
www.allitebooks.com

http://www.allitebooks.org

Cloudera Administration
Handbook

A complete, hands-on guide to building and maintaining
large Apache Hadoop clusters using Cloudera Manager
and CDH5

Rohit Menon

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Cloudera Administration Handbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014

Production reference: 1110714

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-896-4

www.packtpub.com

Cover image by John Michael Harkness (jtothem@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Rohit Menon

Reviewers
Skanda Bhargav

Brandon Forehand

Mike Hordila

Commissioning Editor
Akram Hussain

Acquisition Editor
Gregory Wild

Content Development Editor
Priya Singh

Technical Editors
Kunal Anil Gaikwad

Edwin Moses

Siddhi Rane

Copy Editors
Janbal Dharmaraj

Deepa Nambiar

Alfida Paiva

Laxmi Subramanian

Project Coordinators
Swati Kumari

Amey Sawant

Proofreaders
Simran Bhogal

Ameesha Green

Maria Gould

Indexer
Rekha Nair

Graphics
Disha Haria

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

Notice

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.
CLOUDERA® is a registered trademark of Cloudera, Inc. Except where otherwise
indicated, all screenshots are the copyrighted material of Cloudera, Inc. For the latest
documentation on use of Cloudera software, visit http://www.cloudera.com/.

www.allitebooks.com

http://www.allitebooks.org

About the Author

Rohit Menon is a senior system analyst living in Denver, Colorado. He has
over 7 years of experience in the field of Information Technology, which started
with the role of a real-time applications developer back in 2006. He now works
for a product-based company specializing in software for large telecom operators.

He graduated with a master's degree in Computer Applications from University
of Pune, where he built an autonomous maze-solving robot as his final year project.
He later joined a software consulting company in India where he worked on C#,
SQL Server, C++, and RTOS to provide software solutions to reputable organizations
in USA and Japan. After this, he started working for a product-based company
where most of his time was dedicated to programming the finer details of products
using C++, Oracle, Linux, and Java.

He is a person who always likes to learn new technologies and this got him
interested in web application development. He picked up Ruby, Ruby on Rails,
HTML, JavaScript, CSS, and built www.flicksery.com, a Netflix search engine
that makes searching for titles on Netflix much easier.

On the Hadoop front, he is a Cloudera Certified Apache Hadoop Developer. He
blogs at www.rohitmenon.com, mainly on topics related to Apache Hadoop and its
components. To share his learning, he has also started www.hadoopscreencasts.
com, a website that teaches Apache Hadoop using simple, short, and easy-to-follow
screencasts. He is well versed with wide variety of tools and techniques such as
MapReduce, Hive, Pig, Sqoop, Oozie, and Talend Open Studio.

I would like to thank my parents for instilling the qualities of
perseverance and hard work. I would also like to thank my wife,
Madhuri, and my daughter, Anushka, for being patient and allowing
me to spend most of my time studying and researching.

www.allitebooks.com

www.flicksery.com
www.rohitmenon.com
www.hadoopscreencasts.com
www.hadoopscreencasts.com
http://www.allitebooks.org

About the Reviewers

Skanda Bhargav is an engineering graduate from Visvesvaraya Technological
University (VTU), Belgaum in Karnataka, India. He did his majors in Computer
Science Engineering. He is currently employed with Happiest Minds Technologies,
a MNC based out of Bangalore. He is a Cloudera Certified Developer for Apache
Hadoop. His interests are Big Data and Hadoop.

He has been a reviewer for the following books:

•	 Instant MapReduce Patterns – Hadoop Essentials How-to, Srinath Perera,
Packt Publishing

•	 Hadoop Cluster Deployment, Danil Zburivsky, Packt Publishing

He has also reviewed Building Hadoop Clusters [Video], Sean Mikha, Packt Publishing.

I would like to thank my family for their immense support and faith
in me throughout my learning stage. My friends have brought the
confidence in me to a level that makes me bring out the best out of
myself. I am happy that God has blessed me with such wonderful
people around me, without which this work might not have been the
success that it is today.

www.allitebooks.com

http://www.allitebooks.org

Brandon Forehand started programming at an early age and loves solving
problems. He is a Cloudera Certified Apache Hadoop Developer and currently
works at Moz as a principal software engineer on the Big Data team, developing
systems to index links on the web and providing data to help online marketers
improve their websites' visibility. Previously, he worked at Amazon on Kindle and
developed software to convert physical books to e-books. He has also worked at
a research laboratory, developing sonar systems for the Navy. He earned a BSc in
Computer Science from the University of Texas, Austin.

I would like to thank my wife for putting up with me all of these
years and the countless people who have helped me along the way
in my career.

Mike Hordila has worked with very large databases and high availability systems
for more than 20 years. He consults for major organizations, always looking for new
ways and technologies. He has shared some of his experience in a number of articles
in major Oracle magazines and also in a couple of books.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started with Apache Hadoop	 7

History of Apache Hadoop and its trends	 7
Components of Apache Hadoop	 10
Understanding the Apache Hadoop daemons	 10

Namenode	 11
Secondary namenode	 12
Jobtracker	 14
Tasktracker	 14
ResourceManager	 17
NodeManager	 17
Job submission in YARN	 17

Introducing Cloudera	 19
Introducing CDH	 19
Responsibilities of a Hadoop administrator	 20
Summary	 22

Chapter 2: HDFS and MapReduce	 23
Essentials of HDFS	 23

Configuring HDFS	 24
The read/write operational flow in HDFS	 26

Writing files in HDFS	 26
Reading files in HDFS	 28

Understanding the namenode UI	 29
Understanding the secondary namenode UI	 33
Exploring HDFS commands	 34

Commonly used HDFS commands	 34
Commands to administer HDFS	 37

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Getting acquainted with MapReduce	 39
Understanding the map phase	 40
Understanding the reduce phase	 41
Learning all about the MapReduce job flow	 43

Configuring MapReduce	 44
Understanding the jobtracker UI	 48
Getting MapReduce job information	 52

Summary	 55
Chapter 3: Cloudera's Distribution Including Apache Hadoop	 57

Getting started with CDH	 57
Understanding the CDH components	 58

Apache Hadoop	 58
Apache Flume NG	 58
Apache Sqoop	 60
Apache Pig	 61
Apache Hive	 61
Apache ZooKeeper	 62
Apache HBase	 64
Apache Whirr	 65
Snappy – previously known as Zippy	 65
Apache Mahout	 66
Apache Avro	 66
Apache Oozie	 66
Cloudera Search	 67
Cloudera Impala	 67
Cloudera Hue	 68

Beeswax – Hive UI	 68
Cloudera Impala UI	 70
Pig UI	 70
File Browser	 71
Metastore Manager	 72
Sqoop Jobs	 72
Job Browser	 73
Job Designs	 74
Dashboard	 74
Collection Manager	 75
Hue Shell	 76
HBase Browser	 76

Installing CDH	 76
Stopping Hadoop services	 82
Understanding a YARN cluster	 82

Table of Contents

[iii]

Installing the CDH components	 83
Installing Apache Flume	 83
Installing Apache Sqoop	 83
Installing Apache Sqoop 2	 83
Installing Apache Pig	 84
Installing Apache Hive	 84
Installing Apache Oozie	 84
Installing Apache ZooKeeper	 84

Summary	 85
Chapter 4: Exploring HDFS Federation and Its High Availability	 87

Implementing HDFS Federation	 87
Configuring HDFS Federation	 89

Configuring ViewFS for a federated HDFS	 94
Implementing HDFS High Availability	 95

The Quorum-based storage	 96
Configuring HDFS high availability by the Quorum-based storage	 98

Shared storage using NFS	 102
Configuring HDFS high availability by shared storage using NFS	 103

Configuring automatic failover for HDFS high availability	 108
Jobtracker high availability	 110

Configuring jobtracker high availability	 110
Configuring automatic failover for jobtracker high availability	 113

Summary	 114
Chapter 5: Using Cloudera Manager	 115

Introducing Cloudera Manager	 115
Understanding the Cloudera Manager architecture	 116
Installing Cloudera Manager	 118
Navigating the Cloudera Manager Web console	 130

Navigating the Home screen	 131
Navigating the Clusters menu	 134
Exploring the Hosts menu	 136
Understanding the Diagnostics menu	 137
Understanding the Audits screen	 138
Understanding the Charts menu	 139
Understanding the Backup menu	 139
Understanding the Administration menu	 139

Configuring High Availability using Cloudera Manager	 143
Summary	 146

Table of Contents

[iv]

Chapter 6: Implementing Security Using Kerberos	 147
Understanding authentication and authorization	 148
Introducing Kerberos	 148
Understanding the Kerberos Architecture	 149

Authenticating a user	 150
Accessing a secure file server	 150
Understanding important Kerberos terms	 151

Installing Kerberos	 152
Configuring the KDC Server	 152
Testing the KDC installation	 155
Configuring the Kerberos clients	 155

Configuring Kerberos for Apache Hadoop	 156
Configuring Kerberos principal for Cloudera Manager Server	 157
Configuring the Cloudera Manager Server for Kerberos	 158

Authorization in Apache Hadoop	 162
Configuring access control lists in Hadoop	 162

Summary	 164
Chapter 7: Managing an Apache Hadoop Cluster	 165

Configuring Hadoop services using Cloudera Manager	 165
Adding a service to the cluster	 166
Removing a service from the cluster	 170

Role management in Cloudera Manager	 172
Adding a role instance to a host	 173

Adding a DataNode role to a host	 173
Adding a TaskTracker role to a host	 177

Managing hosts using Cloudera Manager	 179
Adding a new host	 180
Removing an existing host	 185

Managing multiple clusters with Cloudera Manager	 187
Rebalancing a Hadoop cluster from Cloudera Manager	 193

Adding the Balancer service to the cluster	 194
Rebalancing the cluster	 195

Summary	 197
Chapter 8: Cluster Monitoring Using Events and Alerts	 199

Monitoring Hadoop services from Cloudera Manager	 200
Understanding events and alerts	 203

Configuring events and alerts	 206
Configuring the alert delivery by an e-mail	 209

Summary	 211

Table of Contents

[v]

Chapter 9: Configuring Backups	 213
Understanding backups	 213

Types of backups	 214
Types of storage media for backups	 215
Using cloud services for backups	 215

Understanding HDFS backups	 215
Using the distributed copy (DistCp)	 216
Configuring backups using Cloudera Manager	 217

Configuring HDFS replication	 217
Configuring Hive replication	 221
Configuring snapshots	 223

Enabling snapshot paths in HDFS	 223
Configuring a snapshot policy	 224

Summary	 226
Index	 227

Preface
Apache Hadoop is an open source distributed computing technology that
assists users in processing large volumes of data with relative ease, helping
them to generate tremendous insights into their data. Cloudera, with their open
source distribution of Hadoop, has made data analytics on Big Data possible and
accessible to anyone interested.

This book fully prepares you to be a Hadoop administrator, with special
emphasis on Cloudera. It provides step-by-step instructions on setting up and
managing a robust Hadoop cluster running Cloudera's Distribution Including
Apache Hadoop (CDH).

This book starts out by giving you a brief introduction to Apache Hadoop
and Cloudera. You will then move on to learn about all the tools and techniques
needed to set up and manage a production-standard Hadoop cluster using CDH
and Cloudera Manager.

In this book, you will learn the Hadoop architecture by understanding the different
features of HDFS and walking through the entire flow of a MapReduce process.
With this understanding, you will start exploring the different applications packaged
into CDH and will follow a step-by-step guide to set up HDFS High Availability
(HA) and HDFS Federation.

You will learn to use Cloudera Manager, Cloudera's cluster management application.
Using Cloudera Manager, you will walk through the steps to configure security
using Kerberos, learn about events and alerts, and also configure backups.

Preface

[2]

What this book covers
Chapter 1, Getting Started with Apache Hadoop, introduces you to Apache Hadoop
and walks you through the different Apache Hadoop daemons.

Chapter 2, HDFS and MapReduce, provides you with an in-depth understanding
of HDFS and MapReduce.

Chapter 3, Cloudera's Distribution Including Apache Hadoop, introduces you to Cloudera's
Apache Hadoop Distribution and walks you through its installation steps.

Chapter 4, Exploring HDFS Federation and Its High Availability, introduces you to the
steps to configure a federated HDFS and also provides step-by-step instructions to
set up HDFS High Availability.

Chapter 5, Using Cloudera Manager, introduces you to Cloudera Manager,
Cloudera's cluster management application and walks you through the steps
to install Cloudera Manager.

Chapter 6, Implementing Security Using Kerberos, walks you through the steps to
secure your cluster by configuring Kerberos.

Chapter 7, Managing an Apache Hadoop Cluster, introduces you to all the cluster
management capabilities available within Cloudera Manager.

Chapter 8, Cluster Monitoring Using Events and Alerts, introduces you to the
different events and alerts available within Cloudera Manager that will assist
you in monitoring your cluster effectively.

Chapter 9, Configuring Backups, walks you through the steps to configure backups
and snapshots using Cloudera Manager.

What you need for this book
You will need access to a cluster of around three to four nodes (physical server or
virtual machines) running Linux, preferably the CentOS distribution. The steps to
acquire the software needed is explained in detail in this book.

Preface

[3]

Who this book is for
This book is ideal for anyone interested in administering an Apache Hadoop
cluster. This book will prove to be a good guide for administrators managing clusters
running Cloudera's Distribution Including Apache Hadoop (CDH) and will be
introduced to the various tools and techniques such as cluster management, security,
monitoring, and backups. The reader will acquire all the knowledge required to run
production scale clusters ranging from a few nodes to thousands of nodes.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"It is important to note that the fsimage file is not updated for every write operation."

A block of code is set as follows:

<property>
 <name>dfs.namenode.servicerpc-address</name>
 <value>node1.hcluster:8022</value>
</property>

Any command-line input or output is written as follows:

$ sudo yum install flume-ng

$ sudo yum install flume-ng-agent

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "The Coordinators
tab lists all the coordinator applications that have been configured in Oozie."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with
Apache Hadoop

Apache Hadoop is a widely used open source distributed computing framework that
is employed to efficiently process large volumes of data using large clusters of cheap
or commodity computers. In this chapter, we will learn more about Apache Hadoop
by covering the following topics:

•	 History of Apache Hadoop and its trends
•	 Components of Apache Hadoop
•	 Understanding the Apache Hadoop daemons
•	 Introducing Cloudera
•	 What is CDH?
•	 Responsibilities of a Hadoop administrator

History of Apache Hadoop and its trends
We live in the era where almost everything surrounding us is generating some kind
of data. A click on a web page is being logged on the server. The flipping of channels
when watching TV is being captured by cable companies. A search on a search
engine is being logged. A heartbeat of a patient in a hospital generates data. A single
phone call generates data, which is stored and maintained by telecom companies.
An order of pizza generates data. It is very difficult to find processes these days that
don't generate and store data.

Getting Started with Apache Hadoop

[8]

Why would any organization want to store data? The present and the future
belongs to those who hold onto their data and work with it to improve their current
operations and innovate to generate newer products and opportunities. Data and
the creative use of it is the heart of organizations such as Google, Facebook, Netflix,
Amazon, and Yahoo!. They have proven that data, along with powerful analysis,
helps in building fantastic and powerful products.

Organizations have been storing data for several years now. However, the data
remained on backup tapes or drives. Once it has been archived on storage devices
such as tapes, it can only be used in case of emergency to retrieve important data.
However, processing or analyzing this data to get insight efficiently is very difficult.
This is changing. Organizations want to now use this data to get insight to help
understand existing problems, seize new opportunities, and be more profitable.
The study and analysis of these vast volumes of data has given birth to a term called
big data. It is a phrase often used to promote the importance of the ever-growing
data and the technologies applied to analyze this data.

Big and small companies now understand the importance of data and are adding
loggers to their operations with an intention to generate more data every day. This
has given rise to a very important problem—storage and efficient retrieval of data for
analysis. With the data growing at such a rapid rate, traditional tools for storage and
analysis fall short. Though these days the cost per byte has reduced considerably and
the ability to store more data has increased, the disk transfer rate has remained the
same. This has been a bottleneck for processing large volumes of data. Data in many
organizations have reached petabytes and is continuing to grow. Several companies
have been working to solve this problem and have come out with a few commercial
offerings that leverage the power of distributed computing. In this solution, multiple
computers work together (a cluster) to store and process large volumes of data in
parallel, thus making the analysis of large volumes of data possible. Google, the
Internet search engine giant, ran into issues when their data, acquired by crawling
the Web, started growing to such large volumes that it was getting increasingly
impossible to process. They had to find a way to solve this problem and this led to
the creation of Google File System (GFS) and MapReduce.

The GFS or GoogleFS is a filesystem created by Google that enables them to store
their large amount of data easily across multiple nodes in a cluster. Once stored, they
use MapReduce, a programming model developed by Google to process (or query)
the data stored in GFS efficiently. The MapReduce programming model implements
a parallel, distributed algorithm on the cluster, where the processing goes to the
location where data resides, making it faster to generate results rather than wait
for the data to be moved to the processing, which could be a very time consuming
activity. Google found tremendous success using this architecture and released white
papers for GFS in 2003 and MapReduce in 2004.

Chapter 1

[9]

Around 2002, Doug Cutting and Mike Cafarella were working on Nutch, an open
source web search engine, and faced problems of scalability when trying to store
billions of web pages that were crawled everyday by Nutch. In 2004, the Nutch team
discovered that the GFS architecture was the solution to their problem and started
working on an implementation based on the GFS white paper. They called their
filesystem Nutch Distributed File System (NDFS). In 2005, they also implemented
MapReduce for NDFS based on Google's MapReduce white paper.

In 2006, the Nutch team realized that their implementations, NDFS and MapReduce,
could be applied to more areas and could solve the problems of large data volume
processing. This led to the formation of a project called Hadoop. Under Hadoop,
NDFS was renamed to Hadoop Distributed File System (HDFS). After Doug
Cutting joined Yahoo! in 2006, Hadoop received lot of attention within Yahoo!,
and Hadoop became a very important system running successfully on top of a
very large cluster (around 1000 nodes). In 2008, Hadoop became one of Apache's
top-level projects.

So, Apache Hadoop is a framework written in Java that:

•	 Is used for distributed storage and processing of large volumes of data,
which run on top of a cluster and can scale from a single computer to
thousands of computers

•	 Uses the MapReduce programming model to process data
•	 Stores and processes data on every worker node (the nodes on the cluster

that are responsible for the storage and processing of data) and handles
hardware failures efficiently, providing high availability

Apache Hadoop has made distributed computing accessible to anyone who
wants to try and process their large volumes of data without shelling out big
bucks to commercial offerings. The success of Apache Hadoop implementations in
organizations such as Facebook, Netflix, LinkedIn, Twitter, The New York Times,
and many more have given the much deserved recognition to Apache Hadoop and
in turn good confidence to other organizations to make it a core part of their system.
Having made large data analysis a possibility, Hadoop has also given rise to many
startups that build analytics products on top of Apache Hadoop.

Getting Started with Apache Hadoop

[10]

Components of Apache Hadoop
Apache Hadoop is composed of two core components. They are:

•	 HDFS: The HDFS is responsible for the storage of files. It is the storage
component of Apache Hadoop, which was designed and developed to
handle large files efficiently. It is a distributed filesystem designed to work
on a cluster and makes it easy to store large files by splitting the files into
blocks and distributing them across multiple nodes redundantly. The users
of HDFS need not worry about the underlying networking aspects, as HDFS
takes care of it. HDFS is written in Java and is a filesystem that runs within
the user space.

•	 MapReduce: MapReduce is a programming model that was built from
models found in the field of functional programming and distributed
computing. In MapReduce, the task is broken down to two parts: map
and reduce. All data in MapReduce flows in the form of key and value
pairs, <key, value>. Mappers emit key and value pairs and the reducers
receive them, work on them, and produce the final result. This model was
specifically built to query/process the large volumes of data stored in HDFS.

We will be going through HDFS and MapReduce in depth in the next chapter.

Understanding the Apache Hadoop
daemons
Most of the Apache Hadoop clusters in production run Apache Hadoop 1.x
(MRv1—MapReduce Version 1). However, the new version of Apache Hadoop,
2.x (MRv2—MapReduce Version 2), also referred to as Yet Another Resource
Negotiator (YARN) is being adopted by many organizations actively. In this
section, we shall go through the daemons for both these versions.

Apache Hadoop 1.x (MRv1) consists of the following daemons:

•	 Namenode
•	 Secondary namenode
•	 Jobtracker
•	 Datanode
•	 Tasktracker

Chapter 1

[11]

All the preceding daemons are Java services and run within their own JVM.

Apache Hadoop stores and processes data in a distributed fashion. To achieve this
goal, Hadoop implements a master and slave model. The namenode and jobtracker
daemons are master daemons, whereas the datanode and tasktracker daemons are
slave daemons.

Namenode
The namenode daemon is a master daemon and is responsible for storing all the
location information of the files present in HDFS. The actual data is never stored
on a namenode. In other words, it holds the metadata of the files in HDFS.

The namenode maintains the entire metadata in RAM, which helps clients receive
quick responses to read requests. Therefore, it is important to run namenode from
a machine that has lots of RAM at its disposal. The higher the number of files in
HDFS, the higher the consumption of RAM. The namenode daemon also maintains
a persistent checkpoint of the metadata in a file stored on the disk called the
fsimage file.

Whenever a file is placed/deleted/updated in the cluster, an entry of this action is
updated in a file called the edits logfile. After updating the edits log, the metadata
present in-memory is also updated accordingly. It is important to note that the
fsimage file is not updated for every write operation.

In case the namenode daemon is restarted, the following sequence of events occur at
namenode boot up:

1.	 Read the fsimage file from the disk and load it into memory (RAM).
2.	 Read the actions that are present in the edits log and apply each action to

the in-memory representation of the fsimage file.
3.	 Write the modified in-memory representation to the fsimage file on the disk.

The preceding steps make sure that the in-memory representation is up to date.

The namenode daemon is a single point of failure in Hadoop 1.x, which means that
if the node hosting the namenode daemon fails, the filesystem becomes unusable.
To handle this, the administrator has to configure the namenode to write the
fsimage file to the local disk as well as a remote disk on the network. This backup
on the remote disk can be used to restore the namenode on a freshly installed server.
Newer versions of Apache Hadoop (2.x) now support High Availability (HA),
which deploys two namenodes in an active/passive configuration, wherein if the
active namenode fails, the control falls onto the passive namenode, making it active.
This configuration reduces the downtime in case of a namenode failure.

Getting Started with Apache Hadoop

[12]

Since the fsimage file is not updated for every operation, it is possible the edits
logfile would grow to a very large file. The restart of namenode service would
become very slow because all the actions in the large edits logfile will have to be
applied on the fsimage file. The slow boot up time could be avoided using the
secondary namenode daemon.

Secondary namenode
The secondary namenode daemon is responsible for performing periodic
housekeeping functions for namenode. It only creates checkpoints of the filesystem
metadata (fsimage) present in namenode by merging the edits logfile and the
fsimage file from the namenode daemon. In case the namenode daemon fails,
this checkpoint could be used to rebuild the filesystem metadata. However, it is
important to note that checkpoints are done in intervals and it is possible that the
checkpoint data could be slightly outdated. Rebuilding the fsimage file using such
a checkpoint could lead to data loss. The secondary namenode is not a failover node
for the namenode daemon.

It is recommended that the secondary namenode daemon be hosted on a separate
machine for large clusters. The checkpoints are created by merging the edits logfiles
and the fsimage file from the namenode daemon.

The following are the steps carried out by the secondary namenode daemon:

1.	 Get the edits logfile from the primary namenode daemon.
2.	 Get the fsimage file from the primary namenode daemon.
3.	 Apply all the actions present in the edits logs to the fsimage file.
4.	 Push the fsimage file back to the primary namenode.

This is done periodically and so whenever the namenode daemon is restarted, it
would have a relatively updated version of the fsimage file and the boot up time
would be significantly faster. The following diagram shows the communication
between namenode and secondary namenode:

Chapter 1

[13]

The datanode daemon acts as a slave node and is responsible for storing the actual
files in HDFS. The files are split as data blocks across the cluster. The blocks are
typically 64 MB to 128 MB size blocks. The block size is a configurable parameter.
The file blocks in a Hadoop cluster also replicate themselves to other datanodes for
redundancy so that no data is lost in case a datanode daemon fails. The datanode
daemon sends information to the namenode daemon about the files and blocks
stored in that node and responds to the namenode daemon for all filesystem
operations. The following diagram shows how files are stored in the cluster:

Getting Started with Apache Hadoop

[14]

File blocks of files A, B, and C are replicated across multiple nodes of the cluster
for redundancy. This ensures availability of data even if one of the nodes fail.
You can also see that blocks of file A are present on nodes 2, 4, and 6; blocks of
file B are present on nodes 3, 5, and 7; and blocks of file C are present on 4, 6, and 7.
The replication factor configured for this cluster is 3, which signifies that each
file block is replicated three times across the cluster. It is the responsibility of the
namenode daemon to maintain a list of the files and their corresponding locations
on the cluster. Whenever a client needs to access a file, the namenode daemon
provides the location of the file to client and the client, then accesses the file
directly from the datanode daemon.

Jobtracker
The jobtracker daemon is responsible for accepting job requests from a client
and scheduling/assigning tasktrackers with tasks to be performed. The jobtracker
daemon tries to assign tasks to the tasktracker daemon on the datanode daemon
where the data to be processed is stored. This feature is called data locality.
If that is not possible, it will at least try to assign tasks to tasktrackers within
the same physical server rack. If for some reason the node hosting the datanode
and tasktracker daemons fails, the jobtracker daemon assigns the task to another
tasktracker daemon where the replica of the data exists. This is possible because of
the replication factor configuration for HDFS where the data blocks are replicated
across multiple datanodes. This ensures that the job does not fail even if a node fails
within the cluster.

Tasktracker
The tasktracker daemon is a daemon that accepts tasks (map, reduce, and shuffle)
from the jobtracker daemon. The tasktracker daemon is the daemon that performs
the actual tasks during a MapReduce operation. The tasktracker daemon sends a
heartbeat message to jobtracker, periodically, to notify the jobtracker daemon that
it is alive. Along with the heartbeat, it also sends the free slots available within it,
to process tasks. The tasktracker daemon starts and monitors the map, and reduces
tasks and sends progress/status information back to the jobtracker daemon.

Chapter 1

[15]

In small clusters, the namenode and jobtracker daemons reside on the same node.
However, in larger clusters, there are dedicated nodes for the namenode and
jobtracker daemons. This can be easily understood from the following diagram:

In a Hadoop cluster, these daemons can be monitored via specific URLs using a
browser. The specific URLs are of the http://<serveraddress>:port_number type.

By default, the ports for the Hadoop daemons are:

The Hadoop daemon Port
Namenode 50070
Secondary namenode 50090
Jobtracker 50030
Datanode 50075
Tasktracker 50060

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Apache Hadoop

[16]

The preceding mentioned ports can be configured in the hdfs-site.xml and
mapred-site.xml files.

YARN is a general-purpose, distributed, application management framework for
processing data in Hadoop clusters.

YARN was built to solve the following two important problems:

•	 Support for large clusters (4000 nodes or more)
•	 The ability to run other applications apart from MapReduce to make use of

data already stored in HDFS, for example, MPI and Apache Giraph

In Hadoop Version 1.x, MapReduce can be divided into the following two parts:

•	 The MapReduce user framework: This consists of the user's interaction with
MapReduce such as the application programming interface for MapReduce

•	 The MapReduce system: This consists of system level tasks such as
monitoring, scheduling, and restarting of failed tasks

The jobtracker daemon had these two parts tightly coupled within itself and was
responsible for managing the tasks and all its related operations by interacting with
the tasktracker daemon. This responsibility turned out to be overwhelming for the
jobtracker daemon when the nodes in the cluster started increasing and reached
the 4000 node mark. This was a scalability issue that needed to be fixed. Also, the
investment in Hadoop could not be justified as MapReduce was the only way to
process data on HDFS. Other tools were unable to process this data. YARN was built
to address these issues and is part of Hadoop Version 2.x. With the introduction of
YARN, MapReduce is now just one of the clients that run on the YARN framework.

YARN addresses the preceding mentioned issues by splitting the following two
jobtracker responsibilities:

•	 Resource management
•	 Job scheduling/monitoring

The jobtracker daemon has been removed and the following two new daemons have
been introduced in YARN:

•	 ResourceManager
•	 NodeManager

Chapter 1

[17]

ResourceManager
The ResourceManager daemon is a global master daemon that is responsible for
managing the resources for the applications in the cluster. The ResourceManager
daemon consists of the following two components:

•	 ApplicationsManager
•	 Scheduler

The ApplicationsManager performs the following operations:

•	 Accepts jobs from a client.
•	 Creates the first container on one of the worker nodes to host the

ApplicationMaster. A container, in simple terms, is the memory
resource on a single worker node in cluster.

•	 Restarts the container hosting ApplicationMaster on failure.

The scheduler is responsible for allocating the system resources to the various
applications in the cluster and also performs the monitoring of each application.

Each application in YARN will have an ApplicationMaster. This is responsible
for communicating with the scheduler and setting up and monitoring its
resource containers.

NodeManager
The NodeManager daemon runs on the worker nodes and is responsible for
monitoring the containers within the node and its system resources such as CPU,
memory, and disk. It sends this monitoring information back to the ResourceManager
daemon. Each worker node will have exactly one NodeManager daemon running.

Job submission in YARN
The following are the sequence of steps involved when a job is submitted to
a YARN cluster:

1.	 When a job is submitted to the cluster, the client first receives an application
ID from the ResourceManager.

2.	 Next, the client copies the job resources to a location in the HDFS.

Getting Started with Apache Hadoop

[18]

3.	 The ResourceManager then starts the first container under the
NodeManager's management to bring up the ApplicationMaster.
For example, if a MapReduce job is submitted, the ResourceManager
will bring up the MapReduce ApplicationMaster.

4.	 The ApplicationMaster, based on the job to be executed, requests resources
from the ResourceManager.

5.	 Once the ResourceManager schedules a container with the requested
resource, the ApplicationMaster contacts the NodeManager to start the
container and execute the task. In case of a MapReduce job, that task
would be a map or reduce task.

6.	 The client checks with the ApplicationMaster for status updates on the
submitted job.

The following diagram shows the interactions of the client and the different
daemons in a YARN environment:

In a Hadoop cluster, the ResourceManager and NodeManager daemons can
be monitored via specific URLs using a browser. The specific URLs are of the
http://<serveraddress>:port_number type.

