribute referring to resource instances within the service provider’s name-space.

• Mixin instances are used to add functionalities to resources, even at runtime, but
they cannot be applied to kinds. They slightly resemble Java interfaces, since they
expose sets of operations and attributes an associated resource can leverage, just
by declaring its participation to a mixin. However, while Java interfaces contain
blank methods that the inheriting class must override with its own code, a mixin
class already contains the implementation of its operations, which can be imme-
diately used by the participating resource. The resource has no obligation toward
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the mixins it participates in: it can just use the provided functionalities with no
further attachments.

• Action represents a specific operation thatmaybeperformedon anEntity’s descen-
dant or on an entire collection thereof. The action class is abstract, so it is necessary
to create subtypes of it in order to define a concrete operation. Generally, an action
modifies the state of the target entity. Each action can be associated to one or more
kinds andmixins, and not directly to resources. Also, the action definition contains
an attribute category tying it to the homonymous class.

• Category is associated to Entities (either resources or links) and are used to deter-
mine their kinds, mixins, and actions. They can be seen as packages tying together
all the characteristics a set of resources owns.

5.5.2 Security

The OCCI Core Model does not specify an interface or protocol, so security mecha-
nisms are not defined in the reference document. However, the definition of security
measures is demanded for rendering specifications which, instead, define interaction
models and protocols. Transportation security and authentication at the protocol level
represent the minimum mechanisms which are mandatory to be implemented in all
OCCI rendering specifications.

5.6 Cloud Application Management for Platforms

OASIS Cloud Application Management for Platforms (CAMP) TC [17] aims at
defining models, mechanisms, and protocols for the management of applications in
a Platform as a Service (PaaS) environment, in order to develop an interoperable
protocol for PaaS management interfaces that users can exploit to build, deploy, and
administer their applications. CAMP’s goal is to define a simple standard RESTful
API, alongwith a JSON-based protocol, with an extensibility framework that enables
interoperability across multiple vendors’ offerings. The current documentation con-
tains a set of basic APIs a cloud vendor should provide as part of its PaaS offer, in
order to manage the building, running, administration, monitoring, and patching of
applications. Also, a resources model is provided to describe the main components
of any platform offer. This would enable interoperability among self-service inter-
faces to PaaS clouds, through the definition of artifacts and formats shared between
conforming cloud platforms. Also, this would allow independent vendors to create
tools and services that communicate with any CAMP-conform cloud platform, using
the defined interfaces. Vice versa, cloud vendors could easily exploit these interfaces
to develop new PaaS offerings, or adapt the existing ones, which would be compliant
with independent tools. The current specification already supports a series of possible
use cases, which include the possibility to run, stop, patch, and restart applications,
or to build applications in a local environment and then run them in the cloud.
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5.6.1 CAMP Model

Being based on a RESTful API, the CAMP standard defines all of its components as
resources accessible through URIs, on which different commands can be issued as
POST/GET HTTP calls. Messages exchanged through HTTP are encoded via JSON
strings. As for other standards, resources share a basic set of properties, all defined
in a root element named camp_resource acting as parent class for all other entities.
There is no clear hierarchical organization between resources, since they all seem to
directly inherit from the base camp_resource class. CAMP specification, available at
[18], contains UML class diagrams accurately describing its model and components.
Resource components in the model are represented as follows:

• Platform reports a view of the running platform, comprising all the resources
running on it in every instant. It exposes collections of resources representing
the services provided by the described platform (service resources), applications
currently running on it (assemblies), and meta-data defining supported resources
and extensions.

• Assembly is a resource representing applications running on the reference plat-
form.All operations executed on an assembly resource are reflected on components
and elements of the relative application.

• Component resources can be part of one or more assemblies as they represent
discrete and reusable elements of an application. An assembly is composed of one
ormore components.Different relationships between components can be specified.

• Plan resources are meta-data providing information on all the elements compos-
ing applications, including artifacts, services required to execute and utilize such
artifacts, and relationships existing between them. Artifacts represent static com-
ponents of an application,whereasComponent resources generally define dynamic
elements. In order to describe a plan, CAMP provides the possibility to represent
it as a resource or through a YAML [19] file. Service resources represent function-
alities exposed by the reference platform as services, which can be used to operate
on, create, and destroy platform components.

