
www.allitebooks.com

http://www.allitebooks.org

CoreOS Essentials

Develop effective computing networks to deploy your
applications and servers using CoreOS

Rimantas Mocevicius

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

CoreOS Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1240615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-394-9

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Rimantas Mocevicius

Reviewers
Brian Harrington

Paul Kirby

Patrick Murray

Melissa Smolensky

Commissioning Editor
Julian Ursell

Acquisition Editor
Usha Iyer

Content Development Editor
Amey Varangaonkar

Technical Editor
Utkarsha S. Kadam

Copy Editor
Vikrant Phadke

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Rimantas Mocevicius is an IT professional with over 20 years of experience
in Linux. He is a supporter and fan of open source software. His passion for new
technologies drives him forward, and he never wants to stop learning about them.

I would like to thank my wife and son for encouraging me to write
this book and supporting me all throughout the way until its end.

I also want to say a big thank you to my technical reviewers, Paul
Kirby, Brian Harrington, and Patrick Murray, for their invaluable
recommendations.

Lots of thanks to the staff at Packt Publishing for guiding me
through all of the book writing process and helping make it a
nice book.

And of course, a big thank you goes to the CoreOS team for releasing
such an amazing Linux-based operating system.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Brian 'Redbeard' Harrington is a developer, hacker, and technical writer in
the areas of open source development and system administration. He has spent
time in both defensive and offensive computing, combined with his readings of
classical anarchism, to present new ideas in organizational hierarchies for software
development. He has been featured on Al Jazeera as an expert in the field of
computer security, and has been seen and heard on Bloomberg Television and
National Public Radio. Brian currently resides in Oakland, California, USA. He
was formerly the elected president of the HacDC hackerspace.

He is one of the early employees of CoreOS. In true start-up terms, this means that he
has done everything from taking out the trash to racking servers and stepping on site
with customers. He has previously worked with Red Hat, the US Census Bureau, and
other organizations, chopping wood and carrying water to keep the Internet running.

Thank you to Holly. I'll always strive to make you proud.

Patrick Murray is a senior software engineer at Cisco Systems. He has been
working in the Silicon Valley since 2008. He completed his education in computer
engineering from Michigan Technological University in Houghton, Michigan,
USA. His primary technology interests are cloud deployment and orchestration,
distributed systems, NoSQL, and big data.

I would like to thank my beautiful newborn daughter, Amelia, and
my wife, Xian, for their support and for letting me find the time to
work as a reviewer.

Melissa Smolensky is the director of marketing at CoreOS and oversees all the
marketing activities there. She is passionate about start-ups, the future of technology,
and how technology is changing the way we consume and interact with media.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: CoreOS – Overview and Installation 1

An overview of CoreOS 2
How CoreOS works 2
Installing the CoreOS virtual machine 4

Cloning the coreos-vagrant GitHub project 4
Working with cloud-config 4
Startup and SSH 6

Summary 9
Chapter 2: Getting Started with etcd 11

Introducing etcd 11
Reading and writing to etcd from the host machine 12

Logging in to the host 12
Reading and writing to ectd 12

Reading and writing from the application container 13
Watching changes in etcd 14
TTL (time to live) examples 15
Use cases of etcd 15
Summary 16

Chapter 3: Getting Started with systemd and fleet 17
Getting started with systemd 17

An overview of systemd 17
The systemd unit files 18
An overview of systemctl 19

Getting started with fleet 21
The fleet unit files 21
An overview of fleetctl 24

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

References 25
Summary 25

Chapter 4: Managing Clusters 27
Determining the optimal etcd cluster size 27
Bootstrapping a local cluster 28

Cloning the coreos-vagrant project 28
Customizing a cluster via the cloud-config file 32
Scheduling a fleet unit in the cluster 33

References 35
Summary 35

Chapter 5: Building a Development Environment 37
Setting up the local development environment 37

Setting up the development VM 38
What happened during the VM installation? 39
Deploying the fleet units 41

Bootstrapping a remote test/staging cluster on GCE 44
Test/staging cluster setup 45

Creating our cluster workers 49
Running fleetctl commands on the remote cluster 54

References 58
Summary 58

Chapter 6: Building a Deployment Setup 59
Code deployment on Test and Staging servers 59

Deploying code on servers 59
Setting up the Docker builder and private Docker registry worker 62

Server setup 62
Summary 66

Chapter 7: Building a Production Cluster 67
Bootstrapping a remote production cluster on GCE 67

Setting up the production cluster 68
Deploying code on production cluster servers 71

Setting up the Docker builder server 72
Deploying code on production servers 73

An overview of the Dev/Test/Staging/Production setup 77
PaaS based on fleet 78

Deploying services using PAZ 78
Another cloud alternative for running CoreOS clusters 80
Summary 81

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 8: Introducing CoreUpdate and
Container/Enterprise Registry 83

Update strategies 83
Automatic updates 83
Uses of update strategies 84

CoreUpdate 85
Container Registry 87

Quay.io overview 87
Enterprise Registry 89
Summary 90

Chapter 9: Introduction to CoreOS rkt 91
An introduction to rkt 91

Features of rkt 92
The basics of App container 92
Using rkt 92
rkt networking 93
rkt environment variables 93
rkt volumes 93

Running streamlined Docker images with rkt 94
Converting Docker images into ACI 96
Summary 97

Chapter 10: Introduction to Kubernetes 99
What is Kubernetes? 99

Primary components of Kubernetes 100
Kubernetes cluster setup 102
Tectonic – CoreOS and Kubernetes combined for a commercial
implementation 109
Summary 110

Index 111

www.allitebooks.com

http://www.allitebooks.org

Preface

[v]

Preface
CoreOS is a new breed of the Linux operating system and is optimized to run Linux
containers, such as Docker and rkt. It has a fully automated update system, no
package manager, and a fully clustered architecture.

Whether you are a Linux expert or just a beginner with some knowledge of
Linux, this book will provide you with step-by-step instructions on installing
and configuring CoreOS servers as well as building development and production
environments. You will be introduced to the new CoreOS rkt Application Containers
runtime engine and Google's Kubernetes system, which allows you to manage a
cluster of Linux containers as a single system.

What this book covers
Chapter 1, CoreOS – Overview and Installation, contains a brief CoreOS overview what
CoreOS is about.

Chapter 2, Getting Started with etcd, explains what etcd is and what it can be used for.

Chapter 3, Getting Started with systemd and fleet, covers an overview of systemd. This
chapter tells you what fleet is and how to use it to deploy Docker containers.

Chapter 4, Managing Clusters, is a guide to setting up and managing a cluster.

Chapter 5, Building a Development Environment, shows you how to set up the CoreOS
development environment to test your Application Containers.

Preface

[vi]

Chapter 6, Building a Deployment Setup, helps you set up code deployment, the Docker
image builder, and the private Docker registry.

Chapter 7, Building a Production Cluster, explains the setup of the CoreOS production
cluster on the cloud.

Chapter 8, Introducing CoreUpdate and Container/Enterprise Registry, has an overview of
free and paid CoreOS services.

Chapter 9, Introduction to CoreOS rkt, tells you what rkt is and how to use it.

Chapter 10, Introduction to Kubernetes, teaches you how to set up and use Kubernetes.

What you need for this book
For this book, you will need a Linux-powered system or an Apple Mac, and a Google
Cloud account to run the examples covered. You will also require the latest versions
of VirtualBox and Vagrant to run the scripts.

Who this book is for
This book will benefit any Linux/Unix system administrator. Any person with even
a basic knowledge of Linux/Unix will have an advantage when using this book.

This book is also for system engineers and system administrators who are already
experienced with network virtualization and want to understand how CoreOS can be
used to develop computing networks for the deployment of applications and servers.
They must have a proper knowledge of the Linux operating system and Application
Containers, and it is better if they have used a Linux distribution for the purpose of
development or administration before.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

Preface

[vii]

A block of code is set as follows:

 etcd2:
 name: core-01
 initial-advertise-peer-urls: http://$private_ipv4:2380
 listen-peer-urls:
 http://$private_ipv4:2380,http://$private_ipv4:7001
 initial-cluster-token: core-01_etcd
 initial-cluster: core-01=http://$private_ipv4:2380
 initial-cluster-state: new
 advertise-client-urls:
 http://$public_ipv4:2379,http://$public_ipv4:4001
 listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
 fleet:

Any command-line input or output is written as follows:

$ git clone https://github.com/coreos/coreos-vagrant/

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"We should see this output in the Terminal window."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Preface

[viii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[1]

CoreOS – Overview
and Installation

CoreOS is often described as Linux for massive server deployments, but it can also
run easily as a single host on bare-metal, cloud servers, and as a virtual machine on
your computer as well. It is designed to run application containers as docker and
rkt, and you will learn about its main features later in this book.

This book is a practical, example-driven guide to help you learn about the essentials
of the CoreOS Linux operating system. We assume that you have experience with
VirtualBox, Vagrant, Git, Bash shell scripting and the command line (terminal on
UNIX-like computers), and you have already installed VirtualBox, Vagrant, and git
on your Mac OS X or Linux computer, which will be needed for the first chapters. As
for a cloud installation, we will use Google Cloud's Compute Engine instances.

By the end of this book, you will hopefully be familiar with setting up CoreOS
on your laptop or desktop, and on the cloud. You will learn how to set up a local
computer development machine and a cluster on a local computer and in the cloud.
Also, we will cover etcd, systemd, fleet, cluster management, deployment setup,
and production clusters.

Also, the last chapter will introduce Google Kubernetes. This is an open source
orchestration system for docker and rkt containers and allows to manage them
as a single system on on compute clusters.

In this chapter, you will learn how CoreOS works and how to carry out a basic CoreOS
installation on your laptop or desktop with the help of VirtualBox and Vagrant.

We will basically cover two topics in this chapter:

• An overview of CoreOS
• Installing the CoreOS virtual machine

CoreOS – Overview and Installation

[2]

An overview of CoreOS
CoreOS is a minimal Linux operation system built to run docker and rkt containers
(application containers). By default, it is designed to build powerful and easily
manageable server clusters. It provides automatic, very reliable, and stable updates to
all machines, which takes away a big maintenance headache from sysadmins. And, by
running everything in application containers, such setup allows you to very easily scale
servers and applications, replace faulty servers in a fraction of a second, and so on.

How CoreOS works
CoreOS has no package manager, so everything needs to be installed and used via
docker containers. Moreover, it is 40 percent more efficient in RAM usage than an
average Linux installation, as shown in this diagram:

CoreOS utilizes an active/passive dual-partition scheme to update itself as a single
unit, instead of using a package-by-package method. Its root partition is read-only
and changes only when an update is applied. If the update is unsuccessful during
reboot time, then it rolls back to the previous boot partition. The following image
shows OS updated gets applied to partition B (passive) and after reboot it becomes
the active to boot from.

Chapter 1

[3]

The docker and rkt containers run as applications on CoreOS. Containers
can provide very good flexibility for application packaging and can start very
quickly—in a matter of milliseconds. The following image shows the simplicity
of CoreOS. Bottom part is Linux OS, the second level is etcd/fleet with docker
daemon and the top level are running containers on the server.

By default, CoreOS is designed to work in a clustered form, but it also works very
well as a single host. It is very easy to control and run application containers across
cluster machines with fleet and use the etcd service discovery to connect them as it
shown in the following image.

CoreOS – Overview and Installation

[4]

CoreOS can be deployed easily on all major cloud providers, for example, Google
Cloud, Amazon Web Services, Digital Ocean, and so on. It runs very well on
bare-metal servers as well. Moreover, it can be easily installed on a laptop or
desktop with Linux, Mac OS X, or Windows via Vagrant, with VirtualBox or
VMware virtual machine support.

This short overview should throw some light on what CoreOS is about and what it
can do. Let's now move on to the real stuff and install CoreOS on to our laptop or
desktop machine.

Installing the CoreOS virtual machine
To use the CoreOS virtual machine, you need to have VirtualBox, Vagrant, and git
installed on your computer.

In the following examples, we will install CoreOS on our local computer, which will
serve as a virtual machine on VirtualBox.

Okay, let's get started!

Cloning the coreos-vagrant GitHub project
Let's clone this project and get it running.

In your terminal (from now on, we will use just the terminal phrase and use $ to
label the terminal prompt), type the following command:

$ git clone https://github.com/coreos/coreos-vagrant/

This will clone from the GitHub repository to the coreos-vagrant folder on
your computer.

Working with cloud-config
To start even a single host, we need to provide some config parameters in the
cloud-config format via the user data file.

