
www.allitebooks.com

http://www.allitebooks.org

Creating Development
Environments with Vagrant
Second Edition

Leverage the power of Vagrant to create and manage
virtual development environments with Puppet, Chef,
and VirtualBox

Michael Peacock

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Creating Development Environments with Vagrant
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Second edition: March 2015

Production reference: 1050315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-702-9

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Michael Peacock

Reviewers
Jonathan Bardo

Anirudh Bhatnagar

Commissioning Editor
Usha Iyer

Acquisition Editors
Richard Brookes-Bland

Ellen Bishop

Content Development Editor
Sriram Neelakantan

Technical Editor
Mrunal M. Chavan

Copy Editor
Rashmi Sawant

Project Coordinator
Aboli Ambardekar

Proofreaders
Simran Bhogal

Maria Gould

Paul Hindle

Indexer
Monica Ajmera Mehta

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Michael Peacock is an experienced software developer and team lead from
Newcastle, UK, with a degree in software engineering from the University of Durham.

After spending a number of years running his own web agency, and subsequently,
working directly for a number of software start-ups, he now runs his own software
development agency, working on a range of projects for an array of different clients.

He is the author of Creating Development Environments with Vagrant, PHP 5 Social
Networking, PHP 5 E-Commerce Development, Drupal 7 Social Networking, and Selling
online with Drupal e-Commerce and Building Websites with TYPO3, all by Packt
Publishing. The other publications Michael has been involved in include Advanced
API Security, Mobile Web Development, Jenkins Continuous Integration Cookbook, and
Drupal for Education and E-Learning; for these he acted as a technical reviewer.

Michael has also presented at a number of user groups and technical conferences,
including PHP UK Conference, Dutch PHP Conference, ConFoo, PHPNE, PHPNW,
and Could Connect Santa Clara.

You can follow Michael on Twitter (@michaelpeacock), or find out more about him
through his website (www.michaelpeacock.co.uk).

I'd like to thank the team at Packt Publishing for their help in
getting this revised edition of the book published, and the technical
reviewers for ensuring technical accuracy in the book.

www.allitebooks.com

www.michaelpeacock.co.uk
http://www.allitebooks.org

About the Reviewers

Jonathan Bardo is a Montreal-based web developer with a keen interest for new
technologies and automation. He has worked for many large-scale websites dealing
with millions of daily visitors on various platforms. When he is not programming, he
likes to watch a good TV show or travel somewhere he has never been before. If you
see him riding his motorcycle or skiing down a hill, just say hi! He is very friendly!

Jonathan runs his own consulting company, which lets him meet all sorts of
interesting clients, such as Fox Broadcasting (USA), Rogers Digital Media (Canada),
and Yellow Pages Group (Canada).

A special thanks to everyone who has been a part of my journey so
far! I wouldn't be here without all the incredible people I worked
with everyday.

www.allitebooks.com

http://www.allitebooks.org

Anirudh Bhatnagar is a principal consultant at Xebia. He started his career as a
developer working in product-based companies such as Adobe.

Anirudh has been working mostly with Java-based technology stacks that use
Spring, Hibernate, XML, web services, REST, CMS, SSO, ESB, and Liferay.

During the last few years, Anirudh has been advocating Continuous Delivery and
is interested in technologies such as Chef, Puppet, Jenkins, Vagrant, Docker, and
many more. He regularly contributes to the community via blogs, articles, meetups,
conferences, and open source projects.

More details about him can be found on his blog (http://anirudhbhatnagar.com).

www.allitebooks.com

http://anirudhbhatnagar.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with Vagrant 7

Introducing Vagrant 8
Requirements for Vagrant 10
Getting started 10

Installing VirtualBox 11
Installing Vagrant 15

Summary 18
Chapter 2: Managing Vagrant Boxes and Projects 19

Creating our first Vagrant project 19
Managing Vagrant-controlled guest machines 22

Powering up a Vagrant-controlled virtual machine 23
Suspending a virtual machine 24
Resuming a virtual machine 25
Shutting down a virtual machine 25
Starting from scratch 25
Updating based on Vagrantfile changes 26
Connecting to the virtual machine over SSH 27

Managing integration between host and guest machines 27
Port forwarding 27
Synced folders 28
Networking 28

Autorunning commands 29
Managing Vagrant boxes 30

Adding Vagrant boxes 31
Listing Vagrant boxes 32
Checking for updates 32
Removing Vagrant boxes 32

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Repackaging a Vagrant box 33
Updating the current environment's box 33

Too many Vagrants! 33
Summary 34

Chapter 3: Provisioning with Puppet 35
Provisioning 36
Puppet 37

Creating modules and manifests with Puppet 38
Puppet classes 38
Default Puppet manifests 38
Resources 40
Resource execution ordering 41

The notify, subscribe, and refreshonly parameters 42
Executing resources in stages 43

Installing software 43
Updating our package manager 44
Installing the nginx package 44
Running the nginx service 45

File management 45
Copying a file 45
Creating a symlink 46
Creating folders 47
Creating multiple folders in one go 47

Cron management 48
Running commands 48
Managing users and groups 49

Creating groups 49
Creating users 50
Updating the sudoers file 50

Creating configurable classes 51
Puppet modules 53
Using Puppet to provision servers 53

Summary 53
Chapter 4: Using Ansible 55

Understanding Ansible 56
Installing Ansible 56
Creating an inventory 57

Creating Ansible playbooks 58
Modules – what Ansible can do 58
Installing software 59

Updating our package manager 59
Installing the nginx package 59
Running the nginx service 60

Table of Contents

[iii]

Understanding file management 60
Copying a file 60
Creating a symlink 61
Creating folders 62

Managing cron 62
Running commands 63
Managing users and groups 63

Creating groups 63
Creating users 63

Using Ansible roles 63
Using Ansible to provision servers 64

Summary 66
Chapter 5: Using Chef 67

Knowing about Chef 68
Creating cookbooks and recipes with Chef 68

Resources – what Chef can do 69
Installing software 69

Updating our package manager 70
Installing the nginx package 70
Running the nginx service 71

Understanding file management 71
Copying a file 71
Creating a symlink 72
Creating folders 73
Creating multiple folders in a single process with looping 73

Managing cron 74
Running commands 74
Managing users and groups 75

Creating groups 75
Creating users 75
Updating the sudoers file 76

Knowing common resource functionalities 76
Using Chef cookbooks 77
Using Chef to provision servers 77

Summary 77
Chapter 6: Provisioning Vagrant Machines with Puppet,
Ansible, and Chef 79

Provisioning within Vagrant 79
Provisioning with Puppet on Vagrant 80

Using Puppet in standalone mode 80
Puppet provisioning in action 81

Using Puppet in client/server mode 82

Table of Contents

[iv]

Provisioning with Ansible on Vagrant 82
Provisioning with Chef on Vagrant 83

Using Chef-solo 84
Using Chef in client/server mode 85

Provisioning with SSH – a recap 85
Using multiple provisioners on a single project 86
Overriding provisioning via the command line 86
Summary 87

Chapter 7: Working with Multiple Machines 89
Using multiple machines with Vagrant 90

Defining multiple virtual machines 90
Connecting to the multiple virtual machines over SSH 91

Networking the multiple virtual machines 93
Provisioning the machines separately 95

Destroying a multimachine project 97
Summary 97

Chapter 8: Creating Your Own Box 99
Getting started 100
Preparing the VirtualBox machine 100
VirtualBox Guest Additions 106
Vagrant authentication 107

Vagrant user and admin group 107
The sudoers file 107
Insecure public/private key pair 108

Provisioners 108
Installing Puppet 109
Installing Chef 109

Cleaning up the VM 109
Export 109
Summary 110

Chapter 9: HashiCorp Atlas 111
Discovering boxes 112

Installing new boxes 112
Updating existing boxes 113
Checking for outdated boxes 113

Distributing boxes 114

Table of Contents

[v]

Sharing and connecting with Atlas 116
Logging Vagrant into Vagrant Cloud 116
Sharing a Vagrant virtual machine over HTTP(S) 117
Sharing and connecting to a Vagrant virtual machine 119

Summary 120
Appendix: A Sample LEMP Stack 121

Creating the Vagrant project 121
Creating the Puppet manifests 123

Installing Nginx 123
Installing PHP 125

Installing the MySQL module 127
Default manifest 128

Installing Nginx and PHP 128
Hostname configuration 128
E-mail sending services 128
MySQL configuration 129

Launching the virtual machine 131
Summary 131

Index 133

Preface
Web-based software projects are increasingly complicated, with a range of different
dependencies, requirements, and interlinking components. Swapping between
projects, which require different versions of the same software, becomes troublesome.
Getting team members up and running on new projects becomes time-consuming.

Vagrant is a powerful tool used to create, manage, and work with virtualized
development environments for your projects. By creating a virtual environment
for each project, their dependencies and requirements are isolated, they also don't
interfere with the software installed on your own machine such as WAMP or
MAMP. Colleagues can be up and running on a new project in minutes with a single
command. With Vagrant, we can wipe the slate clean if we break our environment
and be back up and running in no time.

What this book covers
Chapter 1, Getting Started with Vagrant, introduces the concept of virtualization, its
importance in the role of the development environment, and walks you through the
Vagrant installation process.

Chapter 2, Managing Vagrant Boxes and Projects, walks you through creating Vagrant
projects, exploring and configuring the Vagrantfile, and working with base boxes.

Chapter 3, Provisioning with Puppet, explores Puppet, the provisioning tool, and how
to create Puppet manifests to provision a server.

Chapter 4, Using Ansible, explores Ansible, the provisioning tool, and how to create
Ansible playbooks to provision a server.

Chapter 5, Using Chef, explores Chef, the provisioning tool, and how to create Chef
recipes to provision a server.

Preface

[2]

Chapter 6, Provisioning Vagrant Machines with Puppet, Ansible, and Chef, discusses
how to use Puppet, Ansible, and Chef within the context of Vagrant to provision
development environments.

Chapter 7, Working with Multiple Machines, explores using Vagrant to create and
manage projects that use multiple virtual machines, which communicate with
each other.

Chapter 8, Creating Your Own Box, discusses the process of creating your own base
box for use within a Vagrant project.

Chapter 9, HashiCorp Atlas, walks you through using Vagrant Share to share SSH
and HTTP(S) access to a Vagrant-managed machine, and how to use the services
provided through the Vagrant Cloud.

Appendix, A Sample LEMP Stack, walks you through the process of creating a LEMP
server within a new Vagrant project.

What you need for this book
You will need a Windows, OS X, or Linux computer with Vagrant and Oracle
VirtualBox installed, although the installation process for these will be discussed
in Chapter 1, Getting Started with Vagrant.

Who this book is for
This book is for software developers, development managers, and technical team
leaders who want to have a more efficient, robust, and flexible development
environment for their projects and for their team.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"After installing Vagrant, we ran the vagrant command to check whether it was
installed correctly."

Preface

[3]

A block of code is set as follows:

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "base"
end

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

- hosts: default
 tasks:
 - name: update apt cache
 apt: update_cache=yes
 - name: ensure nginx is installed
 apt: pkg=nginx state=present
 - name: write the nginx config file
 template: src=nginx-default-site.conf dest=/etc/nginx/sites-
available/default.conf
 notify:
 - restart nginx
 - name: ensure nginx is running
 service: name=nginx state=started
 handlers:
 - name: restart nginx
 service: name=nginx state=restarted

Any command-line input or output is written as follows:

ansible-playbook our-playbook.yml -i our-inventory-file

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Again,
on OS X, the first step is to double-click on the Vagrant.pkg icon."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Vagrant
Developing modern web-based applications can be complicated!

The technology behind our projects is becoming more advanced and diverse. Where
once projects ran with simply a web server, a database, and a set programming
language, now we use tools built in a variety of different languages. We use
components and dependencies that need to be installed, and their managed versions,
and often projects need to run across multiple machines.

Different projects have their own requirements and dependencies, which are often
incompatible with one another. A legacy project might require a specific version of
PHP or specific versions of extensions for Apache, whereas another project might
require a newer version of PHP and running on Nginx. Project switching in this
scenario is not easy.

Often, we need to work with teams of people, some of which might be using their
own equipment, working remotely, and contractors. This requires you to ensure that
everyone runs the same development environment, regardless of their own system
and its configuration, the infrastructure changes for projects are tracked and made
available to the team, and the project setup is fast for new team members.

Combining these three factors and setting up traditional development environments
is becoming more difficult, less relevant, and less helpful for developers.

