
www.allitebooks.com

http://www.allitebooks.org

Code-First Development

with Entity Framework

Take your data access skills to the next level

with Entity Framework

Sergey Barskiy

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Code-First Development with Entity Framework

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015

Production reference: 1110315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-627-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author

Sergey Barskiy

Reviewers

Erik Ejlskov Jensen

Andriy Svyryd

Commissioning Editor

Sarah Crofton

Acquisition Editor

Usha Iyer

Content Development Editor

Natasha D'Souza

Technical Editor

Narsimha Pai

Copy Editor

Deepa Nambiar

Project Coordinator

Rashi Khivansara

Proofreaders

Maria Gould

Elinor Perry-Smith

Indexer

Mariammal Chettiyar

Production Coordinator

Manu Joseph

Cover Work

Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Sergey Barskiy is an architect with Tyler Technologies. He lives in Atlanta, GA.
He has been developing software for almost 20 years. Sergey is a Microsoft MVP.
He holds these Microsoft certiications: MCPD, MCTS, MCSD for .NET, MCAD for
.NET, MCDBA, and MCP. He has been working with Microsoft Technologies for
over 15 years. He is a frequent speaker at various regional and national conferences,
such as VS Live, DevLink, CodeStock, and Atlanta Code Camp, as well as local user
groups. He is one of the organizers of Atlanta Code Camp. He authored articles for
Code Magazine.

Sergey Barskiy has been using Entity Framework since it was irst released to
the public. He has deployed a number of projects to production that used Entity
Framework over the years. He has used the Code-First approach on a few different
projects as well. Sergey has produced an online video training course for this
technology. He has spoken on Entity Framework Code-First at a number of
national and regional conferences and events.

You can tweet to him at @SergeyBarskiy or e-mail him at sergey@barskiy.com.

I would like to thank my family for putting up with my busy schedule
during the time I was working on this book. I want to also thank Packt
Publishing for giving me the courage and opportunity to work on
this project.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Erik Ejlskov Jensen is a Danish .NET developer who specializes in .NET data
development. He is a Microsoft MVP for SQL Server and shares tips and code via
his blog at http://erikej.blogspot.com and Twitter at @ErikEJ. He is a project
manager for a number of SQL Server Compact and SQLite tools on the Codeplex site,
and he is the creator of the popular free Visual Studio add-in SQL Server Compact/
SQLite Toolbox. He also contributes to a number of open source projects, including
Entity Framework.

Andriy Svyryd was born in Ukraine, and then he moved to Mexico, where he
graduated from Universidad Nacional Autónoma de México (UNAM). His irst job
was at Microsoft, where he worked on several projects related to data modeling.
He was a developer on the Entity Framework team for 4 years.

www.allitebooks.com

http://erikej.blogspot.com
http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers, and more
For support iles and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub iles available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt

• Copy and paste, print, and bookmark content

• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents

Preface v

Chapter 1: Introducing Entity Framework 1

What is ORM? 1

A brief history of Entity Framework 3

The capabilities of Entity Framework 4

The Entity Framework architecture 5

Self-test questions 6

Summary 6

Chapter 2: Your First Entity Framework Application 7

Creating a new project that uses Entity Framework 8

Creating a new database based on .NET classes 9

Saving a new record to the database 12

Querying data in a database 15

Updating a record 16

Deleting a row from the database 17

Introduction to schema changes 18

Self-test questions 22

Summary 23

Chapter 3: Deining the Database Structure 25
Creating table structures 26

Mapping .NET types to SQL types 26

Coniguring primitive properties 27
Handling nullable properties 33

Deining relationships 35
The One-to-Many relationship 35

The Many-to-Many relationship 41

The One-to-One relationship 42

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Self-test questions 44

Summary 45

Chapter 4: Querying, Inserting, Updating, and Deleting Data 47
The basics of LINQ 47

Filtering data in queries 49

Sorting data in queries 51

Exploring LINQ functions 52

Element operations 52

Quantiiers 53
Working with related entities 54

Filtering based on related data 54

Lazy and eager loading 55

Inserting data into the database 57

Updating data in the database 60

Deleting data from the database 65

Working with in-memory data 67
Self-test questions 69

Summary 70

Chapter 5: Advanced Modeling and Querying Techniques 73

Advanced modeling techniques 74

Complex types 74
Using an explicit table and column mappings 77
Adding supporting columns 78
Enumerations 79
Using multiple tables for a single entity 80

Advanced querying techniques 83

Projections 83
Aggregations and grouping 88
Advanced query construction 89
Paging data with windowing functions 92
Using joins 93
Groupings and left outer joins 95
Set operations 101

Self-test questions 102

Summary 104

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 6: Working with Views, Stored Procedures,
the Asynchronous API, and Concurrency 105

Working with views 106

Working with stored procedures 110

Create, update, and delete entities with stored procedures 112

The asynchronous API 115

Handling concurrency 119

Self-test questions 123

Summary 124

Chapter 7: Database Migrations and Additional Features 125

Enabling and running migrations 126

Using the migrations API 130

Applying migrations 135

Applying migrations via a script 136

Applying migrations via migrate.exe 136

Applying migrations via an initializer 137
Adding migrations to an existing database 138

Additional Entity Framework features 139

Custom conventions 139
Geospatial data 140
Dependency injection and logging 140
Startup performance 141

Multiple contexts per database 141

Self-test questions 142

Summary 143

Appendix: Answers to Self-test Questions 145

Index 151

www.allitebooks.com

http://www.allitebooks.org

Preface

[v]

Preface
I have been writing applications on the Microsoft platform for almost 2 decades.
Many, if not all of them, use databases to persist user data. I have used many
technologies to access data, starting with ADO.NET. Object Relational Mapping
(ORM) tools, have many advantages over ADO.NET. They allow developers to
write data access code faster and safer. ORM tools have been designed to solve
impedance mismatch problems between object-oriented programming and relational
databases. Microsoft's Entity Framework is the company's answer to the demand for
an ORM from .NET developers. This book is the guide that will help you acquire the
necessary skills to program your applications using Entity Framework.

This book centers on the Code-First approach with Entity Framework, which
has become the most common way of using the technology. Code-First allows
developers to control the entire data access layer of their applications from the .NET
code. This approach simpliies and streamlines the entire application development
life cycle, keeping developers coding inside Visual Studio, the only tool they need to
use Entity Framework.

The books starts with the basic concepts of deining the database structure via C#
and VB.NET code, then progresses to full data access. Chapters cover create, read,
update, and delete operations (CRUD) with Entity Framework. It also shows how
to update the Relational Database Management System, (RDBMS) structure, via
the migrations API. It explores aspects of data access in both .NET languages using
the Languages INtegration Query (LINQ), API. Because of Microsoft's continuous
commitment to both C# and VB.NET, the book contains examples in both languages
in every chapter.

Preface

[vi]

I have been using Entity Framework since 2008, and I felt that I had the necessary
experience to write a book on the subject. I spoke on the topic on many conferences
and events and saw tremendous interest in creating a concise guide to Entity
Framework. This was one of my primary motivations in creating a shorter textbook.
I read many technical books while working in the industry, and I myself, at times,
had trouble maintaining the focus while reading 800-page technical books. They
deinitely have a place in the industry and are very useful. However, I feel they
are intimidating for the developers who are just getting started with a particular
technology. My hope is that this book will get you going quickly on the new topic
and have you writing data access code in a few hours. You should be able to master
the foundation behind Entity Framework with this book quickly and easily.

What this book covers
Chapter 1, Introducing Entity Framework, gives us an understanding of what the,
Object Relational Mapping (ORM) technology brings to developers. You learn the
history of Entity Framework as an example of an ORM. We study the architecture
behind the Entity Framework technology.

Chapter 2, Your First Entity Framework Application, teaches us how to create our irst
project that uses Entity Framework. We create classes that map to database tables.
We observe how our target database is created when the project is run. Finally, we
save and retrieve our irst data from the created database.

Chapter 3, Deining the Database Structure, dives deep into details of mappings
between classes and tables. We create maps between properties to columns as well
as rules that govern such mappings. We deine relationships between classes that
translate into relationships between tables. We exercise multiple approaches that
can be used to deine the mappings.

Chapter 4, Querying, Inserting, Updating, and Deleting Data, discusses how to use the
LINQ API, that allows developers to retrieve the data from the database. We sort,
ilter, and perform element operations and use quantiiers. We query related entities.
You learn the advantages and pitfalls of eager and lazy loading. We insert, delete,
and update the data.

Chapter 5, Advanced Modeling and Querying Techniques, dives deeper into modeling
and querying techniques. We use complex types to have more consistency in the
database structures. We create an explicit table and column names. We deine
structures that use table and entity splitting. We use projections in queries to
make them more eficient and summarize our data. We page the data for retrieval,
breaking it up for presentation to the users. We use joins to create queries that use
related entities.

Preface

[vii]

Chapter 6, Working with Views, Stored Procedures, the Asynchronous API, and
Concurrency, shows how to access with database views from Entity Framework.
We query data via stored procedures using the Entity Framework API. We perform
create, update, and delete operations with stored procedures. We exercise Entity
Frameworks and the asynchronous API and learn the advantages and pitfalls
of asynchronicity. We implement concurrency handling, learning to handle the
situation when multiple users attempt to update the dame data.

Chapter 7, Database Migrations and Additional Features, shows how to enable
migrations on our Entity Framework project, creating and updating the database
schema without data loss. We use implicit migrations irst, then create explicit
migrations, customizing our migration code. We use common aspects of the
migrations API, adding columns and specifying default values. We apply migrations
using multiple approaches. We create migrations from an existing database. We dive
briely into useful Entity Framework features, not covered previously.

Appendix, Answers to Self-test Questions, contains answers to questions you will ind
throughout the book.

What you need for this book
In order to run the sample code, you will need access to Visual Studio 2013. You can
use free Community Edition. You also need an instance of SQL Server 2008 R2 or
higher on your machine. The free Express edition of SQL Server can be used.

Who this book is for
This book is intended for software developers with some prior experience in the
Microsoft .NET framework who want to learn how to use Entity Framework. Maybe
you have used SQL for years, but want to write data access code more easily and
safely, using C# or VB.NET instead. This book is for you if you want to learn how
to use this Microsoft ORM to create strongly typed data access logic, or want to get
your database changes deployed with minimal effort. This book will get you up and
going quickly, providing many examples for C# and VB.NET programmers that
illustrate all the key concepts of Entity Framework.

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[viii]

Code words in text, database table names, user input are shown as follows:
"You also need at least one class that represents the database itself, which will
inherit from DbContext."

A block of code is set as follows:

Public Class Person
 Property PersonId() As Integer
 Property FirstName() As String
 Property LastName() As String
End Class

Any command-line input or output is written as follows. "If we need to get detailed
help for the PowerShell commandlet Enable-Migrations, we just need to type Get-
Help Enable-Migrations."

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at http://www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

http://www.packtpub.com/authors

Preface

[ix]

Downloading the example code
You can download the example code iles from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are veriied, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search ield. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Chapter 1

[1]

Introducing Entity Framework
In this chapter, you will be introduced to Entity Framework. You will gain an
understanding of Object-Relational Mapping (ORM) tools and the problems
they solve. A brief history of Entity Framework will also be covered in this chapter.
We will examine the capabilities of Entity Framework and its architecture.

In this chapter, we will cover the following topics:

• ORM tools and the problems they solve
• A brief history of Entity Framework

• The capabilities of Entity Framework

• The overall architecture of Entity Framework

What is ORM?
When it comes to business software, almost all of it needs to store data that pertains to
its functions. For many decades, Relational Database Management System (RDBMS)
has been a go-to data storage for developers. ORM is a set of technologies that allows
developers to access RDBMS data from an object-oriented programming language.
There are other RDBMSes available, such as SQL Server, Oracle, DB2, MySQL, and
many more. These database systems share some common characteristics. Each system
supports one or more databases. Databases consist of many tables. Each table stores
data in a tabular format, divided into columns and rows. Data rows in multiple tables
may relate to each other. For example, a person's details stored in the Person table can
have phone numbers stored in a separate Phones table.

Introducing Entity Framework

[2]

In the following screenshot, you can see a table that allows you to store a person's
information, speciically their irst and last names, along with a unique identiier for
each person. This type of storage, where similar data items are grouped together into
tabular structures is typical:

Each column can also be constrained in some ways. For example, PersonId is an
integer column. LastName is nvarchar(50) column, which means you can store
Unicode data of variable size in it, up to 50 characters. You will see in subsequent
chapters how we describe this information using Entity Framework.

The data stored in each column and row combination is scalar data, such as number
or string. When software needs to persist or retrieve data, it must describe its intent,
such as insert or select query, using the database-speciic language called Structured
Query Language (SQL). SQL is a common standard for all relational database systems,
as issued by the American National Standards Institute (ANSI). However, some
database systems have their own dialect on top of the common standard. In this book,
we are not going to dive into the depths of SQL, but some concepts are important
to understand. There are some basic commands that we need to look at. These are
typically described as CRUD. CRUD stands for Create, Retrieve, Update, and Delete.
For example, if you want to retrieve or query the data from the preceding example,
you would type the following:

SELECT PersonId, FirstName, LastName

FROM Person

Historically, before tools such as Entity Framework, developers embedded SQL
language statements inside the software code using .NET languages, such as C# or
VB.NET or other programming languages, such as C++ or Java. The reason for this is
that these languages do not natively speak or understand SQL. For example, to retrieve
the data from the database and manipulate it as objects, you would write a fair amount
of code using ADO.NET, .NET Framework's data access built-in framework. You
would need to deine a class to hold a person's data. Then, you would need to open
a connection to the database, create a command that uses the preceding query as its
text, execute the command's reader, and iterate through the reader results, populating
an instance of our Person class with the data from the reader. As you can see, there
would be a lot of steps involved. More importantly, the code we'd write would be
quite fragile.

Chapter 1

[3]

For example, if we change the column name in our database from FirstName to
First_Name, our code would still compile just ine, but would throw an exception
when we try to run it. Moreover, the data in the database was stored as scalar values
organized in columns and rows in a table, but our destination was an object or object
graph. As you can see, this way of accessing the data has a number of issues.

First of all, there is a type mismatch between RDBMS column types and .NET
types. Second, there is a mismatch between storage, which is a collection of scalar
values, and destination, which is an object with properties. To further complicate
the situation, our person object could also have a complex property that contains
a list of phone numbers, which would be represented by a completely different
table. These problems are collectively referred to as impedance mismatch between
object-oriented programming and relational databases.

The set of tools called ORM came about to solve this mismatch problem. An ORM
tool represents data stored in database tables as objects, native to a programming
language, such as .NET languages, C#, and VB.NET. ORM tools have many
advantages over the traditional code, such as ADO.NET code that we mentioned.
They expose the data using native .NET types. They expose related data using simple
.NET properties. They provide compile time checking. They solve the problem with
typos. Developers do not have to use SQL, a different language. Instead in the .NET
world, developers use Language INtegrated Query (LINQ) to query the data. LINQ
is simply part of C# and VB.NET languages. We will cover the basics of LINQ in
subsequent chapters. By the same token, programmers use an ORM tool's API to
persist data to the database. Finally, as we will see later, you will write less code.
Less code means fewer bugs, right?

A brief history of Entity Framework
Over the years, there have been many ORM tools entering the market; some
commercial, others open source. Microsoft developed its own tools. First one was
LINQ to SQL, which was built on .NET 3.5. This ORM only worked with SQL Server
and SQL Server Compact. Entity Framework, which irst shipped in 2008, was the
second attempt. It had a number of advantages over LINQ to SQL. First of all, it had
provider architecture, thus was open to working with all relational database engines,
not just SQL Server, given that a provider was written for the engine in question.
All major RDBMSes have Entity Framework providers at this point in time.

www.allitebooks.com

http://www.allitebooks.org

Introducing Entity Framework

[4]

Entity Framework went through a few revisions. In the irst version, only Database First
approach was supported. What this meant was that you would point the designer to
an existing database. As a result, code was generated that would contain a database
and table abstractions. In addition to the code, an EDMX ile was also created. This
XML ile contained Entity Data Model. It consisted of three models: logical, storage,
and mapping. The logical, sometimes called conceptual, model is the one you will code
against in C# or VB.NET. Storage model describes how data is stored in a database.
The mapping model, as the name implies, provides the mapping between logical and
storage models. If you were to change anything in the database, you would need to
refresh the generated model. The C# or VB.NET code is also generated again. The
mapping model has a class based on ObjectContext that has collection properties for
each table in the database. Each collection is a generic collection, where collection item
type is inherited from a base class in Entity Framework. Each class has properties that
correspond to columns in the matching table.

In the second revision, version 4, the Model-First approach was supported as
well. With this approach, you can use design surface to create entities, and then
the designer would produce the SQL script to generate the database. With this
approach, the EDMX ile was still created, and the inal result was the same as
with the Database First approach. Developers had access to the same set of
classes to give them the ability to persist and query data.

Finally, the Entity Framework Code-First approach was shipped in version 4.1. This
approach eliminated the need for the EDMX ile. It also eliminated the dependency
on Entity Framework base classes that each entity in the model inherited from. As a
result, the code became more testable. This approach also eliminated the need for the
designer. You could just type your classes, and they would automatically be mapped
to tables in the database. There have been subsequent Entity Framework Code-First
releases after the the initial 4.1 version.

The capabilities of Entity Framework
Entity Framework can do a lot for us as Microsoft developers. First of all, it is capable
of exposing the database as a set of objects. It does so by utilizing a couple of key
classes. First and foremost, you need to be aware of DbContext. This class is at the
heart of Entity Framework Code-First. At a high level, it is a database abstraction.
Databases consist of tables, each consisting of rows and columns. DbContext in turn
has generic collection properties; each of which can be typed as DbSet<TRowType>,
corresponding to each table. Each object within the collection, referred to as an entity,
represents a row in the corresponding table. Columns are deined by properties of
the TRowType class that is speciied as a generic argument of each collection.

Chapter 1

[5]

Once this structure is laid out, you are capable of querying the underlying database
by using LINQ queries. If you add a brand new instance of the TRowType class to its
parent collection and then save the changes using the DbContext API, this new object
will become a row in the corresponding table, where each property value of that object
will become a column value in the target row. On top of this, Entity Framework has
capabilities to represent other database artifacts, such as procedures and functions.
You will be able to query the data using functions, just like tables using LINQ again.
The question of evolving the database structure is an important one. In most cases, you
will need to add columns and tables, as your application changes. Entity Framework
addresses this need via the Migrations feature. This ability will allow you to alter
the database structure through C# code. In addition to adding and deleting tables
and columns, you will be able to add indexes. Migrations allow developers to evolve
a schema without data loss. As you can see, Entity Framework exposes everything
you need to access the data in your C# or VB.NET code without wiring SQL and
treats your database as another part of your overall application code. You can check
migrations code into source control, since it is also C# code!

The Entity Framework architecture
Entity Framework is built on the provider architecture. When a developer creates
a LINQ query using C# or VB.NET, the framework engine in conjunction with a
provider converts it into an actual SQL statement that is sent to the database. Any
given provider is the link between Entity Framework and a speciic RDBMS that this
provider is written for. In this book, we will concentrate on the Code-First approach,
but this architecture is used in the Database First approach as well. Once the provider
executes the inal SQL command, its results are materialized into .NET objects by
Entity Framework. Data reader is used for this purpose. It is important to understand
that Entity Framework is still built on top of ADO.NET, thus it is uses concepts such
as connection, command, and data reader. When it comes to data persistence, in other
words; insert, update, and delete functionalities, the low is as follows: In the case of
inserts, a developer adds an instance of an entity class to the context. Similarly, an
entity previously added to the context can be lagged as changed or deleted, causing
the update or delete SQL statement to be executed against the database, respectively.
Entity Framework examines the state of each object in its context, using the provider
again to create an RDBMS-speciic insert, update, or delete command.

Introducing Entity Framework

[6]

Self-test questions
Q1. Which of these problems does an ORM tool solve?

1. Types in RDBMS and .NET framework are the same
2. Impedance mismatch between RDBMS and object-orientated programming
3. Learning SQL is hard

Q2. Developers must write SQL queries to work with Entity Framework. True or false?

Q3. What is the name of the technology that Entity framework uses to apply
structural changes to the target database?

1. Updates

2. Conversions

3. Migrations

Q4. Which is the key class that represents database abstraction with the Entity
Framework Code-First approach?

1. DbContext

2. ObjectContext

3. DataContext

Q5. Entity Framework can only work with Microsoft databases, such as SQL Server.
True or false?

Summary
In this chapter, we took a look at how data is stored in RDBMS systems. We saw the
shortcomings of using embedded SQL to access the data. We understood what ORM
tools are all about and what problems they solve. We examined the history behind
Entity Framework. We saw the capabilities of Entity Framework. Finally, we had a
brief excursion into the Entity Framework architecture.

In the next chapter, we will actually build our irst application based on Entity
Framework Code-First.

Chapter 2

[7]

Your First Entity

Framework Application
In this chapter, we will work through the creation of a brand new project that uses
Entity Framework. We will create classes that map to tables in the target database.
We will then insert a row into that table using the Entity Framework API. We will
also query this using LINQ. Next, we will update and delete our test data. Finally,
we will take a look at how to handle schema changes.

In this chapter, we will cover the following topics:

• Creating a new project using Entity Framework

• Adding the necessary references to be able to write Entity Framework code

• Creating a new database based on written classes

• Saving a new record

• Querying the saved data

• Deleting and updating the data in the database
• An introduction to schema changes

Your First Entity Framework Application

[8]

Creating a new project that uses Entity

Framework
First of all, it is important to understand how Entity Framework is distributed.
Even though it is an open source project, Microsoft employees curate the project as
well as write the lion's share of all the code. You can actually download the source
code from CodePlex at https://entityframework.codeplex.com/. However,
the easiest way to add this technology to your project is to use NuGet. The NuGet
technology allows anyone to create useful libraries and publish them on the web to
let other developers take advantage of it. Microsoft is in charge of publishing Entity
Framework on the NuGet website. The package is simply called Entity Framework.
In addition to the core Entity Framework, it also contains the Entity Framework
provider for SQL Server. We will work with the latest version of it. You can add it
to any .NET project. Let's just create a Console Application for our project irst, and
then add the Entity Framework package to it. Create your project and solution by
going through File | New | Project, then picking either C# or VB.NET, and then
inally selecting Console Application under the Windows Desktop node, as shown
in the following screenshot:

https://entityframework.codeplex.com/

Chapter 2

[9]

Now, you can use either the Package Manager Console window or Manage NuGet
Packages for the Solution window, to add the EntityFramework package to your
solution. Both windows are available by navigating to Tools | NuGet Package
Manager for the Solution menu in Visual Studio. If you are using the Package
Manager Console window, just type Install-Package EntityFramework.

In this window, hit Enter key. If you are using Manage Packages for the Solution
window, type EntityFramework in the search box, click on Search, and then add the
package with the ID of Entity Framework, which should be the irst package in the
result set. Once the package has been added, the project will contain all the necessary
references. You are now ready to start writing code.

You must be connected to the Internet to use the
NuGet online package repository.

Creating a new database based on

.NET classes
When it comes to working with data, we will need to create at least two types of
classes. We need to create one or more classes to map the tables in the database,
where each class represents a row of data in the corresponding table. You also
need at least one class that represents the database itself, which will inherit from
DbContext. To start with, let's create a class with the same structure as the Person
table from the Chapter 1, Introducing Entity Framework, with properties for id and
the irst and last names. Here is how the class looks in C#:

public class Person

{

 public int PersonId { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

}

Downloading the example code

You can download the example code ies from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the ies e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Your First Entity Framework Application

[10]

As you can see, we need to deine properties with types that match our desired
database types. In this case, the String type in .NET will map to all possible character
types in an RDBMS. Numeric types are easier. In our case, the Integer type in .NET
will map to the int type in SQL Server. Most of the time, you do not need to be
concerned with this level of detail. Just model your classes to represent the data you
need, using the standard .NET types for its properties, and let Entity Framework
igure out what native RDBMS types are needed to persist this data. The same class
in VB.NET looks as follows:

Public Class Person

 Property PersonId() As Integer

 Property FirstName() As String

 Property LastName() As String

End Class

Now, let's write out a context, which will be our database abstraction with a
single table: Person. By this logic, we only need a single property in our context
to represent this table. Since a table consists of rows, it is logical to assume that this
property must be a collection of persons. Entity Framework has a speciic class for
this exact purpose: DbSet. Here is what our context class looks like:

public class Context : DbContext

{

 public Context()

 : base("name=chapter2")

 {

 }

 public DbSet<Person> People { get; set; }

}

It was mentioned before that DbContext needs to be the base class for all our
Entity-Framework-based context classes, and you can see this in the preceding
example. You also see the constructor that calls the base constructor. We pass the
connection string coniguration, and in this case, we specify that we will use a
connecting string with the key of chapter2 deined in the application coniguration
ile, which can be app.config or web.config depending on your application type.
Here is how this coniguration looks in app.config ile in our console application:

<connectionStrings>

<add name="chapter2"

connectionString="Data Source=.;Initial Catalog=Chapter2;Integrated
Security=SSPI"

providerName="System.Data.SqlClient"/>

</connectionStrings>

Chapter 2

[11]

It is important to notice is that we are using a standard connection string that does
not contain anything speciic to Entity Framework. This allows you to use the same
connection string for other purposes, such as reports. Here is how the same Context
class looks in VB.NET:

Public Class Context

 Inherits DbContext

 Public Sub New()

 MyBase.New("name=chapter2")

 End Sub

 Property People As DbSet(Of Person)

End Class

Apply Code[packt] and CodeEnd[packt]style

We are actually ready to run our application and see what happens. We need to
make sure that the Chapter2 database speciied in the connection string as the initial
catalog (database) does not exist in the default instance of SQL Server, speciied by "."
inside the connection string. You will learn more about database creation in Chapter
7, Database Migrations and Additional Features. In this chapter, you will learn one other
important thing: The database is created upon the irst access to the results of a query
or an update/insert operation. We can also create it using the Entity Framework
database API. Here is how we do it inside our console application:

static void Main(string[] args)

{

 using (var context = new Context())

 {

 context.Database.CreateIfNotExists();

 }

}

What you see in the preceding code is the use of the database object that forces the
creation of the database if it does not already exist. Alternatively, we can access any
data via the Entity Framework API to cause database creation to occur. Here is the
DbContext deinition code in VB.NET:

Sub Main()

 Using context = New Context()

 context.Database.CreateIfNotExists()

 End Using

End Sub

Your First Entity Framework Application

[12]

Finally, we just need to make sure that the connection strings match your computer
setup. Now we can run your console application. After we run it, we can open
SQL Server Management Studio (SSMS) and verify the results of our application.
Alternatively, we can use the Server Explorer window in Visual Studio. You should
see the Chapter2 database with one table in it, as seen in the following screenshot:

You probably noticed that the irst and last name columns are of the type
nvarchar(max). This is due to defaults that Entity Framework uses. It makes a lot of
assumptions on the developers' behalf when it comes to deining database types and
structures. In the preceding example, Entity Framework guessed that the PersonId
property should map to the primary key. Because it was of the type integer, the
column was also set up as the identity column in SQL Server. On top of that, our class
name Person was pluralized when the table was deined in SQL Server. What this
means is that a lot of decisions are made based on conventions in Entity Framework.
We will learn a lot more about conventions in subsequent chapters.

Saving a new record to the database
It is time to add some data to our table in the created database. We will insert a row,
which is sometimes called a record. A record in the People table consists of values
in three columns: PersonId, FirstName, and LastName. These values are going to
be based on property values of an instance of the Person class, which is mapped to
the People table. This is an important concept to remember. When we create entity
classes, their purpose is to map to tables. There are some exceptions to this rule,
which we will see in later chapters. This table is represented by a collection-based
property in our Context class.

Chapter 2

[13]

This property's type is DbSet of Person and its name is People. Conceptually, you
can think of adding objects to that collection to be equivalent to inserting rows into
the database's corresponding table. You need to use the Add method of DbSet to
implement the addition of new data. The DbContext class has the SaveChanges
method, which is responsible for committing all the pending changes to the database.
It does so by examining the state of all the objects in the context. All such objects are
housed within each of the collection properties based on DbSet in the context class. In
our case, there is only one such collection in the Context class: the People property.
Context tracks the state of each one of the objects in all its DbSet properties. This state
can be "Deleted", "Added", "Modiied", or "Unchanged". We can easily decipher how
each of the states, with the exception of "Unchanged", will result in a corresponding
query sent to the RDMBS. If you want to create multiple rows in a table, you just
need to add multiple instances of. NET object based on the class that corresponds to
the table in question. The next step is to commit your changes to the database using
the SaveChanges method. This method runs as a single transaction. As a result, all
pending database changes are persisted as a single unit of work, participating in this
transaction. If one of the commits fails, the entire batch of changes will be rolled back
upon exception. The DbContext.SaveChanges method is transactional. This enables
you to commit a batch of logically related changes as a single operation, thus ensuring
transactional consistency and data integrity.

