
www.allitebooks.com

http://www.allitebooks.org

Corona SDK Mobile Game
Development Beginner's Guide
Second Edition

Learn, explore, and create commercially successful mobile
games for iOS and Android

Michelle M. Fernandez

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Corona SDK Mobile Game Development Beginner's Guide
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2012

Second edition: March 2015

Production reference: 1250315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-934-3

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Michelle M. Fernandez

Reviewers
Oguz Konya

Zeheng Li

Volodymyr Sergeyev

Jason Slater

Commissioning Editor
Usha Iyer

Acquisition Editor
Reshma Raman

Content Development Editor
Sumeet Sawant

Technical Editor
Vivek Arora

Copy Editors
Charlotte Carneiro

Pranjali Chury

Karuna Narayanan

Alfida Paiva

Vikrant Phadke

Project Coordinator
Danuta Jones

Proofreaders
Safis Editing

Maria Gould

Indexer
Priya Sane

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Michelle M. Fernandez is a mobile game developer and cofounder of MobiDojo
(http://www.mobidojo.com). She is also a mentor to aspiring artists and programmers
trying to break into the game industry. After experimenting with several game engines over
the years, she was introduced to Corona SDK in late 2010 and has been an avid user of the
program ever since. She enjoys creating tutorials and new game frameworks for others to
learn from. When Michelle is not developing games, she is spending time with friends and
family, playing video games, traveling, and constantly learning new design paradigms.

I would first and foremost like to thank my family and friends for their
love and encouragement throughout the production of this book. I'd like
to thank David Roper for his support and patience during this project and
for always pushing me to do my best and succeed. I'd also like to thank
April Quileza and Yanglyn Ou who have always been there for me to help
review my work and who become my personal cheerleaders when things
get hectic. My greatest appreciation goes out to Carlos Icaza, who has been
a wonderful mentor and a great friend. I would like to acknowledge Walter
Luh for continuing to give Corona developers an amazing platform to work
with. A big thanks to all of the Packt staff for giving me this opportunity to
share my love and knowledge of mobile game development through
this book.

www.allitebooks.com

http://www.mobidojo.com
http://www.allitebooks.org

About the Reviewers

Oguz Konya is a game developer based in Istanbul, Turkey, and holds a master's degree in
game technologies. He has been developing games and simulations for the last 4 years
and is currently working as a game developer at Dodisoft Games. He is a hardcore gamer
and enjoys playing games with his wife, who is scarily getting better and better at beating
him at FPS games.

Zeheng Li is a PhD student in computer science at Southern Methodist University.
He is interested in the synergy of machine learning and natural language processing in the
software engineering domain. He holds a bachelor's degree in computer science and a
master's degree in management information systems. Prior to his doctoral study, he worked
for a start-up, focusing on mobile and web development. He is passionate about coding and
problem solving.

Volodymyr Sergeyev is a software developer and computer science enthusiast.

I would like to thank my wife, Inna; daughter, Vlada; and son, Arsen; for
their patience and love. These helps me a lot in everyday work! Also, I want
to give my love to my parents, Ludmyla and Volodymyr. I love you all.

www.allitebooks.com

http://www.allitebooks.org

Jason Slater is a technology journalist, blogger, and software developer with over 25 years
of industrial experience in building, managing, and writing about scalable, distributed,
and web-based applications. He is a member of the British Computer Society and holds a
master's degree in computer science (Internet technologies) with distinction.

Jason is the editor of a popular technology blog (http://www.jasonslater.com) and is a
regular contributor to technology-based publications, radio, and television.

You can reach and follow him on Twitter; his Twitter handle is @jasonslater.

www.allitebooks.com

http://www.jasonslater.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
 � Fully searchable across every book published by Packt

 � Copy and paste, print, and bookmark content

 � On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface xi
Chapter 1: Getting Started with Corona SDK 1

Downloading and installing Corona 1
Time for action – setting up and activating Corona on Mac OS X 2
Time for action – setting up and activating Corona on Windows 5
Using the simulator on Mac and Windows 7
Time for action – viewing a sample project in the simulator 8
Choosing a text editor 9
Developing on devices 9
Time for action – downloading and installing Xcode 10
Time for action – creating a Hello World application in two lines of code 12
Time for action – modifying our application 14
Time for action – applying a new font name to our application 15
Testing our application on an iOS device 17
Time for action – obtaining the iOS developer certificate 17

Adding iOS devices 22
Xcode 22
iTunes 23

Time for action – adding/registering your iOS device 23
Time for action – creating an App ID 24
Time for action – creating a provisioning profile 27

Application icon 28
Creating the Hello World build for iOS 29
Time for action – creating an iOS build 29
Time for action – loading an app on your iOS device 31
Testing our application on an Android device 33
Creating the Hello World build for Android 33

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Time for action – creating an Android build 33
Time for action – loading an app on your Android device 35
Summary 38

Chapter 2: Lua Crash Course and the Corona Framework 39
Lua to the rescue 40
Valuable variables 40

Global variables 40
Local variables 41
Table fields (properties) 41

Assignment conventions 42
Types of values 43
Time for action – printing values using blocks 44
Expressions 46

Arithmetic operators 46
Relational operators 46
Logical operators 47
Concatenation 47
The length operator 48
Precedence 48

Strings 49
Quoting strings 49

Time for action – getting our hands full of strings 50
Tables 51

Passing a table as an array 52
Altering contents in a table 52
Populating a table 53

Objects 54
Display objects 54
Display properties 54
Object methods 55

Images 56
Loading an image 56
Image autoscaling 57

Time for action – placing images on screen 57
Runtime configuration 60

Dynamic content scaling 61
Dynamic content alignment 61
Dynamic image resolution 62
Frame rate control 63

Table of Contents

[iii]

Time for action – scaling display objects on multiple devices 63
Dynamic resolution images 65

Time for some shapes 66
Applying stroke width, fill color, and stroke color 67

Text, text, text 68
Applying color and string value 68

What are functions? 68
Defining a function 69
More display functions 69

Content size properties 71
Optimize your workflow 72

Use memory efficiently 72
Optimize your display images 74
Summary 75

Chapter 3: Building Our First Game – Breakout 77
Breakout – bringing back old-school gaming 78
Understanding the Corona physics API 79

Setting up the physics world 79
Starting, pausing, and stopping the physics engine 79
physics.setGravity 79
physics.getGravity 79
Tilt-based gravity 80
physics.setScale 80
physics.setDrawMode 80
physics.setPositionIterations 82
physics.setVelocityIterations 83

Configuring the application 83
Time for action – adding the build.settings file 83
Time for action – adding the config.lua file 84
Building the application 85

Displaying groups 85
display.newGroup() 86

Working with system functions 86
system.getInfo() 86
system.setAccelerometerInterval() 87

Time for action – creating variables for the game 88
Understanding events and listeners 91

Register events 91
Runtime events 92

enterFrame 93
Accelerometer 93

Table of Contents

[iv]

Touch events 93
Touch (single touch) 93
tap 94

Transitions 94
Creating menu screens 96
Time for action – adding the main menu screen 96
Creating the game play scene 98
Time for action – adding game objects 98
Time for action – building bricks 99
Red alert! 102
Time for action – displaying game messages 102
Summary 105

Chapter 4: Game Controls 107
Moving in the up direction 108
Let's get even more physical 108

physics.addBody() 108
Time for action – starting physics for the paddle and ball 110
Paddle movement 111
Time for action – dragging the paddle in the simulator 111
Time for action – moving the paddle with the accelerometer 113
Ball collision with the paddle 114
Time for action – making the ball bounce against the paddle 114
Removing objects from the scene 114

Variable references 115
Brick by brick 115
Time for action – removing the bricks 116
Directional changes 118
Time for action – updating the ball 118
Transitioning levels 120
Time for action – resetting and changing levels 121
You win some, you lose some 123
Time for action –making win and lose conditions 123
Activating event listeners 125

Collision events 125
Global collision listeners 125
Local collision listeners 126

Time for action – adding game listeners 127
The results are in! 129
Summary 130

Table of Contents

[v]

Chapter 5: Animating Our Game 133
Panda Star Catcher 134
Let's get everything moving 134

Transitions 134
Easing 135

The value of timed functions 136
Timers 136

What are image sheets? 138
It's sprite mania! 138

Image sheet API 138
Game time! 140
Time for action – setting up the variables 141
Let's start the round 142
Time for action – starting the game 142
Poof! Be gone! 144
Time for action – reloading the panda on the stage 145
Earning some points 146
Time for action – tracking the score 146
When the game ends 147
Time for action – displaying the game over screen 147
Background display 149
Time for action – adding the background elements 149
Heads up! 150
Time for action – displaying the timer and score 150
Time after time 152
Time for action – setting up the timer 152
It's so glowy 153
Time for action – making the power shot 153
Pandas! 154
Time for action – creating the panda character 154
Starry skies 157
Time for action – creating star collisions 157
Screen touches 158
Time for action – launching the panda 159
Organizing display objects 161
Time for action – reordering layers 162
Creating stars 162
Time for action – creating stars in the level 162
Starting the game 164
Time for action – initializing the game 164
Summary 166

Table of Contents

[vi]

Chapter 6: Playing Sounds and Music 167
Corona audio system 168

Sound formats 168
Sound filename limitations on Android 168
Mono sounds at their best 169
Maximum number of simultaneous channels 169

Time to play 169
audio.loadSound() 169
audio.loadStream() 170
audio.play() 170
Looping 171
Simultaneous playback 171

Time for action – playing audio 172
Time to take control 173

audio.stop() 173
audio.pause() 173
audio.resume() 173
audio.rewind() 173

Time for action – controlling audio 174
Memory management 179

audio.dispose() 179
Alterations to audio 180

Volume control 180
audio.setVolume() 180
audio.setMinVolume() 181
audio.setMaxVolume() 181
audio.getVolume() 182
audio.getMinVolume() 182
audio.getMaxVolume() 183

Fading audio 183
audio.fade() 183
audio.fadeOut() 184

Performance tips 184
Preloading phase 184
audioPlayFrequency 184
Patents and royalties 185

Summary 186
Chapter 7: Physics – Falling Objects 187

Creating our new game – Egg Drop 187
Time for action – setting up the variables 189
Time for action – moving the character 190
Time for action – setting the score 192

Table of Contents

[vii]

Time for action – drawing the background 193
Time for action – designing the HUD 194
Time for action – counting the lives 196
Time for action – creating the character 197

Adding postcollisions 199
Collision handling 199

Body properties 199
body.isAwake 200
body.isBodyActive 200
body.isBullet 200
body.isSensor 200
body.isSleepingAllowed 200
body.isFixedRotation 201
body.angularVelocity 201
body.linearDamping 201
body.angularDamping 201
body.bodyType 202

Time for action – creating the egg collision 202
Time for action – adding the egg object 204
Time for action – making the egg drop 206
Time for action – calling game over 207
Time for action – activating the game 209
Summary 211

Chapter 8: Operation Composer 213
Continuation of Egg Drop 214
Data saving 214

BeebeGames class for saving and loading values 214
Getting paths to files 216
Reading files 216
Writing files 216

Time for action – saving and loading the high score 217
Pausing the game 220
Time for action – pausing the game 220
The Composer API 224

Game development with the Composer API 224
Time for action – altering the game file 224
Organizing the game 226
Time for action – adding the new main.lua file 227
New game transitions 227
Time for action – changing screens after the game is over 227
Creating a loading screen 229
Time for action – adding the loading screen 229

Table of Contents

[viii]

Creating a main menu 234
Time for action – adding a main menu 234
Creating an options menu 239
Time for action – adding an options menu 239
Creating a credits screen 243
Time for action – adding a credits screen 243
Summary 247

Chapter 9: Handling Multiple Devices and Networking Your Apps 249
Return to configuration 250

Build configuration 250
Orientation support (iOS) 250
Orientation support (Android) 251
Version code and version name (Android) 251
Application permissions (Android) 252

Content scaling on an easier level 252
The best of both worlds 253

The deeper meaning of dynamic image selection 254
High-resolution sprite sheets 255

Networking your apps 257
Time for action – adding Twitter to your apps 257
Time for action – adding Facebook to your apps 261
Facebook Connect 264
Time for action – posting scores using Facebook Connect 265
Summary 269

Chapter 10: Optimizing, Testing, and Shipping Your Games 271
Understanding memory efficiency 272

Graphics 273
Group objects 273
Turning off animations when they're not being used 273
Optimizing image sizes 273

Distributing iOS applications 274
Prepping your app icons 274

Time for action – setting up your distribution certificate and provisioning
profile for the App Store 276
iTunes Connect 277

Contracts, tax, and banking 277
Time for action – managing your application in iTunes Connect 278
Building an iOS application for distribution in Corona 283
Time for action – building your application and uploading it to the
Application Loader 284
The Google Play Store 286

Creating launcher icons 287

Table of Contents

[ix]

Time for action – signing your app for the Google Play Store 287
Time for action – submitting an app to the Google Play Store 290
Summary 294

Chapter 11: Implementing In-App Purchases 295
The wonders of In-App Purchase 296

Types of In-App Purchases 296
Corona's store module 297

store.init() 297
event.transaction 298

store.loadProducts() 299
event.products 300
event.invalidProducts 300

store.canMakePurchases 301
store.purchase() 301
store.finishTransaction() 301
store.restore() 302

Create an In-App Purchase 303
Time for action – creating the In-App Purchase in iTunes Connect 305
Time for action – using the Corona store module to create an
In-App Purchase 308
Testing In-App Purchases 318

User test accounts 318
Time for action – testing the In-App Purchase with the Breakout
In-App Purchase Demo 319
Summary 324

Appendix: Pop Quiz Answers 327
Index 333

[xi]

Preface
This book is designed to introduce you to the basic standards of using the Corona SDK across
iOS and Android platforms. You will enhance your learning experience by building three
unique games in easy-to-follow steps. Aside from developing games, you will also dive into
learning about social network integration, In-App Purchasing, and shipping your applications
to the Apple App Store and/or Google Play Store.

What this book covers
Chapter 1, Getting Started with Corona SDK, begins by teaching you how to install Corona
SDK on both the Mac OS X and Windows operating systems. You will learn how to create
your first program in just two lines of code. Lastly, we'll go through the process of building
and loading an application to an iOS or Android device.

Chapter 2, Lua Crash Course and the Corona Framework, dives into the Lua programming
language that is used to develop in Corona SDK. We'll go over the basics of variables,
functions, and data structures in Lua. This chapter will also introduce how to implement a
variety of display objects within the Corona framework.

Chapter 3, Building Our First Game – Breakout, discusses the first half of building your first
game, Breakout. You'll learn how to structure game files in a Corona project and create game
objects that will be displayed on screen.

Chapter 4, Game Controls, continues with the second half of building your first game,
Breakout. We'll cover game object movement as well as collision detection between objects
in the scene. You will also learn how to create a scoring system that will implement the win
and lose conditions of the game.

Chapter 5, Animating Our Game, explains how to animate a game using sprite sheets.
This chapter will go in-depth with managing motion and transitions while creating a new
game framework.

www.allitebooks.com

http://www.allitebooks.org

Preface

[xii]

Chapter 6, Playing Sounds and Music, provides information on how to apply sound effects
and music to your applications. It is vital to include some type of audio to enhance the
sensory experience of your game's development. You will learn how to incorporate audio
through loading, executing, and looping techniques with the Corona Audio System.

Chapter 7, Physics – Falling Objects, covers how to implement the Box2D engine in Corona
SDK using display objects. You will be able to customize body construction and work with
the physical behavior of falling objects. In this chapter, we'll apply the uses of dynamic/static
bodies and explain the purpose of post collisions.

Chapter 8, Operation Composer, discusses how to manage all your game scenes with
Composer API. We'll also go into detail on menu design, such as creating a pause menu and
main menu. In addition, you'll learn how to save high scores within your game.

Chapter 9, Handling Multiple Devices and Networking Your Apps, provides information about
integrating your applications with social networks such as Twitter or Facebook. This will
enable your app to reach a bigger audience globally.

Chapter 10, Optimizing, Testing, and Shipping Your Games, explains the application
submission process for both iOS and Android devices. This chapter will guide you on how
to set up a distribution provisioning profile for the Apple App Store and manage your app
information in iTunes Connect. Android developers will learn how to sign their applications
for publication so they can be submitted to the Google Play Store.

Chapter 11, Implementing In-App Purchases, covers monetization of your game by creating
consumable, nonconsumable, or subscription purchases. You will apply for In-App Purchases
in the Apple App Store using Corona's store module. We'll take a look at testing purchases on
a device to check whether transactions have been applied using the Sandbox environment.

Appendix, Pop Quiz Answers, covers all the answers enlisted in the pop quiz sections of
the book.

What you need for this book
You will need the following items before you can start developing games with Corona SDK
for Mac:

 � If you are installing Corona for Mac OS X, ensure that your system has:

 � Mac OS X 10.9 or later

 � An Intel-based system that runs Lion, Mountain Lion, Mavericks,
or Yosemite

Preface

[xiii]

 � 64-bit CPU (Core 2 Duo)

 � OpenGL 2.0 or higher graphics system

 � You must be enrolled in the Apple Developer Program

 � XCode

 � A text editor such as TextWrangler, BBEdit, or TextMate

You will need the following items before you can start developing games with Corona SDK
for Windows:

 � If you are running Microsoft Windows, ensure that your system has:

 � Windows 8, Windows 7, Vista, or XP (Service Pack 2) operating system

 � 1 GHz processor (recommended)

 � 80 MB of disk space (minimum)

 � 1 GB of RAM (minimum)

 � OpenGL 2.1 or higher graphics system (available in most modern
Windows systems)

 � 32-bit (x86) version of the Java Development Kit (JDK)

 � The Android SDK is not required to create Android device builds with
Corona on Mac or Windows

 � Java 6 SDK

 � A text editor such as Notepad ++

You must be enrolled as a Google Play Developer if you want to submit and publish apps for
Android devices.

The game tutorials require resource files that are available with this book and can be
downloaded from the Packt Publishing website.

Lastly, you will need the latest stable build of Corona SDK. This is applicable for all
subscription levels.

Who this book is for
This book is for anyone who wants to have a go at creating commercially successfully games
for Android and iOS. You don't need game development or programming experience.

Preface

[xiv]

Sections
In this book, you will find several headings that appear frequently (Time for action, What just
happened?, Pop quiz, and Have a go hero).

To give clear instructions on how to complete a procedure or task, we use these sections
as follows:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation to ensure they make sense, so they are
followed with these sections:

What just happened?
This section explains the working of the tasks or instructions that you have just completed.
You will also find some other learning aids in the book, for example:

Pop quiz – heading
These are short multiple-choice questions intended to help you test your own understanding.

Have a go hero – heading
These are practical challenges that give you ideas to experiment with what you have learned.

Conventions
You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

Preface

[xv]

A block of code is set as follows:

textObject = display.newText("Hello World!", 160, 80,
native.systemFont, 36)
textObject: setFillColor (1, 1, 1)

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 local buyLevel2 = function (product)
 print ("Congrats! Purchasing " ..product)

 -- Purchase the item
 if store.canMakePurchases then
 store.purchase({validProducts[1]})
 else
 native.showAlert("Store purchases are not available,
 please try again later", { "OK" }) – Will occur only
 due to phone setting/account restrictions
 end
 end
 -- Enter your product ID here
 -- Replace Product ID with a valid one from iTunes Connect
 buyLevel2("com.companyname.appname.NonConsumable")

Any command-line input or output is written as follows:

keytool -genkey -v -keystore my-release-key.keystore -alias aliasname
-keyalg RSA -validity 999999

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Click on the Enroll
Now button and follow Apple's instructions to complete the process."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xvi]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt Publishing book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.
com for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/
downloads/9343OT_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website or added to any list of existing errata under the Errata
section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/9343OT_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9343OT_ColoredImages.pdf
http://www.packtpub.com/submit-errata

Preface

[xvii]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with the
location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

1
Getting Started with Corona SDK

Before we jump right into coding some simple games, we need to install and
run the necessary programs that will make our applications come to life.
Corona SDK is primarily a 2D development engine. If you've had experience
developing for iOS or Android, you will find the experience of working with
Corona refreshing. It is also simple to use. In no time, you'll be creating finished
products to distribute through the Apple App Store and Google Play Store.

In this chapter, we will:

 � Set up Corona SDK on Mac OS X and Windows

 � Install Xcode for Mac OS X

 � Create a Hello World program in two lines

 � Add devices in the iOS Provisioning Portal

 � Load an application to an iOS device

 � Load an application to an Android device

Downloading and installing Corona
You have the option of choosing the Mac OS X or Microsoft Windows operating system to
develop on. Keep in mind the following system requirements that are needed to run the
program. The most compatible version used for this book is Build 2014.2511.

Getting Started with Corona SDK

[2]

If you are installing Corona for Mac OS X, be sure that your system has the following features:

 � Mac OS X 10.9 or later

 � An Intel-based system that runs Lion, Mountain Lion, Mavericks, or Yosemite

 � A 64-bit CPU (Core 2 Duo)

 � OpenGL 2.0 or higher graphics system

If you are running Microsoft Windows, be sure that your system has the following features:

 � Windows 8, Windows 7, Vista, or XP (Service Pack 2) operating system

 � 1 GHZ processor (recommended)

 � 80 MB of disk space (minimum)

 � 1 GB of RAM (minimum)

 � OpenGL 2.1 or higher graphics system (available in most modern Windows systems)

 � The 32-bit (x86) version of the Java Development Kit (JDK)

 � The Android SDK is not required to create Android device builds with Corona on
Mac or Windows

Time for action – setting up and activating Corona on Mac OS X
Let's begin by setting up the Corona SDK on our desktop:

1. If you haven't downloaded the SDK, please do so from http://www.coronalabs.
com/downloads/coronasdk. You will have to register as a user before you can
access the SDK.

2. The file extension for any Mac program should end in .dmg; this is known as an
Apple disk image. Once you've downloaded the disk image, double-click on the disk
image file to mount it. The name should be similar to CoronaSDK-XXXX.XXXX.
dmg. Once it is loaded, you should see the mounted disk image folder, as shown in
the following screenshot:

http://www.coronalabs.com/downloads/coronasdk
http://www.coronalabs.com/downloads/coronasdk

Chapter 1

[3]

3. Next, drag the CoronaSDK folder into the Applications folder. This will copy the
contents of the Corona folder into /Applications. You will be prompted to enter
an administrator password if you are not the main administrator of the account.
You will be able to see the CoronaSDK folder in /Applications once it has been
successfully installed. For easy access to the folder contents, create an alias by
dragging the CoronaSDK folder to the dock of your Mac desktop:

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Corona SDK

[4]

First-time Corona SDK users will have to perform a quick and easy one-time authorization
process before it is accessible. You must be connected to the Internet to complete the
authorization process.

1. Launch the Corona simulator in the SDK folder.

2. Assuming this is your first time, you will be presented with an End-user License
Agreement (EULA). Once you have accepted the agreement, enter the e-mail you
used to register for Corona and the password to activate the SDK. Otherwise, click
on Register to create an account.

If you register with Corona as a single developer, there is no
fee to develop on iOS and/or Android devices.

3. Upon successful login, you will get a confirmation dialog to show that the SDK is
ready to use:

Chapter 1

[5]

4. Click on the Continue button, and you'll be presented with the Welcome to
Corona screen:

What just happened?
Setting up Corona SDK on your Mac operating system is as simple as installing any other
dedicated Mac program. After you have authorized the SDK on your machine and logged
in with your e-mail and password, it will be ready for use. From here on out, every time
you launch Corona, it will automatically log in to your account. You will notice that you
are greeted with a Corona SDK screen when this happens.

Time for action – setting up and activating Corona on Windows
Let's set up the Corona SDK on our desktop using the following steps:

1. Download the Corona SDK from http://www.coronalabs.com/downloads/
coronasdk. You will have to register as a user before you can access the SDK.

2. The file extension for the Windows version of Corona should end in .msi,
which is known as a Windows Installer, a component of Windows made to install
programs by Microsoft. Double-click on the file. The filename should be similar
to CoronaSDK.msi.

3. Follow the onscreen directions for installation.

http://www.coronalabs.com/downloads/coronasdk
http://www.coronalabs.com/downloads/coronasdk

Getting Started with Corona SDK

[6]

4. Corona will be installed directly into your Programs folder by default. On Microsoft
Windows, select Corona Simulator from the list of programs in your Start menu
or double-click on the Corona icon on the desktop. Upon successful activation,
you should be greeted with the following screen:

5. The process to activate the SDK should be the same as the Mac procedure once you
launch Corona for the very first time.

If you run into issues with images not displaying properly, check to
see whether you're using an up-to-date OpenGL graphics driver,
2.1 or higher.
Be aware that Corona SDK on Windows can only build for Android
devices, not for iOS devices (iPhone, iPad, or iPod Touch). A Mac
can build not only for iOS, but also for Android devices in Corona.

6. To create device builds, you need to install Java 6 SDK on your PC. You will need to
go to the Oracle website at http://www.oracle.com/technetwork/java/
javasebusiness/downloads/java-archive-downloads-javase6-419409.
html for the JDK download and click on the Java SE Development Kit 6u45 link.

7. On the next page, select the Accept License Agreement radio button and then
click on the Windows x86 link to download the installer. You will be asked to log
in or create a user account on the Oracle website if you don't already have one.

8. As soon as the JDK is downloaded, run the installer. Once installed, you'll be able
to create device builds for Android on your PC.

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html

Chapter 1

[7]

What just happened?
Installing the SDK on Windows is a different setup process compared to on the Mac OS X.
While executing the installer file, Windows will automatically present a designated location
to install the application, such as the Programs folder, so that you won't have to manually
choose a destination. Upon successful installation, you will see the Corona SDK icon on your
desktop for easy access, or it may be highlighted in the programs list in the Start menu,
assuming that you're accessing it for the first time. When you authorize Corona on your
machine and sign in with your login information, it is ready for you to use and will log in
automatically every time it is launched.

Using the simulator on Mac and Windows
On Mac OS X, launch Corona SDK by either selecting the Corona terminal or Corona
simulator from the Applications directory. Both selections will access the SDK. The
Corona simulator will only open the simulator. The Corona terminal will open both the
simulator and the terminal window. The terminal is helpful to debug your programs and
display simulator errors/warnings and print() messages.

On Microsoft Windows, select the Corona SDK folder and click on Corona Simulator from
the list of programs in your Start menu or double-click on the Corona icon on the desktop.
The simulator and terminal are always opened together if you are using Windows.

Let's go over the useful contents contained in the Corona SDK folder (located in
Applications/Corona SDK on Mac and Start/All Apps/Corona SDK on Windows):

 � Debugger (Mac)/Corona debugger (Windows): This is a tool to find and isolate
issues in your code.

 � Corona simulator: This is the environment used to launch your application
for testing. It simulates the mobile device you're developing for on your local
computer. On Windows, it will open both the simulator and terminal.

 � Corona terminal: This launches the Corona simulator and opens a terminal
window to display error/warning messages and print() statements. It is
very helpful to debug your code, but is only available on a Mac.

 � Simulator: This has the same properties as the Corona terminal, but is called
from the command line and is only available on a Mac.

 � Sample code: This is a set of sample applications to get you started with Corona.
It contains code and art assets to work with.

The Corona SDK window opens automatically when you launch the simulator. You can open
a Corona project in the simulator, create a device build for testing or distribution, and view
some example games and apps to get yourself familiar with the SDK.

Getting Started with Corona SDK

[8]

Time for action – viewing a sample project in the simulator
Let's take a look at the HelloPhysics sample project in the simulator:

1. Click on Corona Simulator in the Corona SDK folder.

2. Click on the Samples link on the Corona SDK window when it launches. In the Open
dialog that appears, navigate to Applications/CoronaSDK/SampleCode/
Physics/HelloPhysics (Mac) or C:\Program Files (x86)\Corona Labs\
Corona SDK\Sample Code\Physics\HelloPhysics (Windows). On a Mac,
click on Open, and it will automatically open main.lua. On Windows, double-click
on main.lua to open the file. The HelloPhysics application opens and runs in
the simulator.

What just happened?
Accessing the SDK through the Corona terminal or Corona simulator is a matter of
preference. Many Mac users prefer to use the Corona terminal so that they can track
messages outputted to the terminal. When you launch the SDK through the Corona
simulator, the simulator will be displayed, but not the terminal window. When Windows
users launch the Corona simulator, it will display both the simulator and the terminal
window. This is nice to use when you want play around with any of the example
applications that are provided by Corona.

The main.lua file is a special filename that tells Corona where to start in a project folder.
This file can also load other code files or other program resources such as sounds or graphics.

When you launch the HelloPhysics application in Corona, you will observe a box object
fall from the top of the screen in the simulator and collide with a ground object. The
transition from launching the main.lua file to viewing the results in the simulator
is almost immediate.

Have a go hero – use a different device shell
As you start getting familiar with the Corona simulator, whether you're in Windows or Mac
OS X, a default device is always used when you launch an application. Windows uses the
Droid as the default device, while the Mac OS X uses the regular iPhone. Try launching the
sample code in a different device shell to view the differences in screen resolution between
all the devices the simulator has available.

When porting builds to more than one platform, you'll have to consider the variety of
screen resolutions in both iOS and Android devices. A build is a compiled version of all
your source code that is converted into one file. Having your game build configured for
multiple platforms broadens the audience reach of your application.

Chapter 1

[9]

Choosing a text editor
Corona does not have a designated program editor to code in, so you will have to find
one that suits your needs.

For Mac OS, TextWrangler is a good one, and it is free too! You can download it from
http://www.barebones.com/products/textwrangler/download.html. Other
text editors such as BBEdit at http://www.barebones.com/thedeck and TextMate at
http://macromates.com/ are great, but you will need to purchase them in order to use
them. TextMate is also compatible with the Corona TextMate Bundle, which is available at
http://www.ludicroussoftware.com/corona-textmate-bundle/index.html.

For Microsoft Windows, Notepad++ is recommended and can be downloaded from
http://notepad-plus-plus.org/.

The following are the text editors that are compatible with both Mac OS and
Microsoft Windows:

 � Sublime Text (http://www.sublimetext.com)

 � Lua Glider (http://www.mydevelopersgames.com/Glider/)

 � Outlaw (http://outlawgametools.com/outlaw-code-editor-and-
project-manager/)

Any text editor, such as TextEdit for Mac or Notepad for Windows, that is already included
in the operating system works as well, but it'll be easier to work with one that is designed
for programming. For Corona, using an editor that supports the Lua syntax highlighting will
work the best when coding. Syntax highlighting adds formatting attributes to keywords and
punctuation in a way that makes it easier for the reader to separate code from text.

Developing on devices
It is not necessary to download Apple's developer kit, Xcode, or the Android SDK if you only
want to use the Corona simulator. In order to build and test your code on an iOS device
(iPhone, iPod Touch, and iPad), you will need to sign up as an Apple developer and create
and download the provisioning profiles. If you want to develop on Android, you don't need
to download the Android SDK unless you want to use the ADB tool to help with installing
builds and viewing debug messages.

The Corona SDK starter version allows you to build Adhoc (for iOS) and debug builds
(Android) for testing on your own devices. Corona Pro users also get the benefit of special
features, such as access to daily builds, premium features, all plugins, and premium support.

http://www.barebones.com/products/textwrangler/download.html
http://www.barebones.com/thedeck
http://macromates.com/
http://www.ludicroussoftware.com/corona-textmate-bundle/index.html
http://notepad-plus-plus.org/
http://www.sublimetext.com
http://www.mydevelopersgames.com/Glider/
http://outlawgametools.com/outlaw-code-editor-and-project-manager/
http://outlawgametools.com/outlaw-code-editor-and-project-manager/

Getting Started with Corona SDK

[10]

Time for action – downloading and installing Xcode
In order to develop any iOS application, you will need to enroll in the Apple Developer
Program, which costs $99 a year, and create an account on the Apple website at http://
developer.apple.com/programs/ios/ by following these steps:

1. Click on the Enroll Now button and follow Apple's instructions to complete the
process. When adding a program, select iOS Developer Program.

2. When you have completed your enrollment, click on the iOS link under the section
marked Dev Centers.

3. Scroll down to the Downloads section and download the current Xcode, or you can
download Xcode from the Mac App Store.

4. Once you have fully downloaded Xcode, double-click on Xcode from
/Applications/Xcode. You will be asked to authenticate as an
administrative user:

http://developer.apple.com/programs/ios/
http://developer.apple.com/programs/ios/

Chapter 1

[11]

5. After you have entered your credentials, click on the OK button to complete the
installation. You will see the following screen:

6. When you have installed the Xcode developer tools, you can access the
documentation by launching Xcode and choosing any of the items in the
Help menu. Developer applications such as Xcode and Instruments are
installed in /Applications/Xcode. You can drag these app icons to your
dock for convenient accessibility.

What just happened?
We just went through the steps of how to install Xcode for Mac OS X. By enrolling in the
Apple Developer Program, you will have access to up-to-date development tools on the
website. Remember that to continue being an Apple developer, you have to pay a fee of
$99 annually to keep your subscription.

The Xcode file is quite large, so it will take a bit of time to download, depending on how fast
your Internet connection is. Once your installation is complete, Xcode will be ready to go.

Getting Started with Corona SDK

[12]

Time for action – creating a Hello World application in two lines
of code

Now that we have the simulator and text editors set up, let's start making our very first
Corona program! The first program that we will make is called Hello World. It is a
traditional program that many people learn when starting a new programming language.

1. Open your preferred text editor and type the following lines:
textObject = display.newText("Hello World!", 160, 80,
native.systemFont, 36)
textObject: setFillColor (1, 1, 1)

2. Next, create a folder on your desktop called Hello World. Save the preceding
text as a file named main.lua to the location of your project folder.

3. Launch Corona. You will be greeted with the Corona SDK screen. Click on Open and
navigate to the Hello World folder you just created. You should see your main.
lua file in this folder:

Chapter 1

[13]

4. On a Mac, click on the Open button. On Windows, select the main.lua file and click
on the Open button. You'll see your new program running in the Corona simulator:

Downloading the example code
You can download the example code files for all Packt Publishing
books you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.allitebooks.org

Getting Started with Corona SDK

[14]

Time for action – modifying our application
Before we dive into more complex examples, let's alter some minor things in our program
by performing the following steps:

1. Let's alter the second line of main.lua to display as follows:
textObject = display.newText("Hello World!", 160, 80,
native.systemFont, 36)
textObject:setFillColor(0.9, 0.98 ,0)

2. Save your file and go back to the Corona simulator. The simulator will detect a change
from your file and automatically relaunch with the changes. If the simulator doesn't
relaunch automatically upon saving your file, press Command + R (Mac) / Ctrl + R
(Windows). You will see the following output on the screen:

Chapter 1

[15]

As you continue learning more Corona functions, you'll notice that some of
the text values will be optional. In this case, we need to use five values.

Time for action – applying a new font name to our application
Now, let's play around with the font name by performing the following steps:

1. Change the first line to the following line of code:
textObject = display.newText("Hello World!", 160, 80, "Times
New Roman", 36)

2. Be sure to save your main.lua file after making any alterations; then, press
Command + R (Mac) / Ctrl + R (Windows) in Corona to relaunch the simulator
to view the new font. If you're using a Mac, usually, the simulator automatically
relaunches after saving your file, or it may ask you if you want to relaunch the
program. You can see the new font in the simulator:

Getting Started with Corona SDK

[16]

What just happened?
You have now made your first complete mobile application! What's even more amazing is
that this is a completed iPhone, iPad, and Android application. This two-line program will
actually install and run on your iOS/Android device if you were to create a build. You have
now seen what the basic workflow in Corona is like.

If you take a look at line 2 in your main.lua file, you will notice that setFillColor alters
the color of the text for Hello World!.

Colors are made up of three sets of RGB numbers that represent the amount of red, green
and blue contained within a color. They are displayed with three numbers, with values
ranging from 0 to 1. For example, the color black would be (0,0,0), blue would be (0,0,1),
and the color white (0.6, 0.4, 0.8).

Continue playing around with different color values to see the different results. You can
see the alterations to the code in the simulator when you save your main.lua file and
relaunch Corona.

When you view the first line from the main.lua file, you will notice that newText() is
called by the display object. The returning reference is textObject. The newText()
function returns an object that will represent the text on the screen. The newText()
function is a part of the display library.

When you want to access the display properties of newText, type in display.newText.
The two numbers after Hello World! control the horizontal and vertical positions of the
text on the screen in pixels. The next item specifies the font. We used the name native.
systemFont, which, by default, refers to the standard font on the current device. For
example, the iPhone's default font is Helvetica. You can use any standard font name, such
as Times New Roman that is used in the preceding example. The last number used is the
font size.

Have a go hero – adding more text objects
Now that you're starting to get a taste of coding, try following these steps in your current
project file:

1. Create a new display object using a different font and text color. Ensure it displays
below the Hello World! text. Make sure that your new display object has a
different object name.

2. Continue changing the values of the current display object, textObject. Alter the x
and y coordinates, the string text, font name, and even the font size.

Chapter 1

[17]

3. While object:setFillColor(r,g,b) sets the color of the text, there is an
optional parameter you can add that controls the opacity of the text. Try using
object:setFillColor(r, g, b [, a]). The values available for a also
range between 0 to 1 (1 is opaque, which is the default value). Observe the results
of your text color.

Testing our application on an iOS device
If you are only interested in testing the application on an Android device, skip past this section
of the chapter to Testing our application on an Android device. Before we can upload our first
Hello World application on an iOS device, we need to log in into our Apple developer account
so that we can create and install our signing certificates on our development machine. If you
haven't created a developer account yet, do so by going to http://developer.apple.com/
programs/ios/. Remember that there is a fee of $99 a year to become an Apple developer.

The Apple developer account is only applied to users developing on Mac
OS X. Make sure that your version of Xcode is the same or newer than the
version of the OS on your phone. For example, if you have version 5.0 of
the iPhone OS installed, you will need Xcode that is bundled with the iOS
SDK version 5.0 or later.

Time for action – obtaining the iOS developer certificate
Make sure that you're signed up for the developer program; you will need to use the Keychain
Access tool located in /Applications/Utilities so that you can create a certificate
request. A valid certificate must sign all iOS applications before they can be run on an Apple
device in order to do any kind of testing. The following steps will show you how to create an
iOS developer certificate:

1. Go to Keychain Access | Certificate Assistant | Request a Certificate From a
Certificate Authority:

http://developer.apple.com/programs/ios/
http://developer.apple.com/programs/ios/

Getting Started with Corona SDK

[18]

2. In the User Email Address field, type in the e-mail address you used when you
registered as an iOS developer. For Common Name, enter your name or team name.
Make sure that the name entered matches the information that was submitted when
you registered as an iOS developer. The CA Email Address field does not need to be
filled in, so you can leave it blank. We are not e-mailing the certificate to a Certificate
Authority (CA). Check Saved to disk and Let me specify key pair information. When
you click on Continue, you will be asked to choose a save location. Save your file at a
destination where you can locate it easily, such as your desktop.

Chapter 1

[19]

3. In the following window, make sure that 2048 bits is selected for the Key Size and
RSA for the Algorithm, and then click on Continue. This will generate the key and
save it to the location you specified. Click on Done in the next window.

Getting Started with Corona SDK

[20]

4. Next, go to the Apple developer website at http://developer.apple.com/,
click on iOS Dev Center, and log in to your developer account. Select Certificates,
Identifiers & Profiles under iOS Developer Program on the right-hand side
of the screen and navigate to Certificates under iOS Apps. Select the + icon
on the right-hand side of the page. Under Development, click on the iOS App
Development radio button. Click on the Continue button till you reach the
screen to generate your certificate:

5. Click on the Choose File button and locate your certificate file that you saved to
your desktop, and then, click on the Generate button.

6. Upon hitting Generate, you will get the e-mail notification you specified in the
CA request form from Keychain Access, or you can download it directly from the
developer portal. The person who created the certificate will get this e-mail and
can approve the request by hitting the Approve button.

http://developer.apple.com/

Chapter 1

[21]

7. Click on the Download button and save the certificate to a location that is easy
to find. Once this is completed, double-click on the file, and the certificate will be
added automatically in the Keychain Access.

What just happened?
We now have a valid certificate for iOS devices. The iOS Development Certificate is used
for development purposes only and valid for about a year. The key pair is made up of your
public and private keys. The private key is what allows Xcode to sign iOS applications. Private
keys are available only to the key pair creator and are stored in the system keychain of the
creator's machine.

Getting Started with Corona SDK

[22]

Adding iOS devices
You are allowed to assign up to 100 devices for development and testing purposes in
the iPhone Developer Program. To register a device, you will need the Unique Device
Identification (UDID) number. You can find this in iTunes and Xcode.

Xcode
To find out your device's UDID, connect your device to your Mac and open Xcode. In Xcode,
navigate to the menu bar, select Window, and then click on Organizer. The 40 hex character
string in the Identifier field is your device's UDID. Once the Organizer window is open, you
should see the name of your device in the Devices list on the left-hand side. Click on it and
select the identifier with your mouse, copying it to the clipboard.

Usually, when you connect a device to Organizer for the first time, you'll receive a button
notification that says Use for Development. Select it and Xcode will do most of the
provisioning work for your device in the iOS Provisioning Portal.

Chapter 1

[23]

iTunes
With your device connected, open iTunes and click on your device in the device list. Select
the Summary tab. Click on the Serial Number label to show the Identifier field and the
40-character UDID. Press Command + C to copy the UDID to your clipboard.

Time for action – adding/registering your iOS device
To add a device to use for development/testing, perform the following steps:

1. Select Devices in the Developer Portal and click on the + icon to register a new
device. Select the Register Device radio button to register one device.

2. Create a name for your device in the Name field and put your device's UDID in
the UDID field by pressing Command + V to paste the number you have saved
on the clipboard.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Corona SDK

[24]

3. Click on Continue when you are done and click on Register once you have
verified the device information.

Time for action – creating an App ID
Now that you have added a device to the portal, you will need to create an App ID. An App
ID has a unique 10-character Apple ID Prefix generated by Apple and an Apple ID Suffix that
is created by the Team Admin in the Provisioning Portal. An App ID could looks like this:
7R456G1254.com.companyname.YourApplication. To create a new App ID, use
these steps:

Chapter 1

[25]

1. Click on App IDs in the Identifiers section of the portal and select the + icon.

2. Fill out the App ID Description field with the name of your application.

3. You are already assigned an Apple ID Prefix (also known as a Team ID).

Getting Started with Corona SDK

[26]

4. In the App ID Suffix field, specify a unique identifier for your app. It is up to
you how you want to identify your app, but it is recommended that you use
the reverse-domain style string, that is, com.domainname.appname. Click on
Continue and then on Submit to create your App ID.

You can create a wildcard character in the bundle identifier that you can share
among a suite of applications using the same Keychain access. To do this,
simply create a single App ID with an asterisk (*) at the end. You would place
this in the field for the bundle identifier either by itself or at the end of your
string, for example, com.domainname.*. More information on this topic can
be found in the App IDs section of the iOS Provisioning Portal at https://
developer.apple.com/ios/manage/bundles/howto.action.

What just happened?
All UDIDs are unique on every device, and we can locate them in Xcode and iTunes.
When we added a device in the iOS Provisioning Portal, we took the UDID, which consists
of 40 hex characters, and made sure we created a device name so that we could identify
what we're using for development.

We now have an App ID for the applications we want to install on a device. An App ID is
a unique identifier that iOS uses to allow your application to connect to the Apple Push
Notification service, share keychain data between applications, and communicate with
external hardware accessories you wish to pair your iOS application with.

Provisioning profiles
A provisioning profile is a collection of digital entities that uniquely ties apps and devices to
an authorized iOS Development Team and enables a device to be used to test a particular app.
Provisioning profiles define the relationship between apps, devices, and development teams.
They need to be defined for both the development and distribution aspects of an app.

https://developer.apple.com/ios/manage/bundles/howto.action
https://developer.apple.com/ios/manage/bundles/howto.action

Chapter 1

[27]

Time for action – creating a provisioning profile
To create a provisioning profile, go to the Provisioning Profiles section of the Developer
Portal and click on the + icon. Perform the following steps:

1. Select the iOS App Development radio button under the Development section
and then select Continue.

2. Select the App ID you created for your application in the pull-down menu and
click on Continue.

3. Select the certificate you wish to include in the provisioning profile and then
click on Continue.

4. Select the devices you wish to authorize for this profile and click on Continue.

5. Create a Profile Name and click on the Generate button when you are done:

Getting Started with Corona SDK

[28]

6. Click on the Download button. While the file is downloading, launch Xcode
if it's not already open and press Shift + Command + 2 on the keyboard to
open Organizer.

7. Under Library, select the Provisioning Profiles section. Drag your downloaded
.mobileprovision file to the Organizer window. This will automatically copy
your .mobileprovision file to the proper directory.

What just happened?
Devices that have permission within the provisioning profile can be used for testing as long
as the certificates are included in the profile. One device can have multiple provisioning
profiles installed.

Application icon
Currently, our app has no icon image to display on the device. By default, if there is no
icon image set for the application, you will see a light gray box displayed along with your
application name below it once the build has been loaded to your device. So, launch your
preferred creative developmental tool and let's create a simple image.

Chapter 1

[29]

The application icon for standard resolution iPad2 or iPad mini image file is 76 x 76 px
PNG. The image should always be saved as Icon.png and must be located in your current
project folder. iPhone/iPod touch devices that support retina display need an additional
high resolution 120 x 120 px and iPad or iPad mini have an icon of 152 x 152 px named as
Icon@2x.png.

The contents of your current project folder should look like this:

Hello World/ name of your project folder
 Icon.png required for iPhone/iPod/iPad
 Icon@2x.png required for iPhone/iPod with Retina display
 main.lua

In order to distribute your app, the App Store requires a 1024 x 1024 pixel version of the
icon. It is best to create your icon at a higher resolution first. Refer to the Apple iOS Human
Interface Guidelines for the latest official App Store requirements at http://developer.
apple.com/library/ios/#documentation/userexperience/conceptual/
mobilehig/Introduction/Introduction.html.

Creating an application icon is a visual representation of your application name. You will
be able to view the icon on your device once you compile a build together. The icon is
also the image that launches your application.

Creating the Hello World build for iOS
We are now set to build our Hello World application for our device. Since we have our
provisioning profiles in place, the build process from here on out is pretty simple. Make
sure that you are connected to the Internet before creating a device build. You can build
your application for testing in the Xcode simulator or on a device.

Time for action – creating an iOS build
Follow these steps to create a new iOS build in Corona SDK:

1. Open the Corona simulator and select Open.

2. Navigate to your Hello World application and select your main.lua file.

http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/Introduction/Introduction.html

Getting Started with Corona SDK

[30]

3. Once the application is launched in the simulator, go to the Corona Simulator
menu bar and navigate to File | Build | iOS or press Command + B on your
keyboard. The following dialog box will appear:

4. Create a name for your app in the Application Name field. We can keep the same
name, Hello World. In the Version field, keep the number at 1.0. In order to
test the app in the Xcode simulator, select Xcode Simulator from the Build For
drop-down menu. If you want to build for the device, choose Device to build an app
bundle. Next, select the target device (iPhone or iPad) from the Supported Devices
drop-down menu. From the Code Signing Identity drop-down menu, choose the
provisioning file you created for the specified devices you are building for. It is the
same name as Profile Name in the iOS Provisioning Portal on the Apple developer
website. In the Save to folder section, click on Browse and choose where you
would like your application to be saved.

If all the information has been confirmed in the dialog box, click on the Build button.

It is more convenient to set your application to save on the Desktop;
this way, it is easy to find.

Chapter 1

[31]

What just happened?
Congratulations! You have now created your very first iOS application file that can be
uploaded to your device. As you start developing apps for distribution, you will want to
create new versions of your application so that you can keep track of the changes in every
new build you make. All the information from your Provisioning Profile was created in the
iOS Provisioning Portal and applied to the build. Once Corona has finished compiling the
build, the application should be located in the folder you saved it under.

Time for action – loading an app on your iOS device
Select your Hello World build you created and choose either iTunes or Xcode to load your
app onto your iOS device. They can be used to transfer the application file.

If using iTunes, drag your build into your iTunes Library and then sync your device normally,
as shown in the following screenshot:

Getting Started with Corona SDK

[32]

Another way to install your app onto your device is to use Xcode, since it provides a
convenient method to install iOS device applications. Perform the following steps:

1. With the device connected, open Xcode's Organizer from the menu bar by going
to Window | Organizer and navigate to your connected device under the Devices
list on the left-hand side.

2. If a proper connection is established, you will see a green indicator. If it is yellow
after a couple minutes, try powering the device off and on again or disconnect
the device and connect it again. This will usually establish a proper connection.

3. Simply drag your build file and drop it into the Applications area of the Organizer
window, and it will automatically install on your device.

Chapter 1

[33]

What just happened?
We just learned two different ways of loading an application build to an iOS device: using
iTunes and using Xcode.

Using iTunes provides a simple drag and drop feature into your library and then allows
you to transfer the build as long as your device is synced up.

The Xcode method is probably the easiest and most common way to load a build to a device.
As long as your device is connected properly and ready to use in the Organizer, you drag and
drop the build to applications and it loads automatically.

Testing our application on an Android device
Creating and testing our builds on an Android device does not require a developer account
like how Apple does for iOS devices. The only tools you need to build for Android are a PC or
Mac, Corona SDK, JDK6 installed, and an Android device. If you plan on submitting an app to
the Google Play Store, you'll need to sign up as a Google Play Developer at https://play.
google.com/apps/publish/signup/. There is a one-time $25 registration fee you have
to pay if you want to publish software on the Google Play Store.

Creating the Hello World build for Android
Building our Hello World application is fairly simple since we do not have to create a unique
keystore or key alias for debug builds. When you're ready to submit an application to the
Google Play Store, you'll need to create a release build and generate your own private key
to sign your app. We'll discuss in further detail about release builds and private keys later
on in this book.

Time for action – creating an Android build
Follow these steps to create a new Android build in the Corona SDK:

1. Launch the Corona Simulator and select Simulator.

2. Navigate to your Hello World application and select your main.lua file.

www.allitebooks.com

https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
http://www.allitebooks.org

Getting Started with Corona SDK

[34]

3. Once your application is running in the simulator, go to the Corona Simulator menu
bar and navigate to File | Build For | Android (Windows) / Shift + Command + B on
your keyboard (Mac). The following dialog box will appear:

4. Create a name for your app in the Application Name field. We can keep the same
name, Hello World. In the Version Code field, set the number to 1 if that is not
already the default number. This specific field must always be an integer and is not
visible to users. In the Version Name field, keep the number at 1.0. This attribute is
the string shown to users. In the Package field, you will need to specify a name that
uses the traditional Java scheme, which is basically the reverse format of your domain
name; for example, com.mycompany.app.helloworld would work as a package
name. Project Path shows the location of your project folder. Minimum SDK Version
currently supports Android 2.3.3 and newer devices running the ArmV7 processor.
In the Target App Store pull-down menu, the default store can stay as Google Play.
In the Keystore field, you will be signing your build with the Debug keystore that is
already provided in Corona. In the Key Alias field, select androiddebugkey from the
pull-down menu if it's not selected. In the Save to Folder section, click on Browse and
choose where you'd like your application to be saved to.

Chapter 1

[35]

5. If all the information has been confirmed in the dialog box, click on the Build button.

For more information on Java package names, see the section on Unique
Package Names in the Java documentation at http://java.sun.com/
docs/books/jls/third_edition/html/packages.html#40169.

What just happened?
You have created your very first Android build! See how simple that was? Since the Corona
SDK already provides the Debug keystore and androiddebugkey key alias in the engine,
most of the signing work is already done for you. The only requirement from you is to fill
out the build information for your application and click on the Build button to make a debug
build. Your Hello World application will save as an .apk file at the location you designated.
The file name will appear as Hello World.apk.

Time for action – loading an app on your Android device
There are several ways to load your Hello World build to your Android device, and these
ways do not require you to download the Android SDK. Here are some simple methods.

A convenient method is through Dropbox. You can create an account at https://www.
dropbox.com/. Dropbox is a free service that lets you upload/download files on your
PC/Mac and mobile devices. Perform the following steps to load the Hello World build
using Dropbox:

1. Download the Dropbox installer and install it on your computer. Also, download
the mobile app from the Google Play Store (which is also free) on your device and
install it.

2. Log in to your Dropbox account on your computer and mobile device. From your
computer, upload your Hello World.apk file.