As projects get more complicated, it's also easy for auxiliary configurations
to be forgotten about. Background workers, message queues, cron jobs, and
multiserver configurations need to be managed, distributed to the entire team,
and then when the time comes, applied to the project when it gets deployed into
a production environment.

Getting Started with Vagrant

[8]

Virtualized development environments can help with this. Instead of having to battle
configurations when working on other projects, each project can simply have its own
virtualized environment. It can have its own dedicated web server, database server,
and the versions of the programming language and other dependencies it needs.
Because it is virtualized, it doesn't impact on other projects; just shut it down and
boot up the environment for the other project.

With a virtualized environment, the development environments can also mimic the
production environment. You don't need to worry about whether something will
work when it gets deployed, if it is being developed on a machine with the exact
same software configuration. Even if you deploy on a Linux machine but develop on
Windows, your virtualized environment can be Linux, running the same distribution
as your production environment.

While a virtualized environment makes different projects and their dependencies easier
to manage and separate, they are not the easiest of things to configure and manage.
They still need to be configured to work with the project in question, which often
involves some level of system administration skills, and we need to connect to these
environments and work with them. They also, by design, are not very portable. You
need to export a large image of the virtualized environment and share that with your
colleagues, and keeping that image up to date as projects evolve can be cumbersome.
Thankfully, there is a tool that can manage these virtualized environments for us,
and provide a simple interface to configure them; an interface that involves storing
configurations in simple plain text files, which are easy to share with colleagues,
keeping everyone up to date as the project changes. This tool is Vagrant.

Introducing Vagrant
Vagrant (http://www.vagrantup.com/) is a powerful development tool that lets
you manage and support the virtualization of your development environment.
Instead of running all your projects locally on your own computer, having to juggle
the different requirements and dependencies of each project, Vagrant lets you run
each project in its own dedicated virtual environment.

Vagrant provides a command-line interface and a common configuration language
that allows you to easily define and control virtual machines that run on your own
systems, but which tightly integrate, and also allows you to define how your own
machine and the virtual machine interact. This can involve syncing folders such that
the project code, which you edit using the IDE on your computer, is synced so that it
runs on the Vagrant development environment.

http://www.vagrantup.com/

Chapter 1

[9]

Vagrant uses providers to integrate with the third-party virtualization software,
which provides the virtualized machines for our development environment. The
default provider is for Oracle VirtualBox; however, there are commercial providers
to work with VMware Fusion and also plugins for Vagrant to work with Amazon
Web Services. The entire configuration is stored in simple plain text files. The Vagrant
configuration (Vagrantfile), and the configuration that defines how our Vagrant
machines are configured (typically Shell scripts, Ansible playbooks, Chef cookbooks
or Puppet manifests that Vagrant has built-in support for, as provisioners) are simply
written in text files. This means that we can easily share the configurations and projects
with colleagues, using version control systems such as Git.

When using Vagrant, the next time you need to go back to a previous project,
you don't need to worry about any potential conflicts with changes made to your
development environment (for example, if you have upgraded PHP, MySQL,
or Apache on your local environment or within the Vagrant environment for
another project), as the development environment for these projects are completely
self-contained. If you bring a new member into the team, they can be up and
running with your projects in minutes. Vagrant, along with its integration with
provisioners, will take care of all the software and services needed to run the
project on their machine. If you have one project that uses one web server such
as Apache, and another one that uses Nginx, Vagrant lets you run these projects
independently. If your project's production environment involves multiple servers
(perhaps one for the Web and one for the database), Vagrant lets you emulate that
with separate virtual servers on your machine.

With Vagrant:

• Your development environment can mimic the production environment
• Integrated provisioning tools such as Puppet, Chef, and Ansible allow you

to store the configuration in a standard format, which can also be used to
update production environments

• Each project is separate in its own virtualized environment, so issues as a
result of configuration and version differences for dependencies on different
projects are a thing of the past

• New team members can be onboarded to new projects as easy as git clone
&& vagrant up

• "It works on my machine" as a response to bugs is a thing of the past
• The headache of linking code that you write on your own machine to your

virtualized development environment is taken care of through synced folders

Getting Started with Vagrant

[10]

• The environment can act as if it was your local machine and map the
web server port (80) of your development machine to your development
environment if you wish, or you can access it as you would another machine
on your network

• You can let colleagues view your own development environment as well as
easily share the development environment

• You can share access to your own development environment over the
Internet to demo your project or to get support from a colleague

• Your local WAMP or MAMP installations will be gathering dust!

In this chapter, we will cover the following topics:

• Discuss the requirements and prerequisites for Vagrant
• Install Oracle VirtualBox
• Install Vagrant
• Verify that Vagrant was successfully installed

Once we have Vagrant and its prerequisites on our machine, we can then take a look
at using it for our first project.

Requirements for Vagrant
Vagrant can be installed on Linux, Windows, and Mac OS X, and although it
uses Ruby, the package includes an embedded Ruby interpreter. The only other
requirement is a virtualization provider such as Oracle VirtualBox or VMware
Fusion. The Oracle VirtualBox provider is available for free and is the default
provider for Vagrant. So, we will use and install VirtualBox in order to use Vagrant
during the course of this book. Other providers are available, including one for
VMware Fusion or Workstation, which is available as a commercial add-on
(http://www.vagrantup.com/vmware).

Getting started
Now that we know what software we need in order to get Vagrant running on our
machine, let's start installing VirtualBox and Vagrant itself.

http://www.vagrantup.com/vmware

Chapter 1

[11]

Installing VirtualBox
VirtualBox (https://www.virtualbox.org/) is an open source tool sponsored by
Oracle that lets you create, manage, and use virtual machines on your own computer.

VirtualBox is a graphical program with a command-line interface that lets you
visually create virtual machines, allocate resources, load external media such as
operating system CDs, and view the screen of the virtual machine. Vagrant wraps
on top of this and provides an intuitive command-line interface along with the
integration of additional tools (including integrations with provisioners and also
HashiCorp Atlas (formerly, Vagrant Cloud) that allow you to find and distribute
base server images and share access to your Vagrant environments), so that we don't
need to worry about how VirtualBox works or what to do with it; Vagrant takes care
of this for us.

The first stage is to download the installer from the VirtualBox downloads page
(https://www.virtualbox.org/wiki/Downloads), as shown in the following
screenshot. We need to select the option that is appropriate for our computer (OS X,
Windows, Linux, or Solaris):

At the time of writing this, Vagrant supports versions 4.0.x through
4.3.x of VirtualBox; earlier versions are not supported.

https://www.virtualbox.org/
https://www.virtualbox.org/wiki/Downloads

Getting Started with Vagrant

[12]

Once downloaded, let's open it and run the installer. On OS X, this involves clicking
on the VirtualBox.pkg icon, as shown in the following screenshot. On Windows,
simply opening the installer opens the installation wizard. On Linux, there are
packages available that can be installed through your chosen package manager, see
https://www.virtualbox.org/wiki/Linux_Downloads for more information.

Before the installer runs, it first checks whether the computer is capable of having
VirtualBox installed. We need to click on Continue to begin the installation process,
as shown in the following screenshot. While this process will vary from OS X
to Windows to Linux, the process is very similar across all platforms. There are
fully detailed installation instructions for all platforms on the VirtualBox website
(https://www.virtualbox.org/manual/ch02.html).

https://www.virtualbox.org/wiki/Linux_Downloads
https://www.virtualbox.org/manual/ch02.html

Chapter 1

[13]

The first step in the process provides us with an introduction to the installation
process and reminds us as to what we are actually installing:

Next, the installer informs us as to how much space it will use on our computer,
and provides us with the option to customize the installation if we want to Change
Install Location..., and install the software in another location (perhaps another disk
drive if our disk gets full).

Getting Started with Vagrant

[14]

Let's leave the default install location as it is, and click on the Install button to install
VirtualBox on our computer:

After being prompted to provide administrative privileges, the installer then
automatically installs VirtualBox for us:

Chapter 1

[15]

Once the installation has finished, we are shown a confirmation screen with the
option of clicking on Close to close the installer:

Now we have successfully installed VirtualBox!

Installing Vagrant
Now that we have the prerequisites installed on our computer, we can actually
install Vagrant itself. This process is similar to that of installing VirtualBox.
First, let's download the relevant installer from the Vagrant download page
(http://www.vagrantup.com/downloads.html):

www.allitebooks.com

http://www.vagrantup.com/downloads.html
http://www.allitebooks.org

Getting Started with Vagrant

[16]

Let's open the installer and start the process. Again, on OS X, the first step is to
double-click on the Vagrant.pkg icon:

We now need to follow the installation steps that are provided; this is very similar
to the earlier steps for VirtualBox, and for most of the software packages in general.
You might be prompted to provide your computer's administrative user privileges
for the software to be installed.

Let's verify that Vagrant has been successfully installed. We can do this by opening a
terminal window (cmd on Windows) and running the vagrant command:

Chapter 1

[17]

The preceding screenshot shows that we have successfully installed Vagrant, and we
are able to run it.

Running the vagrant command on its own lists a range of common subcommands,
which we can run within Vagrant, as well as instructions on how to access the
help information on Vagrant and any of its subcommands. We can access the help
information on Vagrant and its subcommands by adding the h flag, -h, to the end
of the command when we run it.

Getting Started with Vagrant

[18]

Summary
In this chapter, we discussed the benefits of using virtualized development
environments and specifically, Vagrant. We then installed Oracle VirtualBox,
which is the virtualization provider Vagrant uses by default, and we installed
Vagrant. After installing Vagrant, we ran the vagrant command to check
whether it was installed correctly.

Now that we have Vagrant and a provider installed, we can now move onto using
Vagrant to set up and manage some of our development projects in a virtual
development environment. In the next chapter, we will create our first project,
learn about the configuration file, and manage our Vagrant controlled machines.

Managing Vagrant
Boxes and Projects

In this chapter, we will learn the basics of using Vagrant. We will take a look at
initializing projects, importing base boxes to be used as our operating system, and
controlling the virtual machine by powering on and off, suspending and resuming,
and connecting to the box. Finally, we will also learn how to configure some of the
key integration points between our own machine and our Vagrant-controlled virtual
machine, including:

• Port forwarding
• Folder mapping
• Networking

Creating our first Vagrant project
Now that we have Vagrant installed on our machine, let's take a look at creating
Vagrant projects. Any folder can act as a Vagrant project; it only requires a special
configuration file, called the Vagrantfile, within it. Vagrant uses this file to set up
the virtual machines (guests) and manage their integration with our computer
(or host machine).

Managing Vagrant Boxes and Projects

[20]

Vagrant has a command to create a Vagrantfile within the current directory you are
in, within your computer's terminal: the vagrant init command. To create a new
project, let's create a new folder anywhere in our system – ideally, somewhere easily
reachable, then we need to go into this folder, and run the init command:

Vagrant will then create a Vagrantfile within that folder, and show us a
confirmation message:

If we take a look at the contents of this Vagrantfile file that was created, we will see
a range of configuration options. Most of the options are commented out (as they are
prefixed with a # character) to give us an idea of how we can configure the project.

There are only four lines of actual usable configuration in the file, as shown here:

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "base"
end

Downloading the example code
You can download the example code files from your account
at http://www.packtpub.com for all the Packt Publishing
books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 2

[21]

Different versions of Vagrant use different structures and instructions within their
Vagrantfile files. To make Vagrant backward compatible, the various settings are
wrapped in a block of code that contains the version of the configuration to be used.
Configuration Version 2 is compatible with Vagrant Version 1.1 up to Version 2.0.x
(when released).

Within here, we have a single option —the type of Vagrant box to use. A Vagrant
box is an image of an operating system that is configured to work with Vagrant.

We can generate a Vagrantfile without the illustrative comments by providing the
minimal option (-m or --minimal, for example, vagrant init --minimal).

