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Preface

This volume was initially written to fulfill the formal requirements for achieving
venia legendi (Habilitation) from the Faculty of Science at the University of Zurich,
Switzerland. Therefore, the text reports on my research from the years 2006 to
2014. It does so by offering a synthesis from a set of publications I have contributed
to on the topic of movement analysis in the wider area of Geographic Information
Science. These publications include articles published in peer-reviewed journals
and peer-reviewed conference proceedings, as well as conference contributions,
book chapters, editorials, and review articles.

The book proposes the theoretical underpinnings of the emerging interdisci-
plinary research field termed here Computational Movement Analysis (CMA). The
book features three core chapters, each set out around a number of overarching
research questions covering a certain aspect of CMA. The contribution of each
chapter is twofold.

First, each of these chapters offers a comprehensive synthesis of work that I was
involved in. Emphasizing that the chapters first and foremost summarize my own
work, the respective publications are marked with a bold label (P2. Laube and
Dennis 2006) added to their citation (see Fig. 1.1 for the respective codes). Even
though the arguments in the synthesis sections are supported mainly from publi-
cations I contributed to, some complementary references helped to complete the
picture in these synthesis sections.

Secondly, in order to offer the reader a wider perspective than could be possibly
offered through a summary of my own work alone, every chapter concludes with a
comprehensive review of the selected related work in the area. These “Related
Work” sections systematically revisit the lines of argument in the before made
synthesis and discuss further work or alternative approaches in the respective areas.

Furthermore, I happily acknowledge that my personal contribution to the set of
publications building the core of this book varies. In many projects I acted as the
principal investigator, in others, however, I contributed less. Hence, clearly,
the minds of many colleagues helped in shaping the ideas summarized in this
SpringerBriefs volume. However, the presented book here offers my synthesis of
the developing field of Computational Movement Analysis.
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Finally, the choice of the term “Computational Movement Analysis”was inspired
by my attending of the Dagstuhl Seminar 10121 on Computational Transportation
Science at Schloss Dagstuhl, 21–26 March 2010, and additional fruitful discussions
with Joachim Gudmundsson and Thomas Wolle when writing a section for the 2012
Springer Handbook of Geographic Information (P17. Gudmundsson et al. 2012).

Zurich, June 2014 Patrick Laube
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Chapter 1
Introduction

In the last decade, advances in tracking technologies resulted in geographic
information representing the movement of individual objects at previously unseen
spatial and temporal granularities.1 This novel, inherently spatio-temporal kind
of geographic information offers new insights into dynamic geographic processes
but also challenges the traditional very static spatial analysis toolbox (P17.
Gudmundsson et al. 2012).

Consequently, movement analysis has emerged as a major new research focus of
Geographical Information Science (GIScience). I argue that movement is the first
truly spatio-temporal phenomenon on geographic scales that is traceable beyond
the snapshot. Since movement data is furthermore easily accessible and seemingly
simple in structure, its analysis has received increasing attention from the GIScience
and wider community.

Work has appeared addressing modeling, storing, indexing, and querying move-
ment, mapping and visualizing movement, movement patterns, trajectory similarity
and clustering, trajectory segmentation, semantically annotating and enriching tra-
jectories, as well as simulating movement in the context of many mobile applications,
for instance for location-based services (LBS), vehicular ad hoc networks (VANETs),
or geosensor networks).

This book has a thesis, it makes the case for Computational Movement Analysis
(CMA), as an interdisciplinary umbrella for contributions from a wide range of fields
aiming for a better understanding of movement processes. This first chapter explains
why this inclusive umbrella is a contribution, what it involves, and which fields it
borrows methods and concepts from.

1 There is a large body of literature on movement analysis with a medical kinetics perspective,
studying the movement of body parts. Such movement is not covered in this book.

© The Author(s) 2014
P. Laube, Computational Movement Analysis,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-10268-9_1
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2 1 Introduction

1.1 Motivation

Similar to many other research fields, the spatial sciences have made a transition
in the last decades from computation and data poor to computation and data rich
environments (Miller and Han 2009). The revolutionary character of this transi-
tion is especially evident in the application field animal navigation research, where
the movement behavior of individual animals has been studied for decades as a
fundamental knowledge base. Not so long ago, tracking of moving entities was a
very cumbersome and costly undertaking: For example, turtles were tracked using
thread-trailing (Claussen et al. 1997) and all that flying birds would reveal was their
vanishing bearing in release experiments (Walker 1998). By contrast, to date it is
now common to track flying birds using GPS devices with a sampling rate of seconds
(Shamoun-Baranes et al. 2012). Hence, the previous lack of fine-grained movement
data is a first reason why CMA is a relatively young and little-developed research
field.

Secondly, within GIScience, the legacy of cartography’s static view of the world
slowed down the development of CMA. For decades, dynamic processes and change
was primarily captured in a snap-shot manner, where the arrival of a new areal or
satellite image only allowed a comparison with previous states of the world (Worboys
and Duckham 2004). Finally, geography’s snap-shot view unfortunately found a
match in the concept of sporadic updates in the databases underlying early geographic
information systems. Conventional databases are designed for handling mostly static
data with occasional updates (e.g., a change of ownership or an area change in
a cadastral map), but not entities that change continuously (e.g., the permanently
changing location of a moving car).

The increased availability of movement data goes hand in hand with a growing
interest of the application fields in exploiting that new resource. Be it behavioral
ecology, transportation and mobility research, surveillance and security, or even
sports analysis, all fields interested in movement show significant interest in studying
and analyzing movement. For example, only for the field of movement ecology,
Holyoak et al. (2008) list thousands of papers addressing organismal movement,
ranging from seed dispersal to bird migration. The question arises if the described
data and information revolution requires new scientific foundations with respect to
methods. With richer and more complex data comes a need for more sophisticated
tools for managing, exploring and analyzing that data. Arguing for the need of new
scientific fundamentals CMA first of all means identifying the characteristics of the
new challenge. Similar to Anselin (1990) seminal question about “What is special
about spatial?”, it is now fair to ask “what is special about movement?”.

The following list summarizes a set of properties of movement (data) that under-
line the need for a new theory of computational movement analysis. The list is inspired
by revisiting seminal texts framing the theory of GIScience (Anselin 1990; Goodchild
1992, 2001), and adapting the challenges therein to the movement domain.
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• Geographic reference systems. Movement traces are located in space-time, hence
their management and analysis requires a measurement framework of up to three
interrelated spatial dimensions.

• Temporal reference systems and sequence. On top of the above spatial refer-
ence systems, movement inherently requires a fourth, temporal dimension. This
dimension is typically directed and keeps progressing, but can alternatively be
conceptualized as being cyclical or branching (Frank 1998, 2001). Consequently,
observations of moving objects have a sequence that can be time-stamped and
typically can’t be reversed.

• Permanent instead of sporadic change. Moving objects by definition are in motion,
and the change of position is the norm, not the exception. This is fundamentally
different to conventional spatial objects, where in essence a static world is assumed
that undergoes sporadic change or up-date events. Hence, many techniques that
rely on supporting data structures (such as indices, trees, aggregations) are funda-
mentally challenged because the entities permanently rearrange.

• Movement traces are complex objects. Whereas the moving objects themselves
are most often modeled as simple moving point objects, the traces they leave in
space-time are complex. Relations such as distance or similarity are consequently
more complex than relations between simple data points in conventional feature
space.

• Implicit relationships. Just as for relationships amongst spatial objects, relevant
relationships between moving objects are often implicit and must be materialized
first using metrics and operations considering up to four dimensions. Examples
include spatio-temporal topological relations such as meet, line up, diverge or
converge.

• Overlap. Since gregarious animals and social human beings tend to use similar
spaces at similar times, movement traces often cluster in space-time, resulting in
overlapping data, clutter, and dense areas with severe information overload.

• Spatial dependency and heterogeneity. Positional fixes along a trajectory feature
highly autocorrelated attributes. This poses challenges around descriptive statis-
tics, sampling granularities and data compression. At the same time, since move-
ment always happens in a potentially heterogeneous space, movement trajectories
are also expected to adopt certain aspects of spatial heterogeneity.

• Knowledge of movement is inherently uncertain. Even at finest tracking granulari-
ties we can’t monitor the complete movement trace of a moving object, hence our
discrete view of it must always be uncertain. Uncertainty arises from positional
uncertainty of the localization technologies used and the ignorance about what
happened in between observed fixes.

• Most information describing movement is derivative. Just as geographic informa-
tion is mostly derivative (Goodchild 2001), so is movement information. Although
more and more sensors claim direct sensing of movement properties such as speed
or orientation, many measurements describing movement are the result of compi-
lation, calculation, and interpretation, mostly hidden from the user. Even if it was
transparent, there are typically many ways of deriving movement descriptors and
the reasons for choosing one over the other are often not transparent.
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• Descriptive parameters are inherently scale-specific. Goodchild (2001, p. 11)
makes a very illustrative case that in essence there is “no such thing as the slope
of a geographic surface, only a slope at a specific scale or grid spacing”. Simi-
larly, movement properties such as speed, acceleration or path sinuosity require
a sampling scale, and the choice of this scale is in most cases far from being
self-evident.

For all those reasons this book argues for the need of new scientific fundamentals
for CMA. Following Antony Galton, this new theory shall enable GIScience to bridge
the “perceived gulf between, on the one hand, low-level observational [movement]
data that constitutes the “raw material” of our science, and on the other hand, the
high-level conceptual schemes through which we as humans interpret, understand,
and use that data” (Galton 2005, p. 300).

1.2 Introducing Computational Movement Analysis

Computational Movement Analysis (CMA) draws concepts and methods from three
methodological research areas: (1) geographic information science or GIScience,
(2) computer science, and (3) statistics. Additional important contributions emerge
application fields studying movement, such as, for example, movement ecology,
surveillance and crowd management, as well as transportation research.

From geographic information science CMA inherits concepts for modeling space
and the movement within, as well as a suite of spatio-temporal operations inter-
relating space, time, and movement. From computer science CMA draws on the
database theory on how to store, index, and query inherently dynamic movement
data. Also from computer science CMA profits from developments around analyt-
ical tools such as data mining, knowledge discovery, and simulation for numerical
experiments. Finally, from statistics CMA inherits many techniques for descriptive
statistics, exploratory data analysis, and stochastic models for movement simulation
(for instance, random walk, states space models). Clearly, these fields overlap. For
instance, data mining and visualization reappear in visual analytics approaches for
movement data, and mapping spatio-temporal movement requires innovative visu-
alization approaches.

Although most applied research fields studying movement do not explicitly focus
on the development of computational movement analysis methods, they still signif-
icantly contribute to the respective theory. In movement ecology, for instance, there
is a very active community developing statistics based tools for movement analysis.
Similarly, many relevant developments for moving object databases emerge an active
community addressing fleet management problems.

Definition (Computational Movement Analysis) (CMA) is the interdisciplinary
research field studying the development and application of computational tech-
niques for capturing, processing, managing, structuring, and ultimately analyzing
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data describing movement phenomena, both in geographic and abstract spaces, aim-
ing for a better understanding of the processes governing that movement.

CMA investigates the scientific fundamentals related to

• the specific characteristics and peculiarities of the geographic phenomenon move-
ment and the spatio-temporal data describing it, including data quality (uncertainty,
accuracy), scale issues, and spatio-temporal autocorrelation,

• the peculiarities of established and emerging integrated spatial systems serving as
direct or indirect tracking systems capturing raw or enriched movement data,

• capturing, (pre-)processing, integrating, storing, managing, and querying the
rapidly growing data streams describing movement phenomena,

• the conceptual models for moving objects and movement processes, and the spaces
embedding that movement, the data structures implementing these models, and
the implications of models and structures on the CMA process,

• the development and evaluation of analysis techniques and operations structuring
low-level movement data and deriving high-level process knowledge from that
data. This draws on methods from spatio-temporal analysis, geography, computa-
tional geometry, scientific visualization, data mining and KDD, and statistics.

• the characteristics and semantics of the wide range of current applications of CMA,
and the assessment of the potential of prospective applications areas, and

• societal issues, including ethics and privacy, as well as issues around user-
generated and open data.

1.3 Structure of this Book

The book is organized into three core chapters, each discussing another aspect of
CMA. Chapter 2 investigates the conceptual modeling of movement spaces and the
movement embedded in those spaces. Chapter 3 focuses on adopting and adapting
data mining techniques for CMA. From the many possible application areas of CMA,
Chap. 4 specifically focuses on CMA challenges and opportunities in decentralized
spatial information systems. A chapter on grand challenges in the area concludes the
book.

Figure 1.1 offers an overview of the publications building core of the book and the
topics they cover. In order to give the reader a more detailed overview, I have narrowed
down and particularized the generic list of issues given in the CMA definition above,
producing a set of specific keywords heading the columns in the pictorial matrix of
content in Fig. 1.1. For every included publication I then indicate whether the listed
issues build a key, major, or minor topic.

http://dx.doi.org/10.1007/978-3-642-29715-1_2
http://dx.doi.org/10.1007/978-3-642-29715-1_3
http://dx.doi.org/10.1007/978-3-642-29715-1_4
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P1. Imfeld et al. (2006)
Positional Accuracy of Biological Data
P2. Laube & Dennis (2006)
Exploratory Analysis of Movement Traj.
P3. Laube et al. (2007)
Movement Beyond the Snapshot
P4. Laube et al. (2008a)
Spatial Support & Confidence
P5. Andersson et al. (2008)
Leadership Detection
P6. Laube et al. (2008b)
Decentralized Movement Pattern Detection 
P7. Laube et al. (2009)
Report of DGSUM’09
P8. Laube & Duckham (2009)
Decentralized Spatial Data Mining for GSN
P9. Laube (2009)
Progress in Movement Pattern Analysis 
P10. Dennis et al. (2010)
Performance of GPS for Tracking Animals
P11. Laube et al. (2010)
DeSC in Urban Environments
P12. Laube et al. (2011)
Deferred Decentralized Flock Mining
P13. Laube & Purves (2011)
How fast is a cow? 
P14. Dodge et al. (2012)
Similarity of Trajectories
P15. Laube et al. (2011)
Report on MPA’10 workshop
P16. Merki & Laube (2012)
Interaction Movement Patterns
P17. Gudmundsson et al. (2012)
Computational Movement Analysis
P18. Richter et al. (2012)
Semantic Trajectory Compression
P19. Both et al. (2013)
Decentralized Monitoring in Networks 
P20. Bleisch et al. (2014)
Mining Candidate Causal Relations 

Fig. 1.1 Research articles included in this book and their relative contributions to the scientific
fundamentals of Computational Movement Analysis listed in Sect. 1.2
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Chapter 2
Movement Spaces and Movement Traces

The analysis of the observed movement by means of computers requires abstraction,
conceptual modeling, and formalization of the moving entities and the spaces
embedding that movement (Peuquet 2002). This preliminary but crucial stage of
Computational Movement Analysis (CMA) requires modeling choices but is also
constrained by the data sources at hand. This chapter investigates how movement
can be modeled from the various data sources contributing to CMA, and discusses
implications of the characteristics of models and sources on how movement can be
captured and characterized, structured and analyzed.

Overarching research objectives. The research summarized in this chapter
contributes to the following overarching research objectives of computational move-
ment analysis.

• Contribute to the establishment of a theory of computational movement analysis,
drawing on concepts and methods of GIScience and related research fields.

• Investigate the implications of the conceptual modeling of movement spaces and
the movement embedded in these spaces on the process and the outcomes of
computational movement analysis.

2.1 Data

This book focuses on the movement of real world entities that can be abstracted as
moving point objects (MPOs). The research covered in this book investigates move-
ment of a diverse set of MPOs, including various animal species (for instance, racing
pigeons, fish, sheep, cows, and brushtail possums), several expressions of human
mobility (including bicyclists, couriers, playing children), movement of abstract
objects in the physical environment (hurricanes), as well as simulated movement of
software agents (simulated pedestrians, sensor nodes of a wireless sensor network,
and agents performing various forms of random walk). Table 2.1 gives a comparative
overview of data sources contributing to this volume.

© The Author(s) 2014
P. Laube, Computational Movement Analysis,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-10268-9_2
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Table 2.1 List of diverse MPOs investigated in this book

MPOs Space Tracking δt Captured for References

Racing pigeons EH GPS 1 s Avian
navigation

Laube et al.
(P3. 2007)

Sheep EC GPS 60 s Management
of domestic
animals

Laube and
Dennis (P2.
2006)

Cows EH GPS 0.3 s Precision
farming with
WSN

Laube and
Purves (P13.
2011), Laube
et al. (P12.
2011)

Brushtail pos-
sums

EH GPS 15 min Animal
ecology

Dennis et al.
(P10. 2010)

Fish NET RFID 24 h Ecological
monitoring

Bleisch et al.
(P20. 2014)

Bicyclists NET GPS 10 s Wayfinding Richter et al.
(P18. 2012)

Couriers in
London

NET, AQU GPS 10 s Fleet
management

Dodge et al.
(P14. 2012)

Hurricanes EH Radar 6 h Climatology Dodge et al.
(P14. 2012)

Simulated
pedestrians

NET ABM – CMA Laube et al.
(P11. 2010)

Simulated sen-
sor nodes

EH ABM, random
walk

– CMA Laube et al.
(P12. 2011),
Laube et al.
(P6. 2008)

Simulated fish
agents

NET ABM – CMA Both et al.
(P19. 2013)

Space EH: Euclidean homogeneous, EC: Euclidean constrained, AQU: space-time aquarium, NET:
network space. Tracking ABM: agent-based modeling, using repast or netlogo. Captured for respec-
tive application fields or CMA in the first place

The moving objects in Table 2.1 were tracked for a wide range of purposes and
using many different tracking technologies. The primary focus of the research cov-
ered here is the development of generic methods for the analysis of movement data,
and not the understanding of a specific movement process per se, with respect to a
specific application field. Hence, in no single case was real world movement data
captured explicitly, but rather collaborations were sought with researchers collect-
ing data for their own research in movement ecology, environmental monitoring, or
transportation research. This is important to note as all real data covered in this book
were collected for the specific purposes of the application scientists, and not for the
methodological research building the focus of this book.

The evaluation of proposed methods, however, often involved the simulation
of movement data under experimental conditions. To that end, synthetic data was



2.1 Data 11

repeatedly produced making use of random walk algorithms and agent-based mod-
eling. The advantage of simulated synthetic movement data is that in contrast to real
observed movement data, the movement processes to be studied and the hence emerg-
ing movement data can be rigorously controlled, which builds a crucial precondition
for experimental evaluation of methods (see also Sect. 3.3).

Table 2.1 finally illustrates that even though GPS-tracking still is the most frequent
way of tracking MPOs, alternative ways of tracking moving objects have emerged
through the technological advancement of location-aware mobile ICT devices.

2.2 Conceptual Models for Movement and Movement Spaces

The above overview illustrates that the modeling of movement means modeling
the moving entities, but equally important modeling the space they move in. The
varying characteristics of possible conceptual space models embedding a form of
movement—be it an animal habitat, a 3D building, or a complex urban transporta-
tion network—rules how the entities can move, and consequently impacts on the
computational analysis tools that are required and suitable for understanding that
movement. Hence, a critical modeling decision early in the CMA process is the
choice of the conceptual data model for the space embedding the movement under
study.1

The review article (P9. Laube 2009) has proposed a categorization of six basic
conceptual movement spaces that are commonly found in CMA (see Fig. 2.1). Ani-
mals tagged with GPS receivers (e.g., migrating birds) move in an unconstrained
Euclidean space (a). Sometimes movement is constrained as non-swimming animals
will not enter a lake or in an indoor environment shoppers can’t enter locked rooms
(b). Especially visualization applications favor the space-time cube metaphor follow-
ing Hägerstrand’s Time Geography (Hägerstrand 1970) (c). Movement can also be
captured in discrete tessellations of space, for example, as a series of discrete steps
through a field representation of space (d). Location-aware mobile devices leave
digital traces as a sequence of visited GSM cells (e). Finally, human movement is
often tied to a transportation network, where movement can only occur along edges
between intersecting nodes (f).