Let's take a look at the code that adds a row to the People table:

static void Main(string[] args)

{

 using (var context = new Context())

 {

 context.Database.CreateIfNotExists();

 var person = new Person

 {

 FirstName = "John",

 LastName = "Doe"

 };

 context.People.Add(person);

 context.SaveChanges();

 }

}

www.allitebooks.com

http://www.allitebooks.org

Your First Entity Framework Application

[14]

In this sample code, we are creating a new instance of the Person class, populating
the irst and last names. You will notice that we did not set a value for the PersonId
property. The reason for this is that this property corresponds to the identity column
in SQL Server, which means its value is generated by the database. This value will be
automatically populated in the person variable's object immediately after the save.
You can verify this by setting a breakpoint on the line after the SaveChanges call,
and checking the value of the PersonId property of the person variable. Another
thing to notice is that the instance of the Context class is wrapped inside the Using
statement. It is important to always follow this coding pattern. DbContext implements
an IDisposable interface. It does so because it contains an instance of DbConnection
that points to the database speciied in the connection string. It is very important to
properly dispose of the database connection in Entity Framework, just like it was
important in ADO.NET. Here is the same code in VB.NET:

Sub Main()

 Using context = New Context()

 context.Database.CreateIfNotExists()

 Dim person = New Person With {

 .FirstName = "John",

 .LastName = "Doe"

 }

 context.People.Add(person)

 context.SaveChanges()

 End Using

End Sub

If you would like to add one more row, just create another instance of the Person
class and add it to the same People collection. To verify that the data was successfully
inserted, you can just open SQL Server Management Studio or SQL Server Object
Explorer inside Visual Studio, and look at the data in the People table. Now, let's see
how we can retrieve the data in the database using Entity Framework.

SQL Server Object Explorer can be found under the View menu
in Visual Studio. If you cannot ind this window, you may need
to install SSDT or SQL Server Data Tools from https://msdn.
microsoft.com/en-us/data/tools.aspx.

https://msdn.microsoft.com/en-us/data/tools.aspx
https://msdn.microsoft.com/en-us/data/tools.aspx

Chapter 2

[15]

Querying data in a database
In this section, we are going to look at our data using the query capabilities of Entity
Framework. Typically, we will use LINQ to do this. We are going to start with a
simple example though, accessing the data directly through DbSet. We will take
a deeper look at LINQ in subsequent chapters. The code is quite simple and is
as follows:

using (var context = new Context())

{

 var savedPeople = context.People;

}

If you set a breakpoint on the line with the last curly brace and look at the
savedPeople variable in the Watch window, you will see one peculiar thing,
something called Results View, shown in the following screenshot:

This illustrates an important concept. Entity Framework is using delayed query
execution. In other words, the actual query command is sent to the database when
the results of that LINQ query are accessed or enumerated. Entity Framework
is doing so based on the IQueryable interface that DbSet implements. We can
enumerate the results of our query using a simple loop, thus causing the SQL
execution, for example:

using (var context = new Context())

{

 var savedPeople = context.People;

 foreach (var person in savedPeople)

 {

 Console.WriteLine("Last name:{0},first name:{1},id {2}",

person.LastName, person.FirstName, person.PersonId);

 }

}

Console.ReadKey();

Your First Entity Framework Application

[16]

If you run the preceding code, you will see the list of people in the console window.
It will show the people you just added to the database in the previous step. What
we do is simply access the entire DbSet or table data by pointing our variable to the
property of the context that contains the people collection. This is roughly equivalent
to the SQL query SELECT * FROM PEOPLE. Entity Framework then reads in the
results, creating actual instances of the Person class, then organizing them into a
collection. This process is called materialization, that is, the creation of .NET objects
from DbDataReader that is reading the data from the database. If you only see a
single row in the output and would like to see more than a single record, just run
your insert code a few more times. The same code in VB.NET looks as follows:

Using context = New Context()

 Dim savedPeople = context.People

 For Each person In savedPeople

 Console.WriteLine("Last name:{0},first name:{1},id {2}",

person.LastName, person.FirstName, person.PersonId)

 Next

End Using

To summarize what we have seen in the preceding code, we insert rows into the
database by simply adding objects to a collection that corresponds to the table we
are targeting.

Updating a record
Let's take a look at how we can change the data after inserting it. This is done in the
SQL world by issuing an UPDATE command. In the Entity Framework world, you do
not need to perform this step. Instead, we just need to ind an instance of an object in
the collection, change its properties, and then call the familiar SaveChanges method.
Now, we just need to get an object from the database to update. You just saw how
to do this in the Querying data in a database section. Here is what the update code
looks like:

using (var context = new Context())

{

 var savedPeople = context.People;

 if (savedPeople.Any())

 {

 var person = savedPeople.First();

 person.FirstName = "Johnny";

 person.LastName = "Benson";

 context.SaveChanges();

 }

}

Chapter 2

[17]

As you can see, we simply point to the People property of the context. Then, we
check to make sure that there is at least one entity in the collection using the Any()
method, which is part of LINQ. Then, we get the irst object in the collection using
the First() method. We could have just as easily pointed to any other object in
the collection. After this, we set two properties of the found Person object to some
new values. Finally, we issue SaveChange() just like in the example of the insert
operation. If you run this code while SQL Server Proiler is running, you will see
the SQL queries that Entity Framework creates and issues in conjunction with the
SQL Server Entity Framework provider. Entity Framework maintains the state
of changed objects and is responsible for generating appropriate update queries.
Here is how the same code looks in VB.NET:

Using context = New Context()

 Dim savedPeople = context.People

 If savedPeople.Any() Then

 With savedPeople.First()

 .FirstName = "Johnny"

 .LastName = "Benson"

 End With

 context.SaveChanges()

 End If

End Using

Deleting a row from the database
Now let's try to delete a record from the database. First of all, we need to ind a row
to delete. If you look at the update example, you will see exactly how you can do this.
In this example, we will employ a slightly different technique, inding a row by its
primary key. In our example, it is the PersonId property's value. Just ind a value to
delete by running the code from a query example and writing down the appropriate
value of the PersonId property. Once we have this value, we can use the Find method
of DbSet to locate the correct object. Finally, we will mark the object as deleted using
the DbContext API's Remove method, as shown in the following code:

using (var context = new Context())

{

 var personId = 2;

 var person = context.People.Find(personId);

 if (person != null)

 {

 context.People.Remove(person);

 context.SaveChanges();

 }

}

Your First Entity Framework Application

[18]

You will notice that we also have a check to make sure that the Find operation was
successful in checking its results, making sure that the object retrieved is not null.
The delete operation is performed by calling the Remove method on DbSet. As we
saw in the preceding example, we always need to call SaveChanges when we want
to persist our modiications to the database. These modiications can include update
or insert, or delete in this case. In subsequent chapters, we will see other API calls
that perform the same tasks. Here is how this code looks in VB.NET:

Using context = New Context()

 Dim personId As Integer = 4

 Dim person = context.People.Find(personId)

 If person IsNot Nothing Then

 context.People.Remove(person)

 context.SaveChanges()

 End If

End Using

The value 4 in the preceding example contains the primary key value for a row in the
Person table and does not carry any speciic meaning beyond that.

Introduction to schema changes
It is good for everyone to experiment with his or her irst application. However, it
is very likely that we will encounter an exception if we make changes to the Person
class or add another collection to the Context class. Let's take a look at what happens
when we add more classes and properties to the context. In this example, we are
going to create a Company class and add it the context as a collection. Here is another
simple class that represents a second table in our database:

public class Company

{

 public int CompanyId { get; set; }

 public string Name { get; set; }

}

Here is how our context class deinition looks after the addition of the new collection:

public class Context : DbContext

{

 public Context()

 : base("name=chapter2")

 {

 }

Chapter 2

[19]

 public DbSet<Person> People { get; set; }

 public DbSet<Company> Companies { get; set; }

}

This code illustrates an important concept. We can now see that our context
represents the entire database, consisting of multiple tables. Each one becomes
a property on our context class. Here is how the same code looks in VB.NET:

Public Class Company

 Property CompanyId() As Integer

 Property Name() As String

End Class

Public Class Context

 Inherits DbContext

 Public Sub New()

 MyBase.New("name=chapter2")

 End Sub

 Property People As DbSet(Of Person)

 Property Companies() As DbSet(of Company)

End Class

Now if we try to run the project and enumerate the Companies collection by
accessing context.Companies inside a for each loop, we will get an exception,
as seen in the following screenshot:

Your First Entity Framework Application

[20]

The entire error text is The model backing the 'Context' context has changed
since the database was created. Consider using Code First Migrations to update
the database (http://go.microsoft.com/fwlink/?LinkId=238269). Sometimes you
will get a different error message that states that a speciic table does not exist in the
database. The point, however, is the same—you cannot change the context, that is the
database schema without adding code to handle this situation. You will learn a lot
more about this circumstance in Chapter 7, Migrating Databases and Existing Databases
on migrations, but let's address the immediate need to handle schema changes in
our Entity Framework experiments. This is where the concept of initializers come in.
Initializers are run when Entity Framework accesses the database for the irst time
during the instantiation process or during the irst access of data. There are three
initializers in Entity Framework that we need to be concerned with right now:

• CreateDatabaseIfNotExists<TContext>

• DropCreateDatabaseIfModelChanges<TContext>

• DropCreateDatabaseAlways<TContext>

When it comes to VB.NET, we use slightly different syntax, for example
CreateDatabaseIfNotExists(Of TContext). If we look at the names of these classes,
it quite clear what these initializers do. CreateDatabaseIfNotExistsinitializer is
the default that is run when you do not specify another one. It will check whether the
database exists, and if not, create it along with the structure speciied by the context
and classes that it refers to in its properties. The second initializer in the list recreates
the database when the model speciied in the context class changes. This could be
caused by changes to any class that maps to a table, as well as the addition or removal
of collections from the context. Finally, the last initializer always recreates the database;
in other words, every run of the software that uses it will result in a new database. Let's
create and use the second one, as shown: DropCreateDatabaseIfModelChanges:

public class Initializer : DropCreateDatabaseIfModelChanges<Context>

{

}

In order to use this new initializer, we must let Entity Framework know before we
create an instance of our context for the irst time in our application. We can do so
by accessing the static method SetInitializer on the Database class, which is also
part of the Entity Framework API. In our console application, we need to do it in the
irst line of code that is executed in our application, for example:

static void Main(string[] args)

{

 Database.SetInitializer(new Initializer());

 // more code follows

Chapter 2

[21]

All we need to do is to create a new instance of the initializer and set it on
the database object. Now, if we run our application again, we will not see the
exception. Instead, our database will be recreated with the new structure.

If you have the database in question open inside another
application, such as SQL Server Management Studio, you will get
a different exception, informing you that Entity Framework cannot
obtain an exclusive lock on the database in order to drop it. Just
close all other applications and you will be able to proceed.

Here is how the same code looks in VB.NET:

Public Class Initializer

 Inherits DropCreateDatabaseIfModelChanges(Of Context)

End Class

Sub Main()

 Database.SetInitializer(New Initializer)

' more code follows

There is one more important note to make here. Because the initializers we
mentioned drop databases, you will lose all of the data you accumulated in the
database. Obviously, this makes the initializer we just used unsuitable for production
purposes. However, these initializers come in quite handy when you are learning
Entity Framework and early in your projects' lifetimes, that is, during the rapid
prototyping phase. We can also call Database.SetInitializer and pass in null
(nothing in VB.NET) instead of the actual instance. This will override the default
behavior and always throw an exception if your class-based model/context does not
match the database any longer. This will include when the database does not exist.
Initializers have one more interesting feature we want to look at. They allow you
to run the code after the target database is created. You can do so by overwriting
the Seed method. This method takes one parameter, which is an instance of your
Context class, for example in the following code:

public class Initializer : DropCreateDatabaseIfModelChanges<Context>

{

 protected override void Seed(Context context)

 {

 context.Companies.Add(new Company

 {

 Name = "My company"

 });

 }

}

Your First Entity Framework Application

[22]

As you can see, I am using familiar code to add a company object to the Companies
collection of my context. Unlike the standard addition code, I do not need to call
SaveChanges, although there is no harm in doing so. Here is how the same code
looks in VB.NET:

Public Class Initializer

 Inherits DropCreateDatabaseIfModelChanges(Of Context)

 Protected Overrides Sub Seed(ByVal context As Context)

 context.Companies.Add(New Company() With {

 .Name = "My company"

 })

 End Sub

End Class

We can use Entity Framework migrations in order to
update the production database.

I hope you will now take some time to experiment with what you have learned in
this chapter.

Self-test questions
Q1. What base class can be used to represent a table in a database inside the
DbContext collection's property?

1. List<T>/List(of T)

2. DbSet<T>/DbSet(of T)

3. ICollection<T>/ICollection(of T)

Q2. You do not have to call Dispose on DbContext after use, true or false?

Q3. Which method can be used to locate a row in the database using the primary key
in Entity Framework?

1. Find

2. Locate

3. Deine

Chapter 2

[23]

Q4. Which method of DbSet can you use after inding a record to delete it?

1. Delete
2. Remove
3. Erase

Q5. You want to easily update the last name of a person in a record stored in the
database. You can do so in Entity Framework by:

1. Issuing a SQL command

2. Getting the corresponding object, setting the LastName property, and calling
SaveChanges

3. Creating an instance with the same id and different values for LastName,
then adding it to DbSet using the Add method, and then calling SaveChanges

Q6. You have changed a class that is mapped to a table by adding another property
to it. What happens if you set the database initializer to null and run the program?

1. All other columns' data is shown
2. An exception is thrown

3. The database is changed to match the new schema, but the data is lost

Summary
In this chapter, we created our irst Entity Framework-based application. We started by
creating a new console application .NET project. We then added the Entity Framework
reference using NuGet. Then, we decided what data we wanted to store in the database
and created a class that maps to a table in the database, that is, the Person class. Then,
we created our database abstraction, the Context class, inheriting from DbContext.
We speciied the desired connection string in its constructor and added this connection
string to the application coniguration ile. Then, we added a single property to our
context, People, which was a collection of Persons object, of the type DbSet of Person.
At this point, we ran our application. We observed that a database was created with
a single table, based on the this property. The database creation process used many
conventions, including the table name and making the PersonId column unique
(by identity) and primary key.

www.allitebooks.com

http://www.allitebooks.org

Your First Entity Framework Application

[24]

We then worked on adding a row to the preceding table. We created an instance of the
Person class, setting some properties on it at the same time. We created an instance of
Context, following the IDisposable pattern. We then added the instance of Person
to the collection speciied by the People property of Context using the Add method.
Finally, we called SaveChanges to commit our in-memory objects to the database,
thus making them rows in the Person table. Updating the inserted data was easy,
as well. We queried the rows from the database by enumerating the objects inside
the People property of Context. We picked a row, changed its properties, and called
SaveChanges to update the data. Deletion was done using the Find method instead
of enumerating a query, and then marking the object for deletion by calling Remove
method of DbSet and calling SaveChanges yet again, thus deleting the data from the
database. We inished the chapter by mentioning that Entity Framework has many
ways to perform some actions, and this includes CRUD operations. We will see other
ways to archive these tasks in subsequent chapters. Congratulations on getting your
irst app working!

Chapter 3

[25]

Deining the
Database Structure

In this chapter, you will learn how to specify the details of our database structure by
using the Entity Framework API. We will build on what you have learned in Chapter
2, Your First Entity Framework Application, and write entity classes that deine types of
columns in destination tables. We will discover how to specify a relationship between
tables in your database, through properties in entity classes and the coniguration API.
We will look at various ways to conigure table structures. We will also see how .NET
types map to SQL Server column types.

In this chapter, we will cover how to:

• Create classes that deine a table structure using the simple
and primitive types

• Handle nullable and required properties

• Deine attributes and coniguration classes, as well as use the
model builder API to specify column types

• Specify One-to-One, One-to-Many, and Many-to-Many relationships
between classes

Deining the Database Structure

[26]

Creating table structures
Let's consider all the structures that can be created.

Mapping .NET types to SQL types
Before we start, it would be helpful to take a look at the mappings between .NET
types and SQL Server column types. You remember that there is a distinct mismatch
between the two, which is one of the problems that Entity Framework strives to ix.
You can also ind similar mappings between .NET and other RDBMSes, such as Oracle.
In this book, we will concentrate on SQL Server. It is not always important to keep
these mappings in mind. For example, if you deine a property in .NET as integer,
you can safely assume that Entity Framework will handle the column's deinition and
use the appropriate type; for example, int in SQL Server. Here are the mappings for the
most commonly used .NET types:

SQL Server Database type .NET Framework type

Bigint Int64

binary, varbinary Byte[]

Bit Boolean

date, datetime,
datetime2, smalldatetime

DateTime

Datetimeoffset DateTimeOffset
decimal, money,
smallmoney, numeric

Decimal

float Double
int Int32

nchar, nvarchar,, char,
varchar

String

real Single

rowversion, timestamp Byte[]

smallint Int16

time TimeSpan

tinyint Byte

uniqueidentifier Guid

Chapter 3

[27]

You can view the complete list on the MSDN website at http://msdn.microsoft.
com/en-us/library/cc716729(v=vs.110).aspx. If you want to see the mapping
for other database engines, you can easily ind them on the Internet. For example,
you can ind Oracle mappings at http://msdn.microsoft.com/en-us/library/
cc716726(v=vs.110).aspx.

Coniguring primitive properties
Let's start the discussion by looking at string properties. You noticed that SQL Server
has many types that map to the string type in .NET. The same is the case with other
major RDBMSes. Unlike numeric types, it is actually important to decide how you
want to store string-based information in the database. The reason is that most
relational database management engines have multiple character storage types. They
usually have character types that start with the letter N. This letter signiies that the
data to be stored in such columns is Unicode data, based on character sets used to
store each character in the double-byte format. These types are necessary to store data
using the most non-Latin-based languages, such as Chinese. So, if you are writing
an application for US-based users who only use English, you can deine your string
data as varchar or char instead of nvarchar or nchar, to save physical storage and
possibly speed up queries. You can also use ixed length or variable length character
columns, signiied by the presence or absence of var in the type name. Hence, you
need to make some decisions before writing the code. Now, let's look at examples.
Let's start with an example of the Person class again. Let's presume that the irst and
last name properties need to be of variable length and accommodate, at most,
30 characters each. The middle name is of a ixed length of one character.

There are a few ways to conigure database structures in Entity Framework. You can
use the following:

• Attributes

• Coniguration Classes
• The DbModelBuilder API

Let's start with attributes. The property-deining attributes are part of .NET and live
in the System.ComponentModel.DataAnnotations namespace. Here is how we will
conigure the Person class's string properties using attributes:

public class Person

{

 public int PersonId { get; set; }

 [MaxLength(30)]

 public string FirstName { get; set; }

http://msdn.microsoft.com/en-us/library/cc716729(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/cc716729(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/cc716726(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/cc716726(v=vs.110).aspx

Deining the Database Structure

[28]

 [MaxLength(30)]

 public string LastName { get; set; }

 [StringLength(1, MinimumLength = 1)]

 [Column(TypeName = "char")]

 public string MiddleName { get; set; }

}

We are using a few different attributes to fulill our goal. We are using the
MaxLength attributes to conigure two properties, specifying the maximum length.
We are using StringLength to specify both minimum and maximum length for
the middle name property. We are also using the Column attribute to force the char
type for the middle name column. Entity Framework will use the Unicode storage
by convention, unless explicitly speciied otherwise. If we run the code using the
preceding coniguration, we will end up with exactly the structure we were aiming
for, as you can see in the following screenshot:

Here is how this code looks in VB.NET:

Public Class Person
 Property PersonId() As Integer

 <MaxLength(30)>
 Property FirstName() As String

 <MaxLength(30)>
 Property LastName() As String

 <StringLength(1, MinimumLength := 1)>
 <Column(TypeName := "char")>
 Property MiddleName() As String
End Class

There is one important thing to know about data annotation attributes. In addition to
specifying the data structure, they will also be used as validation attributes. If you,
for example, attempt to add a person object with a middle name longer than one
character and save this data, you will get an exception before the actual SQL query
is constructed and sent to the database. The message details will contain information
related to the violated rule(s).

Chapter 3

[29]

You probably spotted a small problem with the column attribute. We are essentially
hardcoding the column type. What would happen if we were to run our project
against another RDBMS that uses type names that differ from SQL Server? Entity
classes that map to tables should ideally be agnostic to persistence, but in our cases
they carry some RDBMS-speciic information. In addition to this, we currently do not
control the message text for the errors that would occur if we violate the validation
rules we speciied. So, to deal with this issue, we need to add the error message, as
shown in the following lines of code:

[MaxLength(30, ErrorMessage = "First name cannot be longer than 30")]

public string FirstName { get; set; }

The same attribute in VB.NET looks as follows:

<MaxLength(30, ErrorMessage:="First name cannot be longer than 30")>

Property FirstName() As String

Data annotations support localization, so we do not need to hardcode the error
message in English. Finally, some situations cannot be handled with annotations at
all, such as delete rules for relationships. Luckily, Microsoft provides multiple ways to
conigure table structures and column types. One way is to use the DbModelBuilder
API. To get to this API, we need to override the OnModelCreating method of our
DbContext object. Then, we can conigure properties for an entity class, Person in
our case, as shown in the following code:

public class Context : DbContext

{

 public Context()

 : base("name=chapter2")

 {

 }

 public DbSet<Person> People { get; set; }

 protected override void OnModelCreating(DbModelBuilder
 modelBuilder)

 {

 modelBuilder.Entity<Person>().Property(p =>p.FirstName)

 .HasMaxLength(30);

 modelBuilder.Entity<Person>().Property(p =>p.LastName)

 .HasMaxLength(30);

 modelBuilder.Entity<Person>().Property(p =>p.MiddleName)

 .HasMaxLength(1)

 .IsFixedLength()

 .IsUnicode(false);

 }

}

Deining the Database Structure

[30]

The Entity class refers to a class that maps to a table
in the database.

In the preceding code, we get an instance of the EntityTypeConfiguration class from
the context by providing the type of entity we want to conigure, Person in our case.
Then, we conigure one property of the Person class at a time, using the Property
method. If we follow this coding practice, we do not need to use data annotation
attributes any longer. You will notice the parity between attributes we used in the
prior example and methods exposed on the StringPropertyConfiguration class. In
the case of the last name, we simply conigure the maximum length. Since the default
for string properties is Unicode, we did not need to conigure the Unicode setting
explicitly. In the case of the middle name, we did specify that it is a non-Unicode
column. Additionally, we speciied that the middle name is a ixed-width column. As a
result, we did not have to hardcode the char type for the MiddleName property. So, you
now see that the coniguration API has an advantage over data annotations in this case.

There is one problem with the preceding code that you undoubtedly noticed.
For one table with three columns, the OnModelCreating method is pretty short.
What if we have 1,000 tables? The preceding approach will result in unmanageable
code as the number of entities grows. Entity Framework provides a way to break
this code apart using a separate coniguration class for each entity class. We will
call our coniguration buddy class for Person, class PersonMap, as shown in the
following code:

public class PersonMap : EntityTypeConfiguration<Person>

{

 publicPersonMap()

 {

 Property(p =>p.FirstName)

 .HasMaxLength(30);

 Property(p =>p.LastName)

 .HasMaxLength(30);

 Property(p =>p.MiddleName)

 .HasMaxLength(1)

 .IsFixedLength()

 .IsUnicode(false);

 }

}

The code is virtually identical to the one we wrote using model builder, but it is
now much better organized to handle multiple entities. You also saw that we chain
multiple methods for a single property together. This chaining of methods is called
the Fluent API. The same code in VB.NET looks as follows:

Chapter 3

[31]

Public Class PersonMap

 Inherits EntityTypeConfiguration(Of Person)

 Public Sub New()

 Me.Property(Function(p) p.FirstName) _

 .HasMaxLength(30)

 Me.Property(Function(p) p.LastName) _

 .HasMaxLength(30)

 Me.Property(Function(p) p.MiddleName) _

 .HasMaxLength(1).IsFixedLength().IsUnicode(False)

 End Sub

End Class

Finally, we need to tell our Context class that we have a coniguration class for
it to use during the database structure generation. You can do so in the familiar
OnModelCreating method. We need to add an instance of our Configuration class
to modelBuilder's Configuration collection, as shown in the following code:

protected override void OnModelCreating(DbModelBuilder modelBuilder)

{

 modelBuilder.Configurations.Add(new PersonMap());

}

We now successfully conigured string properties for the Person class, thereby
coniguring the People table in our database. We used the entity coniguration
class tied to the Person class via the generic type parameter. The same code in
VB.NET looks as follows:

Protected Overrides Sub OnModelCreating(ByValmodelBuilder As
 DbModelBuilder)

 modelBuilder.Configurations.Add(New PersonMap)

End Sub

In the preceding example we used StringPropertyConfiguration
class. It was used to conigure string properties. This class inherits
from LengthPropertyConfiguration, which in turn inherits from
PrimitivePropertyConfiguration. These classes support deinition for columns
that correspond to primitive properties. What primitive properties does Entity
Framework support in this fashion? Here is the short list, as follows:

• DateTimePropertyConfiguration

• DecimalPropertyConfiguration

• BinaryPropertyConfiguration

• StringPropertyConfiguration

Deining the Database Structure

[32]

Let's add more properties to the Person class to exercise various conigurations, and
become more familiar with the available API, in addition to using other property
types, such as integer. Here are the updated Person and PersonMap classes:

public class Person

{

 public int PersonId { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string MiddleName { get; set; }

 publicDateTimeBirthDate { get; set; }

 public decimal HeightInFeet { get; set; }

 public byte[] Photo { get; set; }

 public bool IsActive { get; set; }

 publicintNumberOfCars { get; set; }

}

publicclass PersonMap()

{

 Property(p =>p.FirstName)

 .HasMaxLength(30);

 Property(p =>p.LastName)

 .HasMaxLength(30);

 Property(p =>p.MiddleName)

 .HasMaxLength(1)

 .IsFixedLength()

 .IsUnicode(false);

 Property(p =>p.HeightInFeet)

 .HasPrecision(4, 2);

 Property(p =>p.Photo)

 .IsVariableLength()

 .HasMaxLength(4000);

}

Different methods are available on various property types coniguration classes,
based on what is applicable at the database level. For example, decimal columns
support precision and scale and the number of digits before and after decimal points,
so we can conigure these for decimal properties. Only the length makes sense
for binary properties, so we specify that we can store an image up to 4,000 bytes
in the Photo column. For other properties, such as integer and Boolean, there
is really nothing to conigure, hence just specifying property type is suficient.
Here is what the updated database structure looks like:

Chapter 3

[33]

Handling nullable properties
As you noticed, some columns are nullable and some are not. Entity Framework
decides if a column is nullable based on the property type by convention. For example,
the string type allows null values, hence matching character-based columns are
nullable. On the other hand, datetime and int variables cannot be set to null in .NET,
hence these columns are non-nullable. What should we do if we want to make these
columns nullable, or make string storing columns to be illed compulsory? There are
two ways to accomplish this as well. You can just use nullable types to make columns
nullable, and this is by far the easiest way. For example, to allow a blank BirthDate
value, we can change the property declaration to the following:

public DateTime? BirthDate { get; set; }

On the other hand, if we want to make sure that the irst name is required, we can
add code to the coniguration class, as shown:

Property(p =>p.FirstName)

 .HasMaxLength(30)

 .IsRequired();

There is an opposite of IsRequired on property coniguration classes; the
IsOptional method. This method allows you do make non-nullable types to be
nullable columns in the database. It is better to just use nullable types, as it makes
it easier to leave property values as null in .NET instead of trying to, for example,
convert speciied values to null for storage in the database.

Here is how the same code looks in VB.NET:

Public Class Person

 Property PersonId() As Integer

 Property FirstName() As String

 Property LastName() As String

 Property MiddleName() As String

www.allitebooks.com

http://www.allitebooks.org

Deining the Database Structure

[34]

 Property BirthDate() As DateTime?

 Property HeightInFeet() As Decimal

 Property Photo() As Byte()

 Property IsActive() As Boolean

 Property NumberOfCars() As Integer

End Class

Public Class PersonMap

 Inherits EntityTypeConfiguration(Of Person)

 Public Sub New()

 Me.Property(Function(p) p.FirstName) _

 .HasMaxLength(30) _

 .IsRequired()

 Me.Property(Function(p) p.LastName) _

 .HasMaxLength(30) _

 .IsRequired()

 Me.Property(Function(p) p.MiddleName) _

 .HasMaxLength(1).IsFixedLength().IsUnicode(False)

 Me.Property(Function(p) p.BirthDate) _

 .HasPrecision(1)

 Me.Property(Function(p) p.HeightInFeet) _

 .HasPrecision(4, 2)

 Me.Property(Function(p) p.Photo) _

 .IsVariableLength().HasMaxLength(4000)

 End Sub

End Class

It is useful at this point to experiment with simple properties to get a feel of Entity
Framework's coniguration approach, and study the types not covered in the
preceding example. It is important to notice that some of the SQL Server types shown
in .NET to SQL Server mapping in the preceding table are speciic to SQL Server and
may not be available in other relational database systems. As a result, you will not ind
the coniguration API to support such columns. The answer to this problem is to use
the HasColumnType method on property-coniguring classes, and specify the type you
want to use explicitly by name. If you want to generically support multiple database
engines, just write a helper class for this purpose that will return the appropriate
database type as string, based on the currently conigured database engine. You
cannot use this approach for attributes because parameters must be constants. All
primitive property coniguration classes share two more methods, HasColumnName and
HasColumnOrder. The latter allows you to precisely control the ordinal position of a
column in the table. The former allows you to have a column name different from the
property name. If they are the same, you do not need to use explicit column names.

