
www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Couchbase	Essentials

www.allitebooks.com

http://www.allitebooks.org


Table	of	Contents

Couchbase	Essentials

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Getting	Comfortable	with	Couchbase

The	NoSQL	landscape

NoSQL	taxonomies

Installing	Couchbase

Installing	Couchbase	on	Linux

Installing	Couchbase	on	Windows

Installing	Couchbase	on	Mac	OS	X

Ports

Running	Couchbase	for	the	first	time

Exploring	the	Couchbase	Console

www.allitebooks.com

http://www.allitebooks.org


Couchbase	architecture

Couchbase	clusters

Replication

Balancing	and	rebalancing

Couchbase	SDKs

RAM	matters

Summary

2.	Using	Couchbase	CRUD	Operations

The	Couchbase	SDKs

Basic	operations

Connecting	to	your	cluster

Creating	and	updating	a	record

Reading	and	deleting	records

Advanced	CRUD	operations

Temporary	keys

Appending	and	incrementing	data

Storing	complex	types

Concurrency	and	locking

Asynchronous	operations

Durability	operations

Summary

3.	Creating	Secondary	Indexes	with	Views

Couchbase	documents

Couchbase	indexes

MapReduce

Map	functions

Reduce	functions

Couchbase	MapReduce

Basic	mapping

Basic	reducing

Couchbase	views

www.allitebooks.com

http://www.allitebooks.org


Couchbase	Console

Development	views

Design	documents

Creating	a	view

Querying	views

Grouping

Key	queries

Eventual	consistency

Couchbase	SDKs	and	views

Summary

4.	Advanced	Views

Querying	by	type

Nested	collections

Range	queries

Multiple	keys	per	document

Compound	indexes

Grouping	keys

Emitting	values

Querying	with	beer-sample

Querying	all	documents	by	type

Counting	breweries	by	location

Finding	beer	documents	by	brewery

Collated	views

Summary

5.	Introducing	N1QL

Installing	N1QL

Simple	queries

Null	or	missing	properties

String	utilities

Aggregation	and	math

Complex	structures

www.allitebooks.com

http://www.allitebooks.org


Working	with	collections

Joins

SDK	support

Summary

6.	Designing	a	Schema-less	Data	Model

Key	design

Keys,	metadata,	and	RAM

Predictable	keys

Unpredictable	keys

Storing	keys

Key	restrictions

Document	design

Denormalization

Object-to-document	mappings

Data	types

Document	separation

Object	schemas

Schema-less	structure	changes

Object	and	document	properties

Document	relationships

Finalizing	the	schema

Summary

7.	Creating	a	To-do	App	with	Couchbase

A	simple	to-do	schema

Working	with	SDKs

A	brief	overview	of	MVC

Using	SDK	clients

Creating	a	task

Listing	tasks

Showing	only	incomplete	tasks

Nested	tasks

www.allitebooks.com

http://www.allitebooks.org


Summary

A.	Couchbase	SDKs

Couchbase	Java	SDK

Current	version

How	to	obtain	it

The	basics

Couchbase	.NET	SDK

Current	version

How	to	obtain	it

The	basics

Couchbase	PHP	SDK

Current	version

How	to	obtain	it

The	basics

The	Couchbase	Node.js	SDK

Current	version

How	to	obtain	it

The	basics

Couchbase	Python	SDK

Current	version

How	to	obtain	it

The	basics

Couchbase	Ruby	SDK

Current	version

How	to	obtain	it

The	basics

Couchbase	C	SDK

Current	version

How	to	obtain	it

Index

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Couchbase	Essentials

www.allitebooks.com

http://www.allitebooks.org




Couchbase	Essentials
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2015

Production	reference:	1200215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-449-3

www.packtpub.com

http://www.packtpub.com




Credits
Author

John	Zablocki

Reviewers

Roy	Enjoy

Philip	Hanson

Aleksandar	Mićović

Chris	Wilkinson

Commissioning	Editor

Pramila	Balan

Acquisition	Editors

Richard	Gall

Richard	Brookes-Bland

Content	Development	Editor

Kirti	Patil

Technical	Editors

Shashank	Desai

Rikita	Poojari

Copy	Editor

Vikrant	Phadke

Project	Coordinator

Nidhi	Joshi

Proofreaders

Safis	Editing

Maria	Gould

Paul	Hindle

Indexer

Rekha	Nair

Production	Coordinator

Nilesh	R.	Mohite

Cover	Work



Nilesh	R.	Mohite





About	the	Author
John	Zablocki	is	the	director	of	information	technology	at	EF	High	School	Exchange
Year	in	Cambridge,	Massachusetts,	USA.	Previously,	he	worked	at	Couchbase	Inc.	as	a
developer	advocate,	maintaining	the	.NET	SDK	and	delivering	training	to	customers	and
users	alike.	John	is	the	author	of	O’Reilly’s	Orchard	CMS.	He	is	a	frequent	presenter	at
community	events	and	has	run	Code	Camps	and	user	groups.	He	holds	a	Master’s	degree
in	computer	science	from	Rensselaer	at	Hartford,	where	he	became	an	enthusiast	of	open
source	technology.	John	can	be	approached	online	at	http://about.me/johnzablocki	and
around	Cambridge	with	his	daughter,	Mary	Katherine;	his	dog,	Lady;	and	his	Fender
Jaguar.

http://about.me/johnzablocki




About	the	Reviewers
Roy	Enjoy	started	to	improve	his	geeky	skills	with	a	Commodore	64,	some	QBasic,	and
lots	of	Boulderdash.	Then,	the	Internet	exploded	after	bulletin	board	systems.	Since	it	is
always	a	shovel	man	who	gets	paid	first	in	a	gold	rush,	he	decided	to	thrive	within	web
technologies.

After	finishing	courses	in	a	couple	of	IT-oriented	schools	and	playing	with	a	large	number
of	different	languages,	frameworks,	and	databases,	he	worked	in	different	parts	of	the
world,	including	India,	Australia,	Turkey,	the	Netherlands,	and	Serbia.	He	is	currently
living	in	Australia,	and	he	is	trying	to	learn	3D	animation	/	VFX	programming	and
computer-generated	imagery	these	days.

As	an	open	source	evangelist,	Roy	maintains	an	API	documentation	and	source	code
search	engine	for	the	Python	programming	language,	named	pydoc.net,	which	is	also	an
open	source	project.

Philip	Hanson	is	a	full-time	professional	software	developer	with	a	diverse	background
ranging	from	micro-ISV	SaaS	to	capital-e	enterprise	development.	He	continues	to
experiment	with	new	languages,	techniques,	and	approaches	to	solve	the	world’s
problems.

Aleksandar	Mićović	started	programming	at	the	age	of	12.	Many	years	later,	he
graduated	from	the	University	of	Toronto	with	a	degree	in	computer	science.	Today,	he’s	a
professional	software	engineer	and	consultant	in	Belgrade,	Serbia,	with	clients	spanning
across	the	globe.	When	he’s	not	working,	he	enjoys	cooking,	reading,	and	traveling.	You
can	contact	him	at	http://aleksandarmicovic.com/.

Chris	Wilkinson	has	spent	years	in	the	software	development	industry	after	attaining	a
degree	in	Computer	Games	Programming	at	the	University	of	Teesside.	After	making	the
move	into	business	IT	upon	leaving	the	university,	Chris	has	worked	all	over	the	world,
developing	Java	applications	for	businesses	in	many	verticals,	including	finance,
aerospace,	and	the	public	sector.	Specialized	in	web	and	big	data	technologies,	Chris	now
manages	the	development	team	for	Askaris	Information	Technology,	a	new	start-up
business	developing	software	for	some	of	the	largest	oilfield	drilling	companies	in	the
world.

http://aleksandarmicovic.com/


www.allitebooks.com

http://www.allitebooks.org


www.PacktPub.com



Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib


Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser



Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com




Preface
Not	too	long	ago,	I	was	fortunate	enough	to	have	worked	for	Couchbase	Inc.	with	the
developer	solutions	team.	In	my	role	as	a	developer	advocate,	I	had	two	primary
responsibilities:	maintaining	the	Couchbase	.NET	SDK	and	training	Couchbase	users	on
how	to	develop	for	Couchbase	Server.

During	my	tenure	on	the	SDK	team,	I	worked	with	hundreds	of	developers	around	the
world	who	were	using	Couchbase	Server	for	a	wide	variety	of	solutions.	Some	were	using
Couchbase	Server	for	its	distributed	caching	abilities,	while	others	needed	a	model	that
could	support	near-real-time	analytics	over	a	flexible	schema.	I	was	always	impressed
with	Couchbase	Server’s	ability	to	handle	such	a	vast	number	of	development	scenarios.

Through	the	countless	meetings	I	had	with	the	development	community	and	customers
alike,	it	became	clear	to	me	that	NoSQL	is	far	from	a	technology	fad.	Along	with	cloud
computing	and	mobile	services,	NoSQL	has	become	a	part	of	the	fabric	from	which
modern	applications	are	woven.

As	with	relational	databases	before	them,	NoSQL	databases	such	as	Couchbase	Server	are
quickly	nearing	the	“required	knowledge”	status	for	application	developers.	Modern
applications	that	need	to	reach	a	massive	scale	or	require	greater	data	model	flexibility
have	found	success	with	non-relational	systems.

It	is	a	tremendous	opportunity	to	be	able	to	share	my	experience	at	Couchbase	with	you,
the	reader.	This	is	an	exciting	technology,	and	this	book	contains	the	tools	you	need	to	get
started	with	Couchbase	development.



What	this	book	covers
Chapter	1,	Getting	Comfortable	with	Couchbase,	introduces	Couchbase	Server	and
provides	details	on	obtaining	and	installing	it.	It	also	walks	you	through	setting	up
Couchbase	Server	for	the	first	time.

Chapter	2,	Using	Couchbase	CRUD	Operations,	provides	an	overview	of	basic	Couchbase
Server	operations.	Basic	SDK	usage	is	demonstrated	while	exploring	the	various	CRUD
API	methods.

Chapter	3,	Creating	Secondary	Indexes	with	Views,	explains	in	detail	the	programming
model	of	MapReduce.	After	this	exploration,	the	basics	of	using	MapReduce	within
Couchbase	Server	are	explored.

Chapter	4,	Advanced	Views,	explores	common	view	patterns	for	Couchbase	development,
following	on	the	previous	chapter’s	discussion	of	MapReduce.

Chapter	5,	Introducing	N1QL,	introduces	the	prerelease	Couchbase	query	language,
N1QL.

Chapter	6,	Designing	a	Schema-less	Data	Model,	discusses	many	of	the	design	options
that	must	be	considered	when	building	Couchbase	Server	applications.	Both	key/value	and
document	schemas	are	covered.

Chapter	7,	Creating	a	To-do	App	with	Couchbase,	provides	an	overview	on	how	to
convert	Couchbase	Server	to	a	basic	to-do	application.

Appendix,	Couchbase	SDKs,	contains	a	brief	introduction	to	the	official	Couchbase
SDKs,	including	installation	and	basic	usage.





What	you	need	for	this	book
In	order	to	follow	along	with	the	examples	in	this	book,	you	will	need	to	install	Couchbase
Server	3.0.x.	Installer	packages	are	available	for	Windows,	Mac	OS	X,	and	multiple	Linux
distributions.	Couchbase	Server	comes	in	both	Community	and	Enterprise	editions,	and
either	will	work.

The	SDK	examples	shown	in	this	book	mostly	use	the	.NET	and	Couchbase	Server	SDKs,
though	any	SDK	can	be	used.	To	try	out	the	SDK	samples,	you	will	need	to	have	a
development	environment	for	your	chosen	language	and	the	SDK	itself.	Details	on	where
to	obtain	and	install	both	the	server	and	the	clients	are	provided	early	in	the	book.



www.allitebooks.com

http://www.allitebooks.org


Who	this	book	is	for
This	book	is	for	those	application	developers	who	want	greater	flexibility	and	scalability
for	their	software.	Whether	you	are	familiar	with	other	NoSQL	databases	or	have	used
only	relational	systems,	this	book	will	provide	you	with	enough	background	for	you	to
proceed	at	your	own	pace.	If	you	are	new	to	NoSQL	document	databases,	the	design
discussions	and	introductory	material	will	give	you	the	information	you	need	to	get	started
with	Couchbase.





Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	explanations	of	their
meanings.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“To
update	an	existing	document,	we	use	the	replace	operation.”

A	block	of	code	is	set	as	follows:

function(doc,	meta)	{
		emit(meta.id,	null);
}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

function(doc,	meta)	{
		if	(doc.type	==	"beer")	{
				emit(null,	null);
		}
}

Any	command-line	input	or	output	is	written	as	follows:

./cbq-engine–couchbase	http://localhost:8091

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Brewery	documents	in
the	beer-sample	bucket	contain	address	information.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.





Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors




Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support


Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

www.allitebooks.com

mailto:copyright@packtpub.com
http://www.allitebooks.org


Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com




Chapter	1.	Getting	Comfortable	with
Couchbase
Couchbase	Server	has	quickly	emerged	as	one	of	the	leading	NoSQL	databases.	Known
for	powering	apps	and	sites	such	as	Viber,	PayPal,	LinkedIn,	and	eBay,	Couchbase	Server
easily	serves	up	terabytes	to	petabytes	of	data.	Whether	used	as	a	distributed	cache	or	a
document	database,	Couchbase	Server	has	become	a	significant	contributor	to	the	growth
of	the	Internet	as	a	whole.

Long	before	the	term	NoSQL	started	to	grace	the	pages	of	blogs,	tech	journals,	and
investor	balance	sheets,	a	technology	called	Memcached	was	providing	life	support	for
relational	databases.	As	these	systems	attempted	to	reach	the	scale	demanded	by	modern,
Internet-based	applications,	it	was	clear	that	Memcached	could	help.	Still	widely	used
today,	Memcached	is	a	distributed	key/value	store	used	to	provide	a	caching	layer	for
applications.

Some	of	the	developers	on	the	open	source	Memcached	project	saw	the	potential	to	take
the	system	beyond	a	simple	cache.	They	introduced	new	features	such	as	a	binary
protocol,	better	cluster	management,	and	most	importantly,	persistence.	This	new	and
durable	offshoot	of	Memcached	became	known	as	Membase.	A	company	of	the	same
name	was	formed	to	support	the	project	(it	is	still	open	source)	and	provide	customers
with	support	in	their	production	environments.

Membase	quickly	gained	popularity	with	developers	who	needed	massive	scalability.
From	start-ups	to	stalwarts,	this	new	database	was	becoming	one	of	the	disruptive
technologies	that	would	forever	change	the	way	applications	store	data.	Around	the	same
time,	developers	were	starting	to	demand	more	flexibility	from	their	databases.	A
seemingly	infinite	number	of	web	applications	were	built	using	Object	Relational
Mappers	(ORM)	such	as	ActiveRecord,	Hibernate,	and	SQLAlchemy.

ORMs	attempt	to	simplify	the	object-to-relational	mapping	problems	often	associated	with
working	with	a	highly	normalized	database.	The	basic	problem	is	that	the	relational	model
does	not	always	look	like	an	object-oriented	model.	ORMs	hide	the	underlying	data	model
from	the	application	layer,	often	by	way	of	a	significant	amount	of	configuration.	ORMs
also	provide	relational	databases	with	a	new	lifeline.

One	open	source	project	that	attempted	to	solve	the	object-to-relational	mapping	problem
by	doing	away	with	the	relational	side	of	things	was	CouchDB.	The	developers	of
CouchDB	built	a	database	that,	in	their	own	words,	was	for	developers	and	by	developers.
Tables,	columns,	and	rows	were	replaced	by	documents	stored	as	JSON.	The	net	result
was	a	system	that	stored	data	in	structures	similar	to	those	found	in	the	application	layer.

Eventually,	as	both	Membase	and	CouchDB	matured,	the	developers	of	both	systems
came	together	for	what	is	one	of	the	most	important	chocolate-meets-peanut-butter
moments	in	database	history.	The	extremely	scalable	and	reliable	Membase	would
eventually	be	married	to	the	ever-flexible	and	developer-friendly	CouchDB.	Each	database



would	take	part	of	its	maiden	name	in	the	merger,	which	was	called	Couchbase.

Today,	Couchbase	is	responsible	for	developing	and	supporting	Couchbase	Server.	The
combined	products	still	remain	open	source	but	are	no	longer	tied	to	their	parent	projects.
While	many	of	the	features	of	Couchbase	were	inspired	by	CouchDB	and	Memcached,	the
code	is	anything	but	a	“copy-and-paste”	from	the	parent	projects.	Make	no	mistake	about
it!	Couchbase	is	a	standalone	product	optimized	to	be	better	than	two	otherwise	great
projects.



The	NoSQL	landscape
In	the	crowded	market	of	NoSQL	databases,	Couchbase	Server	is	one	of	the	dominant
players.	Its	performance	sets	the	bar	high	for	its	competitors.	The	rich	feature	set	of
Couchbase	Server	also	sets	a	new	standard	for	what	is	expected	from	NoSQL	databases.
As	NoSQL	is	still	a	nascent	field,	Couchbase	Server	seems	destined	to	influence	its	future.

All	relational	databases	tend	to	be	the	same	animal.	Whether	you’re	using	SQL	Server	or
MySQL,	you	could	expect	to	find	the	same	basic	set	of	features.	You	store	your	data	in
rows	with	strictly	defined	columns	inside	a	table.	You	then	modify	your	data	using	SQL’s
INSERT	and	UPDATE	statements.	You	retrieve	your	data	using	SQL	queries.	In	contrast,
NoSQL	databases	vary	wildly	from	one	system	to	the	next.	However,	there	are	some
features	you	would	expect	to	find	across	various	NoSQL	taxonomies.

Perhaps	the	most	common	feature	in	NoSQL	databases	is	the	lack	of	an	imposed	structure
on	your	data.	While	in	practice,	structures	tend	to	be	defined	by	your	application	layer,	it
is	permissible	that	your	NoSQL	records	are	like	snowflakes—no	two	records	are	the	same.
This	flexibility	has	made	NoSQL	databases	popular	with	developers,	who	no	longer	have
to	work	within	the	constraints	of	a	relational	schema	and	ORMs.

Another	feature	(or	lack	of	a	feature)	that	you	could	expect	to	find	in	NoSQL	databases	is
the	lack	of	explicit	ACID	transactions.	In	other	words,	you	won’t	be	able	to	wrap	a	series
of	insertions	or	updates	within	a	transaction.	However,	this	does	not	mean	that	ACID
properties	are	not	supported	in	NoSQL	databases.

Atomicity	is	widely	supported	in	NoSQL	databases.	Partial	writes	are	not	possible.	Either
an	entire	record	is	written	or	nothing	is	written.	Consistency	in	NoSQL	ranges	from
eventual	(delayed)	consistency	to	strict	consistency.	Isolation	is	implicit,	which	means
that	a	read	will	never	return	values	from	an	update	in	progress.	Like	consistency,
durability	varies	within	NoSQL	databases	and	is	generally	tunable.

The	importance	of	full	ACID	compliance	in	NoSQL	is	somewhat	diminished.	Often,	the
need	for	transactions	is	dictated	by	the	relational	model,	where	related	data	is	stored	in	one
or	more	tables.	In	NoSQL	databases,	it	is	common	to	write	related	data	to	a	single
structure	or	record.	In	other	words,	a	single	NoSQL	update	or	insertion	might	require
several	updates	or	inserts	in	the	relational	world.

This	modeling	difference	also	reduces	the	need	for	features	such	as	joins	or	strict
referential	integrity.	When	records	are	stored	in	a	denormalized	fashion,	a	single	query
may	bring	back	the	required	object	graph.

Of	course,	it’s	likely	that	you	will	still	need	to	make	use	of	relational	concepts	in	your
NoSQL	data	model.	Full	denormalization	is	often	impractical	in	NoSQL.	In	these	cases,
the	applications	that	consume	the	data	face	an	increased	burden	of	being	responsible	for
handling	the	details	that	a	relational	database	typically	would	have	dealt	with.

Beyond	these	basic	features,	NoSQL	systems	tend	to	become	more	and	more	disparate.
Instead,	you	will	be	more	likely	to	find	similar	features	between	databases	in	the	same



NoSQL	category.	For	example,	CouchDB	and	MongoDB	are	both	document	stores.	While
they	are	fundamentally	very	different	databases,	they	are	more	similar	to	each	other	than
either	of	them	is	to	a	graph	database	such	as	Neo4j	or	a	column	database	such	as
Cassandra.	In	the	next	section,	I’ll	discuss	the	different	categories	of	NoSQL	databases
and	describe	how	Couchbase	fits	into	the	big	picture.





NoSQL	taxonomies
There	are	many	different	categories	of	NoSQL	database.	A	broad	definition	of	NoSQL
might	consider	everything	from	XML	databases	to	cloud-based	BLOB	storage	as	parts	of
the	NoSQL	landscape.	However,	in	practice	only	a	few	NoSQL	databases	are	widely	used,
with	the	vast	majority	of	developer	mind	share	belonging	to	only	two	categories,
key/value	and	document	stores.

Key/value	stores	are	popular	because	of	their	simplicity.	Records	are	stored	and	retrieved
via	a	key	much	like	programmers	use	hash	tables	or	dictionary	structures	to	store	data	in
the	memory.	These	systems	tend	to	be	highly	performant.

Document	stores	are	arguably	the	most	popular	of	NoSQL	databases,	driven	primarily	by
the	flexibility	they	offer.	Documents	are	typically	stored	in	a	JSON	or	JSON-like
structure.	JSON,	being	a	notation	for	describing	object	graphs,	is	a	natural	fit	for	object-
oriented	applications.

While	nearly	all	popular	NoSQL	databases	fall	into	one	category	or	another,	Couchbase	is
both	a	key/value	and	a	document	store.	Records	are	written	to	and	read	from	Couchbase
using	a	key/value	API.	When	those	records	are	stored	as	JSON	documents,	Couchbase
provides	document	indexing,	allowing	queries	on	arbitrary	properties	in	the	document
structure.

Importantly,	Couchbase	does	not	sacrifice	features	to	achieve	its	duplicity.	Though	it
might	seem	that	such	a	hybrid	system	would	necessarily	be	lacking	in	either	its	key/value
or	document	capabilities,	Couchbase	feels	complete.	As	a	key/value	store,	Couchbase
offers	a	rich	API	based	on	its	Membase	heritage.	As	a	document	store,	Couchbase
supports	the	most	important	features	from	its	“pure	document	relative”	—	CouchDB.

Two	data	storage	models	also	provide	developers	with	a	great	deal	of	flexibility.
Applications	may	be	optimized	using	different	approaches	for	different	features;	for
example,	a	social	game	might	make	use	of	Couchbase’s	key/value	interface	to	achieve
scaling	when	collecting	or	serving	vast	amount	of	data.	That	same	application	could	then
use	the	document	interface	to	retrieve	aggregate	statistics	on	players.





Installing	Couchbase
There	are	two	editions	of	Couchbase	available	for	download	—	Community	and
Enterprise.	While	both	editions	are	largely	the	same,	there	are	two	key	differences.	The
Community	Edition	is	free	to	use	for	development	and	in	your	production	systems.
However,	there	is	no	guarantee	that	patches	(critical	or	small)	will	be	made	to	this	build	in
a	timely	manner.	This	edition	is	intended	primarily	for	development,	or	for	those
developers	who	are	okay	with	relying	on	free	support	(that	is,	the	Couchbase	forums).

The	Couchbase	Server	Enterprise	Edition	requires	the	acceptance	of	an	End	User	License
Agreement	(EULA),	with	the	user	agreeing	to	install	it	on	no	more	than	two	production
nodes.	Use	of	more	than	two	nodes	requires	the	purchase	of	a	support	license.	There	are	a
variety	of	support	levels	available.	Enterprise	Edition	also	receives	priority	patches	and
new	features	ahead	of	the	Community	Edition.	It	is	recommended	for	use	in	mission-
critical	systems.

For	the	examples	in	this	book,	there	are	no	meaningful	differences	between	the	two
editions.	As	such,	we’ll	use	the	Community	Edition.	How	you	install	Couchbase	Server
will	depend	on	your	operating	system.	Once	it	is	installed,	maintaining	and	developing	the
server	is	generally	the	same	experience	on	both	Windows	and	Linux.

To	get	started,	open	your	browser	and	go	to	http://www.couchbase.com/download.	Here,
you’ll	find	the	latest	binaries.	At	the	time	of	writing	this	book,	the	latest	Enterprise	Edition
is	2.5.1	and	the	latest	Community	Edition	is	2.2.0.

www.allitebooks.com

http://www.couchbase.com/download
http://www.allitebooks.org


Installing	Couchbase	on	Linux
The	Couchbase	team	maintains	32-bit	and	64-bit	builds	for	Ubuntu,	CentOS,	and	Red	Hat
Linux.	After	downloading	the	package	on	Ubuntu,	run	the	following	command	to	install
it:

sudodpkg	-icouchbase-server-enterprise_2.2.0_x86_64.deb

For	CentOS	or	Red	Hat	installation,	run	this	command:

sudo	rpm	--install	couchbase-server-enterprise_2.2.0_x86_64.rpm



Installing	Couchbase	on	Windows
For	Windows	7,	Windows	8,	and	Windows	Server,	there	is	a	setup	program.	Simply
download	the	installer,	run	the	.exe	file,	and	follow	the	steps	of	the	wizard.	When	you
install	Couchbase	on	a	Windows	machine,	you’ll	see	the	following	prompt:

Ephemeral	port	warning

By	default,	the	highest	port	number	that	TCP	may	assign	to	an	application	requesting	a
user	port	is	5000	on	Windows	systems.	This	value	is	generally	sufficient	for	development
purposes,	but	in	production	deployments,	Couchbase	requires	a	greater	number.	For	the
purpose	of	this	book,	leaving	your	default	settings	as	they	are	is	safe.



Installing	Couchbase	on	Mac	OS	X
Finally,	if	you’re	developing	on	a	Mac,	there	is	a	development-only	build	available.	After
downloading	the	Mac	package,	double-click	to	unzip	it.	Then	drag	the	contents	into	your
Applications	directory.	For	obvious	reasons,	the	Mac	release	is	for	development	only.





Ports
Couchbase	Server	is	constructed	using	a	series	of	components,	each	requiring	access	to	a
different	port.	It’s	common	to	encounter	errors	when	trying	to	use	Couchbase	for	the	first
time,	due	to	blocked	ports.	You’re	more	likely	to	have	fewer	port	restrictions	on	your
development	machine	than	on	your	production	servers,	but	it’s	still	important	to	make	sure
you	have	at	least	ports	8091,	8092,	11210,	and	11211	open.	Running	a	cluster	requires
more	port	access,	but	for	development,	you’ll	need	to	have	the	web	admin	accessible
(8091)	and	the	API	and	client	endpoint	ports	open	(8092,	11210,	and	11211).





Running	Couchbase	for	the	first	time
One	feature	that	really	sets	Couchbase	apart	from	the	other	NoSQL	databases	is	its
administrative	interface.	When	you	install	Couchbase,	you	also	get	this	powerful	web	app
to	manage	your	server.	Moreover,	the	admin	tool	is	simply	a	wrapper	over	a	RESTful
management	API	supported	by	the	server.	In	other	words,	any	action	you	can	perform
with	the	admin	GUI	can	also	be	performed	via	your	favorite	DevOps	tools.

You	can	get	to	the	Couchbase	Server	web	admin	by	opening	your	browser	and	going	to
http://localhost:8091.	If	you’ve	just	completed	installing	Couchbase,	there	may	be	a
brief	delay	between	the	startup	of	the	server	and	the	startup	of	the	admin.	Refresh	a	couple
of	times,	and	you	should	see	something	like	this:

Couchbase	Console	for	new	install

The	Couchbase	Web	Console	provides	a	setup	utility	to	get	your	cluster	up	and	running.
Click	on	the	blue	Setup	button	to	begin.	The	following	screenshot	shows	the
configuration	screen:



Configuring	the	server

The	options	found	in	step	1	of	the	configuration	screen	are	fairly	straightforward.	The	first
two	fields	are	the	paths	where	Couchbase	will	store	data	and	indexes.	The	server	hostname
uniquely	identifies	a	node	in	a	cluster.	I’ll	discuss	clusters	in	more	detail	later	in	this
chapter.	For	now,	you	can	think	of	a	cluster	as	a	collection	of	Couchbase	server	instances,
or	nodes,	with	the	same	buckets.



For	development,	it’s	generally	useful	to	set	this	to	127.0.0.1.	Basically,	you	want	to
ensure	that	whatever	hostname	you	choose,	it	is	not	subject	to	change,	as	could	be	the	case
when	running	in	the	cloud	or	attaching	the	cluster	to	a	network	outside	of	your	home	or
office.

The	final	option	is	whether	to	start	a	new	cluster	or	connect	to	an	existing	cluster.	In	our
case,	we’ll	obviously	be	starting	a	new	cluster.	In	a	production	environment,	you’d	want	to
maximize	the	amount	of	RAM	available	to	your	node.	For	development	purposes,	you	are
free	to	choose	a	lesser	amount.	The	important	thing	to	note	here	is	that	the	amount	of
RAM	you	allocate	will	be	required	by	each	node	in	your	cluster.	If	you	click	on	the	Join	a
cluster	now	option,	you’ll	be	asked	to	provide	the	address	of	a	node	in	the	cluster	and	the
cluster	credentials,	as	shown	here:

Connecting	to	a	new	cluster

Click	on	Next	to	be	brought	to	step	2,	where	you’ll	be	asked	whether	you	want	to	install
one	of	the	two	available	sample	buckets.	We’ll	dig	into	buckets	in	the	next	step,	so	for
now,	just	check	the	beer-sample	bucket.	That’s	the	sample	data	source	we’ll	use	as	we
explore	the	development	APIs.	The	following	screen	shows	the	sample	buckets	to	be
selected:



Sample	buckets

In	step	3,	you’re	prompted	to	configure	the	default	bucket	for	the	new	cluster.	Couchbase
buckets	are	loosely	analogous	to	databases	in	relational	systems.	If	you’ve	used	MySQL,
SQL	Server,	or	any	other	relational	database	server,	you	know	that	you	must	create	an
object	called	a	database	in	which	you’ll	create	your	tables	and	other	database	objects.
Similarly,	with	Couchbase	Server,	a	bucket	is	a	container	for	the	documents	and	indexes
you’ll	store.

You	must	have	at	least	one	bucket	on	your	cluster,	and	during	the	setup	you	are	required	to
create	a	bucket	named	default.	As	you	can	see	in	the	next	screenshot,	you	are	not
allowed	to	change	the	name	of	this	first	bucket.	You	do,	however,	have	other	decisions	to
make	about	the	default	bucket.

www.allitebooks.com

http://www.allitebooks.org


Bucket	configuration

Couchbase,	a	being	of	Membase	and	therefore	of	Memcached	lineage,	fully	supports	the
Memcached	binary	protocol.	What	this	means	is	that	Couchbase	Server	can	be	used	as	a
stand-in	replacement	for	a	Memcached	cluster.	If	you’re	currently	using	Memcached	as	a
distributed	cache	for	your	application,	you	would	be	able	to	replace	it	with	Couchbase
Server	and	a	Memcached	bucket.

If	you	set	the	bucket	type	to	Memcached,	your	bucket	won’t	be	persistent,	and	it	won’t	be
able	to	take	advantage	of	the	document	capabilities	that	Couchbase	provides.	Even	for	use
as	a	distributed	cache,	a	Couchbase	bucket	is	almost	always	the	right	choice.	Couchbase
disk	writes	are	performed	asynchronously,	and	it’s	unlikely	that	your	application	will	be
impeded	by	I/O	problems.	We’ll	stick	to	Couchbase	buckets	for	this	text,	but	it’s	important



to	understand	the	difference	between	these	two	bucket	types.

Because	Couchbase	relies	heavily	on	RAM	to	achieve	its	blazingly	fast	performance,	it’s
important	to	allocate	as	much	RAM	as	possible	to	your	bucket.	I’ll	discuss	Couchbase
Server’s	architecture	towards	the	end	of	this	chapter,	but	for	now,	know	that	more	RAM
generally	means	better	performance.	For	development	purposes,	feel	free	to	allocate	the
minimum	amount	of	RAM	required	for	each	node	(for	instance,	100	MB).

Couchbase	Server	supports	replication	within	your	cluster.	When	you	set	up	a	bucket,	you
may	choose	to	replicate	the	data	to	up	to	three	other	nodes.	Replication	will	also	be
discussed	at	the	end	of	this	chapter.	Since	we	are	using	a	single-node	cluster,	uncheck	the
Enable	option.

Couchbase	allows	you	to	specify	the	number	of	reader/writer	workers	to	allocate	for	a
bucket.	This	setting	exists	to	allow	administrators	to	optimize	disk	I/O.	We’ll	leave	the
default	value,	3,	in	place.	If	you	enable	Flush	on	your	buckets,	you’ll	have	the	ability	to
remove	all	documents	from	a	bucket	with	a	single	command.	This	action	is	like	truncating
all	the	tables	in	your	relational	database,	so	obviously	it	should	be	set	only	when
absolutely	necessary.

In	step	4,	the	wizard	simply	asks	whether	you	wish	to	receive	update	notifications,	and
allows	you	to	sign	up	for	Couchbase’s	community	update	e-mails.	Neither	choice	will
affect	the	setup.	The	fifth	and	final	step	is	to	set	up	a	username	and	password	for	cluster
administration.

After	completing	the	wizard,	you’ll	be	presented	with	a	Cluster	Overview	page.	When
this	page	first	loads,	it’s	possible	that	you’ll	see	a	brief	notification	that	the	node	is	down
while	the	bucket	is	activated.	You’re	also	likely	to	see	a	notification	that	the	sample	bucket
is	being	loaded.	Once	ready,	your	cluster	should	show	as	healthy	with	active	buckets,	as	in
shown	in	the	following	screenshot:



Initialization





Exploring	the	Couchbase	Console
At	this	point,	we’ll	take	a	quick	tour	of	the	other	tabs	found	in	the	Couchbase	Console,
starting	with	the	Server	Nodes	tab.	When	you	click	on	this	view	first,	you’ll	see	a	list	of
all	active	servers	in	your	cluster.	In	our	case,	we	have	only	one	active	server.	For	each	of
the	nodes,	you’ll	also	see	its	status	(Up	or	Down)	and	some	vital	stats	such	as	RAM	and
CPU	usage.	Note	that	in	the	following	screenshot,	I	clicked	on	the	arrow	next	to	the	node
name	to	reveal	additional	details	about	the	node.

You’ll	also	notice	a	button	labeled	Pending	Rebalance	next	to	the	active	servers.	Nodes
that	appear	in	this	list	are	those	that	are	part	of	the	cluster,	but	will	not	be	fully	active	until
they’ve	been	rebalanced.	I’ll	discuss	rebalancing	at	the	end	of	this	chapter.	You’ll	also	see
options	to	trigger	a	rebalance	and	add	another	node	to	the	cluster.

