
www.allitebooks.com

http://www.allitebooks.org

Construct 2 Game
Development by Example

Learn how to make games for multiple platforms
with Construct 2

John Bura

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Construct 2 Game Development by Example

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2014

Production reference: 1180614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-806-1

www.packtpub.com

Cover image by Asher Wishkerman (wishkerman@hotmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
John Bura

Reviewers
Albert Chen

D.M. Noyé

Keefer Sery

Commissioning Editor
Pramila Balan

Acquisition Editors
Pramila Balan

Sam Wood

Content Development Editor
Poonam Jain

Technical Editors
Pratik More

Ritika Singh

Rohit Kumar Singh

Copy Editors
Roshni Banerjee

Adithi Shetty

Project Coordinator
Amey Sawant

Proofreaders
Paul Hindle

Joanna McMahon

Indexer
Hemangini Bari

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

John Bura has been programming games since 1997 and teaching since 2002. He
is the owner of the game development studio Mammoth Interactive. This company
produces games for Xbox 360, iPhone, iPad, Android, HTML5, ad-games, and others.
Mammoth Interactive recently sold a game to Nickelodeon! He has been contracted
by many companies to provide game design, audio, programming, level design, and
project management. To this day, he has contributed to 40 commercial games. Several
of the games he has produced have risen to number one in Apple's App Store. In his
spare time, he likes playing ultimate frisbee, cycling, and working out.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Albert Chen is Assistant Professor in the Game Design and Development
program at Cogswell Polytechnical College in Sunnyvale, CA. He has led students in
developing serious games using game engines for The Boeing Company, NeuroSky,
and Ericsson. His team won the Boeing Performance Excellence Award in 2008.

Prior to joining Cogswell in 2007, he was a professional game developer for over
12 years, working at EA, LucasArts, Factor 5, and The 3DO Company. He has a
Bachelor of Arts degree in International Relations from UC Davis and a Master of
Arts degree in Entrepreneurship and Innovation from Cogswell Polytechnical College.

I would like to thank my family for their love and support:
Joy, Kayli, Brandon, and my mother, Sin-Hing Chen.

D.M. Noyé (Dwandell M. Noyé) is a successful entrepreneur, conceptual
designer, and technical consultant with extensive experience working on major
commercial projects with a number of large corporations as well as independent
ventures spanning several fields, from music and literary arts to video games.

I'd like to thank Packt Publishing for believing in my expertise and
giving me the opportunity to share it on this great project. I'd also
like to thank the entire Scirra Construct community for the deep
knowledge base they've built over a number of years, allowing me
to acquire the forward-thinking skill of event-based programming.

www.allitebooks.com

http://www.allitebooks.org

Keefer Sery is currently a Game Art and Production major at Drexel University,
expecting to graduate in 2015. He is also a freelancer for Digitas Health. His most
notable work in Construct 2 was a segment of the research and development for
Evolutionary Guidance Media's Cyberhero League. The project went on to become
a winning entry in the World Future Society's BetaLaunch competition.

I would like to thank my grandmother, Janet Mitchener, for giving
me the opportunity to attend school, and Dr. Dana Klisanen for
giving me my first break in the industry.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content

• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with Construct 2 5

Downloading and installing Construct 2 6
What do the numbers mean? 7

Coding in Construct 2 7
Working with visual programming languages 9
Layout and event sheets 9

Sprites 11
Summary 14

Chapter 2: Inputs and Controls 15
Getting started with inputs and controls 15

Keyboard inputs 17
Inserting a new keyboard object 18
Adding functionality to the keyboard object 19
Setting the keyboard key 20

Controlling the sprite with the keyboard 21
Setting up the direction of the sprite's movement 22
Setting keys for other directions 23

Testing the keyboard controls 24
Making the sprite move constantly 24
Changing the sprite's speed 26
Keeping the sprite onscreen 26
Mouse inputs 28

Adding mouse functionality 28
Setting up the Every tick command 30
Rotating the sprite to the mouse location 31
Facing the sprite towards the mouse point 34

Touch control inputs 36
Summary 41

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Variables and Arrays 43
Introducing variables 43

Number variables 44
Integer variables 44

Real variables 44
String variables 44
Boolean variables 45
Other variables 45

Declaring variables 45
Writing variables in code 46

Variables in JavaScript 46
Examining JavaScript code 47

Variables in Construct 2 47
Adding a variable 47
Creating a global variable 48

Creating a score variable 49
Adding a variable to a sprite 50

Creating a health variable 52
Introducing arrays 53
Adding an array in Construct 2 54
Checking an array's properties 55

Setting data and adding variables 57
Checking an array for data 58

Summary 60
Chapter 4: Game Mechanics 61

Introducing game mechanics 61
Game mechanics in Construct 2 62

Setting up a game mechanics project 63
Adding a game mechanics behavior to a sprite 63
Giving a sprite 8Direction movement 65

Editing the properties of a behavior 66
Adding a collision event 67
Destroying the power-up on collision 70
Increasing the player sprite's speed 71
Setting the duration of the speed boost 72

Restoring the player's speed to normal 73
Summary 74

Chapter 5: Making a Simple Shooter 75
Starting the project 75
Controlling a sprite with the keyboard 78
Organizing the event sheet 84

Table of Contents

[iii]

Adding mouse controls 85
Making the player shoot 87

Adding the enemy 91
Destroying the enemy 94
Adding a spawner 96
Summary 102

Chapter 6: Making a Tower Defense Game 103
Starting the project 104
Creating a spawn point 106
Laying out the level 112
Setting up the turrets 113
Adding enemies and projectiles 118
Rotating the turret 119
Firing the turret 120
Setting up the path for the enemy 128
Setting up an enemy wave 135
Summary 144

Chapter 7: Making a Puzzle Physics Game 145
Starting the project 145

Setting the background layer 146
Adding the cannon 146
Adding sprites 148

Adding functionalities 150
Rotating the cannon 150
Creating a cannonball 155

Spawning the cannonball 156
Creating the spawning image point 157

Adding physics 158
Applying force at an angle 158

Setting cannonballs to fire one at a time 160
Setting the viewpoint to follow the cannonball 162

Making an immovable ground 163
Reloading the cannon 165

Adding the blocks 167
Destroying the cannonball on a complete stop 168

Delaying cannonball destruction 170
Designing our level 171

Changing block density 172
Adding the goal balls 173
Destroying the goalBall sprite 174
Adding particles 176

Table of Contents

[iv]

Adjusting the particle settings 177
Adding particles when goalBall is destroyed 178

Tracking the score 179
Adding text objects to the HUD 180

Spawning the textbox 180
Correcting the spawning angle 183

Expanding the HUD 183
Anchoring the HUD to the camera 185
Setting up an HUD cannonball tracker 185

Finalizing the game 187
Losing the game 187
Restarting the game on Game Over 188
Winning the game 188

Summary 191
Chapter 8: Exporting Your Game 193

Exporting games in Construct 2 193
Setting up a Dropbox account 194
Exporting to an HTML5 website 194

Choosing the template for your HTML5 export 196
Assessing the contents of the game folder 197

Uploading and sharing a game with Dropbox 198
Other places to export your game 200

Exporting to Chrome Web Store 200
Exporting to Scirra Arcade 201
Exporting to Kongregate 201
Exporting to PhoneGap 202
Exporting to Intel XDK 203
Exporting to CocoonJS 203
Exporting for Windows Phone 8 204
Exporting to Tizen 205
Exporting for the Amazon Appstore 205
Exporting for Windows 8 206
Exporting to Open Web App 206
Exporting to Node-Webkit 207

Summary 208
Appendix: Where to Go from Here 209
Index 211

Preface
Games have always been my passion. Creativity and production have always
been on my mind. I love talking about production and I hope you enjoy reading
about how to make games. This book will give beginners a first-hand knowledge
of how to make games in Construct 2. I made my first game in 1997 when I was
attending university.

In this book, you will learn how to make several games and learn the secrets of
game development. After reading this book, you should have several playable
games to build a foundation and move forward. It is important that you actually
make the games instead of just reading the book. Game development and
entrepreneurship is not a spectator sport. The best developers actually release
their games instead of just thinking about making games.

This book is laid out so that anybody can pick it up and make a game. It is also
recommended that you go through the chapters in order. This book is best suited
towards beginners and people who have never made a game before. Construct 2
is a visual programming language. This means that you don't have to hand code
every single detail. Because of this, most of the logic is presented in images.
The book is written this way because people who like visual programming
languages love images.

Before we continue, let me introduce myself. My name is John Bura and I have
been programming since 1997 and teaching since 2002. I have released several
games for console and mobile platforms. You can check out my website at
www.mammothinteractive.com. I hope you get a lot out of this book. This book is
designed for beginners who have never programmed before. If you have done some
programming, you will be amazed at how easy game development is in Construct 2.

www.mammothinteractive.com

Preface

[2]

What this book covers
Chapter 1, Getting Started with Construct 2, is an introduction to the book. You can
learn about HTML5 games, Construct 2, and general game design in this chapter.

Chapter 2, Inputs and Controls, teaches you how to implement inputs and controls
in Construct 2. Inputs and controls are the first and most important part of
game design.

Chapter 3, Variables and Arrays, shows you how to store data in variables and arrays.

Chapter 4, Game Mechanics, covers the mechanics of a game, which are extremely
important to learn and understand in order to make a great game. In this chapter,
you will learn how to implement them.

Chapter 5, Making a Simple Shooter, covers shooters, which is one of the most popular
game genres out there. You will learn the mechanics of making a simple shooter in
this chapter.

Chapter 6, Making a Tower Defense Game, teaches you how to make one of the most
popular and addictive game genres.

Chapter 7, Making a Puzzle Physics Game, teaches you how to incorporate physics and
puzzle elements into a game in Construct 2.

Chapter 8, Exporting Your Game, covers how to export your game. People need to play
your game. Construct 2 has many different areas to which you can export your game.

Appendix, Where to Go from Here, wraps up everything you have learned in the book.
There are also tips on how to start your own game studio.

What you need for this book
For this book, you will need Construct 2. In order to get Construct 2, you need to
go to www.scirra.com and download it. Construct 2 only works on a PC right now.
You will also need a PC to run Construct 2.

Who this book is for
This book is meant for complete beginners. I assume that the people reading this will
know nothing about computers or game development. If you are an experienced
developer or you are knowledgeable in coding, this book might be too basic for you.

www.scirra.com

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This is called an if statement, and all it does is check for a condition to be true."

A block of code is set as follows:

GameObject.Speed = 10;
GameObject.Move.Right;

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"To add an event, all you have to do is click on the Add event button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Getting Started with
Construct 2

Game development is very similar to making music, writing books, making movies,
and pretty much every other creative process. As a creator, you might have an idea
that you want people to enjoy. You have to find the tools and the time necessary to
make your ideas a reality. If you don't make your idea a reality, people will not get
to enjoy your creation. It only makes sense that you choose the right tools for the
right job.

With lots of options in terms of how to develop your game and with what engine,
it is easy to become lost. Let's take a moment to see what we really want in a game
engine. A game engine should have the following attributes:

• It should be very user friendly
• It should have a lot of export options
• It should be fairly inexpensive
• It should be able to make your creation a reality

Let's have a small introduction to Construct 2. Construct 2 is one of the best
non-programming engines around. I have made a ton of games on it.

So, what makes Construct 2 (C2) so awesome? The first reason is that it develops
games using HTML5. HTML5 is the new version of HTML, and the best part about
this is that you can play these HTML5 games right in your browser. The Web has
a ton of infrastructure around it, and HTML5 games tap into that infrastructure.
HTML5 games can be played almost anywhere, which makes exporting a real charm.
While HTML5 is still under development, browser support gets better by the day.

Getting Started with Construct 2

[6]

In this chapter, we will cover the following topics:

• Downloading and installing Construct 2
• Coding in Construct 2

Downloading and installing Construct 2
Downloading and installing Construct 2 is pretty easy. You need to have a computer
if you want to use Construct 2. You cannot run this on a Mac. You need to perform
the following steps to download and install Construct 2:

1. Go to http://www.scirra.com.
2. Click on the Download button, as shown in the following screenshot:

3. Once you've downloaded it, follow the instructions and the installation
should be simple.

http://www.scirra.com

Chapter 1

[7]

What do the numbers mean?
The numbers refer to the version of Construct 2 you are using (https://www.
scirra.com/construct2/releases). This is simply just Scirra's way of versioning
the software. There are stable releases and beta releases. Scirra releases a beta version
first to work out all of the bugs then they release a stable version. You should use
the stable release as the beta releases might be a bit unstable. On that note, I always
download the beta releases and I have never had a problem. However, it is advisable
to use the stable releases.

Coding in Construct 2
For all of our visual programming examples, we will be typing them in pseudo-code
for easier understanding. This code will not work, but it will give you an idea about
the concepts of programming. So, let's use an example of moving something to the
right. The code might look something like the following line of code:

GameObject.Move.Right;

This works, but we haven't set up a speed for the object. Right now, either the default
speed will be the speed of the object and the object will move too fast for the human
eye to see, or the compiler might get an error. If you misspell a word or make some
kind of syntax error, the game might not run. So, we might have to update our code
as follows:

GameObject.Speed = 10;
GameObject.Move.Right;

Notice how there is a semicolon at the end of each line. The semicolon tells the
computer to read the next line. However, if you look at the code, we haven't told
the computer to check for a button being pressed. If we add that code, it might be
something similar to the following code:

if (RightArrow.Pressed) {
GameObject.Speed = 10;
GameObject.Move.Right;
}

www.allitebooks.com

https://www.scirra.com/construct2/releases
https://www.scirra.com/construct2/releases
http://www.allitebooks.org

Getting Started with Construct 2

[8]

As per the preceding line of code, if the right arrow is pressed then the GameObject
will move to the right. This is called an if statement, and all it does is check for a
condition to be true. In this case, if the right arrow is pressed then the GameObject
will move to the right; however, if the right arrow is not pressed then nothing
will happen. Now, let's add the logic for the left arrow being pressed. The code
is as follows:

if (RightArrow.Pressed) {
GameObject.Speed = 10;
GameObject.Move.Right;
}
if (LeftArrow.Pressed) {
GameObject.Speed = 10;
GameObject.Move.Left;
}

We should mention at this point that there are only two lines of code in these if
statements, but there can be many more. Imagine how gigantic the code base is for
some of the games you play. Those games are much more complex. Sometimes, the
logic for the right arrow being pressed can be more than a page of logic. Let's add
some code that will make the GameObject move in four directions. The code is
as follows:

if (RightArrow.Pressed) {
GameObject.Speed = 10;
GameObject.Move.Right;
}
if (LeftArrow.Pressed) {
GameObject.Speed = 10;
GameObject.Move.Left;
}
if (UpArrow.Pressed) {
GameObject.Speed = 10;
GameObject.Move.Up;
}
if (DownArrow.Pressed) {
GameObject.Speed = 10;
GameObject.Move.Down;
}

Chapter 1

[9]

This is a lot of code and we are not even making a complex game. So far, our game
just has a GameObject moving up, down, left, and right. We have no projectiles, no
antagonists, and no artificial intelligence. So, why a code like this? Well, it's only
recently that non-coding languages have been around. If you have ever played a
game, it was painstakingly coded. We should also point out that the preceding code
is an abbreviated version to make it simpler. Depending on the language, moving
something across the screen might take many more lines of code.

Working with visual programming languages
Visual programming languages do exactly the same thing that regular programming
languages do, except that all of the logic is placed visually. This is more efficient for
several reasons:

• You can layout information in different areas
• Logic that would take multiple lines of code can be in one dialog box
• You can visually see that your game is coming together

At this point, we should also mention that, in most game development
environments, you have to do most of the work by typing commands. Having an
editor where you visually assemble your game, even if it is just the level design,
wasn't always the case. One of the best features of a visual programming language
is that you can see everything and test everything much more easily than traditional
game development environments.

Layout and event sheets
In Construct 2, we have two main areas in which we work. The first area is called
the layout, which is a visual representation of what the game will look like when a
player plays it. In this area, we can perform the following actions:

• Drop in all of our game objects so that we can arrange them the way we like
• Set the look of the game
• Add the heads-up display (HUD) and other Graphic User

Interface (GUI) elements

Getting Started with Construct 2

[10]

The following screenshot shows the layout with some game objects on it:

Each game object is a sprite. A sprite can have an image, an animation (multiple
images), and a game logic attached to it. Your event sheet will look like the
following screenshot:

The second area is the event sheet. An event sheet is where the game logic goes. This
is where we would "code" the game in other environments (see the preceding image).