By default, the ports for these Hadoop daemons are:

The Hadoop daemon Port
ResourceManager 8088
NodeManager 8042

The preceding mentioned ports can be configured in the yarn-site.xml file.

This was a short introduction to YARN, but it is important as a Hadoop
administrator to know about YARN as this is soon going to be the way all
Hadoop clusters will function.

Chapter 1

[19]

Introducing Cloudera
Cloudera Inc. is a Palo Alto-based American enterprise software company that
provides Apache Hadoop-based software, support and services, and training to
data-driven enterprises. It is often referred to as the commercial Hadoop company.

Cloudera was founded by three top engineers from Google, Yahoo!, and
Facebook—Christophe Bisciglia, Amr Awadallah, and Jeff Hammerbacher.

Cloudera is the market leader in Hadoop and is one of the major code contributors to
the Apache Hadoop ecosystem. With the help of Hadoop, Cloudera helps businesses
and organizations interact with their large datasets and derive great insights.

They have also built a full-fledged Apache Hadoop distribution called Cloudera's
Distribution Including and a proprietary Hadoop cluster manager called Cloudera
Manager, which helps users set up large clusters
with extreme ease.

Introducing CDH
CDH or Cloudera's Distribution Including Apache Hadoop is an enterprise-level
distribution including Apache Hadoop and several components of its ecosystem
such as Apache Hive, Apache Avro, HBase, and many more. CDH is 100 percent
open source. It is the most downloaded distribution in its space. As of writing this
book, the current version of CDH is CDH 5.0.

Some of the important features of CDH are as follows:

•	 All components are thoroughly tested by Cloudera, to see that they work
well with each other, making it a very stable distribution

•	 All enterprise needs such as security and high availability are built-in as
part of the distribution

•	 The distribution is very well documented making it easy for anyone
interested to get the services up and running quickly

Getting Started with Apache Hadoop

[20]

Responsibilities of a Hadoop
administrator
With the increase in the interest to derive insight on their big data, organizations are
now planning and building their big data teams aggressively. To start working on
their data, they need to have a good solid infrastructure. Once they have this setup,
they need several controls and system policies in place to maintain, manage, and
troubleshoot their cluster.

There is an ever-increasing demand for Hadoop Administrators in the market
as their function (setting up and maintaining Hadoop clusters) is what makes
analysis really possible.

The Hadoop administrator needs to be very good at system operations, networking,
operating systems, and storage. They need to have a strong knowledge of computer
hardware and their operations, in a complex network.

Apache Hadoop, mainly, runs on Linux. So having good Linux skills such as
monitoring, troubleshooting, configuration, and security is a must.

Setting up nodes for clusters involves a lot of repetitive tasks and the Hadoop
administrator should use quicker and efficient ways to bring up these servers using
configuration management tools such as Puppet, Chef, and CFEngine. Apart from
these tools, the administrator should also have good capacity planning skills to
design and plan clusters.

There are several nodes in a cluster that would need duplication of data, for example,
the fsimage file of the namenode daemon can be configured to write to two different
disks on the same node or on a disk on a different node. An understanding of NFS
mount points and how to set it up within a cluster is required. The administrator
may also be asked to set up RAID for disks on specific nodes.

As all Hadoop services/daemons are built on Java, a basic knowledge of the
JVM along with the ability to understand Java exceptions would be very useful.
This helps administrators identify issues quickly.

The Hadoop administrator should possess the skills to benchmark the cluster to
test performance under high traffic scenarios.

Chapter 1

[21]

Clusters are prone to failures as they are up all the time and are processing large
amounts of data regularly. To monitor the health of the cluster, the administrator
should deploy monitoring tools such as Nagios and Ganglia and should configure
alerts and monitors for critical nodes of the cluster to foresee issues before they occur.

Knowledge of a good scripting language such as Python, Ruby, or Shell would
greatly help the function of an administrator. Often, administrators are asked
to set up some kind of a scheduled file staging from an external source to HDFS.
The scripting skills help them execute these requests by building scripts and
automating them.

Above all, the Hadoop administrator should have a very good understanding of
the Apache Hadoop architecture and its inner workings.

The following are some of the key Hadoop-related operations that the Hadoop
administrator should know:

•	 Planning the cluster, deciding on the number of nodes based on the
estimated amount of data the cluster is going to serve.

•	 Installing and upgrading Apache Hadoop on a cluster.
•	 Configuring and tuning Hadoop using the various configuration files

available within Hadoop.
•	 An understanding of all the Hadoop daemons along with their roles and

responsibilities in the cluster.
•	 The administrator should know how to read and interpret Hadoop logs.
•	 Adding and removing nodes in the cluster.
•	 Rebalancing nodes in the cluster.
•	 Employ security using an authentication and authorization system such

as Kerberos.
•	 Almost all organizations follow the policy of backing up their data

and it is the responsibility of the administrator to perform this activity.
So, an administrator should be well versed with backups and recovery
operations of servers.

Getting Started with Apache Hadoop

[22]

Summary
In this chapter, we started out by exploring the history of Apache Hadoop and
moved on to understanding its specific components. We also introduced ourselves
to the new version of Apache Hadoop. We learned about Cloudera and its Apache
Hadoop distribution called CDH and finally looked at some important roles and
responsibilities of an Apache Hadoop administrator.

In the next chapter, we will get a more detailed understanding of Apache Hadoop's
distributed filesystem, HDFS, and its programming model, MapReduce.

HDFS and MapReduce
We now have a basic understanding of the Apache Hadoop architecture and its
inner workings. In this chapter, we will dive deeper into the two major components
of Apache Hadoop—HDFS and MapReduce, and will cover the following topics:

•	 Essentials of Hadoop Distributed File System
•	 The read/write operational flow in HDFS
•	 Exploring HDFS commands
•	 Getting acquainted with MapReduce

Essentials of HDFS
HDFS is a distributed filesystem that has been designed to run on top of a cluster
of industry standard hardware. The architecture of HDFS is such that there is no
specific need for high-end hardware. HDFS is a highly fault-tolerant system and
can handle failures of nodes in a cluster without loss of data. The primary goal
behind the design of HDFS is to serve large data files efficiently. HDFS achieves
this efficiency and high throughput in data transfer by enabling streaming access
to the data in the filesystem.

The following are the important features of HDFS:

•	 Fault tolerance: Many computers working together as a cluster are bound
to have hardware failures. Hardware failures such as disk failures, network
connectivity issues, and RAM failures could disrupt processing and cause
major downtime. This could lead to data loss as well slippage of critical
SLAs. HDFS is designed to withstand such hardware failures by detecting
faults and taking recovery actions as required.

HDFS and MapReduce

[24]

The data in HDFS is split across the machines in the cluster as chunks of
data called blocks. These blocks are replicated across multiple machines of
the cluster for redundancy. So, even if a node/machine becomes completely
unusable and shuts down, the processing can go on with the copy of the data
present on the nodes where the data was replicated.

•	 Streaming data: Streaming access enables data to be transferred in the form
of a steady and continuous stream. This means if data from a file in HDFS
needs to be processed, HDFS starts sending the data as it reads the file and
does not wait for the entire file to be read. The client who is consuming this
data starts processing the data immediately, as it receives the stream from
HDFS. This makes data processing really fast.

•	 Large data store: HDFS is used to store large volumes of data. HDFS
functions best when the individual data files stored are large files, rather than
having large number of small files. File sizes in most Hadoop clusters range
from gigabytes to terabytes. The storage scales linearly as more nodes are
added to the cluster.

•	 Portable: HDFS is a highly portable system. Since it is built on Java, any
machine or operating system that can run Java should be able to run HDFS.
Even at the hardware layer, HDFS is flexible and runs on most of the
commonly available hardware platforms. Most production level clusters
have been set up on commodity hardware.

•	 Easy interface: The HDFS command-line interface is very similar to any
Linux/Unix system. The commands are similar in most cases. So, if one is
comfortable with the performing basic file actions in Linux/Unix, using
commands with HDFS should be very easy.

The following two daemons are responsible for operations on HDFS:

•	 Namenode
•	 Datanode

In Chapter 1, Getting Started with Apache Hadoop, we already covered the details
on how the namenode and datanodes daemons work together to store files in the
cluster. These daemons talk to each other via TCP/IP.

Configuring HDFS
All HDFS-related configuration is done by adding/updating the properties
in the hdfs-site.xml file that is found in the conf folder under the Hadoop
installation folder.

Chapter 2

[25]

The following are the different properties that are part of the hdfs-site.xml file:

•	 dfs.namenode.servicerpc-address: This specifies the unique namenode
RPC address in the cluster. Services/daemons such as the secondary
namenode and datanode daemons use this address to connect to the
namenode daemon whenever it needs to communicate. This property
is shown in the following code snippet:
<property>
 <name>dfs.namenode.servicerpc-address</name>
 <value>node1.hcluster:8022</value>
</property>

•	 dfs.namenode.http-address: This specifies the URL that can be used
to monitor the namenode daemon from a browser. This property is shown
in the following code snippet:
<property>
 <name>dfs.namenode.http-address</name>
 <value>node1.hcluster:50070</value>
</property>

•	 dfs.replication: This specifies the replication factor for data block
replication across the datanode daemons. The default is 3 as shown in
the following code snippet:
<property>
 <name>dfs.replication</name>
 <value>3</value>
</property>

•	 dfs.blocksize: This specifies the block size. In the following example,
the size is specified in bytes (134,217,728 bytes is 128 MB):
<property>
 <name>dfs.blocksize</name>
 <value>134217728</value>
</property>

•	 fs.permissions.umask-mode: This specifies the umask value that will be
used when creating files and directories in HDFS. This property is shown
in the following code snippet:
<property>
 <name>fs.permissions.umask-mode</name>
 <value>022</value>
</property>

www.allitebooks.com

http://www.allitebooks.org

HDFS and MapReduce

[26]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

The read/write operational flow in HDFS
To get a better understanding of HDFS, we need to understand the flow of
operations for the following two scenarios:

•	 A file is written to HDFS
•	 A file is read from HDFS

HDFS uses a single-write, multiple-read model, where the files are written
once and read several times. The data cannot be altered once written. However,
data can be appended to the file by reopening it. All files in the HDFS are saved
as data blocks.

Writing files in HDFS
The following sequence of steps occur when a client tries to write a file to HDFS:

1.	 The client informs the namenode daemon that it wants to write a file.
The namenode daemon checks to see whether the file already exists.

2.	 If it exists, an appropriate message is sent back to the client. If it does not
exist, the namenode daemon makes a metadata entry for the new file.

3.	 The file to be written is split into data packets at the client end and a data
queue is built. The packets in the queue are then streamed to the datanodes
in the cluster.

4.	 The list of datanodes is given by the namenode daemon, which is prepared
based on the data replication factor configured. A pipeline is built to perform
the writes to all datanodes provided by the namenode daemon.

5.	 The first packet from the data queue is then transferred to the first datanode
daemon. The block is stored on the first datanode daemon and is then copied
to the next datanode daemon in the pipeline. This process goes on till the
packet is written to the last datanode daemon in the pipeline.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 2

[27]

6.	 The sequence is repeated for all the packets in the data queue. For every
packet written on the datanode daemon, a corresponding acknowledgement
is sent back to the client.

7.	 If a packet fails to write onto one of the datanodes, the datanode daemon is
removed from the pipeline and the remainder of the packets is written to
the good datanodes. The namenode daemon notices the under-replication of
the block and arranges for another datanode daemon where the block could
be replicated.

8.	 After all the packets are written, the client performs a close action, indicating
that the packets in the data queue have been completely transferred.

9.	 The client informs the namenode daemon that the write operation is
now complete.

The following diagram shows the data block replication process across the datanodes
during a write operation in HDFS:

HDFS and MapReduce

[28]

Reading files in HDFS
The following steps occur when a client tries to read a file in HDFS:

1.	 The client contacts the namenode daemon to get the location of the data
blocks of the file it wants to read.

2.	 The namenode daemon returns the list of addresses of the datanodes for
the data blocks.

3.	 For any read operation, HDFS tries to return the node with the data block
that is closest to the client. Here, closest refers to network proximity between
the datanode daemon and the client.

4.	 Once the client has the list, it connects the closest datanode daemon and
starts reading the data block using a stream.

5.	 After the block is read completely, the connection to datanode is terminated
and the datanode daemon that hosts the next block in the sequence is
identified and the data block is streamed. This goes on until the last data
block for that file is read.

The following diagram shows the read operation of a file in HDFS:

Chapter 2

[29]

Understanding the namenode UI
Hadoop provides web interfaces for each of its services. The namenode UI or the
namenode web interface is used to monitor the status of the namenode and can be
accessed using the following URL:

http://<namenode-server>:50070/

The namenode UI has the following sections:

•	 Overview: The general information section provides basic information
of the namenode with options to browse the filesystem and the
namenode logs.
The following is the screenshot of the Overview section of the
namenode UI:

The Cluster ID parameter displays the identification number of the
cluster. This number is same across all the nodes within the cluster.
A block pool is a set of blocks that belong to a single namespace.
The Block Pool Id parameter is used to segregate the block pools in case
there are multiple namespaces configured when using HDFS federation.
In HDFS federation, multiple namenodes are configured to scale the name
service horizontally. These namenodes are configured to share datanodes
amongst themselves. We will be exploring HDFS federation in detail a
bit later.

HDFS and MapReduce

[30]

•	 Summary: The following is the screenshot of the cluster's summary section
from the namenode web interface:

Under the Summary section, the first parameter is related to the
security configuration of the cluster. If Kerberos (the authorization and
authentication system used in Hadoop) is configured, the parameter will
show as Security is on. If Kerberos is not configured, the parameter will
show as Security is off.
The next parameter displays information related to files and blocks
in the cluster. Along with this information, the heap and non-heap
memory utilization is also displayed. The other parameters displayed
in the Summary section are as follows:

°° Configured Capacity: This displays the total capacity (storage space)
of HDFS.

°° DFS Used: This displays the total space used in HDFS.
°° Non DFS Used: This displays the amount of space used by other files

that are not part of HDFS. This is the space used by the operating
system and other files.

Chapter 2

[31]

°° DFS Remaining: This displays the total space remaining in HDFS.
°° DFS Used%: This displays the total HDFS space utilization shown

as percentage.
°° DFS Remaining%: This displays the total HDFS space remaining

shown as percentage.
°° Block Pool Used: This displays the total space utilized by the

current namespace.
°° Block Pool Used%: This displays the total space utilized by the

current namespace shown as percentage. As you can see in the
preceding screenshot, in this case, the value matches that of the
DFS Used% parameter. This is because there is only one namespace
(one namenode) and HDFS is not federated.

°° DataNodes usages% (Min, Median, Max, stdDev): This displays the
usages across all datanodes in the cluster. This helps administrators
identify unbalanced nodes, which may occur when data is not
uniformly placed across the datanodes. Administrators have the
option to rebalance the datanodes using a balancer.

°° Live Nodes: This link displays all the datanodes in the cluster as
shown in the following screenshot:

HDFS and MapReduce

[32]

°° Dead Nodes: This link displays all the datanodes that are currently
in a dead state in the cluster. A dead state for a datanode daemon is
when the datanode daemon is not running or has not sent a heartbeat
message to the namenode daemon. Datanodes are unable to send
heartbeats if there exists a network connection issue between the
machines that host the datanode and namenode daemons. Excessive
swapping on the datanode machine causes the machine to become
unresponsive, which also prevents the datanode daemon from
sending heartbeats.

°° Decommissioning Nodes: This link lists all the datanodes that are
being decommissioned.

°° Number of Under-Replicated Blocks: This represents the number
of blocks that have not replicated as per the replication factor
configured in the hdfs-site.xml file.

•	 Namenode Journal Status: The journal status provides location information
of the fsimage file and the state of the edits logfile. The following
screenshot shows the NameNode Journal Status section:

•	 NameNode Storage: The namenode storage table provides the location of the
fsimage file along with the type of the location. In this case, it is IMAGE_AND_
EDITS, which means the same location is used to store the fsimage file as
well as the edits logfile. The other types of locations are IMAGE, which stores
only the fsimage file and EDITS, which stores only the edits logfile.
The following screenshot shows the NameNode Storage information:

Chapter 2

[33]

Understanding the secondary
namenode UI
The secondary namenode is a checkpoint service for the namenode daemon that
performs periodic merging of the edits log and the fsimage file. The secondary
namenode UI can be accessed using the following URL:

http://<secondary-namenode-server>:50090/

The following screenshot shows the secondary namenode UI:

Just like the namenode UI, the secondary namenode UI also displays the Hadoop
version. All checkpoint related information is available in this UI, which are given
as follows:

•	 Name Node Address: This is the RPC address of the primary namenode
daemon. Secondary namenode uses this address to connect to primary
namenode.

•	 Start Time: This is the start timestamp of the secondary namenode service.
•	 Last Checkpoint Time: This the timestamp of the last checkpoint action

performed by the secondary namenode daemon.
•	 Checkpoint Period: This property defines the schedule to perform the

checkpoint. In the preceding screenshot, the value is 3,600 seconds. This
means that every 3,600 seconds (1 hour), the secondary namenode daemon
will perform the checkpoint operation.

HDFS and MapReduce

[34]

•	 Checkpoint Size: If the edits logfile reaches this checkpoint size,
the secondary namenode daemon will perform the checkpoint even
if the check point period has not elapsed.

•	 Checkpoint Dirs: This is the location of the fsimage file stored by the
secondary namenode daemon.

•	 Checkpoint Edit Dirs: This is the location of the edits logfiles stored by
the secondary namenode daemon.

Exploring HDFS commands
To perform filesystem related tasks, the commands begin with hdfs dfs.
The filesystem commands have been designed to behave similarly to the
corresponding Unix/Linux filesystem commands.

What is a URI? URI stands for Uniform Resource Identifier. In the commands that
are listed as follows, you will observe the use of URI for file locations. The URI
syntax to access a file in HDFS is hdfs://namenodehost/parent/child/<file>.

Commonly used HDFS commands
The following are some of the most commonly used HDFS commands:

•	 ls: This command lists files in HDFS.
The syntax of the ls command is hdfs dfs -ls <args>. The following is
the screenshot showing an example of the ls command:

Chapter 2

[35]

•	 cat: This command displays the contents of file/files in the terminal.
The syntax of the cat command is hdfs dfs -cat URI [URI …].
The following is a sample output of the cat command:

•	 copyFromLocal: This command copies a file/files from the local filesystem
to HDFS.
The syntax of the copyFromLocal command is hdfs dfs -copyFromLocal
<localsrc> URI. The following is the screenshot showing an example of
the copyFromLocal command:

•	 copyToLocal: This command copies a file/files from HDFS to the
local filesystem.
The syntax of the copyToLocal command is hdfs dfs -copyToLocal URI
<localdst>. The following is the screenshot showing an example of the
copyToLocal command:

www.allitebooks.com

http://www.allitebooks.org

HDFS and MapReduce

[36]

•	 cp: This command copies files within HDFS.
The syntax of the cp command is hdfs dfs -cp URI [URI …] <dest>.
The following is the screenshot showing an example of the cp command:

•	 mkdir: This command creates a directory in HDFS.
The syntax of the mkdir command is hdfs dfs -mkdir <paths>.
The following is the screenshot showing an example of the mkdir command:

•	 mv: This command moves files within HDFS.
The syntax of the mv command is hdfs dfs -mv URI [URI …] <dest>.
The following is the screenshot showing an example of the mv command:

•	 rm: This command deletes files from HDFS.
The syntax of the rm command is hdfs dfs -rm URI [URI …].
The following is the screenshot showing an example of the rm command:

Chapter 2

[37]

•	 rm -r: This command deletes a directory from the HDFS.
The syntax of the rm –r command is hdfs dfs –rm -r URI [URI …].
The following is the screenshot showing an example of the rm -r command:

•	 setrep: This command sets the replication factor for a file in HDFS.
The syntax of the setrep command is hdfs dfs -setrep [-R] <path>.
The following is the screenshot showing an example of the setrep command:

•	 tail: This command displays the trailing kilobyte of the contents of a file
in HDFS.
The syntax of the tail command is hdfs dfs -tail [-f] URI.
The following is the screenshot showing an example of the tail command:

Commands to administer HDFS
Hadoop provides several commands to administer HDFS. The following are two of
the commonly used administration commands in HDFS:

•	 balancer: In a cluster, new datanodes can be added. The addition of new
datanodes provides more storage space for the cluster. However, when a
new datanode is added, the datanode does not have any files. Due to the
addition of the new datanode, data blocks across all the datanodes are in a
state of imbalance, that is, they are not evenly spread across the datanodes.
The administrator can use the balancer command to balance the cluster.
The balancer can be invoked using this command.

HDFS and MapReduce

[38]

The syntax of the balancer command is hdfs balancer –threshold
<threshold>. Here, threshold is the balancing threshold expressed in
percentage. The threshold is specified as a float value that ranges from 0 to
100. The default threshold values is 10. The balancer tries to distribute blocks
to the underutilized datanodes. For example, if the average utilization of all
the datanodes in the cluster is 50 percent, the balancer, by default, will try
to pick up blocks from nodes that have a utilization of above 60 percent
(50 percent + 10 percent) and move them to nodes that have a utilization
of below 40 percent (50 percent - 10 percent).

•	 dfsadmin: The dfsadmin command is used to run administrative
commands on HDFS.
The syntax of the dfsadmin command is hadoop dfsadmin <options>.
Let's understand a few of the important command options and the actions
they perform:

°° [-report]: This generates a report of the basic filesystem
information and statistics.

°° [-safemode <enter | leave | get | wait>]: This safe mode is a
namenode state in which it does not accept changes to the namespace
(read-only) and does not replicate or delete blocks.

°° [-saveNamespace]: This saves the current state of the namespace to
a storage directory and resets the edits log.

°° [-rollEdits]: This forces a rollover of the edits log, that is, it saves
the state of the current edits log and creates a fresh edits log for
new transactions.

°° [-restoreFailedStorage true|false|check]: This enables to
set/unset or check to attempt to restore failed storage replicas.

°° [-refreshNodes]: This updates the namenode daemon with the set
of datanodes allowed to connect to the namenode daemon.

°° [-setQuota <quota> <dirname>...<dirname>]: This sets the
quota (the number of items) for the directory/directories.

°° [-clrQuota <dirname>...<dirname>]: This clears the set quota for
the directory/directories.

°° [-setSpaceQuota <quota> <dirname>...<dirname>]: This sets
the disk space quota for the directory/directories.

°° [-clrSpaceQuota <dirname>...<dirname>]: This clears the disk
space quota for the directory/directories.

°° [-refreshserviceacl]: This refreshes the service-level authorization
policy file. We will be learning more about authorization later.

Chapter 2

[39]

°° [-printTopology]: This prints the tree of the racks and their nodes
as reported by the namenode daemon.

°° [-refreshNamenodes datanodehost:port]: This reloads the
configuration files for a datanode daemon, stops serving the removed
block pools, and starts serving new block pools. A block pool is a set
of blocks that belong to a single namespace. We will be looking into
this concept a bit later.

°° [-deleteBlockPool datanodehost:port blockpoolId [force]]:
This deletes a block pool of a datanode daemon.

°° [-setBalancerBandwidth <bandwidth>]: This sets the bandwidth
limit to be used by the balancer. The bandwidth is the value in bytes
per second that the balancer should use for data blocks movement.

°° [-fetchImage <local directory>]: This gets the latest fsimage
file from namenode and saves it to the specified local directory.

°° [-help [cmd]]: This displays help for the given command or all
commands if a command is not specified.

Getting acquainted with MapReduce
Now you have a solid knowledge base in HDFS, it is now time to dive into the
processing module of Hadoop known as MapReduce. Once we have the data in
the cluster, we need a programming model to perform advanced operations on it.
This is done using Hadoop's MapReduce.

The MapReduce programming model concept has been in existence for quite some
time now. This model was designed to process large volumes of data in parallel.
Google implemented a version of MapReduce in house to process their data stored
on GFS. Later, Google released a paper explaining their implementation. Hadoop's
MapReduce implementation is based on this paper.

MapReduce in Hadoop is a Java-based distributed programming framework that
leverages the features of HDFS to execute high performance batch processing of
the data stored in HDFS.

The processing can be divided into major functions, which are:

•	 Map
•	 Reduce

Since the primary focus of this book is on the administrative aspects of Hadoop,
we will focus on the MapReduce architecture and how it works together with
HDFS to process large volumes of data.

HDFS and MapReduce

[40]

Understanding the map phase
In a MapReduce application, all the data read in the map function is read in the form
of key and value pairs. The processed output of the map function is also in the form
of key and value pairs. The processing of data as key and value pairs works well in
a distributed computing environment.

Let's understand how MapReduce works with the help of an example. The
word counting program is known as the Hello, World program for MapReduce.
The program counts the number of words in an input set of text files.

For this example, let's consider a file with the following line in it:

She sells sea shells on the sea shore where she also sells
cookies.

So, if the preceding text is provided as an input to the word count program,
the expected output would be as follows:

she, 2
sells,2
sea, 2
shells, 1
on, 1
the, 1
shore, 1
where, 1
also, 1
cookies, 1

The three major components of a MapReduce program are:

•	 Driver
•	 Mapper
•	 Reducer

The driver component of a MapReduce program is responsible for setting up the
job configurations and submitting it to the Hadoop cluster. This part of the program
runs on the client computer.

The driver component of the word count program would take two parameters to
submit the job to the Hadoop cluster:

•	 The location of the input files
•	 The location of the output file

Chapter 2

[41]

Once the job is submitted to the cluster, the mapper reads every line in the file
as <key, value> pairs. So, if we consider a file with the line mentioned earlier,
the key will be the offset of the line and the value will be the entire sentence.

The mapper reads the line as follows:

<0000, She sells sea shells on the sea shore where she also sells
cookies>

Once read, the mapper logic would emit the <key, value> pairs for each word in
the sentence as follows:

<she, 1>
<sells, 1>
<sea, 1>
<shells, 1>
<on, 1>
<the, 1>
<sea, 1>
<shore, 1>
<where, 1>
<she, 1>
<also, 1>
<sells, 1>
<cookies, 1>

The mapping function has emitted each word in the sentence as a key and constant
number 1 as the value for each key.

Understanding the reduce phase
The reduce function reads the intermediate <key, value> pairs emitted by the
mapper and produces the final result.

These results are then taken as input by the reducer in a sorted order of the keys.
The reducer logic would then work on each key group; in this case, it would sum up
the values for each key and would produce the final result as follows:

she, 2
sells,2
sea, 2
shells, 1
on, 1
the, 1
shore, 1
where, 1
also, 1
cookies, 1

HDFS and MapReduce

[42]

The following is a functional representation of the map and reduce functions:

Function Input Output
map <k1, v1> list(k2, v2)
reduce <k2, list(v2)> list(<k3, v3>)

The following diagram shows the flow of a MapReduce job starting from an input
file right up to the generation of an output file:

Chapter 2

[43]

In the preceding diagram, you see a very simple flow of MapReduce. However,
in real production scenarios, there are multiple mappers and reducers.

When there are multiple mappers and reducers involved, there is a phase between
the mapper and reducer known as the shuffle and sort phase. In this phase, all
the keys are sorted and sent to the reducers. Each reducer works on the set of keys
and values provided as input and generates their own output file as shown in the
following diagram:

Learning all about the MapReduce job flow
There are several operations and services involved in the submission and execution
of a MapReduce job in a Hadoop cluster.

The two main services that are responsible for job execution are:

•	 Jobtracker
•	 Tasktracker

HDFS and MapReduce

[44]

When a client initiates a job submission to the cluster, a new job ID is created by the
jobtracker and returned to the client. After getting the ID, the job resources along
with the information on the input splits of the data are then copied to HDFS so that
all the services in the cluster can access it. The client then polls the jobtracker every
second to check the job's completion status.

The jobtracker then takes over and initializes the job in the cluster by accessing the
job resources in HDFS. The jobtracker retrieves the input splits information and then
decides the tasks that it needs to assign to tasktrackers. The job tracker creates a map
task for each of the input splits and then assigns the map tasks to the tasktrackers.
The tasktrackers are also responsible for running the reduce tasks on completion of
the map tasks. The jobtracker tries to assign map tasks to tasktrackers on nodes that
are in close proximity to the data. This greatly improves performance by limiting the
data transferred across the network (data locality).

The tasktracker is the actual service that runs a task. Tasktrackers are running
all the time and are waiting for tasks to be assigned to them by the jobtracker.
Tasktrackers are configured to run a specific number of map and reduce tasks.
These are called slots.

The tasktracker sends a periodic heartbeat to the jobtracker to inform it that it is
alive along with the number of map and reduce slots it has available. The jobtracker
assigns tasks as a return value for the heartbeat. Once the task is assigned, the
tasktracker copies the client program (usually a java compiled set of classes, referred
to as a jar) to its local space from HDFS. All the intermediate data generated by the
map task is stored locally on the node where the tasktracker runs.

After all the map and reduce tasks are completed, the jobtracker receives a notification
of completion. The jobtracker marks the job as successful. The client that polls for the
status of the job prints the completion notification on the client console.

Configuring MapReduce
All MapReduce-related configuration is done by adding/updating the properties in
the mapred-site.xml file. The following is an example of a mapred-site.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <property>
 <name>mapred.job.tracker</name>
 <value>node1.hcluster:8021</value>
 </property>
 <property>
 <name>mapred.job.tracker.http.address</name>
 <value>0.0.0.0:50030</value>
 </property>

Chapter 2

[45]

 <property>
 <name>mapreduce.job.counters.max</name>
 <value>120</value>
 </property>
 <property>
 <name>mapred.output.compress</name>
 <value>false</value>
 </property>
 <property>
 <name>mapred.output.compression.type</name>
 <value>BLOCK</value>
 </property>
 <property>
 <name>mapred.output.compression.codec</name>
 <value>org.apache.hadoop.io.compress.DefaultCodec</value>
 </property>
 <property>
 <name>mapred.map.output.compression.codec</name>
 <value>org.apache.hadoop.io.compress.SnappyCodec</value>
 </property>
 <property>
 <name>mapred.compress.map.output</name>
 <value>true</value>
 </property>
 <property>
 <name>io.sort.mb</name>
 <value>50</value>
 </property>
 <property>
 <name>io.sort.factor</name>
 <value>64</value>
 </property>
 <property>
 <name>mapred.reduce.parallel.copies</name>
 <value>10</value>
 </property>
 <property>
 <name>mapred.submit.replication</name>
 <value>2</value>
 </property>
 <property>
 <name>mapred.reduce.tasks</name>
 <value>4</value>
 </property>
 <property>
 <name>mapred.userlog.retain.hours</name>
 <value>24</value>
 </property>
 <property>
 <name>mapred.child.java.opts</name>

www.allitebooks.com

http://www.allitebooks.org

HDFS and MapReduce

[46]

 <value> -Xmx112889935</value>
 </property>
 <property>
 <name>mapred.job.reuse.jvm.num.tasks</name>
 <value>1</value>
 </property>
 <property>
 <name>mapred.map.tasks.speculative.execution</name>
 <value>false</value>
 </property>
 <property>
 <name>mapred.reduce.tasks.speculative.execution</name>
 <value>false</value>
 </property>
 <property>
 <name>mapred.reduce.slowstart.completed.maps</name>
 <value>0.8</value>
 </property>
</configuration>

Let's discuss each property in detail:

•	 mapred.job.tracker: This property defines the host and port on which
the jobtracker runs. All communication with the jobtracker is done over
the host and port.