The	Server	Nodes	tab

The	Data	Buckets	tab	lists	all	the	buckets	for	a	cluster.	At	this	point,	you	should	see	both
the	beer-sample	and	default	buckets.	I	expanded	the	beer-sample	bucket	in	the	following
screenshot	to	reveal	more	detailed	information	about	the	bucket.	You’ll	see	options	for
viewing	bucket	documents	and	views.	You	may	edit	your	existing	buckets	or	create	new
buckets.	You’ll	also	see	important	stats	such	as	item	count	and	RAM	and	disk	usage.	We’ll
explore	these	options	in	more	detail	in	the	rest	of	the	book.



The	Data	Buckets	tab

Chapter	3,	Creating	Secondary	Indexes	with	Views,	and	Chapter	4,	Advanced	Views,	will
cover	Views	in	detail,	so	for	now	we’ll	skip	over	this	tab.	Cross-data-center	replication,	or
XDCR,	allows	you	to	create	unidirectional	or	bidirectional	replications	of	two	clusters.
XDCR	is	beyond	the	scope	of	this	book,	but	know	that	you	can	manage	it	here.	The	Log
tab	shows	the	running	server	log.	Some	messages	are	only	for	information,	while	some
expose	failures	on	your	server.	On	the	Settings	tab,	you	can	perform	a	variety	of	tasks
from	adding	a	sample	bucket	to	activating	auto-failover.





Couchbase	architecture
Before	we	move	on	to	developing	with	Couchbase,	it’s	useful	to	understand	the	general
Couchbase	architecture.	While	coding	against	a	single-node	cluster	should	generally	be	no
different	than	coding	against	a	10-node	cluster,	supporting	a	production	application	does
require	deeper	understanding	of	what	could	go	wrong,	as	your	application	needs	to	scale
out.	In	the	following	sections,	I’ll	describe	in	more	detail	some	of	the	concepts	we’ve
already	seen,	and	the	basics	of	how	a	Couchbase	cluster	operates.



Couchbase	clusters
Fundamental	to	all	Couchbase	deployments	is	the	notion	of	a	cluster.	This	is	a	common
term	in	the	NoSQL	world	and	generally	refers	to	a	collection	of	nodes	performing
operations	on	a	data	store	in	tandem.	However,	how	nodes	in	a	cluster	behave	varies
significantly	across	NoSQL	products.	In	some	systems,	all	nodes	are	peers,	with	no
differences.	In	others,	clusters	are	set	up	in	master-slave	configurations.

In	a	Couchbase	cluster,	nodes	are	interchangeable.	Each	node	contains	a	cluster	manager,
which	is	responsible	for	knowing	the	status	of	other	nodes	in	the	cluster,	and	for	allowing
other	nodes	to	know	its	status.	As	each	node	has	its	own	cluster	manager	component,	this
allows	Couchbase	Server	to	scale	out	linearly	with	no	single	point	of	failure.



Replication
One	of	the	most	important	tasks	of	the	cluster	manager	is	to	ensure	that	all	of	the	data	is
available	to	clients.	Couchbase	Server	replication	works	by	making	one	node	the	master
node	for	a	given	document,	while	up	to	three	slave	nodes	maintain	a	replica	of	that
document.	In	case	the	cluster	manager	detects	a	node	failure,	it	is	responsible	for
promoting	replicas	to	the	primary	node.

www.allitebooks.com

http://www.allitebooks.org


Balancing	and	rebalancing
Sharding	is	the	notion	of	distributing	data	evenly	across	the	nodes	of	a	cluster.	In	most
sharded	systems,	the	admin	is	responsible	for	picking	a	shard	key	to	be	used	for	data
distribution.	For	example,	a	Users	table	might	be	sharded	on	a	Username	field.	If	the	shard
key	turns	out	to	be	poorly	distributed	(imagine	30	percent	of	users	having	usernames
starting	with	T),	then	the	nodes	will	not	be	well	balanced.

Couchbase,	in	contrast,	is	auto-sharded	and	guarantees	balance.	Recall	that	Couchbase
documents	are	stored	using	a	key/value	approach.	Though	the	user	supplies	the	key,
Couchbase	SDKs	use	a	strong	and	cryptographic	hash	on	each	key	to	guarantee	that	keys
will	be	evenly	distributed	across	a	cluster.	This	hashing	action	considers	the	topology	of
the	cluster,	which	means	that	whether	there	are	2	or	20	nodes,	the	keys	will	still	be
balanced.

Even	though	the	SDKs	and	the	server	work	together	to	ensure	proper	sharding,	in	case	a
node	(or	nodes)	goes	offline,	that	balance	will	temporarily	be	broken.	This	is	because
replicas	are	promoted.	As	nodes	are	added	or	removed	from	a	cluster,	the	cluster	manager
will	work	to	rebalance	the	data	across	the	nodes.	A	newly	added	node	may	not	be	ready	to
fully	join	the	cluster	until	a	rebalance	has	been	performed.	As	alluded	to	earlier,	this	task
may	be	done	using	the	Couchbase	Console.





Couchbase	SDKs
We’ll	explore	the	Couchbase	SDK	and	relevant	APIs	in	detail	over	the	next	few	chapters.
But	to	complete	our	discussion	on	balancing	and	rebalancing,	it’s	useful	to	understand	the
process	from	client	to	cluster.	When	an	SDK	is	initialized	in	a	client	application,	it	makes
a	persistent	connection	to	the	cluster	over	a	RESTful	API.	This	API	broadcasts	a	JSON
message	containing	the	cluster’s	topology.	As	nodes	are	added	or	removed,	the	cluster
sends	a	new	message	with	an	updated	topology.

This	behavior	sets	Couchbase	apart	from	other	databases,	whether	relational	or
nonrelational.	Most	database	systems	have	a	central	point	of	communication	that	is
responsible	for	client	communications.	Couchbase	owes	some	of	its	massive	throughput	to
its	smart	clients.	Eliminating	the	bottleneck	of	a	man-in-the-middle	allows	performance
levels	to	reach	a	massive	scale.	On	a	cluster	with	only	four	nodes,	Couchbase	is	capable	of
achieving	nearly	1	million	operations	per	second.

Returning	to	the	idea	of	balancing	data	across	nodes,	there’s	an	additional	detail	that	I
didn’t	mention.	The	cluster	maintains	an	abstraction	known	as	vBuckets,	which	are	used
to	direct	a	key	to	the	correct	server.	Rather	than	mapping	a	key	directly	to	a	node,
Couchbase	SDKs	map	the	key	to	one	of	the	vBuckets.	The	endpoint	for	a	vBucket	is
provided	to	the	client	as	part	of	its	topology	message	from	the	cluster.	Regardless	of	the
number	of	nodes,	the	number	of	vBuckets	remains	the	same.	The	keys	always	hash	to	the
same	vBucket,	even	if	the	cluster	changes	the	endpoint	of	the	vBucket.

While	you’ll	generally	not	need	to	worry	about	the	existence	of	vBuckets,	it	is	important
to	understand	what	happens	on	the	client	as	the	cluster	changes	its	topology.	The	client
maintains	a	map	of	vBuckets	to	the	nodes.	If	that	map	changes	due	to	a	node	failure,	brief
client	failures	may	appear	while	the	map	is	updated.

Tip
The	only	case	where	you’re	likely	to	care	about	vBuckets	is	if	you	are	developing	an
application	using	Mac	OS	X.	On	this	platform,	Couchbase	Server	uses	64	vBuckets
instead	of	the	standard	1024.	While	this	difference	generally	won’t	impact	your
development,	it	will	impede	your	ability	to	move	data	from	your	local	server	to	another
cluster	running	Linux	or	Windows.





RAM	matters
Couchbase	is	a	“RAM	first,	disk	second”	database.	Both	the	reads	and	writes	are
optimized	to	use	RAM.	On	the	write	side,	documents	are	written	to	the	memory	first	and
then	flushed	asynchronously	to	the	disk.	While	volatile	memory	might	not	seem	optimal
for	a	database,	remember	that	Couchbase	will	replicate	your	data	on	up	to	three	nodes.
Additionally,	there	are	API	methods	that	require	a	disk	write	before	a	write	to	RAM	is
considered	a	success.

On	the	read	side,	Couchbase	maintains	metadata	about	documents	in	the	RAM	to	provide
faster	retrieval.	Couchbase	will	also	attempt	to	store	as	many	documents	as	it	is	able	to	in
the	memory	for	faster	access.	Less	available	RAM	means	that	Couchbase	will	need	to
fetch	more	documents	from	the	disk.	Couchbase	uses	a	most	recently	used	(MRU)
algorithm	to	determine	which	documents	are	cached	and	which	are	evicted.	The	current
beta	version,	Couchbase	Server	3.0,	will	allow	caching	and	eviction	strategies	to	be	tuned.





Summary
As	we	saw,	Couchbase	is	an	extremely	flexible	and	scalable	database.	It	offers	a	set	of
complimentary	key/value	and	document	features	not	found	in	any	other	database.	In	the
next	few	chapters,	we’ll	explore	these	features	in	detail.	You	will	learn	how	and	when	to
use	them.

We	also	set	up	our	single-node	Couchbase	cluster.	Our	default	and	sample	buckets	were
created.	We	explored	the	Couchbase	Console	and	discussed	cluster	architecture.	With	this
knowledge	in	hand,	you’re	ready	to	dig	into	application	development	with	Couchbase.

If	you’ve	used	either	Memcached	or	CouchDB,	you’ll	find	the	next	three	chapters	to	be
somewhat	familiar.	In	the	next	chapter,	we’re	going	to	dig	deep	into	Couchbase’s
key/value	API.	As	we’ll	see,	at	first	it	will	look	a	lot	like	Memcached,	but	it’ll	quickly	go
above	and	beyond.





Chapter	2.	Using	Couchbase	CRUD
Operations
Couchbase	Server	has	a	vast	and	powerful	key/value	API.	There	are	basic	operations	to
read	and	write	values.	There	are	facilities	for	easy	and	quick	modification	of	simple	data
types.	There	are	also	methods	used	to	manage	concurrency	with	locks.	You’ll	even	find
advanced	key/value	API	methods	that	allow	you	to	verify	persistence	and	replication.	In
this	chapter,	we’re	going	to	explore	the	key/value	interface	in	detail.

In	order	to	examine	this	API,	you’ll	need	to	install	one	of	the	Couchbase	SDKs.	While	the
Couchbase	Console	provides	tools	to	insert	and	update	documents,	it	doesn’t	expose	the
Couchbase	CRUD	API	to	the	user	in	any	way.	To	get	a	full	feel	for	the	Couchbase
key/value	API,	we’re	going	to	jump	right	into	using	an	SDK.



The	Couchbase	SDKs
The	Couchbase	team	supports	a	number	of	SDKs,	also	known	as	Couchbase	client
libraries.	At	the	time	of	writing	this	book,	there	are	official	libraries	for	Java,	.NET,	PHP,
Ruby,	Python,	C,	and	Node.js.	There	are	also	community-supported	libraries	for	Perl,
Erlang,	Go,	and	other	platforms.

In	this	chapter,	we’ll	explore	a	few	of	these	clients.	You	should	install	the	library	for	the
platform	with	which	you	are	most	comfortable.	Many	of	the	clients	are	available	through
package	managers	such	as	.NET’s	NuGet	or	Python’s	pip.	Visit
http://www.couchbase.com/communities	to	find	instructions	about	installation.	Each
community	has	a	Getting	Started	guide	that	details	how	to	obtain	your	chosen	SDK,	as
shown	next:

Getting	a	client	up	and	running	in	your	environment	of	choice	is	beyond	the	scope	of	this
chapter.	If	you	wish	to	follow	along	with	the	examples,	then	you	should	run	through	the
Getting	Started	tutorial	for	your	platform.	In	the	final	chapter,	we’ll	work	through	building
a	to-do	list	application,	where	we’ll	explore	SDK	usage	in	more	detail.	If	you	get	stuck,	be
sure	to	check	out	the	community	forums.

http://www.couchbase.com/communities




Basic	operations
Couchbase	Server’s	key/value	API	includes	standard	CRUD	operations,	and	each	of	the
SDKs	contains	corresponding	CRUD	methods.	We’ll	begin	our	API	exploration	by
demonstrating	how	to	insert	and	retrieve	a	record	from	our	default	bucket.	If	you’re
following	along,	make	sure	you	read	the	Getting	Started	guide’s	description	on	how	to
configure	your	client	for	use.



Connecting	to	your	cluster
Before	reading	from	or	writing	to	a	Couchbase	Server	bucket,	you	must	first	configure
your	client.	The	basic	setup	is	consistent	across	all	SDKs.	You	first	connect	to	the	cluster
and	then	open	a	connection	to	a	bucket,	as	follows:

var	cluster	=	new	Cluster();
var	bucket	=	cluster.OpenBucket();

In	the	preceding	C#	snippet,	the	client	assumes	that	the	cluster	is	located	on	localhost
(127.0.0.1),	and	the	bucket	you’re	connecting	to	is	default.	You	can	also	set	these
values	explicitly,	like	this:

var	cluster	=	new	Cluster("127.0.0.1");
var	bucket	=	cluster.OpenBucket("default");

If	you	have	multiple	nodes	in	your	cluster,	you	can	supply	multiple	nodes	when	creating
the	cluster.	If	your	bucket	has	a	password,	you	can	also	specify	that	when	opening	the
bucket:

var	cluster	=	new	Cluster("192.168.0.1",	"192.168.0.2");
var	bucket	=	cluster.OpenBucket("beer-sample",	"b33rs@mpl3");

It’s	also	possible	to	manage	your	cluster	using	SDKs.	For	example,	if	you	want	to	create	a
bucket	programmatically	in	.NET,	you	can	use	the	ClusterManager	class	and	its
management	APIs:

var	mgr	=	cluster.CreateManager("Administrator",	"password");
mgr.CreateBucket("beer-sample");



Creating	and	updating	a	record
With	any	database	system,	create	is	the	CRUD	method	with	which	you’ll	generally	begin
creating	a	record	(assuming	you	have	no	data	yet).	There	are	a	couple	of	different	methods
for	creating	a	record	in	a	Couchbase	bucket,	the	simplest	of	which	is	add.	The	add	method
takes	a	key	and	a	corresponding	value.	Then	it	inserts	the	pair	into	your	bucket:

client.add("message",	"Hello,	Couchbase	World!")

The	preceding	Python	snippet	demonstrates	adding	a	record	with	a	value	of	Hello,
Couchbase	World!	and	a	message	key.	If	no	record	with	a	message	key	existed	when	you
ran	this	code,	a	record	will	be	created.	If	you	try	to	run	the	same	code	again,	you’ll	receive
an	error.	The	add	method	fails	when	trying	to	write	a	value	to	an	existing	key.

If	you	want	to	update	the	message	record,	then	you	should	use	the	replace	method.	This
method	performs	an	update	to	a	document	with	an	existing	key.	The	following	Python
snippet	demonstrates	how	to	use	this	method:

client.replace("message",	"Hello,	Couchbase	World!")

In	the	preceding	example,	the	Hello,	Couchbase	World!	value	will	be	replaced	with
Hello,	Couchbase	SDK	World!,	leaving	a	document	with	a	message	key	and	a	Hello,
Couchbase	World!	value.	Similar	to	add,	the	replace	method	will	fail	if	you	try	to	update
a	record	using	a	key	that	does	not	exist.

You	might	be	wondering	how	to	work	around	these	potential	failures.	Fortunately,
Couchbase	provides	a	third	CRUD	operation	called	set.	The	set	operation	behaves	as	a
combination	of	both	add	and	replace.	If	you	try	to	set	a	record	with	a	key	that	does	not
exist,	set	will	perform	an	add	operation.	If	you	try	to	set	a	value	for	a	key	that	does	exist,
set	will	perform	a	replace	operation.

client.replace("message",	"Hello,	Couchbase	World!")

You’ll	realize	that	using	the	set	method	is	generally	the	easiest	option.	However,	there
will	be	occasions	where	using	add	or	replace	makes	more	sense.	For	example,	using	add
instead	of	set	would	allow	you	to	have	keys	based	on	a	user’s	nickname	without	worrying
about	a	collision	wiping	out	an	existing	record.

For	bulk	operations,	some	SDKs	support	a	multi_set	operation.	When	using	this	method,
you	supply	a	dictionary	structure	instead	of	a	single	key	and	value.	The	keys	and	values
from	the	dictionary	are	sent	to	the	server	and	processed	concurrently.	The	client	SDKs	will
determine	which	node	owns	which	keys	and	send	them	in	parallel.	The	multi_set
operation	will	almost	always	be	faster	than	a	single	set	operation:

messages	=	{	"Alice"	:	"Hello!",	"Bob"	:	"Cheers!"	}
client.multi_set(messages)

The	Python	snippet	we	just	saw	demonstrates	writing	multiple	keys	to	the	server	in	a
single	call.	At	the	time	of	writing	this	book,	not	all	SDKs	support	multi_set,	though
support	should	be	on	the	roadmaps	of	those	that	don’t.



Reading	and	deleting	records
Reading	a	value	from	the	server	is	performed	by	providing	a	key	for	the	Get	command.	If
the	key	exists	on	the	server,	Get	will	return	the	value.	If	the	key	doesn’t	exist,	then	the
SDK	will	return	either	its	language’s	version	of	null	(for	example,	None	in	Python	or	nil
in	Ruby)	or	a	wrapper	around	the	result,	which	is	the	case	with	.NET	and	Java:

var	result	=	bucket.Get<string>("message");

The	preceding	C#	snippet	demonstrates	retrieving	a	record	from	the	server	and	assigning	it
to	a	local	variable.	In	this	case,	the	result	variable	will	be	of	the	IOperationResult<T>
type.	It	will	contain	properties	that	indicate	whether	the	operation	succeeded	as	well	as	the
value	itself:

if	(result.Success)
{
		Console.WriteLine(result.Value);
}

When	using	SDKs	from	one	of	the	strongly-typed	platforms	(for	example,	.NET	or	Java),
you’ll	likely	want	to	cast	the	value	to	a	specific	type.	The	C#	Get	example	we	just	saw	sets
the	generic	type	parameter	to	a	string	and	tells	the	client	to	treat	the	stored	object	as	a
.NET	string.

It’s	important	to	know	the	type	of	data	you’ve	stored	with	a	particular	key.	If	you	try	to
cast	the	result	of	a	Get	operation	to	the	wrong	data	type,	your	SDK	will	likely	raise	a	cast
exception	of	some	sort.	In	the	.NET	client,	if	you	supply	an	incorrect	generic	type
parameter,	then	InvalidCastException	will	be	thrown:

var	result	=	bucket.Get<int>("message");

The	.NET	client	will	catch	the	exception	in	this	case.	The	caught	exception	is	available	in
the	Exception	property	of	the	result	variable.	The	Success	property	will	also	be	set	to
false,	allowing	you	to	react	to	the	exception:

if	(!result.Success&&result.Exception	!=	null)
{		Console.WriteLine(result.Exception.Message);
}

The	Value	property	of	the	result	variable	will	be	zero	(the	default	value	for	integers	in
.NET)	after	the	assignment	in	the	previous	example	completes.	When	a	non-primitive	type
is	supplied	as	the	generic	type	parameter,	Value	would	be	null	(the	default	for	non-
primitive	types).	As	such,	it	is	not	sufficient	to	check	if	Value	is	null	to	know	whether	the
key	was	found.

Because	Couchbase	Server	does	not	explicitly	define	data	types	for	your	records,	your
SDK	will	decide	what	type	it	should	serialize	and	deserialize	values	to.	Cast	and	use	type
methods	carefully	to	avoid	errors	in	your	application.

Tip
You	should	be	aware	that	a	client	may	raise	a	“not	found”	error	instead	of	null.	However,



this	is	a	typical	behavior,	and	you	must	explicitly	enable	it.	Moreover,	most	SDKs	don’t
expose	this	behavior.	With	the	Python	and	Ruby	clients,	you	are	able	to	enable	or	disable
“not	found”	exceptions	by	passing	a	quiet	parameter	to	the	get	method.

There	is	also	a	variant	of	the	Get	operation	that	allows	you	to	retrieve	multiple	values	at
once	by	providing	multiple	keys.	When	you	use	Get	in	this	way,	the	SDKs	will	return	a
sort	of	dictionary	structure	where	each	of	the	keys	in	the	dictionary	will	be	the	keys	for
which	you	requested	values.	The	values	of	the	dictionary	will	be	the	values	from	those
keys	on	the	server,	or	null	if	no	values	are	found:

bucket.Insert("artist",	"Arcade	Fire");
bucket.Insert("album",	"Funeral");
bucket.Insert("track",	"Neighborhood	#1	(Tunnels)");

var	keys	=	new	List<string>	{	"artist",	"album",	"track"};
var	results	=	bucket.Get<string>(keys);

foreach	(var	key	in	keys)
{
		Console.WriteLine(results[key].Value);
}

The	preceding	C#	snippet	demonstrates	how	to	read	multiple	keys	at	once	and	iterate	over
the	resulting	IDictionary	object.	The	exact	data	structure	returned	by	the	SDK	will,	of
course,	vary	according	to	the	language	you	use,	but	it	will	be	an	iterable	key/value
structure.

The	multi-get	operation	is	implemented	in	the	SDKs	using	parallel	operations.	More
precisely,	the	client	figures	out	which	keys	are	on	which	servers,	and	then	makes
concurrent	requests	to	each	server.	The	client	then	returns	the	unified	map	object.	This
concurrency	almost	always	means	that	it	is	more	efficient	to	request	many	keys	at	once,	as
opposed	to	performing	many	individual	Get	operations	serially.

To	remove	a	key	from	the	server,	you’ll	simply	pass	that	key	to	the	delete	operation	on
your	SDK.	Deleting	a	key	using	the	.NET	SDK	is	done	as	follows:

bucket.remove("message");





Advanced	CRUD	operations
The	basic	CRUD	operations	we’ve	just	seen	are	fairly	straightforward	and	mimic	what
you’d	expect	to	see	in	a	relational	system.	As	a	key/value	store,	however,	Couchbase
provides	a	handful	of	additional,	unique	CRUD	operations.



Temporary	keys
As	a	descendant	of	the	in-memory-only	Memcached,	Couchbase	supports	a	set	of
operations	you	might	not	expect	to	see	in	a	persistent	store.	Specifically,	each	of	the
CRUD	methods	outlined	allows	an	expiry	date	to	be	provided.	When	set,	this	“time	to
live”	option	will	be	used	to	trigger	the	removal	of	a	key	by	the	server.

It	is	common	in	relational	systems	to	have	tables	with	expiration	date	columns.	In	this
case,	the	expiry	date	is	likely	a	flag	to	be	used	by	a	scheduled	task	that	cleans	old	records.
Couchbase	Server	allows	you	to	achieve	this	very	functionality	without	the	need	for	a
scheduled	task	or	additional	properties	in	the	stored	value.

To	create	a	key	with	an	expiry	date,	you	can	use	either	the	set	or	add	operation.	You’ll	use
these	methods	just	as	you	used	them	previously,	but	you’ll	provide	the	additional	“time	to
live”	argument.	In	the	following	Python	snippet,	the	key	is	set	to	expire	in	1	hour:

client.set("message",	"Goodbye,	Couchbase	World!",	ttl	=	3600)

How	the	expiry	flag	is	set	will	vary	by	client,	but	it	is	commonly	an	integer	value.	In	the
case	of	.NET,	it	is	set	using	.NET	date	and	time	structures.

You	might	wish	to	cause	your	keys	to	expire	based	on	when	they	were	last	accessed.
Using	touch	operations,	you	are	able	to	achieve	this	sort	of	sliding	expiry	for	your	keys.
The	standard	Get	operation	includes	a	time-to-live	option.	When	you	include	a	value	for
this	parameter,	you	reset	(or	set)	the	time-to-live	for	the	key:

client.get("message",	ttl	=	3600)

This	Python	snippet	will	reset	the	expiry	on	the	message	key	to	1	hour	from	when	the	Get
operation	is	performed.	If	you	wish	to	extend	the	life	of	a	key	but	not	return	its	value	there
is	a	touch	operation.	Again,	this	operation	is	shown	as	follows	in	Python:

client.touch("message",	ttl	=	3600)



Appending	and	incrementing	data
Couchbase	Server	also	provides	the	ability	to	append	or	prepend	additional	data	to
(typically)	string	values.	These	operations	are	useful	to	store	data	structures	such	as
delimited	lists	of	values.	Consider	a	key	that	stores	tags	for	a	blog	post.	One	option	would
be	to	serialize	and	deserialize	a	list	structure	through	your	SDK:

tags	=	["python",	"couchbase",	"nosql"]
client.set("tags",	tags)
saved_tags	=	client.get("tags")

While	this	option	would	certainly	work,	it	does	require	additional	work	to	update	data.
You’d	need	to	retrieve	the	record,	update	it	in	the	memory,	and	then	write	it	back	to	the
server.	Moreover,	you’d	also	likely	need	to	use	a	locking	operation	to	ensure	that	the	list
hasn’t	changed	since	you	retrieved	it.

Another	possibility	is	to	use	the	append	operation.	With	the	append	operation,	you	can
push	data	to	the	end	of	a	key’s	value.	The	concatenation	takes	place	on	the	server,	which
means	you	don’t	have	to	manipulate	the	existing	value	first.	The	following	Python	snippet
demonstrates	the	usage	of	append.	In	this	example,	we’re	maintaining	the	list	of	tags	as	a
simple,	comma-delimited	string:

client.set("tags",	"python,couchbase,")
client.append("tags",	"nosql,")
saved_tags	=	client.get("tags")
#saved_tags	==	"python,couchbase,nosql,"

Similarly,	Couchbase	supports	a	prepend	operation	to	save	data	to	the	beginning	of	a
key’s	value,	as	seen	next	in	the	Python	snippet:

client.set("tags",	"python,couchbase,")
client.prepend("tags",	"nosql,")
saved_tags	=	client.get("tags")
#saved_tags		==	"couchbase,nosql,python,"

Another	useful	operation	is	increment.	This	command	provides	a	means	of	updating	an
integer	value	on	the	server.	Similar	to	prepend	and	append,	incr	allows	you	to	modify	a
key’s	value	without	having	to	modifying	it	in	your	client	application.	Incrementing	a
counter	is	the	most	common	use	of	this	feature:

client.set("counter",	1)
client.incr("counter")	#	counter	==	2
client.incr("counter",	4)	#	counter	==	6

The	preceding	Python	sample	shows	that	the	default	increment	behavior	is	to	add	1	to	the
existing	value	of	the	key.	If	you	provide	a	value	for	the	offset	parameter,	the	key’s	value
will	be	incremented	by	the	offset.	If	you	want	to	decrement	a	counter,	you	can	provide	a
negative	offset	value:

client.incr("counter",	-1)

There	is	also	a	decrement	operation,	and	it	can	be	used	instead	of	a	negative	offset	with



increment:

client.decr("counter",	1)





Storing	complex	types
So	far,	we’ve	limited	our	exploration	primarily	to	simple	data	types	such	as	strings	and
integers.	In	a	real	application,	you’re	more	likely	to	have	business	objects	or	other
complex	types	that	you	will	need	to	store.	To	Couchbase	Server,	the	values	that	you	store
are	nothing	more	than	byte	arrays.	Therefore,	the	SDKs	are	able	to	use	their	respective
language’s	binary	serializer	(often	called	a	transcoder)	to	store	any	data	structures.

Consider	an	application	that	stores	information	on	a	user	profile.	In	.NET,	you	might	have
a	data	object	that	looks	like	this:

public	class	UserProfile
{
		public	string	Username	{	get;	set;	}
		
		public	string	Email	{	get;	set;	}
}

When	you	use	the	.NET	client	to	save	an	instance	of	the	UserProfile	class	in	Couchbase
Server,	it	will	be	serialized	using	.NET’s	default	binary	serializer.	Couchbase	Server,	of
course,	knows	nothing	about	a	client	platform’s	serialization	format.	It	will	simply	store
the	byte	array	it	received	from	the	client:

var	userProfile	=	new	UserProfile	{	
Username	=	"jsmith",	Email	=	"js@asdf.com"	};
client.Upsert(userProfile.Username,	userProfile);

In	the	preceding	snippet,	an	instance	of	the	UserProfile	class	is	saved	with	a	key	value
that	is	set	to	the	user’s	username.	To	retrieve	that	instance,	simply	use	the	Get	operation
we’ve	already	seen.	This	time,	our	SDK’s	transcoder	will	return	an	instance	of
UserProfile	set	as	the	value	property	of	the	result	variable:

var	result	=	client.Get<UserProfile>("jsmith");

Recall	that	if	the	value	for	the	jsmith	key	is	not	an	instance	of	UserProfile,	the	operation
will	fail	with	an	invalid	cast	exception	being	thrown.

It	is	important	to	note	that	platform-specific	serializers	may	not	be	compatible	between
SDKs.	Imagine	you	have	the	following	Python	class	(full	class	definition	omitted	for
brevity):

class	UserProfile:
		@property
		def	username(self):
				pass
		@property
		def	email(self):
				pass

If	you	tried	to	retrieve	the	.NET-serialized	UserProfile	object	and	deserialize	it	into	an
instance	of	the	preceding	Python	class,	you’d	encounter	an	exception.	Python	and	.NET
have	different	binary	serialization	formats:



client.get("jsmith")	#will	likely	break	

There	is	a	solution	to	the	problem	of	hybrid	systems	where	multiple	clients	need	to	access
Couchbase	Server	data	from	multiple	frameworks.	We’ll	explore	that	solution	when	we
start	to	work	with	Couchbase	Server’s	document-oriented	features.	For	now,	we’ll	assume
that	we’re	using	a	single-client	SDK	environment.

It’s	also	worth	noting	that	Couchbase	SDKs	support	custom	transcoders.	If	you	want	to
change	the	default	serialization	behavior	for	your	SDK,	implementing	your	own
transcoder	is	the	way	to	achieve	this	goal.	For	example,	if	you	want	to	force	all	of	the	data
to	be	stored	as	JSON,	a	custom	transcoder	can	solve	this	problem.	You	can	also	use	the
data_passthrough	parameter	in	certain	SDKs,	which	will	force	all	values	to	be	returned
as	raw	bytes.





Concurrency	and	locking
While	the	Couchbase	SDKs	have	been	written	to	be	thread-safe,	your	Couchbase
applications	still	must	consider	concurrency.	Whether	two	users	or	two	threads	are
attempting	to	modify	the	same	key,	locking	is	a	necessity	in	order	to	limit	stale	data
writes.	Couchbase	Server	supports	both	pessimistic	and	optimistic	locking.

The	CRUD	operations	we’ve	seen	so	far	do	not	make	use	of	any	locking.	To	see	why	this
is	a	problem,	consider	the	following	C#	code:

public	class	Story	
{
public	String	Title	{	get;	set;	}
		public	String	Body	{	get;	set;	}
		public	List<String>	Comments	{	get;	set;	}
}

var	story	=	bucket.Get<Story>("story_slug").Value;
story.Comments.add("Nice	Article!");
bucket.Replace<Story>("story_slug",	story);

Now	suppose	that	in	the	preceding	code,	in	the	moments	between	the	get	and	set	calls,
the	following	code	ran	on	another	thread	(that	is,	another	web	request):

var	story	=	bucket.get<Story>("story_slug");
story.Comments.add("Great	writing!");
client.Replace<Story>("story_slug",	story);

In	this	scenario,	both	clients	received	the	same	initial	Story	values.	After	the	second	client
sets	its	value	back	in	the	bucket	with	a	new	comment,	it	is	quickly	overwritten	because	the
first	client	completes	its	set.	The	Great	writing!	comment	is	lost.	Fortunately,	the
Couchbase	API	does	provide	a	mechanism	to	prevent	this	situation	from	occurring.

In	traditional	relational	applications,	a	common	pattern	is	to	include	a	timestamp	column
on	tables	where	stale	records	should	not	be	updated	without	first	retrieving	the	most	recent
write	of	a	row.	When	this	approach	is	used,	the	UPDATE	statement	includes	the	timestamp
in	the	WHERE	clause:

UPDATE	Story	
SET	Title	=	'New	Title',	
								Timestamp	=	@NewTimeStamp
WHERE	ID	=	1	AND	Timestamp	=	@CurrentTimestamp;

In	the	preceding	SQL	statement,	the	update	will	not	occur	unless	the	row’s	current
timestamp	value	is	provided	for	the	@CurrentTimestamp	parameter.	With	Couchbase
Server,	you	are	able	to	use	CAS	(short	for	compare	and	swap)	operations	to	provide	the
same	optimistic	locking.

CAS	operations	take	advantage	of	the	fact	that	with	each	mutation	of	a	key,	the	server	will
maintain	with	it	a	unique	64-bit	integer,	known	as	a	CAS.	CAS	operations	work	by
disallowing	a	key’s	mutation	if	the	provided	CAS	value	doesn’t	match	the	server’s	current
version.	You	could	think	of	CAS	as	acting	like	a	version	control	system.	If	you	try	to



commit	a	patch	without	first	getting	the	latest	revisions,	your	commit	fails.	However,
Couchbase	does	not	maintain	revisions	for	each	CAS,	it	simply	prevents	stale	writes:

var	result	=	bucket.Get<Story>("story_slug");
var	story	=	result.Value;
story.Comments.add("Awesome!");
var	resp	=	bucket.Replace<Story>(result.Cas,	"story_slug",	story);

In	the	preceding	C#	example,	the	result	variable	is	returned	from	the	client	by	way	of	its
Get	method.	This	object	contains	both	the	stored	object	and	the	current	CAS	value	from
the	server.	That	CAS	value	is	used	with	a	call	to	the	Replace	method.	After	the	Get
method	is	called,	if	another	thread	has	updated	the	story_slug	key,	then	the	Replace	call
will	not	result	in	a	mutated	value.	The	response	from	the	attempt	will	include	the	status	of
the	operation:

if	(resp.Success)	
{
		//operation	success
}	
else	if	(resp.Status	==	ResponseStatus.KeyNotFound)	{
		//key	does	not	exist,	use	add	instead
}	
else	if	(resp.Status	==	ResponseStatus.KeyExists)	
{
		//key	exists,	but	CAS	didn't	match
		//call	Getagain,	try	again
}

In	this	example,	you	can	see	that	the	C#	client	provides	the	three	possible	outcomes	for	a
CAS	operation.	If	the	CAS	is	the	same,	the	mutation	occurs.	If	the	key	is	not	found,	an
insert	operation	should	be	performed.	If	the	CAS	is	different,	the	mutation	is	stopped.	The
question	that	follows	then	is,	how	do	you	handle	a	CAS	mismatch?

In	the	simplest	case,	you’d	simply	retry	your	Get	and	Replace	operations,	hoping	that	the
CAS	value	you’ve	obtained	is	now	current.	However,	a	more	robust	solution	is	to	employ
some	sort	of	retry	loop:

for(var	i=0;	i<	5;	i++)	{
		var	result	=	bucket.Get<Story>("story_slug");
		var	story	=	result.Value();
		story.Comments.add("Awesome!");
		var	resp	=	bucket.Replace<Story>(result.Cas,	"story_slug",	story);
		
		if	(resp.Success)	break;
}

The	advantage	of	this	sort	of	locking	is	that	it	is	optimistic,	meaning	that	the	server
doesn’t	employ	any	locking	of	its	own.	One	64-bit	integer	is	compared	to	another.	If	they
match,	the	values	for	a	key	are	swapped.	This	operation	has	virtually	no	impact	on
performance.	However,	it	does	make	room	for	the	possibility	that	a	thread	may	never
acquire	a	current	CAS.	If	such	a	situation	is	unacceptable,	Couchbase	Server	provides	a
pessimistic	locking	option.