Chapter 1

[11]

If we want to add some logic so that the game characters will move left and right,
this is where we will add it. Right now, there is nothing in our event sheet; however,
we can go and add something to demonstrate how we will "code" in the game logic.

To add an event, all you have to do is click on the Add event button. Another way of
adding an event is to just double-click on the area underneath the Event sheet 1 tab,
as shown in the following screenshot:

The Add event dialog box will provide you with all of the possible game objects and
commands you can use in your game.

Sprites
As you can see in the Layout1 window, all the game objects in the game are here.
You will also see a system icon. This icon brings up the internal commands and
functional commands that you can use.

If we want to select the sprite to move forward, we can simply select the sprite and
give it a command. Remember, in other environments, you would have to type that
in. If we want to make the sprite move left with the A button, we can simply select
the A button and add some logic that would make the sprite move left, as shown in
the following screenshot:

Getting Started with Construct 2

[12]

You will also notice that all of the game objects are properly named. It is very
important to name all of your game objects appropriately. When your game has
a few hundred game objects, it will become much easier to manage if your game
objects are named properly.

Let's go ahead and select the sprite by double-clicking on it. Once you do this, you
will be able to see a bunch of conditions. These conditions must be met before we
give an action to perform. In the same way as the if statement we looked at a few
pages ago, we need to make sure a condition is true; only then we can go ahead and
add an action. The Add event window should look like the following screenshot:

Chapter 1

[13]

Now, let's scroll down and select Is on-screen as shown in the following screenshot:

As you can see, once you select Is on-screen, the onscreen condition is added to the
event sheet. You can also see that you can add an action and another event. We want
the sprite to do something before we move on.

If you click on Add action, you will get a similar dialog box but with actions instead
of conditions. Let's go ahead and click on the Sprite element and the following
screen will pop up:

Getting Started with Construct 2

[14]

You will see actions that you can add to the sprite, as shown in the preceding
screenshot. Take a moment to look at all of the actions and you can see how
versatile Construct 2 really is.

Once you have finished looking, go ahead and click on Rotate clockwise. This will
make the sprite rotate. You can enter in any number in the Degrees textbox:

Let's look at what we are telling the computer to do. While the condition of the
sprite is onscreen, the action will be to rotate the sprite. If we were to run the game,
the sprite will rotate. This may seem like it is really simple, but imagine if you had
to code all of that by typing in commands. It would take a very long time. What we
have just shown you is the power of visual programming languages. They take out
most of the work needed to develop games. Instead, you can focus on creativity and
design versus technicality.

Summary
In this chapter, we learned about Construct 2 and how it works. More importantly,
we learned how and why Construct 2 is an amazing engine to work with and why
it can save us time. Construct 2 has a visual programming language. We set up a
small example in this chapter and we saw that a visual programming language is
easy to follow.

In the next chapter, we are going to talk about inputs and controls. Inputs and
controls are one of the most important parts of game design. Have you ever played
a game with amazing graphics and amazing action but the controls don't work
properly? Bad controls ruin games from the hobby level to the AAA level. Luckily,
Construct 2 has some fantastic controls already set up and the engine is so versatile
that you can add robust controls of your own.

Inputs and Controls
Inputs and controls are really important for game design. Games are interactive
by nature, and designers need to plan out and test controls in order to make an
effective game.

In this chapter, we will learn about the following topics:

• Keyboard inputs
• Rotating the angle
• Mouse inputs
• Game loop
• Touch control inputs

Getting started with inputs and controls
Software works with human interaction. The most basic activity of any computer
interface is a user providing information and the computer reacting to that
information. In other programming languages, one of the most basic concepts
you learn is the function. The basic premise of a function is to work with inputs.

The way the user inputs information is actually really important. Imagine a simple
calculator application that has really nice buttons and works exactly the way you
expect it to. Now, imagine a calculator application where the buttons were in a
different order than the usual one. The application would be much harder to use.
Obviously, you want the application and the user experience to be as good and
as easy as possible. Applications such as games have a purpose, and the software
and hardware should not interfere.

Inputs and Controls

[16]

Let's move this concept to games. Let's imagine a platform game, which is a game
where you run and jump onto platforms. For our example, we will be making the
game for a computer. Touch devices have different inputs, which we will discuss
shortly. In this platformer game, the player will have to run and jump. In order to
do that, we need to have specific controls that the player can understand. There are
various ways to implement controls, but the controls need to be easy to understand.
In the case of classic game genres, they cannot be different from what the player
is expecting.

Inputs to a game are really important. First of all, they make the computer software
work; but more importantly, they make the game what it is. Without good input
controls, a game doesn't live up to its potential and all of the time you spend on
mechanics and art is wasted. It is good to spend a lot of time to make sure the
controls and the inputs in the game are well thought out. Whether you are making
a simple indie game or an AAA game, controls are vital for the success of the game.

So, how do we think about controls in Construct 2? Well, the first thing you need
to think about is for which platform are you making the game. Mobile games are
very different from computer games. You have to approach the entire input design
differently. Certain genres work on certain platforms, and these same genres might
not work on other platforms. Imagine if you made a real-time strategy game such as
Starcraft for the iPhone—it wouldn't work. This game can fundamentally not be on
the iPhone because of the mechanics and the inputs. Knowing the limitations of your
inputs is vital to making a good game. Construct 2 offers a lot of options for inputs,
and the currently offered inputs are as follows:

• Keyboard inputs
• Mouse inputs
• Touch (mobile) inputs
• Gamepad (XBOX 360 Gamepad) inputs

Adding inputs is not an easy task in any game environment. Usually, the developer
has to write a lot of code to make it work. Luckily, Construct 2 takes most of that out
of the equation because most of the code is written in the backend and all you have
to do is add the visual blocks.

Chapter 2

[17]

Keyboard inputs
Keyboard inputs simply involve the keyboard. There are many ways to use the
keyboard. You can use the number pad, you can use the arrow keys, and you
can even use the main keys itself. It is always important to know that not every
keyboard has a number pad, so make sure the design takes this into account.

Let's add keyboard functionality. In order to work with this, we need to add at
least one game object to Construct 2. Simply drag an image from your desktop
to Construct 2. Your game should look something like the following screenshot:

We now have a game object to work with. In order to add any kind of controller
functionality, you have to first add the functionality manually. Keyboard control
does not come preloaded in a new Construct 2 project.

www.allitebooks.com

http://www.allitebooks.org

Inputs and Controls

[18]

Inserting a new keyboard object
If you want to add the keyboard or any input functionality, double-click anywhere
other than the game objects. You should get the Insert New Object window as shown
in the following screenshot:

In the Insert New Object window, you can add a whole bunch of new objects. If you
want to add more functionality, this is where we can add them.

The reason for this comes from the roots of software development. Generally, in order
to add more functionality, you have to add more libraries and more functions. If you
don't need these libraries or functions, there is no point having them in your project.
They could cause conflicts or they could use up too much memory. You should always
have just enough objects in your game to make it work. Keep in mind, however, that
having too many objects is just as bad as having too few. Luckily in Construct 2, most
of the problems with adding objects have been taken out of the equation.

Chapter 2

[19]

Scroll down on the page and double-click on the Keyboard icon to add it to
Construct 2's functionality, as shown in the following screenshot:

Adding functionality to the keyboard object
Let's start by adding some functionality to the Keyboard object. We need to open
our event sheet to add some functionality to the object we have placed on the screen.
In order to do that, double-click anywhere on the event sheet. You should see the
Keyboard icon appear, as shown in the following screenshot. If you didn't add the
keyboard functionality, this icon would not be there. Go ahead and double-click on
the Keyboard icon.

Once you double-click on the Keyboard icon, the Add event window should pop up.
This is shown in the following screenshot:

Inputs and Controls

[20]

Remember that events in a game are possible outcomes. In this case, we are going to
select On key pressed.

Setting the keyboard key
Now, we are going to add an action. In this case, the question is, "Is a certain key
pressed?" If yes, then the object will move up. Once you click On key pressed,
you should get the Parameters for Keyboard: On key pressed window shown
in the following screenshot:

Go ahead and select <click to choose>. You should get the dialog box shown in the
following screenshot:

Chapter 2

[21]

In the Choose a key window, you can simply press the key you want. This feature
speeds up the workflow quite a bit. If you need to choose another key, for example,
the return key, you can use the drop-down box. Once you have the key you want,
press OK and click on Done. You should get something like the following screenshot:

This is the event or the "question" that is being asked: "Is the W key pressed?"

Controlling the sprite with the keyboard
We can now add a variety of options, but what we really want to do is make the
sprite move in a direction. In order to do that, we need to click on Add action.
Double-click on the sprite and you should get the following window:

Inputs and Controls

[22]

Setting up the direction of the sprite's movement
In the Add action window, we can see all of the possible actions we can add for a
sprite. In this situation, we want the sprite to move up when the user presses the
W key. Scroll down until you see Size & Position and double-click on Move at
angle as shown in the following screenshot:

Once you have done that, it should bring up the Parameters for Sprite: Move at
angle window shown in the following screenshot:

This window will tell the sprite to move at a certain angle and at a certain distance.
The angle 0 is the direct right of the sprite. Angle 180 is the direct left of the sprite.
Angle 90 is straight down from the sprite and angle 270 is straight up. We want
to move the sprite straight up, so type in 270 where it says Angle and press
Done. Once you do that, you should see the following on the screen:

Chapter 2

[23]

Setting keys for other directions
We have two options to set up commands to move in the other three directions.
The first option is to manually do everything all over again, and the second option
is to simply copy-and-paste the action. In order to copy-and-paste, you need to click
on the purple bar below an event, press Ctrl + C to copy, and then press Ctrl + V to
paste. Do this three more times so that we have four events in total, as shown in the
following screenshot:

We need to change the keys that are being pressed and the angles that they
correspond to. Change the keys by double-clicking on them. They should be
in this order: W (up), A (left), S (down), and D (right). Then, change the angles
by double-clicking them. Change them to 180, 90, and 0. When you're done,
our event list should look like this:

Inputs and Controls

[24]

Testing the keyboard controls
Go ahead and run the game by pressing F5. This will then test run the game, and
you can push W, A, S, and D to see the object move around. We now have a game
with WASD controls that are easy to understand for most players.

Making the sprite move constantly
Right now, the sprite just moves one pixel in each direction. If you hold any of the
WASD keys down, the sprite still moves only one pixel. Let's change the appropriate
line of code so that when we hold the key down, the sprite will constantly move.
The steps are as follows:

1. Right-click on the Keyboard event and select Replace condition, as shown in
the following screenshot:

2. You should then get the Replace condition window shown in the
following screenshot:

Chapter 2

[25]

3. The process is very similar to what we have done before. Go ahead and
select Keyboard.

4. Now, select Key is down.
5. Then, repeat the process to set a keyboard key. Select W where

W was before, and so on.
Once you have done that, the event list should look like the
following screenshot:

You can see that there is only a subtle difference. However, run the game by pressing
F5 and you can see that there is quite a bit of improvement to the controls. They are
now much smoother. Running the game will give you a preview as to how the game
will look when a player plays it.

Inputs and Controls

[26]

Changing the sprite's speed
If you want to change the speed with which the sprite moves, double-click on the
sprite and set it to move more than 1 pixel in the Parameters for Sprite window.

Keeping the sprite onscreen
You will notice that the sprite will move offscreen. In order to keep it onscreen,
perform the following steps:

1. Select the sprite and select Behaviors in the left-hand side panel, as shown in
the following screenshot:

2. Once you click on Behaviors, click on the plus icon in the Sprite: Behaviors
window. This is what the window should look like:

Chapter 2

[27]

3. Now, you should get the Add behavior window. We will be talking about
this window throughout the book. For now, just select Bound to layout,
as shown in the following screenshot:

Now, your sprite will not move off the screen! It's as simple as that.

www.allitebooks.com

http://www.allitebooks.org

Inputs and Controls

[28]

Mouse inputs
Mouse inputs are important when it comes to any kind of computer game. In other
environments, this will take a lot of coding, and trial and error to call the mouse.
Luckily, we can use the mouse with great ease in Construct 2.

Adding mouse functionality
The first thing we have to do is add the mouse functionality to the project.
Double-click in the layout background and double-click on the Mouse icon.

Chapter 2

[29]

This will add the mouse functionality to the project.

What we need to do next is to attach some of the mouse functions to the sprite.
Open up the event sheet and click on Add event.

What we are going to do is rotate the object to the mouse location. Go ahead and
choose System, as shown in the following screenshot:

Inputs and Controls

[30]

Setting up the Every tick command
In the Add event window, we need to access the Every tick command.

In every game, there is something called game loop. This is a loop that
constantly updates information. When we put code or logic in the game loop,
it constantly checks to see whether it is true. Logic includes elements such as
controls, collisions, scores, and virtually all other portions of a game. In other
programming environments, the game loop is extremely important and
accessing it can be very different depending on the environment.

We need to access the Every tick function because we need to constantly check
where the mouse is. While the mouse moves around the screen, the computer will
check to see its location. If we didn't use the Every tick function or the game loop,
the sprite will only rotate once instead of constantly. You usually use the Every tick
function for functions that require constant attention. For most other functions that
need to be called once, you can use other functions. So, let's go ahead and click on
Every tick.

Chapter 2

[31]

Rotating the sprite to the mouse location
Now that we have added the Every tick event, we need to add an action. This action
is going to rotate the sprite to the mouse position. In order to do this, click on Add
event. You should get the following window:

Inputs and Controls

[32]

This time, we are going to select Sprite. If we want to rotate the sprite, we have to
access the sprite via the Add action window. We can't just use the mouse function
to rotate the sprite.

In the Add action window shown in the preceding screenshot, we can see that there
are a lot of options to rotate the sprite. For this particular example, we are going to
select Set angle toward position. This will open up the Parameters for Sprite: Set
angle toward position dialog box, as shown in the following screenshot:

Chapter 2

[33]

In the preceding window, you will see two options: X and Y. What you need to
do is type in the word Mouse and then insert a period. As you can see, you have
several different options; select X and Y for the respective option, not Absolute X
and Absolute Y. Once you are finished, it should look like the following screenshot:

Then, press Done and your event sheet should look like the following screenshot:

You can go ahead and try this out. As you can see, the object will rotate to the
mouse clicks.

Inputs and Controls

[34]

Facing the sprite towards the mouse point
A common problem that arises when you make a sprite rotate to the mouse location
is that the graphic seems to be off. This means that the object might be sideways or
backwards and the object isn't facing the mouse correctly. Well, there is a simple
reason for this. The code works perfectly; it's just that the graphic has not been put
into Construct 2 correctly. If you click on the object, you can see where the object
will be rotated to.

As you can see in the following screenshot, there is a little line pointing to the right.
This line will always face the mouse.

If we want to rotate the graphic, we can do it in Construct 2; just double-click on
the sprite. This will bring up the sprite editor, where we can change the rotation,
collision, and many more sprite properties. It is shown in the following screenshot:

Chapter 2

[35]

Go ahead and click on the icon for rotation; it is at the top and shows a curved
arrow around a circle. Rotate your game object to make it face towards the right.
This should change your game object to the right rotation.

In the preceding screenshot, we can see that the object is now rotated the correct
way. If you run the game, you can see this in action.

Inputs and Controls

[36]

Touch control inputs
Touch controls are vital for mobile games. They are really important since a lot of
HTML5 games run very well on mobile devices, while Flash does not. Open up a
new Construct 2 file and add a sprite. Then, double-click on the layout background
to get the Insert New Object window. Here, add the Touch functionality. This is
shown in the following screenshot:

Chapter 2

[37]

Once you have added the touch functionality, hop over to the event sheet and add
the touch event. This is shown in the following screenshot:

Double-clicking on the Touch event icon directs you to get the Add event page.

www.allitebooks.com

http://www.allitebooks.org

Inputs and Controls

[38]

Once you have done this, go ahead and select On any touch end as shown in the
following screenshot:

Click on Done. Your event sheet should look like the following screenshot:

Chapter 2

[39]

Now, add an action and click on Sprite in the Add action window, as shown in the
following screenshot:

Inputs and Controls

[40]

On the next Add Action window, scroll down and select Set position under the Size
& Position list. This is shown in the following screenshot:

In the Parameters for Sprite: Set position window, which is shown in the following
screenshot, set the position to Touch.X and Touch.Y in the same way as you set the
mouse position. This will move the sprites' X and Y position to where you touch.

Chapter 2

[41]

Go ahead and run the game; even if you are on a computer. The mouse button and the
touch commands are synced for testing and a mouse click will simulate a touch. If you
do not have a mouse-intensive game, we suggest you just use the touch command.