This categorization proved to be useful for leading the crucial discussion about
conceptual data models in CMA, a traditionally data-driven research field often
accepting the data-inherent structures as unchangeable preliminaries and neglect-
ing the implications of conceptual design choices. As will be shown in the next
chapter about movement mining, the different conceptual movement spaces allow
for the detection of different movement patterns (Fig. 3.3). The categorization

1 Note that this section is focused on how movement traces can be abstracted and represented in
spatial information systems. Other authors have put forward conceptual models for movement in
different contexts, such as, for example, for explaining organismal movement in movement ecology
(Nathan et al. 2008), discussed in the related work Sect. 2.4.

http://dx.doi.org/10.1007/978-3-319-10268-9_3
http://dx.doi.org/10.1007/978-3-319-10268-9_3
http://dx.doi.org/10.1007/978-3-319-10268-9_2


12 2 Movement Spaces and Movement Traces

(a) (b) (c)

(e) (f)(d)

Fig. 2.1 Six basic space models accommodating the movement of point objects. a Euclidean homo-
geneous space, b constrained Euclidean space, c space-time aquarium, d heterogeneous field space,
e irregular tessellation, f network space (P9. Laube 2009) (Reprinted from Behaviour Monitor-
ing and Interpretation, BMI, Smart Environments, Gottfried, B. and Aghajan, H. (eds.), Laube, P.,
Progress in Movement Pattern Analysis, p. 49, Copyright (2009), with permission from IOS Press)

furthermore made apparent three dimensions discriminating conceptual movement
spaces. These dimensions capture how movement is perceived from a physics per-
spective (Sect. 2.2.1), varying degrees of freedom of the moving objects in the move-
ment spaces (Sect. 2.2.2), and the distinction between continuous and discrete spaces
(Sect. 2.2.3).

2.2.1 Lagrangian Versus Eulerian Movement

Movement can be perceived from two different perspectives (see Fig. 2.2). The
Lagrangian view considers changes in a moving object’s location (P19. Both et al.
2013). This results in a stream of location fixes, typically in the form of (x, y, t)-
tuples, describing movement as a two-dimensional, time-stamped polyline. The
nodes represent the fixes, the straight-line edges between the nodes a simple approx-
imation about the path taken in between. GPS tracking results in trajectories akin to
the Lagrangian view. The Eulerian perspective describes movement as changes in
location of moving objects relative to known, fixed points in space (P19. Both et al.
2013). Movement is perceived as a flux of objects passing by beacons, RFID tag

http://dx.doi.org/10.1007/978-3-319-10268-9_2
http://dx.doi.org/10.1007/978-3-319-10268-9_2
http://dx.doi.org/10.1007/978-3-319-10268-9_2
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(a) (b) (c)

Fig. 2.2 Lagrangian versus Eulerian perspectives of movement. a The Lagrangian perspective
focuses on the changes of location of the moving object, for example a GPS-tracked animal. The
Eulerian perspective tracks moving objects as passing by fixed observations points, e.g., traffic
gantries in b or GSM cells in c

readers, checkpoints or through gates or traffic gantries. In all these systems, the
location of the checkpoints are known and fixed, and movement is captured in the
form of the passing IDs and times of the MPOs. Recent developments in GSM and
mobile ICT promote the later perspective, as more and more systems track moving
objects in a checkpoint way.

Most research covered in this book adheres to the Lagrangian perspective. These
studies have in common that a limited set of MPOs were tracked and their movement
patterns analyzed. Examples studied in this book are racing pigeons for avian navi-
gation research (P3. Laube et al. 2007), cows for precision farming (P13. Laube and
Purves 2011), or fleet management issues with couriers (P14. Dodge et al. 2012).
Equipping individuals with GPS receivers is ideal for studies where the test sub-
jects are known and accessible, but the movement range is potentially unknown in
advance.

By contrast, in some contexts the movement of individuals is constrained or bound
to a limited number of channels or checkpoints (see Sect. 2.2.2). Here, the Eulerian
perspective may have advantages as the individuals must eventually pass a checkpoint
or gantry. For example, Both et al. (P19. 2013) and Bleisch et al. (P20. 2014) are based
on a scenario for river health monitoring where fish are tracked via implanted RF
transmitters when passing riverside RF readers in a simple topological river network.
A system adhering to the Eulerian perspective requires less sophisticated equipment
on the MPO side (RFID tags instead of GPS receivers and/or transmitters), and hence
results in lighter tracking devices. The fish tracking example showed that the con-
straints imposed by the Eulerian perspective could be exploited for information gain
in a decentralized data analysis scenario (see Chap. 4). Since fish eventually passed
checkpoints when moving, algorithms running at the checkpoints were enabled to
collect, enrich and exchange information about fish flows in the system as a whole.

One might argue that the Lagrangian perspective with a stream of GPS fixes offers
a more precise tracking approach than the Eulerian perspective with its checkpoints
with a potentially wide spacing. However, it should be noted that GPS data always is
error prone and uncertain and the checkpoints location can be surveyed to very high
precisions and at very fine spatial granularities. Hence, both perspectives can offer

http://dx.doi.org/10.1007/978-3-642-29715-1_2
http://dx.doi.org/10.1007/978-3-642-29715-1_4
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tracking data with high precision, admittedly with a different notion of precision
(P19. Both et al. 2013).

Finally, a study reported on in Merki and Laube (P16. 2012) explicitly investigated
the influence of the choice of perspective when detecting interaction movement pat-
terns. Here, simulated movement of interacting animals and observed movement of
children in an outdoor game were modeled and tracked using both perspectives and
respective conceptual data models. The comparative experiments revealed that the
different conceptual models of space required different formalizations of the patterns
to be detected. For example, adhering to the Eulerian perspective resulted in loca-
tional information of MPOs being discretized: The only locational information about
an MPO at any time was the current edge between adjacent checkpoint nodes. The
interaction pattern investigated in this study thus required a formalized neighbor-
hood. For the Lagrangian case with its GPS fixes this neighborhood was modeled as
a disc with a given radius r . In the Eulerian case MPOs were formalized as neighbor-
ing when located on adjacent edges. These different formalizations not surprisingly
resulted in different analysis outcomes. Similarly, whereas the reaction time between
two objects meeting and one shying away proved crucial for the Lagrangian perspec-
tive, this criterion was less useful in the Eulerian perspective where again the given
edges dictated a coarse temporal granularity (see also the constraints issue discussed
in the next Sect. 2.2.2).

2.2.2 Constraints to Movement

A second important characteristic refers to the degree of freedom moving objects
have in their movement. Whereas some objects can (seemingly) move wherever they
wish (e.g., flying birds), others are limited where and how they can move across
space (e.g., pedestrians in an urban street network).

The assumption of unconstrained and hence free movement in an Euclidean space
is popular as it allows for a very simple conceptual model of space. However, this sim-
plistic assumption may ignore crucial constraints of the moving objects and hence
inadequately model their movement. Consider for instance animals in movement
ecology. Some animals can’t swim which turns waterways into insurmountable
barriers, while others will not cross steep mountain ranges or need waterways to
swim in (P20. Bleisch et al. 2014). Hence, their seemingly free movement capac-
ity is not free at all. Similarly, the homing pigeons studied in Laube et al. (P3.
2007) could indeed fly wherever they wanted, but the experimental setup was that
of a release-fly-back-to-loft scenario. Hence, movement azimuth distributions fol-
lowed to a certain degree the given release site-loft configuration. The freedom of
movement can also be a matter of scale (see also Sect. 2.3.2). For instance, the
cross-scale movement analysis study in Laube and Purves (P13. 2011) revealed that
cows forage freely within their fenced paddock, but far reaching movement is lim-
ited by the fence. Whereas large scale foraging properties were not influenced by the
fence, edge effects became visible when investigating turning angles of the move-

http://dx.doi.org/10.1007/978-3-642-29715-1_2
http://dx.doi.org/10.1007/978-3-642-29715-1_2
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ment trajectories at smaller scales, as the animals moved along the fence or even
reversed direction when reaching the fence.

Most human movement in contrast is bound to some form of transportation
infrastructure. This can be hiking paths, railway lines or motorways, or an inner
city urban street network. The level of abstraction can hereby be varied depending
on the aimed for analysis scale. As was shown in Richter et al. (P18. 2012) or Laube
et al. (P11. 2010), an urban street network can be modeled as a simple graph con-
sisting of nodes and edges. Depending on the data source, raw GPS data can then
in a preprocessing step be map-matched to the closest edge. The same movement
investigated at a finer spatial granularity, will require modeling the same urban street
network as a configuration of polygons for streets and squares (see, for example, the
simulated trajectories in Merki and Laube (P16. 2012)). Both et al. (P19. 2013) or
Bleisch et al. (P20. 2014) illustrated that also animal movement can be constrained
by a network movement space.

The choice of using an unconstrained or a constrained movement space has impli-
cations on the subsequent CMA process. For example, when mining movement
patterns, the way a certain movement behavior can or can’t be formalized using
geometric constellations heavily depends on the underlying conceptual movement
space. The leadership pattern introduced in Andersson et al. (P5. 2008) is based on
the notion of a front region. Following the assumption of an unconstrained movement
space, this front region was modeled as a wedge of edge length r and apex angle α,
oriented in the current movement direction. For a study investigating similar interac-
tion patterns (e.g., pursuit and escape), Merki and Laube (P16. 2012) found that the
use of such a front region has limitations when using a constrained network space.
With MPOs moving on typically straight edges, the effect of a front region becomes
scale dependent. For objects on the same edge, a front region makes little sense,
and for objects on adjacent edges, the configuration of the edges constrains relative
positions of the involved objects.

This second dimension discriminating conceptual movement spaces (Sect. 2.2.2)
has obvious links to the first dimension addressing the perspective taken on movement
(Sect. 2.2.1). Movement models adhering to the Eulerian perspective often require
constrained spaces: MPOs often move on edges between networked checkpoints or
are allocated to Voronoi polygons of GSM cells. Similarly, both discussed dimensions
are related to a third dimension addressing the issue of discretization of space. As a
further level of abstraction or constraint, moving objects can be modeled as stepping
between discrete space units, as will be discussed in the following section.

2.2.3 Continuous Versus Discrete Movement Spaces

Finally, the categorization in Fig. 2.1 revealed fundamental differences in using
continuous or discrete movement spaces (top vs. bottom row in Fig. 2.1). Whereas in
many cases the need for using discrete space models emerges from the data source,
for example, when tracking mobile phone users through a sequence of visited GSM
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cells or Bluetooth beacons (Versichele et al. 2012), a discrete space can also be a
deliberate design choice.

Proposing an approach for compressing GPS tracking logs, Richter et al. (P18.
2012) exploit the fact that urban transit is bound to a transportation network. First,
instead of storing raw and highly redundant GPS logs, movement is abstracted to a
time-stamped passage through a urban transit link (e.g., “along tram line #3” from
stop #402 to #405 from 10:32 to 10:45). Second, following similar concepts intro-
duced in the wayfinding literature, consecutive semantically equal passages are chun-
ked together (e.g., a sequence of visited street edges is chunked to “along Bismar-
ckstrasse” plus additional specifications). Here, the use of the discrete (and also
constrained for that matter), semantically annotated transportation network allowed
for the development of a compression technique for movement data. Similarly, move-
ment events of fish from one river zone into another one are discrete movement events
(P20. Bleisch et al. 2014).

The choice of a certain conceptual movement space can also allow for the adaption
of related methods from neighboring research fields. For example, the abstraction of
movement to a series of visited discrete places allows for the adoption of sequence
and time series analysis. Du Mouza and Rigaux (2005) propose sequence queries
for trajectories represented as sequences of visited GSM cells. Similar techniques
are used in Dodge et al. (P14. 2012), however in that study not the movement space
is discrete, but the trajectory is discretized in a segmentation process for similarity
analysis (see Chap. 3).

2.3 Computing Movement Descriptors

Depending on the data capture procedure and the respective conceptual movement
model, raw movement data comes as a stream of location data in the form of
lists of GPS fixes or as time stamped visits to checkpoints. Apart from mapping
movement traces for exploratory analysis, computing descriptive statistics capturing
the essence of the studied movement process is a frequent entry point to CMA.
Many tracking systems produce parameters describing the observed movement,
such as instant speed, accelerometer readings, bearing and signal strength. Such
system-produced data can carry useful information, however, the algorithmic basis
of its computation is all too often unclear or even undocumented by the producer
(P13. Laube and Purves 2011). The research summarized in this book suggests that
maximal control and hence transparency is achieved when the movement descriptors
underpinning CMA are (re-)computed from raw locational data.

2.3.1 Trajectory Operators

Laube et al. (P3. 2007) proposed the notion of trajectory operators, then called
lifeline context operators, adopting Tomlin’s map algebra for two-dimensional field
data (Tomlin 1990) for the case of one-dimensional streams of movement fixes. A set

http://dx.doi.org/10.1007/978-3-642-29715-1_3
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Fig. 2.3 Lifeline context operators in analogy to Tomlin’s map algebra. Intervals can be delimited
through a temporal window of fixed time (δt) or fixed number of fixes (±3), adapted from Laube
et al. (P3. 2007) (Reprinted from Computers, Environment and Urban Systems, 31(5), Laube, P.,
Dennis, T., Forer, P., and Walker, M., Movement Beyond the Snapshot—Dynamic Analysis of
Geospatial Lifelines, page 486, Copyright (2007), with permission from Elsevier)

of instantaneous (relating to Tomlin’s “local” operators), interval (“focal”), episodal
(“zonal”) and global (“global”) operators were suggested for computing descriptive
movement parameters (see Fig. 2.3). Interval operators, just as the focal operations in
the two-dimensional case, compute movement descriptors at any fix along a trajectory
as a function of the temporal fix neighborhood. This fix neighborhood can be defined
through a defined number of neighboring fixes, or, allowing for irregular sampling
or missing values, through a defined temporal interval. Also similar to the 2D case,
weighted neighborhood functions were discussed, assigning temporally close fixes
higher weights.

That study not only featured the above listed commonly used movement descrip-
tors but also exemplified the development of additional measures tailored towards a
specific application field, here avian navigation research. Navigational displacement
measures at any given point along the trajectory the deviation angle of a homing bird
from the direct path to its loft. Approaching rate measures whether or not and to what
degree a bird moves towards loft. These two measures were developed in a close and
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iterative collaboration with the application scientists, tailored towards their specific
needs.

That study indicated that the seemingly straightforward derivation of movement
properties (such as speed, azimuth, turning angle, or sinuosity) allows for substantial
methodological diversity. There is not just one way of computing speed, azimuth,
or sinuosity for movement data. Instead, from the various possible combinations of
(i) data capture procedures, (ii) conceptual movement models, (iii) different notions
of movement properties found in different application fields, and finally, (iv) vari-
able analysis scales (see Sect. 2.3.2), results a surprising diversity of approaches to
compute movement descriptors.

In many ways the work in Laube et al. (P3. 2007) was a predecessor to later work,
especially Laube and Purves (P13. 2011). The outlook section of the 2007 study
suggested that the notion of interval operators, there conceptualized as a smoothing
operator for imperfect trajectory data, would allow for systematically varying the
analysis scale, aiming at investigating movement data at variable temporal granular-
ities. The study reported on in Laube and Purves (P13. 2011) followed that idea and
presented experiments systematically varying the temporal granularity of deriving
movement descriptors from trajectories.

2.3.2 Scale

Scale is a quintessential geographic concept. All three meanings of scale—
cartographic scale, analysis scale, and phenomenon scale (Montello 2001)—are rel-
evant to CMA.

Cartographic scale expresses the relationship between the earth’s surface and
its necessarily much smaller depiction on a map (Montello 2001). This is clearly
relevant as the visual display of movement traces is an entry point to CMA. How-
ever, GIScience and related application sciences have so far given little attention to
methodological challenges around cartographic scale of mapping movement, which
is surprising given typically large and heterogeneous raw data volumes and the disci-
pline’s rich history in aggregation and generalization. Trajectories are either mapped
in their entirety as polylines (P10. Dennis et al. 2010) or aggregated to density maps
for giving a quick overview (see, for example, Fig. 8 in P3. Laube et al. 2007).
Aggregation and generalization of trajectories remains an important topic for further
research.

Analysis scale refers to the granularity at which phenomena are measured or
aggregated (Montello 2001). Whenever movement is modeled as trajectories, analy-
sis scale refers to the spacing of the fixes, that is the spatial and/or temporal separation
of location measurements along the movement trace. Laube and Purves (P13. 2011)
made the point that the granularity of data capture (the inbuilt or user-set sampling
rate of the tracking system) does not necessarily prejudice the subsequent analysis
scale. By contrast, the experimental piece investigated the implications of varying
the temporal analysis scale at which the movement descriptors speed, turning angle
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Fig. 2.4 Cross-scale derivation of movement descriptors. a Systematic variation of the interval
operator width w between black sampling points when computing, for example, speed. b Dropping
speed values for cow #404020 with coarser sampling rates (in ms−1). Adapted from Laube and
Purves (P13. 2011) (Republished from Laube, P. and Purves, R., How fast is a cow? Cross-scale
Analysis of Movement Data, Transactions in GIS, 15(3), pp. 401–418, 2011, John Wiley & Sons
Ltd, DOI:10.1111/j.1467-9671.2011.01256.x.)

and sinuosity were derived. Methodologically the study illustrates the adaptation of
methods to CMA that proved useful in other geo-disciplines. The methods design
draws on analogies to the classic Fisher et al. (2004) multi-scale piece “Where is
Helvellyn?” that showed how the computation of slope or the labeling of landforms
may vary with the sampling point spacing, that is the analysis scale.

Given tracking data of cows with a fine sampling rate of a fix every 0.25 s, the
study derived movement descriptors for six temporal scales w = [5 s, 10 s, 1 min,
5 min, 10 min, 30 min] (Fig. 2.4a). The study indeed found that the results for various
movement descriptors vary with the used analysis scale. For example, it confirmed
earlier findings, for example mentioned in Laube et al. (P3. 2007), that speed values
drop with coarser sampling, as the straight-line connectors between wide spaced
fixes systematically underestimate the actual path travelled (Fig. 2.4b). However, it
also became obvious that such cross-scale effects should not be discussed without a
careful consideration of the uncertainty of the original GPS data (see Sect. 2.3.3).

Finally, phenomenon scale refers to the region over which geographic processes
(here movement) occur (Montello 2001). The intuitive rule requires that the analysis
scale matches the actual phenomenon scale. However, just as other geographic phe-
nomena, it is often not a priori evident what that phenomenon scale is, or movement
processes can even express characteristics at and across different scales. Think of a
penguin leaving fine grained movement traces on a ice sheet floating on a continental
ocean current. Methods for up-scaling and down-scaling knowledge remain an open
challenge in CMA.

2.3.3 Uncertainty and Data Quality

Uncertainty is another classic theme in GIScience. Uncertainty is an unavoidable
property of the world, information about the world and our cognition about the

http://dx.doi.org/10.1007/978-3-642-29715-1_2
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world (Worboys and Duckham 2004). Uncertainty may arise because of uncertain
specifications. It may, for instance, not be entirely clear what we refer to when we say
a “daily trajectory”. When exactly does this start and end? Do we exclude stops? If so,
how long should stops be such that we exclude them? Second, measuring the accurate
and precise location of a moving object is difficult, hence resulting in uncertain
measurements. Uncertainty arises from the necessity that moving objects must be
sampled at discrete times—what happens in between remains uncertain. Third, in
most cases we will want to derive information from our raw location measurements
resulting in uncertain transformations.

Laube and Purves (P13. 2011) showed that such uncertainty of GPS data should
not be neglected, especially when investigating movement at fine spatio-temporal
granularities. During that study initially aiming to discover multi-scale effects when
computing movement descriptors, it became obvious that what was assumed to
be “raw” GPS data in the first place was indeed smoothed by algorithmic post-
processing, adding positional uncertainty to the fixes. The study consequently
extended its focus and developed a methodological framework for giving an indica-
tion of those temporal scales for which the influence of uncertainty was less important
than the actual signal, the characteristics of the trajectory. To that end Monte Carlo
Simulation was used to model the uncertainty of the fixes. Each fix was assigned
an uncertainty sampled from a bivariate standard deviation before the movement
parameters were recalculated. T-tests then indicated at what scales and with what
uncertainties the found distributions for original and MC-simulated descriptors were
significantly different. This methodology—another GIScience classic—revealed for
the example studied in the paper, that for an uncertainty of 1 m speed is reliably
computed for temporal scales of 60 s and greater.

Imfeld et al. (P1. 2006) illustrate the importance of quality control of raw data in a
field experiment. The study goes at great length to get an idea of the positional accu-
racy of movement and movement context data. The field experiment also showed
that specifically point in polygon tests for linking fixes to the environment are sen-
sitive to both inaccuracies in the location data but also the context information. This
article indicated that the implications of inaccurate data may depend on the task at
hand. If the goal is aggregation (for example the production of a density map) then
positional error is not such an issue. However, when point in polygon links are used,
the influence of the error may be larger, depending on the analysis scale.

2.4 Related Work

This section summarizes selected related work complementing and completing the
discussion of the topics covered in this chapter. The chapter then concludes with
insights and lessons learned from both the research covered in this chapter and from
the related work.