In your terminal, type this:

$ cd coreos-vagrant

$ mv user-data.sample user-data

Chapter 1

[5]

The user data should have content like this (the coreos-vagrant Github repository
is constantly changing, so you might see a bit of different content when you clone
the repository):

#cloud-config
coreos:
 etcd2:
 #generate a new token for each unique cluster from
 https://discovery.etcd.io/new
 #discovery: https://discovery.etcd.io/<token>
 # multi-region and multi-cloud deployments need to use
 $public_ipv4
 advertise-client-urls: http://$public_ipv4:2379
 initial-advertise-peer-urls: http://$private_ipv4:2380
 # listen on both the official ports and the legacy ports
 # legacy ports can be omitted if your application doesn't
 depend on them
 listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
 listen-peer-urls:
 http://$private_ipv4:2380,http://$private_ipv4:7001
 fleet:
 public-ip: $public_ipv4
 flannel:
 interface: $public_ipv4
 units:
 - name: etcd2.service
 command: start
 - name: fleet.service
 command: start
 - name: docker-tcp.socket
 command: start
 enable: true
 content: |
 [Unit]
 Description=Docker Socket for the API

 [Socket]
 ListenStream=2375
 Service=docker.service
 BindIPv6Only=both
 [Install]
 WantedBy=sockets.target

www.allitebooks.com

http://www.allitebooks.org

CoreOS – Overview and Installation

[6]

Replace the text between the etcd2: and fleet: lines to look this:

 etcd2:
 name: core-01
 initial-advertise-peer-urls: http://$private_ipv4:2380
 listen-peer-urls:
 http://$private_ipv4:2380,http://$private_ipv4:7001
 initial-cluster-token: core-01_etcd
 initial-cluster: core-01=http://$private_ipv4:2380
 initial-cluster-state: new
 advertise-client-urls:
 http://$public_ipv4:2379,http://$public_ipv4:4001
 listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
 fleet:

You can also download the latest user-data file from https://
github.com/rimusz/coreos-essentials-book/blob/
master/Chapter1/user-data.

This should be enough to bootstrap a single-host CoreOS VM with etcd, fleet, and
docker running there.

We will cover cloud-config, etcd and fleet in more detail in later chapters.

Startup and SSH
It's now time to boot our CoreOS VM and log in to its console using ssh.

Let's boot our first CoreOS VM host. To do so, using the terminal, type the
following command:

$ vagrant up

This will trigger vagrant to download the latest CoreOS alpha (this is the default
channel set in the config.rb file, and it can easily be changed to beta, or stable)
channel image and the lunch VM instance.

Chapter 1

[7]

You should see something like this as the output in your terminal:

CoreOS VM has booted up, so let's open the ssh connection to our new VM using
the following command:

$ vagrant ssh

It should show something like this:

CoreOS alpha (some version)

core@core-01 ~ $

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

CoreOS – Overview and Installation

[8]

Perfect! Let's verify that etcd, fleet, and docker are running there. Here are the
commands required and the corresponding screenshots of the output:

$ systemctl status etcd2

To check the status of fleet, type this:

$ systemctl status fleet

Chapter 1

[9]

To check the status of docker, type the following command:

$ docker version

Lovely! Everything looks fine. Thus, we've got our first CoreOS VM up and running
in VirtualBox.

Summary
In this chapter, we saw what CoreOS is and how it is installed. We covered a simple
CoreOS installation on a local computer with the help of Vagrant and VirtualBox,
and checked whether etcd, fleet, and docker are running there.

You will continue to explore and learn about all CoreOS services in more detail in
the upcoming chapters.

[11]

Getting Started with etcd
In this chapter, we will cover etcd, CoreOS's central hub of services, which provides
a reliable way of storing shared data across cluster machines and monitoring it.

For testing, we will use our already installed CoreOS VM from the previous chapter.
In this chapter, we will cover the following topics:

• Introducing etcd
• Reading and writing to etcd from the host machine
• Reading and writing from an application container
• Watching changes in etcd
• TTL (Time to Live) examples
• Use cases of etcd

Introducing etcd
The etcd function is an open source distributed key value store on a computer
network where information is stored on more than one node and data is replicated
using the Raft consensus algorithm. The etcd function is used to store the CoreOS
cluster service discovery and the shared configuration.

The configuration is stored in the write-ahead log and includes the cluster member
ID, cluster ID and cluster configuration, and is accessible by all cluster members.

The etcd function runs on each cluster's central services role machine, and gracefully
handles master election during network partitions and in the event of a loss of the
current master.

Getting Started with etcd

[12]

Reading and writing to etcd from the host
machine
You are going to learn how read and write to ectd from the host machine. We will
use both the etcdctl and curl examples here.

Logging in to the host
To log in to CoreOS VM, follow these steps:

1. Boot the CoreOS VM installed in the first chapter. In your terminal,
type this:
$ cdcoreos-vagrant

$ vagrant up

2. We need to log in to the host via ssh:
$ vagrant ssh

Reading and writing to ectd
Let's read and write to etcd using etcdctl. So, perform these steps:

1. Set a message1 key with etcdctl with Book1 as the value:
$ etcdctl set /message1 Book1

Book1 (we got respond for our successful write to etcd)

2. Now, let's read the key value to double-check whether everything is
fine there:
$ etcdctl get /message1

Book1

Perfect!

3. Next, let's try to do the same using curl via an HTTP-based API. The curl
function is handy for accessing etcd from any place from where you have
access to an etcd cluster but don't want/need to use the etcdctl client:
$ curl -L -X PUT http://127.0.0.1:2379/v2/keys/message2 -d
value="Book2"

{"action":"set","key":"/message2","prevValue":"Book1","value":"Boo
k2","index":13371}

Chapter 2

[13]

Let's read it:

$ curl -L http://127.0.0.1:2379/v2/keys/message2

{"action":"get","node":{"key":"/message2","value":"Book2","modifie
dIndex":13371,"createdIndex":13371}}

Using the HTTP-based etcd API means that etcd can be read from and
written to by client applications without the need to interact with the
command line.

4. Now, if we want to delete the key-value pair, we type the following command:
$ etcdctl rm /message1

$ curl -L -X DELETE http://127.0.0.1:2379/v2/keys/message2

5. Also, we can add a key value pair to a directory, as directories are created
automatically when a key is placed inside. We only need one command to
put a key inside a directory:
$ etcdctl set /foo-directory/foo-key somekey

6. Let's now check the directory's content:
$ etcdctl ls /foo-directory –recursive

/foo-directory/foo-key

7. Finally, we get the key value from the directory by typing:
$ etcdctl get /foo-directory/foo-key

somekey

Reading and writing from the application
container
Usually, application containers (this is a general term for docker, rkt, and other
types of containers) do not have etcdctl or even curl installed by default. Installing
curl is much easier than installing etcdctl.

For our example, we will use the Alpine Linux docker image, which is very small in
size and will not take much time to pull from the docker registry:

1. Firstly, we need to check the docker0 interface IP, which we will use
with curl:
$ echo"$(ifconfig docker0 | awk'/\<inet\>/ { print $2}'):2379"

10.1.42.1:2379

Getting Started with etcd

[14]

2. Let's run the docker container with a bash shell:
$ docker run -it alpine ash

We should see something like this in Command Prompt:/ #.

3. As curl is not installed by default on Alpine Linux, we need to install it:
$ apk update&&apk add curl

$ curl -L http://10.1.42.1:2379/v2/keys/

{"action":"get","node":{"key":"/","dir":true,"nodes":[{"key":"/
coreos.com","dir":true,"modifiedIndex":3,"createdIndex":3}]}}

4. Repeat steps 3 and 4 from the previous subtopic so that you understand that
no matter where you are connecting to etcd from, curl still works in the
same way.

5. Press Ctrl +D to exit from the docker container.

Watching changes in etcd
This time, let's watch the key changes in etcd. Watching key changes is useful
when we have, for example, one fleet unit with nginx writing its port to etcd,
and another reverse proxy application watching for changes and updating its
configuration:

1. We need to create a directory in etcd first:
$ etcdctlmkdir /foo-data

2. Next, we watch for changes in this directory:
$ etcdctl watch /foo-data--recursive

3. Now open another CoreOS shell in a new terminal window:
$ cdcoreos-vagrant

$ vagrantssh

4. We add a new key to the /foo-data directory:
$ etcdctl set /foo-data/Book is_cool

5. In the first terminal, we should see a notification saying that the key
was changed:
is_cool

Chapter 2

[15]

TTL (time to live) examples
Sometimes, it is handy to put a time to live (TTL) for a key to expire in a certain
amount of time. This is useful, for example, in the case of watching a key with a
60 second TTL, from a reverse proxy. So, if the nginx fleet service has not updated
the key, it will expire in 60 seconds and will be removed from etcd. Then the reverse
proxy checks for it and does not find it. Hence, it will remove the nginx service
from config.

Let's set a TTL of 30 seconds in this example:

1. Type this in a terminal:
$ etcdctl set /foo "I'm Expiring in 30 sec" --ttl 30

I'm Expiring in 30 sec

2. Verify that the key is still there:
$ etcdctl get /foo

I'm Expiring in 30 sec

3. Check again after 30 seconds :
$ etcdctl get /foo

4. If your requested key has already expired, you will be returned Error: 100:
Error: 100: Key not found (/foo) [17053]

This time the key got deleted by etcd because we put a TTL of 30 seconds for it.

TTL is very handy to use to communicate between the different
services using etcd as the checking point.

Use cases of etcd
Application containers running on worker nodes with etcd in proxy mode can read
and write to an etcd cluster.

Very common etcd use cases are as follows: storing database connection settings,
cache settings, and shared settings. For example, the Vulcand proxy server
(http://vulcanproxy.com/) uses etcd to store web host connection details, and
it becomes available for all cluster-connected worker machines. Another example
could be to store a database password for MySQL and retrieve it when running
an application container.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with etcd

[16]

We will cover more details about cluster setup, central services, and worker role
machines in the upcoming chapters.

Summary
In this short chapter, we covered the basics of etcd and how to read and write to
etcd, watch for changes in etcd, and use TTL for etcd keys.

In the next chapter, you will learn how to use the systemd and fleet units.

[17]

Getting Started with
systemd and fleet

In this chapter, we will cover the basics of systemd and fleet, which includes
system unit files. We will demonstrate how to use a fleet to launch Docker
containers.

We will cover the following topics in this chapter:

• Getting started with systemd
• Getting started with fleet

Getting started with systemd
You are going to learn what systemd is about and how to use systemctl to control
systemd units.

An overview of systemd
The systemd is an init system used by CoreOS for starting, stopping, and
managing processes.

Basically, it is a system and service manager for CoreOS. On CoreOS, systemd
will be used almost exclusively to manage the life cycle of Docker containers. The
systemd records initialization instructions for each process in the unit file, which has
many types, but we will mainly be covering the "service" unit file, as covering all of
them is beyond the scope for this book.

Getting Started with systemd and fleet

[18]

The systemd unit files
The systemd records initialization instructions/properties for each process in
the "service" unit file we want to run. On CoreOS, unit files installed by the user
manually or via cloud-init are placed at /etc/systemd/system, which is a read-
write filesystem, as a large part of CoreOS has only read-only access. Units curated
by the CoreOS team are placed in /usr/lib64/system/system, and ephemeral
units, which exist for the runtime of a single boot, are located at /run/system/
system. This is really good to know for debugging fleet services.

Okay, let's create a unit file to test systemd:

1. Boot your CoreOS VM installed in the first chapter and log in to the
host via ssh.

2. Let's create a simple unit file, hello.service:
$ sudo vi /etc/systemd/system/hello.service

Press I and copy and paste the following text (or use the provided example
file, hello.service):
[Unit]
Description=HelloWorld
this unit will only start after docker.service
After=docker.service
Requires=docker.service

[Service]
TimeoutStartSec=0
busybox image will be pulled from docker public registry
ExecStartPre=/usr/bin/docker pull busybox
we use rm just in case the container with the name "busybox1" is
left
ExecStartPre=-/usr/bin/docker rm busybox1
we start docker container
ExecStart=/usr/bin/docker run --rm --name busybox1 busybox /bin/sh
-c "while true; do echo Hello World; sleep 1; done"
we stop docker container when systemctl stop is used
ExecStop=/usr/bin/docker stop busybox1

[Install]
WantedBy=multi-user.target

3. Press Esc and then type :wq to save the file.

Chapter 3

[19]

4. To start the new unit, run this command:
$ sudo systemctl enable /etc/systemd/system/hello.service

Created a symlink from /etc/systemd/system/multi-user.target.
wants/hello.service to /etc/systemd/system/hello.service.

$ sudo systemctl start hello.service

5. Let's verify that the hello.service unit got started:
$ journalctl -f -u hello.service

You should see the unit's output similar to this:

Also, you can check out the list of containers running with docker ps.

In the previous steps, we created the hello.service system unit, enabled and
started it, and checked that unit's log file with journalctl.

To read about more advanced use of the systemd unit files, go
to https://coreos.com/docs/launching-containers/
launching/getting-started-with-systemd.

An overview of systemctl
The systemctl is used to control and provide an introspection of the state of the
systemd system and its units.

Getting Started with systemd and fleet

[20]

It is like your interface to a system (similar to supervisord/supervisordctl
from other Linux distribution), as all processes on a single machine are started and
managed by systemd, which includes docker containers too.

We have already used it in the preceding example to enable and start the hello.
service unit.

The following are some useful systemctl commands, with their purposes:

1. Checking the status of the unit:
$ sudo systemctl status hello.service

You should see a similar output as follows:

2. Stopping the service:
$ sudo systemctl stop hello.service

3. You might need to kill the service, but that will not stop the docker container:
$ sudo systemctl kill hello.service

$ docker ps

You should see a similar output as follows:

4. As you can see, the docker container is still running. Hence, we need to stop
it with the following command:
$ docker stop busybox1

Chapter 3

[21]

5. Restarting the service:
$ sudo systemctl restart hello.service

6. If you have changed hello.service, then before restarting, you need to
reload all the service files:
$ sudo systemctl daemon-reload

7. Disabling the service:
$ sudo systemctl disable hello.service

The systemd service units can only run and be controlled on a single machine, and
they should better be used for simpler tasks, for example, to download some files
on reboot and so on.