Chapter 3

[35]

However, if you are dealing with a legacy database with short column names for
example, the ability to rename properties that map to such columns comes in quite
handy, as it increases the code readability. On the other hand, you do not have to
have Entity Framework control your table structure. You can use Entity Framework
Code-First to talk to an existing database just as well. Still, you have to have correct
mapping between properties in classes and columns in tables regardless of whether
you update the database structure yourself, or you let Entity Framework do it.

Deining relationships
Now let's take a look at relationships between classes, and consequently between
tables. There are three main types of relationships in database theory:

• One-to-Many

• One-to-One

• Many-to-Many

First of all, let's deine what a relationship is. It is deined based on how two or more
objects relate to each other. It is identiied by the multiplicity value on both ends of
the relationship. For example, One-to-Many means that on one end of a relationship,
sometimes called the parent, we only have one entity. On the other end of the
relationship, we can have multiple entities, sometimes called children. The Entity
Framework API refers to those ends as principal and dependent, respectively. The
One-to-Many relationship has a slight variation, called One-or-Zero-to-Many, which
means that a child may or may not have a parent. The One-to-One relationship has
variants as well, where either end of a relationship is optional. Let's take a look at
them separately.

The One-to-Many relationship
Let's model an example to get a clear understanding of the One-to-Many relationship.
Let's say that in our sample project, each person from earlier in this chapter can have
multiple phone numbers. Hence, our next object would be a phone. We are going to
create a very simple object with an identiier and a phone number, as follows:

public class Phone

{

 public int PhoneId { get; set; }

 public string PhoneNumber { get; set; }

}

Deining the Database Structure

[36]

We also need to add a property onto the context using the type DbSet of Phone so
that we can have access to phone numbers. You have seen this code many times
already. Each person can have many phone numbers. This just screams collection
of phone numbers on the person object, right? So, we will just add a new property
to the Person class. We will use ICollection of Phone instead of a speciic type of
collection. This will work just ine, and in fact, you can let Entity Framework deine
the collections for you. Here is what the new property deinition looks like:

public virtual ICollection<Phone> Phones { get; set; }

In order to avoid potential null reference exception possibility, we want to create a
new instance of collection when a Person object is created. We will use HashSet of
the T collection type, as shown in the following code:

public Person()

{

 Phones = new HashSet<Phone>();

}

You will notice that we use the virtual keyword (Overridable in VB.NET) when
deining the property. This keyword will enable us to use lazy loading when looking
for phone numbers for a person. What this means is that Entity Framework will
actually dynamically load phone objects into the collection from the database on
demand, at the time you attempt to access the phone's property. This is a new concept
called lazy loading, which we will cover in more detail in subsequent chapters. It is
so called because Entity Framework will initially not issue a query to populate phone
numbers, but instead will load the data when code asks for it. There is an alternate
approach to loading related data called eager loading. With this approach, the phone
numbers would be proactively loaded prior to access to the phone's property. For now,
let's assume that we want to take advantage of the lazy loading functionality, hence
the virtual keyword. Interestingly enough, there is no person identiier contained in
the Phone class. This is something that you must do as a database developer. However,
in the Entity Framework world, you have the lexibility to omit this property. The
reason is that we may not have a legitimate business reason to know person ID when
looking at phones. In our case, we want to know about the phone number only in the
context of a person and never as a standalone object. Let's convince ourselves that this
will actually work, by running the app after adding a new person with some phone
numbers to our app and saving them as a batch. Once we do this, we will take a look
at the structure that is created.

Here is what the same code in VB.NET looks like:

Public Class Phone

 Property PhoneId() As Integer

Chapter 3

[37]

 Property PhoneNumber() As String

End Class

Overridable Property Phones() As ICollection(Of Phone)

Public Sub New

 Phones = new HashSet(Of Phone)

End Sub

Now, let's write a few more lines of code to actually add a person with phone
numbers to our database. We already saw how to add and save a new person;
now we just need to add some phone numbers, as shown in the following code:

using (var context = new Context())

{

 var person = new Person

 {

 LastName = "Doe",

 FirstName = "John",

 IsActive = true

 };

 person.Phones.Add(new Phone { PhoneNumber = "123-446-7890" });

 person.Phones.Add(new Phone { PhoneNumber = "123-446-7891" });

 context.People.Add(person);

 context.SaveChanges();

}

The preceding code is not really speciic to Entity Framework, with the exception of
context method calls. We simply write the basic object-oriented code. We create an
instance of a class and then add a few more instances of another class to a collection.
Entity Framework contains all the magic required to create the appropriate database
structure, as well as convert object operations to database queries. To convince yourself
that this worked, simply open SSMS and look at the data and table structure, as shown
in the following screenshot:

Deining the Database Structure

[38]

Entity Framework uses a naming convention to deine PersonId in the Phone table.
If you do not like this naming convention, you can easily add some code to our
mapping class of the person object to correct the issue. Just add a property called
PersonId to the Phone class, which is what we want to name the column. Then,
we need to conigure the person object and teach it that it has many phones, each
containing a link back to the person in the PersonId property. Here is what this
code looks like in our PersonMap class:

HasMany(p =>p.Phones)

 .WithRequired()

 .HasForeignKey(ph =>ph.PersonId);

This code is quite typical for relationship deinitions. The HasMany method tells
Entity Framework that there is a One-to-Many relationship between the Person and
Phone classes. The WithRequired method speciies that the Person link on Phones
is required. In other words, the phone is not a standalone object and must be linked
to a person. Finally, the HasForeignKey method identiies which property serves as
this link. Consequently, Entity Framework will use PersonId as the column name.
We do not need to populate this new property at all; our code will still work ine,
even with these new changes.

We should also take look at an additional use case for the One-to-Many
coniguration. This use case arises when we have a lookup property on a main entity
that points to another entity. Lookup properties point to a full parent of a child
entity. Such properties are useful when you need access to parent information while
manipulating or examining a child record. For example, let's add a person type to
the person entity in the previous example. Essentially, this example is still One-to-
Many, but the approach is slightly different. In this case, you would typically use a
dropdown control on the main entity edit screen that contains values from a lookup
parent table. The lookup table in our example is very simple; it just contains ID and
name columns. We are also going to make this relationship optional to illustrate how
to add nullable foreign keys. Hence, the new property PersonTypeId in the person
class must be nullable. Since we are going to make all primary keys be identity
columns, we will use the nullable integer type to deine this property. We will also
need to add another property, using actual PersonType in order to conigure the
relationship, as shown in the following code:

public int? PersonTypeId { get; set; }

public virtual PersonTypePersonType { get; set; }

Conversely, we will need to add a collection of people to the PersonType class to
signify that there could be many people for each type, as shown in the following code:

public class PersonType

{

Chapter 3

[39]

 publicintPersonTypeId { get; set; }

 public string TypeName { get; set; }

 publicvirtual ICollection<Person> Persons { get; set; }

}

The same code in VB.NET looks as follows:

Property PersonTypeId() As Integer?

Overridable Property PersonType() As PersonType

Public Class PersonType

 Property PersonTypeId() As Integer

 Property TypeName() As String

 Property Persons() As ICollection(Of Person)

End Class

When it comes to relationships, you can conigure them from either side of the
relationship, principal or dependent. So, let's create a new PersonTypeMap class
that will serve this purpose, as shown in the following code:

public class PersonTypeMap : EntityTypeConfiguration<PersonType>

{

 publicPersonTypeMap()

 {

 HasMany(pt =>pt.Persons)

 .WithOptional(p =>p.PersonType)

 .HasForeignKey(p =>p.PersonTypeId)

 .WillCascadeOnDelete(false);

 }

}

We use the WithOptional method to signify that the foreign key constraint
will be nullable. We also specify the delete rule for the constraint, using the
WillCascadeOnDelete method. Most database engines support multiple actions
for delete rules for foreign key relationship constraints. These rules specify what
happens when a parent is deleted. You can set the foreign key column to null, that is,
do nothing, thus creating an error if child rows exist or delete all related dependents.
Entity Framework allows developers to either delete all child rows or do nothing.
There are database administrators who object to the use of cascade delete rules
because some engines do not provide adequate logging when this happens. Here
is how the code looks in VB.NET:

Public Class PersonTypeMap

 Inherits EntityTypeConfiguration(Of PersonType)

 Public Sub New()

Deining the Database Structure

[40]

 HasMany(Function(pt) pt.Persons) _

 .WithOptional(Function(p) p.PersonType) _

 .HasForeignKey(Function(pt) pt.PersonTypeId) _

 .WillCascadeOnDelete(False)

 End Sub

End Class

We must remember to update DbContext (the Context class) and add a new DbSet
to it, this time of the type PersonType, as well as adding our new PersonType
coniguration class to the conigurations collection on the model builder. As an
alternative to calling WillCascadeOnDelete, you can globally remove the convention
from the model builder and turn off the cascade delete rule for the entire database
model in the OnModelCreating method of the context. Conventions in Entity
Framework allow developers to perform certain coniguration actions globally,
in all entity classes within a context. We will discuss conventions in more detail in
a later chapter. The following speciic convention deals with relationships only:

protected override void OnModelCreating(

DbModelBuilder modelBuilder)

{

 modelBuilder.Conventions

 .Remove<OneToManyCascadeDeleteConvention>();

 modelBuilder.Conventions

 .Remove<ManyToManyCascadeDeleteConvention>();

}

The code in VB.NET is identical, as shown here:

Protected Overrides Sub OnModelCreating(ByValmodelBuilder As
DbModelBuilder)

 modelBuilder.Conventions.Remove(Of
OneToManyCascadeDeleteConvention)()

 modelBuilder.Conventions.Remove(Of
ManyToManyCascadeDeleteConvention)()

End Sub

We actually remove two conventions that control delete behavior—one for One-to-
Many, the other for Many-to-Many relationships.

Entity Framework contains many conventions you can
remove if necessary.

Chapter 3

[41]

The Many-to-Many relationship
The Many-to-Many relationship is used when you have multiple entities on both ends
of the relationship. For example, one person can work for multiple companies, and
each company can employ multiple people. At the database layer, this relationship
will be deined in the so-called junction table, sometimes also called a cross reference
table. This table will contain primary key columns from tables on both ends of the
relationship. There are two use cases for this type of relationship that matter to us.
A junction table can have no additional values or columns, or it can have additional
data. If a junction table has no other data, we technically do not need to have this table
represented in the object model at all. Let's code this situation. We will add a new class
to model the company and add code to the person map to specify the relationship. Just
like in the One-to-Many relationship, we will have a property that is a collection of
related entities. We will add new collections to both Person and Company classes, using
the related entity as the type of the collection. Here is how the Company class looks:

public class Company

{

 public int CompanyId { get; set; }

 public string CompanyName { get; set; }

 publicvirtual ICollection<Person> Persons { get; set; }

}

Now, we just need to add code to the entity type coniguration class that deines the
person table to specify the other end of the relationship. The code will exist in the
PersonMap class, as shown in this example:

HasMany(p =>p.Companies)

 .WithMany(c =>c.Persons)

 .Map(m =>

 {

 m.MapLeftKey("PesonId");

 m.MapRightKey("CompanyId");

 });

Technically speaking, this coniguration is optional if you are okay with Entity
Framework generating names for columns. What we mean is that Entity Framework
will actually create a junction table solely based on classes and properties that deine
both ends of the relationship, because they have collection properties for related
entities. Since we want something different from the default, we specify column names
explicitly in the junction table. The same code in VB.NET looks like the following:

HasMany(Function(p) p.Companies) _

 .WithMany(Function(c) c.Persons) _

Deining the Database Structure

[42]

 .Map(Sub(m)

 m.MapLeftKey("PesonId")

 m.MapRightKey("CompanyId")

 End Sub)

If you look at the database structure, you will ind our junction table, called
PersonCompanies in the database. Feel free to take out this coniguration code
and regenerate the database to see what the default naming convention is.

What if our junction table needs to hold more data? For example, we want to add hire
date for each person, as the date they start working for a company. In this case, we will
actually need to add a class to model the junction table. We can call it PersonCompany,
for example. It will still have the same two primary key properties; company and
person identiiers. It will also have properties for one person and one company and a
property for the hire date. Also, both Person and Company classes will have a collection
of PersonCompanies instead of companies and persons, respectively. Finally, you will
conigure the Many-to-Many relationship, just like in the previous example between
this new class and the Person class, and between the new class and the Company class.
Take a few minutes and model this use case for practice if you would like.

The One-to-One relationship
The One-to-One relationship is not very common, but does occasionally come up.
You may choose to pursue this design if you have a lot of optional data for an entity
that is grouped somehow. For example, a person can be a student with a college
name and enrolment date. These ields will be nullable for anyone who is not a
student. So, we will group these ields into another entity called student, as shown
in the following code:

public class Student

{

 public intPersonId { get; set; }

 public virtual Person Person { get; set; }

 public string CollegeName { get; set; }

 publicDateTimeEnrollmentDate { get; set; }

}

The same code in VB.NET looks as follows:

Public Class Student

 Property PersonId() As Integer

 Overridable Property Person() As Person

 Property CollegeName() As String

 Property EnrollmentDate() As DateTime

End Class

Chapter 3

[43]

You will notice that we continue to use the virtual keyword (Overridable in VB)
in order to enable lazy loading. Our coniguration class looks very familiar to you,
as shown in the following code:

public class StudentMap : EntityTypeConfiguration<Student>

{

 publicStudentMap()

 {

 HasRequired(s =>s.Person)

 .WithOptional(p =>p.Student);

 HasKey(s =>s.PersonId);

 Property(s =>s.CollegeName)

 .HasMaxLength(50).IsRequired();

 }

}

There is one new method we use—HasKey. This speciies the primary key for a
table; in other words, a unique value that will allow us to ind an entity. We did not
have to use it before because we followed a naming convention. Entity Framework
will igure out the key if the property name consists of the class name plus the "Id"
sufix or just "Id". Since we use PersonId as the primary key value now, we need
to provide an additional hint to the runtime, and that is where the HasKey method
comes in. The primary key in the child table will also become the foreign key to the
parent table. Here is how this class looks in VB.NET:

Public Class StudentMap

 Inherits EntityTypeConfiguration(Of Student)

 Public Sub New()

 HasRequired(Function(s) s.Person) _

 .WithOptional(Function(p) p.Student)

 HasKey(Function(s) s.PersonId)

 Me.Property(Function(s) s.CollegeName) _

 .HasMaxLength(50).IsRequired()

 End Sub

End Class

Because this relationship is optional, it is called One-or-Zero-to-One. You may have
another use case where both ends of the relationship are required. This type is called
One-to-One. For example, each person must have a single login, which is mandatory.
The code for this use case will be almost identical, with one exception—you will use
the WithRequiredDepentent or WithRequiredPrincipal method instead of the
WithOptional method.

www.allitebooks.com

http://www.allitebooks.org

Deining the Database Structure

[44]

We can always conigure relationships from either the dependent or
principal side of the relationship. We need to always conigure both
ends of a One-to-One relationship, using the Has and With methods
to ensure that the One-to-One relationship is created.

Self-test questions
Q1. You would like to deine a column to store a number without a fractional value,
but you want to make the value optional. What .NET type should you use for such
property?

1. Decimal
2. Decimal?
3. Int

4. Int?

Q2. If you want to make the irst name column to be non-nullable in the database,
you can rely on default conventions in Entity Framework and avoid all coniguration,
true or false?

Q3. You cannot override conventions that are preloaded with Entity Framework,
such as the one that makes all foreign key constraints be setup to cascade on delete,
true or false?

Q4. Which of the following is not a type of relationship?

1. One-to-Many

2. Many-to-Many

3. One-or-Zero-to-Many

4. Many-to-Default

Q5. The best way to conigure all properties in all classes is to list them one by one in
OnModelCreating method of the context, true or false?

Q6. If you do not conigure any additional information for string properties, what
type will be used in the SQL Server database?

1. NVARCHAR(4000)
2. NVARCHAR(MAX)
3. VARBINARY(MAX)
4. VARCHAR(MAX)

Chapter 3

[45]

Q7. Which is not an appropriate name for the irst end in a relationship deinition?

1. Principal

2. Parent

3. Domain

Q8. If you want to use a "buddy" class to conigure an entity, what class do you need
to inherit from?

1. EntityTypeConfiguration<T> (of T)

2. PrimitivePropertyConfiguration<T> (of T)

3. ComplexTypeConfiguration<T> (of T)

4. EntityConfiguration<T> (of T)

Summary
In this chapter, you learned how we can conigure persistence layer details for entities
and classes that map to database structures, speciically tables. We learned that we can
use attributes, entity type coniguration classes or model builder APIs to perform this
task. We discovered that we can make columns nullable by using appropriate nullable
types in .NET. We looked at mappings between .NET types and SQL Server types
as an example of an RDMBS. We discovered that primitive types, such as numbers
and strings, have corresponding property coniguration classes that expose methods,
allowing us to make those properties required, or conigure the maximum allowable
length. We learned that using the EntityTypeConfiguration class allows us to neatly
organize our coniguration code. We saw that this class exposes the API that affords
developers an opportunity to conigure all the properties in a luent manner.

We also learned that classes can have relationships between each other. We saw there
are three distinct types of relationships: One-to-Many (or One-to-Zero-to-Many),
Many-to-many, and One-to-One (or One-to-Zero-to-One). The type names refer to a
multiplicity value at each end of the relationship, with the principal or parent being
the irst end and dependent or child being the second one. We saw that coniguration
objects, such as entity type coniguration, expose the API that allows us to conigure
the relationship using methods such as HasMany or HasRequired. We discovered
that in the case of the Many-to-Many relationship, you may have additional data in
the junction table or not. If no additional data is required, the entire table only exists
in the database and not in the object model.

In the next chapter, we will start using our structure to query and manipulate the data.

Chapter 4

[47]

Querying, Inserting,

Updating, and Deleting Data
In this chapter, we will learn how to query data in your database using Entity
Framework and LINQ. We will understand the details of query life cycle. We will
see how to use eager and lazy loading. We will also study how to sort and ilter
data. You will learn the use of relationships in our queries. We will add, update,
and delete data in the database using multiple approaches for each operation.

In this chapter, we will cover the following topics:

• How to use a method and the query syntax with LINQ

• How to ilter and sort data in your queries
• Learn the pitfalls and advantages of lazy and eager loading

• Cover multiple approaches for data manipulation

The basics of LINQ
Language INtegrated Query (LINQ) is the language that we use with Entity
Framework to construct and execute queries against a database. A query is a
statement that retrieves data from one or more tables. LINQ has many query
implementations. At the most basic level, .NET includes LINQ in an object's
functionality that allows you to query in-memory collections. LINQ to entities
is typically the name that is used when talking about LINQ in relation to Entity
Framework. This technology uses Entity Framework in conjunction with a
provider for a speciic RDBMS to convert LINQ statements to SQL queries.
Entity Framework takes care of materialization; the process of converting the
results of SQL queries into collections of .NET objects or individual objects.

Querying, Inserting, Updating, and Deleting Data

[48]

When you use LINQ to entities queries, you will ind out that the SQL is executed
against the database when you enumerate the query results. Entity Framework
converts LINQ queries to expression trees and then command trees and then they
are passed to the provider, which inally executes a SQL query against the database
engine it supports. For example, if you step through the following code while
you have SQL Proiler running, you will see that the query will be run against
the database when you step through the second line, but not the irst line of code,
as shown in the following code snippet:

var query = context.People;

var data = query.ToList();

The same code in VB.NET looks as follows:

Dim query = context.People

Dim data = query.ToList()

It may not be obvious from the irst reading of this code, but the ToList function
is the function that causes the enumeration of the query results to occur. The
Entity Framework provider for SQL Server is used in the implementation of the
IQueryable interface in our user case. Hence, when the GetEnumerator function is
called on IQueryable, which is one of the interfaces that DbSet<T> implements, a
SQL query is constructed and run by Entity Framework and the SQL Server provider
for Entity Framework.

LINQ supports two types of query syntax:

• The method syntax

• The query syntax

It is entirely up to you which syntax you want to use, as there is parity between both
syntaxes. As the name implies, the query syntax looks similar to SQL queries from
the language perspective. The method syntax, on the other hand, looks like typical
function calls in C# or VB.NET.

All of the following examples do not include the code that creates and disposes of
DbContext for brevity. The context is stored in the context variable. We are going
to use a database with a structure very similar to the one in Chapter 3, Deining the
Database Structure, for all of the examples in this chapter.

Chapter 4

[49]

Filtering data in queries
Filtering refers to the process of narrowing down the results of your query base on a
condition. Let's take a look at both syntaxes of LINQ using iltering as an example:

var query = from person in context.People

 where person.HeightInFeet >= 6

 select person;

var methodQuery = context.People.Where(p => p.HeightInFeet >= 6);

The purpose behind the query is to retrieve the people who are at least 6 feet tall.
This means that we have a speciic condition that all the data in our results must
match. Both lines of code answer this question. The irst line uses query syntax.
There are distinct parallels to the SQL query syntax. We have the from, where,
and select blocks of code. Their order is different from SQL, but they certainly
serve the same purpose. When it comes to actual iltering, we are using the where
keyword to specify the ilter that is applied to a query variable called person, which
we used in the from block of our query. The actual ilter is using the ordinary C# or
VB.NET syntax to compare two expressions; the property of a person object, and a
constant for the minimum height. The second line of code uses the method syntax.
As the name implies, we see method calls via extension methods on any list that
implements IEnumerable. We do not see the select method call, as it is optional in
queries based on the method syntax. We will see examples of the select method in
the next chapter. We do see the where method call that is applied to the collection,
which is the source of the data. The same source was mentioned in the from block
inside the query syntax solution to this ilter problem. The same method syntax
code in VB.NET looks only slightly differently because of the language differences
between VB and C# for Lambda expressions. The query syntax code is virtually
identical in both languages. The following is the VB.NET syntax:

Dim query = From person In context.People

 Where person.HeightInFeet >= 6

 Select person

Dim methodQuery = context.People.Where(Function(p) p.HeightInFeet
>= 6)

We will continue to see both syntaxes in the following examples to provide a
thorough explanation of the differences between the two. Typically, you would
want to stick to the same syntax in order to have more consistent code, but you
are free to pick the syntax you like better. If you are familiar with SQL and use it
on a regular basis, you may ind the query syntax a bit more intuitive. Ultimately,
it does not matter which one you pick.

Querying, Inserting, Updating, and Deleting Data

[50]

You can also combine multiple ilter expressions in a single query. As you might have
guessed, it is just a matter of ANDing the two ilter criteria. We will demonstrate this
by providing an example that is using a string-based ilter as well as a Boolean ilter,
as shown in the following code snippet:

var query = from person in context.People

 where

 person.HeightInFeet >= 6 &&

 person.FirstName.Contains("J") &&

 person.IsActive

 select person;

var methodQuery = context.People

 .Where(p =>

 p.HeightInFeet >= 6 &&

 p.FirstName.Contains("J") &&

 p.IsActive);

We are using the standard Contains method of the String class to perform iltering
similar to the LIKE query in SQL. This signiies that the standard .NET code is
converted to SQL by Entity Framework and the provider together. Boolean or date
comparisons work exactly the same way. You can use any Boolean expressions for
iltering. The code in VB.NET is very similar with the exception of a few keywords,
as shown in the following code snippet:

Dim query = From person In context.People

 Where

 person.HeightInFeet >= 6 And

 person.FirstName.Contains("J") And

 person.IsActive

 Select person

Dim methodQuery = context.People _

 .Where(Function(p) p.HeightInFeet >= 6 And

 p.FirstName.Contains("J") And

 p.IsActive)

All your standard comparison operators work just ine in LINQ queries, as well as
Entity Framework queries.

Remember that the case sensitivity of string comparison depends on the
database engine and collation. SQL Server is case insensitive by default,
whereas Oracle is case sensitive by default for Latin-based collation.
This applies to the iltering and sorting of data. The ToUpper method of
the String class is your friend for solving case sensitivity.

Chapter 4

[51]

Sorting data in queries
Most of the time, as you retrieve your data from the database, you need to present
it in a certain order. This order can include one or more ields and can be ascending,
going from the smallest to the largest value, or descending, going from the largest
to the smallest. You will ind the sorting query syntax quite familiar, if you are
accustomed to writing SQL queries. The following example will sort the person
data on the last and irst names of a person in ascending order. We are also going to
combine iltering with sorting to illustrate how these two concepts work together
in a single query, as shown in the following code snippet:

var query = from person in context.People

 where person.IsActive

 orderby person.LastName, person.FirstName

 select person;

var methodQuery = context.People

 .Where(p => p.IsActive)

 .OrderBy(p => p.LastName)

 .ThenBy(p => p.FirstName);

The irst query uses the query syntax and the second one uses the method syntax.
If you want to sort by multiple ields, then instead of using the Order By clause for
both ields, you will need to use the ThenBy operator for the method syntax. Here is
how the queries look in VB.NET:

Dim query = From person In context.People

 Where person.IsActive

 Order By person.LastName, person.FirstName

 Select person

Dim methodQuery = context.People _

 .Where(Function(p) p.IsActive) _

 .OrderBy(Function(p) p.LastName) _

 .ThenBy(Function(p) p.FirstName)

When the descending sort order is required, you will need to use
OrderByDescending for the irst ield and ThenByDescending for subsequent ields
in queries with the method syntax. If you are using the query syntax, you will need
to follow the property name with the descending keyword. You are free to combine
the descending and ascending orders in a single query, as shown in the following
code snippet:

var query = from person in context.People

 where person.IsActive

 orderby person.LastName descending, person.FirstName
descending

 select person;

Querying, Inserting, Updating, and Deleting Data

[52]

Exploring LINQ functions
There are many LINQ functions that you will need to know in order to be proicient
with queries in Entity Framework.

Element operations
Element operations allow you to select a single row. Sometimes they are enhanced
to select null if a row that matches the target condition does not exist. Typically,
you would combine element functions with a ilter condition, though this is not
necessary. As element functions work on sets of data, you will need to construct
a query irst and then apply an element function. If you are using the method
syntax, you can combine both actions into a single statement. If you are using the
query syntax, you would need to apply an element function to the entire query.
For example, let's select a single record based on the last name of a person, as
shown in the following code:

var query = from person in context.People

 where person.LastName == "Doe"

 select person;

var first = query.First();

var methodQuery = context.People.Where(p => p.LastName == "Doe");

first = methodQuery.First();

In the preceding example, we used the First() method to ind a irst matching
row in the database. If you look at the type of the first variable, you will see
that it is of the type person. Hence, we fetch an item from a set of persons. Here is
the same example in VB.NET:

Dim query = From person In context.People

 Where person.LastName = "Doe"

 Select person

Dim first = query.First()

Dim methodQuery = context.People _

 .Where(Function(p) p.LastName = "Doe")

first = methodQuery.First()

You can easily combine the last two lines of the example into a single statement, which
is much more common. The First function has an overload that accepts an expression
for the ilter condition or the Where clause as shown in the following code line:

first = context.People.First(p => p.LastName == "Doe");

Chapter 4

[53]

This can also be represented in VB.NET as follows:

first = context.People.First(Function(p) p.LastName = "Doe")

You will notice that the LINQ query syntax is a bit more verbose in the case of
element operations. Hence, most people use the method syntax, as shown in the
last example, for the purposes of inding a single row in the database. This typically
results in a single line of code that you have to write.

When you use the First function and you have multiple rows in the database that
match the condition, only one row will be picked up and returned. If you have no
rows that match the condition, an exception will be thrown. Hence, if you want to
guard against such an exception, you can use the FirstOrDefault function instead
of First. As we deal with entities, which are classes or reference types, their default
is null. So, before you use the results of the FirstOrDefault execution, you need
to test for a null value. Outside of this fact, the FirstOrDefault code is identical
to First.

There are two more operations that are similar to First, called Single and
SingleOrDefault. The only difference from First is that if you have more than
one row that matches your condition, an exception is thrown. Feel free to write an
example now, that is using the Single function. LINQ has other element operators,
such as Last and ElementAt, however, they do not make much sense in terms of
Entity Framework, hence an exception will be thrown if you use them inside LINQ
to entities queries. You can use them inside LINQ to objects queries. If you want
to use the Last function with Entity Framework, simply use First and reverse the
sorting order.

Quantiiers
Occasionally, you need to check whether you have at least one row that matches a
condition, or all rows match a ilter. This is where the Any and All operations come
in. Together, they are referred to as quantiiers. As the name implies, these operators
return a Boolean value. Both are applied to a query, hence the code is quite similar
to the preceding First example. This similarity is shown in the code:

var hasDoes = (from person in context.People

 where person.LastName == "Doe"

 select person).Any();

hasDoes = context.People.Any(p => p.LastName == "Doe");

var allHaveJ = context.People.All(p => p.FirstName.Contains("J"));

www.allitebooks.com

http://www.allitebooks.org

Querying, Inserting, Updating, and Deleting Data

[54]

There are a few things to notice here. First of all, we combined a query with a
quantiier in a single statement to illustrate how you can cut down on the number of
lines of code using the query syntax. Then, we performed the same check—whether
there is at least one person with the last name of Doe in the database using the method
syntax. Finally, we checked to make sure that all people have the letter J in their irst
names. Here is the same code using VB.NET:

Dim hasDoes = (From person In context.People
 Where person.LastName = "Doe"
 Select person).Any()

hasDoes = context.People.Any(Function(p) p.LastName = "Doe")

Dim allHaveJ = context.People.All(Function(p)
p.FirstName.Contains("J"))

You can easily substitute the Any call with a standard query with a Where clause and
check whether the result has any rows. However, you want to use Any for such a
purpose instead, because it will result in a more eficient SQL statement. Typically,
it will use the EXISTS syntax instead of the WHERE SQL syntax, thus short-circuiting
the execution upon inding the irst row.