5.6.2 Operations and Sensors

The resources described so far are not the only ones present in the model. In order to
interact with an application deployed in a CAMP-compliant PaaS platform via the
CAMP API, Operations and Sensors resources have been defined.

An Operation, also known as “effector,” represents any action that can be taken
on a resource. A Sensor, on the other hand, represents data about a resource which
can dynamically and rapidly change during the resource’s lifetime, or that needs to
be accessed from external systems. Measures taken on the resource according to
predefined metrics or the very resource’s state represent a good example of sensors.
Assemblies and components can expose multiple operations and sensors, which
enable both consumers and providers to manage them through the CAMP API.
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5.6.3 Application Deployment

Deploying an application using the CAMP API is just a matter of sending an HTTP
POST message containing information about the desired application or having some
configuration files attached. To ease deployment and support migration across mul-
tiple platforms, CAMP defines the Platform Deployment Package (PDP): a simple
archive of executable images, dependency descriptions, and meta-data that can be
used to move an application and all of its components from one platform to another,
or between a development environment and an operative target platform. The archive
generally contains a plan file (expressed in YAML), together with application con-
tent files such as web archives, database schemas, scripts, source code, localization
bundles, and icons. In the simplest scenario, either a single plan file or a PDP can
be used to create an assembly resource through an HTTP POST request. A platform
supporting plans as CAMP resources provides consumers the means to build a plan
element from a PDP or a plan file. Multiple assembly resources can be created from
a single plan resource by submitting multiple HTTP POST requests.

5.7 Cloud Standards Coordination Initiative

Following a specific request from the European Commission, the European Telecom-
munications Standards Institute (ETSI) [20] launched the Cloud Standards Coordi-
nation (CSC) [21] initiative. The main objective of this initiative, which submitted
its final report in November 2013, was to collect and analyze the current standards
and technologies, applicable to the cloud computing paradigm, and to determine how
each of them could address one or more specific cloud issues. The targeted audience
is wide, as it includes:

• Cloud service providers of all types and dimensions, who can use the final report
as a “compass” to choose the best formalism to use when describing their services.

• Cloud service customers (including governmental entities), who should be able
to clearly understand if the offered services meet their requirements, thanks to a
transparent and standard description of them.

• Governmental authorities acting as cloud regulators.

The final report offers a deep analysis of the current state of the art regarding cloud
standards, together with the definition of various roles in cloud computing and an
interesting number of use cases. Organizations involved in cloud computing stan-
dardization are taken in great consideration, and a selection of their documents,
reports, and white papers has been referenced, together with a mapping between the
standards provided and the activities involved in the whole cloud service lifecycle
(which are also classified). Interoperability and portability are addressed specifically
in a dedicated paragraph “The Interoperability Perspective,” where the issues are
briefly introduced and discussed. Interoperability is further investigated in one of the
use cases presented in the report, “Cloud Bursting,” described below.
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5.7.1 Role Definitions

The CSC initiative provides a high-level taxonomy of cloud stakeholders, organiza-
tions, or individuals acting either as providers or consumers of cloud services. Such
taxonomy, reported in Fig. 5.9, comprises a set of role definitions:

• Cloud Service Customer identifies each subject consuming one or more cloud
services exposed by a provider.

• Cloud Service Provider exposes services which are then consumed by providers.
• Cloud Service Partner supports the provisioning of services offered by a provider
or their consumption by a customer.

• Government Authority interacts with customers, providers, or partners to enforce
laws and regulations.

Also, the report defines the concept of Party, representing an individual or orga-
nization that can play different roles at the same time.

Fig. 5.9 CCS defined roles

5.7.2 Use Case Descriptions

The initiative proposes a number of interesting use cases involving the roles we have
just presented. For each use case, it also reports the standards which can be used to
implement a certain step. Each use case follows three well-defined steps, which are
specialized for the particular scenery described.
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1. Acquisition of Cloud Service: This step describes all the preparatives necessary
to use a set of cloud services from different providers. These may include SLA
negotiations, agreements on data formats or on standards for API interfaces for
interoperability and portability purposes.