In order to boot our Vagrant machine, we run the vagrant up command:

As Vagrant doesn't know what the box base is, our project is unable to boot. While
Vagrant projects have their configuration stored within their projects folder, boxes
are installed globally on your computer and can be shared across projects. If Vagrant
doesn't have a box installed with that name, it will either try to download it from
the URL provided in the Vagrantfile (if there is one provided) or it will look for the
relevant box in HashiCorp Atlas (formerly Vagrant Cloud). HashiCorp, the company
behind Vagrant, provides official boxes for the latest Long Term Support version
of Ubuntu (this box is hosted on and distributed through Vagrant Cloud; we will
discuss this in more detail in Chapter 9, HashiCorp Atlas). To use this box, we simply
pass the name of the box to the init command (or update the Vagrantfile). As we
already have a Vagrantfile in place for our project, we need to use the force option
to override the existing file (-f or --force):

vagrant init --force hashicorp/precise64

Managing Vagrant Boxes and Projects

[22]

Now if we try to run our Vagrant project, Vagrant will look for the box, and this
time, it will download the precise64 box from Vagrant Cloud, for use in our project:

Typically, boxes are minimal installations of operating systems that contain only
what is required for the operating system to function, tools to integrate with Vagrant,
and a minimal amount of other tools. This provides greater flexibility when it comes
to using Vagrant to manage projects, as we can decide exactly what software we
need to run on our virtual machine for our project to function, without having to
worry about the conflicting versions of the said software. Some existing boxes may
have more software installed, and of course, we may want to package a box that
contains some of the key software our projects need (particularly, useful as a backup
for users with unreliable Internet connections).

While we are using commands to initialize our Vagrant projects in this
chapter, these are simply quick ways to create a Vagrantfile file with
some prepopulated values. A Vagrantfile file is the configuration
file that defines how Vagrant should use the project (such as operating
system to be used, virtual machines to boot up, synced folders,
forwarded ports, and so on). We can, of course, create this file ourselves
within the folder we wish to use as our project.

Managing Vagrant-controlled guest
machines
The virtual machines, which Vagrant controls for us, still need to be managed and
worked with. We have seen that we can start a Vagrant project with vagrant up.
Let's learn more about this command, and see how to perform other operations on
our new virtual machine.

Chapter 2

[23]

Powering up a Vagrant-controlled virtual
machine
As we have just seen, we can power up a virtual machine using the vagrant
up command. With this command, Vagrant will first check whether a Vagrant
environment has already been set up. If a previously suspended environment
is found, it will resume that environment.

If the environment was not previously suspended, Vagrant then checks whether
the base box has already been downloaded onto the machine. If it hasn't, it will
download it, as it did for us when we booted our project with the precise64
box for the first time.

Vagrant will then perform the following actions:

1. Copy the base box (remember, base boxes are managed globally on our host
computer, so it takes a copy for each machine managed by it).

2. Create a new virtual machine with the relevant provider (the default
being VirtualBox).

3. Forward any configured ports; by default, it will forward port 22 (the SSH
port) on the virtual machine to port 2222 on the host. This will allow us to
connect to the virtual machine over SSH.

4. Boot (power up) the virtual machine.
5. Configure and enable networking, so that we can communicate with the

virtual machine.
6. Map shared folders between the host and the guest (by default, it will map the

folder that contains the Vagrant project to /vagrant on the guest machine).
7. Run any provisioning tools that are set up such as Puppet, Chef, or SSH

commands or scripts.

Managing Vagrant Boxes and Projects

[24]

The actions performed by Vagrant will look something like this:

Suspending a virtual machine
We can save the current state of the virtual machine to the disk (suspend it) so that
we can resume it later. If we run vagrant suspend, it will suspend the VM and stop
it from consuming our machine's resources, except for the disk space it will occupy,
ready for us to use again later:

Chapter 2

[25]

Resuming a virtual machine
In order to use a previously suspended virtual machine, we simply run
vagrant resume:

Shutting down a virtual machine
We can shut down a running virtual machine using the vagrant halt command. This
instructs the VM to stop all running processes and shut down. To use it again, we need
to run vagrant up, which will power on the machine; provisioning is typically only
ran on the first vagrant up command. To ensure that provisioning runs when we boot
up a saved machine subsequently, we can use the --provision flag.

Starting from scratch
Sometimes, things go wrong. It's not inconceivable that we might make some
changes to our virtual machine, and find out that it no longer works. Thankfully,
since we have a base box, configuration file, and provisioning files, which are all
stored separately, we can instruct Vagrant to destroy our virtual machine, and then
create it again, using the configurations to set it up. This is done via the destroy
command, and then we need to use the up command to start it again:

vagrant destroy

vagrant up

www.allitebooks.com

http://www.allitebooks.org

Managing Vagrant Boxes and Projects

[26]

Of course, if we update our Vagrantfile, provisioning manifests, or application code
that can also break things; so it is important that we use a version control system
to properly manage our project's code and configuration, so that we can undo the
changes there too; Vagrant can only do so much to help us!

Updating based on Vagrantfile changes
If we make changes to our Vagrantfile, these changes won't apply until we next shut
down and power on our virtual machine. As this isn't very convenient, there is a
handy reload command that will shut down the machine, reload its configuration
based on the Vagrantfile as it currently is, and boot it up again:

vagrant reload

Running this command yields the following result:

Chapter 2

[27]

Connecting to the virtual machine over SSH
If we run the vagrant ssh command, Vagrant will then connect to the virtual
machine over SSH. Alternatively, we can SSH to localhost with port 2222, and this
will tunnel into the virtual machine, using the default forwarded SSH port.

If we run Vagrant on a Windows machine, we won't have a built-in SSH client. We
can use a client such as PuTTY to connect to Vagrant. PuTTY can be downloaded from
http://www.chiark.greenend.org.uk/~sgtatham/putty/. More information on
how to configure PuTTY to work with Vagrant is available on the Vagrant website
(http://docs-v1.vagrantup.com/v1/docs/getting-started/ssh.html).

Managing integration between host and
guest machines
Without any form of integration between the host machine and the guest,
we would simply have a bare bones virtual server running on top of our own
operating system, which is not particularly useful. We need our own machine
to be capable of integrating tightly with the guest (virtual machine).

Port forwarding
Although the virtual machine is running on our own machine, because of
virtualization, it acts and behaves like a completely different machine. Sometimes,
this is what we want; however, there might be times we want to have the virtual
machine behave almost as an extension of our own machine. One way to do this is
through port forwarding, where we can tunnel a port from the virtual machine to a
port on the host machine. If, for example, we have a web server running on our own
machine, we obviously don't want to map the web server port from Vagrant onto
the same port; otherwise, there would be a conflict. Instead, we can map it to another
port. If we map the web server port on the virtual machine to port 8888 on the host,
then navigating to http://localhost:8888 on our own machine would show us
the web service we run on the guest, despite the fact that the localhost refers to our
host machine.

The port forwarding is done via lines in the Vagrantfile file; we simply provide the
guest and host ports we wish to map:

config.vm.network :forwarded_port, guest: 80, host: 8888

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://docs-v1.vagrantup.com/v1/docs/getting-started/ssh.html

Managing Vagrant Boxes and Projects

[28]

If we have other Vagrant managed virtual machines on our computer, which we
wish to run simultaneously, we can enable auto_correct on specific ports. This
way, if a conflict is found (for example, two virtual machines trying to map to the
same port), one virtual machine will try a different port instead:

, auto_correct: true

Ports below a certain range need elevated or root privileges on the host machine,
so you may be asked for your administrative password.

Synced folders
Synced folders allow us to share a folder between the host and the guest. By default,
Vagrant shares the folder that contains the Vagrant project /vagrant on the virtual
machine. We can use the following command in our Vagrantfile to sync more
folders if we wish:

config.vm.synced_folder "/Users/michael/assets/" "/var/www/assets"

The first parameter is the path to the folder on our machine and the second is
the mount point on the VM. If we use a relative path on our machine, it would
be relative to the project folder.

If we want to override the default synced folder, we can do this too:

config.vm.synced_folder ".", "/var/another/folder"

The Network File System (NFS) can give us better performance with synced folders
than the default settings. This won't have any effect on Windows hosts, and on
Linux/OS X, hosts will require root privileges. We can enable NFS on a per synced
folder basis by adding the following command to the preceding line:

, type: "nfs"

Networking
By default, our Vagrant virtual machines are only accessible from the machines we
run Vagrant on, and other machines in our network won't be able to access them.
If we map ports to our host, then we can share the services running on the virtual
machine with our colleagues within our network. If we want to allow our colleagues
to access our Vagrant managed virtual machines directly, we can attach the virtual
machine to our internal network, and VirtualBox will bridge the network between
our machine and the virtual machine, and the internal network between our machine
and the rest of the machines in our home or office.

config.vm.network "private_network", ip: "10.11.100.200"

Chapter 2

[29]

This approach is also useful when wanting to have multiple Vagrant projects
running at the same time; if they are web projects, they can all expose port 80, but
on different IP addresses, and if we want, we can map these to the hostnames in our
hosts file.

The hosts file is a file on a computer that maps a domain name to an
IP address. This can be used to prevent the computer from having to
look up the IP address for a domain and is useful for locally hosted
sites, as we can manually link the IP address to a domain name, just
for our local machine. On OS X and Linux, the hosts file is stored as /
etc/hosts, and on Windows it is stored as C:\Windows\System32\
Drivers\etc\hosts.
If we want to share access to our virtual machine or demo something
running on it, we can use Vagrant Share through Vagrant Cloud, which
we will discuss in Chapter 9, HashiCorp Atlas.

It is also possible to have the IP address assigned via DHCP (typically, this will mean
that your network's router will assign it an IP address):

config.vm.network "private_network", type: "dhcp"

Autorunning commands
One of the key concepts within Vagrant is provisioning. This involves turning
a basic virtual machine with a base operating system into a server that is ready
to run for your project, meeting your requirements. To go from the base operating
system to a fully fledged machine, we need to use a provisioning tool to install the
software and configure the machine. There are a number of key provisioning options
within Vagrant:

• Shell
• Puppet
• Ansible
• Chef

Puppet, Ansible, and Chef are all third-party tools that Vagrant supports out of the
box, and provide specific languages to configure servers in an agnostic way that can
be used for different operating systems. The next three chapters will discuss these
tools in more detail. Vagrant also supports some other provisioning tools, including
Salt, Docker, and CFEngine.

Managing Vagrant Boxes and Projects

[30]

SSH provisioning involves running a series of commands on the virtual machine
over SSH when the machine is first set up.

There are two key ways in which we can use SSH provisioning. We can either directly
run a command from our Vagrantfile or we can run the contents of a script.

The following line in our Vagrantfile will run the inline command provided:

config.vm.provision "shell", inline: "sudo apt-get update"

Alternatively, we can tell Vagrant to run a particular shell script (the location of the
script specified is relative to our project root, that is, /vagrant):

config.vm.provision "shell", path: "provision.sh"

This shell script could contain all of the commands we need to convert a base box
into a box, which supports our project and application, perhaps installing web and
database servers.

Managing Vagrant boxes
We can manage Vagrant boxes using the vagrant box command. Let's run this
command with the help flag (--help) and see what subcommands are available:

vagrant box --help

Running this command gives the following result:

Chapter 2

[31]

There are six available box-related subcommands. With each of these, we can
provide the --help flag to see what additional arguments are available. The
available box-related subcommands are:

• add: This command adds a new box
• list: This command lists all boxes installed
• outdated: This command checks whether any boxes have updates available
• remove: This command removes a box from the host
• repackage: This command converts a Vagrant environment into a

distributable box
• update: This command will update the box being used by the current

running Vagrant environment

Adding Vagrant boxes
The add subcommand allows us to add a new box. It takes a single argument and
a number of optional flags. The argument is a name, URL, or path to a box file. If
a name is provided, Vagrant will download the box from Vagrant Cloud. If we
provide a URL or path to a box stored elsewhere, we need to give Vagrant a name to
use. This is provided with the --name optional flag.

Some other optional flags that might be useful include: --force, which will tell
Vagrant to remove a pre-existing box with the same name; --clean, which will
tell Vagrant to clean any temporary downloaded files; and --provider, which
allows us to specify another provider to back the box (the default provider being
VirtualBox, however, there are providers available for Vagrant, including VMware
and Amazon EC2).

The following command will add a new packt box, and if an existing one is found, it
will override it:

vagrant box add ––force packt http://our-server.vagrant/packt.box

The process of adding a box may take a while, as most Vagrant boxes will be at least
200 MB big. Once downloaded, the box will be extracted and available for us to use
in our Vagrant projects, as we observed when we started our first project earlier in
the chapter.

Managing Vagrant Boxes and Projects

[32]

Listing Vagrant boxes
The list subcommand will list the boxes installed within Vagrant, along with the
provider that backs the box:

vagrant box list

Running this command gives the following output:

Checking for updates
Boxes, which are provided by Vagrant Cloud, may be regularly updated; we can use
the outdated subcommand to see whether there are updates available:

Removing Vagrant boxes
We can remove the box with the remove subcommand. We need to provide the
name of the box to be removed. Optionally, we can also specify the provider and
the version of the box to be removed with the --provider and --box-version flags,
respectively. The following example will remove our precise64 box for VirtualBox:

vagrant box remove hashicorp/precise64 --provider virtualbox

Running this command gives the following output:

Chapter 2

[33]

Repackaging a Vagrant box
The repackage subcommand lets us convert a Vagrant environment complete with
any customizations we have made to it, such as software we have installed on it,
into a box that we can reuse and distribute to others. We will use this command in
Chapter 8, Creating Your Own Box.