3. Once it has finished uploading, go to the Dropbox app on your device and select
your Hello World.apk file. You will be greeted with a screen that will ask you
if you want to install the application. Select the Install button. Assuming that it
installs correctly, another screen will appear saying Application installed, and you
can launch your Hello World app by pressing the Open button that is available.

http://java.sun.com/docs/books/jls/third_edition/html/packages.html#40169
http://java.sun.com/docs/books/jls/third_edition/html/packages.html#40169
https://www.dropbox.com/
https://www.dropbox.com/

Getting Started with Corona SDK

[36]

Another method to upload an .apk file onto your device is to transfer it to an SD card via the
USB interface. If your device doesn't come with some kind of file manager application, a great
one you can download from the Google Play Store is ASTRO File Manager, which can be found
at https://play.google.com/store/apps/details?id=com.metago.astro. You can
always do a normal search for the preceding app or similar apk installers through the Google
Play app on your device. To transfer the .apk file to the SD card, perform the following steps:

1. In your device's Settings, select Applications and then select Development.
Tap on USB Debugging if the mode is not active.

2. Go back a couple of screens to the Applications section. Enable Unknown Sources
if it is not already active. This will allow you to install any non-market application
(that is, debug builds). Select the home button on your device when done.

3. Connect the device to your computer with a USB cable. You will see a new
notification that a new drive has connected to your PC or Mac. Access the SD
drive and create a new folder. Name the folder to something you can identify
easily for your Android builds. Drag and drop your Hello World.apk file from
the desktop to the folder.

4. Eject the drive from your desktop and disconnect your device from the USB cable.
Launch ASTRO File Manager or use whichever app you decided to download from
the Google Play Store. In ASTRO, select File Manager, search for the folder you
added to your SD card, and select it. You will see your Hello World.apk file.
Select the file, and a prompt will appear asking you to install it. Select the Install
button, and you should see your Hello World application appear in the Apps
folder of your device.

https://play.google.com/store/apps/details?id=com.metago.astro

Chapter 1

[37]

One of the easiest methods is through Gmail. If you don't already have a Gmail
account, create one at https://mail.google.com/. Perform the following
steps to send the .apk file on your Gmail account:

1. Log in to your account, compose a new e-mail, and attach your Hello World.apk
file to the message.

2. Address the recipient of the message to your own e-mail address and send it.

3. On your Android device, make sure you have your e-mail account linked. As soon
as you receive the message, open the e-mail. You're given the option to install
the application on your device. There will be an Install button or something
similar displayed.

What just happened?
We just learned several ways of loading an .apk file to an Android device. The preceding
methods are some of the easiest ways to load an application quickly without running into
any problems.

Using the file manager method allows you to access your .apk files easily without
requiring any carrier data or Wi-Fi connection. Using a USB cable that is compatible
with your device and connecting it to your computer is a simple drag and drop procedure.

The Dropbox method is the most convenient once you have it set up on your computer
and your mobile devices. All you have to do is drag and drop your .apk file to your account
folder, and it's instantly accessible to any device with the Dropbox app installed. You can
also share your files through a download link, which is also another great feature provided
by Dropbox.

Setting up a Gmail account and sending your .apk files as an attachment to yourself is
simple if you don't want to download any file managers or other programs to your device
and computer. The only thing you have to remember is that you can't e-mail an attachment
over the size of 25 MB in Gmail.

Pop quiz – understanding Corona
Q1. What is true about using the Corona simulator?

1. You need a main.lua file to launch your application.

2. The Corona SDK only runs on Mac OS X.

3. The Corona terminal doesn't launch the simulator.

4. None of the above.

https://mail.google.com/

Getting Started with Corona SDK

[38]

Q2. How many iOS devices can you use for development in the iPhone Developer Program?

1. 50.

2. 75.

3. 5.

4. 100.

Q3. What does the version code have to be when building for Android in Corona SDK?

1. A string.

2. An integer.

3. It has to follow the Java scheme format.

4. None of the above.

Summary
In this chapter, we covered some of the necessary tools needed to start developing
applications for Corona SDK. Whether you are working on a Mac OS X or Microsoft
Windows, you will notice the similarities in working on both operating systems and
how simple it is to run the Corona SDK.

To further familiarize yourself with Corona, try doing the following:

 � Take time to look into the sample codes provided by Corona to view the capabilities
of the SDK

 � Feel free to alter any of the sample codes to your liking to get a better
understanding of programming in Lua

 � Whether you're working on iOS (if you're a registered Apple developer) or
Android, try installing any of the sample codes on your device to see how the
applications work outside a simulator environment

 � Take a look at the Corona Labs Forums at http://forums.coronalabs.com/
and browse through the latest discussions on Corona development by fellow
Corona SDK developers and personnel

Now that you understand the process of how to display objects in Corona, we'll be able
to dive into other functions that will help create an operational mobile game.

In the next chapter, we'll look at further details of the Lua programming language, and
you will learn simple coding techniques that are similar to the sample code in Corona.
You will get a better understanding of the Lua syntax and notice how fast and easy it is
to learn compared to other programming languages. So, let's get started!

http://forums.coronalabs.com/

[39]

Lua Crash Course and the
Corona Framework

Lua is the programming language used to develop on the Corona SDK. So far,
you have learned how to use the major resources to run the SDK and other
development tools to create an application on your mobile devices. Now that
we have dabbled into creating a couple of lines of code that make a program
work, let's jump into the fundamentals that will give you a better understanding
of what Lua is capable of.

In this chapter, you will learn how to:

 � Apply variables to a script

 � Use data structures to form tables

 � Work with display objects

 � Implement functions using object methods and arguments

 � Optimize your workflow

So, let's get to it.

2

Lua Crash Course and the Corona Framework

[40]

Lua to the rescue
Lua is the industry standard for game programming. It is similar to JavaScript and Flash's
ActionScript. Anyone who's done any scripting in these languages will make the transition to
Lua almost immediately.

Lua has been useful in creating various applications and games. Many game programmers
have found Lua to be a convenient scripting language due to how easy it is to embed, its fast
execution, and its small learning curve. It is ubiquitous in World of Warcraft. It is also used by
Electronic Arts, Rovio, ngmoco, and Tapulous in games such as Angry Birds, Tap Tap Revenge,
Diner Dash, and so on.

For more information on Lua, refer to http://www.lua.org.

Valuable variables
Like in many scripting languages, Lua has variables. You can think of a variable as something
that stores values. When you apply a value to a variable, you can refer to it using the same
variable name.

An application consists of comments, blocks, statements, and variables. A comment is never
processed, but it is included to explain the purpose of a statement or block. A block is a
group of statements. Statements provide instructions on what operations and computations
need to be done; variables store the values of these computations. Setting a value in a
variable is called assignment.

Lua uses three kinds of variables, which are as follows:

 � Global variables

 � Local variables

 � Table fields (properties)

Variables take up memory space, which can be limited on various mobile devices. When a
variable is no longer required, it is best to set its value to nil so that it can be cleaned quickly.

Global variables
A global variable can be accessed in every scope and can be modified from anywhere. The
term "scope" is used to describe the area in which a set of variables is accessible. You don't
have to declare a global variable. It is created as soon as you assign a value to it:

myVariable = 10
print(myVariable) -- prints the number 10

http://www.lua.org

Chapter 2

[41]

Local variables
A local variable is accessed from a local scope and usually called from a function or block
of code. When we create a block, we are creating a scope in which variables can live or a
list of statements, which are executed sequentially. When referencing a variable, Lua must
find the variable. Localizing variables helps speed up the look-up process and improves the
performance of your code. Using the local statement, it declares a local variable:

local i = 5 -- local variable

The following lines of code show how to declare a local variable in a block:

x = 10 -- global 'x' variable
local i = 1

while i <= 10 do
 local x = i * 2 -- a local 'x' variable for the while block
 print(x) -- 2, 4, 6, 8, 10 ... 20
 i = i + 1
end

print(x) -- prints 10 from global x

Table fields (properties)
Table fields are groups of variables uniquely accessed by an index. Arrays can be indexed
with numbers and strings or any value pertaining to Lua, except nil. You index into the array
to assign the values to a field using integers or strings. When the index is a string, the field is
known as a property. All properties can be accessed using the dot operator (x.y) or a string
(x["y"]) to index into a table. The result is the same:

x = { y="Monday" } -- create table
print(x.y) -- "Monday"
z = "Tuesday" -- assign a new value to property "Tuesday"
print(z) -- "Tuesday"
x.z = 20 -- create a new property
print(x.z) -- 20
print(x["z"]) -- 20

More information relating to tables will be discussed later in the section called Tables.

You may have noticed additional text in certain lines of code in the preceding examples.
These are what you call comments. Comments begin with a double hyphen, -- , anywhere
except inside a string. They run until the end of the line. Block comments are available as
well. A common trick to comment out a block is to surround it with --[[.

Lua Crash Course and the Corona Framework

[42]

Here is an example of how to comment one line:

a = 2
--print(a) -- 2

This is an example of a block comment:

--[[
k = 50
print(k) -- 50
--]]

Assignment conventions
There are rules for variable names. A variable starts with a letter or an underscore. It
can't contain anything other than letters, underscores, or digits. It also can't be one of the
following reserved words of Lua:

 � and

 � break

 � do

 � else

 � elseif

 � end

 � false

 � for

 � function

 � if

 � in

 � local

 � nil

 � not

 � or

 � repeat

 � return

 � then

 � true

 � until

 � while

Chapter 2

[43]

The following are valid variables:

 � x

 � X

 � ABC

 � _abc

 � test_01

 � myGroup

The following are invalid variables:

 � function

 � my-variable

 � 123

Lua is also a case-sensitive language. For example, else is a reserved word, but
Else and ELSE are two different, valid names.

Types of values
Lua is a dynamically typed language. There is no defined variable type in the language.
This allows each value to carry its own type.

As you have noticed, values can be stored in variables. They can be manipulated to give a
value of any type. This also allows you to pass arguments to other functions and have them
returned as results.

The basic types of values that you'll deal with are as follows:

 � Nil: This is the only type whose value is nil. Any uninitialized variable has nil as its
value. Like global variables, it is nil by default and can be assigned nil to delete it.

 � Boolean: This type has two values: false and true. You will notice that conditional
expressions consider false and nil as false and anything else as true.

 � Numbers: These represent real (double-precision, floating-point) numbers.

 � String: This is a sequence of characters. 8-bit characters and embedded zeroes
are allowed.

www.allitebooks.com

http://www.allitebooks.org

Lua Crash Course and the Corona Framework

[44]

 � Tables: These are data structures in Lua. They are implemented by an associative
array, which is an array that can be indexed not only with numbers, but also with
strings or any other value, except nil (more information on this later in this chapter
called Tables).

 � Functions: These are known as first-class values of Lua. Typically, functions can be
stored in variables, passed as arguments to other functions, and returned as results.

Time for action – printing values using blocks
Let's give it a shot and see how powerful a language Lua is. We're starting to get an idea of
how variables work and what happens when you assign values to them. What if you have
a variable that has multiple values attached to it? How does Lua differentiate them? We'll
use the Corona terminal so that we can see the values outputted in the terminal box. Along
the way, you'll pick up other programming techniques as you progress through this section.
We will also refer to chunks in this exercise. The unit of execution in Lua is called a chunk. A
chunk is a block that is executed sequentially. Follow these steps on getting started with Lua:

If you remember, in the previous chapter, you learned how to create your own project folder
and main.lua file for the Hello World application.

1. Create a new project folder on your desktop and name it Variables.

2. Open up your preferred text editor and save it as main.lua in your Variables
project folder.

3. Create the following variables:
local x = 10 -- Local to the chunk
local i = 1 -- Local to the chunk

4. Add in the while loop:
while (i<=x) do
 local x = i -- Local to the "do" body
 print(x) -- Will print out numbers 1 through 10
 i = i + 1
end

5. Create an if statement that will represent another local body:
if i < 20 then
 local x -- Local to the "then" body
 x = 20
 print(x + 5) -- 25
else

Chapter 2

[45]

 print(x) -- This line will never execute since the
above "then" body is already true
end

print(x) -- 10

6. Save your script.

7. Launch the Corona terminal. Make sure that you see the Corona SDK screen and a
terminal window pop up.

8. Navigate to your Variables project folder and open your main.lua file in the
simulator. You will notice that the device in the simulator is blank, but if you look
at your terminal window, there are some results from the code printed out as
shown here:

1

2

3

4

5

6

7

8

9

10

25

10

What just happened?
The first two variables that were created are local ones outside of each block of code. Notice
that at the beginning of the while loop, i <= x refers to the variables in lines 1 and 2.
The local x = i statement inside the while loop is only local to the do body and is not
the same as local x = 10. The while loop runs 10 times and prints out a value that is
incremented by one each time.

The if statement compares i < 20, where i equals 11 at this point and uses another
local x variable that is local to the then body. Since the statement is true, x equals 20
and prints out the value of x + 5, which is 25.

Lua Crash Course and the Corona Framework

[46]

The very last line, print(x), is not attached to any of the blocks of code in the while loop
or the if statement. Therefore, it refers to local x = 10 and prints out the value of 10 in
the terminal window. This may seem confusing, but it's important to understand how local
and global variables work in Lua.

Expressions
An expression is something that represents a value. It can include numeric constants, quoted
strings, variable names, unary and binary operations, and function calls.

Arithmetic operators
+, -, *, /, %, and ^ are called arithmetic operators.

Here is an example of binary arithmetic operators:

t = 2*(2-5.5)/13+26
print(t) -- 25.461538461538

An example of the modulo (division remainder) operator is as follows:

m = 18%4
print(m) -- 2

An example of the power of operator is as follows:

n = 7^2
print(n) -- 49

Relational operators
Relational operators always result in false or true and ask yes or no questions. The relational
operators are <, >, <=, >=, ==, ~=.

The == operator tests for equality, and the ~= operator tests for inequality. If the value types
are different, then the result is false. Otherwise, Lua compares the values to their types.
Numbers and strings are compared in the usual way. Tables and functions are compared by
reference as long as two such values are considered equal, only if they are the same object.
When a new object is created, the new object is different from the previously existing one.

Here are examples of relational operators. They will display Boolean results and can't be
concatenated with strings:

print(0 > 1) --false
print(4 > 2) --true

Chapter 2

[47]

print(1 >= 1) --true
print(1 >= 1.5) --false
print(0 == 0) --true
print(3 == 2) --false
print(2 ~= 2) -- false
print(0 ~= 2) -- true

Logical operators
The logical operators in Lua are and, or, and not. All logical operators consider both false
and nil as false and anything else as true.

The and operator returns its first argument if the value is false or nil; otherwise, it returns
its second argument. The or operator returns its first argument if the value is different from
nil and false; otherwise, it returns its second argument. Both and and or use a shortcut
evaluation; this means the second operand is evaluated only when necessary. Here are some
examples of logical operators:

print(10 and 20) -- 20
print(nil and 1) -- nil
print(false and 1) -- false
print(10 or 20) -- 10
print(false or 1) -- 1

The not operator always returns true or false:

print(not nil) -- true
print(not true) -- false
print(not 2) -- false

Concatenation
The string concatenation operator in Lua is denoted by two dots, "..". It takes two values
as operands and splices them together. If any of its operands is a number, then it is also
converted to a string. Some examples of the concatenation operator are as follows:

print("Hello " .. "World") -- Hello World

myString = "Hello"
print(myString .. " World") -- Hello World

Lua Crash Course and the Corona Framework

[48]

The length operator
The # length operator measures the length of a string or size of a table. The length of a string
is simply the number of characters in it. A character is considered one byte. Examples of the
length operator are as follows:

print(#"*") --1
print(#"\n") --1
print(#"hello") --5
myName = "Jane Doe"
print(#myName) --8

Precedence
The following list shows the operator precedence in Lua displayed from the highest to the
lowest priority:

 � ^

 � not, #, - (unary)

 � *, /

 � +, -

 � ..

 � <, >, <=, >=, ~=, ==

 � and

 � or

All binary operators are left associative, except for the ^ exponentiation and the..
concatenation, which are right associative. You can use parentheses to change the
precedence of an expression.

In cases where two operands of the same precedence compete for operands, the operand
belongs to the operator on the left-hand side:

print(5 + 4 – 2) -- This returns the number 7

The preceding expression shows both the addition and subtraction operators, which have
equal precedence. The second element (the number 4) belongs to the addition operator,
so the expression is evaluated mathematically as follows:

print((5 + 4) – 2) -- This returns the number 7

Chapter 2

[49]

Let's focus on the rules of precedence based on priority. Here is an example:

print (7 + 3 * 9) -- This returns the number 34

An inexperienced programmer may think that the value of the preceding example is 90 if
it were evaluated from left to right. The correct value is 34 because multiplication has a
higher precedence than addition, so it is performed first. Adding parentheses to the same
expression will make it easier to read:

print (7 + (3 * 9)) -- This returns the number 34

Strings
Earlier in this chapter, you saw some code examples using sequences of characters. Those
sequences of characters are called strings. Strings may consist of any character, including
numeric values.

Quoting strings
There are three ways to quote strings: with double quotes, with single quotes, and with
square brackets.

When quoting strings, make sure that only straight quotes are used in your code
and not curly quotes; or else, it will not compile.

Double quote characters " mark the beginning and end of the string. Here is an example:

print("This is my string.") -- This is my string.

You can also quote strings using the single quote character '. Single quotes work the
same as double quotes, except that single-quoted strings can contain a double quote.
Here is an example:

print('This is another string.') -- This is another string.

print('She said, "Hello!" ') -- She said, "Hello!"

Finally, using a pair of square brackets will also quote strings. They are used mainly for strings
when double or single quotes cannot be used. There are not many cases where this occurs,
but they will do the job:

print([[Is it 'this' or "that?"]]) -- Is it 'this' or "that?"

Lua Crash Course and the Corona Framework

[50]

Time for action – getting our hands full of strings
We're starting to familiarize ourselves with several blocks of code and how they interact with
each other. Let's see what happens when we add in some expressions using strings and how
different they are from just regular strings that you print out in the terminal:

1. Create a new project folder on your desktop and name it Working With Strings.

2. Make a new main.lua file in your text editor and save it to your folder.

3. Type out the following lines (do not include the line numbers in the code, they are
only used for line reference):
1 print("This is a string!") -- This is a string!
2 print("15" + 1) -- Returns the value 16

4. Add in the following variables. Notice that it uses the same variable name:
3 myVar = 28
4 print(myVar) -- Returns 28

5 myVar = "twenty-eight"
6 print(myVar) -- Returns twenty-eight

5. Let's add in more variables with some string values and compare them using
different operators:
7 Name1, Phone = "John Doe", "123-456-7890"
8 Name2 = "John Doe"

9 print(Name1, Phone) -- John Doe 123-456-7890
10 print(Name1 == Phone) -- false
11 print(Name1 <= Phone) -- false
12 print(Name1 == Name2) -- true

6. Save your script and launch your project in Corona. Observe the results in the
terminal window:
This is a string!

16

28

twenty-eight

John Doe 123-456-7890

false

false

true

Chapter 2

[51]

What just happened?
You can see that line 1 is just a plain string with characters printed out. In line 2, notice
that number 15 is inside the string and then added to the number 1, which is outside of
the string. Lua provides automatic conversions between numbers and strings at runtime.
Numeric operations applied to a string will try to convert the string to a number.

When working with variables, you can use the same one and have them contain a string and
a number at different times, like in lines 3 and 5 (myVar = 28 and myVar = "twenty-
eight").

In the last chunk of code (lines 7-12), we compared different variable names using relational
operators. First, we printed the strings of Name1 and Phone. The next lines that follow
compared Name1, Name2, and Phone. When two strings have the same characters in the
exact order, then they are considered the same string and are equal to each other. When you
look at print(Name1 == Phone) and print(Name1 <= Phone), the statement returns
false because of the ASCII order. Digits are before alphabets, which are smaller when you
compare them. In print(Name1 == Name2), both variables contain the same characters,
and therefore, it returns true.

Have a go hero – pulling some more strings
Strings are pretty simple to work with since they are just sequences of characters. Try making
your own expressions similar to the preceding example with the following modifications:

1. Create some variables with numerical values and another set of variables with
numerical string values. Use relational operators to compare the values and then
print out the results.

2. Use the concatenation operator, combine several strings or numbers together,
and space them out equally. Print out the result in the terminal window.

Tables
Tables are the proprietary data structure in Lua. They represent arrays, lists, sets, records,
graphs, and so on. A table in Lua is similar to an associative array. Associative arrays can be
indexed with values of any type, not just numbers. Tables implement all these structures
efficiently. For example, arrays can be implemented by indexing tables with integers.
Arrays do not have a fixed size, but grow as needed. When initializing an array, its size
is defined indirectly.

Lua Crash Course and the Corona Framework

[52]

Here is an example of how tables can be constructed:

1 a = {} -- create a table with reference to "a"
2 b = "y"
3 a[b] = 10 -- new entry, with key="y" and value=10
4 a[20] = "Monday" -- new entry, with key=20 and value="Monday"
5 print(a["y"]) -- 10
6 b = 20
7 print(a[b]) -- "Monday"
8 c = "hello" -- new value assigned to "hello" property
9 print(c) -- "hello"

You will notice that in line 5, a["y"] is indexing the value from line 3. In line 7, a[b] uses a
new value of variable b and indexes the value of 20 to the string, "Monday". The last line, c,
is separate from the previous variables, and its only value is the string, "hello".

Passing a table as an array
Keys of a table can be consecutive integers, starting at 1. They can be made into an array (or
a list):

colors = {
[1] = "Green",
[2] = "Blue",
[3] = "Yellow",
[4] = "Orange",
[5] = "Red"
}
print(colors[4]) -- Orange

Another way of writing table constructors to build arrays in a faster and more convenient
way that doesn't require writing out each integer key is shown here:

colors = {"Green", "Blue", "Yellow", "Orange", "Red"}
print(colors[4]) -- Orange

Altering contents in a table
While working with tables, you can modify or remove the values already in it and also add
new values to it. This can be accomplished using the assignment statement. The following
example creates a table with three people and their favorite types of drink. You can make
an assignment to change one person's drink, add a new person-drink pair to the table, and
remove an existing person-drink pair:

Chapter 2

[53]

drinks = {Jim = "orange juice", Matt = "soda", Jackie = "milk"}
drinks.Jackie = "lemonade" -- A change.
drinks.Anne = "water" -- An addition.
drinks.Jim = nil -- A removal.

print(drinks.Jackie, drinks.Anne, drinks.Matt, drinks.Jim)
-- lemonade water soda nil

drinks.Jackie = "lemonade" overwrites the original value of drinks.Jackie =
"milk".

drinks.Anne = "water" adds a new key and value to the table. The value of drinks.
Anne before this line would have been nil.

The value of drinks.Matt = "soda" stays the same since there were no alterations to it.

drinks.Jim = nil overwrites the original value of drinks.Jim = "orange juice"
with nil. It removes the Jim key from the table.

Populating a table
Ways to populate a table is to start with an empty table and add things to it one at a time.
We'll use constructors, which are expressions that create and initialize tables. The simplest
constructor is the empty constructor, {}:

myNumbers = {} -- Empty table constructor

for i = 1, 5 do
 myNumbers[i] = i
end

for i = 1, 5 do
print("This is number " .. myNumbers[i])
end

The following are the results from the terminal:

--This is number 1

--This is number 2

--This is number 3

--This is number 4

--This is number 5

Lua Crash Course and the Corona Framework

[54]

The preceding example shows that myNumbers = {} is an empty table constructor. A for
loop is created and calls myNumbers[i] 5 times, starting from number 1. Each time it is
called, it is incremented by 1 and then printed out.

Objects
Tables and functions are objects; variables do not actually contain these values, only
references to them. Tables are also used in what is known as object-oriented programming.
Variables and methods that manipulate those variables can be collected together into
objects. Such a value is called an object, and its functions are called methods. In Corona,
we'll focus more on display objects since they are essential for game development.

Display objects
Anything drawn on the screen is made by display objects. In Corona, the assets you see
displayed in the simulator are instances of display objects. You have probably seen shapes,
images, and text, which are all forms of display objects. When you create these objects,
you'll be able to animate them, turn them into backgrounds, interact with them using touch
events, and so on.

Display objects are created by calling a function known as a factory function. There is a
specific kind of factory function for each type of display object. For example, display.
newCircle() creates a vector object.

Instances of display objects behave in a manner similar to Lua tables. This enables you to add
your own properties to an object as long as they do not conflict with the system-assigned
properties and method names.

Display properties
The dot operator is used to access properties. Display objects share the following properties:

 � object.alpha: This is the object's opacity. A value of 0 is transparent and 1.0 is
opaque. The default value is 1.0.

 � object.height: This is in the local coordinates.

 � object.isVisible: This controls whether the object is visible on the screen. True
is visible and false is not. The default is true.

 � object.isHitTestable This allows an object to continue to receive hit events
even if it is not visible. If true, objects will receive hit events regardless of visibility; if
false, events are only sent to visible objects. It defaults to false.

Chapter 2

[55]

 � object.parent: This is a read-only property that returns the object's parent.

 � object.rotation: This is the current rotation angle (in degrees). It can be a
negative or positive number. The default is 0.

 � object.contentBounds: This is a table with the xMin, xMax, yMin, and yMax
properties in screen coordinates. It is generally used to map the object in a group to
the screen coordinates.

 � object.contentHeight: This is the height in screen coordinates.

 � object.contentWidth: This is the width in screen coordinates.

 � object.width: This is in local coordinates.

 � object.x: This specifies the x position (in local coordinates) of the object relative
to the parent—the parent's origin to be precise. It provides the x position of the
object's reference point relative to the parent. Changing the value of this will move
the object in the x direction.

 � object.anchorX: This specifies the x position of the object's alignment to the
parent's origin. Anchors range from 0.0 to 1.0. By default, new objects have their
anchor set to 0.5.

 � object.xScale: This gets or sets the x scaling factor. A value of 0.5 will scale
the object to 50 percent in the x direction. The scaling occurs around the object's
reference point. The default reference point for most display objects is center.

 � object.y: This specifies the y position (in local coordinates) of the object relative
to the parent—the parent's origin to be precise.

 � object.anchorY: This specifies the y position of the object's alignment to the
parent's origin. Anchors range from 0.0 to 1.0. By default, new objects have their
anchor set to 0.5.

 � object.yScale: This gets or sets the y scaling factor. A value of 0.5 will scale the
object to 50 percent in the y direction. The scaling occurs around the object's anchor
point. The default reference point for most display objects is center.

Object methods
Corona can create display objects to store object methods as properties. There are two ways
this can be done: using the dot operator (".") or using the colon operator (":"). Both are
valid ways to create object methods.

This is an example of the dot operator:

object = display.newRect(110, 100, 50, 50)
object.setFillColor(1.0, 1.0, 1.0)
object.translate(object, 10, 10)

Lua Crash Course and the Corona Framework

[56]

This is an example of the colon operator:

object = display.newRect(110, 100, 50, 50)
object:setFillColor(1.0, 1.0, 1.0)
object:translate(10, 10)

The call to an object method using the dot operator is passed to the object if it's the first
argument. The colon operator method is merely a shortcut with less typing involved to
create the function.

Display objects share the following methods:

 � object:rotate(deltaAngle) or object.rotate(object, deltaAngle):
This effectively adds deltaAngle (in degrees) to the current rotation property.

 � object:scale(sx, sy) or object.scale(object, sx, sy): This effectively
multiplies the xScale and yScale properties using sx and sy, respectively. If the
current xScale and yScale values are 0.5 and sx and sy are also 0.5, the resulting
scale will be 0.25 for xScale and yScale. This scales the object from 50 percent of
its original size to 25 percent.

 � object:translate(deltaX, deltaY) or object.translate(object,
deltaX, deltaY): This effectively adds deltaX and deltaY to the x and y
properties respectively. This will move the object from its current position.

 � object:removeSelf() or object.removeSelf(object): This removes the
display object and frees its memory, assuming that there are no other references
to it. This is equivalent to calling group:remove(IndexOrChild) on the same
display object, but is syntactically simpler. The removeSelf() syntax is also
supported in other cases, such as removing physics joints in physics.

Images
Many art assets are used in Corona applications images. You will notice that bitmap image
objects are a type of display objects.

Loading an image
Using display.newImage(filename [, baseDirectory] [, left, top]), an
image object is returned. The image data is loaded from a filename you specified for your
image and looks in system.ResourceDirectory for that file. The acceptable types of
image files that are supported are .png (PNG-24 or higher only) and .jpg files. Avoid high
.jpg compression as it may take longer to load on a device. The.png files have better
quality than the .jpg files and are used to display transparent images. The .jpg files do
not save transparent images.

Chapter 2

[57]

Image autoscaling
The default behavior of display.newImage() is to autoscale large images. This is
to conserve texture memory. However, there are times when you do not want to have
images autoscaled, and there is an optional Boolean flag in the parameter list to control
this manually.

To override autoscaling and show the image at its full resolution, use the optional
isFullResolution parameter. By default, it is false, but if you specify true, then
the new image is loaded at its full resolution:

display.newImage([parentGroup,] filename [, baseDirectory] [, x, y]
[,isFullResolution])

The limitations and known issues are as follows:

 � Indexed PNG image files are not supported.

 � Grayscale images are currently not supported; images must be RGB.

 � Images will still be autoscaled if they are larger than the maximum possible texture
dimensions of the device. This is usually 2048 x 2048 px (iPad) and bigger for the
newer, faster devices.

 � If you reload the same image multiple times, the subsequent calls to display.
newImage ignore the isFullResolution parameter and take on the value passed
the first time. In other words, the way you load an image file the first time affects
the autoscaling setting the next time you load that same file. This is because Corona
conserves texture memory by automatically reusing a texture that has already
been loaded. As a result, you can use the same images as many times as you want
without consuming additional texture memory.

More information on Corona SDK's documentation is located on Corona's website at
http://coronalabs.com.

Time for action – placing images on screen
We're finally getting into the visually appealing part of this chapter by starting to add in
display objects using images. We don't have to refer to the terminal window for now. So,
let's focus on the simulator screen. We'll begin by creating a background image and some art
assets by performing the following steps:

1. First off, create a new project folder on your desktop and name it Display Objects.

2. In the Chapter 2 Resources folder, copy the glassbg.png and moon.png
image files and the config.lua file into your Display Objects project folder.

http://coronalabs.com

Lua Crash Course and the Corona Framework

[58]

3. Launch your text editor and create a new main.lua file for your current project.

4. Write out the following lines of code:
local centerX = display.contentCenterX
local centerY = display.contentCenterY

local background = display.newImage("glassbg.png", centerX,
centerY, true)
local image01 = display.newImage("moon.png", 160, 80)

local image02 = display.newImage("moon.png")
image02.x = 160; image02.y = 200

image03 = display.newImage("moon.png")
image03.x = 160; image03.y = 320

The background display object should contain the filename of the background
image in your project folder. For example, if the background image filename is
called glassbg.png, then you would display the image like so:
local background = display.newImage("glassbg.png", centerX,
centerY, true)

Using image02.x = 160; image02.y = 200 is the same as the following lines
of code:
image02.x = 160
image02.y = 200

The semicolon (;) indicates the end of a statement and is optional. It makes it easier
to separate two or more statements in one line and saves adding extra lines in
your code.

5. Save your script and launch your project in the simulator.

If you're using Corona SDK on a Mac OS X, the default device is the
iPhone. If you're using Windows, the default device is the Droid.

6. You should see a background image and three other display objects of the same
image, as shown in the following screen. The display results will vary depending on
which device you use to simulate.

Chapter 2

[59]

The display objects for the image01, image02, and image03 variables should contain the
moon.png filename. The filenames in your code are case sensitive, so make sure that you
write it exactly how it displays in your project folder.

What just happened?
Currently, background is scaled to fit within the device screen height and width using
contentCenterX and contentCenterY. The image centered at its local origin since
no top or left (x or y) coordinates were applied. It is also set to full resolution because we
specified true in the display object.

Lua Crash Course and the Corona Framework

[60]

When you observe the placement of image01, image02, and image03 in the simulator,
they're practically in line with each other vertically, though the script styles for image01
versus image02/image03 are written differently. This is because the coordinates for
image01 are based on the (left, top) coordinates of the display object. You can optionally
specify that the image's top-left corner be located at the coordinate (left, top); if you don't
supply both coordinates, the image will be centered about its local origin.

The placement of image02 and image03 are specified from the local origin of the display
object and positioned by the local values of the x and y properties of the device screen.
The local origin is at the center of the image; the reference point is initialized to this point.
Since we didn't apply (left, top) values to image02 and image03, further access to x or y
properties are referred to the center of the image.

Now, you've probably noticed that the output from the iPhone 4 looks fine and dandy, but
the output from the Droid shows that the background image displays at full resolution,
while the other objects are lower down the screen. We see that all the objects we specified
are there, but the scaling is off. That is because each iOS and Android device has a different
screen resolution. The iPhone 4 has a screen resolution of 640 x 960 pixels, and the Droid has
a screen resolution of 480 x 854 pixels. What may look fine on one type of device may not
look exactly the same on a different one. Don't worry; there is a simple solution to fix all this
using a config.lua file that will be discussed in the next couple of sections.

Have a go hero – adjusting display object properties
Now that you know how to add images to the device screen, try testing out the other display
properties. Try doing any of the following:

 � Changing all the x and y coordinates of the image01, image02, and image03
display objects

 � Choosing any display object and changing its rotation

 � Changing the visibility of a single display object

Reference the display properties mentioned earlier in this chapter if you're unsure how to do
any of the preceding adjustments.

Runtime configuration
All project files not only contain a main.lua file, but other .lua and related assets as
needed for your project. Some Corona projects are configured using a config.lua file
that is compiled into your project and accessed at runtime. This allows you to specify
dynamic content scaling, dynamic content alignment, dynamic image resolution, frame rate
control, and antialiasing, all at the same time, so that the output on every type of device is
displayed similarly.

Chapter 2

[61]

Dynamic content scaling
Corona allows you to specify the screen size you plan to aim your content for. This is done
using a file called config.lua. You'll be able to scale the assets for your app to run on a
device whose screen size is smaller or bigger.

The following values should be used to scale content:

 � width (number): This is the screen resolution width of the original target device (in
portrait orientation)

 � height (number): This is the screen resolution height of the original target device
(in portrait orientation).

 � scale (string): This is a type of autoscaling from the following values:

 � letterbox: This scales up content uniformly as much as possible

 � zoomEven: This scales up content to uniformly to fill the screen, while
keeping the aspect ratio

 � zoomStretch: This scales up content nonuniformly to fill the screen and
will stretch it vertically or horizontally

The zoomStretch value works well with Android device scaling,
since many of them have different screen resolutions.

Dynamic content alignment
Content that is dynamically scaled is already centered by default. You may find cases where
you don't want the content to be centered. Devices such as the iPhone 3G and the Droid
have completely different screen resolutions. In order for the content displayed on the Droid
to be similar to iPhone 3G, the alignment needs to be adjusted so that the content fills the
entire screen without leaving any empty black screen space. The alignment is as follows:

 � xAlign: This is a string that specifies the alignment in the x direction. The following
values can be used:

 � left

 � center (default)
 � right

Lua Crash Course and the Corona Framework

[62]

 � yAlign: This is a string that specifies the alignment in the y direction. The following
values can be used:

 � top

 � center (default)

 � bottom

Dynamic image resolution
Corona allows you to swap in higher resolution versions of your images to higher resolution
devices, without having to change your layout code. This is a case to consider if building for
multiple devices with different screen resolutions.

An example where you want to display hi-res images is on an iPhone 4 where the resolution
is 640 x 960 pixels. It is double the resolution of the earlier iOS devices, such as iPhone 3GS,
which is 320 x 480 pixels. Scaling up the content from the iPhone 3GS to fit the iPhone 4
screen works, but the images will not be as crisp and will look a little fuzzy on the device.

Images of higher resolution can be swapped in for the iPhone 4 by adding a @2x suffix
to the end of the filename (but before the period and file extension). For example, if
your image filename is myImage.png, then your higher resolution filename should be
myImage@2x.png.

In your config.lua file, a table named imageSuffix needs to be added for the image
naming convention and image resolutions to take effect. The config.lua file resides in
your project folder where all your other .lua files and image files are stored. Look at the
following example:

application =
{
 content =
 {
 width = 320,
 height = 480,
 scale = "letterbox",

 imageSuffix =
 {
 ["@2x"] = 2,
 },
 },
}

Chapter 2

[63]

When calling your display objects, use display.newImageRect([parentGroup,]
filename [, baseDirectory] w, h) instead of display.newImage(). The target
height and width need to be set to the dimensions of your base image.

Frame rate control
The frame rate is 30 fps (frames per second) by default. Fps refers to the speed at which
the image is refreshed in games. Thirty fps is standard in mobile games, especially for older
devices. You can set it to 60 fps when you add in the fps key. Using 60 fps makes your app
run smoother. You can easily detect a life-like fluidity in the motion when it comes to running
animations or collision detections.

Time for action – scaling display objects on multiple devices
In our Display Objects project, we left off displaying a background image and three
similar display objects in the simulator. When running the project on different devices, the
coordinates and resolution size were most compatible with the iPhone only. When building
applications for multiple devices across iOS and Android platforms, we can configure it
using a config.lua file that is compiled into the project and accessed at runtime.
So let's get to it!

1. In your text editor, create a new file and write out the following lines:
application =
{
 content =
 {
 width = 320,
 height = 480,
 scale = "letterbox",
 xAlign = "left",
 yAlign = "top"
 },
}

2. Save your script as config.lua in your Display Objects project folder.

3. For Mac users, launch your application in Corona under the iPhone device. Once
you have done so, under the Corona Simulator menu bar, go to Window | View As |
iPhone 4. You will notice that the display objects fit perfectly on the screen and that
there are no empty black spaces showing either.

Lua Crash Course and the Corona Framework

[64]

4. Windows users, launch your application in Corona under the Droid device. You
will notice that all the content is scaled and aligned properly. Under the Corona
Simulator menu bar, go to Window | View As | NexusOne. Observe the similarities
in the content placement to that of the Droid. In the following screenshot, from left
to right, you can see the iPhone 3GS, iPhone 4, Droid, and NexusOne:

What just happened?
You have now learned a way to implement an easy configuration to display your content
across a variety of devices on iOS and Android. Content scaling features are useful for
multiscreen development. If you look in the config.lua file we created, width = 320 and
height = 480. This is the resolution size that the content is originally authored for. In this
case, it is the iPhone 3G. Since we used scale = "letterbox", it enabled the content to
uniformly scale up as much as possible while still showing the entire content on the screen.

We also set xAlign = "left" and yAlign = "top". This fills in the empty black screen
space that shows on the Droid specifically. The content scaling is at the center by default,
so aligning the content to the left and top of the screen will take away the additional
screen space.

Chapter 2

[65]

Dynamic resolution images
Earlier, we touched base with dynamic image resolution. The iOS devices are a perfect
example for this case. Corona has the capability to use base images (for devices on the 3GS
and lower) and double-resolution images (for the iPhone 4 that has a retina display), all in
the same project file. Any of your double-resolution images can be swapped to your high-
end iOS device without having to alter your code. This will allow your build to work with
older devices and lets you handle more complex multiscreen deployment cases. You will
notice that dynamic image resolution works in conjunction with dynamic content scaling.

Using the line, display.newImageRect([parentGroup,] filename [,
baseDirectory] w, h), will call out your dynamic resolution images.

Here, w refers to the content width of the image and h refers to the content height of
the image.

Here is an example:

myImage = display.newImageRect("image.png", 128, 128)

Remember that the two values represent the base image size, not the onscreen position of
the image. You must define the base size in your code so that Corona knows how to render
the higher resolution alternative images. The contents of your project folder would be set up
like this:

My New Project/ name of your project folder
 Icon.png required for iPhone/iPod/iPad
 Icon@2x.png required for iPhone/iPod with Retina display
 main.lua
 config.lua
 myImage.png Base image (Ex. Resolution 128 x 128 pixels)
 myImage@2x.png Double resolution image (Ex. Resolution 256 x 256
 pixels)

When creating your double-resolution image, make sure that it is twice the size of the base
image. It's best that you start with the double-resolution image when creating your display
assets. Corona lets you select your own image-naming patterns. The @2x convention is one
example that can be used, but you have the option of naming suffixes to your personal
preference. For now, we'll use the @2x suffix since it distinguishes the double resolution
reference. When you create your double-resolution image, name it with the @2x suffix
included. Take the same image and resize it to 50 percent of the original size and then use
the same filename without the @2x suffix included.

Lua Crash Course and the Corona Framework

[66]

Other examples of naming suffixes can be as follows:

 � @2

 � -2

 � -two

As mentioned earlier in the chapter, you have to define your image suffix for your double-
resolution images in the imageSuffix table in your config.lua file. The content scale you
set will allow Corona to determine the ratio between the current screen and base content
dimensions. The following example uses the @2x suffix to define double-resolution images:

application =
{
 content =
 {
 width = 320,
 height = 480,
 scale = "letterbox",

 imageSuffix =
 {
 ["@2x"] = 2,
 },
 },
}

Time for some shapes
Another way of creating display objects is using vector objects. You can use vector objects
to create shapes such as a rectangle, rounded rectangle, and circle using the following
functions:

 � display.newRect([parentGroup,] x, y, width, height): This creates a
rectangle using width by height. The x and y values determine coordinates for the
center of the rectangle. Local origin is at the center of the rectangle, and the anchor
point is initialized to this local origin.

 � display.newRoundedRect([parentGroup,] x, y, width, height,
cornerRadius): This creates a rounded rectangle using width by height. The x and
y values determine coordinates for the center of the rectangle. The local origin is at
the center of the rectangle, and the anchor point is initialized to this local origin. You
can round off the corners using cornerRadius.

 � display.newCircle([parentGroup,] xCenter, yCenter, radius):
This creates a circle using the radius centered at xCenter, yCenter.

Chapter 2

[67]

Applying stroke width, fill color, and stroke color
All vector objects can be outlined using strokes. You can set the stroke width, fill color,
and stroke color using the following methods:

 � object.strokeWidth: This creates the stroke width in pixels
 � object:setFillColor(red, green, blue, alpha): We can use the RGB

codes between 0 and 1. The alpha parameter, which is optional, defaults to 1.0
 � object:setStrokeColor(red, green, blue, alpha): We can use the RGB

codes between 0 and 255. The alpha parameter, which is optional, defaults to 1.0

Here is an example of displaying vector objects using strokes:

local rect = display.newRect(160, 130, 150, 150)
rect:setFillColor(1.0, 1.0, 1.0)
rect:setStrokeColor(0.1, 0.6, 0.2)
rect.strokeWidth = 5

You will get on output on the simulator similar to the one shown in the following image:

Lua Crash Course and the Corona Framework

[68]

Text, text, text
In Chapter 1, Getting Started with Corona SDK, we created the Hello World application using
a text display object. Let's go in detail on how text is implemented onscreen:

 � The display.newText([parentGroup,] text, x, y, font, fontSize)
method creates a text object using the x and y values. There is no text color by
default. In the font parameter, apply any of the font names in the library. The
fontSize parameter displays the size of the text.

 � Some of the following default constants can be used if you don't want to apply a
font name:

 � native.systemFont

 � native.systemFontBold

Applying color and string value
The size, color, and text fields can be set or retrieved in text display objects:

 � object.size: This is the size of the text.

 � object:setFillColor(red, green, blue, alpha): We can use the RGB
codes between 0 and 1. The alpha parameter, which is optional, defaults to 1.0.

 � object.text: This contains the text of the text object. It allows you to update a
string value for a test object.

What are functions?
Functions can carry out a procedure or compute and return values. We can make a function
call as a statement, or we can use it as an expression. You can also use object methods as
functions. You have learned that functions can be variables. A table can use these variables
to store them as properties.

Functions are the most important means of abstraction in Lua. One function that we have
used many times is print. In the following example, the print function is being told to
execute one piece of data—the "My favorite number is 8" string:

print("My favorite number is 8") -- My favorite number is 8

Another way of saying this is that print is being called with one argument. The print
function is only one of the many built-in functions that Lua has, but almost any program
you write will involve you defining your own functions.

Chapter 2

[69]

Defining a function
When trying to define a function, you have to give it a name that you can call out to when
you want to return a value. You then have to create a statement or statement block of what
the value will output and then apply end to your function after you have finished defining it.
Here is an example:

function myName()
 print("My name is Jane.")
end

myName() -- My name is Jane.

Notice that the function name is myName, and it is used to call out what's inside the
print("My name is Jane.") function definition.

An extension on defining a function is as follows:

function myName(Name)
 print("My name is " .. Name .. ".")
end

myName("Jane") -- My name is Jane.
myName("Cory") -- My name is Cory.
myName("Diane") -- My name is Diane.

The new myName function has one argument using the Name variable. The "My name is "
string is concatenated with Name and then a period as the printed result. When the function
is called, we used three different names as an argument, and the result is printed with a new
customized name for each line.

More display functions
In Corona, you can change the appearance of the status bar on your device. This is a one-line
setting in your code that takes effect once you launch your application. You can change the
appearance of your status bar using the display.setStatusBar(mode) method. This
hides or changes the appearance of the status bar on iOS devices (iPad, iPhone, and iPod
Touch) and Android 2.x devices. Android 3.x devices are not supported.

The argument mode should be one of the following:

 � display.HiddenStatusBar:To hide the status bar, you can use the following line
at the beginning of your code:
display.setStatusBar(display.HiddenStatusBar)

Lua Crash Course and the Corona Framework

[70]

In the following screenshot, you can see that the status bar is hidden:

 � display.DefaultStatusBar: To show the default status bar, you can use the
following line at the beginning of your code:
display.setStatusBar(display.DefaultStatusBar)

The code will display the default status bar, as shown in the following screenshot:

 � display.TranslucentStatusBar: To show the translucent status bar, you can
use the following line at the beginning of your code:
display.setStatusBar(display.TranslucentStatusBar)

Chapter 2

[71]

The translucent status bar will look like the one shown in the following screenshot:

 � display.DarkStatusBar: To show the dark status bar, you can use the following
line at the beginning of your code:

display.setStatusBar(display.DarkStatusBar)

The following screenshot is of the dark status bar:

Content size properties
When you want to obtain the display information on your device, you can use the content
size properties to return the values. These properties are as follows:

 � display.contentWidth: This returns the original width of the content in pixels.
This will default to the screen width.

Lua Crash Course and the Corona Framework

[72]

 � display.contentHeight: This returns the original height of the content in pixels.
This will default to the screen height.

 � display.viewableContentWidth: This is a read-only property that contains
the width of the viewable screen area in pixels, within the coordinate system of
the original content. Accessing this property will display how the content is viewed,
whether you're in the portrait or landscape mode. Here is an example:
print(display.viewableContentWidth)

 � display.viewableContentHeight: This is a read-only property that contains
the height of the viewable screen area in pixels, within the coordinate system of
the original content. Accessing this property will display how the content is viewed,
whether you're in the portrait or landscape mode. Here is an example:
print(display.viewableContentHeight)

 � display.statusBarHeight: This is a read-only property that represents the
height of the status bar in pixels (only valid on iOS devices). Here is an example:

print(display.statusBarHeight)

Optimize your workflow
So far, we have touched on the vital basics of programming in Lua and the terminology used
in Corona SDK. Once you start developing interactive applications to sell in the App Store
or Android market, you need to be aware of your design choices and how they affect the
performance of your application. This means taking into consideration how much memory
your mobile device is using to process the application. Here are some things to look for if
you're just starting out with Corona SDK.

Use memory efficiently
In some of our earlier examples, we used global variables in our code. Cases like those are
an exception since the examples did not contain a high volume of functions, loops to call out
to, or display objects. Once you start building a game that is heavily involved with function
calls and numerous display objects, the local variables will increase performance within your
application and be placed on the stack so that Lua can interface them faster.

The following code will cause memory leaks:

-- myImage is a global variable
myImage = display.newImage("image.png")
myImage.x = 160; myImage.y = 240

-- A touch listener to remove object

Chapter 2

[73]

local removeBody = function(event)
 local t = event.target
 local phase = event.phase

 if "began" == phase then
 -- variable "myImage" still exists even if it's not displayed
 t:removeSelf() -- Destroy object
 end

 -- Stop further propagation of touch event
 return true
end

myImage:addEventListener("touch", removeBody)

The preceding code removes myImage from the display hierarchy once it is touched. The
only problem is that the memory used by myImage leaks because the myImage variable still
refers to it. Since myImage is a global variable, the display object it references will not be
freed even though myImage does not display on the screen.

Unlike global variables, localizing variables helps speed up the look-up process for your
display object. It also only exists within the block or chunk of code that it's defined in. Using
a local variable in the following code will remove the object completely and free memory:

-- myImage is a local variable
local myImage = display.newImage("image.png")
myImage.x = 160; myImage.y = 240

-- A touch listener to remove object
local removeBody = function(event)
 local t = event.target
 local phase = event.phase

 if "began" == phase then
 t:removeSelf() -- Destroy object
 t = nil
 end

 -- Stop further propagation of touch event
 return true
end

myImage:addEventListener("touch", removeBody)

Lua Crash Course and the Corona Framework

[74]

Optimize your display images
It's important to optimize your image file size as much as you can. Using full-screen images
can impact the performance of your application. They require more time to load on a device
and consume a lot of texture memory. When a lot of memory is consumed in an application,
in most cases it'll be forced to quit.

The iOS devices vary in the size of their available memory, depending on which one you have
out of the following:

 � iPhone 3GS, iPad, and iTouch 3G/4G of 256 MB RAM

 � iPhone 4/4S, iPad 2, iPad Mini, and iTouch 5G of 512 MB RAM

 � iPhone 5/5S/6, 6 Plus, iPad 3G, and iPad 4G of 1 GB RAM

For example, texture memory on the iPhone 3GS should be kept under 25 MB before
performance issues start occurring by slowing down your app or even forcing it to quit.
An iPad 2 would have no problem going farther down that boundary since it has more
memory available.

Refer to http://docs.coronalabs.com/api/event/
memoryWarning/index.html to apply memory warnings for iOS devices.

For Android devices, there is around a 24 MB memory limit. So, it's important to be aware of
how many display objects you have in your scene and how to manage them when they are
not needed in your app any more.

In cases when you no longer need an image to be displayed on screen, use the
following code:

image.parent:remove(image) -- remove image from hierarchy

Alternatively, you can also use this line of code:

image:removeSelf() -- same as above

If you want to remove an image from the scene completely throughout the lifetime of
your app, include the following line after your image.parent:remove(image) or
image:removeSelf() code:

image = nil

Keeping memory usage low within your application will prevent crashes and improve
performance. For more information on optimization, go to http://developer.
coronalabs.com/content/performance-and-optimization.

http://docs.coronalabs.com/api/event/memoryWarning/index.html
http://docs.coronalabs.com/api/event/memoryWarning/index.html
http://developer.coronalabs.com/content/performance-and-optimization
http://developer.coronalabs.com/content/performance-and-optimization

Chapter 2

[75]

Pop quiz – basics of Lua
Q1. Which of the following are values?

1. Numbers

2. nil

3. Strings

4. All of the above

Q2. Which relational operator is false?

1. print(0 == 0)

2. print(3 >= 2)

3. print(2 ~= 2)

4. print(0 ~= 2)

Q3. What is the correct way to scale an object in the x direction?

1. object.scaleX

2. object.xscale

3. object.Xscale

4. object.xScale

Summary
This chapter discussed parts of Lua programming that will send you on your way to
start creating your own apps in Corona. As you continue working with Lua, you'll start
understanding the terminology better. Eventually, you'll find new programming solutions
that will benefit your development process.

Some skills you learned so far include the following:

 � Creating variables and assigning values to them
 � Establishing expressions using operators
 � Using the Corona terminal to output or print results
 � Using tables to structure lists, arrays, sets, and so on
 � Adding display objects in the simulator
 � Configuring your application build to work on different mobile devices
 � Implementing dynamic resolution images
 � Creating functions to run a block of code

Lua Crash Course and the Corona Framework

[76]

This section was definitely a lot to take in. There is still a lot of information on Lua that we
didn't get to touch base on, but you have learned enough to get you started. For more
information on programming in Lua, you can refer to http://www.lua.org/pil/index.
html or the resources section on the Corona website at http://www.coronalabs.com/
resources/.