Working with related entities
At times, we need to write queries that involve more than a single entity type.
We are now going to take a look at how we can work with entities that are involved
in relationships.

Filtering based on related data
Sometimes, we need to ilter based on related data. For example, we want to ind
people who have phone numbers that start with "1". It is worth noting that this
additional task is performed purely based on relationships between a person
and phone entities, using the Phones property on the person class, as shown
in the following code snippet:

var query = from person in context.People
 where person.IsActive &&
 person.Phones.Any(ph =>
ph.PhoneNumber.StartsWith("1"))
 select person;

var methodQuery = context.People
 .Where(p => p.IsActive &&
 p.Phones.Any(ph => ph.PhoneNumber.StartsWith("1")));

Chapter 4

[55]

Again, we use the plain string function, StartsWith in the preceding case,
yet this will translate into LIKE '1%' in the where clause in the SQL Server case.
We also use the familiar Any function to only ind people with at least one phone
number that starts with the number 1. We also (in a way) add the method syntax
to the query syntax, giving us additional lexibility. Here is how this code looks
in VB.NET:

Dim query = From person In context.People

 Where person.IsActive And

 person.Phones.Any(Function(ph)
ph.PhoneNumber.StartsWith("1"))

 Select person

Dim methodQuery = context.People _

 .Where(Function(p) p.IsActive And

 p.Phones.Any(Function(ph)
ph.PhoneNumber.StartsWith("1")))

Lazy and eager loading
We previously talked about the difference between eager and lazy loading. Both
concepts are approaches to loading-related entities. For example, you may use either
approach to load phone numbers for a person. If you are trying to decide which
approach you need to use in a particular situation, the following rule should answer
this question for you. If you are not sure that you are going to need related entries,
you can use lazy loading. If you know you will certainly need related data, then use
eager loading. You will need to be careful when you decide to eagerly load many
relationships. This can result in very complex queries and thus can have performance
implications. You can encounter problems with lazy loading as well. For example,
you want to retrieve 100 rows from the People table and then display phone
numbers for each person. If you use lazy loading, as you start enumerating through
a list of phone numbers, Entity Framework will issue a query to retrieve that data for
each person's phones list. This processing will result in 101 queries issued against the
database. One query will retrieve 100 people, then one more for each person to get
phone numbers. It takes time to perform these actions, so you may be looking at an
extra few hundred milliseconds when using lazy loading in this use case. You need
to carefully decide which approach is right for each of your situations. By default,
lazy loading is enabled in Entity Framework. You can turn it off for an instance of
DbContext by accessing coniguration options on DbContext after context is created,
which is shown as follows:

context.Configuration.LazyLoadingEnabled = false;

Querying, Inserting, Updating, and Deleting Data

[56]

It may be useful to you to know how lazy loading is implemented in Entity
Framework. If you run the following code and break on the line that executes the
foreach loop that looks on phone numbers and examine an instance of the person
object, you will notice something interesting. The type of the person object is not
really Person, but instead something like System.Data.Entity.DynamicProxies.
Person_XXXXXX. Entity Framework dynamically created a class that inherits from
Person in order to intercept property getter calls: in our case, the Phones property.
Then, in the property getter, it dynamically issues a query to populate the Phones
list. However, your code can just assume that the data will be automatically
populated. This is shown in the following code snippet:

var query = from person in context.People

 select person;

foreach (var person in query.ToList())

{

 foreach (var phone in person.Phones)

 {

Now, let's take a look at eager loading. You have to use the Include method in
order to proactively load the related data you need. There is one parameter that
this method takes, and it is the property expression that points to a related entities
property. Let's implement the preceding code, but use eager loading, This is shown
in the following code snippet:

var query = from person in context.People.Include(p => p.Phones)

 select person;

foreach (var person in query)

{

There are two overloads of the include method. The one we used took a property
expression. You can also use a string to describe the path of the relationship. This is
shown in the following code snippet:

var query = from person in context.People.Include("Phones")

 select person;

Ordinarily, you want to use the property expression method because you can take
advantage of compile-time checking. The only time you need to use string-based
overload is when your path cannot be described via a property expression. For
example, if you want to load multiple levels of relationships. If Phones were to have
types, your Include method may look like Include("Phones.PhoneType").

Chapter 4

[57]

Here is how the code that uses eager loading looks in VB.NET:

Dim query = From person In context.People.Include(Function(p)
p.Phones)

 Select person

For Each person As Person In query

 Console.WriteLine(person.LastName)

 For Each phone As Phone In person.Phones

You noticed that we used the ToList call before running through the query
when lazy loading is used. This is typically not necessary and really not even
recommended. However, in the case of lazy loading, you have to follow this pattern.
The problem is that when a lazy loaded property is populated by Entity Framework,
a new data reader is created. However, we already have an open data reader that
is reading in our primary, top-level query, which is the person query in our case.
ADO.NET has a limitation, where only one open reader is allowed per database
connection. As a result, if you remove the function ToList from the code that is
using lazy loading, you will encounter an exception. A call to functions such as
ToList or ToArray cause what is referred to as an immediate execution of the query
to occur. This is in contrast to simply enumerating the results of a query, as in the
eager loading example, when we use deferred query execution. SQL is executed
when query results are enumerated in both cases, but with a slight difference.

You should consider the performance implications
of using eager loading versus lazy loading any time
you are retrieving related data.

Inserting data into the database
There are many ways to insert new data into your database. You can add new objects
to the collection, as we did in previous chapters. You can also set the state to Added
on each entity. If you are adding entities that contain child entities, the Added state is
propagated to all the objects in the graph. In other words, Entity Framework assumes
that you are attaching a new object graph if the root entity is new. The object graph
term typically refers to a number of related entities that form a complex tree structure.
For example, if we have a person object with a number of phone numbers contained
in a list property on the Person class, we are dealing with an object graph, where the
person entity is a root object. Phone entities are, in essence, children of that person
object. Since we have seen a simple functionality, let's work through this complex
addition scenario.

Querying, Inserting, Updating, and Deleting Data

[58]

First, we will create a new person instance with phone numbers. Then, we will add
this person instance to the context. Finally, we will call SaveChanges to commit the
rows to the database as shown in the following code snippet:

var person = new Person

{

 BirthDate = new DateTime(1980, 1, 2),

 FirstName = "John",

 HeightInFeet = 6.1M,

 IsActive = true,

 LastName = "Doe",

 MiddleName = "M"

};

person.Phones.Add(new Phone { PhoneNumber = "1-222-333-4444" });

person.Phones.Add(new Phone { PhoneNumber = "1-333-4444-5555" });

using (var context = new Context())

{

 context.People.Add(person);

 context.SaveChanges();

}

There are a few differences from the code we saw previously. We create our objects
before we initialize the context. This stresses the point that Entity Framework
tracks whether entities in the context at the time are attached or added. You can, for
example, have your person entity from the preceding example be a parameter to a
method inside the Web API controller. Then, inside that function, you will just add
the entity with the children to the context and save it, as shown. Here is how this
code looks in VB.NET:

Dim person = New Person() With {

 .BirthDate = New DateTime(1980, 1, 2),

 .FirstName = "John",

 .HeightInFeet = 6.1D,

 .IsActive = True,

 .LastName = "Doe",

 .MiddleName = "M"

}

person.Phones.Add(New Phone() With {.PhoneNumber = "1-222-333-
4444"})

person.Phones.Add(New Phone() With {.PhoneNumber = "1-333-4444-
5555"})

Using context = New Context()

Chapter 4

[59]

 context.People.Add(person)

 context.SaveChanges()

End Using

You can also add multiple entities at the same time, since DbSet has the AddRange
method that will allow you to pass in a number of entities.

This is not the only way to insert new data, though it is simple, straightforward,
and easy to read and understand. Another way is to directly set the entity state
using the DbContext API, as shown in the following code snippet:

using (var context = new Context())

{

 context.Entry(person2).State = EntityState.Added;

 context.SaveChanges();

}

We did not include all the code, just the differences from the approach that is using
the Add method on DbSet. Here is how the code looks in VB.NET:

Using context = New Context()

 context.Entry(person2).State = EntityState.Added

 context.SaveChanges()

End Using

The Entry method on DbContext returns an instance of the DbEntityEntry
class. This class has a number of useful properties and methods that are needed
for more advanced implementations and scenarios with Entity Framework. For
example, you might use OriginalValues and DatabaseValues in order to handle
conlict resolution during optimistic concurrency handling. There is also the
GetValidationResult method that you can use to ensure that the data is valid from
the perspective of the rules we speciied in our EntityTypeConfiguration classes
for our entities. For example, if you have a required string property, you cannot
leave it as null, and this method will provide you with an error. You can also use
DbEntityEntry to inquire what the state of the object is instead of setting a new
state. If you want to, try to get the state right after calling the Add method in the irst
insert example and ensure that the state for the new person is indeed Added. These
are the states supported by the EntityState enumeration:

State Description

Added A new entity is added. This state will result in an insert operation.

Deleted An entity is marked for deletion. When this state is set, the entity will
be removed from DbSet. This state will result in a delete operation.

Detached The entity is not tracked by DbContext.

Querying, Inserting, Updating, and Deleting Data

[60]

State Description

Modified One or more properties of the entity have been changed since
DbContext started tracking the entity. This state will result
in an update operation.

Unchanged No properties of the entity have been changed since DbContext
started tracking the entity.

Updating data in the database
What does it mean to update data in the database? We want to replace one or more
column values in a table's row with new values. Entity Framework will issue an
update query when it knows that an entity has changed since it was irst attached
to DbContext, either by viewing a LINQ query that was enumerated, or via a
call to Attach method of DbSet. The simplest way to ind an entity you want to
update is to use a query. Then, change one or more properties to new values and
call SaveChanges. From the moment we query the data, Entity Framework will
start tracking changes to each property. When SaveChanges is inally called, only
changed properties will be included in the update SQL operation. When you want
to ind an entity to update in the database, you typically look for it based on the
primary key value. We already saw how to use the Where method to achieve this.
Entity Framework also has the Find method exposed on DbSet. This method takes
one or more values as parameters that correspond to the primary key of the table
mapped to that DbSet. We use the column that has a unique ID as the primary key in
our example, hence we only need a single value. If you use composite primary keys,
consisting of more than one column, which is typical for junction tables, you will
need to pass the values for each column that the primary key is comprised of in the
exact order of the primary key columns. If you are following along with this exercise,
open SSMS or the SQL Server Object Explorer window inside Visual Studio and
ind the ID of a person in the People table to practice on. In the following code, the
value passed to the Find function is 1:

using (var context = new Context())

{

 var person = context.People.Find(1);

 person.FirstName = "New Name";

 context.SaveChanges();

}

The same code in VB.NET looks as follows:

Using context = New Context()

 Dim person = context.People.Find(1)

Chapter 4

[61]

 person.FirstName = "New Name"

 context.SaveChanges()

End Using

If you trap the SQL query sent to the SQL Server when SaveChanges is called, it will
look as follows:

UPDATE [dbo].[People]

SET [FirstName] = @0

WHERE ([PersonId] = @1)

This proves that indeed only the changes that are made explicitly are sent back to
the database. For example, the last name was not updated, since it was not changed.
If you look in SQL Proiler for the entire code block, you will see that the Find
method also resulted in a query that is shown in the following code snippet:

SELECT TOP (2)
 [Extent1].[PersonId] AS [PersonId],
 [Extent1].[PersonTypeId] AS [PersonTypeId],
 [Extent1].[FirstName] AS [FirstName],
 [Extent1].[LastName] AS [LastName],
 [Extent1].[MiddleName] AS [MiddleName],
 [Extent1].[BirthDate] AS [BirthDate],
 [Extent1].[HeightInFeet] AS [HeightInFeet],
 [Extent1].[IsActive] AS [IsActive]
 FROM [dbo].[People] AS [Extent1]
 WHERE [Extent1].[PersonId] = @p0

Find was translated into the SingleOrDefault method call. That is why we selected
the Top (2) rows. We want to make sure that there is only one entity that matches
the primary key.

If you are writing a desktop Windows application, you may choose to use the
approach of keeping the context around after a query is ired to issue updates.
The entity must remain connected to the context from a query to the SaveChanges
call timeline. You can ind an entity, let the user make changes, and inally call
SaveChanges. If you want to model this approach in our code, user interactions
correspond to the person.FirstName = "New Name" line of code. If you are
working on a web application, this approach does not work. You cannot keep the
original context around or between two web server calls. You do not really need to
take the overhead of inding an entity twice, once to show to the user and the second
time to update. Instead, let's use the second approach from the insert examples and
set the state, as shown in the following code snippet:

var person2 = new Person

{

Querying, Inserting, Updating, and Deleting Data

[62]

 PersonId = 1,

 BirthDate = new DateTime(1980, 1, 2),

 FirstName = "Jonathan",

 HeightInFeet = 6.1m,

 IsActive = true,

 LastName = "Smith",

 MiddleName = "M"

};

person2.Phones.Add(new Phone

{

 PhoneNumber = "updated 1",

 PhoneId = 1,

 PersonId = 1

});

person2.Phones.Add(new Phone

{

 PhoneNumber = "updated 2",

 PhoneId = 2,

 PersonId = 1

});

using (var context = new Context())

{

 context.Entry(person2).State = EntityState.Modified;

 context.SaveChanges();

}

You can imagine that the data we created initially, prior to instantiating the context,
was submitted via a web call to our Web API controller. Then, once inside the
controller, we create the context, set the state, and save changes. If you look at the
results of this code inside the database, you might be surprised to ind out that the
person data was updated, but the phone data was not. This occurred because of a
fundamental difference between the insert and update implementation inside Entity
Framework. When you set the state to modiied, Entity Framework does not propagate
this change to the entire object graph. So, to make this code work properly, we need to
add a little bit more code, as shown in the following code snippet:

using (var context = new Context())

{

 context.Entry(person2).State = EntityState.Modified;

 foreach (var phone in person2.Phones)

 {

 context.Entry(phone).State = EntityState.Modified;

 }

 context.SaveChanges();

}

Chapter 4

[63]

All we had to do manually was set the state of each changed entity. Of course, if you
have a new phone number in the collection, you can set its state to Added instead of
Modified. There is one more important concept contained within the code. Whenever
we use the state change approach, we must know all the columns' data, including the
primary key for each entity. This is because Entity Framework assumes that when the
state is changed, all the properties need to be updated. Here is how the code looks in
VB.NET:

Dim person2 = New Person() With {

 .PersonId = 1,

 .BirthDate = New DateTime(1980, 1, 2),

 .FirstName = "Jonathan",

 .HeightInFeet = 6.1D,

 .IsActive = True,

 .LastName = "Smith",

 .MiddleName = "M"

}

person2.Phones.Add(New Phone() With {.PhoneNumber = "updated 1",
.PhoneId = 1, .PersonId = 1})

person2.Phones.Add(New Phone() With {.PhoneNumber = "updated 2",
.PhoneId = 2, .PersonId = 1})

Using context = New Context()

 context.Entry(person2).State = EntityState.Modified

 For Each phone In person2.Phones

 context.Entry(phone).State = EntityState.Modified

 Next

 context.SaveChanges()

End Using

If you capture SQL queries sent when this code is run, you will see three update
queries—one for the person and one more for each of the two phone numbers.

It is also worth repeating that Entity Framework tracks the state of the entities
once they are attached to the context. So, if you query the data, the context starts
tracking your entities. If you are writing a web application, this tracking becomes an
unnecessary overhead for query operations. The reason it is unnecessary is because
you will dispose of the content, destroying the tracking as soon as the web request
to get the data completes. Entity Framework has a way to reduce this overhead.
For example:

using (var context = new Context())

{

 var query = context.People.Include(p =>
p.Phones).AsNoTracking();

Querying, Inserting, Updating, and Deleting Data

[64]

 foreach (var person in query)

 {

 foreach (var phone in person.Phones)

 {

 }

 }

}

If you put a breakpoint inside the loop and check the entity state, using context.
Entry(person).State and context.Entry(phone).State expressions, you will
see that the state is Detached for both entities. This means that this entity is not tracked
by the context, thus reducing your overhead by using the AsNoTracking method.

The same code in VB.NET looks as follows:

Using context = New Context()

 Dim query = From person In context.People.Include(Function(p)
p.Phones).AsNoTracking()

 Select person

 For Each person As Person In query

 For Each phone As Phone In person.Phones

 Next

 Next

End Using

We also combined turning off change tracking with eager loading. What if even in
web environments you only want to update just the properties that are changed by
a user? One big assumption is that you will have to track what is changed in your
web application on the client. Assuming that this is accomplished, you can use yet
another approach to accomplish the update operation. You can use the Attach
method on DbSet. This method essentially sets the state to Unchanged and context
starts tracking the entity in question. After you attach an entity, you can just set one
of the changed properties at a time. You must know in advance which properties
have changed. For example:

var person3 = new Person

{

 PersonId = 1,

 BirthDate = new DateTime(1980, 1, 2),

 FirstName = "Jonathan",

 HeightInFeet = 6.1m,

 IsActive = true,

 LastName = "Smith",

 MiddleName = "M"

};

Chapter 4

[65]

using (var context = new Context())

{

 context.People.Attach(person3);

 person3.LastName = "Updated";

 context.SaveChanges();

}

This code will result in a query that only updates the LastName column and nothing
else. The same code in VB.NET looks as follows:

Dim person3 = New Person() With {

 .PersonId = 1,

 .BirthDate = New DateTime(1980, 1, 2),

 .FirstName = "Jonathan",

 .HeightInFeet = 6.1D,

 .IsActive = True,

 .LastName = "Smith",

 .MiddleName = "M"

}

Using context = New Context()

 context.People.Attach(person3)

 person3.LastName = "Updated"

 context.SaveChanges()

End Using

Alternatively, instead of calling the Attach method, you can simply set the state by
calling context.Entry(person3).State = EntityState.Unchanged. Just replace
one line of code that calls Attach with this line and you are done.

Deleting data from the database
Interestingly enough, there is a lot of similarity in the approaches we used
for updates and deletions. We can use a query to ind data and then mark it for
deletion by using the Remove method of DbSet. This approach actually has the
same drawbacks as it does with the update, resulting in a select query in addition
to the delete query. Nonetheless, let's take a look at how it is done:

using (var context = new Context())

{

 var toDelete = context.People.Find(personId);

 toDelete.Phones.ToList().ForEach(phone =>
context.Phones.Remove(phone));

 context.People.Remove(toDelete);

 context.SaveChanges();

}

Querying, Inserting, Updating, and Deleting Data

[66]

This code deletes each child entity, phone in our case, and then deletes the root
entity. You would have to know the primary key value for the entity you want
to delete. The preceding code assumes that you have this value in the personId
variable. In the case of a web application, this value will be submitted to the
method that handles deletion. Alternatively, we could use the RemoveRange
method to remove multiple entities in a single statement. Here is how the code
looks in VB.NET:

Using context = New Context()

 Dim toDelete = context.People.Find(personId)

 toDelete.Phones.ToList().ForEach(Function(phone)
context.Phones.Remove(phone))

 context.People.Remove(toDelete)

 context.SaveChanges()

End Using

There is one important difference between this code and the insert code. We have to
manually delete each child record, by removing it from a corresponding collection.
Code that is provided relies on lazy loading to work to populate the list of phones
for a person. You can also rely on a cascade of delete operation instead, though some
DBAs will frown at this practice.

Now, let's delete entities by setting a state on each entity. Again, we need to account
for dependent entities. For example:

var toDeleteByState = new Person { PersonId = personId };

toDeleteByState.Phones.Add(new Phone

{

 PhoneId = phoneId1,

 PersonId = personId

});

toDeleteByState.Phones.Add(new Phone

{

 PhoneId = phoneId2,

 PersonId = personId

});

using (var context = new Context())

{

 context.People.Attach(toDeleteByState);

 foreach (var phone in toDeleteByState.Phones.ToList())

 {

 context.Entry(phone).State = EntityState.Deleted;

 }

Chapter 4

[67]

 context.Entry(toDeleteByState).State = EntityState.Deleted;

 context.SaveChanges();

}

You undoubtedly noticed something very different from any other data manipulation.
In order to delete a person, we only need to set the primary key property and nothing
else. For phones, we just needed to set the primary key property and parent identiier
property. In the case of web applications, you need to submit all the identiiers, or you
will need to resort to requerying child data to ind the identiiers. Here is how this code
looks in VB.NET:

Dim toDeleteByState = New Person With { .PersonId = personId }

toDeleteByState.Phones.Add(New Phone With {.PhoneId = phoneId1,
.PersonId = personId })

toDeleteByState.Phones.Add(New Phone With {.PhoneId = phoneId2,
.PersonId = personId })

Using context = New Context()

 context.People.Attach(toDeleteByState)

 For Each phone In toDeleteByState.Phones.ToList()

 context.Entry(phone).State = EntityState.Deleted

 Next

 context.Entry(toDeleteByState).State = EntityState.Deleted

 context.SaveChanges()

End Using

You can submit full entities for deletion as well. If you are sticking to strict guidelines
for deletion for REST web services, those deine that only an identiier should be
submitted with a web request. So, you will need to decide for yourself which of the
two approaches works better for your speciic circumstances.

Working with in-memory data
Sometimes, you need the ability to ind an entity in an existing context instead of
the database. Entity Framework, by default, will always execute queries against
the database when you create new context. What if your update involves calling
many methods and you want to ind what data was added by one of the previous
methods? You can force a query to execute only against in-memory data attached
to the context using the Local property of DbSet. For instance:

var localQuery = context.People.Local.Where(p =>
p.LastName.Contains("o")).ToList();

Querying, Inserting, Updating, and Deleting Data

[68]

The same code in VB.NET looks as follows:

Dim localQuery = context.People.Local.Where(Function(p)
p.LastName.Contains("o")).ToList()

What we also know is that the Find method searches local context irst, prior
to constructing the database query. You can easily conirm this by forcing another
query to load the data you are looking for and then running a Find against one of
the found entities. For instance:

var query = context.People.ToList();

var findQuery = context.People.Find(1);

If you run SQL Proiler along with this code, you will see that one query is executed
against the database, which conirms that Find runs on in-memory data irst. The
same code in VB.NET looks as follows:

Dim query = context.People.ToList()

Dim findQuery = context.People.Find(1)

In-memory data also provides access to all the entities with their respective states
via the DbChangeTracker object. It allows you to look at the entities and their
DbEntityEntry objects as well. For example:

foreach (var dbEntityEntry in
context.ChangeTracker.Entries<Person>())

{

 Console.WriteLine(dbEntityEntry.State);

 Console.WriteLine(dbEntityEntry.Entity.LastName);

}

In the preceding code, we get all the person entries that DbContext is tracking as
entity entry objects. We can then look at the state of each object as well as an actual
Person object that the entity entry belongs to.

Here is the same code in VB.NET:

For Each dbEntityEntry In context.ChangeTracker.Entries(Of Person)

 Console.WriteLine(dbEntityEntry.State)

 Console.WriteLine(dbEntityEntry.Entity.LastName)

Next

This API provides developers with rich capabilities to examine in-memory data at
any time.

Chapter 4

[69]

Self-test questions
Q1. Which of the following is NOT a syntax supported by LINQ?

1. Method.

2. SQL.

3. Query.

Q2. If you retrieve an entity via LINQ from a database, make changes to it and call
SaveChanges, all properties are updated in the database, not only the changed ones,
true or false?

Q3. In order to sort the data by multiple properties, you simply need to call OrderBy
multiple times in LINQ that is using the method syntax, true or false?

Q4. How to add two ilter conditions to a LINQ query with the query syntax?

1. Use multiple Where calls.
2. Use logical AND operator.
3. Issue two queries.

Q5. You want to add multiple new entities to DbSet. How can you accomplish this?

1. By calling the Add method and passing an instance of the class speciied in
the context property.

2. By calling AddRange and pass an enumerable of the target entity type.

3. By setting the state to Added using the context API on each new entity.

4. All of the above.

Q6. If you want to create a new entity with some child entities, also known as object
graph, you must call Add on the parent and each child in order to persist the object
graph, true or false?

Q7. If you set a state of an entity to modiied, all columns in the corresponding table
are updated when SaveChanges is called, true or false?

Q8. You need to call Add and then Remove on an entity in order to trigger a delete
query to be issued when SaveChanges is called, true or false?

Querying, Inserting, Updating, and Deleting Data

[70]

Q9. Which entity state does not result in a query against the database when
SaveChanges is called?

1. Added.

2. Detached.
3. Deleted.
4. Modiied.

Q10. Which property of DbSet gives you access to entities already loaded into the
context from a database?

1. Memory.

2. Local.

3. Loaded.

Summary
In this chapter, you learned how to issue basic queries to retrieve entities from a
database. LINQ was the driving force behind getting the data from the database
through Entity Framework. There are two basic approaches to using LINQ: the
method and query syntaxes. The query syntax is quite similar to SQL, whereas the
method syntax may be more suitable for developers with more experience in C#
or VB.NET than SQL. We saw how to use both approaches to ilter data. We saw
that the where clause can be used to combine multiple conditions using logical
operators. The ordering of data can be done as well, using either the OrderBy and
OrderByDescending methods or ascending or descending keywords. In order to
support multiple orders by conditions, we can use the ThenBy method. What we
retrieved from the database were entities that were mapped to tables. We often do
not need to think about this; simply assume that the Entity Framework persistence
engine is taking care of these nitty-gritty details for us.

Lazy and eager loading are two basic concepts that are available to developers in
order to access related entities from a single root entity. Using the Include method
allows us to proactively load related data using a single call to the database.
Foregoing this approach would result in many calls to the database, however, this
is still a good thing in some cases, especially if you are not sure what related data
you need. The bottom line is that it is important to recognize the drawbacks and
beneits of eager versus lazy loading in order to write eficient and scalable code.

Chapter 4

[71]

Once entities are retrieved via a query, Entity Framework starts tracking all the
changes made to them. As a result, update queries only contain changed data and
not all the properties from an entity. There are a few ways to update the data in the
database. We could keep entities attached to the context, make changes, and call
SaveChanges to persist the data. Alternatively, we can just set a state on an entity not
attached to the context to modiied and then save the changes. We saw that persisting
an updated object graph requires us to set state on each entity in the graph. We did
not have to do this in the case of new data. Marking the root object to be in a new state
automatically puts all child entities in a new state as well, thus limiting the amount
of work we have to do to insert new related entities. As an alternative to setting the
state to new, we could simply add an entity to DbSet. Deleting the data was not much
different. We could set the state to deleted, or attach an entity to context, then remove
it from DbSet. Calling SaveChanges after that resulted in the delete query to be issued
against the database. We will see many more advanced scenarios for querying data
from a database in the next chapter. We will also look at several additional database
modeling techniques.

Chapter 5

[73]

Advanced Modeling and

Querying Techniques
In this chapter, you will learn how to use advanced modeling techniques to create the
database structure. We will learn how to use complex types to create data structures
that are reusable in multiple entity types. We will learn how to use enumerations to
create a range of distinct values for a column or property. We will understand how to
split an entity across multiple tables. We will learn how to support existing databases,
while using names for classes and properties that do not match tables and columns
in our database. We will also look at additional querying techniques, including
aggregation, paging, grouping, and projections.

In this chapter, we will cover how to:

• Create complex types, reusable in many entities

• Deine an enumeration and use it in a query
• Create an entity that is stored in multiple tables

• Use explicit column and table names in entity to table mappings

• Create queries that use projections with anonymous and explicit types

• Summarize data, using aggregate functions

• Create windowed queries

• Use explicit joins in queries

• Use set operations

Advanced Modeling and Querying Techniques

[74]

Advanced modeling techniques
So far, we have covered many straightforward scenarios that one can easily model
with Entity Framework to create database structures. All of them are mapped to one
table with scalar values to a class with a matching set of properties. There are use
cases when this approach does not work quite as well, and we will walk through a
functionality in Entity Framework that supports more complex modeling techniques.