The	getl	(or	get	and	lock)	operation	allows	you	to	obtain	a	read/write	lock	on	a	key	for	up
to	30	seconds.	While	you	hold	the	lock,	no	other	clients	or	threads	will	be	able	to	modify
the	key.	You	consume	getl	in	a	manner	similar	to	the	CAS	operations.	When	you	request	a
lock,	you’re	provided	a	CAS	with	which	only	your	client	will	be	able	to	update	the	key:

var	result=	bucket.GetWithLock<Story>("story_slug",	
TimeSpan.FromSeconds(10));
var	story	=	result.Value;
story.Comments.Add("Good	stuff!");
bucket.Replace<Story>("story_slug",	story,	result.Cas);

The	preceding	C#	code	demonstrates	how	a	client	may	acquire	an	exclusive	lock	on	a	key.
In	this	case,	the	lock	will	expire	in	30	seconds.	Clients	who	attempt	to	read	or	write	to	this
key	will	receive	an	error.	In	this	example,	the	lock	will	be	released	once	the	CAS
operation	is	performed.

Rather	than	waiting	for	an	expiry	or	a	CAS	operation,	it	is	also	possible	to	explicitly
unlock	a	key.	Generally	speaking,	a	CAS	operation	is	likely	to	be	your	primary	means	of
unlocking	a	key.	However,	there	will	be	times	when	some	condition	in	your	code	leads	to
a	path	where	the	locked	document	shouldn’t	be	mutated.	In	those	cases,	it’s	more	efficient
to	unlock	the	document	rather	than	wait	for	the	timeout:

Var	result		=	bucket.GetWithLock<Story>("story_slug",	
TimeSpan.FromSeconds(10))
if	(result.value.IsCommentingClosed)
{
		bucket.Unlock("story_slug",	result.Cas);
}
else
{
		result.value.Comments.Add("Couchbase	is	fast!");
		bucket.Replace<Story>("story_slug",	story);
}

This	C#	code	demonstrates	retrieving	a	key,	checking	whether	the	value	should	be
modified,	and	then	deciding	how	to	perform.	In	this	example,	we’re	checking	whether
commenting	is	closed	for	a	story.	If	it	is,	we	won’t	accept	a	new	comment.	Therefore,
we’ll	release	the	lock	rather	than	wait	for	the	remaining	10	seconds.

When	deciding	between	a	CAS	operation	and	a	getl	operation,	you	will	have	to	consider
whether	you	want	other	threads	to	be	blocked	from	reading	the	locked	key.	In	such	a	case,
a	GetWithLock	method	is	required.	More	often,	a	CAS	operation	is	probably	the	safest	in
terms	of	performance	and	side	effects.





Asynchronous	operations
One	of	the	primary	reasons	for	the	growth	of	Couchbase	is	its	massive	scalability.	Few
databases	come	close	to	the	performance	offered	by	Couchbase	Server.	Any	system	that	is
capable	of	handling	millions	of	operations	per	second	across	a	small	cluster	of	nodes	will
have	to	deal	with	concurrency	issues	at	some	point.

Traditionally,	servers	dealt	with	concurrency	by	spinning	up	threads	to	handle	multiple
requests	simultaneously.	However,	as	load	increases	on	such	systems,	the	overhead	of
creating	and	maintaining	threads	becomes	quite	expensive	in	terms	of	CPU	and	memory.

Couchbase	Server	makes	use	of	nonblocking	I/O	libraries	to	provide	scaling,	without	the
need	to	spin	a	thread	or	process	every	request.	In	a	nutshell,	nonblocking	I/O	makes	heavy
use	of	asynchronous	callbacks	to	avoid	blocking	the	receiving	thread.

In	other	words,	the	thread	that	receives	the	request	will	only	delegate	the	work	to	be	done,
and	later	receive	a	notification	when	that	work	is	done.	This	pattern	of	handling
concurrency	is	popular	in	modern	servers	and	frameworks,	including	Node.js	and	the
nginx	web	server.

All	the	operations	covered	used	so	far	are	blocking.	In	other	words,	when	your	client	calls
Couchbase	Server	with	a	command,	it	blocks	the	calling	thread	until	that	operation
completes.	It	is	common	to	use	Couchbase	in	a	fire-and-forget	fashion,	and	blocking	calls
slows	this	process	down.

Some	(but	not	all)	clients	support	asynchronous	operations.	Clients	such	as	Ruby	and
Node.js	are	built	on	top	of	the	C	library,	which	is	fully	asynchronous.	Therefore,	such
libraries	are	able	to	piggyback	on	client	implementation.	The	fully	managed	Java	library
does	support	asynchronous	operations	using	Java	Futures.

We	won’t	explore	the	asynchronous	operations	in	detail,	as	they	are	effectively	similar	to
the	operations	we’ve	already	seen.	The	following	Ruby	snippet	gives	you	a	taste	of	how
you’d	use	such	a	method:

client.run	do	|c|
c.get("message")	{|ret|	puts	ret.value}		
end

In	this	example,	the	client	runs	the	get	operation	asynchronously.	When	the	method
returns,	the	callback	(in	curly	braces)	is	executed.	The	thread	that	called	client.run	was
not	blocked	while	waiting	on	the	get	call.	Similarly,	in	Java,	you	may	use	the
asynchronous	versions	of	operations	to	allow	nonblocking	calls	to	Couchbase	Server:

String	message;
GetFuture<Object>	future	=	client.asyncGet("message");
message	=	(String)future.get(10,	TimeUnit.SECONDS);

In	this	Java	example,	the	client	asynchronously	retrieves	the	message	key.	The	value	of
that	key	is	then	assigned	back	to	the	message	variable	with	a	wait	timeout	of	10	seconds.
A	try/catch	block	should	wrap	the	future.get	call,	but	was	omitted	for	brevity.





Durability	operations
In	Chapter	1,	Getting	Comfortable	with	Couchbase,	you	learned	that	Couchbase	Server
handles	reads	and	writes	by	writing	to	the	memory	first,	and	then	writing	asynchronously
to	the	disk.	The	standard	CRUD	operations	we’ve	seen	so	far	make	no	distinction	between
a	key	being	written	to	the	cluster	memory	and	a	key	persisting	in	the	disk.

If	you’ve	set	up	replication,	you’ve	likely	guarded	your	data	against	potential	data	loss
from	a	single	server	failing	before	flushing	the	key	to	the	disk.	However,	there	will	be
times	when	your	business	process	cannot	tolerate	the	possibility	that	a	record	did	not
persist.	If	you	have	such	a	requirement,	Couchbase	Server	supports	inclusion	of	durability
requirements	with	your	store	requests.

These	durability	requirements	are	tunable	to	your	specific	needs.	For	example,	you	might
wish	to	know	whether	a	key	was	written	to	the	disk	on	its	master	node	and	replicated	to	at
least	two	nodes	in	the	memory.	To	use	a	durability	check	with	a	.NET	client,	you	will	use
the	standard	store	method	with	additional	arguments,	as	follows:

bucket.Upsert<string>("key",	"value",	PersistTo.One,	ReplicateTo.Two);

The	PersistTo	argument	specifies	that	the	operation	must	return	a	failure	if	the	key	hasn’t
persisted	in	the	master	node	after	a	timeout	(globally	configurable).	The	ReplicateTo
option	adds	the	additional	requirement	that	the	key	must	be	copied	to	least	two	nodes	in
the	memory.

If	your	durability	concern	is	only	that	the	key	is	replicated,	you	can	use	the	previous
operation	without	the	PersistTo	argument.	Similarly,	you	can	check	for	persistence	only
by	omitting	the	replication	argument.	Importantly,	if	any	persistence	option	is	set,	success
will	occur	only	if	the	master	node	wrote	the	key	to	the	disk.	If	the	replica	wrote	a	key	to
the	disk	somehow	but	the	master	died	before	it	could	do	so,	the	store	operation	will	fail.

It	might	seem	counterintuitive,	but	it	is	also	possible	to	use	durability	requirements	with
delete	methods.	Similar	to	writes,	delete	operations	are	also	applied	to	the	memory	first.
Therefore,	if	you	want	to	be	sure	that	a	key	was	also	removed	from	the	disk,	you	should
include	a	persistence	requirement.

bucket.Remove("key",	PersistTo.One);

The	SDKs	generally	reuse	their	persistence	enumerations	in	both	store	and	delete
operations.	In	the	case	of	delete,	PersistTo	is	perhaps	more	accurately	thought	of	as
RemoveFrom.

It	is	important	to	use	durability	requirements	with	care	if	your	application	is	in	need	of	the
peak	scale.	With	much	of	Couchbase	Server’s	performance	being	dependent	on	its	heavy
use	of	cache,	blocking	disk	writes	will	obviously	introduce	latency.	Generally	speaking,
it’s	best	to	use	durability	requirements	only	when	absolutely	necessary.	It	is	more
important	to	enable	replication	in	your	cluster.





Summary
In	this	chapter,	we	explored	the	Couchbase	Server	key/value	API	in	detail.	You	saw	that
Couchbase	supports	the	basic	CRUD	operations	you’d	expect	of	a	database	system,
whether	relational	or	nonrelational.	We	examined	operations	that	are	unique	to	Couchbase,
for	example,	append	and	prepend	operations	can	be	used	to	store	data,	while	increment
and	decrement	operations	can	be	used	to	modify	a	key’s	value.

You	learned	how	Couchbase	supports	both	pessimistic	and	optimistic	locking	as	well	as
basic	strategies	to	use	both.	We	explored	the	ability	to	use	durability	checks	and
asynchronous	methods	to	tweak	the	performance	of	our	application.	Most	importantly,	we
got	a	taste	of	a	few	of	the	client	SDKs	and	how	they	perform	the	various	operations.

At	this	point,	we’ve	explored	about	98	percent	of	the	Couchbase	key/value	API.	There	are
a	few	other	legacy	methods	that	you	might	encounter,	depending	on	your	SDK;	for
example,	the	flush	operation	is	used	to	remove	all	records	from	a	bucket.	The	key/value
version	of	this	method	has	been	deprecated	in	favor	of	the	cluster	API	version,	which	is
performed	over	HTTP.	However,	you	might	find	this	method	still	accessible,	given	the
backward	compatibility	with	Memcached.

Though	we	omitted	2	percent	of	the	available	key/value	operations	in	this	chapter,	98
percent	of	the	methods	we	looked	at	should	cover	100	percent	of	your	key/value
requirements.	Moreover,	the	design	of	your	application	may	reveal	that	the	basic	CRUD
operations	and	CAS	are	sufficient	to	meet	your	requirements.

In	the	next	chapter,	we’re	going	to	start	exploring	the	document	capabilities	of	Couchbase
Server.	As	we	do,	you’ll	learn	how	it	complements	the	key/value	API	you	just	learned
about.





Chapter	3.	Creating	Secondary	Indexes
with	Views
Now	that	we’ve	examined	Couchbase	Server’s	key/value	API,	it’s	time	to	shift	gears	and
look	at	its	document-oriented	features.



Couchbase	documents
Documents	in	Couchbase	are	simply	key/value	pairs	where	the	value	is	stored	as	a	valid
JSON	document.	The	key/value	API	we	learnt	in	Chapter	2,	Using	Couchbase	CRUD
Operations,	is	the	same	API	we’ll	use	to	create	JSON	documents	in	the	server.	Generally,
you’ll	use	the	client	SDKs	in	combination	with	your	platform’s	preferred	JSON	serializer,
as	shown	in	this	C#	snippet:

var	user	=	new	User	{	Name	=	"John"	};
var	json	=	JsonConvert.SerializeObject(user);
bucket.Upsert("jsmith",	json);

In	this	example,	the	popular	.NET	JSON	serializer	is	used	to	transform	an	instance	of	a
.NET	class	into	a	valid	JSON	string.	That	string	is	then	stored	on	Couchbase	Server	using
the	key/value	set	operation.

Similarly,	to	retrieve	a	JSON	document	from	the	server,	you’ll	also	use	the	key/value	Get
operation:

var	json	=	bucket.Get<string>("jsmith");
var	user	=	JsonConvert.DeserializeObject<User>(json);

In	the	case	of	retrieving	a	document,	you’ll	typically	retrieve	the	JSON	string	and	allow
your	platform’s	JSON	serializer	to	deserialize	the	JSON	document	into	a	strongly-typed
object,	which	is	a	User	instance	in	this	example.

Of	course,	you	are	free	to	do	whatever	you	wish	with	the	JSON	you	retrieve.	The
Couchbase	SDKs	intentionally	provide	you	with	the	freedom	to	choose	your	own	JSON-
to-object	behavior.	Rather	than	deserializing	into	a	user-defined	type	as	you	just	did,	you
might	want	to	convert	your	JSON	document	into	a	dictionary.	You	also	could	choose	to
simply	return	the	JSON	document	to	your	application.	This	last	approach	could	be
particularly	useful	when	serving	JSON	to	JavaScript-heavy	applications.

Of	course,	being	able	to	store	JSON	strings	alone	is	not	enough	for	a	database	to	be
considered	document-oriented.	For	that	classification,	a	data	store	must	support	some
other	document	capabilities,	most	importantly	document	indexing	and	querying.





Couchbase	indexes
We’ve	already	seen	how	Couchbase	handles	primary	indexes	for	documents.	The	key	in
the	key/value	pair	is	the	unique	primary	key	for	a	document.	Using	the	key/value	API,
documents	may	be	retrieved	only	by	this	key.	While	this	might	seem	limiting,	there	are
key/value	schema	design	patterns	that	help	to	provide	flexibility.	We’ll	explore	them	in
Chapter	5,	Introducing	N1QL.

Fortunately,	Couchbase	as	a	document	store	provides	a	much	more	powerful	approach	for
finding	your	documents.	To	illustrate	the	problem	and	the	solution,	we’ll	walk	through	a
brief	example.	Imagine	having	a	simple	JSON	document	such	as	this:

{
		"Username":	"jsmith",
		"Email":	"jsmith@somedomain.com"
}

The	key/value	limitation	is	easy	to	see.	Imagine	we	want	to	find	a	user	by	their	username.
The	key/value	solution	might	be	to	use	the	username	as	the	key.	While	that	would
certainly	work,	what	happens	when	we	also	want	to	query	a	user	by	their	e-mail	address?
We	can’t	have	both	e-mail	and	username	as	a	key!

Therefore,	there	are	key/value	patterns	to	address	this	problem,	and	we’ll	discuss	them
briefly	later	on.	Couchbase,	with	its	document	capabilities,	provides	a	much	more	elegant
solution—allowing	arbitrary	secondary	indexes	on	stored	JSON	documents.

These	secondary	indexes	will	allow	us	to	query	our	user	document	by	username,	e-mail,
or	any	function	of	the	two	(for	example,	an	e-mail	ID	with	a	particular	domain).	These
indexes,	which	are	known	as	views	in	Couchbase	terms,	will	be	created	using	JavaScript
and	MapReduce.





MapReduce
Before	we	can	start	our	exploration	of	the	Couchbase	Server	views,	we	first	need	to
understand	what	MapReduce	is	and	how	we’ll	use	it	to	create	secondary	indexes	for	our
documents.

At	its	simplest,	MapReduce	is	a	programming	pattern	used	to	process	large	amounts	of
data	that	is	typically	distributed	across	several	nodes	in	parallel.	In	the	NoSQL	world,
MapReduce	implementations	may	be	found	on	many	platforms	from	MongoDB	to
Hadoop,	and	of	course	Couchbase.

Even	if	you’re	new	to	the	NoSQL	landscape,	it’s	quite	possible	that	you’ve	already
worked	with	a	form	of	MapReduce.	The	inspiration	for	MapReduce	in	distributed	NoSQL
systems	was	drawn	from	the	functional	programming	concepts	of	map	and	reduce.	While
purely	functional	programming	languages	haven’t	quite	reached	mainstream	status,
languages	such	as	Python,	C#,	and	JavaScript	all	support	map	and	reduce	operations.



Map	functions
Consider	the	following	Python	snippet:

numbers	=	[1,	2,	3,	4,	5]
doubled	=	map(lambda	n:	n	*	2,	numbers)
#doubled	==	[2,	4,	6,	8,	10]

These	two	lines	of	code	demonstrate	a	very	simple	use	of	a	map()	function.	In	the	first
line,	the	numbers	variable	is	created	as	a	list	of	integers.	The	second	line	applies	a	function
to	the	list	to	create	a	new	mapped	list.	In	this	case,	the	map()	function	is	supplied	as	a
Python	lambda,	which	is	just	an	inline,	unnamed	function.	The	body	of	lambda	multiplies
each	number	by	two.

This	map()	function	can	be	made	slightly	more	complex	by	doubling	only	odd	numbers,
as	shown	in	this	code:

numbers	=	[1,	2,	3,	4,	5]
defdouble_odd(num):
		if	num	%	2	==	0:
				return	num
		else:
				return	num	*	2

doubled	=	map(double_odd,	numbers)
#doubled	==	[2,	2,	6,	4,	10]

Map	functions	are	implemented	differently	in	each	language	or	platform	that	supports
them,	but	all	follow	the	same	pattern.	An	iterable	collection	of	objects	is	passed	to	a	map
function.	Each	item	of	the	collection	is	then	iterated	over,	with	the	map	function	being
applied	to	that	iteration.	The	final	result	is	a	new	collection	where	each	of	the	original
items	is	transformed	by	the	map.



Reduce	functions
Like	maps,	reduce	functions	also	work	by	applying	a	provided	function	to	an	iterable	data
structure.	The	key	difference	between	the	two	is	that	the	reduce	function	works	to	produce
a	single	value	from	the	input	iterable.	Using	Python’s	built-in	reduce()	function,	we	can
see	how	to	produce	a	sum	of	integers,	as	follows:

numbers	=	[1,	2,	3,	4,	5]
sum	=	reduce(lambda	x,	y:	x	+	y,	numbers)
#sum	==	15

You	probably	noticed	that	unlike	our	map	operation,	the	reduce	lambda	has	two
parameters	(x	and	y	in	this	case).	The	argument	passed	to	x	will	be	the	accumulated	value
of	all	applications	of	the	function	so	far,	and	y	will	receive	the	next	value	to	be	added	to
the	accumulation.

Parenthetically,	the	order	of	operations	can	be	seen	as	((((1	+	2)	+	3)	+	4)	+	5).
Alternatively,	the	steps	are	shown	in	the	following	list:

1.	 x	=	1,	y	=	2
2.	 x	=	3,	y	=	3
3.	 x	=	6,	y	=	4
4.	 x	=	10,	y	=	5
5.	 x	=	15

As	this	list	demonstrates,	the	value	of	x	is	the	cumulative	sum	of	previous	x	and	y	values.
As	such,	reduce	functions	are	sometimes	termed	accumulate	or	fold	functions.	Regardless
of	their	name,	reduce	functions	serve	the	common	purpose	of	combining	pieces	of	a
recursive	data	structure	to	produce	a	single	value.



Couchbase	MapReduce
Creating	an	index	(or	view)	in	Couchbase	requires	creating	a	map	function	written	in
JavaScript.	When	the	view	is	created	for	the	first	time,	the	map	function	is	applied	to	each
document	in	the	bucket	containing	the	view.	When	you	update	a	view,	only	new	or
modified	documents	are	indexed.	This	behavior	is	known	as	incremental	MapReduce.

You	can	think	of	a	basic	map	function	in	Couchbase	as	being	similar	to	a	SQL	CREATE
INDEX	statement.	Effectively,	you	are	defining	a	column	or	a	set	of	columns,	to	be	indexed
by	the	server.	Of	course	these	are	not	columns,	but	rather	properties	of	the	documents	to
be	indexed.



Basic	mapping
To	illustrate	the	process	of	creating	a	view,	first	imagine	that	we	have	a	set	of	JSON
documents	as	shown	here:

var	books=[
				{
"id":	1,
"title":	"The	Bourne	Identity",
"author":	"Robert	Ludlow"
				},
				{
"id":	2,
"title":	"The	Godfather",
"author":	"Mario	Puzzo"
				},
				{
"id":	3,
"title":	"Wiseguy",
"author":	"Nicholas	Pileggi"
				}
];

Each	document	contains	title	and	author	properties.	In	Couchbase,	to	query	these
documents	by	either	title	or	author,	we’d	first	need	to	write	a	map	function.	Without
considering	how	map	functions	are	written	in	Couchbase,	we’re	able	to	understand	the
process	with	vanilla	JavaScript:

books.map(function(book)	{
		return	book.author;
});

In	the	preceding	snippet,	we’re	making	use	of	the	built-in	JavaScript	array’s	map()
function.	Similar	to	the	Python	snippets	we	saw	earlier,	JavaScript’s	map()	function	takes
a	function	as	a	parameter	and	returns	a	new	array	with	mapped	objects.	In	this	case,	we’ll
have	an	array	with	each	book’s	author,	as	follows:

["Robert	Ludlow",	"Mario	Puzzo",	"Nicholas	Pileggi"]

At	this	point,	we	have	a	mapped	collection	that	will	be	the	basis	for	our	author	index.
However,	we	haven’t	provided	a	means	for	the	index	to	be	able	to	refer	back	to	the
original	document.	If	we	were	using	a	relational	database,	we’d	have	effectively	created
an	index	on	the	Title	column	with	no	way	to	get	back	to	the	row	that	contained	it.

With	a	slight	modification	to	our	map	function,	we	are	able	to	provide	the	key	(the	id
property)	of	the	document	as	well	in	our	index:

books.map(function(book)	{
		return	[book.author,	book.id];
});

In	this	slightly	modified	version,	we’re	including	the	ID	with	the	output	of	each	author.	In
this	way,	the	index	has	its	document’s	key	stored	with	its	title.



[["The	Bourne	Identity",	1],	["The	Godfather",	2],	["Wiseguy",	3]]

We’ll	soon	see	how	this	structure	more	closely	resembles	the	values	stored	in	a	Couchbase
index.



Basic	reducing
Not	every	Couchbase	index	requires	a	reduce	component.	In	fact,	we’ll	see	that
Couchbase	already	comes	with	built-in	reduce	functions	that	will	provide	you	with	most
of	the	reduce	behavior	you	need.	However,	before	relying	on	only	those	functions,	it’s
important	to	understand	why	you’d	use	a	reduce	function	in	the	first	place.

Returning	to	the	preceding	example	of	the	map,	let’s	imagine	we	have	a	few	more
documents	in	our	set,	as	follows:

var	books=[
				{
"id":	1,
"title":	"The	Bourne	Identity",
"author":	"Robert	Ludlow"
				},
				{
"id":	2,
"title":	"The	Bourne	Ultimatum",
"author":	"Robert	Ludlow"
				},
				{
"id":	3,
"title":	"The	Godfather",
"author":	"Mario	Puzzo"
				},
				{
"id":	4,
"title":	"The	Bourne	Supremacy",
"author":	"Robert	Ludlow"
				},
				{
"id":	5,
"title":	"The	Family",
"author":	"Mario	Puzzo"
				},
	{
"id":	6,
"title":	"Wiseguy",
"author":	"Nicholas	Pileggi"
				}
];

We’ll	still	create	our	index	using	the	same	map	function	because	it	provides	a	way	of
accessing	a	book	by	its	author.	Now	imagine	that	we	want	to	know	how	many	books	an
author	has	written,	or	(assuming	we	had	more	data)	the	average	number	of	pages	written
by	an	author.

These	questions	are	not	possible	to	answer	with	a	map	function	alone.	Each	application	of
the	map	function	knows	nothing	about	the	previous	application.	In	other	words,	there	is	no
way	for	you	to	compare	or	accumulate	information	about	one	author’s	book	to	another
book	by	the	same	author.



Fortunately,	there	is	a	solution	to	this	problem.	As	you’ve	probably	guessed,	it’s	the	use	of
a	reduce	function.	As	a	somewhat	contrived	example,	consider	this	JavaScript:

mapped	=	books.map(function	(book)	{
				return	([book.id,	book.author]);
});

counts	=	{}
reduced	=	mapped.reduce(function(prev,	cur,	idx,	arr)	{
var	key	=	cur[1];
				if	(!	counts[key])	counts[key]	=	0;
				++counts[key]
},	null);

This	code	doesn’t	quite	reflect	the	way	you	would	count	books	with	Couchbase	accurately,
but	it	illustrates	the	basic	idea.	You	look	for	each	occurrence	of	a	key	(author)	and
increment	a	counter	when	it	is	found.	With	Couchbase	MapReduce,	the	mapped	structure
is	supplied	to	the	reduce()	function	in	a	better	format.	You	won’t	need	to	keep	track	of
items	in	a	dictionary.





Couchbase	views
At	this	point,	you	should	have	a	general	sense	of	what	MapReduce	is,	where	it	came	from,
and	how	it	will	affect	the	creation	of	a	Couchbase	Server	view.	So	without	further	ado,
let’s	see	how	to	write	our	first	Couchbase	view.

In	Chapter	1,	Getting	Comfortable	with	Couchbase,	we	saw	that	when	we	install
Couchbase	Server,	we	have	the	option	of	including	a	sample	bucket.	In	fact,	there	were
two	to	choose	from.	The	bucket	we’ll	use	is	beer-sample.	If	you	didn’t	install	it,	don’t
worry.	You	can	add	it	by	opening	the	Couchbase	Console	and	navigating	to	the	Settings
tab.	Here,	you’ll	find	the	option	to	install	the	bucket,	as	shown	next:

In	the	next	sections,	we’ll	return	to	the	console	to	create	our	view,	examine	documents,
and	query	our	views.	For	now,	however,	we’ll	simply	examine	the	code.	First,	you	need	to
understand	the	document	structures	with	which	you’re	working.	The	following	JSON
object	is	a	beer	document	(abbreviated	for	brevity):

{
	"name":	"Sundog",
	"type":	"beer",
	"brewery_id":	"new_holland_brewing_company",
	"description":	"Sundog	is	an	amber	ale…",
	"style":	"American-Style	Amber/Red	Ale",
	"category":	"North	American	Ale"
}

As	you	can	see,	the	beer	documents	have	several	properties.	We’re	going	to	create	an
index	to	let	us	query	these	documents	by	name.	In	SQL,	the	query	would	look	like	this:



SELECT	Id	FROM	Beers	WHERE	Name	=	?

You	might	be	wondering	why	the	SQL	example	includes	only	the	Id	column	in	its
projection.	We’ll	explore	this	analogy	when	we	discuss	view	queries	later	in	this	chapter.
For	now,	just	know	that	to	query	a	document	using	a	view	with	Couchbase,	the	property
by	which	you’re	querying	must	be	included	in	an	index.

To	create	that	index,	we’ll	write	a	map	function.	The	simplest	example	of	a	map	function
to	query	beer	documents	by	name	is	as	follows:

function(doc)	{
		emit(doc.name);
}

This	body	of	the	map	function	has	only	one	line.	It	calls	the	built-in	Couchbase	emit()
function.	This	function	is	used	to	signal	that	a	value	should	be	indexed.	The	output	of	this
map	function	will	be	an	array	of	names.

The	beer-sample	bucket	includes	brewery	data	as	well.	These	documents	look	like	the
following	code	(abbreviated	for	brevity):

{
		"name":	"Thomas	Hooker	Brewing",
		"city":	"Bloomfield",
		"state":	"Connecticut",
		"website":	"http://www.hookerbeer.com/",
		"type":	"brewery"
}

If	we	re-examine	our	map	function,	we’ll	see	an	obvious	problem,	both	the	brewery	and
beer	documents	have	a	name	property.	When	this	map	function	is	applied	to	the	documents
in	the	bucket,	it	will	create	an	index	with	documents	from	either	the	brewery	or	beer
documents.

The	problem	is	that	Couchbase	documents	exist	in	a	single	container—the	bucket.	There
is	no	namespace	for	a	set	of	related	documents.	The	solution	has	typically	involved
including	a	type	or	docType	property	on	each	document.	The	value	of	this	property	is
used	to	distinguish	one	document	from	another.

In	the	case	of	the	beer-sample	database,	beer	documents	have	type	=	"beer"	and
brewery	documents	have	type	=	"brewery".	Therefore,	we	are	easily	able	to	modify	our
map	function	to	create	an	index	only	on	beer	documents:

function(doc)	{
		if	(doc.type	==	"beer")	{
				emit(doc.name);
		}
}

The	emit()	function	actually	takes	two	arguments.	The	first,	as	we’ve	seen,	emits	a	value
to	be	indexed.	The	second	argument	is	an	optional	value	and	is	used	by	the	reduce
function.	Imagine	that	we	want	to	count	the	number	of	beer	types	in	a	particular	category.
In	SQL,	we	would	write	the	following	query:



SELECT	Category,	COUNT(*)	FROM	Beers	GROUP	BY	Category

To	achieve	the	same	functionality	with	Couchbase	Server,	we’ll	need	to	use	both	map	and
reduce	functions.	First,	let’s	write	the	map.	It	will	create	an	index	on	the	category
property:

function(doc)	{
		if	(doc.type	==	"beer")	{
				emit(doc.category,	1);
		}
}

The	only	real	difference	between	our	category	index	and	our	name	index	is	that	we’re
including	an	argument	for	the	value	parameter	of	the	emit()	function.	What	we’ll	do	with
that	value	is	simply	count	them.	This	counting	will	be	done	in	our	reduce	function:

function(keys,	values)	{
		return	values.length;
}

In	this	example,	the	values	parameter	will	be	given	to	the	reduce	function	as	a	list	of	all
values	associated	with	a	particular	key.	In	our	case,	for	each	beer	category	there	will	be	a
list	of	ones	(that	is,	[1,	1,	1,	1,	1,	1]).	Couchbase	also	provides	a	built-in	_count
function.	It	can	be	used	in	place	of	the	entire	reduce	function	in	the	preceding	example.

Now	that	we’ve	seen	the	basic	requirements	when	creating	an	actual	Couchbase	view,	it’s
time	to	add	a	view	to	our	bucket.	The	easiest	way	to	do	so	is	to	use	the	Couchbase
Console.





Couchbase	Console
In	Chapter	1,	Getting	Comfortable	with	Couchbase,	we	skipped	the	Views	tab	in	the
Couchbase	Web	Console	with	the	promise	of	returning	to	it	in	later	chapters.	It’s	just	about
time	to	fulfill	that	promise,	but	first	we’ll	take	a	look	at	another	tab	we	skipped—the	Data
Buckets	tab.

Open	Couchbase	Console.	As	a	reminder,	it’s	found	at	http://localhost:8091.	If	you’re
using	Couchbase	on	a	server	other	than	your	laptop,	substitute	that	server’s	name	for
localhost.	After	logging	in,	navigate	to	the	Data	Buckets	tab,	as	shown	here:

The	Data	Buckets	tab	provides	you	with	a	high-level	overview	of	your	buckets.	You’ll
see	each	bucket	listed	with	information	ranging	from	server	resource	utilization	to	item
(document)	count.	Feel	free	to	explore	some	of	the	other	features	of	this	tab.	This	is	where
you	are	able	to	create	and	edit	buckets.	What	we’re	most	interested	in	is	checking	out	the
documents	in	our	bucket.	Click	on	the	Documents	button	in	the	beer-sample	bucket	row,
as	shown	next:



On	this	screen,	you’ll	be	able	to	browse	for	a	document	by	its	key	or	simply	go	through	all
the	documents	in	the	bucket.	Select	the	beer-sample	bucket	from	the	drop-down	menu
above	the	list	of	documents.	You’ll	then	be	able	to	browse	through	the	sample	beer	and
brewery	documents.	You’re	also	able	to	edit	or	add	documents	to	a	bucket	using	additional
features	on	this	tab.

On	a	side	note,	if	you	followed	along	with	an	SDK	in	Chapter	2,	Using	Couchbase	CRUD
Operations,	and	looked	up	one	of	the	documents	you	saved,	you’d	have	noticed	that	you
don’t	see	JSON,	but	rather	something	that	looks	like	what	is	shown	in	the	following
screenshot:



Earlier	in	this	chapter,	we	learned	that	Couchbase	Server	recognizes	proper	JSON	strings
and	treats	them	differently.	Any	value	you	store	that	is	not	JSON	is	treated	by	Couchbase
Server	as	a	byte	array.	Its	meaning	is	up	to	your	application	to	define.	When	you	view	a
non-JSON-valued	key	in	the	document	view,	you’ll	be	shown	a	base64	representation	of
that	key’s	value.

While	these	documents	are	technically	accessible	to	views,	practically	speaking	you’re
highly	unlikely	to	ever	use	a	non-JSON	record	in	your	views.	You	could	decode	a	base64
value	in	JavaScript,	but	we’ll	work	with	the	assumption	that	you	don’t	want	to	do	so.

Tip
A	common	problem	new	Couchbase	developers	encounter	is	that	they	didn’t	provide
proper	JSON	to	the	server,	and	they	are	unable	to	retrieve	expected	documents	when
querying	a	view.	Checking	for	a	base64-encoded	string	in	the	Documents	page	is	a	good
way	to	eliminate	bad	JSON.

We’re	now	ready	to	explore	the	Views	tab,	as	shown	here:



Development	views
If	you	have	a	bucket	with	millions	of	documents,	you	probably	won’t	want	to	trigger
index	creation	with	every	tweak	of	your	view	definition	during	development.	To	allow
developers	to	build	views	iteratively	and	quickly,	Couchbase	Server	includes	development
views.

Unlike	production	views,	development	views	are	applied	only	to	a	subset	of	data	from	the
bucket.	Therefore,	you	are	safely	able	to	test	a	view	definition	against	your	production
systems.	Your	application	won’t	accidentally	query	one	of	these	views	either,	because	you
must	explicitly	turn	development	views	on	for	your	chosen	SDK.

After	you’ve	developed	and	tested	your	development	view,	you	are	able	to	promote	it	to
production.	At	that	time,	the	full	bucket	is	indexed.	In	the	Couchbase	Console,	you’re	able
to	edit	only	development	views.	Your	production	views	are	read-only.

The	Couchbase	REST	admin	API	does	allow	you	to	work	around	this	safety	check	by
creating	a	view	outside	the	confines	of	the	console.	You	might	choose	to	manage	your
views	this	way	because	it	allows	you	to	work	more	easily	with	source	control	or	server
automation	tools.

We’ll	focus	only	on	the	Couchbase	Console	to	create	our	views.	To	get	started,	click	on
the	Create	Development	View	button.	You’re	then	taken	to	a	page	where,	at	the	top,	there
are	dropdowns	with	your	buckets	and	views	in	those	buckets.	Select	the	beer-sample
bucket.	This	sample	bucket	includes	three	predefined	views,	as	shown	next.	We’ll	create
our	own	view	rather	than	examining	these.