In the next chapter, we'll start making our very first game called Breakout! You will get some
hands-on experience creating a game framework in Corona and applying all the necessary
assets to develop a mobile game. You'll be surprised how fast and simple it is to create one.

http://www.lua.org/pil/index.html
http://www.lua.org/pil/index.html
http://www.coronalabs.com/resources/
http://www.coronalabs.com/resources/

[77]

3
Building Our

First Game – Breakout

So far, we have gone through some important basics of programming in Lua
and applied some code to run in the Corona simulator. Knowing the terminology
is a small part of learning how to create an application. We'll need to take a
step further and get some hands-on experience of what it's like to structure a
project from start to finish. We're going to accomplish this by creating our first
game from scratch. This will push you further to understand larger chunks of
code and apply some game logic to create a functional game.

By the end of this chapter, you will understand:

 � How to structure game files in a Corona project

 � How to create variables for the game

 � How to add game objects to the screen

 � How to create an alert message

 � How to display the score and level number

Let the fun begin!

Building Our First Game – Breakout

[78]

Breakout – bringing back old-school gaming
You have probably seen many forms of the game Breakout in the past couple of decades,
especially during the Atari days. To give you a good idea of what the game is about,
here is a brief editorial by Big Fish Games about the history of Breakout: http://www.
bigfishgames.com/blog/the-history-of-breakout/. The following screenshot is
an example of Breakout:

On the game screen, there are several columns and rows of bricks placed near the top of the
screen. A ball travels across the screen, bouncing off the top and side walls of the screen.
When a brick is hit, the ball bounces away and the brick is destroyed. The player loses the
round when the ball touches the bottom of the screen. To prevent this from happening, the
player has a movable paddle to bounce the ball upward, keeping it in play.

We're going to create a clone using touch events and the accelerometer for the paddle
movement that will be controlled by the player. We'll be adding some physics to the ball so
that it can bounce around the screen.

In the next chapter, we'll be adding the movement of the game objects, collision detection,
score keeping, and win/lose conditions. Right now, we're going to focus on how to set up the
game template of Breakout.

http://www.bigfishgames.com/blog/the-history-of-breakout/
http://www.bigfishgames.com/blog/the-history-of-breakout/

Chapter 3

[79]

Understanding the Corona physics API
Corona has made it convenient to add physics to your games, especially if you've never
worked on one before. The engine uses Box2D and takes only a few lines to incorporate it
into your application than what it normally takes to have it set up.

Working with the physics engine in Corona is fairly easy. You use display objects and set
them as a physical body in your code. Images, sprites, and vector shapes can be turned into
a physical object. This is substantial in visualizing how you want your objects to react in an
environment you have created. You can see results right away rather than guessing about
how they might act in the physical world.

Setting up the physics world
Making the physics engine available in your app requires the following line:

local physics = require "physics"

Starting, pausing, and stopping the physics engine
There are three main functions that affect the physics simulation. The following will start,
pause, and stop the physics engine:

 � physics.start(): This will start or resume the physical environment. It is usually
activated at the beginning of the application for physics bodies to take effect.

 � physics.pause(): This stops the physics engine temporarily.

 � physics.stop(): This basically destroys the physical world altogether.

physics.setGravity
This function sets the x and y parameters of the global gravity vector in units of meters per
second square (acceleration units). The default is (0, 9.8) to simulate standard earth gravity,
pointing downwards on the y axis. The syntax is physics.setGravity(gx, gy):

physics.setGravity(0, 9.8): Standard Earth gravity

physics.getGravity
This function returns the x and y parameters of the global gravity vector in units of meter per
second square (acceleration units).

The syntax is gx, gy = physics.getGravity().

Building Our First Game – Breakout

[80]

Tilt-based gravity
When you have physics.setGravity(gx, gy) and the accelerometer API applied,
implementing tilt-based dynamic gravity is simple. The following is an example of creating
the tilt-based function:

function movePaddle(event)

 paddle.x = display.contentCenterX - (display.contentCenterX *
(event.yGravity*3))

end

Runtime:addEventListener("accelerometer", movePaddle)

The accelerometer is not present in the Corona simulator; a device build must be created to
see the effect.

physics.setScale
This function sets the internal pixels-per-meter ratio used to convert between the onscreen
Corona coordinates and simulated physics coordinates. This should be done before any of
the physical objects are instantiated.

The default scaling value is 30. For devices of higher resolution, such as iPad, Android,
or iPhone 4, you might wish to increase this value to 60 or more.

The syntax is physics.setScale(value):

physics.setScale(60)

physics.setDrawMode
There are three rendering modes for the physics engine. This can be altered at any time.

The syntax is physics.setDrawMode(mode). The three rendering modes are:

 � physics.setDrawMode("debug"): This mode shows collision engine outlines
only, as you can see in the following screenshot:

Chapter 3

[81]

 � physics.setDrawMode("hybrid"): This mode overlays collision outlines on
normal Corona objects, as you can see in the following screenshot:

Building Our First Game – Breakout

[82]

 � physics.setDrawMode("normal"): This mode is the default Corona renderer
with no collision outlines:

The physics data is displayed using color-coded vector graphics, which reflect different object
types and attributes:

 � Orange: This is used to denote dynamic physics bodies (the default body type)

 � Dark blue: This is used to denote kinematic physics bodies

 � Green: This is used to denote static physics bodies such as the ground or walls

 � Gray: This is used to denote a body that is in a sleeping state due to lack of activity

 � Light blue: This is used to denote joints

physics.setPositionIterations
This function sets the accuracy of the engine's position calculations. The default value is 8,
meaning that the engine will iterate through eight position approximations per frame for
every object, but will increase processor engagement, so it should be handled carefully,
because it might slow down the application.

The syntax is physics.setPositionIterations(value):

physics.setPositionIterations(16)

Chapter 3

[83]

physics.setVelocityIterations
This function sets the accuracy of the engine's velocity calculations. The default value is 3,
meaning that the engine will iterate through three velocity approximations per frame for
every object. However, this will increase processor engagement, so it should be handled
carefully because it might slow down the application.

The syntax is physics.setVelocityIterations(value):
physics.setVelocityIterations(6)

Configuring the application
This tutorial is compatible for both iOS and Android devices. The graphics have been
designed to accommodate the varying screen dimensions of both platforms.

Build configuration
By default, all items displayed on all device screens are shown in the portrait mode. We'll
be creating this game specifically in the landscape mode, so we'll have to alter some build
settings and configure how all the items on the screen will be displayed. Playing the game
in the landscape mode will actually add more player interactivity since the paddle will have
more screen space to move about and less airtime for the ball.

Time for action – adding the build.settings file
The build-time properties can be provided in an optional build.settings file, which uses
the Lua syntax. The build.settings file is used to set the application orientation and
autorotation behavior along with a variety of platform-specific build parameters. To add the
build.settings file in your project folder, perform the following steps:

1. Create a new project folder called Breakout on your desktop.

2. In your preferred text editor, create a new file called build.settings and save it
in your project folder.

3. Type in the following lines:
settings =
{
 orientation =
 {
 default = "landscapeRight",
 supported = { "landscapeLeft", "landscapeRight" },
 }
}

4. Save and close the file. The build.settings file is completed.

Building Our First Game – Breakout

[84]

What just happened?
The default orientation setting determines the initial launch orientation on the device and
the initial orientation of the Corona simulator.

The default orientation doesn't affect Android devices. The orientation is initialized to the
actual orientation of the device (unless only one orientation is specified). Also, the only
supported orientations are landscapeRight and portrait. On a device, you can flip to
either landscapeRight or landscapeLeft, but the operating system only reports one
flavor of landscape, and Corona's orientation event chooses landscapeRight.

We have created this application to work with landscape orientations that support
landscapeRight. We have set this orientation as its default so it won't switch to
landscapeLeft or even any portrait mode. While working on an iOS device, if the build.
settings isn't set before launching the application, it will go to the default portrait mode.

Dynamic scaling
Corona can target builds made for multiple devices across iOS and Android, which display
various art assets in different resolutions. Corona can scale upward or downward depending
on your starting resolution. It can also substitute higher-resolution image files when needed,
ensuring that your app appears clear and sharp on all devices.

Time for action – adding the config.lua file
If no content size is specified, the content width and height returned will be the same as the
physical screen width and height of the device. If you specify a different content width and
height in config.lua, the content width and height will take on those values. To add the
config.lua file in your project folder, perform the following steps:

1. In your text editor, create a new file called config.lua and save it to your
project folder.

2. Type in the following lines:
application =
{
 content =
 {
 width = 320,
 height = 480,
 scale = "letterbox",
 fps = 60,
 },
}

3. Save and close your file.

Chapter 3

[85]

What just happened?
The content width and height allow you to choose a virtual screen size that is independent of
the physical device screen size. We have set the size to target the iPhone 3GS since it displays
one of the common dimensions across most devices for both iOS and Android platforms.

The scale used for this application is set to letterbox. It will uniformly scale up content as
much as possible while still displaying all content on the screen.

We set fps to 60. By default, the frame rate is 30 fps. In this application, this will make the
movement of the ball appear faster and allow us to increase the speed conveniently. We can
stretch the frame rate to 60 fps, which is the maximum that Corona can allow.

Building the application
Now that we have configured our application to the landscape mode and set the display
contents to scale on multiple devices, we're ready to start designing the game. Before
we start writing some code for the game, we need to add in some art assets that will be
displayed on the screen. You can find them in the Chapter 3 Resources folder. You can
download the project files that accompany this book from the Packt Publishing website.
The following are the files that you'll need to add to your Breakout project folder:

 � alertBox.png

 � bg.png

 � mmScreen.png

 � ball.png

 � paddle.png

 � brick.png

 � playbtn.png

Displaying groups
An important function that we'll be introducing in this game is display.newGroup().
Display groups allow you to add and remove child display objects and collect the related
display objects. Initially, there are no children in a group. The local origin is at the parent
object's origin; the anchor point is initialized to this local origin. You can easily organize your
display objects in separate groups and refer to them by their group name. For example, in
Breakout, we'll combine menu items such as the Title screen and Play button in a group
called menuScreenGroup. Every time we access menuScreenGroup, any display object
contained within the display group will be processed.

Building Our First Game – Breakout

[86]

display.newGroup()
This function creates a group in which you can add and remove child display objects.

The syntax is display.newGroup().

For example:

local rect = display.newRect(0, 0, 150, 150)
rect:setFillColor(1, 1, 1)

local myGroup = display.newGroup()
myGroup:insert(rect)

Working with system functions
The system functions that we're going to introduce in this chapter will return information
about the system (device information and current orientation) and control system functions
(enabling multi-touch and controlling the idle time, accelerometer, and GPS). We'll be using
the following system functions to return the environment information that our application
will be running in and the response frequency for the accelerometer events.

system.getInfo()
This function returns information about the system on which the application is running.

The syntax is system.getInfo(param):

print(system.getInfo("name")) -- display the deviceID

Valid values for parameters are as follows:

 � "name": This returns the model name of the device. For example, on the iTouch,
this would be the name of the phone as it appears in iTunes, such as "Pat's iTouch".

 � "model": This returns the device type. These include:

 � iPhone

 � iPad

 � iPhone Simulator

 � Nexus One

 � Droid

 � myTouch

 � Galaxy Tab

Chapter 3

[87]

 � "deviceID": This returns a hash-encoded device ID of the device.

 � "environment": This returns the environment that the app is running on. These
include:

 � "simulator": The Corona simulator

 � "device": iOS, Android device, and the Xcode simulator

 � "platformName": This returns the platform name (the OS name), which can be any
one of the following:

 � Mac OS X (Corona simulator on Mac)

 � Win (Corona simulator on Windows)

 � iPhone OS (all iOS devices)

 � Android (all Android devices)

 � "platformVersion": This returns a string representation of the platform version.

 � "build": This returns the Corona build string.

 � "textureMemoryUsed": This returns the texture memory usage in bytes.

 � "maxTextureSize": This returns the maximum texture width or height supported
by the device.

 � "architectureInfo": This returns a string that describes the underlying CPU
architecture of the device you are running on.

system.setAccelerometerInterval()
This function sets the frequency of accelerometer events. On the iPhone, the minimum
frequency is 10 Hz and the maximum is 100 Hz. Accelerometer events are a significant drain
on battery, so only increase the frequency when you need faster responses, as in games.
Always try to lower the frequency whenever possible to conserve battery life.

The syntax is system.setAccelerometerInterval(frequency):

system.setAccelerometerInterval(75)

The function sets the sample interval in Hertz. Hertz is cycles per second, that is, the number
of measurements to take per second. If you set the frequency to 75, then the system will
take 75 measurements per second.

After you have the assets from the Chapter 3 Resources folder added in your project
folder, we will begin writing some code!

Building Our First Game – Breakout

[88]

Time for action – creating variables for the game
For any application to start, we'll need to create a main.lua file. This has been discussed in
Chapter 2, Lua Crash Course and the Corona Framework, when we worked with some sample
code and ran it with the simulator.

The code will be structured accordingly in your main.lua file by the time the game
is completed:

 � Necessary classes (for example, physics or ui)

 � Variables and constants

 � Main function

 � Object methods

 � Call main function (this has to be called always, or your application will not run)

Arranging your code to make it look like the preceding structure is a good practice on
keeping things organized and running your application efficiently.

In this section, we'll be introducing the display group that will show the main menu screen
and a Play button that the user will be able to interact with in order to move on to the
main game screen. All in-game elements such as the paddle, ball, brick objects, and heads-
up display elements follow after the player interacts with the Play button. We'll also be
introducing win and lose conditions that will be referred as alertDisplayGroup. All these
game elements will be initialized in the beginning of our code.

1. Create a new main.lua file in your text editor and save it to your project folder.

2. We're going to hide the status bar (specifically for iOS devices) and load the physics
engine. Corona uses the Box2D engine that is already built into the SDK:
display.setStatusBar(display.HiddenStatusBar)

local physics = require "physics"
physics.start()
physics.setGravity(0, 0)

system.setAccelerometerInterval(100)

More information on the Corona Physics API can be found on the Corona
website at http://docs.coronalabs.com/guide/physics/
physicsSetup/index.html.
The Box2D physics engine used in Corona SDK was written by Erin Catto of
Blizzard Entertainment. More information on Box2D can be found at http://
box2d.org/manual.pdf.

http://docs.coronalabs.com/guide/physics/physicsSetup/index.html
http://docs.coronalabs.com/guide/physics/physicsSetup/index.html
http://box2d.org/manual.pdf
http://box2d.org/manual.pdf

Chapter 3

[89]

3. Add in the menu screen objects:
local menuScreenGroup -- display.newGroup()
local mmScreen
local playBtn

4. Add in the in-game screen objects:
local background
local paddle
local brick
local ball

5. Add in HUD elements for the score and level:
local scoreText
local scoreNum
local levelText
local levelNum

The HUD is also known as the heads-up display. It is a method of
visually representing character information on the game screen.

6. Next, we'll add in the alert display group for the win/lose conditions:
local alertDisplayGroup -- display.newGroup()
local alertBox
local conditionDisplay
local messageText

7. The following variables hold the values for the bricks display group, score, ball
velocity, and in-game events:
local _W = display.contentWidth / 2
local _H = display.contentHeight / 2
local bricks = display.newGroup()
local brickWidth = 35
local brickHeight = 15
local row
local column
local score = 0
local scoreIncrease = 100
local currentLevel
local vx = 3
local vy = -3
local gameEvent = ""

Building Our First Game – Breakout

[90]

8. Accelerometer events can only be tested on a device, so we're going to add a
variable for touch events on the paddle by calling the "simulator" environment.
This is so that we can test the paddle movement in the Corona simulator. If you were
to test the application on a device, the event listeners for touch and accelerometer
on the paddle won't conflict:
local isSimulator = "simulator" ==
system.getInfo("environment")

9. Lastly, add in the main() function. This will start our application:

function main()

end

--[[
This empty space will hold other functions and methods to run
the application
]]--

main()

What just happened?
The display.setStatusBar(display.HiddenStatusBar) method is only applicable
for iOS devices. It hides the appearance of the status bar on the device.

The new Corona API that we added to this game is the physics engine. We'll be adding
physics parameters to the main game objects (paddle, ball, and bricks) for collision detection.
Having setGravity(0,0) will allow the ball to bounce around the playing field freely.

The local menuScreenGroup, local alertDisplayGroup, and local bricks
objects are all forms of display groups that we can separate and organize our display objects
in. For example, local menuScreenGroup is designated for objects that show up on the
main menu screen. Hence, they can be removed as a group and not as individual objects.

Some of the variables added already have values that are applied to certain game objects.
There is already a set velocity for the ball using local vx = 3 and local vy = -3.
The x and y velocities determine how the ball moves on the game screen. Depending on
the position the ball collides with an object, the ball will follow a continuous path. The
brickWidth and brickHeight objects have a value that will stay constant throughout
the application, so we can line the brick objects evenly onscreen.

Chapter 3

[91]

local gameEvent = " " will store the game events such as "win", "lose", and
"finished". When a function checks the game status for any of these events, it will
display the proper condition on screen.

We have added some system functions as well. We created local isSimulator =
"simulator" == system.getInfo("environment") so that it returns information
about the system on which the application is running. This will be directed for the paddle
touch events so that we can test the application in the simulator. If the build were to be
ported on a device, you would only be able to use the accelerometer to move the paddle.
The simulator can't test accelerometer events. The other system function is system.
setAccelerometerInterval(100). It sets the frequency of the accelerometer
events. The minimum frequency on an iPhone is 10 Hz and the maximum is 100 Hz.

The main() empty function set will start out the display hierarchy. Think of it as a
storyboard. The first thing you see is an introduction, and then some action happens in the
middle that tells you about the main content. In this case, the main content is the game play.
The last thing you see is some kind of ending or closure to tie the story together. The ending
is the display of the win/lose conditions at the end of a level.

Understanding events and listeners
Events are sent to listeners that are executed by a touch on the mobile screen, tap,
accelerometer, and so on. Functions or objects can be event listeners. When an event occurs,
the listener is called by a table that represents the event. All events will have a property
name that identifies the kind of event.

Register events
Display objects and global runtime objects can be event listeners. You can add and remove
listeners for events using the following object methods:

 � object:addEventListener(): This adds a listener to the object's list of listeners.
When the named event occurs, the listener will be invoked and supplied with a table
that represents the event.

 � object:removeEventListener(): This removes the specified listener from the
object's list of listeners so that it is no longer notified of events that correspond to
the specified event.

Building Our First Game – Breakout

[92]

In the following example, an image display object registers to receive a touch event.
Touch events are not broadcast globally. Display objects that register for the event
and lie underneath it will be candidates to receive the event:

local playBtn = display.newImage("playbtn.png")
playBtn.name = "playbutton"

local function listener(event)
 if event.target.name == "playbutton" then

 print("The button was touched.")

end
end

playBtn:addEventListener("touch", listener)

Runtime events are sent by the system. They broadcast to all listeners. The following is an
example of registering for an enterFrame event:

local playBtn = display.newImage("playbtn.png")

local function listener(event)
 print("The button appeared.")
end

Runtime:addEventListener("enterFrame", listener)

Runtime events
The application that we're creating uses runtime events. Runtime events have no specific
target and are only sent to the global runtime. They broadcast to all registered listeners.

Runtime events are sent by the system. They broadcast to all listeners. The following is an
example of registering for an enterFrame event:

local playBtn = display.newImage("playbtn.png")

local function listener(event)
 print("The button appeared.")
end

Runtime:addEventListener("enterFrame", listener)

The following events all have string names and will be applied to the Breakout game.

Chapter 3

[93]

enterFrame
The enterFrame events occur at the frame interval of the application. They are only sent
to the global runtime object. For example, if the frame rate is 30 fps, then it will occur
approximately 30 times per second.

The following properties are available in this event:

 � event.name is the string "enterFrame"

 � event.time is the time in milliseconds since the start of the application

Accelerometer
Accelerometer events let you detect movements and determine the device's orientation in
relation to gravity. These events are only sent to devices that support accelerometer. They
are only sent to the global runtime object.

The following properties are available for this event:

 � event.name is the string "accelerometer"

 � event.xGravity is the acceleration due to gravity in the x direction

 � event.yGravity is the acceleration due to gravity in the y direction

 � event.zGravity is the acceleration due to gravity in the z direction

 � event.xInstant is the instantaneous acceleration in the x direction

 � event.yInstant is the instantaneous acceleration in the y direction

 � event.zInstant is the instantaneous acceleration in the z direction

 � event.isShake is true when the user shakes the device

Touch events
When the user's finger touches the screen, a hit event is generated and dispatched to display
objects in the display hierarchy. Only those objects that intersect with the location of the
finger on the screen will potentially receive the event.

Touch (single touch)
Touch events are a special kind of hit event. When a user's finger touches the screen,
they are starting a sequence of touch events, each with different phases.

 � event.name is the string "touch"

 � event.x is the x position in the screen coordinates of the touch

 � event.y is the y position in the screen coordinates of the touch

Building Our First Game – Breakout

[94]

 � event.xStart is the x position of the touch from the "began" phase of the
touch sequence

 � event.yStart is the y position of the touch from the "began" phase of the touch
sequence

 � event.phase is a string that identifies where in the touch sequence the
event occurred:

 � "began": This indicates that a finger touched the screen

 � "moved": This indicates that a finger moved on the screen

 � "ended": This indicates that a finger was lifted from the screen

 � "cancelled": This indicates that the system canceled tracking
of the touch

tap
It generates a hit event when the user touches the screen. The event is dispatched to display
objects in the display hierarchy. This is similar to the touch event, except that a hit count
(number of taps) is available in the event callback and doesn't use event phases. The event
APIs are as follows:

 � event.name is the string "tap"

 � event.numTaps returns the number of taps on the screen

 � event.x is the x position in the screen coordinates of the tap

 � event.y is the y position in the screen coordinates of the tap

Transitions
In this chapter, we'll be touching base with transition.to() and transition.from():

 � transition.to(): This animates a display object's properties over time using the
easing transitions.

The syntax is handle = transition.to(target, params).

 � transition.from(): This is similar to transition.to() except that the starting
property values are specified in the function's parameter table, and the final values
are the corresponding property values in the target prior to the call. The syntax is
handle = transition.from(target, params).

Chapter 3

[95]

The parameters used are as follows:

 � target: This is a display object that will be the target of the transition.

 � params: This is a table that specifies the properties of the display object,
which will be animated, and one or more of the following optional non-
animated properties:

 � params.time: This specifies the duration of the transition in
milliseconds. By default, the duration is 500 ms (0.5 seconds).

 � params.transition: This is by default easing.linear.

 � params.delay: This specifies the delay in milliseconds
(none by default) before the tween begins.

 � params.delta: This is a Boolean that specifies whether non-
control parameters are interpreted as final ending values or as
changes in value. The default is nil, meaning false.

 � params.onStart: This is a function or table listener that is called
before the tween begins.

 � params.onComplete: This is a function or a table listener that is
called after the tween completes.

For example:

_W = display.contentWidth
_H = display.contentHeight

local square = display.newRect(0, 0, 100, 100)
square:setFillColor(1, 1, 1)
square.x = _W/2; square.y = _H/2

local square2 = display.newRect(0, 0, 50, 50)
square2:setFillColor(1, 1, 1)
square2.x = _W/2; square2.y = _H/2

transition.to(square, { time=1500, x=250, y=400 })
transition.from(square2, { time=1500, x=275, y=0 })

The preceding example shows how two display objects transition throughout the space on
a device screen. From its current position, the square display object will move to a new
location of x = 250 and y = 400 in 1500 milliseconds. The square2 display object will
transition from x = 275 and y = 0 to its initial location in 1500 milliseconds.

Building Our First Game – Breakout

[96]

Creating menu screens
Having menu screens allows the player to transition through different parts of your
application. Typically, a game will start out with some kind of screen that displays the game
title with an interactive user interface button labeled Play or Start to give the player the
option to play the game. It is standard in any mobile application to have a menu screen
before transitioning to the main content.

Time for action – adding the main menu screen
The main menu screen will be the first thing in our menu system that the player interacts
with after the application is launched. It's a great way to introduce the title of the game and
also give the player an idea of what type of gaming environment they should expect. We
wouldn't want the player to jump abruptly into the app without any proper notification. It's
important to allow the player to prepare for what is to come when they launch the app.

1. We're going to create a function called mainMenu() to introduce the title screen.
So after function main() ends, add in the following lines:
function mainMenu()

end

2. We'll be adding in a display group and two display objects to this function. One
display object is the image that will represent the main menu screen, and the other
will be a UI button called Play. Add them inside function mainMenu():
 menuScreenGroup = display.newGroup()

 mmScreen = display.newImage("mmScreen.png", 0, 0, true)
 mmScreen.x = _W
 mmScreen.y = _H

 playBtn = display.newImage("playbtn.png")
 playBtn.anchorX = 0.5; playBtn.anchorY = 0.5
 playBtn.x = _W; playBtn.y = _H + 50
 playBtn.name = "playbutton"

 menuScreenGroup:insert(mmScreen)
 menuScreenGroup:insert(playBtn)

3. Remember the empty main() function set? We need to call mainMenu() inside it.
The entire function should look like this:
function main()
 mainMenu()
end

Chapter 3

[97]

4. After the mainMenu() function, we're going to create another function called
loadGame(). This function will initiate the event from playbtn to transition to
the main game screen. The event will change the alpha of menuScreenGroup to
0, which makes it invisible on the screen. Complete the transition by calling the
addGameScreen() function (addGameScreen() will be discussed later in the
Time for action – adding game objects section of this chapter):
function loadGame(event)
 if event.target.name == "playbutton" then

 transition.to(menuScreenGroup,{time = 0, alpha=0,
 onComplete = addGameScreen})

 playBtn:removeEventListener("tap", loadGame)
 end
end

5. Next, we need to add in an event listener to playBtn, so when it is tapped, it will
call the loadGame() function. Add the following line in the mainMenu() function
after the last method:
playBtn:addEventListener("tap", loadGame)

6. Run the project in the simulator. You should see the main menu screen display
Breakout and the Play button.

What just happened?
Creating a main menu screen only requires a couple of blocks of code. For
loadGame(event), we passed a parameter called event. When the if statement is called,
it takes playbutton, which references to the display object playBtn, and checks to see
whether it is true. Since it is, the menuScreenGroup will be removed from the stage and
called in the addGameScreen() function. At the same time, the event listener for playBtn
is removed from the scene.

Have a go hero – creating a help screen
Right now, the design of the menu system is set up so that from the main menu screen it
transitions to the game play screen. You have the option to extend the menu screens without
jumping into the game right away. Something additional that can be added is a help menu
screen after the main menu screen, which explains to the players how to play the game.

Create a new image in your preferred image editing program and write out the steps for how
to play the game. You can then create a new button called Next and add both art assets to
your project folder. In your code, you'll have to create a new function and event listener for
your Next button, which will transition to the game play screen.

Building Our First Game – Breakout

[98]

Creating the game play scene
Now that we have a menu system in place, we can start on the game play elements of the
application. We'll start adding all of the main game objects that the player will interact with.
One thing to note when adding in game objects is their placement on the screen. Given that
this game will be played in the landscape mode, we have to remember that there is plenty
of space available in the x direction and a smaller amount in the y direction. Based on the
original design of the game, the bottom wall of the screen causes the player to lose the level
or turn if the ball lands in that area. So if we were to pinpoint an area to place the paddle
object, we wouldn't set it near the top of the screen. It makes more sense for the paddle to
be as close to the bottom of the screen to protect the ball better.

Time for action – adding game objects
Let's add in the display objects the player will see while in game play:

1. After the loadGame() function, we're going to create another function that will
display all our game objects on screen. The following lines will display the art assets
that were created for this tutorial:
function addGameScreen()

 background = display.newImage("bg.png", 0, 0, true)
 background.x = _W
 background.y = _H

 paddle = display.newImage("paddle.png")
 paddle.x = 240; paddle.y = 300
 paddle.name = "paddle"

 ball = display.newImage("ball.png")
 ball.x = 240; ball.y = 290
 ball.name = "ball"

2. Next, we'll add in the text that will display the score and level number during
the game:
 scoreText = display.newText("Score:", 25, 10, "Arial", 14)
 scoreText:setFillColor(1, 1, 1)

 scoreNum = display.newText("0", 54, 10, "Arial", 14)
 scoreNum: setFillColor(1, 1, 1)

Chapter 3

[99]

 levelText = display.newText("Level:", 440, 10, "Arial", 14)
 levelText:setFillColor(1, 1, 1)

 levelNum = display.newText("1", 470, 10, "Arial", 14)
 levelNum:setFillColor(1, 1, 1)

3. To build the first game level, we're going to call the gameLevel1() function, which
will be explained later in this chapter. Don't forget to close the addGameScreen()
function with end:

 gameLevel1()

end

What just happened?
The addGameScreen() function displays all the game objects shown during game play.
We have added the background, paddle, and ball display objects from the art assets
provided for this chapter.

We have added text for the score and level at the top of the game screen. scoreNum is
initially set to 0. In the next chapter, we'll discuss how to update the score number when
a brick collision is made. levelNum starts at 1, updates when the level is completed, and
moves on to the next one.

We ended the function by calling gameLevel1(), which will be implemented in the next
section to start the first level.

Time for action – building bricks
The bricks are the last of the game objects we need to add in for this application. We'll be
creating two different levels for this game. Each one will have a different brick layout from
the other:

1. We're going to create the function for the first level. Let's create a new function,
gameLevel1(). We will also set currentLevel to 1 since the application begins
at level 1. Then, we'll add in the bricks display group and set it as toFront() so
that it appears in front of the game background:
function gameLevel1()

 currentLevel = 1

 bricks:toFront()

Building Our First Game – Breakout

[100]

The method object:toFront() moves the target object to the visual front of its
parent group (object.parent). In this case, we are setting the bricks group to
appear as the front-most display group during game play so that it appears in front
of the background image.

2. Next, add some local variables that will show how many rows and columns of bricks
will be displayed on screen and where each brick will be placed in the playing field:
 local numOfRows = 4
 local numOfColumns = 4
 local brickPlacement = {x = (_W) - (brickWidth * numOfColumns
) / 2 + 20, y = 50}

3. Create double for loops, one for numOfRows and the other for numOfColumns.
Create a brick instance placed according to its width, height, and the number
corresponding to numOfRows and numOfColumns. The art asset for the brick
display object is provided with this chapter. Then, close the function with end:
 for row = 0, numOfRows - 1 do
 for column = 0, numOfColumns - 1 do

 local brick = display.newImage("brick.png")
 brick.name = "brick"
 brick.x = brickPlacement.x + (column * brickWidth)
 brick.y = brickPlacement.y + (row * brickHeight)
 physics.addBody(brick, "static", {density = 1, friction =
 0, bounce = 0})
 bricks.insert(bricks, brick)

 end
 end
end

4. The setup for level 2 is similar to how level 1 is arranged. The code is almost the
same, except that our new function is called gameLevel2(), currentLevel is set
to 2, and the values for numOfRows and numOfColumns have different values. Add
the following block after the gameLevel1() function:
function gameLevel2()

 currentLevel = 2

 bricks:toFront()

 local numOfRows = 5
 local numOfColumns = 8
 local brickPlacement = {x = (_W) - (brickWidth * numOfColumns)
/ 2 + 20, y = 50}

 for row = 0, numOfRows - 1 do

Chapter 3

[101]

 for column = 0, numOfColumns - 1 do

 -- Create a brick
 local brick = display.newImage("brick.png")
 brick.name = "brick"
 brick.x = brickPlacement.x + (column * brickWidth)
 brick.y = brickPlacement.y + (row * brickHeight)
 physics.addBody(brick, "static", {density = 1, friction =
 0, bounce = 0})
 bricks.insert(bricks, brick)

 end
 end
end

5. Save your file and relaunch the simulator. You'll be able to interact with the Play
button and see the transition from the main menu screen to the game screen. You
will see the game layout for level 1 displayed on screen.

What just happened?
The bricks display group is set as bricks:toFront(). This means that the group will
always be put in front of the display hierarchy, apart from the background, paddle, and
ball display objects.

The gameLevel1() method has set values for the amount of brick objects displayed in
the playing field. They will be centered based on contentWidth of the device shell and
set at 50 in the y direction. The brick group is placed near the top left-hand corner by
brickPlacement, takes the middle of the screen, and subtracts it by half the width of all
the brick objects put together. Then, we add 20 more pixels in the x direction to center it
with the paddle.

We created double for loops for numOfRows and numOfColumns, which start the creation
of the brick objects from the left-hand corner of the screen.

Notice that the brick display object is given the name brick. Just remember that brick
cannot be used the same way as brick when calling the object. The brick object is an
instance of brick. It is merely used as a string when event parameters are called,
for example:

if event.other.name == "brick" and ball.x + ball.width * 0.5 <
event.other.x + event.other.width * 0.5 then
 vx = -vx
elseif event.other.name == "brick" and ball.x + ball.width * 0.5 >=
event.other.x + event.other.width * 0.5 then
 vx = vx
end

Building Our First Game – Breakout

[102]

The physics body of brick is set to "static", so it is not affected by gravity pulling down.
Then, it is added to the bricks group under bricks.insert(bricks, brick).

Have a go hero – focused platform gaming
On completing this chapter and the next one, feel free to redesign the display images
to focus on a specific platform. For example, you can easily convert the code to be
compatible for all iOS devices. This can be done by converting display objects to display.
newImageRect([parentGroup,] filename [, baseDirectory] w, h), so
you can substitute image dimensions on devices with larger screen sizes (such as iPhone 5/
Samsung Galaxy S5). Remember that you'll have to adjust your configuration settings to have
the changes applied. This pertains to adding a unique image suffix (or your preferred suffix
naming convention) to your config.lua file.

Red alert!
In every game, there is some kind of message that tells you the status of your progress when
the main action has ended. For this application, we need a way to let the player know if they
have won or lost a round, how they can play again, or when the game is officially completed.

Time for action – displaying game messages
Let's set up some win/lose notifications so that we can display these events that occur
in game:

1. Create a new function called alertScreen() and pass two parameters called
title and message. Add in a new display object called alertbox and have it
transition from xScale and yScale of 0.5 using easing.outExpo:
function alertScreen(title, message)

 alertBox = display.newImage("alertBox.png")
 alertBox.x = 240; alertBox.y = 160

 transition.from(alertBox, {time = 500, xScale = 0.5, yScale =
 0.5, transition = easing.outExpo})

2. Store the title parameter in the text object called conditionDisplay:
 conditionDisplay = display.newText(title, 0, 0, "Arial", 38)
 conditionDisplay:setFillColor(1, 1, 1)
 conditionDisplay.xScale = 0.5
 conditionDisplay.yScale = 0.5
 conditionDisplay.anchorX = 0.5
 conditionDisplay.x = display.contentCenterX
 conditionDisplay.y = display.contentCenterY - 15

Chapter 3

[103]

3. Store the message parameter in the text object called messageText:
 messageText = display.newText(message, 0, 0, "Arial", 24)
 messageText:setFillColor(1, 1, 1)
 messageText.xScale = 0.5
 messageText.yScale = 0.5
 messageText.anchorX = 0.5
 messageText.x = display.contentCenterX
 messageText.y = display.contentCenterY + 15

4. Create a new display group called alertDisplayGroup and insert all the objects
into the group. Close the function:
 alertDisplayGroup = display.newGroup()
 alertDisplayGroup:insert(alertBox)
 alertDisplayGroup:insert(conditionDisplay)
 alertDisplayGroup:insert(messageText)
end

5. Save your file and run the project in the simulator. The functionality of the Play
button still goes to the game play screen for Level: 1. Currently, none of the objects
have any movement. We'll be adding touch events, ball movement, and collisions
in the next chapter. All the game objects should be laid out as shown in the
following screenshot:

Building Our First Game – Breakout

[104]

What just happened?
We have set up the alert system for the game, but it is not operable at the moment until
we add in more game functions to set the game objects in motion. The next chapter will
demonstrate how the alertScreen() function passes two parameters, title and
message. An alertBox display object is added as a background to the alert texts when
they pop up after a condition occurs. When the alertBox pops up, it transitions from 0.5 of
xScale and yScale to full image scale in 500 milliseconds. This is basically the equivalent of
half a second.

The conditionDisplay object passes the title parameter. This will be the text that
displays You Win or You Lose.

The messageText object passes the message parameter. The text with this parameter
displays a message such as Play Again or Continue after a condition is reached.

All the objects in this function are then inserted into alertDisplayGroup = display.
newGroup(). They will act as one group instead of individual objects when they appear on
and off the stage.

When running the code in the simulator, if errors pop up in your terminal window, be sure
to check the line(s) that caused the errors. Sometimes, a simple capitalization error or even
a comma or quotation mark that is missing can keep your app from running in the simulator.
Make sure you're aware of those common mistakes. They can be easily overlooked.

You can refer to the Breakout – Part 1 folder in the Chapter 3 folder to see how the
first half of the code for this tutorial is set up.

Pop quiz – building a game
Q1. When adding the physics engine in your code, which functions are valid to add to
your application?

1. physics.start()

2. physics.pause()

3. physics.stop()

4. None of the above

Q2. Which is correct when adding an event listener?

1. button:addeventlistener("touch", listener)

2. button:AddEventListener("touch", listener)

3. button:addEventListener(touch, listener)

4. button:addEventListener("touch", listener)

Chapter 3

[105]

Q3. What is the correct way to make the following display object transition to x = 300, y =
150, and have the alpha changed to 0.5, in 2 seconds?

local square = display.newRect(0, 0, 50, 50)
square:setFillColor(1, 1, 1)
square.x = 100 square2.y = 300

1. transition.to(square, { time=2000, x=300, y=150, alpha=0.5 })

2. transition.from(square, { time=2000, x=300, y=150, alpha=0.5 })

3. transition.to(square, { time=2, x=300, y=150, alpha=0.5 })

4. None of the above

Summary
We have completed the first half of this game tutorial. Understanding how to structure a
Corona project properly makes it easier to keep your code organized and tracks your assets
better. We have got a taste of working with blocks of code that pertain to a small part of the
game logic needed to allow the application to run.

So far we have:

 � Specified the build configuration on displaying the content for Android and
iOS devices

 � Introduced the main variables and constants that will run in the application

 � Instantiated the physics engine and started to apply it to the game objects that
require physical bodies

 � Created transitions from menus to game play screens

 � Added display objects and game messages to the screen

It's quite an accomplishment of how much we've done so far, including learning a new API in
the process of coding the application. We still have a lot more to add before the game can be
fully functional.

In the next chapter, we'll be finishing the second half of this game tutorial. We'll be working
with collision detection of the paddle, ball, brick, and wall objects. Also, we'll learn how to
update the score when a brick is removed from the scene and get our win/lose conditions
active as well. We're in the home stretch. Let's keep going!

[107]

4
Game Controls

So far, we have completed the first half of our game in the previous chapter.
We started by developing the initial structure for the project by introducing
the game objects to the screen. Currently, the paddle and ball movement is
inactive, but everything displayed in the simulator is scaled according to the
original game design. The last phase of completing this tutorial is to add in
all the actions that will occur in the game, including object movement and
updating the score.

In this chapter, we will cover the following topics:

 � Moving the paddle using touch events and accelerometer

 � Collision detection between all game objects in the scene

 � Removing objects upon collision detection

 � Ball movement within the screen boundaries

 � Calculating the score

 � Win and lose conditions

Home stretch! We can do it!

Game Controls

[108]

Moving in the up direction
If making objects appear on screen is exciting to you, wait till you see them move! The
main object of Breakout is to keep the ball above the paddle position to stay in play and
have it collide with all the bricks to complete the level. What keeps the suspense going is
the anticipation of the ball movement around the game screen. This wouldn't be possible
without adding physical boundaries on the game objects to react to collision detection.

Let's get even more physical
In the previous chapter, we talked about how to integrate the physics engine into your code.
We also started implementing physical bodies to the brick objects, and now, we'll need to
do the same with other active game objects, such as the paddle and ball. Let's continue with
this last half of the tutorial. We will continue using our main.lua file from the Breakout
project folder.

physics.addBody()
Corona display objects can be turned into simulated physical objects using one line of code.
The following information explains the different forms of physics bodies:

 � If no shape information is specified, the display object takes on the form of the
actual rectangular boundary of the original image to create the physics body. For
example, if a display object is 100 x 100 pixels, then this would be the actual size of
the physics body.

 � If a shape is specified, then the body boundaries will follow the polygon provided
by the shape. The shape coordinates must be defined in a clockwise order, and the
resulting shape must be convex only.

 � If a radius is specified, then the body boundaries will be circular, centered at the
middle of the display object used to create the physics body.

A body shape is a table of local (x,y) coordinates relative to the center of the display object.

The syntaxes for the body shapes are as follows:

 � Circular shapes:
physics.addBody(object, [bodyType,] {density=d, friction=f,
bounce=b [,radius=r]})

 � Polygon shapes:

physics.addBody(object, [bodyType,] {density=d, friction=f,
bounce=b [,shape=s]})

Chapter 4

[109]

The following are the examples of the body shapes:

 � Circular bodies:
local ball = display.newImage("ball.png")
physics.addBody(ball, "dynamic" { density = 1.0, friction =
0.3, bounce = 0.2, radius = 25 })

 � Polygon bodies:

local rectangle = display.newImage("rectangle.png")
rectangleShape = { -6,-48, 6,-48, 6,48, -6,48 }
physics.addBody(rectangle, { density=2.0, friction=0.5,
bounce=0.2, shape=rectangleShape })

Now, we will discuss the parameters of the preceding methods:

 � Object: This is a display object.

 � bodyType: This is a string that specifies that the body type is optional. It uses a
string parameter before the first body element. The possible types are "static",
"dynamic", and "kinematic". The default type is "dynamic" if no value is
specified. Let's talk about these types:

 � Static bodies don't move unless manually moved in code, and they don't
interact with each other; examples of static objects would include the
ground or the walls of a pinball machine.

 � Dynamic bodies are affected by gravity and collisions with the other
body types.

 � Kinematic objects are affected by forces but not by gravity, so you should
generally set draggable objects to kinematic, at least for the duration of the
drag event.

 � Density: This is a number that is multiplied by the area of the body's shape to
determine mass. It is based on a standard value of 1.0 for water. Lighter materials
(such as wood) have a density below 1.0, and heavier materials (such as stone) have
a density greater than 1.0. The default value is 1.0.

 � Friction: This is a number. This may be any non-negative value; a value of 0
means no friction, and 1.0 means fairly strong friction. The default value is 0.3.

 � Bounce: This is a number that determines the object's velocity that is returned after
a collision. The default value is 0.2.

 � Radius: This is a number. This is the radius of the bounding circle in pixels.

Game Controls

[110]

 � Shape: This is a number. It is the shape value in the form of a table of the shape
vertices, that is, {x1, y1, x2, y2, …, xn, yn}, for example, rectangleShape =
{ -6,-48, 6,-48, 6,48, -6,48 }. The coordinates must be defined in a
clockwise order, and the resulting shape must be convex only. Physics assumes that
the (0,0) point of an object is the center of the object. A -x coordinate will be to the
left of object's center and -y coordinate will be at the top of object's center.

Time for action – starting physics for the paddle and ball
Right now, our display objects are rather stagnant. In order for the game play to initiate,
we have to activate physics for collision detection to occur between the paddle and ball.
Perform the following steps:

1. Above the gameLevel1() function, create a new function called startGame():
function startGame()

2. Add in the following lines to instantiate the physics for the paddle and ball:
 physics.addBody(paddle, "static", {density = 1, friction = 0,
 bounce = 0})
 physics.addBody(ball, "dynamic", {density = 1, friction = 0,
 bounce = 0})

3. Create an event listener that uses the background display object to remove the
"tap" event for startGame(). Close the function with end:
 background:removeEventListener("tap", startGame)
end

4. In the addGameScreen() function that we created in the previous chapter, we
have to add the following line after the call to the gameLevel1() function. This
starts the actual game when the background is touched:

 background:addEventListener("tap", startGame)

What just happened?
The paddle object has a "static" body type, so it is not affected by any collision that
occurs against it.

The ball object has a "dynamic" body type because we want it to be affected by the
collisions on the screen due to directional changes caused by the wall borders, bricks,
and paddle.

The event listener on the background is removed from the startGame() function; this way,
it doesn't affect any of the other touch events that are applied in the game.

Chapter 4

[111]

Paddle movement
Getting the paddle to move side to side is one of the key actions that needs to be
accomplished. Part of the game design is to prevent the ball from reaching the bottom of the
screen. We will be separating the paddle movement in the simulator and the accelerometer.
The movement in the simulator enables us to test with touch events since accelerometer
actions cannot be tested in the simulator.

Time for action – dragging the paddle in the simulator
Right now, the paddle does not move at all. There are no coordinates set that will allow
the paddle to move side to side on the screen. So let's create them by performing the
following steps:

1. Underneath the addGameScreen() function, create a new function called
dragPaddle(event):
function dragPaddle(event)

2. Next, we'll focus on moving the paddle side to side within the boundary of the
game screen. Add in the following block of code to enable paddle movement in the
simulator and then close the function. The reason for adding this block is because
the simulator does not support accelerometer events:

 if isSimulator then

 if event.phase == "began" then
 moveX = event.x - paddle.x
 elseif event.phase == "moved" then
 paddle.x = event.x - moveX
 end

 if((paddle.x - paddle.width * 0.5) < 0) then
 paddle.x = paddle.width * 0.5
 elseif((paddle.x + paddle.width * 0.5) >
 display.contentWidth) then
 paddle.x = display.contentWidth - paddle.width * 0.5
 end

 end

end

Game Controls

[112]

See the following image of the ball colliding with the bricks and the paddle and anticipate
where the ball will move towards next:

What just happened?
We have created a function where the drag event only works in the simulator. For if
event.phase == "began", a touch event has been made to the paddle. On elseif
event.phase == "moved", a touch event where the paddle moved from its original
position has been made.

In order to keep the paddle from moving past the wall boundaries, paddle.x does not
go less than 0 in the x direction when it hits the coordinate. When the paddle slides
to the right-hand side of the screen, paddle.x does not go greater than display.
contentWidth in the x direction.

There is no designated coordinate for the right-hand side of the screen since the code is
supposed to be universal for all screen sizes on iOS and Android devices. Both platforms
have varying screen resolutions, so display.contentWidth takes this into account.

Chapter 4

[113]

Time for action – moving the paddle with the accelerometer
As mentioned earlier, accelerometer events cannot be tested in the simulator. They only
work when a game build is uploaded to a device to see the results. The paddle movement
will stay within the wall borders of the level across the x axis. To move the paddle, follow
the steps:

1. Below the dragPaddle() function, create a new function called
movePaddle(event):
function movePaddle(event)

2. Add in the accelerometer movement using yGravity. It provides acceleration due
to gravity in the y direction:
 paddle.x = display.contentCenterX - (display.contentCenterX *
(event.yGravity*3))

3. Add in the wall borders for the level and close the function:

 if((paddle.x - paddle.width * 0.5) < 0) then
 paddle.x = paddle.width * 0.5
 elseif((paddle.x + paddle.width * 0.5) >
 display.contentWidth) then
 paddle.x = display.contentWidth - paddle.width * 0.5
 end
end

What just happened?
To make the accelerometer movement work with a device, we have to use yGravity.

Accelerometer events are based on portrait scale when xGravity and
yGravity are used accordingly. When display objects are designated
for the landscape mode, the xGravity and yGravity values are
switched to compensate for the events to work properly.

We have applied the same code for the paddle from function dragPaddle():

 if((paddle.x - paddle.width * 0.5) < 0) then
 paddle.x = paddle.width * 0.5
 elseif((paddle.x + paddle.width * 0.5) > display.contentWidth) then
 paddle.x = display.contentWidth - paddle.width * 0.5
 end

This still keeps the paddle from going past any wall boundaries.

Game Controls

[114]

Ball collision with the paddle
The motion of the ball has to flow in a fluid manner every time it collides with the paddle.
This means proper direction changes on all sides of the game field.

Time for action – making the ball bounce against the paddle
We will check which side of the paddle the ball has hit to choose the side where it will move
next. It's important to have the motion to follow through any directional hits as it would in a
realistic environment. With every paddle collision, we want to make sure that the ball goes in
the up direction. For this, follow these steps:

1. Create a new function called bounce() for the ball after the movePaddle()
function:
function bounce()

2. Add in a value of -3 for velocity in the y direction. This will make the ball move in an
upward motion:
 vy = -3

3. Check when a collision is made with the paddle and ball objects and close
the function:

 if((ball.x + ball.width * 0.5) < paddle.x) then
 vx = -vx
 elseif((ball.x + ball.width * 0.5) >= paddle.x) then
 vx = vx
 end
end

What just happened?
When the ball collides with the paddle, the motion follows through, depending on what
side of the paddle is touched by the ball. In the first part of the if statement, the ball travels
toward 0 in the x direction. The last part of the if statement shows the ball travelling toward
the opposite side of the screen in the x direction.

Removing objects from the scene
There are limited resources on a device. As much as we wish they were as powerful as a
desktop to hold so much memory, it's not at that point yet. This is why it is important to
remove display objects from the display hierarchy when you no longer use them in your
application. This helps overall system performance by reducing memory consumption and
eliminates unnecessary drawing.

Chapter 4

[115]

When a display object is created, it is added by default to the root object of the display
hierarchy. This object is a special kind of group object known as the stage object.

In order to keep an object from rendering on screen, it needs to be removed from the scene.
The object needs to be removed explicitly from its parent. This removes the object from the
display hierarchy. This can be done in either in the following way:

myImage.parent:remove(myImage) -- remove myImage from hierarchy

Alternatively, this can be done using the following line of code:

myImage:removeSelf() -- same as above

This does not free all the memory from the display object. To make sure that the display
object is removed properly, we need to eliminate all the variable references to it.

Variable references
Even though a display object has been removed from the hierarchy, there are situations in
which the object continues to exist. To do this, we will set the property to nil:

local ball = display.newImage("ball.png")
local myTimer = 3

function time()
 myTimer = myTimer - 1
 print(myTimer)

 if myTimer == 0 then

 ball:removeSelf()
 ball = nil

 end
end

timer.performWithDelay(1000, time, myTimer)

Brick by brick
The bricks in the game are the main obstacles, since they have to be cleared in order to
move on to the next round. In this version of Breakout, the player must destroy all the bricks
in one turn. Failure to do so results in starting over from the beginning of the current level.

Game Controls

[116]

Time for action – removing the bricks
When the ball collides with a brick, we will use the same technique applied to the paddle
to determine the path the ball will follow. When a brick is hit, we'll need to figure out which
brick has been touched and then remove it from both the stage and the bricks group. Each
brick removal will increment 100 points to the score. The score will be taken from the score
constant and added to the current score as text. To remove the bricks from the game, follow
these steps:

1. Below the gameLevel2() function, create a function called
removeBrick(event):
function removeBrick(event)

2. Check which side of the brick the ball hits by using the if statement. When checking
for an event, we'll refer the event to the object name, "brick". This is the name we
gave our brick display object:
 if event.other.name == "brick" and ball.x + ball.width * 0.5
 < event.other.x + event.other.width * 0.5 then
 vx = -vx
 elseif event.other.name == "brick" and ball.x + ball.width *
 0.5 >= event.other.x + event.other.width * 0.5 then
 vx = vx
 end

3. Add in the following if statement to remove the brick from the scene when the
ball collides with one. After a collision has been made, increase score by 1. Initiate
scoreNum to take the value of the score and multiply it by scoreIncrease:
 if event.other.name == "brick" then
 vy = vy * -1
 event.other:removeSelf()
 event.other = nil
 bricks.numChildren = bricks.numChildren - 1

 score = score + 1
 scoreNum.text = score * scoreIncrease
 scoreNum.anchorX = 0
 scoreNum.x = 54
 end

4. When all the bricks in the level are destroyed, create an if statement that pops up
the alert screen for a win condition and set the gameEvent string to "win";
 if bricks.numChildren < 0 then
 alertScreen("YOU WIN!", "Continue")
 gameEvent = "win"
 end

Chapter 4

[117]

5. Close the function with end:

end

The following is a screenshot of the ball colliding with the paddle:

What just happened?
If you remember from the previous chapter, we gave the brick objects a name called
"brick".

When the ball hits the left-hand side of any of the individual bricks, it travels towards the
left. When the ball hits the right-hand side of the bricks, it travels toward the right. The width
of each object is taken as a whole to calculate the direction in which the ball travels.

When a brick is hit, the ball bounces upward (the y direction). After every collision the ball
makes with a brick, the brick is removed from the scene and destroyed from the memory.