Updating the current environment's box
We can use the update subcommand to update the box in use on the current
Vagrant environment:

vagrant box update

Alternatively, we can update a specific box, which isn't tied to the current
environment, using the --box flag to provide the name of the box (and the
--provider option too if we wish).

Too many Vagrants!
Once we start using Vagrant on a range of projects, the lack of a GUI can make it
easy to lose track of which projects are running or suspended on your machine.
This is especially annoying when you want to boot up a new project, but an existing
Vagrant project is either causing a conflict or consuming too many resources on your
machine. Thankfully, there is now a command to list all active Vagrant environments
on your host, for example, vagrant global-status.

This command lists the IDs, names, providers, and states of our Vagrant projects as
well as the directory they are running in:

Managing Vagrant Boxes and Projects

[34]

We can append the ID to the end of the vagrant command to run the command
against that machine, without having to go into that folder, for example:

vagrant suspend 77e5115

Summary
In this chapter, we created projects with Vagrant, imported a base box to use,
and booted our Vagrant environment. We also looked at the commands needed to
manage these boxes and the Vagrant virtual machines. We looked at how we can
configure our Vagrant environment with networking, synced folders, and forwarded
ports, and how to provision software on our virtual machine with SSH commands.
When it becomes a problem to have multiple Vagrant projects running, we now
know how to locate these running projects with the global-status command.

In the next chapter, we will take a look at how to use Puppet, one of the provisioning
tools supported by Vagrant. We will cover installing and configuring services,
managing files and folders, running commands, and managing users and
scheduled tasks.

Provisioning with Puppet
Vagrant is a very powerful tool primarily because of the following key concepts it
can manage for us:

• Virtualization
• Provisioning
• Box distribution
• Sharing

In Chapter 1, Getting Started with Vagrant and Chapter 2, Managing Vagrant Boxes and
Projects, we learned to use Vagrant to manage virtual machines for us. While this is
useful, at this stage, these virtual machines are dumb; they have very little software
installed for us to use, and they are certainly not configured for our projects.

There are two approaches we can use to set up a Vagrant-managed virtual machine
with all the software required for a project:

• Use a base box that is preconfigured with the software or development stack
that we require

• Provision the exact software and configuration that we require using a
provisioning tool

Preconfigured base boxes are useful and have their place. If we were always using a
specific configuration or we were creating a Vagrant environment for an open source
project we were releasing, a configured box might be the best option. In that instance,
a configured base box will quickly get users up and running on the project. The
downside is that it isn't easy to change the configuration as the needs of the project
change, and certain elements such as cron jobs and background workers would still
need to be configured separately.

www.allitebooks.com

http://www.allitebooks.org

Provisioning with Puppet

[36]

Provisioning, however, automates the process of turning a base machine into one
that is configured for use with a specific project.

In this chapter, we will quickly take a look at the basics of Puppet, one of the various
provisioning options available within Vagrant. We won't look at it within a Vagrant
context just yet; we will simply take a look at how a Puppet works, and how we can
use it. In Chapter 6, Provisioning Vagrant Machines with Puppet, Ansible, and Chef, we
will take a look at how to connect what we will learn in this chapter with Vagrant
itself. In this chapter, we will learn the following topics:

• How Puppet works
• The basics behind Puppet modules and manifests
• How to use Puppet to perform the following tasks:

 ° Install software
 ° Manage files and folders within the filesystem
 ° Manage cron jobs
 ° Run commands
 ° Manage users and groups

• Creating configurable classes
• How to use third-party Puppet modules and Puppet Forge
• How to manually run Puppet to provision a machine

Puppet itself is a large topic and the subject of several books. For a more detailed
look at Puppet, Packt Publishing has some titles dedicated to it:

• Puppet 2.7 Cookbook, John Arundel (http://www.packtpub.com/puppet-2-7-
for-reliable-secure-systems-cloud-computing-cookbook/book)

• Puppet 3: Beginners Guide, John Arundel (http://www.packtpub.com/puppet-
3-beginners-guide/book)

Provisioning
Within this context, provisioning is the process of setting up a virtual machine so
that it can be used for a specific purpose or project. Typically, this involves installing
software, configuring the software, managing services running on the machine, and
even setting up users and groups on the machine.

http://www.packtpub.com/puppet-2-7-for-reliable-secure-systems-cloud-computing-cookbook/book
http://www.packtpub.com/puppet-2-7-for-reliable-secure-systems-cloud-computing-cookbook/book
http://www.packtpub.com/puppet-3-beginners-guide/book
http://www.packtpub.com/puppet-3-beginners-guide/book

Chapter 3

[37]

For a web-based software project, provisioning will likely entail the installation of a
web server, a programming language, and a database system. Configuration changes
will be needed to set up a database on the database system and to allow the web
server to write to specific folders (to deal with user uploads).

Without this provisioning process, we would have an almost vanilla install of
an operating system, which contains a synced copy of our project folder; this
vanilla install wouldn't be usable as a development environment for our project.
Provisioning takes us to the next level and gives us a fully working environment
for our project.

Puppet
Puppet is a provisioning tool that we can use to set up a server for use for a
project. The configuration that determines how the server needs to be set up can
be stored within our Vagrant project and can be shared with teammates through
a version control, ensuring everyone gets an up-to-date copy of the required
development environment.

Information about how a server should be configured, that is, its software, files, users,
and groups, is written into files known as the Puppet manifests. These manifests are
written using Puppet's own language, which is a Ruby domain-specific language.
Puppet takes this information and compiles it into a catalog that is specific for the
operating system it is being applied to. The catalog is then applied to the machine.

For our purposes, we will use Puppet in standalone mode (this is also how Vagrant
uses it). Standalone mode means that everything runs from one machine. Puppet
also has client-server capabilities, where you can define the Puppet manifests for
all the servers in your infrastructure, on a central host, and it keeps your individual
servers at the required level of configuration.

Puppet is idempotent, which means running Puppet on a machine multiple times
has the same effect as running it only once. In effect, Puppet ensures that conditions
are met, and if they are not, it will perform actions to ensure that they are met, for
example, Puppet would install Nginx if it wasn't already installed. If it was already
installed, it would do nothing. This means we can reprovision with Puppet many
times without any detrimental effect. This is useful as we can use it to keep the server
in sync with our Puppet manifests if they were to change.

Provisioning with Puppet

[38]

Creating modules and manifests with Puppet
Puppet is made up of a manifest file and a number of modules (which also contain
manifests and other resources). The default manifest specifies which modules are
to be used, and depending on the module, provides customization options for it
(for example, the Puppet module for supervisord (http://supervisord.org/), a
process control system, allows us to specify any number of processes that should be
managed using supervisord through the module itself).

Modules make use of resources within Puppet to control and configure the machine,
and these modules can be imported to run in a specific sequence, through stages.

Puppet classes
Puppet modules typically consist of classes, which, in turn, utilize a number of
resource types (in this example, the package resource type, to install a software
package) to achieve a specific requirement for our server. It effectively allows us
to bundle a number of these resource types in a way, which means we can simply
include the class by its name, and have all of the instructions executed from within it.

A class in its most basic form is structured as follows:

class nginx {
 package { "nginx":
 ensure => present,
 require => Exec['apt-get update']
 }
}

For its most basic use within Vagrant, classes such as these will be saved as
default.pp within the modules/nginx/manifests/ folder. The class can contain
many resource types to achieve a desired goal (for instance, installing the Apache
package isn't the same as preparing the web server fully for a project, related tasks
can be bundled into the same class).

Default Puppet manifests
For a given project, Puppet modules are typically all located in a specific modules
directory. Many modules can be customized when they are run, an example being
the supervisord module; it simply provides the structure for us to customize for
each process we want it to manage.

http://supervisord.org/

Chapter 3

[39]

Because of this, we need to have a default Puppet manifest that includes a list of
modules to be run and any configurations for them. Because Puppet is aware of our
module folder location when we run it (and when it is run through Vagrant), we just
list the modules to be included and run.

A basic manifest that will include and run the nginx class we wrote earlier would be
as follows:

import "nginx"
include nginx

I mentioned the supervisor module (https://github.com/plathrop/puppet-
module-supervisor) a few times as a module that is designed to be used for
multiple different things, which can be customized by the developer using it.

Supervisord is the name of the software, however, the Puppet
module we are going to use to manage supervisord is called
supervisor (no "d")—so watch out for that!

Supervisord is a tool that maintains a number of running processes, for example,
if you have a background worker in a web application to resize images, the
supervisor might be responsible for keeping five workers running at any one
instance, respawning them when one has finished. The following is an example
of how this module would be used in a default Puppet manifest:

supervisor::service {
 'resize_images':
 ensure => present,
 command => '/usr/bin/php /vagrant/app/console img:resize',
 user => 'root',
 group => 'root',
 autorestart => true,
 startsecs => 0,
 num_procs => 5,
 require => [Package['php5-cli'], Package['beanstalkd']];
}

supervisor::service {
 email':
 ensure => present,
 command => '/usr/bin/php /vagrant/app/console email',
 user => 'root',

https://github.com/plathrop/puppet-module-supervisor
https://github.com/plathrop/puppet-module-supervisor

Provisioning with Puppet

[40]

 group => 'root',
 autorestart => true,
 startsecs => 0,
 num_procs => 5,
 require => [Package['php5-cli'], Package['beanstalkd']];
}

Here, we are instructing Puppet to use the supervisord module twice to set up and
manage two workers for us. For each of the workers, we have a set of five processes
to be run, and we have set the user and group to run them. We have defined PHP's
command-line interface and the beanstalkd worker queue as requirements for the
workers. This illustrates the power that Puppet modules have.

Resources
Puppet provides a range of resource types that we can utilize to create our
configuration files. These resource types are translated and compiled depending
on the operating system being used. For example, if we were to use the package
resource type to install some software, this would use apt-get on Ubuntu and Yum
on Fedora operating systems. A small number of resource types are operating system
specific, for example the scheduled_task resource type is designed specifically for
Windows, and the cron type is designed for Linux and Unix-based systems.

Resource types available include:

• Cron: This resource type is used to manage cron jobs on Linux- and
Unix-based systems

• Exec: This resource type is used to run commands at the terminal/command
prompt

• File: This resource type is used to manage and manipulate files and folders
on the filesystem

• Group: This resource type is used to manage user groups
• Package: This resource type is used to install software
• Service: This resource type is used to manage running services on the machine
• User: This resource type is used to manage user accounts on the machine

When resource types are used directly (for example, we use the Package resource
type to install some software), they are used in lowercase (package). However, when
we refer to a resource type we have used, for example, as a requirement for another
Puppet action, we reference them with a leading capital letter (Package).

Chapter 3

[41]

An example of this is as follows:

package { "nginx":
 ensure => present,
 require => Exec['apt-get update']
}

We tell Puppet to install the nginx package (lowercase "p" for package), but when
we specify the requirement of a previously executed exec command, we use a
leading capital letter. The options within this instruction for Puppet (ensure and
require keywords) are called parameters.

A full list of resource types is available on the Puppet website at http://docs.
puppetlabs.com/references/latest/type.html.

When using a resource type, a name is provided (in the preceding instance, this is
nginx), this is often dual purpose, serving both as a way for us to reference the action
(in this case, the package being installed) and also as an instruction (in this case,
what package Puppet needs to install). When it comes to the Exec resource type, the
name is the command we wish to run. By default, we need to provide the full path to
the command that we run. We can avoid this by providing the path from which the
command should be run as a parameter.

Resource requirements
Certain things that we do with Puppet will require other actions to have been
performed first. These can be defined using the require parameter, and we can
specify multiple requirements.

If we need to run or install something after both the MySQL Server and the MySQL
client packages have been installed, we will use the require parameter to define
them as follows:

require => [Package['mysql-client'], Package['mysql-server']]

This defines an array of multiple requirements as a dependency for our Puppet code.