Summary
In this chapter, we learned how to use the keyboard and how to use the mouse.
In addition, we explored some of the other functionalities that Construct 2 has to
offer, such as keyboard inputs and rotating to an angle. We have also introduced
the idea of the game loop and how Construct 2 accesses it. We also covered the
touch control.

In the next chapter, we will cover variables to add more complexity to our games.

Variables and Arrays
Variables and arrays are essential to computer programming and game design.
Without them, games would not work and would not be fun to play.

In this chapter, we will cover the following topics:

• What are variables?
• Why are variables so important?
• Different kinds of variables in Construct 2
• Learning about arrays

Introducing variables
Computer programming is based on mathematical principles. After all, the first
computer was made to actually calculate equations, and it was only later that
applications (as we know them) were developed. You have probably heard of
variables in science and math classes. In computers, these variables are necessary
to make applications and they are very important in games. Even a small indie
game might have hundreds of variables.

Variables are places where you can store small amounts of data. This data can be a
name, a number, a date, a game object, or it can even store true or false information.
Variables are essential to games because they can store items such as the following:

• Score
• Player name
• Game objects
• Mouse position
• Keyboard input

Variables and Arrays

[44]

In order to store data, you have to store data in the right kind of variables. We can
think of variables as boxes, and what you put in these boxes depends on what type
of box it is.

In most native programming languages, you have to declare a variable and its type.

Number variables
Let's go over some of the major types of variables. The first type is number variables.
These variables store numbers and not letters. That means, if you tried to put a name
in, let's say "John Bura", then the app simply won't work.

Integer variables
There are numerous different types of number variables. Integer variables, called
Int variables, can be positive or negative whole numbers—you cannot have a
decimal at all. So, you could put -1 as an integer variable but not 1.2.

Real variables
Real variables can be positive or negative, and they can be decimal numbers.
A real variable can be 1.0, -40.4, or 100.1, for instance.

There are other kinds of number variables as well. They are used in more specific
situations. For the most part, integer and real variables are the ones you need to
know—make sure you don't get them mixed up. If you were to run an app with
this kind of mismatch, chances are it won't work.

String variables
There is another kind of variable that is really important. This type of variable is
called a string variable. String variables are variables that comprise letters or words.
This means that if you want to record a character's name, then you will have to
use a string variable. In most programming languages, string variables have to be
in quotes, for example, "John Bura". The quote marks tell the computer that the
characters within are actually strings that the computer can use.

When you put a number 1 into a string, is it a real number 1 or is it just a fake
number? It's a fake number because strings are not numbers—they are strings.
Even though the string shows the number 1, it isn't actually the number 1. Strings
are meant to display characters, and numbers are meant to do math. Strings are not
meant to do math—they just hold characters. If you tried to do math with a string,
it wouldn't work (except in JavaScript, which we will talk about shortly).

Chapter 3

[45]

Strings shouldn't be used for calculations—they are meant to hold and display
characters. If we have a string "1", it will be recorded as a character rather than
an integer that can be used for calculations.

Boolean variables
The last main type of variable that we need to talk about is Boolean variables.
Boolean variables are either true or false, and they are very important when
it comes to games. They are used where there can only be two options.
The following are some examples of Boolean variables:

• isAlive

• isShooting

• isInAppPurchaseCompleted

• isConnectedToInternet

Most of these variables start off with the word is. This is usually done to signify that
the variable that we are using is a Boolean. When you make games, you tend to use a
lot of Boolean variables because there are so many states that game objects can be in.
Often, these states have only two options, and the best thing to do is use a Boolean.

Sometimes, you need to use an integer instead of a Boolean. Usually, 0 equals
false and 1 equals true. We will cover using these variables in Construct 2 later
in the chapter.

Other variables
When it comes to game production, there are a lot of specific variables that differ
from environment to environment. Sometimes, there are GameObject variables,
and there can also be a whole bunch of more specific variables.

Declaring variables
If you want to store any kind of data in variables, you have to declare them first.
In the backend of Construct 2, there are a lot of variables that are already declared
for you. This means that Construct 2 takes out the work of declaring variables.
The variables that are taken care of for you include the following:

• Keyboard
• Mouse position
• Mouse angle
• Type of web browser

Variables and Arrays

[46]

Writing variables in code
When we use Construct 2, a lot of the backend busywork has already been done for
us. So, how do we declare variables in code? Usually, variables are declared at the
top of the coding document, as shown in the following code:

Int score;
Real timescale = 1.2;
Bool isDead;
Bool isShooting = false;
String name = "John Bura";

Let's take a look at all of them. The type of variable is listed first. In this case, we have
the Int, Real, Bool (Boolean), and String variables. Next, we have the name of the
variable. If you look carefully, you can see that certain variables have an = (equals
sign) and some do not. When we have a variable with an equals sign, we initialize it.
This means that we set the information in the variable right away. Sometimes, you
need to do this and at other times, you do not. For example, a score does not need
to be initialized because we are going to change the score as the game progresses.

As you already know, you can initialize a Boolean variable to either true or
false—these are the only two states a Boolean variable can be in. You will
also notice that there are quotes around the string variable.

Let's take a look at some examples that won't work:

Int score = -1.2;
Bool isDead = "false";
String name = John Bura;

There is something wrong with all these examples. First of all, the Int variable
cannot be a decimal. Second, the Bool variable has quotes around it. Lastly, the
String variable has no quotes. In most environments, this will cause the program
to not work. However, in HTML5 or JavaScript, the variable is changed to fit
the situation.

Variables in JavaScript
Construct 2 exports to HTML5, and this means that a lot of the functionality in the
game is written in JavaScript. In JavaScript, the type of variable is not defined until
you initialize it. While this makes programming in JavaScript much easier, it has its
pros and cons. The biggest con is that sometimes you forget which variables are of
what type, which leads to unexpected results when you run the app.

Chapter 3

[47]

Examining JavaScript code
JavaScript is a very popular web language. It is much easier to code in than most
other programming languages.

Let's take a look at some examples of JavaScript code.

var score;
var timescale = 1.2;
var name = "John Bura";
var playerName;

You will notice that all of the variables are simply called var instead of
Int, Bool, String, or Real. This means that, until you initialize the variable,
var can be whatever you want it to be.

So in this case, score is not a number—it is simply a variable. However, timescale
is a number variable because we have initialized it as such with the = sign. Similarly,
var name is a string because we initialized it, while var playerName is simply a
variable. Their nature doesn't become set until they are initialized. JavaScript has
become popular because you can have less precise code and still make it work.

Now, in JavaScript, there is something that doesn't happen in most environments—
you can mix and match variables. I strongly advise not doing this. As a programmer
who started with integer and string values, I highly suggest you keep your variables
organized. If you mix and match variables and simply don't care, you will have a hard
time releasing your game—and releasing is important.

Since Construct 2 is exported in JavaScript, it is important to have a basic
understanding of how it works. It is also important to know what kinds of
variables are present because, even in JavaScript, you have to use different
kinds of variables.

Variables in Construct 2
Like most things in Construct 2, variables are really simple. Even though adding
variables is fairly straightforward in other languages, Construct 2 makes it easy.

Adding a variable
Adding variables in games is really important. Without variables, you cannot
store any data. This will make the game almost nonfunctional, and it limits you
to small games.

www.allitebooks.com

http://www.allitebooks.org

Variables and Arrays

[48]

To add a variable, go to your event sheet and right-click on it. This should bring up a
cascading menu. Clicking on the Add event icon will let you add a variable:

There are two types of variables in Construct 2: global and local variables. Variables
can be seen in different places. Global variables will be seen throughout the entire
game. Local variables you want only to be seen by a game object or a function.

Creating a global variable
Right-click on the event sheet and you can add a global variable. Go ahead and click
on Add global variable.

As you can see in the preceding screenshot, there are four fields. You can name
your variable something memorable and that makes sense. Naming your variable
appropriately will make the development process much smoother. Variable names
such as score, numberOfShots, and powerUpLevel are recommended. You cannot
have spaces in your variables—the computer will not allow you to have spaces.

Chapter 3

[49]

One thing that I strongly advise is that you do not capitalize the first
word; instead, capitalize the other words in the variable. This will make it
easier for you or anybody else to read it.

As you can also see here, you have two option types—either Number or Text. This can
either be Real or String. The Initial value field is where you can initialize variables.
Construct 2 automatically initializes this field for you; however, if you want to have
a number or a name, you can put it here. Remember, if you make a text variable,
you cannot do calculations with it; you can only calculate with numeric variables.

The Description box is optional, but make sure that you always input something
in there; it will save you a lot of trouble down the road. All this does is put a little
reminder about what the variable does.

When your game has more than 200 variables, you are going to wish you
had put the descriptions in. In addition, if you come back to your game
at a later time, you might forget what these variables do. Reminders are
great and I highly recommend using them.

Creating a score variable
Let's make a Score variable that keeps track of the score. Again, variables store data.
We need to set up a Score variable to store the score data. Whenever you need to
store a small amount of information, you need to make a variable. The addition
of a new global variable should look like the following screenshot:

Variables and Arrays

[50]

Once you have something that looks like this, you can go ahead and click on OK.

In the preceding screenshot, you can see what the Score variable looks like in
Construct 2. You can see that it is at the top of the event sheet—and it will stay at
the top of the event sheet, just like the variables in other programming languages.

Adding a variable to a sprite
Let's add a local variable. Add a sprite to the game and select it. You will see that,
in the Properties window on the left-hand side, there is something called Instance
variables. These are local variables, which means that this game object is the only
game object that uses these variables. Usually, these instance variables are variables
such as health, shields, and other stats; each game object's variables will be different.

Chapter 3

[51]

Go ahead and click on Instance variables. You should come up with a dialog box
like the one shown in following screenshot:

Click on the plus sign (+) to add a variable. The New instance variable window will
appear, as shown in the following screenshot:

Here, you can see that the dialog box is similar to the one for global variables.
The only difference is that you can now add a Boolean variable as well. For the
most part, all of these options are the same. I again highly recommend that you
put a description whenever possible.

Variables and Arrays

[52]

Creating a health variable
Let's go and create a health variable and give it an Initial value of 100 in the
previous window. We can name variables whatever we want. We could even
name it "banana" if we really wanted to. Instead, we give the variables names that
can help us easily understand the data that the variable holds. By setting up the
health variable, we now have a container for the health number. This way, we
can add events that add to or subtract from the health value. We can even set up
the game logic to move to a "game over" screen if the health is below zero. Game
logic is simply the logic needed to make a game. It can also be called programming.
Notice how health isn't capitalized. This is because local variables are usually not
capitalized. While there is no direct rule that states this, most programmers tend to
make global variables uppercase and local variables lowercase. The reason for this is
that when you look at the screen, you will know which one is a global variable and
which one is a local variable. Different programmers have different paradigms. So, if
you are working with other programmers, make sure you know what they like and
don't like in terms of naming variables. The addition of a new instance variable looks
something like the following screenshot:

Chapter 3

[53]

Once you have something like the preceding screenshot, you can click on OK.

Now you have an instance variable!

Introducing arrays
Arrays are really powerful when it comes to game design. Essentially, an array is
a grid of data. We can fill up this grid with any kind of information that we want.
In the past, arrays were used quite heavily as the technology was limited, and even
today arrays are still used and are still very useful. Here is a visual representation of
an array:

(data) (data) (data) (data)
(data) (data) (data) (data)

An array is a table of data. You have probably seen this in a spreadsheet program.
We can store multiple items of data in arrays. This differs from variables because
we can now add large amounts, of data.

Variables and Arrays

[54]

We can use arrays for the following purposes:

• To save multiple points of data
• To store game object information
• To use a tile map
• To create save states that save large amounts of information
• To create a data set that will help us save time during development

Adding an array in Construct 2
How do we add an array in Construct 2? The first thing you need to do is add the
array object. Once we do that, we can access all of the array features. We can also
set up as many different arrays as we want. Double-click on the background of the
layout and click on Array, as shown in the following screenshot:

Chapter 3

[55]

Checking an array's properties
Once you have done this, you can see that the object type is called an array. This
is like adding a sprite. You can have multiple sprites in one game and you can
have multiple arrays in one game. If you wish to add more than one array, simply
double-click on the background and add another one. If you want to change the
name of the array, you simply need to select it, press the F2 key, and then rename
it. Click on the array on the right-hand side and look to the left to see the properties,
as shown in the following screenshot:

You can see the properties of the array in the preceding screenshot. It has a width,
a height, and a depth. What this means is that arrays can be one-dimensional,
two-dimensional, or three-dimensional. Currently, we have a one-dimensional
array. This means that it only has a width. In this case, the array will be a single
row and looks like the following table:

It has a width of 10 cells with a height of one cell and a depth of one cell.

Variables and Arrays

[56]

For the most part, it is recommended that you start with easy arrays. Most
starting developers can get confused with complexity. It is always better
to make development simple.

One thing about arrays is that the base of an array starts at 0. This means that the
cells are numbered as shown in the following screenshot:

0 1 2 3 4 5 6 7 8 9

This may look weird at first, but in computing, the start of a sequence of numbers is
generally 0 instead of 1. In this case, there are still 10 boxes or cells in which we can
put data.

Let's go to the event sheet and add an array event. You can add multiple array
events, as shown in the following screenshot:

Chapter 3

[57]

Setting data and adding variables
It should be noted that you can add an instance or local variables to the array as well.
For the most part, this is not usually done; but in certain circumstances, such as when
assigning different arrays to different objects, this can be useful.

One of the most important tasks you need to do with arrays is to set and search
for data. Let's go ahead and set the first cell to number 9. Click on Add action and
set X to 0 and Value to 9, as shown in the following screenshot:

Once you have done that, click on Done. Your project should look something like the
following screenshot:

This means that the first cell is set to a value of 9. Remember that 0 is, in fact, the first
cell and that cell 1 is the second cell. The array should look like this:

9 0 0 0 0 0 0 0 0 0

The other cells are zero because we have not yet set them.

www.allitebooks.com

http://www.allitebooks.org

Variables and Arrays

[58]

Checking an array for data
Now that we know how to set an array, how do we check the array for data? In this
case, we will check to see whether the first cell is equal to 9. Double-click on the
layout and click on Array. Once you have done this, you can click on Compare at X,
as shown in the following screenshot. This will compare the X values of the array.

Chapter 3

[59]

Once you are in the Add event window, you can check whatever value you want.
In this case, we want to check the first cell and then check the value, which is 9.
We just set this in the last event, so let's keep it consistent. This is shown in the
following screenshot:

Once you have added this action, you can add any action you want for your game.

Now, you know a little bit about arrays. When you are starting out, it is
recommended that you use variables because they are easier to work with.
Once your programs become more complex, start adding arrays. It is generally
recommended that you start working with one-dimensional arrays, and once you
are comfortable using them, move on to two-dimensional arrays. You will be using
three-dimensional arrays in rare cases.

Here are some visual examples of arrays that you can use in your games.
You can use them to define properties for many game objects:

Game object Hit Points Shields Damage Speed
Ship A 100 100 50 5
Ship B 200 50 40 3
Ship C 50 50 30 10

Variables and Arrays

[60]

You can use this array to define different attributes for characters. In this case, an
array can be made for each character on the fly. Lots of role-playing games (RPG)
do this. Here is an example of such a table:

Character Hit Points Armor Weapon Magic Shield
Protagonist 100 50 10 5 3

Summary
In this chapter, we learned how to add global and local variables. Adding variables is
a really important in-game feature. Often, you will have hundreds of variables even
for a simple game. If you are making a game, get used to making and setting lots of
variables. The best part is that Construct 2 makes handling variables really easy.

In the next chapter, we will learn about game mechanics. Game mechanics are the
essential backbone to user interactivity.

Game Mechanics
Game mechanics are how a game works and how a game feels. You probably already
know and have experienced game mechanics if you have played games. What you
probably don't know is how to add them to a game engine.

In this chapter, we will cover the following topics:

• How to add game mechanics to Construct 2
• What are game mechanics?
• Adding game mechanics to a sprite

Introducing game mechanics
You probably already know about game mechanics after playing games, but you
probably don't know they are game mechanics, as a game designer will refer to
them and use them. Game mechanics are simply the rules of the game that allow
gameplay. More simply, they build the interactivity in a game to make it playable.
Game mechanics can be really simple or they can be really complex. Let's take a look
at a few simple game mechanics:

• Running
• Jumping
• Score keeping
• Shooting
• Lives
• Health
• Physics

Game Mechanics

[62]

Game mechanics are used to make a game playable. They can be simple.
For example, a player can run and jump, but there are several ways in which
we can tweak running and jumping. How fast does the player run? How high
does the player jump? How many times can the player jump?