Conceptual models for movement and movement spaces. Nathan et al. (2008)
present an often cited conceptual framework aiming at a unifying generic theory in
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the application field of movement ecology. The framework is based on four inter-
acting mechanistic components of organismal movement: 1. the internal state (why
do animals move?), 2. motion capacity (how do they move?), 3. navigation capacity
(when and where to move?), and 4. the external factors affecting movement. The
primary goal of their conceptual framework is providing a basis for hypothesis gen-
eration and contributing to a better understanding of the causes of movement and its
role in ecological and evolutionary processes. Hence, whereas Nathan et al. (2008)
aims at understanding movement as a process in ecology, the work summarized in
this book rather aims at conceptual models required for abstracting and representing
movement in spatio-temporal information systems.

Having said that, I agree with Nathan et al. (2008) that CMA requires a firm
integration of the movement paths and the embedding movement space. By contrast,
much related work in GIScience and computer science mainly focuses on the move-
ment path or trajectory alone. However, the following definitions illustrate the crucial
role of the underlying movement space, even though in most work this interrelation
is not explicitly discussed.

Work focusing on the shape and arrangement of movement traces is typically
based on some definition of a trajectory as a polyline in a 2D Euclidean space that
can self-intersect, built by a set of time stamped points (Gudmundsson et al. 2007).
This geometry-oriented perspective is useful for geometry-based operations, as is
for example illustrated in Gudmundsson et al. (2009) using a variant of the Douglas–
Peucker path-simplification algorithm for compressing large volumes of movement
data (similar to the motivation in Richter et al. (P18. 2012) but using a rather different
approach). The importance of the embedding movement space becomes obvious
when movement is modeled as the path an object moved along in a transportation
network. For example, Cao and Wolfson (2005) define a road-snapped trajectory
as a set of visited edges in a 2D transportation network. Similarly, Kuijpers et al.
(2010) model network-based trajectories in a 3D space-time prism. In contrast to such
merely geometric definitions, for others a trajectory has a semantic loading. Early
work on temporal GIS for spatio-temporal reasoning about people’s personal lifelines
anticipated the importance of semantic enrichment of event histories (Thériault et al.
2002). In their piece “on a conceptual view of trajectories” Spaccapietra et al. (2008,
p.130) define a trajectory as a “user defined record of the evolution of the position
of an object that is moving in space during a given time interval in order to achieve
a given goal”. Some others go even further and require that raw movement data is
first cleaned and preprocessed, even interpolated and segmented before a trajectory
in a narrower sense is created (Yan et al. 2008). The semantic perspective has also
produced a large amount of research on formal and qualitative modeling of movement
trajectories. For instance, (Noyon et al. 2005) propose a spatio-temporal trajectory
(STT) abstract data type and related operations suitable for representing and querying
semantic-based trajectories.

Whereas the last decade has seen a constant stream of work studying Lagrangian,
GPS-based movement data, recent years have seen the arrival of more and more
work benefitting from the increasing availability of Eulerian movement data (from
GSM mobile phone systems, RFID, WiFi, Bluetooth). Even though not explicitly
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referencing the Lagrange and Euler dichotomy, Andrienko et al. (2008) present a
similar categorization of various ways of observing movement. They discuss time-
based recordings (regular interval sampling), change-based recording (record made
when position changes), location-based recording (when an object passes a beacon,
Eulerian perspective), event-based recording (position fix made with phone call),
and combinations of the above.

Records of mobile phone companies provide the most prominent source for
Eulerian movement data, although rigorous and justifiable privacy concerns limit
their availability. Typically, such data is also tied to a constrained movement space
(street network) and discrete. The work by the group around Rein Ahas on mobile
phone usage in the small European country Estonia may serve as a demonstrative
example for this line of work (Ahas et al. 2009, 2010; Silm and Ahas 2010). The
group has access to passive mobile positioning data of a large fraction of the Estonian
population. Passive refers to the fact that instead of actively requesting records of
a moving object, here only times, anonymized caller ID, and cell ID with the geo-
graphical coordinates of the antenna are recorded when a user happens to make a
phone call or connect to the internet. Nevertheless, with an average of approximately
six fixed calls per user and day, such Eulerian movement paths can be constructed as
sequences of visited antennas. Exploiting this rather extensive coverage of a small
country’s population, the group produces interesting work related to modeling home
and work locations (Ahas et al. 2009, 2010) or short-term population mobility (Silm
and Ahas 2010).

Whereas many Lagrangian/GPS studies are based on experimental set-ups where
tracking devices are distributed and then monitored, many Eulerian studies piggy-
back on existing ICT infrastructure, e.g., people’s individual phones and the GSM
(Global System for Mobile Communications) networks maintained by mobile phone
companies. As the Estonian example shows, such secondary exploitation has the
potential for accessing much larger numbers of individuals. For example, Versichele
et al. (2012) use proximity-based Bluetooth tracking at a large festival estimating
flow maps of up to 10 % of the festival’s 1.5 million visitors. Delafontaine et al.
(2012) demonstrate with a similar Bluetooth setup the use of sequence alignment
methods for revealing variability in the visiting patterns at a trade fair, with patterns
formalizing the number and order of visited exhibition halls.

Computing movement descriptors. Even though the various application fields
study movement with a rather diverse range of motivations, there seems to be a limited
set of parameters characterizing movement. For example, Andrienko et al. (2008)
list movement-related characteristics around position, direction, speed, change of
direction, change of speed, acceleration, and travel distance. Similarly, Dodge et al.
(2008) list primitive parameters (e.g., position (x, y)), primary derivatives (e.g.,
speed f (x, y, t)), and secondary derivatives (e.g., acceleration f (speed)). Hence,
whereas most authors agree on a basic set of parameters, it is much more ambigu-
ous how these are to be computed, and the implications of such choices when the
parameters serve as the fundamental ingredients of any subsequent analysis. A data
challenge based on GPS tracking of lesser black-backed gulls illustrated in 2011 a
rather impressive variation when several experts in movement analysis were asked
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to compute the same basic movement parameters (trip distance and duration, mean
speed; Shamoun-Baranes et al. 2012). So, whereas there is still surprisingly little work
on the implications of choices of conceptual models and data structures, issues related
to data quality and granularity are often investigated, especially in application-driven
movement analysis research fields such as ecology or transportation research, where
careful conduct with data emerges from a long tradition of empirical research.

Scale. Whereas data-driven and theoretical research areas tend to simply accept a
given spatial or temporal granularity, in problem-driven research areas, most promi-
nently in movement ecology, it is widely acknowledged that the observed movement
signal varies with different observation and analysis scales (Nams 2005; Fryxell et al.
2008). Since often the data representing the different scales derived from rather dif-
ferent data capture procedures (as for example Fryxell et al. 2008, in VHS, GPS and
tracks in the fresh snow), it remains difficult to separate multi-scale effects of used
methods from differences of the data capturing techniques. Some exceptions explic-
itly performed multi-scale analysis like that of Laube and Purves (P13. 2011) aiming
at isolating methodological effects. For example, Nams (2005) derives fractal dimen-
sion D (as a measure for sinuosity, or tortuosity, as it is often termed in behavioral
ecology) for the same trajectories at various spatial scales. The hypothesis under-
lying this research states that animals express different movement behaviors (e.g.,
tortuous foraging at fine spatial scales but directed advances at coarse spatial scales)
at different spatial scale sections (so called “domains”), which are identified through
cross-scale analysis. Similar work studied the influence of the sampling regime on
the computation of the home ranges (Borger et al. 2006) and the computation of a
straightness index (Postlethwaite et al. 2013). Such work is important but remains
difficult since obtaining the required fine spatio-temporal granularities still is difficult
and costly.

Uncertainty. It is widely accepted that uncertainty is an inherent property of
movement data (Andrienko et al. 2008). Giannotti and Pedreschi (2008) list mea-
surement error and unavoidable discrete sampling regimes as two major sources of
imperfection for movement data. It is however interesting to observe that only some
areas concerned with movement analysis address this uncertainty while others prefer
to largely neglect it. Most theoretical work studying trajectories mainly as geomet-
ric features defines in their preliminaries that fix locations are perfectly known and
accurate (for example, Gudmundsson et al. 2007; Benkert et al. 2008). However, it is
known that especially in urban areas GPS can be inaccurate, having an effect on the
actual analysis task. For example, imperfection of tracking data had implications for
the segmentation and travel mode allocation in NYC (Gong et al. 2012) and for the
size of movement pattern clusters in pedestrian movement in a recreational appli-
cation (Moreira et al. 2010). Whereas such methodological research remains rare
in the GIScience and computational geometry fields, application areas with urgent
applied research questions such as for example, again, movement ecology, have a
much stronger interest in the implications of imperfect data on the actual outcomes
of the analytical process. For instance, Hurford (2009) shows in an experimental
piece the emergence of systematic bias when computing turning angle due to GPS
measurement error. Similarly, Jerde and Visscher (2005) use Monte Carlo simulation
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to quantify the measurement error for estimates of turning angle and step length as
a function of distance between consecutive locations. By contrast, in the database
community, imperfect tracking data has for some time been the driving force for a
significant research strand around the handling and querying of uncertain positional
data in moving object databases (MOD, for example, Trajcevski et al. 2004).

2.5 Concluding Remarks

This chapter has summarized contributions from a series of articles underpinning
the methodological fundamentals of computational movement analysis—conceptual
modeling and abstraction, and representation and description of movement spaces as
well as the moving entities embedded therein. It was shown that from a growing diver-
sity of technologies allowing for the tracking of individuals emerges a wide range of
different forms of movement data, adhering to an equally diverse range of conceptual
models and data structures. Movement of individuals is captured from GPS, WiFi,
Bluetooth, cell phone logs, ticketing and intelligent public transit cards, as well as
gantry stations. Most research analyzing movement is very problem driven, even
data driven, and often the infrastructure setting dictates how the world is abstracted,
and hence the conceptual data models are chosen. In other words, the way data is
collected often rules the abstraction of the world, which then has implications on the
analysis process. However, since there is little comparison between methods, there is
little insight about the implications of such crucial design choices. CMA studies how
the diversity of how we perceive and model movement has implications on how we
describe and quantify movement, and hence how we progress in the CMA process
enriching movement data to process knowledge, as will be studied in the following
chapter on movement mining.

Computational movement analysis contributes to the theory of GIScience by
adapting and adopting core concepts of spatio-temporal modeling and analysis to
movement data as a relatively new form of geographic information. Work was por-
trayed adapting 2D field operators to 1D streams of location fixes, both based on a
deeply geographic notion of spatial respectively temporal dependence or neighbor-
hood. Other studies borrowed from the methodological toolbox of geomorphometry
and performed multi-scale analysis addressing sampling issues and Monte Carlo
simulation investigating uncertainty.

Movement data often inherits its conceptual model and sampling regime from a
given tracking system or research design from the application scientist collecting the
data in the first place. However, I argue that computational movement analysis can
and must move beyond accepting such preliminaries as unchangeable constraints
and rather consider them as design choices and systematically study the implications
of such design choices. Furthermore, as became evident, for example, in the work on
semantic trajectory compression, the characteristics of conceptual movement spaces
can at the same time be a limitation but also an opportunity. This will become even
more evident in the following two chapters.
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Chapter 3
Movement Mining

With ever increasing volumes and complexity of spatio-temporal information,
knowledge discovery in databases and its best known step data mining, have rapidly
gained importance within Geography and GIScience. Analyzing spatio-temporal data
first of all means structuring data, then extracting relevant spatial patterns and rules
and providing decision makers with enriched information and condensed knowl-
edge rather than flooding them with raw data. Movement patterns, for example,
represent such sought-for high-level process knowledge derived from low-level tra-
jectory data. This second chapter introducing the research field of Computational
Movement Analysis (CMA) reviews research on several aspects of mining move-
ment data, including the conceptualization and formalization of movement patterns
and the development of algorithms for their detection, the computing of trajectory
similarity, and methods for visualization-based exploratory analysis of movement
data.1

Overarching research objectives. The research summarized in this chapter con-
tributes to the following overarching research objectives of computational movement
analysis.

• Illustrate to what respect the conceptual underpinning and toolset of data mining
suits the specific requirements of computational movement analysis.

• Exemplify how geographically-informed movement mining contributes to a better
understanding of movement processes.

• Promote a more thorough attitude towards evaluation of proposed movement min-
ing methods.

1 Whereas this chapter discusses movement mining in conventional omniscient and centralized
information systems or databases, the following Chap. 4 discusses the rather peculiar case where
data mining is performed in decentralized systems such as geosensor networks. Even though most
of the work summarized in Chap. 4 nominally also proposes data mining techniques, its theoretical
underpinning in decentralized spatial computing justifies a separate chapter focusing on decentral-
ized movement analysis alone.
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Fig. 3.1 The KDD process and its core step data mining, adapted from Fayyad et al. (1996)

3.1 Data Mining for CMA

According to Fayyad et al. (1996, p. 39) data mining refers to one particular step in
the overall process of discovering useful knowledge in data (Fig. 3.1).

Data mining is the application of specific algorithms for extracting patterns from data. [. . .]
The additional steps in the knowledge discovery in databases (KDD) process, such as data
preparation, data selection, data cleaning, incorporation of appropriate prior knowledge, and
proper interpretation of the results, are essential to ensure that useful knowledge is derived
from the data. Blind application of data-mining methods (rightly criticized as data dredging
in the statistical literature) can be a dangerous activity, easily leading to the discovery of
meaningless and invalid patterns.

3.1.1 Defining Movement Mining

Miller and Han (2009, p. 3) build on such early definitions of KDD and data mining
when they outline the fundamentals of Geographic Data Mining and Knowledge
Discovery. In their words, data mining involves distilling data into information or
facts about the domain described by a database. KDD by contrast is then the higher-
level process enriching such found information or facts into knowledge through
interpretation of information and its integration with existing knowledge about the
domain. This notion of distilling data into information and further into knowledge
complies very much with Anthony Galton’s call to bridge the gulf between low level
observational data and the high-level conceptual schemes in which humans think and
understand geographic phenomena (Galton 2005, p. 300). The key building blocks
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of this distillation process leading from data through information to knowledge are
interesting patterns. These are introduced as non-random properties and relationships
that are valid, novel, useful, and ultimately understandable (Fayyad et al. 1996; Miller
and Han 2009).

It is this notion of data mining that builds the theoretical underpinning of the
notion of movement mining used here:

Definition Movement mining aims for conceptualizing and detecting non-random
properties and relationships in movement data that are valid, novel, useful, and ulti-
mately understandable.

Even though the definition of data mining implies large data sources, the core
elements of the definition refer to qualities rather than quantities. Instead of defin-
ing movement mining through particular techniques or methods such as artificial
intelligence, machine learning, statistics, or database systems, this book adheres to
a conceptual view of qualifying the outcomes of the analytical process. The move-
ment mining process aims for the ideal of finding properties and relationships, in
a wider sense, any form of structure in the data, patterns or trends, segmentations,
similarities, or clusters, that measure up to the given qualities.

The qualities valid, novel, useful, and ultimately understandable, in accordance
to Fayyad et al. (1996) and Miller and Han (2009, p. 3), are in the following illus-
trated for the special case of movement mining using the example of the movement
pattern leadership (P5. Andersson et al. 2008). Leadership here is defined as the
situation when in a group of moving entities “one object is leading others”, in the
sense that this object spatially leads the way and the others follow for some time
(Fig. 3.2).

• valid—properties and relationships should be general enough to apply to new
data, hence they should not just capture an anomaly or a peculiarity of the
current data. Although initially inspired by coordination in gray wolves
(Peterson et al. 2002) or grazing heifers (Dumont et al. 2005), patterns describ-
ing collective motion pattern such as leadership or flock (Laube et al. 2005;
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Fig. 3.2 Movement pattern example leadership, Andersson et al. (P5. 2008)
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Benkert et al. 2008) are also investigated for pedestrians or tourists (Orellana
and Renso 2010). A valid movement pattern should hence be sufficiently generic
and abstract such that it can potentially be found in a diverse range of application
domains.

• novel—properties and relationships should be nontrivial and unexpected. The
leadership pattern requires a specified set of moving objects to maintain a spe-
cific topological relation for a given temporal interval. This involves complex
coordination and arrangement amongst the moving objects. Contrasting with the
leadership definition in Andersson at al. (P5. 2008), Nagy et al. (2010) reveal
the rather unexpected insight that for flocking birds the leader actually guides
the flock from a position in the back rather than in front of the flock. The qual-
ity “novel” emphasizes data mining’s claim to detect the unexpected, rather than
being confirmatory.

• ultimately understandable—properties and relationships should be simple and
interpretable by humans, for example, domain experts. Even though the use of
terms that may have variable and potentially ambiguous semantic connotations
has raised criticism, the pictorial language of patterns exemplified through the
pattern leadership has very much added to the appeal and accessibility of move-
ment patterns, especially when collaborating with domain experts in movement
ecology or urban transit.

• useful—properties and relationships should lead to some effective action, e.g. a
successful decision making or scientific investigation. The pivotal challenge in data
mining and also movement mining is the identification of the useful patterns in the
plethora of potential patterns. To this end, Laube and Purves (2006) compared in
a Monte Carlo approach movement patterns found in real data with patterns found
in synthetic data generated trough a form of random walk. More recently commu-
nity activities targeting specifically a comparison of analytical approaches have
contributed to the discussion about the usefulness of found patterns and trends
(Shamoun-Baranes et al. 2012).

3.1.2 What is Special About Movement Data?

KDD and data mining are based on the belief that conventional database query and
statistical methods are not really suitable for current day data-rich and computation-
rich information systems. This section revisits the arguments raised for the general
case of data mining and investigates to what degree the peculiarities of CMA comply
with the general case.

Statistics require clean and noiseless, rather small or manageable data sets that
were scientifically sampled with a specific research question in mind (Miller and
Han 2009). Independence and normality are key assumptions. Movement mining,
however, often is confronted with data captured for a different, potentially unrelated
purpose (e.g. logs of mobile phone companies or fleet management data for buses,
taxis or rental bikes). Furthermore, tracking data is highly spatio-temporally autocor-
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related (P18. Richter et al. 2012). Hence, just as in data mining in general, movement
mining is challenged by noisy and uncertain, multi-source data.

Miller and Han (2009) furthermore stress that data mining and KDD is more
inductive than traditional deductive statistical analysis. Statistics aim to confirm a
priori formulated hypotheses, based on some theory. By contrast, the patterns and
relations hidden in large data sources sought in a data mining and KDD process are by
definition unexpected and unknown in advance. At the least, it would be very difficult
to have a complete a priori picture of what to find. Hence data mining is most useful
when applied early in the process of scientific discovery, when structuring large
data sources, aiming in an exploratory way towards the establishment of a theory.
This way of scientific reasoning is very much prevalent in the movement mining
literature, especially when combined with scientific visualization in visual analytics
(Andrienko and Andrienko 2007).

Summarizing why data mining as a technique is especially suitable for CMA,
Table 3.1 compares the peculiarities of movement data identified in Sect. 1.1 with
the arguments motivating data mining or conventional statistics. Besides an arguably
good general fit, the comparison also reveals commonalities regarding especially the
type of the investigated data (noisy, uncertain) and the type of patterns of interest
(non-trivial, unexpected complex relations).

3.2 Movement Mining Tasks

There are many different, yet similar, categorizations of data mining tasks (see for
example Chakrabarti et al. 2006; Hand et al. 2001; Han and Kamber 2006, for an

Table 3.1 Comparison of the properties of movement data and the strengths of data mining as a
tool, contrasted to the characteristics of conventional database querying and statistics

Peculiarities of Motivation for data mining Motivation for conventional DB

movement data (Sect. 1.1) queries and confirmatory statistics

Geographic reference
systems

– –

Permanent change – –

Complex objects Non-trivial relationships Simple data points in spreadsheets

Implicit relations Discover the unexpected Confirmatory, confirm the expected

Overlap Multi-source, ad hoc
integrated data sources

Solitary spreadsheets

Spatial dependency and
heterogeneity

Spatio-temporally
autocorrelated

Independence, normality

Uncertainty Noisy and uncertain data Clean, noiseless

Derivative data Multi-source, ad hoc
integrated data sources

Data sampled for primary scientific
question

Scale issues – –

http://dx.doi.org/10.1007/978-3-319-10268-9_1
http://dx.doi.org/10.1007/978-3-319-10268-9_1


34 3 Movement Mining

overview). Loosely adhering to the structures given there, the movement mining
work included in this section is grouped into four subsections.