Resource execution ordering
Sometimes, we need to run specific blocks of the Puppet code before other blocks.
In most cases, we can use the require, notify, and subscribe parameters to get
around this problem.

http://docs.puppetlabs.com/references/latest/type.html
http://docs.puppetlabs.com/references/latest/type.html

Provisioning with Puppet

[42]

The notify, subscribe, and refreshonly
parameters
Sometimes, we want to have a Puppet command run multiple times when other
commands have finished. One example is to restart the nginx service. We will
perform the following steps:

1. Import a new configuration file.
2. Add new virtual hosts.

We can use the notify parameter to instruct one command to trigger another to be
run. In effect, this notifies the next command to tell it that there have been changes
made elsewhere, which requires that command to now run.

In the following example, we require a Puppet managed configuration file to be
copied to our Puppet managed machine. The code requires Nginx to be installed
before it is run, and after the file has been copied across, it will notify the nginx
service to be restarted. Importantly, this notification will be run each time the file
changes, but won't be triggered when it runs where the file is unchanged:

file { '/etc/nginx/sites-available/default':
 source => "puppet:///modules/nginx/default",
 owner => 'root',
 group => 'root',
 notify => Service['nginx'],
 require => Package['nginx']
}

This can be also be achieved using the subscribe and refreshonly parameters,
which work in the opposite way to notify. The subscribe parameter instructs
the command to run every time any of the commands in the subscribe option
have been run.

The refreshonly parameter, when set to true, instructs the command to only run
when one of the commands it subscribes to has run (leaving this out would mean
the command is also run in its own right):

service { "nginx":
 refreshonly => false,
 subscribe => File['/etc/nginx/sites-available/default'],
}

Here, the command to reload Nginx will only be run when the new configuration file
has been loaded. We can, of course, extend the subscribe parameter to contain other
things such as modules and other configurations, as discussed earlier.

Chapter 3

[43]

Only service, exec, and mount resource types can be refreshed.

Executing resources in stages
Where require, notify, and subscribe are not suitable for our use case, we can use
stages. Puppet has a default stage, within which all commands run. We can create
our own stages, which run before or after this stage that allow us to force commands
to be run in specific orders.

We can define stages within our default Puppet manifest and then instruct Puppet
to run certain classes from within that stage. If, for example, we wanted to run our
Nginx class before anything else, we can create a stage to run first, and put the Nginx
class within that stage as follows:

stage { 'first': before => Stage[main] }
class {'nginx': stage => first}

This creates a stage called first, and anything assigned to this stage will be
executed before the default Puppet stage; next, it places the Nginx class within that
stage. Once we have a named stage, such as first, we can then create other stages,
which can run before this one too.

Stages are useful when you need to group the ordering of certain tasks,
however, they can normally be avoided through the proper use of require,
notify, and subscribe, which should be used instead where possible.

Installing software
Let's say we want to install Nginx on our server. There are three typical steps
involved in this process:

1. Updating our package manager.
2. Installing the nginx package.
3. Running the nginx service.

Because the first step is different, depending on the operating system we are running,
we would want to either move this out of Puppet at a later stage or look at using a
module to abstract it out, however, we will use it within Puppet for the time being.
Any operating specific commands (such as these) are written for Ubuntu, which is
the operating system we are using with Vagrant. If you are not using Ubuntu, the
Exec command should be rewritten to update the package manager on your system.

Provisioning with Puppet

[44]

This example is purely to illustrate the process of putting together
a simple module. There are many existing modules available on
Puppet Forge, which we will come to later.

Updating our package manager
In order to update our package manager, we need to run a command on the server.
This can be achieved using the Exec resource within Puppet:

exec { 'apt-get update':
 command => '/usr/bin/apt-get update',
 timeout => 0
}

This instructs Puppet to run the apt-get update command. We have set a timeout
of zero so that if it takes a while (and after a fresh installation of an operating system
through Vagrant, it might), Puppet will run it for as long as it takes, overriding the
default timeout.

This isn't the most elegant of approaches, especially with it being
operating system specific and subsequently a requirement for most
of our other commands. In Appendix, A Sample LEMP Stack, we will
build a LEMP server project with Vagrant and Puppet, and in the
example, we use Vagrant's SSH provisioning options to update the
package manager before we install the other software. Most base
boxes don't have up-to-date package details to save space and due to
their age, so updating the package manager is required.

Installing the nginx package
We can use the Package resource to ensure that Nginx is installed, and if it isn't,
it will be installed as follows:

package { "nginx":
 ensure => present,
 require => Exec['apt-get update']
}

Here, we told Puppet to ensure that the nginx package is present. We added our
apt-get update command as a prerequisite, so we know that our packages will
be up to date.

Chapter 3

[45]

Running the nginx service
Finally, to make sure that Nginx is running, we use the Service resource to ensure
that the nginx service is running. Obviously, this can't be run if Nginx isn't installed,
so the nginx package is a prerequisite:

service { "nginx":
 ensure => running,
 require => Package['nginx']
}

File management
We can use the File resource within Puppet to manage files and folders within the
filesystem. Let's take a look at some examples, which allow us to:

• Copy files
• Create symlinks
• Create folders
• Create multiple folders in one go

Copying a file
One common file operation we might want to perform would be to take a
configuration file from our project and copy it into our virtual machine. One particular
use case would be an Nginx configuration file; we might want to define some virtual
hosts and other settings in a file, which we can share with our colleagues.

While this works well and can get us up and running quickly, there
are modules out there that allow us to configure Nginx and other
types of software directly from Puppet. This typically works by
the module of storing a template file (a copy of the configuration
file with placeholders in it) and then, inserting data that we define
within Puppet into the template, and copying the file onto the
machine. However, for the sake of this introductory chapter, we will
just copy a file across.

www.allitebooks.com

http://www.allitebooks.org

Provisioning with Puppet

[46]

The file resource type allows us to create files, folders, and symlinks. In order to
create a file (or replace the contents of an existing file with another file), we simply
tell Puppet what file we want to create or replace (the destination), the source (that
is, the file to be copied and put into the destination), and the user and group who
should own the file:

file { '/etc/nginx/sites-available/default':
 source => 'puppet://modules/nginx/default',
 owner => 'root',
 group => 'root',
 require => Package['nginx']
}

As this is an Nginx configuration file, it is worth ensuring that Nginx is already
installed; otherwise, Nginx will override this when it installs the first time and this
wouldn't make the process idempotent.

Here's something to note about file locations: the source file in the
preceding file resource code is held within a Vagrant environment
and the Puppet module itself. We can provide two kinds of file
paths: either the full path to the file on the machine, which Puppet is
running on (our Vagrant environment), such as /vagrant/path/to/
default or a path relative to Puppet modules. These Puppet paths
are structured like this: puppet:///modules/nginx/default. The
difference you will note is that it automatically looks for in the files/
folder within the nginx folder; we don't need to specify that.

Creating a symlink
If we omit the source parameter and instead add an ensure parameter, and set
that to link, we can create a symlink. A target is used to define where the symlink
should point to, as shown in the following code:

file { '/var/www/vendor':
 ensure => 'link',
 target => '/vagrant/vendor',
 require => Package['nginx']
}

Chapter 3

[47]

Creating folders
Similar to the preceding symlink code, this time, we simply need to set ensure to a
directory. This will then create a directory for us as follows:

file{ "/var/www/uploads":
 ensure => "directory",
 owner => "www-data",
 group => "www-data"
 mode => 777,
}

We can use the mode parameter to set the permissions of the folder (this also can be
used for files we create and manage).

Creating multiple folders in one go
In many web projects, we might need to create a number of folders within our
servers or our Vagrant virtual machines. In particular, we might want to create a
number of cache folders for different parts of our application, or we might want
to create some upload folders.

In order to do this, we can simply create an array that contains all of the folders we
want to create. We can then use the file resource type and pass the array to create
them all, as follows:

$cache_directories = [
 "/var/www/cache/",
 "/var/www/cache/pages",
 "/var/www/cache/routes",
 "/var/www/cache/templates",
]

file { $cache_directories:
 ensure => "directory",
 owner => "www-data",
 group => "www-data",
 mode => 777,
}

Provisioning with Puppet

[48]

Cron management
The cron resource type lets us use Puppet to manage cron jobs, which we need to
run on the machine. We provide a name, in this case, web_cron, the command to
run, the user to run the command as, and the times at which to run the command,
as shown in the following code:

cron { web_cron:
 command => "/usr/bin/php /vagrant/cron.php",
 user => "root",
 hour => [1-4],
 minute => [0,30],
}

Puppet provides us with different configuration options to define the times at which
a cron should be run, which includes the following:

• Hour: This value is between 0 and 23 inclusive
• Minute: This value is between 0 and 59 inclusive
• Month: This value is between 1 and 12 inclusive
• MonthDay: This value is between 1 and 31 inclusive
• Weekday: This value is Sunday (7 or 0) to Saturday (6)

If one of these is omitted from the configuration, then Puppet runs it for each one
of the available options (that is, if we omit month, it will run for January through to
December). When defining the dates and times, we can either provide a range, for
example, [1-5] or specifics, such as [1, 2, 10, 12].

Running commands
The Exec resource type allows us to run commands through the terminal on the
machine we are provisioning. One caveat with the exec command is that if you
reprovision with Puppet, it will rerun the command, which can be damaging
depending on the command. What we can do with the Exec resource type is set the
creates parameter. The creates parameter tells Puppet that a file will be created
when the command is run, and if Puppet finds that file, it knows that it has already
been run and won't run it again.

Chapter 3

[49]

Take for example, the following configuration; this will use the PHP composer tool
to download dependencies. The command itself creates a file called composer.lock
(we can, of course, use the exec command itself to create a file manually, perhaps
using the touch command). Because of the lock file that is created, we can use the
creates parameter to prevent the command from being executed if it has previously
been executed and has created the lock file, as shown in the following code:

exec{ "compose":
 command => '/bin/rm -rfv /var/www/repo/vendor/* && /bin/rm –f
 /var/www/repo/composer.lock && /usr/bin/curl –s
 http://getcomposer.org/installer | /usr/bin/php && cd
 /var/www/repo && /usr/bin/php /var/www/repo/composer.
 phar install',
 require => [Package['curl'], Package['git-core']],
 creates => "/var/www/repo/composer.lock",
 timeout => 0
}

Managing users and groups
The user and group resource types let us create and manage users and groups. There
are differences between different operating systems as to what Puppet can do with the
users and groups and how this works. The code in the following section is tested on
Ubuntu, Linux. More information on the differences for users and groups on different
platforms can be found on the Puppet website at http://docs.puppetlabs.com/
references/latest/type.html#user.

Creating groups
The simplest way to create a group is simply to set the ensure parameter to present:

group { "wheel":
 ensure => "present",
}

http://docs.puppetlabs.com/references/latest/type.html#user
http://docs.puppetlabs.com/references/latest/type.html#user

Provisioning with Puppet

[50]

Creating users
To create a user, the basic information we should provide is as follows:

• The username
• The fact that we want the user to exist (ensure => present)
• The group (gid) the user should be part of
• The shell to use for the user
• The home directory for the user
• If we want Puppet to manage the home directory for the user, in this case, it

will create the folder for us if it does not exist
• The password for the user
• The requirements that we need the wheel group in place first

The code that will then create our user is as follows:

user { "developer":
 ensure => "present",
 gid => "wheel",
 shell => "/bin/bash",
 home => "/home/developer",
 managehome => true,
 password => "passwordtest",
 require => Group["wheel"]
}

Updating the sudoers file
It's all well and good being able to create users and groups on our machine,
however, one thing that we can't do using the user and group resource types is
define a user or group as having elevated privileges, unless we make the user a
part of the root group.

We can use an exec command to push some text to the end of our sudoers file; the
text we need to push just tells the file that we want to give the wheel group the sudo
privileges, as shown in the following code:

exec { "/bin/echo \"%wheel ALL=(ALL) ALL\" >> /etc/sudoers":
 require => Group["wheel"]
}

Chapter 3

[51]

This code, however, will continually add this line to the file each time it is run, which
we don't want, however, as we learned earlier, we can instruct the exec resources to
only run at certain times. Thanks to subscribe and refreshonly:

exec { "/bin/echo \"%wheel ALL=(ALL) ALL\" >> /etc/sudoers":
 subscribe => Group["wheel"],
 refreshonly => true
}

This still isn't ideal, as if we decide to change the wheel group then this would be
rerun, so ideally, we might keep the sudoers file within our Puppet configuration
instead and use Puppet to manage the changes to it.

Creating configurable classes
One limitation that our entire Puppet code has so far in this chapter is that with the
exception of the contents of some files, the configuration is all fixed. If we want to reuse
some of the Puppet code on another project, we might need to change things such as
variable names, paths to files, or other project-or environment-specific properties.