Complex types
Complex types are classes that map to a subset of columns in a table in the database.
They are similar to entity classes, except that they do not contain key ields and do not
directly map to an entire table. Complex types are helpful when we have the same
set of properties that are common to multiple entities. Another use case is when we
want to group some properties, in order to provide a clear semantic meaning to such
a group of properties. By introducing a complex type into our modeling worklow, we
provide more consistency for database structures across multiple tables. This occurs
because we deine the common attributes for such tables in a single place, which will
be our complex type. The prototypical example is address ields. Given the examples
we have seen in prior chapters, let's add addresses to both person and company
classes. Here is how the address class, referred to as complex type, looks:

public class Address

{

 public string Street { get; set; }

 public string City { get; set; }

 public string State { get; set; }

 public string Zip { get; set; }

}

We are looking at a simple class here with a set of properties that deine an address.
Here is the same code in VB.NET:

Public Class Address

 Public Property Street() As String

 Public Property City() As String

 Public Property State() As String

 Public Property Zip() As String

End Class

Chapter 5

[75]

The second step is to make this class part of a larger picture by introducing the
Address type property in both the Company and Person classes. Here is, for example,
how the Company class looks after this change:

public class Company

{

 public Company()

 {

 Persons = new HashSet<Person>();

 Address = new Address();

 }

 public int CompanyId { get; set; }

 public string CompanyName { get; set; }

 public Address Address { get; set; }

 public ICollection<Person> Persons { get; set; }

}

There is an important step we need to take now. We need to initialize an instance
of the Address class in the Company class's constructor. Without this simple step,
we can easily encounter a null reference exception any time we create a new instance
of Company and try to set a street on the address. When data is retrieved from the
database via a query, Entity Framework automatically initializes the instance of the
Address class during the materialization process. An additional initialization that
we just added manually exists to cover the creation of new entity scenarios. Here is
how the code looks in VB.NET:

Public Class Company

 Public Sub New()

 Persons = New HashSet(Of Person)

 Address = new Address()

 End Sub

 Property CompanyId() As Integer

 Property CompanyName() As String

 Property Address() As Address

 Overridable Property Persons() As ICollection(Of Person)

End Class

The next step is to provide the coniguration for our complex type. We can do so
in a way that is virtually identical to entity classes, by providing a coniguration
class for the complex type. The only difference is that we use a different base class,
ComplexTypeConfiguration, not EntityTypeConfiguration. The code inside this
coniguration class is identical to the code in entity coniguration classes, using the
exact same property coniguration methods.

Advanced Modeling and Querying Techniques

[76]

For example, consider this code snippet:

public class AddressMap : ComplexTypeConfiguration<Address>

{

 public AddressMap()

 {

 Property(p => p.Street)

 .HasMaxLength(40)

 .IsRequired();

 }

}

The preceding example only shows one property being conigured, but in the code
provided with this book, all properties are conigured in the same fashion as the
Street property. Finally, we must remember to add an instance of AddressMap to the
collection of conigurations of the context. For example, consider this code snippet:

protected override void OnModelCreating(DbModelBuilder
modelBuilder)

{

 modelBuilder.Configurations.Add(new CompanyMap());

 modelBuilder.Configurations.Add(new AddressMap());

}

Here is how the same code looks in VB.NET:

Public Class AddressMap

 Inherits ComplexTypeConfiguration(Of Address)

 Public Sub New()

 Me.Property(Function(p)
p.Street).HasMaxLength(40).IsRequired()

 End Sub

End Class

Protected Overrides Sub OnModelCreating(ByVal modelBuilder As
DbModelBuilder)

 modelBuilder.Configurations.Add(New CompanyMap)

 modelBuilder.Configurations.Add(New AddressMap)

End Sub

If we were to run this code and look at the created database structure, we would see
that the Address columns names in the Company table are preixed with the complex
type's name. So, a column to store the name of the street is called Address_Street.
This is typically not something that we want, which leads us to the next discussion
about supporting explicit column and table names.

Chapter 5

[77]

Using an explicit table and column mappings
There are many use cases that require us to explicitly specify a column or a table
name. We just saw one, but there are more. For example, we can add Entity
Framework on top of an existing database that uses a naming convention developers
of data access layer do not like. Explicit names solve this problem.

In order to specify a column name that is different from a matching property
name, we can use the HasColumnName method available for primitive property
conigurations, as shown in the following code snippet:

public class AddressMap : ComplexTypeConfiguration<Address>

{

 public AddressMap()

 {

 Property(p => p.Street)

 .HasMaxLength(40)

 .IsRequired()

 .HasColumnName("Street");

One can conigure properties on entity types in the exact same way we just
conigured our complex type. We can see more examples in the code that
accompanies this book. Here is how this looks in VB.NET:

Public Class AddressMap

 Inherits ComplexTypeConfiguration(Of Address)

 Public Sub New()

 Me.Property(Function(p) p.Street) _

 .HasMaxLength(40) _

 .IsRequired() _

 .HasColumnName("Street")

In order to specify the table name for an entity, we have to use the ToTable method
of the EntityTypeConfiguration class. For example, here is how we can specify the
table name for a person type entity:

public class PersonTypeMap : EntityTypeConfiguration<PersonType>

{

 public PersonTypeMap()

 {

 ToTable("TypeOfPerson");

Advanced Modeling and Querying Techniques

[78]

This example is a bit contrived, as we could have just as easily changed the class
name. Here is how we can specify a name for a table in VB.NET:

Public Class PersonTypeMap

 Inherits EntityTypeConfiguration(Of PersonType)

 Public Sub New()

 ToTable("TypeOfPerson")

Adding supporting columns
In addition to changing column names, sometimes we want to add a property to
an entity that we do not want to store in the database. In other words, we want
to add some business logic into an entity to help us work with it outside of Entity
Framework. I am by no means advocating embedding business logic inside our
entity classes, but merely providing an alternative to computed columns in SQL
Server. For example, let's add the FullName property to our Person class and
return a concatenation of LastName and FirstName:

public string FullName

{

 get

 {

 return string.Format("{0} {1}", FirstName, LastName);

 }

 set

 {

 var names = value.Split(new string[] { " " },
StringSplitOptions.RemoveEmptyEntries);

 FirstName = names[0];

 LastName = names[1];

 }

}

Here is how the same property looks in VB.NET:

Public Property FullName() As String

 Get

 Return String.Format("{0} {1}", FirstName, LastName)

 End Get

 Set(value As String)

 Dim names = value.Split(New String() {" "},
StringSplitOptions.RemoveEmptyEntries)

 FirstName = names(0)

 LastName = names(1)

 End Set

End Property

Chapter 5

[79]

If we run this code, we will see that a new column called FullName was added
to the People table. This is not what we want; there is no reason for us to persist
the full name. To ix the problem, we just need to use the Ignore method of the
EntityTypeConfiguration class. This is shown in the following example:

public class PersonMap : EntityTypeConfiguration<Person>

{

 public PersonMap()

 {

 Ignore(p => p.FullName);

This approach of ignoring certain properties in a persistence layer could prove useful
when developers are dealing with legacy databases. One thing we must remember
is that we cannot query based on ignored properties, since they do not exist in the
backend. Here is how this code looks in VB.NET:

Public Class PersonMap

 Inherits EntityTypeConfiguration(Of Person)

 Public Sub New()

 Ignore(Function(p) p.FullName)

Enumerations
We are all familiar with the use of enumerations. They make our code much more
readable, since we can use descriptive names instead of magic numbers. For example,
let's say that each type Person can be in one of three states: Active, Inactive, or
Unknown. This is a prototypical scenario that calls for the use of enumerations. Entity
Framework now has full support for enumerations. First of all, we need to deine
enumeration itself. For example, consider this code snippet:

public enum PersonState

{

 Active,

 Inactive,

 Unknown

}

This can also be shown in VB.NET, like the following code:

Public Enum PersonState

 Active

 Inactive

 Unknown

End Enum

Advanced Modeling and Querying Techniques

[80]

The next step is to simply add a property of the type PersonState to the Person
class. For instance, consider this code fragment:

public class Person

{

 public PersonState PersonState { get; set; }

Here is how this new property is deined in VB.NET:

Public Class Person

 Property PersonState() As PersonState

Technically, there is nothing else we need to do. We can just run this code to create
our database structure. Once this is done, queries like the following one would work:

var people = context.People

 .Where(p=>p.PersonState == PersonState.Inactive);

Here is the same query in VB.NET:

Dim people = context.People _

 .Where(Function(p) p.PersonState =
PersonState.Inactive)

Writing readable, easy to understand code is very important, and native support for
enumerations in Entity Framework is very useful for such situations.

Using multiple tables for a single entity
The ability to split an entity across multiple tables plays an important role in
scenarios where we have to store Binary Large OBjects (BLOBs) in the database,
which is a commonly occurring situation. Some database administrators like to see
BLOBs in a separate table, especially if they are not frequently accessed, in order
to optimize a database's physical storage. As we recall, we represent BLOBs (the
varbinary(MAX) column type in the SQL Server case) as byte arrays in .NET. Entity
Framework aims to abstract a developer from storage details, so ideally we do not
want our entities to relect storage speciic details. This is where the entity splitting
feature comes in, which allows us to store one entity in multiple tables, with a subset
of properties persisted in each table. Let's say that we want to store a person's photo,
which can be a large object, in a separate table. We can use the Map method of the
EntityTypeConfiguration class in order to conigure such properties. We will
demonstrate how to conigure multiple properties, because the syntax is slightly
different for two or more properties versus just a single property.

Chapter 5

[81]

First of all, here is how our Person class looks with new properties:

public class Person

{

 public byte[] Photo { get; set; }

 public byte[] FamilyPicture { get; set; }

The same code in VB.NET looks as follows:

Public Class Person

 Property Photo() As Byte()

 Property FamilyPicture() As Byte()

In order to split an entity, Person in our case, we need to specify the table for
each subset of columns, using explicit table names, similarly to what we did
previously in this chapter. We will use anonymous types in order to provide
property groupings. This code belongs in the coniguration class for the Person
class; EntityTypeConfiguration of type Person in our case. For example,
consider this code snippet:

public class PersonMap : EntityTypeConfiguration<Person>

{

 public PersonMap()

 {

 Map(p =>

 {

 p.Properties(ph =>

 new

 {

 ph.Photo,

 ph.FamilyPicture

 });

 p.ToTable("PersonBlob");

 });

 Map(p =>

 {

 p.Properties(ph =>

 new

 {

 ph.Address,

 ph.BirthDate,

 ph.FirstName,

 ph.HeightInFeet,

 ph.IsActive,

 ph.LastName,

Advanced Modeling and Querying Techniques

[82]

 ph.MiddleName,

 ph.PersonState,

 ph.PersonTypeId

 });

 p.ToTable("Person");

 });

 }

}

We need to omit the actual primary key property, person's identiier, from both
mappings because it actually belongs in both tables. We move binary columns to
the PersonBlob table, keeping the rest of the columns in the Person table. We also
mapped the complex type property as part of the same approach. Here is how code
looks in VB.NET:

Public Class PersonMap

 Inherits EntityTypeConfiguration(Of Person)

 Public Sub New()

 Map(Sub(p)

 p.Properties(Function(m) _

 New With {

 m.Photo,

 m.FamilyPicture})

 p.ToTable("PersonBlob")

 End Sub)

 Map(Sub(p)

 p.Properties(Function(m) _

 New With {

 m.Address,

 m.BirthDate,

 m.FirstName,

 m.HeightInFeet,

 m.IsActive,

 m.LastName,

 m.MiddleName,

 m.PersonState,

 m.PersonTypeId})

 p.ToTable("Person")

 End Sub)

 End Sub

End Class

Chapter 5

[83]

We can also do the opposite, that is, map multiple entity types to a single table. This
process is called table splitting versus entity splitting in the preceding example. The
use case for this scenario is exactly the same; we want to separate infrequently accessed
properties into its own class, but then relate the two classes together. The data is stored
in a single table, but only frequently used properties will be accessed by the main
entity. The code is exactly the same as we saw previously with any two related entities,
except we map both of them to the same table, using the explicit table mapping for
both entities with the exact same table name. As a result, we can retrieve one entity,
but omit related entities with large column data from the query. When we need to load
related large object data, simply use the Include method covered previously.

Advanced querying techniques
We talked about querying techniques in previous chapters. The topic of data
retrieval is very extensive and requires developers to be thoroughly familiar with
everything LINQ has to offer, in order to address scenarios that come up on a daily
basis. In this chapter, we will cover many advanced topics. We want to make sure
that developers are prepared for the vast majority of tasks they do daily, but some
rarely encountered scenarios may not be addressed in this book.

Projections
Projections refer to a process of retrieving a subset of columns from one or more
tables in a single query instead of all the columns, as we saw earlier in this book.
Projections are very important from the perspective of eficiency and performance. If
we only need to present the irst and last names of a person to a user of our software,
we have no reason to get all the columns from the Person table. Now we are faced
with a question. How do we represent this data from the object perspective? We
can still use the Person class, but if we do not populate all the properties, then we
will potentially mislead ourselves or other developers. Instead, we have two better
options to use for a class to read the data into:

• Use anonymous types

• Use an explicitly deined class that matches our query data

If we comsume a projection query's results in the same method as where the query
itself is deined, we use anonymous types. Anonymous types in .NET are classes
that are not explicitly named and their structure is derived from usage. However, if
the data is passed around from one method to another, it is much more convenient
to deine a type for projection query. We will take a look at both approaches.

Advanced Modeling and Querying Techniques

[84]

Another question we want to address is how to include data from multiple tables
in a single projection, which is also possible with Entity Framework. Moreover,
we need to remember that projections can be combined with sorting and iltering
techniques, as well as other querying concepts. Let's demonstrate these concepts
with the following problem. We want to select active persons, sorted by their last
and irst names, but only show the irst name, last name, and a person type's name
in the resulting set. The Person type's name will come from an entity related to
a person. Properties that expose the related data are referred to as association
properties. Let's irst use the anonymous type. In order to create a projection
using LINQ's method syntax, we need to use the Select method, as shown in
the following example:

var people = context.People

 .Where(p => p.PersonState == PersonState.Active)

 .OrderBy(p => p.LastName)

 .ThenBy(p => p.FirstName)

 .Select(p => new

 {

 p.LastName,

 p.FirstName,

 p.PersonType.TypeName

 });

foreach (var person in people)

{

 Console.WriteLine("{0} {1} {2}",

 person.FirstName, person.LastName, person.TypeName);

}

A lot of the preceding code looks familiar already. The Select method itself takes
one parameter, an expression of a function, where the function parameter is an
instance of the source of our query, a person instance in our case. The function
returns an instance of the result of the selection. In this case, we use an anonymous
type with three properties. We do not specify the property names explicitly, so the
source's property names are used. We can clearly see this as we look at the code that
loops through the results. Here is how the code looks in VB.NET:

Dim people = context.People _

 .Where(Function(p) p.PersonState = PersonState.Active)
_

 .OrderBy(Function(p) p.LastName) _

 .ThenBy(Function(p) p.FirstName) _

 .Select(Function(p) New With { _

 p.LastName, _

 p.FirstName, _

Chapter 5

[85]

 p.PersonType.TypeName _

 })

For Each person In people

 Console.WriteLine("{0} {1} {2}",

 person.FirstName,

 person.LastName,

 person.TypeName)

Next

This is how the code looks using the query syntax:

var query = from onePerson in context.People

 where onePerson.PersonState == PersonState.Active

 orderby onePerson.LastName, onePerson.FirstName

 select new

 {

 Last = onePerson.LastName,

 First = onePerson.FirstName,

 onePerson.PersonType.TypeName

 };

Even though we did not deine the type that the query returns, we still have the full
IntelliSense support and strong typing, due to the fact that .NET creates an actual
type for our anonymous type declaration. We can also rename the columns in the
resulting anonymous type, which is what we did in the preceding query syntax
example. Of course, we can rename properties in the same way in statements that
use the method syntax. Here is the same code in VB.NET:

Dim query = From onePerson In context.People

 Where onePerson.PersonState = PersonState.Active

 Order By onePerson.LastName, onePerson.FirstName

 Select New With { _

 .Last = onePerson.LastName, _

 .First = onePerson.FirstName, _

 onePerson.PersonType.TypeName _

}

Now, let's see how the code changes when an explicit type is used. The only change
in both approaches is that in addition to the New keyword, we need to specify the
actual type. For example, if we convert the query syntax example to use the explicit
type, the code will look as follows:

var explicitQuery =

 from onePerson in context.People

 where onePerson.PersonState == PersonState.Active

Advanced Modeling and Querying Techniques

[86]

 orderby onePerson.LastName, onePerson.FirstName

 select new PersonInfo

 {

 LastName = onePerson.LastName,

 FirstName = onePerson.FirstName,

 PersonType = onePerson.PersonType.TypeName,

 PersonId = onePerson.PersonId

 };

PersonInfo is the type we use to capture the query results into, and we can easily
see that it just has a handful of properties that mostly match the Person class with
the exception of the type name property, PersonType, which is a string-based
property; for example, consider this code snippet:

public class PersonInfo

{

 public int PersonId { get; set; }

 public string PersonType { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

}

Here is how the code looks in VB.NET:

Dim explicitQuery = _

 From onePerson In context.People

 Where onePerson.PersonState = PersonState.Active

 Order By onePerson.LastName, onePerson.FirstName

 Select New PersonInfo With { _

 .LastName = onePerson.LastName, _

 .FirstName = onePerson.FirstName, _

 .PersonType = onePerson.PersonType.TypeName, _

 .PersonId = onePerson.PersonId

 }

We did not have to do anything special to get the data from a related table, and
this is a fact worth noting. We simply walked through the relationship chain to get
to the correct data, then included only the data we needed from the related entity,
which is the PersonType name. We can also select multiple entities into a property,
assuming that this property is a collection type. For example, we can include a list of
Phones with our data by adding IEnumerable of the string Phones property to our
PersonInfo class and selecting the phone numbers as follows:

var explicitQuery =

 from onePerson in context.People

Chapter 5

[87]

 where onePerson.PersonState == PersonState.Active

 orderby onePerson.LastName, onePerson.FirstName

 select new PersonInfo

 {

 LastName = onePerson.LastName,

 FirstName = onePerson.FirstName,

 PersonType = onePerson.PersonType.TypeName,

 PersonId = onePerson.PersonId,

 Phones = onePerson.Phones.Select(ph=>ph.PhoneNumber)

 };

foreach (var person in explicitQuery)

{

 Console.WriteLine("{0} {1} {2} {3}",

 person.FirstName, person.LastName,

 person.PersonType, person.PersonId);

 foreach (var phone in person.Phones)

 {

 Console.WriteLine(" " + phone);

 }

}

What we see in the preceding code is two nested projection queries. The second one
selects only one column from a set of related entities, Phones, for each type person.
This query will result in a complex select statement sent to the backend, but it will
only be a single query to execute, although it results in a set of entities, each with
another set of related entities. This demonstrates the true power of Entity Framework
in solving very complex problems, which would require a signiicant amount of code
if a stored procedure were to be used. Here is how this code looks in VB.NET:

Dim explicitQuery = _

 From onePerson In context.People

 Where onePerson.PersonState = PersonState.Active

 Order By onePerson.LastName, onePerson.FirstName

 Select New PersonInfo With { _

 .LastName = onePerson.LastName, _

 .FirstName = onePerson.FirstName, _

 .PersonType = onePerson.PersonType.TypeName, _

 .PersonId = onePerson.PersonId, _

 .Phones = onePerson.Phones.Select(_

 Function(ph) ph.PhoneNumber)

 }

For Each person In explicitQuery

 Console.WriteLine("{0} {1} {2} {3}",

 person.FirstName,

Advanced Modeling and Querying Techniques

[88]

 person.LastName,

 person.PersonType,

 person.PersonId)

 For Each phone In person.Phones

 Console.WriteLine(" " + phone)

 Next

Next

If you like, try to write the preceding query using the method syntax, as an exercise.

Aggregations and grouping
Next, we will discuss how to aggregate the data. Aggregation is a process of getting a
summary view of data, and converting a set of data values into a single value. There
are many functions that LINQ supports that allow us to aggregate the data. Of course,
by extension, Entity Framework supports them as well. It is important to note that
aggregation occurs in the backend, not in memory inside .NET runtime, which would
be ineficient. It is possible to accidentally aggregate in memory. This occurs when we
get the results irst in a .NET collection, then aggregate against this collection. To avoid
the problem, make sure that you construct a query with aggregations in it and then
execute it once. Here are common aggregation methods we use:

• Count: This counts the number of entities, typically based on a condition

• Sum: This creates a sum, typically of numeric values

• Min: This determines a minimum value

• Max: This determines a maximum value

• Average: This computes an average value

All of these functions can, of course, be combined with other queries. For example,
let's ind the minimum BirthDate of all the people that come in our sample database:

var min = context.People.Min(p => p.BirthDate);

Let's try to determine the maximum BirthDate in VB.NET:

Dim min = context.People.Max(Function(p) p.BirthDate)

These examples are pretty simple, getting a scalar value aggregate using the DateTime
type in our example.

The Count function optionally accepts a condition that speciies what needs to
evaluated to true in order to be counted, for example, consider this code snippet:

var count = context.People.Count(p =>

 p.PersonState == PersonState.Active);

Chapter 5

[89]

Here is how this count looks in VB.NET:

Dim count = context.People.Count(_

 Function(p) p.PersonState = PersonState.Active)

This code computes the total number of people in the table that are in the active state,
where the state is stored in the PersonState column inside the People table.

We can use aggregations inside other queries. For example, let's count the number
of phone numbers for each person, modifying the projection query we used in the
beginning of the chapter:

var people = context.People

 .Select(p => new

 {

 p.LastName,

 p.FirstName,

 p.Phones.Count

 });

We used an anonymous type and aggregate function inline to set an additional
property on the resulting object. Here is the same code in VB.NET:

Dim people = context.People _

 .Select(Function(p) New With { _

 p.LastName, _

 p.FirstName, _

 p.Phones.Count

 })

We use the method syntax in the preceding examples. We can combine aggregation
method calls with the code created, with the query syntax as well.

Advanced query construction
We can chain LINQ methods, calling one after another, as we saw. For example,
we can combine ordering and iltering in a single query, by chaining the OrderBy
and Where methods together. All of them return the IQueryable interface. It also
has a subinterface, IOrderedQueryable, that is used to represent results of ordered
queries. If we write any query with Entity Framework that returns a set of objects, it
can abstractly be thought of as an implementation of IQueryable. As a result, we can
modify the query, creating a new query, and our changes are not executed until this
inal query is enumerated. Let's create a query by adding a condition and an order
separately, and then applying an aggregate function to the result.

Advanced Modeling and Querying Techniques

[90]

We will compute the sum of persons' heights in our example, as shown in the
following code:

var query = from onePerson in context.People

 where onePerson.PersonState == PersonState.Active

 select new

 {

 onePerson.HeightInFeet,

 onePerson.PersonId

 };

query = query.OrderBy(p => p.HeightInFeet);

var sum = query.Sum(p => p.HeightInFeet);

Console.WriteLine(sum);

Let's walk through this code, as we want to make sure it is clear as to what is going
in. Firstly, we create a basic query, iltering in only the active people and selecting
a person identiier and height from the People collection, which corresponds to the
People table in the database. What is important to point out now is that no SQL
query has executed against the database so far, since we did not yet enumerate the
results of our query. Next, we sort the query, using the method syntax. Finally, we
access the query result by using aggregate functions. Aggregate functions will cause
the inal query to execute, the only query that results in SQL statements to be sent to
the database. This query will sum up the height of all the active people. Here is how
this code looks in VB.NET:

Dim query = From onePerson In context.People _

 Where onePerson.PersonState = PersonState.Active

 Select New With { _

 onePerson.HeightInFeet, _

 onePerson.PersonId

 }

query = query.OrderBy(Function(p) p.HeightInFeet)

Dim sum = query.Sum(Function(p) p.HeightInFeet)

Console.WriteLine(sum)

We talked about deferred query execution before, but we used to create a query
in a single line of code. There is no such limitation in Entity Framework. There is a
speciic use case to create queries this way. For example, we get a complex criteria
object, and we need to check a speciic property on our criteria before deciding
whether we need to add a ilter condition. The ability to create a query in multiple
steps may come in handy in such scenarios.

Chapter 5

[91]

On the other hand, we can also embed such criteria data directly in our query,
as shown in the following code snippet:

query = from onePerson in context.People

 where !criteria.FilterActive ||

 (criteria.FilterActive &&

 onePerson.PersonState == PersonState.Active)

 select new

 {

 onePerson.HeightInFeet,

 onePerson.PersonId

 };

In the preceding example, we are working with a criteria object with the
FilterActive property. We directly embed checks to see whether this property is
set to true in our query code and execute the conditional code as a result. This is a
very powerful concept that allows us to write code that goes far beyond the simple
queries we worked on in previous chapters. Here is how this query looks in VB.NET:

query = From onePerson In context.People _

 Where Not criteria.FilterActive Or _

 (criteria.FilterActive And

 onePerson.PersonState = PersonState.Active)

 Select New With { _

 onePerson.HeightInFeet, _

 onePerson.PersonId

 }

Entity Framework will interpret the .NET code and will convert it to appropriate SQL
syntax. Not all .NET code will work for us in such a fashion, but many commonly used
functions will work. For example, many string functions such as ToUpper, ToLower,
and Contains will translate into appropriate SQL queries. Boolean and number
comparison will work ine as well. Our default approach should be to use .NET code
as part of our queries. .NET functions are translated properly via a backend provider as
part of SQL query execution and interpretation. Entity Framework also has additional
useful functions that are located in the System.Data.Entity.DbFunctions class.
It exposes many DateTime and string operations that come in handy in a number
of scenarios. For example, this is how we can add days to a particular date as part of
our query:

query = from onePerson in context.People

 where DbFunctions.AddDays(onePerson.BirthDate, 2) >

 new DateTime(1970,1,1)

 select new

Advanced Modeling and Querying Techniques

[92]

 {

 onePerson.HeightInFeet,

 onePerson.PersonId

 };

Here is what this code looks like in VB.NET:

query = From onePerson In context.People _

 Where DbFunctions.AddDays(onePerson.BirthDate, 2) >

 New DateTime(1970, 1, 1)

 Select New With { _

 onePerson.HeightInFeet, _

 onePerson.PersonId

 }

To summarize, we can often ind a way to embed .NET native functions inside our
queries. As a result, it looks like we are ordinarily writing C# or VB.NET code,
but it results in appropriate backend queries.

Paging data with windowing functions
Paging through our data is an extremely common scenario. It allows us to write
applications that are eficient and do not consume large amounts of memory. Just
imagine what would happen if we try to show in our user interface all the data from
a table with millions of rows in it. Entity Framework via LINQ comes with an easy
way to accomplish paging. Windowing functions, also known as paging functions,
have this name because they provide us with a small window into large amounts
of data. When we page through data, we deal with just two numbers:

• The page number that we want to show

• The number of rows per page

Entity Framework has two methods, Skip and Take, to allow developers to
page through the data. The Skip method allows us to skip some number of rows,
essentially rows from previous pages. The Take method allows us to retrieve some
number of rows. Here is how we can retrieve a page of data from our table. Our
criteria object contains the current page number and number of rows per page
or page size; for example, consider this code snippet:

var people = context.People

 .OrderBy(p => p.LastName)

 .Skip((criteria.PageNumber - 1) * criteria.PageSize)

 .Take(criteria.PageSize);

Chapter 5

[93]

We perform simple math to igure out how many rows we need to skip, based on the
page number and page size from criteria object.

We must sort the data before using the Skip method,
or an exception will be thrown.

Here is how the same code looks in VB.NET:

Dim query = context.People _

 .OrderBy(Function(p) p.LastName) _

 .Skip((criteria.PageNumber - 1) * criteria.PageSize) _

 .Take(criteria.PageSize)

We can easily combine paging with other functions,
such as iltering.

Using joins
Joins allow developers to combine data from multiple tables into a single query,
based on a condition that relates rows from two tables together. We already
performed this function in previous examples when we dealt with related tables.
Relationships simply abstract out the underlying database joins from developers.
Joins come into play when Entity Framework's overall logical model does not specify
relationships, for some reason. This may occur when data is not fully normalized
or because we are working with a legacy database that we may not be able to
change. At that point, we must join unrelated tables based on a condition. The join
keyword in LINQ translates into the INNER JOIN operation in SQL, thus eliminating
unmatched rows from the result set. This is how INNER JOIN works; we must have
at least one matching row in the table on the right-hand side of the join, in order to
see data from the table on the left-hand side of the join. Let's examine a simple use
case where we manually join a person and person type, retrieving the irst and last
names of a person along with the type name using joins. Just like in SQL, we will see
the same components to construct joins: the left-hand table or collection, right table,
join condition, and selection of data based on data available via joins. Here is how
this looks using the LINQ query syntax:

var people = from person in context.People

 join personType in context.PersonTypes

 on person.PersonTypeId equals personType.PersonTypeId

 select new

 {

Advanced Modeling and Querying Techniques

[94]

 person.LastName,

 person.FirstName,

 personType.TypeName

 };

We need to declare row-level variables for both the joined tables, person,
and personType in the preceding example. We see the new usage of the equals
keyword that is now used to support join conditions inside LINQ. It is used to
specify the relationship condition between the left-hand table, People, and the right
table, PersonTypes. The PersonTypeId value must be the same in rows from both
tables in order to be included in the result set. Finally, we use the projection to select
a subset of columns from both tables using variables for each row. The same code in
VB.NET looks very similar, as shown in the following code:

Dim people =

 From person In context.People

 Join personType In context.PersonTypes

 On person.PersonTypeId Equals personType.PersonTypeId

 Select New With

 {

 person.LastName,

 person.FirstName,

 personType.TypeName

 }

You undoubtedly noticed similarities with SQL syntax. If we switch to the method
syntax for LINQ, here is the code we will see:

people = context.People

 .Join(

 context.PersonTypes,

 person => person.PersonTypeId,

 personType => personType.PersonTypeId,

 (person, type) => new

 {

 Person = person,

 PersonType = type

 })

 .Select(p => new

 {

 p.Person.LastName,

 p.Person.FirstName,

 p.PersonType.TypeName

 });

Chapter 5

[95]

The Join method in LINQ takes the same parameters as any join would: the right-
hand table and condition. The left-hand table is what Join is called on. The inal
parameter speciies what needs to be selected out of the join; in our case, we just
select all the data values from both the tables. We can use an anonymous type or
explicit types, and select a subset of data. Even though we appear to select every
column, this is not how SQL is constructed, only data speciied in the inal Select
query is retrieved from the database, that is, the person's last and irst
names and matching type name. Here is the same code in VB.NET:

people = context.People _

 .Join(context.PersonTypes, _

 Function(person) person.PersonTypeId, _

 Function(personType) personType.PersonTypeId, _

 Function(person, personType) New With {

 .Person = person,

 .PersonType = personType}) _

.Select(Function(p) New With {

 p.Person.LastName,

 p.Person.FirstName,

 p.PersonType.TypeName

 })

We will see the LEFT OUTER join implementation in the next section. The LEFT
OUTER join allow us to see the data from the table on the left-hand side of the join,
even when we have to match rows in the table on the right.