2. Operation of Cloud Service: In this phase, the activities characterizing the use
case are described. In particular, the scenario reports how the different services
communicate and in which order, together with the difficulties and challenges
which could be encountered.

3. Termination of Cloud Service: In this last phase, all the activities connected
to the termination of a service or a set thereof are described. These include the
operations needed to stop running virtual machines or to log out users, to free IP
addresses or shut down a router, and so on.

Also, for each step in each use case a list of useful standards is included: for the
Cloud Bursting use case, reported in Sect. 1.2.1, the different standards proposed are
shown in Fig. 5.10.

Fig. 5.10 Standards suggested for the Cloud Bursting use case

5.8 IEEE Standard for Intercloud Interoperability
and Federation

The Standard for Intercloud Interoperability and Federation (SIIF) [22] project,
carried out by a dedicated IEEE workgroup, aims at defining a topology, a set of
functionalities, and a governance model to support cloud interoperability and feder-
ation between different platforms. The scope of the resulting architecture is to ease
the building of intercloud solutions, enabling communication between different plat-
forms thanks to a shared set of standards and resources definitions. Description of
internal cloud behavior (intracloud) is completely disregarded and out of scope. The
current standard, still in development and only reported as a draft, puts a strong focus
on the description of the intercloud topology, which makes reference to the NIST
definition of cloud computing [23], defining in detail its components and the rela-
tionships between them. Each element of the topology has a clear and fundamental

http://dx.doi.org/10.1007/978-3-319-13701-8_1


5.8 IEEE Standard for Intercloud Interoperability and Federation 115

role in the resulting architecture. Different standards and protocols, not exclusively
related to the cloud, are taken into consideration to enable communication between
the described components. Different scenarios are used to describe the basic func-
tionalities offered by the topology and the adopted protocols.

5.8.1 The Intercloud Topology

The intercloud topology is composed of a set of well-defined components, with
peculiar characteristics and dedicated protocols. Among the elements defining the
topology, we identify:

• Intercloud Root provides a set of capabilities comprising the management of
the Cloud Resources Directory Services (used to expose resources in a shared
format), theTrustAuthorityService (for SLAandpolicy application), andPresence
Information. Each root is connected to an instance of intercloud exchanges, acting
as a mediator for enabling connectivity between multiple cloud environments. The
Cloud Computing Resource Catalog hosted at the roots is a holistic and abstract
view of the computing resources available across several cloud environments.
Individual platforms use this catalog to identify resources matching with a set of
preferences and constraints. The root is not a central repository: intercloud roots
will host the globally dispersed computing resource catalog in a federated manner,
scaling and replicating P2P technologies.

• Intercloud Exchanges support the resources’ negotiation and collaboration
between heterogeneous cloud environments, by leveraging the distributed cata-
log hosted by intercloud roots in order to match cloud resources, by applying
preferences and constraints expressed by consumers. Processing nodes are orga-
nized according to a peer-to-peermodel, based on aDHToverlay approach in order
to facilitate optimized resources matchmaking queries. Ontology information is
replicated to the different DHT overlay nodes from their affiliated intercloud roots
using a “Hash” function. Intercloud exchanges also play a key role in security and
trust: during the identification process, consumers specify a “Trust Zone”, whose
exchange nodes are included in the matchmaking constraints.

• Intercloud Capable Individual Clouds communicate with each other through
the environment created by Roots and Exchange: in this communication, they act
as a client, while the overall environment represents a server. Connections to the
Intercloud are possible through intercloud gateways only. Once the initial negoti-
ating process is completed, communications between cloud instances aremanaged
directly by the participants, through a shared set of protocols and standards.

• Intercloud Gateways represent the access points to the Intercloud environment,
providing mechanisms to support the adopted protocols.