All of these variables equate to a certain kind of gameplay. It is your job as a game
designer to figure out what combination works out best for your game. If you want
an action-packed game, you can use really fast movements. If you are trying to evoke
a more elaborately thought out game, perhaps small and slower movements are best.

Whenever you put game mechanics in your game, you can evoke an
emotion. Experienced game designers can have events in games that
evoke rage, jealously, and helplessness. It's up to you to play around with
game mechanics and see how you feel about them. Whenever you put
game mechanics in, you give the player a certain sensation. This sensation
could be blasting your way through space and then making an escape
with your spacecraft, or trying to collect enough apples to feed your pets.
The mechanics that you lay down, lays the foundation for the sensation
the gamer plays.

Apart from the essential game mechanics of running, shooting, and so on, there
are many more complex game mechanics. Achievements give the sensation of
accomplishment, the same kind of feeling you get when you work at improving
yourself. Combos are used when you take two actions and combine them to get
something greater and again create a sensation of skill accomplishment. Usually,
these kinds of game mechanics reward the player. A sound effect or more points
are very common rewards. Rewards, in themselves, are game mechanics. There are
many different kinds of rewards, such as scores, power-ups, extra lives and more.
With each mechanics, you have to tailor the reward for your target audience.

Game mechanics in Construct 2
Construct 2 allows you to either customize your own mechanics, or you can use the
readymade ones that come with the software. You can even code your own custom
behaviors with JavaScript, if you want to. This option is more advanced, but as very
few non-programming engines will allow you to do so, it's a useful feature.

Chapter 4

[63]

Setting up a game mechanics project
So, where do we start? Let's open up a new project and save it as game mechanics.
Go ahead and add a sprite to the project as well. We will be using this sprite
for many game mechanics. Your project should look like the one shown in the
following screenshot:

We now have a sprite that we can play around with to add game mechanics.
Let's start off with the readymade game mechanics and after that we will
move on to custom game mechanics.

Adding a game mechanics behavior to
a sprite
Without game mechanics, sprites are just images. In order to make them interactive
in your game, you have to add mechanics to them.

Game Mechanics

[64]

Click on Behaviors on the left-hand side in the Properties window pane. You should
get a window that looks like the following screenshot:

In the Behaviors window, click on the plus sign. The Add behavior window will
appear, as shown in the following screenshot:

Chapter 4

[65]

Here, you can see a lot of behaviors that you can add. Not all of these are game
mechanics, but a lot of them are. In Construct 2, we can add behaviors to the sprite.
Most of these are game mechanics.

At this point, I should mention that you can easily add certain readymade
behaviors here, but you can also customize each behavior in the event
sheets, if you want to. Some designers tend to do this because they want
complete control over everything that happens in their game.

Giving a sprite 8Direction movement
Making a moving sprite is important for most games. Construct 2 has a fantastic
behavior that easily adds the moving game mechanics to your sprite/player.

Go ahead and scroll the behaviors list, you should reach the 8Direction behavior.
Select that and you should see it appear in your sprite's Behaviors window.

Game Mechanics

[66]

Editing the properties of a behavior
Some of the behaviors have properties, and some do not. Behavior properties exist
to make changes to the behavior if necessary. For example, if you want your player
to move faster, you can go edit the Behaviors property. When you give an object a
behavior, you have added extra functionality to that object and can now edit more
properties in the event list as a result. In the following screenshot, you can see some
of the properties that you can edit in the layout editor:

Just because your game has running, jumping, and shooting mechanics,
it doesn't automatically make it fun to play. It is the relationship between
the mechanics, the player, the target audience, and the graphics that
makes a game fun to play.

Let's take a look at all of these properties and how they affect the game play.

Creating a speed power-up
Let's take a look at the first one, Max speed. If you run the game, you will see that
the player moves around the game in eight directions. Max speed is the maximum
amount of speed of this movement.

Let's imagine for a moment that we want to add a power-up to the game.
This power-up will make the player move twice as fast for a small period
of time.

Chapter 4

[67]

Inserting the power-up object
The first thing we need to do is add another Gameobject to the screen. When we
collide with this game object, we will activate the power-up mechanic.

Adding a collision event
Right now, when we collide with the power-up box, nothing happens. That's because
we have to add the mechanics for it.

1. Go to the event sheet and click Add event to bring up the Add event
window, which is shown in the following screenshot:

Game Mechanics

[68]

2. Go ahead and click on circle or whatever you have named your sprite.
This should bring up the Add event dialog box for the circle, which
should look like the following screenshot:

3. Click on On collision with another object. When the player collides with a
specific object (the box), an action will happen.

4. Once you select this, the Pick an object window should pop up. Select the
BoxBlueStar, or whatever you have called your power-up object, as shown
in the following screenshot:

Chapter 4

[69]

5. After selecting BoxBlueStar in the Pick an object window, the following
window should appear:

Game Mechanics

[70]

6. Click on Done and the event sheet should look like the following screenshot:

Destroying the power-up on collision
Now, we need to add a few actions. The first action is going to be destroying the box.
If we don't do this, the box will not be destroyed and it will look weird to the player.
Add an action and click on the power-up box.

Go ahead and click on BoxBlueStar.

Chapter 4

[71]

Click on Destroy, and your event sheet should look like the following screenshot:

Run the game and test to see whether the box does indeed get destroyed.

Increasing the player sprite's speed
We are almost finished. The next thing we need to do is change the settings so that
the player speed is doubled for a short period of time. This is actually really simple
to achieve! Add an action, select the player sprite, and click on Next.

Go ahead and select the circle. You should see a window similar to the following
screenshot pop up:

Game Mechanics

[72]

Here, you can see that by adding the 8Direction functionality, we have added more
options for actions. Select Set max speed. It should bring up the Set max speed
dialog box, which is shown in the following screenshot:

We need to set it to 400, or whatever you want your power-up to increase the speed
to. Once you are finished, click on Done.

Setting the duration of the speed boost
The last thing we need to do is set the duration for the increased speed.
Add another action from the Add action window and select System,
as shown in the following screenshot:

Chapter 4

[73]

Then, we need to select the Wait function in order to insert a small timer. After the
Wait command is finished, the power-up will end and the player sprite will return
to a normal speed of 200. Once you select Wait, the Parameters for System dialog
box will appear. Type the number of seconds you want the power-up effect to last,
as shown in the following screenshot:

Restoring the player's speed to normal
After that, select the first Set maximum speed event and press Ctrl + C to copy.
Then, select the Wait command and press Ctrl + V to paste. The second Set
maximum speed command should be after the Wait command, as shown
in the following screenshot:

l

Double-click the second Set maximum speed action and set it to 200—the original
speed. Your event sheet should look like this:

Game Mechanics

[74]

Go ahead and try it out. You have just made your first game mechanics!

Summary
In this chapter, we talked about game mechanics, which are really important.
Whenever you play a game, deconstruct the game into mechanics. Take note of the
mechanics you like and the ones you don't like. We have learned how to add game
mechanics to sprites and change their properties as well.

In the next chapter, we are going to learn how to make a game from scratch.

Making a Simple Shooter
Shooters are one of the best places to start when making games. Most people like to
play a shooter, so they are a recognizable game archetype. The best part is that they
are generally easy to make. So let's construct one!

In this chapter, we are going to learn:

• How to control the sprite with the keyboard
• How to rotate the sprite about the mouse position
• How to add bullet behavior

Starting the project
Once you have started a new project, you need to change the layout size to 640,
480. Then, we need to add some art. The first thing we need to add is the player.
Find a circular graphic and add the sprite. Make your sprite 50 by 50 pixels and
change its name to Player.

Making a Simple Shooter

[76]

Your layout should look like the following screenshot:

It's really important that you name the player as well as set the size, because when
you make a lot of sprites, it can get confusing later on. Imagine if you had a game
with 200 sprites and they were all called sprite1, sprite2, and so on; it would get
confusing really fast. Whenever you set the size of an object, it is best to set the size
in Photoshop or another program. When you change the size of images in game
engines, the images can be distorted and as a result, they do not look good.

The next thing we need to do is create a background. In order to do this, we need to
add another layer to the game. This can be done by performing the following steps:

1. Click on the Layers tab and then click on the plus sign (+).
This will create a new layer on top of the other layer. Move Layer 1 to the
bottom; to do this, select Layer 1 and press the down arrow.
Layer 1 is now at the bottom and we can add our background image. While
you do not need to have a background image, it is good practice to put one
in because most games have them. Also, it improves the quality of the game.
Add the background image. At this point, we need to change the background
transparency. Currently, you have something like the following screenshot:

Chapter 5

[77]

2. At the moment, the top layer isn't transparent. In order to make it
transparent, select the layer and move it over to the left side of the
screen where it says Transparent. Then, select Yes.

The top layer should now be transparent and you can see the background.

Making a Simple Shooter

[78]

3. There is one more thing left to do: locking the background layer. This is
done so that when we are editing the game, we do not make any accidental
changes to the background. Since the background layer is static and will not
be moving during the game, it is best to make it a locked layer. In the Layers
tab, click on the lock icon at the top (as shown in the following screenshot);
the background layer is now locked.

Now, we have two layers and we can start programming some of the game
mechanics. We have two layers, but we will need to add more as the game goes on.

Controlling a sprite with the keyboard
Let's add some game logic to the game. Double-click on the screen in the first layout
and add the keyboard and mouse objects, as shown in the following screenshot.
This allows us to use the Keyboard and the Mouse in our game.

Chapter 5

[79]

Let's set up the game logic:

1. We need to make the player move with the WASD control and rotate to
the mouse location. Click on the player and add the behavior.

2. Once you see this dialog box, click on the plus sign to add a behavior.
3. Scroll down and add the 8Direction behavior:

4. Once you have added the 8Direction behavior, it should appear just like the
preceding screenshot. Exit this window and go to the layout.

What we want is for the player to use either the arrow keys or the WASD controls
to move around. It's good to have both, as players have different preferences.
The following are the steps to do so:

1. First, we have to change the eight directions to four. You can have a
game with the full eight directions, but four is a little easier to manage
programmatically.

Making a Simple Shooter

[80]

2. Select the box next to 8 directions and change it to 4 directions, as shown in
the following screenshot:

3. We also need to make sure that the angle will be determined by the mouse
and not the 8Direction behavior. From the Set angle dropdown list, select
No as shown in the following screenshot:

4. Before we move on, let's test the game. Press F5 and run the game. Make sure
that the controls work. Once you are satisfied, go to the event sheet and add
your WASD controls.

5. Once you are in the event sheet, double-click on the background to add an
event and add a Keyboard event.

6. Once you are in the Keyboard event window, select Key is down.
7. Once you have selected Key is down, select <click to choose> in the

Parameters for Keyboard: Key is down window:

Chapter 5

[81]

8. Once you have selected <click to choose>, select the key you want.
In this case, it will be the D key:

9. Once you have selected the D key, the event sheet should look like this:

Making a Simple Shooter

[82]

10. Click on Add action and click on Player in the layout. Once you have clicked
on Player, select Simulate control from the available options:

11. This will simulate the control of the 8Direction behavior. We want to
simulate the right control, so select the Right control as follows:

Chapter 5

[83]

12. After you do that, the event sheet should look like this:

13. Copy-and-paste the keyboard layout and change the controls accordingly.
In the end, the event sheet should look like this:

Test and run the game. If the player moves around correctly, then we can
move on. Before we do this, however, there is one more thing that needs to
be addressed—restricting the player's position. The player can move off of
the screen. Go to the layout and select the Bound to layout behavior.

Test the game again and see whether it works. It is really important to test your
game; often in game development, the sooner you catch a problem, the better
chance you have of fixing it.

Making a Simple Shooter

[84]

Organizing the event sheet
Before we add the mouse controls, let's organize our event sheet. Often, if you have
a cluttered development platform (in Construct 2, the event sheet), releasing your
game becomes harder to achieve. It's important to point out that disorganization
makes troubleshooting and fixing bugs more difficult, which may delay or prevent
release. An organized development environment is more efficient. Let's add a group.
Right-click on the event sheet and select Add group from the menu, as shown in the
following screenshot:

Name your group appropriately. Clarity is really important. You can also write an
optional description. The more information you put in here, the better; when you
come back to this source code in a year, you will know what is going on.

Name the group WASD Controls or something similar, and give it an
accurate description. Then, click on OK and you should see something
like the following screenshot:

Chapter 5

[85]

Now, it is time to select everything and move it into the group. Select all of the
purple areas of the events, press Shift, and then select the bottom event. This should
select all of them. You can then drag them into the group, which should look like the
screenshot that follows. Note that there will be an arrow that appears at the bottom,
which will tell you that the events will shift to the group.

In the following screenshot, you can see the final product of the group.
You can access the contents of the group by clicking on the plus sign.

Adding mouse controls
Let's add some mouse controls. First click on Add event and then click on System.
The mouse controls will allow us to use the mouse and access its properties, such as
position, clicks, and movement.

Then, click on Every tick. The Every tick option will access the game loop and it will
make sure that the logic for this event will always be checked.

Once you have Every tick selected, it should look like this:

Making a Simple Shooter

[86]

Click on Add action and then click on the player. Then, select Set angle toward
position from the Angle list, as shown in the following screenshot:

As shown in the following screenshot, type Mouse.X in the X box and type Mouse.Y
in the Y box. Then, click on Done. This will make sure that the angle of the player
will constantly be set to the mouse location. In 2D game development, we need to
have two coordinates in order to find a position. These coordinates are X and Y. In
order to find the position of the mouse, we need Mouse.X and Mouse.Y, which are
the mouse's X and Y positions.

Chapter 5

[87]

You should end up with something that looks like the following screenshot.
This will now set the angle of the player to the mouse location.

Go ahead and run the game. It should work out just fine.

Making the player shoot
Now, we need to make our player shoot. Add a sprite to the screen; we will use it as
a projectile. We are going to use the same ball graphic that we used for the player.
Change the name to something more appropriate, such as Projectile. Also,
we have to set the size to 10, 10. This is shown in the following screenshot:

Making a Simple Shooter

[88]

Go down in this pane and select Behaviors, and add a Bullet behavior as shown in
the next screenshot. For more information, check Chapter 2, Inputs and Controls.

One thing that is great about Construct 2 is that the projectile speed is
taken care of for you. This is great because setting up a projectile can be
time consuming.

What we need to set up is for the projectile to spawn when we click the mouse.
This won't be too hard. Go back to the event sheet and add a Mouse event. The
Mouse event that we want to add is the On any click event. Since this game is
really simple, we are going to use this option. If you want to link firing to a
specific button, you can select On click.

Your project should look like the following screenshot:

Go ahead and click on Add action next to On any click, and then select Spawn
another object. This is shown in the following screenshot. The object we want to
spawn is a projectile.

Chapter 5

[89]

Once you have clicked on the projectile, the following dialog box should appear:

Making a Simple Shooter

[90]

Go ahead and test your game. You should be able to move around and shoot a
projectile to the mouse location.

We have to take into account that every time you spawn a projectile, it
uses a little bit of memory. Therefore, we have to destroy that projectile
when we don't see it. If we do not do this, then the game can lag; this is
especially a problem for mobile devices.

Click on your projectile and click on Add behavior. Add the Destroy outside layout
behavior. This will destroy the projectile and free up memory when the projectile is
offscreen. The Behaviors window should now look like the following screenshot:

You can also change the properties of the bullet under Behaviors, if you want to.
You can change the speed, acceleration, and gravity, and you can also set whether it
bounces off solids. You can set the angle and you can choose whether the projectile
will be enabled or not.

One way to make your bullets appear more realistic is to add the Gravity option
shown in the following screenshot. Gravity in games works just like gravity in the
real world. For projectiles such as cannonballs, it adds a level of realism. Go ahead
and try it out.

Chapter 5

[91]

Adding the enemy
Adding enemies is a great way to add game complexity and fun. Let's add an enemy
that moves towards the player. Go ahead and add an enemy to the screen. I sized
the enemy 30, 30 and named the sprite Enemy. This is what your layout should
look like:

Making a Simple Shooter

[92]

Next, we need to go to our event sheet and add an Every tick event.

Once you have an event sheet that looks like the preceding screenshot, you can add
an action for the Enemy sprite, such as Rotate toward position. Type Player.X in
the X box and Player.Y in the Y box. This sets the position to the player's X and Y
locations, and it is shown in the following screenshot:

Chapter 5

[93]

Once you have done that, add another action. This time, we need to move the
enemy forward. Navigate to Add action | Enemy | Move forward, as shown
in the following screenshot:

We do have to move the enemy forward a certain distance. In this case, we will set
the distance to 1. You can set the distance to another number if you wish.

Making a Simple Shooter

[94]

Your event sheet should look like the following screenshot. Now, the enemy
constantly rotates towards the position of the player, while constantly moving
the enemy forward. Run the game and try it out.