The bricks.numChildren – 1 statement subtracts the count from the total number
of bricks it started out with originally. When a brick is removed, the score increments 100
points each time. The scoreNum text object updates the score every time a brick is hit.

When all the bricks are gone, the alert screen pops up with a notification that the player
has won the level. We also set gameEvent equal to "win", which will be used in another
function that will transition the event to a new scene.

Game Controls

[118]

Directional changes
Apart from the ball motion against the paddle, the other factor is the collision state against
the wall borders. When a collision occurs, the ball diverts its direction in the opposite way.
For every action, there is a reaction, just like real-world physics.

Time for action – updating the ball
The ball needs to move in a continuous motion without gravity affecting it. We'll have to
take into account the side walls and the top and bottom walls. The velocity in the x and y
direction have to reflect the other way when a collision happens on any of the boundaries.
We need to set coordinates so that the ball is only allowed to move through and alert when
it passes through the area below the paddle region. Let's perform the following steps:

1. Create a new function called function updateBall() below the
removeBrick(event) function:
function updateBall()

2. Add in the ball movement:
 ball.x = ball.x + vx
 ball.y = ball.y + vy

3. Add in the ball movement for the x direction:
 if ball.x < 0 or ball.x + ball.width > display.contentWidth
 then
 vx = -vx
 end

The following screenshot shows the movement of ball in the x direction:

Chapter 4

[119]

4. Add in the ball movement for the y direction:
 if ball.y < 0 then
 vy = -vy
 end

The following screenshot shows the movement of the ball in the y direction:

5. Add in the ball movement when it collides with the bottom of the game play
screen. Create the lost alert screen and a game event for "lose". Close the
function with end:

 if ball.y + ball.height > paddle.y + paddle.height then
 alertScreen("YOU LOSE!", "Play Again") gameEvent = "lose"
 end
end

Game Controls

[120]

The following screenshot shows the lost alert screen when the ball collides with the
bottom of the game play screen:

What just happened?
Everywhere the ball travels, proper direction change is needed when it hits the wall. Any
time the ball hits the side walls, we used vx = -vx. When the ball hits the top boundary, vy
= -vy is used. The only time the ball doesn't reflect the opposite direction is when it hits
the bottom of the screen.

The alert screen displays the lose condition, which emphasizes to the player to play again.
The gameEvent = "lose" statement will be used in another if statement to reset the
current level.

Transitioning levels
When a win or lose condition occurs, the game needs a way to transition to the next level or
repeat the current one. The main game objects have to be reset to their starting position and
the bricks redrawn. It's pretty much the same idea as when you first start a game.

Chapter 4

[121]

Time for action – resetting and changing levels
We'll need to create functions that set up the first and second levels in the game. If a level
needs to be replayed, only the current level the user lost in can be accessed. Follow these
steps to transition between the levels:

1. Create a new function called changeLevel1(). This will be placed below the
updateBall() function:
function changeLevel1()

2. Clear the bricks group when the player loses the round, and then reset them:
 bricks:removeSelf()

 bricks.numChildren = 0
 bricks = display.newGroup()

3. Remove alertDisplayGroup:
 alertBox:removeEventListener("tap", restart)
 alertDisplayGroup:removeSelf()
 alertDisplayGroup = nil

4. Reset the ball and paddle positions:
 ball.x = (display.contentWidth * 0.5) - (ball.width * 0.5)
 ball.y = (paddle.y - paddle.height) - (ball.height * 0.5) -2

 paddle.x = display.contentWidth * 0.5

5. Redraw the bricks for the current level:
gameLevel1()

6. Add an event listener to the background object for startGame(). Close the
function:
 background:addEventListener("tap", startGame)
end

Game Controls

[122]

7. Next, create a new function called changeLevel2(). Apply the same code used for
changeLevel1(), but make sure that the bricks are redrawn for gameLevel2():

function changeLevel2()

 bricks:removeSelf()

 bricks.numChildren = 0
 bricks = display.newGroup()

 alertBox:removeEventListener("tap", restart)
 alertDisplayGroup:removeSelf()
 alertDisplayGroup = nil

 ball.x = (display.contentWidth * 0.5) - (ball.width * 0.5)
 ball.y = (paddle.y - paddle.height) - (ball.height * 0.5) -2

 paddle.x = display.contentWidth * 0.5

 gameLevel2() -- Redraw bricks for level 2

 background:addEventListener("tap", startGame)
end

What just happened?
When a level needs to be reset or changed, the display objects have to be wiped from the
screen. In this case, we removed the bricks group using bricks:removeSelf().

When any alert screen pops up, whether win or lose, the entire alertDisplayGroup
is removed during the reset as well. The ball and paddle objects are set back to their
starting position.

The gameLevel1() function is called to redraw the bricks for level 1. The function holds the
initial setup for the brick display objects and bricks group.

The background object is used again to call the startGame() function with an
event listener. When level 2 needs to be set up, the same procedure like in function
changeLevel1()is used, but changeLevel2() and gameLevel2() are called to
redraw the bricks.

Chapter 4

[123]

Have a go hero –add more levels
Right now, the game only has two levels. What can be done to extend this game is to
add more levels. They can be created using the same logic used for gameLevel1() and
gameLevel2(), by adjusting the numbers used to create rows and columns of bricks. You'll
have to create a new function that resets the level. We can use the same method followed
for changeLevel1() and changeLevel2() to recreate a level and reset it.

You win some, you lose some
Nothing is more exhilarating than the anticipation of winning. That is until you make that one
small mistake, and it causes you to start over. Don't worry; it's not the end of the world; you
can always try again and learn from your errors to beat the level.

Game events such as a win or lose condition will alert the player of their progress. The game
has to have some way of guiding the player about what action they need to take next to
replay the level or move on to the next one.

Time for action –making win and lose conditions
For any game alerts to even appear during game play, we need to create some if statements
for every possible scenario available in each level. When this occurs, the score needs to be
reset back to zero. To make the win and lose conditions, follow these steps:

1. Below the alertScreen() function, create a new function called restart():
function restart()

2. Create an if statement for a "win" game event when the first level has been
completed and transitions to level 2:
 if gameEvent == "win" and currentLevel == 1 then
 currentLevel = currentLevel + 1
 changeLevel2()
 levelNum.text = tostring(currentLevel)

The tostring() method converts any argument to a string. In the preceding
example, the currentLevel value changes from 1 to 2 when a "win" game
event occurs. The value will convert to a string format that the levelNum text
object can display on screen for level 2.

Game Controls

[124]

3. Add an elseif statement for a "win" game event when the second level has been
completed and when it notifies the player that the game has been completed:
 elseif gameEvent == "win" and currentLevel == 2 then
 alertScreen(" Game Over", " Congratulations!")
 gameEvent = "completed"

4. Add another elseif statement for the "lose" game event at the first level. Reset
the score to zero and replay level 1:
 elseif gameEvent == "lose" and currentLevel == 1 then
 score = 0
 scoreNum.text = "0"
 changeLevel1()

5. Add another elseif statement for a "lose" game event at the second level. Reset
the score to zero and replay level 2:
 elseif gameEvent == "lose" and currentLevel == 2 then
 score = 0
 scoreNum.text = "0"
 changeLevel2()

6. Finally, add another elseif statement for gameEvent = "completed". Close
the function with end:
 elseif gameEvent == "completed" then
 alertBox:removeEventListener("tap", restart)
 end
end

7. Now, we need to backtrack and add an event listener to the alertScreen()
function using the alertBox object. We will add it to the bottom of the function.
This will activate the restart() function:

 alertBox:addEventListener("tap", restart)

What just happened?
The restart() function checks all the gameEvent and currentLevel variables that occur
during game play. When a game event checks for the "win" string, it also goes down the list
of statements to see what comes out true. For example, if the player wins and is currently on
level 1, then the player moves on to level 2.

If the player loses, gameEvent == "lose" becomes true, and the code checks what
level the player lost in. For any level the player loses in, the score reverts to 0, and the
current level the player was on is set up again.

Chapter 4

[125]

Activating event listeners
The event listeners in this game basically turn the movements of the objects on and off. We
have already coded the functions that carry out the actions of our game objects to run the
level. Now, it's time to activate them using a certain type of events. As you've noticed from
the previous chapter, we can add event listeners to display objects or have them run globally.

Collision events
Collision events within the physics engine occur through Corona's event listener model.
There are three new event types, which are as follows:

 � "collision": This event includes phases for "began" and "ended", which signify
the moments of initial contact and broken contact. These phases exist for both
normal two-body collisions and body-sensor collisions. If you do not implement a
"collision" listener, this event will not fire.

 � "preCollision": This is an event type that fires right before the objects start
to interact. Depending on your game logic, you may wish to detect this event and
conditionally override the collision. It may also result in multiple reports per contact
and affect the application's performance.

 � "postCollision": This is an event type that fires right after the objects have
interacted. This is the only event in which the collision force is reported. If you do
not implement a "postCollision" listener, this event will not fire.

Collisions are reported between pairs of objects and can be detected either globally, using a
runtime listener, or locally within an object, using a table listener.

Global collision listeners
When detected as a runtime event, each collision event includes event.object1,
which contains the table ID of the Corona display object involved.

Here is an example:

local physics = require "physics"
physics.start()

local box1 = display.newImage("box.png")
physics.addBody(box1, "dynamic", { density = 1.0, friction = 0.3,
bounce = 0.2 })
box1.myName = "Box 1"

Game Controls

[126]

local box2 = display.newImage("box.png", 0, 350)
physics.addBody(box2, "static", { density = 1.0, friction = 0.3,
bounce = 0.2 })
box2.myName = "Box 2"

local function onCollision(event)
 if event.phase == "began" and event.object1.myName == "Box 1" then

 print("Collision made.")

 end
end

Runtime:addEventListener("collision", onCollision)

Local collision listeners
When detected with a table listener within an object, each collision event includes event.
other, which contains the table ID of the other display object involved in the collision.

Here is an example:

local physics = require "physics"
physics.start()

local box1 = display.newImage("box.png")
physics.addBody(box1, "dynamic", { density = 1.0, friction = 0.3,
bounce = 0.2 })
box1.myName = "Box 1"

local box2 = display.newImage("box.png", 0, 350)
physics.addBody(box2, "static", { density = 1.0, friction = 0.3,
bounce = 0.2 })
box2.myName = "Box 2"

local function onCollision(self, event)
 if event.phase == "began" and self.myName == "Box 1" then

 print("Collision made.")

 end
end

Chapter 4

[127]

box1.collision = onCollision
box1:addEventListener("collision", box1)

box2.collision = onCollision
box2:addEventListener("collision", box2)

Time for action – adding game listeners
For many of the functions we have created for our game objects, we need to activate the
event listeners so that they will run the code and then disable them when game play has
stopped. To add game listeners, follow these steps:

1. The last function we need to create in order to complete this game is called
gameListeners(), which will also have a parameter called event. This should
be added right after the gameLevel2() function:
function gameListeners(event)

2. Add in the following event listeners that will start several events in the application,
using an if statement:
 if event == "add" then
 Runtime:addEventListener("accelerometer", movePaddle)
 Runtime:addEventListener("enterFrame", updateBall)
 paddle:addEventListener("collision", bounce)
 ball:addEventListener("collision", removeBrick)
 paddle:addEventListener("touch", dragPaddle)

3. Next, we'll add in an elseif statement for the event listeners that will remove the
events and then close the function:
 elseif event == "remove" then
 Runtime:removeEventListener("accelerometer", movePaddle)
 Runtime:removeEventListener("enterFrame", updateBall)
 paddle:removeEventListener("collision", bounce)
 ball:removeEventListener("collision", removeBrick)
 paddle:removeEventListener("touch", dragPaddle)

 end
end

4. In order for function gameListeners() to work properly, we need to
instantiate it in the startGame() function using the "add" string in the
parameter. Place it before the end of the function:
 gameListeners("add")

Game Controls

[128]

5. In the alertScreen() function, add the "remove" string in the parameter and
place it at the start of the function:
 gameListeners("remove")

6. All the code has been written! Go ahead and run the game in the simulator. The
application is also device ready. Make a simple icon image that fits the required
dimensions for the device you're developing on. Compile a build and run it on
your device.

What just happened?
There are two sets of if statements for the event parameter: "add" and "remove".

All the event listeners in this function play an important role in making the game run.
The "accelerometer" and "enterframe" events are used as runtime events since
they have no specific target.

Both the paddle and ball objects have "collision" events that will carry out their
purpose in any object contact made.

The "touch" event allows the user to touch and drag the paddle so that it can move back
and forth in the simulator.

Notice that when event == "remove", it removes all the event listeners that were active
in the game. When the game starts, gameListeners("add") is activated. When a win or
lose condition is achieved, gameListeners("remove") is activated.

Have a go hero – let's turn everything upside down
What if we decided to flip the game upside down, that is, have the paddle placed near the
top of the screen, the ball below the paddle, and the group of bricks closer to the bottom of
the screen?

Things you'll have to consider are as follows:

 � The top wall is now the area you have to keep the ball from entering

 � The y direction is where the ball travels when it collides with the bricks

 � The ball has to reflect off the bottom wall when it collides with it

As you can see, there are a couple of things to consider before switching values from
negative to positive and vice versa. Be sure to verify your logic and ensure that it makes
sense when creating this new variation.

Chapter 4

[129]

The results are in!
Let's summarize what has been made to make sure that you have everything added into
your game. You can also refer to the Breakout Final folder in the Chapter 4 folder to
see the final code. You made sure that the necessary variables were introduced in the game.
You also initialized the main() function that starts the game play. A main menu screen was
implemented with the game title and a play button.

Next, you transitioned the menuScreenGroup away from the screen to load the main
playing field. The main display objects of the game, such as the paddle, ball, and bricks,
were added. The score and level number were displayed as the UI elements and updated
throughout game play. Paddle movement in both the simulator and accelerometer were
added as well as the collision detection with the paddle and the ball.

The physical properties of the paddle and ball were added at the start of the game. The brick
layouts for each of the two levels were created. You have also added event listeners to all our
game objects from the point when they need to be activated during the game and removed
when game play is over.

Every time the ball collides with a brick, the brick is removed from the scene. The directional
changes of the ball are updated for every wall, paddle, or brick collision made. Every time a
win or lose condition occurred, all game objects are reset to begin the start of the current or
new level.

When a condition occurs, an alert screen pops up, notifying the player of what has
happened. The display objects that initiate the alerts are created in a function. Finally,
the win and lose arguments are created to determine whether the current level has to
be replayed, whether the player goes to the next level, or whether the game has
been completed.

Beware of case-sensitive variables and functions in case you run into errors. Also, be sure to
check whether you're missing any punctuation required in your code. These can be easily
overlooked. Refer to your terminal window in the simulator for any error references.

Pop quiz – working with game controls
Q1. How do you properly remove a display object from the stage?

1. remove()

2. object: remove()

3. object:removeSelf()

object = nil

4. None of the above.

Game Controls

[130]

Q2. What is the correct way to make the following display object into a physics object?

local ball = display.newImage("ball.png")

1. physics.addBody(ball, { density=2.0, friction=0.5,
bounce=0.2,radius = 25 })

2. physics.addBody(ball, "dynamic", { density=2.0, friction=0.5,
bounce=0.2,radius = 15 })

3. 1 and 2.

4. None of the above.

Q3. What best represents what "began" means in the following function?

local function onCollision(event)
 if event.phase == "began" and event.object1.myName == "Box 1" then

 print("Collision made.")

 end
end

1. A finger was moved on the screen.

2. A finger was lifted from the screen.

3. The system cancelled tracking the start touch.

4. A finger touched the screen.

Summary
Congratulations! You have completed making your very first game! You should be very proud
of yourself. Now, you have experienced how simple it is to make an application with Corona
SDK. It can take just a few hundred lines of code to make an application.

In this chapter, we did the following:

 � Added movement to the paddle with touch events

 � Introduced the accelerometer features

 � Implemented collision event listeners for all game objects affected

 � Removed objects from memory when they weren't needed on the game screen

 � Implemented movement of the ball as a physical object

 � Updated a scoreboard for every brick collision

 � Learned how to handle win and lose conditions

Chapter 4

[131]

The last two chapters weren't so bad now, were they? You're getting familiar with the
workflow as you continue programming in Lua. It will definitely get easier to understand
as long as you keep progressing and working with different game frameworks.

The next chapter holds another game that will surely catch your attention. You'll create
animated sprite sheets for your display objects. How's that for eye candy?

[133]

Animating Our Game

We're off to a great start in our mobile game development journey. We have
already gone through a great deal of programming, from game logic to
displaying objects on screen. One of the most powerful things about the Corona
SDK is that any display object can be animated. This is a testament to the
flexible graphics model that Corona offers.

Animation adds a lot of character to the user experience in a game. This is
accomplished by generating a sequence of frames that evolve smoothly from
frame to frame. We'll be learning this skill and applying it to the new game that
we're going to create.

In this chapter, we will:

 � Work with motion and transitions

 � Animate with image sheets

 � Create a game loop for display objects

 � Build our next game framework

Let's animate!

5

Animating Our Game

[134]

Panda Star Catcher
This section involves creating our second game called Panda Star Catcher. The main character
is a panda named Ling Ling, who needs to be launched toward the skies and catch as many
stars as possible before the timer runs out. The panda will be animated and have separate
movements for every course of action that is applied, such as during the setup before launch
and while it's in the air. The slingshot mechanics will also be applied to launch Ling Ling into the
air. You might have seen similar features in games such as Angry Birds and Crush the Castle.

Let's get everything moving
We have introduced transitions in Chapter 3, Building Our First Game – Breakout, and briefly
touched base with it. Let's go into more detail.

Transitions
The transition library allows you to create animations with only a single line of code by
allowing you to tween one or more properties of a display object. We have discussed the
basics of transitions back in Chapter 3, Building Our First Game – Breakout.

This can be done through the transition.to method, which takes a display object and
a table that contains the control parameters. The control parameters specify the duration
of the animation and the final values of properties for the display object. The intermediate
values for a property are determined by an optional easing function, which is also specified
as a control parameter.

The transition.to() method animates a display object's properties over time, using the
"easing" algorithm.

The syntax is handle = transition.to(target, params).

The return function is an object. The parameters are as follows:

 � target: This is an object that will be the target of the transition. This includes
display objects.

 � params: This is a table that specifies the properties of the display object, which will
be animated, and one or more of the following optional non-animated properties:

 � params.time: This specifies the duration of the transition in milliseconds.
By default, the duration is 500 ms (0.5 seconds).

 � params.transition: By default, this is easing.linear.

 � params.delay: This specifies the delay in milliseconds (none by default)
before the tween begins.

Chapter 5

[135]

 � params.delta: This is a Boolean that specifies whether non-control
parameters are interpreted as final ending values or as changes in value.
The default is nil, meaning false.

 � params.onStart: This is a function or a table listener called before the
tween begins.

 � params.onComplete: This is a function or a table listener called after the
tween completes.

Easing
The easing library is a collection of interpolation functions used by the transition library.
One example is opening a drawer. The first movement at first is fast and then a slow precise
movement before it stops. The following are some easing examples:

 � easing.linear(t, tMax, start, delta): This defines a constant motion
with no acceleration

 � easing.inQuad(t, tMax, start, delta): This performs a quadratic
interpolation of animated property values in a transition

 � easing.outQuad(t, tMax, start, delta): This starts the motion quickly and
then decelerates to zero velocity as it executes

 � easing.inOutQuad(t, tMax, start, delta): This starts the animation from
a zero velocity, accelerates, and then decelerates to zero velocity

 � easing.inExpo(t, tMax, start, delta): This starts the motion from zero
velocity and then accelerates as it executes

 � easing.outExpo(t, tMax, start, delta): This starts the motion quickly and
then decelerates to zero velocity as it executes

 � easing.inOutExpo(t, tMax, start, delta): This starts the motion from
zero velocity, accelerates, and then decelerates to zero velocity using an exponential
easing equation

You can create your own easing function to interpolate between a start and a final value.
The arguments of the function are defined as follows:

 � t: This is the time in milliseconds since the transition started

 � tMax: This is the duration of the transition

 � start: This is the starting value

 � delta: This is the change in value (final value = start + delta)

Animating Our Game

[136]

For example:

local square = display.newRect(0, 0, 50, 50)
square:setFillColor(1,1,1)
square.x = 50; square.y = 100

local square2 = display.newRect(0, 0, 50, 50)
square2:setFillColor(1,1,1)
square2.x = 50; square2.y = 300

transition.to(square, { time=1500, x=250, y=0 })
transition.from(square2, { time=1500, x=250, y=0, transition =
easing.outExpo })

The value of timed functions
Using a function that can be called at a later time can be helpful when organizing the timing
of your game objects' appearance in an application. The timer library will allow us to handle
our functions in a timely manner.

Timers
The timer function enables you to trigger events at a specific delay (in milliseconds) of
your choosing.

 � timer.performWithDelay(delay, listener [, iterations]): This
invokes the listener after a delay in milliseconds and returns a handle to an object
that you can pass to timer.cancel() in order to cancel the timer before it invokes
the listener. For example:
local function myEvent()
 print("myEvent called")
end
timer.performWithDelay(1000, myEvent)

 � timer.cancel(timerId): This cancels a timer operation initiated with timer.
performWithDelay(). The parameter is as follows:

 � timerId: This is an object handle returned by the call to timer.
performWithDelay(). For example:

local count = 0

local function myEvent()
 count = count + 1

Chapter 5

[137]

 print(count)

 if count >= 3 then
 timer.cancel(myTimerID) -- Cancels myTimerID
 end
 end

 � timer.pause(timerId): This pauses a timer object started with timer.
performWithDelay(). The parameter is:

 � timerId: This is the timer ID object from timer.performWithDelay().
For example:

local count = 0

local function myEvent()
 count = count + 1
 print(count)

 if count >= 5 then
 timer.pause(myTimerID) -- Pauses myTimerID
 end
end

myTimerID = timer.performWithDelay(1000, myEvent, 0)

 � timer.resume(timerId): This resumes a timer that was paused with timer.
pause(timerId). The parameter is as follows:

 � timerID: This the timer ID from timer.performWithDelay().
For example:

local function myEvent()
 print("myEvent called")
end

myTimerID = timer.performWithDelay(3000, myEvent) -- wait
3 seconds

result = timer.pause(myTimerID) -- Pauses myTimerID
print("Time paused at " .. result)

result = timer.resume(myTimerID) -- Resumes myTimerID
print("Time resumed at " .. result)

Animating Our Game

[138]

What are image sheets?
Corona SDK includes an image sheet feature to construct animated sprites (also known as
sprite sheets).

For more information on image sheets, refer to the following link at http://
docs.coronalabs.com/guide/media/imageSheets/index.html.

Image sheets are an efficient way to save texture memory. They are recommended for
complex character animation or when numerous types of animations are involved.

Image sheets require more coding and have more of an advanced setup. They require the
construction of a large sheet of animation frames.

It's sprite mania!
Image sheets are 2D animations that compile multiple frames into a single texture image.
This is an efficient way to save on texture memory. It is beneficial for mobile devices and
minimizes the loading time.

Image sheet API
The graphics.newImageSheet function creates a new image sheet. Refer to the
following code:

graphics.newImageSheet(filename, [baseDir,] options)

For example, the number of frames in the image sheet is assumed to be
floor(imageWidth/frameWidth) * floor(imageHeight/frameHeight). The first
frame is placed at the top-left position and reads left to right and follows the next row, if
applicable. The following image sheet has five frames that are 128 x 128 pixels each. The
image sheet image is 384 pixels x 256 pixels altogether. If it were to be integrated in Corona,
a sample method would be displayed like this:

local options =
{
 width = 128,
 height = 128,
 numFrames = 5,

http://docs.coronalabs.com/guide/media/imageSheets/index.html
http://docs.coronalabs.com/guide/media/imageSheets/index.html

Chapter 5

[139]

 sheetContentWidth=384,
 sheetContentHeight=256
}
local sheet = graphics.newImageSheet("mySheet.png", options)

The display.newSprite(imageSheet, sequenceData) function creates a new sprite
from an image sheet. A sprite defines the collection of frames that belong to the same
character or other moving asset, which may then be subdivided into different animation
sequences for playback. The sequenceData parameter is an array of animation sequences
that you set up. Sequences can be shared between multiple sprite objects. The following are
some examples:

 � Single sequence (consecutive frames):
local sequenceData =
{
 name="run", start=1, count=5, time=200, loopCount=0
}

local myCharacter = display.newSprite(imageSheet, sequenceData)

 � Single sequence (non-consecutive frames):
local sequenceData =
{
 name="jump",
 frames= { 6, 7, 8 },
 time=200,
 loopCount=0
}

local myCharacter = display.newSprite(imageSheet, sequenceData)

Animating Our Game

[140]

 � Multiple sequences (both consecutive and non-consecutive frames):

local sequenceData =
{
 { name="run", start=1, count=5, time=200 },
 {name="jump", frames= { 6, 7, 8 }, time=200, loopCount=0 }
}

local myCharacter = display.newSprite(imageSheet, sequenceData)

 � object:pause(): This pauses the current animation. The frame remains on the
current displayed frame.

 � object:play(): This plays an animation sequence, starting at the current frame.

 � object:setFrame(): This sets the frame in the currently loaded sequence.

 � object:setSequence(): This loads an animation sequence by name.

Game time!
Now that we have learned how to set up image sheets, let's try to incorporate them into
Panda Star Catcher! You can download the project files that accompany this book from the
Packt Publishing website. There is a project folder called Panda Star Catcher in the
Chapter 5 folder. It already has the config.lua and build.settings files set up for
you. The art assets are included in the folder as well. From Chapters 3, Building our First
Game – Breakout and Chapter 4, Game Controls, you might have noticed that the build
and runtime configuration has a similar setup. This tutorial is compatible for both iOS and
Android devices. The graphics included in the project folder have been designed to display
properly on both platforms. The welcome screen of the game will look like the following:

Chapter 5

[141]

Time for action – setting up the variables
Let's start off with introducing all the variables needed to run the game:

1. Create a brand new main.lua file and add it in the Panda Star Catcher
project folder.

2. Let's hide the status bar from the devices and set all the variables needed in game:

display.setStatusBar(display.HiddenStatusBar) -- Hides the
status bar in iOS only

-- Display groups
local hudGroup = display.newGroup() -- Displays the HUD
local gameGroup = display.newGroup()
local levelGroup = display.newGroup()
local stars = display.newGroup() -- Displays the stars

-- Modules
local physics = require ("physics")

local mCeil = math.ceil
local mAtan2 = math.atan2
local mPi = math.pi
local mSqrt = math.sqrt

-- Game Objects
local background
local ground
local powerShot
local arrow
local panda
local poof
local starGone
local scoreText
local gameOverDisplay

-- Variables
local gameIsActive = false
local waitingForNewRound
local restartTimer
local counter
local timerInfo
local numSeconds = 30 -- Time the round starts at

Animating Our Game

[142]

local counterSize = 50
local gameScore = 0 -- Round starts at a score of 0
local starWidth = 30
local starHeight = 30

What just happened?
We hid the status bar at the start of the application. This is only applicable for iOS devices.
There are four different groups set up, and all of them play an important role in the game.

Notice that gameIsActive is set as false. This enables us to activate properties of the
application to affect the round when the display objects need to stop animating, appear on
screen, and become affected by touch events.

The elements for the timer have also been set in the beginning of the code as well.
Setting numSeconds to 30 denotes how long the round will count down from, in seconds.
starWidth and starHeight depict the dimensions of the object.

Let's start the round
We'll need to load the panda to the game screen before it can launch. The panda will
transition from the bottom of the screen and move upward on the screen before any
touch event can occur.

Time for action – starting the game
Right now, we need to set the offscreen position for the panda and have it transition to its
starting launch location, so the user can interact with it.

1. After adding the variables, create a new local function called startNewRound()
and add an if statement to initiate the panda object into the scene:
local startNewRound = function()
 if panda then

Chapter 5

[143]

2. Add a new local function called activateRound() within startNewRound().
Set the starting position of the panda display object on screen and add
ground:toFront(), so that the ground appears in front of the panda character:
 local activateRound = function()

 waitingForNewRound = false

 if restartTimer then
 timer.cancel(restartTimer)
 end

 ground:toFront()
 panda.x = 240
 panda.y = 300
 panda.rotation = 0
 panda.isVisible = true

3. Create another local function called pandaLoaded(). Set gameIsActive to true
and set the panda object's air and hit properties to false. Add panda:toFront()
so that it appears in front of all the other game objects on screen and set the body
type to "static":
 local pandaLoaded = function()

 gameIsActive = true
 panda.inAir = false
 panda.isHit = false
 panda:toFront()

 panda.bodyType = "static"

 end

Animating Our Game

[144]

4. Transition the panda to y=225 in 1,000 milliseconds. When the tween is completed,
call the pandaLoaded() function using the onComplete command. Close the
activateRound() function with end and call out to it. Close the if statement for
panda and the startNewRound() function with end:

 transition.to(panda, { time=1000, y=225,
 onComplete=pandaLoaded })
 end

 activateRound()

 end
end

What just happened?
When the level is activated, the panda is placed below the ground before it is visible to the
player. For pandaLoaded(), the game is activated by gameIsActive = true, and the
panda is ready for launch by the player. The panda transitions from the ground level to an
area on the screen where it can be accessed.

Poof! Be gone!
The panda needs to disappear from the stage after a turn has been made. Instead of
having it disappear into thin air, we'll be adding a "poof" effect when it collides with any
object on the screen.

Chapter 5

[145]

Time for action – reloading the panda on the stage
When the panda has been in the air for a certain amount of time or has hit any out-of-
bounds areas off the screen, it will turn into a cloud of smoke. The panda will be replaced
with a "poof" image when a collision event occurs with the edge of the screen or the ground.
The visible properties of the panda have to be turned off for the "poof" effect to work. When
the collision has been made, the panda needs to be reloaded back onto the screen while the
game is still activated.

1. Create a local function called callNewRound(). Include a local variable called
isGameOver and set it to false:
local callNewRound = function()
 local isGameOver = false

2. Within the current function, create a new local function called pandaGone().
Add in the new properties for the panda, so it no longer displays on the game stage:
 local pandaGone = function()

 panda:setLinearVelocity(0, 0)
 panda.bodyType = "static"
 panda.isVisible = false
 panda.rotation = 0

 poof.x = panda.x; poof.y = panda.y
 poof.alpha = 0
 poof.isVisible = true

3. Add in a new function for the poof object called fadePoof(). With the
onComplete command, transition with time set to 50 and alpha set to 1.
Have the poof object fade out with time set to 100 and alpha set to 0. Close
the pandaGone() function and call out to it using timer.performWithDelay:
 local fadePoof = function()
 transition.to(poof, { time=100, alpha=0 })
 end
 transition.to(poof, { time=50, alpha=1.0,
 onComplete=fadePoof })

 restartTimer = timer.performWithDelay(300, function()
 waitingForNewRound = true;
 end, 1)

 end

 local poofTimer = timer.performWithDelay(500, pandaGone, 1)

Animating Our Game

[146]

4. When isGameOver is still false, add in a timer.performWithDelay method for
startNewRound(). Close the callNewRound() function:

 if isGameOver == false then
 restartTimer = timer.performWithDelay(1500, startNewRound,
 1)
 end
end

What just happened?
A new round is called when the panda is no longer displayed on the screen and the clock
is still counting down. When isGameOver is still false, then the panda reloads by calling
startNewRound().

The panda collision occurs through pandaGone(). All physical properties become inactive
by applying panda.isVisible = false.

The smoke appears exactly where the panda disappeared. This happens when poof.x
= panda.x; poof.y = panda.y. poof becomes visible for a short while through
fadePoof(). Once it has faded, a new round awaits, which sets waitingForNewRound
to true.

Earning some points
Points are earned when the panda catches any stars in the sky. The game is run on a timer,
so it is the player's job to catch as many stars as they can, before the time runs out. Let's rack
up some points!

Time for action – tracking the score
The score updates through a parameter called scoreNum and displays it during the game
play. The score number is received through gameScore.

1. The next function that will be created is called setScore with a parameter called
scoreNum:
local setScore = function(scoreNum)

2. Use a local variable called newScore and set it as scoreNum. Set the gameScore =
newScore. Provide an if statement for gameScore, so that the score during game
play is set to 0:
 local newScore = scoreNum
 gameScore = newScore

 if gameScore < 0 then gameScore = 0; end

Chapter 5

[147]

3. Add the scoreText display object and make it equal to gameScore.
Close the function:

 scoreText.text = gameScore
 scoreText.xScale = 0.5; scoreText.yScale = 0.5
 scoreText.x = (480 - (scoreText.contentWidth * 0.5)) - 15
 scoreText.y = 20
end

What just happened?
For setScore = function(scoreNum), we set a parameter called scoreNum. The
scoreNum parameter will update the game score continuously through local newScore.
newScore will update through gameScore, which provides the basis of the score keeping.
At the same time, scoreText will display the value of gameScore during the game.

When the game ends
There are no losers in this game. Everyone wins! You'll still keep your adrenaline pumping by
trying to catch as many stars as you can before the timer runs out. When it's all over, we still
need to be notified that the time is up.

Time for action – displaying the game over screen
We need to set up the game over screen and have it display the final score that the player
has achieved at the end of the round:

1. Create a new local function called callGameOver():
local callGameOver = function()

2. Set gameIsActive as false and pause the physics engine. Remove the panda and
stars objects from the stage:
 gameIsActive = false
 physics.pause()

 panda:removeSelf()
 panda = nil
 stars:removeSelf()
 stars = nil

Animating Our Game

[148]

3. Display the game over objects and insert them into the hudGroup group. Use the
transition.to method to display the game over objects on the screen:
 local shade = display.newRect(0, 0, 480, 320)
 shade:setFillColor(0, 0, 0, 0.5)
 shade.x = display.contentCenterX
 shade.y = display.contentCenterY

 gameOverDisplay = display.newImage("gameOverScreen.png")
 gameOverDisplay.x = 240; gameOverDisplay.y = 160
 gameOverDisplay.alpha = 0

 hudGroup:insert(shade)
 hudGroup:insert(gameOverDisplay)

 transition.to(shade, { time=200 })
 transition.to(gameOverDisplay, { time=500, alpha=1 })

4. Update the final score with a local variable called newScore. Set isVisible to
false for the counter and scoreText. Introduce scoreText again to display
the final score in a different location on the device screen. Close the function:

 local newScore = gameScore
 setScore(newScore)

 counter.isVisible = false

 scoreText.isVisible = false
 scoreText.text = "Score: " .. gameScore
 scoreText.xScale = 0.5; scoreText.yScale = 0.5
 scoreText.x = 280
 scoreText.y = 160
 scoreText:toFront()
 timer.performWithDelay(1000, function() scoreText.isVisible
 = true; end, 1)

end

Chapter 5

[149]

What just happened?
The callGameOver() method displays the game over screen when time runs out or if all
the stars are collected. We have set gameIsActive to false and paused all the physics so
the panda cannot be moved with any other screen touches. The panda and stars are then
removed from the scene. The shade and gameOverDisplay objects are visible through
transition.to, so it notifies the player that the round is over. The final score will display
at the end of the round in front of the gameOverDisplay object.

Background display
The panda needs a general setting of where it's located in the game. Let's set the background
and ground objects.

Time for action – adding the background elements
1. Add in the background and ground display objects to the drawBackground()

function. Insert the objects in the group called gameGroup:
local drawBackground = function()

 background = display.newImage("background.png")
 background.x = 240; background.y = 160

Animating Our Game

[150]

 gameGroup:insert(background)

 ground = display.newImage("ground.png")
 ground.x = 240; ground.y = 300

 local groundShape = { -240,-18, 240,-18, 240,18, -240,18 }
 physics.addBody(ground, "static", { density=1.0, bounce=0,
 friction=0.5, shape=groundShape })

 gameGroup:insert(ground)

end

What just happened?
The background and ground display objects are placed in the function called
drawBackground(). The ground object has a customized physical shape that is not the
same size as the original display object. So if the panda happens to hit the ground, it will
collide with it but not fall through.

Heads up!
Before the game can be played, we need a general idea of how to operate the controls of the
game. Luckily, we'll be adding a help screen that explains how to play. The heads-up display
(HUD) needs to be displayed as well, so that the player can be updated on the time left on
the clock and see how many points they have accumulated.

Time for action – displaying the timer and score
Let's set up the help screen and HUD elements that need to be displayed during the game:

1. Create a new local function called hud():
local hud = function()

2. Display helpText at the start of the game for 10 seconds. Have it transition
by sliding it to the left and turning visibility to false. Add helpText to the
hudGroup group:
 local helpText = display.newImage("help.png")
 helpText.x = 240; helpText.y = 160
 helpText.isVisible = true
 hudGroup:insert(helpText)

Chapter 5

[151]

 timer.performWithDelay(10000, function() helpText.isVisible
 = false; end, 1)

 transition.to(helpText, { delay=9000, time=1000, x=-320,
 transition=easing.inOutExpo })

3. Display counter and scoreText near the top of the screen. Add scoreText to
the hudGroup group as well. Close the function with end:

 counter = display.newText("Time: " .. tostring(numSeconds),
 0, 0, "Helvetica-Bold", counterSize)
 counter:setFillColor(1, 1, 1)
 counter.xScale = 0.5; counter.yScale = 0.5
 counter.x = 60; counter.y = 15
 counter.alpha = 0

 transition.to(counter, { delay=9000, time=1000, alpha=1,
 transition=easing.inOutExpo })

 hudGroup:insert(counter)

 scoreText = display.newText("0", 470, 22, "Helvetica-Bold",
 52)
 scoreText: setFillColor(1, 1, 1)--> white
 scoreText.text = gameScore
 scoreText.xScale = 0.5; scoreText.yScale = 0.5
 scoreText.x = (480 - (scoreText.contentWidth * 0.5)) - 15
 scoreText.y = 15
 scoreText.alpha = 0

 transition.to(scoreText, { delay=9000, time=1000, alpha=1,
 transition=easing.inOutExpo })

 hudGroup:insert(scoreText)

end

What just happened?
The helpText object appears before the game starts and stays on the main device
display for 9 seconds and transitions to -320 in the x direction in 1 second. This happens
through transition.to(helpText, { delay=9000, time=1000, x=-320,
transition=easing.inOutExpo }).

Animating Our Game

[152]

The counter object displays "Time: " .. tostring(numSeconds), where
numSeconds denotes the seconds that are counted down, starting from 30. It is located
near the top-left corner of the screen.

The scoreText object displays gameScore and is updated for every star collision made.
This will be placed on the top-right corner of the screen. All the objects in local hud =
function() are inserted in hudGroup.

Time after time
This game has a timer that the player has to work against, in order to catch as many stars
as possible before it runs out. We're going to start the countdown as soon as the help text
leaves the stage.

Time for action – setting up the timer
We'll need to create a couple of functions that activate the countdown and also stop at 0
seconds when the game is over:

1. Set up the timer countdown for the game with a local function called myTimer():
local myTimer = function()

2. Increment the seconds for the timer countdown by 1. With the counter text object,
display the time using numSeconds. Print out numSeconds to see the countdown in
the terminal window:
 numSeconds = numSeconds - 1
 counter.text = "Time: " .. tostring(numSeconds)
 print(numSeconds)

3. Create an if statement for when the timer runs out or if all the stars are gone.
Within the block, cancel the timer and call callGameOver() to end the round.
Close the myTimer() function with end:
 if numSeconds < 1 or stars.numChildren <= 0 then
 timer.cancel(timerInfo)
 panda:pause()
 restartTimer = timer.performWithDelay(300, function()
 callGameOver(); end, 1)
 end

end

Chapter 5

[153]

4. Initiate the myTimer() function with a new local function called startTimer().
This will start the countdown at the beginning of the game play:

local startTimer = function()
 print("Start Timer")
 timerInfo = timer.performWithDelay(1000, myTimer, 0)
end

What just happened?
The main timer function is within myTimer(). We count down the seconds using
numSeconds = numSeconds – 1. The seconds will update in the counter display
object. print(numSeconds) will be updated in the terminal window to see how fast the
countdown runs inside the code.

When time runs out or all the stars have been collected, an if statement is created to check
if any of the arguments are true. When any statement evaluates to true, the timer stops
counting down, the panda animation pauses, and the callGameOver() function is called.
This will call the function to display the game over screen.

The timer initiates the countdown through local startTimer = function() at a rate
of 1,000 milliseconds, which is equivalent to 1 second.

It's so glowy
The panda needs another element that will display how much force is required to launch it
into the sky. We're going to add a subtle glow-like display object that will represent this.

Time for action – making the power shot
We need to create a separate function for powerShot, so that it can be called when the
panda is set for launch:

1. Display the powerShot object through a new local function called
createPowerShot(). Insert it in the gameGroup group:

local createPowerShot = function()
 powerShot = display.newImage("glow.png")
 powerShot.xScale = 1.0; powerShot.yScale = 1.0
 powerShot.isVisible = false

 gameGroup:insert(powerShot)
end

Animating Our Game

[154]

What just happened?
The powerShot object is created through the createPowerShot() function and is called
when the panda is setting up for launch.

Pandas!
It will be exciting to see something animated on the screen. Our main character will have
designated animations for every action applied during the game play.

Time for action – creating the panda character
We need to set up the panda collision event and animate it accordingly, using the
image sheet:

1. We need to create a local function that will introduce the collision and touch events
for the panda. We shall call it createPanda():
local createPanda = function()

2. When the panda collides with the stars, use onPandaCollision() with the
parameters self and event. Reload panda every time a collision occurs with the
stars or the edge of the screen, by using callNewRound():
 local onPandaCollision = function(self, event)
 if event.phase == "began" then

 if panda.isHit == false then

 panda.isHit = true

 if event.other.myName == "star" then
 callNewRound(true, "yes")
 else
 callNewRound(true, "no")
 end

 if event.other.myName == "wall" then
 callNewRound(true, "yes")
 else
 callNewRound(true, "no")
 end

Chapter 5

[155]

 elseif panda.isHit then
 return true
 end
 end
 end

3. Create a directional arrow to allow the user to aim for an area to launch the panda.
Insert it to the gameGroup group:
 arrow = display.newImage("arrow.png")
 arrow.x = 240; arrow.y = 225
 arrow.isVisible = false

 gameGroup:insert(arrow)

4. Create the image sheet for the panda that has three different animation sequences
called "set", "crouch", and "air":
 local sheetData = { width=128, height=128, numFrames=5,
 sheetContentWidth=384, sheetContentHeight=256 }
 local sheet = graphics.newImageSheet("pandaSprite.png",
 sheetData)

 local sequenceData =
 {
 { name="set", start=1, count=2, time=200 },
 { name="crouch", start=3, count= 1, time=1 },
 { name="air", start=4, count=2, time=100 }
 }

 panda = display.newSprite(sheet, sequenceData)

 panda:setSequence("set")
 panda:play()

5. Add the following properties to panda before it launches into the air:
 panda.x = 240; panda.y = 225
 panda.isVisible = false

 panda.isReady = false
 panda.inAir = false
 panda.isHit = false

Animating Our Game

[156]

 panda.isBullet = true
 panda.trailNum = 0

 panda.radius = 12
 physics.addBody(panda, "static", { density=1.0, bounce=0.4,
friction=0.15, radius=panda.radius })
 panda.rotation = 0

6. Set up collisions for panda using "collision" and apply an event listener:
 panda.collision = onPandaCollision
 panda:addEventListener("collision", panda)

7. Create the poof object:
 poof = display.newImage("poof.png")
 poof.alpha = 1.0
 poof.isVisible = false

8. Insert the panda and poof objects into the gameGroup group. Close the function:
 gameGroup:insert(panda)
 gameGroup:insert(poof)
end

9. We'll need to scroll up to the activateRound() function and add the "set"
animation sequence for the panda:

 panda:setSequence("set")
 panda:play()

What just happened?
The collision events that occur for the panda start with if event.phase == "began".
The panda reloads on screen through several cases of if statements. event.other.
myName == "star" will call a new round when the panda launches off screen towards
the right, left, or top sides of the stage.

The image sheet for the panda has three sets of animations. They are called "set", "air",
and "crouch". There are a total of five frames in the image sheet.

The physical properties of the panda are set before launch. The body type is set to
"static" and will change when it's in the air.

Chapter 5

[157]

The collision event for the panda is called by panda:addEventListener("collision",
panda).

Now that the image sheet has been set up, the "set" animation needs to be added in the
activateRound() function to initiate movement.

Starry skies
The stars play a big part in the game. They are the main obstacle that the panda has to get
past in order to achieve points before the clock runs out.

Time for action – creating star collisions
Star collisions need to be made and removed from the stage so that points can be
accumulated for the player.

1. Create a function for the star collision called onStarCollision() and have a self
and event parameter:
local onStarCollision = function(self, event)

2. Add the if statements that remove the stars children from the game screen when
a collision is made. Increment the score by 500 for each star removed from the
screen. Close the function with end:

 if event.phase == "began" and self.isHit == false then

 self.isHit = true
 print("star destroyed!")
 self.isVisible = false

 stars.numChildren = stars.numChildren - 1

 if stars.numChildren < 0 then
 stars.numChildren = 0
 end

 self.parent:remove(self)
 self = nil

Animating Our Game

[158]

 local newScore = gameScore + 500
 setScore(newScore)
 end
end

What just happened?
The star collision occurs on first contact with if event.phase == "began" and self.
isHit == false, assuming the star has not been touched by the panda. The stars are
removed from the screen by self.parent:remove(self) and self = nil. The score
is incremented by 500 through gameScore and updated to setScore = (scoreNum).

Have a go hero – tracking the star count
Try tracking how many stars the panda catches during game play. The logic is similar to how
the game score was created. Each star that is caught will have to increment by 1 as the count
for every collision made. The star count is placed within the onStarCollision() function.
A new function and method will have to be created to display the text of the star count, and
will have to be updated every time the count changes.

Screen touches
The panda will have to get across the playing field to reach the stars by creating a launch
mechanic similar to a slingshot. Force will play a big role in pushing the panda upward.

Chapter 5

[159]

Time for action – launching the panda
Let's add a touch event for the panda so that it flings toward the stars. The powerShot
object will play a role in helping the player visualize how much power needs to be applied
to the panda, before it launches into the air.

1. Implement touch events for the panda. Create a local function called
onScreenTouch() with an event parameter:
local onScreenTouch = function(event)

2. With gameIsActive initiated, add in an if statement for when the touch event
starts, by using event.phase == "began". During this event, use the "crouch"
animation set to prepare panda for launch:
 if gameIsActive then
 if event.phase == "began" and panda.inAir == false then

 panda.y = 225
 panda.isReady = true
 powerShot.isVisible = true
 powerShot.alpha = 0.75
 powerShot.x = panda.x; powerShot.y = panda.y
 powerShot.xScale = 0.1; powerShot.yScale = 0.1

 arrow.isVisible = true

 panda:setSequence("crouch")
 panda:play()

3. Add an elseif statement for when the touch event ends by using event.phase
== "ended". Create a new local function called fling(), which will hold the
properties of panda when it is launched toward the star objects. Apply a force
opposite to where the touch event is dragged. Scale the powerShot display object
outward when the touch event is pulled farther from the character:

 elseif event.phase == "ended" and panda.isReady then

 local fling = function()
 powerShot.isVisible = false
 arrow.isVisible = false

 local x = event.x
 local y = event.y
 local xForce = (panda.x-x) * 4

Animating Our Game

[160]

 local yForce = (panda.y-y) * 4

 panda:setSequence("air")
 panda:play()

 panda.bodyType = "dynamic"
 panda:applyForce(xForce, yForce, panda.x, panda.y)
 panda.isReady = false
 panda.inAir = true

 end

 transition.to(powerShot, { time=175, xScale=0.1,
 yScale=0.1, onComplete=fling})

 end

 if powerShot.isVisible == true then

 local xOffset = panda.x
 local yOffset = panda.y

 local distanceBetween = mCeil(mSqrt(((event.y - yOffset)
 ^ 2) + ((event.x - xOffset) ^ 2)))

 powerShot.xScale = -distanceBetween * 0.02
 powerShot.yScale = -distanceBetween * 0.02

 local angleBetween = mCeil(mAtan2((event.y - yOffset),
 (event.x - xOffset)) * 180 / mPi) + 90

 panda.rotation = angleBetween + 180
 arrow.rotation = panda.rotation
 end

 end
end

Chapter 5

[161]

What just happened?
Once the game is active and the panda has been loaded on the screen, a touch event to
launch the panda can be initiated. The panda will go from a "static" physics state to a
"dynamic" physics state. The powerShot display object size increases the farther back the
panda is pulled by an event touch.

The force from the panda launch is applied by local fling = function(). Launch force
is created by xForce and yForce. The panda object is propelled by panda:applyForce(
xForce, yForce, panda.x, panda.y). Notice that the body type changes to
"dynamic", so gravity can affect the object.

Organizing display objects
When the round has been set, the display hierarchy of the game objects needs to be
rearranged. The most important objects are displayed towards the front of the screen.

Animating Our Game

[162]

Time for action – reordering layers
1. A new local function reorderLayers() needs to be created to organize the display

hierarchy of objects on screen during game play:
local reorderLayers = function()

 gameGroup:insert(levelGroup)
 ground:toFront()
 panda:toFront()
 poof:toFront()
 hudGroup:toFront()

end

What just happened?
The gameGroup, hudGroup, and other display objects are reorganized in the display
hierarchy of the game screen. The most significant object is set to the front, while the
least important one is towards the back.

Creating stars
The sky background needs to be filled with stars, so that the panda can catch as many stars
as possible.

Time for action – creating stars in the level
We need to add the layout of the stars in the game and have them moving so as to add a
little effect to show that they're active. A collision event will need to be applied, which would
remove them when the panda collides with them.

1. Create a new function called createStars() and lay out the star objects in a for
loop. Add in the "collision" event that will be called by onStarCollision()
to remove the stars when they are hit by the panda. Rotate the stars forward and
backward at 10 seconds and 1,080 and -1,080 degrees each. This will allow the stars
to rotate three full intervals backward and forward. Create the walls for the left and
right sides of the screen:
local createStars = function()

 local numOfRows = 4
 local numOfColumns = 12

Chapter 5

[163]

 local starPlacement = {x = (display.contentWidth * 0.5) -
(starWidth * numOfColumns) / 2 + 10, y = 50}

 for row = 0, numOfRows - 1 do
 for column = 0, numOfColumns - 1 do

 -- Create a star
 local star = display.newImage("star.png")
 star.name = "star"
 star.isHit = false
 star.x = starPlacement.x + (column * starWidth)
 star.y = starPlacement.y + (row * starHeight)
 physics.addBody(star, "static", {density = 1, friction =
 0, bounce = 0, isSensor = true})
 stars.insert(stars, star)

 star.collision = onStarCollision
 star:addEventListener("collision", star)

 local function starAnimation()
 local starRotation = function()
 transition.to(star, { time=10000, rotation = 1080,
 onComplete=starAnimation })
 end

 transition.to(star, { time=10000, rotation = -1080,
 onComplete=starRotation })
 end

 starAnimation()

 end
 end

 local leftWall = display.newRect (0, 0, 0,
 display.contentHeight)
 leftWall.name = "wall"

 local rightWall = display.newRect (display.contentWidth, 0,
 0, display.contentHeight)
 rightWall.name = "wall"

 physics.addBody (leftWall, "static", {bounce = 0.0,
 friction = 10})

Animating Our Game

[164]

 physics.addBody (rightWall, "static", {bounce = 0.0,
 friction = 10})

 reorderLayers()
end

What just happened?
The number of stars displayed on screen is set by numOfRows and numOfColumns. A for
loop is made to display each individual star object and is placed in the stars group. The
collision for star is detected by an event listener through onStarCollision().

The leftWall and rightWall objects have physical properties as well and will take into
account the collision detection with the panda.

The stars are animated by starAnimation() and starRotation(). Each function rotates
each star object for 10 seconds (10,000 milliseconds), and alternates between 1,080 and
-1,080 degrees.

Starting the game
The game starts when the clock starts counting down and the panda is loaded on the screen.
Once the panda is set on screen, the player needs to aim and launch it quickly so that
reloading of the panda can occur immediately.

Time for action – initializing the game
The physics and the remaining game functions need to be initialized to run the game.
All game actions need to be delayed until the help screen has left the stage.