Design	documents
With	the	beer-sample	bucket	selected,	click	on	the	Create	Development	View	button
(ensure	that	Development	Views	is	selected).	In	addition	to	providing	a	view	name,	you’ll
be	prompted	to	provide	a	design	document	name,	as	shown	here:

Naming	a	Development	View

Views	are	defined	in	special	documents	on	the	server,	known	as	a	design	documents.
These	documents	are	named	with	a	prefix	of	_design/	followed	by	any	meaningful	name
you	choose.	Additionally,	development	design	documents	will	be	named	with	a	dev_
prefix.

Your	design	document	may	contain	one	or	more	view	definitions.	Typically,	you’re	likely
to	have	one	design	document	for	each	document	type	(for	example,	one	beer	design
document	and	one	brewery	document).	However,	our	sample	design	document	contains
views	for	both	breweries	and	beers.

Tip
While	adhering	to	the	convention	of	one	design	document	per	document	type	is	a	good
place	to	start,	there	are	other	factors	that	you	must	consider.	Specifically,	when	you	make
any	change	to	a	design	document,	it	triggers	a	re-indexing	of	all	views	defined	within	that
design	document.	Therefore,	it’s	best	to	segment	views	based	on	the	likelihood	of	one
document	being	updated.



Creating	a	view
Now	that	we	know	what	design	documents	are,	we’re	ready	to	create	our	first	view.	In	the
dialog	box	that	appeared	when	you	clicked	on	Create	Development	View,	name	the
design	document	_design/dev_beers.

A	useful	convention	for	naming	views	is	to	prefix	them	with	by_	and	complete	the	name
with	the	indexed	fields.	So,	for	the	new	view	we’re	about	to	create	(which	indexes	beer
documents	by	their	name	property),	set	the	name	of	the	view	to	by_name.

After	you’ve	provided	the	design	document	name	and	view	name,	you’ll	see	your	view
listed	on	the	page.	To	edit	this	view,	you	could	click	on	either	the	Edit	button	or	the	name
of	the	view.	Then	you’ll	be	presented	with	a	simple	editor	in	which	you’ll	create	your
views,	as	shown	next:

The	default	view	that	appears	includes	a	map	function.	This	map	function	looks	slightly
different	from	those	we	previously	walked	through.	While	it’s	mostly	the	same	map
function,	notice	the	additional	meta	parameter.	This	optional	parameter	provides	you	with
a	way	to	access	document	metadata	in	your	map	function.	Each	document	in	Couchbase
has	a	few	fields	of	associated	metadata.	You	can	see	these	fields	in	the	panel	above	the
code	editor	(under	Preview	a	Random	Document).



More	often	than	not,	the	only	metadata	field	your	views	will	be	concerned	with	is	the	id
field.	This	field	is	the	key	from	the	key/value	API	that	is	associated	with	a	document.	It’s
important	to	understand	that	the	key	is	not	part	of	the	document,	but	rather	a	means	of
storing	and	retrieving	the	document.

The	window	that	you	see	by	default	when	you	create	a	new	view	creates	an	index	on
document	keys	using	the	meta	argument’s	id	property.	It	might	seem	redundant	to	create	a
secondary	index	on	the	primary	index.	However,	should	you	wish	to	perform	range
queries	(that	is,	find	all	keys	from	A	to	C),	then	you’ll	need	this	index.

To	create	our	view,	we’ll	reuse	the	map	function	we	wrote	earlier	in	this	chapter:

function(doc,	meta)	{
		if	(doc.type	==	"beer")	{
				emit(doc.name,	null);
		}
}

After	you’ve	modified	the	map	function	to	use	this	code,	click	on	Save	to	start	the	process
of	indexing	the	documents.	Once	the	map	function	is	saved,	we	are	able	to	test	our	view
by	clicking	on	the	Show	Results	button	under	the	code	editor,	as	shown	here:

The	result	you’ll	see	is	simply	a	list	of	every	document	that	was	included	in	the	index.	The



key	parameter	in	the	index	is	the	document’s	name	property,	ordered	using	Unicode
collation.	The	value	is	null	in	this	case	because	we	did	not	include	a	second	argument	to
our	call	to	emit().	Notice	that	the	document’s	id	property	is	included	under	each	of	the
index	keys.

In	many	programming	languages,	sorting	tends	to	follow	byte	order.	If	you	sort	a	set	of
strings,	most	default	implementations	would	follow	ASCII	ordering,	which	orders
uppercase	letters	before	lowercase	variants.	By	contrast,	Unicode	collation	orders	variants
of	the	same	letter	next	to	each	other,	as	we	have	already	discussed	in	a	previous	section.

Tip
If	you’re	unfamiliar	with	Unicode	collation,	you	can	think	of	it	as	being	“not	quite
alphabetical.”	Though	A	will	always	be	ordered	before	B,	so	will	À.	In	other	words,
variations	of	letters	will	be	ordered	together	before	the	next	letter	and	its	variations.
Additionally,	lowercase	letters	and	their	variants	will	precede	uppercase	variants.	Numeric
values	will	precede	all	letter	variants.

Before	we	move	on	to	running	queries	against	our	views,	let’s	walk	through	our	earlier
MapReduce	example	where	we	tried	to	count	beer	types	by	category.	Start	by	clicking	on
the	Views	tab,	where	you’ll	now	see	you	have	the	ability	to	add	a	view	to	your	existing
design	document,	as	shown	here:

Click	on	Add	View	in	the	line	where	the	dev_beers	design	document	is	shown.	Name	this
view	by_category.	Click	on	Edit	next	to	the	new	view	to	return	to	the	view	editor	page.
Modify	the	map	function	so	that	it	looks	like	this	snippet:

function(doc,	meta)	{
		if	(doc.type	==	"beer"	&&doc.category)	{
				emit(doc.category,	1);
		}
}

Tip



This	map	function	is	the	similar	to	the	function	we	wrote	earlier	in	this	chapter,	but	it	now
includes	a	safety	check	so	that	beers	without	a	category	are	not	indexed.	Without	the	null
check,	the	index	would	contain	numerous	documents	that	do	not	have	a	category.
Checking	for	a	property’s	existence	is	a	common	practice	when	creating	views.

Once	you’ve	modified	the	view	code,	click	on	Save.	Then	click	on	Show	Results.	The
grid	should	look	similar	to	that	of	our	by_name	index,	but	with	the	addition	of	1	to	the
value	for	each	indexed	document,	as	shown	next:

Take	note	of	the	fact	that	at	this	point,	each	category	appears	in	our	results,	once	for	each
beer	with	which	it’s	associated.	To	find	the	count	of	beers	grouped	by	category,	we’ll	need
to	add	a	reduce	function	to	our	view.	For	this	example,	simply	use	the	built-in	_count
function	in	the	reduce	editor.	After	you’ve	made	that	change,	click	on	Save	and	then	on
Show	Results.	You	can	see	the	following	result:



The	results	you	see	might	not	be	what	you	expected.	We’ve	said	all	along	that	our	goal
was	to	provide	a	count	of	beers	grouped	by	category.	Instead,	what	we’re	seeing	is	the
equivalent	of	a	SQL	COUNT	query	without	a	GROUP	BY	clause:

SELECT	COUNT(*)	FROM	Beers

To	understand	how	we	group	our	results,	we’ll	have	to	explore	the	view	query	API,	which
we’ll	do	in	the	next	section.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support




Querying	views
An	important	distinction	to	make	at	this	point	is	that	views	are	not	queries,	but	means	of
querying	for	documents.	You’ll	run	queries	against	the	view	index	in	order	to	find	the
original	documents.	It	is	a	common	misconception	that	the	views	you	write	are	actual
queries.

Couchbase	views	have	an	API	that	supports	a	variety	of	search	options,	from	an	exact	key
search	to	a	key	range	search.	Continuing	to	use	the	Couchbase	Console,	we’ll	explore	the
various	parameters	we	are	able	to	use	as	we	query	our	views.	Begin	by	clicking	on	the
down	arrow	next	to	the	Filter	Results	text	above	the	results	panel.

Filtering	views



Grouping
To	continue	with	the	reduce	example,	check	the	box	next	to	group	and	click	on	Close.
Click	on	Show	Results	again,	and	you’ll	now	see	that	the	results	are	grouped	by	the	name
of	the	category,	as	shown	here:

There’s	an	additional	parameter	called	group_level	under	the	group	option.	This
parameter	takes	an	integer	argument	and	is	meant	to	be	used	with	composite	(array)	keys.
Our	map	function	produces	only	a	single-value	key,	so	we’ll	avoid	exploring	this	option
until	Chapter	4,	Advanced	Views.



Key	queries
To	continue	our	examination	of	the	different	view	query	options,	let’s	return	to	our
by_name	view.	Scroll	up	to	the	top	of	the	page	and	select	this	view	from	the	drop-down
list.	You	can	see	this	in	the	following	screenshot:

Once	the	page	has	refreshed	with	the	by_name	view,	return	to	the	Filter	Results	section
and	expand	the	dialog.	For	our	first	query,	we’ll	search	for	beer	types	with	names	starting
with	the	letters	B	and	C.	To	do	so,	enter	"B"	in	the	startkey	field	and	"D"	in	the	endkey
field.	Note	that	the	quotes	around	your	start	and	end	keys	must	be	included.

Close	the	dialog	and	click	on	Show	Results	again.	You’ll	see	that	the	first	beer	types
shown	have	names	starting	with	the	letter	B.	You	can	click	all	over	the	list	to	see	the
results	that	were	returned	as	part	of	our	view	query.

Tip
Note	that	if	you	page	through	the	list,	you	might	not	find	a	beer	starting	with	C.	The
reason	is	that	the	results	view	panel	limits	your	results	to	only	100	records.

Range	queries	such	as	these	are	useful	when	we	don’t	know	exactly	what	we’re	looking
for.	However,	we’ll	often	want	to	search	for	a	document	by	an	exact	match	on	an	indexed
property.	To	achieve	this	result,	simply	supply	a	string	value	to	the	key	parameter,	such	as
"Three	Philosophers"	or	"(512)	ALT".	Similarly,	if	you	want	to	search	on	multiple	keys
in	one	query,	you	can	supply	an	array	to	the	keys	parameter,	such	as	["Three
Philosophers",	"(512)	ALT"].



Eventual	consistency
We’ll	explore	the	parameters	that	we	saw	in	the	previous	section,	along	with	other
parameters,	in	more	detail	in	the	next	chapter.	One	last	parameter	we’ll	examine	now	is
the	stale	option.	You’ve	already	learned	that	views	are	incrementally	updated,	which
means	your	query	might	be	against	a	stale	view.	In	other	words,	if	a	document	was
modified,	the	current	state	of	the	index	might	not	have	considered	that	change	yet.

This	delay	between	the	time	a	document	is	modified	and	the	time	it	is	indexed	is	known	as
eventual	consistency.	In	other	words,	the	right	or	current	value	for	a	document	will
eventually	be	made	consistent	in	the	view	index.	In	many	cases	this	might	be	acceptable,
but	for	others	it’s	not.	Fortunately,	with	Couchbase	you	can	tune	your	consistency
requirements	for	views.

By	default,	querying	a	view	will	trigger	an	update	to	the	index	after	the	results	of	the
query	are	returned.	This	is	done	by	the	update_after	argument,	which	may	be	supplied	to
the	stale	parameter.	If	you	need	a	fully	consistent	answer,	then	set	the	stale	value	to
false.	If	stale	data	is	permissible,	set	the	stale	value	to	ok.	This	last	option	will	not	force
an	update	of	the	view	index.

Tip
Prior	to	Couchbase	Server	3.0,	a	document	had	to	be	made	to	persist	in	the	disk	before	it
could	be	considered	for	an	index.	This	meant	that	true	consistency	between	in-memory
documents	and	view	indexes	required	a	combination	of	key/value	operation	with	a	stale
value	of	false.	Couchbase	Server	3.0	introduces	new	stream-based	views.	Built	on	the
new	Data	Change	Protocol	(DCP),	streamed	views	may	be	made	consistent	by	setting
stale	to	false.	This	setting	considers	in-memory	changes.





Couchbase	SDKs	and	views
For	another	perspective	on	your	view,	click	on	the	link	right	above	the	grid	of	results.	This
link	will	lead	to	a	JSON	view	of	our	index:

{
				"total_rows":	5891,
				"rows":	[
								{
												"id":	"sullivan_s_black_forest_brew_haus_grill",
												"key":	".38	Special	Bitter",
												"value":	null
								},
								{
												"id":	"512_brewing_company-512_alt",
												"key":	"(512)	ALT",
												"value":	null
								},
								{
												"id":	"512_brewing_company-512_bruin",
												"key":	"(512)	Bruin",
												"value":	null
								}						
				]
}

The	client	libraries	will	use	this	JSON	when	querying	a	view.	This	view	also	introduces	an
important	element	of	the	Couchbase	Server	view	API—the	fact	that	it’s	HTTP-based.
Unlike	the	key/value	API,	which	is	a	binary	protocol,	views	are	queried	over	a	RESTful
API,	with	parameter	values	supplied	as	query	string	arguments.	Being	able	to	see	the
JSON	that	your	client	library	sees	is	useful	not	only	for	debugging	but	also	for
understanding	how	you’ll	work	with	views	through	your	SDK.

Unlike	documents,	which	reside	in	memory	(when	available),	view	indexes	are	stored	in
the	disk.	Therefore,	it’s	more	expensive	to	query	a	view	than	to	retrieve	a	document	by	its
key.	As	such,	it	is	best	practice	to	think	of	an	index	as	a	means	to	retrieve	the	document’s
key.	Once	the	key	is	found,	you’ll	then	use	the	key/value	API	to	retrieve	the	original
document.

Tip
It	is	a	common	mistake	to	output	the	original	document	as	a	part	of	the	map	function	by
supplying	doc	as	the	value	argument	to	emit().	Doing	so	means	storing	a	copy	of	your
document	with	the	index,	which	will	not	be	kept	in	sync	with	the	doc	argument	in	the
memory.

As	you	can	see	in	the	previous	JSON,	each	record	in	the	index	provides	your	SDK	with
three	values.	The	first	parameter,	"id",	is	the	key	for	a	document	to	use	with	the	key/value
API.	The	second	parameter,	"key",	is	the	key	that	was	indexed.	Your	queries	are	made
against	this	key.	The	third	parameter,	"value",	is	the	value	you	output,	typically	to	be	used
with	reduce.



To	see	how	you	can	use	an	SDK	to	query	a	view,	consider	the	following	C#	snippet:

var	query	=	bucket.CreateQuery("dev_beers",	"by_name");
var	result	=	bucket.Query<dynamic>(query);
foreach	(var	item	in	result.Rows)
{
		Console.WriteLine(item.Key);
}

In	this	example,	the	client	SDK	will	query	the	view	(without	arguments)	and	get	back	an
enumerable	View	object.	As	the	view	is	iterated	over,	the	GetItem()	method	uses	the
index	row’s	id	property	to	query	for	the	original	document	via	the	key/value	API.	The
Java	SDK	has	a	similar	approach:

View	view	=	client.getView("beer",	"brewery_beers");
Query	query	=	new	Query();
query.setKeys("[\"Three	Philosophers\",\"(512)	ALT\"]");
ViewResponse	response	=	client.query(view,	query);
for	(ViewRow	row	:	response)	{
System.out.println(row.getDocument());
}

Each	SDK	adheres	to	roughly	the	same	pattern.	First,	you	get	access	to	a	view	object	of
some	type	and	set	any	parameters	you	need	to	set.	Then	you	iterate	over	the	results,
getting	the	original	document	by	the	ID	value	found	in	the	index.

For	better	performance,	you	should	consider	using	the	multi-get	operations.	To	do	so,	you
should	first	aggregate	the	set	of	id	values	into	some	enumerable	structure,	and	then	pass
that	set	of	IDs	to	the	multi-get	operation	of	the	SDK.	The	following	C#	snippet
demonstrates	how	to	create	a	list	of	IDs	from	the	view	results	and	then	supply	those	IDs	to
a	multi-get	operation:

var	query	=	bucket.CreateQuery("dev_beers",	"by_name");
var	result	=	bucket.Query<dynamic>(query);
var	ids	=	result.Rows.Select(r	=>r.Id).ToList();
var	beers	=	bucket.Get<dynamic>(ids);





Summary
We	covered	a	lot	of	ground	in	this	chapter.	In	the	beginning,	you	saw	Couchbase	only	as	a
key/value	store.	Since	then,	you	learned	that	Couchbase	is	a	very	capable	document	store
as	well,	treating	JSON	documents	as	first-class	citizens.

You	learned	the	purpose	of	secondary	indexes	in	a	key/value	store.	We	dug	deep	into
MapReduce,	both	in	terms	of	its	history	in	functional	languages	and	as	a	tool	for	NoSQL
and	big	data	systems.

As	far	as	Couchbase	MapReduce	is	concerned,	we	only	scratched	the	surface.	While	you
learned	how	to	develop,	test,	and	query	views,	the	queries	covered	so	far	were	simple.
Couchbase	view	queries	are	capable	of	a	lot	more,	which	you	will	see	as	we	move
forward.

In	the	next	chapter,	we’ll	cover	MapReduce	in	detail.	We	will	have	to	start	exploring	more
complex	views,	with	a	special	focus	on	queries	you’re	probably	used	to	in	SQL.	From
complex	keys	to	simulating	joins,	you’ll	soon	see	that	Couchbase	views	can	be	used	for	a
lot	more	than	simple	queries.





Chapter	4.	Advanced	Views
In	the	previous	chapter,	we	explored	the	basics	of	the	view	API	in	Couchbase	Server.
Having	spent	a	fair	bit	of	time	discussing	MapReduce,	we’re	now	ready	to	move	on	to
more	advanced	views.	In	this	chapter,	we’ll	dig	deep	into	most	of	the	common	application
queries	you’ll	likely	need	to	build	an	application	with	Couchbase.



Querying	by	type
One	of	the	most	basic	tasks	when	building	applications	is	to	find	all	records	of	a	particular
type.	In	the	relational	world,	this	effort	is	analogous	to	SELECT	*	FROM	TableName.	For
example,	you	might	need	to	display	a	list	of	all	users	in	your	system.	For	this	query,	we
aren’t	concerned	with	any	particular	attribute	of	a	document	other	than	that	it	is	a	user
document:

function	(doc,	meta)	{
		if	(doc.type	==	"user")	{
				emit(null,	null);
		}
}

In	this	example,	we’ll	simply	check	for	the	"user"	type,	and	then	emit	a	null	key	for	each
user	document	that	is	found.	Since	we	didn’t	check	for	any	property	values	other	than	the
type,	the	index	will	contain	all	user	documents.	Again,	the	previous	map	function	is
similar	to	a	SELECT	*	SQL	query	without	a	WHERE	clause:

var	view	=	client.GetView("users",	"all_users");
foreach(var	row	in	view)
{
		var	user	=	row.GetItem()	as	User;
//do	something	with	the	user
}

In	the	preceding	C#	snippet,	the	all_users	view	from	the	users	design	document	is
queried	with	no	arguments.	As	the	view	object	is	enumerated,	each	document	is	retrieved
by	its	key	or	value	(performed	by	the	GetItem()	method).

You’re	likely	wondering	why	we	emitted	a	null	value	for	the	key	in	our	map	function.
Recall	that	every	row	in	a	Couchbase	view	contains	the	ID	or	key	from	the	key/value	API
as	a	part	of	its	data	structure.	Therefore,	it	would	be	redundant	to	include	a	value	for	the
key.	The	id	property	is	exposed	to	the	SDKs	when	they	query	the	view	over	the	RESTful
view	API:

{"id":"user_12345","key":null,"value":null}

Another	point	to	remember	is	that	Couchbase	documents	are	not	namespaced	beyond	the
bucket	level.	There	is	no	table	analogy.	As	such,	for	a	“find	all”	query	such	as	the	one	we
saw	before	(to	find	all	users),	some	sort	of	convention	is	required	to	identify	the	type	of
the	document.	In	this	case,	we’re	using	the	convention	of	having	a	type	property	with	each
document,	as	we	saw	in	Chapter	3,	Creating	Secondary	Indexes	with	Views.

Finally,	it’s	worth	mentioning	again	that	the	purpose	of	a	view	is	to	provide	a	way	of
accessing	the	original	document	over	the	key/value	API.	If	you	know	a	document’s	key
from	its	key/value	API,	you	wouldn’t	use	a	view	to	find	it.	You’ll	use	views	to	find	keys
for	documents	when	those	keys	are	not	immediately	or	easily	known.





Nested	collections
So	far,	we’ve	focused	on	pretty	simple	documents.	In	practice,	however,	you’re	more
likely	to	work	with	complex	JSON	structures	that	mirror	your	application’s	object	graph.
For	example,	consider	the	common	Customer	class.	In	this	case,	you	have	a	Customer
object,	which	has	a	collection	of	Address	objects,	as	demonstrated	in	the	following	C#
snippet:

public	class	Customer
{
		public	string	FirstName	{	get;	set;	}
		public	string	LastName	{	get;	set;	}
		public	IEnumerable<Address>	Addresses	{	get;	set;	}
}

public	class	Address
{
		public	string	Street	{	get;	set;	}
		public	string	City	{	get;	set;	}
		public	string	Province	{	get;	set;	}
		public	string	State	{	get;	set;	}
		public	string	Country	{	get;	set;	}
		public	string	PostalCode	{	get;	set;	}
}

In	a	relational	model,	this	object	structure	would	translate	into	a	one-to-many	relationship
between	a	Customers	table	and	an	Addresses	table.	By	contrast,	with	document	databases,
you	tend	to	store	related	object	graphs	in	the	same	document.	As	such,	your	JSON
structure	would	look	something	like	this	sample:

{
		firstName	=	"Paulie",
		lastName	=	"Walnuts",
		type	=	"customer"
		addresses	=	[
				{	
						street:	"20	Mulberry	Street",
						city:	"Newark",
						state:	"NJ",
						postalCode:	"07102",
						country:	"US"
				},
				{	
						street:	"10	Ridge	Street",
						city:	"Orange",
						state:	"NJ",
						postalCode:	"07050",
						country:	"US"
				}
		]
}

Our	JSON	resembles	our	in-memory	object	graph	much	more	closely	than	it	does	the



relational	equivalent.	However,	in	the	relational	world,	finding	all	customers	who	live	in	a
given	state	or	have	a	given	postal	code	is	possible	with	a	straightforward	query:

SELECT	*	
FROM	Addresses	a	
INNER	JOIN	Customers	c	ON	c.Id	=	a.CustomerId
WHERE	State	=	'NJ'

Fortunately,	the	map	function	that	allows	a	similar	query	to	be	run	is	not	as	complex	as
those	we’ve	seen	already.	The	only	real	difference	is	that	we’ll	loop	over	the	nested
collection	and	emit	the	index	values	from	within	that	loop,	as	follows:

function(doc,	meta)	{
		if	(doc.type	==	"customer"	&&	doc.addresses)	{
				for(vari	=	0;	i<doc.addresses.length;	i++)	{
						if	(doc.addresses[i].state)	{
								emit(doc.addresses[i].state,	null);
						}
				}
		}
}

This	map	function	also	demonstrates	that	within	a	map	multiple	properties	or	objects	from
the	same	document	may	be	indexed.	For	each	address	in	a	customer	document,	there	will
be	a	corresponding	record	in	the	index.

Now	we	can	see	that,	since	our	map	function	is	simply	a	JavaScript	function,	we	can	do	in
our	map	function	virtually	anything	that	we	can	do	in	JavaScript.	You	are	able	to	create
quite	complex	map	functions,	including	having	the	ability	to	create	anonymous	functions.

Note
It	is	a	common	question	as	to	whether	you’re	able	to	include	JavaScript	libraries	to	be
used	in	your	map	and	reduce	functions.	Practically	speaking,	you	aren’t.	You	could
probably	manage	to	wedge	jQuery	into	a	map	function,	but	that	would	be	quite
impractical.

It’s	not	always	right	to	nest	related	entities	as	we	just	did	with	customer	addresses.	There
are	times	when	it	will	make	more	sense	to	store	a	related	record	in	its	own	document.	For
example,	you	probably	wouldn’t	want	to	nest	products	purchased	by	a	customer	within	the
customer	record.	Instead,	you	would	likely	store	a	reference	to	a	product	document’s	key.
In	Chapter	6,	Designing	a	Schema-less	Data	Mode,	we’ll	explore	these	patterns	in	more
detail.





Range	queries
We’ve	seen	the	basics	of	key	range	queries	but	haven’t	fully	explored	how	they	work.
Understanding	range	queries	is	critical	in	order	to	understand	how	to	perform	a	number	of
common	query	tasks.	We’ll	start	by	revisiting	a	basic	range	query.	We’ll	use	a	simple
document	structure,	as	shown	here:

{
		"firstName":	"Hank",
		"lastName":	"Moody",
		"type":	"user"
},
{
		"firstName":	"Karen",
		"lastName":	"Van	Der	Beek",
		"type":	"user"
},
{
		"firstName":	"Becca",
		"lastName":	"Moody-Smith",
		"type":	"user"
}

In	this	example,	we	have	three	documents.	We’ll	start	by	writing	the	map	function,	which
will	allow	us	to	perform	queries	by	last	name.	This	is	our	standard	view	definition	with	a
check	on	type	and	for	the	existence	of	a	lastName	property:

function	(doc,	meta)	{
		if	(doc.type	==	"user"	&&	doc.lastName)	{
				emit(doc.lastName,	null);
		}
}

As	a	refresher,	to	find	a	user	by	the	last	name,	we’ll	simply	provide	the	value	"Moody"	as	a
view	parameter	(including	the	quotes).	That	is	a	basic	key	search.	But	what	if	we	wanted
to	find	all	Moody	records,	even	those	with	a	hyphenated	last	name?	In	this	case,	we	can
use	a	range	query.

To	query	a	view	by	a	range,	there	are	two	parameters	to	be	set,	startkey	and	endkey.
Even	with	that	knowledge	in	mind,	it	might	still	not	be	obvious	what	values	to	provide	for
these	parameters.	The	startkey	parameter	represents	the	lower	bounds	of	the	range,	and
the	endkey	parameter	represents	the	upper	bounds.	It	might	be	obvious	how	you’d
perform	a	range	query	on	integers,	but	how	do	you	perform	a	range	query	on	words?

Deliberately	taking	a	naïve	approach,	we’ll	start	by	using	"M"	and	"N"	as	our	arguments
for	startkey	and	endkey,	respectively.	While	with	our	limited	dataset	we’d	certainly	get
both	the	Moody	records,	we’d	also	get	any	document	with	a	last	name	starting	with	the
letter	M.

As	a	second	step,	we	could	change	startkey	to	"Moody".	While	this	would	eliminate
documents	such	as	one	with	a	last	name	of	Matthews,	it	would	leave	records	such	as



Morissette.	The	question	then	becomes,	what	are	the	values	greater	than	Moody?	More
specifically,	we	want	to	find	values	greater	than	Moody	followed	by	a	hyphen,	and	any
other	name.	Before	we	look	at	the	answer,	let’s	first	revisit	the	notion	of	Unicode
collation.

When	we	compare	strings	in	most	programming	languages,	we	tend	to	rely	on	ASCII	or
byte	order.	In	byte	order,	A	is	less	than	(or	ordered	before)	a,	but	greater	than	B.	By
contrast,	with	Unicode	Collation,	a	is	less	than	A	and	less	than	B,	which	is	greater	than	b.
Additionally,	accented	variants	are	also	grouped	together	with	letters.	For	example,	a	is
less	than	à,	and	A	is	less	than	Ă.	The	following	example	illustrates	the	basics	of	Unicode
sorting:

1	<	5	<	a	<	à	<	A	<	Ă	<	c	<	ç	<	C

Now	that	we	have	understood	how	view	results	are	sorted,	we	can	solve	the	problem	of
ending	our	range	query.	What	we	want	is	a	value	that	will	always	be	higher	than	any	last
name	starting	with	Moody	followed	by	a	hyphen.	This	value	should	also	be	less	than	any
value	that	could	be	greater	than	Moody	followed	by	a	hyphen.

With	Couchbase	server,	the	practice	is	to	create	an	upper	bound	that	starts	with	the	values
you	hope	to	match,	but	suffixes	that	value	with	some	high-order	value.	For	example,	one
approach	would	be	to	set	startkey	to	"Moody"	and	endkey	to	"Moody-ZZZZ".	While	this
approach	is	likely	to	catch	most	documents,	what	about	last	names	starting	with	Ȥ,	or	any
other	accented	Z	character?

A	better	approach	is	to	select	a	boundary	outside	the	likely	realm	of	possible	values	for	a
name.	Usually,	this	approach	involves	using	the	value	at	the	end	of	the	Unicode	Collation
table,	which	is	\u02ad.	Therefore,	if	we	want	to	capture	all	“Moody-?”	names,	we’d	use
an	endkey	parameter	of	"Moody-\u02ad".

Tip
Note	that	in	this	example,	the	last	name	moody	would	not	be	part	of	the	query	results
because	m	is	less	than	M.	To	address	this	issue,	we	can	either	change	the	query	to	have	a
start	range	of	moody	or	modify	the	map	function	to	emit	all	lowercase	keys.

It’s	also	worth	mentioning	that	this	type	of	query	is	effectively	a	“starts	with”	or	LIKE
"A%"	query.	In	other	words,	it	provides	a	means	of	searching	for	all	documents	that	start
with	a	particular	string.	There	is	no	comparable	“ends	with”	query.





Multiple	keys	per	document
The	preceding	map	function	we	just	wrote	has	a	limitation—it	will	identify	only	those	last
names	where	the	desired	name	appears	before	the	hyphen.	Therefore,	the	last	name	Van
Der	Beek-Moody	would	not	be	found.	To	address	this	issue,	we	could	query	a	second
time,	with	the	startkey	and	endkey	parameters	reversed	from	our	previous	query.
However,	there	is	a	better	way.

There	is	no	rule	that	a	document	must	have	only	one	key	per	row	in	an	index.	Therefore,
we	can	rewrite	our	index	to	emit	an	index	row	for	every	possible	last	name.	In	this
example,	a	possible	last	name	is	anything	appearing	before	or	after	a	hyphen:

function(doc,	meta)	{
		if	(doc.type	==	"user"	&&	doc.lastName)	{
				var	parts	=	doc.lastName.split("-");
				for(vari	=	0;	i<parts.length;	i++)	{
						emit(parts[i],	null);
				}
		}
}

In	this	new	map	function,	we	use	JavaScript’s	string	split()	function	to	return	each	of	the
names	contained	in	a	last	name.	For	each	match	name	we	find,	we	send	it	to	the	index.
Now	the	document	with	a	last	name	of	Moody-Smith	will	have	two	rows	in	the	index,	one
for	Moody	and	one	for	Smith.	The	Van	Der	Beek-Moody	document	will	also	have	two
rows.

This	approach	is	far	more	powerful	because	it	allows	us	to	perform	a	key	query	rather	than
a	key	range	query.	To	find	all	Moody	documents,	we	simply	set	the	key	parameter’s	value
to	"Moody"	(with	the	quotes).	Regardless	of	where	Moody	appears	in	the	last	name,	it	will
be	found	by	our	query.

As	another	example,	consider	a	blog	post	document	where	the	post	includes	a	set	of	tags.
You	want	to	be	able	to	locate	all	the	posts	with	the	same	tag:

{
		"title"	:	"About		Couchbase	Views",
		"body"	:	"Views	are	secondary	indexes…",
		"type"	:	"post",
		"tags"	:	["couchbase",	"nosql",	"views"]
}

In	this	example,	the	tags	property	is	an	array	of	strings.	The	map	function	used	to	index
these	tags	will	be	similar	to	the	function	we	just	wrote	to	index	last	names	in	our	user
documents:

function(doc,	meta)	{
		if	(doc.type	==	"post"	&&	doc.tags	&&	doc.tags,length)	{
				for(vari	=	0;	i<doc.tags.length;	i++)	{
						emit(doc.tags[i],	null);
				}
		}



}

Since	our	tags	were	already	stored	in	an	array,	all	we	need	to	do	is	iterate	over	those
values	and	emit	them	to	the	index.	Note	that	we’ll	also	verify	that	our	document	has	a
tags	property	and	that	the	tags	property	has	a	length	property.	This	test	will	ensure	that
even	if	the	document	has	a	tags	property,	it	is	also	an	enumerable	property,	such	as	an
array.

As	another	example	of	this	approach	to	indexing	documents,	consider	the	goal	of	indexing
the	words	in	a	document’s	title	property.	Our	goal	is	to	create	a	simple	text	index:

function(doc,	meta)	{
		if	(doc.type	==	"post"	&&	doc.title)	{
				var	words	=	doc.title.split("	");
				for(vari	=	0;	i<words.length;	i++)	{
						emit(doc.words[i],	null);
				}
		}
}

Simply	splitting	the	words	in	the	title	and	emitting	them	to	an	index	allows	us	to	query	for
documents	by	words	in	the	post’s	title.	Of	course,	if	a	true	full-text	index	is	what	you
need,	you’d	likely	want	to	use	a	full-text	search	tool	such	as	Elasticsearch.	Fortunately,
the	Couchbase	team	supplies	an	Elasticsearch	plugin.	It	can	be	used	to	push	data	from	a
Couchbase	cluster	to	an	Elasticsearch	cluster.	The	plugin	is	available	for	download	at
http://www.couchbase.com/nosql-databases/downloads.

The	final	example	of	emitting	multiple	keys	per	document	demonstrates	how	to	emulate
an	OR	query.	Using	our	user	documents,	we’ll	emit	an	index	that	includes	both	first	and
last	names.	In	SQL,	this	query	would	be	similar	to	the	following:

SELECT	*	
FROM	Users	
WHERE	LastName	=	'Moody'	OR	FirstName	=	'Hank'

For	the	map	function,	we’ll	simply	add	an	extra	call	to	emit	so	that	both	first	and	last
names	are	sent:

function(doc,	meta)	{
		if	(doc.type	==	"user"	&&	doc.firstName	&&	doc.lastName)	{
				emit(doc.firstName,	null);
				emit(doc.lastName,	null);
		}
}

The	index	will	consist	of	two	rows	for	each	user	document,	one	for	the	first	name	and	one
for	the	last	name.	To	run	an	OR	query,	you	would	use	the	keys	parameter,	supplying	an
array	of	the	values	that	you	want	to	search,	for	example	["Hank",	"Moody"].