• Segmentation and filtering
• Similarity and clustering
• Movement patterns
• Exploratory analysis and visualization

Figure 3.3 gives an overview of movement mining tasks. The iconic examples are
embedded in the six space models accommodating the movement of point objects
introduced in Fig. 2.1 in Sect. 2. The following section exemplifies the development
and application of movement mining techniques through original research included
in this book.
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Fig. 3.3 Examples for movement mining tasks embedded in typical conceptual movement spaces. a
Exploratory analysis and movement patterns, home range (a1) and arrangement patterns leadership
(a2), flock (a3), single file (a4); b segmentation into segments expressing different sinuosity (b1.1,
b1.2); c similarity and clustering: similar 3D shapes or origin-destination (from H to K vs. from K
to A). d similarity and clustering: d1 and d2 show highly synchronous movement, d3 is an outlier;
e sequence patterns: two trajectories both featuring a sequence I, F, G; f similarity and clustering
in a network space; f1 and f2 are more similar than f1 and f3, all three trajectories build an origin-
destination cluster (from A to K ) (P9. Laube 2009) (Reprinted from Behaviour Monitoring and
Interpretation, BMI, Smart Environments, Gottfried, B. and Aghajan, H. (eds.), Laube, P., Progress
in Movement Pattern Analysis, p. 55, Copyright (2009), with permission from IOS Press)

http://dx.doi.org/10.1007/978-3-319-10268-9_2
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3.2.1 Segmentation and Filtering

Most tracking systems adopting the Lagrangian perspective of movement (such as
GPS or VHF receivers) produce streams of location fixes, irrespective of the current
movement behavior of the tracked object. Here, segmentation is a useful approach
for structuring large volumes of raw movement data. Similar to image segmenta-
tion in image processing (Shapiro and Stockman 2001), segmentation then refers
to the process of partitioning movement data into multiple segments, with the goal
of simplifying or changing the representation of the trajectory into something that
is more meaningful or easier to analyze. Buchin et al. (2011b) specifically define
segmentation as partitioning a trajectory into a (typically small) number of pieces,
where the obtained segments have uniform characteristics.

In the movement mining process segmentation and filtering can take the func-
tion of preprocessing steps, aiming at reducing noise and condensing the signal
for a given analytical task (Fig. 3.1). First the trajectory is segmented into coherent
segments, then only those segments relevant to the analysis task are selected for
subsequent processing. In the most basic case this involves separating stops from
moves. Many movement data sets contain large periods when the object is not mov-
ing. For instance, the GPS trackers producing the data in Laube and Purves (P13.
2011) used a movement model based on a Kalman filter, where even when the object
is immobile, a smooth curve is fitted to the location fixes resulting in trajectory coils
(see Fig. 3.4). Since such “pseudo movement” interfered with the multi-scale study

t

y

x

i

(1)

(2)

(3)

i i

Fig. 3.4 Trajectory segmentation and filtering. (1) Application of an interval operator for computing
the average Euclidean distance to other fixes inside a temporal window i . (2) Removal of all points
where average distance is less than a given threshold, i.e., filtering of static points, (3) filtering of
subtrajectories with less than a threshold temporal length. Adapted from Laube and Purves (P13.
2011) (Republished from Laube, P. and Purves, R., How fast is a cow? Cross-scale Analysis of
Movement Data, Transactions in GIS, 15(3), pp. 401–418, 2011, John Wiley & Sons Ltd, DOI:
10.1111/j.1467-9671.2011.01256.x)
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it had to be removed through a segmentation and filtering step. Similar filtering was
also required in Laube et al. (P12. 2011a) working with the same cattle tracking data.
Many segmentation approaches are based on the idea that in an immobile phase the
area covered by the object during that interval must be smaller than when the object
is moving. Laube et al. (P12. 2011a) use a minimal enclosing circle, whereas Laube
and Purves (P13. 2011) based their stop detection on an average Euclidean distance
to other fixes inside a temporal window i to be less than some threshold d (see
Fig. 3.4).

Furthermore, segmentation can be based on the shape of the trajectory. Trajec-
tories can be split into segments of similar straightness or sinuosity, or at sharp
turns. Alternatively trajectory segmenting can be performed based on any descrip-
tive parameter assigned to individual fixes. A stop could then simply be identified
by, for instance, low speed values (P14. Dodge et al. 2012). Either parameters such
as speed, acceleration, heading, or sinuosity emerge from the primary sensor sys-
tem or they are derived through instantaneous or interval trajectory operators (see
P3. Laube et al. 2007, Sect. 2.3.1). Segments or subtrajectories are then delineated
based on sequences of uniform parameters. Dodge et al. (P14. 2012) go one step fur-
ther and categorize the derived movement parameters (MP) into a set of predefined
classes, creating a string-like representation of the characteristic of the trajectory
(see Fig. 3.5). These MP class sequences are then used for assessing the similarity
between “strings”, or trajectories respectively (see Sect. 3.2.2).

Whereas most examples in this chapter adhere to a preprocessing notion of seg-
mentation, it can also be the primary movement mining task of a study. Applications
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Fig. 3.5 Trajectory segmentation based on a translation of trajectories into string-like sequences of
movement parameter (MP) classes. MP classes capture the deviation from the mean of a parameter
and the sinuosity of the MP profile, for example a(PHL) reads as “Positive High (deviation from
mean) and Low (sinuosity). Adapted from Dodge et al. (P14. 2012) (Republished from Dodge,
S., Laube, P., and Weibel, R., Movement Similarity Assessment Using Symbolic Representation
of Trajectories. International Journal of Geographical Information Science, 26(9), pp. 1563–1588,
2012, Taylor & Francis, DOI:10.1080/13658816.2011.630003)
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include behavior classification in animal ecology (stand, forage, fly) or travel mode
detection (walk, bike, car, bus; see Sect. 3.4).

3.2.2 Similarity and Clustering

Trajectories and other traces of moving objects are complex objects and therefore
comparing trajectories in order to assess their similarity or for clustering is a chal-
lenging problem. Trajectories, for example, can significantly vary in length or extent,
shape and orientation, as well as granularity. Furthermore, there are different notions
of what might be considered similar when comparing trajectories. Trajectories could
be considered similar if they have similar shapes (elongated vs. clumped), share
commonalities in terms of derived movement parameters (similar average speed or
sinuosity), visit similar places (edge G in Fig. 3.3f), feature similar patterns (such
as repeated bursts of relocation in Levy walks, Gonzalez et al. 2008) or express
sequences (Fig. 3.3e) or diurnal rhythms. Depending on the application domain the
notion of similarity will focus on different aspects of the complex spatio-temporal
traces of moving objects.

Here, a general procedure for assessing trajectory similarity and subsequent tra-
jectory clustering is presented and illustrated through the respective procedure in
Dodge et al. (P14. 2012).

• Specify a frame of reference. What shall be compared? The entire lifeline of an
object? Yearly migrations of animals or daily commuting trips of people? To
this end, segmentation methods may be used in preprocessing steps. Dodge et al.
(P14. 2012) investigate the (a) whole lifelines of hurricanes from the moment of
their formation until their degradation, and (b) the movement along a specifically
selected set of edges of an urban transportation network.

• Choose or define a distance metric. Dodge et al. (P14. 2012) specifically argue for
a spatio-temporal notion of distance, explicitly going beyond only considering the
atemporal geometry. The trajectory is thereto transformed into a sequence of class
labels based on the movement parameter speed. Then a modified edit distance for
comparing such strings is used as a distance metric.

• Compute similarity matrix and apply a suitable clustering technique. To this end,
Dodge et al. (P14. 2012) applied complete-linkage agglomerative hierarchical
clustering.

Figure 3.6 illustrates the procedure for four selected hurricane trajectories. Even
though H2 and H3 appear to have rather similar shapes, in terms of speed sequences
H1 and H2 express the smallest distances and then, the largest similarity, respectively.



38 3 Movement Mining

 90° W  75° W  60° W  45° W  30° W

 15° N 

 30° N 

 45° N 

 60° N 

PHH PHL PLH PLL MMM NLH NLL NHH NHL

point index
5 10 15 20 25 30 35 40 45 50

H1
H2
H3
H4

50 100 150 200 250 300

5

10

15

20

time (hour)

sp
ee

d 
(m

/s
)

H1H4

H2

H3

0
0

H1
H2
H3
H4

H1 H2 H3 H4
0  0.282   0.552  0.768
0.282  0   0.534  0.760
0.552  0.534  0   0.864
0.768  0.760  0.864  0

H1
H2
H3
H4

H4
H2

H1

H3

(a) (b)

(c) (d)
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four hurricane trajectories. a spatial footprint of hurricane trajectories; b hurricane speed profiles; c
segmented speed profiles; d NWED pair-wise distance matrix (P14. Dodge et al. 2012) (Republished
from Dodge, S., Laube, P., and Weibel, R., Movement Similarity Assessment Using Symbolic
Representation of Trajectories. International Journal of Geographical Information Science, 26(9),
pp. 1563–1588, 2012, Taylor & Francis, DOI:10.1080/13658816.2011.630003)

3.2.3 Movement Patterns

Mining movement patterns is the quintessence of movement mining. This book fea-
tures work on coordination patterns such as leadership in Andersson et al. (P5. 2008)
and flocking2 in Laube et al. (P6. 2008b) and Laube et al. (P12. 2011a), and Both et al.
(P19. 2013) as well as reaction patterns such as pursuit and escape, confrontation,
or avoidance in Merki and Laube (P16. 2012). Examples for movement patterns are
illustrated for leadership in Fig. 3.2 and pursuit and escape in Fig. 3.7. This section
revisits the work on movement patterns included in this book, reviews strengths and
weaknesses of the included work and thereon presents three suggestions for good
practice in movement mining.

3.2.3.1 Definitions Grounded in Application Theory

Definitions of movement patterns should be grounded in the theory of the respec-
tive application domain. Andersson et al. (P15. 2008) base the conceptualization
of the pattern leadership on detailed descriptions of the involved processes and

2 Note, the research on flocking featured in this book combines data mining concepts with decen-
tralized spatial computing principles. This chapter focuses on the data general data mining aspects,
Chap. 4 on the specifics of mining movement patterns in a decentralized setting.

http://dx.doi.org/10.1007/978-3-319-10268-9_4
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Fig. 3.7 Pursuit and escape pattern (P16. Merki and Laube 2012). An actor (black dot) approaches
a reactor (grey dot), they follow each other (front region ϕ), and finally they separate again.
a Lagrangian perspective, b Eulerian perspective, c Eulerian perspective for network bound move-
ment (Republished from Merki, M. and Laube, P., Detecting reaction movement patterns in trajectory
data, In Gensel, J., Josselin, D., and Vandenbroucke, D. (eds.), Bridging the Geographic Information
Sciences, International AGILE2012 Conference, Avignon (France), April, 24–27, Lecture Notes in
Geoinformation and Cartography, Springer, Berlin, Germany, ISBN 978-3-642-29063-3, Copyright
© 2012)

spatio-temporal constellations found in various publications in the movement ecology
and animation industry bodies of literature. These sources provide precise descrip-
tions of what it means to “initiate the collective movement of a coordinated group”
of grazing heifers or “leading a pack of wolves”. Similarly, Merki and Laube (P16.
2012) developed their formal notion of interaction patterns based on work on preda-
tor/prey behavior and territorial interaction found in the ecology literature as well as
studies on suspicious behavior of pedestrians in video surveillance.

Early work on movement patterns (Laube et al. 2005) was rather tools-driven,
where pattern definitions were heavily influenced by the algorithms at hand for
the subsequent data mining process. Whereas these papers were important for pro-
moting the idea of movement patterns in the first place, gained insights about the
limitations of such definitions lead to more problem-driven definitions. For example,
Laube et al. (P12. 2011a) revealed the limitation of a disc-shaped notion of prox-
imity for the pattern flock. For a group of grazing cows, group coherence is better
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expressed through piece-wise linkage, as is often used in convoy definitions (Jeung
et al. 2008a, b).

Borrowing from the application literature can be a blessing and a curse when it
comes to terminology. Clearly, using established terminology and respective defi-
nitions helps conceptualizing useful and understandable patterns (see Sect. 3.1.1).
However, problems can emerge when conceptually identical patterns have differ-
ent yet similar terms in different fields (e.g., flocks, convoys, herds), or even worse
when identical terms have differing meanings in different fields. For that reason it
can be observed that terminology in movement pattern mining has evolved towards
more structural terms (moving cluster) rather than semantically loaded terms (flock,
convoy).

3.2.3.2 Increasing Levels of Complexity

The research summarized in this chapter indicates that novel (non-trivial and unex-
pected) movement patterns can often be decomposed into more primitive building
blocks. These building blocks in turn are often spatial proximity- or topology-based
relations or set relations. For example, leadership in Andersson et al. (P5. 2008)
requires the spatial relation “e j is in front of ei ”, which is in turn based on the con-
cept of a front region f ront (ei ), a wedge with edge length r and apex angle α.
This very same front region is also featured in Merki and Laube (P16. 2012), here,
however, acting as a building block of the interaction pattern pursuit and escape (see
Fig. 3.7). The latter piece furthermore features very similar pattern primitives for
“proximity” (even in two different ways for both the Lagrangian and the Eulerian
perspective, see Fig. 3.7 and Sect. 2.2.1) and for “change of movement direction”.
The sequence patterns in Bleisch et al. (P20. 2014) are per definition chained-up
simple movement or environmental events (“rapid upstream movement”, “moderate
water temperature”), building more complex sequences. Such a sequence could, for
example, comprise of a moderate water temperature event, followed by two rapid
upstream movement events ({wt3e}, {ue}, {ue}).

The hierarchical decomposition of movement patterns furthermore assists the
development of algorithms for detecting the patterns. Andersson et al. (P5. 2008)
first introduce a series of auxiliary data structures in the form of precomputed data
arrays that are then later combined for an efficient detection of the patterns. These
arrays store for each moving entity the number of consecutive unit time intervals
expressing a certain follow-behavior. For example, leadership can be derived from
the arrays “the number of time units e j has at least m followers” and “the number
of time units e j is not following anyone else”. The algorithmic procedure in Merki
and Laube (P16. 2012) computes in a very similar way first all primitive events
contributing to a pattern and then investigates the required sequences (see Fig. 3.7,
approach, followed by follow after a delay, followed by separate).

The usefulness of such a hierarchical composition of movement patterns is further
emphasized through several attempts of a categorization or ontology of movement
patterns. Dodge et al. (2008) refer to primitive patterns and compound patterns,

http://dx.doi.org/10.1007/978-3-319-10268-9_2
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Andrienko and Andrienko (2007) stipulate the combination of individual movement
behaviors (IMB) to form dynamic collective behaviors (DCB). Irrespective of the
precise nature of the building blocks, there seems to be an agreement that higher-level
behavior patterns emerge when lower-level building blocks are strung together in a
temporally ordered sequence. Merki and Laube (P16. 2012) even showed that not
only the sequence matters, but that the temporal spacing between lined-up building
blocks plays a crucial role when separating related yet different behaviors.

3.2.3.3 Non-deterministic Pattern Mining

Even though movement pattern mining qualifies as a “retrieval by content” data
mining task (for example “detect all leaders leading m followers for k time units”),
its true strength lies in exploratory rather than confirmatory analysis, in hypothesis
forming rather than hypothesis testing. Movement patterns are a good example of how
movement mining is strongest when prompting researchers to new and unexpected
relationships in data. The exact extent of a leadership pattern is not very relevant.
The knowledge that in a certain data set there exist leadership patterns in the first
place, and the order of magnitude of such patterns, is much more relevant.

Similarly, in most cases there is not a priori knowledge about the precise extent
or any parameter or threshold specifying a movement pattern. How many followers
must an alpha wolf have and for how long must they follow it? In some cases the
domain specific literature may give indications about parameters specifying move-
ment patterns. However, it is the repeatability of the algorithmic search for such
patterns that allows for series of sensitivity experiments, lowering the influence of
potentially arbitrarily chosen thresholds in the knowledge discovery process. Merki
and Laube (P16. 2012), for example, assessed the sensitivity of the parameters φ, the
angle of the front region for pursuit and escape, and delay d between an approach
and a separation in a confrontation pattern. Laube et al. (P12. 2011a) explicitly
studied the sensitivity of the data mining process with respect to the chosen size of
flocking patterns (here with grazing cows). Performing movement mining in such an
exploratory way turns a potential weakness into a strength as it allows exactly the
required embedding of the somewhat mechanistic pattern mining in further domain
expertise, through a close collaboration of data mining experts with domain experts
(Fayyad et al. 1996, p. 39).

3.2.4 Exploratory Analysis and Visualization

Given its specific characteristics, movement data presents an ideal use case for
spatio-temporal exploratory analysis, visualization, and visual analytics concepts
(Andrienko et al. 2010). Irrespective of the precise label, the core idea is to combine
the strengths of human and computational data processing (Keim et al. 2008). Just as
is outlined in the previous sections, algorithmic techniques are used to prepare and
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condense the raw movement data by suggesting similarities and clusters or segments
and patterns. The structured data is then visualized and the human analyst can use
his/her strength of confirming the expected and detecting the unexpected by visually
inspecting the displayed information, often in an interactive analysis setting (Thomas
and Cook 2006; Andrienko and Andrienko 2007).

Even though the focus of the work summarized in this book is clearly neither
visualization nor visual analytics, the section on movement mining tasks concludes
with selected examples where visual and exploratory approaches support the wider
movement mining process. These examples are:

• Small multiples. Small multiples (Tufte and Graves-Morris 1983) or collections
(Bertin et al. 1981) are a set of juxtaposed data representations allowing sliced
insight into multivariate data. Given that movement data often involves large data
sets of multiple objects with overlapping and repetitive space use, small multi-
ples are a widespread tool in movement mining. The first example included here
features small multiples for nine maps illustrating the space-use patterns of nine
GPS-tagged common brushtail possums (P10. Dennis et al. 2010, Fig. 3, p. 23).
The second example illustrates for ten individual cows three different movement
parameters at six temporal scales each (P13. Laube and Purves 2011, Fig. 6, p. 412).

• Aggregation. Laube et al. (P3. 2007, Fig. 13, p. 495) features an example of aggre-
gation. Here, the spatially explicit property of flight sinuosity of a large set of trajec-
tories was interpolated into one field aggregating the information of all pigeons.
Figure 3.8 reveals that the homing pigeons show highest sinuosities around the
release site, indicating a phase of re-orientation after release.

• Interactive interfaces. Even though not explicitly being a result of the research sum-
marized in this volume, several interactive interfaces were developed and inten-
sively used in the movement mining process, especially for plausibility testing.
For example, the agent-based simulation environment REPAST served as a base
for an interactive data mining interface for the development of decentralized flock
mining algorithms in Laube et al. (P6. 2008b) and Laube et al. (P12. 2011a). The
interfaces allowed for the live interactive adjustment of several algorithm para-
meters during simulation runs, with linked windows showing the effects of these
adjustments in a map view as well as error plots (see Fig. 3.9).

3.3 Evaluation

As pointed out above, the unreflected application of data mining methods can easily
lead to the discovery of meaningless patterns (Fayyad et al. 1996). Similar care is
required for the development of data mining techniques, and hence also movement
mining techniques. Evaluating if the developed methods are sound and produce useful
and meaningful knowledge is at the same time very important and very difficult. This
section discusses concepts that can help evaluating the quality of proposed movement
mining techniques. Verification, validation, and credibility are based on the terminol-
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ogy for evaluating and testing ecological models by Rykiel (1996), whilst efficiency
reflects basic considerations of computing costs and applicability for practical use.

• Verification is the technical matter that relates to how accurately the analytical ideas
are translated into computer code or mathematical formalisms. Verification aims at
assuring that a method (a.k.a. data mining technique) produces mechanically and
logically correct results. For example, debugging code is a verification process.
In terms of algorithm analysis verification is related to algorithmic efficiency.
Sometimes verification is referred to as an internal evaluation.
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Fig. 3.8 Aggregation. The field summarizes and aggregates the derived parameter trajectory sin-
uosity for 54 racing pigeon in a field experiment. The aggregation reveals highest sinuosity values
around the release site (P3. Laube et al. 2007) (Reprinted from Computers, Environment and Urban
Systems, 31(5), Laube, P., Dennis, T., Forer, P., and Walker, M., Movement Beyond the Snapshot—
Dynamic Analysis of Geospatial Lifelines, p. 495, Copyright (2007), with permission from Elsevier)
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Fig. 3.9 Interactive data mining interface for mining flock patterns using decentralized movement
mining algorithms, implemented in REPAST (P6. Laube et al. 2008b) (With kind permission from
Springer Science+Business Media: Cova, T. J., Beard, K., Goodchild, M. F., and Frank, A. U., (eds.),
Geographic Information Science, Lecture Notes in Computer Science, vol. 5266, 2008, ISBN 978-
3-540-87472-0, Laube, P., Duckham, M., and Wolle, T., Decentralised movement pattern detection
amongst mobil geosensor nodes, pp. 199–216, Fig. 5)

• Validation demonstrates that a method (a.k.a. data mining technique) within its
domain of applicability possesses a satisfactory range of accuracy consistent with
the intended application of the method. For instance, when suggesting a segmenta-
tion algorithm, validation could consist of cross-checking segments derived from
raw trajectory data with segments annotated by experts. Hence, validation can be
referred to as external evaluation.