1. Start the game by creating a new function called gameInit(), which will hold the
physics properties and activate the display objects on the stage:
local gameInit = function()
 physics.start(true)
 physics.setGravity(0, 9.8)

 drawBackground()
 createPowerShot()
 createPanda()
 createStars()
 hud()

2. Add in a Runtime event listener, using "touch" for onScreenTouch():
 Runtime:addEventListener("touch", onScreenTouch)

Chapter 5

[165]

3. Have the level and timer start 10 seconds later so that the user has time to read
through the help text. Close the function and start the game with gameInit():

 local roundTimer = timer.performWithDelay(10000, function()
 startNewRound(); end, 1)
 local gameTimer = timer.performWithDelay(10000, function()
 startTimer(); end, 1)
end

gameInit()

All the code is completed! Run the game in the simulator and see for yourself how it works.
Make sure to check for any typos in your code if errors occur.

What just happened?
The round is initialized through gameInit(). The physics engine and the remaining
functions are run at this time. The event listener for onScreenTouch() is added as well.
The startNewRound() and startTimer() functions initiate 10 seconds after launching
the application through timer.performWithDelay.

Pop quiz – animating graphics
Q1. What is the proper way to pause the animation of an image sheet?

1. object:stop()

2. object:pause()

3. object:dispose()

4. None of the above

Q2. How do you make an animation sequence loop forever?

1. local sequenceData =

 {
 name="run", start=1, count=5, time=100, loopCount=1
 }

2. local sequenceData =

 {
 name="run", start=1, count=5, time=100, loopCount=0
 }

Animating Our Game

[166]

3. local sequenceData =

 {
 name="run", start=1, count=5, time=100, loopCount=-1
 }

4. local sequenceData =

 {
 name="run", start=1, count=5, time=100, loopCount=100
 }

Q3. How do you create a new image sheet?

1. myCharacter = display.newSprite(sequenceData)

2. myCharacter = display.newSprite(imageSheet, sequenceData)

3. myCharacter = sprite.newSpriteSheet("myImage.png", frameWidth,
frameHeight)

4. None of the above

Summary
Our second game, Panda Star Catcher, is finally complete! We're now getting a great grasp on
writing more functions and different types of game logic, and we also have animation under
our belt! Way to go!

In this chapter, we did the following:

 � Took a more in-depth look at transitions and applied easing techniques

 � Understood image sheets and sprite animation

 � Created a game loop for display objects that have to be reloaded continuously
on screen

 � Applied force to a display object that propels it to a designated direction

 � Added a collision event that switches from one display object to another

We have pushed through making another game in one whole chapter! Working in Corona
SDK is so simple and fast to learn. It doesn't even require thousands of lines of code to create
a simple game.

In the next chapter, we'll be learning another vital element to create games, sound effects,
and music! You're in for a treat.

[167]

Playing Sounds and Music

We hear sound effects and music in almost every type of media we encounter
daily. Many notable games such as Pac-Man, Angry Birds, and Fruit Ninja can
be recognized just by their theme music or sound effects alone. Aside from the
visual imagery we see in games, sounds help impact the mood conveyed in the
storyline and/or during game play. Quality sound effects and music that pertain
to the theme of your game helps give a realistic feel to the experience.

In this chapter, you will learn how to apply sound effects and music that can be added to
your applications. You have the visual appeal down from creating Breakout and Panda Star
Catcher in the previous chapters. Now, let's enhance the sensory experience for our ears!

The main points you'll be going over are:

 � Loading, playing, and looping audio

 � Understanding how to play, pause, resume, rewind, and stop the audio

 � Memory management (disposing audio)

 � Volume control

 � Performance and encoding tips

Let's create some more magic!

6

Playing Sounds and Music

[168]

Corona audio system
The Corona audio system has advanced Open Audio Library (OpenAL) features. OpenAL is
designed for the efficient rendering of multichannel three-dimensional positional audio.
The general functionality of OpenAL is encoded in source objects, audio buffers, and a single
listener. A source object contains a pointer to a buffer, the velocity, position and direction
of the sound, and the intensity of the sound. Buffers contain audio data in the PCM format,
either 8- or 16-bit, in either mono or stereo format. The listener object contains the velocity,
position and direction of the listener, and the general gain applied to all sounds.

For more information on the Corona audio system, you can go to http://
developer.coronalabs.com/partner/audionotes. General
information on OpenAL can be found at http://www.openal.org.

Sound formats
The following are the sound formats that are compatible with iOS and Android platforms:

 � All platforms support files that are 16-bit, little endian, linear, and in .wav format

 � iOS supports the .mp3, .aif, .caf, and .aac formats

 � The Mac simulator supports the .mp3, .aif, .caf, .ogg, and .aac formats

 � The Windows simulator supports the .mp3 and .ogg formats

 � Android supports the .mp3 and .ogg formats

Sound filename limitations on Android
File extensions are ignored when building in Android, so files are considered the same
regardless of the extension. The workaround for the mean time is to change the filenames
to differentiate between file extensions. See the examples listed here:

 � tap_aac.aac

 � tap_aif.aif

 � tap_caf.caf

 � tap_mp3.mp3

 � tap_ogg.ogg

http://developer.coronalabs.com/partner/audionotes
http://developer.coronalabs.com/partner/audionotes
http://www.openal.org

Chapter 6

[169]

Mono sounds at their best
Using mono sounds takes half the amount of memory than stereo sounds. Since the Corona
audio system uses OpenAL, it will only apply spatialized/3D effects to mono sounds. OpenAL
does not apply 3D effects stereo samples.

Maximum number of simultaneous channels
The maximum number of channels that can be run is 32. This allows up to 32 distinct sounds
to be played simultaneously. The API to see the resulting number of channels in your code is
audio.totalChannels.

Time to play
Audio can be loaded in two different ways, as follows:

 � loadSound(): This preloads an entire sound into the memory

 � loadStream(): This prepares the sound to be played by reading small chunks at a
time to save memory

audio.loadSound()
The audio.loadSound() function loads an entire file completely into the memory and
returns a reference to the audio data. Files that are loaded completely into the memory can
be reused, played, and shared simultaneously on multiple channels. So, you only need to
load one instance of the file. Sounds that you would use as sound effects in your game will fit
in this category.

The syntax is audio.loadSound(audiofileName [, baseDir]).

The parameters are as follows:

 � audiofileName: This specifies the name of the audio file you want to load. The
supported file formats are determined by the platform the file is being run on.

 � baseDir: By default, sound files are expected to be in the application resources
directory. If the sound file is in the application documents directory, use system.
DocumentsDirectory.

For example:

 � tapSound = audio.loadSound("tap.wav")

 � smokeSound = audio.loadSound("smoke.mp3")

Playing Sounds and Music

[170]

audio.loadStream()
The audio.loadStream() function loads a file to be read as a stream. Streamed files are
read in small chunks at a time to minimize memory use. Files that are large in size and have
a long duration would be ideal for this. These files cannot be shared simultaneously across
multiple channels. If need be, you must load multiple instances of the file.

The syntax is audio.loadStream(audioFileName [, baseDir])

The parameters are as follows:

 � audiofileName: This specifies the name of the audio file you want to load.
The supported file formats are determined by the platform the file is being run on.

 � baseDir: By default, sound files are expected to be in the application resources
directory. If the sound file is in the application documents directory, use system.
DocumentsDirectory.

For example:

 � music1 = audio.loadStream("song1.mp3")

 � music2 = audio.loadStream("song2.wav")

audio.play()
The audio.play() function plays the audio specified by the audio handle on a channel.
If a channel is not specified, an available channel will be automatically chosen for you.
The function returns the channel number the audio is playing on.

The syntax is audio.play(audioHandle [, options])

The parameters are as follows:

 � audioHandle: This is the audio data you want to play

 � options: This is an additional option for playback, formatted as a table

Parameters for options:

 � channel: This option lets you select the channel number that you want the audio
to play on. 1 to the maximum number of channels, which is 32, are valid channels.
If you specify 0 or omit, this parameter will have a channel automatically picked
for you.

 � loops: This option lets you select the number of times you want the audio to loop.
0 means the audio will loop zero times, which means that the sound will play once
and not loop. Passing -1 will tell the system to infinitely loop the sample.

Chapter 6

[171]

 � duration: This option is measured in milliseconds, this option will cause the system
to play the audio for the specified amount of time.

 � fadein: This option is measured in milliseconds, this will start playing a sound at
the minimum channel volume and transition to the normal channel volume over the
specified number of milliseconds.

 � onComplete: This is a callback function that you will call when playback ends.
The onComplete callback function passes back an event parameter.

For example:

backgroundMusic = audio.loadStream("backgroundMusic.mp3")
backgroundMusicChannel = audio.play(backgroundMusic, { channel=1,
loops=-1, fadein=5000 })
-- play the background music on channel 1, loop infinitely, and fadein
over 5 seconds

Looping
Highly compressed formats, such as MP3, AAC, and Ogg Vorbis, can remove samples at the
end of an audio sample and possibly break a clip that is looped correctly. If you experience
gaps in looping during playback, try using WAV (compatible with iOS and Android). Make
sure your lead-in and ending points are clean.

Simultaneous playback
Sounds loaded via loadSound() can be played back simultaneously on multiple channels.
For example, you can load a sound effect as follows:

bellSound = audio.loadSound("bell.wav")

If you want to make a variety of bell sounds to occur for multiple objects, you can. The audio
engine is highly optimized to handle this case. Call audio.play() using that same handle
as many times as you need it (up to the maximum channels):

audio.play(bellSound)
audio.play(bellSound)
audio.play(bellSound)

Playing Sounds and Music

[172]

Time for action – playing audio
We're going to learn how sound effects and music are implemented in Corona to get an idea
of how it really works. To play an audio follow the steps:

1. Create a new project folder on your desktop called Playing Audio.

2. In the Chapter 6 Resources folder, copy the ring.wav and song1.mp3 sound
files into your project folder and create a new main.lua file. You can download the
project files that accompany this book from the Packt Publishing website.

3. Preload the following audio with loadSound() and loadStream():
ringSound = audio.loadSound("ring.wav")
backgroundSound = audio.loadStream("song1.mp3")

4. Play backgroundSound by setting it to channel 1, loop it infinitely, and fade in
after 3 seconds:
mySong = audio.play(backgroundSound, { channel=1, loops=-1,
fadein=3000 })

5. Add in ringSound and play it once:
myRingSound = audio.play(ringSound)

6. Save and run the project in the Corona Simulator to hear the results.

What just happened?
For audio that is merely a short sound effect, we used audio.loadSound() to prepare the
sound. For audio that is large in size or long in duration, audio.loadStream() is used.

The backgroundSound file is set to channel 1, and fades in at 3 seconds when it starts
playing. The loops = -1 statement means that the file loops infinitely from beginning to
the end.

Have a go hero – repeating audio with delay
As you can see, loading and playing an audio is really simple. It only takes two lines of code
to play a simple sound. Let's see if you can take it up a notch.

Use the ring.wav file and load it through loadSound(). Create a function that plays the
audio. Have the sound play at an interval of 2 seconds, repeating five times.

Chapter 6

[173]

Time to take control
We have the ability to control our sounds, now that we can play them in the simulator. If
you think back to the days of cassette tape players, it had the ability to use functions such as
pause, stop, and rewind. Corona's audio API library can do just that.

audio.stop()
The audio.stop() function stops playback on a channel and clears the channel, so it can
be played on again.

The syntax is audio.stop([channel]) or audio.stop([{ channel = c }]).

Having no parameters stops all active channels. The channel parameter specifies the
channel to stop. Specifying 0 stops all channels.

audio.pause()
The audio.pause() function pauses playback on a channel. This has no effect on channels
that aren't playing.

The syntax is audio.pause([channel]) or audio.pause([{channel = c}]).

Having no parameters pauses all active channels. The channel parameter specifies the
channel to pause. Specifying 0 pauses all channels.

audio.resume()
The audio.resume() function resumes playback on a channel that is paused. This has no
effect on channels that aren't paused.

The syntax is audio.pause([channel]) or audio.pause([{channel = c}]).

Having no parameters resumes all paused channels. The channel parameter specifies the
channel to resume. Specifying 0 resumes all channels.

audio.rewind()
The audio.rewind() function rewinds audio to the beginning position on either an active
channel or directly on the audio handle.

The syntax is audio.rewind([, audioHandle] [, { channel=c }]).

Playing Sounds and Music

[174]

The parameters are as follows:

 � audioHandle: The audioHandle parameter lets you rewind the data you want.
It's best for audio loaded with audio.loadStream(). Don't try using it with the
channel parameter in the same call.

 � channel: The channel parameter lets you select the channel you want the rewind
operation to apply to. It's best for audio loaded with audio.loadSound(). Don't
try using with the audioHandle parameter in the same call.

Time for action – controlling audio
Let's simulate our own little music player by creating user interface buttons that will control
the audio calls as follows:

1. In the Chapter 6 folder, copy the Controlling Audio project folder to your
desktop. You will notice several art assets, a ui.lua library, config.lua file, and a
song2.mp3 file inside. You can download the project files accompanying this book
from the Packt Publishing website.

2. In the same project folder, create a brand new main.lua file.

Chapter 6

[175]

3. Load the audio file via loadStream(), name it music, and call the UI library. Also
add it in a local variable called myMusic:
local ui = require("ui")
local music = audio.loadStream("song2.mp3") local myMusicChannel

4. Create a local function called onPlayTouch() with an event parameter to play the
audio file. Add an if statement that contains event.phase == "release" so
that the music starts playing when the button releases. Apply the playBtn display
object as a new UI button:
local onPlayTouch = function(event)
 if event.phase == "release" then
 myMusicChannel = audio.play(music, { loops=-1 })
 end
end

playBtn = ui.newButton{
 defaultSrc = "playbtn.png",
 defaultX = 100,
 defaultY = 50,
 overSrc = "playbtn-over.png",
 overX = 100,
 overY = 50,
 onEvent = onPlayTouch,
 id = "PlayButton",
 text = "",
 font = "Helvetica",
 size = 16,
 emboss = false
}

playBtn.x = 160; playBtn.y = 100

5. Create a local function called onPauseTouch() with an event parameter to pause
the audio file. Add an if statement when event.phase == "release" so that
the music pauses. Apply the pauseBtn display object as a new UI button:
local onPauseTouch = function(event)
 if event.phase == "release" then
 audio.pause(myMusicChannel)
 print("pause")
 end
end

Playing Sounds and Music

[176]

pauseBtn = ui.newButton{
 defaultSrc = "pausebtn.png",
 defaultX = 100,
 defaultY = 50,
 overSrc = "pausebtn-over.png",
 overX = 100,
 overY = 50,
 onEvent = onPauseTouch,
 id = "PauseButton",
 text = "",
 font = "Helvetica",
 size = 16,
 emboss = false
}

pauseBtn.x = 160; pauseBtn.y = 160

6. Add a local function called onResumeTouch() with an event parameter to resume
the audio file. Add an if statement when event.phase == "release" so that
the music resumes. Apply the resumeBtn display object as a new UI button:
local onResumeTouch = function(event)
 if event.phase == "release" then
 audio.resume(myMusicChannel)
 print("resume")
 end
end

resumeBtn = ui.newButton{
 defaultSrc = "resumebtn.png",
 defaultX = 100,
 defaultY = 50,
 overSrc = "resumebtn-over.png",
 overX = 100,
 overY = 50,
 onEvent = onResumeTouch,
 id = "ResumeButton",
 text = "",
 font = "Helvetica",
 size = 16,
 emboss = false
}

resumeBtn.x = 160; resumeBtn.y = 220

Chapter 6

[177]

7. Add a local function called onStopTouch() with an event parameter to stop the
audio file. Create an if statement when event.phase == "release" so that the
music stops. Apply the stopBtn display object as a new UI button:
local onStopTouch = function(event)
 if event.phase == "release" then
 audio.stop()
 print("stop")

 end
end

stopBtn = ui.newButton{
 defaultSrc = "stopbtn.png",
 defaultX = 100,
 defaultY = 50,
 overSrc = "stopbtn-over.png",
 overX = 100,
 overY = 50,
 onEvent = onStopTouch,
 id = "StopButton",
 text = "",
 font = "Helvetica",
 size = 16,
 emboss = false
}

stopBtn.x = 160; stopBtn.y = 280

8. Add a local function called onRewindTouch() with an event parameter to rewind
the audio file. Create anif statement when event.phase == "release" so
that the music rewinds to the beginning of the track. Apply the rewindBtn display
object as a new UI button:
local onRewindTouch = function(event)
 if event.phase == "release" then
 audio.rewind(myMusicChannel)
 print("rewind")
 end
end

rewindBtn = ui.newButton{
 defaultSrc = "rewindbtn.png",
 defaultX = 100,
 defaultY = 50,
 overSrc = "rewindbtn-over.png",

Playing Sounds and Music

[178]

 overX = 100,
 overY = 50,
 onEvent = onRewindTouch,
 id = "RewindButton",
 text = "",
 font = "Helvetica",
 size = 16,
 emboss = false
}

rewindBtn.x = 160; rewindBtn.y = 340

9. Save your project and run it in the simulator. You have now created a functional
media player!

Chapter 6

[179]

What just happened?
We added a UI library for our user interface buttons by calling require("ui").
This produces the on press look when a button has been pushed down.

A variety of functions were created to run each button. They are as follows:

 � onPlayTouch(): This calls out myMusicChannel = audio.play(music, {
loops=-1 }) when the event is triggered by the user pressing the button

 � onPauseTouch(): This calls out audio.pause(myMusicChannel) to pause
the song when the button is pressed

 � onResumeTouch(): This calls out audio.resume(myMusicChannel) to
resume the song if it has been paused

 � onStopTouch(): This calls out audio.stop() if the song is currently playing and
will stop the audio

 � onRewindTouch(): This calls out audio.rewind(myMusicChannel) to
rewind the song to the beginning of the track.

When a song is paused, it resumes only by pressing the Resume button.
The Play button will have no effect when the Pause button is pressed.

Memory management
It is important to call audio.dispose() on your loaded audio when you are completely
done with the audio file. Doing so allows you to recover the memory.

audio.dispose()
The audio.dispose() function releases the audio memory associated with the handle.

The syntax is audio.dispose(audioHandle).

The parameter is as follows:

 � audioHandle: The handle returned by the audio.loadSound() or audio.
loadStream() functions that you want to free.

Playing Sounds and Music

[180]

You must not use the handle once the memory is freed. The audio should not be
playing or paused on any channel when you try to free it.

For example:

mySound = audio.loadSound("sound1.wav")
myMusic = audio.loadStream("music.mp3")

audio.dispose(mySound)
audio.dispose(myMusic)

mySound = nil
myMusic = nil

Have a go hero – disposing audio
You have just learned how to dispose audio files properly to recover memory in your
application. Try the following:

 � Load your audio file and have it play for a specified time. Create a function that will
dispose the file when calling an onComplete command.

 � In the Controlling Audio project file, dispose the audio in the onStopTouch()
function.

Alterations to audio
The audio system also has the ability to alter the minimum and maximum states of audio
volume, as well as fading the audio when needed.

Volume control
The volume of the audio can be set with values ranging from 0 to 1.0. This setting can be
adjusted at any time before or during the extended sound playback.

audio.setVolume()
The audio.setVolume function sets the volume.

The syntax is audio.setVolume(volume [, [options]]) --upon success,
should return true.

Chapter 6

[181]

The parameters are as follows:

 � volume: This lets you set the volume level you want to apply. Valid numbers range
from 0.0 to 1.0, where 1.0 is the maximum volume value. The default volume is
based on your device ringer volume and will vary.

 � options: This is a table that supports the channel number you want to set the
volume on. You can set the volume on any channel between 1 to 32. Specify 0 to
apply the volume to all the channels. Omitting this parameter entirely sets the
master volume, which is different from the channel volume.

For example:

 � audio.setVolume(0.75) -- set master volume

 � audio.setVolume(0.5, { channel=2 }) -- set volume on channel
scaled to the volume on the master channel

audio.setMinVolume()
The audio.setMinVolume() function clamps the minimum volume to the set value. Any
volumes that go below the minimum volume will be played at the minimum volume level.

The syntax is audio.setMinVolume(volume, options).

The parameters are as follows:

 � volume: This lets you set the new minimum volume level you want to apply.
Valid numbers range from 0.0 to 1.0, where 1.0 is the maximum volume value.

 � options: This is a table that supports a single key channel number you want to set
the minimum volume on. 1 to the minimum number of channels are valid channels.
Specify 0 to apply the minimum volume to all the channels.

The example is mentioned as follows:

audio.setMinVolume(0.10, { channel=1 }) -- set the min volume on
channel 1

audio.setMaxVolume()
The audio.setMaxVolume() function clamps the maximum volume to the set value. Any
volumes that exceed the maximum volume will be played at the maximum volume level.

The syntax is audio.setMaxVolume(volume, options).

Playing Sounds and Music

[182]

The are parameters are as follows:

 � volume: This lets you set the new maximum volume level you want to apply.
Valid numbers range from 0.0 to 1.0, where 1.0 is the maximum value.

 � options: This is a table that supports a single key channel number you want to set
the maximum volume on. 1 to the maximum number of channels are valid channels.
Specify 0 to apply the maximum volume to all the channels.

The example is mentioned as follows:

audio.setMaxVolume(0.9, { channel=1 }) -- set the max volume on
channel 1

audio.getVolume()
The audio.getVolume() function gets the volume either for a specific channel or the
master volume.

The syntax is audio.getVolume({ channel=c }).

The parameter is as follows:

 � channel: This sets the channel number you want to get the volume on. There can
be a maximum number of 32 channels that are valid. Specifying 0 will return the
average volume across all channels. Omitting this parameter entirely gets the master
volume, which is different than the channel volume.

Some example are mentioned as follows:

 � masterVolume = audio.getVolume() -- get the master volume

 � channel1Volume = audio.getVolume({ channel=1 }) -- get the
volume on channel 1

audio.getMinVolume()
The audio.getMinVolume() function gets the minimum volume for a specific channel.

The syntax is audio.getMinVolume({ channel=c }).

The parameter is as follows:

 � channel: This sets the channel number you want to get the minimum volume on.
There can be a maximum number of 32 channels that are valid. Specifying 0 will
return the average minimum volume across all channels.

Chapter 6

[183]

The example is mentioned as follows:

channel1MinVolume = audio.getMinVolume({ channel=1 }) -- get the min
volume on channel 1

audio.getMaxVolume()
The audio.getMaxVolume() function gets the maximum volume for a specific channel.

The syntax is audio.getMaxVolume({ channel=c }).

The parameter is as follows:

 � channel: This sets the channel number you want to get the maximum volume on.
There can be a maximum number of 32 channels that are valid. Specifying 0 will
return the average volume across all channels.

The example is mentioned as follows:

channel1MaxVolume = audio.getMaxVolume({ channel=1 }) -- get the max
volume on channel 1

Fading audio
You can fade in the volume at the time any audio starts playing, but there are other ways to
control it as well.

audio.fade()
The audio.fade() function fades a playing sound in a specified amount to a specified
volume. The audio will continue playing after the fade completes.

The syntax is audio.fade([{ [channel=c] [, time=t] [, volume=v] }]).

The parameters are as follows:

 � channel: This sets the channel number you want to fade on. 1 to the maximum
number of channels are valid channels. Specify 0 to apply fade to all the channels.

 � time: This sets the amount of time from now that you want the audio to
fade out and stop. Omitting this parameter invokes a default fade time,
which is 1,000 milliseconds.

 � volume: This sets the target volume you want to change the fade to. Valid numbers
are 0.0 to 1.0, where 1.0 is the maximum volume. If this parameter is omitted, the
default value is 0.0.

Playing Sounds and Music

[184]

See the following example:

audio.fade({ channel=1, time=3000, volume=0.5 })

audio.fadeOut()
The audio.fadeOut() function stops playing the sound in a specified amount of time and
fades to the minimum volume. The audio will stop at the end of the time and the channel
will be freed.

The syntax is audio.fadeOut([{ [channel=c] [, time=t] }]).

The parameters are as follows:

 � channel: This sets the channel number you want to fade out on. 1 to the maximum
number of channels are valid channels. Specify 0 to apply fade out to all the
channels.

 � time: This sets the amount of time from now that you want the audio to fade out
over and stop. Omitting this parameter invokes a default fade out time, which is
1,000 milliseconds.

The example is mentioned as follows:

audio.fadeOut({ channel=1, time=5000 })

Performance tips
When creating good quality audios for your games, refer to the helpful notes mentioned here.

Preloading phase
It is best to preload the files you regularly use on startup of your application. While
loadStream() is generally fast, loadSound() may take a while since it must load and
decode the entire file the instant it needs to be used. Generally, you don't want to be calling
loadSound() in the parts of your application that users expect it to be running smoothly
when events occur, such as during game play.

audioPlayFrequency
In the config.lua file, you may specify a field called audioPlayFrequency:

application =
{
 content =
 {

Chapter 6

[185]

 width = 480,
 height = 960,
 scale = "letterbox",
 audioPlayFrequency = 22050
 },
}

This tells the OpenAL system what sample rate to mix and playback at. For best results, set
this no higher than you actually need. So if you never need better than 22,050 Hz playback,
set this to 22,050. It produces quality speech recordings or middle-quality recordings of
music. If you really do need high quality, then set this to 44,100 to produce audio CD type
of quality at playback.

It is best to have all your audio files encoded at the same frequency when you have this set.
The supported values are 11,025, 22,050, and 44,100.

Patents and royalties
For highly compressed formats, such as MP3 and AAC, AAC is the better option. AAC is the
official successor to the MP3 by the MPEG Group. MP3 has patent and royalty issues that
you may need to concern yourself with, if you distribute anything yourself. You might need
to consult your lawyers for guidance. When AAC was ratified, it was agreed there would be
no royalties required for distribution. If you prefer to use AAC over MP3, here's a tutorial on
how to convert an MP3 to AAC or any file format of your preference at http://support.
apple.com/kb/ht1550.

Ogg Vorbis is a royalty-free and patent-free format. However, this is not supported on
iOS devices.

More information on audio formats can be found at http://www.nch.
com.au/acm/formats.html. Ray Wenderlich, a mobile developer, also
has a tutorial available on file and data formats for audio at http://www.
raywenderlich.com/204/audio-101-for-iphone-developers-
file-and-data-formats.

Pop quiz – all about audio
Q1. What is the proper way of clearing audio files from the memory?

1. audio.pause()

2. audio.stop()

3. audio.dispose()

4. audio.fadeOut()

http://support.apple.com/kb/ht1550
http://support.apple.com/kb/ht1550
http://www.nch.com.au/acm/formats.html
http://www.nch.com.au/acm/formats.html
http://www.raywenderlich.com/204/audio-101-for-iphone-developers-file-and-data-formats
http://www.raywenderlich.com/204/audio-101-for-iphone-developers-file-and-data-formats
http://www.raywenderlich.com/204/audio-101-for-iphone-developers-file-and-data-formats

Playing Sounds and Music

[186]

Q2. How many channels of audio can be played simultaneously in an application?

1. 10

2. 18

3. 25

4. 32

Q3. How do you make your audio file loop infinitely?

1. loops = -1

2. loops = 0

3. loops = 1

4. None of the above

Summary
You now understand the important aspects of using audio files in the Corona SDK. Now, you
can go off adding your own sound effects and music to your games, or even add them to any
of the samples you made in the previous chapters. By doing so, you add another part of the
user experience that will draw players into the environment you have created.

Until now, you learned how to:

 � Preload and play sound effects and music using loadSound() and loadStream()

 � Control audio functions that pause, resume, stop, and rewind a music track under
the Audio System API

 � Dispose audio from memory when it is no longer in use

 � Adjust volume in your audio files

In the next chapter, you will combine everything you have learned so far to create your final
game in this book. You'll also be going over other ways to implement physical objects and
collision mechanics that are popular in mobile games in the market today. More exciting
information to learn awaits you. Let's power through!

[187]

Physics – Falling Objects

There are many variations on how to incorporate a physics engine using display
objects. So far, we have worked on removing objects with collisions, moving
objects through the stage area, and launching objects by applying force against
gravity, just to name a few. Now, we will explore another mechanism that
allows gravity to control the environment. The next game we'll create deals
with falling physical objects.

In this chapter, we will:

 � Work with more physics bodies

 � Customize the body construction

 � Track the objects caught

 � Work with postcollisions

 � Create falling objects

Here's to creating another fun, simple game in this chapter. Let's get cracking!

Creating our new game – Egg Drop
Every step taken so far has taught us more about game development on iOS/Android
devices. In this new segment, our game will include sound effects, which will enhance
the sensory experience in our games.

7

Physics – Falling Objects

[188]

Make sure that you are using the latest stable build of Corona SDK.

The new game that we will create is called Egg Drop. The player controls the main character,
which is a lumberjack with a frying pan. During game play, eggs start falling from the sky, and
it is the lumberjack's job to catch the eggs in his frying pan and not let them hit the ground.
Every egg caught earns 500 points. The player starts with three lives. When an egg fails to
hit the frying pan and hits the ground, a life is lost. When all three lives are gone, the game
is over.

When starting the new game project, be sure to grab the Egg Drop file from the Chapter 7
folder. You can download the project files accompanying this book from the Packt Publishing
website at http://www.packtpub.com/. It contains all the necessary files that are built
out for you, such as the build.settings, config.lua, and audio files, and the art assets
needed for the game. You'll then have to create a brand new main.lua file in the project
folder before you start coding.

http://www.packtpub.com/

Chapter 7

[189]

Starting variables
This will be our first full game setup, which will be filled with notable Corona SDK features.
We'll combine our base knowledge of what we have learned so far with variables, display
objects, the physics engine, touch/accelerometer events, and audio. Many of Corona's APIs
are easy to use and understand. This shows the fast learning curve with Corona just by
having basic to no knowledge of programming.

Time for action – setting up the variables
Let's get started with introducing the variables we'll be using to create our game. There
will be a combination of display objects and integers to keep count; we also need to
preload the main sound effects used during game play. Follow the steps to declare
all the required variables:

1. Hide the status bar and add in the display.newGroup() group called
gameGroup:
 display.setStatusBar(display.HiddenStatusBar)
 local gameGroup = display.newGroup()

2. Include the external modules in the game:
 local physics = require "physics"

3. Add in the display objects:
 local background
 local ground
 local charObject
 local friedEgg
 local scoreText
 local eggText
 local livesText
 local shade
 local gameOverScreen

4. Add in the variables:
 local gameIsActive = false
 local startDrop -- Timer object
 local gameLives = 3
 local gameScore = 0
 local eggCount = 0
 local mRand = math.random

Physics – Falling Objects

[190]

5. Create the egg boundaries and density:
 local eggDensity = 1.0
 local eggShape = { -12,-13, 12,-13, 12,13, -12,13 }
 local panShape = { 15,-13, 65,-13, 65,13, 15,13 }

6. Setup the accelerometer and audio:

 system.setAccelerometerInterval(100)
 local eggCaughtSound = audio.loadSound("friedEgg.wav")
 local gameOverSound = audio.loadSound("gameOver.wav")

What just happened?
We continued creating a similar set up of our variables, like we did in the Panda Star Catcher
game. It's more efficient to organize them by separating groups, display objects, audio, and
so on.

Many of the variables displayed have designated integers that fulfill the goals of game play.
This includes values such as gameLives = 3 and eggCount = 0.

Controlling the main character
Accelerometer events work best within the main scope of the game. It enables you to view
the full real estate of the game environment, without having to interact with touches on the
screen. Necessary touch events would make sense for user interface buttons such as pause,
menu, play, and so on.

Time for action – moving the character
Eggs will be falling in all different areas of the screen from the sky. Let's prepare our main
character to move through all the potential areas on the screen:

1. Set up a new local function called moveChar() with an event parameter:
local moveChar = function(event)

2. Add in the accelerometer movement for the character:
 charObject.x = display.contentCenterX -
(display.contentCenterX* (event.yGravity*3))

3. Create character boundaries where it moves on the screen. This enables the
character to stay within the game screen and not go past the offscreen boundaries:

 if((charObject.x - charObject.width * 0.5) < 0) then
 charObject.x = charObject.width * 0.5
 elseif((charObject.x + charObject.width * 0.5) >
 display.contentWidth) then

Chapter 7

[191]

 charObject.x = display.contentWidth - charObject.width * 0.5
 end
end

What just happened?
To make the accelerometer movement work with a device, we have to use yGravity.

Accelerometer events are based on portrait scale when xGravity and
yGravity are used accordingly. When display objects are designated for
the landscape mode, the xGravity and yGravity values are switched to
compensate for the events to work properly.

Notice that the code in step 3 keeps the charObject display object from going past any wall
border boundaries.

Have a go hero – adding touch events
The character is currently controlled by the accelerometer. Another option to control the
character is through a touch event. Try replacing the event listener with "touch" and using
event parameters so that the touch event works properly.

If you remember how we incorporated the paddle movement with Breakout in
Chapter 3, Building Our First Game – Breakout and Chapter 4, Game Controls,
for the simulator, it should be very similar.

Updating the score
When the score is updated, it refers to our text display objects and translates the value from
the number into a string.

Here is an example:

gameScore = 100
scoreText = display.newText("Score: " .. gameScore, 0, 0, "Arial",
45)
scoreText:setTextColor(1, 1, 1)
scoreText.x = 160; scoreText.y = 100

In the previous example, you will notice that we set a value of 100 to gameScore. In the
following lines for scoreText, gameScore is used to concatenate the "Score: " string and
the value of gameScore. Doing so displays the value of gameScore in a string format by
scoreText.

Physics – Falling Objects

[192]

Time for action – setting the score
Who doesn't like some friendly competition? We're familiar with scoreboards from the
games we made in the previous chapters. So, we are not strangers to tracking the score.
Perform the following steps to set the score:

1. Create a local function called setScore() with a parameter called scoreNum:
 local setScore = function(scoreNum)

2. Set the variables to count the score:
 local newScore = scoreNum
 gameScore = newScore
 if gameScore < 0 then gameScore = 0; end

3. Have the score updated when points are earned in game play and close
the function:

 scoreText.text = "Score: " .. gameScore
 scoreText.xScale = 0.5; scoreText.yScale = 0.5
 scoreText.x = (scoreText.contentWidth * 0.5) + 15
 scoreText.y = 15
 end

What just happened?
When setScore(scoreNum) is called within any function, it will refer to all the methods
using the gameScore variable. Assuming gameScore = 0 at the start of the application, the
value increments to what gameScore is set to.

In scoreText.text = "Score: " .. gameScore, "Score: " is the string that displays
on the device during game play. The gameScore variable takes the current value given to
the variable and displays it as a string.

Displaying the game environment
A logical setting for your display objects helps the player envision the relationship between
the main character and the environment. Since our main character is a lumberjack, it would
make sense to have him set in a forest or an area focused entirely on nature.

Chapter 7

[193]

Time for action – drawing the background
In this section, we'll fill the screen with our environment display objects. This includes
our background and ground objects, and we can also add physical elements to our ground
so that we can designate collision events for it. To draw the background, perform the
following steps:

1. Create a local function called drawBackground():
 local drawBackground = function()

2. Add in the background image:
 background = display.newImageRect("bg.png", 480, 320)
 background.x = 240; background.y = 160
 gameGroup:insert(background)

3. Add in the ground elements and create the ground physical boundary.
Close the function:

 ground = display.newImageRect("grass.png", 480, 75)
 ground.x = 240; ground.y = 325
 ground.myName = "ground"
 local groundShape = { -285,-18, 285,-18, 285,18, -285,18}
 physics.addBody(ground, "static", { density=1.0,
 bounce=0, friction=0.5, shape=groundShape })
 gameGroup:insert(ground)
 end

What just happened?
The background and ground display objects are placed in the function called
drawBackground(). The display.newImageRect()function is used since we are
incorporating dynamic scaling on some of our images. The ground display object has a
customized physical shape that is not of the same size as the original display object.

Our background object is centered to the dimensions of the device screen area and
inserted in gameGroup.

The ground display object is placed near the bottom of the display area. It is assigned a
name through ground.myName = "ground". We'll use the name "ground" later on to
determine collision events. A customized physical boundary is made for the ground through
groundShape. This allows the body of the ground to affect the assigned dimensions of the
display object. When physics.addBody() is initialized, we used groundShape as the
shape parameter. Next, ground is set to gameGroup as well.

Physics – Falling Objects

[194]

Displaying the heads-up display
In gaming, the heads-up display (HUD) is the method used to relay information visually to
the player. In many games, the common features displayed are health/lives, time, weapons,
menus, maps, and so on. This keeps your player alert to what is currently happening during
game play. When it comes to tracking your lives, you want to be informed how many are left
before your character runs out of chances to continue playing and the game ends.

Time for action – designing the HUD
While trying to make the player's gaming experience an enjoyable one, it's important that
the information displayed is relevant to the game and placed strategically, so that it doesn't
interfere with the main gaming area. So, to design the HUD, perform the following steps:

1. Create a new local function called hud():
 local hud = function()

2. Display the text for the eggs that are caught during game play:
 eggText = display.newText("Caught: " .. eggCount, 0, 0,
 "Arial", 45)
 eggText:setTextColor(1, 1, 1)
 eggText.xScale = 0.5; eggText.yScale = 0.5
 eggText.x = (480 - (eggText.contentWidth * 0.5)) - 15
 eggText.y = 305
 gameGroup:insert(eggText)

3. Add in text to track the lives:
 livesText = display.newText("Lives: " .. gameLives, 0,
 0, "Arial", 45)
 livesText:setTextColor(1, 1, 1)--> white
 livesText.xScale = 0.5; livesText.yScale = 0.5 --> for
 clear retina display text
 livesText.x = (480 - (livesText.contentWidth * 0.5)) - 15
 livesText.y = 15
 gameGroup:insert(livesText)

4. Add in text for the score and close the function:

 scoreText = display.newText("Score: " .. gameScore, 0,
 0, "Arial", 45)
 scoreText:setTextColor(1, 1, 1)--> white
 scoreText.xScale = 0.5; scoreText.yScale = 0.5 --> for
clear retina display text

Chapter 7

[195]

 scoreText.x = (scoreText.contentWidth * 0.5) + 15
 scoreText.y = 15
 gameGroup:insert(scoreText)
 end

What just happened?
The eggText display object can be found near the bottom-right corner of the screen. It's
still in view to the user while in game play and stays out of the main focus at the same time.
Notice that eggText = display.newText("Caught: " .. eggCount, 0, 0,
"Arial", 45) will refer to eggCount when the value is updated.

The livesText display object setup is similar to eggText. It is placed near the top-right
corner of the screen. The placement for this object is rather prominent because of its
importance in the game. It's in an area that is noticeable from the background and allows the
player to refer to during the game. The livesText display object decrements the number
when gameLives is updated.

The initial setup for scoreText starts in the hud() function. It is placed in the top-left
corner of the screen, opposite to livesText.

Creating the game lives
If there are no consequences in a game, then there is no sense of urgency to complete the
main objectives. To keep a player engaged during game play, introducing elements that
add some challenging aspects will keep the competitiveness and excitement going. Adding
consequences in a game creates tension for the player and gives them more motivation to
stay alive.

Physics – Falling Objects

[196]

Time for action – counting the lives
Tracking the lives left in the game keeps the player updated on how much sooner it will be till
the game is over. To count the remaining lives in the game, perform the following steps:

1. Set up the function called livesCount():
 local livesCount = function()

2. Display the text for lives every time the number is decremented:

 gameLives = gameLives - 1
 livesText.text = "Lives: " .. gameLives
 livesText.xScale = 0.5; livesText.yScale = 0.5 --> for
 clear retina display text
 livesText.x = (480 - (livesText.contentWidth * 0.5)) - 15
 livesText.y = 15
 print(gameLives .. " eggs left")
 if gameLives < 1 then
 callGameOver()
 end
 end

What just happened?
The livesCount() function is a separate function that updates gameLives. It makes
sure that you're aware that gameLives = gameLives – 1. This decreases the set value
instantiated in the beginning of the code. When gameLives changes values, it displays the
update through livesText. The print statement is used towards the end of the function
to track the count in the terminal window.

When gameLives < 1, the callGameOver() function will be called and show the game
over element of the game.

Have a go hero – adding images for the game lives
Currently, the game uses display text on screen to show how many lives are left during game
play. A way to make the HUD display more appealing is by creating/adding small icons that
correlate with the game, such as eggs or a frying pan.

Three separate display objects need to be created and placed in an orderly fashion so that
when a life is taken away, the alpha of the object is reduced to 0.5.

A method needs to be created so that all the three display objects are affected when the
game lives are reduced to zero.

Chapter 7

[197]

Introducing the main character
Our main character will be animated for every action applied during game play. We will
also create a complex body construction since the focus of its collision points will be on the
object the character is holding, and not on their entire body.

Complex body construction
It is also possible to construct a body from multiple elements. Each body element is specified
as a separate polygon shape with its own physical properties.

Since collision polygons in Box2D must be convex, any game object with a concave shape
must be constructed by appending multiple body elements.

The constructor for a complex body is the same as the simple polygon body constructor,
except that it has more than one body element listed:

physics.addBody(displayObject, [bodyType,] bodyElement1,
[bodyElement2, ...])

Each body element may have its own physical properties, along with a shape definition for its
collision boundaries. Here is an example:

local hexagon = display.newImage("hexagon.png")
hexagon.x = hexagon.contentWidth
hexagon.y = hexagon.contentHeight
hexagonShape = { -20,-40, 20, -40, 40, 0, 20,40, -20,40, -40,0 }
physics.addBody(hexagon, "static", { density = 1.0, friction = 0.8,
bounce = 0.3, shape=hexagonShape })

As in the simpler cases, the bodyType attribute is optional and will default to "dynamic",
if not specified.

Time for action – creating the character
The main character was created with a sprite sheet and needs to be set up to view the
animation it provides. Other display images that will make an appearance include a cracked
egg when a collision to a physical object has been made. To create the character, perform the
following steps:

1. Create a new local function called createChar():
 local createChar = function()

Physics – Falling Objects

[198]

2. Create the sprite sheet for the main character:
local sheetData = { width=128, height=128, numFrames=4,
sheetContentWidth=256, sheetContentHeight=256 }
local sheet = graphics.newImageSheet("charSprite.png",
sheetData)

 local sequenceData =
 {
 { name="move", start=1, count=4, time=400 }
 }

 charObject = display.newSprite(sheet, sequenceData)
 charObject:setSequence("move")
 charObject:play()

3. Set the starting position and physical properties for the main character:
 charObject.x = 240; charObject.y = 250
 physics.addBody(charObject, "static", { density=1.0,
 bounce=0.4, friction=0.15, shape=panShape })
 charObject.rotation = 0
 charObject.isHit = false -- When object is not hit
 charObject.myName = "character"

4. Add in the transition image after the egg has made a collision:

 friedEgg = display.newImageRect("friedEgg.png", 40, 23)
 friedEgg.alpha = 1.0
 friedEgg.isVisible = false
 gameGroup:insert(charObject)
 gameGroup:insert(friedEgg)
 end

Chapter 7

[199]

What just happened?
The image sheet being referred to is called sheetData and takes the first 4 frames of
animation from "charSprite.png". We created an animation set called "move". Every
time "move" is called, it starts the animation from frame 1 and plays 4 frames from the start
at 400 milliseconds.

The main display object is called charObject and takes on the characteristics of
sheetData. When it calls setSequence("move"), that animation sequence plays
when the play() command is executed.

An important change to the physical body of the character is that its main collision point
will be directed towards the frying pan used in the animation. Any collision detection on the
character's body will not be read. The charObject display object is given a name called
"character", which will be used to detect the collision with the falling egg.

We have also placed the fried egg in this function, to prepare it for the collision.

Adding postcollisions
We want to make sure that when an object has interacted with another, an event type occurs
right after. At the instance of a postcollision, we can confirm the collision force between two
objects. This helps us determine that the object that was destroyed was completed with a
set amount of force.

Collision handling
Be careful about how you handle the Box2D physics engine. It will crash during a collision
if Corona code attempts to modify objects still involved in the collision, since Box2D is still
working out iterated mathematics on them.

For crash-proof collision detection, do not have collisions occur immediately.

Do not modify/create/destroy physics objects during a collision, in order to prevent crashing.

If you need to modify/create/destroy an object as a result of a collision, your collision
handler should set a flag or add a time delay so that the change can occur later, with
timer.performWithDelay().

Body properties
Many of the native Box2D methods have been made into simpler dot properties for display
objects. The following examples show that a body, newBody, has been created using one of
the constructor methods.

Physics – Falling Objects

[200]

body.isAwake
This is a Boolean for the current awake state. By default, all bodies automatically go to sleep
when there is no interaction with them for a couple of seconds. Bodies stop simulating until
some kind of collision or other interaction wakes them up.

Here is an example:

newBody.isAwake = true
local object = newBody.isAwake

body.isBodyActive
This is a Boolean for the active state of a body. Inactive bodies are not destroyed, but they
are removed from the simulation and cease to interact with other bodies.

Here is an example:

newBody.isBodyActive = true
local object = newBody.isBodyActive

body.isBullet
This is a Boolean for a body that is treated like a bullet. Bullets are subject to continuous
collision detection. The default is false.

Here is an example:

newBody.isBullet = true
local object = newBody.isBullet

body.isSensor
This is a Boolean property that sets the isSensor property across all elements in the
body. A sensor passes through other objects instead of bouncing off them, but detects
some collision. This property acts across all body elements and will override any isSensor
settings on the elements themselves.

Here is an example:

newBody.isSensor = true

body.isSleepingAllowed
This is a Boolean for a body that is allowed to go to sleep. A body that is awake is useful in
cases such as tilt gravity, since sleeping bodies do not respond to changes in global gravity.
The default is true.

Chapter 7

[201]

Here is an example:

newBody.isSleepingAllowed = true
local object = newBody.isSleepingAllowed

body.isFixedRotation
This is a Boolean for a body whose rotation should be locked, even if the body is about to
load or subjected to off-center forces. The default is false.

Here is an example:

newBody.isFixedRotation = true
local object = newBody.isFixedRotation

body.angularVelocity
This is the value of the current rotational velocity in degrees per second.

Here is an example:

newBody.angularVelocity = 50
local myVelocity = newBody.angularVelocity

body.linearDamping
This is the value for how much the linear motion of a body is damped. This is the rate of
decrease of angular velocity over time. The default is zero.

Here is an example:

newBody.linearDamping = 5
local object = newBody.linearDamping

body.angularDamping
This is the value for how much the rotation of a body should be damped. The default is zero.

Here is an example:

newBody.angularDamping = 5
local object = newBody.angularDamping

Physics – Falling Objects

[202]

body.bodyType
This is a string value for the type of physical body being simulated. The available values are
"static", "dynamic", and "kinematic", which are explained here:

 � static bodies don't move or interact with each other. Examples of static objects
would include the ground or the walls of a maze.

 � dynamic bodies are affected by gravity and collisions with other body types.

 � kinematic objects are affected by forces but not by gravity. Bodies that are
draggable objects should be set to "kinematic" for the duration of the drag event.

The default body type is "dynamic".

Here is an example:

newBody.bodyType = "kinematic"
local currentBodyType = newBody.bodyType

Time for action – creating the egg collision
We have handled collisions in the previous sample games we created. Handling postcollisions
requires the introduction of force to execute the completion of a postcollision event:

1. Create a new local function called onEggCollision() with two parameters called
self and event:
 local onEggCollision = function(self, event)

2. Create an if statement when the force is greater than 1 and include not self.
isHit. Add in the eggCaughtSound sound effect:
 if event.force > 1 and not self.isHit then
 audio.play(eggCaughtSound)

3. Make self invisible and inactive, and replace it with the friedEgg display object:
 self.isHit = true
 print("Egg destroyed!")
 self.isVisible = false
 friedEgg.x = self.x; friedEgg.y = self.y
 friedEgg.alpha = 0
 friedEgg.isVisible = true

4. Create a function that transitions the friedEgg display object and fades it off the
stage by using the onComplete command:
 local fadeEgg = function()
 transition.to(friedEgg, { time=500, alpha=0 })

Chapter 7

[203]

 end
 transition.to(friedEgg, { time=50, alpha=1.0,
 onComplete=fadeEgg })
 self.parent:remove(self)
 self = nil

5. Using if event.other.myName == "character", update eggCount when
the main character catches the eggs. Also, update gameScore by 500 points for
every collision. If the egg hits the ground, use elseif event.other.myName ==
"ground" and decrement the lives using livesCount():

 if event.other.myName == "character" then
 eggCount = eggCount + 1
 eggText.text = "Caught: " .. eggCount
 eggText.xScale = 0.5; eggText.yScale = 0.5 --> for
 clear retina display text
 eggText.x = (480 - (eggText.contentWidth * 0.5)) - 15
 eggText.y = 305
 print("egg caught")
 local newScore = gameScore + 500
 setScore(newScore)
 elseif event.other.myName == "ground" then
 livesCount()
 print("ground hit")
 end
 end
 end

Physics – Falling Objects

[204]

What just happened?
Using onEggCollision(self, event), we set up the function with an if statement
for event.force > 1 and not self.isHit. When both statements return true, the
sound effect for the egg plays. The initial egg falling from the sky is removed from the scene
upon collision and replaced by the friedEgg display object in the same location, using
friedEgg.x = self.x; friedEgg.y = self.y.

The fadeEgg()function makes the newly replaced egg object appear in 50 milliseconds by
transition.to(eggCrack, { time=50, alpha=1.0, onComplete=fadeCrack }
) and then with the onComplete command, it returns the object to an invisible state with
transition.to(eggCrack, { time=500, alpha=0 }).

When the name "character" is called from event.other.myName, every collision
assigned to that name increments eggCount + 1. Therefore, eggText is updated with the
eggCount value. The setScore(newScore) statement increments the score by 500
with every collision made to "character". When a collision is made to "ground", the
livesCount() function is called, which subtracts life by 1.

Making the display objects fall
We will apply the main asset (egg object) by learning how to add physical objects to the
scene and have them fall in random areas in the game. The physics engine will take into
account a dynamic physics body that we will create for the egg display object.

Time for action – adding the egg object
Imagine a world, full of falling eggs. It's not entirely too realistic, but in this game, we're
creating this element. At least, we'll be making sure that both gravity and real-world physics
will be applied. To add the egg object, perform the following steps:

1. Create a new local function called eggDrop():
 local eggDrop = function()

2. Add in the egg display object properties:
 local egg = display.newImageRect("egg.png", 26, 30)
 egg.x = 240 + mRand(120); egg.y = -100
 egg.isHit = false
 physics.addBody(egg, "dynamic",{ density=eggDensity,
 bounce=0, friction=0.5, shape=eggShape })
 egg.isFixedRotation = true
 gameGroup:insert(egg)

Chapter 7

[205]

3. Add in the postCollision event for the egg display object:

 egg.postCollision = onEggCollision
 egg:addEventListener("postCollision", egg)
 end

What just happened?
We have set the egg value for x with 240 + mRand(120). The mRand function is equal
to math.random, which will allow the egg to appear in randomized places in an area of 120
pixels, starting at 50 in the x direction.

It is vital to make sure that egg.isHit = false for the collision event to apply correctly.
The physics body is set to "dynamic" so that it reacts to gravity and makes the object fall.
There is a customized density and shape made for the egg we have created, which was
already made at the beginning of the code.

The last important detail for the collision to work is adding egg to the onEggCollision()
function with egg.postCollision = onEggCollision and then making the
event listener use the "postCollision" event with egg:addEventListener(
"postCollision", egg).

Physics – Falling Objects

[206]

Time for action – making the egg drop
We're going to execute the timer for the eggs, so that they can start dropping on the screen.
To make the egg drop, perform the following steps:

1. Create a local function called eggTimer() and use timer.performWithDelay
to drop an egg every 1 second (1000 milliseconds) repeatedly. Use eggDrop() to
activate the drop:
 local eggTimer = function()
 startDrop = timer.performWithDelay(1000, eggDrop, 0)
 end

2. Within the first if statement in the onEggCollision() function, cancel the
timer using the timerID and startDrop variables. Add the if gameLives < 1
statement then to stop the eggs from falling:

 if gameLives < 1 then
 timer.cancel(startDrop)
 print("timer cancelled")
 end

What just happened?
In order for the eggs to start dropping from the sky, we created a function called
eggTimer(). It activates the eggDrop() function by letting an egg drop after
1000 milliseconds (1 second) every time infinitely using startDrop = timer.
performWithDelay(1000, eggDrop, 0).

Backtracking to onEggCollision(), we want to check whether gameLives has reached
less than 1. When this statement is true, the eggs will stop dropping. This is done using
timer.cancel(startDrop). The timerID we set in eggTimer() is startDrop.