More information and details about the Intercloud architecture and considerations
on security issues in a federated cloud environment can be found in [24, 25].
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5.8.2 The Intercloud Protocols and Standards

The intercloud project has chosen a set of protocols and standards, born outside
of the cloud scenery, in order to establish a common formalism for communica-
tions between trusted federated cloud providers. The objective is to provide ubiq-
uitous and interoperable content, storage and computing capabilities in a network
of clouds. The base protocol adopted by Intercloud is represented by the Extensi-
ble Messaging and Presence Protocol (XMPP) [26], representing a viable control
plane presence and dialog protocol. XMPP root services will be located in the inter-
cloud roots. XMPP defines protocols for communicating between groups of entities
which register with anXMPP server: in the intercloud vision, multiple XMPP servers
are connected together, providing dynamic registration capabilities. XMPP facilitates
both presence andmany-to-manymessaging across service provider domains.XMPP
messages are extensible and can be used to carry messages of different types: a spe-
cific extension for cloud will be used. Security in communications over XMPP is
managed through specific protocols. In particular, XMPP supports encryption based
on the Transport Layer Security (TLS) protocol [27], along with a “STARTTLS”
extension that is modeled after similar extensions for the IMAP and POP3 protocols,
Simple Authentication and Security Layer (SASL) [28] and security assertion
markup language (SAML) [29] are used to provide secure authentication in a fed-
erated environment. In order to support Service Discovery and resources’ sharing,
XMPP-based RDF and SPARQL approaches are investigated. Remarkable is the rep-
resentation of the cloud resources, which is carried out by means of semantic-based
standards such as OWL [30] through the “mOSAIC Cloud Ontology,” produced
during the mOSAIC project, which aims at developing an open-source platform that
enables applications to negotiate cloud services as requested by users. The mOSAIC
project is part of the EU FP7-ICT program.

5.9 Intercloud Architecture for Interoperability
and Integration

The Intercloud Architecture Framework (ICA) [31] represents the focus of an ongo-
ing research project carried out by the System andNetwork Engineering (SNE) group
[32], which addresses integration and interoperability issues in multi-provider and
multi-domain heterogeneous cloud-based infrastructures, also taking into account
legacy infrastructure services. Current documentation, available at [33] at the time
of writing, takes in great consideration the existing standards and tries to extend pre-
vious works in order to build a homogeneous model for cloud computing. In particu-
lar, the specification focuses on the NIST Cloud Computing Reference Architecture
(CCRA) in order to build ICA, but it is also influenced by works proposed by the
IEEE Intercloud Working Group (see Sect. 5.8) and ITU-T Focus Group on Cloud
Computing (FG Cloud) [34].
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5.9.1 Scope of the Work

As stated earlier, the proposed intercloud architecture focuses on interoperability and
integration issues in multi-domain and multi-provider cloud environments, without
forgetting interactions between cloud and legacy platforms. Several issues are taken
into consideration when facing interoperability and integration problems:

• Communication between applications and services represents the first crucial point
of discussion. The ICA model considers interaction between cloud applications
and services across the different service layers, also “vertical integration,” and
between cloud domains and heterogeneous platforms, in which case we speak
of “horizontal integration.” Compatibility of the model with the different cloud
service models (IaaS, PaaS, and SaaS) is necessary to provide integration.

• ICA also addresses the possibility to enable applications to directly control
infrastructure resources and services at different layers, in order to optimize their
organization and use. This includes the definition of a common intercloud control
plane and of signals for cloud services and network integration.

• Another important point of discussion is the automatic provisioning of services
and infrastructure resources, together with their lifecycle management, including
deployment, monitoring, and composition. Services and resources from multiple
providers should be treated homogeneously in order to reduce interoperability
issues.

• ICA aims at supporting intercloud federation through a well-defined and shared
framework, which could explicitly model and support instantiation of intra- and
intercloud networks.

5.9.2 Elements of the Framework

The ICA Framework proposes a set of complimentary components which, used
together, would allow to completelymodel a federated cloud environment by answer-
ing to the different key points listed previously.