Groupings and left outer joins
So far, we saw simple groupings that aggregate based on a single column and
produced a single result. There are many other scenarios where we need to provide
more than one column in a grouped or aggregated result set. For example, we
want to see how many people we have, based on a month they were born in. We
are not starting with a simple example, but this example will give us a thorough
understanding of how to group and select data at the same time, as shown in the
following code snippet:

var query =

 from onePerson in context.People

 group onePerson by new { onePerson.BirthDate.Value.Month }

 into monthGroup

 select new

 {

 Month = monthGroup.Key.Month,

 Count = monthGroup.Count()

 };

Advanced Modeling and Querying Techniques

[96]

The query is based on the Person collection from the People property of our context.
We loop through the data based on the person's data, speciied in the onePerson row
variable. We group based on the month of BirthDate. We use an anonymous type
to demonstrate that we can group based on more than one ield, just by adding more
properties to this anonymous type, which speciies the group key(s). We also name
the group so that we can access its data in inal select. We select an anonymous type
as well, grabbing key values from the group as well as our aggregate value, using the
Count function. You can use other aggregate functions in a grouping. Here is how
the same looks in VB.NET:

Dim query =

 From onePerson In context.People

 Group onePerson By personWithBirthday =

 New With {.Month = onePerson.BirthDate.Value.Month}

 Into monthGroup = Group

 Select New With

 {

 .Count = monthGroup.Count(),

 .Month = personWithBirthday.Month

 }

There are some differences from C#. We have to name our group variable
(personWithBirthday) and use the Group keyword when deining the monthGroup
variable. Let's also take a look at the same grouping functions, using the
method syntax:

var methodQuery =

 context.People

 .GroupBy(

 onePerson => new { onePerson.BirthDate.Value.Month },

 monthGroup => monthGroup)

 .Select(monthGroup => new

 {

 Month = monthGroup.Key.Month,

 Count = monthGroup.Count()

 });

The GroupBy method in LINQ typically takes two parameters; that is, the group
deinition or key ields and the selector that will be used when retrieving group
data. We are quite familiar with the Select method now, and we can use our group
variable to select not only the group's key ields, but also additional aggregates based
on the group deinition. Here is how the same query looks in VB.NET:

Dim methodQuery =

 context.People _

Chapter 5

[97]

 .GroupBy(Function(person) New With { .Month =
person.BirthDate.Value.Month}, _

 Function(monthGroup) monthGroup) _

 .Select(Function(monthGroup) New With

 {

 .Month = monthGroup.Key.Month,

 .Count = monthGroup.Count()

 })

Let's now take a look at LEFT OUTER joins with LINQ. Unfortunately, there is
no keyword in LINQ that supports LEFT OUTER joins out of the box. Instead,
we have to use grouping with a new keyword: DefaultIfEmpty. This function
returns the default for the right table's selectable data if it is missing, typically just
the null value. Another new keyword we will see is GroupJoin, which correlates
two sets of data based on a condition, thus returning the results of the join. Let's take
a look at an example. Our Person object supports null for the person type value.
So, let's select a few columns from the Person table and person type, using the
"Unknown" string when the person type is null, as shown in this code snippet:

var query =

 from person in context.People

 join personType in context.PersonTypes

 on person.PersonTypeId equals
personType.PersonTypeId into finalGroup

 from groupedData in finalGroup.DefaultIfEmpty()

 select new

 {

 person.LastName,

 person.FirstName,

 TypeName = groupedData.TypeName ?? "Unknown"

 };

Let's read this statement. We are starting with the People dataset. We join the
person types based on the person type identifying, grouping the data based on
person. In the next line, we specify that we want to see the default value for the
person type inside the group, if the joined data from the right-hand table (the
person type) is missing. This is what the DefaultIfEmpty method does. Finally, we
select from the grouped data and primary table's data, coalescing the missing person
type with the "Unknown" word. Here is how the same code looks in VB.NET:

Dim query =

 From person In context.People

 Group Join personType In context.PersonTypes

 On person.PersonTypeId Equals personType.PersonTypeId Into
finalGroup = Group

Advanced Modeling and Querying Techniques

[98]

 From groupedData In finalGroup.DefaultIfEmpty()

 Select New With

 {

 .LastName = person.LastName,

 .FirstName = person.FirstName,

 .TypeName = If(groupedData.TypeName Is Nothing, "Unknown",
groupedData.TypeName)

 }

VB.NET code is slightly different. We still start with the people set. We join with the
person type while grouping the data based on person. We have to use the Group
keyword to specify that we want everything from the Group type. In the next line, we
see the second from keyword, selecting our grouped data. In the next few lines, we
select the person data and coalesce the missing type with the word "Unknown".

We have not seen two from keywords in the same query before. This is possible,
and in terms of SQL, similar to the older, pre-JOIN syntax, where we can specify
multiple tables in the From portion of our SQL statement and specify the join
condition inside the WHERE portion.

Let's take a look at the same statement using the method syntax. In this case,
both C# and VB.NET code use the GroupJoin method:

var methodQuery = context.People

 .GroupJoin(

 context.PersonTypes,

 person => person.PersonTypeId,

 personType => personType.PersonTypeId,

 (person, type) => new

 {

 Person = person,

 PersonType = type

 })

 .SelectMany(groupedData =>

 groupedData.PersonType.DefaultIfEmpty(),

 (group, personType) => new

 {

 group.Person.LastName,

 group.Person.FirstName,

 TypeName = personType.TypeName ?? "Unknown"

 });

Chapter 5

[99]

We see something new in this code, so let's walk through it. We start with person
again, and then we join with person types, based on the person type identiier.
We then select both person and personType data in the grouped results, based
on person. Next, we see the SelectMany keyword. We project a speciied function,
DefaultIfEmpty, onto the grouped results, and then select some data from person
and person type, substituting null with the word "Unknown", where personType
is missing.

Here is how this code looks in VB.NET:

Dim methodQuery =

 context.People _

 .GroupJoin(

 context.PersonTypes,

 Function(person) person.PersonTypeId,

 Function(personType) personType.PersonTypeId,

 Function(person, type) New With

 {

 .Person = person,

 .PersonType = type

 }) _

 .SelectMany(Function(groupedData) _

 groupedData.PersonType.DefaultIfEmpty(),

 Function(group, personType) New With

 {

 .LastName = group.Person.LastName,

 .FirstName = group.Person.FirstName,

 .TypeName = If(personType.TypeName Is Nothing,
"Unknown", personType.TypeName)

 })

SelectMany has another usage in LINQ. In addition to LEFT OUTER joins, it
is also used in selecting many child and parent records into a single result set.
Previously, we saw that if we select person and Phones, we see one person object
with a collection of phones in the Phones property. We could unroll this data with
SelectMany and select a result where person data is repeated with each child that
belongs to the parent in question; for example, seeing the irst name of a person
and their phone number, where the person's irst name is repeated for each phone.
This is shown in the following code snippet:

var query =

 from onePerson in context.People

 from onePhone in onePerson.Phones

 orderby onePerson.LastName, onePhone.PhoneNumber

Advanced Modeling and Querying Techniques

[100]

 select new

 {

 onePerson.LastName,

 onePerson.FirstName,

 onePhone.PhoneNumber

 };

We see familiar code here. We use the from keyword twice to bring two sets of
records together. We sort them. Then, we select some data from both sets using
a projection. Here is the same query in VB.NET:

Dim query =

 From onePerson In context.People

 From onePhone In onePerson.Phones

 Order By onePerson.LastName, onePhone.PhoneNumber

 Select New With

 {

 onePerson.LastName,

 onePerson.FirstName,

 onePhone.PhoneNumber

 }

We can also write the same statement using the method syntax. This time, use
the SelectMany function. This function takes an expression with related data,
Phones in our case, which is applied to another set of data, the person set in our
case. The second parameter to the function is the selector that is the output of the
inal result; for example, consider this code snippet:

var methodQuery =

 context.People

 .SelectMany(person => person.Phones, (person, phone) =>
new

 {

 person.LastName,

 person.FirstName,

 phone.PhoneNumber

 })

 .OrderBy(p => p.LastName)

 .ThenBy(p => p.PhoneNumber);

Here is how the code looks in VB.NET:

Dim methodQuery =

 context.People _

 .SelectMany(_

Chapter 5

[101]

 Function(person) person.Phones, _

 Function(person, phone) New With

 {

 person.LastName,

 person.FirstName,

 phone.PhoneNumber

 }) _

 .OrderBy(Function(p) p.LastName) _

 .ThenBy(Function(p) p.PhoneNumber)

Set operations
LINQ supports the following set operators:

• Distinct

• Union

• Intersect

• Except

Distinct, just as the same implies, returns a set of unique values across a set
of data. For example, let's determine all unique person types across all of the
people in the table:

var uniqueQuery = context.People

 .Select(p => p.PersonType.TypeName)

 .Distinct();

It is important to note that the distinct selection is not limited to a single ield as in
the preceding example. We can apply the Distinct operator to results that contain
many columns or properties, both anonymous and explicit types. Here is how the
same code looks in VB.NET:

Dim uniqueQuery = context.People _

 .Select(Function(p) p.PersonType.TypeName) _

 .Distinct()

We can also perform unions of multiple queries. Union combines results of two
queries into a single result set. For example, if we want to select all names of both
People and Companies into a single results set, we can do something like the
following:

var unionQuery = context.People

 .Select(p => new

 {

Advanced Modeling and Querying Techniques

[102]

 Name = p.LastName + " " + p.FirstName,

 RowType = "Person"

 })

 .Union(context.Companies.Select(c => new

 {

 Name = c.CompanyName,

 RowType = "Company"

 }))

 .OrderBy(result => result.RowType)

 .ThenBy(result => result.Name);

We are using an anonymous type in this case with two properties: name and record
type. We see a new interesting capability, that is, the ability to concatenate strings as
part of a query. This code is executed by the backend, as is the case in all the examples
we covered so far. Entity Framework is smart enough to handle such use cases. We
also apply a sort order to the result set. Here is how the code looks in VB.NET:

Dim unionQuery = context.People _

 .Select(Function(p) New With

 {

 .Name = p.LastName + " " + p.FirstName,

 .RowType = "Person"

 }) _

 .Union(context.Companies.Select(Function(c) New With

 {

 .Name = c.CompanyName,

 .RowType = "Company"

 })) _

 .OrderBy(Function(result) result.RowType) _

 .ThenBy(Function(result) result.Name)

Intersect looks for common data between two queries. Except looks for differences
between two query input sets. Syntactically, there is no difference between Union
and Intersect. So, to exercise this idea, try to replace the Union keyword with the
Intersect or Except keyword and, examine the results.

Self-test questions
Q1. Which base class do you use to conigure a class used to contain a number of
properties that are common to multiple entities?

1. EntityTypeConfiguration

2. ComplexTypeConfiguration

3. CommonTypeConfiguration

Chapter 5

[103]

Q2. You must have table names and class names that always match in Entity
Framework, true or false?

Q3. Every property in an entity is always persisted to the database, true or false?

Q4. What is the name of the technique that involves selecting a subset of columns
from a table via a query in Entity Framework?

1. Projection

2. Subquery

3. You cannot do this in Entity Framework

Q5. You must declare a result type to dynamically select columns from multiple
tables via a single query, true or false?

Q6. You must use the Join keyword to select data from related tables in a single
query, true or false?

Q7. Which function can be used in a method syntax query to repeat parent data
along with unique child data in a single query result?

1. Select

2. GroupJoin

3. SelectMany

Q8. Which LINQ method can be used to ind all unique values for one column in
a table?

1. Distinct

2. Unique

3. Union

Q9. Which single LINQ method can be used to accomplish the selection of data from
multiple tables, that is similar to LEFT OUTER JOIN in SQL?

1. Join

2. LeftJoin

3. RightJoin
4. You have to use a combination of methods, as no single method exists

Advanced Modeling and Querying Techniques

[104]

Q10. Which two methods can you use to page through the data?

1. Miss and Yield

2. Skip and Take

3. Group and Take

Q11. You cannot create grouping queries based on multiple ields from a table,
true or false?

Summary
We covered a lot of ground in this chapter. Since practice makes perfect, I always
recommend that everyone tries out the covered concepts by writing code and
experimenting. We looked at some new modeling techniques. We saw that we
can create additional classes, called complex types, to group properties common
to multiple entities to ensure consistency in our models. We saw that using
enumerations in models can lead to more readable code, and were convinced that
Entity Framework has irst-class support for enumerations. We saw that we do
not have to have the names of our classes and properties match database structure
exactly. We could use the HasColumnName and ToTable methods to provide
alterative names at the database level.

We looked at many advanced query techniques. Most concepts can be used with
both the query and method syntax of LINQ. We used projections to select subsets of
columns from one or more tables in a single query. We saw how we can accomplish
projection queries with anonymous and explicit types. We saw how we can aggregate
the data to compute maximum, minimum, and a sum of data to get single values. We
were also able to group the data in more advanced ways, providing grouping by many
properties, and aggregates inside the same result set, using the GroupBy method. We
looked at how we can use the same technique in order to accomplish the LEFT OUTER
join functionality, and the ability to retrieve the data from the left-hand table, even
though there are no matching rows in the table on the right. We saw how SelectMany
can be used to create a functionality similar to JOIN in SQL, where some of the data
from one table is repeated in matching child rows in the result set. Finally, we took a
look at set operations that allow us to ind distinct data as well as combine data from
multiple queries via union operations.

In the next chapter, we will look at working with stored procedures and views, and
database artifacts that do not map directly to entities, as tables do. We will also see
how to handle concurrency, a circumstance where multiple users try to update the
same data at the same time. We will understand the advantages of using Entity
Framework's asynchronous API.

Chapter 6

[105]

Working with Views,

Stored Procedures,

the Asynchronous API,

and Concurrency
In this chapter, you will learn how to integrate Entity Framework with additional
database objects, speciically views and stored procedures. We will see how to take
advantage of existing stored procedures and functions to retrieve and change the
data. You will learn how to persist changed entities from our context using stored
procedures. We will gain an understanding of the advantages of asynchronous
processing and see how Entity Framework supports this concept via its built-in API.
Finally, you will learn why concurrency is important for a multi-user application and
what options are available in Entity Framework to implement optimistic concurrency.

In this chapter, we will cover how to:

• Get data from a view

• Get data from a stored procedure or table-valued function

• Map create, update, and delete operations on a table to a set of
stored procedures

• Use the asynchronous API to get and save the data

• Implement multi-user concurrency handling

Working with Views, Stored Procedures, the Asynchronous API, and Concurrency

[106]

Working with views
Views in an RDBMS fulill an important role. They allow developers to combine
data from multiple tables into a structure that looks like a table, but do not provide
persistence. Thus, we have an abstraction on top of raw table data. One can use this
approach to provide different security rights, for example. We can also simplify
queries we have to write, especially if we access the data deined by views quite
frequently in multiple places in our code. Entity Framework Code-First does not
fully support views as of now. As a result, we have to use a workaround. One
approach would be to write code as if a view was really a table, that is, let Entity
Framework deine this table, then drop the table, and create a replacement view.
We will still end up with strongly typed data with full query support. Let's start
with the same database structure we used before, including person and person
type. Our view will combine a few columns from the Person table and Person
type name, as shown in the following code snippet:

public class PersonViewInfo
{
 public int PersonId { get; set; }
 public string TypeName { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

Here is the same class in VB.NET:

Public Class PersonViewInfo
 Public Property PersonId() As Integer
 Public Property TypeName() As String
 Public Property FirstName() As String
 Public Property LastName() As String
End Class

Now, we need to create a coniguration class for two reasons. We need to specify a
primary key column because we do not follow the naming convention that Entity
Framework assumes for primary keys. Then, we need to specify the table name,
which will be our view name, as shown in the following code:

public class PersonViewInfoMap :
 EntityTypeConfiguration<PersonViewInfo>
{
 public PersonViewInfoMap()
 {
 HasKey(p => p.PersonId);
 ToTable("PersonView");
 }
}

Chapter 6

[107]

Here is the same class in VB.NET:

Public Class PersonViewInfoMap

 Inherits EntityTypeConfiguration(Of PersonViewInfo)

 Public Sub New()

 HasKey(Function(p) p.PersonId)

 ToTable("PersonView")

 End Sub

End Class

Finally, we need to add a property to our context that exposes this data, as shown here:

public DbSet<PersonViewInfo> PersonView { get; set; }

The same property in VB.NET looks quite familiar to us, as shown in the
following code:

Property PersonView() As DbSet(Of PersonViewInfo)

Now, we need to work with our initializer to drop the table and create a view in
its place. We are using one of the initializers we created before. When we cover
migrations, we will see that the same approach works there as well, with virtually
identical code. Here is the code we added to the Seed method of our initializer, as
shown in the following code:

public class Initializer :
DropCreateDatabaseIfModelChanges<Context>
{
 protected override void Seed(Context context)
 {
 context.Database.ExecuteSqlCommand("DROP TABLE
PersonView");
 context.Database.ExecuteSqlCommand(
 @"CREATE VIEW [dbo].[PersonView]
 AS
 SELECT
 dbo.People.PersonId,
 dbo.People.FirstName,
 dbo.People.LastName,
 dbo.PersonTypes.TypeName
 FROM
 dbo.People
 INNER JOIN dbo.PersonTypes
 ON dbo.People.PersonTypeId =
dbo.PersonTypes.PersonTypeId
 ");
 }
}

Working with Views, Stored Procedures, the Asynchronous API, and Concurrency

[108]

In the preceding code, we irst drop the table using the ExecuteSqlCommand method of
the Database object. This method is useful because it allows the developer to execute
arbitrary SQL code against the backend. We call this method twice, the irst time to
drop the tables and the second time to create our view.

The same initializer code in VB.NET looks as follows:

Public Class Initializer

 Inherits DropCreateDatabaseIfModelChanges(Of Context)

 Protected Overrides Sub Seed(ByVal context As Context)

 context.Database.ExecuteSqlCommand("DROP TABLE
PersonView")

 context.Database.ExecuteSqlCommand(<![CDATA[

 CREATE VIEW [dbo].[PersonView]

 AS

 SELECT

 dbo.People.PersonId,

 dbo.People.FirstName,

 dbo.People.LastName,

 dbo.PersonTypes.TypeName

 FROM

 dbo.People

 INNER JOIN dbo.PersonTypes

 ON dbo.People.PersonTypeId =
dbo.PersonTypes.PersonTypeId]]>.Value())

 End Sub

End Class

Since VB.NET does not support multiline strings such as C#, we are using XML literals
instead, getting a value of a single node. This just makes SQL code more readable.

We are now ready to query our data. This is shown in the following code snippet:

using (var context = new Context())

{

 var people = context.PersonView

 .Where(p => p.PersonId > 0)

 .OrderBy(p => p.LastName)

 .ToList();

 foreach (var personViewInfo in people)

 {

 Console.WriteLine(personViewInfo.LastName);

 }

Chapter 6

[109]

As we can see, there is literally no difference in accessing our view or any other table.
Here is the same code in VB.NET:

Using context = New Context()
 Dim people = context.PersonView _
 .Where(Function(p) p.PersonId > 0) _
 .OrderBy(Function(p) p.LastName) _
 .ToList()
 For Each personViewInfo In people
 Console.WriteLine(personViewInfo.LastName)
 Next
End Using

Although the view looks like a table, if we try to change and
update an entity deined by this view, we will get an exception.

If we do not want to play around with tables in such a way, we can still use
the initializer to deine our view, but query the data using a different method
of the Database object, SqlQuery. This method has the same parameters
as ExecuteSqlCommand, but is expected to return a result set, in our case,
a collection of PersonViewInfo objects, as shown in the following code:

using (var context = new Context())
{
 var sql = @"SELECT * FROM PERSONVIEW WHERE PERSONID > {0} ";
 var peopleViaCommand =
context.Database.SqlQuery<PersonViewInfo>(
 sql,
 0);
 foreach (var personViewInfo in peopleViaCommand)
 {
 Console.WriteLine(personViewInfo.LastName);
 }
}

The SqlQuery method takes generic type parameters, which deine what data will
be materialized when a raw SQL command is executed. The text of the command
itself is simply parameterized SQL. We need to use parameters to ensure that our
dynamic code is not subject to SQL injection. SQL injection is a process in which a
malicious user can execute arbitrary SQL code by providing speciic input values.
Entity Framework is not subject to such attacks on its own. Here is the same code in
VB.NET:

Using context = New Context()

 Dim sql = "SELECT * FROM PERSONVIEW WHERE PERSONID > {0} "

Working with Views, Stored Procedures, the Asynchronous API, and Concurrency

[110]

 Dim peopleViaCommand = context.Database.SqlQuery(Of
PersonViewInfo)(sql, 0)

 For Each personViewInfo In peopleViaCommand

 Console.WriteLine(personViewInfo.LastName)

 Next

End Using

We not only saw how to use views in Entity Framework, but saw two extremely
useful methods of the Database object, which allows us to execute arbitrary SQL
statements and optionally materialize the results of such queries. The generic type
parameter does not have to be a class. You can use the native .NET type, such as
a string or an integer.

It is not always necessary to use views. Entity Framework allows
us to easily combine multiple tables in a single query.

Working with stored procedures
The process of working with stored procedures in Entity Framework is similar to the
process of working with views. We will use the same two methods we just saw on the
Database object—SqlQuery and ExecuteSqlCommand. In order to read a number of
rows from a stored procedure, we simply need a class that we will use to materialize
all the rows of retrieved data into a collection of instances of this class. For example,
to read the data from the stored procedure, consider this query:

CREATE PROCEDURE [dbo].[SelectCompanies]

 @dateAdded as DateTime

AS

BEGIN

 SELECT CompanyId, CompanyName

 FROM Companies

 WHERE DateAdded > @dateAdded

END

We just need a class that matches the results of our stored procedure, as shown in the
following code:

public class CompanyInfo

{

 public int CompanyId { get; set; }

 public string CompanyName { get; set; }

}

Chapter 6

[111]

The same class looks as follows in VB.NET:

Public Class CompanyInfo

 Property CompanyId() As Integer

 Property CompanyName() As String

End Class

We are now able to read the data using the SqlQuery method, as shown in the
following code:

sql = @"SelectCompanies {0}";

var companies = context.Database.SqlQuery<CompanyInfo>(

 sql,

 DateTime.Today.AddYears(-10));

foreach (var companyInfo in companies)

{

We speciied which class we used to read the results of the query call. We also
provided a formatted placeholder when we created our SQL statement for a parameter
that the stored procedure takes. We provided a value for that parameter when we
called SqlQuery. If one has to provide multiple parameters, one just needs to provide
an array of values to SqlQuery and provide formatted placeholders, separated by
commas as part of our SQL statement. We could have used a table values function
instead of a stored procedure as well. Here is how the code looks in VB.NET:

sql = "SelectCompanies {0}"

Dim companies = context.Database.SqlQuery(Of CompanyInfo)(

 sql,

 DateTime.Today.AddYears(-10))

For Each companyInfo As CompanyInfo In companies

Another use case is when our stored procedure does not return any values,
but instead simply issues a command against one or more tables in the database.
It does not matter as much what a procedure does, just that it does not need to
return a value. For example, here is a stored procedure that updates multiple
rows in a table in our database:

CREATE PROCEDURE dbo.UpdateCompanies

 @dateAdded as DateTime,

 @activeFlag as Bit

AS

BEGIN

 UPDATE Companies

 Set DateAdded = @dateAdded,

 IsActive = @activeFlag

END

Working with Views, Stored Procedures, the Asynchronous API, and Concurrency

[112]

In order to call this procedure, we will use ExecuteSqlCommand. This method returns
a single value—the number of rows affected by the stored procedure or any other
SQL statement. You do not need to capture this value if you are not interested in it,
as shown in this code snippet:

var sql = @"UpdateCompanies {0}, {1}";

var rowsAffected =

 context.Database.ExecuteSqlCommand(

 sql, DateTime.Now, true);

We see that we needed to provide two parameters. We needed to provide them
in the exact same order the stored procedure expected them. They are passed into
ExecuteSqlCommand as the parameter array, except we did not need to create an
array explicitly. Here is how the code looks in VB.NET:

Dim sql = "UpdateCompanies {0}, {1}"

Dim rowsAffected =

 context.Database.ExecuteSqlCommand(_

 sql, DateTime.Now, True)

Entity Framework eliminates the need for stored procedures to a large extent.
However, there may still be reasons to use them. Some of the reasons include
security standards, legacy database, or eficiency. For example, you may need to
update thousands of rows in a single operation and retrieve them through Entity
Framework; updating each row at a time and then saving those instances is not
eficient. You could also update data inside any stored procedure, even if you
call it with the SqlQuery method.

Developers can also execute any arbitrary SQL statements, following
the exact same technique as stored procedures. Just provide your SQL
statement, instead of the stored procedure name to the SqlQuery or
ExecuteSqlCommand method.

Create, update, and delete entities with stored
procedures
So far, we have always used the built-in functionality that comes with Entity
Framework that generates SQL statements to insert, update, or delete the entities.
There are use cases when we would want to use stored procedures to achieve
the same result. Developers may have requirements to use stored procedures for
security reasons. You may be dealing with an existing database that has these
procedures already built in.

Chapter 6

[113]

Entity Framework Code-First now has full support for such updates. We can conigure
the support for stored procedures using the familiar EntityTypeConfiguration
class. We can do so simply by calling the MapToStoredProcedures method. Entity
Framework will create stored procedures for us automatically if we let it manage
database structures. We can override a stored procedure name or parameter names,
if we want to, using appropriate overloads of the MapToStoredProcedures method.
Let's use the Company table in our example:

public class CompanyMap :

 EntityTypeConfiguration<Company>

{

 public CompanyMap()

 {

 MapToStoredProcedures();

 }

}

If we just run the code to create or update the database, we will see new procedures
created for us, named Company_Insert for an insert operation and similar names for
other operations. Here is how the same class looks in VB.NET:

Public Class CompanyMap

 Inherits EntityTypeConfiguration(Of Company)

 Public Sub New()

 MapToStoredProcedures()

 End Sub

End Class

Here is how we can customize our procedure names if necessary:

public class CompanyMap :

 EntityTypeConfiguration<Company>

{

 public CompanyMap()

 {

 MapToStoredProcedures(config =>

 {

 config.Delete(

 procConfig =>

 {

 procConfig.HasName("CompanyDelete");

 procConfig.Parameter(company =>
company.CompanyId, "companyId");

 });

Working with Views, Stored Procedures, the Asynchronous API, and Concurrency

[114]

 config.Insert(procConfig =>
procConfig.HasName("CompanyInsert"));

 config.Update(procConfig =>
procConfig.HasName("CompanyUpdate"));

 });

 }

}

In this code, we performed the following:

• Changed the stored procedure name that deletes a company to
CompanyDelete

• Changed the parameter name that this procedure accepts to companyId
and speciied that the value comes from the CompanyId property

• Changed the stored procedure name that performs insert operations on
CompanyInsert

• Changed the stored procedure name that performs updates to
CompanyUpdate

Here is how the code looks in VB.NET:

Public Class CompanyMap

 Inherits EntityTypeConfiguration(Of Company)

 Public Sub New()

 MapToStoredProcedures(_

 Sub(config)

 config.Delete(

 Sub(procConfig)

 procConfig.HasName("CompanyDelete")

 procConfig.Parameter(Function(company)
company.CompanyId, "companyId")

 End Sub

)

 config.Insert(Function(procConfig)
procConfig.HasName("CompanyInsert"))

 config.Update(Function(procConfig)
procConfig.HasName("CompanyUpdate"))

 End Sub

)

 End Sub

End Class

Of course, if you do not need to customize the names, your code will be much simpler.