Querying	a	view	by	keys	yields	all	the	documents	that	match	the	supplied	keys.	Keys	that
don’t	match	are	ignored	(much	like	OR).	One	thing	to	keep	in	mind	is	that	in	this	approach,
you	aren’t	specifying	whether	a	key	is	a	first	name	or	last	name,	as	would	be	the	case	with
SQL.	We’ll	learn	how	to	enhance	this	view	in	the	next	section.

http://www.couchbase.com/nosql-databases/downloads


Tip
It’s	good	practice	to	check	for	null	any	and	all	properties	being	emitted	to	an	index.	Such
checks	make	it	safer	to	perform	actions	on	your	emitted	properties,	or	to	have	reduce
functions	that	won’t	encounter	unexpected	null	values.	The	following	snippet	could	break
your	indexing	if	lastName	were	null:

emit(doc.lastName.toLowerCase(),null);





Compound	indexes
Writing	an	AND	query	requires	a	different	approach	than	what	we	used	for	our	OR	query.	If
you	wanted	to	perform	the	analogue	of	a	SQL	query	with	multiple	values	in	a	WHERE
clause,	you’d	need	to	structure	your	view	keys	in	such	a	way	as	to	allow	your	application
to	supply	multiple	values	as	one	key	parameter	value:

SELECT	*	
FROM	Users	
WHERE	LastName	=	'Soprano'	AND	FirstName	=	'Tony'

In	the	preceding	SQL	statement,	we	are	able	to	have	values	for	both	LastName	and
FirstName.	One	approach	would	be	to	create	a	delimited	key	in	our	index	like	this:

function(doc,	meta)	{
		if	(doc.type	==	"user"	&&	doc.firstName	&&	doc.lastName)	{
				emit(doc.lastName	+	","	+	doc.firstName,	null);
		}
}

This	map	function	emits	a	key	in	the	form	of	"Soprano,Tony"	to	the	index.	When
querying	the	index,	the	client	application	would	concatenate	the	last	name,	a	comma,	and
the	first	name.	The	resulting	string	would	be	provided	as	the	argument	for	the	key
parameter.

Obviously,	it’s	not	optimal	to	concatenate	a	set	of	values	in	order	to	run	a	query.
Fortunately,	as	we	saw	briefly	in	Chapter	3,	Creating	Secondary	Indexes	with	Views,
Couchbase	views	support	compound	indexes.	Recall	that	compound	indexes	are	simply
array	keys.	With	this	change	in	mind,	we	could	rewrite	the	last	name	and	first	name
indexes	in	this	way:

function(doc,	meta)	{
		if	(doc.type	==	"user"	&&	doc.firstName	&&	doc.lastName)	{
				emit([doc.lastName,	doc.firstName],	null);
		}
}

In	this	version	of	the	map	function,	we	have	an	array	key	where	the	last	name	is	the	first
element	and	the	first	name	is	the	second	element.	With	this	change,	when	a	client	queries
for	a	combination	of	first	and	last	names,	the	key	parameter	is	used.	The	key	to	search	on
will	be	a	valid	JSON	array,	for	example,	["Moody",	"Hank"].	On	the	client	side,	no
concatenation	is	required.





Grouping	keys
The	real	power	of	composite	keys	isn’t	the	ability	to	search	in	multiple	fields,	but	the
ability	to	perform	grouping	with	aggregation.	To	illustrate	this	point,	we’ll	revisit	the	blog
post	document	with	a	new	property	for	published	date:

{
		"title":	"Composite	Keys	with	Couchbase	Views	",
		"body":	"Composite	keys	are	arrays…",
		"publishedDate":	"2014-09-17",
		"type":	"post"
}

Let’s	imagine	that	we	want	to	display	both	a	list	of	posts	by	year	and	month	and	the	count
of	posts	by	year	and	month.	By	writing	a	view	that	uses	compound	keys	and	grouping
methods,	we	are	able	to	achieve	both.	Starting	with	the	map	function,	we’ll	emit	the	year
and	month	as	values	in	our	composite	(array)	key:

function(doc,	meta)	{
		if	(doc.type	==	"post"	&&doc.publishedDate)	{
				emit(dateToArray(doc.publishedDate),	null);
		}
}

As	always,	we	first	check	the	type	of	the	document	and	verify	that	it	contains	a
publishedDate	property.	We	then	use	the	built-in	dateToArray	function	provided	by
Couchbase.	This	is	quite	useful	because	JSON	doesn’t	define	a	date	type.

This	function	will	take	a	document	date	string	and	provide	the	constituent	pieces	as	items
in	an	array,	for	example	2014-09-17	becomes	[2014,	9,	17,	0,	0,	0].	Then	we	can	see
that	each	of	our	keys	will	be	an	array	of	integers,	starting	with	the	year,	followed	by	the
month,	then	the	day,	and	then	the	time	components.

We’ll	start	by	getting	a	count	of	posts	by	year.	To	do	so,	we’ll	need	to	add	a	reduce
function	to	our	view.	We’ll	simply	use	the	built-in	_count	function.	Additionally,	we’ll
need	to	make	use	of	the	group_level	parameter.	If	we	provide	1	as	an	argument	to
group_level,	the	view	results	will	be	grouped	by	the	first	item	of	the	array	index.	In	SQL,
you	could	think	of	this	behavior	as	a	SELECT	COUNT(*)	statement:

SELECT	Year,	Count(*)
FROM	posts
GROUP	BY	Year

As	you	can	probably	guess,	to	get	a	count	of	posts	by	month,	we’d	simply	change	the
group_level	to	2.	It’s	important	to	understand	that	group	levels	are	always	inclusive	of
the	elements	in	earlier	positions	in	the	array.	In	other	words,	when	you	group	results	at
level	2	(that	is,	month),	level	1	(year)	is	always	considered.	In	SQL,	grouping	at	level	2
would	be	analogous	to	the	following	statement:

SELECT	Year,	Month,	Count(*)
FROM	posts
GROUP	BY	Year,	Month



If	you	wanted	to	group	results	by	months	across	all	years,	you	will	need	to	write	a	separate
view	that	emits	the	month	as	the	first	element	in	the	array.	In	this	case,	you	will	not	be
able	to	use	the	built-in	dateToArray	helper	function	directly	in	the	emit	call.	You	can	use
the	result	of	the	dateToArray	function,	but	you	should	omit	the	year	when	emitting	the
key.

When	you	supply	a	group	level,	the	keys	against	which	you	would	perform	range	queries
are	no	longer	the	fully	emitted	arrays,	but	rather	the	arrays	at	the	specified	level,	for
example	at	level	2,	[2014,3,23,0,0,0]	becomes	[2014,3].	At	group	level	1,	the	index
includes	only	the	year.

You	query	compound	keys	with	range	arguments.	You	provide	startkey	and	endkey,	as
we	saw	earlier	in	this	chapter.	However,	with	compound	keys,	you	will	provide	arrays	as
the	values	passed	to	these	parameters.	If	you	wanted	to	find	the	count	of	posts	by	month
for	the	first	half	of	a	year,	you	could	provide	a	startkey	value	of	[2014]	and	an	endkey
value	of	[2014,6,99].

Assuming	you’re	familiar	with	the	Gregorian	calendar,	you	probably	noticed	that	the
upper	bound	of	date	was	not	valid	—June	has	only	30	days.	This	value	illustrates	an
important	aspect	of	how	composite	keys	are	treated	when	queried.	Specifically,	queries	are
not	performed	against	arrays	but	rather	concatenated	strings	(from	the	array	values)	are
used.

Recall	the	discussion	earlier	in	this	chapter	about	Unicode	collation.	Compound	key
queries	are	compared	in	the	same	way.	While	it	seems	that	we’ve	created	a	set	of	keys	as
integer	arrays,	Couchbase	actually	maintains	those	keys	as	strings.	More	specifically,
Couchbase	Server	will	treat	all	the	array	characters	as	elements	in	the	strings,	including
brackets	and	commas.	Additionally,	single	digits	will	be	padded	with	a	leading	zero.

Therefore,	when	you	set	the	startkey	and	endkey	parameters	to	[2014]	and	[2014,6,99]
respectively,	the	actual	comparison	is	made	by	comparing	the	strings	passed	to	these
parameters	to	the	["2014"]	and	["2014","06","31"]	key	parameter	strings.	In	this	case,
[2014]	will	always	be	less	than	any	date	with	a	month,	including	January	1,	and	also	99
will	always	be	greater	than	any	possible	day	of	June	("06")	will	always	be	less	than	July
("07").

If	we	omit	the	group_level	parameter	entirely	but	leave	the	key	ranges	in	place,	we’ll	be
provided	with	an	ungrouped	list	of	all	posts	over	that	time	period.	Instead,	if	we	want	to
get	a	list	of	posts	for	a	given	month,	we	should	again	leave	the	group_level	parameter,
but	supply	a	shorter	range	for	our	startkey	and	endkey	parameters.	In	both	of	our
ungrouped	cases,	it	is	also	necessary	to	add	set	the	reduce	parameter	to	false.





Emitting	values
Up	until	this	point,	we’ve	written	most	of	our	map	functions	to	emit	null	for	the	value	side
of	our	key/value	views.	We’ve	also	learnt	that	it’s	best	to	use	views	as	a	means	to	retrieve
a	document	via	the	key/value	API.	However,	there	are	exceptions	to	this	rule.

Imagine	that	we’ve	augmented	our	user	documents	to	include	an	e-mail	address,	like	this:

{
		"firstName":	"Sam",
		"lastName":	"Malone",
		"email":	"sam@example.com",
		"type":	"user"
}

Now	consider	the	task	of	creating	some	sort	of	scheduled	job	that	needs	to	send	a	weekly
e-mail	to	all	users.	We’ve	already	seen	how	to	write	the	“select	all	users”	query.	Therefore,
we	know	how	to	iterate	over	the	set	of	users	and	retrieve	the	original	user	document	to	get
this	new	e-mail	property.	However,	this	isn’t	necessarily	the	most	efficient	way	to	do	so.

If	we	have	millions	of	user	documents,	we’d	be	querying	both	the	view	and	key/value	API
millions	of	times.	By	emitting	the	e-mail	address	as	the	value	in	our	index,	we	can	turn	our
index	into	what	is	called	a	Covering	Index	in	the	SQL	world.	Such	an	index	is	able	to
answer	a	query	with	the	index	data	alone:

//the	map	function	for	a	view	named	by_lastname
function(doc,	meta)	{
		if	(doc.type	==	"user"	&&	doc.email&&doc.lastName)	{
				emit(doc.lastName,	doc.email);
		}
}

In	this	code	snippet,	our	by_lastname	view	has	been	re-purposed	to	include	e-mail	as	a
value.	In	doing	so,	some	space	on	disk	is	saved	by	not	having	an	entirely	separate	index
for	e-mail.	Also,	some	resources	are	saved	by	not	having	an	extra	indexing	job	on	the
server.

In	deciding	whether	to	include	a	value	with	your	view,	space	and	data	freshness	will	be	the
important	factors.	If	you	are	including	large	chunks	of	your	document	in	your	index,
you’d	instead	want	to	use	the	key/value	lookup	pattern.	Similarly,	if	the	data	you	are
emitting	to	your	view	needs	to	be	fully	up	to	date,	you	should	again	use	the	key/value
lookup,	even	if	the	data	stored	is	small.

It’s	also	worth	noting	that	values	(as	well	as	keys)	do	not	need	to	be	primitive	types	or
strings.	It	is	possible	(and	sometimes	desirable)	to	emit	a	JSON	structure.	For	example,
imagine	our	user	document	is	much	larger	than	the	small	snippet	we’ve	seen.	We’re
frequently	going	to	query	user	documents	through	views,	but	we’ll	need	to	access	the	full
document	less	frequently:

function(doc,	meta)	{
		if	(doc.type	==	"user"&&doc.email&&doc.firstName&&doc.lastName)



		{
				emit(doc.email,	{	"firstName":	doc.firstName,	"lastName":	doc.lastName	
});
		}
}

In	the	preceding	map	function,	we	assume	a	use	case	where	we’ll	frequently	look	up	a
user	by	e-mail	and	then	retrieve	their	first	and	last	names.	Again,	storing	values	with	your
index	when	you’re	not	reducing	the	amount	of	data	retrieved	generally	comes	at	a	cost.
It’s	far	more	common	to	emit	a	value	with	a	reduce	function.

Imagine	we	have	a	set	of	order	documents	where	each	order	includes	a	price:

{
		"customerId"	:	"123456",
		"products":	[
				{	
						"product":	"fender_telecaster",
						"price":	1249.99	
				},
				{
						"product":	"line6_spider",
						"price":	299.99
				}
		],
		"type":	"order"
}

If	we	wanted	to	calculate	a	total	of	all	purchases	by	a	customer,	we	would	emit	the	price	as
a	value	and	use	the	built-in	_sum	function	as	our	reduce	function:

function(doc,	meta)	{
if	(doc.type	==	"order"	&&	doc.products&&doc.products.length)	{
				for(vari	=	0;	i<doc.products.length;	i++)	{
						emit(doc.customerId,	doc.products[i].price);
				}
		}
}

This	map	function	emits	a	separate	index	row	for	each	product	purchased	in	a	specific
order.	Alternatively,	we	could	have	computed	the	order	total	in	our	loop	and	emitted	a
single	row	with	just	that	order’s	total.

When	we	query	this	view,	we	need	to	include	the	group	parameter	as	well	as	the	reduce
parameter	(both	true).	The	result	will	be	similar	to	the	following	SQL	statement.	In	the
relational	world,	we’d	have	a	separate	table	for	line	items	unlike	our	document,	which
nests	each	ordered	product	within	the	order	document:

SELECT	CustomerId,	SUM(Price)
FROM	OrderItems
GROUP	BY	CustomerId





Querying	with	beer-sample
So	far,	we’ve	explored	a	wide	variety	of	view	queries.	For	some	more	concrete	examples,
we’ll	turn	now	to	the	beer-sample	bucket.	If	you	followed	along	in	Chapter	3,	Creating
Secondary	Indexes	with	Views,	you	should	already	have	a	design	document	created	in	this
bucket.	If	so,	then	feel	free	to	reuse	that	document.	If	not,	then	you’ll	need	to	create	a	new
document.

Start	by	returning	to	the	Views	tab	on	the	Couchbase	Web	Console.	Select	the	beer-
sample	bucket	to	retrieve	the	current	set	(if	any)	of	views	within	the	dev_beers	design
document.	If	you	did	not	follow	along	in	the	previous	chapter,	refer	to	the	Creating	a	view
section	in	Chapter	3,	Creating	Secondary	Indexes	with	Views	to	get	started.	The	following
screenshot	shows	the	Couchbase	Console’s	Views	tab:

The	Couchbase	Console	Views	tab



Querying	all	documents	by	type
We’ll	start	by	revisiting	the	first	view	we	looked	at	in	this	chapter	—	querying	for	all
documents	of	a	given	type.	Our	first	approach	was	to	create	an	index	with	null	keys	and
values	for	all	user	documents.	This	approach	works	well	for	organizing	your	design
documents	in	a	manner	similar	to	your	application’s	business	objects.

Another	option	would	be	to	create	a	single	view	which	will	allow	you	to	search	for	all
documents	of	any	type.	To	achieve	this	goal,	we’ll	simply	emit	each	document’s	type
property	to	the	keys	of	the	index:

function	(doc,	meta)	{
		if	(doc.type)	{
				emit(doc.type,	null);
		}
}

With	this	version	of	our	SELECT	*	view,	every	document	with	a	type	property	will	have	a
corresponding	row	in	the	index.	When	we	want	to	query	for	all	beers,	we	simply	provide
the	key	property	as	"beer",	or	the	"brewery"	parameter	for	breweries.	This	is	shown	in
the	following	screenshot:

Finding	all	brewery	documents



Counting	breweries	by	location
Brewery	documents	in	the	beer-sample	bucket	contain	address	information.	With	these
properties,	we’re	able	to	write	a	view	to	count	the	number	of	breweries	in	a	country,	state,
or	province,	down	to	the	postal	code	level.	Because	the	sample	data	often	lack	postal
codes,	we’ll	stop	at	the	city	level.

Our	map	function	will	be	fairly	straightforward.	We’ll	emit	an	array	as	the	key	where	the
values	of	the	array	are	the	document’s	country,	city,	state,	and	code	properties.	The
following	map	function	produces	keys	such	as	["Belgium","Hainaut","Binche"]	and
["Canada","Quebec","Chambly"]:

function(dsoc,	meta)	{
		if	(doc.type	==	"brewery"	&&doc.country&&doc.state&&doc.city)
{
		emit([doc.country,	doc.state,	doc.city],	null);
		}
}

To	get	a	count	of	breweries	by	country,	we	first	need	to	add	a	reduce	function.	Just	as	we
have	done	before,	we’ll	use	the	built-in	_count	function.	After	saving	the	view	with	the
reduce	function	in	place,	we’ll	need	to	set	the	group_level	parameter	to	1,	as	shown	here:

Breweries	counted	by	country

Similarly,	we	could	set	the	group_level	parameter	to	2	or	3	to	get	a	count	of	breweries	by
province	or	city,	respectively,	as	shown	in	the	following	screenshot.	Recall	that
group_level	is	always	inclusive	of	the	previous	levels.	We	can’t	count	breweries	in
Connecticut	without	including	the	United	States.	Similarly,	we	can’t	count	breweries	in
Hartford	without	including	both	Connecticut	and	the	United	States.



Tip
If	you’re	a	beer	aficionado,	you	might	find	the	sample	data	to	be	lacking	in	some	of	your
favorite	brews.	This	is	because	the	source	of	the	brewery	data	was	the	Open	Beer
Database,	which	is	no	longer	maintained.	Moreover,	many	of	the	documents	have
incomplete	address	components.	Keep	these	limitations	in	mind	as	you	pull	back	results
that	suggest	Ireland	has	only	one	brewery.

If	we	want	to	find	out	how	many	breweries	exist	for	a	specific	city,	we	will	need	to
provide	startkey	and	endkey.	The	approach	we’ll	take	will	be	the	same	as	the	approach
we	used	to	find	blog	posts	by	a	specific	month.	For	the	startkey	parameter,	we’ll	provide
an	exact	country	and	state,	for	example,	["United	States",	"Massachusetts"].

For	an	endkey	value,	we’ll	need	to	supply	a	value	that	is	greater	than	all	possible	city
values	in	Massachusetts.	In	this	case,	it	would	probably	be	safe	to	use	a	startkey	value
such	as	["United	States",	"Massachusetts",	"ZZZZ"]	since	no	city	in	Massachusetts
(or	anywhere	else)	is	ever	likely	to	be	given	a	value	greater	than	"ZZZZ".	However,	it’s
safer	to	use	an	endkey	value	in	the	form	of	["United	States",	"Massachusetts",
"\u02ad"],	as	\u02ad	will	always	be	greater	than	any	city	name.	The	following	screenshot
demonstrates	this	example:



Counting	breweries	by	state

While	we	are	unable	to	reuse	this	view	to	query	for	breweries	by	country	or	state,	it	may
be	used	to	find	breweries	in	a	particular	city.	To	accomplish	this	task,	simply	remove	the
reduce	parameter	(or	set	it	to	false)	and	perform	a	key	query,	such	as	["United
States",	"Massachusetts",	"Cambridge"],	as	shown	here:

Finding	breweries	by	city

This	type	of	view	is	useful	to	work	with	any	set	of	hierarchical	properties.	With	this
example,	we	could	have	a	page	that	shows	a	list	of	countries	with	brewery	counts.
Clicking	on	a	country	could	then	display	a	list	of	states,	provinces	and	their	brewery
counts.	Then,	clicking	on	a	state	would	show	a	list	of	cities	and	brewery	counts.	Finally,
clicking	on	a	city	would	show	all	the	breweries	in	that	city.



Finding	beer	documents	by	brewery
To	understand	how	to	look	up	a	beer	name	by	its	brewery,	we	first	need	to	examine	the
relationship	between	the	two	types	of	documents.	Recall	that	Couchbase	Server	does	not
support	foreign	keys	and	there	is	no	referential	integrity	between	documents.	However,	it
is	common	to	create	a	relationship	by	adding	a	property	to	a	foreign	document.

Each	beer	document	contains	a	brewery_id	property,	and	it	is	the	meta.id	property	of	a
brewery	document.	Again,	the	meta.id	value	is	the	key	from	the	key/value	API.	By
including	this	property	on	beer	documents,	it’s	possible	to	write	a	simple	map	function	to
search	for	beer	names	by	their	brewery,	as	follows:

function(doc,	meta)	{
		if	(doc.type	==	"beer"	&&	doc.brewery_id)	{
				emit(doc.brewery_id,	null);
		}
}

Keep	in	mind	that	there	are	no	joins	in	Couchbase	Server.	When	you	query	this	view	with
a	key	value	such	as	"pivzavod_baltika",	you	cannot	get	both	the	brewery	and	its	beer
document	in	a	single	lookup.	Typically	with	Couchbase	Server,	you’ll	perform	multiple
Get	operations	to	retrieve	related	documents.



Collated	views
Though	Couchbase	Server	does	not	support	joins,	there	is	a	technique	commonly	used	to
find	documents	with	a	parent-child	relationship.	This	technique	is	known	as	a	collated
view	because	it	relies	on	Couchbase	Server’s	Unicode	collation.	Before	we	dig	into	how
we	can	build	a	collated	view,	it’s	useful	to	understand	the	goal.

We’ve	already	seen	that	Unicode	collation	guarantees	that	the	index	will	be	ordered	by	its
key	in	a	predictable	and	consumable	way.	In	the	previous	section,	we	saw	how	to	create	an
index	of	beer	names	where	the	key	was	the	brewery’s	ID.	That	map	function	provides	part
of	the	solution—it	orders	all	of	a	brewery’s	beer	documents	together.

The	other	part	of	the	solution	is	to	add	the	brewery	document	to	the	index	alongside	the
beer	documents.	Specifically,	we	want	a	row	with	the	brewery	followed	by	each	of	its	beer
names.	This	technique	is	not	obvious	at	first,	so	we’ll	take	it	piece	by	piece:

function(doc,	meta)	{
		if	(doc.type	==	"brewery")	{
				emit(meta.id);
		}
}

The	preceding	map	function	is	fairly	straightforward.	We	simply	check	for	brewery
documents	and	emit	their	meta.id	value	to	the	index.	To	add	beer	documents,	we’ll	first
modify	the	map	function	slightly,	as	follows:

function(doc,	meta)	{
		if	(doc.type	==	"brewery")	{
				emit(meta.id);
		}	else	if	(doc.type	==	"beer"	&&	doc.brewery_id)	{
				emit(doc.brewery_id);
		}
}

We’ve	added	a	second	condition	to	our	map	function.	Now	if	we	encounter	a	beer
document,	we’ll	emit	its	brewery_id	value	as	the	key.	At	this	point,	we	have	an	index
entirely	consisting	of	brewery	IDs.



The	beginning	of	a	collated	view

As	we	can	see	in	the	previous	figure,	our	index	consists	of	a	brewery,	followed	by	its	beer
names.	In	fact,	all	our	beer	names	and	breweries	will	appear	in	the	index	as	brewery	first
and	beer	second.	A	client	application	can	now	query	the	view	by	brewery	ID	and	build	a
set	of	parent-child	objects.

Though	it	seems	like	we’re	done	with	our	map	function,	we	still	have	one	final	change	to
make.	Even	though	our	breweries	correctly	appear	before	the	beer	documents,	it’s	only
because	of	the	way	the	beer	keys	were	created	in	the	beer-sample	bucket.

Each	beer’s	key	(or	meta.id)	is	prefixed	with	its	brewery’s	key.	Therefore,	the	brewery
key	will	always	be	less	than	the	beer	key,	for	example	the
"21st_amendment_brewery_cafe"	brewery	key	will	always	be	less	than	its	beer’s	keys
(such	as	"	21st_amendment_brewery_cafe-21a_ipa").	Couchbase	Server	sorts	results	by
the	document’s	ID	as	a	sort	of	tie-breaker	for	the	same	key	in	an	index.

To	fix	our	map	function,	we	need	to	provide	a	means	of	forcing	our	parent	rows	to	be
emitted	before	any	of	its	children	rows,	regardless	of	the	meta.id	value	for	its	children.	If
we	convert	our	keys	to	composite	keys,	we	are	easily	able	to	enforce	this	ordering:

function(doc,	meta)	{
		if	(doc.type	==	"brewery")	{
				emit([meta.id,	0]);
		}	else	if	(doc.type	==	"beer"	&&	doc.brewery_id)	{
				emit([doc.brewery_id,	1]);
		}
}

With	this	new	map	function	in	place,	we	emit	0	after	the	brewery’s	meta.id	value,	and	1
after	the	beer’s	brewery_id	value.	We’ve	now	guaranteed	that	all	beer	names	will	appear
together	immediately	following	their	brewery.	Moreover,	the	query	to	find	a	brewery	with
its	beers	simply	requires	startkey	and	endkey	with	the	brewery_id	value,	followed	by	0
and	1	respectively.	The	following	screenshot	demonstrates	this	example:



Finding	a	brewery	and	its	beer	names





Summary
Following	the	background	information	in	Chapter	3,	Creating	Secondary	Indexes	with
Views,	you	now	saw	a	more	complete	picture	of	Couchbase	views.	You	learned	how	a
document	can	be	indexed	in	virtually	any	way	imaginable	with	JavaScript.	Moreover,	you
now	know	that	you	can	index	a	document	in	multiple	ways	within	the	same	view.

Reviewing	range	queries	led	you	to	explore	Unicode	collation	and	some	tricks	to	find	your
data.	You	also	saw	how	you	are	able	to	parse	collections	within	documents	to	create
several	indexed	values	from	a	single	document	field.

Then	we	explored	compound	indexes	in	some	detail.	You	learned	that	these	indexes
provide	so	much	more	than	grouping.	We	can	use	them	to	query	multiple	properties	and	to
create	an	index	that	yields	parent-child	relationships.

Along	the	way,	we	alluded	to	some	important	topics.	While	discussing	collated	views,	we
touched	on	the	importance	of	key	(meta.id)	selection	for	our	documents.	We	also
broached	the	subject	of	document	relationships.	These	topics	will	resurface	in	more	detail
in	Chapter	6,	Designing	a	Schema-less	Data	Model,	when	we	discuss	schema	design.

Before	we	move	on	to	schema	design,	we’re	going	to	take	a	look	at	N1QL,	an	exciting
new	query	language	that	is	currently	being	developed	by	the	Couchbase	engineering	team.
Though	it	uses	views	behind	the	scenes,	it	offers	a	simpler	approach	to	querying	by
providing	a	rich	language	to	find	data	in	a	Couchbase	bucket.





Chapter	5.	Introducing	N1QL
After	two	chapters	of	exploring	views	and	MapReduce,	you	might	be	wondering	just	how
you	would	go	about	finding	data	in	your	bucket	more	easily.	If	you’ve	worked	with
relational	systems,	you’re	likely	used	to	being	able	to	query	your	database	ad	hoc	without
having	to	create	a	stored	procedure	first.	Having	to	write	a	view	for	one-off	queries	of
your	data	probably	seems	less	than	optimal.

Fortunately,	there	is	another	option	with	Couchbase	and	it	is	known	as	N1QL
(pronounced	nickel).	N1QL	is	a	query	language,	reminiscent	of	SQL.	Not	only	does	it
support	ad	hoc	querying	of	your	data,	it	also	provides	a	means	to	perform	joins	and
aggregation.

At	the	time	of	writing	this	book,	N1QL	is	still	in	developer	preview,	though	some
Couchbase	SDKs	are	starting	to	see	support	for	it.	We’ll	explore	N1QL	in	some	detail
throughout	this	chapter,	but	keep	in	mind	that	with	any	prerelease	product	some	changes
are	likely.	However,	the	core	concepts	and	interface	are	unlikely	to	see	any	drastic
changes.



Installing	N1QL
Couchbase	Server	does	not	ship	with	N1QL.	It	needs	separate	downloading	and
installation.	As	of	Developer	Preview	3,	there	are	binaries	for	Windows,	Red	Hat	Linux,
and	Mac	OS	X.	You	can	find	these	packages	at	http://www.couchbase.com/nosql-
databases/downloads#PreRelease.	The	package	for	your	operating	system	will	be	in	the
form	of	a	zipped	archive.

Tip
It’s	important	to	remember	that	N1QL	is	still	in	developer	preview	and	is	not	necessarily
being	kept	in	sync	with	all	current	Couchbase	releases.	While	N1QL	Developer	Preview	3
does	appear	to	work	fine	on	Windows	with	Couchbase	Server	Community	Edition	3.0.1,	it
will	not	work	with	Couchbase	Server	Enterprise	Edition	3.0.2.	If	you	are	unable	to
complete	the	following	tasks	using	the	Enterprise	Edition,	you	should	try	the	Community
Edition	instead.

Once	you’ve	obtained	the	binaries	for	your	system,	you’ll	need	to	extract	the	contents.
Expand	(unzip)	the	archive	to	any	location	where	you’ll	easily	be	able	to	get	to	via	the
command	line.	After	extracting	the	files,	navigate	to	that	path	and	run	the	following
command:

./cbq-engine	-couchbase	http://localhost:8091

This	line	attaches	N1QL	to	your	Couchbase	Server	instance.	It	will	start	a	process	that	will
listen	on	port	8093.	After	it	starts,	you	should	see	output	similar	to	this:

22:19:08.343741	Info	line	disabled	false
22:19:08.348746	tuqtng	started…
22:19:08.348746	version:	v0.7.2
22:19:08.348746	site:	http://localhost:8091

Once	the	cbq-engine	is	up	and	running,	you’re	ready	to	start	running	N1QL	queries
against	your	buckets.	The	easiest	way	to	do	so	is	to	run	the	command-line	query	interface,
which	can	be	found	in	the	same	directory	as	cbq-engine.	You	can	run	this	tool	using	the
following	command:

./cbq	http://localhost:8093

This	command	will	open	the	cbq	prompt	where	you	are	able	to	enter	N1QL	commands.	In
this	chapter,	we’ll	work	with	the	beer-sample	bucket.	To	prepare	that	bucket	for	queries,
run	this	command	from	the	cbq	prompt:

cbq>	CREATE	PRIMARY	INDEX	ON	beer-sample

With	this	step,	you’ve	actually	created	a	view	on	the	beer-sample	bucket.	If	you	open	the
Couchbase	Console	and	navigate	to	the	Views	tab,	you’ll	find	a	view	named	#primary
contained	within	a	ddl_#primary	design	document.	Note	that	this	design	document	will
only	appear	under	Production	Views:

function	(doc,	meta)	{

http://www.couchbase.com/nosql-databases/downloads#PreRelease


var	stringToUtf8Bytes	=	function	(str)	{
var	utf8	=	unescape(encodeURIComponent(str));
var	bytes	=	[];
				for	(var	i	=	0;	i<str.length;	++i)	{
bytes.push(str.charCodeAt(i));
				}
				return	bytes;
		};

		emit([160,	stringToUtf8Bytes(meta.id)],	null);
}

This	relatively	compact	map	function	creates	an	index	on	document	keys.	You	might	be
wondering	why	N1QL	won’t	use	a	simpler	map	function,	such	as	the	following.	After	all,
this	map	function	also	creates	an	index	on	document	keys.	The	important	distinction
between	N1QL	queries	and	view	queries	is	that	view	queries	use	the	standard	HTTP	REST
API	and	N1QL	has	its	own	query	processor:

function	(doc,	meta)	{
		emit(meta.id,	null);
}

At	this	time,	N1QL	is	simply	taking	advantage	of	the	fact	that	indexes	may	be	created
using	views.	This	coupling	may	very	well	change	at	some	point.	So,	though	the	underlying
facility	to	create	indexes	is	the	same	between	N1QL	and	MapReduce	views,	the	actual
querying	is	quite	different	and	requires	a	different	index	key	structure.

Having	a	primary	index	on	a	database	simply	means	that	primary	keys	have	been	indexed
for	use	with	N1QL.	Just	as	in	a	relational	database,	if	you	were	to	query	regularly	by
certain	fields,	it	would	be	important	to	create	indexes	to	avoid	unnecessary	scanning
through	documents.

For	this	chapter,	we’ll	worry	only	about	the	primary	index.	If	you	want	to	experiment	with
creating	other	field	indexes,	the	syntax	is	as	follows.	In	this	example,	we	create	an	index
named	by_abv	on	the	abv	field	of	documents	in	the	beer-sample	bucket:

CREATE	INDEX	by_abv	ON	beer-sample(abv)

With	the	primary	index	created,	you’re	now	ready	to	write	your	first	N1QL	query.

Tip
If	you’re	using	Windows	and	its	standard	command	line,	you’ll	want	to	remove./	from
the	beginning	of	command-line	examples.	If	you	are	using	PowerShell	on	Windows	or	a
Linux	variant,	you	do	not	need	to	make	any	changes.





Simple	queries
N1QL	queries	are	likely	to	feel	somewhat	familiar	to	you	as	the	language	is	very	much
like	SQL	and	other	such	query	languages.	To	illustrate	just	how	similar	N1QL	and	SQL
are,	consider	the	following	query:

SELECT	*
FROM	beer-sample

This	basic	N1QL	query	looks	and	feels	like	the	equivalent	SQL	query,	and	it	does	what
you	would	expect	it	to	do—it	retrieves	all	documents	from	the	beer-sample	bucket.	Recall
that	documents	in	a	Couchbase	bucket	are	not	contained	in	a	second-level	namespace.	As
such,	there	is	no	equivalent	of	a	SELECT	*	FROM	Table	statement.

Instead,	if	you	want	to	find	all	brewery	documents,	you	can	write	a	N1QL	query	similar	to
the	map	function	you	would	write	in	the	case	of	a	view.	In	both	the	cases,	you	have	to
check	the	convention-based	type	property	to	identify	a	document’s	taxonomy:

SELECT	*
FROM	beer-sample
WHERE	type	==	"brewery"

Similarly,	we	can	apply	an	additional	WHERE	clause	to	filter	the	results	by	another	property
before	they	are	returned,	as	follows:

SELECT	*
FROM	beer-sample
WHERE	type	=	"brewery"
AND	country	=	"United	States"

Again,	there	is	virtually	no	difference	between	SQL	and	this	N1QL	query,	save	for	the
double	quotes	around	strings.	Even	though	you’ve	seen	only	a	couple	of	snippets	of
N1QL,	it	should	be	obvious	that	the	Couchbase	team	designed	N1QL	to	be	immediately
accessible	to	developers	experienced	with	more	traditional	and	relational	systems.