The multilayer Cloud Service Model (CSM) component aims to homogenize
and integrate the different cloud service models. The scope of CSM includes com-
munication between the different layers, definitions of links among their com-
ponents, and creation of common interfaces between different layers. Using an
ISO/OSI pile style, the CSM defines a set of layers organized from top to bottom as
follows:

• C6: User/customer side resources and services
• C5: Access/delivery infrastructure hosting components and functions to provide
access to cloud services/resources and interconnect multiple cloud domains
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• C4: Cloud services layer that may include different types of cloud services: IaaS,
PaaS, SaaS

• C3: Cloud virtual resources composition and orchestration layer that is represented
by the cloud management software (such as OpenNebula, OpenStack, or others)

• C2: Cloud virtualization layer (e.g., represented by VMware, Xen, or KVM as
virtualization platforms)

• C1: Physical platform (PC hardware, network, and network infrastructure).

Intercloud Control and Management Plane (ICCMP) supports interactions between
different cloud applications by providing signaling, synchronization points, session
management, and infrastructure optimization functionalities. Intercloud Federa-
tion Framework (ICFF) represents the core component for enabling federation of
cloud entities independently managed by different providers or belonging to sepa-
rate cloud domains. Such entities include services, applications, name-spaces, and
even semantics. Use cases and a set of actors/roles are also defined in the spec-
ification when describing the ICFF. In particular, for the definition of actors, the
specification follows the Resource Ownership Role Action (RORA) model pro-
posed in the GEYSERS European project [35]. Actors defined include the follow-
ing:

• Cloud Service Provider (CSP) represents the entity providing cloud services to
customers, based on their explicit request and respecting agreements expressed
through service level agreements (SLAs).

• Cloud Broker is a particular actor that does not provide or consume cloud services,
but are in charge of discovering themaccording to consumers’ requests andoffering
cloud services. Negotiations between many CSPs or customers and management
of services from multiple providers can be functionalities offered by a broker.

• Customer is the actor that requests one or more cloud services. In the simplest
case, a customer can be a single user requesting and consuming a service. In
general, she can also represent an entire organization requesting a service for all
its members to use.

• User is the final consumer of a cloud service. While a customer makes a request
for a service, the user actually exploits it. In the general case, a customer represents
an organization, its members are all potential users of the requested service.

Intercloud Operation Framework (ICOF) includes functionalities to support
operations involving multi-provider infrastructures, such as the definition of busi-
ness workflow, SLA management, and accounting. ICOF defines roles, actors,
and relationships between them in terms of resources operation, management,
and ownership. Intercloud Security Framework (ICSF) offers security mech-
anisms for the protection of all cloud components operating in the intercloud
federated environment. In particular, it owns capabilities for integration of secu-
rity measures exposed by the different layers of the CSM component.
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5.10 De Facto Standards in Cloud Computing

A“de facto standard,” also amarket-driven standard, is awidely accepted and adopted
standard which has not been defined or endorsed by industry groups (such as the
W3 Consortium) or standards organizations (such as ISO). These standards can
arise either because a high number of users like them well enough to collectively
adopt them, or just due to their imposition on the market by some already well-
established companies. Market-driven standards can become de jure standards if
they are approved through a formal standards organization. As regards the cloud IaaS
offer, Amazon has been for a long time themarket leaderwithAmazon Web Services
(AWS) and its position as one of the world’s leading options for cloud-based data
storage and data warehousing is beyond discussion. This is why many see AWS as
the de facto standard in the public cloud. Their API is highly proven and widely used,
their cloud is highly scalable, and they have by far the biggest traction of any cloud.
The open-source counterbalance to Amazon’s dominance is surely represented by
OpenStack. Managed by the OpenStack foundation, it is released under the Apache
license and can count on the support of a consistent developers’ community. It also
receives a lot of support from large IT companies including Oracle, IBM, Red Hat,
and RackSpace. These companies now include OpenStack-compliant solutions into
their cloud offerings or they are starting to build their products completely around this
open platform (IBM efforts are surely remarkable), thus trying to impose OpenStack
as the future de facto standard for IaaS platforms. For what concerns the PaaS world,
the number of solutions is steadily rising. Initially, the major players were Microsoft
Azure and Google App Engine, which are still regarded as the main actors in the
PaaS scenario. For this reason, their solutions are widely adopted. However, recently
other PaaS platforms that could be candidates to become a de facto standard have
emerged. Among these are worthy of attention OpenShift and Cloud Foundry [36].
Most of the mentioned platforms are described in Chap.4.