You will continue learning about systemd in the next topic and in later chapters.

Getting started with fleet
We use fleet to take advantage of systemd at the higher level. The fleet is a
cluster manager that controls systemd at the cluster level. You can even use it
on a single machine and get all the advantages of fleet there too.

It encourages users to write applications as small, ephemeral units that can be easily
migrated around a cluster of self-updating CoreOS machines.

The fleet unit files
The fleet unit files are regular systemd units combined with specific fleet properties.

They are the primary interaction with fleet. As in the systemd units, the fleet units
define what you want to do and how fleet should do it. The fleet will schedule
a valid unit file to the single machine or a machine in a cluster, taking in mind the
fleet special properties from the [X-Fleet] section, which replaces the systemd
unit's [Install] section. The rest of systemd sections are same in fleet units.

Getting Started with systemd and fleet

[22]

Let's overview the specific options of fleet for the [X-Fleet] section:

• MachineID: This unit will be scheduled on the machine identified by
a given string.

• MachineOf: This limits eligible machines to the one that hosts a specific unit.
• MachineMetadata: This limits eligible machines to those hosts with this

specific metadata.
• Conflicts: This prevents a unit from being collocated with other units using

glob-matching on other unit names.
• Global: Schedule this unit on all machines in the cluster. A unit is considered

invalid if options other than MachineMetadata are provided alongside
Global=true.

An example of how a fleet unit file can be written with the [X-Fleet] section is
as follows:

[Unit]
Description=Ping google

[Service]
ExecStart=/usr/bin/ping google.com

[X-Fleet]
MachineMetadata=role=check
Conflicts=ping.*

So, let's see how Conflicts=ping* works. For instance, we have two identical
ping.1.service and ping.2.service files, and we run on our cluster using the
following code:

fleetctl start ping.*

This will schedule two fleet units on two separate cluster machines. So, let's convert
the systemd unit called hello.service that we previously used to fleet unit.

1. As usual, you need to log in to the host via ssh with vagrant ssh.
2. Now let's create a simple unit file with the new name hello1.service:

$ sudo vi hello1.service

Press I and copy and paste the text as follows:
[Unit]
Description=HelloWorld
this unit will only start after docker.service

Chapter 3

[23]

After=docker.service
Requires=docker.service

[Service]
TimeoutStartSec=0
busybox image will be pulled from docker public registry
ExecStartPre=/usr/bin/docker pull busybox
we use rm just in case the container with the name "busybox2" is
left
ExecStartPre=-/usr/bin/docker rm busybox2
we start docker container
ExecStart=/usr/bin/docker run --rm --name busybox2 busybox /bin/sh
-c "while true; do echo Hello World; sleep 1; done"
we stop docker container when systemctl stop is used
ExecStop=/usr/bin/docker stop busybox1

[X-Fleet]

3. Press Esc and then type :wq to save the file.
As you can see, we have the [X-Fleet] section empty for now because we
have nothing to use there yet. We will cover that part in more detail in the
upcoming chapters.

4. First, we need to submit our fleet unit :
$ fleetctl submit hello1.service

5. Let's verify that our fleet unit files:
$ fleetctl list-unit-files

6. To start the new unit, run this command:
$ fleetctl start hello1.service

The preceding commands have submitted and started hello1.service.

Getting Started with systemd and fleet

[24]

Let's verify that our new fleet unit is running:
$ fleetctl list-units

Okay, it's now time to overview the fleetctl commands.

An overview of fleetctl
The fleetctl commands are very similar to systemctl commands— you can see
this as follows—and we do not have to use sudo with fleetctl. Here are some tasks
you can perform, listed with the required commands:

1. Checking the status of the unit:
$ fleetctl status hello1.service

2. Stopping the service:
$ fleetctl stop hello1.service

3. Viewing the service file:
$ fleetctl cat hello1.service

4. If you want to just upload the unit file:
$ fleetctl submit hello1.service

5. Listing all running fleet units:
$ fleetctl list-units

6. Listing fleet cluster machines:

$ fleetctl list-machines

Chapter 3

[25]

We see just one machine, as in our case, as we have only one machine running there.

Of course, if we want to see the hello1.service log output, we still use the same
systemd journalctl command, as follows:

$ journalctl -f -u hello1.service

You should see the unit's output similar to this:

References
You can read more about these topics at the given URLs:

• systemd unit files: https://coreos.com/docs/launching-containers/
launching/getting-started-with-systemd/

• fleet unit files: https://coreos.com/docs/launching-containers/
launching/fleet-unit-files/

Summary
In this chapter, you learned about CoreOS's systemd init system. You also learned
how to create and control system and fleet service units with systemctl
and fleetctl.

In the next chapter, you will learn how to set up and manage CoreOS clusters.

www.allitebooks.com

http://www.allitebooks.org

[27]

Managing Clusters
In this chapter, we will cover how to setup and manage a local CoreOS cluster on a
personal computer. You will learn how to bootstrap a three-peer cluster, customize
it via the cloud-config file, and schedule a fleet unit in the cluster.

In this chapter, we will cover the following topics:

• Bootstrapping a local cluster
• Customizing a cluster via thecloud-config file
• Scheduling a fleet unit in the cluster

You are going to learn how to setup a simple three-node cluster on your
personal computer.

Determining the optimal etcd cluster size
The most efficient cluster size is between three and nine peers. For larger clusters,
etcd will select a subset of instances to participate in order to keep it efficient.

The bigger the cluster, the slower the writing to the cluster becomes, as all of the data
needs to be replicated around the cluster peers. To have a cluster well-optimized, it
needs to be based on an odd number of peers. It must have a quorum of at least of
three peers and prevent a split-brain in the event of network partition.

In our case, we are going to set up a three-peer etcd cluster. To build a highly
available cluster on the cloud (GCE, AWS, Azure, and so on), you should use multiple
availability zones in order to decrease the effect of failure in a single domain.

Managing Clusters

[28]

In a general cluster, peers are not recommended to be used for anything except for
running an etcd cluster. But for testing our cluster setup, it will be fine to deploy
some fleet units there.

In later chapters, you will learn how to properly set up clusters to be used for
production.

Bootstrapping a local cluster
As discussed earlier, we will be installing a three-peer etcd cluster on our computer.

Cloning the coreos-vagrant project
Let's clone the project and get it running. Follow these steps:

1. In your terminal or command prompt, type this:
$ mkdir cluster

$ cd cluster

$ git clone https://github.com/coreos/coreos-vagrant.git

$ cd coreos-vagrant

$ cpconfig.rb.sampleconfig.rb

$ cp user-data.sample user-data

2. Now we need to adjust some settings. Edit config.rb and change the file's
top part to this example:
Size of the CoreOS cluster created by Vagrant
$num_instances=3

Used to fetch a new discovery token for a cluster of size $num_
instances
$new_discovery_url="https://discovery.etcd.io/new?size=#{$num_
instances}"

To automatically replace the discovery token on 'vagrant up',
uncomment
the lines below:
#
if File.exists?('user-data') &&ARGV[0].eql?('up')
 require 'open-uri'
 require 'yaml'

Chapter 4

[29]

 token = open($new_discovery_url).read

 data = YAML.load(IO.readlines('user-data')[1..-1].join)
 if data['coreos'].key? 'etcd'
 data['coreos']['etcd']['discovery'] = token
 end
 if data['coreos'].key? 'etcd2'
 data['coreos']['etcd2']['discovery'] = token
 end

yaml = YAML.dump(data)
File.open('user-data', 'w') { |file| file.write("#cloud-config\n\
n#{yaml}") }
end
#

Alternatively, you can use the example code of this
chapter, which will be kept up to date with changes in
the coreos-vagrant GitHub repository.

What we did here is as follows:

 ° We set the cluster to three instances
 ° Discovery token is automatically replaced on each vagrant up

command

3. Next, we need to edit the user data file:
Change the "#discovery: https://discovery.etcd.io/<token>" line
to this:
"discovery: https://discovery.etcd.io/<token>"

So, when we boot our vagrant-based cluster the next time, we will have
three CoreOS etcd peers running and connected to the same cluster
via the discovery token provided through "https://discovery.etcd.
io/<token>".

4. Let's now fire up our new cluster using the following command:
$ vagrant up

Managing Clusters

[30]

We should see something like this in our terminal:

Hold on! There's more output!

The cluster should be up and running now.

Chapter 4

[31]

5. To check the status of the cluster, type the following command:
$ vagrant status

You should see something like what is shown in the following screenshot:

Now it's time to test our new CoreOS cluster. We need to run ssh for one of our
peers and check the fleet machines. This can be done by the following command:

$ vagrant ssh core-01 -- -A

$ fleetctl list-machines

We should see something like what is shown in the following screenshot:

Excellent! We have got our first CoreOS cluster set, as we see all the three machines
up and running. Now, let's try to set a key in etcd with which we can check on
another machine later on. Type in the following command:

$ etcdctl set etcd-cluster-key "Hello CoreOS"

You will see the following output:

Hello CoreOS

Press Ctrl+D to exit and type the following command to get to VM host's console:

$ vagrant ssh core-02 -- -A

Let's verify that we can see our new etcd key there too:

$ etcdctl get etcd-cluster-key

Hello CoreOS

Brilliant! Our etcd cluster is working just fine.

Exit from the core-02 machine by pressing Ctrl+D.

Managing Clusters

[32]

Customizing a cluster via the cloud-config file
Let's make some changes to the cloud-config file and push it into the
cluster machines:

1. In the user data file (cloud-config file for Vagrant-based CoreOS), below
the text block fleet make changes:
public-ip: $public_ipv4

Add a new line:
metadata: cluster=vagrant

So, it will look like this:
fleet:
 public-ip: $public_ipv4
 metadata: cluster=vagrant

2. Let's add a test.txt file to the /home/core folder via cloud-config too. At
the end of the user data file, add this code:
write_files:
 - path: /home/core/test.txt
 permissions: 0644
 owner: core
 content: |
Hello Cluster

This will add a new file in the/home/core folder on each cluster machine.

3. To get our changes implemented which we did previously, run the following
commands:
$ vagrant provision

You will see the following result:

Then, run this command:
$ vagrant reload

Chapter 4

[33]

The first command provisionally updated user data file on all three VMs,
and the second reloaded them.

4. To ssh to one of the VMs, enter this code:
$ vagrant ssh core-03 -- -A

$ ls

test.txt

5. To check the content of the test.txt file, use this line:
$ cat test.txt

You should see output as follows:
Hello Cluster

As you can see, we have added some files to all cluster machines via the
cloud-config file.

Let's check one more change that we have done in that file using the following
command:

$ fleetctl list-machines

You will see something like this:

Thus, you can see that we have some metadata assigned to cluster machines via the
cloud-init file.

Scheduling a fleet unit in the cluster
Now, for the fun part, we will schedule a fleet unit in the cluster.

1. Let's log in to the core-03 machine:
$ vagrant ssh core-03 -- -A

2. Create a new fleet unit called hello-cluster.service by copying and
pasting this line:
$ vi hello-cluster.service

[Unit]

[Service]

ExecStart=/usr/bin/bash -c "while true; do echo 'Hello
Cluster'; sleep 1; done"

Managing Clusters

[34]

3. Let's schedule the hello-cluster.service job for the cluster:
$ fleetctl start hello-cluster.service

You should see output as follows:
Unit hello-cluster.service launched on
bb53c039.../172.17.8.103

We can see that hello-cluster.service was scheduled to be run on
the 172.17.8.103 machine because that machine first responded to the
fleetctl command.
In later chapters, you will learn how to specifically schedule jobs to a
particular machine. Now let's check out the real-time hello-cluster.
service log:
$ journalctl -u hello-cluster.service–f

You will see something like this:

4. To exit from the VM and reload the cluster, type the following command:
$ vagrant reload

5. Now, ssh again back to any machine:
$ vagrant ssh core-02 -- -A

6. Then run this command:

$ fleetctl list-units

The following output will be seen:

Chapter 4

[35]

7. As you can see, hello-cluster.service got scheduled on another
machine; in our case, it is core-01. Suppose we ssh to it:
$ vagrant ssh core-01 -- -A

8. Then, we run the following command there. As a result, we will see the real-
time log again:
$ journalctl -u hello-cluster.service–f

References
You can read more about how to use cloud-config at https://coreos.com/docs/
cluster-management/setup/cloudinit-cloud-config/.You can find out more
about Vagrant at https://docs.vagrantup.com.If you have any issues or questions
about Vagrant, you can subscribe to the Vagrant Google group at https://groups.
google.com/forum/#!forum/vagrant-up.

Summary
In this chapter,you learned how to set up aCoreOS cluster, customize it via cloud-
config, schedule fleet service units to the cluster, and check the fleet unit in the
cluster status and log.In the next chapter,you will learn how to perform local and
cloud development setups.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[37]

Building a Development
Environment

In this chapter, we will cover how to set up a local CoreOS environment for
development on a personal computer, and a test and staging environment cluster
on the VM instances of Google Cloud's Compute Engine. These are the topics we
will cover:

• Setting up a local development environment
• Bootstrapping a remote test/staging cluster on GCE

Setting up the local development
environment
We are going to learn how to set up a development environment on our personal
computer with the help of VirtualBox and Vagrant, as we did in an earlier chapter.
Building and testing docker images and coding locally makes you more productive,
it saves time, and Docker repository can be pushed to the docker registry (private or
not) when your docker images are ready. The same goes for the code; you just work
on it and test it locally. When it is ready, you can merge it with the git test branch
where your team/client can test it further.