As	is	the	case	with	SQL,	it’s	generally	a	good	idea	to	project	data	from	your	queries	rather
than	returning	all	properties	in	a	document	(or	columns	in	the	case	of	an	RDBMS).	Doing
so	with	N1QL	requires	only	that	you	specify	the	property	names	with	your	SELECT
statement:

SELECT	name	
FROM	beer-sample
WHERE	type	=	"brewery"
AND	country	=	"United	States"

Ordering	is	also	possible	using	familiar,	SQL-like	operations:

SELECT	name	
FROM	beer-sample
WHERE	type	=	"brewery"
ORDER	BY	name

Another	common	SQL	task	is	limiting	the	number	of	results	or	skipping	certain	numbers



of	results	before	returning	rows.	Often,	you’ll	do	so	to	page	results	displayed	on	a	client
application.	It	is	also	possible	to	skip	and	limit	with	N1QL,	as	demonstrated	in	the
following	code.	In	this	snippet,	only	10	documents	are	returned,	starting	with	the	sixth.	In
other	words,	documents	numbered	six	to	15	are	returned:

SELECT	*
FROM	beer-sample
LIMIT	10	OFFSET	5

The	default	ordering	of	documents	is	based	on	the	document’s	meta.id	value.	Recall	that
this	is	also	the	default	ordering	for	a	view	where	no	explicit	key	is	set	(that	is,	emit(null,
null);).	To	verify	this	ordering	behavior,	you	can	run	the	following	query.	This	query
uses	the	meta()	function,	which	provides	access	to	a	document’s	metadata:

SELECT	city,	name,	meta().id
FROM	beer-sample
WHERE	type	=	"brewery"

Should	you	wish	to	sort	by	a	document’s	property,	you	may	add	the	ORDER	BY	clause	to
your	SELECT	statement.	Again,	the	syntax	for	this	clause	should	be	familiar	to	SQL
developers,	as	shown	in	the	following	code.	In	this	example,	documents	are	sorted	first	in
descending	order	by	name,	and	then	in	ascending	order	by	style:

SELECT	*
FROM	beer-sample
WHERE	type	=	"beer"
ORDER	BY	name	DESC,	style

N1QL	also	provides	a	means	to	search	for	documents	by	document	keys.	This	search	is
performed	by	adding	a	KEY	(KEYS	for	multiple	keys)	clause	to	a	SELECT	statement.	To
search	for	a	single	item	by	key,	you	provide	a	single	key:

SELECT	*	
FROM	beer-sample	
KEY	"thomas_hooker_brewing"

Alternatively,	you	can	search	for	multiple	documents	with	multiple	keys:

SELECT	*
FROM	beer-sample
KEYS	[
"thomas_hooker_brewing-hooker_oktoberfest",	
"thomas_hooker_brewing-thomas-hooker_irish_red_ale",
"thomas_hooker_brewing"
]

To	remove	duplicate	results	from	a	query	result	set,	simply	apply	the	DISTINCT	keyword	to
the	projected	properties.	For	example,	to	retrieve	the	distinct	set	of	countries	with
breweries,	you	can	execute	this	query:

SELECT	DISTINCT	country
FROM	beer-sample
WHERE	type	=	"brewery"





Null	or	missing	properties
Throughout	our	exercises	in	writing	map	functions,	it	was	common	to	test	properties
before	attempting	to	emit	them	to	a	view	index.	N1QL	also	provides	the	capability	to
check	for	null	or	missing	properties.

In	JavaScript	map	functions,	to	check	whether	a	property	contains	a	null	value,	you	simply
compare	the	value	to	null:

if	(doc.property	==	null)	//	do	something

Missing	properties	are	not	null;	rather,	they	don’t	exist.	In	order	to	check	for	a	missing
property	with	JavaScript,	you	can	compare	it	to	the	undefined	literal	string	or	simply
apply	the	bang	(!)	operator	to	your	check.	Using	the	latter	test	will	allow	for	both	a	null
check	and	a	missing	check:

if	(!	doc.property)	//	do	something

There	are	two	separate	operators	in	N1QL	used	to	test	null	and	missing	property	values.
The	first	query	in	the	following	snippet	tests	whether	the	value	for	style	is	Null:

SELECT	*
FROM	beer-sample
WHERE	type	=	"beer"
AND	style	IS	NULL

The	second	tests	whether	the	style	property	was	omitted	entirely	from	the	beer	document:

SELECT	*
FROM	beer-sample
WHERE	type	=	"beer"
AND	style	IS	MISSING

These	sorts	of	tests	are	important,	given	the	schema-less	nature	of	Couchbase	and	other
document	databases.	Most	developers	are	used	to	the	safety	of	a	relational	schema,	but	in
the	world	of	NoSQL,	it’s	important	to	expect	the	unexpected!





String	utilities
One	of	the	more	obvious	limitations	of	querying	views	is	the	lack	of	a	proper	LIKE
operator.	Though	we	saw	in	Chapter	4,	Advanced	Views,	that	it	is	possible	to	emulate	a
query	like	“starts	with”,	it	is	not	as	robust	as	SQL’s	LIKE	operator.

Fortunately,	N1QL	addresses	this	limitation	with	its	own	LIKE	operator.	Similar	to	SQL,
you	define	a	search	pattern	with	a	wildcard	that	is	specified	by	a	%	character.	In	the
following	snippet,	all	breweries	with	Boston	in	their	name	will	be	returned	in	the	results:

SELECT	*
FROM	brewery-sample
WHERE	type	=	"brewery"
AND	name	LIKE	"%Boston%"

Other	string	operators	exist	to	perform	standard	string	transformations	such	as	SUBSTR,
LOWER,	UPPER,	and	LENGTH.	You	can	use	these	functions	as	you	do	in	a	JavaScript	map
function	or	with	string	operations	in	most	frameworks:

SELECT	*
FROM	beer-sample
WHERE	type	=	"brewery"
AND	LOWER(name)	="thomas	hooker	brewing"

It’s	also	possible	to	perform	string	concatenation	using	the	double	pipe	(||)	operator.	You
can	use	this	operator	to	combine	properties	into	a	single	projected	property.	If	you	want	to
combine	the	city,	state,	and	postal	code	into	a	single	value,	you	can	write	this	query:

SELECT	city	||	",	"	||	state	||	"	"	||	code	AS	Address
FROM	beer-sample
WHERE	type	=	"brewery"
AND	city	IS	NOT	NULL
AND	state	IS	NOT	NULL
AND	code	IS	NOT	NULL

More	accurately,	in	the	beer-sample	bucket,	breweries	without	city,	state,	or	code	values
are	stored	as	empty	strings,	so	the	preceding	query	won’t	actually	filter	the	data	as	you
might	expect.	Instead,	you	will	have	check	whether	those	properties	have	a	nonempty
string.	Which	test	you	perform	will	of	course	depend	on	how	your	documents	are
structured:

SELECT	city	||	",	"	||	state	||	"	"	||	code	AS	Address
FROM	beer-sample
WHERE	type	=	"brewery"
AND	city	!=	""
AND	state	!=	""
AND	code	!=	""





Aggregation	and	math
Performing	aggregation	is	also	a	familiar	operation.	To	write	a	query	to	count	the	number
of	breweries	by	state,	you	use	the	built-in	count	aggregate	function:

SELECT	state,	COUNT(*)	AS	Count
FROM	beer-sample
WHERE	type	=	"brewery"
GROUP	BY	state

As	you	might	expect,	N1QL	supports	mathematical	and	aggregate	operations	such	as	AVG,
ROUND,	MIN,	MAX,	and	SUM.	You	can	use	these	operations	to	perform	calculations	on	either
aggregated	data	or	on	projected	columns.	As	another	example	of	aggregation	with	N1QL,
this	query	computes	the	average	abv	(alcohol	by	volume)	of	a	brewery’s	beer	brands:

SELECT	brewery_id,	AVG(abv)	AS	Average
FROM	beer-sample
WHERE	type	=	"beer"
AND	abv	!=	0	
GROUP	BY	brewery_id

Similarly,	if	you	want	to	find	the	beer	with	the	highest	or	lowest	alcohol	content,	you	can
use	the	MAX	or	MIN	function	respectively.	In	the	following	snippet,	the	HAVING	clause	is
added	to	the	GROUP	BY	clause	to	filter	the	results:

SELECT	name,	MAX(abv)	AS	Strength
FROM	beer-sample
WHERE	type	=	"beer"
AND	abv	!=	0
GROUP	BY	name
HAVING	MAX(abv)	>	5	

The	BETWEEN	operator	may	also	be	used	to	query	for	documents	with	a	property	value
within	a	range;	for	example,	if	we	want	to	find	beers	with	abv	between	5	and	10,	we	can
use	this	query:

SELECT	*
FROM	beer-sample
WHERE	abv	BETWEEN	5	AND	10

At	the	time	of	writing	this	book,	the	BETWEEN	operator	doesn’t	work	with	the	AND	operator.
In	order	to	test	for	abv	and	type,	you	will	need	to	use	the	“greater	than”	(>)	and	“less
than”	(<)	operators:

SELECT	*
FROM	beer-sample
WHERE	abv>	5	AND	abv<	10
AND	type	=	"beer"

Of	course,	N1QL	also	supports	standard	arithmetic	operators	for	multiplication,	division,
addition,	and	subtraction.	You	are	able	to	use	these	operators	in	your	projections	as	you
could	with	SQL.	The	following	snippet	calculates	the	proof	(twice	the	abv	value)	of	each
beer.	Also	note	the	use	of	the	standard	“greater	than”	operator.	Of	course,	the	“less	than”



operator	is	also	supported:

SELECT	abv	*	2	AS	proof
FROM	beer-sample
WHERE	type	=	"beer"
AND	abv>	0

Tip
Note	that	N1QL	is	smart	enough	to	know	when	a	hyphenated	property	or	bucket	name	is
used	in	a	query,	and	it	won’t	confuse	the	query	engine	into	attempting	subtraction.	There
is	no	need	to	avoid	such	properties.





Complex	structures
N1QL	queries	are	not	limited	to	simple	data	types	such	as	strings	and	numbers.	With
N1QL,	you	are	able	to	operate	on	JSON	objects	and	arrays	as	you	could	with	map
functions	written	in	JavaScript.

As	a	simple	example	of	a	nested	object,	consider	the	brewery	documents	in	the	beer-
sample	bucket.	These	documents	have	geo	data	contained	in	a	nested	object	with	the	geo
property:

{
		"type":	"brewery",
		"geo":	{	
				"lng":	-72.1234,
				"lat":	34.1234	
		}
}

The	geo	object	contains	properties	for	longitude	and	latitude.	If	you	want	to	write	a	query
to	find	a	brewery’s	geo	information,	you	can	use	the	standard	dot	(.)	notation,	which	is
common	with	most	modern	object-oriented	programming	languages:

SELECT	geo.lon,	geo.lat
FROM	beer-sample
WHERE	type	=	"brewery"

Arrays	are	another	common	data	structure	in	JSON	documents.	N1QL	supports	working
with	arrays	in	a	few	ways.	The	beer-sample	database	doesn’t	have	much	when	it	comes	to
interesting	array	data,	but	the	brewery	documents	do	contain	an	address	property,	which
is	an	array.	Unfortunately	for	this	example,	there	is	no	more	than	a	single	address	in	any
brewery	document:

SELECT	address[0]
FROM	beer-sample
WHERE	type	=	"brewery"

In	this	case,	the	result	of	the	query	will	be	the	first	address	(in	our	case	the	only	address)
in	each	brewery	document.	N1QL	also	includes	a	few	functions	to	work	with	arrays.	If	a
beer	document	didn’t	contain	a	valid	address	array,	the	preceding	query	would	break.	A
safer	query	should	include	a	check	for	the	length	of	the	array:

SELECT	address[0]
FROM	beer-sample
WHERE	type	=	"brewery"
AND	address[0]	IS	NOT	NULL
AND	ARRAY_LENGTH(address[0])	>	0

It’s	also	possible	to	use	array	slicing	to	achieve	a	similar	result.	The	following	snippet
demonstrates	how	to	select	the	first	two	addresses	from	a	brewery	document	and	ensure
that	those	addresses	are	not	missing.	Note	that	the	beer-sample	database	doesn’t	contain
address	data	to	satisfy	this	query:



SELECT	address[0:2]
FROM	beer-sample	
WHERE	type	=	"brewery"	
AND	address[0:2]	IS	NOT	MISSING

There	are	also	methods	for	combining	and	adding	items	to	arrays,	such	as	array_prepend,
array_append,	and	array_concat.	As	their	names	suggest,	these	methods	add	elements	to
the	beginning	or	end	of	an	array,	or	combine	two	arrays	into	one.





Working	with	collections
N1QL	provides	a	means	to	succinctly	query	collections	within	a	document.	Recall	that	to
examine	nested	collections	in	a	map	function,	you	used	to	run	a	for	loop	over	the	items	in
that	collection.	To	achieve	similar	results	in	N1QL	queries,	you	can	filter	a	collection
using	the	ANY	operator.

For	example,	if	we	continue	to	use	the	address	property	of	brewery	documents,	we	can
search	for	only	those	addresses	that	are	not	empty.	In	the	following	example,	we’re
checking	the	length	of	each	address	string	as	our	condition.	Note	that	if	a	document
contained	two	addresses,	where	one	was	valid	and	another	was	an	empty	string,	the
condition	would	still	be	satisfied:

SELECT	address
FROM	beer-sample
WHERE	type	=	"brewery"
AND	ANY	addr	IN	address
SATISFIES	LENGTH(addr)	>	0	END

With	a	very	slight	change	to	the	query,	we	can	modify	the	behavior	so	that	instead	of
returning	breweries	with	a	mix	of	empty	and	valid	addresses	in	the	address	array,	we
return	only	those	documents	where	all	addresses	are	valid.	In	this	case,	we	change	the	ANY
operator	to	EVERY:

SELECT	address
FROM	beer-sample
WHERE	type	=	"brewery"
AND	EVERY	addr	IN	address
SATISFIES	LENGTH(addr)	>	0	END

With	EVERY,	only	documents	with	address	arrays	with	nonempty	entries	will	be	included.
This	means	that	if	an	array	contained	a	valid	address	(nonempty)	and	an	invalid	address
(empty),	it	would	be	excluded	from	the	results.	Note	that	in	the	beer-sample	database,
there	aren’t	any	records	that	do	not	satisfy	the	preceding	previous	query.	Again,	all	address
records	contain	either	a	single	address	or	an	empty	array.





Joins
N1QL	does	contain	support	to	perform	joins	on	documents	with	a	caveat—the	joins	must
be	made	across	different	buckets.	While	this	is	a	limitation	for	several	use	cases,	it	does
provide	a	means	of	putting	data	together	from	disparate	document	sources.

Since	this	chapter	focuses	on	the	beer-sample	database,	the	following	join	next	imagines
a	setup	where	beer	and	brewery	documents	are	stored	in	two	separate	buckets	named
beers	and	breweries,	respectively:

SELECT	*
FROM	beers	AS	b
JOIN	breweries	AS	b2
KEYS	b.brewery_id





SDK	support
At	the	time	of	writing	this	book,	SDK	support	for	N1QL	is	somewhat	limited.	.NET,	Java,
PHP,	and	Node.js	have	experimental	support	for	N1QL.	Ruby	and	Python	should	see
N1QL	support	in	the	future.	Until	both	the	N1QL	framework	and	the	SDKs	are	more
locked	down,	it’s	worth	keeping	an	eye	out	for	changes.	At	this	stage,	we’ll	look	briefly	at
a	Java	snippet	that	demonstrates	how	to	use	N1QL	with	the	2.0	SDK:

Observable<QueryResult>	result	=	bucket.query("select	*	from	beer-sample");

Notice	that	the	N1QL	language	is	reminiscent	of	working	with	SQL-oriented	frameworks
such	as	JDBC	or	ADO.NET.

If	you’re	familiar	with	prepared	statements	in	SQL,	where	you	provide	parameters	as
positional	arguments	to	a	query	statement	with	placeholders,	there	are	work	items	for	the
Couchbase	N1QL	team	to	provide	support	for	these	types	of	queries.	The	advantage	of
prepared	statements	is	that	the	query	optimizer	doesn’t	have	to	reparse	and	replan	the
execution	with	each	run	of	query	that	differs	only	by	arguments.





Summary
This	chapter	introduced	N1QL,	a	powerful	and	experimental	Couchbase	query	language.
It’s	important	to	understand	that	this	was	not	an	exhaustive	introduction	to	N1QL;	some
stones	were	left	unturned.	In	particular,	there	are	several	additional	functions	for	working
with	dates,	strings,	and	numeric	values.	However,	we	have	seen	the	most	important	bits.

As	we’ve	seen,	N1QL	is	a	somewhat	radical	departure	from	the	MapReduce	view	model.
This	new	feature	is	not	meant	to	replace	MapReduce,	but	rather	to	create	greater	flexibility
in	accessing	your	data.

Couchbase	Server	is	truly	unique	because	it	provides	developers	with	so	many	options	to
access	data.	With	three	distinct	models	for	accessing	documents,	developers	are	able	to
build	applications	the	way	they	wish	to	build	them.	Some	developers	will	stick	to	the
tried-and-true	key/value	model,	while	other	developers	who	enjoy	the	power	of
MapReduce	are	likely	to	stick	to	views.	Nevertheless,	newer	Couchbase	users	who	prefer
cutting-edge	technology	will	likely	find	the	familiarity	of	N1QL	appealing.

As	we’ll	see	in	the	next	chapter,	designing	a	schema	for	Couchbase	means	considering
both	key/value	and	document	design.	Adding	N1QL	to	the	mix	does	mean	that	some	of
the	design	considerations	made	for	MapReduce	may	have	to	be	rethought.	However,	with
N1QL	still	in	developer	preview	status,	we’ll	consider	MapReduce	when	discussing
document	schemas.





Chapter	6.	Designing	a	Schema-less	Data
Model
In	this	chapter,	we’re	going	to	take	a	step	back	from	how	to	program	for	a	Couchbase
database,	and	instead	focus	on	design	considerations	for	a	Couchbase	application.	We
touched	on	a	few	of	the	important	design	ideas	in	the	previous	chapters,	but	we’ll	now
explore	keys	and	documents	in	greater	detail.

There	is	no	right	way	to	design	a	document-based	application.	This	notion	differs
significantly	from	relational	application	design.	If	you’re	an	experienced	developer	of
RDBMS-based	systems,	you’ve	likely	undergone	the	process	of	converting	a	logical
model	to	a	highly	normalized	database	design.	NoSQL	design	is	very	different.

Proper	document	design	is	tightly	coupled	with	both	your	logical	model	and	your
application	use	cases.	Moreover,	use-case-based	document	design	will	vary	among
document	databases.	Designing	your	Couchbase	documents	is	not	necessarily	the	same	as
designing	your	MongoDB	documents.

Since	Couchbase	is	a	hybrid	data	store,	we’ll	need	to	consider	both	key/value	and
document	designs.	Here,	our	key/value	design	might	differ	from	a	key/value	design	for	a
key/value	database	such	as	Redis.	As	you	explore	both	key/value	and	document	design,
you’ll	learn	about	the	specifics	of	Couchbase	that	impact	on	design	decisions.



Key	design
With	Couchbase,	you	can’t	have	a	document	without	a	key.	Therefore,	it’s	clearly
important	to	have	a	strategy	for	key	design.	How	you	choose	to	generate	your	keys	will,
generally,	be	partly	preference	driven	and	partly	use	case	driven.	We’ll	start	by	examining
what	basic	requirements	exist	for	keys	in	Couchbase.



Keys,	metadata,	and	RAM
We	saw	previously	that	Couchbase	keys	are	parts	of	the	metadata	of	a	document.	This	fact
was	revealed	as	we	explored	views	that	used	the	meta	argument	in	map	functions	to
retrieve	document	IDs	for	indexes.	Prior	to	Couchbase	Server	3.0,	all	keys	were	kept	in
the	memory	even	if	their	documents	weren’t.	Therefore,	longer	keys	required	more
memory.	Since	Couchbase	performs	best	when	documents	are	kept	in	the	memory,	smaller
keys	mean	more	RAM	available	for	documents.

In	Couchbase	Server	3.0,	keeping	metadata	in	the	memory	is	still	the	default	behavior,	but
it	is	now	tunable.	While	you’re	now	able	to	delete	metadata	from	the	memory	for
documents	that	have	been	evicted	(based	on	a	most	recently	used	strategy),	metadata	not
being	in	RAM	does	slow	down	performance.	Hence,	the	choice	of	key	is	still	of
importance	for	very	large	datasets.



Predictable	keys
In	the	relational	world,	primary	keys	are	almost	always	autoincremented	integers.	You
generally	don’t	care	about	that	primary	key,	as	you’re	more	likely	to	access	a	row	in	a
table	by	some	secondary	index.	Of	course,	there	are	times	when	you’ll	display	a	record	by
its	ID,	but	it’s	likely	that	you	found	that	record’s	ID	via	some	other	lookup,	such	as	a
SELECT	*	statement	or	through	a	foreign-key-related	document.

Couchbase	documents	are	not	very	different.	We’re	able	to	get	to	documents	by	secondary
indexes	or	even	nonconstrained	relations.	However,	these	lookups	require	use	of	the	view
API.	While	Couchbase	provides	more	than	satisfactory	performance	for	view	lookups,
these	queries	will	never	be	as	fast	as	in-memory	document	fetches	via	the	key/value	API.

If	you’re	designing	an	application	that	requires	extremely	fast	performance,	avoiding	the
view	API	might	be	desirable.	If	you	need	to	boost	performance	via	the	key/value	API,	you
might	want	to	have	predictable	keys	that	your	application	can	use.	Creating	predictable
keys	does	require	some	thought,	however.

For	an	example	of	how	we	can	use	predictable	keys,	let’s	consider	the	simple	case	of	a
system	that	pushes	messages	to	a	user	in	a	manner	similar	to	that	of	Twitter	or	Facebook.
Our	version	will	be	simplified	because	we	won’t	concern	ourselves	with	the	comparison
of	read	with	unread	messages.	We’ll	assume	that	the	system	regularly	updates	a	view	with
new	messages	and	refreshes	that	view	during	each	update.

In	such	a	system,	we	could	start	with	a	user	document	that	has	an	array	of	messages:

{
		username:	"jpage",
		passwordHash:	"0123456",
		messages:	[
				"Hello!",
				"Great	gig!",
		]
}

If	we	wanted	to	use	a	predictable	key	to	find	a	user’s	messages,	we’d	have	to	use	a	key
that	would	be	accessible	via	some	attributes	of	the	user	data;	for	example,	we	could	use
the	username	as	the	key.	Assuming	a	user	has	to	log	in	with	their	username,	the
application	would	be	able	to	provide	the	key	to	a	key/value	Get	operation	at	some	interval.

While	in	this	case	we	would	be	able	to	bypass	the	need	for	a	view	to	get	our	user
messages,	it’s	not	an	ideal	design.	One	problem	is	that	if	a	user	changes	their	username,	a
new	document	would	have	to	be	created,	and	keys	cannot	be	renamed!	In	practice,	you
could	retrieve	the	original	user	document,	create	a	copy,	and	remove	the	old	document.
However,	this	approach	does	risk	leaving	an	orphaned	document	behind	if	the	delete
operation	were	to	fail.

Another	potential	problem	is	that	each	time	the	messages	are	retrieved,	the	entire
document	will	have	to	be	retrieved.	The	key/value	Get	operations	do	not	support
projections	(selecting	subsets	of	records).	As	such,	it’s	important	to	consider	document



size	for	the	performance	of	Get.	It’s	always	faster	to	retrieve	only	the	data	needed	by	your
application.

While	views	can	be	used	to	provide	a	part	of	the	document	at	its	messages,	remember	that
this	is	not	good	practice.	Views	should	rarely	emit	document	details	to	be	used	as	it	is.
Instead,	we	can	use	predictable	keys	to	create	a	simple	access	pattern	to	break	our
documents	across	multiple	keys.

If	we	break	our	document	into	smaller	documents	with	related	keys,	we	could	use	one	of
two	approaches	for	using	keys.	The	first	approach	would	be	to	store	the	key	of	the	other
documents	within	the	parent	document;	for	example,	a	user	document	might	hold	a	key
reference	to	a	userMessages	document.

A	second	approach	would	be	to	use	a	variant	of	the	predictable	parent	key	for	each	of	the
child	keys.	So,	if	the	parent	key	were	user::jpage,	then	the	child	keys	could	be	of	the
user::profile::jpage	or	user::messages::jpage	form.	In	this	approach,	the	keys	hold
some	form	of	taxonomy	for	the	documents,	and	this	can	be	used	to	discover	the	document
type	within	a	map	function:

function(doc,	meta)	{
		var	keyParts	=	meta.id.split("::");
		if	(keyParts[0]	==	"user")	{
				emit(...);
		}
}

The	preceding	approach	does	have	the	added	benefit	of	letting	you	avoid	the	need	to	use	a
type	property	in	your	documents.	This	benefit	is	less	about	document	size	(since	the	key
might	be	larger)	and	more	about	not	being	required	to	maintain	an	extra	property	in	your
documents.

In	practice,	including	taxonomy	in	the	key	is	largely	a	matter	of	preference.	The
performance	difference	during	indexing	will	be	nominal,	that	is,	the	difference	between	a
string	split	operation	and	a	string	comparison	operation.	However,	smaller	keys	require
less	RAM	for	metadata.	If	predictability	is	not	important,	the	type	property	approach	does
potentially	allow	for	less	RAM	use.



Unpredictable	keys
As	you	might	have	surmised,	Couchbase	Server	does	not	provide	a	mechanism	to	generate
keys.	Therefore,	it	is	up	to	your	application	to	generate	unique	keys.	There	are	a	couple	of
different	strategies	you	might	employ	in	creating	unique	keys,	but	generally	speaking,	all
you	should	be	concerned	with	is	maintaining	uniqueness.

The	most	common	means	of	generating	keys	is	to	use	a	globally	(or	universally)	unique
identifier,	typically	referred	to	as	a	GUID	or	UUID.	Most	modern	programming	platforms
support	GUID	generation.	When	creating	a	document,	you	simply	have	to	create	a	new
GUID	and	use	that	value	when	calling	add	or	set.



Storing	keys
It	might	seem	strange	to	title	a	section	as	Storing	keys,	since	you	don’t	actually	have	a
choice	as	to	where	keys	are	stored.	However,	it’s	important	to	note	that	storing	the	key
inside	the	document	is	redundant	and	potentially	invalid	if	not	kept	in	sync.

The	problem	of	including	a	key	in	the	document	tends	to	arise	when	using	JSON
serializers	to	create	documents	from	business	objects.	Consider	the	following	C#	class:

public	class	User
{
		public	string	Id	{	get;	set;	}
		public	string	Username	{	get;	set;	}
		public	string	Email	{	get;	set;	}
}

What	happens	when	this	class	is	serialized	into	JSON?	Most	likely,	the	Id	property	will	be
included	in	the	document.	Assuming	that	you	expect	this	property	to	map	to	the	key	of	the
document,	you’ll	want	to	make	sure	that	you	ignore	this	property	during	serialization.
Many	JSON	serializers	provide	a	means	to	prevent	a	property	from	being	serialized.	In
other	cases,	you	may	have	to	transform	the	object	into	an	object	without	an	Id	property.

On	the	way	out,	you	will	likely	want	to	map	the	Id	property	of	your	domain	object	to	the
key	of	the	document.	Newer	SDKs	such	as	Java	and	.NET	provide	this	support	out	of	the
box.	In	other	cases,	you’ll	simply	assign	the	key	used	during	a	Get	key/value	operation	or
the	key	discovered	during	a	view	query.

These	approaches	are	illustrated	in	the	following	C#	snippets.	Note	that	these	samples
intentionally	bypass	the	built-in	JSON	support	to	demonstrate	the	explicit	mapping	of	Id
properties	to	business	objects:

public	class	User
{
		//Don't	include	this	field	when	serializing	
		[JsonIgnore]	
		public	string	Id	{	get;	set;	}
		public	string	Username	{	get;	set;	}
		public	string	Email	{	get;	set;	}
}

var	key	=	"12345";
var	user	=	new	User	
{	
		Id	=	key,	
		Username	=	"jsmith",	
		Email	=	"jsmith@example.com"
};

//Serialize	the	User	instance	to	JSON
//The	Id	property	will	be	ignored
var	json	=	JsonConvert.SerializeObject(user);

//Insert	the	User	JSON



bucket.Insert<string>(user.Id,	json);

//Get	the	JSON	string	from	the	bucket
var	savedJson	=	bucket.Get<string>(key);

//Deserialize	the	JSON	back	into	a	User	instance
var	savedUser	=	JsonConvert.DeserializeObject<User>(savedJson);

//The	savedUser	will	have	a	null	Id	at	this	point
//Manually	set	the	Id	property	to	the	key
savedUser.Id	=	key

From	this	example,	you	might	be	wondering	why	you	need	to	set	the	Id	property	of	the
savedUser	instance	to	a	key	when	you	already	know	the	key.	The	assumption	here	is	that
your	application	will	somehow	make	use	of	this	data	object	and	attempt	to	access	the	Id
value.	Suppose	you	were	making	use	of	this	object	in	an	HTML	templating	engine.	You
could	display	an	Edit	User	link	using	this	code:

<a	href="/Edit/@user.Id">Edit	User</a>



Key	restrictions
Regardless	of	which	key	strategy	you	choose,	there	are	a	couple	of	minor	restrictions	on
keys;	for	example,	they	are	strings	no	more	than	250	bytes	long.	Also,	you	cannot	use
spaces	in	your	keys,	but	as	we	saw	in	the	previous	case,	you	may	use	characters	such	as
punctuation	to	delimit	a	key.





Document	design
Document	design	is	a	more	involved	activity	than	key	design.	There	are	far	more	variables
to	consider	when	creating	a	document’s	schema.	Some	of	these	factors	are	specific	to
Couchbase.	Others	are	generally	applicable	to	document	databases.



Denormalization
When	designing	a	relational	system,	you	typically	start	with	a	highly	denormalized	logical
view	of	your	entities.	That	view	is	then	normalized	into	a	physical	model	where	the	data	is
spread	across	several	tables	in	an	effort	to	minimize	any	possible	data	redundancy.

Similarly,	you’ll	likely	start	your	document	design	by	creating	a	denormalized,	logical
model.	With	this	approach,	your	design	first	considers	the	most	complete	document	that
your	domain	demands.	For	example,	if	you	were	building	a	blog,	you	might	start	with	a
blog	document	with	nested	posts.	Within	each	post,	there	would	be	nested	comments	and
tags:

{
		"type":	"blog",
		"title":	"John	Zablocki'sdllHell.net",
		"author":	{
				"name":	"john.zablocki",
				"email":	"jz@example.com"
		},
		"posts":	[
		{
				"title":	"Couchbase	Schema	Design",
				"body":	[
						"Couchbase	schema	design…"
		],
		"date":	"2015-01-05",
				"tags":	[
						"couchbase",
						"nosql",
						"schema"
				],
		"comments":	[
				{
						"comment":	"Thanks	for	the	post.",
						"user":	"jsmith"
				}
		]
},
{
		"title":	"Azure	DocumentDB",
				"body":	[
						"Using	Azure	DocumentDB…"
				],
		"tags":	[
				"azure",
				"nosql"
		],
		"comments":	[
				{
						"comment":	"Thanks	for	the	post.",
								"user":	"jsmith"
				},
				{
						"comment":	"Interesting.",



								"user":	"jdoe"
				}
			]
		}
	]
}

Next,	you’ll	create	a	physical	model	with	a	goal	of	minimizing	normalization.	In	other
words,	you’ll	design	a	schema	where	related	entities	are	broken	apart	only	when
necessary.

In	the	previous	blog	example,	the	normalized	relational	model	would	likely	include
separate	tables	for	blogs,	posts,	comments,	and	tags.	The	process	of	creating	a	minimally
normalized	document	model	should	follow	from	considering	use	cases	for	your
application.

A	good	way	to	start	in	the	case	of	a	blog	is	to	separate	posts	from	the	parent	blog.	This
step	of	normalization	is	important	because	without	it,	every	time	a	blog	post	is	read,	the
blog,	the	post,	and	all	sibling	posts	will	be	retrieved	as	well.	Clearly,	it’s	best	to	be	able	to
retrieve	a	single	blog	post:

//key	blog_johnzablockis_dllhellnet
{
		"type":	"blog",
		"title":	"John	Zablocki'sdllHell.net",
		"author":	"author":	{
				"name":	"john.zablocki",
				"email":	"jz@example.com"
		}
}

//key	post_couchbase_schema_design
{
		"blogId":	"johnzablockis_dllhellnet",
		"title":	"Couchbase	Schema	Design",
		"body":	[
				"Couchbase	schema	design…"
		],
		"date":	"2015-01-05",
		"tags":	[
				"couchbase",
				"nosql",
				"schema"
		],
		"comments":	[
				{
						"comment":	"Thanks	for	the	post.",
						"user":	"jsmith"
				}
		]
}

The	separate	blog	and	post	documents	here	demonstrate	how	to	link	two	documents
together	by	placing	the	key	of	one	document	on	the	related	document.	In	this	case,	we



have	the	blog	document’s	key	on	the	post	document	in	its	blogId	property.

If	we	assume	that	each	blog	has	only	one	author,	we	have	another	decision	to	make—
where	to	put	the	author	details.	One	option	is	to	separate	the	authors	into	their	own
documents.	If	we	were	to	take	this	approach,	then	in	order	to	show	an	author’s	name	on	a
post,	we’d	either	have	to	get	to	the	author	document	through	the	blog	document,	or
include	a	second	ID	reference	on	posts,	which	would	be	the	author	document’s	key.

Alternatively,	there	is	a	valid	approach	that	involves	keeping	the	author	details	within	the
blog,	and	(redundantly)	including	the	name	of	the	author	in	the	post	document.	With	this
approach,	we	avoid	the	need	to	retrieve	additional	documents	to	simply	add	a	name	for
display:

{
		"blogId":	"johnzablockis_dllhellnet",
		"title":	"Couchbase	Schema	Design",
		"author":	"john.zablocki",
		"body":	[
				"Couchbase	schema	design…"
		]
}

Tip
If	you’re	a	relational	developer,	this	last	step	probably	feels	a	bit	“dirty.”	That’s	common
at	first	when	moving	to	NoSQL.	Remember	that	NoSQL	databases	exist	to	make
programming	against	databases	easier	and	to	provide	optimal	performance.	Denormalizing
data	by	being	redundant	is	a	tool	to	achieve	both	of	these	goals.	Moreover,	you	are	likely
to	optimize	your	relational	model	by	denormalizing	a	column	or	two	to	avoid	an	extra	join
or	query.	However,	this	approach	does	of	course	require	some	maintenance	effort	to
ensure	data	integrity.

The	decision	as	to	whether	to	leave	comments	within	posts	will	be	discussed	later	in	this
chapter,	as	it	is	a	more	nuanced	choice	to	make,	compared	to	blogs	and	posts.	As	for	tags,
it	would	be	very	inefficient	to	normalize	tags	into	their	own	documents	as	you	might	do
with	a	relational	system;	each	tag	would	require	a	Get	operation.

One	reason	the	normalized	model	works	so	well	in	relational	systems	is	that	SQL	joins
allow	related	data	to	be	gathered	from	several	different	tables	and	presented	as	a	single
logical	result.	However,	joins	also	create	overhead	for	queries	by	increasing	disk	access
operations.

Most	NoSQL	systems	have	forgone	join	support	and	rely	heavily	on	the	cache	to	support
rapid	retrieval	of	several	documents	when	a	somewhat	normalized	document	is	required.
Couchbase	is	capable	of	tens	of	thousands	of	operations	per	second	on	a	single	node.	As
such,	multi-get	overhead	is	generally	not	a	concern.



Object-to-document	mappings
When	you	design	an	application,	you	tend	to	model	your	business	or	domain	objects	much
more	closely	with	your	logical	model	than	your	physical	model.	This	conflict	leads	to
what	is	often	termed	as	the	object-relational	impedance	mismatch,	which	is	another	way
of	saying	that	it’s	hard	to	map	your	domain	objects	to	your	relational	model.

With	document	stores,	you	have	a	much	easier	path	from	the	object	to	the	document.	For
starters,	JSON	(and	its	binary	variant)	is	itself	a	notation	for	describing	objects.	Within	a
document,	there	is	built-in	support	for	nested	collections,	related	properties,	and	basic
property	types.	More	importantly,	pretty	much	all	modern	programming	languages	have
JSON	serializers.

It	won’t	always	make	sense	to	store	the	entirety	of	a	domain	object	graph	in	a	single
document,	but	as	a	general	rule,	it’s	useful	to	start	with	this	design	and	to	allow	your	use
cases	to	dictate	document	separation.