To make our code more flexible, we can put the code into a class, and use class
parameters to dynamically inject variables into the class.

A class is, at its simplest level, a method of grouping related code together;
however, we can use them to build reusable and configurable modules. If we
take the composer Exec resource illustrated earlier, we can start to make that
reusable by putting it into a class:

class composer {
 exec{ "compose":
 command => '/bin/rm -rfv /var/www/repo/vendor/* && /bin/rm
–f /var/www/repo/composer.lock && /usr/bin/curl –s http://getcomposer.
org/installer | /usr/bin/php && cd /var/www/repo && /usr/bin/php /var/
www/repo/composer.phar install',
 require => [Package['curl'], Package['git-core']],
 creates => "/var/www/repo/composer.lock",
 timeout => 0
 }
}

Provisioning with Puppet

[52]

While we can now more easily pull this into another project, we are locked down
in terms of the location of the composer file and also other parameters that might be
required. We also require two packages: we would either require that the developer
adds these elsewhere to their Puppet code, or we would include them here, however,
including them here would conflict with other modules and reduces flexibility. Class
parameters let us pass information to a class when it is used; this information can be
used to control the code within the class and also configure parts of the class.

For our Composer class, we might want to let the developer using it decide whether
the dependencies are installed by the module or not, and also provide paths to be
used by the module. Class parameters are defined in brackets immediately after
the class name and can have default values, so if they are omitted, their defaults
are used.

We can then use control statements to decide whether the dependencies should be
installed, and we can pull in the contents of a variable using ${variable}:

class composer ($install_deps = true, $path = '/var/www/repo/',
$composer_home = '/var/www/') {

 if ($install_deps == true) {
 package { "curl":
 ensure => present
 }

 package { "git-core":
 ensure => present
 }
 }

 exec { "compose":
 command => "/bin/rm -rfv ${path}vendor/* && cd ${path} && /
usr/bin/curl -s http://getcomposer.org/installer | /usr/bin/php &&
COMPOSER_HOME=\"${composer_home}\" /usr/bin/php ${path}composer.phar
install",
 require => [Package['curl'], Package['git-core'],
Package['php5-cli']],
 creates => "${path}composer.lock",
 timeout => 0
 }
}

Chapter 3

[53]

Now, when we want to use this class, we pass the values along with these variable
names. Because of the way Puppet works, the ordering of the parameters doesn't
mater; they are passed associatively with their corresponding variable names, as
shown in the following code:

class {
 'composer':
 install_deps => true
}

Puppet modules
There are many existing, well-written, reusable Puppet modules freely available to
use. Puppet Forge is a collection of modules, which is available at http://forge.
puppetlabs.com/. It is always worth checking whether there is an existing module
that solves your problem before writing your own.

Using Puppet to provision servers
We are going to take a look at how to use Puppet with Vagrant in Chapter 6,
Provisioning Vagrant Machines with Puppet, Ansible, and Chef, however, Puppet can
also be run independently. If Puppet is installed (it will be on most Vagrant base
boxes, but if you want to run it on another machine, it might not be, so install it first),
you can use the apply subcommand, passing with it the location of the modules
folder and the default manifest to apply, as follows:

puppet apply --modulepath=/home/michael/provision/modules
 /home/michael/provision/manifests/default.pp

Summary
In this chapter, we had a whirlwind tour of Puppet and explored the various
ways in which we could use it to provision a server for our projects. We installed
software with the Package resource, managed cron jobs with the Cron resource,
managed users and groups with the User and Group resources, and ran commands
with the Exec resource. To manage execution order and dependency relationships
with Puppet, we looked at using Require, Subscribe, Notify, and Refreshonly.
We looked at how modules, classes, and stages work as well as how to use class
parameters to configure reusable Puppet code. Finally, we looked at how to use
Puppet to provision a machine.

In the next chapter, we will take a look at Ansible, another provisioning tool that has
support built into Vagrant.

http://forge.puppetlabs.com/
http://forge.puppetlabs.com/

Using Ansible
Ansible is another provisioning tool supported by Vagrant that makes it easy for us
to take a base operating system installation and turn it into a full-fledged server that
suits the needs of our project.

In this chapter, we will quickly take a look at the basics of Ansible. We won't look at
it within a Vagrant context just yet; we will simply take a look at how Ansible works,
and how we can use it. In Chapter 6, Provisioning Vagrant Machines with Puppet,
Ansible, and Chef, we will take a look at how to connect what we will learn in this
chapter with Vagrant itself. In this chapter, we will learn the following topics:

• How Ansible works
• How to use Ansible to perform the following tasks:

 ° Installing software
 ° Managing files and folders within the filesystem
 ° Managing cron jobs
 ° Running commands
 ° Managing users and groups

• How to use third-party Ansible roles
• How to manually run Ansible to provision a machine

Ansible itself is a large topic and subject of several books. For a more detailed look at
Ansible, Packt Publishing has some titles dedicated to provisioning with Ansible:

• Learning Ansible: https://www.packtpub.com/networking-and-servers/
learning-ansible

• Ansible Configuration Management: https://www.packtpub.com/
networking-and-servers/ansible-configuration-management

www.allitebooks.com

https://www.packtpub.com/networking-and-servers/learning-ansible
https://www.packtpub.com/networking-and-servers/learning-ansible
https://www.packtpub.com/networking-and-servers/ansible-configuration-management
https://www.packtpub.com/networking-and-servers/ansible-configuration-management
http://www.allitebooks.org

Using Ansible

[56]

Understanding Ansible
Ansible is an IT automation tool that provides provision, orchestration, and
configuration management features. Unlike with Puppet and Chef, Ansible doesn't
require any software to be preinstalled on the server, other than an SSH service, as
the heavy lifting is done by our own computer that connects to our Ansible-managed
servers and instructs the server on how it needs to change.

Like Puppet and Chef, Ansible is also idempotent. This means each time we run
Ansible, it will only perform actions where a change is required—so if we install the
Nginx web server, the first run of Ansible will install it and subsequent runs won't
because it knows Nginx is already installed.

Ansible configuration is written in Yaml Ain't Markup Language (YAML), which
makes the configuration easy to read and write.

Conceptually, Ansible configuration is made up of playbooks that are made up of
plays, which are made up of tasks. A playbook is the configuration for an entire
system or environment, which is mapped to specific servers or hosts through plays—
different plays can be applied to different groups of servers at different times from
the same playbook. Each play contains a number of tasks, which, in turn, make calls
to Ansible modules. In a more advanced context, we can make use of roles within
Ansible (reusable functionality) such that our playbooks might simply be a mapping
of hosts to roles. However, for the purposes of this chapter, we will put tasks and
module calls directly in our playbook.

Modules within Ansible are similar in context to resources within Puppet. There are
modules to deal with many different kinds of operations on a server, which we will
discuss shortly.

Installing Ansible
Because Ansible doesn't require any software to be installed on the server side, we
can't simply connect to a Vagrant virtual machine and try out Ansible because it
isn't installed on there! In order to use it, both to try it out, and also when it comes to
integrating with Vagrant, we need to install Ansible on our own computer, which is
known as the control machine.

Although Ansible can be used to manage Windows Servers, it cannot be run from a
Windows control machine.

Packages are available for many Linux distributions, and Ansible can be installed on
OS X using Homebrew or Python's pip. Complete details of the different operating
systems are available online at http://docs.ansible.com/intro_installation.
html.

http://docs.ansible.com/intro_installation.html
http://docs.ansible.com/intro_installation.html

Chapter 4

[57]

Although we don't need anything installed on the server being
managed, we do need SSH access to the machine, and unless we
install additional plugins for Ansible, we will also need to have public
and private keys set up, so that we can connect to the machine we wish
to manage over SSH without a password from our control machine.

Creating an inventory
When we run Ansible to provision or configure a machine, Ansible takes the hosts
we want to apply the configuration to, from our playbooks. It then looks up these
machines in its inventory, which specify the addresses and connection details for
these machines, so that Ansible can connect to them in order to check their status
and run the provisioning tasks.

At a minimum, the inventory needs to contain a name and an IP address for each
server that we want Ansible to manage. However, there are additional configurations
we can provide, for example, setting the user to connect as, the password to use
(which requires additional configuration), the port to connect through, and if we
need to tunnel to the server through another. An example of creating an inventory
is as follows:

default ansible_ssh_host=192.168.100.123

Although we are looking at Ansible outside the context of Vagrant, we still might
want to use Ansible, independently, to connect to and configure a Vagrant-managed
virtual machine so that we can test it in isolation. In Chapter 6, Provisioning Vagrant
Machines with Puppet, Ansible, and Chef, we will learn how to do this within Vagrant
itself. If we do this, we need to provide the port. We might also wish to change the
user that we connect as to root, and ensure that a specific SSH key is used for the
connection as follows:

default ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222 ansible_ssh_
user=root ansible_ssh_private_key=~/.ssh/id_rsa

This inventory file is simply a plain text file saved somewhere on our control
machine. By default, Ansible will look for a file called /etc/ansible/hosts,
which it expects to be the inventory, however, when we run Ansible, we can
point to our own inventory file elsewhere, which we will do later in this chapter.

Using Ansible

[58]

Creating Ansible playbooks
As we discussed, an Ansible playbook is a YAML file. The following example is
a simple playbook that contains instructions to update the Apt package manager
class on the machine called by default in our inventory:

- hosts: default
 tasks:
 - name: update apt cache
 apt: update_cache=yes

We can run this playbook by running the ansible-playbook our-playbook.yml
-i our-inventory-file command. Ansible will then look up that this playbook is
to be applied to the default machine, the default machine's details, connect to it, and if
appropriate, run the command. We will walk through the execution process shortly.

Tasks are executed in the order that they appear within the playbook. However,
we have the option to call other tasks to be run later once an action is completed,
through the use of handlers, which we will discuss shortly.

Because playbooks are written in YAML, the format and
spacing/indentation in these files is critical. Incorrect
indentation can cause files to not be parsed correctly.

Modules – what Ansible can do
Ansible modules are similar to Puppet resources, and we can use them to install and
manage packages, servers, users, files, cron jobs, and so on.

The modules available include:

• Apt: This is used to manage apt packages

• Git: This is used to manage and deploy from git repositories
• Service: This is used to manage running services on the server
• Copy: This is used to copy files

Each module can be configured with different properties, as we will discuss in
this chapter. A complete list of the modules is available from the Ansible website
at http://docs.ansible.com/list_of_all_modules.html.

http://docs.ansible.com/list_of_all_modules.html

Chapter 4

[59]

Installing software
Let's say we want to install Nginx on our server. There are three steps involved in
this process:

1. Updating our package manager.
2. Installing the nginx package.
3. Running the nginx service.

Updating our package manager
We can use the apt module (http://docs.ansible.com/apt_module.html) to
update the apt package manager's cache, which is the equivalent of performing
an apt-get update command:

- name: update apt cache
 apt: update_cache=yes

The update_cache parameter can also be provided when we run other apt-related
tasks, so instead of a dedicated task for it, we can instead specify that when we
install Nginx, the package manager's cache must be up to date.

Installing the nginx package
We can use the apt module (http://docs.ansible.com/apt_module.html) to
ensure that Nginx is installed, and if it isn't, it will be installed as follows:

- name: ensure nginx is installed
 apt: pkg=nginx state=present update_cache=yes

Here, we told Ansible to ensure that the state of the nginx package is present, and
that we should update the package manager's cache before installing it. There are
different states available, including the latest states to ensure that we have the latest
version of a package present, or absent to ensure that a package is not installed on
the server.

http://docs.ansible.com/apt_module.html
http://docs.ansible.com/apt_module.html

Using Ansible

[60]

Running the nginx service
Finally, to make sure that Nginx is running, we use the service module. While Nginx
will automatically run when we install it, we can connect to our new server and alter
settings or services by mistake. If this happens, we can simply rerun the provisioner,
as Nginx will already be installed, so it won't reinstall it, but the service module will
force the server to start the nginx service. We can use the enabled parameter to ensure
that the service is configured to start automatically when the system boots next:

- name: ensure nginx is running
 service: name=nginx state=started enabled=yes

Understanding file management
We can use the file, copy, and template modules within Ansible to manage files
and folders within the filesystem. Let's take a look at some examples, which allow
us to perform the following:

• Copy files
• Create symlinks
• Create folders

Copying a file
One common file operation we might want to perform would be to take a
configuration file from our project and copy it into our virtual machine. One particular
use case would be an Nginx configuration file; we might want to define some virtual
hosts and other settings in a file, which we can share with our colleagues.