Destroying the enemy
Let's add another event. This time, we want to destroy the enemy and the
projectile when the projectile hits the enemy. Navigate to Add event | Projectile |
On collision with another object, as shown in the following screenshot:

Chapter 5

[95]

Choose Enemy in the dialog box that pops up, as shown in the following screenshot:

Once you have done that, add an action and choose the projectile. Scroll down
until you see Destroy, as shown in the following screenshot. This will destroy
the projectile.

Making a Simple Shooter

[96]

Do the exact same thing for the enemy. You have to destroy both the enemy and the
projectile. The event sheet should look like this at the end:

Test out the game and see how it works. When you run the game, you should see
that the enemy moves towards the player. When the projectile hits the enemy,
the enemy and the projectile should be destroyed.

Adding a spawner
Now, we need to add a spawner. A spawner spawns game objects. Go ahead
and add a sprite; it should look something like the following screenshot.
Rename it Spawner.

Chapter 5

[97]

What we need to do is change the size of the spawner. Double-click on the spawner
and select Resize, as shown in the following screenshot:

Making a Simple Shooter

[98]

Then resize it to 50 by 50 with the help of the Resize option. Then, click on the paint
bucket tool and fill in the color. We do this because otherwise we won't be able to see
the spawner. I suggest making the spawner a bright and obvious color. We're going
to make our spawner pink, as shown in the following screenshot:

After this, click on Close. Now, we have to copy the spawners and put them in the
playing area. You can press Ctrl and drag the spawner to copy quickly. If that doesn't
work, you can use the copy-and-paste method. The game area should look like the
following screenshot:

Chapter 5

[99]

Now, we need to add functionality to the spawners. Go back to the event sheet and
add an Every X seconds event, as shown in the following screenshot:

Let's add a time interval of 2.0 seconds in the Parameters for System: Every X
seconds dialog box, as shown in the following screenshot. This will spawn an
enemy at each spawner location every 2 seconds.

Making a Simple Shooter

[100]

Add an action to this event by navigating to Add action | Spawner | Spawn
another object. We want to spawn the enemy, so we select Enemy in the
Parameters for Spawner: Spawn another object dialog box. This is shown
in the following screenshot:

Your project should look like the following screenshot when you click on Done:

Chapter 5

[101]

What we need to do now is add some logic for when the enemy hits the player.
For this, we will restart the layout.

Making a Simple Shooter

[102]

Then, we will add an action. Go to System, then select Restart layout. This should
restart the layout.

Go ahead and try out the game. There you go, you have a shooter! What you can
do now is modify this code as much as you want. You have a basic shooter to play
with—it's your job to add more functionality. Add more projectiles, enemies, and
other cool game mechanics.

Summary
In this chapter, we learned how to make a small shooter. Shooters are one of the best
games to make because most people know how to play them and they are a simple
source of fun.

In the next chapter, we will learn how to make a tower defense game. Tower defense
games are really easy to make and are fun to play. If you haven't played a tower
defense game, Google tower defense and play a few.

Making a Tower
Defense Game

Tower defense games are fun to play and (somewhat) easy to develop. Construct 2
can develop a tower defense game much more easily than if you were to code it by
yourself. Before we start, if you haven't played a tower defense game before, you
should go and try one to get familiar with the genre. A Google search for tower
defense game should bring up lots of options for you to try. A tower defense game
is where you set up defensive towers that protect an object from enemies. These
enemies usually come in waves and when they are destroyed, the user gets some
currency to buy more towers or to upgrade them. In this chapter, we will learn
the following:

• How to start a new project
• How to add a turret
• How to add tower defense game logic

Making a Tower Defense Game

[104]

Starting the project
First we need to start a new project and set the Layout Size option to 640, 480 in
the Layout properties panel. We do not need to have a bigger screen size for this
project. Generally, for smaller web games, it's good to have this resolution as most
players are used to seeing it. You can make it bigger if you want to, but this is
the more standard resolution that developers use. It should look like the
following screenshot:

Once you have completed the setup, go ahead and add a background. The background
should be 640, 480. When you create art in a different program, you should make it
in the same dimensions you are using in the game. You will rarely need to do a lot of
resizing in the game. The following screenshot shows the background design:

Chapter 6

[105]

Once you have set the background, change the layer. Change the current layer's
name by selecting it and pressing F2. Change it to something such as Background,
as shown in the following screenshot:

Once you have completed the previous step, lock the layer. Create a new layer to
which we can add the game objects, as shown in the following screenshot:

The next thing we need to do is set up Snap to grid. By doing so, our turrets can
snap to the grid. Click on the View tab at the top of the screen. It is shown in the
following screenshot. Once you are there, select the Snap to grid checkbox.

Doing so will snap any object to the grid of 32 by 32 pixels. You can change the grid
size, but make sure that the grid size can be divided with the numbers of our screen
resolution (which is 640 by 480). The current grid size, 32 by 32, does divide evenly
between these two numbers.

Making a Tower Defense Game

[106]

Creating a spawn point
Let's add a sprite where we can spawn the enemies from. This is the starting point of
the tower defense. In the Insert New Object window, double-click on Sprite to add a
sprite, as shown in the following screenshot:

Once you have added the sprite, resize it to 32 by 32, as shown in the following
screenshot. This way, it will easily fit the grid that we have made. Click on
the resize button; it looks like a double arrow and can be found at the top of
the window.

Chapter 6

[107]

Once you have resized the image, fill it with a color—for this example, we're going to
use green. Make sure that this color stands out. When you are building the basics of
your game, you shouldn't worry too much about the artwork. Games are more about
functionality than art. This won't be the final product but it will serve us for now.

Close out of the box and move the sprite around. You should see that the square
does move around in a grid pattern. This means that it jumps from location to
location quite easily. The only problem is that the grid seems to be a bit off. This
is because the origin is in the center of the object. We need to change the origin
to the side.

Making a Tower Defense Game

[108]

Double-click on the object and click on the Origin tool. As you can see in the
following screenshot, the origin is in the center:

Move the origin to the side, as shown in the following screenshot:

Chapter 6

[109]

We can now have a good grid placement for our object. Your project should look
something like the following screenshot:

There is one more thing we need to do: we need to change the name of the sprite to
something that makes more sense. We changed the name to Start, as shown in the
following screenshot:

Making a Tower Defense Game

[110]

Next, we need to duplicate the sprite for the end. Right-click on the sprite and select
Clone object type, as shown in the following screenshot. When you clone an object,
you create a copy of the object to use in the game. Note that this makes an entirely
new object with a new name. You cannot do this with the copy-and-paste method;
when you copy-and-paste, you copy-and-paste the same object.

You should now have another object. Place it outside the game area, as shown in the
following screenshot:

Chapter 6

[111]

Click on this object and give it a new color. We gave it a pink color by using the
paint bucket tool, as shown in the following screenshot. Now, you should see that
the sprite is pink. Change the name of the game object to End.

Move the sprite to a place where you want your goal to be, as shown in the
following screenshot:

Making a Tower Defense Game

[112]

Laying out the level
Now, it is time to place the object in the game level so that the game will be fun.
Let's make another sprite with dimensions 32 by 32 and give it the color black.
We will call this PlaceTurret. It should look something like the following
screenshot. You also need to change the origin to the top-left side.

The black areas are going to be the locations where we can place turrets when we
click on the screen. This will set up a path for the enemies to follow along. This is
where we get into level design. I could write a dozen books on level design, but
the three key things to remember are as follows:

• The levels should be playable from beginning to end
• The levels should have a win/lose condition
• The levels should provide at least one thing that is interesting for the player

to see, play, or experience

Chapter 6

[113]

You should make a few different level layouts, and then choose the best one.
My level looks like the following screenshot:

Setting up the turrets
Now that we have a level, we need to add a turret. Double-click on the background,
select add sprite, and then add the graphic. Make sure that the dimension of this
graphic is 32 by 32; everything that we had set up earlier needs to be on this grid.
Your playing area should look like the following screenshot:

Making a Tower Defense Game

[114]

First, we will add some functionality using the following steps:

1. Add a Touch object from the Insert New Object window.
2. Then, go to your event sheet and add an event. This event is going to be a

Touch event. Remember that touch events and mouse clicks are the same.

It's better to set up the touch event for simple clicks. Now,
people on mobile devices can play your game.

Chapter 6

[115]

3. When we touch the black area, a turret is spawned. This will spawn a
turret on the screen. Add an On touched object event, as shown in the
following screenshot:

Making a Tower Defense Game

[116]

4. The object we want to be touched is the PlaceTurret object, as shown in the
following screenshot:

5. Click on the Done button and your project should look like the
following screenshot:

6. Then, click on Add action and add a System action.
7. Select the Create object action, as shown in the following screenshot:

Chapter 6

[117]

We want to create a turret object on layer 1. Remember that layer 1 is the player
layer—if we spawn it on layer 0, it will be beneath the player layer and we would not
be able to see the turrets. We also need to add some code. This will make sure that
the turret snaps to the grid. As you can see in the following screenshot, the numbers
are related to 32, which is our grid size:

For the next part, we need to do a little bit of math. Doing so will snap the turret to
the grid. The numbers represent a grid of 32 by 32. We are adding X and Y values
because we need to snap to an X and Y position. You need to add the following code
to your project:

round((Touch.X-16 /32) * 32 + 16)
round((Touch.Y-16 /32) * 32 + 16)

Your project should have the following elements:

Making a Tower Defense Game

[118]

Now, it's time to test our game. Press F5 and then try it out. It should look something
like the following screenshot:

Adding enemies and projectiles
What we need to do now is put in an antagonist. Let's add a ball; in this case, we
will just call it BallGreen. Add a projectile and make sure it isn't too big. Set the
dimensions to 28 by 28 as we want it to be smaller than the walls so that it can fit
and not collide. This is shown in the following screenshot:

Chapter 6

[119]

Let's also put in a projectile. Add a purple ball, rename it Projectile, and set the
Size property to 10, 10, as shown in the following screenshot:

Put the green ball on the screen so that we can now test some of the functions.
Your project should look like the following screenshot:

Rotating the turret
Now we need to make the turret rotate to the green ball. Go to the event sheet,
click on Add event, select System, and then select the Every tick event.

Once you have these changes in your event sheet, you can add an action to the
turret. Go to the Add action sheet and add the Rotate toward position action.

Making a Tower Defense Game

[120]

In the Parameters for Turret window, set the Degrees textbox to 10. This is the
speed with which the turret will rotate. You generally want a high rotation speed
so that the turret can rotate on time. Remember that the turret does indeed rotate
towards the object. It is best to have this speed as fast as possible because if it is too
slow, then the turret will not be able to aim and hit the target. In the X textbox, type
BallGreen.X and type BallGreen.Y in the Y textbox, as shown in the following
screenshot. This rotates the X and Y position of the green ball.

Your project should now look like the following screenshot:

Go ahead and test the game. Add a turret and see whether it rotates towards the
green ball.

Firing the turret
Now that the turret rotates, we can go ahead and add a projectile. Go and add
another event. This time, it will be set to Every X seconds.

After you have added this event, add an action. This time, it will be for the turret.
Select Spawn another object.

The object that we want to spawn is Projectile, as shown in the following screenshot.
We want to spawn it on layer 1, where we have spawned all the rest of our game
objects (except the background) so far.

Chapter 6

[121]

Go ahead and run your game; it should work out pretty well. You will notice that
the turret offscreen keeps firing. One thing that we need to do is add a Destroy
outside layout behavior. We cannot just delete the offscreen sprite, as we need to
have a reference for when we want to add more sprites. Sometimes, if you delete all
of the instances of a sprite, the game will crash. So, add the behavior for the turret,
as shown in the following screenshot:

Go back to your event sheet and add an event. This event will check whether
the projectile hits the green ball. Select Add event and select the projectile.
Then, select On collision with another object.

Making a Tower Defense Game

[122]

We want the projectile to collide with the green ball, so select BallGreen as the
object, as shown in the following screenshot:

After all of this, your event sheet should look like the following screenshot:

One thing that you will notice is that the turrets keep on firing. We want them to fire
only when the wave of green balls is advancing. This is actually pretty easy to fix.
Go to your event sheet and right-click on it, and then select Add global variable
from the contextual menu as shown in the following screenshot:

Chapter 6

[123]

The New global variable window will appear; enter something appropriate for your
global variable name (see the following screenshot). For the purpose of this example,
we will call the variable isWave. At the time of writing, there are no global Boolean
variables. So, we are going to add a number variable. In this case, 0 will be false and
1 will be true; so when the isWave is set to 1, the wave of green balls will spawn.

After these settings, your event sheet should look like the following screenshot:

Making a Tower Defense Game

[124]

Add a System event that will be Compare variable, as shown in the following
screenshot. In game design, you compare variables and act accordingly. What we
are going to do is compare the variable isWave to see whether it is 0 or 1, that is,
true or false.

Chapter 6

[125]

Make sure that we are comparing to check whether the variable is equal to 1, as
shown in the following screenshot. This means that when the default is 0, we do
not want the turret to fire. When we set the variable to 1, the turrets should fire.

After this, we need to make sure that there is some sort of button for the user to
use. What you need to do is add an orange sprite and call it WaveButton. Place it
somewhere that makes sense to the player, such as in the top-left corner, as shown
in the following screenshot:

Making a Tower Defense Game

[126]

Now, we need to go back to our event sheet and add another event. Double-click on
the event sheet and add a Touch event. We are going to add an On touched object
event, as shown in the following screenshot:

Chapter 6

[127]

We want to check whether the event is touching the wave button. We can do so by
selecting the WaveButton option in the Parameters for Touch: On touched object
dialog box, as shown in the following screenshot:

Now, add an action. This action is going to be System, set variable, and we are going
to set isWave to 1. It should look like the following screenshot:

Making a Tower Defense Game

[128]

Go ahead and try out the game. You should see that when you press the
WaveButton, the turrets start shooting!

Setting up the path for the enemy
Next, we need to add the spawning green balls that are our enemy sprites, and
in order to do that we need to add the Pathfinding behavior. Pathfinding sets a
path from one area to another. We are going to use the Pathfinding functionality
of Construct 2 to make the balls move from the start to the finish line. Add a
Pathfinding behavior to the green ball, as shown in the following screenshot:

Chapter 6

[129]

Once you have done this, go back to the event sheet and add an On start of layout
event, as shown in the following screenshot:

Making a Tower Defense Game

[130]

After that, add an action. Select the BallGreen object and select Find path as the
action, as shown in the following screenshot. In order to set the path, you have to
first set it. You can set the path to positions of objects, inputs such as touch and
mouse, and specific locations.

We have to specify where we want the path to go. Since we want the green balls
to go all the way to the end of the path, we can type in End.X and End.Y, as shown
in the following screenshot. The end of the course is the pink block we had set up
earlier. So in this case, Pathfinding is finding a position of an object.

Chapter 6

[131]

Once you have the Find path action set up, you should add another event. Select
BallGreen and then select On path found, as shown in the following screenshot.
Once a path is found, we can perform an action.

Making a Tower Defense Game

[132]

Add an action and select BallGreen, and then select Move along path as shown in
the following screenshot. This will move the green ball along the path that it found.

Go ahead and try out the game. You will probably notice that the ball ignores the
walls. In order to fix this, we have to do two things. First, click on the PlaceTurret
graphic and add a Solid behavior, as shown in the following screenshot:

Chapter 6

[133]

Then, we have to add another event. We have to add another action to the On start
of layout event. Add a green ball, and then add an Add obstacle action. This will
add an Obstacle for Pathfinding.

We want to put the PlaceTurret object as Obstacle, as shown in the
following screenshot:

Making a Tower Defense Game

[134]

Your event sheet should look like the following screenshot:

Run the game and you will see that the ball might not move the way you want it to.
I have changed the settings of the ball. The following are my settings:

Cell size:10
Cell border: 5
Obstacles: Solid
Max speed:200
Acceleration: 9999
Deceleration: 9999
Rotate speed: 135
Rotate object: Yes
Diagonals: Enabled
Initial state: Enabled

Chapter 6

[135]

Setting up an enemy wave
We need to set up the amount of green balls that get spawned. When we push the
WaveButton, a new wave should start. Let's go ahead and add a global variable by
right-clicking on the event sheet and adding a global variable. Let's call it waveCount
and set its Initial value to 3, as shown in the following screenshot:

Create another variable called ballCount. Set its Initial value to 0. The wave count
is going to count how many total green balls are going to be spawned in a wave,
and the ball count will count how many balls are on screen. We need both of these
variables in order to make it work. Generally, you want to try and use the least
amount of variables as possible—but often the least amount can still be a lot of
variables. Even in some small games I've seen, the variable count exceeds 200.