•	 mapred.job.tracker.http.address: This property defines the web address
of the jobtracker. This web location helps in the monitoring of jobs submitted
to the cluster.

•	 mapreduce.job.counters.max: Internally, Hadoop maintains several
counters, for example, JobCounter and TaskCounter to count the job and
task-related information during their process. However, it is also possible
for developers to define their own counters. This liberty could cause issues
if the number of counters is not controlled, as the jobtracker maintains these
counters globally. This property helps in limiting the number of counters
that can be generated.

•	 mapred.output.compress: This is a Boolean property, and if set to true,
it will compress the job's output file.

•	 mapred.output.compression.type: This property defines the type of
compression that can be set. The options are NONE, RECORD, or BLOCK.

•	 mapred.output.compression.codec: This property defines the codec to
be used for compression of the job's output file.

Chapter 2

[47]

•	 mapred.map.output.compression.codec: This property defines the codec
that should be used to compress the map output files.

•	 mapred.compress.map.output: This property, if set to true, can compress
the map output files before it is sent across the network.

•	 io.sort.mb: This property defines the memory set to perform the in-memory
sorting and is useful when tuning to reduce the number of spilled records.

•	 io.sort.factor: When output data generated from a map task is small
enough to fit into a tasktracker's memory, it is retained there and all
operations are done in-memory. However, if the data is larger than the
tasktracker's memory, it is spilled (written) to the disk. This property
defines the number of open file handles that will be used when sorting files.

•	 mapred.reduce.parallel.copies: This property defines the number of
parallel transfers done by reduce during the shuffle phase.

•	 mapred.submit.replication: This property defines the replication factor
for the job-related resources that are copied to HDFS at the initiation of a
job run.

•	 mapred.reduce.tasks: This property defines the number of reduce tasks
for a single job.

•	 mapred.userlog.retain.hours: This property defines the retention period
of the user logs after the job completion.

•	 mapred.child.java.opts: This property defines the parameters that are
passed to the tasktracker's child processes.

•	 mapred.job.reuse.jvm.num.tasks: The tasktracker creates a JVM for
each task. This property helps to alter this behavior to run more than one
task per JVM.

•	 mapred.map.tasks.speculative.execution: Speculative execution is
the ability of the jobtracker to identify slow running tasks and start another
instance of the same task in parallel. The results of the task that finishes
first will be considered and the incomplete task is discarded. This helps in
situations when nodes that are running tasks face some kind of performance
problems. If this property is set to true, two instances of the same map task
could run in parallel.

•	 mapred.reduce.tasks.speculative.execution: If this property is set
to true, multiple instances of the same reduce task can run in parallel.

•	 mapred.reduce.slowstart.completed.maps: This property defines
the percentage value of how much a map task should complete before
the reducers are scheduled for their tasks.

HDFS and MapReduce

[48]

Understanding the jobtracker UI
The jobtracker user interface provides useful information related to the jobs
executed on the cluster. The jobtracker status can be monitored via the following
jobtracker URL:

http://<serveraddress>:50030/

The UI provides complete information of the status of the jobtracker along
with the progress information of the task. The jobtracker page is divided into
the following sections:

•	 General Information: The general information section displays some
basic information of the jobtracker such as the current status, the timestamp
of when the service was started, the compilation information, and a unique
identifier for the service.
The following screenshot shows the General Information section of the
jobtracker web interface:

•	 Cluster Summary: This section displays information about the tasks and
nodes available in the cluster. Information such as the current running map
and reduce tasks and number of nodes in the cluster are self-explanatory.
Every tasktracker in the cluster has a configured number of map and reduce
slots. The occupied map slots shows the number of map slots currently in
use out of the total number of slots available in the cluster. Similarly, the
occupied reduce slots show the number of reduce slots currently in use out
the total available. The map task capacity and reduce task capacity is the
value that represents the maximum number of map tasks and reduce tasks
that can be run on the cluster. The average tasks per node shows the average
number of map or reduces tasks that run on the cluster.
If a node is not performing correctly, the jobtracker can blacklist the node
so that no new tasks are assigned to it. The Blacklisted Nodes column in
the Cluster Summary table shows the number of blacklisted nodes in the
cluster. The excluded nodes show the number of decommissioned nodes
in the cluster.

Chapter 2

[49]

The following screenshot shows the Cluster Summary section of the
jobtracker web interface:

•	 Scheduling Information: This section shows the job scheduler information
for the cluster. Here, the default job scheduler is a hyperlink that can be clicked
to see the information of the jobs that are currently in queue. The default
scheduler maintains a queue of all the jobs submitted and completes jobs
sequentially. There are other types of the schedulers too that can be configured
to run jobs in Hadoop, such as fair scheduler and capacity scheduler.
The following screenshot shows the Scheduling Information section of the
jobtracker web interface:

•	 Running Jobs: This section shows the details of the current running jobs
in the cluster. This is very useful to monitor the status of the jobs. The
Jobid column lists all the job IDs and each of them are hyperlinks. Clicking
on one will bring up more details of the job. Some other basic job-related
information such as the job priority, the user who submitted the job, and the
name of the job are also displayed. The progress of the cumulative map and
reduce tasks are also shown as percentages. Total map tasks, completed map
tasks, total reduce tasks, and completed reduce task are also displayed.
The following screenshot shows the Running Jobs section of the jobtracker
web interface:

HDFS and MapReduce

[50]

•	 Completed Jobs: This section is very similar to that of the running jobs
section except that this lists only the completed jobs. This does not show
any in-progress or failed jobs.
The following screenshot shows the Completed Jobs section of the jobtracker
web interface:

•	 Failed Jobs: The failed jobs section, as the name suggests, lists all the jobs
that failed in the cluster.
The following screenshot shows the Failed Jobs section of the jobtracker
web interface:

•	 Retired Jobs: The jobs submitted to the Hadoop cluster stay in memory on
successful completion. They are automatically written to the disk after a
certain configured period of time. This configuration (mapred.jobtracker.
retirejob.interval) is set in the mapred-site.xml file.

Chapter 2

[51]

The following screenshot shows the Retired Jobs section of the jobtracker
web interface:

•	 Local Logs: This section provides hyperlinks to the log directory and the
jobtracker history for all the jobs on the cluster. The log directory consists
of logs related to the jobtracker as well as tasktracker.

The following screenshot shows the Local Logs section of the jobtracker
web interface:

One of the hyperlinks of this section is:

°° Job Tracker History: This hyperlink from the Local Logs section
brings up the list of all the jobs that ran on the cluster with details
of when they were submitted, the ID, the job name, and the user
who submitted the job. Here, the job ID is a hyperlink that brings
up further details of the job. The following is a screenshot of the
Hadoop Map/Reduce History Viewer section:

HDFS and MapReduce

[52]

Getting MapReduce job information
The following sections are displayed when the Jobid link available in the
Running Jobs section is clicked:

•	 General information: This section provides basic details of the job such
as the user, the name of the job, and the configuration file. Along with this,
the section also shows the current status of the job, the running duration,
and the job start timestamp.
The following screenshot shows the general information section:

•	 Map and reduce progress information: This section displays the
complete details of the number of map and reduce tasks for the current job.
Information such as completion status, total number of tasks, number of
running tasks, number of completed tasks, and the number of killed tasks
are also displayed.
The following screenshot shows the map and reduce progress
information section:

Chapter 2

[53]

•	 Counter information: Hadoop has several built-in counters that provide
information about the job being executed. These counters help us understand
the behavior of the job and also assist us identify problems with a job a job.
Developers can also build custom counters to track certain aspects of their
application. The counter information section provides filesystem counter
information, job counter information, and statistics related to the MapReduce
operations of the job.
The following screenshot shows the counter information section:

HDFS and MapReduce

[54]

•	 Map and reduce completion graphs: The map and reduce completion graphs
provide a graphical representation of the map and reduce tasks for the job.
The map completion graph shows progress information of all the map tasks
submitted to the cluster for the job. The reduce completion graph shows
progress information of each phase: the copy, sort, and reduce operations.

The following screenshot shows the map and reduce completion graphs:

All the preceding information is really helpful to monitor the status of a job.

Chapter 2

[55]

Summary
In this chapter, we have learned the essentials of HDFS, such as file operations
on HDFS and how to configure HDFS. We looked at the namenode and secondary
namenode web interfaces and explored a few HDFS commands. We also covered
the MapReduce architecture along with a detailed walkthrough of the namenode
and jobtracker web interfaces.

In the next chapter, we will dive into Cloudera's Distribution Including
Apache Hadoop (CDH).

www.allitebooks.com

http://www.allitebooks.org

Cloudera's Distribution
Including Apache Hadoop

With knowledge of HDFS and MapReduce, you are now ready to explore the world's
most used Apache Hadoop distribution, Cloudera's Distribution Including Apache
Hadoop (CDH). CDH is thoroughly tested and consists of a host of components that
have been carefully packaged to work well with each other.

In this chapter, we will cover the following topics:

•	 Getting started with CDH
•	 Understanding the CDH components
•	 Installing CDH
•	 Installing the CDH components

Getting started with CDH
Cloudera is an organization that has been working with Hadoop and its
related technologies for a few years now. It is an expert in the field of handling
large amounts of data using Hadoop and various other open source tools and
projects. It is one of the major contributors to several of the Apache projects.
Over the years, Cloudera has deployed several clusters for hundreds of its
customers. It is equipped with practical knowledge of the issues and details
of real production clusters. To solve these issues, Cloudera built CDH.

Cloudera's Distribution Including Apache Hadoop

[58]

In most distributed computing clusters, there are several tools that need to work
together to provide the desired output. These tools are individually installed and are
then configured to work well with each other. This approach often creates problems
as the tools are never tested together.

Also, the setup and configuration of these tools is tedious and prone to errors.
CDH solves this problem as it is packaged with thoroughly tested tools that work
well together in a single powerful distribution. Installation and configuration of the
various tools and components is more organized with CDH.

CDH has everything an enterprise needs for its big data projects. The components
packaged into CDH provide tools for storage as well as the computation of large
volumes of data. By using CDH, an enterprise is guaranteed to have good support
from the community for its Hadoop deployment.

Understanding the CDH components
As mentioned earlier, there are several top-level Apache open source projects that
are part of CDH. Let's discuss these components in detail.

Apache Hadoop
CDH comes with Apache Hadoop, a system that we have already been introduced
to, for high-volume storage and computing. The subcomponents that are part of
Hadoop are HDFS, Fuse-DFS, MapReduce, and MapReduce 2 (YARN). Fuse-DFS is
a module that helps to mount HDFS to the user space. Once mounted, HDFS will be
accessible like any other traditional filesystem.

Apache Flume NG
Apache Flume NG Version 1.x is a distributed framework that handles the collection
and aggregation of large amounts of log data. This project was primarily built to
handle streaming data. Flume is robust, reliable, and fault tolerant. Though Flume
was built to handle the streaming of log data, its flexibility when handling multiple
data sources makes it easy to configure it to handle event data. Flume can handle
almost any kind of data. Flume performs the operations of collection and aggregation
using agents. An agent is comprised of a source, a channel, and a sink.

Chapter 3

[59]

Events such as the streaming of log files are fed to the source. There are different
types of Flume sources, which can consume different types of data. After receiving
the events, the sources store the data in channels. A channel is a queue that contains
all the data received from a source. The data is retained in the channel until it is
consumed by the sink. The sink is responsible for taking data from channels and
placing it on an external store such as HDFS.

The following diagram shows the flow of event/log data to HDFS via the agent:

In the preceding diagram, we see a simple data flow where events or logs are
provided as an input to a Flume agent. The source, which is a subcomponent of the
agent, forwards the data to one or more channels. The data from the channel is then
taken by the sink and finally pushed to HDFS. It is important to note that the source
and sink of an agent work asynchronously. The rate at which the data is pushed
to the channel and the rate at which the sink pulls the data from the channel are
configured to handle spikes that occur with the event/log data.

Using Flume, you can configure more complex data flows where the sink from one
agent could be an input to the source of another agent. Such flows are referred to
as multi-hop flows.

The following diagram shows the flow of event/log data to HDFS via
multiple agents:

As an administrator, you will appreciate the flexibility of Flume because in many
cases, it will be the administrator who recommends solutions to collect and
aggregate data to HDFS in a Hadoop cluster.

Cloudera's Distribution Including Apache Hadoop

[60]

Apache Sqoop
While analyzing data, data analysts often have to gather data from different
sources such as external relational databases and bring it into HDFS for processing.
Also, after processing data in Hadoop, analysts may also send the data from HDFS
back to some external relational data stores. Apache Sqoop is just the tool for such
requirements. Sqoop is used to transfer data between HDFS and relational database
systems such as MySQL and Oracle.

Sqoop expects the external database to define the schema for the imports to HDFS.
Here, the schema refers to metadata or the structure of the data. The importation
and exportation of data in Sqoop is done using MapReduce, thereby leveraging the
robust features of MapReduce to perform its operations.

When importing data from an external relational database, Sqoop takes the table as
an input, reads the table row by row, and generates output files that are placed in
HDFS. The Sqoop import runs in a parallel model (MapReduce), generating several
output files for a single input table.

The following diagram shows the two-way flow of data from RDBMS to HDFS
and vice versa:

Once the data is in HDFS, analysts process this data, which generates subsequent
output files. These results, if required, can be exported to an external relational
database system using Sqoop. Sqoop reads delimited files from HDFS, constructs
database records, and inserts them into the external table.

Sqoop is a highly configurable tool where you can define the columns that need
to be imported/exported to and from HDFS. All operations in Sqoop are done
using the command-line interface. Sqoop 2, a newer version of Sqoop, now provides
an additional web user interface to perform the importations and exportations.

Sqoop is a client-side application whereas the new Sqoop 2 is a server-side
(Sqoop server) application. The Sqoop 2 server also provides a REST API
for other applications to easily talk to Sqoop 2.

Chapter 3

[61]

Apache Pig
Hadoop is a powerful framework. The processing of data in Hadoop is achieved
by MapReduce, which is a Java-based framework. All MapReduce applications are
written in Java. To make it easier for non-Java programmers to work with Hadoop,
Yahoo! developed a platform known as Pig.

Pig, a top-level Apache project, provides a simple high-level scripting language called
Pig Latin, which allows users to write intuitive scripts to process data stored in HDFS.

Internally, Pig Latin is converted to several MapReduce jobs to process the data in
HDFS. Pig is an abstraction over MapReduce.

Apache Hive
Just like Pig, Hive is an abstraction over MapReduce. However, the Hive interface
is more similar to SQL. This helps SQL-conversant users work with Hadoop. Hive
provides a mechanism to define a structure of the data stored in HDFS and queries
it just like a relational database. The query language for Hive is called HiveQL.

Hive provides a very handy way to plug in custom mappers and reducers written in
MapReduce to perform advanced data processing.

Hive usually runs on the client-side machine. Internally, it interacts directly with
the jobtracker daemon on the Hadoop cluster to create MapReduce jobs based on the
HiveQL statement provided via the Hive command-line interface. Hive maintains a
metastore where it stores all table schemas for the required files stored in HDFS.
This metastore is often a relational database system like MySQL.

The following diagram shows the high-level workings of Apache Hive:

Metastore

HiveQL

SELECT statements
in HiveQL

MapReduce

HDFS

HiveQL converted
to MR jobs

Cloudera's Distribution Including Apache Hadoop

[62]

The Hive command-line interface uses the schema available on the metastore along
with the query provided, to compute the number of MapReduce jobs that need to be
executed on the cluster. Once all the jobs are executed, the output (based on the query)
is either displayed onto the client's terminal or is represented as an output table in
Hive. The table is nothing but a schema (structure) for the output files generated by
the internal MapReduce jobs that were spawned for the provided HiveQL.

Apache ZooKeeper
Building a distributed application requires the management of several nodes and
processes working together at the same time. Synchronization and coordination
of the nodes is the primary responsibility of any distributed application. As this
is a common requirement for many distributed applications, having a common
framework to achieve this has been the primary focus of the open source community
in the distributed computing space.

Apache ZooKeeper is a distributed coordination service. It is a framework that
can be used to build distributed applications by providing a set of services such as
a name service, locking, synchronization, configuration management, and leader
election services. These services are explained as follows:

•	 Name service: A name service in a distributed systems scenario would be the
names and statuses of all the nodes and services in a cluster. ZooKeeper has
an in-built mechanism that performs the functions of a name service.

•	 Locking: Often, services in a distributed system will access a single resource
at the same time. Locking of the resources allows the sharing of common
resources efficiently. ZooKeeper provides a mechanism to lock resources.

•	 Synchronization: ZooKeeper provides a very efficient way of synchronizing
access to shared resources on the cluster.

•	 Configuration management: Having a central location for all
configuration-related information for nodes in a cluster makes it easy to
manage the cluster efficiently. All modifications to the configuration can
be done once at the central location, and the changes will be propagated
to all nodes in the cluster. Also, when new nodes are added to the cluster,
the configuration can be pulled from the central location.

•	 Leader election: Distributed systems are prone to failures whereby nodes
crash or fail abruptly. To overcome major cluster downtime, distributed
applications usually set up failover nodes for the nodes that could be the
single point of failure. ZooKeeper implements the technique of leader
election, which works perfectly for such scenarios.

Chapter 3

[63]

ZooKeeper maintains all its data in a hierarchical structure, just like a traditional
filesystem. Each data register (a unit of storage of information) in ZooKeeper is
called a znode (ZooKeeper node).

A typical ZooKeeper service comprises a set of servers that are used for the
replication of information. These multiple servers (ensemble) allow ZooKeeper to
be highly available, making ZooKeeper itself a distributed application. A client to
a ZooKeeper service is the nodes in a cluster. All ZooKeeper information runs in
the memory, making it really fast. A copy of the in-memory representation is also
maintained on the disk of the server.

The following diagram shows the high-level workings of the ZooKeeper service:

In the preceding diagram, you see a ZooKeeper service with five servers.
There is one server that is a leader and four others that are followers. Each client
(in a Hadoop cluster, each node in the cluster is a client) connects to exactly one
server in the ensemble to read information. The leader is responsible for performing
write operations in ZooKeeper. All servers need to know about the other servers
in the ensemble.

Once the leader updates the znode with the write operation, the information
is propagated to the followers. If the leader server fails, one of the followers
becomes a leader and the rest remain followers.

The concept of ZooKeeper will be clearer when we see how Apache Hadoop uses
ZooKeeper for namenode high availability. This will be covered in Chapter 4,
Exploring HDFS Federation and Its High Availability.

Cloudera's Distribution Including Apache Hadoop

[64]

Apache HBase
HBase is the Hadoop database. HBase provides fast, random read-write access
to a large volume of data. HBase leverages the Hadoop cluster to store large tables
that have millions to billions of rows with millions of columns.

HBase is a column-oriented NoSQL data store and was designed based on
Google's BigTable implementation. HBase is built on top of HDFS.

Tables in HBase are made of rows and columns. The intersection of a row and
column is called a cell. The cell in HBase is versioned by applying a timestamp
(by default) of when the data was inserted. The row acts as a key for the table,
and any access operations on the table are done using the row key.

The following diagram shows the workings of the HBase service:

Chapter 3

[65]

As shown in the preceding diagram, an HBase implementation consists of an
HBase master node, which is responsible for managing different RegionServers.
When a table in HBase grows in size, it is divided into different regions and is
spread across the different nodes of the cluster. Each node that hosts regions
is known as RegionServer. HBase relies on ZooKeeper to manage the state of
the cluster. All important configuration information is stored on the ZooKeeper
ensemble. All data for HBase is usually stored in HDFS.

As an administrator, it is very important to know the different components of an
HBase cluster as it helps with faster troubleshooting.

Apache Whirr
Organizations that run Hadoop usually set up their hardware infrastructure in-house.
However, cloud infrastructure providers such as Amazon and Rackspace allow users
to set up a complete cluster in the cloud. Apache Whirr provides the user with a set of
libraries/scripts that help users set up and manage a Hadoop cluster on the cloud.
As an administrator, you may be tasked with the responsibility of setting up a Hadoop
cluster on infrastructure provided by a cloud service provider such as Amazon. If you
are given this task, Apache Whirr is the tool that you should be using.

Snappy – previously known as Zippy
In Chapter 2, HDFS and MapReduce, we discussed the MapReduce flow in detail.
If you recollect, the map phase generates intermediate output files, which are then
transferred to reducers for the reduce phase. The output files generated by a map
phase can be compressed. The compression allows the intermediate files to be
written and read faster. Snappy is a compression/decompression library developed
by Google and can be applied to perform the compressions of these output files.
Snappy is known for its speed of compression, which in turn improves the speed
of the overall operations.

The two properties shown in the following code need to be set in the mapred-site.
xml file to enable snappy compression during the MapReduce operations:

<property>
 <name>mapred.compress.map.output</name>
 <value>true</value>
</property>
<property>
 <name>mapred.map.output.compression.codec</name>
 <value>org.apache.hadoop.io.compress.SnappyCodec</value>
</property>

Cloudera's Distribution Including Apache Hadoop

[66]

Apache Mahout
Data analysts often apply a few standard, well-established algorithms on their data
to generate useful information. When the volumes of data are large like the ones
that are available on a Hadoop cluster, they need to be expressed as MapReduce
programs. Apache Mahout is a collection of algorithms related to collaborative
filtering, clustering, and classification of data. Most of these algorithms have been
implemented in MapReduce and are readily available at the disposal of the analysts
for their data analysis and processing.

Apache Avro
During the processing of data in a distributed manner, several objects are built
and transferred between the nodes of a cluster. These objects are transferred using
the process of serialization. Serialization is the process of transforming an object
in the memory to a stream of bytes. This stream of bytes is then transferred over
the wire to the destination node. The destination node reads the stream of bytes
and reconstructs the object. This reconstruction is called deserialization. Another
use of a serialized object is to write it to a persistent store (file). Apache Avro is a
serialization-deserialization framework used in Apache Hadoop. In Hadoop, Avro
is used for interprocess communication between the different nodes in a cluster.

Apache Oozie
When dealing with big data processing, the task of processing is broken down
into several jobs. These jobs need to be executed in a specific sequence to achieve
the desired output. Executing these jobs manually would be very tedious. The
coordination and scheduling of jobs is called a workflow. Apache Oozie is a data
workflow management system for Apache Hadoop. Different types of jobs such
as MapReduce, Hive, Pig, Sqoop, or custom jobs such as Java programs can be
scheduled and coordinated using Oozie.

An Oozie workflow consists of action nodes and control nodes. An action node
is a node that executes a specific process, for example, a MapReduce job. Control
nodes are nodes that help in controlling the workflow, for example, the start node,
end node, and fail node.

The configuration of Oozie workflows is done using Hadoop Process Definition
Language (hPDL). hPDL is an XML-based definition language.

Chapter 3

[67]

The following diagram shows a sample Oozie workflow:

Cloudera Search
Cloudera Search is a search engine for Hadoop. It is a full-text search engine
built using Apache Solr, an open source enterprise class search server. The other
important components of Cloudera Search are Apache Lucene, Apache SolrCloud,
Apache Flume, and Apache Tika. Cloudera Search indexes files stored in HDFS and
HBase, making ad hoc analysis on Hadoop super fast.

Cloudera Impala
Cloudera Impala allows users to query data stored in HDFS at real-time speeds.
It uses SQL-like query commands similar to that in Apache Hive to query data.
Unlike Hive, which is used for long running batch queries, Impala is used
for quick data processing and analytics, and also does not create MapReduce
jobs to execute queries.

Cloudera's Distribution Including Apache Hadoop

[68]

Cloudera Hue
The objective of Cloudera Hue is to make Hadoop more useable. Hue achieves this
by eliminating the need to use the command line to operate Hadoop. Hue provides
a beautiful web interface with access to all the common tools used for big data
processing. Hue is open source.

The following screenshot shows the Cloudera Hue home screen:

The Hue home is divided into three sections—Query, Hadoop, and Workflow.
The Query section lists all the tools that could be used to process data stored in the
cluster. The Hadoop section lists all the administrative tools that deal with the stored
data. The Workflow section deals with Oozie-related tasks. The links on the three
sections can also be accessed using the fixed toolbar on the top of the page.

Beeswax – Hive UI
Beeswax is the Hive UI application that enables users to write HiveQL queries
using a web UI. Beeswax allows users to create Hive tables, load data, and execute
Hive queries.

Chapter 3

[69]

The following screenshot shows the Beeswax Hive UI screen:

The Hive UI is divided into the following five different tabs:

•	 The Query Editor section, as you can see in the preceding screenshot, has
the options to connect to a database along with configurable options to
add settings, file resources, and user-defined functions. A large text area is
provided to write and execute the query. Options to save and explain the
query are also available.

•	 The My Queries section provides the option to view the list of recently
saved queries and the recently executed queries.

•	 The Saved Queries section, as the name suggests, displays all the
saved queries.

•	 The History section displays all the queries that were executed against
the cluster using Hive.

•	 The Settings section displays all the configuration settings for Hive in a
tabular format.

Cloudera's Distribution Including Apache Hadoop

[70]

Cloudera Impala UI
Hue provides a very simple interface to construct and execute Cloudera Impala
queries. The following screenshot shows the Cloudera Impala screen:

The Cloudera Impala UI is almost identical to the Hive UI.

Pig UI
The Pig UI is divided into three tabs:

•	 The Editor section provides all the basic scripting options such as the
ability to run and save scripts

•	 The Scripts section provides a list of all the saved Pig scripts
•	 The Dashboard sections display the list of all the running and

completed scripts

Chapter 3

[71]

The following screenshot shows the Pig script editor screen:

File Browser
The File Browser application displays all the files stored in the cluster (HDFS).
Users can perform basic file operations such as upload, download, rename,
move, copy, and delete. This interface is very handy to quickly browse HDFS.
The following screenshot shows the File Browser application's screen:

Cloudera's Distribution Including Apache Hadoop

[72]

Metastore Manager
The Metastore Manager application is used to perform the following actions:

•	 Manage the metastore data for Hive and Impala
•	 Create databases and tables
•	 Browse data present in the tables

The following screenshot shows the Metastore Manager application's screen:

Sqoop Jobs
The Sqoop Jobs screen provides a very intuitive interface to build Sqoop jobs.
The New job link on the top-right corner brings up a simple three-step process
screen to build Sqoop jobs.

Chapter 3

[73]

The following screenshot shows the Sqoop Jobs screen:

Job Browser
The Job Browser screen lists all the jobs that have been executed on the cluster. The
list can be filtered on the different status flags: SUCCEEDED, RUNNING, FAILED,
and KILLED. The ID column is a hyperlink, which when clicked, will show more
details of that specific job. Details of the job, such as the status, the percentage
completions of the maps and reduces, and the duration of the task are also visible.
Such information is very useful to monitor jobs submitted to the cluster.

The following screenshot shows the Job Browser screen:

Cloudera's Distribution Including Apache Hadoop

[74]

Job Designs
The Job Designs page allows users to configure different types of jobs such as the
MapReduce, Sqoop, Pig, and Hive jobs. Once the jobs are configured, they can be
submitted to the cluster. After submission, the status of the jobs can be monitored
from the Job Browser section.

The following screenshot shows the Job Designs screen:

Dashboard
The Oozie Editor/Dashboard is divided into the following four tabs:

•	 The Dashboard section is further divided into dashboards for Workflows,
Coordinators, Bundles, and Oozie.
The Workflows dashboard section displays the running and completed
workflows that were submitted to the cluster. The Coordinators dashboard
section displays the list of running and completed coordinated jobs that were
submitted to the cluster. The Oozie coordinator allows users to configure
interdependent workflow jobs. The Bundle dashboard section lists all the
running and completed bundles that were submitted to the cluster. The
Oozie section displays the status and configuration parameters of the
Oozie workflow system.

•	 The Workflows tab lists all the configured workflows in the system. It also
provides the user with an option to create new workflows and manage
existing ones.

•	 The Coordinators tab lists all the coordinator applications that have been
configured in Oozie. It also provides the user with an option to create new
coordinators and manage existing ones.

•	 Similarly, the Bundles tab lists all the bundles configured in Oozie and
provides options to create new bundles and manage existing ones.

Chapter 3

[75]

The following screenshot shows the Dashboard screen:

Collection Manager
The Collection Manager screen provides the user with the feature to import
collections. A collection is basically an index of a dataset. Once the collection
is imported, a search can be performed on the collection by navigating to the
Search page link on the top-right corner.

The following screenshot shows the Collection Manager screen:

Cloudera's Distribution Including Apache Hadoop

[76]

Hue Shell
The Hue Shell provides shell access to Pig, HBase, and Sqoop. For the shell access
to work, there should be a Unix user with the same name as that of the Hue user.
The following screenshot shows the Hue Shell screen:

HBase Browser
The HBase Browser application lists all the tables that are part of HBase.
The user has options to create new tables and manage existing ones.

The following screenshot shows the HBase Browser application's screen:

Installing CDH
With a good background knowledge of CDH and its components, let's go ahead
and install CDH on a cluster. The remainder of this chapter is going to be hands-on,
and we will try to cover everything that is needed to get a fully functional cluster
that runs CDH5.

Chapter 3

[77]

CDH can be installed using one of the following two methods:

•	 Installation using the operating system's package manager (yum/rpm)
•	 Installation using Cloudera Manager

In this section, we will cover installation using the operating system's package
manager. Installation of CDH using Cloudera Manager will be covered in
Chapter 5, Using Cloudera Manager.