• Credibility refers to the degree of belief in the validity of a method (a.k.a. data min-
ing technique) to justify its use for research and decision making. The credibility
of a new method is relative to a particular application context. A credible method
is one that domain experts accept and consider suitable for a given problem.

• Efficiency investigates the question if the proposed tool (a.k.a. data mining tech-
nique) can efficiently be used in an applied context. This includes the analysis
of algorithmic performance of the proposed methods and hence also investigates
their scalability.

Note the similarities to the qualities of patterns outlined in Sect. 3.1.1. The work
summarized in this book repeatedly addresses the above concepts. In the following,
selected examples are singled out illustrating the concepts in the general context
of movement mining in computational movement analysis. Verification is a basic
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imperative when developing CMA methods and is hence rarely evident from scientific
publications. For that reason it is not further investigated in the following.

3.3.1 Validation

Validation investigates if and how well a new method does what it is supposed to do.
Often this involves a comparison of method outcomes with respective observations or
manual measurements made by experts. Rykiel (1996) lists a wide range of different
validation tests. In the context of this chapter five shall be portrayed in more detail.

3.3.1.1 Face Validity

For assessing the face validity of a method knowledgeable people are asked if the
method and its behavior is reasonable, if input-output relationships appear reason-
able. For instance, discussions with farming experts when working on Laube et al.
(P12. 2011a) revealed that the tool-driven definition of the movement pattern flock
was not optimal. The pattern definition used required the individuals to move within
a circular disc of a given radius, whereas the observed movement rather showed
flocks as chains of piecewise connected pairs. Here, the face validity test revealed a
limited suitability of the chosen formalization underlying the proposed method.

3.3.1.2 Visualization Techniques

Another validation strategy is offered by visualization, exploratory analysis, or visual
analytics, where the data mining process is combined with a human analyst. Here the
user directly inspects the method outcomes by the use of visual displays and thereby
validates the plausibility of method outcomes. Examples for visual validation can be
found in Sect. 3.2.4.

3.3.1.3 Internal Validity

For assessing the internal validity of a method test data sets can be used for investi-
gating if the method produces and reproduces a consistent output. The error analysis
carried out for decentralized flock mining in Laube et al. (P6. 2008b) and Laube
et al. (P12. 2011a) shall serve here as an example for testing the internal validity.
Given a data set with a known spatio-temporal occurrence of target patterns, the num-
ber of actually present patterns is compared to the number of patterns found by the
movement mining algorithm. Error of omission (eoo, “missed patterns”) accounts
for existing patterns not found, while error of commission (eoc, “false positives”)
specifies the wrongly detected patterns when no pattern actually exists.
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Laube et al. (P12. 2011a) illustrated a typical dilemma for the assessment of inter-
nal validity. A major difficulty lies in finding suitable data sets that (a) express exactly
the patterns to be detected, and (b) feature sufficient semantic information document-
ing those patterns. For example, the fine-grained cow tracking data used in Laube
et al. (P12. 2011a) did not feature information about the spatially and temporally
varying composition and arrangement of the tracked group of cows. Consequently,
assumptions had to be made for the validation process that certainly are up to debate.
This shortcoming can be overcome when synthetic data is generated where the num-
ber and distribution of patterns can precisely be controlled for experiments (as has
been illustrated above). This, however, can undermine the credibility or the generic
character of a proposed technique since one could argue that the simulation was inap-
propriately fitted to suit the data mining technique. As a code of conduct this book
suggest to aim for a combination of both simulated and real data for both validation
and verification purposes.

3.3.1.4 Sensitivity Analysis

Movement mining methods may require the setting of parameters, and consequently
can express variable sensitivity with respect to these parameters. Sensitivity analysis
investigates which parameters cause significant changes in the methods’ outcomes.
The core argument of Laube and Purves (P13. 2011) is based on a sensitivity analysis.
The paper investigates the sensitivity of methods for computing movement descrip-
tors to the selected analysis scale and associated data uncertainties. In this case the
validation procedure highlighted crucial sensitivities that are often neglected.

Another form of sensitivity analysis is performed in the movement mining
approaches presented in Laube et al. (P6. 2008b) and Laube et al. (P12. 2011a).
Both studies required some form of algorithm parameterization, balancing eoo versus
eoc in the constrained decentralized computing environment (see Sect. 4.1). Here,
the varied constraint is the size of the communication range c relative to the pat-
tern radius p: The larger the communication range, the smaller eoo and the larger
eoc (Fig. 3.10). The figure also illustrates that specifically error of omission can be
reduced when the rigor of the task is relaxed from finding complete flock patterns
(n = 10 individuals) to “partial” flocks built of fewer individuals.

3.3.1.5 Comparison to Other Methods

When new methods extend other methods then a direct comparison of their outcomes
is a suitable validation means. Dodge et al. (P14. 2012) propose a new variant of
an edit distance for assessing trajectory similarity, that clearly is positioned in a
succession of related methods. The comparative study then revealed similarities
and differences between the compared methods, allowing a validation of the newly
proposed method.

http://dx.doi.org/10.1007/978-3-319-10268-9_4
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Fig. 3.10 Balancing eoo versus eoc in decentralized flock mining, simulated movement
data (P12. Laube et al. 2011a) (Republished from Laube, P., Duckham, M., Palaniswami,
M., Deferred Decentralized Movement Pattern Mining for Geosensor Networks, International
Journal of Geographical Information Science, 25(2), pp. 273–292, 2011, Taylor & Francis,
DOI:10.1080/13658810903296630)

3.3.2 Credibility

Method evaluation should also make sure that a method meets the needs of its users,
assuring a certain notion of acceptance and suitability with domain experts. The work
summarized in this book strongly supports the argument that data mining and hence
movement mining methods must prove useful to users in an application context.
Clearly, testing suggested methods with real data supports credibility. Real data
emerging an application context was used in Merki and Laube (P16. 2012, tracked
students in an outdoor game), Dodge et al. (P14. 2012, hurricanes, couriers), and
Laube et al. (P12. 2011a, cows in a smart farming study). Earlier work by Laube and
Purves (2006) investigated, for example, the relevance of movement patterns based
on the notion of interestingness. I argue that the interestingness measures proposed
by Silberschatz and Tuzhilin (1996) and Geng and Hamilton (2006) also build a
useful starting point for assessing the credibility of patterns in movement mining.

Objective interestingness measures depend solely on the structure of the pat-
tern and the underlying data. The most commonly known objective measure for
the quality, strength or interestingness of data mining rules are support and con-
fidence given for association rules. Support is generally defined as the frequency
of a pattern in a data set, while confidence expresses the prediction strength of
the rule (Mohammad and Nishida 2010). In Bleisch et al. (P20. 2014) support
and confidence measures were adapted for mining candidate causal relationships
between movement events and environmental states, such as “allows”, “initiates”
or “terminates”. The study developed a sequence mining approach relating environ-
mental states (“high water temperature”, “high river flow”) with movement events
of fish moving in a river network (“upstream movement”). For example, in 84
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occurrences of rapid upstream movement (um), 6 occurrences were immediately
preceded (within two days) by a moderate water temperature (mwt) event, i.e., result-
ing in a con f idenceevent (Eum → Emwt ) = 6/84 = 0.071. Even though not in the
explicit context of movement analysis, Laube et al. (P4. 2008a) discussed an adap-
tation of similar measures for spatio-temporal data mining in general. The paper
suggested spatially explicit definitions of the two measures where the classic market
basket or transaction metaphor was replaced by spatio-temporal proximity. Crucially,
this proximity was expressed based on fuzzy concepts.

Data mining methods can produce large numbers of objectively strong and inter-
esting patterns or rules, that are however of no interest to the user. For that rea-
son, subjective measures have been suggested. Subjective interestingness measures
depend on the class of users exploring the data, bearing in mind that patterns that are
of interest for one user class, may be of no interest to another class. Silberschatz and
Tuzhilin (1996) identify two reasons why a pattern is interesting from a subjective
point of view: unexpectedness, which indicates how surprising the pattern is to a user,
and actionability which indicates whether the user can act on the pattern to his/her
advantage.

3.3.3 Efficiency

Useful movement mining techniques should comply with minimal requirements in
terms of computing costs. To this end, efficiency is typically used to describe proper-
ties of an algorithm relating to how much of various types of resources it consumes.
Hence, the notion of efficiency can vary depending on which resource is of special
interest. For example, in the limited computing environments of geosensor nodes,
the number of messages required for completing a task can be a vital performance
factor. In Both et al. (P19. 2013) mobile sensor nodes are tasked with monitoring
the flow in a cordon-structured transportation network. Figure 3.11 then illustrates
the scalability of three related proposed algorithms in terms of the number of mes-
sages sent when the number of fish (a.k.a. sensor nodes) in the system is increased.
The three algorithms represent three levels of complexity of decentralized commu-
nication (1. wired cordons, 2. fish carry information packages in between cordons,
3. fish also exchange information packages as they meet). The figure confirms the
expectation that algorithms 1 and 2 scale linearly, whilst algorithm 3 (added fish-fish
communication) expresses in the worst case a communication complexity that scales
with the square of the total number of fish F , hence O(|F |2).

This book includes a wide variety of papers, some having a more conceptual focus
whilst others have a more algorithmic character. Some conceptual papers tolerate
roughly quadratic running times, but indicate possible optimization strategies. For
instance the string-matching process used in Dodge et al. (P14. 2012) is admittedly
rather slow (i.e., O(n2) with n representing the number of “letters” in the trajectory).
However, pruning techniques have been used for related problems and could be
also be implemented for an operational use of the proposed concepts. By contrast,
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Fig. 3.11 Scalability of communication in terms of total number of messages sent with change in
number of fish for Algorithms 1–3 (P19. Both et al. 2013) (Republished from Both, A., Duckham,
M., Laube, P., Wark, T., and Yeoman, J., Decentralized monitoring of moving objects in a transporta-
tion network augmented with checkpoints, The Computer Journal, 2013, 56(12), pp. 1432–1449,
DOI: 10.1093/comjnl/bxs117, by permission of Oxford University Press)

other work included in this book studies alternative versions of proposed algorithms,
explicitly aiming at optimization of running times. For instance Andersson et al. (P5.
2008) proposed improved algorithms for leadership detection using additional index
structures (buckets) where the running times strongly depend on the characteristics
of the instances.

3.4 Related Work

This section summarizes further related work relevant to the topics covered in this
chapter. The chapter concludes with insights and lessons learned from both research
covered in this chapter and in related work.

Data mining for CMA. Data mining techniques are proposed and applied in a wide
range of areas studying very diverse movement phenomena (P15. Laube et al. 2011b).
Given the diversity of application problems and the multidisciplinary backgrounds
of the involved scientists, it is perhaps little surprising that there seems to be slow
progress towards an accepted general theory of movement mining. Nevertheless,
there is work aiming towards general taxonomies or ontologies of movement pat-
terns and movement mining tasks in general. Dodge et al. (2008) propose a taxonomy
for movement patterns, distinguishing between generic patterns (e.g. co-occurrence,
moving clusters) and behavioral patterns that are particular to certain types of
moving objects (e.g. foraging or flocking birds). Andrienko and Andrienko (2007)
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first focus on patterns of individuals (i.e., changes in position and other movement
characteristics of an entity over time, individual movement behaviors, IMB) that may
then be found in groups of entities to form dynamic collective behaviors (DCB).
Finally, Wood and Galton contribute a much needed ontological analysis of col-
lective motion, aiming for the development and formalization of a comprehensive
classification of collectives and their motions (Wood and Galton 2009a, b).

Segmentation and filtering. Many techniques for segmenting trajectories emerge
from transdisciplinary collaborations between GIScience, databases, and especially
computational geometry. Some approaches focus on the shape of a trajectory, search-
ing for characteristic points where the geometric structure of the trajectory changes
substantially (Yoon and Shahabi 2008). Other approaches rather focus on derived
movement parameters such as speed, heading, or sinuosity, and search for subtra-
jectories expressing uniform movement parameters (Buchin et al. 2010b, 2011b).
Yet other work tries to understand the semantics of moves segmenting trajectories
according to travel mode changes or moves between points of interest (Sester et al.
2012). Most of that work is rather methods-driven, its applications are hence mostly
illustrative. In some CMA application areas, however, trajectory segmentation is
closely related to applied research questions. For example in movement ecology,
trajectory segmentation is sometimes referred to as classification such that the task
is to semantically annotate segments of a trajectory with the most likely behavior
of the observed animal. For instance, Shamoun-Baranes et al. (2012) use trajectory
data in conjunction with additional sensory data from an accelerometer aiming at
segmenting and labeling fixes according to a set of predefined behavior classes (here
fly, forage, body care, stand, and sit) using supervised classification trees.

In the database community segmentation concepts have been suggested for struc-
turing raw streams of position data into semantically meaningful units, aiming at
supporting a meaningful interpretation of trajectories. In their conceptual view on
trajectories Spaccapietra et al. (2008) base the semantic enrichment of raw move-
ment data on an initial segmentation of trajectories into stops and moves. Subsequent
semantic annotation could then label stops and moves with, for example, the type
of activity (e.g., commute) or the type of the visited location (e.g., home vs. work).
Baglioni and Fernandes de Macedo (2009) employ formal ontologies to enable such
semantic enrichment, aiming at augmenting both the semantics of the trajectory data
and also patterns mined from the trajectories. The authors argue that most pattern
mining approaches produce patterns, one could say in a mechanistic way, that are
then difficult to link to the actual movement behavior, i.e., the semantics (Baglioni
et al. 2009, p. 272). By contrast, their semantic enrichment bases the interpretation
of mined patterns in a domain ontology representing the geographical knowledge of
the relevant application domain.

Similarity and clustering. There is ample related work on the similarity of trajectories.
Some of these focus on the spatial or temporal characteristics of trajectories, or
specifically aim at their spatio-temporal nature. From within computational geometry
emerged a family of similarity measures based on the Fréchet distance between
two curves (Buchin et al. 2010a). When a person on one curve walks a dog on



3.4 Related Work 51

the other curve, then the Fréchet distance is the shortest leash length that allows
the person and the dog to walk their curves without either of them backtracking.
Such basic measures can be extended to incorporate additional constraints, such
as time correspondence, direction or speed. The same group of researchers also
produced work on finding long and similar parts of trajectories (subtrajectories)
based on a distance measure that is defined as the average Euclidean distance at
corresponding times (Buchin et al. 2011a), and on context-aware similarity measures
(Buchin et al. 2012).

Focusing on the temporal nature of trajectories work has been presented that
adapts methods from time series analysis for assessing trajectory similarity. Similar
to work on edit distance in Dodge et al. (P14. 2012), work has been produced on
dynamic time warping (DTW, Vlachos et al. 2004) or longest common sub-sequence
(LCSS, Vlachos et al. 2002a, b). Both DTW and LCSS allow for the detection of
“elastic” matches, allowing stretching of sequences and giving more weight to similar
portions of the sequences. Explicitly aiming at supporting knowledge discovery in
moving object databases (MOD) Pelekis et al. (2012) propose several explicitly
spatio-temporal trajectory similarity measures, based on primitive (space and time)
as well as derived parameters of trajectories (speed, acceleration, and direction). Their
querying framework bases on the distance measures Locality In-between Polylines
(LIP), which in essence computes the area of the shape formed in between two
polylines.

Movement patterns. Following early work on flocking patterns (Laube et al. 2005)
and subsequent work studying various flavors of the flocking problem and its efficient
detection (Benkert et al. 2008), the concept of objects moving together in some form
has seen several variants in related fields. In a database context for traffic applica-
tions, Jeung et al. (2008a, b) present a density-based notion of convoys. Here, instead
of using an areal constraint (a disc of radius r ), convoys consist of sets of entities
that are density-connected, i.e., piece-wise linked given some distance threshold e.
Huang et al. (2008) propose the notion of herds derived from density-based clus-
tering, with herds allowing for non-spherical clusters and changing memberships.
Finally for coherence mining in pedestrian data, Wachowicz et al. (2011) explicitly
search for moving flocks, where in contrast to stationary flocks all members of the
flock must move together for a certain period of time.

Similar to Merki and Laube (P16. 2012) Van de Weghe et al. (2006) and Gottfried
(2011) also study interaction between moving objects. Van de Weghe and colleagues
present the Qualitative Trajectory Calculus (QTC) for qualitative reasoning about
the movement of pairs of moving point objects. Even though the authors present
their QTC as a means for both representation and reasoning, I would argue that
the major contribution lies in the reasoning part. Whereas other work on qualitative
spatial reasoning has addressed static relations between entities (for example the
Region Connection Calculus, RCC, in Randell et al. 1992), the QTC line of work
specifically investigates changes between moving objects when there is no change in
their topological relationship. Even though objects are and remain disconnected, one
might want to reason if they move “towards each other”, “away from each other”,
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or are “stable with respect to each other”. QTC represents such qualitative dynamic
behavior of a pair of moving point objects using a small set of symbols. The authors
illustrated their calculus for example for a predator-prey interaction in a 2D Euclidean
space (Van de Weghe et al. 2006) or for movement along a road network (Van de
Weghe et al. 2004; Bogaert et al. 2007). Gottfried (2011) argues in a very similar
way that decomposing motion pattern into qualitative features and employing formal
grammars has the advantage of being closer to human thinking and also suits often
noisy and imprecise data. In his piece, however, he does not consider velocity or
distance constraints, but investigates in contrast whether meaningful features can be
derived from directional information alone.

Whereas much previous work in GIScience has studied movement patterns in
isolation from their geographical embedding, more and more attention has recently
been given to context-aware movement analysis. Orellana explores various aspects
around pedestrian movement patterns as the result of the interactions between people
and their environment (Orellana 2012). Orellana and Wachowicz (2011) and Orellana
et al. (2012) propose the use of a local indicator of spatial association (LISA, Anselin
1995), a measure for assessing local spatial autocorrelation to detect spatial clusters
of low speed vectors. Such suspension patterns explicitly do not search for stopping
behavior in individuals’ trajectories but rather for collective behavior, as in potential
points of interest where many pedestrians stop (outlook, visitor center, picnic area).
When ordered in sequences, frequently visited sets of such stopping clusters allows
for the aggregation of visitor movement into flows.

Exploratory analysis and visual analytics. Introductory reviews for visual analytics
of spatio-temporal data in general can be found in Andrienko et al. (2010) and
specifically for movement data in Andrienko and Andrienko (2007). Given its explicit
spatio-temporal character, movement data has served in exploratory analysis and
visual analytics research as a signature case study. An extensive review of the wide
range of literature on exploratory analysis and visual analytics of movement data
would diverge too much from the path set out for this brief volume. Entry points for
selected aspects of exploratory analysis and visual analytics of movement data can be
found regarding generalization and aggregation (Andrienko and Andrienko 2011),
density estimation and related concepts (Downs and Horner 2010, 2012), three-
dimensional space-time cubes, combined with additional techniques for structuring
the data (Rinzivillo et al. 2008; Demsar and Virrantaus 2010; Pelekis et al. 2012),
interactive combinations of visualization and clustering (Schreck et al. 2009), as well
as integrated visual analytics interfaces featuring linked and coordinated views of
spatial, temporal, and socio-economic characteristics (Zhang et al. 2013).

Evaluation. Surprisingly little work has been produced on evaluating proposed move-
ment mining methods. As mentioned in Sect. 3.3 it is difficult to get hold of suitable
data featuring the semantic annotation needed for a thorough evaluation. However,
there is work where an explicit focus was put making sure that the methods were
sound and produced useful knowledge. One example for an assessing internal valid-
ity using a test data set can be found in Orellana and Wachowicz (2011), where mined
suspension patterns (a stopping behavior) are compared with reference or “ground
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truth” data. This reference data comes in the form of identified points of interest
that the individuals are likely to visit and thereby express the suspension pattern:
check-points in an outdoor game, as well as points of interest and crucial infrastruc-
ture in a recreational park. Cross-checking which of the expected points of interest
are actually detected and which are missed allows an indication of error of omission
and commission.