Building a Development Environment

[38]

Setting up the development VM
In the previous chapters, you learned how to install CoreOS via Vagrant on your
PC. Here, we have prepared installation scripts for Linux and OS X to go straight
to the point. You can download the latest CoreOS Essentials book example files from
GitHub repository:

$ git clone https://github.com/rimusz/coreos-essentials-book/

To install a local Vagrant-based development VM, type this:

$ cd coreos-essentials-book/chapter5/Local_Development_VM

$./install_local_dev.sh

You should see an output similar to this:

Hang on! There's more!

Chapter 5

[39]

This will perform a VM installation similar to the installation that we did in Chapter 1,
CoreOS – Overview and Installation, but in a more automated way this time.

What happened during the VM installation?
Let's check out what happened during the VM installation. To sum up:

• A new CoreOS VM (VirtualBox/Vagrant-based) was installed
• A new folder called coreos-dev-env was created in your Home folder

Run the following commands:

$ cd ~/coreos-dev-env

$ ls

bin

fleet

share

vm

vm_halt.sh

vm_ssh.sh

vm_up.sh

Building a Development Environment

[40]

As a result, this is what we see:

• Four folders, which consist of the following list:
 ° bin: docker, etcdctl and fleetctl files
 ° fleet: The nginx.service fleet unit is stored here
 ° share: This is shared folder between the host and VM
 ° vm: Vagrantfile, config.rb and user-data files

• We also have three files:

 ° vm_halt.sh: This is used to shut down the CoreOS VM
 ° vm_ssh.sh: This is used to ssh to the CoreOS VM
 ° vm_up.sh: This is used to start the CoreOS VM, with the OS shell

preset to the following:

Set the environment variable for the docker daemon
export DOCKER_HOST=tcp://127.0.0.1:2375
path to the bin folder where we store our binary files
export PATH=${HOME}/coreos-dev-env/bin:$PATH
set etcd endpoint
export ETCDCTL_PEERS=http://172.19.20.99:2379
set fleetctl endpoint
export FLEETCTL_ENDPOINT=http://172.19.20.99:2379
export FLEETCTL_DRIVER=etcd
export FLEETCTL_STRICT_HOST_KEY_CHECKING=false

Now that we have installed our CoreOS VM, let's run vm_up.sh. We should see this
output in the Terminal window:
$ cd ~/coreos-dev-env

$./vm_up.sh

You should see output similar to this:

Chapter 5

[41]

As we can see in the preceding screenshot, we do not have any errors. Only
fleetctl list-machines shows our CoreOS VM machine, and we have no
docker containers and fleet units running there yet.

Deploying the fleet units
Let's deploy some fleet units to verify that our development environment works fine.
Run the following commands:

$ cd fleet

$ fleetctl start nginx.service

It can take a bit of time for docker to download the nginx image.

You can check out the nginx.service unit's status:

$ fleetctl status nginx.service

You should see output similar to this:

Building a Development Environment

[42]

Once the nginx fleet unit is deployed, open in your browser http://172.19.20.99.
You should see the following message:

Let's check out what happened there. We scheduled this nginx.service unit
with fleetctl:

$ cat ~/coreos-dev-env/fleet/nginx.service

[Unit]
Description=nginx

[Service]
User=core
TimeoutStartSec=0
EnvironmentFile=/etc/environment
ExecStartPre=-/usr/bin/docker rm nginx
ExecStart=/usr/bin/docker run --rm --name nginx -p 80:80 \
 -v /home/core/share/nginx/html:/usr/share/nginx/html \
 nginx:latest
#
ExecStop=/usr/bin/docker stop nginx
ExecStopPost=-/usr/bin/docker rm nginx

Restart=always
RestartSec=10s

[X-Fleet]

Chapter 5

[43]

Then, we used the official nginx image from the docker registry, and shared
our local ~/coreos-dev-env/share folder with /home/core/share, which was
mounted afterwards as a docker volume /home/core/share/nginx/html:/usr/
share/nginx/html.

So, whatever html files we put into our local ~/coreos-dev-env/share/nginx/
html folder will be picked up automatically by nginx.

Let's overview what advantages such a setup gives us:

• We can build and test docker containers locally, and then push them to the
docker registry (private or public).

• Test our code locally and push it to the git repository when we are done
with it.

• By having a local development setup, productivity really increases, as
everything is done much faster. We do not have build new docker containers
upon every code change, push them to the remote docker registry, pull them
at some remote test servers, and so on.

• It is very easy to clean up the setup and get it working from a clean
start again, reusing the configured fleet units to start the all required
docker containers.

Very good! So, now, we have a fully operational local development setup!

This setup is as per the CoreOS documentation at https://
coreos.com/docs/cluster-management/setup/cluster-
architectures/, in the Docker Dev Environment on Laptop section.
Go through the coreos-dev-install.sh bash script, which
sets up your local development VM. It is a simple script and is well
commented, so it should not be too hard to understand its logic.

https://coreos.com/docs/cluster-management/setup/cluster-architectures/
https://coreos.com/docs/cluster-management/setup/cluster-architectures/
https://coreos.com/docs/cluster-management/setup/cluster-architectures/

Building a Development Environment

[44]

If you are a Mac user, you can download from https://github.com/rimusz/
coreos-osx-gui and use my Mac App CoreOS-Vagrant GUI for Mac OS X,
which has a nice UI to manage CoreOS VM. It will automatically set up the
CoreOS VM environment.

Bootstrapping a remote test/staging
cluster on GCE
So, we have successfully built our local development setup. Let's get to the next level,
that is, building our test/staging environment on the cloud.

We are going to use Google Cloud's Compute Engine, so you need a Google Cloud
account for this. If you do not have it, for the purpose of running the examples in
the book, you can open a trial account at https://cloud.google.com/compute/. A
trial account lasts for 60 days and has $300 as credits, enough to run all of this book's
examples. When you are done with opening the account, Google Cloud SDK needs
to be installed from https://cloud.google.com/sdk/.

In this topic, we will follow the recommendations on how to set up CoreOS cluster
by referring to Easy Development/Testing Cluster from https://coreos.com/docs/
cluster-management/setup/cluster-architectures/.

https://github.com/rimusz/coreos-osx-gui
https://github.com/rimusz/coreos-osx-gui
https://coreos.com/docs/cluster-management/setup/cluster-architectures/
https://coreos.com/docs/cluster-management/setup/cluster-architectures/

Chapter 5

[45]

Test/staging cluster setup
Okay, let's get our cloud cluster installed, as you have already downloaded this
book's code examples. Carry out these steps in the shown order:

1. Run the following commands:
$ cd coreos-essentials-book/chapter5/Test_Staging_Cluster
$ ls
cloud-config
create_cluster_control.sh
create_cluster_workers.sh
files
fleet
install_fleetctl_and_scripts.sh
settings

Let's check "settings" file first:
$ cat settings
CoreOS Test/Staging Cluster on GCE settings

change Google Cloud settings as per your requirements
GC settings

CoreOS RELEASE CHANNEL
channel=beta

SET YOUR PROJECT AND ZONE !!!
project=my-cloud-project
zone=europe-west1-d

ETCD CONTROL AND NODES MACHINES TYPE
#
control_machine_type=g1-small
#
worker_machine_type=n1-standard-1
##

###

www.allitebooks.com

http://www.allitebooks.org

Building a Development Environment

[46]

2. Update the settings with your Google Cloud project ID and zone where
you want the CoreOS instances to be deployed:
SET YOUR PROJECT AND ZONE !!!
project=my-cloud-project
zone=europe-west1-d

3. Next, let's install our control server, which is our etcd cluster node:
$./create_cluster_control.sh

We just created our new cluster etcd control node.

1. Let's check out what we have in this script:
#!/bin/bash

Create TS cluster control

Update required settings in "settings" file before running this
script

function pause(){

read -p "$*"

}

Fetch GC settings

project and zone

project=$(cat settings | grep project= | head -1 | cut -f2 -d"=")

zone=$(cat settings | grep zone= | head -1 | cut -f2 -d"=")

CoreOS release channel

channel=$(cat settings | grep channel= | head -1 | cut -f2 -d"=")

control instance type

Chapter 5

[47]

control_machine_type=$(cat settings | grep control_machine_type= |
head -1 | cut -f2 -d"=")

get the latest full image name

image=$(gcloud compute images list --project=$project | grep -v
grep | grep coreos-$channel | awk {'print $1'})

##

create an instance

gcloud compute instances create tsc-control1 --project=$project
--image=$image --image-project=coreos-cloud \

 --boot-disk-size=10 --zone=$zone --machine-type=$control_machine_
type \

 --metadata-from-file user-data=cloud-config/control1.yaml --can-
ip-forward --tags tsc-control1 tsc

create a static IP for the new instance

gcloud compute routes create ip-10-200-1-1-tsc-control1
--project=$project \

 --next-hop-instance tsc-control1 \

 --next-hop-instance-zone $zone \

 --destination-range 10.200.1.1/32

echo " "

echo "Setup has finished !!!"

pause 'Press [Enter] key to continue...'

end of bash script

It fetches the settings needed for Google Cloud from the settings file. With the help
of gcloud utility from the Google Cloud SDK, it sets up the tsld-control1 instance
and assigns to it a static internal IP 10.200.1.1. This IP will be used by workers to
connect the etcd cluster, which will run on tsc-control1.

In the cloud-config folder, we have the cloud-config files needed to create
CoreOS instances on GCE.

Building a Development Environment

[48]

Open control1.yaml and check out what is there in it:

$ cat control1.yaml

#cloud-config

coreos:

etcd2:

 name: control1

 initial-advertise-peer-urls: http://10.200.1.1:2380

 initial-cluster-token: control_etcd

 initial-cluster: control1=http://10.200.1.1:2380

 initial-cluster-state: new

 listen-peer-urls: http://10.200.1.1:2380,http://10.200.1.1:7001

 listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001

 advertise-client-urls: http://10.200.1.1:2379,http://10.200.1.1:4001

 fleet:

 metadata: "role=services,cpeer=tsc-control1"

 units:

 - name: 00-ens4v1.network

 runtime: true

 content: |

 [Match]

 Name=ens4v1

 [Network]

 Address=10.200.1.1/24

 - name: etcd2.service

 command: start

 - name: fleet.service

 command: start

 - name: docker.service

 command: start

 drop-ins:

 - name: 50-insecure-registry.conf

 content: |

 [Unit]

 [Service]

Chapter 5

[49]

 Environment=DOCKER_OPTS='--insecure-registry="0.0.0.0/0"'

write_files:

 - path: /etc/resolv.conf

 permissions: 0644

 owner: root

 content: |

 nameserver 169.254.169.254

 nameserver 10.240.0.1

#end of cloud-config

As you see, we have cloud-config file for the control machine, which does
the following:

1. It creates a node etcd cluster with a static IP of 10.200.1.1, which will be
used to connect to etcd cluster.

2. It sets the fleet metadata to role=services,cpeer=tsc-control1.
3. Unit 00-ens4v1.network assigns a static IP of 10.200.1.1.
4. The docker.service drop-in 50-insecure-registry.conf sets

--insecure-registry="0.0.0.0/0", which allows you to connect
to any privately hosted docker registry.

5. In the write_files part, we update /etc/resolv.conf with Google Cloud
DNS servers, which sometimes do not get automatically put there if the static
IP is assigned to the instance.

Creating our cluster workers
In order to create the cluster workers, the command to be used is as follows:

$./create_cluster_workers.sh

Building a Development Environment

[50]

Make a note of the workers' external IPs, as shown in the previous screenshot; we
will need them later.

Of course, you can always check them at the Google Developers Console too.

Let's check out what we have inside the test1.yaml and staging1.yaml files in the
cloud-config folder. Run the following command:

$ cat test1.yaml

#cloud-config

coreos:

 etcd2:

 listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001

 initial-cluster: control1=http://10.200.1.1:2380

 proxy: on

 fleet:

 public-ip: $public_ipv4

Chapter 5

[51]

 metadata: "role=worker,cpeer=tsc-test1"

 units:

 - name: etcd2.service

 command: start

 - name: fleet.service

 command: start

 - name: docker.service

 command: start

 drop-ins:

 - name: 50-insecure-registry.conf

 content: |

 [Unit]

 [Service]

 Environment=DOCKER_OPTS='--insecure-registry="0.0.0.0/0"'

end of cloud-config

As we can see, we have cloud-config file for the test1 machine:

• It connects to the etcd cluster machine control1 and enables etcd2 in proxy
mode, which allows anything running on the host to access the etcd cluster
via the 127.0.0.1 address

• It sets the fleet metadata role=services,cpeer=tsc-test1
• The docker.service drop-in 50-insecure-registry.conf sets

--insecure-registry="0.0.0.0/0", which will allow you to connect
to any privately hosted docker registry

That's it!

If you check out the tsc-staging1.yaml cloud-config file, you will see that it is
almost identical to test1.yaml, except that the fleet metadata has cpeer=tsc-
staging1 in it. But we are not done yet!

Let's now install the OS X/Linux clients, which will allow us to manage the cloud
development cluster from our local computer.

Let's run this installation script:

$./install_fleetctl_and_scripts.sh

Building a Development Environment

[52]

You should see the following output:

So, what has the last script done?