For the installation, we will be using four servers that run CentOS 6.4 (64-bit)
as the operating system.

The following diagram shows a simple four-node Hadoop cluster that runs
MapReduce Version 1 (MRv1):

node3.hcluster.com

NameNode
JobTracker

node1.hcluster.com

node2.hcluster.com

DataNode
TaskTracker

DataNode
TaskTracker

DataNode
TaskTracker

node4.hcluster.com

By performing the following installation instructions, we will try to configure
our cluster to look like the one shown in the preceding diagram:

1.	 The first step is to make sure that all our servers are running Oracle
Java Version 7. To install Oracle Java, you can download Oracle JDK from
Oracle's website. The Oracle Java installation file that I have downloaded
is jdk-7u51-linux-x64.rpm. After downloading the file, perform the
following instructions as the root user:
$ chmod +x jdk-7u51-linux-x64.rpm

$ rpm -ivh jdk-7u51-linux-x64.rpm

$ export JAVA_HOME="/usr/java/jdk1.7.0_51/jre/"

$ export PATH=$JAVA_HOME/bin:$PATH

The preceding instructions will install Oracle Java 7, set the JAVA_HOME
environment variable, and add the bin folder for the Java runtime to PATH.

Cloudera's Distribution Including Apache Hadoop

[78]

2.	 Create a user, for example, hduser, and set a password for the user,
using the following commands:
$ useradd hduser

$ passwd hduser

3.	 Provide the user with sudo privileges by editing the sudoers file placed
at /etc and adding the following line:
hduser ALL=(ALL) ALL

4.	 Download the CDH5 RPM for CentOS (here, I am using CentOS 6) using the
following link:
http://archive.cloudera.com/cdh5/one-click-install/redhat/6/
x86_64/cloudera-cdh-5-0.x86_64.rpm

5.	 Log in as hduser and install the downloaded RPM using the
following command:
$ sudo yum --nogpgcheck localinstall cloudera-cdh-5-0.x86_64.rpm

6.	 Perform steps 1, 2, 3, 4, and 5 on all servers that will be part of the cluster.
7.	 Execute the following command from the user hduser on node1.hcluster

to install the namenode daemon:
$ sudo yum install hadoop-hdfs-namenode

8.	 Execute the following command from the user hduser on node1.hcluster
to install the jobtracker daemon:
$ sudo yum install hadoop-0.20-mapreduce-jobtracker

9.	 Execute the following command from the user hduser on node1.hcluster
to install the Hadoop client:
$ sudo yum install hadoop-client

10.	 After executing the preceding steps, you will find the file core-site.xml
under /etc/hadoop/conf/. Initially, this file is empty. Edit the file and
update it as follows:
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
 <property>
 <name>fs.defaultFS</name>
 <value>hdfs://node1.hcluster:8020</value>
 <description>
 Defines the name of the filesystem.
 </description>
 </property>
</configuration>

http://archive.cloudera.com/cdh5/one-click-install/redhat/6/x86_64/cloudera-cdh-5-0.x86_64.rpm
http://archive.cloudera.com/cdh5/one-click-install/redhat/6/x86_64/cloudera-cdh-5-0.x86_64.rpm

Chapter 3

[79]

For a complete listing of configurable properties for the core-site.xml
file, refer to http://hadoop.apache.org/docs/r2.3.0/hadoop-project-
dist/hadoop-common/core-default.xml.

11.	 Similarly, the file hdfs-site.xml under /etc/hadoop/conf/ will be empty.
Update it as follows:
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
 <property>
 <name>dfs.namenode.servicerpc-address</name>
 <value>node1.hcluster:8022</value>
 <description>
 This is the RPC address for the namenode.
 This address is used by services like the datanodes
 to connect to the namenode.
 </description>
 </property>
 <property>
 <name>dfs.namenode.http-address</name>
 <value>node1.hcluster:50070</value>
 <description>
 This is the HTTP address for the namenode web user
 interface.
 </description>
 </property>
 <property>
 <name>dfs.replication</name>
 <value>3</value>
 <description>
 This property defines the replication factor of the
 data blocks in HDFS.
 </description>
 </property>
 <property>
 <name>dfs.blocksize</name>
 <value>134217728</value>
 <description>
 This property defines block size for files in HDFS
 (bytes).
 </description>
 </property>
</configuration>

For a complete list of configurable properties for the hdfs-site.xml file,
refer to http://hadoop.apache.org/docs/r2.3.0/hadoop-project-
dist/hadoop-hdfs/hdfs-default.xml.

http://hadoop.apache.org/docs/r2.3.0/hadoop-project-dist/hadoop-common/core-default.xml
http://hadoop.apache.org/docs/r2.3.0/hadoop-project-dist/hadoop-common/core-default.xml
http://hadoop.apache.org/docs/r2.3.0/hadoop-project-dist/hadoop-hdfs/hdfs-default.xml
http://hadoop.apache.org/docs/r2.3.0/hadoop-project-dist/hadoop-hdfs/hdfs-default.xml

Cloudera's Distribution Including Apache Hadoop

[80]

12.	 Create the mapred-site.xml file in /etc/hadoop/conf if is not already
present, and update it as follows:
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
 <property>
 <name>mapred.job.tracker</name>
 <value>node1.hcluster:8021</value>
 <description>
 This property defines the address at which the
 jobtracker service runs.
 </description>
 </property>
 <property>
 <name>mapred.job.tracker.http.address</name>
 <value>0.0.0.0:50030</value>
 <description>
 This property defines HTTP address for jobtracker web
 user interface.
 </description>
 </property>
 <property>
 <name>mapred.reduce.tasks</name>
 <value>4</value>
 <description>
 This property defines the number of reduce tasks that
 can run on the cluster.
 </description>
 </property>
</configuration>

For a complete list of configurable properties for the mapred-site.xml file,
refer to http://hadoop.apache.org/docs/stable/hadoop-mapreduce-
client/hadoop-mapreduce-client-core/mapred-default.xml.

13.	 Update the slaves file placed at /etc/hadoop/conf as follows:
node2.hcluster
node3.hcluster
node4.hcluster

14.	 Execute the following command as hduser on node1.hcluster to
format the namenode daemon:
$ sudo -u hdfs hdfs namenode -format

http://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml
http://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml

Chapter 3

[81]

15.	 Execute the following command from hduser on node2.hcluster, node3.
hcluster, and node4.hcluster to install tasktracker and datanode:
$ sudo yum install hadoop-0.20-mapreduce-tasktracker hadoop-hdfs-
datanode

Copy the core-site.xml, hdfs-site.xml, and mapred-site.xml files
from node1.hcluster to node2.hcluster, node3.hcluster, and node4.
hcluster in /etc/hadoop/conf/.

16.	 Execute the following command from hduser on each node to start HDFS:
$ for x in 'cd /etc/init.d ; ls hadoop-hdfs-*' ; do sudo service
$x start ; done

The preceding command will start the namenode daemon on node1.
hcluster and the datanode daemon on node2.hcluster, node3.hcluster,
and node4.hcluster.

17.	 Execute the following command from hduser on node1.hcluster:
$ sudo -u hdfs hdfs dfs -mkdir /tmp

$ sudo -u hdfs hdfs dfs -chmod -R 1777 /tmp

$ sudo -u hdfs hdfs dfs -mkdir -p /var/lib/hadoop-hdfs/cache/
mapred/mapred/staging

$ sudo -u hdfs hdfs dfs -chmod 1777 /var/lib/hadoop-hdfs/cache/
mapred/mapred/staging

$ sudo -u hdfs hadoop fs -chown -R mapred /var/lib/hadoop-hdfs/
cache/mapred

$ sudo -u hdfs hadoop fs -mkdir /tmp/mapred/system

18.	 Execute the following command from hduser on node1.hcluster to start
the jobtracker daemon:
$ sudo service hadoop-0.20-mapreduce-jobtracker start

19.	 Execute the following command from hduser on node2.hcluster,
node3.hcluster, and node4.hcluster to start the tasktracker daemon:

$ sudo service hadoop-0.20-mapreduce-tasktracker start

Your four-node Hadoop cluster should now be up and running. You can test
the cluster by visiting the URLs for the namenode UI and the jobtracker UI using
a browser. The URL for the namenode UI is http://node1.hcluster:50070.
The URL for the jobtracker UI is http://node1.hcluster:50030.

To modify the properties of the HDFS and MapReduce, edit the configuration files
present under the location /etc/hadoop/conf.

Cloudera's Distribution Including Apache Hadoop

[82]

Stopping Hadoop services
Execute the following command from the user hduser to stop the namenode
daemon on node1.hcluster and the datanode daemon on node2.hcluster,
node3.hcluster, and node4.hcluster:

$ for x in 'cd /etc/init.d ; ls hadoop-hdfs-*' ; do sudo service $x stop
; done

Execute the following command from the user hduser to stop the jobtracker daemon
on node1.hcluster:

$ sudo service hadoop-0.20-mapreduce-jobtracker stop

Execute the following command from the user hduser to stop the tasktracker
daemon on node2.hcluster, node3.hcluster, and node4.hcluster:

$ sudo service hadoop-0.20-mapreduce-tasktracker stop

Understanding a YARN cluster
YARN, which also called MRv2, introduces newer daemons that is responsible for
job scheduling/monitoring and resource management. Before we go ahead with the
installation of YARN, let's look at a typical YARN cluster.

The following diagram shows a simple four-node YARN cluster:

node3.hcluster.com

NameNode
ResourceManager

node1.hcluster.com

node2.hcluster.com

DataNode
NodeManager

DataNode
NodeManager

DataNode
NodeManager

node4.hcluster.com

As shown in the preceding diagram, the daemons in a YARN cluster differ from
that of an MRv1 cluster. The following list of daemons run as part of a YARN cluster:

•	 Namenode
•	 ResourceManager

Chapter 3

[83]

•	 Datanode
•	 NodeManager

Just as we installed MRv1, we can install MRv2 (YARN) on the cluster with a
specific set of commands and configuration files. We will go through the installation
of MRv2 using a very intuitive and useful application called Cloudera Manager in
Chapter 5, Using Cloudera Manager.

The previous installation instructions were performed on a very simple four-node
cluster to elaborate the installation steps. In real production environments,
the number of machines in a cluster range from tens to hundreds of machines.

Installing the CDH components
With a basic Hadoop cluster up and running, we can now install some of the
important CDH components.

Installing Apache Flume
To install Apache Flume, log in as hduser and execute the following commands:

$ sudo yum install flume-ng

$ sudo yum install flume-ng-agent

You can configure Apache Flume using the configuration files present
under /etc/flume-g/conf.

Installing Apache Sqoop
To install Apache Sqoop, log in as hduser and execute the following command:

$ sudo yum install sqoop

You can configure Apache Sqoop using the configuration files present
under /etc/sqoop/conf.

Installing Apache Sqoop 2
Under Sqoop 2, the services are divided into two parts: sqoop2-client and
sqoop2-server.

To install sqoop2-server, log in as hduser and execute the following command
on one of the nodes in the Hadoop cluster:

$ sudo yum install sqoop2-server

Cloudera's Distribution Including Apache Hadoop

[84]

You can configure the Apache Sqoop2 server using the configuration files present
under /etc/sqoop2/conf.

To install sqoop2-client, log in as hduser and execute the following command on
any server that you wish to use as a client:

$ sudo yum install sqoop2-client

Installing Apache Pig
To install Apache Pig, log in as hduser and execute the following command:

$ sudo yum install pig

You can configure Apache Pig using the configuration files present under
/etc/pig/conf.

Installing Apache Hive
To install Apache Hive, log in as hduser and execute the following command:

$ sudo yum install hive

You can configure Apache Hive using the configuration files present under
/etc/hive/conf.

Installing Apache Oozie
To install Apache Oozie, log in as hduser and execute the following command:

$ sudo yum install oozie

You can configure Apache Oozie using the configuration files present under
/etc/oozie/conf.

Installing Apache ZooKeeper
To install Apache ZooKeeper, log in as hduser and execute the following command:

$ sudo yum install zookeeper-server

You can configure Apache Zookeeper using the configuration files present
under /etc/zookeeper/conf.

Chapter 3

[85]

With these components installed, you are now ready to use the cluster for data
processing. You could use Flume to ingest streaming data from external sources to
HDFS, Sqoop or Sqoop 2 to get data from external databases, Pig and Hive to write
scripts and queries, and use Apache Oozie to schedule them as required.

There are several other CDH components that can be installed along with the
previously mentioned components. However, we will leave the rest and see
how they can be installed while going through Cloudera Manager in Chapter 5,
Using Cloudera Manager.

Summary
In this chapter, we introduced ourselves to CDH and understood the various open
source projects that are packaged into CDH. Then we covered the installation of
CDH and a few of its components.

In the next chapter, we will discuss HDFS High Availability and HDFS Federation.

Exploring HDFS Federation
and Its High Availability

You are now ready to set up a Hadoop cluster using CDH5. Once you have a
cluster up and running, you are now responsible for managing it and making sure
the cluster is available all the time. In this chapter, we will cover some techniques
to manage HDFS efficiently and also handle the single point of failure in a Hadoop
cluster. In this chapter, we will cover the following topics:

•	 Configuring HDFS Federation
•	 HDFS high availability using Quorum-based storage and storage

using Network File System (NFS)
•	 Jobtracker high availability

The heart of HDFS is the namenode. The namenode manages the locations of
all data blocks in the cluster. To serve requests faster, the namenode manages
all its information in memory. For small clusters, the information stored
is lightweight and in most cases, a decent amount of RAM is enough to handle
all the information required to maintain a cluster. However, when the number
of datanodes increases, hosting a large number of files and blocks, the RAM may
fall short and would limit the scalability of the cluster. To address this problem,
HDFS Federation was built.

Implementing HDFS Federation
HDFS Federation is a technique of splitting up the filesystem namespace into
multiple parts. Each part will be managed by an individual namenode, resulting
in multiple namenodes.

Exploring HDFS Federation and Its High Availability

[88]

In the following diagram, you will see two namenodes, Namenode-1 (NN1) and
Namenode-2 (NN2).

Each namenode manages a namespace volume that consists of the namespace
metadata and block pool information. The namespace metadata contains the
location information of the files present in HDFS. A block pool is a collection
of data blocks that belong to a single namespace in a Hadoop cluster.

Both these namenodes have the same set of datanodes in the cluster.
The datanodes store blocks for each of the namenodes. However, the two
namenodes do not communicate with each other. In the preceding diagram,
you see only two namenodes; however, in production environments, you may
have more than two namenodes.

With such architecture in place, it is possible to scale the cluster to a large
number of nodes, as the memory is not a limiting factor any more. As a result
of this architecture, the read/write operations throughput will significantly improve
as the load is not on a single namenode. Having multiple namenodes also provides
the ability to isolate operations on the cluster. Operations/applications can be
targeted to run on specific namenodes, which could help to segregate the critical
ones from the non-critical/experimental ones.

Chapter 4

[89]

Configuring HDFS Federation
For HDFS Federation to work, the datanodes need a way to identify the different
namenodes in the cluster. There are several configuration parameters that need to
be added to hdfs-site.xml, which are listed in the following table:

Daemon Configuration Properties
Namenode dfs.nameservices

dfs.namenode.rpc-address

dfs.namenode.servicerpc-address

dfs.namenode.http-address

dfs.namenode.https-address

dfs.namenode.keytab.file

dfs.namenode.name.dir

dfs.namenode.edits.dir

dfs.namenode.checkpoint.dir

dfs.namenode.checkpoint.edits.dir

Secondary namenode dfs.namenode.secondary.http-address

dfs.secondary.namenode.keytab.file

We saw a few of these configuration properties in Chapter 2, HDFS and MapReduce.
The following list defines a few of the important properties used to configure HDFS:

•	 dfs.nameservices: This property defines all the nameservices in the cluster.
The nameservice is a name used to uniquely identify an HDFS instance.
The values are set as a comma separated list.

•	 dfs.namenode.rpc-address: This property defines the RPC address that
handles all client requests.

•	 dfs.namenode.https-address: This property defines the secure HTTP
server address for the namenode.

•	 dfs.namenode.keytab.file: This property defines the location of the
keytab file. A keytab file is a file that contains principals and encrypted keys.
This file is part of the Kerberos configuration, which we will explore in detail
a bit later.

Exploring HDFS Federation and Its High Availability

[90]

•	 dfs.namenode.name.dir: This property defines the location of the fsimage
file on the local filesystem. If the value is specified as a comma-separated
list of locations, the fsimage file will be replicated on all of the locations
for redundancy.

•	 dfs.namenode.edits.dir: This property defines the location of the edits
log file. Again, if the value is specified as a comma-separated list of locations,
the edits log file will be replicated on all of the locations for redundancy.

•	 dfs.namenode.checkpoint.dir: This property defines the location of the
temporary filesystem images to be used by the secondary namenode. If
the value is specified as a comma-separated list of locations, the temporary
filesystem image file will be replicated on all of the locations for redundancy.

•	 dfs.namenode.checkpoint.edits.dir: This property defines the location
of the temporary edits log file to be used by the secondary namenode. If the
value is specified as a comma-separated list of locations, the temporary edits
log file will be replicated on all of the locations for redundancy.

These properties when configured are suffixed by the NameserviceID. For example,
assuming that we have two nameservices: ns1 and ns2, there would be two entries
in the hdfs-site.xml file; one for dfs.namenode.rpc-address.ns1 and another
for dfs.namenode.rpc-address.ns2. Let's look at a practical configuration so you
understand these properties better.

As shown in the diagram earlier, node1.hcluster and node2.hcluster are the
nodes that will host the namenodes NN1 and NN2 respectively.

The following are the steps to configure HDFS Federation for a new cluster with the
two nodes as namenodes (node1.hcluster and node2.hcluster):

1.	 Update the hdfs-site.xml file to add the following properties:
<property>
 <name>dfs.nameservices</name>
 <value>ns1,ns2</value>
 </property>
 <property>
 <name>dfs.namenode.rpc-address.ns1</name>
 <value>node1.hcluster:8020</value>
 </property>
 <property>
 <name>dfs.namenode.servicerpc-address.ns1</name>
 <value>node1.hcluster:8022</value>
 </property>
 <property>

Chapter 4

[91]

 <name>dfs.namenode.http-address.ns1</name>
 <value>node1.hcluster:50070</value>
 </property>
 <property>
 <name>dfs.namenode.rpc-address.ns2</name>
 <value>node2.hcluster:8020</value>
 </property>
 <property>
 <name>dfs.namenode.servicerpc-address.ns2</name>
 <value>node2.hcluster:8022</value>
 </property>
 <property>
 <name>dfs.namenode.http-address.ns2</name>
 <value>node2.hcluster:50070</value>
 </property>

2.	 Copy the updated hdfs-site.xml file to all the nodes in the cluster.
3.	 Format the namenode from user hduser on node1.hcluster using the

following command:
$ sudo -u hdfs hadoop namenode -format -clusterId <clusterID>

4.	 Specify a unique ID for <clusterID>. If this ID is not specified, the unique
ID is autogenerated.

5.	 Format the namenode on node2.hcluster using the following command:
$ sudo -u hdfs hadoop namenode -format -clusterId <clusterID>

Here, the <clusterID> is the same ID specified when formatting the
namenode on node1.hcluster.

If you are adding federation to an existing cluster, that is, if the
namenode on node1.hcluster already exists, and you are adding
the new namenode on node2.hcluster, you only need to format the
namenode on node2.hcluster. You need to make sure that the cluster
ID you use when formatting the namenode on node2.hcluster is the
same as the one for the namenode on node1.hcluster.

6.	 Start the namenodes on node1.hcluster and node2.hcluster.
The two namenodes should now be ready for use in the cluster. We can
verify the two namenodes by viewing the cluster web console of the
federated cluster at the following URL: http://node1.hcluster:50070/
dfsclusterhealth.jsp.

Exploring HDFS Federation and Its High Availability

[92]

As you see in the following screenshot, the two namenodes are listed under
the Namenodes section. This page also gives a summary that displays the
storage information of the cluster.

7.	 To view the namenode on node1.hcluster, use the following URL:
http://node1.hcluster:50070/dfshealth.jsp.
The following screenshot displays the summary information for node1.
hcluster. Each namenode will have a common Cluster ID but will have
a unique Block Pool ID.

Chapter 4

[93]

8.	 To view the namenode on node2.hcluster, use the following URL:
http://node2.hcluster:50070/dfshealth.jsp.

The following screenshot displays the summary information for
node2.hcluster. You will observe that the Cluster ID is the same
as node1.hcluster; however, the Block Pool ID is different.

The unique Block Pool ID number signifies that the namenodes manage their
own block pools and do not interfere with each other's operations. The cluster is
now configured with a federated HDFS. Let's now try to test the two namenodes
using the following steps:

1.	 Create a folder on the namespace managed by the namenode on
node1.hcluster using the following command:
$ sudo -u hdfs hdfs dfs -mkdir hdfs://node1.hcluster:8020/node1_
data

2.	 Create a folder on the namespace managed by the namenode on
node2.hcluster using the following command:
$ sudo -u hdfs hdfs dfs -mkdir hdfs://node2.hcluster:8020/node2_
data

Exploring HDFS Federation and Its High Availability

[94]

3.	 Next, let's list the contents of the two namespaces. To list the contents
of the namespace hosted on node1.hcluster and node2.hcluster,
use the commands from the following screenshot:

Configuring ViewFS for a federated HDFS
As you can see for the commands in the preceding screenshot, each namenode was
referred to by its name. This is not feasible as each client would need to know the
name of each namenode and the files it manages. This is where ViewFS comes
in. It helps define paths to the different namenodes by using a mount table
configuration. The mount table is configured in the core-site.xml file.

Edit the core-site.xml file by performing the following updates:

1.	 Update the fs.defaultFS property to viewfs:/// as shown in the
following code:
<property>
 <name>fs.defaultFS</name>
 <value>viewfs:///</value>
</property>

2.	 Add the following two properties to define the mount points:
<property>
 <name>fs.viewfs.mounttable.default.link./n1</name>
 <value>hdfs://node1.hcluster:8020/</value>
</property>
<property>
 <name>fs.viewfs.mounttable.default.link./n2</name>
 <value>hdfs://node2.hcluster:8020/</value>
</property>

Chapter 4

[95]

3.	 Test the defined mount points by listing the files and folders. The following
screenshot shows the list of files in each namenode:

The results exactly to the results match the commands using the fully qualified
name of the namenode.

The cluster is now ready with a federated HDFS.

Implementing HDFS High Availability
Setting up a cluster is just one of the responsibilities of a Hadoop administrator.
Once the cluster is up and running, the administrator needs to make sure the
environment is stable and should handle downtime efficiently. Hadoop, being a
distributed system, is not only prone to failures, but is expected to fail. The master
nodes such as the namenode and jobtracker are single points of failure. A single
point of failure (SPOF) is a system in the cluster, if it fails, it causes the whole cluster
to be nonfunctional. Having a system to handle these single point failures is a
must. We will be exploring the techniques on how to handle namenode failures
by configuring HDFS HA (high availability).

The namenode stores all the location information of the files in a cluster and
coordinates access to the data. If the namenode goes down, the cluster is unusable
until the namenode is brought up. Maintenance windows to upgrade hardware or
software on the namenode could also cause downtime. The secondary namenode,
as we have already discussed, is a checkpoint service and does not support
automatic failover for the namenode.

Exploring HDFS Federation and Its High Availability

[96]

The time taken to bring back the namenode online depends on the type of failure
(hardware and software). The downtime could result in Service Level Agreement
(SLA) slippage as well as the productivity of the data team. To handle such issues
and make the namenode more available, namenode HA was built and integrated
into Apache Hadoop 2.0.0.

CDH5 comes with HDFS HA built-in. HDFS HA is achieved by running two
namenodes for a cluster in an active/passive configuration. In an active/passive
configuration, only one namenode is active at a time. When the active namenode
becomes unavailable, the passive namenode assumes responsibility and makes
itself as the primary active namenode. In this configuration, the two namenodes
run on two physically different machines.

The two namenodes in an active/passive configuration are called active namenode
and standby namenode respectively. Both the active as well as the standby
namenode need to be of similar hardware.

Using CDH5, high availability can be configured using the following two techniques:

•	 Quorum-based storage
•	 Shared storage using NFS

The Quorum-based storage
In the Quorum-based storage HA technique, the two namenodes use a Quorum
Journal Manager (QJM) to share edit logs. As we already know, edits log is the
activity log of all file operations on the cluster. Both the active namenode and the
standby namenode need to have their edit logs file in sync. To achieve this, the
active namenode communicates with the standby namenode using the JournalNode
(JN) daemons. The active namenode reports every change of its edits logs file to
the JournalNodes daemons. The standby namenode reads the edit logs from the
JournalNodes daemons and applies all changes to its own namespace. By doing this,
the two namenodes are always in sync.

Chapter 4

[97]

In the following diagram, you see a typical architecture of HDFS HA using QJM.
There are two namenodes, active and standby, that communicate with each other
via JournalNodes.

The JournalNodes are daemons that run on JournalNode machines. It is advisable
to use at least three JournalNode daemons to make sure the edit logs are written
to three different locations allowing JournalNodes to tolerate the failure of a single
machine. The system can tolerate the failure of (N-1)/2 JournalNodes, where N is the
number of JournalNodes configured.

At any time, only the active namenode can write to the JournalNodes. This is handled
by the JournalNodes to avoid the updates of the shared edit logs by two namenodes,
which could cause data loss as well as incorrect results. The standby namenode will
only have read access to the JournalNodes to update its own namespace.

Exploring HDFS Federation and Its High Availability

[98]

When configuring HA, the secondary namenode is not used. As you will recall, the
secondary namenode is a checkpoint service that performs periodic checkpoints
of the edit logs in the primary namenode and updates the fsimage. The standby
namenode in an HA environment performs the checkpoints and does not need a
secondary namenode.

The datanodes of the cluster update both the active as well as the standby
namenode with the location and heartbeat information, thus making it possible
for a quick failover.

When the active namenode fails, the standby namenode assumes the responsibility
of writing to the JournalNodes and takes over the active role.

Configuring HDFS high availability by the
Quorum-based storage
There are two types of failover configurations: manual failover, which involves
manually initiating the commands for failover and automatic failover, where there
is no manual intervention.

To configure HDFS HA, a new property, NamenodeID is used. The NamenodeID is
used to distinguish each namenode in the cluster.

Let's look at the properties defined in hdfs-site.xml configuration file to set up
HDFS HA:

•	 dfs.nameservices: Just as we did for HDFS Federation, we need to
configure the nameservices in use for the cluster. For this configuration,
I am not using a federated HDFS. The following is a sample configuration
entry for dfs.nameservices:
<property>
 <name>dfs.nameservices</name>
 <value>hcluster</value>
</property>

•	 dfs.ha.namenodes.[NameserviceID]: This property defines the unique
identifiers for the namenodes in the cluster. The IDs mentioned as values
for this property are also referred to as NamenodeID. The following is a
sample configuration entry for dfs.ha.namenodes:
<property>
 <name>dfs.ha.namenodes.hcluster</name>
 <value>nn1,nn2</value>
</property>

Chapter 4

[99]

•	 dfs.namenode.rpc-address.[NameserviceID].[name node ID]:
This property defines the fully qualified RPC address for each configured
namenode in the cluster. The following is a sample configuration entry for
dfs.namenode.rpc-address:
<property>
 <name>dfs.namenode.rpc-address.hcluster.nn1</name>
 <value>node1.hcluster:8020</value>
</property>
<property>
 <name>dfs.namenode.rpc-address.hcluster.nn2</name>
 <value>node2.hcluster:8020</value>
</property>

•	 dfs.namenode.http-address.[NameserviceID].[name node ID]:
This property defines the fully qualified HTTP address for each namenode in
the cluster. The following is a sample configuration entry for dfs.namenode.
http-address:
<property>
 <name>dfs.namenode.http-address.hcluster.nn1</name>
 <value>node1.hcluster:50070</value>
</property>
<property>
 <name>dfs.namenode.http-address.hcluster.nn2</name>
 <value>node2.hcluster:50070</value>
</property>

•	 dfs.namenode.shared.edits.dir: This property defines the URI that identifies
the group of JournalNodes to which the NameNodes will read and write
edits. The values are a list of the JournalNode addresses. These addresses
point to the location where the active namenode writes the edit logs and
is subsequently read by the standby namenode. The values are semicolon
separated. The following is a sample configuration entry for dfs.namenode.
shared.edits.dir:
<property>
 <name>dfs.namenode.shared.edits.dir</name>
 <value>qjournal://node3.hcluster:8485;node4.hcluster:
8485;node5.hcluster:8485/hcluster</value>
</property>

Exploring HDFS Federation and Its High Availability

[100]

•	 dfs.client.failover.proxy.provider.[NameserviceID]: This property
defines the Java class that HDFS clients use to contact the active namenode.
This property helps clients identify the active namenode. Developers can
write custom classes for this property. The default class that it comes with
Hadoop is ConfiguredFailoverProxyProvider. The following is a sample
configuration entry for dfs.client.failover.proxy.provider:
<property>
 <name>dfs.client.failover.proxy.provider.hcluster</name>
 <value>org.apache.hadoop.hdfs.server.namenode.ha.
ConfiguredFailoverProxyProvider</value>
</property>

•	 fs.defaultFS: This property defines the default path prefix used by the Hadoop
FS client when none is given. This property is defined in the core-site.xml
file. The following is a sample configuration entry for fs.defaultFS:
<property>
 <name>fs.defaultFS</name>
 <value>hdfs://hcluster</value>
</property>

•	 dfs.journalnode.edits.dir: This is the complete path of the location where
the edits and other local state files on the machines running the JournalNode
service are stored. The following is a sample configuration entry for
dfs.journalnode.edits.dir:

<property>
 <name>dfs.journalnode.edits.dir</name>
 <value>/tmp/jnode</value>
</property>

Apart from the preceding properties, there are properties that are meant for fencing.
Fencing is a way to assure that only one namenode writes to the JournalNodes.
However, it is possible that when a failover is initiated, the previous active
namenode may still serve client requests till the namenode shuts down. The previous
namenode shuts down when it tries to write to the JournalNodes. Using fencing
methods, this namenode can be shut down as the failover is initiated.