In problem-driven research domains the thorough evaluation of proposed meth-
ods is more common than in somewhat theoretical computer science or GIScience,
also because in ecology a thorough evaluation is often a condicio sine qua non for
publication. Given its roots in behavioral science, movement ecology occasionally
produces movement with rich semantic annotation, painstakingly captured by human
observers in the field. For instance in Shamoun-Baranes et al. (2012) the classifica-
tion of oystercatcher behavior through supervised classification trees on location
and sensor data was cross-checked with simultaneous visual observations. Similarly,
Guilford et al. (2009) evaluate a machine learning based behavior classification (akin
segmentation and labeling) through cross-validation of two simultaneously recorded
sensor streams.

3.5 Concluding Remarks

The introduction of data mining concepts into GIScience with the goal of a better
understanding of movement processes has clearly led to significant progress in struc-
turing notoriously messy movement data. In an area dominated by a static view of
the world inherited from cartography, the arrival of a flexible toolset allowing the
search for patterns, trends, and similarities not only in space, but explicitly in space,
time, and attributes was much needed and hence is to be warmly welcomed. Since
movement data is inherently spatio-temporal, recording the location of an object
at potentially thousands of time stamps can rapidly flood and “fill-up” maps, the
GIScience signature analysis metaphor. Here, data mining’s approach of concep-
tualizing and formalizing patterns and rules, akin search templates, that then can
be searched for by efficient algorithms, offers analytical tools complementing the
conventional GIScience tool box.

Many areas have contributed to establishing data mining and knowledge discov-
ery in databases as a key toolsets of CMA. GIScience has contributed its theory of
representing and abstracting both the moving entities as well as the spaces embed-
ding movement. GIScience’ theory on modeling spatio-temporal phenomena, entities
and processes of the natural and built environment have made a significant contribu-
tion to the conceptualization of movement mining patterns and rules. A sometimes
underestimated key contribution lies in GIScience’ expertise in integrating multi-
source and multi-scale data, preprocessing and transforming uncertain and noisy
geodata to make it ready for the data mining algorithms. The computational geome-
try community has contributed in many ways to movement mining in CMA. Whereas
early collaborations investigated movement patterns such as flock, convoy, leader-
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ship, the focus has recently shifted towards trajectory similarity, simplification and
aggregation, as well as segmentation. The database community has made significant
contributions to CMA with respect to storing, managing and querying movement
data in specialized moving object databases (MOD) on the one hand, and by increas-
ingly producing relevant research on data mining applications for movement data.
The concept of semantic enrichment is another important concept towards struc-
turing movement data streams for a better understanding of the underlying dynamic
processes. Finally, visual analytics happily adopted the problem of movement analy-
sis, allowing the efficient integration of all the above contributions in interactive
analytics environments.

Hence, data mining helped CMA making significant progress in seeking structure
in movement data, but semantic annotation of the found patterns remains difficult.
Isolated analysis of the geometric footprint of movement is far from understand-
ing movement behavior. Given the complexity of human and animal behavior, more
and more researchers acknowledge that it may simply be too difficult to understand
complex behavior just by studying its mere spatio-temporal footprint. It is thus lit-
tle surprising that more and more work aims at capturing multi-sensor data, where
location data is complemented by sensors that simultaneously record other attributes
indicating the observed activity, such as acceleration, heart rate, or other physical
properties of the monitored individual. Clearly, combining different sensor read-
ings, where the location is only one variable, opens up exciting research avenues,
advancing movement mining towards activity mining.

Despite initial work on ontological foundations of movement processes, there is
little agreement in sight on a set of basic operations and patterns. For a start, the
application domains interested in computational movement analysis seem to be so
diverse, the phenomena they all study so variable that patterns or rules developed
for one application simply have no relevance in another. Similarly, since the applica-
tion problems are so diverse and the supply of new and interesting problems seems
endless, the majority of movement mining methods remain custom-built prototypes
tailored to one specific problem. A wider agreement on a basic set of movement
analysis problems and their possible solutions—leading towards a theory—is rare
so far.

Promoting data mining tools in GIScience for CMA clearly led to a much needed
shift of perspective. On the downside, so far CMA as a developing area remains
dominated by tool-driven researchers. In most cases it’s not applications people
requesting the involvement of methods people, but its methods people searching
for interesting applications. This brings the danger of an analytical process that
tries to reshape the real world to fit preexisting solutions. Database experts see the
world of moving things in queries, computational geometry experts in data structures
and algorithms, visual analytics experts in multi-views, parallel coordinate plots
and space-time cubes. “If all you have is a hammer, everything looks like a nail”.
Community efforts such as the 2012 workshop on “Progress in movement analysis”
held in Zurich, explicitly seeking research emerging collaborations between methods
experts and domain specialists, acknowledge this danger.
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Chapter 4
Decentralized Movement Analysis

Current technological advancements have lead to an ever increasing integration of
information and communication technologies. This chapter investigates what hap-
pens when movement analysis is no longer constrained to desktop information sys-
tems, but instead migrates into the highly dynamic network built by the mobile phones
of commuters or the board computers of taxis in a fleet management system. The bid-
ding war between Google and Facebook over the navigation app Waze may serve as
an example for the increasing relevance of applications where mobile but networked
devices are used for collecting and integrating spatial information (Dredge 2013).
Waze integrates on the fly spatial knowledge about traffic flow and road conditions
through a process of crowd-sourcing from drivers acting as mobile sensors.

This chapter combines Computational Movement Analysis (CMA) with decen-
tralized spatial computing (DeSC), the theoretical underpinning of geosensor net-
works (GSN) and vehicular ad hoc networks (VANETs). As a special flavor of DeSC,
the chapter explores the foundation of decentralized movement analysis. In doing
so this chapter shifts focus as it addresses a rather technology-driven problem area.
Instead of discussing conceptual models or analytical techniques irrespective of any
underlying system architecture, it digs deeper and investigates the interplay between
a specific system architecture and its superimposed data processing procedures.

The chapter not only investigates how movement analysis tasks similar to the ones
discussed in the two previous chapters can still be performed in decentralized spatial
information systems, but also investigates how the movement of tracked objects and
tracking devices can be exploited in a wider sense for information processing in
such systems. Specifically, this chapter investigates the following CMA tasks in a
decentralized way: Movement pattern detection in Laube et al. (P6. 2008; P12. 2011),
assessing the network load in a transportation network in Both et al. (P19. 2013),
point clustering in Laube and Duckham (P8. 2009), and Laube et al. (P11. 2010), and
privacy-safeguarding in location-based services in Laube et al. (P11. 2010).

Overarching research objectives. The research summarized in this chapter con-
tributes to the following overarching research objectives of computational movement
analysis.

© The Author(s) 2014
P. Laube, Computational Movement Analysis,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-10268-9_4
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• Characterize the limitations and opportunities of movement analysis in
decentralized spatial information systems, and assess the role of CMA in such
systems.

• Develop the theoretical underpinnings of information processing strategies that
explicitly exploit movement of study objects and/or data capture devices in decen-
tralized spatial information systems.

The chapter is structured as follows. First, Sect. 4.1 introduces the foundations
of wireless sensor and geosensor networks building the basis for the subsequent
discussion of decentralized movement analysis. Then, Sect. 4.2 discusses two settings
where movement in decentralized spatial systems has been studied in the context
of this book—static sensors monitoring passing mobile objects, and mobile agents
autonomously monitoring their collective movement behavior. Finally, based on this
discussion of two exemplary settings, Sect. 4.3 derives and isolates a set of more
generic principles for decentralized movement analysis.

4.1 Foundations

Advances in distributed sensing and computing technologies offer new, reliable,
and cost-effective means to collect fine-grained spatio-temporal information when
monitoring natural and built environments—so-called wireless sensor networks. The
definition wireless sensor networks (WSN) refers to wireless networks of unteth-
ered, battery powered miniaturized computers with the ability to sense, process, and
communicate information in a collaborative way (Zhao and Guibas 2004). Example
deployments include hazard management (Duckham et al. 2005), monitoring seismic
activity (Werner-Allen et al. 2006) or traffic flow (Kellerer et al. 2001). When specif-
ically monitoring phenomena in geographic space such systems are called geosensor
networks (GSN, Nittel et al. 2004). Geosensor networks offer a powerful large-scale
alternative to conventional small-scale remote sensing and ground surveys. Figure 4.1
illustrates the basic set-up of a geosensor network.

On top of the many technological challenges keeping the engineers busy, wireless
sensor networks, and in the interest of this volume, geosensor networks also pose
substantial challenges for processing the information generated in such networks.
Whereas conventional geographic information processing is based on centralized
computing models, where sophisticated and powerful databases collate and process
information globally, no such omniscient computing capability exists in geosensor
networks. By contrast, such systems require a new way of spatial computing, where
spatial knowledge is generated from collaborating, but distributed computing nodes
that have only partial knowledge (P8. Laube and Duckham 2009). Much conven-
tional spatial computing nowadays is distributed computing (Worboys and Duckham
2004; Duckham 2012). That means that many information systems cooperate syn-
chronously in order to complete a task. For example, for offering location-based
services the mobile devices must communicate with a positioning system and spatial
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Fig. 4.1 A geosensor
network consisting of sensor
nodes and edges of the
communication graph, given
a communication distance c.
The nodes measure
temperature. Nodes at the
boundary of the hot area
(dashed line) are shown in
black, other nodes in white
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databases providing base data. However, in decentralized systems as a special case
of distributed systems, no single component knows the entire system state (Lynch
1996). In that sense, geosensor networks are decentralized systems as nodes spread
in space, sense their local environment, but must collaborate in order to generate
the complete picture of a monitored geographic phenomenon. To this end, Duckham
(2012, p. 16) defines decentralized spatial computing (DeSC) as “the study of the
decentralized algorithms, data structures, and technologies for computing with spa-
tial information.”

The reasons explaining the need for decentralized spatial computing are manifold
(P8. Laube and Duckham 2009; Duckham 2012).

• Information overload. Geosensor networks may consist of thousands of sensors
sampling geospace at very fine temporal granularities. Here, decentralized spatial
computing helps managing the potentially very large and highly autocorrelated
data volumes generated in geosensor networks by filtering and processing the data
in the network.

• Scalability. As networks scale from hundreds to thousands and potentially millions
of nodes, centralized control of the system becomes impossible. Since decentral-
ized systems are controlled through interactions between individuals, adding more
nodes to the systems is simple, as the controlling rules can remain the same.

• Sensor/actuator networks. Information generated by a sensor node may often be
required by other nodes close by (e.g., controlling irrigation through a humidity
sensor network). What is sensed locally, matters locally. Removing information
from the network, processing it centrally, and then returning it into the network
would present an inefficient drain of network resources.

• Latency. Decentralized information processing requires communication and col-
laboration, which in turn takes time. Decentralized spatial computing can decrease
the latency of the system.

• Privacy. Whereas centralized databases can represent a potential security
breach, decentralized protocols can ensure that no single component can accu-
mulate knowledge about any individual, hence privacy can be protected (P11.
Laube et al. 2010).
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Finally, geosensor networks and decentralized spatial computing lead to the
vision of ambient spatial intelligence (P7. Laube et al. 2009; Duckham and Bennett
2009). Ambient spatial intelligence emerges from the idea of ubiquitous computing
(Greenfield 2006) and ambient intelligence (Augusto and Shapiro 2007). Ambient
spatial intelligence is concerned with embedding the intelligence to monitor geo-
graphical phenomena and respond to spatio-temporal queries directly into our built
and natural environments (Duckham 2012).

4.2 Movement in Decentralized Spatial Information Systems

Movement is found in various forms in geosensor networks. Geosensor networks
can monitor the movement of entities or mobility and dynamic processes in fields.
Alternatively, the sensing nodes themselves can move and monitor a geographic phe-
nomenon whilst moving. Mobile nodes could be passively suspended in a dynamic
medium (i.e., nodes floating in a water current), carried by a mobile agent (i.e., a
smart phone), or even have their own locomotion capabilities (i.e., autonomous agents
in robotics). Finally, information tokens often move through the network, for instance
when routing information from a source node to a sink. Hence, mobility can be the
primary study subject, a property of the decentralized system, or a property of infor-
mation that is handed around through the system amongst communicating and collab-
orating nodes. On all these levels, mobility presents at the same time challenges and
opportunities. This section investigates what these challenges and opportunities are.1

Section 2.2 introduced three dimensions discriminating conceptual movement
spaces and the therein embedded movement. Very similar consideration are relevant
when investigating mobility in geosensor networks, except that with the mobility
mode an additional fourth dimension should be considered here. The following list
results from integrating the list in Sect. 2.2 with characteristics of mobile objects
listed in Duckham (2012, Sect. 6.1.2, p. 173).

• Constraints to movement. Do the moving objects roam freely in Euclidean space
or are they constrained by a transportation network?

• Continuous versus discrete movement space. How is the movement tracked, is
it a quasi-continuous stream of position fixes captured with coordinates (GPS
positions) or sequences of visited partitions of space (mobile phone antenna cells,
network edges)?

1 This book is solely about the analysis of movement data. Even though the distinction between data
capture and data analysis gets occasionally a bit blurred in this chapter, there are important aspects
of wireless sensor networks involving movement that are not covered in this chapter. For example,
target tracking, that is in essence the capturing of raw positional data of moving objects, is not
covered. Also information routing, another wireless sensor network classic, contributes to setting
up and maintaining the network infrastructure, but is not considered analysis. Readers interested in
such issues are referred to the introductory text on wireless sensor networks in Zhao and Guibas
(2004).

http://dx.doi.org/10.1007/978-3-319-10268-9_2
http://dx.doi.org/10.1007/978-3-319-10268-9_2


4.2 Movement in Decentralized Spatial Information Systems 63

Table 4.1 Mobility mode

Sensor nodes

Static Mobile

Phenomena Static I. Geosensor networks II. Cluster mining with information
grazing

Mobile III. Monitor flows in movement
network, Sect. 4.2.1

IV. Decentralized flock detection,
Sect. 4.2.2

What is mobile? The sensor nodes, the studied entities, or both?

• Lagrangian versus Eulerian perspective. Is the movement monitored as positions
over time (trajectories) or as times when the object passes fixed checkpoints or
cordons?

• Mobility mode. What is mobile? Are static nodes tracking mobile objects, or are
mobile nodes monitoring a static environment, or are mobile nodes monitoring a
dynamic environment?

Whereas the three dimensions set out in Sect. 2.2 only focus on the studied move-
ment process and its embedding in a conceptual space model, in decentralized spa-
tial information systems also the data capture system (i.e. a geosensor network or a
VANET) can be subject to mobility. Since both the study object and the monitoring
system can be on the move, there are four possible mobility modes to be considered
for dynamic decentralized spatial information systems (Table 4.1). Except the static-
static combination of conventional geosensor networks, all possible combinations
were addressed in this book, with a focus on modes III and IV. Obviously, the more
dynamic the system, the more difficult become the tasks. Hence, mode IV is expected
to be more challenging than modes II and III (Duckham 2012).

Following the chapter on “Monitoring Spatial Change over Time” in
Duckham (2012), two critical distinctions with respect to the information generated
in a dynamic decentralized spatial information system shall be discussed in more
detail here. The first one refers to the temporal nature of the generated information:
Some systems record histories, others record chronicles (Galton 2004; Duckham
2012). Histories provide a spatio-temporal record of the states of monitored endurants
(e.g. moving objects) through time.2 By contrast, chronicles provide a record of the
occurrences (perdurants) that happened through time (the occurrence of an object
changing from transit edge ei to e j ). This is important because most wireless sensor
systems and hence also dynamic decentralized spatial information systems monitor
histories (snapshots) (Duckham 2012). Therefore in systems requiring chronicles,
occurrences will need to be inferred from states (Duckham 2012). It is this seman-
tic enrichment that offers an opportunity for geographically informed algorithms in
decentralized movement analysis discussed in this chapter.

2 Recall the SNAP and SPAN ontologies (Grenon and Smith 2004). Endurants or continuants
are things that endure through time, e.g. a moving object, this printed book (SNAP ontology).
Perdurants or occurrents by contrast are things that occur in time, e.g. the reader reading this book
(SPAN ontology).

http://dx.doi.org/10.1007/978-3-319-10268-9_2
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The second distinction addresses the question whether the system only generates
information or whether the system allows also for querying this information. This
distinction also addresses the question where in the system the information is stored.
Often, decentralized systems will have separate algorithms for first generating infor-
mation or collating information in specific nodes in the network. The querying of this
information will be delegated to separate algorithms (Duckham 2012). For example,
in Both et al. (P19. 2013) most algorithms are concerned with the collation of infor-
mation about the flow in the network in the cordons. Specific algorithms presented in
the final section of the paper then investigate how this system would handle queries
put to the monitoring system.

In the following two decentralized movement analysis tasks illustrate two opposite
system architectures and related problems in the light of the general issues raised in
this section. The examples include the decentralized monitoring of network flows in
a cordon-structured network (mode III, Sect. 4.2.1) and the decentralized detection
of flock movement patterns (mode IV, Sect. 4.2.2).

4.2.1 Static Nodes Monitor Mobile Objects

Unconstrained movement is rare. People move, for example, mostly in constrained
transportation networks. Hence, infrastructure enabling, managing and monitoring
network-bound movement becomes an important source for large movement data
volumes. Examples range from cellular networks for mobile phones to electronic
ticketing for public transport (e.g. London’s Oyster card or Melbourne’s myki system)
and road tolling systems. In the context of this chapter such systems are interesting
since some capture information in a decentralized way, where cars are observed
when passing GSM towers or traffic cordons or commuters swiping card readers
when hopping on and off trains or buses. Collating all that information capturing
the whereabouts of agents in such systems in centralized databases may at best be
impractical, in some cases simply impossible. Hence such systems lend themselves
to decentralized spatial computing and decentralized movement analysis.

Both et al. (P19. 2013) present a family of algorithms for the decentralized
monitoring of moving objects in such a transportation network augmented with
checkpoints.3 The approach considers mobile objects that move and are tracked
on a transportation network, modeled as a graph where transportation edges con-
nect intersections. The moving objects are tracked whenever they pass a cordon
(or checkpoint) that are typically but not necessarily positioned at intersections.
Figure 4.2 depicts a generalized ring-shaped network with four cordons indeed posi-
tioned at the intersections. The movement in this architecture is constrained to a

3 In Both et al. (P19. 2013) “fish” is used as a shorthand for moving objects because the work was
initiated in response to a set of problems coming out of a river health monitoring system deployed
in the Murray River, Australia, tracking real fish with RF transmitters and riverside cordons (Koehn
et al. 2008).
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Fig. 4.2 Mobile objects (“fish”) moving on a transportation network and passing cordons (Repub-
lished from Both, A., Duckham, M., Laube, P., Wark, T., & Yeoman, J. (2013). Decentralized mon-
itoring of moving objects in a transportation network augmented with checkpoints. The Computer
Journal, 56(12), 1432–1449, DOI:10.1093/comjnl/bxs117, by permission of Oxford University
Press.)

discrete cordon-structured network. Furthermore this systems adheres to the Eulerian
perspective of movement as the system monitors times when the objects pass the fixed
cordons. The raw information produced by this tracking system consists of histories
of the states of the moving endurants (i.e. object o is located on edge ei ). Just as
outlined above, deriving chronicles of transition occurrences requires information
processing.

On top of the transportation network, the formal model furthermore requires a
communication network and a connectivity network. The model assumes one-hop
communications between two types of sensor nodes: the set of moving nodes (fish),
and the set of immobile cordons at known locations. The communication network is
then represented as a time-varying undirected graph comprising the one-hop com-
munication links between nearby nodes. As will be shown below, depending on the
application and technologies used these links will vary. Finally, the connectivity net-
work represents the relative network locations of cordons in terms of transportation
network connectivity between cordon locations. Cordons can sense the movement of
passing fish. For example in Fig. 4.2, node 102 senses at t2 that fish 5 passes, coming
from node 101 (where it left at t1) and is now heading towards node 103. Finally,
fish may also be able to sense other fish when they pass each other (not depicted in
Fig. 4.2).
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The decentralized algorithms for monitoring movement involves two stages—first
maintaining and exchanging records about movement events at cordons or fish, and
second querying these records. The paper presents a family of algorithms increasingly
relaxing constraints about the communication network. Whereas first all cordons
are connected, this assumption is relaxed as fish act as data mules to physically
move information in absence of other communication links. This is shown in Fig. 4.2
where fish 6 carries information about fish 5 back to node 101 from t3 to t4. The
principle of exploiting the movement of objects to move around information is termed
mobility diffusion and will further be investigated in Sect. 4.3.2.2. The final stage (not
depicted in Fig. 4.2) investigates what happens when fish passing one another hand
over information tokens. All three algorithms are summarized in Table 4.2.