Chapter 6

[115]

The asynchronous API
So far, all of our database operations with Entity Framework have been synchronous.
In other words, our .NET program waited for any given database operation, such
as a query or an update, to complete before moving forward. In many cases, there
is nothing wrong with this approach. There are use cases, however, where an
ability to perform such operations asynchronously is important. In these cases,
we let .NET use its execution thread while the software waits for the database
operation to complete. For example, if you are creating a web application utilizing
the asynchronous approach, we can be more eficient with server resources,
releasing web worker threads back to the thread pool while we are waiting for the
database to inish processing a request, whether it is a save or retrieve operation.
Even in a desktop application, the asynchronous API is useful because the user can
potentially perform other tasks in the application, instead of waiting on a possibly
time-consuming query or save operation. In other words, the .NET thread does not
need to wait for a database thread to complete its work. In a number of applications,
the asynchronous API does not provide beneits and could even be harmful from
the performance perspective due to the thread context switching. Before using the
asynchronous API, developers need to make sure it will beneit them.

Entity Framework exposes a number of asynchronous operations. By convention,
all such methods end with the Async sufix. For save operations, we can use
the SaveChangesAsync method on DbContext. There are many methods for
query operations. For example, many aggregate functions have asynchronous
counterparts, such as SumAsync or AverageAsync. We can also asynchronously read
a result set into a list or an array using ToListAsync or ToArrayAsync, respectively.
Also, we can enumerate through the results of a query using ForEachAsync. Let's
look at a few examples.

This is how we can get the list of objects from a database asynchronously:

private static async Task<IEnumerable<Company>>
GetCompaniesAsync()

{

 using (var context = new Context())

 {

 return await context.Companies

 .OrderBy(c => c.CompanyName)

 .ToListAsync();

 }

}

Working with Views, Stored Procedures, the Asynchronous API, and Concurrency

[116]

It is important to notice that we follow typical async/await usage patterns. Our
function is lagged as async and returns a task object, speciically a task of a list
of companies. We create a DbContext object inside our function. Then, we create
creating a query that returns all companies, ordered by their names. Then, we
return the results of this query wrapped inside an asynchronous list generation.
We have to await this return value, as we need to follow async/await patterns.
Here is how this code looks in VB.NET:

Private Async Function GetCompaniesAsync() As Task(Of
IEnumerable(Of Company))

 Using context = New Context()

 Return Await context.Companies.OrderBy(_

 Function(c) c.CompanyName).ToListAsync()

 End Using

End Function

Any Entity Framework query can be converted to its asynchronous
version using ToListAsync or ToArrayAsync.

Next, let's create a new record asynchronously:

private static async Task<Company> AddCompanyAsync(Company
company)

{

 using (var context = new Context())

 {

 context.Companies.Add(company);

 await context.SaveChangesAsync();

 return company;

 }

}

Again, we are wrapping the operation inside the async function. We are accepting a
parameter, company in our case. We are adding this company to the context. Finally,
we save asynchronously and return the saved company. Here is how the code looks
in VB.NET:

Private Async Function AddCompanyAsync(company As Company) As
Task(Of Company)

 Using context = New Context()

 context.Companies.Add(company)

 Await context.SaveChangesAsync()

 Return company

 End Using

End Function

Chapter 6

[117]

Next, we can locate a record asynchronously. We can use any number of methods
here, such as Single or First. Both of them have asynchronous versions. We will
use the Find method in our example, as shown in the following code snippet:

private static async Task<Company> FindCompanyAsync(int companyId)

{

 using (var context = new Context())

 {

 return await context.Companies

 .FindAsync(companyId);

 }

}

We see the familiar asynchronous pattern in this code snippet as well. We just use
FindAsync, which takes the exact same parameters as the synchronous version. In
general, all asynchronous methods in Entity Framework have the same signature,
as far as parameters are concerned, as their synchronous counterparts.

Here is how the same method looks in VB.NET:

Private Async Function FindCompanyAsync(companyId As Integer) As
Task(Of Company)

 Using context = New Context()

 Return Await context.Companies.FindAsync(companyId)

 End Using

End Function

As we mentioned before, aggregate functions have the async versions as well.
For example, here is how we compute count asynchronously:

private static async Task<int> ComputeCountAsync()

{

 using (var context = new Context())

 {

 return await context.Companies

 .CountAsync(c => c.IsActive);

 }

}

We use the CountAsync method and pass in a condition, which is exactly what we
would have done if we were to call the synchronous version, the Count function.
Here is how the code looks in VB.NET:

Private Async Function ComputeCountAsync() As Task(Of Integer)

 Using context = New Context()

 Return Await context.Companies.CountAsync(_

Working with Views, Stored Procedures, the Asynchronous API, and Concurrency

[118]

 Function(c) c.IsActive)

 End Using

End Function

If you would like to loop asynchronously through query results, you can also use
ForEachAsync, which you can attach to any query as well. For example, here is how
we can loop through Companies:

private static async Task LoopAsync()

{

 using (var context = new Context())

 {

 await context.Companies.ForEachAsync(c =>

 {

 c.IsActive = true;

 });

 await context.SaveChangesAsync();

 }

}

In the preceding code, we run through all type Companies, but we could have just as
easily run through a result of any query, after applying an order or a ilter. Here is
what this method looks like in VB.NET:

Private Async Function LoopAsync() As Task

 Using context = New Context()

 Await context.Companies.ForEachAsync(_

 Sub(c)

 c.IsActive = True

 End Sub)

 Await context.SaveChangesAsync()

 End Using

End Function

We followed the accepted naming conventions, adding the Async sufix to
our asynchronous functions. Usually, these functions would be called from a
method that is also lagged as async and we would have awaited a result of our
asynchronous functions. If this is not possible, we can always use the Task API
and wait for a task to complete. For example, we can access the result of a task,
causing the current thread to pause and let the task inish executing, as shown
in the following code snippet:

Console.WriteLine(

 FindCompanyAsync(companyId).Result.CompanyName);

Chapter 6

[119]

In this example, we call the previously deined function and then access the Result
property of the task to cause the asynchronous function to inish executing. This is
how the code would look in VB.NET:

Console.WriteLine(FindCompanyAsync(companyId).Result.CompanyName)

When deciding whether or not to use the asynchronous API, we need to research
and make sure that there is a reason to do so. We should also ensure that the entire
calling chain of methods is asynchronous to gain maximum coding beneits. Finally,
resort to the Task API when you need to.

Handling concurrency
Most applications have to deal with concurrency. Concurrency is a circumstance
where two users modify the same entity at the same time. There are two types of
concurrency handling: optimistic and pessimistic. There is no concurrency where the
last user always wins. When this happens, there is a silent data loss, where the irst
user's changes are overwritten without notice, so it is not frequently used. In the case
of pessimistic concurrency, only one user can edit a record at a time and the second
user gets an error, stating that they cannot make any changes at that time. Although
this approach is safe, it does not scale well and results in poor user experience. As
a result, most applications use optimistic concurrency, allowing multiple users to
make changes, but checking for a concurrency situation at the time changes are being
saved. At that time if two users changed the same row of data, applications issue an
error to the second user, letting them know that they need to redo the changes. Some
developers at times go an extra mile and assist users in redoing their changes. Entity
Framework comes with a built-in optimistic concurrency API. A developer has to pick
a column that will play the role of the row version. The row version is incremented
every time the row of data is updated. Any time an update query is issued against a
row with concurrency columns, the current row version is put into the where clause;
thus if data has changed since it was irst retrieved, no rows are updated as the result
of such SQL statement. Entity Framework checks the number of rows updated, and if
this number is not 1, a concurrency exception is thrown. In the case of the SQL Server
RowVersion, also known as TimeStamp, a column is used for concurrency. SQL Server
automatically increments this column for all updates to each row. The matching
type for the TimeStamp column in SQL Server is byte array in .NET. Let's start
by updating our Person object to support concurrency. We are going to omit some
properties for brevity, as shown in the following code snippet:

public class Person
{
 public int PersonId { get; set; }
 public byte[] RowVersion { get; set; }
}

Working with Views, Stored Procedures, the Asynchronous API, and Concurrency

[120]

We added a new property called RowVersion using the Byte array as the type.
Here is how this change looks in VB.NET:

Public Class Person

 Property PersonId() As Integer

 Property RowVersion() As Byte()

End Class

We also need to conigure this property using our EntityTypeConfiguration class
to let Entity Framework know that we added a concurrency property, as shown in
the following code snippet:

public class PersonMap : EntityTypeConfiguration<Person>

{

 public PersonMap()

 {

 Property(p => p.RowVersion)

 .IsFixedLength()

 .HasMaxLength(8)

.HasDatabaseGeneratedOption(DatabaseGeneratedOption.Computed)

 .IsRowVersion();

 }

}

We omitted some properties again, but conigured RowVersion to be our concurrency
column. We lagged it as such by calling the IsRowVersion method, as well as
coniguring the size for SQL Server and lagging it for Entity Framework as database
generated. Technically, we only need to call the IsRowVersion method, but this code
makes it clear as to how the property is conigured. We can and should remove other
method calls, as they are not needed. Here is how VB.NET code looks:

Public Class PersonMap

 Inherits EntityTypeConfiguration(Of Person)

 Public Sub New()

 Me.Property(Function(p) p.RowVersion) _

 .IsFixedLength() _

 .HasMaxLength(8) _

 .HasDatabaseGeneratedOption(DatabaseGeneratedOption.
Computed) _

 .IsRowVersion()

 End Sub

End Class

Chapter 6

[121]

Now we are ready to write some code to ensure our concurrency coniguration
works. It is hard to simulate two users in a single routine, so we will play some
tricks, using the knowledge we gained previously, as shown in the following code:

private static void ConcurrencyExample()

{

 var person = new Person

 {

 BirthDate = new DateTime(1970, 1, 2),

 FirstName = "Aaron",

 HeightInFeet = 6M,

 IsActive = true,

 LastName = "Smith"

 };

 int personId;

 using (var context = new Context())

 {

 context.People.Add(person);

 context.SaveChanges();

 personId = person.PersonId;

 }

 //simulate second user

 using (var context = new Context())

 {

 context.People.Find(personId).IsActive = false;

 context.SaveChanges();

 }

 //back to first user

 try

 {

 using (var context = new Context())

 {

 context.Entry(person).State = EntityState.Unchanged;

 person.IsActive = false;

 context.SaveChanges();

 }

 Console.WriteLine("Concurrency error should occur!");

 }

 catch (DbUpdateConcurrencyException)

 {

 Console.WriteLine("Expected concurrency error");

 }

 Console.ReadKey();

}

Working with Views, Stored Procedures, the Asynchronous API, and Concurrency

[122]

This method is a bit lengthy, so let's walk through it. In the irst few lines, we created
a new person instance and added it to the database by adding it to the People
collection, and then calling SaveChanges on our context. We then pretend to be
a second user, updating the same row by calling the Find method, changing one
property, and then issuing the SaveChanges call. This action will increment the row
version inside the database. Next, we are pretended to be the irst user, using the
original person instance that still has the original row version value. We set the state
to unmodiied, thus attaching it to the context. Then, we changed a single property
and saved the changes again. This time we get a speciic concurrency exception of the
DbUpdateConcurrencyException type. This is how the code looks in VB.NET:

Private Sub ConcurrencyExample()

 Dim person = New Person() With {

 .BirthDate = New DateTime(1970, 1, 2),

 .FirstName = "Aaron",

 .HeightInFeet = 6D,

 .IsActive = True,

 .LastName = "Smith"

 }

 Dim personId As Integer

 Using context = New Context()

 context.People.Add(person)

 context.SaveChanges()

 personId = person.PersonId

 End Using

 'simulate second user

 Using context = New Context()

 context.People.Find(personId).IsActive = False

 context.SaveChanges()

 End Using

 'back to first user

 Try

 Using context = New Context()

 context.Entry(person).State = EntityState.Unchanged

 person.IsActive = False

 context.SaveChanges()

 End Using

 Console.WriteLine("Concurrency error should occur!")

 Catch exception As DbUpdateConcurrencyException

 Console.WriteLine("Expected concurrency error")

 End Try

 Console.ReadKey()

End Sub

Chapter 6

[123]

This exception handling code is something we always need to write when
implementing concurrency. We need to show the user a nice descriptive message.
At that point, they will need to refresh their data with the current database values
and then redo the changes. If we, as developers, want to assist users in this task, we
can use Entity Framework's DbEntityEntry class to get the current database values.

Self-test questions
Q1. You cannot get data from a view inside Entity Framework, true or false?

Q2. Which database method can be used to query and retrieve data using SQL
statements?

1. ExecuteSqlCommand

2. Execute

3. SqlQuery

Q3. You have to write all SQL Server stored procedures by hand if you want to map
CRUD operations for an entity type to a set of stored procedures, true or false?

Q4. There is no downside to using the asynchronous API, true or false?

Q5. Which method can be used to asynchronously save changes in DbContext?

1. SaveChanges

2. SaveChangesAsync

3. SaveChangesAsynchonously

Q6. What method needs to be called to mark a property as a concurrency property
inside the entity type coniguration class?

1. RowVersion()

2. HasDatabaseGenerationOption()

3. IsRowVersion()

Q7. What exception type indicates a concurrency error?

1. DbUpdateConcurrencyException

2. ConcurrencyException

3. OptimisticConcurrencyException

Working with Views, Stored Procedures, the Asynchronous API, and Concurrency

[124]

Summary
Entity Framework provides a lot of value to the developers, allowing them to use
C# or VB.NET code to manipulate database data. However, sometimes we have to
drop a level lower, accessing data a bit more directly through views, dynamic SQL
statements and/or stored procedures. We can use the ExecuteSqlCommand method
to execute any arbitrary SQL code, including raw SQL or stored procedure. We can
use the SqlQuery method to retrieve data from a view, stored procedure, or any
other SQL statement, and Entity Framework takes care of materializing the data for
us, based on the result type we provide. It is important to follow best practices when
providing parameters to those two methods to avoid SQL injection vulnerability.

Entity Framework also supports environments where there are requirements to
perform all updates to entities via stored procedures. The framework will even
write them for us, and we would only need to write one line of code per entity for
this type of support, assuming we are happy with naming conventions and coding
standards for such procedures.

Entity Framework now provides support for asynchronous operations, including
both query and updates. Developers must take care when using such techniques to
avoid potential performance implications. In some technologies, the asynchronous
API its really well, the Web API being a good example.

We must always take care of our data, avoiding data loss at all costs. This is where
concurrency handling built into Entity Framework comes in. It allows us to provide
users with appropriate feedback, while helping us to avoid silent data loss. We just
need to mark a property as concurrency check property, and Entity Framework
will throw an exception when two users make changes to the same entity at the
same time. We just need to handle this exception and provide users with an
application-speciic error message.

In the next chapter, we will conclude our discussion of Entity Framework by learning
how to update production database structure without data loss using, migrations.

Chapter 7

[125]

Database Migrations and

Additional Features
In this chapter, you will learn how to make structural database changes using the
Entity Framework migrations API. Previously, we used an initializer to drop and
recreate the database to handle such changes. Now, you will learn how to use Entity
Framework migrations to achieve the same end result without data loss. We will
also discuss the process of integrating Entity Framework with an existing database,
instead of allowing the framework to create a database from scratch. We will also
take a look at some additional features in Entity Framework that we need to be
aware of that are not commonly used on a daily basis.

In this chapter, we will cover how to:

• Enable migrations on a project that uses Entity Framework

• Use automatic migrations

• Create explicit migrations

• Add database artifacts, such as indexes

• Add migrations to an existing database

• Use additional Entity Framework features (not covered in previous chapters)

Database Migrations and Additional Features

[126]

Enabling and running migrations
Entity Framework is an ORM tool, thus it works with a database. We already saw
that we are faced with the challenge of keeping an RDBMS structure and our Entity
Framework entities synchronized. Previously, we used an initializer to drop and
recreate the database to have the new structure match our context and entities.
Obviously, we cannot do this in production. So, we have two choices. We can
pick another tool, for example, SSDT for SQL Server, to separately maintain and
upgrade database artifacts. The second choice, the one we are going to work on in
this chapter, is to use Entity Framework itself to update the database at such times
when the structure changes. In order to utilize this technology, we have to enable
migrations on our project.

Previously, we used a single project for our application and Entity Framework's
entity classes. This is not a common structure for typical non-trivial solutions. It is
more likely that we would separate Entity Framework objects into their own project.
This project would be of the type class library. We will do so in the sample
project we are going to work on in this chapter. We can create this additional Data
project following the same simple steps as we did before. We need to add the Entity
Framework NuGet package reference to the new class library project, and write
entity classes and the context class. Then, we can add this project as a reference to
our application's main project, the console app, in the downloadable sample.

The next step is to enable migrations for our Data project. We will use the NuGet
Package Manager Console window we referred to in previous chapters. We can
pull up this window by navigating to Tools | NuGet Package Manager | Package
Manager Console from the Visual Studio menu. Once this window is visible, select
the Data project from the project drop-down menu, then type Enable-Migrations
in the window, and press the Enter key, as shown in the following screenshot:

Chapter 7

[127]

If we need to get detailed help for the PowerShell commandlet, Enable-Migrations,
we just type Get-Help Enable-Migrations. We will ind the parameters'
information, which in part enables developers to point migrations to a speciic
project or connection string. In our case, we did not need to specify any parameters
because we added the target connection string to the coniguration ile inside our
Data project. After we run this command, we will see an additional folder created in
our project called Migrations. There will be a class inside that folder that speciies
migration coniguration, tying it to our context class through the generic type
parameter, as shown in the following code:

internal sealed class Configuration :
DbMigrationsConfiguration<Chapter7.CSharp.Data.Context>

{

 public Configuration()

 {

 AutomaticMigrationsEnabled = false;

 }

 protected override void Seed(Chapter7.CSharp.Data.Context
context)

 {

 }

}

Here is the same class in VB.NET as follows:

Friend NotInheritable Class Configuration

 Inherits DbMigrationsConfiguration(Of Context)

 Public Sub New()

 AutomaticMigrationsEnabled = False

 End Sub

 Protected Overrides Sub Seed(context As Context)

 End Sub

End Class

This class also has the Seed method, which is invoked every time migrations are
applied to a database, enabling developers to perform miscellaneous tasks, such
as inserting seed data. Since this method can be run many times on a database,
we need to ensure that seeded data is not duplicated. Thus, we need to check
whether our data already exists in the target database before inserting it.

Database Migrations and Additional Features

[128]

Now we are ready to proceed with the database creation. If we are working locally,
simply creating and/or upgrading the local database, we can continue using the
Package Manager Console window. This time we can use the Update-Database
commandlet. Again, we can use the Get-Help commandlet to take a look at the
parameters we can work with. At this point, we are interested in the -script
parameter. This parameter is useful, as it will generate a migration SQL script that
we can hand to our DBA or run ourselves. When the Update-Database commandlet
is run, it will compare the structure deined by our entity classes and the Context
class against the physical database. In our case, we can omit parameters because we
copied the connection string into our Data project and we only have a single class
that inherits from DbContext in the project. If we run the command now, we will
get the following error, shown in the following screenshot:

This error refers to the setting that allows us to enable the automatic migration
generation. Let's update our migration's coniguration class to enable automatic
migrations, just as the error informs us. Then, we can build the solution and rerun
the commandlet to create the script. We will see that the SQL script will open in
Visual Studio. We can then create the target database by running the script. This
functionality is useful when we are working with a DBA who needs to review our
upgrade scripts. Since we do not need to do this locally, let's create the local database
by running the Update-Database commandlet without any parameters. No errors
should be shown. If we now open SQL Server Management Studio (SSMS), we will
see our new Chapter 7 database! Congratulations, we just used Entity Framework
migrations for the irst time!

Automatic migrations are really easy to use. We can just make changes and rerun
Update-Database to propagate the changes to our SQL Server database. To verify
that there is no data loss, let's manually add a row to our People table using SSMS,
as shown in the following screenshot:

Chapter 7

[129]

Let's try the following now. We are going to add a new property to the Person class,
called Age, which is a numeric property, and rerun Update-Database. The class
looks as follows:

public class Person

{

 public int PersonId { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public int Age { get; set; }

}

This is how the class looks in VB.NET:

Public Class Person

 Property PersonId() As Integer

 Property FirstName() As String

 Property LastName() As String

 Property Age() As Integer

End Class

After we update the database, we will see that our data is preserved. Our existing
row is still there, and the Age column value is 0. If we look at the table structure, we
will notice our new Age column, which has the database default value of 0. This is
what Entity Framework does for us. For non-nullable columns, it attempts to pick
a default value, which in fact is the type's default. Let's add a non-nullable string
property with a maximum size of 50 characters, called NickName. We remember that
we need to update the entity coniguration class to do so. Say, we accidentally made
a mistake, and we want to make the NickName column smaller, say 40 characters.
Let's make this change and attempt to update the database again. We will see an
error as shown in the following screenshot:.

Database Migrations and Additional Features

[130]

We now need to use another parameter for Update-Database, called Force.
It forces change to run, even when it results in potential data loss. We can run
Update-Database –Force to update our database this time. Alternatively, we can
just enable support for data loss as Entity Framework exposes this setting, just like
the error text tells us.

As we saw, simple scenarios can be easily accommodated via automatic migrations.
This approach falls apart when our migrations get more complicated, as we will see
in the following content.

Using the migrations API
Let's add non-nullable date property:

public DateTime DateAdded { get; set; }

This is how the new property looks in VB.NET:

Property DateAdded() As DateTime

We want this new column to default to the current date. If we update our database
again, we will see that the new column will have a default of 1/1/1900. This is not
what we want, and here is when we need to switch to explicit migrations. In general,
explicit migrations are more lexible than automatic ones. Although we need to write
more code, we have far more control over the low of migrations, their names, and
the rollback process. If we start mixing the two approaches, we may get confused.
For example, we would have to search the project to see if a column was added by
automatic or manual migration. So, in order to provide consistency and
for maintenance purposes, we may want to standardize on explicit migrations,
and at that point, we should disable automatic migrations.

In order to get started with this approach, let's drop our sample database in SSMS,
disable automatic migrations using the property we saw before on our migration
coniguration class, and create our irst manual migration.

In order to create our initial database migration, we need to use a new commandlet,
Add-Migration. Here is how our command looks:

Add-Migration InitialMigration

InitialMigration is just a name; one can provide a different name if desired.
This action will add a new class to our Migrations folder. The physical ile will
be named something similar to 201501012315236_InitialMigration. The ilename
is preixed with the time when the migration was created, helping us organize
migrations within the folder.

Chapter 7

[131]

The generated class looks as follows:

public partial class InitialMigration : DbMigration

{

 public override void Up()

 {

 CreateTable(

 "dbo.Companies",

 c => new

 {

 CompanyId = c.Int(nullable: false, identity:
true),

 Name = c.String(),

 })

 .PrimaryKey(t => t.CompanyId);

 CreateTable(

 "dbo.People",

 c => new

 {

 PersonId = c.Int(nullable: false, identity:
true),

 FirstName = c.String(nullable: false,
maxLength: 30),

 LastName = c.String(nullable: false,
maxLength: 30),

 NickName = c.String(nullable: false,
maxLength: 40),

 Age = c.Int(nullable: false),

 })

 .PrimaryKey(t => t.PersonId);

 }

 public override void Down()

 {

 DropTable("dbo.People");

 DropTable("dbo.Companies");

 }

}

Database Migrations and Additional Features

[132]

Let's take a closer look at the generated code. We are using the base class called
DbMigration to implement our migration. We override the Up and Down methods.
The Up method moves our database structure forward, creating two new tables in
our case. The Down method helps us revert the changes in case we discover software
issues and want to rollback to the previous structure which may be required at a
later date. Let's update the database one more time by running Update-Database.
We will notice that our database was created along with two new tables.

If we take a closer look at the created database, we will see another table,
_MigrationHistory. Here is what the data looks like in this table, as shown in
the next screenshot:

We see that the migration identiier (MigrationId) corresponds to the ile name for
our initial migration. The Model column contains the context hash value, uniquely
identifying it for the Entity Framework engine. Finally, the ContextKey column
contains the class name for our context's coniguration class.

Let's go back to the previous example and add the DateAdded property back to
our class. Then, let's create a new migration for this new property, again using
the Add-Migration commandlet, as shown in the following code line:

Add-Migration PersonDateAdded

Here is the code that was generated by Entity Framework:

public partial class PersonDateAdded : DbMigration

{

 public override void Up()

 {

 AddColumn("dbo.People", "DateAdded", c =>
c.DateTime(nullable: false));

 }

 public override void Down()

 {

 DropColumn("dbo.People", "DateAdded");

 }

}

Chapter 7

[133]

We already saw the AddTable method. Now, we also see the AddColumn method.
It takes the table and column names as well as the column type, speciied via the
corresponding .NET type. We are going to add a custom default value this time.
Migrations support hardcoded default values as well as the database engine's default
values that are speciied as strings. In order to specify the hardcoded default,
we can use the defaultValue parameter. We will use defaultValueSql instead,
as shown in the following code snippet:

public partial class PersonDateAdded : DbMigration

{

 public override void Up()

 {

 AddColumn("dbo.People", "DateAdded",

 c => c.DateTime(nullable: false, defaultValueSql:
"GetDate()"));

 }

 public override void Down()

 {

 DropColumn("dbo.People", "DateAdded");

 }

}

We used the SQL server GetDate function to populate the newly added column
with the current date, as per our business requirements. The AddColumn method and
column coniguration classes support a variety of other parameters besides a default
value, using the ColumnModel class. Essentially, we can specify many of the same
values that we can in our EntityTypeConfiguration class. All parameters that can
be discovered based on our EntityTypeConfiguration class will be scripted for us
automatically by Entity Framework migrations. The default value is something we
can add manually.

The DbMigration base class, which is used to write migrations, supports maintenance
of many database artifacts besides columns and tables. We can perform the following:

• Create, drop, and alter stored procedures

• Add and drop foreign keys

• Move artifacts, such as tables and stored procedures, between schemas

• Rename objects, such as tables, procedures, and columns
• Maintain primary key constraints

• Create, rename, and drop indexes

Database Migrations and Additional Features

[134]

Finally, when we encounter a unique circumstance where none of the stated methods
work, we can use either the Sql or SqlFile method. Just as their names implies, they
allow us to execute arbitrary SQL statements as part of any migration. The former
method takes a string that represents SQL statement(s). The latter takes a ile name,
whereas the ile itself contains any number of SQL statements.

All migrations, by default, run as part of an overarching transaction, ensuring
that either all migration operations succeed, or none. This is certainly true for SQL
Server. This may or may not be the case for other RDBMSes. For example, Oracle
does not support transactions on structural operations, deined by Data Deinition
Language (DDL). DDL is simply a term that refers to SQL statements that deine
data structures. There is also Data Manipulation Language (DML), which refers
to CRUD operation statements or other statements that manipulate the data.

We do not have to have pending changes to create a migration. For example, in order
to create an index, no pending changes are needed. Alternatively, we can use the
API introduced in Entity Framework 9.6.1, which enables us to create indexes via the
model builder API. For the purposes of this example, we will use the migration API.
We still follow the same steps as before, running the Add-Migration commandlet.
This will add a migration to our project, but both Up and Down methods will be empty.
Now, we just need to add some custom code to create the desired index, as shown in
the following code snippet:

public partial class PersonPersonNamesIndex : DbMigration
{
 public override void Up()
 {
 CreateIndex(
 "People",
 new[] { "LastName", "FirstName" },
 name: "IX_PERSON_NAMES");
 }
 public override void Down()
 {
 DropIndex("People", "IX_PERSON_NAMES");
 }

}

In this migration, we create a new index with the name of IX_PERSON_NAMES on
the People table that contains two columns: LastName and FirstName. In the Down
method, we revert this change, dropping an index. Here is how the code looks in
VB.NET:

Partial Public Class PersonPersonNamesIndex

 Inherits DbMigration

 Public Overrides Sub Up()

Chapter 7

[135]

 CreateIndex(_

 "People", _

 New String() {"LastName", "FirstName"}, _

 name:="IX_PERSON_NAMES")

 End Sub

 Public Overrides Sub Down()

 DropIndex("People", "IX_PERSON_NAMES")

 End Sub

End Class

Until now, we have not seen the Down method being used. It turns out that Entity
Framework migrations support target migration as part of its API, allowing
developers to move the database structure to any version, that is, migration.
Migrations are sorted by their time of creation, essentially the ile name, coded into
the migration designer ile. You can see that each migration contains three iles
by expanding any migration in the Solution Explorer, as shown in the following
screenshot. The irst ile is the actual migration code. The second ile, containing
the word Designer, speciies the migration identiier and a few other properties.
The third ile, resource ile, contains values such as the schema name and migration
target hash.

Let's now try to drop the index by specifying the target migration to be the one just
before our index-creating migration. Its name is PersonDateAdded from the previous
example. To do so, we just need to run the Update-Database commandlet with the
target migration parameter, as shown here:

Update-Database -TargetMigration "PersonDateAdded"

Entity Framework will immediately inform us which migrations were reverted, in
our case, just the index-creating migration. If we now look at the database structure,
we will see that the index no longer exists.

Applying migrations
So far, we applied all migrations using Visual Studio. This works really well when
developers are working on features inside Visual Studio. However, when it comes to
updating, testing, or production environments, this approach does not really work.

Database Migrations and Additional Features

[136]

In order to update such software installations, we are given more options, which are
as follows:

• Generate the changes script

• Use migrate.exe

• Use the migrating initializer

Applying migrations via a script
We can easily generate a script by running the Update-Database commandlet with
the Script parameter inside the same Package Manager Console window, using the
following code line:

Update-Database -Script

As soon as this commandlet completes, the generated script will be opened.
It will contain all the required changes to bring the structure of the target database
up to date. We just need to give this script to our DBA, who will maintain our
production environment.