The following are two fencing methods:

•	 sshfence

•	 shell

Chapter 4

[101]

The type of fencing to be used is defined by the dfs.ha.fencing.methods property,
which is defined by the hdfs-site.xml file.

The sshfence option provides a way to SSH into the target node and use the fuser
command to kill the process listening on the TCP port. In other words, it kills the
previously active namenode. To perform this action, the SSH needs to happen
without a passphrase. For this to work, the dfs.ha.fencing.ssh.private-key-
files property needs to be configured. The following is a sample configuration
entry to set up fencing:

<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/admin/.ssh/id_rsa</value>
</property>

In the preceding configuration, we are using the sshfence option. The private keys
of username, admin, are being used to perform an SSH without passphrase.

Another way to configure sshfence would be to use a nonstandard username and
port to connect via SSH as shown in the following code:

<property>
 <name>dfs.ha.fencing.methods</name>
 <value>sshfence([[username][:port]])</value>
</property>
<property>
 <name>dfs.ha.fencing.ssh.connect-timeout</name>
 <value>30000</value>
</property>

A timeout property can be configured to time out the SSH session. If the SSH times
out, the fencing mechanism is considered to have failed.

The shell fencing option provides a way to run arbitrary shell commands to fence
the active namenode as shown in the following code:

<property>
 <name>dfs.ha.fencing.methods</name>
 <value>shell(/path/to/my/script.sh –namenode=$target_host
 –nameservice=$target_nameserviceid)</value>
</property>

Exploring HDFS Federation and Its High Availability

[102]

The following is the list of variables with reference to the node that needs to
be fenced:

Variable Description
$target_host The hostname of the node to be fenced
$target_port The IPC port of the node to be fenced
$target_address The combination of the preceding two is configured

as <host:port>
$target_
nameserviceid

The NameserviceID of the namenode to be fenced

$target_namenodeid The NamenodeID of the namenode to be fenced

If a fencing method returns 0, the fencing operation is considered successful.
Though fencing is not mandatory for HDFS HA using Quorum Journal Manager,
it is highly recommended. If no fencing is configured, a default value needs to be
set for the property as shown in the following code:

<property>
 <name>dfs.ha.fencing.methods</name>
 <value> shell(/bin/true)</value>
</property>

Once the configuration files are updated, copy the configurations to all the nodes
in the cluster.

Shared storage using NFS
In this approach, the active and standby namenodes need to have access to a
common shared storage such as Network File System (NFS). The active namenode
logs a copy of its own namespace modifications on the shared network storage. The
standby namenode reads these modifications and applies them to its own namespace
and keeps its namespace in sync with the active namenode. In the event of a failover,
the standby namenode would have to wait till all the operations from the shared
edits log have been applied to its namespace before transitioning into the active state.
All datanodes are configured to send to block information and heartbeats to both
namenodes. A fencing method needs to be deployed for this approach to make sure
that the previously active namenode is shut down before the standby namenode
becomes active.

Chapter 4

[103]

The hardware for the namenode machines in this architecture should be equivalent
and just like the hardware setup of a non-HA namenode. The shared storage should
be accessible by both the namenodes and should be configured for redundancy to
handle failures. Redundancy should be configured for the disk, network, and power.
The access and hardware of the shared storage are very critical to this architecture
and should be of a high quality with multiple network access paths. Redundancy
prevents the NFS (shared storage) from becoming the single point of failure.

Configuring HDFS high availability by shared
storage using NFS
Almost all the configuration parameters for the hdfs-site.xml configuration file
are similar to the one we did for Quorum-based storage. However, we need to
update the property as shown in the following code to set up HDFS HA using NFS:

<property>
 <name>dfs.namenode.shared.edits.dir</name>
 <value>file:///mnt/shared_storage</value>
</property>

Here, the property dfs.namenode.shared.edits.dir points to a shared directory,
which has been locally mounted.

Once you are done deciding and configuring the desired method for HDFS HA
(Quorum-based or Shared Storage), you need to perform the following steps:

1.	 Stop all Hadoop daemons from hduser using the following command on
every node:
$ for x in 'cd /etc/init.d; ls hadoop*'; do sudo service $x stop ;
done

2.	 Install the namenode package from hduser on the node you want to
configure as standby. As per our configuration, it is node2.hcluster.
$ sudo yum install hadoop-hdfs-namenode

3.	 If you are using the Quorum-based storage approach, install the JournalNode
package from hduser on the nodes you want to use as JournalNodes. As per
our configuration, we would need to install the JournalNode package on
node3.hcluster, node4.hcluster, and node5.hcluster:
$ sudo yum install hadoop-hdfs-journalnode

This step can be skipped if you are using the Shared Storage approach.

Exploring HDFS Federation and Its High Availability

[104]

4.	 Start the JournalNode daemon using the following command on all the
nodes where they will run:
sudo service hadoop-hdfs-journalnode start

In our configuration, the nodes are node3.hcluster, node4.hcluster,
and node5.hcluster.

5.	 Next, go to the primary namenode and execute the following command
from hduser to initialize the shared edits directory from the local namenode
edits directory:
$ sudo -u hdfs hdfs namenode -initializeSharedEdits

6.	 Next, start the primary namenode from hduser using the following
command:
$ sudo service hadoop-hdfs-namenode start

7.	 Start the standby namenode from hduser using the following command:
$ sudo -u hdfs hdfs namenode -bootstrapStandby

$ sudo service hadoop-hdfs-namenode start

8.	 Restart all Hadoop daemons from hduser on all the nodes using the
following command:

$ for x in 'cd /etc/init.d; ls hadoop*'; do sudo service $x start
; done

The preceding steps should start the namenodes on node1.hcluster as well
as node2.hcluster along with the other Hadoop daemons. When a namenode
starts, it is initially in the standby mode.

Use the hdfs haadmin command to perform the various administrative operations
for HDFS HA. To see all the options available with this command, use the hdfs
haadmin –help command as shown in the following code:

$ hdfs haadmin -help

Usage: DFSHAAdmin [-ns <nameserviceId>]

 [-transitionToActive <serviceId>]

 [-transitionToStandby <serviceId>]

 [-failover [--forcefence] [--forceactive] <serviceId> <serviceId>]

 [-getServiceState <serviceId>]

 [-checkHealth <serviceId>]

 [-help <command>]

Chapter 4

[105]

The following is the description of each option available for the hdfs haadmin
command:

•	 transitionToActive: This option is used when you want to change the state
of a standby namenode to active.

•	 transitionToStandby: This option is used when you want to change the
state of an active namenode to standby.
Usage of the preceding two options is not usually done on production
systems as they do not support fencing.

•	 failover: This option is used to perform a failover of the namenodes.
Using this flag, the administrator can set the standby namenode to the
active state. For our configuration, we can use the following command
to set the namenode on node1.hcluster to active:
$ sudo -u hdfs hdfs haadmin -failover --forceactive nn2 nn1

After the namenode enters the standby state, it starts checkpointing the
fsimage of the active namenode. The fencing configuration takes effect
in case of any failures during failover.

•	 getServiceState: This option is used to print the current status of the
namenode. To print the status of the namenodes we have configured,
you can use the following commands:
$ sudo -u hdfs hdfs haadmin -getServiceState nn1

$ sudo -u hdfs hdfs haadmin -getServiceState nn2

•	 checkHealth: This option is used to check the health of the specified
namenode. The return value of 0 indicates that the namenode is healthy.
A nonzero value is returned if the namenode is unhealthy. As per the
current implementation feature, the option will indicate an unhealthy
status only if the namenode is down.

The following screenshot shows the summary section of the active namenode:

Exploring HDFS Federation and Its High Availability

[106]

The following screenshot shows the summary section of the standby namenode:

NameNode Journal Status for Quorum-based storage
approach
In the Quorum-based storage approach, only the active namenode will be allowed to
perform write operations to the JournalNodes. As shown in the following screenshot,
this information is displayed under the NameNode Journal Status section:

The following screenshot shows the NameNode Journal Status of the standby
namenode. In the Quorum-based storage approach, the standby namenode is only
allowed to perform read operations on the JournalNodes. Also, this information is
displayed under the NameNode Journal Status section:

Using the preceding steps, an administrator can perform a manual transition from
one namenode to the other.

Chapter 4

[107]

NameNode Journal Status for the Shared Storage-based
approach
The following screenshot shows the NameNode Journal Status for the standby
namenode in the Shared storage-based approach. As you can see in the following
screenshot, the standby namenode in the Shared Storage-based approach is only
allowed to read from the shared storage:

As you can see in the following screenshot, the active namenode in a Shared Storage
configuration is allowed to write to the common shared location:

Exploring HDFS Federation and Its High Availability

[108]

Configuring automatic failover for HDFS high
availability
To perform an automatic failover where no manual intervention is required,
we need to use Apache Zookeeper. As you saw in Chapter 3, Cloudera's Distribution
Including Apache Hadoop, Apache Zookeeper is a distributed coordination service.

To configure automatic failover, the following two additional components
are installed on an HDFS deployment:

•	 Zookeeper Quorum
•	 ZK Failover Controller (ZKFC)

The ZooKeeper service is responsible for the following two operations:

•	 Failure detection: The ZooKeeper service is responsible for maintaining
a persistent session of the active namenode in the cluster. If the namenode
crashes, the session will expire. This will notify the other namenode that a
failover needs to be initiated.

•	 Active NameNode elections: ZooKeeper implements the feature of
leader election that can be used to elect an active namenode whenever
a namenode crashes.

The ZKFC component is a ZooKeeper client that helps in monitoring and
managing the state of the namenode. A ZKFC service runs on each machine
that runs a namenode.

The ZKFC service is responsible for the following operations:

•	 Health monitoring: ZKFC performs namenode health checks by pinging its
local namenode periodically and expecting a response. The namenode needs
to respond to the ping requests consistently and periodically to communicate
its good health status. If the response is not received correctly, the ZKFC
considers the namenode to be unhealthy or down.

•	 ZooKeeper session management: This is the most important operation of
the ZooKeeper. The namenode maintains a persistent state in ZooKeeper
indicating that it is active and healthy. Along with the session information,
the namenode also maintains a special znode known as the "lock" znode.
As soon as the active namenode fails, the session expires, notifying us that
the namenode has failed.

Chapter 4

[109]

•	 ZooKeeper-based election: The ZKFC constantly checks whether the local
namenode is healthy. It constantly keeps an eye on whether there is a lock
on the znode held by any other node. If there is no lock, the ZKFC tries to
acquire the lock and initiates the failover to set the local namenode as the
active namenode.

The ZooKeeper daemons typically run on three or five nodes (number of nodes should
be an odd number) and can be collocated with the active and standby namenodes.

Perform the following steps as user hduser to configure ZooKeeper for
automatic failover:

1.	 Shut down the entire cluster before configuring ZooKeeper using the
following command on every node:
$ for x in 'cd /etc/init.d; ls hadoop*'; do sudo service $x stop;
done

2.	 Install ZooKeeper on all the nodes that need to be used as ZooKeeper nodes
using the following command:
$ sudo yum install zookeeper-server

3.	 Start the ZooKeeper service using the following commands:
$ sudo service zookeeper-server init --myid=1 --force

$ sudo service zookeeper-server start

4.	 Install the ZKFC Failover controller on all nodes that host the namenodes
using the following command:
$ sudo yum install hadoop-hdfs-zkfc

5.	 Update the hdfs-site.xml file to include the following property and copy
to all the nodes:
<property>
 <name>dfs.ha.automatic-failover.enabled</name>
 <value>true</value>
</property>

6.	 Update the core-site.xml to include the following property and copy it
to all the nodes:
<property>
 <name>ha.zookeeper.quorum</name>
 <value>node1.hcluster:2181, node2.hcluster:2181, node3.
hcluster:2181</value>
</property>

Exploring HDFS Federation and Its High Availability

[110]

7.	 Initialize the High Availability (HA) state in ZooKeeper using the following
command from one of the namenodes:
$ hdfs zkfc -formatZK

This command creates a znode in ZooKeeper, which is used by the automatic
failover system to store its data.

8.	 Restart all Hadoop daemons on all the nodes using the following command:
$ for x in 'cd /etc/init.d; ls hadoop*'; do sudo service $x start;
done

9.	 Start the ZooKeeper failover controller on the machines hosting the
namenodes using the following command:

$ sudo service hadoop-hdfs-zkfc start

Your cluster is now configured for automatic failover. You can test this
configuration by manually killing the active the namenode using kill -9
to see if the failover occurs.

Jobtracker high availability
In MRv1, if the jobtracker fails, all running jobs and tasks are lost. Also,
the jobtracker service along with its jobs need to be manually restarted.
To avoid these issues, the jobtracker needs to be configured for high availability.
CDH5 comes inbuilt with the jobtracker HA package.

Configuring jobtracker high availability
Use the following steps from user hduser to configure and HA jobtracker for
your cluster:

1.	 Stop all the tasktrackers by executing the following command on all the
nodes that host tasktrackers:
$ sudo service hadoop-0.20-mapreduce-tasktracker stop

2.	 Stop the jobtracker by executing the following command on the node
that hosts the jobtracker:
$ sudo service hadoop-0.20-mapreduce-jobtracker stop

3.	 Remove the installed jobtracker using the following command from
node1.hcluster:
$ sudo yum remove hadoop-0.20-mapreduce-jobtracker

Chapter 4

[111]

4.	 Install the following HA jobtracker package on two independent nodes,
which in our case would be node1.hcluster and node2.hcluster:
$ sudo yum install hadoop-0.20-mapreduce-jobtrackerha

5.	 If you intend to use automatic failover for the jobtracker, install the
ZooKeeper failover controller using the following command on node1.
hcluster and node2.hcluster:
$ sudo yum install hadoop-0.20-mapreduce-zkfc

6.	 Update the mapred-site.xml file to include the following properties
and copy it to all the nodes in the cluster:
<property>
 <name>mapred.job.tracker</name>
 <value>myjobtracker</value>
</property>
<property>
 <name>mapred.jobtrackers.myjobtracker</name>
 <value>jt1,jt2</value>
</property>
<property>
 <name>mapred.jobtracker.rpc-address.myjobtracker.jt1
</name>
 <value>node1.hcluster:8021</value>
</property>
<property>
 <name>mapred.jobtracker.rpc-address.myjobtracker.jt2
</name>
 <value>node2.hcluster:8022</value>
</property>
<property>
 <name>mapred.job.tracker.http.address.myjobtracker.jt1
</name>
 <value>0.0.0.0:50030</value>
</property>
<property>
 <name>mapred.job.tracker.http.address.myjobtracker.jt2
</name>
 <value>0.0.0.0:50031</value>
</property>
<property>
 <name>mapred.ha.jobtracker.rpc-address.myjobtracker.jt1
</name>
 <value>node1.hcluster:8023</value>
</property>

Exploring HDFS Federation and Its High Availability

[112]

<property>
 <name>mapred.ha.jobtracker.rpc-address.myjobtracker.jt2
</name>
 <value>node2.hcluster:8024</value>
</property>
<property>
 <name>mapred.ha.jobtracker.http-redirect-address.
myjobtracker.jt1</name>
 <value>node1.hcluster:50030</value>
</property>
<property>
 <name>mapred.ha.jobtracker.http-redirect-address.myjobtracker.
jt2
</name>
 <value>node2.hcluster:50031</value>
</property>
<property>
 <name>mapred.ha.fencing.methods</name>
 <value>shell(/bin/true)</value>
</property>

7.	 Start the HA jobtracker daemons on all on the nodes for the jobtrackers.
For our configuration, execute the following command on node1.hcluster
and node2.hcluster:
$ sudo service hadoop-0.20-mapreduce-jobtrackerha start

8.	 If automatic failover is not set up, both jobtrackers will start in the standby
state. If you try visiting the URL http://node1.hcluster:50030/, the page
will be redirected with a message as shown in the following screenshot:

9.	 To transition jobtracker jt1 to active state, use the following command:
$ sudo -u mapred hadoop mrhaadmin -transitionToActive jt1

Your high available jobtracker is now configured. However, the failover has to be
done manually in case the active jobtracker fails.

Chapter 4

[113]

Configuring automatic failover for jobtracker
high availability
To configure automatic failover, use the following steps:

1.	 Add the following properties to mapred-site.xml and copy it to all the
nodes in the cluster:
<property>
 <name>mapred.ha.automatic-failover.enabled</name>
 <value>true</value>
</property>
<property>
 <name>mapred.ha.zkfc.port</name>
 <value>8018</value>
</property>

2.	 Add the following property to core-site.xml file and copy it to all the
nodes in the cluster:
<property>
 <name>ha.zookeeper.quorum</name>
 <value>node3.hcluster:2181, node4.hcluster:2181, node5.
hcluster:2181 </value>
</property>

3.	 Initialize the HA state of the jobtracker in ZooKeeper using one of the
following commands:
$ sudo service hadoop-0.20-mapreduce-zkfc init

$ sudo -u mapred hadoop mrzkfc –formatZK

4.	 Enable automatic failover by starting the ZooKeeper failover controller and
the HA jobtracker on the jobtracker nodes using the following commands:

$ sudo service hadoop-0.20-mapreduce-zkfc start

$ sudo service hadoop-0.20-mapreduce-jobtrackerha start

Your cluster is now configured for automatic failover of HA jobtracker. You can test
this configuration by manually killing the active jobtracker using kill -9 to see
whether the failover occurs.

With this knowledge, as an administrator, you can now set up a robust highly
available Hadoop cluster running CDH5.

Exploring HDFS Federation and Its High Availability

[114]

Summary
In this chapter, we covered the architecture and implementation of HDFS Federation,
which is useful for splitting the namespace into multiple parts and managing them
separately. Then we implemented HDFS high availability by configuring two
namenodes as an active/passive configuration. We also configured jobtracker high
availability by configuring two jobtrackers in an active/passive configuration. Both
HDFS HA and jobtracker HA can be configured for manual failover or automatic
failover using Apache ZooKeeper.

In the next chapter, we will learn the architecture and implementation of Cloudera
Manager, Cloudera's Apache Hadoop administration tool. We will cover all of its
features and how it can be used to administer a cluster running CDH5.

Using Cloudera Manager
With the knowledge acquired so far, you are now equipped with all the steps
and operations needed to set up a cluster via the command line. Up until now,
we performed all the operations and configurations manually from the terminal.
This is doable when the number of nodes in a cluster is few. But as the number of
nodes in a cluster grows, installing CDH and its components manually on all the
nodes would be a cumbersome task. Moreover, managing those nodes would be
difficult. To solve these problems, Cloudera built Cloudera Manager. In this chapter,
we will cover the following topics:

•	 Understanding the architecture of Cloudera Manager
•	 Installing Cloudera Manager
•	 Navigating Cloudera Manager Web Console
•	 Configuring HDFS HA using Cloudera Manager

Introducing Cloudera Manager
Cloudera Manager is a web-browser-based administration tool to manage Apache
Hadoop clusters. It is the centralized command center to operate the entire cluster
from a single interface. Using Cloudera Manager, the administrator gets visibility
for each and every component in the cluster.

A few of the important features of Cloudera Manager are listed as follows:

•	 It provides an easy-to-use web interface to install and upgrade CDH across
the cluster.

Using Cloudera Manager

[116]

•	 Each node in the cluster can be assigned roles and can be configured
accordingly. It allows the starting and stopping of services across all
nodes from a single web interface.

•	 It provides complete information for each node, for example, CPU,
memory disk, and network statuses.

Cloudera Manager is available in the following two editions:

•	 Cloudera Manager Standard (free)
•	 Cloudera Manager Enterprise (licensed)

Cloudera Manager Standard Edition, though free, is a feature packed tool that can
be used to deploy and manage Apache Hadoop clusters with no limitation on the
number of nodes. However, there are a few features that are not part of the standard
edition. These are as follows:

•	 Lightweight Directory Access Protocol (LDAP) authentication
•	 Alerts via SNMP (Simple Network Management Protocol)
•	 Operational reports and support integration
•	 Enhanced cluster statistics
•	 Disk quota management

These features and a few more are part of the enterprise edition. To get the Cloudera
Manager Enterprise Edition, you need to purchase a license. However, as of now,
you can try the Enterprise Edition free for 60 days.

Understanding the Cloudera Manager
architecture
Before we go into installing and using Cloudera Manager, you need to understand
the architecture of Cloudera Manager and how it functions. Cloudera Manager is
composed of the following two parts:

•	 Cloudera Manager Server
•	 Cloudera Manager Agent

Chapter 5

[117]

The following diagram depicts the Cloudera Manager architecture:

The Cloudera Manager Server is the master service that manages the data model of
the entire cluster in a database. The data model contains information regarding the
services, roles, and configurations assigned for each node in the cluster.

The Cloudera Manager Server is responsible for performing the following functions:

•	 It communicates with Cloudera Manager Agents that are installed on each
node of the cluster and assigns tasks as well as checking the health of each
agent by monitoring its periodic heartbeats.

•	 It provides an administrator web interface for the end user to perform
administrator operations.

•	 It calculates and displays dashboards of the health for the entire cluster.
•	 It monitors the important parameters such as disk usage, CPU, and RAM for

each node in the cluster. It also allows full control on the Hadoop daemons
running on the cluster.

•	 It manages the Kerberos credentials for the services running on the cluster.
Kerberos is the tool used to manage the authentication and authorization
requirements of the cluster.

•	 It exposes a set of easy-to-use APIs that helps developers write their own
applications to interact with the Cloudera Manager Server.

The Cloudera Manager Agent is installed on each node of the cluster. It is responsible
for accepting tasks from the Cloudera Manager Server and performs the starting and
stopping of Hadoop daemons on its own node. It is also responsible for gathering
all system-level information and statistics and is relayed back to the Cloudera
Manager Server.

Using Cloudera Manager

[118]

All communication between the server and its agents is done over HTTP(S).
The user also connects to the server using a web browser via HTTP(S). The user
uses the web application to perform all the administrator operations.

Installing Cloudera Manager
Cloudera Manager can be installed using the following two methods:

•	 Automatic installation
•	 Manual installation

In this section, we will walk through the steps for automatic installation as most
of the configurations are handled efficiently by Cloudera Manager itself.

For this demonstration, we will be using the following machine configuration for
the Cloudera Manager Server:

•	 Operating system: CentOS 6.4
•	 RAM: 4 GB
•	 CPU: 4 CPU cores
•	 Disk space: 50 GB

For the machines running the Cloudera Manager Agents, we will use the
following configuration:

•	 Operating system: CentOS 6.4
•	 RAM: 4 GB
•	 CPU: 4 CPU cores
•	 Disk space: This will depend on the volume of data you want

to store in your cluster

For a complete list of all the hardware and software requirements,
visit the following Cloudera website:
http://www.cloudera.com/content/cloudera-content/
cloudera-docs/CM4Ent/latest/Cloudera-Manager-
Installation-Guide/cmig_cm_requirements.html

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/latest/Cloudera-Manager-Installation-Guide/cmig_cm_requirements.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/latest/Cloudera-Manager-Installation-Guide/cmig_cm_requirements.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/latest/Cloudera-Manager-Installation-Guide/cmig_cm_requirements.html

Chapter 5

[119]

The following are the steps to install Cloudera Manager Server and Cloudera
Manager Agents on a cluster:

1.	 Ensure that all nodes participating in the cluster can communicate with
each other over SSH and have their hostnames configured correctly.

2.	 Download the Cloudera Manager binary from the location at
http://www.cloudera.com/content/support/en/downloads.html.

3.	 Once downloaded, modify the downloaded binary file to be executable
using the following command:
$ chmod u+x cloudera-manager-installer-bin

4.	 Next, update the config directory under /etc/selinux and then set
SELINUX=disabled to disable Security-Enhanced Linux (SELinux).
This is required for the installation of Cloudera Manager and can be
re-enabled after installation.

5.	 Start the installation of Cloudera Manager using the following command:
$./cloudera-manager-installer-bin

As shown in the previous screenshot, the installer starts with the Cloudera
Manager README screen. The README page describes all the steps the
Cloudera Manager installer will perform to install the Cloudera Manager
Server and its agents. Select Next to proceed.

http://www.cloudera.com/content/support/en/downloads.html

Using Cloudera Manager

[120]

6.	 You will be presented with the Cloudera Express License screen as shown in
the following screenshot. Select Next to proceed and accept the license.

7.	 On accepting the license, you will be prompted with the Oracle Binary
Code License Agreement. Select Next and accept the license.

8.	 On accepting the Oracle Binary Code License Agreement, the
Cloudera Manager installer starts the installation process, as shown
in the following screenshot:

9.	 After the installation completes, as shown in the following screenshot, a
dialog with the URL for the Cloudera Manager Web console is displayed.
Click on OK and open up a browser to visit the link provided.

Chapter 5

[121]

10.	 As shown in the following screenshot, the login screen is displayed for
Cloudera Manager. The default username and password is admin.

11.	 The first time you log in, you will be prompted to select the Cloudera
Manager edition. We will go ahead and install the Cloudera Enterprise
Data Hub Edition Trial version, which can be evaluated for 60 days.
This gives us enough time to test out all the features of the full version
of Cloudera Manager. If you are interested in getting the Cloudera
Manager license, you will need to contact Cloudera directly.

Using Cloudera Manager

[122]

12.	 The next screen, as shown in the following screenshot, will display the list
of services that will be installed as part of Cloudera Enterprise Data Hub
Edition Trial 5.0.1. Click on Continue.

13.	 In the next step, you will need to enter the hostnames or IP addresses of all
machines that are going to be part of your Apache Hadoop cluster. As shown
in the following screenshot, you can enter all the addresses and click on
Search to check whether they are available:

14.	 After you perform the search, all the machines will be listed as shown
in the following screenshot along with the response time from each
machine. Once you are satisfied with the results, select the required
nodes and click on Continue.

Chapter 5

[123]

15.	 After the node selection, you will be presented with a few options to
perform the cluster installation as shown in the following screenshot.
The cluster installation is a five-step process. The installer provides two
types of installation options: packages and parcels. Cloudera recommends
the use of parcels. After selecting the required options, click on Continue.

Using Cloudera Manager

[124]

16.	 The next screen, as shown in the following screenshot, provides an option to
install Java Unlimited Strength Encryption Policy Files. These files are used
to set up a secure server. For now, we can leave the box unchecked and click
on Continue.

17.	 Next, provide the SSH username and password to log in to the different
machines as shown in the following screenshot. As you can see, we are using
the root user. For this set up, the root password is the same for all the nodes
in the cluster. Once you are done entering the credentials, click on Continue.

Chapter 5

[125]

18.	 The next step starts installing all the Cloudera Manager components to
the different machines on the cluster as shown in the following screenshot.
This may take a few minutes to complete. If for some reason you want to
abort the installation, you can click on Abort Installation.

19.	 After the installation completes, you should see the output as shown in
the following screenshot. This confirms that the initial set of Cloudera
Manager components have been installed correctly. Also, you will notice
that the previously grayed-out Continue button is now active. Click on
Continue to proceed.

Using Cloudera Manager

[126]

20.	 After the installation of the initial components of Cloudera Manager, the next
step installs the CDH5 parcel as shown in the following screenshot. Once the
installation completes, click on Continue to proceed.

21.	 After the parcel is installed, all hosts are inspected for correctness as shown
in the following screenshot. If there are any errors, a cross mark is displayed
next to the failed validation. Click on Continue to proceed.

22.	 The next screen, as shown in the following screenshot, will prompt you to
select the different combination of services that you would like to install. Select
the appropriate one and click on Continue. As you can see, I have selected All
Services to get all the services available within CDH5 to our cluster.

Chapter 5

[127]

23.	 The next screen provides the options that can be customized under the
Customize Role Assignments option.

Using Cloudera Manager

[128]

Using this screen, you can decide which services need to run on which hosts.
After you are done configuring, click on Continue.

24.	 The next step, as shown in the following screenshot, is to configure the
database. We are selecting the Use Embedded Database option for our
installation. After selecting the option, click on Test Connection to test the
database connections. Once the connections are successfully tested, the
Continue button will be activated. Click on Continue to proceed.

25.	 The next screen, as shown in the following screenshot, displays all the
configuration values for the cluster for review. You can update the values
as you desire or leave them at the defaults. Once you are done updating,
click on Continue to proceed.

Chapter 5

[129]

26.	 The next step, as shown in the following screenshot, starts all the services
on the cluster. Once all the services have started successfully, click on
Continue to proceed.

Using Cloudera Manager

[130]

27.	 Once the installation is complete, you will be logged in to the Cloudera
Manager Administrator Web console as shown in the following screenshot:

This completes the installation of Cloudera Manager and CDH5 on the cluster.
Next, let us look into all the operations available in the Cloudera Manager Web
console that could help the administrator manage the Apache Hadoop cluster.

Navigating the Cloudera Manager Web
console
The Cloudera Manager Web console is the control center to manage the entire
cluster. Once you are logged in to Cloudera Manager, the landing page displays
a wealth of information. The different screens can be visited using the Cloudera
Manager toolbar as shown in the following screenshot:

Chapter 5

[131]

Navigating the Home screen
The Home screen is divided into four different tabs, which are as follows:

•	 This Status tab displays the overall status of the cluster with a list of all the
components running as shown in the following screenshot. Each service
displayed can be started and stopped from this interface.

The cluster information is divided into two columns. The first column displays
the name of the Hadoop components and the second column displays the
important status messages. The circular icon to the left of the component
name is the health indicator of the component. The health can be checked by
hovering the mouse over the indicator as shown in the following screenshot:

Using Cloudera Manager

[132]

The preceding screenshot indicates that the ZooKeeper component has a
health concern. The second column gives a few more details indicating that
the ZooKeeper component has one warning configuration issue. To see the
details of these, you can click these indicators, which will pop up the details
of the indicator, as shown in the following screenshot. You can further click
on the component name to see more details.

The Status tab also contains a section that contains charts that display status
information of cluster resources. By default, the Cluster CPU, Cluster
Disk IO, Cluster Network IO, and HDFS IO resources are present on
the dashboard, as shown in the following screenshot:

Chapter 5

[133]

•	 The All Health Issues tab displays the list of components that have health
issues as shown in the following screenshot. The screenshot shows that
there are two health issues, one for the hivemetastore component and
one for jobhistory. You can see more details by clicking on the individual
components listed on the screen as shown in the following screenshot:

•	 The All Configuration Issues tab displays the list of components that have
configuration issues as shown in the following screenshot. The screenshot
shows that there are three configuration issues on the cluster. Each issue is
described in complete text so you can understand the nature of the issue
along with a recommendation. Clicking on any issue will take you to the
configuration page of the service and you can resolve the issue there.