The algorithms were evaluated with respect to scalability and latency, that is the
delay between an event occurring and the event being detected correctly by the algo-
rithm. Latency is another decentralized spatial computing principle further explored
in Sect. 4.3.3.3. All experiments were carried out with simulated moving objects
in the agent-based modeling environment NetLogo (Wilensky 1999). Both et al.
(P19. 2013) summarize the results as follows. Algorithms 1 and 2 scale linearly with
the total number of fish. Equally expected, Algorithm 3 lends towards a commu-
nication complexity that scales with the square of the number of fish. Algorithm 1
performs best in terms of scalability and latency. Using data mules, Algorithm 2
achieves comparable computational efficiency, but at the cost of increased latency.
Finally, Algorithm 3 can further reduce the latency of Algorithm 2, but for the cost
of increased computational complexity (Table 4.3).

The structures presented in Both et al. (P19. 2013) also support algorithms for
queries of variable complexity. The complexity of the queries depends on the required
degree of coordination between the cordons. Whereas queries about the identity of
individual fish on an edge or total edge load at a given time can be handled by
individual cordons, queries about composite fish paths and collective movement of
fish (akin to flocking patterns) require cordon collaboration. Collaboration will be
further explored in Sect. 4.3.3.1.

Table 4.2 Three different decentralized algorithms monitoring movement in a cordon structured
network in Both et al. (P19. 2013)

Algorithm description DeSC peculiarities

Algorithm 1 Basic algorithm where all cordons are
directly connected in the
communication network to cordon
neighbors in the transportation graph

Best performance in terms of
scalability and latency

Algorithm 2 Mule algorithm, where fish transport
exit records back to cordons, Fig. 4.2

Mules compensate for
disconnected cordons, but at
cost of increased latency

Algorithm 3 Extended mule algorithm, where fish
transport and exchange exit records

Handshakes decrease latency at
cost of increased overall
computational complexity
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Table 4.3 Decentralized algorithms monitoring flock movement patterns

Algorithm description DeSC peculiarities

FLAGS Flock patterns are inferred from
maturing information tokens that
survive constant exchange and
validation, Fig. 4.3

Mobility diffusion, here handing
around information tokens, allows
for decentralized

DDIG Latency allows individuals to
accumulate spatial information,
constant rearrangement offers
opportunities for information
exchange and enrichment, Figs. 4.4
and 4.5

Latency reduces detection error, but
this effect wears off with long
latencies

4.2.2 Mobile Agents Monitor Their Collective Movement

The second system architecture included in this chapter involves roaming sensor
nodes that aim to infer movement patterns in a collaborative manner without the
need for a centralized database. Both, Laube et al. (P6. 2008; P12. 2011) investigate
if and how movement pattern mining can be performed in a decentralized spatial
information system. Can mobile agents that sense their own location and the presence
of neighbors infer if they build the movement pattern flock? Again, an (n, k, p)-flock
is a form of collective movement and defined as set of n moving entities that stay
within a disk of radius p for k time steps.

All algorithms summarized in this section are based on the assumption that the
nodes move in an unconstrained space. Whereas Laube et al. (P12. 2011) relies on
nodes that can record their own position as coordinates, Laube et al. (P6. 2008) only
requires sets of detected neighbors. In both studies, positions and neighbors are sensed
in a quasi continuous manner, be it with a GPS receiver, any other localization tech-
nology. Irrespective of the localization and sensing capabilities, both studies adhere
to the Lagrangian perspective. The mobility mode is rather challenging since both the
sensing nodes and the investigated phenomena (here the flock patterns) potentially
move. The constant rearrangement of the network topology and with it all connectiv-
ity links requires alternative strategies to popular strategies in decentralized spatial
computing such as trees or any other precomputed and maintained data structure.

First, Laube et al. (P6. 2008) illustrates how collaborating nodes can extend
their knowledge beyond their limited individual spatial perception area. In the
FLAGS algorithm (flocking amongst geosensors), information tokens capturing a
list of candidate nodes forming a flock are exchanged between roaming sensor nodes
(Fig. 4.3). At each time step, nodes in the flock validate if the flock persists, update
their token accordingly, and pass it on to their immediate neighbors. Since invalid
tokens are removed, tokens that persist for k time steps “flag” the presence of a flock
pattern. The constant process of exchanging and validating information allows indi-
vidual sensor nodes to learn from their neighbors about processes beyond their own
limited perception range. The algorithm separates knowledge from sensor nodes,
knowledge becomes mobile. Hence, FLAGS presents both a form of mobility diffu-
sion (Sect. 4.3.2.2) and separation (Sect. 4.3.3.4).
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Fig. 4.3 Maturing knowledge tokens detect a (n = 4, k = 3, p)-flock locally. At t5 sensor node
e counts the required 4 neighbors, creates a token ({a, b, d, e}, 1) that is transmitted to all its
neighbors within communication range c (little numbered flags). At t6, after having moved and
potentially rearranged, all sensor nodes check their tokens. This time only sensor node d counts
enough neighbors and ages his token to ({a, b, d, e}, 2). All other sensor nodes drop their token.
Sensor node d, however, forwards its aged token to all its neighbors. Finally, at t7, again e counts
enough neighbors, its token ({a, b, d, e}, 3) reaches the mature age k = 3, and flags a “found
pattern”-message (crown) (With kind permission from Springer Science+Business Media: Cova,
T. J., Beard, K., Good-child, M.F., & Frank, A.U. (Eds.). (2008). Geographic Information Science.
Lecture Notes in Computer Science, 5266, ISBN 978-3-540-87472-0; Laube, P., Duckham, M., &
Wolle, T. Decentralised movement pattern detection amongst mobil geosensor nodes, 199–216,
Fig. 2.)

A similar form of mobility diffusion builds the core of the DDIG algorithm
(deferred decentralized information grazing) presented in Laube et al. (P12. 2011).
Here, roaming nodes exchange local histories of their recent positions whenever they
get into each other’s communication range (Fig. 4.4). Hence, through their mobility
and thereby constantly changing communication partners, they build up local spa-
tial knowledge that reaches beyond their individual spatial perception range (labeled
“information grazing”). In a subsequent step, which is deferred by the time the infor-
mation grazing requires, the local memory serves as a local knowledge base for the
actual detection of the flock patterns (Fig. 4.5). To this end, any flocking algorithm
could be used, in Laube et al. (P12. 2011) a simple heuristic was used based on an
outlier elimination that suited the memory data structure.

Rather than investigating computational efficiency, both articles base their eval-
uation on an error analysis (see Sect. 3.3). The error analysis needs a data set where
the number of detectable patterns is known. To this end simulated and real obser-
vation data was used. Then the decentralized algorithms were confronted with a set
of experiments that systematically make their task harder, for instance, by reduc-
ing the communication radius (FLAGS and DDIG) or shortening the delay (DDIG).
The error analysis then measured error of omission (“missed patterns”) and error of
commission (“false positives”).

Both articles made clear that decentralized movement pattern mining is indeed
possible, when imperfect, approximate, or delayed solutions are acceptable. They
also showed that in the tested scenarios, node mobility was useful for succeeding

http://dx.doi.org/10.1007/978-3-319-10268-9_3
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Fig. 4.4 DDIG builds a memory of the current movement history of nearby nodes. Example sensor
node a2 with communication range c roams from ti−6 to ti and encounters nearby nodes. Whenever
a2 is connected to nearby nodes within 2∗ p (2∗ p-disc is only illustrated for ti ), it pulls their position
history. a2 received histories from a4 at ti−4, from a8 at tt−3, from a5 at ti−1 (entire history illustrated
for ti−1), and finally from a1 and a7 at ti . Memory a2 reflects the corresponding build-up of local
knowledge. Note, a2 at ti remembers previous positions of nodes it is currently not connected to (a4,
a5, and a8) (Republished from Laube, P., Duckham, M., & Palaniswami, M. (2011). Deferred Decen-
tralized Movement Pattern Mining for Geosensor Networks. International Journal of Geographical
Information Science, 25(2), 273–292, Taylor & Francis, DOI:10.1080/13658810903296630.)

in the given tasks. Imperfection came in the form of error of omission for small
communication ranges. Imperfection also came in the form of latency (deferred
processing) allowing the nodes to collect information and collaborate for its process-
ing. DDIG showed that both in simulated and real data scenarios, detection error
could be reduced by longer latency times. Latency is discussed in Sect. 4.3.3.3.

4.3 Decentralized Movement Analysis Principles

This section revisits the research included in this book and enumerates a set of infor-
mation processing principles that illustrate the opportunities for decentralized spatial
computing arising from mobility in geosensor networks. The principles listed here
take advantage of properties of the studied phenomena or the models used for their
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Fig. 4.5 The deferred data mining in DDIG. A heuristic is used to find flocks in the local mem-
ory a2. A flock is detected for [ti−6, . . . , ti−4]. Note that, given the deferred processing and the
information stored in memory, a2 finds flocks even with neighbors it is not connected anymore at
ti (Republished from Laube, P., Duckham, M., & Palaniswami, M. (2011). Deferred Decentral-
ized Movement Pattern Mining for Geosensor Networks. International Journal of Geographical
Information Science, 25(2), 273–292, Taylor & Francis, DOI:10.1080/13658810903296630.)

representation. Any preexisting knowledge can be exploited that contributes to solv-
ing a decentralized spatial computing task with its rather demanding preliminaries.
Such knowledge can involve constraints to the movement (for example, nodes must
move on the edges of a transportation network) or properties of the monitored phe-
nomenon (for example, spatio-temporal autocorrelation of the movement parameters
of flocking animals).

The following discussion illustrates that in decentralized spatial computing the
boundaries between the previously separated tasks data capture, communication and
computation become increasingly blurred (P8. Laube and Duckham 2009; Kargupta
and Chan 2000). After a short recapitulation of the threats facing decentralized move-
ment analysis, four opportunities arising mobility in geosensor networks are listed
and exemplified in the context of decentralized movement analysis. The section con-
cludes with a short discussion of the implications of these opportunities for decen-
tralized movement analysis with respect to decentralization issues not specific to
movement.
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4.3.1 Challenges

Duckham (2012) suggests neighborhood-based or location-based decentralized
spatial computing algorithms. Whereas neighborhood-based algorithms have only
access to minimal spatial information in the form of the identities of neighbors,
location-based algorithms exploit more complex spatial information such as direc-
tion, distance, and location of nodes. Movement challenges the underlying assump-
tions for both types of decentralized algorithms.

First, basic preliminaries about the spatial distribution of nodes and assumptions
about the resulting communication graphs do no longer hold. When nodes move
around, their spatial arrangement can be very heterogeneous, resulting in clusters
of dense deployment separated by large empty gaps. This holds specifically when
mobile nodes interact, hence meet, or are constrained to some form of transportation
infrastructure. Establishing a communication network is difficult when the nodes
show a heterogeneous and potentially unfavorable distribution.

Second, roaming nodes result in constantly changing topological node constella-
tions regarding neighborhood, and changes in distances and direction. Apart from
the danger of temporarily broken communication links, building up and maintaining
data structures with enriched information about neighborhood, distances, or direc-
tions is at best difficult and often impossible. Nodes that are now close by neighbors
move on and can be far away after a short while. Also, many DeSC algorithms
function based on Tobler’s first law of geography, assuming that the sensor readings
of neighboring nodes tend to be similar. This assumption is also challenged, since
both the monitored phenomena and the sensing nodes may move about. In essence,
spatial structure and contiguity are no more static but potentially change constantly.
Interacting, exchanging, and enriching information is even more difficult than in
conventional geosensor networks.

Finally, when both the sensing system and the monitored phenomena can be
mobile, it is difficult to know if changing sensor readings are due to an actual change
in the monitored natural or built environment or simply a result of the sensing node
getting a different perspective of an actually unchanged phenomenon.

4.3.2 Specific Decentralized Movement Analysis Principles

4.3.2.1 Mobility Compensation

Mobility compensation is a strategy for enlarging the reach of a sensor node. Nodes
can be limited with respect to the perception area of their sensor (e.g., measuring the
temperature around a node) or with respect to their communication range (maximal
distance to maintain a communication link with a neighbor). Both, perception and
communication range are often modeled and approximated with a disk around the
sensor of a given radius. In static geosensor networks, individual sensor nodes might
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Table 4.4 Decentralized CMA tasks addressed in this book and the respective decentralized move-
ment analysis principles used

Task Reference Principle Mode Space

Movement
pattern detection

Laube et al.
(P6. 2008)

m.diffusion, Moving nodes Unconstrained

Movement
pattern detection

Laube et al.
(P12. 2011)

m.compensation,
m.diffusion

Moving nodes Unconstrained

Movement
pattern detection

Both et al.
(P19. 2013)

m.compensation,
m.diffusion

Cordons Network

Network load Both et al.
(P19. 2013)

m.diffusion Cordons Network

Clustering of
point clusters

Laube and
Duckham
(P8. 2009)

m.compensation Moving nodes Unconstrained

Privacy-safe-
guarding in
LBS

Laube et al.
(P11. 2010)

m.compensation,
m.privacy,
m.resilience

Moving nodes Network

increase their spatial reach for sensing through collaboration with neighboring nodes.
When the nodes are mobile, however, they can compensate their limited spatial reach
simply through roaming and accumulating and integrating the gathered information.4

Laube et al. (P12. 2011) called this process “information grazing”. Even though
in this very example the gathered information was purely the position history of
the moving nodes, other applications could collect information about other spatial
variables, such as, for example, humidity or temperature. Node mobility, allowing
nodes to move about in space and time, allows for collecting and accumulating more
information than could be accessed through a spatially limited perception range alone.
It is important to note the a node can autonomously pursue mobility compensation,
whilst most following strategies require collaborating nodes (Table 4.4).

4.3.2.2 Mobility Diffusion

Mobility diffusion is an important communication strategy in dynamic decentralized
spatial information systems. Mobility diffusion refers to the strategy that moving
nodes are allowed to physically move information around in the absence of connec-
tivity (Grossglauser and Tse 2002; Grossglauser and Vetterli 2006; Duckham 2012).
Thus, for instance, in Laube et al. (P6. 2008) roaming nodes hand over information
tokens allowing for a repeated evaluation of the group composition leading towards
the discovery of flock patterns. Knowledge is here “separated” from nodes, such that
knowledge is no longer limited by the limitations of the nodes. Similarly, Laube et al.
(P12. 2011) explore a combination of mobility compensation and mobility diffusion.

4 Think of Pac-Man moving through his maze and eating away the pellets.
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First, compensation leads to the build up of individual position histories, second these
histories are handed around through handshakes made possible through diffusion.

Whereas mobility diffusion has the advantage of potentially bridging longer gaps
between nodes with limited communication capabilities, this advantage comes at the
cost of latency and the lack of delivery guarantee. Both, Grossglauser and Vetterli
(2006) and Laube et al. (P6. 2008) emphasize that the movement regime of the moving
nodes has a profound influence on the reliability of the mobility diffusion. The number
of encounters clearly depends on the density of the original node deployment and
their behavior. Only if nodes are expected to meet at all can this strategy offer an
advantage. Finally, Laube et al. (P11. 2010) explicitly investigated the influence of
different movement regimes in an application aiming at safeguarding privacy in an
LBS scenario. Here, the balance between level of privacy and quality of service
changed when replacing random walk with goal directed movement.

4.3.2.3 Mobility Privacy

In pre-internet and pre-database times privacy was naturally safeguarded through
the fragmented nature of personal information sources (Rule et al. 1980). In essence,
this early statement about privacy identifies the absence of a centralized database as
the best strategy for safeguarding privacy. Since decentralized systems per definition
do not require a centralized omniscient database, they naturally lend themselves
to offering privacy protecting services. For example, a buddy tracker application
could inform a user only through local communication when a friend enters his
neighborhood, explicitly hiding both the location of the user and the friend from any
centralized database.5

Laube et al. (P11. 2010) explore possible benefits that decentralization offers for
safeguarding the privacy of LBS users. The paper studies this trade-off in a set of con-
secutive experiments simulating mobile and communicating agents roaming through
a real urban transportation network. The experiments vary the used communication
strategies (one-hop vs. multi-hop, push vs. pull services) and vary communication
ranges. The results clearly indicate that mobility privacy is a valid strategy for LBS.
For example, for the LBS query “Where is the nearest point of interest?”, most rele-
vant information naturally can be expected to reside in close proximity to the query
agent. Since increasing hops and communication range leads to diminishing returns
of increased quality of service, there is no need to decrease privacy through increased
hops and communication radius.

The paper furthermore discusses the notion of trajectory privacy compared to
conventional location privacy (P11. Laube et al. 2010). The idea here is, that for users
of ICT services it might be perfectly acceptable to disclose the odd static location fix,

5 Clearly, in most current ICT applications the system provider maintains a detailed log of the
whereabouts and activities of its customers, but from a conceptual point of view underlining the
argument of the mobility privacy opportunity such an omniscient system provider database is not a
necessity.
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since these are arguably erratic and quickly out of date. By contrast, the collection of
entire trajectories allowing for detecting spatially explicit and potentially sensitive
movement patterns poses a real privacy threat. Again, mobility privacy offers a solu-
tion as sensitive knowledge is “smeared” around in space-time such that no single
system component can accumulate detailed knowledge about any individual.

4.3.2.4 Mobility Resilience

Network resilience is the ability of a network to defend against and maintain an
acceptable level of service in the presence of malicious attacks as well as software
and hardware failures (Smith et al. 2011). Clearly, resilience is also a key challenge
for a sensor network consisting of cheap nodes in an ad-hoc network with potentially
little influence on the spatial arrangement of the nodes and exposed to inhospitable
environments. As outlined in the Sect. 4.3.1, the movement of nodes brings the danger
of disconnected communication links.

Even though resilience has not been explicitly studied in the research summa-
rized in this book, there are a few potential links to resilience. One could argue that
mobility could help reconfigure a disconnected network just through rearrangement
of nodes and hence overcome network failure. Even though not really investigated
experimentally, the discussion in Laube et al. (P11. 2010) refers to scenarios with
high turn-overs of POIs. It is then argued that mobility of nodes allows for a quick
response to a constantly changing topology, underlining the intimate relation of prox-
imity and decentralization. When new WiFi-hot spots show up in the neighborhood
of a roaming agent, mobility helps discovering that new hot spot.

4.3.3 Revisiting General DeSC Principles

4.3.3.1 Collaboration

Collaboration between nodes is not particular to decentralized movement mining
but essential for DeSC in general, as per definition no single node knows the entire
system state (Lynch 1996) and is hence rarely able to solve a task alone. An obvious
form of collaboration is information routing, where information packages hop from
node to node. For instance, in Laube and Duckham (P8. 2009) nodes use multi-hop
communication to ask their neighbors and their neighbors’ neighbors if they are also
sensing hot temperatures, hence they detect a cluster in a team effort.

Collaboration is found in many forms in decentralized movement analysis. The
roaming nodes in Laube et al. (P6. 2008) hand around information tokens and validate
thus in a collaborative way the persistence of a movement pattern in space-time.
Here, collaboration aims at mobility compensation. Similarly, the nodes in Laube
et al. (P12. 2011) addressing the same task of detecting flock movement patterns
exchange information they have collected and in a collaborative effort complete
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each other’s local neighbor memory required for the actual deferred data mining
task. In both cases, mobility is essential as it leads to new node-node combinations
and hence a recombination of opportunities for exchanging information. Finally, the
“fish” in Both et al. (P19. 2013) collaborate since nurturing the memories of the
cordons requires fish acting as data mules delivering information packages from
other near-by cordons. All of the above examples also illustrate the collaborative
nature of mobility diffusion and mobility resilience.

4.3.3.2 Local Relevance of Locally Sensed Information

In many geosensor systems information that is sensed by spatially distributed nodes
will be most relevant to other nodes in their immediate spatial vicinity. This is espe-
cially the case in sensor/actuator networks where the locally sensed and processed
information is also required locally by the network, for instance for a local activation
of irrigation nozzles based on local sensor readings (P8. Laube and Duckham 2009;
Duckham 2012). This principle—what is sensed locally is relevant locally—shows
up repeatedly in the research summarized in this chapter. In decentralized flock detec-
tion algorithms nodes limit communication to other nodes in their vicinity and but
not the other nodes in the network (e.g., P12. Laube et al. 2011).

In the LBS application in Laube et al. (P11. 2010) this local relevance is the
basis for trading the level of privacy and the quality of service. Since local POIs are
more relevant, communication can be limited and hence (trajectory) privacy remains
protected (see also Sect. 4.3.2.3).