Data	types
With	relational	databases,	there	are	numerous	types	that	may	be	used	to	create	a	schema.
From	fixed-length	to	variable-length	strings	and	floating-point	numbers	with	various
precisions,	SQL	systems	support	a	great	number	of	options.	The	situation	is	quite	different
with	Couchbase	Server.

As	a	document	store	relying	heavily	on	JSON,	Couchbase	needs	only	a	few	primitive
types	supported	by	JSON.	These	types	are	strings,	numbers,	arrays,	and	Booleans.	From
these	types,	virtually	any	object	graph	can	be	stored	as	a	document.	Note	that	dates	are	not
addressed	by	the	JSON	standard.



Document	separation
There	is	no	golden	rule	as	to	when	you	should	separate	your	document	into	smaller
documents.	We	saw	earlier	in	this	chapter	that	performance	considerations	might	lead	us
to	do	so,	but	there	are	also	a	few	other	reasons	that	don’t	necessarily	involve	speed	of
document	retrieval.

One	common	reason	for	breaking	a	document	into	smaller	documents	is	write	contention.
Consider	a	blog	post	and	its	comments.	In	the	following	abbreviated	document,	we	can
see	that	each	comment	on	a	post	is	stored	as	a	nested	object	within	a	comments	collection.
While	this	is	certainly	a	valid	document	design,	there	are	situations	where	it	might	not	be
optimal:

{
		"title":	"Couchbase	Schema	Design",
		"body":	"Designing	documents…",
		"type":	"post",
		"comments":	[
				{	"message":	"Great	post",	"user":	"rplant"	},
				{	"message":	"I	learned	a	lot",	"user":	"jpjones"	},
		]
}

Consider	a	situation	where	a	blog	post	is	quite	popular	and	is	likely	to	generate	hundreds
(or	even	thousands)	of	comments	in	a	short	period	of	time.	In	this	case,	it	is	important	to
understand	one	aspect	of	Couchbase	document	retrieval,	that	it’s	all	or	nothing.

When	you	perform	a	Get	operation	on	a	document,	the	entire	document	is	returned.	While
Couchbase	is	quite	fast	and	that	document	is	likely	coming	from	the	RAM	(not	the	disk),
it	still	means	every	page	view	would	pull	back	all	comments.	If	you’re	not	displaying
those	comments,	then	you’re	retrieving	a	potentially	significant	amount	of	data	for	no
reason.

While	you	may	not	be	concerned	with	the	transfer	of	unused	data	when	the	document	is
retrieved,	there	is	another	consideration	for	such	a	document	design.	If	hundreds	or
thousands	of	users	are	trying	to	update	a	document	at	the	same	time,	there	will	be
contention	for	that	document.	Using	CAS	for	optimistic	locking	is	certainly	a	requirement
here,	but	CAS	will	only	prevent	stale	updates,	it	won’t	minimize	contention.

As	an	alternative,	you	could	separate	each	comment	into	its	own	small	document.	In	doing
so,	you	eliminate	the	need	to	perform	CAS	operations	and	keep	the	post	document	lean:

{	
		"message":	"Great	post",	
		"user":	"rplant"	,
		"type":	"comment",
		"postId":	"couchbase_schema_design"
}

To	find	all	comments	associated	with	a	given	post,	you	can	create	a	view	where	the	index
is	on	the	postId	property	of	the	comment	document:



function(doc,	meta)	{
		if	(doc.type	==	"comment"	&&	doc.postId)	{
				emit(doc.postId);
		}
}

Again,	whether	this	approach	makes	sense	for	your	situation	depends	primarily	on	the
needs	of	your	particular	application.	If	a	post	document	were	to	get	only	a	dozen	or	so
comments,	there	is	little	need	to	worry	about	CAS	impacting	performance.	There	would
also	be	little	concern	over	document	size	and	retrieving	superfluous	data.

Tip
Keep	in	mind	that	with	the	approach	of	breaking	nested	entities	into	separate	documents,
you’re	increasing	the	RAM	requirements	for	metadata.	Having	a	single	document	means
having	only	one	key	and	associated	metadata	values.

Another	reason	you	might	consider	breaking	a	document	into	separate	documents	is	about
document	access	patterns.	Recall	that	Couchbase	Server	keeps	recently	used	documents	in
the	memory	whenever	possible.	Storing	related	data	together	in	a	single	document	means
potentially	storing	unnecessary	data	in	the	RAM.

As	an	example	of	how	to	design	for	this	scenario,	consider	an	activity	where	you	track
customers	and	customer	orders.	The	denormalized	approach	would	be	to	have	a	customer
document	with	a	nested	collection	of	orders:

{
		"username":	"tyorke",
		"type":	"customer",
		"orders":	[
				{	"description":	"microphone":	"date":	"2014-11-02"	},
				{	"description":	"drum	machine":	"date":	"2014-11-02"	}
		]
}

The	problem	with	this	document	design	is	that	a	customer	is	likely	to	spend	more	time
visiting	an	online	store	than	actually	creating	orders.	If	the	RAM	is	a	constraint	for	your
cluster,	you	should	consider	separating	the	order	documents	into	a	separate	document.
That	way,	the	less	frequently	used	order	details	are	less	likely	to	occupy	the	RAM	when
resources	are	constrained:

{
		"type":	"customerOrders",
		"customerId":	"tyorke",
		"orders":	[
				{	"description":	"microphone":	"date":	"2014-11-02"	},
				{	"description":	"drum	machine":	"date":	"2014-11-02"	}
		]
}

It	should	be	clear	from	our	brief	discussion	of	document	separation	that	the	saying	“no
single	size	fits	all”	holds	true	here.	Your	application,	more	than	well-defined	academic
rules,	will	dictate	how	to	segment	your	documents.



Finally,	it’s	worth	noting	that	documents	in	Couchbase	are	limited	to	20	megabytes	in	size.
While	in	practice,	this	limitation	is	rarely	an	issue,	it	should	be	kept	in	mind	if	you	decide
to	store	binary	data	or	other	large	structures.	If	you	reach	this	limit,	you	might	be	forced	to
separate	your	documents	regardless	of	the	considerations	discussed	previously.



Object	schemas
Although	schema-less	databases	such	as	Couchbase	don’t	impose	any	structure	on	your
documents,	it’s	likely	that	your	application	will.	We’ve	already	discussed	the	advantages
of	document	databases	in	terms	of	natural	object	mapping.	Another	benefit	of	this
mapping	is	that	your	application	effective	defines	the	schema	for	documents	in	your
Couchbase	buckets.

Allowing	your	datastore	to	be	given	a	schema	from	the	application	layer	is	not	unique	to
document	databases.	Over	the	past	decade	or	so,	it	has	become	common	to	use	ORM
libraries	with	code-first	database	design.	With	this	approach,	you	create	a	domain	object
and	allow	a	certain	tool	to	create	your	database	schema	from	these	objects.

In	the	.NET	world,	the	entity	framework	will	allow	you	to	define	classes	in	C#	and	then
generate	a	database	from	those	entities.	The	tables	will	match	the	class	names,	and	the
columns	will	match	the	types	and	names	of	the	properties.	In	Ruby,	an	active	record
allows	database	schemas	to	be	created	from	Ruby	classes.	Other	frameworks	have	similar
libraries.

Code-first	tends	to	be	implicit	with	document	databases.	Since	each	document	you	create
was	likely	the	result	of	serializing	an	object	into	JSON,	that	object	defined	the	schema	for
the	resultant	document.

There	are	some	caveats	to	allowing	your	objects	to	become	your	document	schemas.
Earlier	in	this	chapter,	we	saw	the	problem	of	serializing	an	Id	property	into	a	document.
You	may	also	want	to	exclude	other	properties	from	being	serialized.

If	we	consider	the	brewery	and	beer	documents	from	the	beer-sample	bucket,	we’d	have	a
Beer	class	in	our	application	that	has	a	property	referencing	its	brewery.	This	property
would	exist	primarily	for	the	purpose	of	navigation	between	related	objects:

public	class	Beer
{
		public	string	Id	{	get;	set;	}
		public	string	Name	{	get;	set;	}
		public	string	Type	{	get;	set;	}
		public	string	BreweryId	{	get;	set;	}
		public	Brewery	Brewery	{	get;	set;	}
}

If	we	serialized	the	preceding	C#	class,	we’d	end	up	with	a	nested	brewery.	As	we	know,
however,	these	documents	are	separated	in	the	brewery-sample	database.	To	avoid	this
problem,	you’ll	need	to	instruct	your	JSON	serializer	to	ignore	certain	properties.	In	.NET,
the	JSON.NET	library	supports	attributes	for	this	purpose:

public	class	Beer
{
		[JsonIgnore]
		public	string	Id	{	get;	set;	}
		public	string	Name	{	get;	set;	}
		public	string	Type	{	get;	set;	}



		public	string	BreweryId	{	get;	set;	}
		[JsonIgnore]
		public	Brewery	Brewery	{	get;	set;	}
}



Schema-less	structure	changes
An	important	consideration	when	allowing	your	objects	to	create	your	document	schemas
is	versioning.	A	big	advantage	of	schema-less	databases	is	that	your	data	model	is	free	to
change	without	having	to	deal	with	relational-style	schema	changes.	For	example,
dropping	or	adding	a	column	might	lock	a	table	or	require	downtime	for	your	SQL-
database-backed	application.

Because	there	is	the	flexibility	of	having	no	database-imposed	schema,	it	does	not	mean
you	are	free	from	schema	change	concerns.	If	you	are	using	object-to-document
mappings,	you’ve	effectively	created	a	strongly	typed	document	database.	If	your	object
changes,	it	may	no	longer	match	its	document,	and	vice	versa.

It’s	likely	that	your	platform’s	JSON	serializer	that	will	determine	the	impact	of	schema
changes.	If	your	document	has	a	property	that’s	no	longer	applicable	to	your	object,
deserialization	could	cause	a	runtime	error.	Similarly,	serializing	a	changed	object	could
create	variations	in	documents	of	the	same	type,	creating	unintended	view	results.

One	approach	to	addressing	this	problem	is	to	add	a	version	number	property	to	your
documents.	With	this	approach,	your	application	and	your	views	may	react	differently	to
changes	based	on	the	version	of	the	document	being	read	or	written.

Another	approach	is	to	validate	and/or	modify	document	schemas	before	making	any
application	layer	changes.	It	is	possible	to	write	a	view	to	find	all	the	unique	document
schemas	in	your	bucket:

function	(doc,	meta)	{	
		if	(doc.type)	{
				var	props	=	[];
				for	(var	prop	in	doc)	{
						props.push(prop);
				}
				emit({	"type"	:	doc.type,	"schema"	:	props.sort()	});
		}
}

In	the	preceding	map	function,	we	first	check	whether	the	document	has	a	type	property.
This	step	is	not	required,	but	we	assume	that	any	document	in	the	bucket	related	to	an
object	has	a	type	property	associated	with	it.	After	this	step,	each	of	the	properties	of	the
document	is	pushed	into	an	array.

The	keys	of	this	index	are	JSON	objects	that	include	the	document	type	and	the	sorted	set
of	properties	from	the	document:

{
		"id":	"becca",
		"key":	{
				"type":	"user",
				"schema":	[
						"email",
						"firstName",
						"lastName",



						"type"
				]
		},
		"value":	null
},{
				"id":	"hank",
				"key":	{
						"type":	"user",
						"schema":	[
								"firstName",
								"lastName",
								"type"
						]
				},
				"value":	null
},{
		"id":	"karen",
		"key":	{
				"type":	"user",
				"schema":	[
						"firstName",
						"lastName",
						"type"
				]
		},
		"value":	null
}

In	its	current	state,	this	view	is	not	completely	useful.	However,	if	you	add	a	reduce
function	with	the	built-in	_count	function,	and	group	the	results	by	setting	the	group
option	to	true,	then	you	will	get	a	list	of	all	unique	schemas	and	a	count	of	documents
with	those	schemas:

{
		"key":	{
				"type":	"user",
						"schema":	[
								"email",
								"firstName",
								"lastName",
								"type"
						]
		},
		"value":	1
},
{
		"key":	{
				"type":	"user",
				"schema":	[
						"firstName",
						"lastName",
						"type"
				]
		},
		"value":	2



}

You	can	also	easily	write	a	view	to	locate	documents	with	or	without	a	particular	property.
If	you	want	to	find	all	user	documents	without	an	email	property,	you	can	use	the
following	map	function:

function(doc,	meta)	{
		if	(doc.type	==	"user"	&&	!	doc.email)	{
				emit(null,	null);
		}
}

These	views	demonstrate	how	to	find	information	about	document	schemas.	With	this
information,	you	can	iterate	over	the	results	and	update	documents	to	have	an	updated
schema.

Tip
If	you’re	willing	to	lose	the	benefits	of	user-defined	types,	you	should	consider	using
dictionary	structures	in	your	application.	Dictionaries	map	naturally	to	JSON	and	have
less	risk	of	breaking	on	schema	mismatches.



Object	and	document	properties
Another	advantage	of	having	document	schemas	derived	from	classes	is	that	your
documents	will	inherit	name	and	data	types	from	your	objects.	Generally	speaking,	this
behavior	should	be	acceptable.	However,	there	are	a	couple	of	issues	we	need	to	be	aware
of.

Perhaps,	the	most	important	consideration	here	is	about	document	property	names.	JSON
became	popular	for	data	transfer	in	part	due	to	its	relative	terseness	when	compared	to
XML.	However,	with	no	database-defined	schema,	Couchbase	documents	repeatedly
include	the	same	schema	information	across	potentially	billions	of	documents.

Long	names	take	up	more	RAM	and	more	disk	space.	While	this	is	not	an	issue	for
smaller	apps,	large	datasets	may	need	to	be	optimized	to	have	smaller	property	names.
Fortunately,	most	JSON	serializers	support	property	name	mapping.	For	example,	in	.NET
a	user	class	could	be	mapped	as	follows:

public	class	User
{
		[JsonProperty("fn")]
		public	string	FirstName	{	get;	set;	}
		[JsonProperty("ln")]
		public	string	LastName	{	get;	set;	}
		[JsonProperty("t")]
		public	string	Type	{	get;	set;	}
}

When	this	class	is	serialized,	it	will	be	a	smaller	document	that	has	the	properties	mapped
and	unchanged:

{
		"fn":	"Wolfgang",
		"ln":	"Mozart",
		"t":	"user"
}

It’s	also	important	to	understand	how	your	JSON	serializer	maps	property	types.	While
strings	and	numbers	will	be	consistent,	dates	may	not	be	consistent.	Make	sure	you	check
your	platform’s	JSON	serialization	behavior.



Document	relationships
Another	important	design	consideration	is	about	dealing	with	document	relationships.
Throughout	this	chapter,	we	saw	how	to	separate	related	documents	but	we	haven’t	fully
discussed	how	to	work	with	related	documents.

With	document	databases,	the	basic	approach	to	handling	relationships	involves	including
the	ID	of	a	related	document	with	the	relating	document.	We’ve	seen	this	design	in	the
previous	blog	sample	and	in	the	beer-sample	database,	where	beer	documents	include	a
brewery_id	property.	Again,	this	is	a	convention	and	there	is	no	database	constraint.

Without	database-enforced	referential	integrity,	your	application	layer	will	be	responsible
for	enforcing	data	validity.	Once	again,	views	may	be	used	to	identify	where	deficiencies
in	data	exist.	For	example,	if	we	want	to	find	all	beer	names	whose	brewery	ID	is	invalid,
we	can	simply	iterate	over	the	results	of	the	collated	view	example	in	Chapter	4,	Advanced
Views,	looking	for	beer	names	without	a	matching	brewery.

One	of	the	advantages	of	relational	constraints	and	joins	is	that	your	object-relational
mapper	is	able	to	assemble	your	object	graph	for	your	application.	Without	formal
relationships	in	Couchbase	(or	other	document	databases),	your	application	will	have	to
perform	multiple	queries	to	get	related	documents,	and	manually	assemble	your	object
graph.



Finalizing	the	schema
When	designing	relational	systems,	you	often	end	up	with	some	data	being	denormalized
for	performance	or	other	reasons.	As	joins	prove	costly,	a	typical	optimization	step	is	to
create	flattened	tables,	where	redundant	columns	are	close	to	the	data	to	which	they’re
related.

With	document	databases,	you’ll	likely	end	where	you	started,	with	a	mostly	denormalized
document	structure.	Not	only	does	a	denormalized	document	store	related	data	together,	it
also	is	likely	to	include	properties	from	other	documents	that	are	not	primary	keys.

As	an	example	of	a	denormalized	relationship,	consider	the	blog	post	and	comment
example.	If	comments	are	to	be	displayed	with	their	respective	authors,	then	either
numerous	lookups	must	be	made	to	user	documents,	or	some	subset	of	author	details	must
be	stored	redundantly	with	each	comment.

As	with	relationships	based	on	IDs,	other	properties	might	change	in	their	primary
location,	forcing	your	application	to	know	how	to	update	the	redundant	records.	If	a	user
changes	their	username,	not	only	user	documents	but	also	all	comments	by	that	user	will
need	to	be	updated.





Summary
As	we	saw	in	this	chapter,	designing	Couchbase	documents	is	partly	art	and	partly	science.
More	than	relational	systems	and	most	other	NoSQL	systems,	Couchbase’s	schema-less
design	requires	great	care,	not	just	because	Couchbase	is	a	hybrid	key/value	and	document
store	system.

Many	developers	choose	Couchbase	for	its	performance.	Designing	a	document-based
system	for	scaling	involves	a	unique	set	of	constraints	and	concerns.	Other	developers
choose	Couchbase	for	its	flexibility.	Designing	a	document-based	system	for	flexibility
raises	several	unique	considerations	for	applications.

Those	developers	who	choose	Couchbase	for	both	its	flexibility	and	its	scalability	have	the
added	challenge	of	trying	to	tweak	performance	without	sacrificing	the	flexibility	of	a
document	database.

It’s	always	tempting	to	approach	system	design	by	sticking	to	what	we	know.	It’s
important	to	remember	that	Couchbase	is	a	truly	unique	system,	and	your	document
design	will	not	necessarily	seem	obvious	at	first.	However,	you	shouldn’t	be	afraid	to
allow	some	parts	of	your	design	to	feel	relational	and	others	to	feel	nonrelational.

In	the	next	chapter,	we’re	going	to	continue	to	explore	application	designs	in	a	schema-
less	world.	While	creating	a	simple,	Couchbase-based	web	application,	we’ll	be	able	to
work	through	several	issues	we	explored	in	this	chapter.





Chapter	7.	Creating	a	To-do	App	with
Couchbase
In	this	chapter,	we’ll	put	together	everything	you	learned	so	far.	In	recent	years,	the	to-do
app	has	replaced	the	blog	as	the	canonical	first	app	when	learning	a	new	platform.	While	a
to-do	app	seems	simple	on	the	surface,	it	is	complex	enough	to	demonstrate	most	of	the
core	features	of	a	framework.

A	to-do	app	built	on	Couchbase	is	well	suited	to	demonstrate	both	the	key/value	and
document	features	of	Couchbase.	With	some	minor	feature	additions	to	a	typical	to-do
app,	we’ll	be	able	to	make	use	of	some	of	the	advanced	view	features	available	for
Couchbase	developers.

Throughout	this	chapter,	we’ll	focus	more	on	general	design	considerations	rather	than
specific	SDK	or	language	constructs.	As	was	the	case	in	the	previous	chapters,	we’ll
explore	multiple	SDKs	as	we	build	our	to-do	app.	While	the	basic	language	constructs
may	vary	from	SDK	to	SDK,	the	broad	strokes	approach	will	not	vary.



A	simple	to-do	schema
You’ve	learned	in	previous	chapters	that	schema	design	in	the	world	of	schema-less
NoSQL	databases	tends	to	derive	from	the	logical	or	object	design	of	the	application	layer.
As	such,	we’ll	start	our	application	development	efforts	by	considering	the	design	of	the
classes	we’ll	use	in	our	application.

In	the	simplest	case,	a	to-do	app	is	nothing	more	than	a	checklist.	To	start	modeling	our
schema,	we’ll	limit	the	design	to	two	properties	of	a	checklist,	namely	a	description	and	a
checkbox.	This	design	is	shown	in	the	following	C#	class:

public	class	Task
{
		public	string	Description	{	get;	set;	}
		public	bool	IsComplete	{	get;	set;	}
}

In	this	class,	the	Description	property	describes	the	task	to	be	done.	The	Boolean
property	IsComplete	simply	checks	whether	the	task	has	been	completed.	The
corresponding	JSON	document	stored	in	Couchbase	mirrors	this	class:

{
		"description":	"Pick	up	the	almond	milk",
		"isComplete":	false
}

As	we	build	our	application,	we’ll	add	more	features	and	develop	our	schema	further.	For
now	however,	we’ll	start	building	the	application	to	support	our	simple	task	list.





Working	with	SDKs
Again,	it’s	not	feasible	within	the	scope	of	a	single	chapter	to	implement	an	application
with	a	single	framework	that	would	satisfy	all	readers.	Even	a	cross-platform	language
such	as	Python	would	require	a	rather	lengthy	exploration	into	setting	up	a	development
environment	and	exploring	a	web	framework	and	its	components.

Java	and	.NET	are	quite	popular	platforms,	but	require	a	fair	bit	of	tooling	support	to	get
these	platforms	up	and	running.	Focusing	exclusively	on	one	of	these	platforms	would
almost	certainly	alienate	a	significant	number	of	readers.	And,	of	course,	there	are
differences	across	Windows,	Linux,	and	Mac	OS	X.

Instead,	we’ll	focus	on	the	general	principles	and	patterns	of	Couchbase	SDK
development.	We’ll	explore	constructs	that	will	be	broadly	applicable	to	developing	a
Couchbase	application,	regardless	of	your	development	environment.

Also,	we	won’t	dig	into	any	particular	web	framework	but	will	discuss	general	web
development	patterns.	Chances	are	that	if	you’re	a	web	developer	and	you’re	working
with	a	NoSQL	database,	you’re	likely	using	a	framework	that	supports	capabilities	like
MVC	(short	for	model-view-controller).



A	brief	overview	of	MVC
For	the	purpose	of	this	chapter,	all	you’ll	need	to	know	of	MVC	or	a	similarly-patterned
web	framework	is	that	when	you	navigate	to	a	URI	such	as
http://localhost/tasks/list,	you	will	have	a	corresponding	server-side	method	that
handles	the	request	to	the	list	action.	Similarly,	a	request	to
http://localhost/tasks/create	would	have	a	corresponding	create	action.	Actions
are	simply	methods	invoked	on	the	server	that	handle	an	HTTP	request	and	return	an
HTTP	response.

For	example,	using	the	popular	ASP.NET	MVC	framework,	if	you	wanted	to	show	a	form
to	create	a	task	when	a	user	navigated	to	http://localhost/tasks/create,	you	would
create	a	controller	named	tasks	and	a	method	(or	action)	named	create:

public	class	TasksController	:	Controller
{
		[HttpGet]
		public	ActionResult	Create()
		{
				return	View();
		}
}

As	is	common	with	MVC,	you	create	a	Controller	class	where	the	name	of	the	controller
reflects	some	portion	of	the	requested	URI	path	(tasks	in	this	case).	Within	that	controller,
you	define	a	method,	and	that	method	is	also	reflected	in	the	path	(create	in	this	case).
The	previous	ASP.NET	MVC	snippet	shows	a	create	action	that	will	handle	only
HttpGet	requests.

Similarly,	to	handle	the	postback	data	from	the	HTML	form	to	the	server,	you	create	an
action	to	handle	the	form	submission.	In	ASP.NET	MVC,	this	is	done	by	placing	an
HttpPost	attribute	on	a	method	matching	the	name	of	the	action:

[HttpPost]
public	ActionResult	Create(FormCollection	form)
{
		//do	something	with	the	form
		return	RedirectToAction("List");
}

Most	MVC	frameworks	follow	a	similar	convention.	MVC	frameworks	such	as	Ruby’s
Rails	vary	slightly	in	how	they	handle	the	different	HTTP	verbs	presented	to	an	action:

class	TasksController<ApplicationController

		def	new
		
		end

		def	create
				#do	something
				redirect_to	:action	=>	"Index"



		end
end

In	this	Rails	snippet,	we	see	a	similar	convention	as	used	by	MVC,	the	primary	difference
being	that	the	ASP.NET	MVC	uses	attributes	to	distinguish	between	GET	and	POST	actions.
Other	frameworks	have	a	single	method	that	checks	the	verb	to	decide	how	to	perform
operations.

A	variation	of	popular	MVC	frameworks	is	a	so-called	micro	framework.	Generally
speaking,	you	could	think	of	a	web	micro	framework	as	an	MVC	framework	without	the
“C”	(that	is,	the	controller).	With	such	frameworks,	you’ll	typically	define	the	path
handled	by	an	action,	without	a	controller	involved.

A	popular	micro	framework	in	the	Python	world	is	Flask.	With	Flask,	you	set	up	a	series
of	routes	and	instruct	Flask	on	how	to	dispatch	requests	to	the	appropriate	handlers.	For
example,	to	handle	the	simple	rendering	of	a	create	view,	the	following	flask	snippet
would	be	used:

@app.route("/tasks/create")
def	create():
		return	render_view("create.html")

That	same	method	can	be	expanded	to	handle	the	post	back	of	data,	as	follows:

@app.route("/tasks/create")
def	create():
		if	request.method	==	"POST":
				#do	something
				return	redirect(url_for("index"))
		return	render_view("create.html")

If	you	are	already	familiar	with	a	web	framework,	the	preceding	samples	should	seem
familiar.	If	you	have	not	used	a	web	framework,	then	you	will	see	snippets	like	these
throughout	the	remainder	of	this	chapter.	For	our	purpose,	it’s	most	important	that	you
have	a	basic	understanding	of	what	these	action	methods	are	doing,	rather	than	detailed
knowledge	of	a	particular	framework.



Using	SDK	clients
In	Chapter	2,	Using	Couchbase	CRUD	Operations,	we	explored	the	basics	of	obtaining
SDK	client	libraries.	Generally,	this	was	achieved	via	your	platform’s	package	manager
(for	example,	NuGet,	Gems,	or	PIP).	Assuming	that	you’ve	obtained	your	platform’s
SDK,	the	first	thing	you’ll	need	to	understand	is	how	to	configure	and	instantiate	that
client.

Regardless	of	which	SDK	you	are	using,	each	SDK	requires	the	same	basic	setup
configuration—the	location	of	a	node	in	your	cluster	and	the	bucket	with	which	you	want
to	connect.	The	Python	SDK	demonstrates	this	process	succinctly:

from	couchbase	import	Couchbase
client	=	Couchbase.connect(host	=	"localhost",	bucket	=	"beer-sample")

When	a	Couchbase	SDK	connects	to	a	node	in	your	cluster,	it	begins	listening	to	a
streaming	(over	HTTP)	message	from	the	server.	The	content	sent	through	this	stream
provides	the	SDK	with	information	on	the	topology	of	the	cluster,	such	as	how	many
nodes	are	active	in	the	cluster	and	where	keys	should	be	sent	to	or	requested	from.

This	handshake	is	relatively	expensive,	and	therefore	it	is	generally	best	practice	not	to
create	a	client	instance	except	when	necessary.	Within	the	scope	of	a	web	application,
you’d	want	to	have	a	single	client	handle	all	requests,	typically	by	creating	a	static	or
shared	instance	of	your	client.

In	the	preceding	Python	snippet,	the	connect	method	is	provided	with	limited	details
about	the	cluster.	Also,	in	the	Python	snippet	there	are	a	few	default	values	(such	as	ports)
being	used	by	the	client.	Similarly,	the	.NET	2.0	SDK	may	be	configured	with	all	defaults
that	connect	to	your	localhost	and	default	bucket:

private	static	Cluster	_cluster	=	new	Cluster();
var	bucket	=	_cluster.OpenBucket();

The	story	is	similar	for	other	SDKs.	You’ll	create	a	client	by	connecting	to	the	cluster	and
then	a	bucket.	If	you’re	wondering	which	node	in	a	cluster	should	be	provided	in	the
initial	connection,	the	short	answer	is	any.	However,	it	is	better	to	provide	multiple	nodes
in	case	the	node	you	specified	undergoes	failover.

The	SDKs	offer	a	means	of	providing	multiple	URIs	via	either	a	configuration	file	or
parameters	to	connection	methods.	For	example,	in	Java	you	could	provide	multiple	URIs
to	the	create	factory	method	of	the	CouchbaseCluster	class:

Cluster	cluster	=	new	CouchbaseCluster.create("192.168.0.1",	
"192.168.0.2");

In	this	example,	if	the	first	URI	is	not	accessible,	the	SDK	would	then	try	to	obtain
information	about	cluster	configuration	from	the	second	URI.	How	many	nodes	you
should	specify	depends	on	your	cluster,	but	generally,	at	least	two	and	up	to	three	or	four
nodes	should	be	reasonable.





Creating	a	task
At	this	point,	we’ve	designed	a	very	simple	to-do	schema	where	our	tasks	are	simply
checklist	items.	Regardless	of	which	web	framework	you	are	using,	you’ll	need	some	sort
of	HTML	form	to	collect	the	description	and	isComplete	properties	of	the	new	tasks:

<html>
		<head>
				<title>Create	a	Task</title>
		</head>
		<body>
				<form	action="tasks/create"	method="POST">
						<div>Description:	
								<input	type="text"	name="description"	/>
						</div>
						<div>Complete:	
								<input	type="checkbox"	name="isComplete"	/>
						</div>
						</div><button	type="submit"	value="Save"	/>
				</form>
		</body>
</html>

The	preceding	HTML	form	collects	these	two	properties	and	submits	them	to	a	server-side
action	named	create.	As	an	example	of	how	you	can	respond	to	this	form	post,	consider
the	following	Python	Flask	snippet:

@app.route("/tasks/create",	methods=["GET","POST"])
def	create():
		if	request.method	==	"POST":
				
				task	=	{	"description":	request.form["description"],	
						"isComplete":	request.form["isComplete"]	}
				key	=	uuid.uuid1().hex
				doc	=	json.dumps(task)
				client.set(key,	doc)
				return	redirect(url_for("index"))
		return	render_view("create.html")

We	can	see	the	basic	pattern	of	creating	new	documents	with	Couchbase	in	the	preceding
lines.	These	steps	are	similar	to	those	you’d	perform	when	working	with	a	relational
database,	but	there	are	a	couple	of	differences.

In	this	example,	the	task	is	constructed	as	a	Python	dictionary	instance.	Alternatively,	we
could	have	used	a	class	with	properties	matching	the	task	fields.	Because	there	is	no
obvious	property	of	the	task	to	use	as	a	key,	a	UUID	is	generated	and	used	as	the	key	for
the	document.	Finally,	before	saving	the	task	to	Couchbase,	it	is	serialized	to	a	JSON
document	using	Python’s	JSON	module.

These	last	two	steps	are	the	primary	difference	between	Couchbase	and	other	databases.
Couchbase	Server	doesn’t	provide	a	means	to	generate	keys,	so	we	need	to	generate	our
own.	Couchbase	clients	don’t	enforce	JSON	as	a	serialization	format,	so	we	need	to	take



care	of	this	ourselves.





Listing	tasks
In	the	preceding	snippet,	after	the	task	is	created,	a	redirect	to	an	index	page	is	performed.
This	page	is	a	list	page	used	to	view	tasks.	Building	a	list	page	requires	finding	all	our
tasks	that	will	require	a	slight	change	to	our	model:

public	class	Task
{
		public	string	Description	{	get;	set;	}
		public	bool	IsComplete	{	get;	set;	}
		public	bool	Type	{	get	{	return	"task";	}
}

Recall	our	discussion	from	the	previous	chapters	on	the	use	of	a	type	property	on
documents	to	provide	a	classification	for	related	documents,	much	in	the	way	a	table	does
for	relational	databases.	In	our	to-do	application,	to	identify	tasks,	we’ll	add	a	type
property	(which	is	read-only).	The	property	is	set	to	the	task	string,	which	will	ensure	that
all	task	documents	are	serialized	with	this	type.	With	this	addition,	we’re	ready	to	write
our	list	page,	starting	with	a	map	function:

//view	named	"all"	in	a	design	doc	"tasks"
function(doc,	meta)	{
		if	(doc.type	==	"task")	{
				emit(null,	null);
		}
}

Notice	that	this	map	function	doesn’t	explicitly	index	any	properties	of	task	documents.
Since	we	are	indexing	only	documents	marked	as	tasks,	a	query	on	this	view	will	return
only	the	documents	we	wish	to	list	on	our	index	page.	The	following	C#	example	is
intentionally	verbose	to	illustrate	a	couple	of	points.	Note	that	the	.NET	1.3	SDK	provides
some	helper	methods	to	achieve	similar	behavior:

public	ActionResult	Index()	
{
		var	view	=	client.GetView<Task>("all"",	"tasks");
		var	model	=	GetTasksFromView(view);
		return	View(model);
}

private	IEnumerable<Task>GetTasksFromView(IView	view)	{
		foreach(var	row	in	view)	
		{
				var	doc	=	client.Get<string>(row.ItemId);
				yield	return	JsonConvert.DeserializeObject<Task>(doc);
		}
}

The	Index	action	starts	by	querying	the	all	view	in	the	tasks	design	document.	Once	the
index	of	the	results	has	been	returned,	the	view	is	converted	to	an	enumerable	list	of	Task
instances.	In	C#,	yield	return	allows	a	function	to	be	treated	as	an	enumerable	object,
which	means	that	the	casting	of	a	view	row	to	a	Task	instance	occurs	only	when	the	caller



enumerates	the	results.	In	this	case,	the	client	is	an	ASP.NET	MVC	Razor	view:

<table>
		<thead>
				<tr>
						<th>Description</th>
						<th>Complete</th>
				</tr>
		</thead>
		@foreach(var	item	in	Model)
		{
				<tr>
						<td>@item.Description</td>
						<td>@item.IsComplete</td>
				</tr>
		}
</table>

Regardless	of	which	web	framework	you	work	with,	the	basic	idea	will	be	the	same.
You’ll	query	a	view,	get	the	results,	and	pass	those	results	to	a	view	to	be	displayed.	Once
this	list	is	complete,	the	next	logical	step	is	to	allow	the	editing	of	tasks.	This	action	will
be	similar	to	the	create	task	we’ve	worked	on	before.

To	allow	editing,	we’ll	need	to	allow	users	to	get	to	the	edit	page	for	a	specific	task.	This
requirement	will	necessitate	adding	a	property	to	our	class	to	map	to	the	document’s	key.
This	change	is	important	because	we	must	be	careful	how	to	map	our	key,	ensuring	that
JSON	serializers	don’t	include	a	store	inside	the	document:

public	class	Task
{
		[JsonIgnore]
		public	string	Id	{	get;	set;	}
		
		//other	properties	omitted
}

How	you	exclude	the	Id	property	from	being	serialized	into	the	stored	Couchbase
document	will	of	course	vary	by	your	language	and	its	preferred	serializer.	In	this	snippet,
an	attribute	is	included	on	the	Id	property	to	instruct	the	JSON.NET	serializer	to	ignore
this	property.