References

1. European Commission: Digital agenda for Europe. http://ec.europa.eu/digital-agenda/
2. European Commission: The European cloud computing strategy. https://ec.europa.eu/digital-

agenda/en/european-cloud-computing-strategy
3. Lutz, S., Keith, J., Burkhard, N.L., Tsakali, M.: The future of cloud computing. http://cordis.

europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf
4. Lutz, S., Keith, J., Burkhard, N.L., Tsakali, M.: A roadmap for advanced cloud tech-

nologies under h2020. http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-expert-group/roadmap-
dec2012-vfinal.pdf

5. Topology and Orchestration Specification for Cloud Applications (TOSCA). Vers. 1.0. OASIS
Standard (2013)

6. Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera,
F., Ford, M., Goland, Y. et al.: Web services business process execution language version 2.0.
OASIS Standard 11 (2007)

http://dx.doi.org/10.1007/978-3-319-13701-8_4
http://ec.europa.eu/digital-agenda/
https://ec.europa.eu/digital-agenda/en/european-cloud-computing-strategy
https://ec.europa.eu/digital-agenda/en/european-cloud-computing-strategy
http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-expert-group/roadmap-dec2012-vfinal.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-expert-group/roadmap-dec2012-vfinal.pdf


120 5 Research Initiatives and Emerging Standards

7. Business Process Model and Notation (BPMN). Object Management Group, Inc. (OMG)
(2011)

8. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery—a modeling tool for Tosca-based
cloud applications. In: Service-Oriented Computing, pp. 700–704. Springer (2013)

9. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., Wagner, S.:
OpenTOSCA—a runtime for TOSCA—based cloud applications. In: Service-Oriented Com-
puting, pp. 692–695. Springer (2013)

10. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Vinothek—a self-service portal for
TOSCA. In: Workshop Proceedings, p. 72 (2014)

11. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable automated deployment
and management of cloud applications. In: Advanced Web Services, pp. 527–549. Springer
(2014)

12. Binz, T., Breiter, G., Leymann, F., Spatzier, T.: Portable cloud services using TOSCA. IEEE
Internet Comput. 16(3), 80–85 (2012)

13. Davis, D., Pilz, G.: Cloud InfrastructureManagement Interface (CIMI)model and rest interface
over http. vol. DSP-0263, May (2012)

14. Cloud Data Management Interface (CDMI) Storage Networking Industry Association (SNIA)
(2012)

15. Metsch, T., Edmonds, A., et al.: Open cloud computing interface-infrastructure. In: Standards
Track, no.GFD-R inTheOpenGrid ForumDocument Series,OpenCloudComputing Interface
(OCCI) Working Group, Muncie (IN)(2010)

16. OCCI core specification. http://ogf.org/documents/GFD.183.pdf
17. OASIS cloud application management for platforms (CAMP) TC. https://www.oasis-open.

org/committees/camp/
18. CAMP specification document. http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-

v1.1.html
19. Ben-Kiki, O., Evans, C., Ingerson, B.: YAML aint markup language (YAML)(tm) version 1.2.

YAML. org. Technical Report, September (2009)
20. European Telecommunications Standards Institute. http://www.etsi.org/
21. Cloud standards coordination initiative. http://ec.europa.eu/digital-agenda/en/news/cloud-

standards-coordination-final-report
22. IEEE p2302 Working Group (Intercloud). http://grouper.ieee.org/groups/2302/
23. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. Recommendations of the

National Institute of Standards and Technology. Computer Security Division, NIST, Gaithers-
burg, MD (2011)

24. Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S., Morrow, M.: Blueprint for the
intercloud-protocols and formats for cloud computing interoperability. In: Fourth International
Conference on Internet and Web Applications and Services, ICIW’09, pp. 328–336. IEEE
(2009)

25. Bernstein, D., Vij, D.: Intercloud security considerations. In: 2010 IEEE Second International
Conference on Cloud Computing Technology and Science (CloudCom), pp. 537–544. IEEE
(2010)