In your home folder, it created a new folder called ~/coreos-tsc-gce, which has
two folders:

• bin

 ° etcdctl: This is the shell script used to access the etcdctl client on a
remote cluster control1 node

 ° fleetctl: The local fleetctl client is used to control the remote
cluster

 ° staging1.sh: Make ssh connection to remote staging1 worker
 ° test1.sh: Make ssh connection to remote test1 worker
 ° set_cluster_access.sh: This sets up shell access to the remote

cluster
• fleet

 ° test1_webserver.service: Our test1 server's fleet unit
 ° staging1_webserver.service: Our staging1 server's fleet unit

Chapter 5

[53]

Now, let's take a look at set_cluster_access.sh:

$ cd ~/coreos-tsc-gce/bin

$ cat set_cluster_access.sh

#!/bin/bash

Setup Client SSH Tunnels

ssh-add ~/.ssh/google_compute_engine &>/dev/null

SET

path to the cluster folder where we store our binary files

export PATH=${HOME}/coreos-tsc-gce/bin:$PATH

fleet tunnel

export FLEETCTL_TUNNEL=104.155.61.42 # our control1 external IP

export FLEETCTL_STRICT_HOST_KEY_CHECKING=false

echo "etcd cluster:"

etcdctl --no-sync ls /

echo "list fleet units:"

fleetctl list-units

/bin/bash

This script is preset by ./install_fleetctl_and_scripts.sh with the remote
control1 external IP, and allows us to issue remote fleet control commands:

$./set_cluster_access.sh

Building a Development Environment

[54]

Very good! Our cluster is up and running, and the workers are connected to the
etcd cluster.

Now we can run fleetctl commands on the remote cluster from our local computer.

Running fleetctl commands on the remote cluster
Let's now install the nginx fleet units we have in the ~/coreos-tsc-gce/fleet
folder. Run the following command:

$ cd ~/coreos-tsc-gce/fleet

Let's first submit the fleet units to the cluster:

$ fleetctl submit *.service

Now, let's start them:

$ fleetctl start *.service

You should see something like what is shown in the following screenshot:

Give some time to docker to download the nginx image from the docker registry.
We can then check the status of our newly deployed fleet units using the
following command:

$ fleetctl status *.service

Chapter 5

[55]

Then, run this command:

$ fleetctl list-units

Perfect!

www.allitebooks.com

http://www.allitebooks.org

Building a Development Environment

[56]

Now, in your web browser, open the workers' external IPs, and you should see this:

The nginx servers are now working. The reason they are showing this error
message is that we have not provided any index.html file yet. We will do that in
the next chapter.

But, before we finish this chapter, let's check out our test/staging nginx fleet units:

$ cd ~/coreos-tsc-gce/fleet

$ cat test1_webserver.service

You should see something like the following code:

[Unit]

Description=nginx

[Service]

User=core

TimeoutStartSec=0

EnvironmentFile=/etc/environment

ExecStartPre=-/usr/bin/docker rm nginx

ExecStart=/usr/bin/docker run --rm --name test1-webserver -p 80:80 \

-v /home/core/share/nginx/html:/usr/share/nginx/html \

nginx:latest

#

Chapter 5

[57]

ExecStop=/usr/bin/docker stop nginx

ExecStopPost=-/usr/bin/docker rm nginx

Restart=always

RestartSec=10s

[X-Fleet]

MachineMetadata=cpeer=tsc-test1 # this where our fleet unit gets
scheduled

There are a few things to note here:

• Staging1 has an almost identical unit; instead of test1, it has staging1
there. So, we reused the same fleet unit as we used for our local development
machine, with a few changes.

• At ExecStart, we used test1-webserver and staging1-webserver, so by
using fleetctl list-units, we can see which one is which.
We added this bit:

[X-Fleet]

MachineMetadata=cpeer=tsc-test1

This will schedule the unit to the particular cluster worker.

If you are a Mac user, you can download from https://github.com/rimusz/
coreos-osx-gui-cluster and use my Mac App CoreOS-Vagrant Cluster GUI
for Mac OS X, which has a nice UI for managing CoreOS VMs on your computer.

https://github.com/rimusz/coreos-osx-gui-cluster
https://github.com/rimusz/coreos-osx-gui-cluster

Building a Development Environment

[58]

This app will set up a small control+ two-node local cluster, which makes easier to
test cluster things on local computer before pushing them to the cloud.

References
You can read more about the CoreOS cluster architectures that we used for the local
and cloud test/staging setup at https://coreos.com/docs/cluster-management/
setup/cluster-architectures/.

Summary
In this chapter, you learned how to set up a CoreOS local development environment
and a remote test/staging cluster on GCE. We scheduled fleet units based on
different metadata tags.

In the next chapter, we will see how to deploy code to our cloud servers.

https://coreos.com/docs/cluster-management/setup/cluster-architectures/
https://coreos.com/docs/cluster-management/setup/cluster-architectures/

[59]

Building a Deployment Setup
In the previous chapter, you learned how to set up a local CoreOS environment for
development on a personal computer and a Test and Staging environment cluster
on Google Cloud's Compute Engine VM instances.

In this chapter, we will cover how to deploy code from the GitHub repository to our
Test and Staging servers, and how to set up the Docker builder and Docker private
registry worker for Docker image building and distribution.

In this chapter, we will cover the following topics:

• Code deployment on Test and Staging servers
• Setting up the Docker builder and private Docker registry machine

Code deployment on Test and Staging
servers
In the previous chapter, you learned how to set up your Test and Staging
environment on Google Cloud and deploy your web servers there. In this section, we
will see how to deploy code to our web servers on Test and Staging environments.

Deploying code on servers
To deploy code on our Test1 and Staging1 servers, we run the following
commands:

$ cd coreos-essentials-book/chapter6/Test_Staging_Cluster/webserver

$./deploy_2_test1.sh

Building a Deployment Setup

[60]

You will get this output:

Then, run this command:

$./deploy_2_staging1.sh

You should see the following result:

Now open the tsc-test1 and tsc-staging1 VM instance external IPs, copying
them to your browser (you can check out the IPs at GC Console, Compute Engine,
VM Instance).

The output you see depends on the server.

For the Test server, you should see something like this:

Chapter 6

[61]

This is what you will see for the Staging server:

Let's see what has happened here:

$ cat deploy_2_test1.sh
#!/bin/bash

function pause(){
read -p "$*"
}

Fetch GC settings
project and zone
project=$(cat ~/coreos-tsc-gce/settings | grep project= | head -1 |
cut -f2 -d"=")
zone=$(cat ~/coreos-tsc-gce/settings | grep zone= | head -1 | cut -f2
-d"=")

change folder permissions
gcloud compute --project=$project ssh --zone=$zone "core@tsc-test1"
--command "sudo chmod -R 755 /home/core/share/"

echo "Deploying code to tsc-test1 server !!!"
gcloud compute copy-files test1/index.html tsc-test1:/home/core/share/
nginx/html --zone $zone --project $project

echo " "
echo "Finished !!!"
pause 'Press [Enter] key to continue...'

Building a Deployment Setup

[62]

As you can see, we used gcloud compute to change the permissions for our home/
core/share/nginx/html folder, as we need to be able to copy files there. We copied
a single index.html file there.

In real-life scenarios, git pull should be used there to pull from the Test and
Staging branches.

To automate releases to the Test1/Staging1 servers, for example, Strider-CD can
be used, but this is beyond the scope of this book. You can read about Strider-CD
at https://github.com/Strider-CD/strider and practice implementing it.

Setting up the Docker builder and private
Docker registry worker
We have successfully deployed code (index.html in our case) in our Test/Staging
environment on the cloud with the help of gcloud compute, by running it in a
simple shell script.

Let's set up a new server in our Test/Staging environment on the cloud. It will build
Docker images for us and store them in our private Docker Registry so that they
can be used on our production cluster (you will learn how to set this up in the
next chapter).

Server setup
As both Docker builder and Private Docker Registry fleet units will run on the same
server, we are going to deploy one more server on the Test/Staging environment.

To install a new server, run the following commands:

$ cd coreos-essentials-book/chapter6/Test_Staging_Cluster

$ ls

cloud-config

create_registry-cbuilder1.sh

dockerfiles

files

fleet

webserver

Next, let's install our new server:

$./create_ registry-cbuilder1.sh

Chapter 6

[63]

You should see output similar to this:

Let's see what happened during the process of script installation:
• A new server tsc-registry-cbuilder1 was created
• The static IP's 10.200.4.1 forward route for the tsc-registry-cbuilder1

instance was created
• The external port 5000 was opened for the new server
• File reg-dbuilder1.sh from the files folder got copied to ~/coreos-tsc-

gce/bin

• The dbuilder.service and registry.service fleet units from the fleet
folder got copied to ~/coreos-tsc-gce/fleet

If we check out the GCE VM Instances at the GC console, we should see our new
instance there:

Building a Deployment Setup

[64]

We now need to verify that our new server is working fine, so we perform ssh on it:

$ cd ~/coreos-tsc-gce/bin

$./reg-dbuider1.sh

Very good! Our new server is up-and-running. Press Ctrl + D to exit.

Now we need to verify that our server is connected to our cluster. So, run the
following command:

$./set_cluster_access.sh

The script's output should look like this:

Perfect! We can see that our new server has successfully connected to our cluster:

Okay, now let's install those two new fleet units:

$ cd ~/coreos-tsc-gce/fleet

$ fleetctl start dbuilder.service registry.service

Chapter 6

[65]

Next, let's list the fleet units:

$ fleetctl list-units

If you see activating start-pre, give the fleet units a few minutes to pull the
remote Docker images.

You can check the status of the fleet units using the following command:

$ fleetctl status dbuilder.service

Suppose we try again in a couple of minutes:

$ fleetctl list-units

Then we can see that we've successfully got two new fleet units on our new tsc-
registry-cbuilder1 server.

Building a Deployment Setup

[66]

You might remember from the previous chapter that the set_cluster_access.sh
script does the following:

• It sets PATH to the ~/coreos-tsc-gce/bin folder so that we can access
executable files and scripts stored there from any folder

• It sets FLEETCTL_TUNNEL to our control/etcd machine's external IP
• It prints machines at the cluster with fleetctl list-machines
• It prints units at the cluster with fleetctl list-units
• It allows us to work with a remote etcd cluster via a local fleetctl client

Summary
In this chapter, you learned how to deploy code on a remote Test/Staging cluster on
GCE, and set up the Docker builder and private Docker registry machine.

In the following chapter, we will cover these topics: using our Staging and Docker
builder and private registry servers to deploy code from Staging to production,
building Docker images, and deploying them on production servers.

[67]

Building a Production Cluster
In the previous chapter, we saw how to deploy code on a remote test/staging cluster,
and set up the Docker builder and Private Docker Registry server. In this chapter, we
will cover how to set up a production cluster on Google Cloud Compute Engine and
how to deploy code from the Staging server using the Docker builder and Docker
private registry.

We will cover the following topics in this chapter:

• Bootstrapping a remote Production cluster to GCE
• Deploying code on the Production cluster servers
• An overview of the setup of Dev/Test/Staging/Production
• PaaS based on fleet
• Another cloud alternative to run CoreOS clusters

Bootstrapping a remote production
cluster on GCE
We have already seen how to set up our test/staging environment on Google Cloud.
Here, we will use a very similar approach to set up our Production cluster, where
the usually tested code is run in a stable environment with more powerful and
high-availability servers.

Building a Production Cluster

[68]

Setting up the production cluster
Before we install the cluster, let's see what folders/files we have there; type the
following commands in your terminal:

$ cd coreos-essentials-book/chapter7/Production_Cluster

$ ls

cloud-config

create_cluster_workers.sh

fleet

files

create_cluster_control.sh

install_fleetctl_and_scripts.sh

settings

As you can see, we have folders/files that are very similar to what we used to set up
the Test/Staging Cluster.

We are not going to print all the scripts and files that we are going to use,
as it will take up half the chapter just for that. Take a look at the scripts
and other files. They are very well-commented, and it should not be too
difficult to understand them.

When you are done with this chapter, you can adopt the provided scripts to
bootstrap your clusters. As before, update the settings file with your Google Cloud
project ID and the zone where you want CoreOS instances to be deployed:

1. Next let's install our control server, which is our Production cluster's
etcd node:
$./create_cluster_control.sh

Chapter 7

[69]

We've just created our new Production cluster's control node.
For learning purposes, we used only one etcd server. For a real Production
Cluster, a minimum of three etcd servers is recommended, and each server
should be located in a different cloud availability zone.
As the Production cluster setup scripts are very similar to the Test/Staging
cluster scripts, we are not going to analyze them here.

2. The next step is to create our Production cluster workers:
$./create_cluster_workers.sh

You should see the following output:

For the other cluster workers, you should see something like this:

Make a note of the workers' external IPs; we will need them later.
Of course, you can always check them out at the Google Cloud
Developers Console.

Building a Production Cluster

[70]

So, we've got our production servers set up on GCE. If you check out the
Google Cloud Developers Console for Compute Engine Instances, you
should see a list of servers, like this:

3. Now let's install all the necessary scripts to access our cluster:
$./install_fleetctl_and_scripts.sh

This script will create a new folder called ~/coreos-prod-gce, which will
have the same folders as our Test/Staging cluster:

 ° The bin folder will have scripts for accessing cluster machines and
the set_cluster_access.sh script

 ° The fleet - website1.service fleet unit file

Chapter 7

[71]

4. Let's run set_cluster_access.sh:
$ cd ~/coreos-prod-gce/bin

$./set_cluster_access.sh

Perfect! Our production cluster is up-and-running!