Making a Tower Defense Game

[136]

Once you have created this global variable, let's use it. Add an event to the green ball
and select the On created event, as shown in the following screenshot:

Once you have these settings in your event sheet, click on Add action to add another
action. In this case, we are going to add 1 to the ball count. Navigate to System |
Add to and change the settings, as shown in the following screenshot:

Chapter 6

[137]

We need to do this in order to count how many balls are on the screen. As soon as
the object is created, we add one to the ball count. Let's add another event. This
event will be a Compare variable event, as shown in the following screenshot:

Making a Tower Defense Game

[138]

We can use this Compare variable event to compare variables. We can compare
numbers or other variables. We are going to compare the global variable isWave to
1, as shown in the following screenshot. This means that when the wave is occurring,
such as when the game has started, the game starts and the enemies spawn.

Click on isWave =1 and press C. This will add another condition. This means in
order for the following actions to take place, both of these conditions have to be true.
Select System and Compare variable. This time, we will compare ballCount to being
less than or equal to waveCount. In the Value field, select waveCount as shown in
the following screenshot:

Chapter 6

[139]

Select isWave again and press C. This will add another condition. In this case, we are
going to add an Every X seconds condition, as shown in the following screenshot:

Your event sheet should look like the following screenshot:

Making a Tower Defense Game

[140]

Now, we have to add another action. This action is going to be for the start block.
Select Spawn another object from the available options in the Add action window,
as shown in the following screenshot:

We are going to spawn the BallGreen object. We are also going to set the Layer
value to 1 with Image point set to 1, as shown in the following screenshot. We need
to have the object spawn on the top layer. We haven't discussed image points yet,
but we need to set one up.

Chapter 6

[141]

Once you have this in your event sheet, go back to your layout and double-click on
the Start box. We then need to add another image point. The image has a default
image point called Origin. Any other image point after Origin is called Imagepoint.
Click on the Image points dialog box and click on the plus icon, as shown in the
following screenshot:

Making a Tower Defense Game

[142]

Doing so should automatically add an image point. Note that Imagepoint has a
different icon than Origin. The image point is not the origin; it is simply a place
where we can point to on the sprite. Place the image point outside where you
want the green ball to spawn. This is really handy because this would be much
harder to do in other environments. Your image box should look something like
the following screenshot:

Now, we are almost ready. Let's go back to our event sheet and find BallGreen
and find Find path to action. Select it and press Ctrl + C to copy the action. Find the
BallGreen object's On created event and paste the action. In this case, the order does
not matter. Generally, the order of actions does matter; if you are making a game
and you find that your game doesn't work properly, go through the action logic
and see whether it makes sense. The following screenshots show what it looks
like before and after:

Chapter 6

[143]

We are almost finished. What we need to do next is add two Compare variable
events. Let's compare whether isWave is to equal to 1 and ballCount is equal to
0. The next thing we have to do is add an action. This action will set the value of
isWave to 0. The way this works is that once all of the balls have been spawned,
we need to turn off the spawner. We do this by setting isWave back to 0.

Your event sheet should look like the following screenshot:

Next, let's go to the Projectile on collision with green ball event and add
an action. Add a System action and choose Subtract from, as shown in the
following screenshot:

Making a Tower Defense Game

[144]

We are going to subtract from ball count. We are going to set the value of the
variable to 1, as shown in the following screenshot. When the projectile destroys
the ball, this will subtract the number of balls we have on the screen.

Summary
In this chapter, we learned how to make a tower defense game. Tower defense
games are one of the best games to make because most people know how to play
them and they are a simple source of fun. In the next chapter, we will learn how to
make a physics puzzle game. Physics puzzle games are also easy to make and are
quite a bit of fun.

Making a Puzzle
Physics Game

Puzzle physics games are fun to play and relatively easy to make. In Construct 2,
these games are actually really easy to make. In this chapter, we are going to make
a puzzle physics game similar to Angry Birds or Crush the Castle.

In this chapter, we will cover the following topics:

• How to make a puzzle physics game
• How to add physics to game objects
• Adding HUD elements that reflect the game

Starting the project
First, we need to start with a new project. Open up a new project and set the
layout size to 1500, 480. In this game, we are going to move the "camera"
around. This means that we will move the field of view to a game object.

Making a Puzzle Physics Game

[146]

Setting the background layer
Once you have opened a new project, set up the background layer. In this case, we
have a ground and a sky. You should make sure that the background is on its own
layer and make sure that there is a game object layer as well. This is what your
project should look like:

Adding the cannon
Once you have these layers, add a cannon (seen in the screenshot that follows).
Name it something, such as cannon, so that we do not get confused—it is
important to name your game objects appropriately.

Chapter 7

[147]

Before we continue, make sure that the cannon is on the game object layer and the
background is on the background layer. Lock the background layer (by clicking on
the lock icon) so that we do not accidentally modify it:

Making a Puzzle Physics Game

[148]

Adding sprites
We then need to add some blocks. These will serve as objects to interact with in
the game. As shown in the following screenshot, we added a block and named it
something that makes sense. We named it block.

Once you have added a block, add a cannonball. We used a circular object and
named it cannonBall, and it is shown in the following screenshot:

Chapter 7

[149]

Finally, we need to have some kind of goal. In this case, we added a circle with a star
on it and named it goalBall, as shown in the following screenshot:

Making a Puzzle Physics Game

[150]

Adding functionalities
Now that we have most of our sprites in the game, let's go and add some
functionality. Double-click on the layout and add the Mouse functionality,
as shown in the following screenshot:

Rotating the cannon
Now, we are ready to make our game. Let's go to the event sheet and add an Every
Tick event by navigating to System | Every Tick. Once you have added that, add
an action. In this case, it's going to be for the cannon sprite and the action should be
Rotate toward position. Check the following screenshot:

Chapter 7

[151]

We are going to rotate the cannon with the mouse. Luckily, this is really easy to do
in Construct 2.

Let's move the cannon by 10 degrees (this is the speed at which the cannon rotates).
In the X box, type mouse.x and type mouse.y in the Y box. This will rotate the
cannon to the position of Mouse.X and Mouse.Y, or simply the mouse position.
This is shown in the following screenshot:

Making a Puzzle Physics Game

[152]

Run the game and test it out. It is good to test early and often. Make sure you
save often as well. You will notice that the cannon does not rotate the way we
want it to—the reason is that the cannon rotates around Origin. Let's double-click
on the cannon and move Origin closer to the back of the cannon. Run the game
again to test it.

Chapter 7

[153]

You will notice that the cannon rotates freely, while what we want to do is clamp
it so that it only rotates in a certain area. Go back to the event sheet and select the
Every Tick event. Press the C key to add another condition and add a Compare two
values condition, as shown in the following screenshot:

Making a Puzzle Physics Game

[154]

To ensure that the cannon only rotates in a set area, we have to make the range of the
mouse greater than the position of the cannon. To do this, make the position greater
than the X position of the cannon and less than the Y position of the cannon. Set the
mouse.X value to be of ≥ Greater or equal in the Comparison field, as shown in the
following screenshot:

Once you have compared the X position, repeat the exact same steps for the
Y position; however, make sure that the mouse.Y is ≤ Less than or equal in the
Comparison field instead of ≥ Greater than or equal. The event sheet should
now look like the following screenshot:

Chapter 7

[155]

Creating a cannonball
We need to create a cannonball to fire at the other game objects. Hence, we will
create and add in a projectile—a cannonball—for the cannon to fire. Add a On
any click event by navigating to Mouse | On any click.

Making a Puzzle Physics Game

[156]

Then, add a Spawn another object action on the cannon, as shown in the following
screenshot. We are going to spawn the cannonball when we click the mouse button.

The object is, of course, going to be the cannonball.

This is where naming your game objects clearly really makes a
difference—particularly if you have more than 200 game objects.

Spawning the cannonball
In order to make the cannonball actually "fire", we need to spawn the cannonball
first. Set the cannonBall object to spawn on Layer with the value 1 at Image point
with the value 1. This is shown in the following screenshot:

Chapter 7

[157]

Creating the spawning image point
But wait! We still have to set up an Image point 1! Double-click on the cannon and
add an image point by pressing the plus (+) sign. Put the image point next to the
front of the cannon, as shown in the following screenshot. The image point is where
the cannonball will spawn from.

Making a Puzzle Physics Game

[158]

Adding physics
Run the game again and you will see that the cannonball does not act like a
cannonball. We need to add some physics to it! Click on the cannonball and
add the Physics behavior as shown in the following screenshot:

Applying force at an angle
Run the game again.

You will notice that the ball just falls down! Now that we have added physics, we
can add a force to the cannonball to make it shoot like real cannon. Add an action
to the Mouse click event. The action will be Apply force at angle, as shown in the
following screenshot:

Chapter 7

[159]

Set the force to around 200. The bigger the number, the further the cannonball
travels. For the angle, type in cannon.Angle as shown in the following screenshot.
This will ensure that the cannonball is shot in the same direction as the cannon.

Making a Puzzle Physics Game

[160]

Setting cannonballs to fire one at a time
If you run the game, you will notice that we can fire as many cannonballs as we
want. We should limit the cannonballs to make them fire only one at a time. In order
to do this, we need to add a global variable. Let's name this variable canFire and set
its initial value to 0, as shown in the following screenshot:

Click on the On any click mouse event and press C to add another condition.
Navigate to System | Compare variable. Set the canFire variable to be equal
to 0 (using the Equal to condition). This is shown in the following screenshot:

Chapter 7

[161]

Once you've done that, add a System action to the On any click mouse event that
sets canFire to be equal to 1. This will make the cannon fire only one at a time. If
you run the game now, you will only be able to fire one cannonball. We will add
the "reloading" functionality in a moment. The event sheet should look like the
following screenshot:

Making a Puzzle Physics Game

[162]

Setting the viewpoint to follow the cannonball
You will notice that the viewpoint or camera does not follow the cannonball.
Double-click on the cannonball and add a ScrollTo behavior, as shown in the
following screenshot:

Also, add a Destroy outside layout behavior, as shown in the following screenshot:

Chapter 7

[163]

Making an immovable ground
When running the game, you will see that the camera now does indeed follow the
cannonball. However, there is only one problem—there is no "ground" and the
cannonball just falls to the bottom of the screen. So, let's make a "ground"! Add
another sprite and resize it to 1500 by 250. Put this on a background layer.
Let's give the background a blue color—something that stands out.
Check the following screenshot:

Making a Puzzle Physics Game

[164]

Add a Physics behavior to the ground sprite. Set Immovable to Yes and Prevent
rotation to Yes, as shown in the following screenshot. This will make this
sprite immoveable.

Once you have done this, place the sprite near the bottom of the screen and set
Opacity to 0 so that it's transparent. This is shown in the following screenshot:

Chapter 7

[165]

Reloading the cannon
We need to set canFire back to 0 so that the cannon can reload and fire another
cannonball. Add an On destroyed event to our cannonBall sprite, as shown in
the following screenshot:

Making a Puzzle Physics Game

[166]

Create the On destroyed event and set canFire to 0 by adding in a System set value
of a variable.

After that, we need to scroll back to the cannon so that the next cannonball will be
fired from there. To do this, we need to set in a Scroll to object event for the System,
as shown in the following screenshot:

Chapter 7

[167]

The object for this event is going to be the cannon, as shown in the
following screenshot:

Your event should look like the following screenshot. Run the game. You will
notice that when the cannonball goes off of the screen, it gets destroyed. When this
happens, the camera scrolls back to the cannon and you can fire again! The event
sheet now looks like the following screenshot:

Adding the blocks
Now, we need to add blocks to the game. Click on the block sprite and add a
Physics behavior.

Making a Puzzle Physics Game

[168]

Put the block in front of the cannonball and test it out by firing the cannon!
This is shown in the following screenshot:

Destroying the cannonball on a complete stop
The cannonball just sits on the screen and doesn't move. We should then add
some logic to destroy it after it hits a block. Add a Compare velocity event to
the cannonBall sprite.

Chapter 7

[169]

The velocity that we are going to compare is Overall velocity, and we are going to
set Comparison to ≤ Less or equal with value 0.1. This is shown in the following
screenshot. The reason we don't want to set the value to zero is that our object may
still have a tiny amount of velocity (for instance, of value 0.00001); but as it has not
quite made it to zero, the event would not be activated.

When the cannonball almost comes to a complete stop, we want to destroy it.
Add a Destroy object action to the event, as shown in the following screenshot:

Making a Puzzle Physics Game

[170]

Delaying cannonball destruction
Run the game. When the cannonball stops, it is reset very abruptly. In order to make
this easier for the game to handle, we will add a Wait action.

Let's wait for a few seconds; we will set the value of Seconds to 2.5 seconds,
as shown in the following screenshot:

Chapter 7

[171]

We also need to move the action up in the order of actions. Highlight it and drag it
to the top. Remember that the actions are read line by line, which means that the first
action will happen first, and so on. In this case, it will wait for 2.5 seconds and then
destroy the object. Run the game and try it out.

Designing our level
Let's add some level design. Go to the right area of the layout and add some blocks.
As you can see in the following screenshot, we've placed them with a gap between
each other. They will fall down; but sometimes if you start a game with an object too
close to another, the collision detection can malfunction.

Making a Puzzle Physics Game

[172]

Changing block density
Try out the game. You will notice that the cannonball does not really have a big
impact on the blocks. Select them all and change Density to 0.2, or you can change
it to whatever value you want. This is shown in the following screenshot:

Chapter 7

[173]

Adding the goal balls
Now, we need to add the goalBall sprites. First, add a Physics behavior to the
goalBall sprite, as shown in the following screenshot:

Making a Puzzle Physics Game

[174]

Destroying the goalBall sprite
Next, add more balls to the level and then add an event to the goalBall sprite:

When the goalBall sprite touches the ground, we will destroy it, as well as set up
some extra functionality.

Chapter 7

[175]

Add an On collision with another object action that checks to see whether the
goalBall sprite collides with the transparent Ground object. This is shown in
the following screenshot:

When the goalBall sprite touches the Ground object, add an action that will destroy
the ball. This is shown in the following screenshot:

Once you have done this, copy the action by selecting the event and pressing Ctrl + C
and then press Ctrl + V to paste.

Then, for one of the two actions, change the On collision with Ground to On
collision with cannonBall, as shown in the following screenshot. This will
destroy the goalBall sprite when the cannonball hits it.

Making a Puzzle Physics Game

[176]

Adding particles
Let's add some particles to make it look better. Go back to the layout, click on Insert
New Object, and add Particles, as shown in the following screenshot:

When you add a particle emitter, you add an object that spawns lots of
two-dimensional images. They are used for things such as explosions, engines,
and anything that looks flashy. Double-click on the particles and add a graphic.

Move the particle to the screen and run the game. We want more of an explosion
than the way the particles are currently set up.

Chapter 7

[177]

Adjusting the particle settings
Play around with the settings. We suggest changing Spray cone to 360, Speed
randomizer to 20 and Size randomizer to 20 as well. Also, make sure you change
Type to One-shot. This will make the particles only fire once.

Making a Puzzle Physics Game

[178]

Adding particles when goalBall is destroyed
Go back to the event sheet and add an action to the goalBall sprite's On collision
with ground. Add a Spawn another object parameter to goalBall. Make sure it is
spawned at the Layer point value 1, as shown in the following screenshot:

Copy-and-paste this action to the other collision object On collision with cannonBall
so that there is a particle explosion when the cannonball hits an object. Then, copy
the collision object, but change it so that it is activated when this goalBall collides
with another goalBall sprite. Check the following screenshot:

Chapter 7

[179]

Tracking the score
Let's set things up so that we can track a score for destroying the goalBall
sprites. Add another global variable and name it Score, as shown in the
following screenshot:

Then, add another goalBall action. This time, make it an Add to action that
adds to the value of Score. Let's insert 100 in the Value field, as shown in the
following screenshot:

Making a Puzzle Physics Game

[180]

Then, just copy-and-paste this action to all the other goalBall collision events. Now,
every time a goalBall sprite is destroyed, your player's score will increase by 100!

Adding text objects to the HUD
Next, we're going to create a HUD to tell the player what their score is. Let's start by
adding a textbox to the screen. Click on Insert New Object and select Text from the
General section.

Our new textbox doesn't look that exciting, so I'd suggest changing the
size and font style. I've changed mine to Arial, Narrow Bold Italic, and
size 36. It's best to stick to common fonts—Construct 2 draws on the font
files available on the player's computer and if they don't have the same
file as the one you have, it will substitute for a default that might not
look proper.