26. Saint-Andre, P.: Extensible Messaging and Presence Protocol (XMPP): Core (2011)
27. Dierks, T.: The Transport Layer Security (TLS) protocol version 1.2 (2008)
28. Myers, J.G.: Simple Authentication and Security Layer (SASL) (1997)
29. Hallam-Baker, P.: Security assertions markup language. May 14, pp. 1–24 (2001)
30. Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider,

P.F., Stein, L.A., et al.: OWL web ontology language reference. W3C recommendation 10,
2006–01 (2004)

31. Demchenko, Y., Ngo, C., de Laat, C., Makkes, M.X., Strijkers, R.: Intercloud architecture
framework for heterogeneous multi-provider cloud based infrastructure services provisioning.
Int. J. Next-Gener. Comput. 4(2), (2013)

32. System and network engineering research group. Universiteit van Amsterdam. http://sne.
science.uva.nl/

http://ogf.org/documents/GFD.183.pdf
https://www.oasis-open.org/committees/camp/
https://www.oasis-open.org/committees/camp/
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html
http://www.etsi.org/
http://ec.europa.eu/digital-agenda/en/news/cloud-standards-coordination-final-report
http://ec.europa.eu/digital-agenda/en/news/cloud-standards-coordination-final-report
http://grouper.ieee.org/groups/2302/
http://sne.science.uva.nl/
http://sne.science.uva.nl/


References 121

33. Intercloud architecture framework draft. http://staff.science.uva.nl/~demch/worksinprogress/
sne2012-techreport-12-05-intercloud-architecture-draft06.pdf

34. ITU-T focus group on cloud computing (FG cloud). http://www.itu.int/en/ITU-T/focusgroups/
cloud/Pages/default.aspx

35. Escalona, E., Peng, S., Nejabati, R., Simeonidou, D., Garcia-Espin, J.A., Ferrer, J., Figuerola,
S., Landi,G., Ciulli, N., Jimenez, J., et al.: GEYSERS: a novel architecture for virtualization and
co-provisioning of dynamic optical networks and it services. In: Future Network and Mobile
Summit (FutureNetw), pp. 1–8. IEEE (2011)

36. Cloudfoundry foundation. http://cloudfoundry.org/index.html

http://staff.science.uva.nl/~demch/worksinprogress/sne2012-techreport-12-05-intercloud-architecture-draft06.pdf
http://staff.science.uva.nl/~demch/worksinprogress/sne2012-techreport-12-05-intercloud-architecture-draft06.pdf
http://www.itu.int/en/ITU-T/focusgroups/cloud/Pages/default.aspx
http://www.itu.int/en/ITU-T/focusgroups/cloud/Pages/default.aspx
http://cloudfoundry.org/index.html

	Preface
	Contents
	1 Cloud Portability and Interoperability
	1.1 Cloud Basics and Reference Architectures
	1.2 Cloud Interoperability and Portability Definitions
	1.2.1 Cloud Computing Use Case Scenarios
	1.2.2 A Case Study

	References

	2 Methodologies for Cloud Portability  and Interoperability
	2.1 Model-Driven Approach for Design, Provisioning, Execution �
	2.1.1 MDA in MODAClouds
	2.1.2 MDA in ARTIST
	2.1.3 MDA in REMICS
	2.1.4 MDA in PaaSage

	2.2 Semantic Approaches
	2.2.1 Semantics in mOSAIC
	2.2.2 Semantics in Cloud4SOA
	2.2.3 Semantic Sky

	2.3 Multi-Agent Systems
	2.3.1 Brokering, Negotiation, and Monitoring  with mOSAIC's Cloud Agency
	2.3.2 Agent-Based Cloud Resource Management Testbed

	2.4 Cloud Patterns
	2.4.1 How Cloud Patterns Can Enable  Interoperability and Portability
	2.4.2 IBM Virtual Patterns
	2.4.3 Azure Cloud Patterns
	2.4.4 Amazon Web Services (AWS) Cloud Design Patterns
	2.4.5 Agnostic Patterns: The CloudPatterns.org Community
	2.4.6 Comparison Between Cloud Patterns
	2.4.7 Semantic Cloud Patterns
	2.4.8 Cloud Patterns: Engagement with Case Study  and Positioning with Respect to Use Case  Scenarios and Features