Using Cloudera Manager

[134]

•	 The All Recent Commands tab lists all the recent commands executed on
the cluster. As you can see in the following screenshot, the recent commands
give us information that the ZooKeeper service was recently started:

Navigating the Clusters menu
The Clusters menu on the Cloudera Manager toolbar displays the list of all services
installed on the cluster. The following screenshot shows the menu items of the
Services menu:

Chapter 5

[135]

You can click on the services to bring up a detailed view of the selected service.
Let us look at one of the services. Each detail window is divided into multiple tabs.
For example, if you select the HDFS service, the following tabs are displayed:

•	 Status: This tab displays the HDFS summary information along with
detailed health information. This page also contains several charts, for
example, HDFS Capacity, Total Bytes Read Across DataNodes,
and Total Bytes Written Across DataNodes.

•	 Instances: This tab displays the various nodes of the cluster that
hosts the HDFS service. Any node that is running the namenode,
secondary namenode, or datanode is displayed here along with status,
role, and health information.

•	 Commands: This tab displays the list of all the running commands
and recent commands executed in relation to the HDFS service.

•	 Configuration: This tab presents a drop-down menu, listing the options
to view and edit configurations, role configurations, and an option to
view the history of the HDFS configurations along with the configuration
options for rollback.

•	 Audits: This tab lists all the actions taken for the HDFS service.
This information helps the administrator understand the activities
the service is performing. An option to download the audit log is
also available.

•	 Charts Library: This tab lists all the charts related to the HDFS service.
The page is divided into groups of charts. You will find charts that
display information for the entire service along with the ones for the
namespace and datanodes.

•	 File Browser: This tab displays the list of files and folders on HDFS.
•	 Cache Statistics: This tab provides the HDFS caching information.
•	 Replications: This tab provides options to configure schedules and

sources for HDFS replication and Hive replication.

Using Cloudera Manager

[136]

•	 NameNode Web UI: This tab links to the namenode web interface.
The following screenshot shows the details for the HDFS service.

Exploring the Hosts menu
The Hosts menu on the Cloudera Manager toolbar displays information of
all the hosts that are part of the cluster. The screen is divided into four tabs:
Status, Configuration, Templates, and Parcels. Let's look into the details of
the latter two tabs here:

•	 Templates: This tab provides the administrator with an option to predefine
the properties for a specific service or node. For example, a template for the
TaskTracker can be created with all the required configuration parameters
and saved. Later on, when the administrator needs to add a new TaskTracker
in the cluster, he can apply all the required configurations to the new
TaskTracker using the template.

•	 Parcels: This tab lists all the parcels installed on the cluster along with the
new parcels available for download. Parcels provide an easy way to install
the packages on the cluster and it is the Cloudera-recommended method for
software management.

Chapter 5

[137]

Understanding the Diagnostics menu
The Diagnostics menu on the Cloudera Manager toolbar provides the following
three menu items:

•	 Events: This screen displays the list of all the events that occur on
the cluster. Three types of events are displayed here: IMPORTANT,
INFORMATIONAL, and CRITICAL. As there can be several events that
occur, a provision to filter events by the type of events is also available. The
following screenshot displays an event with severity—INFORMATIONAL.
The search can be filtered by other types too, for example, Content, Role,
Hosts, Cluster, and many more.

•	 Logs: This screen provides a search interface to look into the different logs
of services running on the cluster. As shown in the following screenshot,
there are several options to search through the logs for specific services.
The different services can be selected using the Select Sources option.

Using Cloudera Manager

[138]

•	 Server Log: The screen displays the Cloudera Manager Server logs as shown
in the following screenshot:

Understanding the Audits screen
The Audits menu on the Cloudera Manager toolbar lists all the actions/events
performed on the cluster in an easy-to-read format. The interface also provides an
option to perform a search on the events using advanced search filters as shown in
the following screenshot. The screenshot also shows the list of components available
as part of the search filter.

Chapter 5

[139]

Understanding the Charts menu
The Charts menu on the Cloudera Manager toolbar provides an option to create
new charts using the Chart Builder screen as shown in the following screenshot.
You can write a query to select the parameters to create the chart. Once created,
you can save the chart.

Understanding the Backup menu
The Backup menu provides screens to configure replications for HDFS and Hive
data. The menu also provides an option to configure schedules for HDFS and
HBase snapshots. We will cover these in detail in Chapter 9, Configuring Backups.

Understanding the Administration menu
The Administration menu on the Cloudera Manager toolbar contains all the
tools required by an administrator to manage the Apache Hadoop cluster.
The Administration menu has the following items:

•	 Settings: This screen provides an interface to view and edit all the
configuration parameters for Cloudera Manager. The properties are
divided into multiple groups. The following is a brief description of
each of the groups:

°° Performance: This group contains the configuration parameters
for Cloudera Manager. By default, the only property defined here
is the heartbeat interval setting for agents to respond to the server.

°° Advanced: This group contains a few properties, such as agent
heartbeat logging directory, command data storage directory,
and so on. These properties are very rarely modified.

°° Thresholds: This group contains properties with respect to the
health status check for the agents.

Using Cloudera Manager

[140]

°° Security: This group contains all the properties related to the security
of Cloudera Manager.

°° Ports and Addresses: This group consists of properties related to the
Cloudera Manager services. For example, the hostname, HTTP port for
the administrator console, HTTPS port for the administrator console,
and the agents port to connect to the server. The following screenshot
shows the Ports and Addresses group from the Settings page:

°° Other: This group consists of few basic properties to configure the
look and feel of the Cloudera Manager client.

°° Support: This group consists of properties related to diagnostic data
collection of Cloudera Manager. These properties help configure
the frequency and size of the diagnostic data, which can be sent to
Cloudera for usage analysis.

°° External Authentication: This group consists of all the properties
related to Lightweight Directory Access Protocol (LDAP) and
Security Assertion Markup Language (SAML) authentication
and authorization.

°° Parcels: This group contains properties related to parcel package
management provided by Cloudera Manager, for example,
the parcel local repository directory, remote parcel URLs,
and parcel update frequency.

°° Network: This group provides options to configure the proxy
server properties for Cloudera Manager.

°° Custom Service Descriptors: This group provides options to
configure custom add-on services to Cloudera Manager.

•	 Alerts: This screen enables the administrator to configure e-mail alerts for
the various services running on the cluster. We will see more of this screen
in Chapter 8, Cluster Monitoring Using Events and Alerts.

Chapter 5

[141]

•	 Users: This screen, as the name suggests is the user management console
for Cloudera Manager. By default, the admin user is created for Cloudera
Manager. Basic user administration activities, such as add/remove the user,
manage privileges, and change user passwords is available on this screen.

•	 Kerberos: This screen provides the administrator with options to set up
Kerberos, the system to authenticate and authorize users in Apache Hadoop.
We will be using this screen to set up Kerberos in Chapter 6, Implementing
Security Using Kerberos.

•	 License: This screen displays the current license for Cloudera Manager.
The following screenshot shows the License screen of Cloudera Manager:

As you can see in the preceding screenshot, we are using the trial license for
Cloudera Manager. You have the option to stop the trial version using the
End Trial button or upload a valid enterprise license. The page also displays
the current license key along with the license expiry date.

•	 Language: This screen allows you to set the language for Cloudera Manager.
The language set here will be the language used for messages such as
events and e-mails. The language of Cloudera Manager is derived from the
browser's language settings. The following is the screenshot of the Language
screen in Cloudera Manager:

Using Cloudera Manager

[142]

•	 Peers: This screen provides the administrator with an interface to add peer
clusters that are managed by Cloudera Manager. The peer cluster will then
become the source from which data, that is, files can be replicated to the
currently logged on cluster. Using this feature, you can get files/data (HDFS or
Hive data) from a different cluster (peer cluster) and replicate the data in your
cluster. The following screenshot shows the Peers screen in Cloudera Manager:

Then, the Add Peer screen, shown in the following screenshot, allows you to
specify the name of the peer, the peer URL, and the admin credentials of the
peer to connect to the peer Cloudera Manager:

Chapter 5

[143]

As shown in the following screenshot, once you are done adding the peer,
the peer is tested for connectivity and on successful connection, the status
is updated to Connected:

Configuring High Availability using
Cloudera Manager
We know to configure HDFS HA manually using the different commands we
learned in Chapter 4, Exploring HDFS Federation and Its High Availability. In this
section, we will use Cloudera Manager to configure HDFS HA and see how quickly
we can set it up just with a few clicks, making the entire process more efficient.

The following are the steps to configure HDFS HA using Cloudera Manager:

1.	 Log in to Cloudera Manager, navigate to the Clusters menu, and select the
HDFS service from the Services section.

2.	 Next, click on the Instances tab. The screen should look like the one shown in
the following screenshot:

Using Cloudera Manager

[144]

3.	 Click on the Enable High Availability button to bring up the four step
wizard to configure high availability as shown in the following screenshot:

Select the node that will host the standby namenode and the nodes that will
host the Journal Node daemons. In the following screenshot, you will see that
we have selected node2.hcluster to be the standby namenode and node2.
hcluster, node3.hcluster, and node4.hcluster to host the Journal Node
daemons. After selecting the nodes, click on Continue.

4.	 The next screen provides the option to define the nameservice name as
shown in the following screenshot:

Chapter 5

[145]

5.	 In the Review Changes screen, you will need to update the values for
the JournalNode Edits Directory option for all the machines that host
the Journal Node daemon. As you can see in the following screenshot,
I have set this property to be /tmp/jndata for nodes: node2.hcluster,
node3.hcluster, and node4.hcluster. After setting these values,
click on Continue.

Using Cloudera Manager

[146]

6.	 In the final step, all the services that require a restart are restarted and
the new configuration for clients of the services in the cluster are deployed
on the cluster. The following screenshot is a partial screenshot of the
successful final step:

We have successfully configured HDFS HA in six easy steps using Cloudera
Manager. This is the real power of Cloudera Manager, which in turn helps the
administrator carry out tasks efficiently.

Summary
In this chapter, you were introduced to Cloudera Manager and learned some of its
important features. You also got to know about its architecture and how it works
with its agents to collect information from the different nodes in the cluster. We then
installed Cloudera Manager and navigated the important screens of the web console
so you understand its different options and features. We also configured HDFS HA
using Cloudera Manager to demonstrate the ease of using Cloudera Manager for
administrative activities.

In the next chapter, we will dive into the security aspects of Apache Hadoop,
dealing with authentication and authorization of users and services using Kerberos.

Implementing Security
Using Kerberos

So far, we have covered all that is required to set up an Apache Hadoop cluster
running CDH5 and managed by Cloudera Manager. With the cluster now ready to
serve large volumes of data to users, the administrator needs to take into account
the different users who will be accessing the system. In a production environment,
organizations are very stringent in terms of security and expect their data and
services to be secure. The administrator needs to have the tools to secure the Apache
Hadoop cluster in their armor, and allow only authenticated users to access the
cluster. Apart from authorization, the administrator has to be careful about what
services in the cluster a user can access. Using Kerberos, the administrator can set
up a highly secure cluster with robust authentication for users and services.

In this chapter, we will cover the following topics:

•	 Understanding authentication and authorization
•	 Introduction to Kerberos
•	 Understanding the Kerberos architecture
•	 Installing Kerberos
•	 Configuring Kerberos for Apache Hadoop
•	 Configuring Service Level Authorization in Apache Hadoop

Implementing Security Using Kerberos

[148]

Understanding authentication and
authorization
In simple terms, authentication is the process of establishing the truth of an entity.
Here, the entity could be a user or service on the network. For example, when you
log in to your e-mail account, the e-mail server authenticates you based on your
username and password. In almost every organization, the users who are part of the
organization's network need to be authenticated before they are able to successfully
log on to the network. Once the user is authenticated, the user should be restricted
to use only the services to which the user is authorized. Authorization defines all
the resources that a user can access or use. An example of the authorization is clearly
visible on a Linux system. Every file and directory has permissions associated
with them. These permissions decide which user can read, write, or access the
file or directory.

Introducing Kerberos
Kerberos is a network authentication protocol that has been designed to
provide a robust authentication solution by employing secret key cryptography.
Massachusetts Institute of Technology (MIT) has implemented a free version
of this protocol, which is widely used.

Kerberos addresses the following requirements:

•	 Kerberos makes it easy for users to log on and use the different resources on
a network without having to go through the login procedure for access to
each resource or service. In other words, Kerberos supports single sign-on
access that would expect the user to log in only once into the system with
seamless authorization to access the rest of the resources.

•	 Distributed systems involve a large number of nodes connected to form a
cluster, just like the Internet we use daily. These nodes could have malicious
users that could take advantage of any flaws that exist in the network.
Kerberos works well in such environments and protects the network from
such users.

•	 Kerberos is pluggable to any suite of applications without major modifications.
•	 Kerberos is extremely stringent in terms of data or information transfer and

does not perform any exchange unless the requesting user is authenticated
as a valid user by Kerberos.

Chapter 6

[149]

•	 There are several people who connect to a network with the intention to steal
login credentials from other users trying to authenticate to a network. They do
this by eavesdropping on the network and extracting passwords that are sent
over the wire for authentication. Kerberos is resilient and does not send the
password over the wire, thus eliminating the chance of being compromised.

•	 Kerberos maintains all its authentication-related information in one place and
does not maintain it in any distributed fashion across the network. Credential
management is more efficient when managed from a single command center.

Let's explore the previously mentioned features of the Kerberos system by getting to
know the architecture of the Kerberos protocol.

Understanding the Kerberos Architecture
Before we start configuring Kerberos in a Hadoop environment, we need to get
a good understanding of Kerberos and its workings. The following diagram
describes the various system components in the Kerberos environment:

Key Distribution
Center (KDC)

File ServerUser

Database

Ticket Granting
Server

Authetication
Service

Every Kerberos environment will have a Key Distribution Center (KDC), which is
responsible for managing the credentials of users and services in the network. KDC
is the centrally located credential store used by Kerberos to authenticate clients.

An example of client would be any user or software service trying to access
the network.

Implementing Security Using Kerberos

[150]

As you can seen in the preceding diagram, the KDC is made up of three components:

•	 Authentication Service: This component is responsible for all
authentication-related operations

•	 Database: This component stores the secret keys of all the users and
services on the network

•	 Ticket Granting Server: This component is responsible for granting the
service tickets to users and other services

Using the preceding diagram, let's walk through the entire flow of information
during an authentication in a Kerberos environment. To understand it correctly,
let's consider a user who needs to access the network and subsequently access a
file server on the network.

When a user or service is added to the network, the administrator generates a secret
password in the KDC and shares it with the user/service. The secret password is
only exchanged during this initial user/service network configuration.

Authenticating a user
In Kerberos, authentication is performed without the user's password being sent
over the wire. The following are the sequence of steps to authenticate a user:

1.	 The user boots up their computer that is connected to the network and enters
their credentials (username and password).

2.	 The computer generates an authenticator packet that is encrypted using the
user's password and sends it to KDC. A key thing to note here is that the
password is not sent to KDC.

3.	 When the authenticator packet is received by KDC, it uses the shared secret
password to decrypt it. If KDC can decrypt the packet, it trusts this user and
provides a Ticket Granting Ticket (TGT), thus authenticating the user to log
in to the network. The TGT has a limited validity period and resides on the
user's computer.

4.	 If the KDC can't decrypt the packet, the user authentication fails, and the user
is not allowed to log in to the network.

Accessing a secure file server
Secure access to network services such as file servers is also handled using tickets
in Kerberos. The following are the sequence of steps for a user to access a secure file
server on the network:

Chapter 6

[151]

1.	 The client sends a copy of the TGT with a request to the KDC for a ticket
to access the file server.

2.	 Since the KDC has already authenticated the user, it can easily verify the
user as a valid user based on the TGT. The KDC builds a service ticket and
encrypts it with the file server's secret key and sends it to the user.

3.	 The user presents this ticket to the file server. Since the ticket is encrypted
using the file server's secret key, the file server is able to decrypt it, thus
establishing the trust that it was created by the KDC.

4.	 The user is granted access to the file server. Any time the user needs to access
the file server, the user needs to present the ticket that was generated by the
KDC to access the file server.

The KDC stores the shared secret keys of all the users and services on the network.
This makes it possible to authenticate the users and services without sending the
password over the wire.

Understanding important Kerberos terms
We now have a simplistic view of how the Kerberos protocol works. Next, let's go
through some important terms used in a Kerberos environment.

•	 Any service that has been configured to use Kerberos authentication is
said to be kerberized.

•	 Realm: A realm is an authentication administrative domain. It defines
the network environment. You can think of it as a network domain for
authentication, for example, MYREALM.COM.

•	 Principal: A principal is considered to be any entity that has an entry in
the KDC database. A principal can be any user, service, or server in the
environment defined by the realm. The principal is made up of three parts:
primary, instance, and realm.

°° Primary: For a user who is part of the Kerberos configuration, the
username will be the primary of the principal, for example, rohitm@
MYREALM.COM, where rohitm is the user under the realm MYREALM.COM.

°° Instance: For a user that needs further qualification, an instance
can be applied. For example, if you need to qualify the user as
an administrator, you as the user principal would look like:
rohitm/admin@MYREALM.COM.

°° Realm: For a service running on a host that is part of the Kerberos
configuration, the principal would be hdfs/node1.hcluster.com@
MYREALM.COM. In this case, we are stating that the principal is the
hdfs services running on the host node1.hcluster.com.

Implementing Security Using Kerberos

[152]

•	 Keys: The KDC is the centralized location for all the keys associated with
principals on the network. In other words, each principal will have a key in
the KDC. This is a shared secret key, that is, only the principal and the KDC
are aware of the keys. The key is used to encrypt and decrypt tickets for the
purpose of authentication.

•	 Keytab: A keytab is a file that is synonymous to the /etc/passwd file
that stores user passwords in a Linux system. It contains a list of keys
for a specific service. Unlike user principals that use the user's password
as the key, a service uses a key generated and stored in a keytab file for
authentication. The key in the keytab is a shared secret key that also resides
in the KDC.

Installing Kerberos
Before we get started with configuring Kerberos for Apache Hadoop, we need to
set up the KDC and the different nodes on the cluster with the required packages.

Configuring the KDC Server
KDC is the Kerberos server and should be the first step in configuring Kerberos on
the cluster. The following are the steps to install the server packages:

1.	 Choose a node on the cluster that you would want to set up as the KDC.
Ideally, this node should be used exclusively for the KDC; however,
for this demonstration, I am using node1.hcluster for the KDC.

2.	 Install the krb5-libs, krb5-server, and krb5-workstation packages
on the KDC node. Use the following commands as the root user to install
the packages:
$ yum install krb5-libs

$ yum install krb5-server

$ yum install krb5-workstation

3.	 Update the krb5.conf file in the /etc/ folder from the root user as shown
in the following code:
[logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

[libdefaults]

Chapter 6

[153]

 default_realm = MYREALM.COM
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = true

[realms]
 MYREALM.COM = {
 kdc = node1.hcluster
 admin_server = node1.hcluster
 }

[domain_realm]
 .hcluster = MYREALM.COM
 hcluster = MYREALM.COM

For our configuration, we are using MYREALM.COM as our realm. In this
configuration, node1.hcluster is the KDC.

4.	 Next, update the kdc.conf files in the /var/kerberos/krb5kdc/ folder
from the root user as shown in the following code:
[kdcdefaults]
 kdc_ports = 88
 kdc_tcp_ports = 88

[realms]
 MYREALM.COM = {
 master_key_type = aes256-cts
 acl_file = /var/kerberos/krb5kdc/kadm5.acl
 dict_file = /usr/share/dict/words
 admin_keytab = /var/kerberos/krb5kdc/kadm5.keytab
 supported_enctypes = aes256-cts:normal aes128-cts:normal des3-
hmac-sha1:normal arcfour-hmac:normal des-hmac-sha1:normal des-cbc-
md5:normal des-cbc-crc:normal
}

5.	 Next, we need to get the Java Cryptography Extension policy files from
Oracle. These files are needed for our configuration as we are using the
AES256-CTS type of cryptography for authentication. These policy files
are not part of the Java Runtime Environment (JRE) by default and need
to be explicitly downloaded. The policy files can be downloaded from
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-
download-432124.html.

http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html

Implementing Security Using Kerberos

[154]

6.	 After downloading the UnlimitedJCEPolicyJDK7.zip file, unzip the file to
get the following two files:

°° local_policy.jar

°° Us_export_policy.jar

7.	 On installing Cloudera Manager, Java was installed in /usr/java/
jdk1.7.0_45-cloudera/. Place the extracted files as the root user under
the /usr/java/jdk1.7.0_45-cloudera/jre/lib/security/ directory on
all the machines that are part of the cluster. The JDK folder may be different
for your installation, so please verify the path before placing the files. You
may be prompted to overwrite the existing files. You should choose yes to
overwrite the files.

8.	 Next, we need to set up the database for the KDC. Use kdb5_util
create -s command as the root user as shown in the following screenshot:

9.	 Next, update the kadm5.acl file in the /var/kerberos/krb5kdc/ folder
from the root user as follows:
*/admin@MYREALM.COM *

10.	 Create the first principal for the root user as root user using kadmin.local
-q "addprinc root/admin" command as shown in the following screenshot:

Chapter 6

[155]

11.	 Start the KDC services using the following commands as the root user:

$ service krb5kdc start

$ service kadmin start

The previously mentioned steps should install all the required packages and start the
services for KDC.

Testing the KDC installation
It is a good practice to test the KDC server after installation using the following steps:

1.	 From the machine hosting the KDC service, run the following command to
get the ticket granting ticket for the root user:
$ kinit root/admin@MYREALM.COM

2.	 Verify the existence of the ticket granting ticket (TGT) using the klist
command as shown in the following screenshot:

Configuring the Kerberos clients
After configuring the server, we need to set up the clients to work with Kerberos.
Following are the steps to install the client packages on all the nodes of the cluster:

1.	 Install the krb5-libs and krb5-workstation packages on all the client
nodes as a root user using the following commands:
$ yum install krb5-libs

$ yum install krb5-workstation

2.	 Copy /etc/krb5.conf from the KDC server as the root user to all the client
nodes on the cluster.

The client nodes are now configured to work with Kerberos.

Implementing Security Using Kerberos

[156]

Configuring Kerberos for Apache Hadoop
In this section, we will use Cloudera Manager to configure Kerberos for our cluster
running CDH5.

At the time of installation, CDH5 creates the following users:

•	 hdfs: This user runs the namenode, datanodes, and secondary namenode
daemons. The following screenshot shows the hdfs user as the owner of the
namenode service:

•	 mapred: This user runs the jobtracker and tasktracker daemons when using
the MRv1, and job history server daemon when using YARN (MRv2).

•	 yarn: This user runs the resource manager and node manager daemons.
•	 oozie: The user runs the Oozie server.
•	 hue: This user runs the Hue Server, Beeswax Server, Authentication

Manager, and Job Designer daemons.

In addition to the preceding users, the Cloudera Manager also creates a user
called cloudera-scm. We will need to set up authentication for all of these users
in Kerberos.

Chapter 6

[157]

Configuring Kerberos principal for Cloudera
Manager Server
Execute the following steps as the root user from node1.hcluser to configure the
Kerberos principal for Cloudera Manager Server:

1.	 As shown in the following screenshot, we will use the kadmin tool to
configure the principal for the cloudera-scm user:

2.	 After creating the principal, we need to create the keytab file for the Cloudera
Manager Server as show in the following screenshot:

Here, it is important to note that the Cloudera Manager
Server expects the keytab filename to be cmf.keytab.

3.	 Next, copy the cmf.keytab file to the /etc/cloudera-scm-server/
directory on the server where the Cloudera Manager Server is installed.

4.	 Change the group and user ownership of the cmf.keytab file using the
following command:
$ chown cloudera-scm:cloudera-scm /etc/cloudera-scm-server/cmf.
keytab

Implementing Security Using Kerberos

[158]

5.	 Change the permissions for the cmf.keytab file, so that cloudera-scm user
has the read and write permissions on the file. Use the following command
to set the permissions:
$ chmod 600 /etc/cloudera-scm-server/cmf.keytab

6.	 Create a file named cmf.prinicpal and add the following line to the file:
cloudera-scm/admin@MYREALM.COM

7.	 Place the cmf.principal file under the /etc/cloudera-scm-server/
directory on the server where the Cloudera Manager Server is installed.

8.	 Change the group and user ownership of the cmf.principal file using
the following command:
$ chown cloudera-scm:cloudera-scm /etc/cloudera-scm-server/cmf.
principal

9.	 Change the permissions for the cmf.principal file, so that only the
cloudera-scm user has the read and write permissions on the file.
Use the following command to set the permissions:

$ chmod 600 /etc/cloudera-scm-server/cmf.principal

Configuring the Cloudera Manager Server for
Kerberos
Cloudera Manager provides a simple interface to configure Kerberos for Hadoop.
The following are the steps to configure the properties to enable Kerberos security
using Cloudera Manager:

1.	 From the Cloudera Manager Web console navigate to the Administration |
Settings menu item. Search for the keyword realm to bring up the Kerberos
Security Realm property. Update the property to MYREALM.COM and
click on Save Changes, as shown in the following screenshot:

Chapter 6

[159]

2.	 Navigate to the home screen of the Cloudera Manager Web console and stop
the clusters using the Stop menu item as shown in the following screenshot:

3.	 Next, stop the Cloudera Management Service using the Stop menu item as
shown in the following screenshot:

Implementing Security Using Kerberos

[160]

4.	 On the home screen of the Cloudera Manager Web UI, click on HDFS.
Navigate to the Configuration tab and select the View and Edit menu item
for HDFS. Search for the keyword Hadoop Secure and update the properties
as shown in the following screenshot:

5.	 Next, search for the keyword DataNode, and update the DataNode
Transceiver Port and DataNode HTTP Web UI Port as shown in the
following screenshot:

These values need to be below 1024 and Cloudera recommends 1004
and 1006 for Transceiver port and Web UI port respectively. Click on
Save Changes.

6.	 The preceding actions trigger the creation of credentials. To check the status
of the generate credentials operation, click on the Running Commands icon
on the Cloudera Manager toolbar as show in the following screenshot:

Chapter 6

[161]

7.	 You can also check for the status of the operation by clicking on the
All Recent Commands button on the Running Commands screen as
shown in the following screenshot:

As you can see in the preceding screenshot, the Generate Credentials
command has completed successfully.

8.	 Navigate to Administration | Kerberos from the Cloudera Manager
Toolbar. You should see the generated credentials as shown in the
following screenshot:

9.	 From the Cloudera Manager home screen, start the CDH5 cluster and
the Cloudera Management service.

Implementing Security Using Kerberos

[162]

10.	 Once the services start successfully, the cluster starts operating in a
secure mode.

11.	 After the services are kerberized, the access to the hdfs superuser is lost
and this needs to re-enabled by creating a new hdfs user principal as
shown in the following screenshot:

The previously mentioned steps complete the Kerberos configuration for CDH using
Cloudera Manager. Now, only authorized users can log in to the cluster and only
authorized services can communicate with each other.

More details on securing Hadoop clusters can be found at http://www.cloudera.
com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Security-
Guide/CDH5-Security-Guide.html.

Authorization in Apache Hadoop
With authentication, we have validated the user. The next step in the security is to
implement Service Level Authorization controls for users. Service Level Authorization
sets the permissions for users to the different objects in the cluster. These permissions
employ controls on the different actions that a user could perform, for example,
submitting a MapReduce job, accessing a file on HDFS, and so on.

Service Level Authorization in Hadoop is done by defining an access control
list (ACL). The ACLs allow the administrator to define the list of users that
have permissions to the different services in Hadoop.

Configuring access control lists in Hadoop
The ACLs are configured in the hadoop-policy.xml file. This file is located under
Hadoop's configuration directory. If Cloudera Manager was used to set up CDH
on your cluster, you should see this configuration file under the /opt/cloudera/
parcels/<CDH VERSION>/etc/hadoop/conf.dist directory.

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Security-Guide/CDH5-Security-Guide.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Security-Guide/CDH5-Security-Guide.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Security-Guide/CDH5-Security-Guide.html

Chapter 6

[163]

In the cluster, which we are using as examples in this book, the file is present at the
/opt/cloudera/parcels/CDH-5.0.1-1.cdh5.0.1.p0.47/etc/hadoop/conf.dist
directory.

The hadoop-policy.xml file consists of name and value pairs for each of the
properties. The value is specified as a comma-separated list of users and groups.
The user and groups list are separated by a space.

For example, the following value represents an access control list for users, rohit
and mark and for groups, scientist and miners:

<value>rohit, mark scientist, miners</value>

By default the value is *, which stands for universal access to a service.

The following are a few of the properties:

•	 security.client.protocol.acl: This property defines the access
control list for the ClientProtocol interface that is used in user code for
job submission. Only the list of users configured in this property will be
allowed to talk to the cluster as a distributed filesystem client.

•	 security.client.datanode.protocol.acl: This property defines
the access control list for the client to datanode protocol that is used for
communication between the client and the datanodes to retrieve data blocks.
Only the list of users configured in this property will be allowed to recover
blocks from the datanode.

•	 security.datanode.protocol.acl: This property defines the access control
list that the datanodes use to communicate with the namenode. Only the list
of users configured in this property will be allowed to start the datanodes,
which will have access to the namenode.

•	 security.namenode.protocol.acl: Only the list of users configured in this
property will be allowed to start the secondary namenode, which will have
access to the namenode.

•	 security.refresh.policy.protocol.acl: Only the list of users configured
in this property will be allowed to refresh the security policies for Hadoop.

•	 security.ha.service.protocol.acl: Only the list of the users configured
in this property will be allowed to perform administration commands
required to change the namenode state from active to standby in a high
availability scenario.

Implementing Security Using Kerberos

[164]

Summary
In this chapter, we started by understanding authentication and authorization.
We also learned the architecture of the Kerberos authentication system, which
we installed and configured for Apache Hadoop. We covered the basics of
authorization in Apache Hadoop by going through a few of the properties
in the hadoop_policy.xml file.

In the next chapter, we will cover the tools and techniques to perform all the
administrative activities needed to manage a full-fledged Apache Hadoop
production cluster.