Spawning the textbox
In order for the textbox to appear, we need to spawn it just like any other game
object. Rewrite the text in the textbox to +100. This textbox will be spawned when
the goalBall sprite is destroyed.

Chapter 7

[181]

Add a new On every tick event, and then add a Move at angle action to the new
textbox. This is shown in the following screenshot:

Making a Puzzle Physics Game

[182]

Set the angle to 270, which is the angle for directly upwards in the game engine.
Set the distance to 8.

The higher you make the distance score, the faster the
textbox will rise.

Make a copy of the goalBall action that spawns the particle explosion, and
then change the settings so that instead of spawning the explosion, it will
spawn the textbox.

Chapter 7

[183]

Correcting the spawning angle
When we run the game, we can see that the textbox is spawned at an odd angle.
To correct this, we'll add a Set angle action to the textbox and set the angle to 0,
as shown in the following screenshot:

Expanding the HUD
Now, we need to add the rest of the HUD to show the ongoing score and other
information we need to give the player. In most cases, it is best to have the HUD
as its own layer. Add a new layer and name it HUD.

Making a Puzzle Physics Game

[184]

Create a new textbox and move it to the bottom-left corner. Make sure it is outside
the game area.

The current size and color of the text isn't great. I'd advise you
to change the text to make it bigger, and also change the color
to white from the Properties panel.

Change the name of the textbox to HUDscore, and then add a HUDscore action to the
On every tick event. We're going to add a Set text action to HUDscore. Set the text to
"Score: "&Score. This will mean that the HUD textbox will read Score:, which we
wrote in the quotation marks, and then it will print the exact variable score achieved
from destroy goalBalls. Make sure you insert a space after the colon of "Score:
"; otherwise, one won't appear in the game.

In order to print variables, you need the & symbol.

Chapter 7

[185]

Your event should look like the following screenshot:

Anchoring the HUD to the camera
If you run the game, you will notice that the score does not follow the camera.
This is because we have to anchor it to the screen. Click on the HUD box and add
an Anchor behavior. This will set the position of the text object to the camera and
it will not move.

Setting up an HUD cannonball tracker
Next, we'll set up a tracker for our remaining cannonballs. Right-click on our
Score textbox and select the Clone object type. Change the textbox content
to Balls Left and add a global variable named ballsLeft, as shown in the
following screenshot:

Making a Puzzle Physics Game

[186]

Add another action to the On destroyed event for the cannonball and make it a
Subtract from action. We want to subtract 1 from the ballsLeft variable so that
the count decreases as each cannonball is fired and destroyed. This is shown in the
following screenshot:

Set the value for the cannonball tracking box to "Balls Left: "&BallsLeft so that
it will automatically update in the same way as the score tracker.

Your Every tick event should therefore look like the following screenshot:

Chapter 7

[187]

To set the number of cannonballs available, just change the ballsLeft global
number to whatever you want.

Finalizing the game
Let's add some logic in order to finalize winning and losing our game. Often, the
finalization of the game is the hardest part. Most indie developers lose interest and
stop producing the game.

Losing the game
Add another textbox, make the text say "Game Over", and change the text size so
that it's nice and prominent. Place the textbox somewhere prominent and make note
of its position.

Then, we need to add a Compare variable event that should compare the variable
ballsLeft to be ≤ Less than or equal to 0. Then, set the position of the Game Over
text object to the position of the text object noted before.

Make another global variable named isPlaying, as shown in the following screenshot:

Making a Puzzle Physics Game

[188]

Add an action that sets isPlaying to 1 when the ballsLeft variable count is equal
or less than zero. Then, add a condition (by pressing C) to the On any click mouse
event. The condition is to see whether isPlaying is equal to 0.

Restarting the game on Game Over
When the game is over, we need a way to reset it. Add a On object clicked mouse
event and set the object to be clicked as textGameOver. This is shown in the
following screenshot:

Add a Restart layout action and a Reset global variables to default action to
the Object clicked event, as shown in the following screenshot. This will restart
the game.

Winning the game
Add two global variables. Name one variable goalBallCount and the other one
cannonballCount. These variables will keep track of the number of goalBall
and cannonBall sprites on the screen, as shown in the following screenshot:

Chapter 7

[189]

Add an On created event to goalBall and make an Add 1 to goalBallCount action,
as shown in the following screenshot:

Then, for each On collision with goalBall event for our goalBall sprites,
navigate to System and add Subtract 1 from goalBallCount. This is shown
in the following screenshot:

Making a Puzzle Physics Game

[190]

Add an On created event to cannonBall, and navigate to System to add an Add 1 to
cannonBallCount action.

In the On destroyed event of the cannonBall sprite, add a Subtract 1 from
cannonBallCount action. This is shown in the following screenshot:

Copy the last two events we made. Add a condition to the ballsLeft ≤ 0 event
by pressing the C key. Add a compare variable event to compare whether
cannonBallCount is less than or equal to zero. Once you have done this, copy the
event and change cannonBallCount to goalBallCount. This will cause the event to
activate if there are no goalBall or cannonBall sprites left on the screen.

Chapter 7

[191]

Add a Set text action to textGameOver; only this time, make it say You Win!.
Check the following screenshot:

Summary
In this chapter, we learned how to set up a puzzle physics game—setting up physics,
particle effects, and adding in the logic to win and lose the game. You can now
modify this game and add as many features as you like.

In the next chapter, we will cover how to export your game to multiple locations.

Exporting Your Game
In the past, developing a game for multiple systems was tough. Often, developers
would have to make the game from scratch for every system they deployed to.
In order to get around this problem, they created libraries that could be used across
platforms. Luckily, this problem is now solved, and one of the best ways to solve
it is HTML5 games.

In this chapter, we will cover the following topics:

• Hosting our game on Dropbox publically
• Exporting our game to an HTML5 website
• Exporting our game to web stores, web arcades, and for mobile devices

Exporting games in Construct 2
One of the best features about Construct 2 is that you can export your games to
many locations. If you are new to game development, then this seems normal; most
engines try to export to multiple locations. However, this wasn't always the case.
In the past, if you wanted to develop a game for two different systems, it meant
doing a lot of work behind the scenes. Construct 2 solves this problem by exporting
to HTML5.

HTML5 is used in order to have a consistent browser experience between platforms
in order to have websites that have the same quality through multiple platforms.
This means that if you view your game on a mobile device, it will run the same
as on a desktop or any other device.

"But you said websites, and not games!"

I did just say that, but you can also have games on the web. In the past, web games
have typically been Flash games. HTML5 games are slowly replacing Flash games,
as Flash games cannot run on some mobile devices.

Exporting Your Game

[194]

Since HTML5 games can run on a web browser, it stands to reason that they can run
everywhere—on a mobile device, console, laptop, or desktop. For the most part, this
is true. You can run HTML5 games pretty much everywhere, but it will depend on
the hardware provider to support HTML5.

Setting up a Dropbox account
One way to test your game early to see how it performs in a real environment is
uploading it to a Dropbox account. You preview the game on your computer, but it
isn't the same as uploading it to a website. The reason is that the resources on your
computer are much greater than the resources on the server.

If you do not already have one, you can get a free account at www.dropbox.com.

Once you have a Dropbox account, you can export the game.

Exporting to an HTML5 website
The most basic form of exporting your game will be to an HTML5 website. This
HTML5 website functions much like a website for any other purpose. The main file
here is the index. However, before you do all of that, you need to click on the export
button. You can press F6 or you can go to Export Project under the File menu.
The following screenshot shows the export window that will come up:

www.dropbox.com

Chapter 8

[195]

This window is where you can choose the platform you are going to export to.
As you can see, there are different areas that you can export to. The most basic one
you are going to export to is the HTML5 website. You will probably do this most
often. Select the HTML5 website and click on the Next button, as shown in the
preceding screenshot. For most projects, you will need to find a folder to export to.
In this case, you will export the folder to the desktop. This way, you can easily drag
it to Dropbox or any other website. The contents of the folder will be different,
depending on the kind of project you are exporting to. In most cases, if you are
uploading to a specific store, there are more specific steps that you have to take
to publish on that platform. The following screenshot is of the export window:

Exporting Your Game

[196]

Choosing the template for your HTML5 export
Once we've selected HTML5 website and clicked on Next, the HTML5 export
options window will appear, as shown in the following screenshot. As you can
see, there are many different options. For most of your games, you want to use
the Normal style. This is what most of your games will look like. If you want to
monetize your game, you can select the Advert bar style. If you want to imbed your
game in an iframe tag, you should choose the Embed style. The iframe tag is an
HTML tag that deals with frames. If you want to export your game to a WordPress
blog or website, this is the best option.

Once you have selected a style, click on the Export button. You should get the
following dialog box when you are finished:

Chapter 8

[197]

Click on Open destination folder. This will open the folder on the computer that has
your game.

Assessing the contents of the game folder
Whenever you export a game, it will be contained in a folder of some kind.
The following screenshot shows the contents of the destination folder—our
new game folder:

Exporting Your Game

[198]

Here, you can see what an HTML5 game looks like in a folder. You can see that
there is an images folder that has all of your images—this contains the various icons
associated with your game. If you want to make custom icons, pull up the icons in
Photoshop or a similar image editing program and save your new icons over the top
of the file. It is important to make the change this way, as most platforms only accept
a certain resolution of file.

The main item I want to draw your attention to is the index file. This file is the main
web page of your game. The functionality of the game comes from the two JavaScript
files. If you want, you can take a look at how it is coded in JavaScript. You can
simply double-click on the file to view it.

Uploading and sharing a game with
Dropbox
Let's upload your game to your Dropbox account. From there, you can share it with
your friends. Open up your Dropbox folder and then open the public folder. The
public folder will allow everybody to see the game. Drag-and-drop your game
folder into the Dropbox folder. Once it has been uploaded, take a look inside.
It should look something like the following screenshot:

Chapter 8

[199]

As you can see, these are the same files you had in the other folder. What you need
to do is right-click on the index.html file and paste that link into your web browser,
as shown in the following screenshot:

This is what most of your players are going to see when they play your game. Feel
free to share the link with all of your friends for feedback. It should look something
like the following screenshot that shows one of our games running in the browser:

Exporting Your Game

[200]

Other places to export your game
There are many more places you can export your game to. Remember that for every
platform that you export to, there can be a completely different set of hardware and
software that run it. An iPhone is very different from an Android device, and mobile
devices are completely different from consoles.

Often, an HTML5 wrapper has to be used for an HTML5 game to run on
the hardware.

Exporting to Chrome Web Store
The Chrome Web Store is Google's answer to the Mac App Store. The best part
about Google is that it is very web friendly. In fact, Chrome is the best browser for
HTML5 games. You can export a game to the Chrome Web Store where you can sell
it or make it freely available.

In order to export to the Chrome Web Store, you need to perform the following steps:

1. Sign up for a Google Chrome Web Store account.
2. Export your game using the Google Chrome Web Store export in the same

way as you exported your game for HTML5.
3. Create some promotional images for the game. They have to be in a specific

resolution. These resolutions change all the time. So, make sure that you find
out what they are when you log in to the Chrome Web Store and upload
your app.

4. Create an app icon.

Once you have these items, you can upload to the Chrome Web Store.

Chapter 8

[201]

Exporting to Scirra Arcade
Scirra Arcade is made by the people who made Construct 2 and it is a very good
arcade for people to publish their games. Publishing to the Scirra Arcade can give
you lots of great feedback and exposure. Because it is made by the Construct 2
developers, there should be very few (if any) problems in exporting to this platform.
In order to upload to the Scirra Arcade, you need to perform the following steps:

1. Sign up for a Scirra Arcade account at http://www.scirra.com/arcade.
2. Export your game to the Scirra Arcade in the same way as you exported your

game for HTML5.
3. Upload your game to the Scirra Arcade through your Scirra Arcade account.
4. Make sure you have the necessary promotional images! The following

screenshot shows the icon for the Scirra Arcade:

Exporting to Kongregate
Kongregate is an online hosting service that hosts free-to-play games. Kongregate
has a lot of web traffic and if you have a good game, you should upload it there.
You will need to sign up for a Kongregate account. In order to upload to Kongregate,
you need to perform the following steps:

1. Export the game as an HTML5 website.
2. Download Kongregate's JavaScript API located at http://developers.

kongregate.com/docs/api-overview/client-api.
3. Extract the contents using a file unzipper and drag them over to the game's

content folder that was created when you exported the game.
4. Open the kongregate_shell.html file and add the following code at

the bottom:
<div id="contentdiv" style="top:0px; left:0px; width:700px;
 height:500px; borders:none;"></div>

http://www.scirra.com/arcade
http://developers.kongregate.com/docs/api-overview/client-api
http://developers.kongregate.com/docs/api-overview/client-api

Exporting Your Game

[202]

5. Place the following code within the content div. You should put the
following code before the </div> tag:
<iframesrc = "index.html" width = "[gamewidth]" height =
 "[gameheight]">
<p>This Browser does not support the iFrame.</p>
 </iframe>

6. Sign up for a Kongregate account.
7. Upload your HTML5 game. The Kongregate icon looks like the

following screenshot:

Exporting to PhoneGap
PhoneGap is a wrapper that makes it easy for web applications to be run on native
devices such as mobiles. The way it works is that you make your web app, in this
case an HTML5 game, and you wrap it with PhoneGap. When you export your
HTML5 project to PhoneGap, it has to wrap it in order for it to work. Then, you
can deploy your app to multiple platforms. The following screenshot shows the
icon of PhoneGap:

Chapter 8

[203]

Exporting to Intel XDK
Intel XDK is similar to PhoneGap—it acts as a wrapper for your HTML5 web
app and makes it deployable to phone devices. The differences between the two
will depend on your game as the backend of these apps is completely different.
When you are exporting to a mobile device, try these wrappers out. Depending on
what is in your game, it could affect the outcome. When you do wrap web apps to
native apps, it doesn't always work the way you want it to. It's best to try multiple
wrappers and see which one works best. In order to make an Intel XDK, you need
to perform the following steps:

1. Export the game to Intel XDK.
2. Use Direct Canvas when you are exporting.
3. Then, make an app at the Intel XDK website. This entails signing up for

an account.
4. Create a game so that it can be modified online.
5. Upload the app. The following screenshot shows the icon for Intel XDK:

Exporting to CocoonJS
CocoonJS is another HTML5 wrapper. The only difference is that CocoonJS is
tailored towards games. If you want to make games for the Apps Store or Google
Play, then try wrapping your game with CocoonJS. In order to make a game for
CocoonJS wrapping, you need to perform the following steps:

1. Export the game using CocoonJS.
2. Test your game with the Cocoon JS launcher. This can be found on Ludei's

website at http://wiki.ludei.com/cocoonjs:launcherapp.

http://wiki.ludei.com/cocoonjs:launcherapp

Exporting Your Game

[204]

3. Make sure you sign up for a Google Play or an App Store developers account
if you want to deploy to these locations.

4. Upload the app to whichever app store you want. The following screenshot
shows the icon for CocoonJS:

Exporting for Windows Phone 8
If you want to make a Windows Phone 8 game, you will have to download Visual
Studio from the Microsoft website. Luckily, Microsoft supports HTML5 in their
native apps. You will also need to apply for a developer account, which is also on
Microsoft's website. In order to make a Windows Phone 8 app, you need to perform
the following steps:

1. Make sure your name, description, and author details can be found in the
main layout. You need to do this because Visual Studio requires a project
name, as shown in the following screenshot:

2. Export the game using the Windows Phone 8 app.
3. Open up the app in Visual Studio.
4. Double-click on the app manifest, which should be on the right-hand side.
5. Choose Create a test certificate. This creates a certificate unique to your

game. The certificate is required to upload the game.
6. Sign up for a Microsoft developer's account.

Chapter 8

[205]

7. Submit it to the Microsoft Dev Store.

Exporting to Tizen
Tizen is a software platform where you can upload your code once and have it
deployed to multiple locations. Like other wrappers, give it a try if you want to
export your game to multiple locations. In order to upload to the Tizen Store,
you need to perform the following steps:

1. Sign up for a developer account.
2. Export the file to the Tizen exporter.
3. Upload it to the developer account.

Exporting for the Amazon Appstore
Amazon also has an app store. If you want to make a game for the Amazon
Appstore, your game has to support multiple screen sizes. (The same is true for
any store with devices that have multiple screen sizes.) You also need a developer
account at Amazon. There are a few more steps you have to perform with
verification keys. Whenever you work with keys, the more secure the platform
is, the more in depth the process will be. In order to upload the game to the
Amazon Appstore, you need to perform the following steps:

1. Sign up for a developer account.
2. Add a new web app in their interface.
3. Once you are here, go to the app files tab and take a note of the

verification key.

The verification key is a long string of numbers that makes
the game unique to the app.