Although	you’re	ignoring	the	Id	property	as	the	document	is	sent	to	Couchbase,	it’s
important	to	remember	that	you’ll	want	to	set	it	to	come	out	of	the	bucket.	We’ll	see	how
to	do	this	by	modifying	the	preceding	method	that	retrieves	all	task	documents	for	listing:

private	IEnumerable<Task>GetTasksFromView(IView	view)	{
		foreach(var	row	in	view)	
		{
				var	doc	=	client.Get<string>(row.ItemId);
				
				//this	line	will	populate	all	task	properties,	
//except	for	Id
				var	task		=	JsonConvert.DeserializeObject<Task>(doc);
				



				//explicitly	map	the	document's	key	to	the	
				//Id	property	of	the	Task	instance
				task.Id	=	row.ItemId;	
		}
}

We’ll	also	want	to	modify	our	list’s	view	code	so	that	we	can	create	a	link	to	the	edit
action	we’re	about	to	build.	In	this	case,	we’re	simply	wrapping	the	task’s	description
column	with	a	link	to	the	edit	page,	with	the	item’s	id	property	passed	as	a	parameter	to
the	request.	If	you’re	using	Flask	with	its	default	Jinja2	templating	engine,	the	list	would
look	like	this:

{%	for	item	in	model	%}
		<tr>
				<td><a	href="/tasks/edit/{{item.id	}}">{{	item.description	}}</a>
				<td>{{	item.is_complete	}}</td>
		</tr>
{%	endfor	%}

The	edit	method	on	the	server	will	look	a	bit	like	the	create	method,	except	that	it	will
modify	the	saved	document	on	submission	and	return	the	unchanged	saved	document
when	the	form	is	displayed:

@app.route("/tasks/edit/<key>",	methods=["GET","POST"])
def	edit(key):
		
		saved_doc	=	client.get(key)	#retrieve	from	the	bucket
				
		#deserializesaved_doc	to	a	Task	class	instance
		saved_task	=	json.loads(saved_doc)
		saved_task.id	=	key	#manually	map	the	key	to	the	id
		
		if	request.method	==	"POST":
				
				#update	the	editable	fields
				saved_task.description	=	request.form["description"]
				saved_task.is_complete	=	request.form["is_complete"]
				
				json_doc	=	json.dumps(task)
				client.set(key,	json_doc)
				return	redirect(url_for("index"))
		return	render_view("edit.html",		model=saved_task)

Regardless	of	which	language	or	client	you	are	using,	the	basic	pattern	will	be	the	same
for	all	editing	scenarios.	You	start	by	getting	the	id	parameter	from	the	request,	and	use
that	parameter	to	look	up	the	saved	document	via	the	key/value	get	operation.	Then	you
convert	the	JSON	document	to	an	instance	of	a	Task	class.

If	you	are	showing	the	form	to	edit	the	task	(an	HTTP	GET	request),	then	you’ll	pass	that
task	to	the	form	so	that	it	can	be	rendered	with	prefilled	data.	The	following	Flask	Jinja2
template	demonstrates	how	this	process	works:

<form	action="/tasks/edit"	method="POST">
		<div>Description:	



				<input	type="text"	name="description"	value="{{	model.description	}}"	
/>
		</div>
		<div>Complete:	
				<input	type="checkbox"	name="isComplete"		{{	'checked="checked"'	if	
model.is_complete	}}/>
		</div>
		<div>
				<input	type="hidden"	name="id"	value="{{	model.id	}}"	/>
				<button	type="submit"	value="Save"	/>
		</div>
</form>

To	round	out	our	CRUD	task	list,	we	need	to	include	an	option	to	delete	tasks.	We’ll	keep
this	feature	simple	and	leave	the	“Are	you	sure	you	want	to	delete	this	item?”	alert	that
typically	precedes	such	an	action.	We’ll	start	by	rearranging	the	table	that	displays	our
task	list	so	that	an	Edit	and	a	Delete	link	appear	to	the	right	of	each	task:

{%	for	item	in	model	%}
		<tr>
				<td>{{	item.description	}}</td>
				<td>{{	item.is_complete	}}</td>
				<td>
						<a	href="/tasks/Edit/{{	item.id	}}>Edit</a>
						<a	href="/tasks/delete/{{	item.id	}}">Delete</a>
		</tr>
{%	endfor	%}

When	a	user	clicks	on	Delete,	the	delete	action	will	be	called	on	the	server,	which	will
get	the	id	property	from	the	query	string	and	then	remove	the	item	using	the	key/value
API:

@app.route("/tasks/delete/<key>",	methods=["GET"])
def	delete(key):
		
		client.delete(key)
		
		return	redirect(url_for("index"))

Again,	you’d	typically	not	delete	an	item	so	freely	over	an	HTTP	GET	request.	The
important	point	here	is	to	understand	that	when	you	remove	an	item,	it	is	always	deleted
by	its	key.	There	is	no	Couchbase	equivalent	of	SQL’s	DELETE	FROM	Table	WHERE	Column
=	'VALUE'	statement.	If	you	need	to	remove	an	item	based	on	another	value,	you’ll	have
to	create	a	view	to	find	that	value’s	key	and	then	remove	it.





Showing	only	incomplete	tasks
If	we	want	to	include	a	list	view	that	displays	only	tasks	that	are	not	yet	marked	as
complete,	we’ll	need	to	modify	our	view	to	incorporate	this	change.	The	following	snippet
shows	this	modification.	The	action	and	view	for	the	corresponding	list	page	differ	only	in
the	name	of	the	Couchbase	view	queried	by	the	client	(for	example,	all_incomplete	and
all):

//view	named	"all_incomplete"	in	the	"tasks"	design	document
function(doc,	meta)	{
		if	(doc.type	==	"task"	&&	doc.isComplete	===	false)	{
				emit(null,	null);
		}
}

Notice	that	the	check	for	incomplete	status	explicitly	uses	JavaScript’s	===	operator.	If	you
haven’t	used	this	operator,	you	should	now	know	that	it	performs	an	explicit	type	check
along	with	a	value	check.	The	reason	to	use	it	here	is	that	!	doc.isComplete	would	return
false	if	the	property	is	undefined	(which	might	be	acceptable	in	this	particular	case,	but
not	in	most	other	cases).

Alternatively,	we	can	create	a	view	where	the	isComplete	property	is	indexed,	allowing	us
to	list	complete,	incomplete,	or	all	tasks.	To	do	so,	we’ll	simply	emit	the	isComplete
property	instead	of	null	for	the	view’s	key:

function(doc,	meta)	{
		if	(doc.type	==	"task")	{
				emit(doc.isComplete,	null);
		}
}

When	the	query	is	made	to	the	task	list,	the	desired	complete	status	is	either	included	or
omitted	entirely:

#find	all	complete
client.query("tasks",	"by_status",	key=true)	

#find	all	incomplete
client.query("tasks",	"by_status",	key=false)

#find	all
client.query("tasks",	"by_status")





Nested	tasks
To	make	our	simple	task	list	app	a	little	more	interesting,	we’ll	add	the	ability	to	nest
tasks.	In	other	words,	we’ll	allow	some	tasks	to	be	subtasks	of	other	tasks.	Doing	so
requires	only	a	slight	change	to	our	model,	for	example	adding	a	ParentId	property:

public	class	Task
{
		public	string	Description	{	get;	set;	}
		public	bool	IsComplete	{	get;	set;	}
		public	string	ParentId	{	get;	set;	}
		public	bool	Type	{	get	{	return	"task";	}	}
}

There	are	numerous	ways	to	set	up	a	user	interface	to	allow	parent	tasks	to	be	set.	In	the
interest	of	brevity,	we’ll	assume	that	our	create	and	edit	actions	and	views	have	two
simple	additions:

#get	all	tasks	returned	by	the		
#all_incomplete	view	in	the	tasks	design	document
tasks	=	client.query("tasks",	"all_incomplete")

#when	saving	tasks,	assign	the	parentId
task.parent_id	=	request.form["parentId"]

#pass	the	tasks	to	the	view
#model	passed	only	for	edit
return	render_template("index.html",	model=task,	tasks=tasks)	

<!--	parent	task	field	in	HTML	form	-->
<select	name="parentId">
		{%	for	task	in	tasks	%}
		<option	value="task.id">task.Description</option>
		{%	endfor	%}
</select>

The	preceding	snippet	demonstrates	that	we’ll	need	to	query	for	all	incomplete	tasks,	pass
those	tasks	to	the	view	for	use	as	the	data	in	an	HTML	select	element,	and	assign	the
selected	value	back	to	the	task	we	save	on	posting	the	data	back.

To	view	tasks	and	their	children,	we’ll	need	to	write	a	view	that	groups	related	documents.
The	approach	we’ll	use	will	be	similar	to	the	example	in	Chapter	5,	Introducing	N1QL,
where	we	created	a	collated	view	to	show	breweries	and	their	beer	types.	The	only	real
difference	here	is	that	we	have	a	single	type	of	document	with	a	reference	to	itself:

function(doc,	meta)	{
		if	(doc.type	==	"task")	{
				if	(!	doc.parentId	||	(doc.parentId	==	""))	{
						emit([meta.Id,	0],	null);
				}	else	{
						emit([doc.parentId,	1],	null);
				}
		}



}

In	the	preceding	map	function,	we	first	perform	the	standard	type	check.	Next,	we	check
whether	a	document	has	a	parentId	property.	If	it	does,	we	check	whether	it’s	an	empty
string.	If	there’s	no	valid	parent	ID,	we	assume	this	is	a	parent	document	(either	zero	or
more	children).	The	parent’s	key	is	emitted	to	the	view	index.	If	a	document	is	a	child
(that	is,	it	has	a	parentId	property),	then	its	key	(meta.id)	is	never	indexed,	only
parentId	will	be	indexed.

The	consequence	of	this	view	is	that	all	parent	documents	will	appear	first,	followed
immediately	by	their	child	tasks	(if	any).	Recall	that	this	ordering	is	the	result	of
Couchbase	sorting	the	views	based	on	emitted	keys.	By	emitting	0	for	the	parent	and	1	for
all	children,	we	guarantee	that	the	parent	will	always	appear	first.

To	build	a	page	that	displays	a	task	with	its	children	listed,	we	can	simply	query	the	view
using	an	array	key,	where	the	first	element	is	the	parent’s	ID	(or	key)	and	the	second
element	is	the	number	1	we	used	to	identify	children	in	our	map	function,	as	shown	next.
The	following	Python	snippet	omits	some	details,	including	the	JSON	conversions
previously	shown:

@app.route("/tasks/view/<key>",	methods=["GET"])
def	edit(key):
		parent	=	client.get(key)	#retrieve	from	the	bucket
		children	=	client.query("tasks",	"with_children",	key=[key,	1])
		return	render_view("view.html",		parent=parent,	children=children)





Summary
In	this	chapter,	we	walked	through	the	basics	of	creating	a	simple	Couchbase-backed
application.	In	more	complex	applications,	we	need	to	concern	ourselves	with	advanced
tasks,	such	as	locking	records	with	CAS	or	general	design	patterns	for	a	particular
platform.

What	you	did	learn,	however,	were	the	basic	building	blocks	of	a	Couchbase	application.
All	database-driven	applications	start	with	some	simple	form	of	CRUD,	and	grow	more
complex	when	the	requirements	are	fleshed	out.	With	the	topics	covered	in	this	chapter,
you’ll	be	able	to	start	building	an	application	with	Couchbase.

An	important	thing	to	remember	about	building	a	Couchbase	application	is	that	by	virtue
of	being	key/value	stores,	Couchbase	applications	tend	to	be	simpler	in	terms	of	data
management.	Effectively,	all	changes	to	data	occur	one-at-a	time	and	by	key.

Moreover,	documents	are	retrieved	in	full	and	updated	in	full.	There	are	no	partial
updates.	While	this	might	seem	like	a	limiting	feature,	it	does	reduce	a	fair	deal	of	friction
found	when	working	with	other	data	stores,	where	object	mappings	are	made	more
complex	by	joins,	projections,	and	aggregations.

Because	Couchbase	supports	so	many	programming	platforms	with	its	SDKs,	it	would
have	been	impossible	to	visit	all	of	them	in	this	chapter’s	examples.	For	those	who	wish	to
see	more	complete	examples	of	the	code	in	this	chapter,	the	source	for	working
applications	will	be	available	at	https://bitbucket.org/johnzablocki/.

https://bitbucket.org/johnzablocki/




Appendix	A.	Couchbase	SDKs
Throughout	this	book,	we	explored	Couchbase	SDKs.	This	appendix	provides	more
details	on	obtaining	and	configuring	the	most	popular	Couchbase	client	libraries.	The	goal
of	this	section	is	not	to	provide	comprehensive	documentation	for	each	SDK,	but	rather	to
aid	in	your	efforts	to	follow	along	with	the	examples	in	this	book.

There	are	two	types	of	Couchbase	client	libraries.	The	first	type	is	the	native	libraries.
These	SDKs	are	written	entirely	in	the	language	within	which	they	will	be	used.	In	this
category	are	the	C#,	Java,	and	C	libraries.	The	second	type	of	SDKs	are	wrappers	around
the	Couchbase	C	client.	These	SDKs	include	Python,	Ruby,	PHP,	and	Node.js.

The	Couchbase	Developer	Solutions	team	maintains	the	SDKs	we	just	listed.	There	are
other	community-maintained	clients.	However,	for	the	remainder	of	this	appendix,	we’ll
focus	only	on	the	official	SDKs.



Couchbase	Java	SDK
The	Couchbase	Java	SDK	is	a	purely	Java-based	library.	It	is	a	highly	performant	package
with	support	for	both	synchronous	and	asynchronous	operations.	The	most	recent	version
contains	support	for	Java	8	and	earlier	releases.



Current	version
This	SDK	should	be	used	for	development	against	Couchbase	Server	versions	ranging
from	2.5	to	3.x.	Version	1.2	of	the	SDK	was	developed	to	support	the	earlier	versions	of
Couchbase	Server.



How	to	obtain	it
Java	developers	will	most	likely	want	to	use	Maven	to	add	the	Java	SDK	to	their	projects.
The	package	is	accessible	from	Maven	Central:

<dependencies>
				<dependency>
								<groupId>com.couchbase.client</groupId>
								<artifactId>java-client</artifactId>
								<version>2.0.0</version>
				</dependency>
</dependencies>

Additionally,	the	SDK	team	publishes	the	Java	binaries,	which	may	be	found	at
http://docs.couchbase.com/developer/java-2.0/download-links.html.	The	source	code	for
the	library	is	available	on	GitHub	at	https://github.com/couchbase/couchbase-java-client.

http://docs.couchbase.com/developer/java-2.0/download-links.html
https://github.com/couchbase/couchbase-java-client


The	basics
The	following	snippet	demonstrates	the	basics	of	using	the	Couchbase	Java	SDK:

//Configure	the	cluster
CouchbaseCluster	cluster	=	CouchbaseCluster.create("127.0.0.1");

//Open	a	bucket	connection
Bucket	bucket	=	cluster.openBucket("default");

//Create,	and	store	a	JSON	document
JsonObject	message	=	JsonObject.create().put("message",	"The	Hello,	
World!");
JsonDocument	document	=	bucket.insert(JsonDocument.create("somekey",	
message));

//Read	the	document
JsonDocument	savedMessage	=	bucket.get("somekey");

//	Close	the	bucket	connection
cluster.disconnect();





Couchbase	.NET	SDK
The	Couchbase	.NET	SDK	is	a	purely	C#-based	library.	Currently,	the	latest	version	is
2.0.	This	version	contains	support	for	.NET	4.5+.



Current	version
This	SDK	should	be	used	for	all	development	purposes	against	all	Couchbase	Server
versions	from	2.5	to	3.x.	Version	1.3	of	the	SDK	was	developed	to	support	earlier	versions
of	Couchbase	Server.



How	to	obtain	it
The	.NET	developers	will	most	likely	want	to	use	NuGet	to	add	the	Couchbase	.NET	SDK
to	their	Visual	Studio	projects.	To	install	Couchbase	SDK	2.0,	run	the	following	command
in	Package	Manager	Console:

PM>	Install-Package	CouchbaseNetClient

Additionally,	the	SDK	team	publishes	the	.NET	binaries,	which	can	be	found	at
http://docs.couchbase.com/developer/dotnet-2.0/download-links.html.	The	source	code	for
the	library	is	available	on	GitHub	at	https://github.com/couchbase/couchbase-net-client.

http://docs.couchbase.com/developer/dotnet-2.0/download-links.html
https://github.com/couchbase/couchbase-net-client


The	basics
The	following	snippet	demonstrates	the	basics	of	using	the	Couchbase	.NET	SDK:

//Configure	the	cluster	defaulting	to	"127.0.0.1"
var	cluster	=	new	Cluster();

//Open	a	bucket	connection	defaulting	to	"default"
var	bucket	=	cluster.OpenBucket();

//Create,	and	store	a	JSON	document
var	document	=	new	Document<dynamic>	{	
		Id	=	"somekey",	{
				Content	=	new	{	Message	=	"Hello,	World!"	};
bucket.Upsert(document);

//Read	the	document
var	savedMessage	=	bucket.GetDocument<dynamic>("somekey");

//	Close	the	bucket	connection
bucket.Dispose();





Couchbase	PHP	SDK
The	Couchbase	PHP	SDK	is	a	PHP	library	that	wraps	the	Couchbase	C	SDK.	Before
installing	this	library,	the	C	library	must	be	installed.



Current	version
Currently,	the	latest	version	is	2.0.2.	This	SDK	should	be	used	for	all	development	against
Couchbase	Server	versions	from	2.5	to	3.x.



How	to	obtain	it
Linux	users	will	be	able	to	install	the	PHP	SDK	with	pecl	as	follows:

$	pecl	install	couchbase

Additionally,	the	SDK	team	publishes	Windows	binaries,	which	may	be	found	at
http://docs.couchbase.com/developer/php-2.0/download-links.html.	The	source	code	for
the	library	is	available	on	GitHub	at	https://github.com/couchbase/php-ext-couchbase.

http://docs.couchbase.com/developer/php-2.0/download-links.html
https://github.com/couchbase/php-ext-couchbase


The	basics
Here	are	a	few	snippets	that	demonstrate	the	basics	of	using	the	Couchbase	PHP	SDK:

//Configure	the	cluster
$cluster	=	new	CouchbaseCluster('http://127.0.0.1:8091');

//Open	a	bucket	connection
$bucket	=	$cluster->openBucket('default');

//	Close	the	bucket	connection
cluster.disconnect();





The	Couchbase	Node.js	SDK
The	Couchbase	Node.js	SDK	is	a	Node.js	library	that	wraps	the	Couchbase	C	SDK.
Before	installing	this	library,	the	C	library	must	be	installed.



Current	version
Currently,	the	latest	version	is	2.0.2.	This	SDK	should	be	used	for	all	development	against
Couchbase	Server	versions	from	2.5	to	3.x.



How	to	obtain	it
The	Node.js	users	will	likely	wish	to	use	the	npm	package	manager	to	install	the
Couchbase	Node.js	SDK.	Windows	users	must	also	have	node-gyp	along	with	Visual	C++
10.	Information	on	installing	node-gyp	is	available	at
https://github.com/TooTallNate/node-gyp.

$	npm	install	couchbase

Additionally,	the	SDK	team	publishes	binaries,	which	may	be	found	at
http://docs.couchbase.com/developer/node-2.0/download-links.html.	The	source	code	for
the	library	is	available	on	GitHub	at	https://github.com/couchbase/couchnode.

https://github.com/TooTallNate/node-gyp
http://docs.couchbase.com/developer/node-2.0/download-links.html
https://github.com/couchbase/couchnode


The	basics
The	following	snippet	demonstrates	the	basics	of	using	the	Couchbase	PHP	SDK:

var	couchbase	=	require('couchbase');
var	cluster	=	new	couchbase.Cluster();
var	bucket	=	cluster.openBucket('default');		





Couchbase	Python	SDK
The	Couchbase	Python	SDK	is	a	Python	library	wrapping	the	Couchbase	C	SDK.	Before
installing	this	library,	the	C	library	must	be	installed.



Current	version
Currently,	the	latest	version	is	1.2.	This	SDK	should	be	used	for	all	development	against
Couchbase	Server	versions	from	2.5	to	3.x.



How	to	obtain	it
Python	users	can	obtain	the	Couchbase	Python	SDK	through	the	pip	package	manager	as
follows:

$	pip	install	couchbase

The	SDK	team	publishes	binaries,	which	may	be	found	at
https://pypi.python.org/pypi/couchbase#downloads.	The	source	code	for	the	library	is
available	on	GitHub	at	https://github.com/couchbase/couchbase-python-client.

https://pypi.python.org/pypi/couchbase#downloads
https://github.com/couchbase/couchbase-python-client


The	basics
The	following	snippet	demonstrates	the	basics	of	using	the	Couchbase	PHP	SDK:

client	=	Couchbase.connect(bucket='default',	host='localhost')	





Couchbase	Ruby	SDK
The	Couchbase	Ruby	SDK	is	a	Python	library	wrapping	the	Couchbase	C	SDK.	Before
installing	this	library,	the	C	library	must	be	installed.



Current	version
Currently,	the	latest	version	is	1.3.	This	SDK	should	be	used	for	all	development	against
Couchbase	Server	versions	from	2.5	to	3.x.



How	to	obtain	it
Ruby	users	can	find	the	Couchbase	Ruby	SDK	through	the	gem	package	manager	as
follows:

$	gem	install	couchbase



The	basics
The	following	snippet	demonstrates	the	basics	of	using	the	Couchbase	PHP	SDK:

client	=	Couchbase.connect(:bucket=>'default',	:host=>'localhost')	





Couchbase	C	SDK
The	Couchbase	C	client	library	is	the	core	library	for	several	other	libraries.	It	is	an
asynchronous,	single-threaded	SDK	using	callbacks	for	all	operations.	It	is	available	on
Windows,	Linux,	and	Mac	OS	X.



Current	version
Currently,	the	latest	version	is	2.4.5.	This	SDK	should	be	used	for	all	development	against
Couchbase	Server	versions	from	2.5	to	3.x.



How	to	obtain	it
C	developers	can	find	instructions	on	building	or	obtaining	the	library	at
http://docs.couchbase.com/developer/c-2.4/download-install.html.	Numerous	binaries	are
available	at	this	location.

http://docs.couchbase.com/developer/c-2.4/download-install.html


Index
A

accumulate	function
about	/	Reduce	functions

ACID	transactions
about	/	The	NoSQL	landscape

active	record
about	/	Object	schemas

aggregation
performing	/	Aggregation	and	math

asynchronous	operations
about	/	Asynchronous	operations

Atomicity
about	/	The	NoSQL	landscape



B
basic	mapping	/	Basic	mapping
basic	reducing	/	Basic	reducing



C
cluster

about	/	Couchbase	clusters
connecting	to	/	Connecting	to	your	cluster

collated	views	/	Collated	views
collections

working	with	/	Working	with	collections
compare	and	swap	(CAS)

about	/	Concurrency	and	locking
complex	structures

about	/	Complex	structures
complex	types

storing	/	Storing	complex	types
compound	indexes

about	/	Compound	indexes
concurrency,	Couchbase

about	/	Concurrency	and	locking
consistency

about	/	The	NoSQL	landscape
Couchbase

installing	/	Installing	Couchbase
URL	/	Installing	Couchbase,	Multiple	keys	per	document
installing,	on	Linux	/	Installing	Couchbase	on	Linux
installing,	on	Windows	/	Installing	Couchbase	on	Windows
installing,	on	Mac	OS	X	/	Installing	Couchbase	on	Mac	OS	X
running	/	Running	Couchbase	for	the	first	time
SDKs	/	Couchbase	SDKs,	The	Couchbase	SDKs,	Couchbase	SDKs	and	views
documents	/	Couchbase	documents
indexes	/	Couchbase	indexes
views	/	Couchbase	views,	Couchbase	SDKs	and	views
about	/	Multiple	keys	per	document

Couchbase	.NET	SDK
about	/	Couchbase	.NET	SDK
current	version	/	Current	version
obtaining	/	How	to	obtain	it
URL	/	How	to	obtain	it
basics	/	The	basics

Couchbase	architecture
about	/	Couchbase	architecture
Couchbase	clusters	/	Couchbase	clusters
replication	/	Replication
balancing	/	Balancing	and	rebalancing
rebalancing	/	Balancing	and	rebalancing



Couchbase	clusters	/	Couchbase	clusters
Couchbase	Console

exploring	/	Exploring	the	Couchbase	Console
about	/	Couchbase	Console
Development	views	/	Development	views
Design	documents	/	Design	documents
view,	creating	/	Creating	a	view

Couchbase	C	SDK
current	version	/	Current	version
obtaining	/	How	to	obtain	it
URL	/	How	to	obtain	it

Couchbase	Java	SDK
about	/	Couchbase	Java	SDK
current	version	/	Current	version
obtaining	/	How	to	obtain	it
URL	/	How	to	obtain	it
basics	/	The	basics

Couchbase	MapReduce	/	Couchbase	MapReduce
Couchbase	node.js	SDK

current	version	/	Current	version
obtaining	/	How	to	obtain	it
URL	/	How	to	obtain	it
basics	/	The	basics

Couchbase	PHP	SDK
about	/	Couchbase	PHP	SDK
current	version	/	Current	version
obtaining	/	How	to	obtain	it
URL	/	How	to	obtain	it
basics	/	The	basics

Couchbase	Python	SDK
current	version	/	Current	version
obtaining	/	How	to	obtain	it
URL	/	How	to	obtain	it
basics	/	The	basics

Couchbase	Ruby	SDK
current	version	/	Current	version
obtaining	/	How	to	obtain	it
basics	/	The	basics

Covering	Index	/	Emitting	values
CRUD	operations

about	/	Basic	operations
cluster,	connecting	to	/	Connecting	to	your	cluster
record,	creating	/	Creating	and	updating	a	record
record,	updating	/	Creating	and	updating	a	record



record,	reading	/	Reading	and	deleting	records
record,	deleting	/	Reading	and	deleting	records
temporary	keys	/	Temporary	keys
data,	appending	/	Appending	and	incrementing	data
data,	incrementing	/	Appending	and	incrementing	data



D
data

appending	/	Appending	and	incrementing	data
incrementing	/	Appending	and	incrementing	data

Data	Change	Protocol	(DCP)
about	/	Eventual	consistency

data	types	/	Data	types
denormalization	/	Denormalization
Description	property	/	A	simple	to-do	schema
Design	documents	/	Design	documents
Developer	Preview	3

about	/	Installing	N1QL
Development	views	/	Development	views
document	design

about	/	Document	design
denormalization	/	Denormalization
object-to-document	mappings	/	Object-to-document	mappings
data	types	/	Data	types
document	separation	/	Document	separation
object	schemas	/	Object	schemas
schema-less,	structure	changes	/	Schema-less	structure	changes
object	property	/	Object	and	document	properties
document	property	/	Object	and	document	properties
document	relationships	/	Document	relationships
schema,	finalizing	/	Finalizing	the	schema

document	property	/	Object	and	document	properties
document	relationships	/	Document	relationships
document	separation	/	Document	separation
durability

about	/	The	NoSQL	landscape
durability	operations

about	/	Durability	operations



E
Elasticsearch

about	/	Multiple	keys	per	document
End	User	License	Agreement	(EULA)	/	Installing	Couchbase
entity	framework

about	/	Object	schemas
eventual	consistency	/	Eventual	consistency



F
Flask	/	A	brief	overview	of	MVC
fold	function

about	/	Reduce	functions



G
grouping	/	Grouping



I
incomplete	tasks

displaying	/	Showing	only	incomplete	tasks
incremental	MapReduce

about	/	Couchbase	MapReduce
installation,	N1QL	/	Installing	N1QL
isolation

about	/	The	NoSQL	landscape



J
Jinja2	templating	engine	/	Listing	tasks
joins

about	/	Joins



K
key	design,	Couchbase

about	/	Key	design
keys	/	Keys,	metadata,	and	RAM
metadata	/	Keys,	metadata,	and	RAM
RAM	/	Keys,	metadata,	and	RAM
predictable	keys	/	Predictable	keys
unpredictable	keys	/	Unpredictable	keys
keys,	storing	/	Storing	keys
key	restrictions	/	Key	restrictions

key	queries	/	Key	queries
key	restrictions	/	Key	restrictions
keys	/	Keys,	metadata,	and	RAM

grouping	/	Grouping	keys
storing	/	Storing	keys



L
Linux

Couchbase,	installing	on	/	Installing	Couchbase	on	Linux
locking,	Couchbase

about	/	Concurrency	and	locking



M
Mac	OS	X

Couchbase,	installing	on	/	Installing	Couchbase	on	Mac	OS	X
map	functions	/	Map	functions
MapReduce

about	/	MapReduce
map	functions	/	Map	functions
reduce	functions	/	Reduce	functions
Couchbase	MapReduce	/	Couchbase	MapReduce
basic	mapping	/	Basic	mapping
basic	reducing	/	Basic	reducing

mathematical	operations
performing	/	Aggregation	and	math

metadata	/	Keys,	metadata,	and	RAM
micro	framework	/	A	brief	overview	of	MVC
missing	properties

about	/	Null	or	missing	properties
most	recently	used	(MRU)	/	RAM	matters
multiple	keys	per	document

about	/	Multiple	keys	per	document
MVC

about	/	A	brief	overview	of	MVC



N
.NET	binaries

URL	/	How	to	obtain	it
N1QL

installing	/	Installing	N1QL
SDK	support	/	SDK	support

nested	collections
about	/	Nested	collections

nested	tasks
about	/	Nested	tasks

nginx	web	server
about	/	Asynchronous	operations

node-gyp
URL	/	How	to	obtain	it

NoSQL
landscape	/	The	NoSQL	landscape
taxonomies	/	NoSQL	taxonomies

null	properties
about	/	Null	or	missing	properties



O
object-relational	impedance	mismatch

about	/	Object-to-document	mappings
object-to-document	mappings	/	Object-to-document	mappings
object	property	/	Object	and	document	properties
object	schemas	/	Object	schemas
Open	Beer	Database	/	Counting	breweries	by	location



P
packages,	Couchbase

URL	/	Installing	N1QL
PersistTo	argument

about	/	Durability	operations
ports

about	/	Ports
predictable	keys	/	Predictable	keys



Q
querying,	by	type

about	/	Querying	by	type
querying,	with	beer-sample

about	/	Querying	with	beer-sample
documents,	querying	by	type	/	Querying	all	documents	by	type
breweries,	counting	by	location	/	Counting	breweries	by	location
beer	documents,	finding	by	brewery	/	Finding	beer	documents	by	brewery
collated	views	/	Collated	views



R
RAM

using	/	RAM	matters
range	queries

about	/	Range	queries
record

creating	/	Creating	and	updating	a	record
updating	/	Creating	and	updating	a	record
reading	/	Reading	and	deleting	records
deleting	/	Reading	and	deleting	records

reduce	functions	/	Reduce	functions
replication	/	Replication



S
schema

finalizing	/	Finalizing	the	schema
schema-less,	structure	changes	/	Schema-less	structure	changes
SDK

clients,	using	/	Using	SDK	clients
SDK	clients

using	/	Using	SDK	clients
SDKs

working	with	/	Working	with	SDKs
SDK	support,	for	N1QL

about	/	SDK	support
sharding

about	/	Balancing	and	rebalancing
simple	queries

about	/	Simple	queries
simple	to-do	schema

about	/	A	simple	to-do	schema
string	utilities

about	/	String	utilities



T
task

creating	/	Creating	a	task
listing	/	Listing	tasks

temporary	keys	/	Temporary	keys
to-do	app

simple	to-do	schema	/	A	simple	to-do	schema
transcoder

about	/	Storing	complex	types



U
unpredictable	keys	/	Unpredictable	keys



V
values

emitting	/	Emitting	values
vBuckets

about	/	Couchbase	SDKs
view

creating	/	Creating	a	view
views

about	/	Couchbase	indexes
querying	/	Querying	views

views,	querying
grouping	/	Grouping
key	queries	/	Key	queries
eventual	consistency	/	Eventual	consistency



W
Windows

Couchbase,	installing	on	/	Installing	Couchbase	on	Windows
Windows	binaries

URL	/	How	to	obtain	it


	Couchbase Essentials
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Getting Comfortable with Couchbase
	The NoSQL landscape
	NoSQL taxonomies
	Installing Couchbase
	Installing Couchbase on Linux
	Installing Couchbase on Windows
	Installing Couchbase on Mac OS X
	Ports
	Running Couchbase for the first time
	Exploring the Couchbase Console
	Couchbase architecture
	Couchbase clusters
	Replication
	Balancing and rebalancing
	Couchbase SDKs
	RAM matters
	Summary
	2. Using Couchbase CRUD Operations
	The Couchbase SDKs
	Basic operations
	Connecting to your cluster
	Creating and updating a record
	Reading and deleting records
	Advanced CRUD operations
	Temporary keys
	Appending and incrementing data
	Storing complex types
	Concurrency and locking
	Asynchronous operations
	Durability operations
	Summary
	3. Creating Secondary Indexes with Views
	Couchbase documents
	Couchbase indexes
	MapReduce
	Map functions
	Reduce functions
	Couchbase MapReduce
	Basic mapping
	Basic reducing
	Couchbase views
	Couchbase Console
	Development views
	Design documents
	Creating a view
	Querying views
	Grouping
	Key queries
	Eventual consistency
	Couchbase SDKs and views
	Summary
	4. Advanced Views
	Querying by type
	Nested collections
	Range queries
	Multiple keys per document
	Compound indexes
	Grouping keys
	Emitting values
	Querying with beer-sample
	Querying all documents by type
	Counting breweries by location
	Finding beer documents by brewery
	Collated views
	Summary
	5. Introducing N1QL
	Installing N1QL
	Simple queries
	Null or missing properties
	String utilities
	Aggregation and math
	Complex structures
	Working with collections
	Joins
	SDK support
	Summary
	6. Designing a Schema-less Data Model
	Key design
	Keys, metadata, and RAM
	Predictable keys
	Unpredictable keys
	Storing keys
	Key restrictions
	Document design
	Denormalization
	Object-to-document mappings
	Data types
	Document separation
	Object schemas
	Schema-less structure changes
	Object and document properties
	Document relationships
	Finalizing the schema
	Summary
	7. Creating a To-do App with Couchbase
	A simple to-do schema
	Working with SDKs
	A brief overview of MVC
	Using SDK clients
	Creating a task
	Listing tasks
	Showing only incomplete tasks
	Nested tasks
	Summary
	A. Couchbase SDKs
	Couchbase Java SDK
	Current version
	How to obtain it
	The basics
	Couchbase .NET SDK
	Current version
	How to obtain it
	The basics
	Couchbase PHP SDK
	Current version
	How to obtain it
	The basics
	The Couchbase Node.js SDK
	Current version
	How to obtain it
	The basics
	Couchbase Python SDK
	Current version
	How to obtain it
	The basics
	Couchbase Ruby SDK
	Current version
	How to obtain it
	The basics
	Couchbase C SDK
	Current version
	How to obtain it
	Index