Ending the game play
Every start of a game always has an ending, whether it is a simple You Win or You Lose or
just a Game Over; all these give closure to the player. It's important to notify a player of such
events, so that they can reflect on the achievements earned.

Chapter 7

[207]

Time for action – calling game over
We will make sure that when a game over display screen pops up, any of our display objects
that are currently in motion stop moving, and the event listeners are deactivated. Aside from
the visual display of our game over screen, we'll be adding a sound notification that will also
help to trigger the event. To end the game, perform the following steps:

1. Create a new local function called callGameOver() and place it after the
setScore() function and before the drawBackground() function:
 local callGameOver = function()

2. Introduce the sound effects when the game over display pops up. Have
gameIsActive set to false and pause the physics in the game:
 audio.play(gameOverSound)
 gameIsActive = false
 physics.pause()

3. Create a shade that overlays the current background:
 shade = display.newRect(0, 0, 570, 320)
 shade:setFillColor(0, 0, 0)
 shade.x = 240; shade.y = 160
 shade.alpha = 0 -- Getting shade ready to display at
 game end

4. Display the game over window and reiterate the final score:
 gameOverScreen = display.newImageRect("gameOver.png",
 400, 300)
 local newScore = gameScore
 setScore(newScore)
 gameOverScreen.x = 240; gameOverScreen.y = 160
 gameOverScreen.alpha = 0
 gameGroup:insert(shade)
 gameGroup:insert(gameOverScreen)
 transition.to(shade, { time=200, alpha=0.65 })
 transition.to(gameOverScreen, { time=500, alpha=1 })

Physics – Falling Objects

[208]

5. Have the score display on the game over screen:

 scoreText.isVisible = false
 scoreText.text = "Score: " .. gameScore
 scoreText.xScale = 0.5; scoreText.yScale = 0.5 --> for
 clear retina display text
 scoreText.x = 240
 scoreText.y = 160
 scoreText:toFront() -- Moves to front of current display
 group
 timer.performWithDelay(0,
 function() scoreText.isVisible = true; end, 1)
 end

What just happened?
Our gameOver() function triggers our gameOverSound sound effect that we preloaded
at the beginning of our code. We made sure no events, such as the motion from the
accelerometer, are disabled through gameIsActive = false.

The elements of our display objects appear at this point in time with shade,
gameOverScreen, and scoreText.

If you notice, scoreText disappears when game play has ended by scoreText.
isVisible = false and then reappears in a different area of the screen, using timer.
performWithDelay(0, function() scoreText.isVisible = true; end, 1).

Chapter 7

[209]

Starting the game
We will activate all the remaining functions and have them run accordingly.

Time for action – activating the game
With all the game play elements set in place, it is time to get the application started by using
the following steps:

1. Create a new local function called gameActivate() and insert gameIsActive =
true. Place the function above the moveChar() function:
 local gameActivate = function()
 gameIsActive = true
 end

2. Initialize all the game actions by making a new function called gameStart():
 local gameStart = function()

3. Start the physics property and set the gravity for the falling object:
 physics.start(true)
 physics.setGravity(0, 9.8)

4. Activate all the functions instantiated. Add an event listener for the charObject,
using the "accelerometer" event for the moveChar() function:
 drawBackground()
 createChar()
 eggTimer()
 hud()
 gameActivate()
 Runtime:addEventListener("accelerometer", moveChar)
 end

5. Instantiate the gameStart() function and return the gameGroup group:
 gameStart()
 return gameGroup

What just happened?
If you remember, in the beginning of our code, we set gameIsActive = false. We will
now change this status through the gameActivate() function and make gameIsActive
= true. We made the gameStart() function apply all the initial game play elements. This
includes the start of the physics engine and gravity. At the same time, we took the remainder
of all the functions and initialized them.

Physics – Falling Objects

[210]

Once all the functions are activated, gameGroup needs to be returned so that all the display
objects appear during the game play.

To make sure that your physical object boundaries for your display objects are in the right
place, use physics.setDrawMode("hybrid") in the gameStart() function.

Pop quiz – animating the graphics
Q1. What retrieves or sets the text string of a text object?

1. object.text

2. object.size

3. object:setTextColor()

4. None of the above

Q2. What function converts any argument into a string?

1. tonumber()

2. print()

3. tostring()

4. nil

Q3. What body type is affected by gravity and collisions with the other body types?

1. dynamic

2. kinematic

3. static

4. None of the above

Chapter 7

[211]

Summary
The game play construction of our application is now completed. Now that we're familiar
with a variety of ways to use the physics engine, it goes to show the ease of using Box2D for
designing other games that involve physics bodies.

We now have a better idea of:

 � Applying the uses of dynamic and static physics bodies

 � Constructing a customized shape for the physical properties of our display objects

 � Tracking the number of objects caught using values from variables that are given

 � Using postcollisions to switch out images

In the next chapter, we will complete the gaming experience by creating versatile menu
screens by using the Composer API. You will also learn how to add the pause action, save
high scores, and understand more about data saving and unloading files.

Using Corona SDK has helped us design and develop games in a minimal amount of time.
Let's continue adding the final touches to our game!

[213]

Operation Composer

We've taken our game, Egg Drop, and explored ways to create game physics
to react with collision detection and track other useful data, such as lives and
a points system. We also worked with customizing physical bodies and created
names for our display objects that apply to the game score count.

Next, we'll add a menu system that incorporates the introduction to the game, apply a pause
menu during game play, and save high scores when the game is over.

We're on our way to completing an application that has the necessary elements to make it
ready for the App Store and Google Play Store.

In this chapter, we will:

 � Save and load high scores

 � Add a pause menu

 � Manage scenes with the Composer API

 � Add a loading screen

 � Add a main menu, options menu, and credits screen

So, let's get going!

8

Operation Composer

[214]

Continuation of Egg Drop
We have finished the main game portion of Egg Drop as the main base of our application.
Now, it's time for us to include how to pause action midgame and also save high scores. We
will also add some new scenes that will help us introduce and transition to the game in an
easy and quick fashion.

In the Resources folder of Chapter 8, grab all the image and file assets inside and
copy them to your current Egg Drop project folder. You can download the project files
accompanying this book from the Packt Publishing website. We will use these files to
add the final touches to our game.

Data saving
Saving file information is used in many aspects of game development. We use it to save high
scores and game settings, such as sound on/off, locking/unlocking levels, and so on. It is not
necessary to have these features, but as they are good to have, maybe you'd like to include
them in your applications.

In Corona SDK, applications are sandboxed; this means that your files (application images,
data, and preferences) are stored in a location that no other application can access. Your
files will reside in an app-specific directory for documents, resources, or temporary files. This
restriction is related to the files on your device, not when you are coding on your Mac or PC.

BeebeGames class for saving and loading values
We'll be using the BeebeGames class created by Jonathan Beebe. It provides many easy
and useful functions to use for games. Some of the notable functions included incorporate
a simple way of saving and loading data that we'll be able add into our game. More
documentation on the BeebeGames class can be found in the Chapter 8 folder.

You can also refer to https://github.com/lewisNotestine/
luaCorona/blob/master/justATest/code/
beebegames.lua to track updates on the class.

You can take a look at other methods relating to animation, transitions, timers, and so on if
you would like to use them for future use. For now, we'll focus on the methods we can use to
easily save and load values for our game.

https://github.com/lewisNotestine/luaCorona/blob/master/justATest/code/beebegames.lua
https://github.com/lewisNotestine/luaCorona/blob/master/justATest/code/beebegames.lua
https://github.com/lewisNotestine/luaCorona/blob/master/justATest/code/beebegames.lua

Chapter 8

[215]

Here is an example of saving and loading values:

-- Public Method: saveValue() --> save single-line file (replace
contents)

function saveValue(strFilename, strValue)
 -- will save specified value to specified file
 local theFile = strFilename
 local theValue = strValue

 local path = system.pathForFile(theFile,
 system.DocumentsDirectory)

 -- io.open opens a file at path. returns nil if no file found
 -- "w+": update mode, all previous data is erased
 local file = io.open(path, "w+")
 if file then
 -- write game score to the text file
 file:write(theValue)
 io.close(file)
 end
end

-- Public Method: loadValue() --> load single-line file and store it
into variable

function loadValue(strFilename)
 -- will load specified file, or create new file if it doesn't exist

 local theFile = strFilename

 local path = system.pathForFile(theFile,
 system.DocumentsDirectory)

 -- io.open opens a file at path. returns nil if no file found
 -- "r": read mode
 local file = io.open(path, "r")
 if file then
 -- read all contents of file into a string
 -- "*a": reads the whole file, starting at the current position
 local contents = file:read("*a")
 io.close(file)
 return contents
 else

Operation Composer

[216]

 -- create file b/c it doesn't exist yet
 -- "w": write mode
 file = io.open(path, "w")
 file:write("0")
 io.close(file)
 return "0"
 end
end

Getting paths to files
The paths to these files are unique to your application. To create file paths, you can use
the system.pathForFile function. This function generates an absolute path to the icon
file for your application, using the application's resource directory as the base directory for
Icon.png:

local path = system.pathForFile("Icon.png",
system.ResourceDirectory)

In general, your files must reside in one of the three possible base directories:

 � system.DocumentsDirectory: This should be used for files that need to persist
between application sessions.

 � system.TemporaryDirectory: This is a temporary directory. Files written to this
directory are not guaranteed to exist in subsequent application sessions. They may
or may not exist.

 � system.ResourceDirectory: This is the directory where all application assets
exist. Note that you should never create, modify, or add files to this directory.

More information on files can be found at http://docs.coronalabs.
com/api/library/system/index.html.

Reading files
To read files, the io library is used. This library allows you to manage files, given an
absolute path.

Writing files
To write files, you follow many of the steps that are the same as for reading a file. Instead of
using a read method, you write data (strings or numbers) to a file.

http://docs.coronalabs.com/api/library/system/index.html
http://docs.coronalabs.com/api/library/system/index.html

Chapter 8

[217]

Time for action – saving and loading the high score
When the Game Over screen displays, we will save and load the values of our final score and
highest score. For this perform the following steps:

1. Open up your main.lua file that we created for Egg Drop. We'll continue using the
same file and add in more code with the new alterations to the game.

2. Add in two new variables, local highScoreText and local highScore where
all the other initialized variables are located, near the top of the code:
local highScoreText
local highScore

3. Introduce the saveValue() function after the preloaded sound files:
 local saveValue = function(strFilename, strValue)
 -- will save specified value to specified file
 local theFile = strFilename
 local theValue = strValue

 local path = system.pathForFile(theFile,
 system.DocumentsDirectory)

 -- io.open opens a file at path. returns nil if no file
 found
 local file = io.open(path, "w+")
 if file then
 -- write game score to the text file
 file:write(theValue)
 io.close(file)
 end
 end

4. Add in the loadValue() function:
 local loadValue = function(strFilename)
 -- will load specified file, or create new file if it
 doesn't exist

 local theFile = strFilename

 local path = system.pathForFile(theFile,
 system.DocumentsDirectory)

 -- io.open opens a file at path. returns nil if no file
 found

Operation Composer

[218]

 local file = io.open(path, "r")
 if file then
 -- read all contents of file into a string
 local contents = file:read("*a")
 io.close(file)
 return contents
 else
 -- create file b/c it doesn't exist yet
 file = io.open(path, "w")
 file:write("0")
 io.close(file)
 return "0"
 end
 end

5. At the end of the callGameOver() function, create an if statement to compare
gameScore and highScore. Save the highest score by using the saveValue()
function:
 if gameScore > highScore then
 highScore = gameScore
 local highScoreFilename = "highScore.data"
 saveValue(highScoreFilename, tostring(highScore))
 end

6. Next, add in the highScoreText display text in the same callGameOver()
function, to show the high score at the end of the game:
 highScoreText = display.newText("Best Game Score: " ..
 tostring(highScore), 0, 0, "Arial", 30)
 highScoreText:setTextColor(1, 1, 1)
 highScoreText.xScale = 0.5; highScoreText.yScale = 0.5
 highScoreText.x = 240
 highScoreText.y = 120

 gameGroup:insert(highScoreText)

7. At the end of the gameStart() function, have the high score loaded by using the
loadValue() function:

 local highScoreFilename = "highScore.data"
 local loadedHighScore = loadValue(highScoreFilename)

 highScore = tonumber(loadedHighScore)

Chapter 8

[219]

What just happened?
After initializing the saveValue() and loadValue() functions at the game level, we
created an if statement to compare gameScore, which is the current score during game
play, and highScore, which is the highest score accrued so far. When the outcome of
gameScore is higher, then it replaces the highScore data saved.

In order to save the value, a data file needs to be created. We created a variable called
local highScoreFilename = "highscore.data". We called the saveValue()
function using highScoreFilename as a parameter. The tostring(highScore)
parameter will convert the numeric value of highScore to a string.

When the Game Over screen is visible, highScoreText displays the value saved from
highScore above the gameScore that is achieved. Adding a high score gives the player
an incentive to top the highest score and adds the replay value to the game.

In the gameStart() function, it's important to have the value of highScore.data loaded
at the start of game play. Using the same data file we created to save highScore, we
can also load the value throughout the game. To load the value, local highScore calls
loadValue(highScoreFileName). This takes the information from highScore.data. To
obtain the value, tonumber(loadedHighScore) converts it to an integer from a string and
can be used to display the value of highScore.

Operation Composer

[220]

Pausing the game
Have you ever found yourself in the middle of playing a game and all of a sudden you have
to take a bathroom break or your hand cramps up? Obviously, any of these situations require
you to deter your attention from your game progress, and you need to stop the current
action temporarily to attend to those needs. This is when a pause button comes in handy so
that you can stop the action in that moment in time and then continue where you left off
when you're ready to play again.

Time for action – pausing the game
It's more than just making a button; it's also pausing all the action on screen, including
physics and timers by performing the following steps:

1. Add in the local pauseBtn and local pauseBG variables where all the other
variables are initialized near the beginning of the code. Preload the btnSound audio
after gameOverSound near the top of the script:
-- Place near other game variables
local pauseBtn
local pauseBG

-- Place after gameOverSound
local btnSound = audio.loadSound("btnSound.wav")

2. Within the hud() function and after the scoreText chunk, create another function
that will run the event for the pause button. Call the onPauseTouch(event)
function. Pause the physics in the game by setting gameIsActive to false and
have the pause elements appear on screen:
 local onPauseTouch = function(event)
 if event.phase == "release" and pauseBtn.isActive then
 audio.play(btnSound)

 -- Pause the game

 if gameIsActive then

 gameIsActive = false
 physics.pause()

 local function pauseGame()
 timer.pause(startDrop)
 print("timer has been paused")
 end

Chapter 8

[221]

 timer.performWithDelay(1, pauseGame)

 -- SHADE
 if not shade then
 shade = display.newRect(0, 0, 570, 380)
 shade:setFillColor(0, 0, 0)
 shade.x = 240; shade.y = 160
 gameGroup:insert(shade)
 end
 shade.alpha = 0.5

 -- SHOW MENU BUTTON
 if pauseBG then
 pauseBG.isVisible = true
 pauseBG.isActive = true
 pauseBG:toFront()
 end

 pauseBtn:toFront()

3. When the game is unpaused, have the physics become active again and remove all
the pause display objects:
 else

 if shade then
 display.remove(shade)
 shade = nil
 end

 if pauseBG then
 pauseBG.isVisible = false
 pauseBG.isActive = false
 end

 gameIsActive = true
 physics.start()

 local function resumeGame()
 timer.resume(startDrop)
 print("timer has been resumed")
 end
 timer.performWithDelay(1, resumeGame)

 end
 end
 end

Operation Composer

[222]

4. Add the pauseBtn UI button and pauseBG display object after the
onPauseTouch() function:
 pauseBtn = ui.newButton{
 defaultSrc = "pausebtn.png",
 defaultX = 44,
 defaultY = 44,
 overSrc = "pausebtn-over.png",
 overX = 44,
 overY = 44,
 onEvent = onPauseTouch,
 id = "PauseButton",
 text = "",
 font = "Helvetica",
 textColor = { 255, 255, 255, 255 },
 size = 16,
 emboss = false
 }

 pauseBtn.x = 38; pauseBtn.y = 288
 pauseBtn.isVisible = false
 pauseBtn.isActive = false

 gameGroup:insert(pauseBtn)

 pauseBG = display.newImageRect("pauseoverlay.png", 480,
 320)
 pauseBG.x = 240; pauseBG.y = 160
 pauseBG.isVisible = false
 pauseBG.isActive = false

 gameGroup:insert(pauseBG)

5. In order for pauseBtn to display during game play, make it visible and active in the
gameActivate() function:
 pauseBtn.isVisible = true
 pauseBtn.isActive = true

6. When the game is over, disable pauseBtn in the callGameOver() function Place
the code right after the physics.pause() line:

 pauseBtn.isVisible = false
 pauseBtn.isActive = false

Chapter 8

[223]

What just happened?
We created the onPauseTouch(event) function to control all the pause events that occur
within the game play. To pause all the motion in the game, we changed the Boolean of
gameIsActive to false and the physics.pause() function to stop all the eggs that are
falling from moving. Next, the timer is paused for startDrop so that any eggs falling from
the sky won't accumulate over time as long as the pause function is still active.

A slightly transparent overlay called shade is called to appear when the pause button is
pressed. This will deter the attention from the game scene and allow the user to differentiate
when the game play is not active.

The Game Paused banner also displays on the top of the screen by making it
visible and active. The pauseBG object is pushed ahead of the display hierarchy by
pauseBG:toFront().

To unpause the game, we reversed the process of how the pause display items appeared.
When pauseBtn is pressed for the second time, shade is taken away by display.
remove(shade); shade = nil. The pauseBG.isVisible and pauseBG.isActive
properties are both set to false.

Remember that we had set gameIsActive to false earlier Well, it's now time to set
it back to true. This also means resuming physics with physics.start(). The timer is
resumed by the resumeGame() local function and calls timer.resume(startDrop)
within the function.

Operation Composer

[224]

The pauseBtn and pauseBG display objects are inserted at the end of the if statement
block. The pauseBtn object is then shown as visible and active once the game is playable.
It is invisible and inactive when the Game Over screen appears so that there are no other
touch events that can interfere when the game is over.

The Composer API
The Composer API provides an easy solution for developers to control scenes with or without
transitions. This is a great scene-management library to display menu systems and even
managing multiple levels in a game. Composer also comes with a variety of transition effects.
More information can be found on the Corona Docs at http://docs.coronalabs.com/
api/library/composer/index.html.

Our scene management will look similar to the scene template displayed at http://docs.
coronalabs.com/api/library/composer/index.html#scene-template.

Game development with the Composer API
You may wonder how we're going to apply Composer with Egg Drop. It's really simple. We'll
have to alter some lines in our game code to make it compatible with Composer and create
some new scenes for the menu system that is applied before game splay.

Time for action – altering the game file
We will rename our current main.lua file to maingame.lua and add some additional lines
to our game code. Be sure to change the file name within your Egg Drop project folder. To
rename the file follow these steps:

1. Remove the following lines near the top of the code. We'll hide the status bar in
another scene that we'll create later on in this chapter. The gameGroup display
group will be altered to fit within the Composer parameters:
display.setStatusBar(display.HiddenStatusBar)
local gameGroup = display.newGroup()

2. At the very top of the code, implement Composer by adding local composer =
require("composer") and local scene = composer.newScene() so
that we can call the scene events:
local composer = require("composer")
local scene = composer.newScene()

http://docs.coronalabs.com/api/library/composer/index.html
http://docs.coronalabs.com/api/library/composer/index.html
http://docs.coronalabs.com/api/library/composer/index.html#scene-template
http://docs.coronalabs.com/api/library/composer/index.html#scene-template

Chapter 8

[225]

3. After local loadValue = function(strFilename), add in the create()
event. We will also add back in our gameGroup display group, but under the scene's
view property. Also, add in composer.removeScene("loadgame"). The
"loadgame" scene will be introduced later on in this chapter:
-- Called when the scene's view does not exist:
function scene:create (event)
 local gameGroup = self.view

 -- completely remove loadgame's view
 composer.removeScene("loadgame")

 print("\nmaingame: create event")
end

4. After the create() event, create the show() event and add it before the
gameActivate() function. The show() event will transition all our game play
functions onscreen. Include gameGroup in the scene's view property as well:
-- Called immediately after scene has moved onscreen:
function scene:show(event)
 local gameGroup = self.view

5. After the gameStart() function, remove the return gameGroup line:
return gameGroup -- Code will not run if this line is not removed

6. Next, close function scene: show(event) with end:
 print("maingame: show event")

end

7. Create the hide() and destroy() events:
-- Called when scene is about to move offscreen:
function scene:hide(event)

 print("maingame: hide event")

end

-- Called prior to the removal of scene's "view" (display
group)
function scene:destroy(event)

 print("destroying maingame's view")

end

Operation Composer

[226]

8. Finally, create event listeners for all the scene events and add return scene at the
end of the code:

-- "create" event is dispatched if scene's view does not exist
scene:addEventListener("create", scene)

-- "show" event is dispatched whenever scene transition has
finished
scene:addEventListener("show", scene)

-- "hide" event is dispatched before next scene's transition
begins
scene:addEventListener("hide", scene)

-- "destroy" event is dispatched before view is unloaded, which
can be
scene:addEventListener("destroy", scene)

return scene

What just happened?
Using the Composer API will help us transition scenes a lot easier and quicker. Every time
you want to load a new scene into view, require("composer") needs to be added. The
local scene = composer.newScene() statement will allow us to call the scene events,
create(), show(), hide(), and destroy().

At the very end of the game code, we added event listeners for all the scene events and for
return scene.

The format of how each scene is managed with Composer will look similar to the preceding
code. Most of the game code will be dispatched when a scene is displayed by the create()
and show() events. When you want to clean or unload listeners, audio, assets, and so on,
the hide() and destroy() events are used.

Organizing the game
We've been used to having main.lua as our main source file to show every detail of our
game code. It's time to organize it efficiently with the help of the Composer API.

Chapter 8

[227]

Time for action – adding the new main.lua file
While using Composer, our main.lua file is still vital since it is the first thing that Corona
SDK looks at to launch an application in the simulator. We're going to add some lines of code
that will change scenes for our game:

1. Create a brand new file called main.lua and let's add it back in our status bar:
display.setStatusBar(display.HiddenStatusBar)

2. Import Composer and load the first scene called loadmainmenu. We will create this
scene in the next couple of sections:

-- require controller module
local composer = require ("composer")

-- load first screen
composer.gotoScene("loadmainmenu")

What just happened?
In order to incorporate Composer throughout the application, we called the local
composer = require ("composer") module. The scene will be changed with
composer.gotoScene("loadmainmenu"), which is a loading screen directing the
user to the main menu screen.

New game transitions
Now that we have introduced the Composer API, we can apply some long-awaited
transitions that will be helpful for our game. One way to approach this is by transitioning
out of the game once it is over.

Time for action – changing screens after the game is over
Now that we have renamed our game file, let's add in a scene transition so that our game is
not stuck at the Game Over screen once game play is over. To change the screen, perform
the following steps:

1. In our maingame.lua file, add in a new variable called local menuBtn,
where all the other variables are initialized in the beginning of the code. Inside
the callGameOver() function, add the following lines after the highScoreText
code:
 local onMenuTouch = function(event)
 if event.phase == "release" then

Operation Composer

[228]

 audio.play(btnSound)
 composer.gotoScene("mainmenu", "fade", 500)

 end
 end

 menuBtn = ui.newButton{
 defaultSrc = "menubtn.png",
 defaultX = 60,
 defaultY = 60,
 overSrc = "menubtn-over.png",
 overX = 60,
 overY = 60,
 onEvent = onMenuTouch,
 id = "MenuButton",
 text = "",
 -- Can use any font available per platform
 font = "Helvetica",
 textColor = { 255, 255, 255, 255 },
 size = 16,
 emboss = false
 }

 menuBtn.x = 100; menuBtn.y = 260

 gameGroup:insert(menuBtn)

Chapter 8

[229]

What just happened?
In order to transition out of the game over screen, a menu button was created to change
scenes. Inside the onMenuTouch() function, upon the release of the button, we called
composer.gotoScene("mainmenu", "fade", 500). This will allow the application
to transition to the main menu in 500 milliseconds using a fade, which we will create later on
in this chapter.

Have a go hero – restarting the game
Now that you're well aware of how the Composer API works with changing scenes and using
UI buttons to transition between them, how about creating a button that restarts the game
after the game over screen appears? So far, the application allows the user to go back to the
menu screen once the game has reached an end.

Within the callGameOver() function, a new local function needs to be created that will
run an event using the UI button system to change scenes with Composer. Note that you
can't call the same scene over if you're currently in it.

Creating a loading screen
Loading screens provide feedback that the program is in the process of loading. This is
helpful by informing the user that the next screen is underway, so that they don't assume
that the application has crashed, especially if the next screen is loading a large amount
of data.

Time for action – adding the loading screen
We'll place loading screens when the application launches and before the game level starts.
This tells the user that more content or information is on its way.

1. Create a new file called loadmainmenu.lua in your project folder.

2. Import Composer and add in the composer.newScene() function:
local composer = require("composer")
local scene = composer.newScene()

Operation Composer

[230]

3. Create two local variables called myTimer and loadingImage. Add in the
create() event and a sceneGroup display group:
local myTimer
local loadingImage

-- Called when the scene's view does not exist:
function scene:create(event)
 local sceneGroup = self.view

 print("\nloadmainmenu: create event")
end

4. Create the show() event and add in a sceneGroup display group:
 -- Called immediately after scene has moved onscreen:
function scene:show(event)
 local sceneGroup = self.view

 print("loadmainmenu: show event")

5. Introduce the loadingImage display object:
 loadingImage = display.newImageRect("loading.png", 480, 320)
 loadingImage.x = 240; loadingImage.y = 160
 sceneGroup:insert(loadingImage)

6. Create another local function called goToMenu() and call composer.gotoScene(
"mainmenu", "zoomOutInFadeRotate", 500) to change the scene to
"mainmenu":
 local goToMenu = function()
 composer.gotoScene("mainmenu", "zoomOutInFadeRotate",
 500)
 end

7. Use the timer function and have it call goToMenu()once every 1,000 milliseconds.
Define it with the myTimer timer ID. Close the show() event with end:
 myTimer = timer.performWithDelay(1000, goToMenu, 1)
 end

8. Call the hide() and destroy() events. In the hide() event, cancel myTimer:
-- Called when scene is about to move offscreen:
function scene:hide()

 if myTimer then timer.cancel(myTimer); end

Chapter 8

[231]

 print("loadmainmenu: hide event")

end

-- Called prior to the removal of scene's "view" (display
group)
function scene:destroy(event)

 print("destroying loadmainmenu's view")
end

9. Add event listeners for all the scene events and for return scene. Save and close
the file:
-- "create" event is dispatched if scene's view does not exist
scene:addEventListener("create", scene)

-- "show" event is dispatched whenever scene transition has
finished
scene:addEventListener("show", scene)

-- "hide" event is dispatched before next scene's transition
begins
scene:addEventListener("hide", scene)

-- "destroy" event is dispatched before view is unloaded, which
can be
scene:addEventListener("destroy", scene)

return scene

10. Create a new file called loadgame.lua in your project folder. We'll make another
loading screen that occurs right before the game scene, maingame.lua. Use
composer.gotoScene("maingame", "flipFadeOutIn", 500) to
transition scenes. Save and close your file:

local composer = require("composer")
local scene = composer.newScene()

local myTimer
local loadingImage

-- Called when the scene's view does not exist:
function scene:create(event)
 local sceneGroup = self.view

Operation Composer

[232]

 -- completely remove mainmenu
 composer.removeScene("mainmenu")

 print("\nloadgame: create event")
end

-- Called immediately after scene has moved onscreen:
function scene:show(event)
 local sceneGroup = self.view

 print("loadgame: show event")

 loadingImage = display.newImageRect("loading.png", 480, 320)
 loadingImage.x = 240; loadingImage.y = 160
 sceneGroup:insert(loadingImage)

 local changeScene = function()
 composer.gotoScene("maingame", "flipFadeOutIn", 500)
 end
 myTimer = timer.performWithDelay(1000, changeScene, 1)

end

-- Called when scene is about to move offscreen:
function scene:hide()

 if myTimer then timer.cancel(myTimer); end

 print("loadgame: hide event")

end

-- Called prior to the removal of scene's "view" (display
group)
function scene:destroy(event)

 print("destroying loadgame's view")
end

-- "create" event is dispatched if scene's view does not exist
scene:addEventListener("create", scene)

Chapter 8

[233]

-- "show" event is dispatched whenever scene transition has
finished
scene:addEventListener("show", scene)

-- "hide" event is dispatched before next scene's transition
begins
scene:addEventListener("hide", scene)

-- "destroy" event is dispatched before view is unloaded, which
can be
scene:addEventListener("destroy", scene)

return scene

What just happened?
In the loadmainmenu.lua file, once loadingImage was added to the screen, we
created the goToMenu() function to change scenes to "mainmenu" and use the
"zoomOutInFadeRotate" transition that zooms out and rotates the loading screen image
as it fades to the background. The myTimer = timer.performWithDelay(1000,
goToMenu, 1) statement performs the function in 1,000 milliseconds (one second) and
runs it once. This is long enough to view the image and have it fade out.

Operation Composer

[234]

All display objects enter the scene by function scene:show(event). The
loadingImage object is placed in sceneGroup. To make sure we have no timers running
after the scene change, myTimer stops running with the use of timer.cancel(myTimer)
under function scene:hide().

The code for loadgame.lua is similar to loadmainmenu.lua. For this file, Composer
transitions scenes to maingame.lua, the game play file.

Creating a main menu
A main menu or title screen is one of the first impressions a player sees before playing the
game. It usually shows small snippets of images or scenery that correlate with the actual
game and also displays the title of the application.

There are buttons such as Start or Play that urge the player to go into the game if
they choose to and some secondary buttons such as Options to view settings and
other information.

Time for action – adding a main menu
We will create the frontend of our game by introducing the game title and the Play and
Options buttons that will transition throughout different scenes in the application with ease.

1. Create a new file called mainmenu.lua and import Composer and the UI modules,
the composer.newScene() function, and the variables for timer and audio:
local composer = require("composer")
local scene = Composer.newScene()

local ui = require("ui")

local btnAnim

local btnSound = audio.loadSound("btnSound.wav")

2. Create the create() event. Add in the composer.removeScene("maingame"
) and composer.removeScene("options") lines, which will remove the
"maingame" and "options" scenes. You can remove "maingame" after the
player has transitioned from the main game screen and is sent to the main menu
screen. You can remove "options" after the player has transitioned from the
options screen and is sent to the main menu screen:
-- Called when the scene's view does not exist:
function scene:create(event)
 local sceneGroup = self.view

Chapter 8

[235]

 -- completely remove maingame and options
 composer.removeScene("maingame")
 composer.removeScene("options")

 print("\nmainmenu: create event")
end

3. Add in the show() event and the backgroundImage display object;
-- Called immediately after scene has moved onscreen:
function scene:show(event)
 local sceneGroup = self.view

 print("mainmenu: show event")

 local backgroundImage = display.newImageRect(
 "mainMenuBG.png", 480, 320)
 backgroundImage.x = 240; backgroundImage.y = 160
 sceneGroup:insert(backgroundImage)

4. Introduce the playBtn display object and create a function called
onPlayTouch(event) that uses composer.gotoScene() to change
the scene to "loadgame". Use the "fade" effect to change scenes:
 local playBtn

 local onPlayTouch = function(event)
 if event.phase == "release" then

 audio.play(btnSound)
 composer.gotoScene("loadgame", "fade", 300)

 end
 end

 playBtn = ui.newButton{
 defaultSrc = "playbtn.png",
 defaultX = 100,
 defaultY = 100,
 overSrc = "playbtn-over.png",
 overX = 100,
 overY = 100,
 onEvent = onPlayTouch,
 id = "PlayButton",
 text = "",

Operation Composer

[236]

 font = "Helvetica",
 textColor = { 255, 255, 255, 255 },
 size = 16,
 emboss = false
 }

 playBtn.x = 240; playBtn.y = 440
 sceneGroup:insert(playBtn)

5. Transition the playBtn display object to y = 260 in 500 milliseconds using the
easing.inOutExpo transition. Have it initialized through btnAnim:
btnAnim = transition.to(playBtn, { time=1000, y=260,
transition=easing.inOutExpo })

6. Introduce the optBtn display object and create a function called
onOptionsTouch(event). Use composer.gotoScene() to transition
the scene to "options" using the "crossFade" effect:
local optBtn

 local onOptionsTouch = function(event)
 if event.phase == "release" then

 audio.play(btnSound)
 composer.gotoScene("options", "crossFade", 300)

 end
 end

 optBtn = ui.newButton{
 defaultSrc = "optbtn.png",
 defaultX = 60,
 defaultY = 60,
 overSrc = "optbtn-over.png",
 overX = 60,
 overY = 60,
 onEvent = onOptionsTouch,
 id = "OptionsButton",
 text = "",
 font = "Helvetica",
 textColor = { 255, 255, 255, 255 },
 size = 16,

Chapter 8

[237]

 emboss = false
 }
 optBtn.x = 430; optBtn.y = 440
 sceneGroup:insert(optBtn)

7. Transition the optBtn display object to y = 280 in 500 milliseconds using the
easing.inOutExpo transition. Have it initialized through btnAnim. Close the
scene:show(event) function with end:
 btnAnim = transition.to(optBtn, { time=1000, y=280,
 transition=easing.inOutExpo })

end

8. Create the hide() event and cancel the btnAnim transition. Also, create the
destroy() event:
-- Called when scene is about to move offscreen:
function scene:hide()

 if btnAnim then transition.cancel(btnAnim); end

 print("mainmenu: hide event")

end

-- Called prior to the removal of scene's "view" (display
group)
function scene:destroy(event)

 print("destroying mainmenu's view")
end

9. Add the event listeners for all the scene events and for return scene. Save and
close your file:

-- "create" event is dispatched if scene's view does not exist
scene:addEventListener("create", scene)

-- "show" event is dispatched whenever scene transition has
finished
scene:addEventListener("show", scene)

Operation Composer

[238]

-- "hide" event is dispatched before next scene's transition
begins
scene:addEventListener("hide", scene)

-- "destroy" event is dispatched before view is unloaded, which
can be
scene:addEventListener("destroy", scene)

return scene

What just happened?
On the main menu screen, we added an image that displayed the game title and the Play and
Options buttons. The Options button is still not functional at this time. The onPlayTouch()
function transitions the scene to "loadgame". This will change scenes to loadgame.lua.
The Play button is placed at x = 240; y = 440, (middle and offscreen). When the scene
loads, playBtn transitions to y = 260, so it pops up from the bottom of the screen in 1000
milliseconds.

The Options button does a similar thing. The optBtn object is placed to the right of the
stage and pops up at y = 280 in 500 milliseconds.

The btnAnim transition is cancelled by transition.cancel(btnAnim) through the
scene:hide() function. It is important to clean timers, transitions, and event listeners
every time you change scenes so that potential memory leaks do not occur while in the
application.

Chapter 8

[239]

Creating an options menu
An options menu allows users to change various settings in the game or include other
information that can't be displayed in the main menu. Games can vary from having many
options to only having a few. Sometimes, an options menu can be called a settings menu,
which offers the same type of customization to the player's experience.

Time for action – adding an options menu
We'll add an options menu that can be accessed through the main menu. We're going to
add a new UI button called Credits, which will direct the user to the credits screen once it is
pressed. To add an option menu perform the following steps:

1. Create a new file called options.lua and import Composer and the UI modules,
the composer.newScene() function, and the variables for timer and audio:
local composer = require("composer")
local scene = composer.newScene()

local ui = require("ui")

local btnAnim

local btnSound = audio.loadSound("btnSound.wav")

2. Create the create() event. Add in composer.removeScene("mainmenu"
), which will remove the "mainmenu" scene. This will occur after the player has
transitioned from the main menu screen and is sent to the options screen. Next,
add in composer.removeScene("creditsScreen"). This will remove
"creditsScreen" after the player has transitioned from the credits screen
back to the options screen:
-- Called when the scene's view does not exist:
function scene:create(event)
 local sceneGroup = self.view

 -- completely remove mainmenu and creditsScreen
 composer.removeScene("mainmenu")
 composer.removeScene("creditsScreen")

 print("\noptions: create event")
end

Operation Composer

[240]

3. Add in the show() event and the backgroundImage display object:
-- Called immediately after scene has moved onscreen:
function scene:show(event)
 local sceneGroup = self.view

 print("options: show event")

 local backgroundImage = display.newImageRect(
 "optionsBG.png", 480, 320)
 backgroundImage.x = 240; backgroundImage.y = 160
 sceneGroup:insert(backgroundImage)

4. Create a button for the credits screen. Transition the creditsBtn display object
to y = 260 in 1000 milliseconds using the easing.inOutExpo transition. Have it
initialized through btnAnim:
 local creditsBtn

 local onCreditsTouch = function(event)
 if event.phase == "release" then

 audio.play(btnSound)
 Composer.gotoScene("creditsScreen", "crossFade", 300)

 end
 end

 creditsBtn = ui.newButton{
 defaultSrc = "creditsbtn.png",
 defaultX = 100,
 defaultY = 100,
 overSrc = "creditsbtn-over.png",
 overX = 100,
 overY = 100,
 onEvent = onCreditsTouch,
 id = "CreditsButton",
 text = "",
 font = "Helvetica",
 textColor = { 255, 255, 255, 255 },
 size = 16,
 emboss = false
 }

Chapter 8

[241]

 creditsBtn.x = 240; creditsBtn.y = 440
 sceneGroup:insert(creditsBtn)

 btnAnim = transition.to(creditsBtn, { time=1000, y=260,
 transition=easing.inOutExpo })

5. Create the Close button that loads the main menu. Close the scene:show(event
) with end:
 local closeBtn

 local onCloseTouch = function(event)
 if event.phase == "release" then
 audio.play(tapSound)
 composer.gotoScene("mainmenu", "zoomInOutFadeRotate",
 500)
 end
 end

 closeBtn = ui.newButton{
 defaultSrc = "closebtn.png",
 defaultX = 60,
 defaultY = 60,
 overSrc = "closebtn-over.png",
 overX = 60,
 overY = 60,
 onEvent = onCloseTouch,
 id = "CloseButton",
 text = "",
 font = "Helvetica",
 textColor = { 255, 255, 255, 255 },
 size = 16,
 emboss = false
 }

 closeBtn.x = 50; closeBtn.y = 280
 sceneGroup:insert(closeBtn)
end

6. Create the hide() event and cancel the btnAnim transition. Also, create the
destroy() event. Add the event listeners for all the scene events and the return
scene statement. Save and close your file:

-- Called when scene is about to move offscreen:
function scene:hide()

Operation Composer

[242]

 if btnAnim then transition.cancel(btnAnim); end

 print("options: hide event")

end

-- Called prior to the removal of scene's "view" (display
group)
function scene:destroy(event)

 print("destroying options's view")
end

-- "create" event is dispatched if scene's view does not exist
scene:addEventListener("create", scene)

-- "show" event is dispatched whenever scene transition has
finished
scene:addEventListener("show", scene)

-- "hide" event is dispatched before next scene's transition
begins
scene:addEventListener("hide", scene)

-- "destroy" event is dispatched before view is unloaded, which
can be
scene:addEventListener("destroy", scene)

return scene

Chapter 8

[243]

What just happened?
In this scene, creditsBtn will operate in a manner similar to how our main menu was
created. The Credits button is still not functional at this time. In the onCreditsTouch()
function, the scene is transitioned to "creditsScreen" and uses "crossFade" as the
effect. From the off-screen position, creditsBtn transitions to y=260 in 1,000 milliseconds
when the scene is loaded.

A Close button is created for this scene so that the user will have a way to go back to the
previous screen. With the onCloseTouch() function, Composer changes the scene to
"mainmenu" upon the release of closeBtn. The main menu screen will display when you
press the close button. The btnAnim transition is canceled through the scene:hide()
function.

Creating a credits screen
A credits screen usually shows and lists all the people involved in the production of the
game. It can include other information in the form of thanking certain individuals and
programs used to create the final project.

Time for action – adding a credits screen
The credits screen that we'll create will be based on a touch event that transitions to
the previous screen from which it was introduced. To add a credits screen, perform the
following steps:

1. Create a new file called creditsScreen.lua and import Composer, the
composer.newScene() function, and the backgroundImage variable:
local composer = require("composer")
local scene = composer.newScene()

local backgroundImage

2. Create the create() event. Add in the composer.removeScene("options")
line, which will remove the "options" scene. This will occur after the player has
transitioned from the options screen and is sent to the credits screen:
-- Called when the scene's view does not exist:
function scene:create(event)
 local sceneGroup = self.view

 -- completely remove options
 composer.removeScene("options")

 print("\ncreditsScreen: create event")
end

Operation Composer

[244]

3. Add in the show() event and the backgroundImage display object:
-- Called immediately after scene has moved onscreen:
function scene:show(event)
 local sceneGroup = self.view

 print("creditsScreen: show event")

 backgroundImage = display.newImageRect("creditsScreen.png",
 480, 320)
 backgroundImage.x = 240; backgroundImage.y = 160
 sceneGroup:insert(backgroundImage)

4. Create a local function called changeToOptions() with an event parameter. Have
the function change the scene with Composer back to the options screen, using a
touch event on backgroundImage. Close the scene:show(event) function
with end:
 local changeToOptions = function(event)
 if event.phase == "began" then

 composer.gotoScene("options", "crossFade", 300)

 end
 end

 backgroundImage:addEventListener("touch", changeToOptions)
end

5. Create the hide() and destroy() events. Add the event listeners for all the scene
events and the return scene statement. Save and close your file:

-- Called when scene is about to move offscreen:
function scene:hide()

 print("creditsScreen: hide event")

end

-- Called prior to the removal of scene's "view" (display
group)
function scene:destroy(event)

Chapter 8

[245]

 print("destroying creditsScreen's view")
end

-- "create" event is dispatched if scene's view does not exist
scene:addEventListener("create", scene)

-- "show" event is dispatched whenever scene transition has
finished
scene:addEventListener("show", scene)

-- "hide" event is dispatched before next scene's transition
begins
scene:addEventListener("hide", scene)

-- "destroy" event is dispatched before view is unloaded, which
can be
scene:addEventListener("destroy", scene)

return scene

Operation Composer

[246]

What just happened?
The credits screen works with an event listener. The changeToOptions(event) function
will tell Composer to change the scene to "options" using composer.gotoScene(
"options", "crossFade", 500). At the end of the function, backgroundImage
will activate the event listener when the screen is touched. The backgroundImage object
is inserted into the sceneGroup under the scene:show(event) function. Egg Drop
is now fully operable using Composer. Run the game in the simulator. You'll be able to
transition to all the scenes that we created in this chapter, as well as play the game.

Have a go hero – adding more levels
Now that Egg Drop is completed and has a working menu system, challenge yourself by
creating more levels. Minor alterations will have to be added to add some placement for
additional levels. Remember to apply Composer when changing scenes.

Try creating the following:

 � Level select screen

 � Level number buttons to add additional levels

When creating new levels, refer to the format shown in maingame.lua. New levels can be
altered by changing the interval of how fast the egg falls from the sky, or maybe by adding
other game assets that fall but have to be dodged in order to avoid getting a penalty. There
are so many possibilities of adding your own spin with this game framework. Give it a try!

Pop quiz – game transitions and scenes
Q1. What function do you call to change scenes with Composer?

1. composer()

2. composer.gotoScene()

3. composer(changeScene)

4. None of the above

Q2. What function converts any argument into a number or nil?

1. tonumber()

2. print()

3. tostring()

4. nil

Chapter 8

[247]

Q3. How do you pause a timer?

1. timer.cancel()

2. physics.pause()

3. timer.pause(timerID)

4. None of the above

Q4. How do you resume a timer?

1. resume()

2. timer.resume(timerID)

3. timer.performWithDelay()

4. None of the above

Summary
Congratulations! We have a game that is complete and can go into the App Store or Google
Play Store. Of course, we will not use this exact game, but you have learned enough to create
one. It's a great accomplishment to have completed the game framework, especially in the
short amount of time it took to create something so simple.

Here are some skills you learned in this chapter:

 � Saving high scores using saveValue() and loadValue()

 � Understanding how to pause physics/timers

 � Displaying the pause menu

 � Change scenes with the Composer API

 � Creating transitions between scenes using loading screens

 � Using a main menu to introduce the game title and submenus

We have achieved an important milestone in this chapter. Everything that we have gone over
in the previous chapters was applied to this sample game. The great thing about it is that it
took us less than a day's worth of development to code. The art assets, on the other hand,
are a different story.

We still have a few more things to learn with regard to what Corona SDK is capable of.
In the next chapter, we'll go into more detail on how to optimize our game assets for
high-resolution devices. We will also see how to post messages on Facebook and Twitter
through your application.

[249]

Handling Multiple Devices and
Networking Your Apps

Allowing your application to integrate with social networks is a great way to
promote your finished product. Many games enable the player to upload their
high scores and share them among other users who are playing the same title.
Some provide challenges that need to be completed successfully in order to
unlock achievements. Social networks enhance the gaming experience and
provide great exposure for the developer.

We'll also go into more detail about build configuration since we're getting more accustomed
to programming. Understanding the importance of configuring your device build is vital for
cross-platform development. This is a capability that Corona SDK can handle with ease across
iOS and Android devices.

In this chapter, we will learn the following topics:

 � Revisiting configuration settings

 � Posting messages to Twitter

 � Posting messages to Facebook

Let's add in these finishing touches!

9

Handling Multiple Devices and Networking Your Apps

[250]

Return to configuration
Build settings and runtime configuration were briefly discussed in Chapter 2, Lua Crash
Course and the Corona Framework. Let's get into more specific details on how to handle
a variety of devices that work on the iOS and Android platforms.

Build configuration
There are a variety of ways to handle device orientation to match the settings your game
design requires.

Orientation support (iOS)
There are scenarios in which you want the native user interface (UI) elements to autorotate
or to be oriented in a certain way, but you also need to maintain a fixed coordinate system
within Corona.

To lock Corona's orientation while allowing the native iPhone UI elements to rotate, add a
content parameter in build.settings as follows:

settings =
{
 orientation =
 {
 default = "portrait",
 content = "portrait",
 supported =
 {
 "landscapeLeft", "landscapeRight", "portrait",
 "portraitUpsideDown",
 },
 },
}

To lock Corona's internal coordinate system to portrait orientation while locking iPhone UI
elements to the landscape orientation, you could do the following in build.settings:

settings =
{
 orientation =
 {
 default ="landscapeRight",
 content = "portrait",
 supported =
 {

Chapter 9

[251]

 "landscapeRight", "landscapeLeft",
 },
 },
}

Orientation support (Android)
The Android platform supports portrait and landscape orientations. The orientation
portraitUpsideDown may not be available on some Android devices. Also, autorotation
is not currently supported on Android. The default orientation doesn't affect Android
devices. The orientation is initialized to the actual orientation of the device (unless only
one orientation is specified).

Here is an example of an Android-specific build.settings file (you might also combine
Android and iPhone settings in the same file):

settings =
{
 android =
 {
 versionCode = "2",
 versionName = "2.0"

 usesPermissions =
 {
 "android.permission.INTERNET",
 },
 },

 orientation =
 {
 default = "portrait"
 },
}

Version code and version name (Android)
The versionCode and versionName fields can be set within an optional "android" table
in build.settings.

The versionCode field is defaulted to "1", while the versionName field is defaulted at
"1.0" if it's not set in the build.settings file. When an updated version of an application
is submitted to the Google Play Store, the versionCode and versionName fields also
have to be updated. All version numbers for versionCode have to be whole numbers. The
versionCode field cannot contain any decimal numbers, while the versionName field can
contain decimals.

Handling Multiple Devices and Networking Your Apps

[252]

For more information, see android:versionCode and android:versionName at http://
developer.android.com/guide/topics/manifest/manifest-element.
html#vcode.

The versionCode attribute is an internal number used to
distinguish application releases for the Google Play Store. It is not
the same as the version provided by the Corona build dialog. The
versionName attribute is the version number shown to users.

Application permissions (Android)
An optional "usesPermissions" table can be used to specify permissions, using string
values as given in the Android manifest reference: http://developer.android.com/
reference/android/Manifest.permission.html.

Developers should use permissions that match their application requirements. For example,
if network access is required, the Internet permission needs to be set.

For more useful information on the android.permission keys
applied in Corona SDK, refer to http://docs.coronalabs.
com/guide/distribution/buildSettings/index.
html#permissions.

Content scaling on an easier level
Content scaling throughout multiple devices can be frustrating at times if you've never
addressed them before in your config.lua file. There are many individual screen sizes.
The size of iPhone 5 is 640 x 1136 px, and that of iPad 2 is 768 x 1024 px. The size of Droid
is 480 x 854 px, and that of the Samsung Galaxy tablet is 600 x 1024 px, just to name a few.
Memory can run out easily due to image size boundaries.

When setting up your config.lua, like we've done in the previous chapters, we had our
content set to width = 320, height = 480, and scale = "letterbox". If building for
Android devices, "zoomStretch" works best to accommodate varying screen sizes on the
platform. This creates a common build for iOS and Android and presents display images that
are large enough to fit on a variety of screen sizes.

If you want to scale for larger screen sizes and then scale down, use the screen size of the
iPad 2. Your config.lua would look similar to the following code:

application =
{
 content =

http://developer.android.com/guide/topics/manifest/manifest-element.html#vcode
http://developer.android.com/guide/topics/manifest/manifest-element.html#vcode
http://developer.android.com/guide/topics/manifest/manifest-element.html#vcode
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://docs.coronalabs.com/guide/distribution/buildSettings/index.html#permissions
http://docs.coronalabs.com/guide/distribution/buildSettings/index.html#permissions
http://docs.coronalabs.com/guide/distribution/buildSettings/index.html#permissions

Chapter 9

[253]

 {
 width = 768,
 height = 1024,
 scale = "letterbox"
 }
}

While the preceding example is another solution to scale content, it's important to
remember the limitations in texture memory involved with larger (high resolution) images.
While devices such as the iPad with Retina display, iPhone 5s, and the Samsung Galaxy Tab
4 tablet will handle this just fine, the iPhone 4s and older devices will have far less texture
memory available to handle large graphics.

A way to resolve this potential problem is to use dynamic image resolution to substitute
assets that are better suited for low-end devices and high-end devices. We will discuss this
topic in more detail later in this section.

The best of both worlds
As you may have noticed, some of the background images we used in our sample apps are
scaled at 380 x 570. This happens to be the size that fills the entire screen on all common
devices for both iOS and Android. Better yet, it is a middle ground to compensate for
higher- and lower-resolution images on any device.

In order for your content to be displayed as evenly as possible, the following must be
set up accordingly:

Settings for config.lua are as follows:

application =
{
 content =
 {
 width = 320,
 height = 480,
 scale = "letterbox"
 }
}

In any file that contains any of your display images, a typical background would be displayed
as follows:

local backgroundImage = display.newImage("bg.png", true)
backgroundImage.x = display.contentCenterX
backgroundImage.y = display.contentCenterY

Handling Multiple Devices and Networking Your Apps

[254]

Any content with a size of 320 x 480 is considered the focus area. Anything outside of the
area is cropped, but will fill the screen with content on any device.

The deeper meaning of dynamic image selection
We know we can swap base images used for smaller devices (iPhone 4s) and larger devices
(iPhone 6 and Kindle Fire HD). This occurs when trying to scale multiple devices in the
same build.

A file-naming scheme is available for use to handle such devices for iOS and Android.
Knowing how to handle the scaling of assets affected for the device proposed is half the
battle. We'll have to define what resolution scale needs to be addressed for Corona to
access the assets they're directed toward.

Using the line display.newImageRect([parentGroup,] filename [,
baseDirectory] w, h) will call out your dynamic resolution images.

Typically, we've used ["@2x"] = 2 to call out the higher resolution image when available in
our project for iOS devices:

application =
{
 content =
 {
 width = 320,
 height = 480,
 scale = "letterbox",

 imageSuffix =
 {
 ["@2x"] = 2,
 },
 },
}

The preceding example will only work for iPhone 4s and iPad 2 since it surpasses the base
size of 320 x 480 on both devices. If we wanted to make it accessible to the Droid 2, the scale
threshold would be 1.5. For an Android tablet to work, such as the Samsung Galaxy tablet,
the scale threshold is 1.875. So how do we figure out these numbers? Simple. Take the
width of the higher-end device and divide it by 320 (the base size). For example, the
Droid 2 dimensions are 480 x 854. Divide 480 by 320 and it equals 1.5.