	References

	3 Cross-Platform Cloud APIs
	3.1 Introduction to Cross-Platform Cloud APIs
	3.2 DeltaCloud
	3.2.1 How to Use DeltaCloud

	3.3 OpenNebula
	3.3.1 Different Users' Perspectives
	3.3.2 OpenNebula Architecture

	3.4 DeltaCloud and OpenNebula: Engagement  with Case Study and Positioning with Respect  to Use Case Scenarios and Features
	3.5 mOSAIC API
	3.5.1 Engagement with Case Study and Positioning  with Respect to Use Case Scenarios and Features

	3.6 Apache Libcloud
	3.7 Apache JClouds
	3.8 Comparative Analysis
	References

	4 Ready-to-Go Solutions
	4.1 Amazon Web Services (AWS)
	4.1.1 Compute Services
	4.1.2 Storage and Database Services
	4.1.3 Networking Services
	4.1.4 Deployment and Management
	4.1.5 Engagement with Case Study and Positioning  with Respect to Use Case Scenarios and Features

	4.2 OpenStack
	4.2.1 Access to OpenStack Services
	4.2.2 Engagement with Case Study and Positioning  with Respect to Use Case Scenarios and Features

	4.3 Oracle PaaS
	4.3.1 Engagement with Case Study and Positioning  with Respect to Use Case Scenarios and Features

	4.4 OpenShift
	4.4.1 OpenShift Architecture
	4.4.2 Support to Portability
	4.4.3 Engagement with Case Study and Positioning  with Respect to Use Case Scenarios and Features

	4.5 Microsoft Azure
	4.5.1 Azure IaaS Level Services
	4.5.2 Azure PaaS-Level Services
	4.5.3 Engagement with Case Study and Positioning  with Respect to Use Case Scenarios and Features

	4.6 Google Cloud Platform
	4.6.1 Google Compute Engine
	4.6.2 Google Cloud Storage
	4.6.3 Google App Engine
	4.6.4 Google BigQuery
	4.6.5 Engagement with Case Study and Positioning  with Respect to Use Case Scenarios and Features

	4.7 Bluemix
	4.7.1 Overview of the Offered Services
	4.7.2 Engagement with Case Study and Positioning  with Respect to Use Case Scenarios and Features

	4.8 ElasticBox
	4.9 Docker
	4.9.1 Internal Components

	4.10 Cloudify
	References

	5 Research Initiatives and Emerging  Standards
	5.1 European Commission Initiatives
	5.2 Topology and Orchestration Specification  for Cloud Applications
	5.2.1 TOSCA Architecture and Components
	5.2.2 Composition of Service Templates
	5.2.3 TOSCA Container: CSAR
	5.2.4 Implementing Tools: Winery, OpenTosca, and Vinothek
	5.2.5 Engagement with Case Study and Positioning  with Respect to Use Case Scenarios and Features

	5.3 Cloud Infrastructure Management Interface
	5.3.1 Scope
	5.3.2 CIMI Model
	5.3.3 Security

	5.4 Cloud Data Management Interface
	5.4.1 Core Concepts
	5.4.2 Queue Objects
	5.4.3 Security

	5.5 Open Cloud Computing Interface
	5.5.1 The OCCI Core Model
	5.5.2 Security

	5.6 Cloud Application Management for Platforms
	5.6.1 CAMP Model
	5.6.2 Operations and Sensors
	5.6.3 Application Deployment

	5.7 Cloud Standards Coordination Initiative
	5.7.1 Role Definitions
	5.7.2 Use Case Descriptions

	5.8 IEEE Standard for Intercloud Interoperability  and Federation
	5.8.1 The Intercloud Topology
	5.8.2 The Intercloud Protocols and Standards

	5.9 Intercloud Architecture for Interoperability  and Integration
	5.9.1 Scope of the Work
	5.9.2 Elements of the Framework

	5.10 De Facto Standards in Cloud Computing
	References