Exporting Your Game

[206]

4. Export the file from Construct 2 as a wrapped HTML5 form.
5. Upload it to the developer account, and make sure you copy the verification

key. The following screenshot shows the icon for Amazon:

Exporting for Windows 8
If you want to make a Windows 8 game, such as a Windows Phone 8 game, you
have to get Visual Studio and you have to become a developer. You will also have to
download the Metro plugin for Construct 2 as well. The process of uploading is very
similar for Windows 8 and Windows Phone 8 apps; the only difference is that in the
Dev Store, you have to make sure you are uploading a Windows 8 app.

Exporting to Open Web App
The Open Web App store is Firefox's answer to the Chrome Web Store. Making a
packaged app is very simple. In order to upload to the Firefox Store, you need to
perform the following steps:

1. Sign up for a developer account.
2. Export the game using the Firefox exporter.
3. Make sure you set the orientations to what you need them to be. If your

game runs in portrait only, then you should select that. You can select
these settings in the Firefox Store.

Chapter 8

[207]

4. Simply submit your app to the Firefox marketplace.

Exporting to Node-Webkit
Node-Webkit is one of my favorite exporters in Construct 2. You can make OSX,
Windows, and Linux apps with Node-Webkit. It wraps your game into an .exe,
.app, or .pak file and you can see the exported files. From there, all you have to do is
run the apps on the respective systems. The following screenshot shows the icon for
Node-Webkit:

Just click on Export to Node-Webkit and you should see the exported files.
From there, all you have to do is run the apps on the respective systems.

The best part about this export is that you can start selling from your
website immediately.

Exporting Your Game

[208]

Summary
In this chapter, we learned how to export our game as an HTML5 file and the details
of exporting it to multiple platforms.

In the next appendix, we will wrap up the book and discuss where to go from here
when it comes to game design and how you can become a successful developer.

Where to Go from Here
Well, that concludes the book! Thank you for reading it. If you want to see
what I and my company, Mammoth Interactive, are up to, you can go to
http://www.mammothinteractive.com. We are always making new and
exciting games as well as other apps and content.

Let's talk about how to really make it big in the gaming industry. Now that you have
learned how to make a few games, you probably want to learn more. Learning game
development is just like anything else—if you want to get better at it, you have to
practice. It is very similar to how a musician gets good at using an instrument,
or an athlete gets good at a sport.

Imagine for a second that you were an Olympic weight lifter. The night before the
competition, you decide to cram your studies in hopes of competing well the next
day. As you probably guessed, this is not the way to become a good weight lifter.
It takes years of practice and dedication.

Even though game development is not physical strength but more mental strength,
you have to approach it in the same way. It takes a long time to learn how to do
everything correctly and efficiently.

People often ask me how they can become good game developers. The answer is
actually quite simple—you just have to make lots of games. The more games you
make, the better you get. It sounds simple enough but most people never do this.
They never make enough games to make them better.

Let me continue with a story. When I was 12, I took a programming class at my local
university. It was Visual Basic and when I heard Visual Basic, I thought it meant
"making a 3D game". Visual Basic is anything but that. I went home that night and
planned out what the game would be like when I completed it. It was a third-person
role-playing game (RPG). I made some sketches and visualized everything I wanted
in the game. I wrote a story and wanted to program it. I genuinely thought that I
would make an AAA game in my bedroom with my 4/86 processor.

http://www.mammothinteractive.com

Where to Go from Here

[210]

It was then that I was confronted with reality—this was not possible. Flash forward
to my early 20s and I still wanted to make a sci-fi game in my bedroom. It still didn't
happen. What's the moral of the story? Why am I telling you this?

I am telling you all of this because I don't want you to make the same mistake I did.
Instead of making really big games all by yourself or with a small team, you should
instead focus on making a lot of really small games.

This is going to go against everything you ever learned in school, but it is something
you should do if you want to become good at creating anything. Remember, the
more games you make, the better you get. But really, it isn't the game that makes
you better—it's how much you improve between the games. Every game you make,
you want to try and outdo your last game.

At Mammoth Interactive, we try and make every project 10 percent faster, better,
and more profitable. This is a lofty goal but, for every game you make, you should
try and do this. It might not happen every time but you should strive for this goal.
Let's talk about what you should do in order to make games and get better at them:

1. Make a lot of prototypes.
2. Once you have mastered the basics, make a simple, yet fun game.
3. Release this game. It can be on your website or on the app store.
4. Try hard to release something on the app store or somewhere where

people buy it.
5. Repeat the process.

If you look at people who make games or any creative project for a living, they
end up spending lots of time on it. Personally, there was a time when I spent all
of my days just making games. I recommend this if you want to really excel at
designing games.

If you have any questions, you can always e-mail me at
johnbura@mammothinteractive.com.

Index
Symbols
8Direction movement

applying, to sprite 65
behavior properties, editing 66
power-up object, inserting 67
speed power-up, creating 66

A
Amazon Appstore

about 205
games, exporting 205

array properties
array, checking for data 58, 59
checking 55, 56
data, setting 57
variables, adding 57

arrays
about 53
adding, in Construct 2 54
properties 55
usage 54
visual representation 53

B
Boolean variables

about 45
examples 45

C
Chrome Web Store

about 200
games, exporting to 200

CocoonJS
about 203
games, exporting to 203
JS launcher 203

coding, Construct 2 7, 8
collision event, Construct 2 game mechanics

adding 67-70
Construct 2

about 5
array, adding 54
coding 7
downloading 6
event sheet 10
game mechanics 62
games, exporting 193
inputs and controls 15
installing 6
layout 9
sprites 11
versioning 7
visual programming languages 9

D
Dropbox account

game, sharing 199
game, uploading 198
setting up 194

E
event sheet

about 10
event, adding 11

[212]

G
game development

learning 209
game mechanics 61, 62
game mechanics, Construct 2

8Direction movement, applying to sprite 65
about 62
behavior, adding to sprite 63- 65
collision event, adding 67-70
player sprite's speed, increasing 71, 72
power-up on collision, destroying 70, 71
project, setting up 63
speed boost duration, setting 72, 73

GameObject 8
games exporting, Construct 2

about 193
Dropbox account, setting up 194
for Amazon Appstore 205
for Windows 8 206
for Windows Phone 8 204
game, sharing on Dropbox account 199
game, uploading to Dropbox account 198
to Chrome Web Store 200
to CocoonJS 203
to HTML5 website 194, 195
to Intel XDK 203
to Kongregate 201
to Node-Webkit 207
to Open Web App 206
to PhoneGap 202
to Scirra Arcade 201
to Tizen 205

global variable, Construct 2
creating 48, 49
numberOfShots 48
powerUpLevel 48
score 48
score variable, creating 49, 50

Graphic User Interface (GUI) 9

H
heads-up display (HUD) 9
HTML5 website

game folder contents, accessing 197

games, exporting to 194
index 194
template, selecting for HTML5

export 196, 197

I
inputs and controls

about 15, 16
keyboard controls, testing 24
keyboard inputs 17
mouse inputs 28
sprite behaviors, changing 26, 27
sprite, controlling with keyboard 21
sprite movement, changing 24, 25
sprite speed, changing 26
touch control inputs 36

integer variables 44
Intel XDK

about 203
games, exporting to 203

isPlaying variable 187

K
keyboard controls

testing 24
keyboard inputs

about 17
functionality, adding to keyboard

object 19, 20
keyboard key, setting 20, 21
keyboard object, inserting 18

Kongregate
about 201
games, exporting to 201, 202
JavaScript API, downloading 201

L
layout 9
local variable, Construct 2

about 48
adding, to sprite 50, 51
health variable, creating 52, 53

[213]

M
Mammoth Interactive

URL 209
mouse inputs

about 28
Every tick command, setting up 30
mouse functionality, adding 28, 29
sprite, facing towards mouse point 34, 35
sprite, rotating to mouse location 31-33

N
Node-Webkit

about 207
games, exporting to 207

number variables 44

O
Open Web App

about 206
games, exporting to 206

P
PhoneGap

about 202
games, exporting to 202

player sprite's speed, Construct 2 game
mechanics

increasing 71, 72
power-up on collision, Construct 2 game

mechanics
destroying 70, 71

puzzle physics game project
background layer, setting 146
block density, changing 172
blocks, adding 167, 168
cannon, adding 146, 147
cannonball, creating 155, 156
cannonball, destroying 168, 169
cannonball destruction, delaying 170, 171
cannonball, spawning 156
cannonballs, setting to fire 160
cannon, reloading 165-167
cannon, rotating 150-154

creating 145
force, applying at angle 158, 159
functionalities, adding 150
game, finalizing 187
game, losing 187
game, restarting on game over 188
game, winning 188-190
goal balls, adding 173
goalBall sprite, destroying 174, 175
HUD, anchoring to camera 185
HUD cannonball tracker,

setting up 185, 186
HUD, expanding 183-185
immovable ground, creating 163, 164
level, designing 171
particles, adding 176
particles, adding on goalBall

destruction 178
particle settings, adjusting 177
physics, adding 158
score, tracking 179, 180
spawning angle, correcting 183
spawning image point, creating 157
sprites, adding 148, 149
textbox, spawning 180, 182
text objects, adding to HUD 180
viewpoint, setting for following

cannonball 162

R
real variables 44
role-playing game (RPG) 209

S
Scirra

URL 6
Scirra Arcade

about 201
games, exporting to 201
URL 201

shooter game project
background, creating 76, 77
background layer, locking 78
creating 75

[214]

enemies, adding 91-94
enemies, destroying 94-96
event sheet, organizing 84, 85
layout size, changing 75
mouse controls, adding 85-87
player shoot, creating 87-90
spawner, adding 96-102
spawner, resizing 97, 98
sprite, controlling with keyboard 78-83

speed boost duration, Construct 2 game
mechanics

player speed, restoring to normal 73
setting 72, 73

sprite, controlling with keyboard
about 21
direction, setting up 22
keys, setting for other directions 23

sprites
about 11
working with 11-14

string variables 44

T
Tizen

about 205
games, exporting to 205

touch control inputs
touch functionality, adding 36-41

tower defense game project
background, creating 104
background layer, locking 105
creating 104
enemies, adding 118, 119
enemy wave, setting up 135-144
layout size, setting 104
level, laying out 112
Pathfinding, setting 128

path, setting up for enemy 128-134
projectiles, adding 118, 119
snap to grid, setting up 105
spawn point, creating 106-111
turret, firing 120-127
turret, rotating 119, 120
turrets, setting up 113-117

V
variables

about 43
Boolean variables 45
declaring 45
integer variables 44
number variables 44
real variables 44
string variables 44
writing, in code 46

variables, in Construct 2
about 47
adding 47
global variable, creating 48, 49
local variable, adding to sprite 50, 51
local variables 48

variables, in JavaScript
about 46
JavaScript code, examining 47

visual programming languages
working with 9

W
Windows 8

games, exporting 206
Windows Phone 8

games, exporting 204

Thank you for buying
Construct 2 Game Development
by Example

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Construct Game Development
Beginner's Guide
ISBN: 978-1-84951-660-0 Paperback: 298 pages

A guide to escalate beginners to intermediate game
creators through teaching practical game creation
using Scirra Construct

1. Learn the skills necessary to make your own
games through the creation of three very
different sample games.

2. Create animated sprites, use built-in physics
and shadow engines of Construct Classic.

3. A wealth of step-by-step instructions and images
to lead the way.

GameMaker Game Programming
with GML
ISBN: 978-1-78355-944-2 Paperback: 350 pages

Learn GameMaker Language programming concepts
and script integration with GameMaker: Studio
through hands-on, playable examples

1. Write and utilize scripts to help organize and
speed up your game production workflow.

2. Display important user interface components
such as score, health, and lives.

3. Play sound effects and music, and create
particle effects to add some spice to
your projects.

4. Learn how to script common game features:
artificial intelligence, collision, reading input,
and player feedback.

Please check www.PacktPub.com for information on our titles

OUYA Game Development by
Example Beginner's Guide
ISBN: 978-1-84969-722-4 Paperback: 268 pages

An all-inclusive, fun guide to making professional 3D
games for the OUYA console

1. Create enthralling and unique games for the
OUYA console.

2. Learn basic scripting methods in a
three-dimensional game engine.

3. Polish and package your games for publishing
on the OUYA marketplace.

Starling Game Development
Essentials
ISBN: 978-1-78398-354-4 Paperback: 116 pages

Develop and deploy isometric turn-based games
using Starling

1. Create a cross-platform Starling
Isometric game.

2. Add enemy AI and multiplayer capability.

3. Explore the complete source code for the Web
and cross-platform game development.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chaper 1: Getting Started with Construct 2
	Downloading and installing Construct 2
	What do the numbers mean?

	Coding in Construct 2
	Working with visual programming languages
	Layout and event sheets
	Sprites

	Summary

	Chaper 2: Inputs and Controls
	Getting started with inputs and controls
	Keyboard inputs
	Inserting a new keyboard object
	Adding functionality to the keyboard object
	Setting the keyboard key

	Controlling the sprite with the keyboard
	Setting up the direction of the sprite's movement
	Setting keys for other directions

	Testing the keyboard controls
	Making the sprite move constantly
	Changing the sprite's speed
	Keeping the sprite onscreen
	Mouse inputs
	Adding mouse functionality
	Setting up the Every tick command
	Rotating the sprite to the mouse location
	Facing the sprite towards the mouse point

	Touch control inputs

	Summary

	Chaper 3: Variables and Arrays
	Introducing variables
	Number variables
	Integer variables
	Real variables

	String variables
	Boolean variables
	Other variables

	Declaring variables
	Writing variables in code

	Variables in JavaScript
	Examining JavaScript code

	Variables in Construct 2
	Adding a variable
	Creating a global variable
	Making a score variable

	Adding a variable to a sprite
	Creating a health variable

	Introducing arrays
	Adding an array in Construct 2
	Checking an array's properties
	Setting data and adding variables
	Checking an array for data

	Summary

	Chaper 4: Game Mechanics
	Introducing game mechanics
	Game mechanics in Construct 2
	Setting up a game mechanics project
	Adding a game mechanics behavior to a sprite
	Giving a sprite 8Direction movement
	Editing the properties of a behavior

	Adding a collision event
	Destroying the power-up on collision
	Increasing the player sprite's speed
	Setting the duration of the speed boost
	Restoring the player speed to normal

	Summary

	Chaper 5: Making a Simple Shooter
	Starting the project
	Controlling a sprite with the keyboard
	Organizing the event sheet
	Adding mouse controls
	Making the player shoot

	Adding the enemy
	Destroying the enemy
	Adding a spawner
	Summary

	Chaper 6: Making a Tower Defense Game
	Starting the project
	Creating a spawn point
	Laying out the level
	Setting up the turrets
	Adding enemies and projectiles
	Rotating the turret
	Firing the turret
	Setting up the path for the enemy
	Setting up an enemy wave
	Summary

	Chaper 7: Making a Puzzle Physics Game
	Starting the project
	Setting the background layer
	Adding the cannon
	Adding sprites

	Adding functionalities
	Rotating the cannon
	Creating a cannonball
	Spawning the cannonball
	Creating the spawning image point

	Adding physics
	Applying force at an angle
	Setting cannonballs to fire one at a time
	Setting the viewpoint to follow the cannonball

	Making an immovable ground
	Reloading the cannon

	Adding the blocks
	Destroying the cannonball on a complete stop
	Delaying cannonball destruction

	Designing our level
	Changing block density
	Adding the goal balls
	Destroying the goalBall sprite
	Adding particles
	Adjusting the particle settings
	Adding particles when goalBall is destroyed

	Tracking the score
	Adding text objects to the HUD
	Spawning the textbox
	Correcting the spawning angle

	Expanding the HUD
	Anchoring the HUD to the camera
	Setting up an HUD cannonball tracker

	Finalizing the game
	Losing the game
	Restarting the game on Game Over
	Winning the game

	Summary

	Chaper 8: Exporting Your Game
	Exporting games in Construct 2
	Setting up a Dropbox account
	Exporting to an HTML5 website
	Choosing the template for your HTML5 export
	Assessing the contents of the game folder

	Uploading and sharing a game with Dropbox
	Other places to export your game
	Exporting to Chrome Web Store
	Exporting to Scirra Arcade
	Exporting to Kongregate
	Exporting to PhoneGap
	Exporting to Intel XDK
	Exporting to CocoonJS
	Exporting for Windows Phone 8
	Exporting to Tizen
	Exporting for the Amazon Appstore
	Exporting for Windows 8
	Exporting to Open Web App
	Exporting to Node-Webkit

	Summary

	Appendix: Where to Go from Here
	Index