Chapter 9

[255]

The Samsung Galaxy Tab 4 tablet's dimensions are 800 x 1280. Divide 800 by 320 and
it equals 2.5.

If trying to manage both iOS and Android devices in the same project, you can change your
imageSuffix in config.lua, as shown in the following code:

 imageSuffix =
 {
 ["@2x"] = 1.5, -- this will handle most Android devices such as
 the Droid 2, Nexus, Galaxy Tablet, etc...
 }

Alternatively, you could use the following code:

 imageSuffix =
 {
 ["@2x"] = 2.5, -- this will handle the Galaxy Tab 4 and similar
 sized devices
 }

Using either of the preceding examples will trigger the proposed Android devices to display
the higher-resolution image.

The imageSuffix string doesn't necessarily have to be "@2x"; it can be anything like "@2",
"_lrg", or even "-2x". As long as your higher-resolution image has the intended suffix
after the primary image name, it'll work just fine.

High-resolution sprite sheets
High-resolution sprite sheets are not handled the same way as dynamic image selections.
While you can continue using the same naming convention to differentiate your
high-resolution images from your basic images, the image will not be able to use
display.newImageRect() when referring to sprite sheets.

If your current content scale is width = 320, height = 480, and scale =
"letterbox" in your config.lua file, then the scale output for the following
devices will demonstrate the following:

 � iPhone = 1

 � iPhone 4s = 0.5

 � Droid 2 = 0.666666668653488

 � iPad 2 = 0.46875

Handling Multiple Devices and Networking Your Apps

[256]

Applying a basic sprite sheet that matches the scale for an iPhone will display sharp and
clean images. When the same sprite sheet is applied to the iPhone 4, the display will match
the content scale of the device, but the sprite sheet will look slightly pixilated and blurry
around the edges. Using display.contentScaleX and calling some methods will solve
that problem for you. Notice that displayScale < 1 will access the high-resolution sprite
sheet based on the preceding device scale:

 local sheetData
 local myObject

 local displayScale = display.contentScaleX –- scales sprite
 sheets down
 if displayScale < 1 then –- pertains to all high-res devices

 sheetData = { width=256, height=256, numFrames=4,
 sheetContentWidth=512, sheetContentHeight=512 }
 else
 sheetData = { width=128, height=128, numFrames=4,
 sheetContentWidth=256, sheetContentHeight=256 }
 end

 local sheet = graphics.newImageSheet("charSprite.png",
 sheetData)

 local sequenceData =
 {
 { name="move", start=1, count=4, time=400 }
 }

 myObject = = display.newSprite(sheet, sequenceData)

 if displayScale < 1 then --scale the high-res sprite sheet if
 you're on a high-res device.
 myObject.xScale = .5; myObject.yScale = .5
 end

 myObject.x = display.contentWidth / 2
 myObject.y = display.contentHeight / 2

 myObject.x = 150; myObject.y = 195

 myObject: setSequence("move")
 myObject:play()

Chapter 9

[257]

Networking your apps
When you have completed developing your main game framework, it's good to think about
how to network it if you decide to do this.

At some point in our lives, all of us have used some kind of networking tool, such as Twitter
or Facebook. You probably use these applications currently, but the point is that you read
updates from other users about a new game that was launched, or someone is spreading the
word to download a game and compete with them. You can be that developer and develop
the game they're talking about!

Incorporating networking mechanisms in your game does not have to be a hassle. It only
takes several lines of code to get it working.

Posting to Twitter
Tweet, tweet, tweet… Twitter is a networking tool that connects you to the latest
information that appeals to your interests. It is also a great tool to share information with
others about your business and, of course, your game. Reach out to the game development
audience by promoting your application.

The user who will be sharing a post to Twitter will need to create an account at
http://twitter.com/ and will also need to make sure they're logged in.

Time for action – adding Twitter to your apps
We're going to implement Twitter in our apps by accessing a web service through UI buttons.

1. In the Chapter 9 folder, copy the Twitter Web Pop-Up project folder to your
desktop. All the configuration, libraries, and assets needed are already included.
You can download the project files that accompany this book from the Packt
Publishing website.

2. Create a new main.lua file and save it to the project folder.

3. Set the following variables at the beginning of the code:
display.setStatusBar(display.HiddenStatusBar)

local ui = require("ui")

local openBtn
local closeBtn
local score = 100

http://twitter.com/

Handling Multiple Devices and Networking Your Apps

[258]

4. Create a local function called onOpenTouch() with an event parameter. Add an if
statement so that the event receives a "release" action:
local onOpenTouch = function(event)
 if event.phase == "release" then

5. Using the local variable called message, add in the following string statement and
concatenate score:
local message = "Posting to Twitter from Corona SDK and got a
final score of " ..score.. "."

6. Add in local myString and apply string.gsub() for message to replace space
instances:
local myString = string.gsub(message, "()", "%%20")

7. Introduce the native.showWebPopup() function that links to the Twitter account.
Concatenate myString to include the preloaded message. Close the function:
 native.showWebPopup(0, 0, 320, 300,
 "http://twitter.com/intent/tweet?text="..myString)

 end
end

8. Set up the openBtn UI function:
 openBtn = ui.newButton{
 defaultSrc = "openbtn.png",
 defaultX = 90,
 defaultY = 90,
 overSrc = "openbtn-over.png",
 overX = 90,
 overY = 90,
 onEvent = onOpenTouch,
}

openBtn.x = 110; openBtn.y = 350

9. Create a local function called onCloseTouch() with an event parameter.
Add an if statement with event.phase == "release" to activate native.
cancelWebPopup():
local onCloseTouch = function(event)
 if event.phase == "release" then

 native.cancelWebPopup()

 end
end

Chapter 9

[259]

10. Set up the closeBtn UI function:
 closeBtn = ui.newButton{
 defaultSrc = "closebtn.png",
 defaultX = 90,
 defaultY = 90,
 overSrc = "closebtn-over.png",
 overX = 90,
 overY = 90,
 onEvent = onCloseTouch,
}

closeBtn.x = 210; closeBtn.y = 350

11. Save the file and run the project in the simulator. Make sure you're connected to the
Internet to see the results.

If you're currently not logged in to your Twitter account, you'll be asked
to log in before you see the results of the tweet from our code.

Handling Multiple Devices and Networking Your Apps

[260]

What just happened?
Near the top of the code, we set a variable local score = 100. This will be used in
our Twitter message.

In the onOpenTouch(event) function, a web popup will load on the release of openBtn.
The text that will be posted is displayed in a string format under the variable, local
message. You will notice that we concatenate score into the string so that it displays
the value in the message post.

local myString and string.gsub() are used to replace all the instances indicated in
a pattern inside the string. In this case, it takes the string inside a message and searches
for every empty space between each word and replaces it with %20. %20 encodes URL
parameters to indicate spaces. The extra % acts as an escape character.

The native.showWebPopup() function displays at dimensions 320 x 300, which is about
half the screen size on a device. The URL to display the Twitter message dialog is added and
concatenates myString.

When the web pop up no longer needs to be used and needs to be closed,
onCloseTouch(event) is called by closeBtn. This will take the event parameter
"release" and call native.cancelWebPopup(). This particular function will dismiss
the current web popup.

Posting to Facebook
Another social networking tool that can be used to share information about your game is
Facebook. You can easily customize a post to link information about your game or share
messages about high scores and to encourage other users to download it.

In order to post messages to Facebook, you need to be logged in to your Facebook account
or create one at https://www.facebook.com/. You will have to obtain an App ID from
the Facebook Developer website at https://developers.facebook.com/. The App ID
is a unique identifier for your site that determines what the right level of security is in place
between the user and the app page/website.

Once you have created an App ID, you will also need to edit the App information and choose
how you want it to integrate with Facebook. You are given several choices, such as Website,
Native iOS App, and Native Android App, just to name a few. The website integration must be
selected and filled in with a valid URL in order for Facebook to redirect to the specified URL
for posts that deal with web popups.

https://www.facebook.com/
https://developers.facebook.com/

Chapter 9

[261]

Time for action – adding Facebook to your apps
Similar to our Twitter example, we'll be incorporating Facebook posts with a web popup
as well:

1. In the Chapter 9 folder, copy the Facebook Web Pop-Up project folder to your
desktop. All the configuration, libraries, and assets needed are already included.
You can download the project files that accompany this book from the Packt
Publishing website.

2. Create a new main.lua file and save it to the project folder.

3. Set the following variables at the beginning of the code:
display.setStatusBar(display.HiddenStatusBar)

local ui = require("ui")

local openBtn
local closeBtn
local score = 100

4. Create a local function called onOpenTouch() with an event parameter. Add an if
statement when the event receives a "release" action:
local onOpenTouch = function(event)
 if event.phase == "release" then

5. Add the following local variables that include the strings that we'll be implementing
in the Facebook post:
 local appId = "0123456789" -- Your personal FB App ID from
 the facebook developer's website

 local message1 = "Your App Name Here"
 local message2 = "Posting to Facebook from Corona SDK and got
 a final score of " ..score.. "."
 local message3 = "Download the game and play!"

 local myString1 = string.gsub(message1, "()", "%%20")
 local myString2 = string.gsub(message2, "()", "%%20")
 local myString3 = string.gsub(message3, "()", "%%20")

Handling Multiple Devices and Networking Your Apps

[262]

6. Introduce the native web popup function that links to the Facebook account. Include
parameters for the Facebook dialog box that redirects the URL of your preferred
website, the display with a touch mode that connects to your app URL, and an
image URL that presents your app icon or company logo. Concatenate all variables
with string methods to output all messages. Close the function. Add in the openBtn
UI function. You will need to replace all of the following URL information with
your own:
native.showWebPopup(0, 0, 320, 300,
"http://www.facebook.com/dialog/feed?app_id=" .. appId ..
"&redirect_uri=http://www.yourwebsite.com&display=touch&link=ht
tp://www.yourgamelink.com&picture=http://www.yourwebsite.com/im
age.png&name=" ..myString1.. "&caption=" ..myString2..
"&description=".. myString3)

 end
end

 openBtn = ui.newButton{
 defaultSrc = "openbtn.png",
 defaultX = 90,
 defaultY = 90,
 overSrc = "openbtn-over.png",
 overX = 90,
 overY = 90,
 onEvent = onOpenTouch,
}
openBtn.x = 110; openBtn.y = 350

More information pertaining to the Facebook Dialog can be found
on the Facebook Developers website at http://developers.
facebook.com/docs/reference/dialogs/.

7. Create a local function called onCloseTouch() with an event parameter.
Add an if statement with event.phase == "release" to activate native.
cancelWebPopup(). Set up the closeBtn UI function:
local onCloseTouch = function(event)
 if event.phase == "release" then

 native.cancelWebPopup()

 end
end

http://developers.facebook.com/docs/reference/dialogs/
http://developers.facebook.com/docs/reference/dialogs/

Chapter 9

[263]

 closeBtn = ui.newButton{
 defaultSrc = "closebtn.png",
 defaultX = 90,
 defaultY = 90,
 overSrc = "closebtn-over.png",
 overX = 90,
 overY = 90,
 onEvent = onCloseTouch,
}

closeBtn.x = 210; closeBtn.y = 350

8. Save the file and run the project in the simulator. Make sure you're connected to the
Internet and your Facebook account to see the results.

Handling Multiple Devices and Networking Your Apps

[264]

What just happened?
Within the onOpenTouch(event) function, several variables are called when openBtn is
pressed and released. Notice that local appId indicates a string of numbers that you can
obtain after creating an app on the Facebook Developers website.

message1, message2, and message3 are the strings that display the message post.
myString1, myString2, and myString3 help replace the spaces indicated in message1,
message2, and message3.

The native.showWebPopup() function displays with a dimension of 320 x 300 and
presents the dialog URL to Facebook. The following parameters display accordingly:

 � app_id: This is your unique ID created on the Facebook Developer website.
For example, "1234567".

 � redirect_uri: The URL to redirect to after the user clicks on a button on the
dialog. This is required in the parameters.

 � display: This displays the mode to render the dialog.

 � touch: This is used on smart phone devices such as iPhone and Android. This fits
the dialog screen within small dimensions.

 � link: This is the link attached to the post.

 � picture: This is the URL of a picture to the post.

 � name: This is the name of the link attachment.

 � caption: This is the caption of the link (appears beneath the link name).

 � description: This is the description of the link (appears beneath the link caption).

When the web popup is no longer required and needs to be closed,
onCloseTouch(event) is called by closeBtn. This will take the event parameter
"release" and call native.cancelWebPopup(). This particular function will dismiss
the current web popup.

Facebook Connect
This library supplies a number of functions that provide access to http://www.facebook.
com through the official Facebook Connect interface.

http://www.facebook.com
http://www.facebook.com

Chapter 9

[265]

Time for action – posting scores using Facebook Connect
Facebook Connect is another way to post on the wall feed by using the native Facebook UI
features. We'll be creating a different way to post messages and scores to the newsfeed. In
order to see how Facebook Connect operates, you need to load the build to a device to view
the results. It will not run in the simulator.

1. In the Chapter 9 folder, copy the Facebook Connect project folder to your
desktop. All the configuration, libraries, and assets needed are already included.
You can download the project files that accompany this book from the Packt
Publishing website.

2. Create a new main.lua file and save it to the project folder.

3. Set up the following variables at the beginning of the code:
display.setStatusBar(display.HiddenStatusBar)

local ui = require("ui")
local facebook = require "facebook"

local fbBtn
local score = 100

4. Create a local function called onFBTouch() with an event parameter. Add an if
statement that contains event.phase == release. Also, include your Facebook
app ID in a string format:
local onFBTouch = function(event)
 if event.phase == "release" then

 local fbAppID = "0123456789" -- Your FB App ID from
 facebook developer's panel

5. Create another local function within onFBTouch(event) called
facebookListener() with an event parameter as well. Include an
if statement that refers to "session" == event.type:
 local facebookListener = function(event)
 if ("session" == event.type) then

6. Add in another if statement where "login" equals to event.phase. Include a
local variable called theMessage to display the message you want to share with
other Facebook users:
 if ("login" == event.phase) then

 local theMessage = "Got a score of " .. score .. " on
 Your App Name Here!"

Handling Multiple Devices and Networking Your Apps

[266]

7. Add the facebook.request() function that will post the following messages
to the user's Facebook wall. Close any remaining if statements with end in the
facebookListener(event) function:
 facebook.request("me/feed", "POST", {
 message=theMessage,
 name="Your App Name Here",
 caption="Download and compete with me!",
 link="http://itunes.apple.com/us/app/your-app-name/
id382456881?mt=8",
 picture="http://www.yoursite.com/yourimage.png"})
 end
 end
 end

The link parameter demonstrates a URL for an iOS application. You can direct
the URL to an Android application that will look something like https://
play.google.com/store/apps/details?id=com.yourcompany.
yourappname or a general website URL of your choosing.

8. Call the facebook.login() function that includes your App ID, listener,
and permissions to post on a user's Facebook wall. Close the remainder of the
onFBTouch(event) function:
 facebook.login(fbAppID, facebookListener, {"publish_actions"})

 end
end

9. Enable the fbBtn UI function and save your file:
fbBtn = ui.newButton{
 defaultSrc = "facebookbtn.png",
 defaultX = 100,
 defaultY = 100,
 overSrc = "facebookbtn-over.png",
 overX = 100,
 overY = 100,
 onEvent = onFBTouch,
}

fbBtn.x = 160; fbBtn.y = 160

Chapter 9

[267]

10. Create a new device build for either iOS or Android. Load the build to your device
and run the application. You will be asked to log in to your Facebook account before
you can see the results from the application.

What just happened?
One of the most important things that need to be done is require "facebook" in order
to have the Facebook API to work. We also created a local variable called score with the
value of 100.

The onFBTouch(event) function will initiate the event parameter on "release" of
fbBtn. Within the function, fbAppID is included with characters in a string format.
This will be a unique set of numbers that you must obtain from the Facebook Developers
website. The App ID will be created for you when you make an App page on the site.

Another function, facebookListener(event), is created, and it will initiate all
fbConnect events. The if statement that contains ("login" == event.phase)
will request to post a message to your feed through "me/feed, "POST". The feed
contains the following:

 � message=theMessage: This refers to the string that belongs to the variable.
It also concatenates scores, so it displays the value as well.

 � name: This is a message that includes your app name or subject matter.

 � caption: This is a short persuasive message to catch other users' attention
about playing the game.

 � link: This provides the URL to download the game from either the App Store or
Google Play Store.

 � picture: This is a URL that contains your image that displays your app icon or a
visual representation of the game.

Handling Multiple Devices and Networking Your Apps

[268]

After the parameters are set, facebook.login() will refer to fbAppID and
facebookListener() to see if a valid application ID is being used to post on
Facebook. On success, the post is published through "publish_actions".

Have a go hero – create a dialog box
See if you can figure out how to display a dialog box using Facebook Connect and using the
same setup as shown in the preceding example. The following line will display this as:

facebook.showDialog({action="stream.publish"})

Now, see where in the code facebook.showDialog() can be accessed. This is another
way of posting messages to Facebook.

Pop quiz – handling social networks
Q1. What is the specific API that scales down high-resolution sprite sheets?

1. object.xScale

2. display.contentScaleX

3. object.xReference

4. None of the above

Q2. What are the publishing permissions called that allow posting on a user's wall
on Facebook?

1. "publish_stream"

2. "publish_actions"

3. "post"

4. "post_listener"

Q3. Which parameter(s) is required for facebook.login()?

1. appId

2. listener

3. permissions

4. All of the above

Chapter 9

[269]

Summary
We have covered several more areas on enhancing configuration settings and integrating
three of the most popular social networks in today's media in our apps.

We also took an in-depth look into the following:

 � Build settings

 � Dynamic content scaling and dynamic image resolution

 � High-resolution sprite sheets

 � Posting message feeds to Twitter and Facebook

In the next chapter, we will go over the process on how to submit our games to the App
Store and Google Play Store. You don't want to miss this for the world!

[271]

Optimizing, Testing,
and Shipping Your Games

Developing a game to the point of completion is a great accomplishment. It's
one step closer to sharing it with the rest of the world, so that other people
can play your new game. The benefit of creating your game with Corona SDK
is that you have the option to build for iOS and/or Android. You want to ensure
that your application is ready for submission so that it can be distributed in the
mobile platform you're developing in. We'll go over the process of what it takes
to prepare your game for its release.

The application interface used here is frequently updated; however, you will
be able to perform all the steps irrespective of the interface you're using.

In this chapter, we will cover the following topics:

 � Improve the performance of your application

 � Set up a distribution provisioning profile for the App Store

 � Manage application information in iTunes Connect

 � Learn how to submit an application to the Application Loader for the App Store

 � Sign applications for Android

 � Learn how to submit an application to the Google Play Store

10

Optimizing, Testing, and Shipping Your Games

[272]

Understanding memory efficiency
As you develop your application, you should always consider how your design choices
affect the performance of your application. The device memory still has its constraints even
though there are improvements in the computing power and memory. Performance and
optimization within the device will not only achieve faster response times, but also help
minimize memory usage and maximize battery life. A link to an example on how to check
memory usage can be found at https://gist.github.com/JesterXL/5615023.

Memory is an important resource on mobile devices. When too much memory is being
consumed, devices may be forced to quit your application when you least expect it.
Here are some things to be aware of while developing:

 � Eliminate memory leaks: Allowing leaks to exist means having extra used memory
in your application that takes up valuable space. Even though Lua does automatic
memory management, memory leaks can still occur in your code. For example,
when you introduce global variables into your application, it is your job to tell Lua
when they are not needed anymore so that memory can be freed. This is done
through using nil in your code (myVariable = nil).

 � Display images should be small in file size as much as possible: You may want to
have many display images in your scene, but they may take up too much texture
memory. Sprite sheets can take a toll on the memory in your apps. They should be
created as small as conveniently possible and have an appropriate number of frames
that demonstrate the animation clearly. For all items that you have displayed, plan
out which elements are constantly in your background and foreground. If there is
a way to combine several images together so that they don't move, do so. It'll save
some memory when adding multiple display images.

 � Do not load all your resources at once: Avoid loading resource files until they
are actually needed. This will help save memory and keep your application from
crashing while trying to load too many things at once.

 � Remove objects from the display hierarchy: When a display object is created, it is
implicitly added to a display hierarchy. When you no longer need a display object,
you should remove it from the display hierarchy, especially when the objects contain
images. This can be done using display.remove(myImage); myImage =
nil or myImage:removeSelf().

Here is an example:

local box = display.newRect(0, 50, 100, 100)
box:setFillColor(1, 1, 1)
box.alpha = 1

local function removeBox()
 if box.alpha == 1 then

https://gist.github.com/JesterXL/5615023

Chapter 10

[273]

 print("box removed")
 display.remove(box)
 box = nil
 end
end
timer.performWithDelay(1000, removeBox, 1) -- Runs timer to
1000 milliseconds before calling the block within removeBox()

 � Sound files should be made as small as possible: Use a free program, such as
Audacity at , or your preferred audio software to compress music or sound effects
and build for the device. It is best to compare untouched audio with compressed
audio to hear the difference in quality. This will help you determine a good median
between sound quality and file size.

Graphics
Display images have a way of taking up a lot of texture memory if you're not paying attention
to the size and number of images being used all at once.

Group objects
If a property of several objects is set to the same value, it's preferable to add the objects to
a group and then modify the property of the group. It'll make it much easier for you to code,
and it optimizes your animation.

Turning off animations when they're not being used
It's easy to forget to stop animations from running in the background when they're not
needed or when you've made them invisible.

When you include a listener such as "enterFrame" and the objects registered under the
listener have been set to .isVisible = false, it'll continue to run in the background
even though it is not seen on screen. Make sure that listeners are removed when they are
not needed.

Optimizing image sizes
When you have large file sizes, especially full-screen images, the responsiveness of your
application will slow down because of the time it takes to load, and plus, it uses up a lot of
memory. When using large images, try compressing the file size as much as you can with an
image-editing tool, such as Photoshop or ImageOptim (https://imageoptim.com). It'll
help reduce the file size and save you the pain of application lag. Compressing large image
sizes will benefit you in the long run. If images are backgrounds, consider switching to
tiled images.

https://imageoptim.com

Optimizing, Testing, and Shipping Your Games

[274]

Distributing iOS applications
Once your game is finally debugged and completed, what's next? Assuming you're already
registered in the iOS Developer Program, there are some guidelines that have to be followed
before an application can be submitted to the App Store.

Prepping your app icons
There are various image sizes and naming conventions required for your app icon, depending
on which iOS devices your application is developed for. You can find the latest information
under the App Icon subsection of the Icon and Image Design section of the iOS Human
Interface Guidelines, on the Apple Developer website at https://developer.apple.
com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/
AppIcons.html#//apple_ref/doc/uid/TP40006556-CH19-SW1.

The following are the app icon requirements, which also need to be in a noninterlaced
.png format:

 � iTunesArtwork@2x: This is a 1024 x 1024 px image. The .png extension needs to
be removed for this image.

 � Icon-60@2x.png: This is a 120 x 120 px image, which is used for Retina iPhone.

 � Icon-60@3x.png: This is a 180 x 180 px image, which is used for iPhone 6 Plus.

 � Icon-76.png: This is a 76 x 76 px image, which is used for iPad.

 � Icon-76@2x.png: This is a 152 x 152 px image, which is used for Retina iPad.

 � Icon-Small-40.png: This is a 40 x 40 px image, which is used for iPad 2 and iPad
mini search.

 � Icon-Small-40@2.png: This is an 80 x 80 px image, which is used for Retina
iPhone/iPad search.

 � Icon-Small-40@3x.png: This is a 120 x 120 px image, which is used for iPhone 6
Plus search.

 � Icon-Small.png: This is a 29 x 29 px image, which is used for iPad 2 and iPad
mini settings.

 � Icon-Small@2x.png: This is a 58 x 58 px image, which is used for Retina
iPhone/iPad settings.

 � Icon-Small@3x.png: This is an 87 x 87 px image, which is used for iPhone 6
Plus settings.

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/AppIcons.html#//apple_ref/doc/uid/TP40006556-CH19-SW1
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/AppIcons.html#//apple_ref/doc/uid/TP40006556-CH19-SW1
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/AppIcons.html#//apple_ref/doc/uid/TP40006556-CH19-SW1

Chapter 10

[275]

In your build.settings file, you will need to include the icon references for all the
devices you are building for in your application. Here is an example of how to
set up your file if you are creating universal builds:

settings =
{
 orientation =
 {
 default = "landscapeRight",
 },

 iphone =
 {
 plist =
 {
 CFBundleIconFiles = {
 "Icon-60@2x.png",
 "Icon-60@3x.png",
 "Icon-76.png",
 "Icon-76@2x.png",
 "Icon-Small-40.png",
 "Icon-Small-40@2x.png",
 "Icon-Small-40@3x.png",
 "Icon-Small.png",
 "Icon-Small@2x.png",
 "Icon-Small@3x.png",
 },

 },
 },

}

You do not need to include the iTunesArtwork@2x image in the plist, but make sure
that it's inserted in your base project folder of the app.

Optimizing, Testing, and Shipping Your Games

[276]

Time for action – setting up your distribution certificate and
provisioning profile for the App Store

We have focused on creating development certificates and provisioning profiles to test and
debug our apps on a device. Now, we have to create a distribution version of them in order
to submit an iOS application. Be aware that Apple can change the design of their website at
any time. So, don't get frustrated if the steps and screenshots do not match up:

1. Log in to your Apple Developer account and go to Certificates, Identifiers, &
Profiles. Click on App IDs. Create a new App ID by selecting the + icon in the upper-
right corner and create a description that pertains to your application so that you
can identify it. If you have an existing App ID that you have been using during
development, you can disregard this step.

2. Click on Distribution under Provisioning Profile. Select the + button and select
App Store under the Distribution section. Press Continue.

3. Select the App ID you want to associate with the file and click on Continue.
Next, select the certificate that will be associated with your provisioning profile
and click on Continue.

Chapter 10

[277]

4. Provide a profile name for your provisioning profile and select the Generate button.

5. On the next screen, click on the Download button and double-click on the file to
install it on your machine.

What just happened?
The App ID you use is imperative to identify your app that will be submitted. It is best to have
a unique reverse-domain style string. Make sure that you create explicit App IDs for Corona
apps. Do not use wildcard App IDs.

In order to distribute for the App Store, you need to create an App Store Distribution
Provisioning Profile and a Production Certificate. Any development profile will not be
accepted. The process is similar to making a development provisioning profile and
development certificate.

You can find more information on distribution provisioning profiles on the Apple Developer
site at https://developer.apple.com/ios/manage/distribution/index.action
(you will be asked to log in to your Apple Developer account if you haven't done so already)
and the Corona Labs site at http://docs.coronalabs.com/guide/distribution/
iOSBuild/index.html.

iTunes Connect
iTunes Connect is a suite of web-based tools that allows you to submit and manage your
applications for distribution on the App Store. In iTunes Connect, you will be able to check
the status of your contracts; set up your tax and banking information; obtain sales and
finance reports; request promotional codes; and manage users, applications, metadata,
and your In-App Purchase catalog.

Contracts, tax, and banking
If you plan on selling your app, you need to have a paid commercial agreement in place so
that it can be posted to the App Store. You will have to request a contract pertaining to iOS
Paid Applications. All this is done through iTunes Connect under the Contracts, Tax, and
Banking links.

When requesting contracts, beware of potential issues that can occur, such as delays when
Apple processes your information for the first time and/or issues when changing your
current contact information in iTunes Connect (that is, change of address if you have moved
to a different location). It is your responsibility to regularly contact Apple for support to make
sure that the information is always up to date in your contracts.

https://developer.apple.com/ios/manage/distribution/index.action
http://docs.coronalabs.com/guide/distribution/iOSBuild/index.html
http://docs.coronalabs.com/guide/distribution/iOSBuild/index.html

Optimizing, Testing, and Shipping Your Games

[278]

Time for action – managing your application in iTunes Connect
We will now go over how to set up our application information in iTunes Connect. Any other
information pertaining to user accounts, contracts, and banking that you would like to set up
can be found at https://developer.apple.com/app-store/review/.

1. Log in to iTunes Connect at http://itunesconnect.apple.com/. Your login
information is the same as your iOS Developer account. Once logged in, select
Manage Your Applications. Click on the Add New App button. App Name is the
name of your application. SKU Number is a unique alphanumeric identifier for
the app. Bundle ID is the one you created in the iOS Provisioning Portal. Fill in the
information and click on Continue:

2. The next step is to select the date on which you want your application to be live in
the App Store and Price Tier that you want to charge. There is an optional checkbox
for Discount for Educational Institutions. This is only if you want your app to be
discounted for educational institutions that want to purchase multiple copies at the
same time. Click on Continue when done:

https://developer.apple.com/app-store/review/
http://itunesconnect.apple.com/

Chapter 10

[279]

3. Next, fill in the Metadata section about your application. This includes the version
number, description of your game, categories, keywords pertaining to your app,
copyright, contact information, and support URL:

Optimizing, Testing, and Shipping Your Games

[280]

4. The Rating section is based on the content of your application. For each description,
choose the level of frequency that best describes your app. There are certain
content types that will result in automatic rejection, such as realistic violence
portrayed in your app or personal attacks to a target individual or group. You can
learn more about App Store Review Guidelines at https://developer.apple.
com/appstore/resources/approval/guidelines.html.

https://developer.apple.com/appstore/resources/approval/guidelines.html
https://developer.apple.com/appstore/resources/approval/guidelines.html

Chapter 10

[281]

5. As discussed earlier in the Uploads section, you will need a large version of your app
icon, that is, iPhone/iPod Touch screenshots and iPad screenshots (if your app runs
on iPad) of the content in your application.

6. You will be greeted with a page summary of your application information. Check to
make sure that the information displayed is correct and then click on Done:

Optimizing, Testing, and Shipping Your Games

[282]

7. You will be sent back to your version details page. Notice a button that says Ready to
Upload Binary. Click on the button, and you will be required to answer a couple of
questions about Export Compliance. Once completed, you will have the permission
to upload your binary through Application Loader.

What just happened?
iTunes Connect is where you'll be managing your application from here on out when
distributing it to the App Store. Every single piece of information you want to display
about your app is done through iTunes Connect.

Chapter 10

[283]

Once you're in the section pertaining to App Information, make sure that your SKU Number
is unique and that it relates to your app, so that you can identify it later down the line.
Also, make sure that Bundle ID you designated for your app is the correct one.

The app availability in the Rights and Pricing section controls when you want your app to go
live once it's approved. It's good to set it for a date a couple of weeks in the future from when
you submit it. It can take a couple of days to a couple of weeks for the review process to go
from Under Review to Ready for Sale as long as there are no problems with the submission.
The price tier is where you set the price for your app, or it can be set to Free. You can click on
View Pricing Matrix to determine the price you're aiming to sell your app for.

The information in the Metadata section is what the customer will see in the App Store.
The Rating section pertains to Apple Content Descriptions. Make sure that the level of
frequency is checked off as close as possible to the content of your application.

The Uploads section is where you include your 1024 x 1024 px app icon and screenshots that
best suit your app visually. Make sure that you provide the correct image sizes. Once you
have transitioned back to the Application Information screen, you'll notice that the status
says Prepare for Upload. When you click on the Ready to Upload Binary button on the
Version Details page, you will answer questions about Export Compliance. Soon after, the
status will change to Waiting for Upload.

More information relating to iTunes Connect can be found at http://developer.apple.
com/library/ios/iTunesConnectGuide.

Building an iOS application for distribution in Corona
We have come to the homestretch in getting your iOS application submitted to the App
Store. Assuming that you have already tested your application and debugged it with your
development provisioning profile, you're ready to create a distribution build that will create
a binary ZIP file of your app.

http://developer.apple.com/library/ios/iTunesConnectGuide
http://developer.apple.com/library/ios/iTunesConnectGuide

Optimizing, Testing, and Shipping Your Games

[284]

Time for action – building your application and uploading it to
the Application Loader

Time to create the final game build for iOS distribution and upload it to the Application
Loader for review under Apple's board.

1. Launch the Corona simulator, navigate to the application project folder, and run it.
Go to the Corona simulator menu bar and then to File | Build | iOS. Fill in all your
application details. Make sure that your Application Name and Version fields match
what is displayed in your iTunes Connect account. Choose Device to build an app
bundle. Next, select the target device (iPhone or iPad) your app is created for from
the Supported Devices drop-down menu. Under the Code Signing Identity drop-
down menu, choose the Distribution Provisioning Profile option you created in the
iOS Provisioning Portal. In the Save to folder section, click on Browse and choose
where you would like your application to be saved. Click on the Build button
when done:

2. When the build has been compiled, you will be greeted with a display that your
application is ready for distribution. Select the Upload to App Store button.

3. When the Welcome to Application Loader window pops up, log in with your iTunes
Connect information. You will then be brought to another window with the Deliver
Your App or Create New Package option. Choose Deliver Your App. The next
window displays a drop-down menu; choose the name of the application you will be
submitting and then click on the Next button.

Chapter 10

[285]

4. The available application information found in iTunes Connect is displayed.
Verify that it is correct and then click on the Choose button.

5. Click on the ellipsis (…) button to replace the current file before submitting it
and then select the Send button.

6. The Application Loader will begin submitting your application binary file to
the App Store.

7. You will get a confirmation that your binary was delivered to the App Store if it
uploaded successfully. You can check on the status of your application in iTunes
Connect when it goes to review, ready for sale, live, and so on. An e-mail will be
sent to you upon every status change of your application. That's it! This is how you
submit an app to the App Store!

8. When your application has been reviewed and approved by the App Store, you can
go into iTunes Connect and adjust the availability date if it is approved before your
proposed launch date. Your app will be live in the App Store instantly:

Optimizing, Testing, and Shipping Your Games

[286]

What just happened?
It's important that when you build your app under Code Signing Identity, you select your
distribution provisioning profile that was created for your distribution build. Upon the
compilation of your build, you can launch the Application Loader. Make sure that you have
Xcode installed. The Application Loader will launch readily after you select the Upload to
App Store button.

While you're in the Application Loader, the name of your app will be displayed in the
dropdown once you have completed loading the binary information to iTunes Connect.
When you deliver your app, select the zipped-up binary from the location you saved your
file at.

As soon as the file is uploaded, a confirmation window will appear and an e-mail will be
sent to the Apple ID assigned to your Apple account. Your binary will be shown with a
Waiting for Review status in iTunes Connect.

After all these steps, you now know how to submit an iOS application to the App
Store. Hooray!

Have a go hero – making a universal iOS build
If you developed an application for iPhone only, try implementing it as an iPad version as
well so that it can become a universal build. Take the lessons you learned from the previous
chapters using your build.settings and config.lua files to resize your application.
Also, don't forget about what is required of your app icon as well. It's like hitting two birds
with one stone!

The Google Play Store
The Google Play Store is a publishing platform that helps you publicize, sell, and distribute
your Android applications to users around the world.

To register as a Google Play Developer and get started with publishing, visit the
Google Play Android Developer Console publisher site. You can sign up for an
account at https://play.google.com/apps/publish/.

https://play.google.com/apps/publish/

Chapter 10

[287]

Creating launcher icons
A launcher icon is a graphic that represents your application. Launcher icons are used by
applications and appear on the user's home screen. They can also be used to represent
shortcuts in your application. These are similar to the icons created for iOS applications. The
following are the launcher icon requirements, which also need to be in a 32-bit .png format:

 � Icon-ldpi.png: This is a 36 x 36 px image at 120 dpi, which is used for
low-density screen

 � Icon-mdpi.png: This is a 48 x 48 px image at 160 dpi, which is used for
medium-density screen

 � Icon-hdpi.png: This is a 72 x 72 px image at 240 dpi, which is used for
high-density screen

 � Icon-xhdpi.png: This is a 96 x 96 px image at 320 dpi, which is used for
x-high-density screen

 � Icon-xxhdpi.png: This is a 144 x 144 px image at 480 dpi, which is used for
xx-high-density screen

 � Icon-xxxhdpi.png: This is a 192 x 192 px image at 640 dpi, which is used for
xxx-high-density screen.

Launcher icons need to be placed in your project folder at the time you build your
application. The Google Play Store also requires you to have a 512 x 512 px version of your
icon, which can be uploaded in the developer console at the upload time of your build. For
more information on launcher icons, visit http://developer.android.com/guide/
practices/ui_guidelines/icon_design_launcher.html.

Time for action – signing your app for the Google Play Store
The Android system requires all the installed applications to be digitally signed with a
certificate whose private key is held by the application's developer. The Android system
uses the certificate as a means of identifying the author of an application and establishing
a relationship of trust between applications. The certificate is not used to control which
applications the user can install. The certificate does not need to be signed by a certificate
authority; it can be self-signed. Certificates can be signed on either Mac or Windows systems.

1. On the Mac, go to Applications | Utilities | Terminal. On Windows, go to Start
Menu | All Programs | Accessories | Command Prompt. Using the keytool
command, add in the following lines and press Enter:
keytool -genkey -v -keystore my-release-key.keystore -alias
aliasname -keyalg RSA -validity 999999

http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html
http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html

Optimizing, Testing, and Shipping Your Games

[288]

Replace my-release-key with the name of your
application and aliasname with a similar or equal alias
name. Also, if you add any extra numbers past 999999
(that is, extra 9s), the application will appear broken.

2. You will be asked to enter a keystore password. From here, you will create a unique
password that you, as the developer, must come up with. You will be asked to
re-enter it. The remaining questions that will be asked pertain to your developer/
company information, location, and so on. Fill it all in. Once you have filled in the
required information, you have generated a key to sign your Android build. For more
information pertaining to app signing, visit http://developer.android.com/
tools/publishing/app-signing.html.

3. Launch the Corona simulator, navigate to the application project folder and run it.
Go to the Corona simulator menu bar and then to File | Build | Android. Fill in the
information for Application Name, Version Code, and Version Name pertaining to
your app. Specify a Package name using the Java scheme. Select Google Play from
the Target App Store menu. Under Keystore, select the Browse button to locate
your signed private key and then from the pull-down menu, select your generated
key for your release build. You will be prompted to enter your keystore password
you used to sign your application in the keytool command. Under Key Alias,
choose the alias name you created for your key from the pull-down menu and enter
your password when prompted. Select the Browse button to choose a location for
your app build. Choose the Build button when finished:

http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html

Chapter 10

[289]

What just happened?
The keytool command generates the keystore as a file called my-release-key.
keystore. The keystore and key are protected by the passwords you entered. The keystore
contains a single key, which is valid for 999999 days. The alias is a name that you will use
later to refer to this keystore when signing your application.

Your keystore password is something that you create and must remember when you build
your app in Corona. There will be an option if you want to use a different password for
the alias name. You can press Enter to use the same one while you're in the Terminal or
Command Prompt.

When you create your build in Corona, make sure that your version number is an integer
with no special characters. Also, you will have to make sure that your build.settings
file includes the versionCode as well. This will be the same number as your version
number. Refer to Chapter 9, Handling Multiple Devices and Networking Your Apps for
more information.

The Java scheme in your build is the reverse of your domain name with the name of your
product/company appended and the name of your app, for example, com.mycompany.
games.mygame.

When you have built your app by using your private key and you have selected an alias name,
the .apk file will be created and will be ready to be published on the Google Play Store.

Optimizing, Testing, and Shipping Your Games

[290]

Time for action – submitting an app to the Google Play Store
We'll use the Developer Console. This is where your developer profile will be created to
publish to the Google Play Store.

1. Once you're logged in to the Developer Console, click on the Android icon and
select the button that says Add new application. You will be greeted with a
pop-up window that will allow you to upload your build. Select your default
language from the drop-down menu and enter the name of your app under
Title. Click on the Upload APK button to proceed to the next page.

2. Click on Upload your first APK to Production and then on Browse files to locate the
.apk file of your application. Select the Open button to upload your file.

Chapter 10

[291]

3. After your .apk file is uploaded, select the Store Listing tab. Fill out the information
with the details of your app, including Title, Short description, and Full description:

Optimizing, Testing, and Shipping Your Games

[292]

4. In the Graphic Assets section, add in your app screenshots. At least two screenshots
are required to submit your app. Other mandatory graphics that are needed are
Hi-res icon and Feature Graphic.

5. The Categorization, Contact Details, and Privacy Policy sections need to be
addressed. Make sure that you complete these sections and click on the Save
button at the top of the page before proceeding to the next tab.

6. Select the Pricing & Distribution tab. Select the information that pertains to
your app. The pricing default setting is Free. If you want to make a paid version,
you must set up a merchant account with Google Checkout. Click on Save when
you're finished:

7. After filling out all the information pertaining to your app, make sure that the APK,
Store Listing, and Pricing & Distribution tabs have a green check mark next to them.

8. Finally, click on the Ready to Publish button and select Publish this app in the
drop-down menu. Congratulations! You have just published your app to the
Google Play Store!

What just happened?
The Developer Console page displays a simple step-by-step process on how to publish
your .apk file.

Chapter 10

[293]

The assets required to publish an app show the acceptable resolution and image types
next to each section. It is optional to include a promotional graphic, feature graphic, and
promotional video, but it would be in your best interest to add enough substance to your
app page. This will make it appealing to potential customers.

After all the information related to your app is completed, make sure that you save your
progress. Once you select the Publish this app menu, you're done! You should be able to
see your app in the Google Play Store within the hour you published it.

Have a go hero – adding more promos
The Google Play Store gives you many options on how to promote your application.
Additional assets can be included from the Developer Console. Try the following:

 � Add a promotional graphic as a marketing vehicle to showcase your app.

 � Add a feature graphic.

 � Create a promotional video of your app. A website such as YouTube is a good way to
share a trailer of your game.

Pop quiz – publishing applications
Q1. When creating an iOS Distribution Provisioning file, what distribution method do you
need to use?

1. Development
2. App Store
3. Ad hoc
4. None of the above

Q2. Where do you refer to for the status of the submitted iOS applications?

1. iTunes Connect
2. iOS Provisioning Portal
3. The Application Loader
4. None of the above

Q3. What is required to build an app for the Google Play Store?

1. Create a private key under the keytool command
2. Sign your application with a debug key
3. Sign your application with your private key
4. a and c

Optimizing, Testing, and Shipping Your Games

[294]

Summary
We have accomplished a huge milestone with this chapter. We know how to submit not
only to one but two major app markets! Publishing your applications to the App Store and
Google Play Store is not scary, after all.

We have covered the following topics:

 � The importance of memory efficiency

 � Creating provision profiles for distribution to the App Store

 � Managing iTunes Connect

 � Submitting a binary to the Application Loader

 � Signing a release build for Android applications

 � Submitting .apk files to the Google Play Store

In the next chapter, we'll take a look at In-App Purchases in the Apple iTunes Store for the
iOS platform.

[295]

Implementing In-App Purchases

In-App Purchase is an optional feature that developers can use to embed a
store directly within an app. Sometimes, you may want to extend some features
in your current game to keep your consumers interested in playing. Here's your
chance, and possibly, more revenue in your pocket!

This chapter is only concerned with In-App Purchases in the Apple iTunes Store for the iOS
platform. Android developers who want to implement In-App Purchases in their apps can
refer to for reference. The set up for In-App Purchase is done in a similar fashion for iOS
and Android. There are, however, some differences that need to be set up in your build.
settings file and code.

The application interface used here is frequently updated. However, you will be
able to perform all the steps irrespective of the interface you're using.

We'll cover the following in this chapter:

 � Consumable, nonconsumable, and subscription purchases

 � Making transactions

 � Restoring purchased items

 � Initializing Corona's store module

 � Creating and testing In-App Purchases on a device

Ready, set, go!

11

Implementing In-App Purchases

[296]

The wonders of In-App Purchase
The purpose of implementing In-App Purchase is to add an in-app payment functionality
to collect payment for enhanced functionality or additional content usable in your game.
The following are options of incorporating this feature:

 � A game that offers new level packs to play outside the default content

 � A freemium game that allows you to purchase virtual currency to create or build
new assets during game play

 � Adding additional characters or special power ups to enhance game elements

These are some examples that can be implemented with In-App Purchases.

In-App Purchases allow users to purchase additional content within an application. The App
Store manages transaction information only. Developers cannot use the App Store to deliver
content. So, either you bundle content with your app when you ship it (it will be unlocked
on purchase), or you have to work out your own system to download the data, if you wish to
deliver content.

Types of In-App Purchases
There are several In-App Purchase types that you can apply in your apps.

You can find more information on In-App Purchases on the Apple
website at https://developer.apple.com/library/ios/
documentation/LanguagesUtilities/Conceptual/
iTunesConnectInAppPurchase_Guide/Chapters/
CreatingInAppPurchaseProducts.html.

 � Consumable: These are products that must be purchased each time the user needs
that item. They're typically one-time services, such as money in an app where you
need to pay for supplies to build structures.

 � Nonconsumable: These are products that only need to be purchased once by the
user. These could be additional level packs in a game.

 � Auto-renewing subscriptions: These are products that allow the user to purchase
in-app content for a set duration of time. An example of an auto-renewable
subscription would be a magazine or newspaper that takes advantage of the auto-
renewing functionality built into iOS.

https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnectInAppPurchase_Guide/Chapters/CreatingInAppPurchaseProducts.html
https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnectInAppPurchase_Guide/Chapters/CreatingInAppPurchaseProducts.html
https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnectInAppPurchase_Guide/Chapters/CreatingInAppPurchaseProducts.html
https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnectInAppPurchase_Guide/Chapters/CreatingInAppPurchaseProducts.html

Chapter 11

[297]

 � Free subscriptions: These are used to put free subscription content in Newsstand.
Once a user signs up for a free subscription, it will be available on all devices
associated with that user's Apple ID. Note that free subscriptions do not expire
and can only be offered in Newsstand-enabled apps.

 � Non-renewing subscriptions: Similar to auto-renewable subscriptions, these are
non-renewing subscriptions that require a user to renew each time the subscription
is due to expire. Your app must contain code that recognizes when the expiration
occurs. It must also prompt the user to purchase a new subscription. An auto-
renewable subscription eliminates these steps.

Corona's store module
Applying In-App Purchases in your application can be a little mind-boggling and tedious
process. Integrating it with Corona requires calling the store module:

store = require("store")

The store module is already incorporated to the Corona API, similar to Facebook and Game
Network. You can find more information on Corona's store module at http://docs.
coronalabs.com/daily/guide/monetization/IAP/index.html.

store.init()
The store.init() function must be called when handling store transactions to your app.
It activates In-App Purchases and allows you to receive callbacks with the listener function
you specify:

store.init(listener)

The only parameter here is listener. It's a function that handles transaction
callback events.

The following blocks determine the transaction states that can occur during an In-App
Purchase. The four different states are purchased, restored, cancelled, and failed:

function transactionCallback(event)
 local transaction = event.transaction
 if transaction.state == "purchased" then
 print("Transaction successful!")
 print("productIdentifier", transaction.productIdentifier)
 print("receipt", transaction.receipt)
 print("transactionIdentifier", transaction.identifier)
 print("date", transaction.date)

http://docs.coronalabs.com/daily/guide/monetization/IAP/index.html
http://docs.coronalabs.com/daily/guide/monetization/IAP/index.html

Implementing In-App Purchases

[298]

 elseif transaction.state == "restored" then
 print("Transaction restored (from previous session)")
 print("productIdentifier", transaction.productIdentifier)
 print("receipt", transaction.receipt)
 print("transactionIdentifier", transaction.identifier)
 print("date", transaction.date)
 print("originalReceipt", transaction.originalReceipt)
 print("originalTransactionIdentifier",
 transaction.originalIdentifier)
 print("originalDate", transaction.originalDate)

 elseif transaction.state == "cancelled" then
 print("User cancelled transaction")

 elseif transaction.state == "failed" then
 print("Transaction failed, type:", transaction.errorType,
 transaction.errorString)

 else
 print("unknown event")
 end

 -- Once we are done with a transaction, call this to tell the
 store
 -- we are done with the transaction.
 -- If you are providing downloadable content, wait to call this
 until
 -- after the download completes.
 store.finishTransaction(transaction)
end

store.init("apple", transactionCallback)

event.transaction
The event.transaction object contains the transaction.

The transaction object supports the following read-only properties:

 � "state": This is a string containing the state of the transaction. Valid values are
"purchased", "restored", "cancelled", and "failed".

 � "productIdentifier": This is the product identifier associated with
the transaction.

 � "receipt": This is a unique receipt returned from the App Store. It is returned as a
hexadecimal string.

Chapter 11

[299]

 � "signature": This is a string used to verify the purchase. For Google Play, it is
returned by "inapp_signature". In iOS, it returns nil.

 � "identifier": This is a unique transaction identifier returned from the App Store.
It is a string.

 � "date": This is the date the transaction occurred.

 � "originalReceipt": This is a unique receipt returned from the App Store from
the original purchase attempt. It is mostly relevant in the case of a restore. It is
returned as a hexadecimal string.

 � "originalIdentifier": This is a unique transaction identifier returned from the
Store from the original purchase attempt. This is mostly relevant in the case of a
restore. It is a string.

 � "originalDate": This is the date of the original transaction. It is mostly relevant
in the case of a restore.

 � "errorType": This is the type of error that occurred when the state is "failed"
(a string).

 � "errorString": This is a descriptive error message of what went wrong in the
"failed" case.

store.loadProducts()
The store.loadProducts() function retrieves information about items available for sale.
This includes the price of each item, a name, and a description:

store.loadProducts(arrayOfProductIdentifiers, listener)

Its parameters are as follows:

 � arrayOfProductIdentifiers: This is an array with each element containing a
string of the product ID of the In-App product you want to know about

 � listener: This is a callback function that is invoked when the store finishes
retrieving the product information

The following block displays the list of products that are available in the app. Information
about the product can be retrieved from the loadProductsCallback() function and
determines whether it is valid or invalid:

-- Contains your Product ID's set in iTunes Connect
local listOfProducts =
{
 "com.mycompany.InAppPurchaseExample.Consumable",
 "com.mycompany.InAppPurchaseExample.NonConsumable",
 "com.mycompany.InAppPurchaseExample.Subscription",

Implementing In-App Purchases

[300]

}

function loadProductsCallback (event)
 print("showing valid products", #event.products)
 for i=1, #event.products do
 print(event.products[i].title)
 print(event.products[i].description)
 print(event.products[i].price)
 print(event.products[i].productIdentifier)
 end

 print("showing invalidProducts", #event.invalidProducts)
 for i=1, #event.invalidProducts do
 print(event.invalidProducts[i])
end
end

store.loadProducts(listOfProducts, loadProductsCallback)

event.products
When a requested list of products is returned by store.loadProducts(), the array of
product information can be accessed through the event.products property.

Product information, such as title, description, price, and the product identifier, is contained
in a table:

event.products

Each entry in the event.products array supports the following fields:

 � title: This is the localized name of the item
 � description: This is the localized description of the item
 � price: This is the price of an item (as a number)
 � productIdentifier: This is the product identifier

event.invalidProducts
When store.loadProducts() returns its requested list of products, any products you
requested that are not available for sale will be returned in an array. You can access the array
of invalid products through the event.invalidProducts property.

This is a Lua array containing the product identifier string requested from store.
loadProducts():

event.invalidProducts

Chapter 11

[301]

store.canMakePurchases
The store.canMakePurchases function returns true if purchases are allowed, and false
otherwise. Corona's API can check whether purchasing is possible. iOS devices provide a
setting that disables purchasing. This can be used to avoid purchasing apps accidentally.

 if store.canMakePurchases then
 store.purchase(listOfProducts)
 else
 print("Store purchases are not available")
 end

store.purchase()
The store.purchase() function initiates a purchase transaction on a provided list
of products.

This function will send purchase requests to the store. The listener specified in store.
init() will be invoked when the store finishes processing the transaction:

store.purchase(arrayOfProducts)

Its only parameter is arrayOfProducts, an array specifying the products you want to buy:

store.purchase{ "com.mycompany.InAppPurchaseExample.Consumable"}

store.finishTransaction()
This function notifies the App Store that a transaction is complete.

After you finish handling a transaction, you must call store.finishTransaction() on
the transaction object. If you don't do this, the App Store will think your transaction was
interrupted and will attempt to resume it on the next application launch.