As you can see, we have three servers there, one for the etcd services and two
workers to run our website.

We already have the website1 fleet unit prepared. Let's install it:

$ cd ~/coreos-prod-gce/fleet

$ fleetctl start website1.service

The following screenshot demonstrates the output:

Now we are ready to deploy code on our Production servers.

Deploying code on production cluster
servers
In the previous chapters, we saw how to set up our Test/Staging environment on
Google Cloud and deploy our code there, and we did set up our Docker builder and
Docker Private Registry server.

In the next section, we will learn how to deploy code on our Web servers in
Production cluster using Docker builder and Docker Private Registry.

Building a Production Cluster

[72]

Setting up the Docker builder server
Before we deploy our code from staging to production, we need to copy the
Dockerfile and the build.sh and push.sh files to our Docker builder.

To do this, run the following commands:

$ cd coreos-essentials-book/chapter7/Test_Staging_Cluster/

$./install_website1_2_dbuilder.sh

You should see something like what is shown in the following screenshot:

So let's check out what happened—that is, what that script has done. It has copied
three files to Docker builder server:

1. This will be used to build our production Docker image:
$ cat Dockerfile:

FROM nginx:latest

add website code

ADD website1 /usr/share/nginx/html

EXPOSE 80

2. The following is the Docker image building script:
$ cat build.sh

docker build --rm -t 10.200.4.1:5000/website1 .

3. Here is the Docker image push script to our Private Docker Registry:
$ cat push.sh

docker push 10.200.4.1:5000/website1

Okay, we have prepared our Docker builder server. Let's start cracking the code
deployment on the production servers.

Chapter 7

[73]

Deploying code on production servers
To deploy code on our production web servers, run the following command:

$ cd ~/coreos-prod-gce

When we built the production cluster, the install script installed the deploy_2_
production_website1.sh script. Let's run it, and you should see an output similar
to the next two screenshots:

$./deploy_2_production_website1.sh

Building a Production Cluster

[74]

You should also see something like this:

Now open prod-web1 and prod-web2 in your browser using their external IPs, and
you should see something like what is shown in the following screenshot:

We see exactly the same web page as on our staging server.

Awesome! Our deployment to production servers is working fine!

Let's see what happened there.

Chapter 7

[75]

Run the following command:

$ cat deploy_2_production_website1.sh

#!/bin/bash

Build docker container for website1

and release it

function pause(){

read -p "$*"

}

Test/Staging cluster

Fetch GC settings

project and zone

project=$(cat ~/coreos-tsc-gce/settings | grep project= | head -1 | cut
-f2 -d"=")

zone=$(cat ~/coreos-tsc-gce/settings | grep zone= | head -1 | cut -f2
-d"=")

cbuilder1=$(gcloud compute instances list --project=$project | grep -v
grep | grep tsc-registry-cbuilder1 | awk {'print $5'})

create a folder on docker builder

echo "Entering dbuilder docker container"

ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no
core@$cbuilder1 "/usr/bin/docker exec docker-builder /bin/bash -c 'sudo
mkdir -p /data/website1 && sudo chmod -R 777 /data/website1'"

sync files from staging to docker builder

echo "Deploying code to docker builder server !!!"

ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no
core@$cbuilder1 '/usr/bin/docker exec docker-builder rsync -e "ssh -o
UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no" -avzW --delete
core@10.200.3.1:/home/core/share/nginx/html/ /data/website1'

change folder permisions to 755

ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no
core@$cbuilder1 "/usr/bin/docker exec docker-builder /bin/bash -c 'sudo
chmod -R 755 /data/website1'"

echo "Build new docker image and push to registry!!!"

ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no
core@$cbuilder1 "/usr/bin/docker exec docker-builder /bin/bash -c 'cd /

Building a Production Cluster

[76]

data && ./build.sh && ./push.sh'"

##

Production cluster

Fetch GC settings

project and zone

project2=$(cat ~/coreos-prod-gce/settings | grep project= | head -1 | cut
-f2 -d"=")

Get servers IPs

control1=$(gcloud compute instances list --project=$project2 | grep -v
grep | grep prod-control1 | awk {'print $5'})

web1=$(gcloud compute instances list --project=$project2 | grep -v grep |
grep prod-web1 | awk {'print $5'})

web2=$(gcloud compute instances list --project=$project2 | grep -v grep |
grep prod-web2 | awk {'print $5'})

echo "Pull new docker image on web1"

ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no
core@$web1 docker pull 10.200.4.1:5000/website1

echo "Pull new docker image on web2"

ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no
core@$web2 docker pull 10.200.4.1:5000/website1

echo "Restart fleet unit"

restart fleet unit

ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no
core@$control1 fleetctl stop website1.service

ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no
core@$control1 fleetctl start website1.service

#

sleep 5

echo " "

echo "List Production cluster fleet units"

ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no
core@$control1 fleetctl list-units

echo " "

echo "Finished !!!"

pause 'Press [Enter] key to continue...'

Chapter 7

[77]

The steps for deployment to production are as follows:

1. Creates a folder called /data/website1 on the Docker builder server.
2. Use rsync via the docker-builder container to sync files from Staging1 to

the Docker builder server.
3. Run the build.sh script via the docker-builder container.
4. Push a new Docker image to the Private Docker Registry.
5. Pull a new Docker image onto the Prod-web1 and prod-web2 servers.
6. Restart the website1.service fleet unit via the Production cluster's

etcd server.
7. And voilà! We have completed the release of a new website to our

production cluster.

One thing to note
We are using the docker-builder container to sync and build our
Docker container.
This can be done directly on the Docker builder server, but using the
container allows us to add any tools required to the container, which
gives an advantage. If we need to replicate the Docker Builder server
or replace it with a new one, we just have to install our docker-builder
container to get things working again.

An overview of the Dev/Test/Staging/
Production setup
Let's overview the advantages of performing the setup of the Dev/Test/Staging/
Production environment in the way we did it:

• Local code development via the CoreOS VM decreases your testing time,
as all changes get pushed to a local server on your VirtualBox VM.

• Cloud-based Test/Staging is good to use for team-shared projects using
GitHub or Bitbucket. It also has, in our case, nginx containers running as
our web servers, and the code is used via the attached host folder. This
significantly speeds up code deployment from the test and staging git
branches, as the Docker container does not need to be rebuilt each time
we pull code from the git repository.

Building a Production Cluster

[78]

• For production, a separate cluster is used. It is good practice to separate
development and production clusters.

• For production, we use the same Docker base image as that on the test/
staging servers, but we build a new Docker image, with the code baked
inside. So, we can, for example, auto-scale our website to as many servers
as we want by reusing the same Docker image on all the servers, and all the
servers will be running exactly the same code.

• For Docker image building and our Private Docker Registry, we use the same
server, which is accessible only via the internal GCE IP. If you want to expose
the Docker Registry to external access, for example, the nginx container with
authentication should be put in front of the Docker registry to make it secure.

• This is only one way of setting up the Dev/Test/Staging/Production
environment. Each setup scenario is different, but such setup should
put you on the right path.

PaaS based on fleet
In this chapter and in previous chapters, we explained how to use fleet to deploy
our different services on our clusters. Fleet is a powerful and easy-to-use low-level
cluster manager that controls systemd at the cluster level. However, it lacks a web
UI, easy orchestration tools, and so on, so this is where PAZ, the nice PaaS, steps
in to help us out.

Deploying services using PAZ
The website at http://www.paz.sh has a very nice and user-friendly web UI, which
makes it much easier to set up a CoreOS cluster. PAZ also has an API that you can
use if you want to automate things via scripts.

Chapter 7

[79]

Through its dashboard, you can add and edit your services, check the status of the
cluster (viewed by host or by unit), and view monitoring information and logs for
the cluster.

It fully leverages fleet to orchestrate services across the machines in a cluster. It is
built in Node.js and all its services run as Docker containers.

The following pointers explain how PAZ works:

• Users can declare services in the UI
• Services get stored in the service directory
• The scheduler is the service that deploys things
• You can manually tell the scheduler to deploy, or have it triggered at the end

of your CI process
• Paz supports the post-push Docker Hub web hooks
• By using etcd and service discovery, your containers are linked together

Building a Production Cluster

[80]

Of course, it will keep evolving and getting new features but, at the time of writing
this book, only the services in the preceding list were available.

Giving a complete overview of PAZ is beyond the scope of this book, but you can
read more about the Paz architecture at http://paz.readme.io/v1.0/docs/paz-
architecture.

Another cloud alternative for running
CoreOS clusters
To bootstrap our Test/Staging and Production clusters, we used the Google Cloud
Compute Engine's virtual instances, but sometimes you might want to run your
servers on real servers (bare-metal servers) that are not stored at your premises.

There are a number of different bare-metal server providers out there, but one that
caught my eye was https://www.packet.net.

I recently came across these while I was investigating hosting solutions for CoreOS
and containers. They're interesting in the sense that, instead of going the typical
cloud/hypervisor route, they've created a true, on-demand, and bare-metal cloud
solution. I'm able to spin up a CoreOS server from scratch in less than 5 minutes,
and they have a pretty comprehensive API and accompanying documentation.

Here's an example of a packet project dashboard:

Chapter 7

[81]

Summary
In this chapter, we saw how to set up a Production cluster and deploy our code
staging using the Docker builder and private Docker registry machines. Finally,
we overviewed a PaaS based on fleet—Paz.sh.

In the next chapter, we will overview the CoreOS update strategies and CoreUpdate
for our servers. We will also make use of hosted public/private Docker repositories
at https://quay.io and the self-hosted CoreOS Enterprise Registry.

[83]

Introducing CoreUpdate and
Container/Enterprise Registry
In the previous chapter, we saw how to set up a production cluster and deploy
our code, how to set up staging using Docker builder, and private Docker registry
machines to production servers.

In this chapter, we will overview the CoreOS update strategies, paid CoreUpdate
services, and Docker image hosting at the Container Registry and the Enterprise
Registry.

In this chapter we will cover the following topics:

• Update strategies
• CoreUpdate
• Container Registry
• Enterprise Registry

Update strategies
Before we look at the paid CoreUpdate services from CoreOS, let's overview
automatic update strategies that come out-of-the-box.

Automatic updates
CoreOS comes with automatic updates enabled by default.

As we have mentioned earlier, as updates are released by the CoreOS team, the host
will stage them down to a temporary location and install to the passive usr partition.
After rebooting, active and passive partitions get swapped.

Introducing CoreUpdate and Container/Enterprise Registry

[84]

At the time of writing this book, there are four update strategies, as follows:

Which update strategy should be used is defined in the update part of
cloud-config:

 #cloud-config
 coreos:
 update:
 group: stable
 reboot-strategy: best-effort

Let's take a look at what these update strategies are:

• best-effort: This is the default one and works in such a way that it checks
whether the machine is part of the cluster. Then it uses etcd-lock; otherwise
it uses the reboot strategy.

• etcd-lock: This allows us to boot only one machine at a time by putting
a reboot lock on each machine and rebooting them one by one.

• reboot: This reboots the machine as soon as the update gets installed on
the passive partition.

• off: The machine will not be rebooted after a successful update install onto
the passive partition.

Uses of update strategies
Here are some examples of what update strategies can be used for:

• best-effort: This is recommended to be used in production clusters
• reboot: This can be used for machines that can only be rebooted at a certain

time of the day—for example, for automatic updates in a maintenance window
• off: This can be used for a local development environment where the control

of reboots is in the user's hands

Chapter 8

[85]

If you want to learn more about update strategies, take a look at the CoreOS website
at https://coreos.com/docs/cluster-management/setup/update-strategies/.

CoreUpdate
CoreUpdate is a part of the managed Linux plans (https://coreos.com/
products/).

It is a tool in the commercial offerings of CoreOS. It provides users with their own
supported Omaha server and is analogous to tools such as Red Hat Satellite Server
and Canonical Landscape:

• The standard plan is managed and hosted by CoreOS
• The premium plan can be run behind the firewall, which can be on-premise

or on the cloud

CoreUpdate uses exactly the same strategies as the aforementioned
update strategies, except for a few differences in the update portion of the
cloud-config file:

#cloud-config
 coreos:
 update:
 group: production
 server: https://customer.update.core-os.net/v1/update

Here:

• group is what you have set at your CoreUpdate dashboard
• server is the link generated for you after signing in for the managed

Linux plan

In our current example, as per cloud-config, the servers belong to
https://customer.update.core-os.net/v1/update and group is production.

Introducing CoreUpdate and Container/Enterprise Registry

[86]

We change via the CoreUpdate UI, as shown in the following screenshot:

The following features are present:

• Release channel; in our case, it is the stable one
• Enable/disable automatic updates
• Time window between machines updates; in our case, it is 90 minutes

The CoreUpdate UI allows you to very easily control your cluster update groups,
without any need to perform ssh via the terminal to your servers and change there
on each server individually update settings.

You can read more about CoreUpdate at the following pages:
https://coreos.com/docs/coreupdate/coreos/coreupdate-
configure-machines

https://coreos.com/docs/coreupdate/coreos/coreupdate-
getting-started

Chapter 8

[87]

Container Registry
The Container Registry is a hosted CoreOS service for application containers at
https://quay.io. There, you can host your Docker images if you don't want
to run Private Docker Registry yourself:

• It offers free, unlimited storage and repositories for public container
repositories

• If you want private repositories, it offers a plenty of plans to choose from

Quay.io overview
Let's go through an overview of what they have there: a nice and easy-to-use UI.