While this works well and can get us up and running quickly, there
are roles out there that allow us to configure Nginx and other software
directly from Ansible. This typically works by the role of storing a
template file (a copy of the configuration file with placeholders in it)
and then, inserting data that we define within our playbook into the
template, and copying the file onto the machine. However, for the sake
of this introductory chapter, we will just copy a file across.

The template module (http://docs.ansible.com/template_module.html)
allows us to copy a file from our control machine onto the machine being
provisioned as follows:

 - name: write the nginx config file
 template: src=nginx-default-site.conf dest=/etc/nginx/sites-
available/default.conf owner=www-data group=www-data

http://docs.ansible.com/template_module.html

Chapter 4

[61]

As this is our Nginx configuration file, it makes sense for us to reload or restart
Nginx when this file changes to ensure that the updated configuration is applied
to the server. We do this in two stages:

1. We set our task to notify a handler once it is done.
2. We create a handler, which is only activated when it is notified,

to restart Nginx.

The following is a playbook that updates the apt cache, installs Nginx, ensures
that the service is running, copies the configuration file, and then ensures that
Nginx is restarted when that file changes through a notify operation and a
handler. The notify and handlers code sections are highlighted are follows:

- hosts: default
 tasks:
 - name: update apt cache
 apt: update_cache=yes
 - name: ensure nginx is installed
 apt: pkg=nginx state=present
 - name: write the nginx config file
 template: src=nginx-default-site.conf dest=/etc/nginx/sites-
available/default.conf
 notify:
 - restart nginx
 - name: ensure nginx is running
 service: name=nginx state=started
 handlers:
 - name: restart nginx
 service: name=nginx state=restarted

Creating a symlink
The file module (http://docs.ansible.com/file_module.html) allows us to
create symbolic links to the existing files and folders in the filesystem. If, for instance,
we want to map a public folder within our web servers root directory to a folder
within our Vagrant shared folder, we can do this as follows:

- name: make our Vagrant synced folder our web root
 file: src=/vagrant dest=/var/www/site owner=www-data group=www-data
state=link

http://docs.ansible.com/file_module.html

Using Ansible

[62]

Creating folders
We can also use the file resource type to create folders; this is particularly useful for
scenarios such as folders to hold files (avatars, attachments, and so on) uploaded by
users of a web application:

- name: create an uploads folder
 file: path=/var/www/uploads owner=www-data group=www-data mode=0777
state=directory

We can use the mode parameter to set the permissions of the folder, and the owner
and group parameters to set the user and groups who own the directory (these also
can be used for files we create and manage too). Finally, the state parameter is used
to ensure that the path provided is a folder.

Managing cron
The cron module (http://docs.ansible.com/cron_module.html) lets us use
Ansible to manage cron jobs, which we need to run on the machine. We provide a
name (which is a required parameter), in this case, web_cron, the command to run,
the user to run the command, and the times at which to run the command, as shown
in the following code:

- name: Run some cron
 cron: name="web_cron" hour="1-4" minute="0,30" job="/usr/bin/php /
vagrant/cron.php"

Ansible provides us with various different configuration options to define the times
at which a cron should be run. These include:

• Hour: This value is between 0 and 23 inclusive
• Minute: This value is between 0 and 59 inclusive
• Month: This value is between 1 and 12 inclusive
• Day: This value is between 1 and 31 inclusive
• Weekday: This value is from Sunday (0) to Saturday (6)

If one of these is omitted from the configuration, then Ansible runs it for each one
of the available options (that is, if we omit month, it will run for January through to
December), as it has a default value of *. When defining the dates and times, we can
either provide a range, for example, 1-5 or specifics, such as 1,2,10,12.

http://docs.ansible.com/cron_module.html

Chapter 4

[63]

Running commands
The command and shell modules allow us to run commands through the terminal on
the machine we are provisioning. The difference between the two is that the shell
module will run the commands through a shell on the remote system. So if we need
to access environment variables or operators, such as &, |, >, and <, then we need to
use the shell module.

Managing users and groups
The user and group modules (http://docs.ansible.com/user_module.html and
http://docs.ansible.com/group_module.html) let us create and manage users
and groups.

Creating groups
We simply provide a name. By default, the state parameter is set to present:

- name: create some new group
 group: name=newgroup state=present

Creating users
To create a user we can use the user module (http://docs.ansible.com/user_
module.html); the minimum information we need again is the username. However,
we can also specify their group, password (providing a crypted hash as per http://
docs.ansible.com/faq.html#how-do-i-generate-crypted-passwords-for-
the-user-module), and even whether an SSH key can be generated if the user does
not have one:

- name: create a new user
 user: name=ournewuser group=newgroup state=present

Using Ansible roles
There are many existing, well-written, reusable Ansible roles freely available to use.
These roles typically manage large aspects of server functionality in one reusable
bundle, for example, there is an Nginx role to manage Nginx and configure sites with
it. There are many roles available on Ansible Galaxy (https://galaxy.ansible.
com/), so it is worth checking these out before writing our own code!

http://docs.ansible.com/user_module.html
http://docs.ansible.com/group_module.html
http://docs.ansible.com/user_module.html
http://docs.ansible.com/user_module.html
http://docs.ansible.com/faq.html#how-do-i-generate-crypted-passwords-for-the-user-module
http://docs.ansible.com/faq.html#how-do-i-generate-crypted-passwords-for-the-user-module
http://docs.ansible.com/faq.html#how-do-i-generate-crypted-passwords-for-the-user-module
https://galaxy.ansible.com/
https://galaxy.ansible.com/

Using Ansible

[64]

Using Ansible to provision servers
Once we have a playbook and inventory file, we can run the ansible-playbook
command to analyze our playbook, and ensure that the configuration for the
matching servers in our inventory file is updated:

ansible-playbook our-playbook.yml -i our-inventory-file

When this command was run for the first time against a particular server, the output
was something like this:

Let's walk through this screenshot to see what is going on:

1. First, Ansible pulls the files together and checks whether everything is valid.
2. Next, it gathers facts about the related machines it needs to connect to.

This is done by connecting over SSH and finding out information, such as
specification, networking details, and so on.

3. Next, it runs through the tasks in our playbook. When installing and writing
our configuration files, Ansible needs to make a change, because it isn't
installed and the file isn't there.

Chapter 4

[65]

4. Once installed, Nginx automatically starts, so the task to ensure that it
is running doesn't do anything (this comes back to the idempotency of
Ansible). As the configuration file writing notifies the handler to restart
Nginx, Nginx is then restarted at the end.

5. Finally, we see a recap, three changes were made, and five tasks resulted in
an ok response.

On subsequent runs, the output looks like this:

There are two differences: firstly, Ansible doesn't need to do anything, so everything
is green and we get four ok results. Again, this is because Ansible is idempotent,
so it only does things when a change to the system is required. Secondly, because
we didn't notify the Nginx restart handler, the handler wasn't even run as a task,
which is why our recap number has dropped to 4, and there was no related output
for the handler.

Using Ansible

[66]

Summary
In this chapter, we learned about Ansible, the IT automation tool. We looked at how
it works, and how to create an inventory file so Ansible can manage different servers,
and how to write playbooks, which can work with some of the different modules.

We installed the software and learned to update the package manager cache with the
apt module, and packages that are services were then started and managed with the
service module. The template module allowed us to copy files from our control
machine to the Ansible-managed machine. In order to trigger service reloads, we
looked into notifying handlers after specific tasks occur.

To create and manage, files, folders, and symlinks the file module was used, and
we used the cron module to create and manage cron jobs. Users and groups were
created and managed with the user and group modules and finally we looked into
running commands with the command and shell modules.

In the next chapter, we will take a look at Chef, the final provisioner that we will
discuss in this book, and also discuss how we can use it to provision servers.

Using Chef
Chef is another provisioning tool supported by Vagrant that makes it easy for us to
take a base operating system installation and turn it into a full-fledged server suited
to the needs of our project.

In this chapter, we will quickly take a look at the basics of Chef. We won't look at it
within a Vagrant context just yet; we will simply take a look at how Chef works, and
how we can use it. In Chapter 6, Provisioning Vagrant Machines with Puppet, Ansible,
and Chef, we will take a look at how to connect what we will learn in this chapter
with Vagrant itself. In this chapter, we will learn the following topics:

• How Chef works
• The basics behind Chef cookbooks and recipes
• How to use Chef to perform the following tasks:

 ° Installing software
 ° Managing files and folders within the filesystem
 ° Managing cron jobs
 ° Running commands
 ° Managing users and groups

• How to use third-party Chef cookbooks and recipes
• How to manually run Chef to provision a machine

Chef itself is a large topic and the subject of several books. For a more detailed look
at Chef, Packt Publishing has some titles dedicated to provisioning with Chef:

• Chef Infrastructure Automation Cookbook, http://www.packtpub.com/chef-
infrastructure-automation-cookbook/book

• Instant Chef Starter, http://www.packtpub.com/chef-starter/book

http://www.packtpub.com/chef-infrastructure-automation-cookbook/book
http://www.packtpub.com/chef-infrastructure-automation-cookbook/book
http://www.packtpub.com/chef-starter/book

Using Chef

[68]

Knowing about Chef
Chef is a provisioning tool that we can use to set up a server for use for a project.
The configuration, which determines how the server needs to be set up, can be
stored within our Vagrant project and can be shared with teammates through
version control, ensuring that everyone gets an up-to-date copy of the required
development environment.

Information about how a server should be configured, that is, its software, files,
users, and groups, is written into files known as Chef recipes. These recipes are
written as Ruby files. Chef takes this information and matches it to providers
that are used to execute the configuration on the machine in a compatible way.

For our purposes, we will use Chef-solo, which is its standalone mode (this is also
how Vagrant uses it). Chef-solo means that everything runs from one machine. Chef
also has client-server capabilities, where you can define the Chef cookbooks and
roles for all the servers in your infrastructure on a central host, and it keeps your
individual servers at the required level of configuration.

As with Puppet, Chef is also idempotent, which means running Chef on a machine
multiple times has the same effect as running it only once.

Creating cookbooks and recipes with
Chef
Chef instructions are recipes that are bundled together in cookbooks. A cookbook
contains at least one recipe, which performs some actions. Cookbooks can contain
multiple recipes and other resources such as templates and files.

At its most basic level, a cookbook is a folder (named as the name of the cookbook)
that contains at least a recipes folder, which contains at least a default recipe file,
default.rb. Files are typically stored in a files folder within the cookbook folder
and template files within the templates folder.

While both Puppet and Chef use Ruby, Puppet is a domain-specific
language, which makes it look and feel like its own language,
whereas Chef is structured more like Ruby itself.

Chapter 5

[69]

Resources – what Chef can do
Chef uses resources to define the actions and operations that can be performed
against the system. Resources are mapped to a Chef code, which varies depending on
the platform/operating system being used. For example, on an Ubuntu machine, the
package resource is mapped to apt-get. Some of these system-specific instructions
can also be accessed directly via their own resources, apt_package. For example, this
is used to manage packages on Ubuntu- and Debian-based systems, whereas using
the package resource, Chef will work out which package manager to use based on the
operating system.

Resource types available include:

• cron: This resource type is used to manage cron jobs on Linux- and
Unix-based systems

• execute: This resource type is used to run commands at the
terminal/command prompt

• file: This resource type is used to manage and manipulate files and folders
on the filesystem

• group: This resource type is used to manage user groups
• package: This resource type is used to install software
• service: This resource type is used to manage running services on

the machine
• template: This resource type is used to manage file contents with an

embedded Ruby template
• user: This resource type is used to manage user accounts on the machine

Each resource can be configured with different attributes, as we will discuss in this
chapter. A complete list of the resource types is available on the Opscode website
(Opscode is the company behind Chef) at http://docs.opscode.com/resource.
html.

Installing software
Let's say we want to install Nginx on our server. There are three steps involved in
this process:

1. Updating our package manager.
2. Installing the nginx package.
3. Running the nginx service.

http://docs.opscode.com/resource.html
http://docs.opscode.com/resource.html

Using Chef

[70]

Because the first step is different depending on the operating system we are running,
we might want to move this out of Chef at a later stage; however, we will use it
within Chef for the time being. Any operating specific commands (such as this)
are written for Ubuntu, which is the operating system we are using with Vagrant.