Managing an Apache
Hadoop Cluster

We are now equipped with the skills to install and bring up a secure Apache Hadoop
cluster running CDH5 and Cloudera Manager. In this chapter, we will learn the
different techniques to manage the cluster by covering the following topics:

•	 Configuring Hadoop services using Cloudera Manager
•	 Role management in Cloudera Manager
•	 Managing hosts using Cloudera Manager
•	 Managing multiple clusters with Cloudera Manager
•	 Rebalancing an HDFS cluster from Cloudera Manager

Configuring Hadoop services using
Cloudera Manager
Cloudera Manager is a very intuitive tool that provides a user-friendly interface to
add, remove, and configure services in a cluster. In this section, we will cover the
addition and removal of services in a cluster.

Managing an Apache Hadoop Cluster

[166]

Adding a service to the cluster
The following are the steps to add a service to the cluster:

1.	 Log in to Cloudera Manager. The Home screen lists all the services that are
currently installed on the cluster as shown in the following screenshot:

2.	 In the preceding screenshot, there are only two services in Cluster 1.
Let's now add the Hive service to this cluster. To add Hive, click on the
drop-down button for Cluster 1 and select the Add a Service option as
shown in the following screenshot:

Chapter 7

[167]

In the next screen, a list of service types along with their description is
displayed, as shown in the following screenshot:

3.	 To add the Hive service (the data warehouse system for Hadoop),
select Hive from the list and click on Continue.

4.	 Next, select the dependencies for the Hive service as shown in the following
screenshot; in this case, select hdfs and click on Continue:

5.	 On the next screen, you are given the option to select hosts for the Hive
Metastore and the Hive Gateway. The Hive Metastore is responsible for
storing the metadata of the Hive schemas, tables, and partitions. The Hive
Gateway is where you can host the Hive shell client. Cloudera Manager,
by default, selects a host automatically.

Managing an Apache Hadoop Cluster

[168]

The role assignment screen is shown in the following screenshot.
Click on Continue.

6.	 The next screen, as shown in the following screenshot, provides the options
to select the database for the Hive Metastore:

There are two types of databases you can create for the Hive Metastore:
°° Embedded: On selecting Use Embedded Database, a PostgreSQL

database will be automatically created and managed by Cloudera
Manager to store the Hive Metastore

°° Custom: On selecting Use Custom Database, all the database details
have to be provided by the administrator

For this demonstration, let's select Use Embedded Database. Copy down the
generated password for future reference and click on the Test Connection
button to test the database connection. After the testing operation completes,
click on Continue.

Chapter 7

[169]

7.	 The next screen, as shown in the following screenshot, displays the default
configuration changes for review. Click on Continue to proceed.

8.	 In the next step, we perform all the required actions to set up the Hive
service on the cluster. The following screenshot shows the different actions
Cloudera Manager performs to set up Hive. Once the steps are complete,
click on Continue.

Managing an Apache Hadoop Cluster

[170]

9.	 Once the service is successfully set up, you should see a message as shown
in the following screenshot. Click on the Finish button to complete the setup.

10.	 You should now see the newly configured Hive service on the Home page as
shown in the following screenshot:

Using the preceding steps, we have successfully set up Hive on the cluster.
The steps are almost identical to add any other service to the cluster.

Removing a service from the cluster
Removing a service from a cluster is a very easy operation using Cloudera Manager.
The following are the steps to remove a service from the cluster:

1.	 Navigate to the Cloudera Manager's Home screen. For this demonstration,
let's remove the Hive service from the cluster.

Chapter 7

[171]

2.	 Click on the drop-down button for the Hive service as shown in the
following screenshot and select Stop to stop the Hive service:

3.	 Once the service has stopped, click on the drop-down button for the
Hive service and select Delete to delete the service as shown in the
following screenshot:

Managing an Apache Hadoop Cluster

[172]

4.	 A pop-up message to confirm the deletion of service is displayed as shown in
the following screenshot. Click on Delete to confirm the action.

5.	 Once confirmed, the service is deleted from the cluster and the service will
not be visible in the list of services.

Role management in Cloudera Manager
Cloudera Manager uses roles to define the configuration of different hosts in a
cluster. Each role will have a certain set of properties and configurations defined
that can be applied to a node in the cluster. The role applied to a node will define
the different Hadoop services that will run on that specific node.

The following is the list of a few roles applied to a host by Cloudera Manager:

•	 Balancer: This role is responsible for balancing the blocks across the
different nodes on the cluster

•	 DataNode: This role defines all the configurations required to start a
datanode on the host

•	 NameNode: This role defines all the configurations required to start a
namenode on the host

•	 SecondaryNameNode: This role defines all the configurations required
to start a secondary namenode on the host

•	 JobTracker: This role defines all the configurations required to start a
jobtracker on the host

•	 TaskTracker: This role defines all the configurations required to start a
tasktracker on the host

Chapter 7

[173]

Adding a role instance to a host
To add a role instance to a host, navigate to Hosts from the Cloudera Manager
toolbar. You should see a screen as shown in the following screenshot:

As you can see, the node4.hcluster host does not have any roles assigned to it. Let's
say that we want the node4.hcluster host to run datanode and tasktracker daemons.
To do this, we need to add the DataNode and TaskTracker roles to this host.

Adding a DataNode role to a host
The following are the steps to add the DataNode role to a host:

1.	 Navigate to the Cloudera Manager's Clusters menu and select HDFS as
shown in the following screenshot:

Managing an Apache Hadoop Cluster

[174]

2.	 To add the DataNode role to the node4.hcluster host, select Instances for
HDFS as shown in the following screenshot:

As you can see, all roles related to the HDFS service and the nodes to which
it has been applied are listed.

3.	 Click on Add to add a new role instance. You should see the screen to add a
role instance as shown in the following screenshot:

4.	 Click on Select hosts under the DataNode section and select Custom...
as shown in the following screenshot:

Chapter 7

[175]

5.	 Next, you should see the host selection screen as shown in the
following screenshot:

6.	 Select node4 and click on OK.
7.	 Click on Continue on the next screen to bring up the Review Changes

screen as shown in the following screenshot:

Managing an Apache Hadoop Cluster

[176]

8.	 Click on Finish to complete the steps of adding the DataNode role.
You should see the Role Instances screen with the newly added
DataNode role as shown in the following screenshot:

9.	 To start the DataNode role, check the checkbox for the datanode (node4)
item, click on the Actions for Selected menu button and select Start as
shown in the following screenshot:

10.	 You should see a dialog box as shown in the following screenshot.
Click on Start to start the datanode.

Chapter 7

[177]

11.	 The datanode should start successfully as shown in the following screenshot:

Adding a TaskTracker role to a host
The following are the steps to add the TaskTracker role to a host:

1.	 The TaskTracker role is part of the MapReduce service. Navigate to the
Cloudera Manager's Clusters menu and select the Instances tab as shown
in the following screenshot:

2.	 Click on Add to add a new role instance. You should see the screen to add a
role instance as shown in the following screenshot:

Managing an Apache Hadoop Cluster

[178]

3.	 Click on Select hosts under the TaskTracker section and select Custom...
as shown in the following screenshot:

4.	 On the next screen, select node4 as shown in the following screenshot and
click on OK:

5.	 On the next screen, click on Continue to bring up the Review Changes
screen as shown in the following screenshot. Click on the Finish button.

Chapter 7

[179]

6.	 To start the TaskTracker role on this node, select the checkbox for tasktracker
(node4), click on the Actions for Selected menu button and click on Start as
shown in the following screenshot:

Using the preceding mentioned steps, we have successfully added the DataNode and
TaskTracker roles to node4.hcluster. Similarly, you could add any role you want to
the nodes of a cluster managed by Cloudera Manager.

Managing hosts using Cloudera Manager
Cloudera Manager makes it very simple to add and remove hosts in a cluster. All host
management operations in Cloudera Manager are done from the Hosts screen. In this
section, we will go through the steps of adding and removing hosts on the cluster.

Managing an Apache Hadoop Cluster

[180]

Adding a new host
The following are the steps to add a new host to the cluster. For this demonstration,
we will be adding a new node, node4.hcluster, to our cluster:

1.	 Navigate to the Hosts screen from the Cloudera Manager toolbar.
You should see all the hosts that are part of the cluster as shown in
the following screenshot:

2.	 Click on the Add New Hosts to Cluster button to add a new host. The Add
Hosts Wizard screen, as shown in the following screenshot, is displayed.
Click on Continue.

Chapter 7

[181]

3.	 A search box, as shown in the following screenshot, is displayed.
Type in node4.hcluster and click on the Search button to search
for the node4.hcluster host.

4.	 The search results should display the node4.hcluster host:

Check the checkbox to select the host and click on Continue.

Managing an Apache Hadoop Cluster

[182]

5.	 Next, select Matched release for this Cloudera Manager Server as the
repository, click on Continue:

6.	 Next, you will be prompted to configure Java encryption as shown in
the following screenshot. For now, we can skip this configuration and
click on Continue:

Chapter 7

[183]

7.	 Provide the root user credentials for the new host and click on Continue:

8.	 The next screen, as shown in the following screenshot, starts the installation
of the packages required to add the host to the cluster. Once the installation
is complete, click on Continue.

Managing an Apache Hadoop Cluster

[184]

9.	 The next screen starts the installation of parcels on the node. Once the parcels
are installed, click on Continue.

10.	 The next screen, as shown in the following screenshot, inspects the host for
correctness. Once the inspection is complete, click on Continue.

11.	 Next, select the template to apply to the new host. Select None for no
template as shown in the following screenshot and click on Continue:

Chapter 7

[185]

12.	 A message is displayed indicating successful addition of the new host:

13.	 Click on Continue to complete the addition of the new host. You should
now see the newly added host as part of the list of hosts as shown in the
following screenshot:

Removing an existing host
The following are the steps to remove a host from a cluster:

1.	 Navigate to the Hosts screen from the Cloudera Manager toolbar.
2.	 Let's say that we need to remove the node4.hcluster host from the cluster.

Select the host, node4.hcluster, as shown in the following screenshot:

Managing an Apache Hadoop Cluster

[186]

3.	 As you can see, there are two roles associated with the host: the DataNode
and TaskTracker roles. Before we remove the host, we need to decommission
these roles from the host.

4.	 Click on the Actions for Selected button and click on Decommission from
the menu as shown in the following screenshot:

You will be prompted to confirm the action as shown in the
following screenshot:

Click on Confirm to stop all the roles running on the selected host.

5.	 Next, we need to delete the host. Before we delete the host, we need to stop
the cloudera-scm-agent service as the root user, from node4.hcluster
using the following command:
$ service cloudera-scm-agent stop

6.	 Next, switch back to the Hosts screen and select node4.hcluster.
Click on the Actions for Selected button and select Delete to delete the
host from the cluster.

Chapter 7

[187]

Managing multiple clusters with
Cloudera Manager
Organizations could have multiple teams and each team could have a dedicated
cluster. Cloudera Manager provides a feature to manage multiple clusters efficiently.
In this section, we will walk through the following steps to configure a second cluster
running CDH:

1.	 Navigate to the Home page and click on the drop-down button in the
Status section. Select Add Cluster as shown in the following screenshot:

2.	 You will be prompted to search for the nodes for the new cluster as shown in
the following screenshot:

For this demonstration, let's add node3.hcluster and node4.hcluster
as hosts for the new cluster. Here I am using a pattern to search for node3.
hcluster and node4.hcluster. Type in the pattern or enter the hostnames
in the search box and click on the Search button.

Managing an Apache Hadoop Cluster

[188]

3.	 Select the node3.hcluster and node4.hcluster hosts as shown in the
following screenshot. Click on Continue.

4.	 Select the repository for the new cluster as shown in the following
screenshot and click on Continue:

Chapter 7

[189]

5.	 Next, you will be prompted to configure Java encryption as shown in
the following screenshot. For now, we can skip this configuration and
click on Continue.

6.	 Next, provide the root password for the new host/hosts as shown in the
following screenshot. Click on Continue.

Managing an Apache Hadoop Cluster

[190]

7.	 The next screen displays the cluster installation progress:

Once the installation completes, click on Continue.

8.	 The next screen installs the parcels for the hosts on the new cluster.
The following is the screenshot of the parcel installation progress:

Once the parcel installation completes, click on Continue.

Chapter 7

[191]

9.	 The next screen will inspect the newly added hosts. On successful completion
of inspection, click on Finish to select the services for the new cluster as
shown in the following screenshot:

Select the services you would like to install on the new cluster and click on
Continue. Here, HDFS has been selected as the service for the new cluster.

Managing an Apache Hadoop Cluster

[192]

10.	 The next screen will prompt you to customize role assignments as shown in
the following screenshot. Click on Continue.

11.	 The next screen will prompt you to review the default configurations.
Once you are done reviewing, click on Continue.

12.	 The next screen will display the Cluster Setup progress as shown in the
following screenshot:

Chapter 7

[193]

13.	 Once the installation completes, click on Continue. You should see a message
as shown in the following screenshot on successful completion:

14.	 Click on Finish. You will be forwarded to the Home screen and you should
see two clusters listed as shown in the following screenshot:

For demonstration purposes, only two hosts were added as part of the
new cluster—Cluster 2. In real production environments, several hosts
would be added as part of a cluster.

Rebalancing a Hadoop cluster from
Cloudera Manager
The Balancer tool available in Hadoop is used to balance the data blocks across
all the datanodes when a new datanode is added or when an existing datanode
reaches full capacity.

Managing an Apache Hadoop Cluster

[194]

Adding the Balancer service to the cluster
Before you can rebalance a cluster, we need to add the balancer service.
The following are the steps to add the Balancer service:

1.	 Navigate to the Clusters menu and select HDFS.
2.	 Click on the Instances tab and select Add to bring up the Customize Role

Assignments screen as shown in the following screenshot:

3.	 Click on Select a host for the Balancer section to bring up the host selection
screen as shown in the following screenshot. Select a host and click on OK.
Here I have selected node4.

Chapter 7

[195]

4.	 In the next screen, click on Continue. You should now see the Balancer
service added, as shown in the following screenshot:

Rebalancing the cluster
Once the Balancer service is installed successfully, you can perform the rebalancing
operation. The following are the steps to perform the rebalancing operation from
Cloudera Manager:

1.	 Navigate to the Clusters menu and select HDFS.
2.	 Navigate to the Instances tab and click on the Balancer service from

the list of services to navigate to the balancer screen as shown in the
following screenshot:

Managing an Apache Hadoop Cluster

[196]

3.	 Click on the Actions button and click on Rebalance as shown in the
following screenshot:

4.	 You will be asked to confirm the action as shown in the following screenshot:

5.	 Click on Rebalance to start the rebalancing operation. On successful
completion, the data blocks should be balanced across the datanodes
on the cluster and you should see a message like the one shown in the
following screenshot:

Chapter 7

[197]

Summary
In this chapter, we covered several cluster management operations such as adding
and removing services, managing roles, adding and removing hosts in a cluster,
and rebalancing a cluster.

In the next chapter, we will study the different monitoring and troubleshooting
techniques required to deal with issues arising in a Hadoop cluster.

Cluster Monitoring Using
Events and Alerts

Every administrator will have to monitor the health of their clusters and will want
to be notified of issues before they turn out to be major problems. There are several
tools and techniques available within Cloudera Manager to monitor a Hadoop
cluster. In this chapter, we will cover the following topics:

•	 Monitoring Hadoop services from Cloudera Manager
•	 Understanding events and alerts in Cloudera Manager

Monitoring a Hadoop cluster is a complex process as there are several services
that interact with each other over the network. All of these components need to
be actively monitored to identify and pinpoint the root cause for any issue that
occurs. Cloudera Manager is a comprehensive cluster management application
that provides a host of tools to monitor a Hadoop cluster.

Cluster Monitoring Using Events and Alerts

[200]

Monitoring Hadoop services from
Cloudera Manager
To monitor Hadoop services from Cloudera Manager, log in to Cloudera Manager
and navigate to the Home screen. The Home screen lists all the services configured
within the cluster as shown in the following screenshot:

The status of the services can be in any of the following states:

•	 Good Health: This is indicated by a green color
•	 Concerning Health: This is indicated by an orange color
•	 Bad Heath: This is indicated by a red color

The following are the steps to investigate a health issue for a service in a cluster. Let's
try to identify the reason behind the Concerning Health status for the HDFS service.

1.	 Click on the Concerning Health (orange dot) status for the HDFS service.
You should see the Health Tests section for the HDFS service as shown in
the following screenshot:

Chapter 8

[201]

2.	 As you can see in the preceding screenshot, the Health Tests section gives
details about the concern. From the message, we now know that one of the
four datanodes have a Concerning Health status.

3.	 To get further information on a health test, click on the Details link to
bring up the description as shown in the following screenshot:

4.	 Next, navigate to the Instances tab for the service shown in the
following screenshot:

Cluster Monitoring Using Events and Alerts

[202]

5.	 Click on the datanode with the concerning health, in this case,
node1.hcluster. You should see the results of the Health Tests
section for the node in the following screenshot:

6.	 As shown in the preceding screenshot, the message indicates that swapping
is causing the concerning health of the datanode. Swapping occurs when a
process uses more memory than is available on the machine. Excessive or
persistent swapping could be an indication that there is insufficient RAM
on the node.

7.	 Adding RAM requires the node to be turned off. In some cases, where the
node is a virtual machine, RAM can be added even with the node running.
Allocate or add more RAM as required to the node.

8.	 After adding RAM to the node, we see that all health tests have been
successfully passed, as shown in the following screenshot:

Chapter 8

[203]

To view the logfile for the service, you can click on the Log File hyperlink on the
Status tab of the service as shown in the following screenshot:

The Log Details page displays the datanode logfile in a columnar format as shown
in the following screenshot:

You can download the entire logfile using the Download Full Log button.
The logfile can also be viewed directly by logging into the node and navigating
to the /var/log/hadoop-hdfs/ location of the respective node.

Understanding events and alerts
Events are records of certain occurrences in the system and are very useful to track
the different operations running on the cluster. Several events are configured by
default when Cloudera Manager is installed.

Cluster Monitoring Using Events and Alerts

[204]

All events in the cluster are managed by the Event Server component of Cloudera
Manager. To view the events, navigate to Diagnostics | Events from the Cloudera
Manager toolbar. The following is the screenshot of the Events page:

The preceding screenshot shows one event for the HDFS service that is part of the
node1.hcuster host and the datanode (node1) role. The screenshot also shows the
details of the alert that is displayed when you click on the Expand link. To close the
details, you can use the Collapse link.

Search filters can also be applied to perform more advanced searches. Click on the
Add a filter hyperlink to add filters as shown in the following screenshot:

Chapter 8

[205]

To open up the datanode instance, click on the View button. The following
screenshot shows the datanode (node1) instance that corresponds to the event:

To view the logfile for this datanode, that is, datanode (node1), click on the Log File
link to open the Logs search screen as shown in the following screenshot:

Cluster Monitoring Using Events and Alerts

[206]

Configuring events and alerts
Alerts are messages that are configured to be triggered by an event. Alerts are
configured to inform the occurrence of events that need special attention.

The following are the steps to configure an event. For this example, we will configure
an event to monitor HDFS free space:

1.	 Navigate to the Home page from the Cloudera Manager toolbar.
2.	 Select the HDFS service to navigate to the HDFS service details page.
3.	 Navigate to Configuration | View and Edit and select the Monitoring section.
4.	 Click on Service-Wide to display all the configuration parameters for the

HDFS service as shown in the following screenshot:

5.	 The default value configured for the HDFS Free Space Monitoring
Thresholds property are 20.0% and 10.0% for the Warning and Critical
events, respectively. This means that a Warning event will be triggered
when the free space on HDFS reaches 20 percent and a Critical event will
be triggered when the HDFS free space reaches 10 percent.

Chapter 8

[207]

For this illustration, let's update the values 25% and 20% for the Warning
and Critical events respectively, as shown in the following screenshot:

6.	 Once done, save the changes by clicking on the Save Changes button.
7.	 Now, whenever the free space on HFDS goes below 25 percent, a Warning

event will be generated. Similarly, if the free space on HDFS goes below 20
percent, a Critical event will be generated.
The following screenshot shows the event generated when the free space on
HDFS is below the set critical threshold of 20 percent:

You will observe that the event is labeled as Alert. This is because the HDFS
service is configured to alert us if the service's status becomes bad.

8.	 To see more details for this alert, click on the Expand link. You should see
additional details as shown in the following screenshot:

Cluster Monitoring Using Events and Alerts

[208]

9.	 To see the list of all alerts configured, navigate to the Administration menu
of the Cloudera Manager toolbar and select Alerts. The Alerts page is
displayed as shown in the following screenshot:

The following alert types can be configured from Cloudera Manager:

°° Health: The properties configured within this section are to do with
the health of the individual services running within the cluster.

°° Log: The properties configured within this section are to do with
alerts to be generated for certain types of log messages found in the
logs of the individual services.

°° Activity: The properties configured within this section are to do with
alerts to be generated by the activity monitor that monitors jobs that
fail or perform slowly.

Chapter 8

[209]

Configuring the alert delivery by an e-mail
Administrators would want to be alerted of certain events by e-mail rather than
having to check the Events page for alerts and events. The following are the steps
to configure the alert delivery by an e-mail:

1.	 Navigate to the Home screen from the Cloudera Manager toolbar.
2.	 Click on the Cloudera Management Service tab to open up the Cloudera

Management Service details page and navigate to Configuration |
View and Edit as shown in the following screenshot:

3.	 Select the Alert Publisher Default Group section as shown in the
following screenshot:

4.	 Update the Alerts: Mail Server Hostname property to the IP address or the
hostname of your SMTP server.

Cluster Monitoring Using Events and Alerts

[210]

5.	 Update the Alerts: Mail Message Recipients property to the e-mail ID
or a comma-separated list of e-mail IDs to whom the alerts need to be sent,
as shown in the following screenshot:

6.	 Click on Save Changes to save the configuration changes.
7.	 Restart the Cloudera Manager service for the changes to take effect.
8.	 We are done with the configurations and will now start receiving alerts

via e-mail. A sample alert e-mail is shown in the following screenshot:

In this chapter, we only covered the basics of monitoring, events, and
alerts. Cloudera documentation provides an in-depth description of
the various options available for monitoring the entire cluster and can
be found at http://www.cloudera.com/content/cloudera-
content/cloudera-docs/CM5/latest/Cloudera-Manager-
Diagnostics-Guide/Cloudera-Manager-Diagnostics-
Guide.html.

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM5/latest/Cloudera-Manager-Diagnostics-Guide/Cloudera-Manager-Diagnostics-Guide.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM5/latest/Cloudera-Manager-Diagnostics-Guide/Cloudera-Manager-Diagnostics-Guide.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM5/latest/Cloudera-Manager-Diagnostics-Guide/Cloudera-Manager-Diagnostics-Guide.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM5/latest/Cloudera-Manager-Diagnostics-Guide/Cloudera-Manager-Diagnostics-Guide.html

Chapter 8

[211]

Summary
In this chapter, we walked you through the steps to monitor Hadoop services
using Cloudera Manager. Next, we configured events and alerts and also set up
alert delivery by e-mail.

In the next chapter, you will learn the importance of backups and the different
backup options provided by Cloudera Manager.

Configuring Backups
As Hadoop clusters mature, the data residing in them grows, and maintaining
a copy of the data turns out to be an important responsibility of a Hadoop
administrator. Backing up data from a distributed environment is a challenge due
to its ever increasing volume. Setting up backup operations is an important step
towards restoring data in case of entire cluster failures. This chapter discusses the
various backup and data protection options and will cover the following topics:

•	 Understanding backups
•	 Understanding HDFS backups
•	 Using the distributed copy (DistCp)
•	 Configuring backups using Cloudera Manager

Understanding backups
Systems that deal with information or data, whether standalone or distributed,
have to plan for disasters and complete system failures. Configuring and setting
up backup policies for systems is an integral part of any disaster recovery plan.
A backup is a copy of the data in use, which is also sometimes referred to as an
archive. In the case of failures leading to data loss, the copy is used to restore data.

Backups, depending on the days of retention, demand vast amount of data storage.
However, in the case of data storage media used for backups, the read and write
speeds are not of much importance. Organizations procure more reliable storage
media and do not worry about the read/write speeds as data from backup storage
media is only read from in the case of disasters.

Configuring Backups

[214]

Types of backups
There are several types of backup policies that can be considered before including
them in the disaster recovery plan of your organization. This decision is solely based
on the organizations, requirements on how they would want to manage their data.
The following are a few of the different types of backups:

•	 The full backup: A full backup involves archiving all data from the source
location to the target backup location. Almost all backup solutions start with
the full backup first and subsequently tend to use the other backup methods.
Recurring schedules for full backups are only done on smaller amounts of
data. Performing full backups on every schedule for large volumes of data
is not advisable as such backups can be very time consuming and would
demand larger storage spaces.

•	 The incremental backup: Incremental backups involve the archiving of only
the changes made to the data since the last backup. The first incremental
backup is preceded by a full backup and subsequently when data is changed
or added, only the data that has changed/added is backed up. Restoring data
from incrementally backed up data can be slower as it involves the process
of first restoring the initial full backup and subsequently applying the
incremental restores on top.

•	 The differential backup: The differential backup involves archiving only
the changes made to the data since the last full backup. The important term
to note here is full backup. This is what sets differential backups apart from
incremental backups. Restoring from differential backups is faster than
restoring from incremental backups.

•	 The mirror backup: Mirror backups involve the duplication of every
operation in the source location to the target location. So in this case,
when data is deleted in the source, it is also deleted from the target backup
location, maintaining a mirror image of the original data. Using this type of
backup could result in loss of data from the backup location in the case of an
accidental deletion from the source location.

Chapter 9

[215]

Types of storage media for backups
There are different types of storage media that can be used for backups.
The following is a list of commonly used storage media:

•	 Hard disks: Hard disks are the most commonly used storage media for
backups as the cost per byte has come down over the years. They are found
with several speeds and sizes. Some hard disks are manufactured with a
design for backup. With hard disks, it is important to note that they are not
particularly reliable for data storage with retention periods that span over
several years.

•	 Optical storage: Removable and portable media such as recordable compact
discs (CD), digital video discs (DVD), and Blu-ray Discs (BD) are also
being used for backups. These are particularly used to store small amounts
of data and are not used to back up data from environments such as large
data clusters.

•	 Tape drives: Tapes are probably the oldest forms of backup storage media
still in use today in many organizations. This is mainly because of the low
cost per byte they offer. However, this is slowly changing as hard disks are
now being used to store data.

Using cloud services for backups
In recent years, there have been several cloud service offerings that provide storage
space on the cloud to back up an organization's critical data. This eliminates the need
for organizations to set up a different physical site to back up their data. Services
such as Amazon's AWS provides storage as a service that can be accessed over the
Internet. They provide several disaster recovery architectures that make it easy to set
up a backup site on the cloud. More information on Amazon's offering can be found
at http://aws.amazon.com/disaster-recovery/.

Understanding HDFS backups
Data volumes in Hadoop clusters range from terabytes to petabytes, and deciding
what data to back up from such clusters is an important decision. A disaster recovery
plan for Hadoop clusters needs to be formulated right at the cluster planning stages.
The organization needs to identify the datasets they want to back up and plan
backup storage requirements accordingly.

http://aws.amazon.com/disaster-recovery/

Configuring Backups

[216]

Backup schedules also need to be considered when designing a backup solution.
The larger the data that needs to be backed up, the more time-consuming the
activity. It would be more efficient if backups could be performed during a window
when there is the least amount of activity on the cluster. This not only helps the
backup commands to run efficiently, but also ensures data consistency of the datasets
being backed up. Knowing the possible schedules of the data infusion to HDFS in
advance helps you to better plan and schedule backup solutions for Hadoop clusters.

The following are some of the important data sources that need to be protected
against data loss:

•	 The namenode metadata: The namenode metadata contains all the
location of all the files in the HDFS.

•	 The Hive metastore: The Hive metastore contains the metadata for all
Hive tables and partitions.

•	 HBase RegionServer data: This contains the information of all the
HBase regions.

•	 Application configuration files: This comprises the important
configuration files required to configure Apache Hadoop. For example,
core-site.xml, yarn-site.xml, and hdfs-site.xml.

Data protection in Hadoop clusters is important as clusters are prone to data
corruption, hardware failures, and accidental data deletion. In rare cases,
a data center catastrophe could also lead to entire data loss.

Using the distributed copy (DistCp)
Distributed copy (DistCp) is a Hadoop utility used to copy data in parallel within
and between clusters. It uses Hadoop's MapReduce to perform the copy operation.
DistCp is the most widely used data transfer tool in Hadoop clusters. For example:

$ hadoop distcp hdfs://namenode1/src hdfs://namenode2/dest

The preceding command would copy the src folder and all its contents from the
cluster managed by namenode1 to the cluster managed by namenode2 as the dest
folder. DistCp, by default, does not overwrite the files at the target location and
skips copying them if the files already exists. However, files can be forced to be
overwritten using the overwrite flag.

There are several options that can be used along with the Hadoop distcp command
and the details of these options can be found at http://www.cloudera.com/
content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Installation-
Guide/cdh5ig_distcp_data_cluster_migrate.html.

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Installation-Guide/cdh5ig_distcp_data_cluster_migrate.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Installation-Guide/cdh5ig_distcp_data_cluster_migrate.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Installation-Guide/cdh5ig_distcp_data_cluster_migrate.html

Chapter 9

[217]

Configuring backups using Cloudera
Manager
Cloudera provides a licensed feature for backups. From the Cloudera Manager
toolbar, navigate to the Backup menu to find the backup features, as shown in the
following screenshot:

Configuring HDFS replication
Replications allow an administrator to replicate data from one cluster to another.
The following are the steps to configure a schedule for HDFS replication:

1.	 Navigate to Backups | Replications to bring up the screen shown in the
following screenshot:

Configuring Backups

[218]

2.	 Under the Schedules tab, schedules for HDFS replications and Hive
replication can be configured. Click on Schedule HDFS Replication
to bring up the screen as shown in the following screenshot:

3.	 As you can see in the preceding screenshot, the Source, Destination,
and Schedule fields for HDFS replication can be configured. In this
configuration, we have configured a schedule to replicate data from the
source folder from HDFS in hdfs (Cluster 1) to the destination folder of
HDFS in hdfs2 (Cluster 2).
As part of the schedule configuration, there are three types of options
available as shown in the following screenshot:

4.	 The Immediate option schedules the HDFS replication to start immediately
on saving the schedule.

Chapter 9

[219]

5.	 On selecting the Once option, the start time of the HDFS replication can be
set as shown in the following screenshot:

6.	 The Recurring option provides the ability to set a recurring schedule for
HDFS replication as shown in the following screenshot:

A few more configuration options are available and they are visible
on selecting the More Options link. The following screenshot
that shows the first half of the different options available:

Configuring Backups

[220]

The following screenshot shows the second half of the different
options available:

A description of each of these configuration parameters is available at
http://www.cloudera.com/content/cloudera-content/cloudera-
docs/CM5/latest/Cloudera-Backup-Disaster-Recovery/cm5bdr_hdfs_
replication.html.