Introducing CoreUpdate and Container/Enterprise Registry

[88]

In the following screenshot we see postgres containers image in more details:

As you see from the preceding screenshot, the UI is very easy to use and it's easy to
understand the features.

Chapter 8

[89]

Let's see how the Create Repository feature looks:

When you create a new repository, you can do the following:

• Make the repository public or private.
• Empty it if you want to build containers yourself and push them to

the Registry.
• Provide (upload) a Docker file.
• Link to the GitHub repository. This is the preferred choice as it allows

you to automate container building when you push changes to your
GitHub Repository.

Enterprise Registry
Enterprise Registry is basically the same as Container Registry, but is hosted on your
premises or cloud servers behind your firewall.

It has different plan options and can be found at https://coreos.com/products/
enterprise-registry/.

Introducing CoreUpdate and Container/Enterprise Registry

[90]

It allows you to manage container builds, permissions of your teams and users,
and so on.

If your company's requirement is a setup that is very secured and fully controlled by
you, then using the Container Registry and Enterprise Registry is the way to go.

Summary
In this chapter, we overviewed the CoreOS update strategies, CoreUpdate services,
the hosted free/paid Container Registry at https://quay.io, and the self-hosted
Enterprise Registry services.

In the next chapter, you will be introduced to the CoreOS rkt—App Container
runtime that can be used instead of Docker containers.

[91]

Introduction to CoreOS rkt
In the previous chapter, we overviewed CoreUpdate, free and paid container
repositories, and the hosting and enterprise registry provided by CoreOS.

In this chapter, you will learn about CoreOS's rkt, a container runtime for
applications. We will cover the following topics in this chapter:

• Introduction to rkt
• Running streamlined Docker images with rkt
• Converting Docker images to ACI

An introduction to rkt
rkt (pronounced "rock it") is a container runtime for applications made by CoreOS
and is designed for composability, speed, and security. It is an alternative to Docker
and is designed to be run on servers with the most rigorous security and production
environments.

rkt is a standalone tool, compared to Docker's client and central daemon version,
which makes it a better alternative to Docker, as it has fewer constraints and
dependencies. For example, if the docker central daemon crashes, all running
docker containers will be stopped; in the case of rkt, however, this can affect
only the particular rkt process responsible for running rkt containers in its pod.
As each rkt process gets its process identification number (PID), if one rkt process
dies, it will not affect any other rkt process.

Introduction to CoreOS rkt

[92]

Features of rkt
We will overview the main rkt features, as follows:

• It can be integrated with init systems, as systemd and upstart
• It can be integrated with cluster orchestration tools, such as fleet and

Kubernetes (which we will cover in the next chapter)
• It is compatible with other container solutions as Docker
• It has an extensible and modular architecture

The basics of App container
rkt is an implementation of App Container (appc: https://github.com/appc/
spec/), which is open source and defines an image format, the runtime environment,
and the discovery mechanism of application containers:

• rkt uses images of the Application Container Image (ACI) format as
defined by the App Container (appc) specifications (https://github.com/
appc/spec). An ACI is just a simple tarball bundle of different rootfs files
and an image manifest.

• A pod (the basic unit of execution in rkt) is a grouping of one or more app
images (ACIs), with some optionally applied additional metadata on the pod
level—for example, applying some resource constraints, such as CPU usage.

Using rkt
As rkt comes preinstalled with CoreOS, running ACI images with rkt is easy and it is
very similar to docker commands. (I would love to write more on this, but rkt does
not provide many options yet, as it is constantly changing and innovating, which
was also the case at the time of writing this book).

As rkt has no running OS X client, you need to log in to your CoreOS VM host
directly to run the following example commands:

1. First, we need to trust the remote site before we download any ACI file from
there, as rkt verifies signatures by default:
$ sudo rkt trust –prefix example.com/nginx

2. Then we can fetch (download) an image from there:
$ sudo rkt fetch example.com/nginx:latest

Chapter 9

[93]

3. Then running the container with rkt is simple:
$ sudo rkt run example.com/nginx:v1.8.0

As you see, rkt appropriates ETags—as in our case v1.8.0 will be run.

rkt networking
By default rkt run uses the host mode for port assignments. For example, if you
have EXPOSE 80 in your Dockerfile, run this command:

$ sudo rkt run example.com/nginx:v1.8.0

The rkt pod will share the network stack and interfaces with the host machine.

If you want to assign a different port/private IP address, then use run with
these parameters:

sudo rkt run --private-net --port=http:8000 example.com/nginx:v1.8.0

rkt environment variables
Environment variables can be inherited from the host using the --inherit-env flag.
Using flag --set-env, we can set individual environment variables.

Okay, let's prepare a few environment variables to be inherited using these
two commands:
$ export ENV_ONE=hi_from_host

$ export ENV_TWO=CoreOS

Now let's use them together with --set-env in the command, as follows:
$ sudo rkt run --inherit-env --set-env ENV_THREE=hi_nginx example.com/
nginx:v1.8.0

rkt volumes
For host volumes, the -volume flag needs to be used. Volumes need to be defined in
the ACI manifest when creating the new ACI image and converting Docker images.
You will get an output like this:

Introduction to CoreOS rkt

[94]

The following command will mount the host directory on the rkt Pod:

$ sudo rkt run –volume volume-/var/cache/nginx,kind=host,source=/some_
folder/nginx_cache example.com/nginx:v1.8.0

Note that the rkt volume standard was not completed at the time of writing this
book, so the previous example might not work when rkt reaches its final version.

Next let's see how rkt plays nicely with docker images.

Running streamlined Docker images
with rkt
As there are thousands of docker images on the public Docker hub, rkt allows you
to use them very easily. Alternatively, you might have some docker images and
would like to run them with rkt too, without building new rkt ACI images, to see
how they work with rkt.

Running Docker images is very much the same as it was in previous examples:

1. As Docker images do not support signature verification yet, we just skip the
verification step and fetch one with the --insecure-skip-verify flag:
$ sudo rkt --insecure-skip-verify fetch docker://nginx

Chapter 9

[95]

2. The last line shown in the preceding screenshot represents the rkt image ID
of the converted ACI, and this can be used to run with rkt :
$ sudo rkt --insecure-skip-verify run sha512-13a9c5295d8c13b9ad94e
37b25b2feb2

3. Also we can run in this way, where the image will be downloaded and
then run:
$ sudo rkt --insecure-skip-verify run docker://nginx

4. If we want to use volumes with Docker images, we run this line:
$ sudo rkt --insecure-skip-verify run \

--volume /home/core/share/nginx/html:/usr/share/nginx/html \

docker://nginx

This is very similar to the docker command, isn't it?

5. Okay, let's update our local development nginx.service to use rkt:
[Unit]

Description=nginx

[Service]

User=root

TimeoutStartSec=0

EnvironmentFile=/etc/environment

ExecStart=/usr/bin/ rkt --insecure-skip-verify run \

 -volume /home/core/share/nginx/html:/usr/share/nginx/html \

docker://nginx

#

Restart=always

RestartSec=10s

[X-Fleet]

As you see, there is no ExecStop=/usr/bin/docker stop nginx. It is not needed
because systemd takes care of stopping the rkt instance when the systemctl/
fleetctl stop is used by sending the running nginx process a SIGTERM.

Much simpler than docker, right?

In the next section, we will see how to convert a docker image into an ACI image.

Introduction to CoreOS rkt

[96]

Converting Docker images into ACI
With CoreOS comes another file related to rkt—docker2aci. It converts a docker
image to an ACI image (an application container image used by rkt).

Let's convert our nginx image. Run the following command:

$ docker2aci docker://nginx

We can also save a docker image in a file and the convert it. Run the following
command:

$ docker save -o nginx.docker nginx

$ docker2aci nginx.docker

Chapter 9

[97]

Finally, you can try to use the generated ACI files by updating the preceding
nginx.service fleet unit:

[Unit]

Description=nginx

[Service]

User=root

TimeoutStartSec=0

EnvironmentFile=/etc/environment

ExecStart=/usr/bin/ rkt --insecure-skip-verify run \

 --volume volume-/usr/share/nginx/html,kind=host,source=/usr/share/nginx/
html \

 full_path_to/nginx-latest.aci

#

Restart=always

RestartSec=10s

[X-Fleet]

Summary
In this chapter, we overviewed the main features of CoreOS rkt, the rkt application
container, and the image format. You also learned how to run images based on aci
and docker as containers with rkt.

In the next chapter, you will get an introduction to Google Kubernetes, an open
source orchestration system for application containers.

[99]

Introduction to Kubernetes
In this chapter, we will cover a short overview of Google Kubernetes, which
manages containerized applications across multiple hosts in a cluster. As Kubernetes
is a very large project, in this chapter, we will only overview its main concepts and
some use cases, including these:

• What is Kubernetes?
• Primary components of Kubernetes
• Kubernetes cluster setup
• Tectonic—CoreOS and Kubernetes combined for a commercial implementation

What is Kubernetes?
Google has been running everything in containers for more than decade. Internally,
they use a system called Borg (http://research.google.com/pubs/pub43438.
html), the predecessor of Kubernetes, to scale and orchestrate containers
across servers.

Lessons learned from Borg were used to build Kubernetes, an open source container
orchestration system. It became popular very quickly when it was released in
June 2014.

All of the best ideas from Borg were incorporated into Kubernetes. Many of Borg's
developers now work on Kubernetes.

Kubernetes received thousands of stars at it's GitHub project (https://github.com/
GoogleCloudPlatform/kubernetes), and hundreds of supporters from the open
source community and companies such as CoreOS, Red Hat, Microsoft, VMware,
and so on.

Introduction to Kubernetes

[100]

Primary components of Kubernetes
Kubernetes can be run on any modern Linux operating system.

Here are the main components of Kubernetes:

• Master: This is the set of main Kubernetes control services, usually running
on one server except the etcd cluster. However it can be spread around a few
servers. The services of Kubernetes are as follows:

 ° etcd cluster
 ° API server
 ° Controller manager
 ° Scheduler

• Node: This is a cluster worker. It can be a VM and/or bare-metal server.
Nodes are managed from the master services and are dedicated to run pods.
These two Kubernetes services must run on each node:

 ° Kubelet
 ° Network proxy

Docker and rkt are used to run application containers. In future, we will see
more support for application container systems there.

• Pod: This is a group of application containers running with the shared
context. Even a single application container must run in a Pod.

• Replication controllers: These ensure that the specified numbers of pods are
running. If there are too many pods, will be killed. If they are too less, then
the required number of pods will be started. It is not recommended to run
pods without replication controllers even if there is a single Pod.

• Services: The same pod can be run only once. If it dies, the replication
controller replaces it with a new pod. Every pod gets its own dedicated IP,
which allows on the same node to run many containers on the port. But
every time a pod is started from the template by replication controller gets
a different IP, and this is where services come to help. Each service gets
assigned a virtual IP, which stays with it until it dies.

• Labels: These are the arbitrary key-value pairs that are used by every
Kubernetes component; for example, the replication controller uses them
for service discovery.

Chapter 10

[101]

• Volumes: A volume is a directory that is accessible from a container, and is
used to store the container's stateful data.

• Kubectl: This controls the Kubernetes cluster manager. For example, you can
add/delete nodes, pods, or replication controllers; check their status; and so
on. Kubernetes uses manifest files to set up pods, replication controllers,
services, labels, and so on.

Kubernetes has a nice UI, which was built and contributed to by http://kismatic.
io/. It runs on an API server:

This allows us to check the Kubernetes cluster's status and add/delete pods,
replication controllers, and so on. It also allows us to manage a Kubernetes cluster
from the UI in the same way as from kubectl.

http://kismatic.io/ is also going to offer an enterprise/commercial version of
Kubernetes in the near future.

Introduction to Kubernetes

[102]

Kubernetes cluster setup
In the previous topic, we overviewed the main features of Kubernetes, so let's do
some interesting stuff—installing small Kubernetes on Google Cloud.

Note, that if you are using a free/trial Google Cloud account, which has a limit of eight
CPUs (eight VMs are allowed), you need to delete some of them. Let's replace our
production cluster with a Kubernetes cluster. Select the VMs as per what is shown in
the following screenshot. Then click on the Delete button in the top-right corner.

Now we are ready to install a Kubernetes cluster:

1. Type this in your terminal:
$ cd coreos-essentials-book/Chapter10/Kubernetes_Cluster

Chapter 10

[103]

Note that as we have folders/files that are very similar to what we used to
set up the Test/Staging/Production clusters, we are not going to review the
scripts this time. You can always check out the setup files yourself and learn
the differences there:

2. Update the settings file there with your GC project ID and zone.
3. Let's now run the first script, named 1-bootstrap_cluster.sh:

$./ 1-bootstrap_cluster.sh

You should see an output similar to this:

If you check out the Google Cloud console, you should see three new VMs there,
namely k8s-master, k8s-node1, and k8s-node2:

The 1-bootstrap_cluster.sh script has installed a small CoreOS cluster, which is
set up in the same way as our previous Test/Staging/Production cluster—one etcd
server and two workers connected to it. And also create a new folder, k8s-cluster,
in the user home folder where the settings file got copied and other binary files
will be copied later on.