4.3.3.3 Latency

Latency refers to the length of the delay between when an event occurs and when
that event is correctly detected by an algorithm (P19. Both et al. 2013; Duckham
2012). As the title suggests, in Laube et al. (P12. 2011) on “Deferred decentral-
ized movement mining” roaming nodes require a latency phase for building up their
neighborhood memory. The mobile nodes compensate for their limited spatial per-
ception range through extending their temporal perception range, that is, allow for
a latency period before the actual data mining step kicks in. Here, computation is
deferred, but it is also possible to defer communication. In Laube et al. (P6. 2008;
P12. 2011), and in Both et al. (P19. 2013) roaming nodes are given time to rearrange
and recombine communication opportunities. Latency is an implication of mobility
diffusion since time is required for the information to move through the network.

4.3.3.4 Separation

Another feature of decentralized systems is the separation of tasks which in conven-
tional spatial computing are typically hosted in a central and omniscient computing
platform. Apart from the obvious spatial separation of partial spatial computing tasks
that are, for example, required for computing a boundary, separation can also be of
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a functional nature. For instance, in Both et al. (P19. 2013) the generation of infor-
mation is separated from the querying of that information. Quite often information
is also separated from the rather limited and constrained nodes. In both the fish in
Both et al. (P19. 2013) and the flocking agents in Laube et al. (P6. 2008) information
tokens are separated from their carriers such that information can move beyond the
constraints of the individual nodes. Hence, separation clearly is a precondition for
mobility compensation and mobility diffusion.

4.3.3.5 Heuristics

The fundamental question as to whether decentralized spatial computing in general
can perform as good as conventional spatial computing, with respect to efficiency,
effectiveness, accuracy, or scalability, is still subject of ongoing research (P7. Laube
et al. 2009). Irrespective of this question, approximation approaches or heuristics
can be an appropriate way to address tricky tasks in arguably constrained decentral-
ized environments. For instance, Laube et al. (P6. 2008) argue that heuristics are
a suitable way of compensating for limited perception of individual sensor nodes.
The heuristic extrapolates the presence of a flock, reaching beyond any single node’s
limited perception range. Duckham (2012) follows up on this initial approach and
argues that the apparently simple nkr-flock is computationally intractable such that
even centralized spatial information systems require heuristics in order to compute
such patterns (Duckham 2012).

4.4 Related Work

This section summarizes further related work relevant to the topics covered in this
chapter. The chapter then concludes with insights and lessons learned from both the
research covered in this chapter and in related work.

Wireless sensor networks and geosensor networks. The textbook “Wireless Sen-
sor Networks—An Information Processing Approach” by Zhao and Guibas (2004)
offers an excellent entry point into the wider research area. Most research in wire-
less sensor networks is concerned with lower-level engineering tasks establishing
the system infrastructure and maintaining communication (physical, data link, net-
work, transport layers, Zhao and Guibas 2004). The top-most application level, the
focus of this book, still receives less attention. More recently Nittel (2009) has sum-
marized the field’s progress in monitoring geographic phenomena and advances
in dynamic environmental monitoring. She makes very clear that the key task of
geosensor networks is to sense, monitor and track dynamic phenomena in real-time
in the environment. Clearly, this not only refers to change, but also mobility.
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Decentralized spatial computing. Duckham’s recent textbook on “Decentralized
Spatial Computing—Foundations of Geosensor networks” offers an accessible and
comprehensive introductory overview on various aspects of DeSC, including many
aspects not covered in this book (Duckham 2012). Beyond movement analysis, DeSC
presents a new way of processing spatio-temporal information, contrasting to con-
ventional spatial computing in omniscient centralized spatial information systems
and databases.

Movement in decentralized spatial information systems. There are more and more
integrated spatial systems consisting of mobile networks of computing and sensing
platforms: Examples include robot swarms (McLurkin 2008), vehicular ad-hoc net-
works VANETs (Kosch et al. 2006), mobile phone networks (Ahas et al. 2010),
emergency dispatch (Kim et al. 2008), vehicle navigation, or fleet management
applications (Arampatzis et al. 2005). However, in most systems the conventional
centralized approach for processing and analyzing data prevails.

Decentralized movement analysis principles. There are, however, exceptions aim-
ing at explicitly decentralized ways of analyzing movement that are relevant in
the context of this chapter. Shared-ride trip planning systems, for example, are
proposed to function on a peer-to-peer basis, requiring a certain degree of in-
network data processing for allocating passengers to rides (Dillenburg et al. 2002;
Winter and Nittel 2006; Wu et al. 2007). Other examples can be found in the field of
robotics, where minimalist robotic swarms are tasked for inspection, maintenance,
and repair (Correll and Martinoli 2006; McLurkin 2008). Here, the system relies
on roaming mobile nodes addressing a task in a collaborative manner. The work
by Grossglauser and colleagues on mobility diffusion played a pivotal role for the
development of algorithms for decentralized flock detection (Grossglauser and Tse
2002; Grossglauser and Vetterli 2006). Aiming at improved communication in net-
works of roaming sensor nodes, these authors propose communication and routing
protocols involving (i) the maintenance of local databases that (ii) successively refine
their knowledge while moving and through using diffused information. Both con-
cepts are found in a similar way in Laube et al. (P12. 2011) adapted for the task of
decentralized movement pattern mining.

Finally, the reader is directed to further neighboring areas that may offer rele-
vant concepts and principles for decentralized movement analysis. First, there is a
large body of literature on the related but different topic of distributed data mining
in peer-to-peer networks (Datta et al. 2006; Kargupta and Chan 2000). Note that
distributed computing is less constrained than decentralized computing, such that
the cooperating systems also synchronously address a computing task but there may
be a controlling system part that has access to the entire system state. Second, the
textbook by Giannotti and Pedreschi (2008) offers an access point for privacy issues.
Apart from technical questions around privacy, the following articles also investi-
gate ethical issues and reflect on lessons learned after a decade of LBS (Dobson and
Fisher 2003; Uteck 2009; Nouwt 2008).
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4.5 Concluding Remarks

ICT increasingly pervades our dynamic natural and built environments. Decen-
tralized movement analysis results from the application of decentralized spatial
computing (DeSC) concepts for CMA. I argue in this chapter that decentraliza-
tion offers one strategy for coping with emerging big data streams. Initial work
reflected in this book and observed in related work indicates the integration of DeSC
and CMA and puts forward promising concepts for coping with big data emerging
ubiquitous spatial information systems, that in most cases involve some form of
mobility.

Movement poses a set of additional challenges to DeSC, but also offers unique
opportunities for handling big data streams emerging from dynamic ubiquitous spa-
tial systems. Movement means constantly changing network and neighborhood struc-
tures and temporarily broken communication links. However, mobile nodes can carry
around information tokens and overcome unfavorable node constellations. Most
typical reasons given for DeSC in the first place (Duckham 2012), also hold for
decentralized movement analysis scenarios. Local computing reduces information
overload in flooded sinks and safeguards user privacy. Mobile systems can be very
flexible, resilient and scalable, since added nodes easily extend systems that must
grow. Latency allows nodes to explore spatial variables and exchange and enrich the
captured information.

Just as in DeSC scenarios in general, decentralized movement analysis problems
challenge system and algorithms designers with very peculiar limitations and con-
straints. The work reported on in this volume in many cases faced such challenges
by trading benefits in one aspect for costs in another. Algorithms traded a limited
spatial perception versus temporal perception, quality of service versus level of pri-
vacy, error of omission versus error of commission, latency versus detection error, or
computational complexity versus latency. In some application contexts it is perfectly
acceptable to get a task done only after a given latency period or it is equally accept-
able to get a result, possibly even only an approximation, instead of the best possible,
exact result. However, the question whether or not decentralized movement analysis
as a form of DeSC can perform just as well as any centralized system remains on
open research question.
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Chapter 5
Grand Challenges in Computational
Movement Analysis

This final chapter addresses the prospect of Computational Movement
Analysis (CMA) as a relatively young research field. The first decade of CMA was
shaped by significant technological developments resulting in much increased avail-
ability of fine-grained movement data, an innocent and somewhat naïve enthusiasm
over moving points resulting in a wide but fragmented variety of methods for move-
ment analysis, and finally due to this lack of a unifying theory of CMA only moderate
success in overcoming GIS’ and GIScience’ legacy of static cartography. The final
chapter concludes this book by proposing a set of grand challenges of CMA. The
grand challenges arise from observations about current trends in CMA and my per-
sonal view on where this young and important research field will develop in the years
to come.

This book argues that CMA is an emerging research field with ample momentum
witnessing rapid development in many related research fields and application areas.
Preparing the discussion of the grand challenges of the field to follow in the next
section, it is here worth back-pedaling for a moment, and trying to capture the current
state of a field seemingly moving forwards with giant steps. The following list gives
an overview of trends and developments that arguably have and will have implications
for the further development of the young research field.

• Movement data becomes more available. Scientists from a wide range of applica-
tion fields are more willing to share their data.

• Following miniaturization and reduced costs, movement data sets cover more and
more individuals at ever finer granularities.

• The movement data sets typically used for CMA change their character: Large
repositories capturing trajectory data of massive sets of individuals as a “byprod-
uct” (as for example form GSM networks) outplay purposefully collected move-
ment data sets tracking small numbers of individuals (most movement ecology
studies tracking samples sizes of a couple of dozens).

• Data repositories simplifying data exchange amongst scientists are established
(for example, http://www.movebank.org) and gain momentum.
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• Difficulties in bringing theory and application researchers together prevail. Some
application areas (for example, movement ecology, crowd management) maintain
and further develop CMA research fields with ample momentum but little links to
GIScience and computer science.

• Multi-sensor systems (speed, acceleration, physical properties) replace pure loca-
tion tracking systems.

• After a cooler phase, privacy recovers as a key CMA topic.

After the golden first decade of CMA, progress seems to be slowing down as the
low hanging fruit are gone and the hard problems prevail. Even though movement
analysis is still prominent on most schedules of relevant conferences, I would argue
that the research field gains breadth rather than depth. There seems to be no bound to
the arrival of new and and fascinating movement data sources, each with a specific
problem producing a unique movement analysis solution. Even though any growth
benefits the field, if the field wants to mature, a set of grand challenges need to be
addressed.

Clearly, aspects of the following relate to old and well known challenges of han-
dling spatio-temporal data, such as scale, uncertainty, or data integration. Other
aspects of CMA pose new and interesting challenges, opening up countless research
avenues for the years to come.

5.1 Coping with Big Movement Data

GIScience and geomatics are currently experiencing an exciting revolution, that also
has implications for CMA. What started off as a data poor and computation poor
discipline, then coped with data rich and computation rich environments for decades,
is now faced with another dramatic shift regarding its data sources: Big data (Graham
and Shelton 2013; Kitchin 2013) Sensor networks and mobile GIS, user-generated
content and open data, the web and cloud computing inevitably change how we
capture and manage geoinformation, how we analyze and exploit geoinformation,
and ultimately how we take decisions based on geoinformation.

These new and massive data streams not only challenge CMA in terms of volume,
but also require new ways of integrating heterogeneous multi-source information
(Fig. 5.1). Such integration could, for example, require inferring behavior from GPS
tracks sampled at one second intervals, combined with accelerometer readings that
come in 6 s long bursts sampled at 20 Hz, but only every 10 min, and interpolated
and hence uncertain meteorological field data with a spatio-temporal granularity of
daily values per 1 km grid cells. Big geodata as a source for CMA means inferring
knowledge and making decisions based on more comprehensive but at the same time
more uncertain, messy and noisy movement data. If and to what degree big data really
poses fundamentally new challenges is still widely discussed. One could argue that
especially GIScience with its long tradition of handling voluminous and messy data
is in an excellent position for contributing to the big data debate.
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Fig. 5.1 The KDD process and its core step data mining in a world of big geo-data, adapted from
(Fayyad et al. 1996)

Mayer-Schönberger and Cukier (2013) emphasize three core challenges around
big data. Firstly, the authors argue that the need to sample is an artifact of an era
dominated by information scarcity. Overcoming this information scarcity requires a
fundamental shift in analytical thinking, where analysis not primarily bases on sam-
ples but moves more and more towards analyzing entire (statistical) populations. For
example, the group around Rein Ahas has, as of 2013, access to mobile phone logs
of almost the entire Estonian population through building up cooperations with all
major service providers. Secondly, traditional ways of reasoning and analysis must be
complemented with new approaches inferring knowledge from more comprehensive
but at the same time much more uncertain and noisy, in short, messy data. Mayer-
Schönberger and Cukier (2013) argue that gaining access to more comprehensive
data sets allows shedding some of the rigid exactitude required when analyzing con-
ventional samples. Clearly, positional uncertainty will remain an issue with tracking
data for many years to come. Compared to the long and intense history of research
on uncertainty, it is surprising to see so few articles addressing this pivotal problem
in CMA. Thirdly, correlations found in big data may not allow us to understand why
something is happening (causality), but exploit the correlations found for the equally
important alert that something is happening.

5.2 Bridging the Semantic Gap

CMA aims at bridging the gap between low-level movement data and the high-level
conceptual schemes required for understanding movement processes, just as it must
be the goal for GIScience in general (Galton 2005). Through the work summarized
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in this book and further related work in the area, GIScience has made significant
progress in seeking structure in movement data. Algorithms have been proposed to
cluster similar trajectories and segment trajectories, to compute home ranges and
to find patterns. However, attaching such structures to colloquial names (“flock”,
“herd”, “convoy”, “single file”), does not necessarily mean that a found pattern
corresponds to an actual herd of cows or trucks indeed moving in a convoy. In short,
whereas finding structure is easy, the following semantic annotation and enrichment
of the found structures is and remains much harder.

Progress in this second but crucial CMA step is slow for two main reasons. First,
most work so far was tools-driven and methods-driven, but not problem-driven.
Second, most movement data used so far consisted of bare trajectories without any
form of semantic metadata. For instance, when cows were tracked, no information
was captured about the social structure of animals. Or, when observing two users of
a mobile phone in the same cell for half an hour, we have in general no information
knowing for certain that they actually met for coffee. That means, even when aiming
at a semantic evaluation of proposed methods, finding appropriate data to do so
is difficult. Nevertheless, when aiming at really understanding the processes and
events controlling the observed movement, then bridging the semantic gap between
formal representations of patterns and structures and their actual meaning grounded
in contextual expert knowledge is key. Initial work combining movement data with
social media data (for example, applications allowing users to “check-in” at points
of interest) offer a promising route for enriching raw trajectories with user-generated
semantics (Sui and Goodchild 2011).

Some research fields concerned with CMA have proposed promising work
addressing this gap. Regarding data capture, recent work in movement ecology no
longer just monitors the location of observed animals, but uses multi-sensor devices
simultaneously tracking physical properties of the individuals (for example, speed,
acceleration, physiological variables). The underlying rational is that activities can’t
be inferred from location fixes alone, irrespective of how densely they are sampled.
A second development in CMA specifically aims at understanding movement by
understanding its embedding in its enabling and constraining geospatial context (P3.
Laube et al. 2007). Cows that are co-located for some time may not belong to the
same herd at all but just be kept in a fenced area. Similarly, understanding com-
muter patterns without studying the transportation infrastructure obviously makes
little sense. Again, given the strong influences of geometry and topology oriented
researchers, it may be little surprising that so far most CMA focuses on shape and
arrangement of trajectories and less on the development of context-aware movement
analysis techniques.
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Ever smarter smart phones and prospects like Google Glass change the public percep-
tion of spatial information. Using spatial information became as common as writing
an SMS or downloading one’s favorite music—anywhere, any time. This (brave)
new world is a very dynamic world. Not only do highly mobile human users inter-
act in dynamic networks and profit from ubiquitous access to spatial information,
but spatially distributed autonomous computing nodes increasingly invade various
application fields of immense socio-economic significance, including applications
in ICT, transportation, and logistics.

In this world of “spatial everyware”, the days of spatial data processing in a
monolithic desktop GIS are numbered. Today’s and forward-looking CMA algo-
rithms must comply with highly dynamic multiparty networks, where data volumes,
privacy issues, and constantly changing communication networks dictate that spatial
data collected at different sites be analyzed in a decentralized way without collecting
all data to a central GIS or database. In such distributed and integrated systems the
boundaries between data capture and data processing are increasingly blurred, nur-
turing the vision of ambient spatial intelligence. CMA has an opportunity here by
contributing in an early stage to this emerging field through a combination of classic
GIScience strengths with forward-looking decentralized spatial computing.

5.4 Balancing Benefits and Privacy

Safeguarding user privacy remains a technical challenge and a key ethical respon-
sibility for researchers in CMA. Clearly, animal movement is an excellent use case
for stimulating and interesting CMA problems. But the movement of people and the
related applications and services bears a much larger socio-economic potential. It is
here where CMA must seek its primary contribution, this is a huge opportunity not
to be missed. But people care about privacy. I see two main challenges with respect
to privacy: First, develop strategies for getting access to the really interesting large
volumes of people movement data. Second, develop analytical frameworks that can
produce useful information but at the same time safeguard peoples’ privacy.

Access to GSM network data is still very limited, studies where access to very
large numbers of individuals is granted are still rather the exception or don’t hap-
pen in the public or scientific domain. Clearly, information and transparency about
a study’s goals and privacy precautions help building up trust with users and GSM
providers. Rein Ahas’ Estonian case may serve as a successful example here. An
alternative promising strategy for accessing trajectories of large numbers of individ-
uals comes in the form of apps that track their users in informed consent in some
application context. For example, Wirz et al. (2012) propose a system for real-time
crowd monitoring where a mobile phone app is used that supplies the user with
event-related information, but periodically logs the device’s location along the way.
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Here, the users of the app reveal their location by giving informed consent, in turn
receiving information about the event they are visiting.

Whereas some promising solutions have been proposed for safeguarding user pri-
vacy in location-based services (LBS), in applications where the analysis of move-
ment data is the primary goal, much less convincing privacy handling prevails. CMA
must devise analytical frameworks that allow the inference of useful knowledge
but at the same time safeguard the privacy of the tracked people. Strategies include
anonymity, spatial or temporal degradation, or delay (Krumm 2009). Similar to
Laube et al. (P11. 2010) where privacy was traded for quality of service in a LBS
scenario, CMA must develop techniques where quality of insights can be balanced
with the level of privacy.

5.5 Improving Recognition

So far, CMA remains a bit a “scientists’ science”, comparable to modal jazz some-
times being called “musicians’ music”, that is, music mainly for musicians and hence
inaccessible to non-musicians. Even though several community activities, including
a series of workshops1 and even a EU-funded COST action (COST Action IC0903
MOVE) specifically aimed at bringing together methods and application scientists,
the prevailing pattern is that application experts from government and industry rarely
participate. Clearly, this is more than a challenge, this is an urgent problem to be
solved.

One way of improving the visibility and recognition of CMA as a research field,
is seeking publication of CMA work not only in GIScience outlets but also in related
fields such as core computer science, ecology, or transportation research. There is no
point in complaining that the established GIScience theory is ignored by computer
scientists “reinventing GIS” in the course of the rapid development of mobile ICT and
location-based apps. It is the responsibility of researchers active in GIScience (and
hence CMA) to seek the widest possible visibility. Clearly, close collaboration with
problem-driven application experts helps in producing work appealing to a wider
audience.

Second, and perhaps more difficult, is the establishment of one or two killer
applications underlining the socio-economic relevance of CMA. This is surely more
difficult as such success also depends on external constraints (for example, the estab-
lished GIScience concept LBS only became a commercial success when app-stores
became popular). Nevertheless, again only targeted collaboration on application-
close problems have the potential to produce such relevance in the first place.

1 Dagstuhl Seminars #08451 (2008), #10491 (2010) #12512 (2012), on Representation, Analysis
and Visualization of Moving Objects; First Workshop on Movement Pattern Analysis (MPA’10),
09/2010, Zurich, Switzerland; Workshop on Analysis and Visualization of Moving Objects, Lorentz
Centre, 06/2011, Leiden, NL; Workshop on Progress in Movement Analysis—Experiences with
Real Data, 09/2012, University of Zurich, Switzerland.
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Progress in the above challenges is much more likely when CMA manages to establish
a unifying theory. This book contributes to the establishment of such a unifying theory
by providing a structured overview of concepts, techniques and their implications for
three important CMA aspects. As an umbrella research field, CMA must persistently
continue its efforts to agree on ontological foundations and common basic tasks, and
intensify the sharing of data and methods. Initial community efforts in that direction
sparked the flame but must now be followed up. When researchers from the many
contributing fields manage to bundle their efforts, CMA can make a real contribution
to the present and future challenges of a world in motion.
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