We need to specify the correct connection string to the database that
matches our target environment, since the migrations API compares
the live database with the context from the data folder. We can
use either another parameter to Update-Database and provide
this connection string, or use a proper connection string in the
coniguration ile that is used by our Data project.

Applying migrations via migrate.exe
Migrate.exe is a utility that is shipped with Entity Framework. It will be located in
the same NuGet package folder as the Entity Framework DLL itself. We just need to
distribute this utility with the binaries folder of our application to allow the utility
to ind all the assemblies it needs to work. This utility takes the same parameters as
the Update-Database commandlet, for example:

migrate.exe Chapter7.VB.data

/connectionString="Data Source=.;Initial Catalog=Chapter7;Integrated

 Security=SSPI"

/connectionProviderName="System.Data.SqlClient"

/startupConfigurationFile=Chapter7.VB.exe.config

Chapter 7

[137]

We separated the command line into multiple lines for clarity, putting each
argument on its own line for readability. The irst argument is the assembly
containing our context and migrations. Then, we specify the connection string,
provider, and coniguration ile. We need the coniguration ile because our context's
constructor is set up to take the connection string name from the coniguration ile.

Applying migrations via an initializer
We already saw how to use an initializer to recreate a database when structural
changes are required. Entity Framework comes with an initializer base
class that can be used to apply pending migrations. The base class is called
MigrateDatabaseToLatestVersion. Here is how we deine our initializer:

public class Initializer :

 MigrateDatabaseToLatestVersion<Context, Configuration>

{

}

This is a very simple class; there is no code we need to write for it, unless we want
to use the InitializeDatabase method, which allows us to run some code when
migrations are applied. This method gets an instance of our DbContext object, thus
we can add more data to the database in this method or perform other functions.
Here is how this code looks in VB.NET:

Public Class Initializer

 inherits MigrateDatabaseToLatestVersion
(Of Context, Configuration)

End Class

Alternatively, we can use our migration coniguration class, which has the familiar
Seed method to populate our database with some seeded data.

Now, we just need to plug this new initializer into Entity Framework at the
application startup time and call the context to force migrations to be applied,
as shown in the following code snippet:

Database.SetInitializer(new Initializer());

using (var context = new Context())

{

 context.Database.Initialize(true);

}

Database Migrations and Additional Features

[138]

We already saw similar code when we worked with other initializers. Here, we
also call the Initialize method on the database to force schema veriication and
migrations application on an existing database. If the database does not exist, it will
be created. Here is how the code looks in VB.NET:

Database.SetInitializer(new Initializer)

Using context = new Context

 context.Database.Initialize(True)

End Using

We do not have to call the initialization method at the application start up time;
it will automatically run during the irst query execution. This code just makes
migration application time more predictable.

Adding migrations to an existing

database
Sometimes, we have a use case where we want to add Entity Framework migrations
to an existing database so that we can move from one way to handle schema changes
to the migrations API. Of course, since our database is already in production, we need
to let migrations know that we are starting with a known state. This is quite easy to
do with another parameter to the Add-Migration commandlet: –IgnoreChanges.
When we issue this command, Entity Framework will create an empty migration.
It will assume that your model deined by context and entities are compatible with
our database. Once you update the database by running this migration, no schema
changes will take place, but a new row will be added to the _MigrationHistory table
for this initial migration. Once this is accomplished, we can safely switch to the Entity
Framework migration API to maintain schema changes from that point on.

Some database systems do not support underscore as the irst
character for a table name. Entity Framework allows developers
to customize this name.

Another use case we want to address is when we also want to create entities for this
existing database, thus adding Entity Framework not only to an existing database, but
also to an existing software. This task can be accomplished with Entity Framework
Power Tools. This Visual Studio extension is available on Visual Studio gallery at
https://visualstudiogallery.msdn.microsoft.com/72a60b14-1581-4b9b-

89f2-846072eff19d/. Once we install this extension, we will see a new option
available on the right-click menu, Reverse Engineer Code First, at the project level.

https://visualstudiogallery.msdn.microsoft.com/72a60b14-1581-4b9b-89f2-846072eff19d/
https://visualstudiogallery.msdn.microsoft.com/72a60b14-1581-4b9b-89f2-846072eff19d/

Chapter 7

[139]

All developers need to do is point this to the database they want to support with Entity
Framework, and this tool will scaffold entities, context, and coniguration classes for all
entity classes for all tables in the database. We can also use Entity Framework Tools,
which can be downloaded from the download center at http://www.microsoft.
com/en-us/download/details.aspx?id=40762. This set of tools supports Code-First
generation from a database as well. In order to use this functionality, we just need to
select ADO.NET Entity Data Model from the Add New Item dialog and then follow
the steps shown by the wizard.

Additional Entity Framework features
Let's take a look at a few more features that do not neatly it into anything we
have talked about thus far. They are not frequently used, but it is important that
developers know that these features exist.

Custom conventions
Sometimes, we want to make global changes that are applied to many entity types or
tables. For example, we want all decimal ields be of a certain size by default, unless we
specify otherwise. We may also want to globally set all string properties to be mapped
to non-Unicode columns because our application is intended only for English-speaking
users. We can accomplish such tasks by using the global coniguration API or custom
conventions. Inside conventions, we also have access to the public mapping API,
which allows us to inspect current mappings between entities to database tables
and columns. For example, here is how we can set all string properties to be stored
as non-Unicode columns in our database:

protected override void OnModelCreating(DbModelBuilder
modelBuilder)

{

 modelBuilder.Properties<string>()

 .Configure(config => config.IsUnicode(false));

}

We use our context class, which inherits from DbContext to accomplish our goal.
Here is how the code looks in VB.NET:

Protected Overrides Sub OnModelCreating(ByVal modelBuilder As
DbModelBuilder)

 modelBuilder.Properties(Of String) _

 .Configure(Function(p) p.IsUnicode(False))

End Sub

http://www.microsoft.com/en-us/download/details.aspx?id=40762
http://www.microsoft.com/en-us/download/details.aspx?id=40762

Database Migrations and Additional Features

[140]

We could also write the same code as a custom convention and add it to the
conventions collection inside model builder. In order to do so, we will create a class
that inherits from the Convention base class, override the constructor, then use the
same preceding code, call the Properties method of the Convention class instead
of modelBuilder. If you like, feel free to practice by writing such conventions.

We must always remember to add custom conventions to the
conventions collection inside modelBuilder.

These types of conventions are referred to as coniguration conventions. Entity
Framework has the model convention API to create two types of conventions:
the store model and conceptual model conventions. The purpose is still the same.
These conventions allow us to apply changes globally to many places in our model,
instead of entity by entity and property by property. We can also write multiple
conventions per .NET type, as Entity Framework allows us to control the order
in which conventions are applied.

Geospatial data
Beside scalar types, such as string or decimal, Entity Framework also supports geo
spatial data via the DbGeometry and DbGeography types in .NET. These types have
built-in support and proper translation to support geospatial queries, such as the
distance between two points on a map. These speciic query methods are available
under the geospatial properties of our entities as part of any query. In other words,
we still write .NET code when we work with spatial types.

Dependency injection and logging
Entity Framework now implements the service location pattern, thus enabling
dependency injection. Dependency injection is used to support coniguration
methods. For example, we can create our own dependency resolver that uses
our custom approach to create common Entity Framework objects, such as
IDbConnectionFactory. We can read documentation for Entity Framework
to ind out what classes or interfaces we can inject into a running application,
and force Entity Framework to use them instead of the default implementations.
For more information, read the MSDN article, available at http://msdn.microsoft.
com/en-us/data/jj680697.

http://msdn.microsoft.com/en-us/data/jj680697
http://msdn.microsoft.com/en-us/data/jj680697

Chapter 7

[141]

We can also inject a custom logger into Entity Framework, so that we can log all
actions executed by Entity Framework to our custom logging source. The Database
object has the Log property that developers can set in order to create a custom log.
This Log property expects a method with one string parameter. Set it to Console.
Write for your console application as an experiment. If you don't like the format of
such logging, a custom formatter can be also created.

Startup performance
Startup time can be relatively long for large databases and contexts at times. Entity
Framework Power Tools allows us to speed up this process by exposing an ability
to us to pregenerate views. We are not talking about database views in this case.
Instead, we are referring to statements that entity framework generates to be able
to create CRUD operation statements. All we need to do to in order to generate
these precompiled views is right-click on a ile that contains the class derived from
DbContext after we install power tools and select the Generate Views action under
the Entity Framework menu. This action will create all the code that needs to be
compiled into our assembly.

Multiple contexts per database
We do not always have to put all collections that map to tables inside a single
context. There are a few advantages to using multiple DbContext classes.
This approach will likely reduce the start up time, since this time is generally
proportionate to a number of collections inside the context that is being accessed
for the irst time. It will also reduce the surface of data exposed by each context to
developers. Also, it will help developers organize the data into data modules. Of
course, if we use migrations, we still need a context that contains every collection
or table, as we will use this context for migrations support. This would be the only
context we actually need to conigure. When we use multiple contexts and save
data in a single transaction to multiple contexts, we need to take a few extra steps.
Each SaveChanges call is transactional on its own, but we need to create a single
overarching transaction across all SaveChanges calls. We may ind it easier to use
a single large DbContext class with all the collections in it for save operations that
involve multiple modules.

Database Migrations and Additional Features

[142]

Self-test questions
Q1. You have to enable migrations on a project to take advantage of schema updates
built into Entity Framework, true or false?

Q2. Automatic migrations work 100 percent of the time; there is no reason to ever
create explicit migrations, true or false?

Q3. You do not need access to the target database in order to generate the migrations
script to the latest version, true or false?

Q4. In order to add migrations to an existing production database, you need to do
which of the following?

1. Just enable automatic migrations

2. Create an initial migration, scripting the entire database

3. Create an initial empty migration

Q5. You cannot use Visual Studio in order to update a local development
environment, true or false?

Q6. Entity Framework migrations have no support for stored procedures, so you
must use other tools to achieve this task, true or false?

Q7. In order to set a common precision and scale for all decimal ields across all the
entity classes and tables, you have to specify this size for every such ield for each
entity, true or false?

Q8. If you want to log the commands ired against your RDBMS by Entity Framework,
you can only use database tools, such as the SQL Server proiler, true or false?

Q9. You have to use stored procedures in order to determine a distance between two
geographic points, stored in our database using coordinates speciied by SQL Server
geography data types, true or false?

Chapter 7

[143]

Summary
In this chapter, we saw how to use Entity Framework to maintain a database
schema. You learned that we can enable migrations on a project by running the
Enable-Migrations commandlet inside the NuGet package manager console.
Once we enabled migrations, which created a coniguration class, we could start
moving the schema of our database forward. Developers have two options for
migrations. They can rely on automatic migrations or create explicit migrations.
Automatic migrations have limitations. Some tasks, such as setting a default value,
are not possible. In order to ensure migrations consistency, developers may opt to
only use explicit migrations. All explicit migrations inherit from the DbMigration
class, which contains methods to allow developers to update a schema of the
target database. This class exposes a method that allows us to create or drop tables,
create, drop and alter columns, create and drop indexes, and so on. Finally, when
an appropriate method is not found or when we need to simply make data only
changes, we can use the Sql method to run arbitrary SQL command(s). If we need
to enable migrations on an existing database, we simply need to create one empty
migration, thus marking our context as up to date with our database. Once this
empty initial migration is created, we can start writing migrations as usual. We can
update a database we use in our development environment quite easily, using the
Update-Database commandlet inside Visual Studio. When it comes to updating a
production database, this strategy does not work. Thus, we have to use a different
approach. We can use an initializer to migrate the database. We can use migrate.
exe or we can generate a migration script inside Visual Studio. If we use script
generation, we must have access to the production database, or at least an
empty database with the same schema.

In this book, we did not cover all the details of Entity Framework, as the surface
of its API is quite large. We did cover all the features that developers use on a
daily basis. There are some other really cool features that we will encounter once
in a while. So, we needed to take a quick look at such features. Entity Framework
supports geospatial data now. We can use logging capabilities in order to capture
the details of the commands that Entity Framework creates to be run against the
database. We also can speed up the startup time of Entity Framework by using
multiple context classes or pregenerating views.

This concludes our adventure into the exciting world of data access with Entity
Framework. You learned how to maintain database structures and manipulate and
query data by writing C# or VB.NET code. You have learned a lot of information
that makes us better data access developers in the Microsoft world.

[145]

Answers to Self-test

Questions

Chapter 1: Introducing Entity Framework
Q1. Impedance mismatch between RDBMS and object-orientated programming is the
main problem that ORM tools solve. They enable developers to talk to databases in
the same way they talk to any other object, using the same programming language,
such as C# or VB.NET.

Q2. This statement is false. LINQ can be used to create queries in Entity Framework,
thus enabling developers to use C# or VB.NET instead of the SQL language.

Q3. Entity Framework Migrations are used to script and apply structural changes to
the database, thus moving it from one version of your software to the next.

Q4. DbContext is the abstraction that represents a database you are working with
using Entity Framework Code-First. It has collection-based properties that represent
tables in the database.

Q5. The answer is false. As Entity Framework uses the provider architecture;
it can work with any database that has a provider written for it. At this point,
all major database engines are supported, such as MySQL, DB2, and Oracle.

Answers to Self-test Questions

[146]

Chapter 2: Your First Entity Framework

Application
Q1. DbSet<T> is the class you should be using to deine a property in your context
class that corresponds to a table in your database. The type parameter T represents
a class that deines that table's structure in terms of .NET.

Q2. As DbContext holds an underlying connection to the database, you should
utilize the IDisposable pattern and call Dispose on your context when you are
done using it. You can also use the Using keyword to achieve the same.

Q3. The Find method can be used to locate a row in the database. It takes one or
more parameters corresponding to the values of the primary key. If you have a single
column that deines the primary key, only one value is needed. Multiple parameter
values are reserved for tables with complex multicolumn primary keys.

Q4. You can use the Remove method and pass in an instance you would like to be
deleted from the database when SaveChanges is called on your context.

Q5. You can just ind the corresponding object and set its LastName property to new
values. Then, you can call SaveChanges to commit the updated data to the database.
You can use the Find method or LINQ to locate the matching row in the database.
We will see other methods to issue updates in later chapters.

Q6. You will get an exception because no initializer is used. We will see in later
chapters how migrations solve this problem.

Chapter 3: Deining the Database
Structure
Q1. If you want to make a value optional, you need to use nullable types in Entity
Framework. As we need to store an integer value, the correct answer is Int.

Q2. The statement is false because the string is a nullable type in .NET. Hence,
by default the column will be nullable as well.

Q3. The statement is false. You can remove the conventions from the Entity
Framework coniguration using the Remove method on the Conventions collection
in the model builder.

Q4. Many-to-Default is not a relationship type. One-to-Many (or One-to-Zero-to-
Many), One-to-One (or One-to-Zero-to-One), and Many-to-Many are the correct
relationship types.

Appendix

[147]

Q5. The answer is false. This approach will become unwieldy if you have many
tables in the database.

Q6. By default, Entity Framework will use Unicode types, such as nvarchar for
string properties. As there are no constraints on the string property, the correct
type will be nvarchar(max).

Q7. Domain is not a relationship type.

Q8. EntityTypeConfiguration is the correct "buddy" class to be used to conigure
persistence for an entity.

Chapter 4: Querying, Inserting, Updating,
and Deleting Data
Q1. LINQ supports two types of query syntaxes—method, which looks like any
other method calls in your programming language, and Query, which resembles
SQL in its appearance.

Q2. The answer is false. If an entity is tracked by the context after retrieval, all
changes are tracked individually. Hence, Entity Framework will create an update
query that only includes columns/properties touched by the code after the entity
in question was retrieved.

Q3. Only the irst property in the sort order is speciied by the OrderBy method; all
subsequent ones should be speciied by the ThenBy method calls.

Q4. In order to specify multiple conditions, you need to use logical operators in a
single Where method.

Q5. All of the approaches are valid, although you may ind that the AddRange is a bit
more readable.

Q6. The answer is false. Insert operations are different from other operations. You
can add a root entity to its DbSet, and all child entities are assumed to be in new state
as well.

Q7. True, since context was not tracking entities prior to the state being set, context
has to assume that all properties have been changed.

Q8. The answer is false. If you want to issue a delete query, you need to attach
an entity instead of adding it in order to simulate an existing entity in the
unchanged state.

Answers to Self-test Questions

[148]

Q9. The detached state corresponds to any entity not tracked by the context. Since
it is not tracked, DbContext will not look at this entity when SaveChanges is called.
Entities in the unchanged state will also not result in any queries, but they are
tracked by the context.

Q10. The local property of DbSet will give you access to in-memory data only and
will never result in a database query to look for data.

Chapter 5: Advanced Modeling and

Querying Techniques
Q1. Since we are not creating a new entity, but a complex type, we need to use
ComplexTypeConfiguration of the T base class to conigure it.

Q2. The answer is false. We can use the ToTable method in order to conigure an
entity to be stored in a table with a name that is different from the class name for
this entity.

Q3. The answer is false. We can use the Ignore method to exclude some properties
from the persistence engine.

Q4. The process of selecting a subset of columns from a table, that is, a subset of
properties from an entity, is called projection.

Q5. We do not have to declare a type for a result set; we can always use
anonymous types.

Q6. We do not have to use joins to get related data in a query, since relationships
exist in properties inside entities. Thus, related data is available inside a query by
walking through these association properties.

Q7. In order to repeat parent entity data along with child data in the result set, we
need to use SelectMany method of LINQ.

Q8. The set operator Distinct can be used to create a set of unique values from
a query.

Q9. We cannot accomplish LEFT OUTER JOIN in LINQ with a single method.

Q10. The Skip and Take methods are used to accomplish paging. The Skip method,
as the name implies, excludes some number of records from the result set, even
though they match the ilter. The Take method only takes a speciied number
of rows to include in the result set, even though more rows match the ilter.

Appendix

[149]

Q11. We can deinitely create grouping queries based on multiple properties. We can
typically use the anonymous type to specify which properties the grouped data is
based on.

Chapter 6: Working with Views, Stored
Procedures, the Asynchronous API,
and Concurrency
Q1. Although there is no irst class support for views in Entity Framework, we can
always retrieve data from a view using the SqlQuery method.

Q2. The SqlQuery method can be used to call an arbitrary SQL statement, including
calling stored procedures or functions. Entity Framework will materialize the results
based on the generic type provided to this method.

Q3. This is not correct. Insert, update, and delete operations can be automatically
generated by Entity Framework. All we need to do is map an entity to stored
procedures inside an entity type coniguration class.

Q4. This is not correct. Arbitrary use of the asynchronous API can result in
performance overhead.

Q5. SaveChangesAsync is the method on DbContext that can be called to lush
changes to the database asynchronously.

Q6. IsRowVersion is the only method called that needs to be made on the property
coniguration class to mark a property as concurrency check property.

Q7. DbUpdateConcurrencyException is the correct type to catch from Entity
Framework Code-First to handle concurrency errors.

Chapter 7: Database Migrations and

Additional Features
Q1. This is correct. You have to run the Enable-Migrations commandlet to easily
create all the necessary artifacts to support migrations.

Q2. The answer is false. Some operations, such as setting custom default values,
cannot be done with automatic migrations. Neither can we create non-Entity
Framework objects, such as stored procedures.

Answers to Self-test Questions

[150]

Q3. The answer is false. Entity Framework needs to compare our model, deined
by entity classes and context, with the target database to know what structures
have changed.

Q4. The answer is C—we need to create an empty migration which signals to Entity
Framework that the target structure matches the model.

Q5. This is not correct. We can use the NuGet Package Manager Console window
to run commandlets to maintain a local database.

Q6. The answer is false. The DbMigration class exposes many methods, including
those that create stored procedures.

Q7. The answer is false. We can use conventions or global coniguration methods
of DbModelBuilder to achieve this task.

Q8. The answer is false. We can use the Log property of the Database object to log
commands run by Entity Framework against the database.

Q9. The answer is false. We can create LINQ queries and use methods of the
DbGeometry and DbGeography classes to execute native geospatial queries
against the database.

[151]

Index

Symbol

.NET types
mapping, to SQL types 26, 27

A

actual migration code ile 135
ADO.NET 2
advanced modeling techniques

about 74
column mappings 77
complex types 74-76
enumerations 79, 80
explicit table, using 77
multiple tables, using for

single entity 80-83
supporting columns, adding 78, 79

advanced querying techniques
about 83
aggregations 88, 89
data, paging with windowing

functions 92, 93
example 89-92
grouping 88, 89, 95-100
joins, using 93-95
left outer joins 95-100
projections 83-88
set operators 101, 102

aggregations
about 88, 89
Average method 88
Count method 88
Max method 88
Min method 88
Sum method 88

American National Standards
Institute (ANSI) 2

anonymous types 83
association properties 84
asynchronous API 115-118
Average method 88

B

Binary Large OBjects (BLOBs) 80

C

CodePlex
URL 8

column mappings 77
complex types 74-76
composite primary keys 60
concurrency

about 119
handling 119-123
optimistic concurrency 119
pessimistic concurrency 119

coniguration conventions 140
Count method 88
CRUD 2
custom conventions 139, 140

D

data
iltering, in queries 49, 50
paging, with windowing functions 92, 93
sorting, in queries 51

database
creating, based on .NET classes 9-12
data, deleting 65-67

[152]

data, inserting 57-59
data, querying 15, 16
data, updating 60-65
in-memory data, working with 67, 68
migrations, adding 138, 139
record, saving 12-14
record, updating 16, 17
row, deleting 17, 18
schema changes 18-22

Data Deinition Language (DDL) 134
Data Manipulation Language (DML) 134
dependency injection

about 140, 141
reference link 140

descending keyword 51
Distinct operator 101

E

eager loading 36, 55-57
EDMX ile 4
element operations 52, 53
Entity Framework

architecture 5
capabilities 4, 5
Code-First approach 4
features 139
history 3, 4
Model-First approach 4
new project, creating 8, 9
URL, for tools 139

Entity Framework Power Tools
about 141
URL 138

entity splitting
about 80
versus table splitting 83

EntityState enumeration, state
Added 59
Deleted 59
Detached 59
Modiied 60
Unchanged 60

enumerations 79, 80
Except operator 102

explicit table
using 77

F

features, Entity Framework
custom conventions 139, 140
dependency injection 140, 141
geospatial data 140
logging 140, 141
multiple contexts per database 141
startup performance 141

G

geospatial data 140
grouping 88, 89, 95-100

I

immediate execution 57
impedance mismatch 3
in-memory data

working with 67, 68
Intersect operator 102

J

joins
using 93-95

junction table 41

L

Language INtegrated Query. See LINQ
lazy loading 36, 55-57
left outer joins 95-100
LINQ

about 3, 47
method syntax 48
query syntax 48

LINQ functions
about 52
element operations 52, 53
quantiiers 53

logging 140, 141

[153]

M

Many-to-Many relationship 41
mappings, .NET types

reference link 27
Max method 88
method syntax 48
migrate.exe 136
migrations

about 5
adding, to existing database 138, 139
applying 135
applying, via initializer 137, 138
applying, via migrate.exe 136, 137
applying, via script 136
enabling 126-129
running 126-129

migrations API
using 130-135

Min method 88
multiple contexts per database 141
multiple tables

using, for single entity 80-83

N

nullable properties
handling 33, 34

O

object graph 57
Object-Relational Mapping (ORM) 1, 2
One-to-Many relationship 35-40
One-to-One relationship 42-44
optimistic concurrency 119
Oracle mappings

reference link 27
Overridable 36

P

paging functions. See windowing functions
pessimistic concurrency 119
primitive properties

coniguring 27-32
projections 83-88

Q

quantiiers
about 53
All operation 53
Any operation 53

query syntax 48

R

related entities
about 54
eager loading 55-57
iltering 54
lazy loading 55-57

Relational Database Management
System (RDBMS) 1

relationships
deining 35
Many-to-Many 35, 41
One-to-Many 35-40
One-to-One 35, 42-44

resource ile 135

S

schema changes 18-22
set operators

about 101
Distinct 101
Except 102
Intersect 102
Union 101

SQL injection 109
SQL Server Data Tools (SSDT)

URL 14
SQL Server Management Studio

(SSMS) 12, 128
SQL types

.NET types, mapping 26, 27
startup performance 141
stored procedures

about 110-112
entities, creating 112-114
entities, deleting 112-114
entities, updating 112-114

Structured Query Language (SQL) 2

[154]

Sum method 88
supporting columns

adding 78, 79

T

table splitting
versus entity splitting 83

table structures
.NET types, mapping to SQL types 26, 27
creating 26
nullable properties, handling 33, 34
primitive properties,

coniguring 27-32

U

Unicode data 27
Union operator 101

V

views
about 106
working with 106-110

virtual keyword 36
Visual Studio

URL 138

W

windowing functions
used, for paging data 92, 93

Thank you for buying

Code-First Development

with Entity Framework

About Packt Publishing
Packt, pronounced 'packed', published its irst book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it irst before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

WCF Multi-layer Services

Development with Entity Framework

Fourth Edition

ISBN: 978-1-78439-104-1 Paperback: 378 pages

Create and deploy complete solutions with WCF and
Entity Framework

1. Build SOA applications on Microsoft platforms.

2. Apply best practices to your WCF services and
utilize Entity Framework to access underlying
data storage.

3. A step-by-step, practical guide with nifty
screenshots to create six WCF and Entity
Framework solutions from scratch.

WCF 4.5 Multi-Layer Services

Development with Entity Framework

Third Edition

ISBN: 978-1-84968-766-9 Paperback: 394 pages

Build SOA applications on Microsoft platforms with
this hands-on guide

1. This book will teach you WCF, Entity
Framework, LINQ, and LINQ to Entities
quickly and easily.

2. Apply best practices to your WCF services and
utilize Entity Framework in your WCF services.

3. Practical, with step-by-step instructions and
precise screenshots, this is a truly hands-on
book for all C++, C#, and VB.NET developers.

Please check www.PacktPub.com for information on our titles

Entity Framework 4.1:

Expert's Cookbook
ISBN: 978-1-84968-446-0 Paperback: 352 pages

More than 40 recipes for successfully mixing Test
Driven Development, Architecture, and Entity
Framework Code First

1. Hands-on solutions with reusable
code examples.

2. Strategies for enterprise ready usage.

3. Examples based on real world experience.

4 Detailed and advanced examples of
query management.

Entity Framework Tutorial
ISBN: 978-1-84719-522-7 Paperback: 228 pages

Learn to build a better data access layer with the
ADO.NET Entity Framework and ADO.NET
Data Services

1. Clear and concise guide to the ADO.NET Entity
Framework with plentiful code examples.

2. Create Entity Data Models from your database
and use them in your applications.

3. Learn about the Entity Client data provider
and create statements in Entity SQL.

4. Learn about ADO.NET Data Services and
how they work with the Entity Framework.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Entity Framework
	What is ORM?
	A brief history of Entity Framework
	The capabilities of Entity Framework
	The Entity Framework architecture
	Self-test questions
	Summary

	Chapter 2: Your First Entity
Framework Application
	Creating a new project that uses Entity Framework
	Creating a new database based on
.NET Classes
	Saving a new record to the database
	Querying data in a database
	Updating a record
	Deleting a row from the database
	Introduction to schema changes
	Self-test questions
	Summary

	Chapter 3: Defining the
Database Structure
	Creating table structures
	Mapping .NET types to SQL types
	Configuring primitive properties
	Handling nullable properties

	Defining relationships
	One-to-Many relationship
	The Many-to-Many relationship
	One-to-One Relationship

	Self-test questions
	Summary

	Chapter 4: Querying, Inserting, Updating, and Deleting Data
	The basics of LINQ
	Filtering data in queries
	Sorting data in queries
	Exploring LINQ functions
	Element operations
	Quantifiers

	Working with related entities
	Filtering based on related data
	Lazy and eager loading

	Inserting data into the database
	Updating data in the database
	Deleting data from the database
	Working with in-memory data

	Self-test questions
	Summary

	Chapter 5: Advanced Modeling and Querying Techniques
	Advanced modeling techniques
	Complex types
	Using explicit table and column mappings
	Adding supporting columns
	Enumerations
	Using multiple tables for a single entity

	Advanced querying techniques
	Projections
	Aggregations and grouping
	Advanced query construction
	Paging data with windowing functions
	Using joins
	Groupings and left outer joins
	Set operations

	Self-test questions
	Summary

	Chapter 6: Working with Views,
Stored Procedures,
the Asynchronous API
and Concurrency
	Working with views
	Working with stored procedures
	Create, update, and delete entities with stored procedures

	The asynchronous API
	Handling concurrency
	Self-test questions
	Summary

	Chapter 7: Database Migrations and Additional Features
	Enabling and running migrations
	Using the migrations API
	Applying migrations
	Applying migrations via a script
	Applying migrations via migrate.exe
	Applying migrations via an initializer

	Adding migrations to an existing database
	Additional Entity Framework features
	Custom conventions
	Geospatial data
	Dependency injection and logging
	Startup performance
	Multiple contexts per database

	Self-test questions
	Summary

	Appendix: Answers to self-test questions
	Index