Introduction to Kubernetes

[104]

1. Next, we need to install the fleetctl, etcdctl, and kubectl local clients on
our computer to be able to communicate with the CoreOS cluster etcd and
fleet services, and with the Kubernetes master service.
Type the following line in your terminal:
$./2-get_k8s_fleet_etcd.sh

You should see an output similar to this:

2. Now let's install the Kubernetes cluster on top our new CoreOS cluster.
Type this command in your terminal:
$./3-install_k8s_fleet_units.sh

Chapter 10

[105]

You should see an output similar to what is shown here:

3. Let's try access our Kubernetes cluster via "", which was copied to ~/k8s-
cluster/bin by the 1-bootstrap_cluster.sh script.

Type this in your terminal:
$ cd ~/k8s-cluster/bin

$./set_k8s_access.sh

You should get an output similar to the following:

Introduction to Kubernetes

[106]

As you can see, our Kubernetes cluster is up and running.

What set_k8s_access.sh does is that it provides fleetctl and kubectl with
access to the remote k8s-master server by forwarding the localhost ports 2379
(fleet) and 8080 (Kubernetes master) to it.

1. Let's check out the Kubernetes cluster by typing this into the terminal:
$ kubectl cluster-info

You should see an output similar to this:

Perfect! Now we can access the remote Kubernetes cluster from our local
computer.

2. As we've got our Kubernetes cluster up and running, let's deploy the same
website1 Docker image that we used for our production cluster deployment.
Type this into your terminal:
$ kubectl run website1 --image=10.200.4.1:5000/website1
--replicas=2 --port=80

You should see the following output:

The previous command has created two website1 pods listening on port
80. It has also created a replication controller named website1, and this
replication controller ensures that there are always two pods running.
We can list created pods by typing the following into your terminal:
$ kubectl get pods

You should see an output like this:

Chapter 10

[107]

To list the created replication controller, type this into your terminal:
$ kubectl get rc

You should see the following output:

3. Now, let's expose our pods to the Internet. The Kubectl command can
integrate with the Google Compute Engine to add a public IP address
for the pods. To do this, type the following line into your terminal:
$ kubectl expose rc website1 --port=80 --type=LoadBalancer

You should see an output like this:

The previous command created a service named website1 and mapped
an external IP address to the service. To find that IP address, type this into
your terminal:
$ kubectl get services

You should see an output similar to the following:

The IP in the bottom line is our IP, and it is of the load balancer. It is assigned to the
k8s-node-1 and k8snode-2 servers and used by website1 service.

Let's type this IP into our web browser. We should get an output similar to this:

Introduction to Kubernetes

[108]

As you have seen previously, it shows exactly the same web page as we got on our
production web servers. Also, it is exactly the same code as we had in the staging
environment. We built the Docker image from it and used that Docker image for
deployment on our production cluster and the Kubernetes cluster.

If you want, you can easily run more replicas of pods by using this simple command:

$ kubectl scale --replicas=4 rc website1

Let's check our replication controller by typing the following into our terminal:

$ kubectl get rc

You should see an output similar to this:

The previous command scales the pods, and replication controller ensures that we
always have four of them running.

You can find plenty of usage examples to play with at https://
github.com/GoogleCloudPlatform/kubernetes/tree/
master/examples.

This book is too short to cover all the good things you can do with Kubernetes, but
we should be seeing more Kubernetes books pop up soon.

Some other URLs to look at are given here:
If you are a Mac user, you can install one of the apps that
will set your Kubernetes cluster on your Mac: 1 master x 2
nodes on https://github.com/rimusz/coreos-osx-
gui-kubernetes-cluster, and standalone master/node
on https://github.com/rimusz/coreos-osx-gui-
kubernetes-solo.
Other guides to Kubernetes on CoreOS are available at https://
github.com/GoogleCloudPlatform/kubernetes/blob/
master/docs/getting-started-guides/coreos.md.

Chapter 10

[109]

Tectonic – CoreOS and Kubernetes
combined for a commercial
implementation
Tectonic (http://tectonic.com) is a commercial CoreOS distribution with a
combined CoreOS and Kubernetes stack. It can be used by businesses of any size.

Tectonic is prepackaged with all the open source components of CoreOS and
Kubernetes, and adds some more commercial features:

• Management console/UI for workflows and dashboards
• Corporate SSO integration
• Quay-integrated container registry for building and sharing Linux containers
• Tools for automation of container deployments
• Customized rolling updates

It can run in public clouds or on-premise.

Its management console is simple and easy to use:

Introduction to Kubernetes

[110]

In the preceding screenshot, we have a visualization of our Replication controllers
(RC). On the left-hand side, you can' see each RC with the labels will assign to pods
as they're instantiated. Below the name of the RC, you'll see a list of all running pods
that match the same label queries.

The preceding screenshot shows us the elasticsearch replication controller state,
which labels are used there, and pod volumes.

Tectonic aims to provide an easily container deployment solution, and companies
can begin seeing its benefits very quickly of using containers in enterprise.

Summary
In this chapter, we overviewed Google Kubernetes and covered what is about, its
main components, and its CoreOS commercial implementation.

We hope that this book will equip you with all the information you need to leverage
the power of CoreOS and the related containers, and help you develop effective
computing networks. Thank you for reading it!

[111]

Index
A
application container (App Container)

reading 13, 14
specifications, URL 92
writing from 13, 14

Application Container Image (ACI)
about 92
Docker images, converting to 96, 97

C
cloud-config file

cluster, customizing via 32, 33
URL 35

cluster
setup, test/staging 45-49
workers, creating 49-53

cluster setup, Kubernetes
about 102
installing 102-108
URLs 108

components, Kubernetes
Kubectl 101
labels 100
master 100
node 100
pod 100
replication controllers 100
services 100
volumes 101

Container Registry
about 87
Quay.io overview 87

CoreOS
about 1
documentation, URL 43
overview 2
URL 108
virtual machine, installing 4
working 2-4

CoreOS cluster
architectures, URL 58
running, alternative 80

coreos-osx-gui-cluster
URL 57

coreos-vagrant project
cloning 28-31

CoreOS virtual machine (VM)
cloud-config, working with 4-6
coreos-vagrant GitHub project, cloning 4
installing 4
logging to 12
SSH 6-9
startup 6

CoreUpdate
about 85
features 86
references 86
URL 85

D
Dev/Test/Staging/Production setup

advantages 77, 78
overview 77, 78

Docker builder
server setup 62-72

Docker images
converting, to ACI 96, 97

[112]

E
Enterprise Registry

about 89
URL 89

etcd
about 11
changes, tracking 14
from host machine, reading to 12
from host machine, writing to 12
reading 12, 13
use cases 15
writing to 12, 13

F
fleet

about 21, 78
Conflicts option 22
fleetctl 24
Global option 22
MachineID option 22
MachineMetadata option 22
MachineOf option 22
PaaS 78
unit files 21-24

fleetctl commands
overview 24
running, on remote cluster 54-57

fleet unit
files 21
references 25
scheduling, in cluster 33-35

G
GCE

remote production cluster,
bootstrapping 67

remote test/staging cluster,
bootstrapping 44

Google Cloud SDK
URL 44

K
kismatic

URL 101

Kubectl command 107
Kubernetes

about 99
cluster setup 102
combining, with Tectonic 110
components 100
URL 99, 101, 108

L
local cluster

bootstrapping 28
coreos-vagrant project, cloning 28-31
customizing, via cloud-config file 32, 33
fleet unit, scheduling 33-35

local development environment
development VM, setting up 38, 39
fleet units, advantages 43
fleet units, deploying 41-44
setting up 37
VM installation, process 39-41

O
optimal etcdcluster size

determining 27

P
PaaS

URL 78
PAZ

URL 80
used, for deploying services 78, 79
working 79

private Docker registry worker
setting up 62-66

production cluster servers
code, deploying 71-77
Docker builder server, setting up 72

Q
Quay.io

overview 87-89
URL 87

[113]

R
remote cluster

fleetctl commands, running 54-58
remote production cluster

bootstrapping, on GCE 67
setting up 68-71

remote test/staging cluster
bootstrapping, on GCE 44

Replication controllers (RC) 110
rkt

about 91
App container, basics 92
environment variables 93
features 92
networking 93
used, for running streamlined Docker

 images 94, 95
using 92
volumes 93

S
streamlined Docker images

running, with rkt 94, 95
systemctl

overview 20, 21
systemd

overview 17
systemctl 19
unit files 18, 19
unit files, URL 19, 25
using 17

T
Tectonic

about 109, 110
components 109
URL 109

Test and Staging servers
 code, deploying 59-62

time to live (TTL)
examples 15

U
unit file

creating, for systemd 18, 19
update strategies

about 83
automatic updates 83
best-effort 84
etcd-lock 84
off 84
reboot 84
URL 85
uses 84, 85

V
Vagrant

Google group, URL 35
URL 35

Vulcand proxy server
URL 15

Thank you for buying
CoreOS Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Chef
ISBN: 978-1-78328-521-1 Paperback: 316 pages

Automate your infrastructure into code and leverage
DevOps with Chef

1. Leverage the power of Chef to transform your
infrastructure into code to deploy new features
in minutes.

2. Understand the Chef architecture and its
various components including the different
types of server setups.

3. Packed with practical examples and industry
best practices for real-world situations.

Mastering Wireless Penetration
Testing for Highly Secured
Environments
ISBN: 978-1-78216-318-3 Paperback: 220 pages

Scan, exploit, and crack wireless networks by
using the most advanced techniques from security
professionals

1. Conduct a full wireless penetration test and
implement defensive techniques that can be
used to protect wireless systems.

2. Crack WEP, WPA, and even WPA2 wireless
networks.

3. A hands-on guide teaching how to expose
wireless security threats through the eyes
of an attacker.

Please check www.PacktPub.com for information on our titles

Mastering Gephi Network
Visualization
ISBN: 978-1-78398-734-4 Paperback: 378 pages

Produce advanced network graphs in Gephi and gain
valuable insights into your network datasets

1. Build sophisticated interactive network graphs
using advanced Gephi layout features.

2. Master Gephi statistical and filtering techniques
to easily navigate through even the densest
network graphs.

3. An easy-to-follow guide introducing you to
Gephi's advanced features, with step-by-step
instructions and lots of examples.

Getting Started with Windows
Server Security
ISBN: 978-1-78439-872-9 Paperback: 240 pages

Develop and implement a secure Microsoft
infrastructure platform using native and built-in tools

1. Learn how to identify and mitigate security
risks in your Microsoft Server infrastructure.

2. Develop a proactive approach to common
security threats to prevent sensitive data
leakage and unauthorized access.

3. Step-by-step tutorial that provides real-world
scenarios and security solutions.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: CoreOS – Overview
and Installation
	An overview of CoreOS
	How CoreOS works
	Installing the CoreOS virtual machine
	Cloning the coreos-vagrant GitHub project
	Working with cloud-config
	Startup and SSH

	Summary

	Chapter 2: Getting Started with etcd
	Introducing etcd
	Reading and writing to etcd from the host machine
	Logging in to the host
	Reading and writing to ectd

	Reading and writing from the application container
	Watching changes in etcd
	TTL (time to live) examples
	Use cases of etcd
	Summary

	Chapter 3: Getting Started with
systemd and fleet
	Getting started with systemd
	An overview of systemd
	systemd unit files
	An overview of systemctl

	Getting started with fleet
	The fleet unit files
	An overview of fleetctl

	References
	Summary

	Chapter 4: Managing Clusters
	Determining the optimal etcd cluster size
	Bootstrapping a local cluster
	Cloning the coreos-vagrant project
	Customizing a cluster via the cloud-config file
	Scheduling a fleet unit in the cluster

	References
	Summary

	Chapter 5: Building a Development Environment
	Setting up the local development environment
	Setting up the development VM
	What happened during the VM installation?
	Deploying the fleet units

	Bootstrapping a remote test/staging cluster on GCE
	Test/staging cluster setup
	Creating our cluster workers
	Running fleetctl commands on the remote cluster

	References
	Summary

	Chapter 6: Building a Deployment Setup
	Code deployment to Test and Staging servers
	Deploying code on servers

	Setting up the Docker builder and private Docker registry worker
	Server setup

	Summary

	Chapter 7: Building a Production Cluster
	Bootstrapping a remote production cluster on GCE
	Setting up the Production cluster

	Deploying code on production cluster servers
	Setting up the Docker builder server
	Deploying code on production servers

	An overview of the Dev/Test/Staging/Production setup
	PaaS based on fleet
	Deploying services using PAZ

	Another cloud alternative to run CoreOS clusters
	Summary

	Chapter 8: Introducing CoreUpdate and Container/Enterprise Registry
	Update strategies
	Automatic updates
	Uses of update strategies

	CoreUpdate
	Container Registry
	Quay.io overview

	Enterprise Registry
	Summary

	Chapter 9: Introduction to CoreOS rkt
	An introduction to rkt
	Features of rkt
	The basics of App container
	Using rkt
	rkt networking
	rkt environment variables
	rkt volumes

	Running streamlined Docker images
with rkt
	Converting Docker images into ACI
	Summary

	Chapter 10: Introduction to Kubernetes
	What is Kubernetes?
	Primary components of Kubernetes

	Kubernetes cluster setup
	Tectonic—CoreOS and Kubernetes combined for a commercial implementation
	Summary

	Index