Syntax:

store.finishTransaction(transaction)

Parameters:

Transaction: The transaction object belonging to the transaction you want to mark
as finished.

Example:

store.finishTransaction(transaction)

Implementing In-App Purchases

[302]

store.restore()
Any previously purchased items that have been wiped clean from a device or upgraded to
a new device can be restored on the user's account without paying for the product again.
The store.restore() API initiates this process. Transactions can be restored by the
transactionCallback listener, which is registered with store.init(). The transaction
state will be "restored" and your app may then make use of the "originalReceipt",
"originalIdentifier", and "originalDate" fields of the transaction object:

store.restore()

The block will run through the transactionCallback() function and determine whether
a product has been previously purchased from the application. If the result is true, store.
restore() will initiate the process of retrieving the product without asking the user to pay
for it again:

function transactionCallback(event)
 local transaction = event.transaction
 if transaction.state == "purchased" then
 print("Transaction successful!")
 print("productIdentifier", transaction.productIdentifier)
 print("receipt", transaction.receipt)
 print("transactionIdentifier", transaction.identifier)
 print("date", transaction.date)

 elseif transaction.state == "restored" then
 print("Transaction restored (from previous session)")
 print("productIdentifier", transaction.productIdentifier)
 print("receipt", transaction.receipt)
 print("transactionIdentifier", transaction.identifier)
 print("date", transaction.date)
 print("originalReceipt", transaction.originalReceipt)
 print("originalTransactionIdentifier",
 transaction.originalIdentifier)
 print("originalDate", transaction.originalDate)

 elseif transaction.state == "cancelled" then
 print("User cancelled transaction")

Chapter 11

[303]

 elseif transaction.state == "failed" then
 print("Transaction failed, type:", transaction.errorType,
 transaction.errorString)

 else
 print("unknown event")
 end

 -- Once we are done with a transaction, call this to tell the store
 -- we are done with the transaction.
 -- If you are providing downloadable content, wait to call this
 until
 -- after the download completes.
 store.finishTransaction(transaction)
end

store.init(transactionCallback)
store.restore()

Create an In-App Purchase
Before reading on, make sure you know how to create an App ID and Distribution
Provisioning Profile from the iOS Provisioning Portal. Also, make sure you know how
to manage new applications in iTunes Connect. If you're unsure, refer to Chapter 10,
Optimizing, Testing, and Shipping Your Games, for more information. Here are the
things that need to be ready in your app before creating an In-App Purchase:

 � A Distribution Certificate already made for your app.

 � An explicit App ID for your application, for example, com.companyname.appname.
Do not substitute a wildcard character (asterisk: "*"). The Bundle ID needs to be
completely unique in order to use the In-App Purchase function.

Implementing In-App Purchases

[304]

 � An ad hoc Distribution Provisioning Profile (used to test In-App Purchases). When
you're ready to submit an app with In-App Purchase, an App Store Distribution
Provisioning Profile is required.

 � Your application information must be set up in iTunes Connect. You do not need to
get your binary uploaded to create or test In-App Purchases.

 � Make sure that you have an iOS Paid Applications contract in effect with Apple.
If you don't, you'll need to request it in Contracts, Tax, and Banking located on
the iTunes Connect home page. You will need to provide your banking and tax
information in order to offer In-App Purchases in your apps.

Chapter 11

[305]

Time for action – creating the In-App Purchase in iTunes
Connect

We'll be implementing an In-App Purchase through iTunes Connect and create a scenario in a
sample application that will call a transaction. Let's create the Product ID that will be used in
our In-App Purchase:

1. Log in to iTunes Connect. On the home page, select Manage Your Applications.
Select the application you plan to add an In-App Purchase to.

2. Once you're on the app summary page, click on the Manage In-App Purchases
button and then click on the Create New button in the top-left corner.

Implementing In-App Purchases

[306]

3. You will be brought to a page that shows you a summary of the types of In-App
Purchases that you can create. For this example, Non-Consumable is selected.
We'll be creating a product that needs to be purchased only once.

4. In the next page is the area where you fill in the information about the product. The
information applies to consumable, nonconsumable, and non-renewing subscription
In-App Purchases. Fill the Reference Name and Product ID fields for your product.
The Product ID needs to be a unique identifier and can be any alphanumeric
sequence of letters and numbers (for example, com.companyname.appname.
productid).

Auto-renewing subscriptions require you to generate a shared secret.
If you are to use auto-renewing subscriptions in your app, then on the
Manage in-App Purchases page, click on the View or generate a shared
secret link. You will be brought to a page to generate the shared secret.
Click on the Generate button. The shared secret will display a string of 32
randomly generated alphanumeric characters. When you choose auto-
renewing subscriptions, the difference from the other In-App Purchase
types is that you have to choose the duration between auto-renewals
of your product. For more information on auto-renewing subscriptions,
go to http://developer.apple.com/library/ios/
iTunesConnectGuide.

5. Click on the Add Language button. Select the language that will be used for the In-
App Purchase. Add a display name for your product and a short description about it.
When you're done, click on the Save button.

http://developer.apple.com/library/ios/iTunesConnectGuide
http://developer.apple.com/library/ios/iTunesConnectGuide

Chapter 11

[307]

6. In Pricing and Availability, ensure that Yes is selected for Cleared for Sale. In the
Price Tier drop-down menu, select the price you plan to sell your In-App Purchase
for. In this example, Tier 1 is selected. In Screenshot for Review, you'll need to
upload a screenshot of your In-App Purchase. If you're testing on an ad hoc build,
the screenshot is not necessary. Once you're ready for distribution, the screenshot
is required so that the In-App Purchase can be reviewed upon submittal. Click on the
Save button when done.

Implementing In-App Purchases

[308]

7. You will see a summary of the In-App Purchase that you created on the next page.
Click on the Done button if all of the information looks correct.

What just happened?
Adding a new In-App Purchase is a very simple process. The information contained in the
Product ID is what will be called upon during a transaction. Managing the type of In-App
Purchase entirely depends on what type of product you want to sell in your game. This
example demonstrates the purpose of taking a nonconsumable product that represents
purchasing/unlocking a new level in a game. This is a common scenario for users who to
want to sell level packs.

Your application does not have to be completed to test In-App Purchases. All that is required
is to have your application information set up in iTunes Connect so that you can manage the
features of In-App Purchase.

Time for action – using the Corona store module to create an
In-App Purchase

Now that we have set up our Product ID for our In-App Purchase in iTunes Connect, we can
implement it in our app to purchase the product we're going to sell. A sample menu app of
Breakout was created to demonstrate how to purchase levels within an application. The app
contains two levels in the level select screen. The first is available by default. The second is
locked and can only be unlocked by purchasing it for $0.99. We're going create a level select
screen so that it acts in that manner:

Chapter 11

[309]

1. In the Chapter 11 folder, copy the Breakout In-App Purchase Demo project
folder to your desktop. You can download the project files accompanying this book
from the Packt Publishing website. You will notice that the configuration, libraries,
assets, and .lua files needed are included.

2. Create a new levelselect.lua file and save it to the project folder.

3. Set up the scene with the following variables and saving/loading functions.
The most important variable of all is local store = require("store"),
which calls the store module for In-App Purchases:
local composer = require("composer")
local scene = composer.newScene()

local ui = require("ui")
local movieclip = require("movieclip")
local store = require("store")

--

-- BEGINNING OF YOUR IMPLEMENTATION
--

local menuTimer

-- AUDIO
local tapSound = audio.loadSound("tapsound.wav")

--***

-- saveValue() --> used for saving high score, etc.

--***
local saveValue = function(strFilename, strValue)
 -- will save specified value to specified file
 local theFile = strFilename
 local theValue = strValue

 local path = system.pathForFile(theFile,
 system.DocumentsDirectory)

 -- io.open opens a file at path. returns nil if no file found
 local file = io.open(path, "w+")
 if file then
 -- write game score to the text file

Implementing In-App Purchases

[310]

 file:write(theValue)
 io.close(file)
 end
end

--***

-- loadValue() --> load saved value from file (returns loaded
value as string)

--***
local loadValue = function(strFilename)
 -- will load specified file, or create new file if it doesn't
exist

 local theFile = strFilename

 local path = system.pathForFile(theFile,
 system.DocumentsDirectory)

 -- io.open opens a file at path. returns nil if no file found
 local file = io.open(path, "r")
 if file then
 -- read all contents of file into a string
 local contents = file:read("*a")
 io.close(file)
 return contents
 else
 -- create file b/c it doesn't exist yet
 file = io.open(path, "w")
 file:write("0")
 io.close(file)
 return "0"
 end
end

-- DATA SAVING
local level2Unlocked = 1
local level2Filename = "level2.data"
local loadedLevel2Unlocked = loadValue(level2Filename)

4. Create the create() event and remove the "mainmenu", "level1", and
"level2" scenes:
-- Called when the scene's view does not exist:

Chapter 11

[311]

function scene:create(event)
 local sceneGroup = self.view

 -- completely remove maingame and options
 composer.removeScene("mainmenu")
 composer.removeScene("level1")
 composer.removeScene("level2")

 print("\nlevelselect: create event")
end

5. Next, create the show() event and an array that contains a string of Product ID set
as an In-App Purchase in iTunes Connect:
function scene:show(event)
 local sceneGroup = self.view

 print("levelselect: show event")

 local listOfProducts =
 {
 -- These Product IDs must already be set up in your store
 -- Replace Product ID with a valid one from iTunes Connect
 "com.companyname.appname.NonConsumable", -- Non Consumable
 In-App Purchase
 }

6. Add a local blank table for validProducts and invalidProducts. Create a
local function called unpackValidProducts() that checks valid and invalid
Product IDs:
 local validProducts = {}
 local invalidProducts = {}

 local unpackValidProducts = function()
 print ("Loading product list")
 if not validProducts then
 native.showAlert("In-App features not available",
 "initStore() failed", { "OK" })
 else
 print("Found " .. #validProducts .. " valid items ")
 for i=1, #invalidProducts do
 -- Debug: display the product info
 native.showAlert("Item " .. invalidProducts[i]
 .. " is invalid.",{ "OK" })
 print("Item " .. invalidProducts[i] .. " is
 invalid.")

Implementing In-App Purchases

[312]

 end

 end
 end

7. Create a local function called loadProductsCallback() with an event
parameter. Set up the handler to receive product information with print statements:
 local loadProductsCallback = function(event)
 -- Debug info for testing
 print("loadProductsCallback()")
 print("event, event.name", event, event.name)
 print(event.products)
 print("#event.products", #event.products)

 validProducts = event.products
 invalidProducts = event.invalidProducts
 unpackValidProducts ()
 end

8. Create a local function called transactionCallback() with an event
parameter. Add several cases of results that are supposed to occur for every
transaction.state event. When the store is done with the transaction,
call store.finishTransaction(event.transaction) before the end
of the function. Set up a another local function called setUpStore() with
an event parameter to call store.loadProducts(listOfProducts,
loadProductsCallback):
 local transactionCallback = function(event)
 if event.transaction.state == "purchased" then
 print("Transaction successful!")
 saveValue(level2Filename, tostring(level2Unlocked)
 elseif event.transcation.state == "restored" then
 print("productIdentifier",
 event.transaction.productIdentifier)
 print("receipt", event.transaction.receipt)
 print("transactionIdentifier",
 event.transaction.transactionIdentifier)
 print("date", event.transaction.date)
 print("originalReceipt",
 event.transaction.originalReceipt)
 elseif event.transaction.state == "cancelled" then
 print("Transaction cancelled by user.")
 elseif event.transaction.state == "failed" then
 print("Transaction failed, type: ",
 event.transaction.errorType,
 event.transaction.errorString)

Chapter 11

[313]

 local alert = native.showAlert("Failed ", infoString,{
 "OK" })
 else
 print("Unknown event")
 local alert = native.showAlert("Unknown ", infoString,{
 "OK" })
 end
 -- Tell the store we are done with the transaction.
 store.finishTransaction(event.transaction)
 end

 local setupMyStore = function(event)
 store.loadProducts(listOfProducts, loadProductsCallback)
 print ("After store.loadProducts(), waiting for
 callback")
 end

9. Set up the display objects for the background and level 1 button:
 local backgroundImage = display.newImageRect(
 "levelSelectScreen.png", 480, 320)
 backgroundImage.x = 240; backgroundImage.y = 160
 sceneGroup:insert(backgroundImage)

 local level1Btn = movieclip.newAnim({"level1btn.png"}, 200,
 60)
 level1Btn.x = 240; level1Btn.y = 100
 sceneGroup:insert(level1Btn)

 local function level1touch(event)
 if event.phase == "ended" then
 audio.play(tapSound)
 composer.gotoScene("loadlevel1", "fade", 300)
 end
 end
 level1Btn:addEventListener("touch", level1touch)
 level1Btn:stopAtFrame(1)

10. Set up the level 2 button placement:
 -- LEVEL 2
 local level2Btn =
 movieclip.newAnim({"levelLocked.png","level2btn.png"}, 200,
 60)
 level2Btn.x = 240; level2Btn.y = 180
 sceneGroup:insert(level2Btn)

Implementing In-App Purchases

[314]

11. Use the local onBuyLevel2Touch(event) function and create an if
statement to check event.phase == ended and level2Unlocked ~=
tonumber(loadedLevel2Unlocked) so that the scene changes to
mainmenu.lua:
 local onBuyLevel2Touch = function(event)
 if event.phase == "ended" and level2Unlocked ~=
 tonumber(loadedLevel2Unlocked) then
 audio.play(tapSound)
 composer.gotoScene("mainmenu", "fade", 300)

12. Within the same if statement, create a local function called buyLevel2()
with a product parameter to call the store.purchase() function:
 local buyLevel2 = function (product)
 print ("Congrats! Purchasing " ..product)

 -- Purchase the item
 if store.canMakePurchases then
 store.purchase({validProducts[1]})
 else
 native.showAlert("Store purchases are not available,
 please try again later", { "OK" }) – Will occur only
 due to phone setting/account restrictions
 end
 end
 -- Enter your product ID here
 -- Replace Product ID with a valid one from iTunes Connect
 buyLevel2("com.companyname.appname.NonConsumable")

13. Add an elseif statement to check when level 2 has been purchased and unlocked,
once the transaction has been completed:
 elseif event.phase == "ended" and level2Unlocked ==
 tonumber(loadedLevel2Unlocked) then
 audio.play(tapSound)
 composer.gotoScene("loadlevel2", "fade", 300)
 end
 end
 level2Btn:addEventListener("touch", onBuyLevel2Touch)

 if level2Unlocked == tonumber(loadedLevel2Unlocked) then
 level2Btn:stopAtFrame(2)
 end

Chapter 11

[315]

14. Activate the In-App Purchase with store.init() and call
transactionCallback() as the parameter. Also call setupMyStore()
with a timer set at 500 milliseconds:
 store.init("apple", transactionCallback)
 timer.performWithDelay (500, setupMyStore)

15. Create the Close UI button and a local function called onCloseTouch() with an
event parameter. Have the function transition scenes to loadmainmenu.lua upon
release of the Close button. Close the enterScene() event with end:
 local closeBtn

 local onCloseTouch = function(event)
 if event.phase == "release" then

 audio.play(tapSound)
 composer.gotoScene("loadmainmenu", "fade", 300)

 end
 end

 closeBtn = ui.newButton{
 defaultSrc = "closebtn.png",
 defaultX = 100,
 defaultY = 30,
 overSrc = "closebtn.png",
 overX = 105,
 overY = 35,
 onEvent = onCloseTouch,
 id = "CloseButton",
 text = "",
 font = "Helvetica",
 textColor = { 255, 255, 255, 255 },
 size = 16,
 emboss = false
 }

 closeBtn.x = 80; closeBtn.y = 280
 closeBtn.isVisible = false
 sceneGroup:insert(closeBtn)

 menuTimer = timer.performWithDelay(200, function()
 closeBtn.isVisible = true; end, 1)

end

Implementing In-App Purchases

[316]

16. Create the hide() and destroy() events. Within the hide() event, cancel the
menuTimer timer. Add all the event listeners for the scene events and return
scene:
-- Called when scene is about to move offscreen:
function scene:hide()

 if menuTimer then timer.cancel(menuTimer); end

 print("levelselect: hide event")

 end

-- Called prior to the removal of scene's "view" (display
group)
function scene:destroy(event)

 print("destroying levelselect's view")
end

-- "create" event is dispatched if scene's view does not exist
scene:addEventListener("create", scene)

-- "show" event is dispatched whenever scene transition has
finished
scene:addEventListener("show", scene)

-- "hide" event is dispatched before next scene's transition
begins
scene:addEventListener("hide", scene)

-- "destroy" event is dispatched before view is unloaded, which
can be
scene:addEventListener("destroy", scene)

return scene

17. Save the file and run the project in the Corona simulator. When you select the Play
button, you will notice a 1 button and a Locked button on the level select screen.
When you press the Locked button, it calls the store to make a transaction. You
will notice a print statement in the terminal that displays what Product ID is being
referred to for purchase. Full In-App Purchase features cannot be tested in the
simulator. You will have to create a distribution build and upload it on an iOS device
to initiate a purchase in the store.

Chapter 11

[317]

What just happened?
In this example, we used the saveValue() and loadValue() functions from BeebeGames
Class to implement how our locked level will go from locked to unlocked mode using movie
clips as buttons. The array in local listOfProducts displays Product ID in a string
format. The Product ID in this example needs to be a nonconsumable In-App Purchase type
and has to be an existing one in iTunes Connect.

The unpackValidProducts() function checks how many valid and invalid items are
in the In-App Purchase. The loadProductsCallback() function receives the product
information in the store. The transactionCallback(event) function checks every
state: "purchased", "restored", "cancelled", and "failed". When a "purchased"
state is achieved within the In-App Purchase, the saveValue() function is called
to change the value of level2.data. When the transaction is completed, store.
finishTransaction(event.transaction) needs to be called to tell the store
that you are done with your purchase.

The setupMyStore(event) function calls store.loadProducts(listOfProducts,
loadProductsCallback) and checks the available Product ID (or IDs) in the application.
The event is handled once store.init(transactionCallback) is initialized and
setupMyStore() is called.

The onBuyLevel2Touch(event) function allows us to check when an In-App Purchase has
been made for the locked level. When the user is able to purchase and when they accept
the In-App Purchase, the transaction is processed and the value of level2Unlocked will
match that of tonumber(loadedLevel2Unlocked). The buyLevel2(product) function
validates the purchased item with store.purchase() once the Product ID returns valid.

Implementing In-App Purchases

[318]

After the In-App Purchase, the screen transitions to the main menu to allow the Locked
button to change to the level 2 button. Once the button has changed to frame 2, level 2
is accessible.

Have a go hero – handling multiple Product IDs
Now that you know how to create an In-App Purchase for one product, try adding more than
one product to the same application. The scenarios are open ended.

You can add the following:

 � More levels for purchases

 � A variety of characters the user can play as if your game has a main character

 � New background scenes for your application

How you handle new products for your store is up to you.

Testing In-App Purchases
You would want to ensure that the purchases work correctly. Apple provides a sandbox
environment that allows you to test your app In-App Purchases. The sandbox environment
uses the same model as the App Store, but does not process actual payments. Transactions
return as if payments were processed successfully. It is a requirement to test In-App
Purchases in a sandbox environment before submitting them for a review by Apple.

When testing in the sandbox environment, you'll need to create a separate user test account
that is different from your current iTunes Connect account. Using your current account is not
allowed for testing your store in the sandbox.

User test accounts
While you're logged in to your iTunes Connect account, you'll have to select the Manage
Users link from the Home page. Select Test User on the Select User Type page. Add a new
user and ensure that the test account uses an e-mail address that is not associated with any
other Apple account. All test accounts should only be used in the test environment when
testing In-App Purchases. Click on the Save button when all of the information is filled in.

Once your user test account is created, you'll have to make sure that you've signed out of
your Apple account in the Store settings of your device. This will keep non-test accounts
from being used when testing In-App Purchases. You're only allowed to sign in to your user
test account when prompted in the In-App Purchase sandbox to test your application. Do
not sign in to your test account before the application is launched. This will prevent it from
invalidating your test account.

Chapter 11

[319]

Time for action – testing the In-App Purchase with the Breakout
In-App Purchase Demo

Before you can test an In-App Purchase on an iOS device, make sure that you have a test user
account in iTunes Connect. Also, make sure that you've created a distribution build using an
ad hoc Distribution Provisioning Profile for the app to test In-App Purchase's features. If
you followed all the earlier steps in this chapter, testing a purchase through the store will
work accordingly:

1. In the Corona simulator, create a distribution build of the Breakout In-App Purchase
Demo. Once the build has been compiled, upload the build on your iOS device.

2. Keep your device connected to your machine and launch Xcode. From the toolbar,
go to Windows | Organizer. Once you're in Organizer, select the device that is
connected in the Devices section and then select Console. This will allow you to
check the console output of your device to catch debug messages from your code
(that is, print statements) and any application crashes.

3. Before launching the application, you'll need to select the Settings icon on your
device. Scroll up until you see the Store icon and select it.

Implementing In-App Purchases

[320]

4. Sign out of your iTunes Store account if you're logged in, so that you can test
In-App Purchases in the sandbox environment.

5. Launch the Breakout In-App Purchase Demo from your device. Select the Play
button and then select the Locked button. The screen will transition back to the
main menu, and a window will pop up to confirm your In-App Purchase. Press OK
to continue with the purchase.

Chapter 11

[321]

6. Next, you will be greeted with another window to sign in with your Apple ID. This is
where you will log in with the test user account you created in iTunes Connect. Do
not sign in with your actual Apple account that was used to log in to iTunes Connect.

7. Once you've logged in, select the Play button again. You will notice that the 2 button
has been unlocked. When you select it, you will have access to that scene.

Implementing In-App Purchases

[322]

8. Exit the app and refer to the console. You will notice the output from the device and
some familiar print statements from your code. The console log displays the Product
ID used for the In-App Purchase and informs you whether it is valid and whether the
transaction is successful.

9. If you want to ensure that the In-App Purchase actually worked, delete the
application from your device and log out of your user test account. Upload the same
build on your device—there's no need to create a new one. Launch the application
and run the In-App Purchase again. Log in using the same user test account. You
should receive a pop-up window that mentions that you've already purchased the
product, and asks you whether you want to download it again for free. Receiving a
notification means your In-App Purchase was successful.

Chapter 11

[323]

What just happened?
It is important to follow the In-App Purchase test steps properly. To make sure you're getting
accurate results in the sandbox environment, signing out of your Apple account from the
Store settings is the key to this entire process.

Once you launch the application and call the store function by pressing the Locked button,
you will notice the display name and price of the In-App Purchase. It should match with what
you created in iTunes Connect, if you have implemented it correctly.

When you log in by using the test user account you created in iTunes Connect, the
transaction should go through without any errors, assuming that there are no server issues
on Apple's side or connection problems on the device. Level 2 on the level select screen will
be unlocked and accessible. Congratulations! You have created an In-App Purchase.

Have a go hero – using other In-App Purchase types
In the Breakout In-App Purchase Demo, we focused more on nonconsumable In-App
Purchases. Try integrating consumable, auto-renewing, or non-renewing subscriptions
with your own apps.

Apps that feature consumable products are games that require currency to buy or build
things in a free-to-play environment. Subscription products can be focused towards games
that are never-ending and are constantly updated with new levels or games that may require
an online server to interact in a multiplayer environment. See what you can come up with!

Implementing In-App Purchases

[324]

Pop quiz – all about In-App Purchases
Q1. What are nonconsumable purchases?

1. Products that only need to be purchased once by the user.

2. Products that need to be purchased each time the user needs the item.

3. Products that allow the user to purchase content for a set duration of time.

4. A subscription that requires a user to renew each time it expires.

Q2. What is true about testing In-App Purchases?

1. You need to be logged in to your account at all times.

2. Your Apple account is used to test In-App Purchases.

3. Login to your user test account when prompted in In-App Purchase sandbox.

4. None of the above.

Q3. What type of Provisioning Profile must be used to test In-App Purchases?

1. Development Provisioning Profile.

2. Ad Hoc Distribution Provisioning Profile.

3. App Store Distribution Provisioning Profile.

4. None of the above.

Summary
We can finally see the light at the end of the tunnel. By now, you should have an idea on how
to implement In-App Purchases in your games. It is a very lengthy process to organize, set up
the code, and test accurate purchases in the sandbox environment.

The following were taught in this chapter:

 � How to set up product IDs for In-App Purchases in iTunes Connect

 � Implementing purchase items using Corona's store module

 � Adding test user accounts in iTunes Connect

 � Testing In-App Purchases on a device

Chapter 11

[325]

Grasping the concept of In-App Purchasing can take some time. It is best to study the sample
code and review the functions pertaining to Corona's store module.

Please check out Apple's In-App Purchase Programming Guide at: https://developer.
apple.com/library/ios/documentation/NetworkingInternet/Conceptual/
StoreKitGuide/StoreKitGuide.pdf and the In-App Purchases in the API Reference
section of Corona Labs site: for more references pertaining to this topic.

After 11 chapters, we have reached the end of this book. You now have obtained enough
knowledge to create your own applications to sell in the Apple App Store or Google Play
Store. Hopefully all the information you have acquired has been helpful. I look forward to
hearing about the games you have developed using Corona SDK!

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/StoreKitGuide/StoreKitGuide.pdf
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/StoreKitGuide/StoreKitGuide.pdf
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/StoreKitGuide/StoreKitGuide.pdf

[327]

Pop Quiz Answers

Chapter 1 – Getting Started with Corona SDK

Pop quiz – understanding Corona

Q1 What is true about using the Corona
simulator?

1

Q2 How many iOS devices can you use for
development in the iPhone Developer Program?

4

Q3 What does the version code have to be
when building for Android in Corona SDK?

2

Chapter 2 – Lua Crash Course and the Corona Framework
Pop quiz – basics of Lua

Q1 Which of the following are values? 4

Q2 Which relational operator is false? 3

Q3 What is the correct way to scale an object in
the x direction?

4

Pop Quiz Answers

[328]

Chapter 3 – Building Our First Game – Breakout
Pop quiz – building a game

Q1 When adding the physics engine in your
code, which functions are valid to add to your
application?

4

Q2 Which is correct when adding an event
listener?

4

Q3 What is the correct way to have the
following display object transition to x = 300,
y = 150, and have the alpha changed to 0.5,
in 2 seconds?

1

Chapter 4 – Game Controls
Pop quiz – working with game controls

Q1 How do you properly remove a display object
from the stage?

3

Q2 What is the correct way to make the following
display object into a physics object?

local ball = display.
newImage("ball.png")

3

Q3 What best represents what "began" means in
the following function?

local function onCollision(
event)
 if event.phase == "began"
and event.object1.myName ==
"Box 1" then

 print("Collision made."
)

 end
end

4

Appendix

[329]

Chapter 5 – Animating Our Game
Pop quiz – animating graphics

Q1 What is the proper way to pause the
animation of an image sheet?

1

Q2 How do you make an animation sequence
loop forever?

3

Q3 How do you create a new image sheet? 4

Chapter 6 – Playing Sounds and Music
Pop quiz – all about audio

Q1 What is the proper way of clearing audio
files from the memory?

3

Q2 How many channels of audio can be played
simultaneously in an application?

4

Q3 How do you make your audio file loop
infinitely?

1

Chapter 7 – Physics – Falling Objects
Pop quiz – animating the graphics

Q1 What retrieves or sets the text string of a
text object?

1

Q2 What function converts any argument into
a string?

3

Q3 What body type is affected by gravity and
collisions with the other body types?

1

Pop Quiz Answers

[330]

Chapter 8 – Operation Composer
Pop quiz – game transitions and scenes

Q1 What function do you call to change scenes
with Composer?

2

Q2 What function converts any argument into a
number or nil?

1

Q3 How do you pause a timer? 3

Q4. How do you resume a timer? 2

Chapter 9 – Handling Multiple Devices and Networking
Your Apps
Pop quiz – handling social networks

Q1 What is the specific API that scales down
high-resolution sprite sheets?

2

Q2 What are the publishing permissions called
that allow posting on a user's wall on Facebook?

2

Q3 Which parameter(s) is required for
facebook.login()?

4

Chapter 10 – Optimizing, Testing, and Shipping Your
Games
Pop quiz – publishing applications

Q1 When creating an iOS Distribution
Provisioning file, what distribution method do
you need to use?

2

Q2 Where do you refer to for the status of the
submitted iOS applications?

1

Q3 What is required to build an app for the
Google Play Store?

4

Appendix

[331]

Chapter 11 – Implementing In-App Purchases
Pop quiz – all about In-App Purchases

Q1 What are nonconsumable purchases? 1

Q2 What is true about testing In-App
Purchases?

3

Q3 What type of Provisioning Profile must be
used to test In-App Purchases?

2

[333]

Index
A
accelerometer events

properties 93
Android build

creating 33-35
Android device

app, loading on 35-37
App ID

creating 24-26
Apple Developer website

URL 20
application

building 85
configuring 83
dynamic scaling 84
groups, displaying 85
icon 28, 29
system functions, defining 86
testing, on Android device 33
testing, on iOS device 17

apps, networking
post, sharing to Facebook 260
post, sharing to Twitter 257

arithmetic operators 46
array

table, passing as 52
assignment

about 40
conventions 42
invalid variables 43
valid variables 43

audio
about 169
alterations 180
audio.loadSound() function 169
audio.loadStream() function 170
audio.play() function 170, 171
controlling 174-179
looping 171
playing 172
repeating, with delay 172
simultaneous playback 171

audio.dispose() function
audioHandle 179

audio, fading
about 183
audio.fade() function 183
audio.fadeOut() function 184

audio formats
URL 185

audio.getMaxVolume() function 183
audio.getMinVolume() function 182
audio.getVolume() function 182
audio.loadSound() function

parameters 169
audio.loadStream() function

parameters 170
audioPlayFrequency 184
audio.play() function

parameters 170
audio.rewind() function

audioHandle 174
channel 174

[334]

audio.setMaxVolume() function
parameters 182

audio.setMinVolume() function
options 181
volume 181

audio.setVolume function
options 181
volume 181

auto-renewing subscriptions
URL 306

B
background display, Panda Star Catcher

about 149
background elements, adding 149, 150

ball collision, with paddle
about 114
ball, bouncing against paddle 114

BBEdit
URL 9

BeebeGames class
used, for loading values 214
used, for saving values 214

block
about 40
used, for printing values 44-46

body properties, Egg Drop game
body.angularDamping 201
body.angularVelocity 201
body.bodyType 202
body.isAwake 200
body.isBodyActive 200
body.isBullet 200
body.isFixedRotation 201
body.isSensor 200
body.isSleepingAllowed 200
body.linearDamping 201

body shapes
examples 109
syntaxes 108

Box2D
URL 88

Breakout
about 78
URL 78

Breakout In-App Purchase Demo
In-App Purchase, testing with 319-323

bricks, game
about 115
removing 116, 117

build configuration
about 83, 250
application permissions (Android) 252
build.settings file, adding 83
Orientation support (Android) 251
Orientation support (iOS) 250
version code field 251, 252
version name field 251, 252

builds
installing 9

button, running
functions 179

C
Certificate Authority (CA) 18
chunk 44
collision events

about 125
game listeners, adding 127
global collision listeners 125
local collision listeners 126

color-coded vector graphics 82
comment 40
Composer API

about 224
game, developing with 224
game file, altering 224-226

concatenation operator 47
configuration

defining 250
content

alignment, xAlign 61
alignment, yAlign 62
scaling 61, 252-254

content size properties
about 71
display.contentHeight 72
display.contentWidth 71
display.statusBarHeight 72
display.viewableContentHeight 72
display.viewableContentWidth 72

[335]

Corona
about 57
activating, on Mac OS X 2-5
activating, on Windows 5, 6
downloading 1, 2
installing 1, 2
setting up, on Mac OS X 2-5
setting up, on Windows 5, 6

Corona audio system
about 168
maximum number of channels 169
mono sounds, using 169
sound filename, limitations on Android 168
sound formats 168
URL 168

Corona debugger (Windows) 7
Corona Docs

URL 224
Corona Labs

URL 277
Corona physics API

about 79
physics simulation, pausing 79
physics simulation, starting 79
setting up 79
URL 88

Corona SDK
about 1
URL 5

Corona simulator 7
Corona store module

used, for creating In-App Purchase 308-317
Corona terminal 7

D
Debugger (Mac) 7
debug messages

viewing 9
directional changes

about 118
ball, updating 118-120

display functions
display.DarkStatusBar 71
display.DefaultStatusBar 70
display.HiddenStatusBar 69
display.TranslucentStatusBar 70

display images
optimizing 74
optimizing, URL 74

display objects
about 54
methods 55, 56
properties 54
scaling, on multiple devices 63, 64

display objects, properties
object.alpha 54
object.anchorX 55
object.anchorY 55
object.contentBounds 55
object.contentHeight 55
object.contentWidth 55
object.height 54
object.isHitTestable 54
object.isVisible 54
object.parent 55
object.rotation 55
object.width 55
object.x 55
object.xScale 55
object.y 55
object.yScale 55

display.setStatusBar(mode) method 69
distribution provisioning profiles

URL 277
Dropbox

URL 35
dynamic image resolution

about 65, 66
shapes, creating 66
text, implementing on screen 68

dynamic image selection 254
dynamic scaling

about 84
config.lua file, adding 84, 85

E
easing library

about 135
examples 135

Egg Drop, game
about 214
activating 209, 210

[336]

background, drawing 193
body, constructing from multiple elements 197
body properties 199
character, creating 197-199
character, moving 190, 191
collisions, handling 199
creating 187, 188
credits screen, adding 243-246
credits screen, creating 243
egg collision, creating 202-204
egg display object 204
egg object, adding 204, 205
eggs, dropping 206
game environment, displaying 192
game lives, creating 195
game play, ending 206-208
heads-up display (HUD), designing 194, 195
heads-up display (HUD), displaying 194
images, adding for game lives 196
levels, adding 246
lives, counting 196
main character, controlling 190
main character, defining 197
main menu, adding 234-238
main menu, creating 234
new main.lua file, adding 227
options menu, adding 239-243
options menu, creating 239
organizing 226
pausing 220-223
postcollisions, adding 199
score, setting 192
score, updating 191
starting 209
touch events, adding 191
variables, setting up 189, 190
variables, starting 189

End-user License Agreement (EULA) 4
event listeners

activating 125
collision events 125

events
defining 91
register events 91
runtime events 92
touch events 93

expression
about 46
arithmetic operators 46
concatenation operator 47
length operator 48
logical operators 47
operator precedence 48
relational operators 46

F
Facebook

adding, to apps 261-264
Facebook Connect

about 264
dialog box, creating 268
URL 264
used, for posting scores 265-268

files
high score, loading 217-219
high score, saving 217-219
information, saving 214
preloading 184
reading 216
URL 216
writing 216

focused platform gaming 102
functions

about 68
defining 69
display functions 69-71

G
game listeners

adding 127
game messages

displaying 102-104
game play scene

bricks, building 99-102
creating 98
game objects, adding 98

game transitions
about 227
screens, changing 227-229

game upside down
flipping 128, 129

[337]

global collision listeners 125
global variable 40
Google Play Store

about 286
app, signing for 287-289
app, submitting to 290-292
launcher icons, creating 287
promos, adding 293

graphics
animations, turning off 273
group objects 273
image sizes, optimizing 273

groups
displaying 85
display.newGroup() function 86

H
heads-up display. See HUD element
Hello World application

Android build, creating 33
creating 12, 13
creating, for iOS 29
iOS build, creating 29-31
loading, on iOS device 31-33
modifying 14, 15
new font name, applying 15, 16
text objects, adding 16

high-resolution sprite sheets 255, 256
HUD element

about 150
score, displaying 150, 151
timer, displaying 150, 151

I
ImageOptim

URL 273
images

about 56
autoscaling 57
autoscaling, limitations 57
display object properties, adjusting 60
loading 56
placing, on screen 57-60

image sheet API 138-140
image sheets

about 138

URL 138
In-App Purchase

auto-renewing subscriptions 296
consumable 296
creating, Corona store module used 308-317
creating, in iTunes Connect 305-308
free subscriptions 297
implementing 296
multiple Product IDs, handling 318
nonconsumable 296
non-renewing subscriptions 297
other In-App Purchase types, using 323
testing 318
testing, with Breakout In-App

Purchase Demo 319-323
types 296
URL 296
user test accounts 318

iOS application
app icons, prepping 274, 275
building 284-286
building, for distribution in Corona 283
distributing 274
distribution certificate, setting up 276, 277
profile, provisioning for App Store 276, 277
universal iOS build, creating 286
uploading, to Application Loader 284-286

iOS build
creating 29-31

iOS developer certificate
obtaining 17-21

iOS device
adding 22-24
app, loading on 31-33
iTunes 23
registering 23, 24
Xcode 22

iTunes 23
iTunes Connect

about 277
application, managing in 278-283
banking 277
contracts, requesting 277
In-App Purchase, creating 305-308
tax 277
URL 278, 283

[338]

J
Java Development Kit (JDK) 2

L
length operator 48
listeners

defining 91
loading screen

adding 229-233
creating 229

local collision listeners 126
local variable 41
logical operators

about 47
and operator 47
not operator 47

lose condition
creating 123, 124

Lua
about 40
URL 40
variables 40

Lua Glider
URL 9

M
Mac OS X

Corona, activating on 2-5
Corona, setting up on 2-5
simulator, used on 7

memory efficiency
about 272
considerations 272, 273
graphics 273

memory management
about 179
audio.dispose() function 179
audio, disposing 180

memory usage check
URL 272

memory warnings, iOS devices
URL 74

menu screens
creating 96

help screen, creating 97
main menu screen, adding 96, 97

methods 54
modes, physics engine 80-82

N
native.showWebPopup() function

parameters 264

O
object methods

object:addEventListener() 91
object:removeEventListener() 91

objects
about 54
display objects 54
moving 108
removing, from scene 114, 115
variable references 115

onBuyLevel2Touch(event) function 317
Open Audio Library (OpenAL) 168
operator precedence 48
options, audio.play() function

parameters 170
Oracle

URL 6
Orientation support

in Android 251
in iOS 250

Outlaw
URL 9

P
paddle movement

about 111
paddle, dragging in simulator 111, 112
paddle, moving with accelerometer 113

Panda Star Catcher
about 134, 140
display objects, organizing 161
game, initializing 164, 165
game over screen, displaying 147-149
game, starting 142-164
layers, reordering 162

[339]

panda character, creating 154-156
panda, launching 159-161
panda, reloading on stage 145, 146
power shot, creating 153
score, tracking 146
setting up 140
star collisions, creating 157, 158
star count, tracking 158
stars, creating 162-164
time, notifying 147
timer, setting up 152, 153
variables, setting up 141, 142

parameters, body shapes 109
patents 185
paths

obtaining, to files 216
physical bodies

implementing, to brick objects 108
physics.addBody() 108, 109

physics
physics.getGravity 79
physics.pause() 79
physics.setDrawMode 80-82
physics.setGravity 79
physics.setPositionIterations 82
physics.setScale 80
physics.setVelocityIterations 83
physics.start() 79
physics.stop() 79
tilt-based gravity 80

physics.addBody()
physics, starting for ball 110
physics, starting for paddle 110

provisioning profile
about 26
creating 27, 28

R
register events 91
relational operators 46
return function

parameters 134, 135
royalties 185
runtime configuration

about 60
content alignment 61

content, scaling 61
frame rate control 63
image resolution 62, 63

runtime events
about 92
accelerometer 93
enterFrame 93

S
sample code 7
shapes

creating 66
display.newCircle method 66
display.newRect method 66
display.newRoundedRect method 66

simulator
about 7
device shell, using 8
sample project, viewing 8
used, on Mac 7
used, on Windows 7

sounds, controlling
about 173
audio.pause() function 173
audio.resume() function 173
audio.rewind() function 173, 174
audio.stop() function 173

sprite
about 138
image sheet API 138-140

stage object 115
statements 40
store.init() function

about 297
event.transaction object 298

store.loadProducts() function
about 299
event.invalidProducts 300
event.products 300
parameters 299

store module, Corona
about 297
store.canMakePurchases function 301
store.finishTransaction() function 301
store.init() function 297

[340]

store.loadProducts() function 299
store.purchase() function 301
store.restore() function 302
URL 297

strings
about 49
quoting 49
quoting, ways 49
working with 50, 51

Sublime Text
URL 9

system functions
system.getInfo() 86, 87
system.setAccelerometerInterval() 87
variables, creating for game 88-91
working with 86

T
table

about 51
contents, altering 52
passing, as array 52
populating 53, 54

table fields 41
text

implementing, onscreeen 68
text display objects

color, setting 68
size, setting 68
text fields, setting 68

text editor
selecting 9

TextMate
URL 9

TextWrangler
URL 9

timed functions
about 136
timer function 136, 137

tostring() method 123
touch events

about 93
tap 94
touch (single touch) 93, 94

transaction object
read-only properties 298

transitioning levels
about 120
adding 123
changing 121, 122
resetting 121, 122

transition library 134
transitions

about 94, 95
parameters 95
transition.from() 94
transition.to() 94

Twitter
adding, to apps 257-260
URL 257

U
Unique Device Identification (UDID) 22
unpackValidProducts() function 317

V
values

boolean 43
functions 44
nil 43
numbers 43
printing, with blocks 44-46
string 43
tables 44
types 43

variable references 115
variables

about 40
assignment conventions 42
creating, for game 88-91
global variable 40
local variable 41
table fields 41

vector objects
fill color 67
stroke color, setting 67
strokes, applying 67
stroke width, setting 67

[341]

volume control, audio system
audio.getMaxVolume() function 183
audio.getMinVolume() function 182
audio.getVolume() function 182
audio.setMaxVolume() function 181
audio.setMinVolume() function 181
audio.setVolume() function 180

W
win condition

creating 123, 124
Windows

Corona, activating on 5, 6
Corona, setting up on 5, 6
simulator, used on 7

workflow
memory, using 72
optimizing 72

X
Xcode

about 22
downloading 10, 11
installing 10, 11

Thank you for buying
Corona SDK Mobile Game
Development Beginner's Guide
Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.PacktPub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss it
first before writing a formal book proposal, then please contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.PacktPub.com

Corona SDK Mobile Game
Development Beginner's Guide
ISBN: 978-1-84969-188-8 Paperback:408 pages

Create monetized games for iOS and Android with
minimum cost and code

1. Build once and deploy your games to both iOS
and Android.

2. Create commercially successful games by
applying several monetization techniques
and tools.

3. Create three fun games and integrate them with
social networks such as Twitter and Facebook.

Corona SDK Application Design
ISBN: 978-1-84969-736-1 Paperback: 98 pages

A quick and easy guide to creating your very own mobile
apps with Corona SDK

1. Build apps that can be used on multiple platforms.

2. Test your apps and publish them on GooglePlay and
Apple's App store.

3. Develop your own apps with the help of
interactive examples.

Please check www.PacktPub.com for information on our titles

Source SDK Game Development
Essentials
ISBN: 978-1-84969-592-3 Paperback: 294 pages

Develop engaging and immersive mods with Source SDK

1. Create maps and mods using the tools provided
with Source SDK.

2. Learn how to use Hammer to create your own
game worlds.

3. Create goal-driven A.I. sequences and scripts.

4. Master Source SDK tools with ease with step by
step tutorials.

Developing Mobile Games with
Moai SDK
ISBN: 978-1-78216-506-4 Paperback: 136 pages

Learn the basics of Moai SDK through developing games

1. Develop games for multiple platforms with a single
code base.

2. Understand the basics of Moai SDK.

3. Build two prototype games including one
with physics.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Corona SDK
	Downloading and installing Corona
	Time for action – setting up and activating Corona on Mac OS X
	Time for action – setting up and activating Corona on Windows
	Using the simulator on Mac and Windows
	Time for action – viewing a sample project in the simulator
	Choosing a text editor
	Developing on devices
	Time for action – downloading and installing Xcode
	Time for action – creating a Hello World application in two lines of code
	Time for action – modifying our application
	Time for action – applying a new font name to our application
	Testing our application on an iOS device
	Time for action – obtaining the iOS developer certificate
	Adding iOS devices
	Xcode
	iTunes

	Time for action – adding/registering your iOS device
	Time for action – creating an App ID
	Time for action – creating a provisioning profile
	Application icon

	Creating the Hello World build for iOS
	Time for action – creating an iOS build
	Time for action – loading an app on your iOS device
	Testing our application on an Android device
	Creating the Hello World build for Android
	Time for action – creating an Android build
	Time for action – loading an app on your Android device
	Summary

	Chapter 2: Lua Crash Course and the
Corona Framework
	Lua to the rescue
	Valuable variables
	Global variables
	Local variables
	Table fields (properties)

	Assignment conventions
	Types of values
	Time for action – printing values using blocks
	Expressions
	Arithmetic operators
	Relational operators
	Logical operators
	Concatenation
	The length operator
	Precedence

	Strings
	Quoting strings

	Time for action – getting our hands full of strings
	Tables
	Passing a table as an array
	Altering contents in a table
	Populating a table

	Objects
	Display objects
	Display properties
	Object methods

	Images
	Loading an image
	Image autoscaling

	Time for action – placing images on screen
	Runtime configuration
	Dynamic content scaling
	Dynamic content alignment
	Dynamic image resolution
	Frame rate control

	Time for action – scaling display objects on multiple devices
	Dynamic resolution images
	Time for some shapes
	Applying stroke width, fill color, and stroke color

	Text, text, text
	Applying color and string value

	What are functions?
	Defining a function
	More display functions
	Content size properties

	Optimize your workflow
	Use memory efficiently

	Optimize your display images
	Summary

	Chapter 3: Building Our
First Game – Breakout
	Breakout – bringing back old-school gaming
	Understanding the Corona physics API
	Setting up the physics world
	Starting, pausing, and stopping the physics engine
	physics.setGravity
	physics.getGravity
	Tilt-based gravity
	physics.setScale
	physics.setDrawMode
	physics.setPositionIterations
	physics.setVelocityIterations

	Configuring the application
	Time for action – adding the build.settings file
	Time for action – adding the config.lua file
	Building the application
	Displaying groups
	display.newGroup()

	Working with system functions
	system.getInfo()
	system.setAccelerometerInterval()

	Time for action – creating variables for the game
	Understanding events and listeners
	Register events
	Runtime events
	enterFrame
	Accelerometer

	Touch events
	Touch (single touch)
	tap

	Transitions
	Creating menu screens
	Time for action – adding the main menu screen
	Creating the game play scene
	Time for action – adding game objects
	Time for action – building bricks
	Red alert!
	Time for action – displaying game messages
	Summary

	Chapter 4: Game Controls
	Moving in the up direction
	Let's get even more physical
	physics.addBody()

	Time for action – starting physics for the paddle and ball
	Paddle movement
	Time for action – dragging the paddle in the simulator
	Time for action – moving the paddle with the accelerometer
	Ball collision with the paddle
	Time for action – making the ball bounce against the paddle
	Removing objects from the scene
	Variable references

	Brick by brick
	Time for action – removing the bricks
	Directional changes
	Time for action – updating the ball
	Transitioning levels
	Time for action – resetting and changing levels
	You win some, you lose some
	Time for action –making win and lose conditions
	Activating event listeners
	Collision events
	Global collision listeners
	Local collision listeners

	Time for action – adding game listeners
	The results are in!
	Summary

	Chapter 5: Animating Our Game
	Panda Star Catcher
	Let's get everything moving
	Transitions
	Easing

	The value of timed functions
	Timers

	What are image sheets?
	It's sprite mania!
	Image sheet API

	Game time!
	Time for action – setting up the variables
	Let's start the round
	Time for action – starting the game
	Poof! Be gone!
	Time for action – reloading the panda on the stage
	Earning some points
	Time for action – tracking the score
	When the game ends
	Time for action – displaying the game over screen
	Background display
	Time for action – adding the background elements
	Heads up!
	Time for action – displaying the timer and score
	Time after time
	Time for action – setting up the timer
	It's so glowy
	Time for action – making the power shot
	Pandas!
	Time for action – creating the panda character
	Starry skies
	Time for action – creating star collisions
	Screen touches
	Time for action – launching the panda
	Organizing display objects
	Time for action – reordering layers
	Creating stars
	Time for action – creating stars in the level
	Starting the game
	Time for action – initializing the game
	Summary

	Chapter 6: Playing Sounds and Music
	Corona audio system
	Sound formats
	Sound filename limitations on Android
	Mono sounds at their best
	Maximum number of simultaneous channels

	Time to play
	audio.loadSound()
	audio.loadStream()
	audio.play()
	Looping
	Simultaneous playback

	Time for action – playing audio
	Time to take control
	audio.stop()
	audio.pause()
	audio.resume()
	audio.rewind()

	Time for action – controlling audio
	Memory management
	audio.dispose()

	Alterations to audio
	Volume control
	audio.setVolume()
	audio.setMinVolume()
	audio.setMaxVolume()
	audio.getVolume()
	audio.getMinVolume()
	audio.getMaxVolume()

	Fading audio
	audio.fade()
	audio.fadeOut()

	Performance tips
	Preloading phase
	audioPlayFrequency
	Patents and royalties

	Summary

	Chapter 7: Physics – Falling Objects
	Creating our new game – Egg Drop
	Time for action – setting up the variables
	Time for action – moving the character
	Time for action – setting the score
	Time for action – drawing the background
	Time for action – designing the HUD
	Time for action – counting the lives
	Time for action – creating the character
	Adding postcollisions
	Collision handling

	Body properties
	body.isAwake
	body.isBodyActive
	body.isBullet
	body.isSensor
	body.isSleepingAllowed
	body.isFixedRotation
	body.angularVelocity
	body.linearDamping
	body.angularDamping
	body.bodyType

	Time for action – creating the egg collision
	Time for action – adding the egg object
	Time for action – making the egg drop
	Time for action – calling game over
	Time for action – activating the game
	Summary

	Chapter 8: Operation Composer
	Continuation of Egg Drop
	Data saving
	BeebeGames class for saving and loading values
	Getting paths to files
	Reading files
	Writing files

	Time for action – saving and loading the high score
	Pausing the game
	Time for action – pausing the game
	The Composer API
	Game development with the Composer API

	Time for action – altering the game file
	Organizing the game
	Time for action – adding the new main.lua file
	New game transitions
	Time for action – changing screens after the game is over
	Creating a loading screen
	Time for action – adding the loading screen
	Creating a main menu
	Time for action – adding a main menu
	Creating an options menu
	Time for action – adding an options menu
	Creating a credits screen
	Time for action – adding a credits screen
	Summary

	Chapter 9: Handling Multiple Devices and Networking Your Apps
	Return to configuration
	Build configuration
	Orientation support (iOS)
	Orientation support (Android)
	Version code and version name (Android)
	Application permissions (Android)

	Content scaling on an easier level
	The best of both worlds

	The deeper meaning of dynamic image selection
	High-resolution sprite sheets

	Networking your apps
	Time for action – adding Twitter to your apps
	Time for action – adding Facebook to your apps
	Facebook Connect
	Time for action – posting scores using Facebook Connect
	Summary

	Chapter 10: Optimizing, Testing,
and Shipping Your Games
	Understanding memory efficiency
	Graphics
	Group objects
	Turning off animations when they're not being used
	Optimizing image sizes

	Distributing iOS applications
	Prepping your app icons

	Time for action – setting up your distribution certificate and provisioning profile for the App Store
	iTunes Connect
	Contracts, tax, and banking

	Time for action – managing your application in iTunes Connect
	Building an iOS application for distribution in Corona
	Time for action – building your application and uploading it to the Application Loader
	The Google Play Store
	Creating launcher icons

	Time for action – signing your app for the Google Play Store
	Time for action – submitting an app to the Google Play Store
	Summary

	Chapter 11: Implementing In-App Purchases
	The wonders of In-App Purchase
	Types of In-App Purchases

	Corona's store module
	store.init()
	event.transaction

	store.loadProducts()
	event.products
	event.invalidProducts

	store.canMakePurchases
	store.purchase()
	store.finishTransaction()
	store.restore()

	Create an In-App Purchase
	Time for action – creating the In-App Purchase in iTunes Connect
	Time for action – using the Corona store module to create an
In-App Purchase
	Testing In-App Purchases
	User test accounts

	Time for action – testing the In-App Purchase with the Breakout In-App Purchase Demo
	Summary

	Appendix: Pop Quiz Answers
	Index