7.	 Once the configuration is complete, click on Save Schedule to save
the schedule. A HDFS replication job can be monitored from the
Replications screen as shown in the following screenshot:

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM5/latest/Cloudera-Backup-Disaster-Recovery/cm5bdr_hdfs_replication.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM5/latest/Cloudera-Backup-Disaster-Recovery/cm5bdr_hdfs_replication.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM5/latest/Cloudera-Backup-Disaster-Recovery/cm5bdr_hdfs_replication.html

Chapter 9

[221]

Configuring Hive replication
Just like HDFS replication, Hive metadata replication schedules can be configured
using the following steps:

1.	 Navigate to Backups | Replications from the Cloudera Manager toolbar.
To configure the replication schedule for Hive, click on Schedule Hive
Replication. You should see a dialog box as shown in the following screenshot:

As you've seen in the preceding screenshot, we have configured the Hive
replication schedule to replicate Hive metadata from hive (Cluster 1)
to hive2 (Cluster 3). The scheduling options are similar to that of HDFS
replication. The following screenshot is the first half of the More Options
section for Hive replication:

Configuring Backups

[222]

The following screenshot is the second half of the More Options section for
Hive replication:

2.	 Once the configuration parameters are set, the schedule can be saved by
clicking on the Save Schedule button. The Hive replication job can be
monitored from the Replications screen as shown in the following screenshot:

Chapter 9

[223]

The Sources tab lists the different sources available for replication.
The following screenshot is the Sources tab:

Configuring snapshots
Snapshots is a feature that allows administrators to configure paths in HDFS to be
copied for the purposes of backup and data protection. The very first step before
configuring a snapshot is to create a snapshottable path.

Enabling snapshot paths in HDFS
To set a HDFS path as snapshottable, perform the following steps:

1.	 Navigate to the HDFS service of the cluster where you want to set up
a snapshottable path and navigate to the File Browser tab. Navigate to
the path that needs the snapshot enabled. The following screenshot shows
the File Browser tab of the hdfs service available on Cluster 1:

In the preceding screenshot, we is navigated to the /user/root/source path.

Configuring Backups

[224]

2.	 Next, click on the Enable Snapshots button to bring up the dialog box shown
in the following screenshot:

3.	 Next, click on the Enable Snapshots button to make the source folder
at /user/root snapshottable. You should see a command completion
message as shown in the following screenshot:

Configuring a snapshot policy
The following are the steps to create a snapshot policy for snapshottable paths
on HDFS:

1.	 Navigate to Backups | Snapshots to bring up the screen as shown in the
following screenshot:

Chapter 9

[225]

2.	 Next, click on the Create snapshot policy link to bring up the dialog box
shown in the following screenshot:

As you see in the preceding screenshot, the policy is configured to take
a snapshot daily. There are few more options available under the More
Options section as shown in the following screenshot:

Configuring Backups

[226]

3.	 After setting the required configuration parameters, click on Save Policy
to save the snapshot policy. You should see the newly created snapshot
as shown in the following screenshot:

Summary
In this chapter, you understood what backups are and the different types of backups,
along with the different storage media used for backups. You also learned about
HDFS backups and covered the basics of using the Hadoop utility—DistCp.
Next, we covered Cloudera's backup options, replication, and snapshots using
Cloudera Manager.

In this book, we started out with the very basics of Hadoop and walked through the
entire Cloudera distribution, covering each and every aspect of managing Hadoop
clusters that run CDH and Cloudera Manager. Using the knowledge acquired from
this book, you should now be ready to take up the responsibilities of a Hadoop
administrator and get start managing huge Hadoop clusters.

Index
Symbols
$target_address variable 102
$target_host variable 102
$target_namenodeid variable 102
$target_nameserviceid variable 102
$target_port variable 102

A
access control lists, Hadoop

configuring 162, 163
Add Peer screen 142
administration commands, HDFS

balancer 37
dfsadmin 38, 39

Administration menu, Cloudera Manager
Web console

Alerts screen 140
Kerberos screen 141
Language screen 141
License screen 141
Peers screen 142, 143
Settings screen 139, 140
Users screen 141

AES256-CTS type 153
agent 58
aggregation, Apache Flume NG 58
alert

about 206
Activity type, configuring 208
delivery configuration, by e-mail 209
Health type, configuring 208
Log type, configuring 208

alert delivery
configuring, by e-mail 209, 210

Alerts screen, Administration menu 140
All Configuration Issues tab,

Home screen 133
All Health Issues tab, Home screen 133
All Recent Commands tab,

Home screen 134
Apache Avro 66
Apache Flume

installing 83
Apache Flume NG

about 58, 59
event/log data flow, to HDFS via agent 59
event/log data flow, to HDFS via

multiple agent 59
Apache Hadoop

about 7, 9, 58
components 10
daemons 10
history 7-9
Kerberos, configuring for 156

Apache Hadoop components
HDFS 10
MapReduce 10

Apache HBase
about 64
working 64

Apache Hive
about 61
installing 84
working 61, 62

Apache Mahout 66
Apache Oozie

about 66
installing 84

[228]

Apache Pig
about 61
installing 84

Apache Sqoop
about 60
installing 83
RDBMS to HDFS two-way flow 60

Apache Sqoop Jobs, Cloudera Hue 72
Apache Sqoop 2

installing 83, 84
Apache Whirr 65
Apache ZooKeeper

about 62
configuration management 62
configuring, for automatic failover 109
installing 84, 85
leader election 62
locking 62
name service 62
operations, Active NameNode

elections 108
operations, failure detection 108
synchronization 62
working 63

ApplicationMaster 17
Audits tab, Clusters menu 135
authentication 148
Authentication Service 150
authorization

about 148
in Apache Hadoop 162

authorization, in Apache Hadoop
access control lists, configuring 162, 163

automatic failover
configuring, for HDFS HA 108-110
configuring, for jobtracker HA 113

B
backup configuration

Cloudera Manager, using 217
HDFS replication, configuring 217-220
Hive replication, configuring 221, 222
snapshots, configuring 223

Backup menu, Cloudera Manager
Web console 139

backups
about 213
cloud service, using 215
HDFS backups 215
storage media, types 215
types 214

balancer command 37, 38
Balancer role, Cloudera Manager 172
Beeswax Hive UI

about 69
History section 69
My Queries section 69
Query Editor section 69
Saved Queries section 69
Settings section 69

big data 8
block pool 29
Block Pool Id parameter 29
blocks 24
Bundles tab, Dashboard application 74

C
Cache Statistics tab, Clusters menu 135
cat command 35
CDH

about 19, 57
components 58
features 19
installing 76-81
installing, methods 77
starting with 57, 58

CDH 5.0 19
CDH component installation

Apache Flume 83
Apache Hive 84
Apache Oozie 84
Apache Pig 84
Apache Sqoop 83
Apache Sqoop 2 83, 84
Apache ZooKeeper 85

CDH components
Apache Avro 66
Apache Flume NG 58
Apache Hadoop 58
Apache HBase 64

[229]

Apache Hive 61
Apache Mahout 66
Apache Oozie 66
Apache Pig 61
Apache Sqoop 60
Apache Whirr 65
Apache ZooKeeper 62
Cloudera Hue 68
Cloudera Impala 67
Cloudera Search 67
installing 83

CDH installation
about 77-81
Hadoop services, stopping 82
YARN cluster 82

cell 64
channel 57, 59
Charts Library tab, Clusters menu 135
Charts menu, Cloudera Manager

Web console 139
checkHealth option 105
Cloudera 19
Cloudera Hue

about 68
Beeswax Hive UI 68
Cloudera Impala UI 70
Collection Manager 75
Dashboard 75
File Browser 71, 72
Hadoop section 68
HBase Browser 76
home 68
Hue Shell 76
Job Browser 73
Job Designs 74
Metastore Manager 72
Pig UI 70, 71
Query section 68
Sqoop Jobs 73
Workflow section 68

Cloudera Impala 67
Cloudera Manager

about 19, 115
architecture 116
Cloudera Manager Standard Edition 116
editions 116
features 115

Hadoop cluster, rebalancing from 193-196
Hadoop services, monitoring from 200-203
installing, configuration 118
installing, machine configuration 118
installing, methods 118
URL 118
used, for backup configuration 217
used, for Hadoop services

configuration 165-172
used, for HDFS HA configuration 143-146
used, for host management 179-186
used, for managing multiple

cluster 187-193
Cloudera Manager Agent

about 117, 118
installing, on cluster 119-130

Cloudera Manager architecture
Cloudera Manager Agent 117
Cloudera Manager Server 117

Cloudera Manager Server
about 117
configuring, for Kerberos 158-162
functions 117
installing, on cluster 119-130
Kerberos principal, configuring for 157, 158

Cloudera Manager Standard Edition 116
Cloudera Manager Web console

about 130
Administration menu 139
Audits screen 138
Backup menu 139
Charts menu 139
Clusters menu, navigating 134
Diagnostics menu 137
Home screen, navigating 131
Hosts menu 136

Cloudera's Distribution Including
Apache Hadoop. See CDH

Cloudera Search 67
cloud service

using, for backup 215
cluster

about 8
Balancer service, adding to 194
existing host, adding to 185, 186
host, adding to 180-185
rebalancing 195, 196

[230]

Clusters menu, Cloudera Manager
Web console

Audits tab 135
Cache Statistics tab 135
Charts Library tab 135
Commands tab 135
Configuration tab 135
File Browser tab 135
Instances tab 135
NameNode Web UI tab 135
navigating 134
Replications tab 135
Status tab 135

Cluster Summary section, jobtracker UI 48
collection, Apache Flume NG 58
Collection Manager, Cloudera Hue 75
Commands tab, Clusters menu 135
Completed Jobs section, jobtracker UI 50
Concerning Health status, for HDFS service

reason, identifying 200-203
configuration, HDFS

about 25
hdfs-site.xml file properties 25

configuration management service,
Apache Flume NG 62

Configuration tab, Clusters menu 135
configuring MapReduce 44-47
configuring, jobtracker HA 110-112
Coordinators tab, Dashboard

application 74
copyFromLocal command 35
copyToLocal command 35
cp command 36
Custom database, Hive Metastore 168

D
daemons, Apache Hadoop

jobtracker 14
namenode 11
NodeManager 17
ResourceManager 17
secondary namenode 12, 14
tasktracker 14, 16

Dashboard application, Cloudera Hue
Bundle dashboard 74
Bundles tab 74

Coordinators dashboard 74
Coordinators tab 74
Oozie section 74
Workflows dashboard 74
Workflows tab 74

data
storing 8

database 150
data locality 14
datanode daemon 13
DataNode role, Cloudera Manager

about 172
adding, to host 173-176

dead state 32
deserialization 66
dfsadmin command 38, 39
dfs.blocksize property 25
dfs.client.failover.proxy.provider.

[NameserviceID] property 100
dfs.ha.namenodes.[NameserviceID]

property 98
dfs.journalnode.edits.dir property 100
dfs.namenode.checkpoint.dir property 90
dfs.namenode.checkpoint.edits.dir

property 90
dfs.namenode.edits.dir property 90
dfs.namenode.http-address.

[NameserviceID].[name node ID]
property 99

dfs.namenode.http-address property 25
dfs.namenode.https-address property 89
dfs.namenode.keytab.file property 89
dfs.namenode.name.dir property 90
dfs.namenode.rpc-address.[NameserviceID].

[name node ID] property 99
dfs.namenode.rpc-address property 89
dfs.namenode.servicerpc-address

property 25
dfs.namenode.shared.edits.dir property 99
dfs.nameservices property 89, 98
dfs.replication property 25
Diagnostics menu, Cloudera Manager

Web console
events 137
logs 137
Server Log 138

[231]

differential backup 214
Distributed copy (DistCp) 216

E
Embedded database, Hive Metastore 168
events

about 203-205
configuring, steps 206, 207
viewing 204

Events screen, Diagnostics menu 137

F
Failed Jobs section, jobtracker UI 50
failover option 105
features, HDFS

data streaming 24
easy interface 24
fault tolerance 23
large data store 24
portability 24

file
reading, in HDFS 28
writing, in HDFS 26, 27

File Browser, Cloudera Hue 72
File Browser tab, Clusters menu 135
fs.defaultFS property 100
fs.permissions.umask-mode property 25, 26
full backup 214

G
getServiceState option 105
Google File System (GFS) 8

H
Hadoop administrator

related operations 21
responsibilities 20

Hadoop cluster
monitoring 199
rebalancing, from Cloudera

Manager 193-196
URL 162

Hadoop daemons
ports 15

Hadoop Distributed File
System . See HDFS

Hadoop Process Definition Language
(hPDL) 66

Hadoop services
monitoring, from Cloudera

Manager 200-203
Hadoop services configuration, Cloudera

Manager used
service, adding to cluster 166-170
service, removing, from cluster 170-172

hard disks, storage media 215
HBase Browser, Cloudera Hue 76
HDFS

about 9, 10, 23
configuring 25
features 23
file, reading 28
file, writing 26, 27
namenode 87
operation daemons 24
rm -r command 37
snapshot paths, enabling 223, 224

HDFS backups
about 216
application configuration files 216
data sources, protecting 216
HBase RegionServer data 216
Hive metastore 216
namenode metadata 216

HDFS commands
administration commands 37
cat 35
copyFromLocal 35
copyToLocal 35
cp 36
ls 34
mkdir 36
mv 36
rm 36
setrep 37
tail 37

HDFS Federation
about 87, 88
configuring 89-93
ViewFS, configuring for federated HDFS 94

[232]

HDFS Federation configuration
properties, using 89
ViewFS, configuration 94

HDFS HA
about 95
automatic failover, configuring for 108
configuring, with Quorum-based

storage 98-102
configuring, CDH5 used 96
configuring, Cloudera Manager

used 143-146
Quorum-based storage 96, 97
setting up, hdfs-site.xml configuration

file properties 98
shared storage, using NFS 102

HDFS HA configuration, NFS used
NameNode Journal Status for

Quorum-based storage approach 106
NameNode Journal Status for Shared

Storage-based approach 107
HDFS HA configuration, by Shared Storage

NFS, using 103-107
HDFS High Availability. See HDFS HA
HDFS replication

configuring 217-220
Hello, World program 40
High Availability (HA) 11
Hive Gateway 167
Hive Metastore

about 167
database types, Custom 168
database types, Embedded 168

HiveQL 61
Hive replication

configuring 221, 222
Home screen, Cloudera Manager

Web console
All Configuration Issues tab 133
All Health Issues tab 133
All Recent Commands tab 134
Status tab 131, 132

host
adding, to cluster 180-185
DataNode role, adding to 173-176
managing, Cloudera Manager used 179
removing, from cluster 185, 186
TaskTracker role, adding to 177-179

host management, Cloudera Manager
host, adding 180-185
host, removing 185, 186

Hosts menu, Cloudera Manager
Web console

parcels tab 136
templates tab 136

Hue Shell, Cloudera Hue 76
hue user 156

I
incremental backup 214
installation

Apache Flume 83
Apache Hive 84
Apache Oozie 84
Apache Pig 84
Apache Sqoop 2 83, 84
Apache ZooKeeper 85
CDH components 83-85
Kerberos 148, 152

instance, principal 151
Instances tab, Clusters menu 135
io.sort.factor property 47
io.sort.mb property 47

J
jar 44
Java Runtime Environment (JRE) 153
Job Browser, Cloudera Hue 73
Job Designs, Cloudera Hue 74
jobtracker daemon 14
jobtracker HA

about 110
automatic failover, configuring 113
configuring 110, 112

JobTracker role, Cloudera Manager 172
jobtracker UI

Cluster Summary section 48
Completed Jobs section 50
Failed Jobs section 50
general Information section 48
Local Logs section 51
Retired Jobs section 50
Running Jobs section 49
Scheduling Information section 49

[233]

JournalNodes 96-98

K
KDC 149
KDC installation

testing 155
KDC Server

configuring 152-154
kerberized 151
Kerberos

about 148
architecture 149
installing 148
requirements 148
using 147

Kerberos architecture
about 149, 150
authentication service component 150
database component 150
kerberized 151
keys 152
keytab 152
principal 151
realm 151
secure file server, accessing 150, 151
Ticket Granting Server component 150
user, authenticating 150

Kerberos clients
configuring 155

Kerberos configuration, for Apache Hadoop
Cloudera Manager Server, configuring for

Kerberos 158-162
hdfs user 156
hue user 156
Kerberos principal, configuring for

Cloudera Manager Server 157, 158
mapred user 156
oozie user 156
yarn user 156

Kerberos installation
clients, installing 155
KDC installation, testing 155
KDC Server, configuring 152-154

Kerberos principal
configuring, for Cloudera Manager

Server 157, 158

Kerberos screen, Administration menu 141
Key Distribution Center. See KDC
key pair 40
keys, Kerberos 152
keytab, Kerberos 152

L
Language screen, Administration menu 141
Leader election service, Apache

Flume NG 62
License screen, Administration menu 141
Lightweight Directory Access Protocol

(LDAP) 116, 140
Local Logs section, jobtracker UI

about 51
Job Tracker History 51

locking service, Apache Flume NG 62
Logs screen, Diagnostics menu 137
ls command 34

M
mapred.child.java.opts property 47
mapred.compress.map.output property 47
mapred.job.reuse.jvm.num.tasks

property 47
mapred.job.tracker property 46
mapred.map.output.compression.codec

property 47
mapred.map.tasks.speculative.execution

property 47
mapred.output.compression.codec

property 46
mapred.output.compression.type

property 46
mapred.output.compress property 46
mapred.reduce.parallel.copies property 47
mapred.reduce.slowstart.completed.maps

property 47
mapred.reduce.tasks property 47
mapred.reduce.tasks.speculative.execution

property 47
mapred.submit.replication property 47
map, MapReduce 10
MapReduce

about 8, 10, 39
configuring 44-47

[234]

in Hadoop 39
jobtracker UI 48
map phase 40
MapReduce job flow 43, 44
processing functions 39
reduce phase 41-43

MapReduce, Hadoop Version 1.x
MapReduce system 16
MapReduce user framework 16

mapreduce.job.counters.max property 46
MapReduce job flow

about 44
services 43

MapReduce Version 1 (MRv1) 77
mapred user 156
mapred.userlog.retain.hours property 47
Massachusetts Institute of

Technology (MIT) 148
Metastore Manager, Cloudera Hue

about 72
using 72

mirror backup 214
mkdir command 36
multi-hop flows 59
multiple clusters

managing, with Cloudera Manager 187-193
mv command 36

N
Namenode-1(NN1) 88
Namenode-2 (NN2) 88
namenode daemon

about 11
events, occurring 11

Namenode Journal Status section,
namenode UI

NameNode Storage 32
NameNode role, Cloudera Manager 172
namenode UI

about 29
Namenode Journal Status section 32
NameNode Storage section 32
overview section 29
summary section 30

NameNode Web UI tab, Clusters menu 135
name service, Apache ZooKeeper 62

NameserviceID 90
NFS (Network File System)

used, for HDFS HA configuration by shared
storage 103-106

used, for shared storage 102, 103
NodeManager daemon 17
Nutch Distributed File System (NDFS) 9

O
oozie user 156
optical storage, storage media

Blu-ray Discs (BD) 215
compact discs (CD) 215
digital video discs (DVD) 215

P
parcel tab, Host menu 136
Peers screen, Administration menu 142, 143
Pig Latin 61
Pig UI, Cloudera Hue

Dashboard sections 70
Editor section 70
Scripts section 70

primary, principal 151
principal, Kerberos

instance 151
primary 151
realm 151

Q
Quorum-based storage

about 96, 98
used, for HDFS HA configuration 98-100

Quorum Journal Manager (QJM) 96

R
realm, Kerberos 151
realm, principal 151
reduce, MapReduce 10
reduce phase 41, 43
RegionServer 65
replication 217
Replications tab, Clusters menu 135
ResourceManager daemon 17

[235]

Retired Jobs section, jobtracker UI 50, 51
rm command 36
rm -r command 37
role instance

adding, to host 173
roles, Cloudera Manager

about 172
balancer 172
DataNode 172
job tracker 172
NameNode 172
Secondary NameNode 172
Task Tracker 172

Running Jobs section, jobtracker UI
about 49
Counter information 53
general information 52
Map and reduce completion graphs 54
Map and reduce progress information 52

S
Scheduling Information section,

jobtracker UI 49
secondary namenode

about 12, 13
steps 12

SecondaryNameNode role, Cloudera
Manager 172

secondary namenode UI
about 33
Checkpoint Dirs 34
Checkpoint Edit Dirs 34
Checkpoint Period 33
Checkpoint Size 34
Last Checkpoint Time 33
Name Node Address 33
Start Time 33

secure file server
accessing 151

Security Assertion Markup Language
(SAML) 140

security.client.datanode.protocol.acl
property 163

security.client.protocol.acl property 163
security.datanode.protocol.acl property 163
Security-Enhanced Linux (SELinux) 119

security.ha.service.protocol.acl property 163
security.namenode.protocol.acl

property 163
security.refresh.policy.protocol.acl

property 163
serialization 66
Server Log screen, Diagnostics menu 138
Service Level Agreement (SLA) 96
setrep command 37
settings screen, Administration menu

about 139, 140
Advanced 139
Custom Service Descriptors 140
External Authentication 140
Network 140
Other 140
Parcels 140
Performance 139
Ports and Addresses 140
Security 140
Support 140
Thresholds 139

shuffle and sort phase 43
single point of failure (SPOF) 95
sink 59
slots 44
Snappy 65
snapshot policy

configuring 224, 225
snapshots configuration

snapshot paths, enabling in HDFS 223, 224
snapshot policy, configuring 224, 225

SNMP (Simple Network Management
Protocol) 116

Status tab, Clusters menu 135
Status tab, Home screen 131, 132
storage media, types

hard disks 215
optical storage 215
tape drives 215

summary section, namenode UI
Block Pool Used 31
Block Pool Used% 31
Configured Capacity 30
DataNodes usages% (Min, Median,

Max, stdDev) 31
Dead Nodes 32

[236]

Decommissioning Nodes 32
DFS Remaining 31
DFS Remaining% 31
DFS Used 30
DFS Used% 31
Live Nodes 31
Non DFS Used 30
Number of Under-Replicated Blocks 32

synchronization service, Apache
Flume NG 62

T
tail command 37
tape drives, storage media 215
tasktracker daemon 14-16
TaskTracker role, Cloudera Manager

about 172
adding, to host 177-179

templates tab, Host menu 136
Ticket Granting Server 150
Ticket Granting Ticket (TGT) 150
transitionToActive option 105
transitionToStandby option 105
types, backup

differential backup 214
full backup 214
incremental backup 214
mirror backup 214

U
Uniform Resource Identifier (URI) 34
user

authenticating 150
Users screen, Administration menu 141

V
value pair 40
ViewFS

about 94
configuring, for federated HDFS 94

W
workflow 66
Workflows tab, Dashboard application 74

Y
YARN

about 10, 16
job submission 17, 18

YARN cluster
about 82, 83
daemons 82

yarn user 156
Yet Another Resource

Negotiator. See YARN

Z
Zippy. See Snappy
ZK Failover Controller. See ZKFC service
ZKFC component 108
ZKFC service

operations, health monitoring 108
operations, ZooKeeper-based election 109
operations, ZooKeeper session

management 108
znode (ZooKeeper node) 63

Thank you for buying
Cloudera Administration
Handbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning Cloudera Impala
ISBN: 978-1-78328-127-5 Paperback: 150 pages

Perform interactive, real-time in-memory analytics
on large amounts of data using the massive parallel
processing engine Cloudera Impala

1.	 Step-by-step guidance to get you started
with Impala on your Hadoop cluster.

2.	 Manipulate your data rapidly by writing
proper SQL statements.

3.	 Explore the concepts of Impala security,
administration, and troubleshooting in
detail to maintain your Impala cluster.

Optimizing Hadoop for
MapReduce
ISBN: 978-1-78328-565-5 Paperback: 120 pages

Learn how to configure your Hadoop cluster to run
optimal MapReduce jobs

1.	 Optimize your MapReduce job performance.

2.	 Identify your Hadoop cluster's weaknesses.

3.	 Tune your MapReduce configuration.

Please check www.PacktPub.com for information on our titles

Big Data Analytics with R
and Hadoop
ISBN: 978-1-78216-328-2 Paperback: 238 pages

Set up an integrated infrastructure of R and Hadoop
to turn your data analytics into Big Data analytics

1.	 Write Hadoop MapReduce within R.

2.	 Learn data analytics with R and the
Hadoop platform.

3.	 Handle HDFS data within R.

4.	 Understand Hadoop streaming with R.

5.	 Encode and enrich datasets into R.

Apache Solr 4 Cookbook
ISBN: 978-1-78216-132-5 Paperback: 328 pages

Over 100 recipes to make Apache Solr faster, more
reliable, and return better results

1.	 Learn how to make Apache Solr search faster,
more complete, and comprehensively scalable.

2.	 Solve performance, setup, configuration,
analysis, and query problems in no time.

3.	 Get to grips with, and master, the new exciting
features of Apache Solr 4.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Notice
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Apache Hadoop
	History of Apache Hadoop and its trends
	Components of Apache Hadoop
	Understanding the Apache Hadoop daemons
	Namenode
	Secondary namenode
	Jobtracker
	Tasktracker
	ResourceManager
	NodeManager
	Job submission in YARN

	Introducing Cloudera
	Introducing CDH
	Responsibilities of a Hadoop administrator
	Summary

	Chapter 2: HDFS and MapReduce
	Essentials of HDFS
	Configuring HDFS

	The read/write operational flow in HDFS
	Writing files in HDFS
	Reading files in HDFS

	Understanding the namenode UI
	Understanding the secondary namenode UI
	Exploring HDFS commands
	Commonly used HDFS commands
	Commands to administer HDFS

	Getting acquainted with MapReduce
	Understanding the map phase
	Understanding the reduce phase
	Learning all about the MapReduce job flow
	Configuring MapReduce

	Understanding the jobtracker UI
	Getting MapReduce job information

	Summary

	Chapter 3: Cloudera's Distribution Including Apache Hadoop – CDH
	Getting started with CDH
	Understanding the CDH components
	Apache Hadoop
	Apache Flume NG
	Apache Sqoop
	Apache Pig
	Apache Hive
	Apache ZooKeeper
	Apache HBase
	Apache Whirr
	Snappy – previously known as Zippy
	Apache Mahout
	Apache Avro
	Apache Oozie
	Cloudera Search
	Cloudera Impala
	Cloudera Hue
	Beeswax – Hive UI
	Cloudera Impala UI
	Pig UI
	File Browser
	Metastore Manager
	Sqoop Jobs
	Job Browser
	Job Designs
	Dashboard
	Collection Manager
	Hue Shell
	HBase Browser

	Installing CDH
	Stopping Hadoop services
	Understanding a YARN cluster

	Installing the CDH components
	Installing Apache Flume
	Installing Apache Sqoop
	Installing Apache Sqoop 2
	Installing Apache Pig
	Installing Apache Hive
	Installing Apache Oozie
	Installing Apache ZooKeeper

	Summary

	Chapter 4: Exploring HDFS Federation and Its High Availability
	Implementing HDFS Federation
	Configuring HDFS Federation
	Configuring ViewFS for federated HDFS

	Implementing HDFS High Availability
	Quorum-based storage
	Configuring HDFS high availability by
Quorum-based storage

	Shared storage using NFS
	Configuring HDFS high availability by shared storage sing NFS

	Configuring automatic failover for HDFS high availability

	Jobtracker high availability
	Configuring Jobtracker High Availability
	Configuring automatic failover for Jobtracker high availability

	Summary

	Chapter 5: Using Cloudera Manager
	Introducing Cloudera Manager
	Understanding the Cloudera Manager architecture
	Installing Cloudera Manager
	Navigating the Cloudera Manager Web console
	Navigating the Home screen
	Navigating the Clusters menu
	Exploring the Hosts menu
	Understanding the Diagnostics menu
	Understanding the Audits screen
	Understanding the Charts menu
	Understanding the Backup menu
	Understanding the Administration menu

	Configuring High Availability using Cloudera Manager
	Summary

	Chapter 6: Implementing Security Using Kerberos
	Understanding authentication and authorization
	Introducing Kerberos
	Understanding the Kerberos Architecture
	Authenticating a user
	Accessing a secure file server
	Understanding important Kerberos terms

	Installing Kerberos
	Configuring the KDC Server
	Testing the KDC installation
	Configuring the Kerberos clients

	Configuring Kerberos for Apache Hadoop
	Configuring Kerberos principal for Cloudera Manager Server
	Configuring the Cloudera Manager Server for Kerberos

	Authorization in Apache Hadoop
	Configuring access control lists in Hadoop

	Summary

	Chapter 7: Managing an Apache Hadoop Cluster
	Configuring Hadoop services using Cloudera Manager
	Adding a service to the cluster
	Removing a service from the cluster

	Role management in Cloudera Manager
	Adding a role instance to a host
	Adding a DataNode role to a host
	Adding a TaskTracker role to a host

	Managing hosts using Cloudera Manager
	Adding a new host
	Removing an existing host

	Managing multiple clusters with
Cloudera Manager
	Rebalancing a Hadoop cluster from Cloudera Manager
	Adding the Balancer service to the cluster
	Rebalancing the cluster

	Summary

	Chapter 8: Cluster Monitoring Using Events and Alerts
	Monitoring Hadoop services from Cloudera Manager
	Understanding events and alerts
	Configuring events and alerts
	Configuring the alert delivery by an e-mail

	Summary

	Chapter 9: Configuring Backups
	Understanding backups
	Types of backups
	Types of storage media for backups
	Using cloud services for backups

	Understanding HDFS backups
	Using the distributed copy (DistCp)
	Configuring backups using Cloudera Manager
	Configuring HDFS replication
	Configuring Hive replication
	Configuring snapshots
	Enabling snapshot paths in HDFS
	Configuring a snapshot policy

	Summary

	Index
	Blank Page