Updating our package manager
In order to update our package manager, we need to run a command on the server.
This can be achieved using the execute resource within Chef as follows:

execute "apt-get update" do
 ignore_failure true
end

This instructs Chef to run the apt-get update command. As the name of the
resource (the part provided in quotes after the name of the resource) is the command
we want to run, this will be executed. If we use a friendly name instead, then we
would need to provide a command attribute as follows:

execute "update-package-manager" do
 command "apt-get update"
 ignore_failure true
end

By default, the execute resources have a timeout of 3,600 seconds, however, this
can be overridden by giving a timeout attribute to the resource and a time value,
for example:

execute "apt-get update" do
 ignore_failure true
 timeout 6000
end

Installing the nginx package
We can use the package resource to ensure that Nginx is installed, and if it isn't,
it will be installed as follows:

package "nginx" do
 action :install
end

Here, we told Chef to ensure that the nginx package is installed. Provided that we
have included the recipe or cookbook that contains the apt-get update command
before the preceding code, our package manager will be up to date.

Chapter 5

[71]

Running the nginx service
Finally, to make sure that Nginx is running, we use the service resource. As well
as ensuring Nginx runs when it is first installed, this also ensures that if we make
any changes to our server (and accidentally stop Nginx), we can simply rerun the
provisioner. As Nginx will already be installed it won't reinstall it, but the service
resource will force Chef to enable the nginx service (so it automatically starts on
system boot), and start the service when the command is run, as follows:

service "nginx" do
 supports :status => true, :restart => true, :reload => true
 action [:enable, :start]
end

The supports property is a list of attributes that instruct Chef on how to manage a
particular service. The action ensures that we enable the service (to have it run when
the machine boots up) and run the service (so, we don't have to wait for a restart).

Understanding file management
We can use cookbook_file, directory, link, and template resources within Chef
to manage files and folders within the filesystem. Let's take a look at some examples,
which allow us to:

• Copy files
• Create symlinks
• Create folders
• Create multiple folders in one go

Copying a file
One common file operation we might want to perform would be to take a
configuration file from our project and copy it into our virtual machine. One particular
use case would be an Nginx configuration file; we might want to define some virtual
hosts and other settings in a file, which we can share with our colleagues.

While this works well and can get us up and running quickly, there are
modules out there that allow us to configure Nginx and other software
directly from Chef. This typically works by the module storing a
template file (a copy of the configuration file with placeholders in it)
and then inserting data we define within Chef into the template as
well as copying the file onto the machine. However, for the sake of this
introductory chapter, we will just copy a file across.

Using Chef

[72]

The cookbook_file resource allows us to copy a file from a Chef cookbook onto the
machine as follows:

cookbook_file "/etc/nginx/sites-available/default" do
 backup false
 action :create_if_missing
end

Because we omitted the source and path attributes, Chef makes some assumptions.
It takes the basename (in effect, the last element) of the name and uses this as the
source (the basename of /etc/nginx/sites-available/default being the default)
and uses the name as the path (destination). The source file should be located in the
files folder within the cookbook's own folder.

As this is an Nginx configuration file, it is worth ensuring that Nginx is already
installed; otherwise, Nginx will override this when it installs the first time, and
this wouldn't make the process idempotent. We can do this by notifying the
nginx service, for example:

cookbook_file "/etc/nginx/sites-available/default" do
 backup false
 action :create_if_missing
 notifies :restart, "service[nginx]", :delayed

end

The delayed option allows all of these restart requests to be queued up and
executed at the end of Chef's execution; the opposite of this being immediately.

Creating a symlink
The link resource allows us to create symbolic links to the existing files and folders
on the filesystem. If, for instance, we want to map a public folder within our web
server's root directory to a folder within our Vagrant shared folder, we can do this
as follows:

link "/var/www/public" do
 to "/vagrant/src/public"
end

Chapter 5

[73]

Creating folders
We can use the directory resource to create folders; this is particularly useful for
scenarios such as folders to hold files (avatars, attachments, and so on) uploaded by
users of a web application:

directory "/var/www/uploads" do
 owner "root"
 group "root"
 mode 00777
 action :create
end

We can use the mode parameter to set the permissions of the folder, and the owner
and group parameters to set the user and groups who own the directory (these also
can be used for files we create and manage too). Finally, the :create action is used
to ensure that the folder is created.

Creating multiple folders in a single process with
looping
In many web projects, we might need to create a number of folders within our
servers or our Vagrant virtual machines. In particular, we might want to create a
number of cache folders for different parts of our application, or we might want
to create some upload folders.

In order to do this, we can simply create an array that contains all of the folders we
want to create. We can then use the directory resource type and loop through a list
of directory names:

%w{dir1 dir2 dir3}.each do |dir|
 directory "/tmp/mydirs/#{dir}" do
 mode 00777
 owner "www-data"
 group "www-data"
 action :create
 end
end

Using Chef

[74]

Managing cron
The cron resource type lets us use Chef to manage cron jobs that we need to run on
the machine. We provide a name, in this case, web_cron, the command to run, the
user to run the command, and the times at which to run the command, as shown in
the following code:

cron "web_cron" do
 action :create
 command "/usr/bin/php /vagrant/cron.php"
 user "root"
 hour "1-4"
 minute "0,30"
end

Chef provides us with various different configuration options to define the times at
which a cron should be run; these include:

• hour: This value is between 0 and 23 inclusive
• minute: This value is between 0 and 59 inclusive
• month: This value is between 1 and 12 inclusive
• day: This value is between 1 and 31 inclusive
• weekday: This value is Sunday (0) - Saturday (6)

If one of these is omitted from the configuration, then Chef runs it for each one of
the available options (that is, if we omit month, it will run from January through
to December). When defining the dates and times, we can either provide a range,
for example, 1-5, or specifics, such as 1,2,10,12. We can also provide an emailto
property to e-mail the resulting output from the cron to an e-mail address of our choice.

Running commands
The execute resource allows us to run commands through the terminal on the
machine we are provisioning. One caveat with the exec command is that if you
reprovision with Chef it will rerun the command, which can be damaging depending
on the command. What we can do with the execute resource is set the creates
parameter. The creates parameter tells Chef that a file will be created when the
command is run; if Chef finds that file, it knows that it has already been run, and it
won't run it again.

Chapter 5

[75]

Take, for example, the following configuration; this would use the PHP composer
tool to download dependencies. The command itself creates a file called composer.
lock (we can, of course, use the exec command itself to create a file manually,
perhaps using the touch command). Because of the lock file that is created, we can
use the creates parameter to prevent the command from being executed multiple
times when a lock file is found:

execute "compose" do
 command "/bin/rm -rfv /var/www/repo/vendor/* && /bin/rm –f
 /var/www/repo/composer.lock && /usr/bin/curl –s
 http://getcomposer.org/installer | /usr/bin/php && cd
 /var/www/repo && /usr/bin/php /var/www/repo/composer
 .phar install"
 creates "/var/www/repo/composer.lock"
 timeout 6000
end

Managing users and groups
The user and group resource types let us create and manage users and groups.
There are differences between different operating systems as to what Chef can
do with the users and groups and how this works.

Creating groups
The simplest way to create a group is simply to set the action to :create, as follows:

group "wheel" do
 action :create
end

Creating users
To create a user, we should provide the following basic information:

• The username
• The fact that we want to create the user
• The group (gid) the user should be part of
• The shell to use for the user
• The home directory for the user
• Whether we want Chef to manage the home directory for the user; in this

case, it will create the folder for us if it does not exist
• The password for the user

Using Chef

[76]

The code that will then create our user is as follows:

user "developer" do
 action :create
 gid "wheel"
 shell "/bin/bash"
 home "/home/developer"
 supports {:manage_home => true}
 password "passwordtest"
end

Updating the sudoers file
It's all well and good being able to create users and groups on our machine, however,
one thing that we can't do using the user and group resource types is define a user or
group as having elevated privileges, unless we make the user a part of the root group.

We can use an exec command through the execute resource to push some text
to the end of our suoders file; the text we need to push simply tells the file that
we want to give the wheel group sudo privileges. The command we will need
to execute is as follows:

/bin/echo \"%wheel ALL=(ALL) ALL\" >> /etc/sudoers

Knowing common resource functionalities
There is also a set of common functionality available to all resources. This common
functionality includes:

• The ability to do nothing with the :nothing action
• Shared attributes available to all resources: ignore_failure, provider,

retries, retry_delay, and supports
• The not_if and only_if conditions to ensure that actions only run when

certain conditions are met; these are commands that are run and depending
on their return value, recipes, and resources can be ignored

• There are notifications to instruct other resources that another action
has been completed, or for a resource to take action if another resource
changes (subscribes)

Chapter 5

[77]

Using Chef cookbooks
There are many existing, well-written, reusable Chef cookbooks freely available to use.
The Opscode community site contains a collection of them at http://community.
opscode.com/cookbooks. It is always worth checking whether there is an existing
cookbook that solves your problem before writing your own.

Using Chef to provision servers
We will take a look at how to use Chef with Vagrant in Chapter 6, Provisioning
Vagrant Machines with Puppet, Ansible, and Chef; however, Chef can also be run in its
own right. Provided Chef is installed (it will be on most Vagrant base boxes, but if
you want to run it on another machine, it might not be, so install it first), you can use
the chef-solo command, passing with it the location of a configuration file to use,
and a JSON file that contains attributes we wish to use (this should include the rub
list, which is the list of recipes and cookbooks we wish to use), as follows:

chef-solo –c /home/michael/chefconfig.rb –j
 /home/michael/attributes.json

There are some useful links in this list you can refer to for more information

• Chef-solo configuration: http://docs.opscode.com/config_rb_solo.html
• Apply recipes to run lists: http://docs.chef.io/recipes.html#apply-

to-run-lists

• Anatomy of a Chef run: https://github.com/jhotta/chef-
fundamentals-ja/blob/master/slides/anatomy-of-a-chef-run/01_
slide.md

• Chef tutorial: http://www.mechanicalfish.net/configure-a-server-
with-chef-solo-in-five-minutes/

Summary
In this chapter, we had a whirlwind tour of Chef and explored the various ways
we could use it to provision a server for our projects. This included how to install
software packages with the package resource and run services with the service
resource. We also managed cron jobs with the cron resource, managed users and
groups, and ran commands. Finally, we looked at how recipes and cookbooks work,
and how we can use Chef to provision a server.

In the next chapter, we will take a look at how to use both Chef and Puppet to
provision a machine within the context of Vagrant.

http://community.opscode.com/cookbooks
http://community.opscode.com/cookbooks
http://docs.opscode.com/config_rb_solo.html
http://docs.chef.io/recipes.html#apply-to-run-lists
http://docs.chef.io/recipes.html#apply-to-run-lists
https://github.com/jhotta/chef-fundamentals-ja/blob/master/slides/anatomy-of-a-chef-run/01_slide.md
https://github.com/jhotta/chef-fundamentals-ja/blob/master/slides/anatomy-of-a-chef-run/01_slide.md
https://github.com/jhotta/chef-fundamentals-ja/blob/master/slides/anatomy-of-a-chef-run/01_slide.md
http://www.mechanicalfish.net/configure-a-server-with-chef-solo-in-five-minutes/
http://www.mechanicalfish.net/configure-a-server-with-chef-solo-in-five-minutes/

Provisioning Vagrant
Machines with Puppet,

Ansible, and Chef
In Chapter 3, Provisioning with Puppet, Chapter 4, Using Ansible, and Chapter 5, Using
Chef, we had an introduction to Puppet, Chef, and Ansible, which are provisioning
tools with support built into Vagrant. However, we only looked at how the tools
worked in a general way; we didn't look at how to use them with Vagrant.

In this chapter, you will learn the following topics:

• Using Puppet within Vagrant
• Using Chef within Vagrant
• Using Ansible within Vagrant
• Recapping how to provision with the built-in SSH provisioner
• Working with multiple provisioners
• How we can override the provisioning tools through the command line

Provisioning within Vagrant
Vagrant relies on base boxes for the guest virtual machines; these are specifically
preconfigured virtual machine images that have certain software packages
preinstalled and preconfigured. Puppet and Chef are two such software packages
that are preinstalled (Ansible is controlled by Vagrant itself on the host machine, so it
isn't installed on the virtual machine, but requires an SSH connection to the virtual
machine). Vagrant has its own interface through to these packages from the host
machine. This means we can provide some configuration in our Vagrant file, and
Vagrant will pass this information to the relevant provisioners on the guest VM.

Provisioning Vagrant Machines with Puppet, Ansible, and Chef

[80]

Provisioning with Puppet on Vagrant
Vagrant supports two methods of using Puppet:

• Puppet in standalone mode using the puppet apply command on the VM
• Puppet in client/server mode, whereby the VM (using the Puppet agent) will

be configured from a central server

Let's take a look at how to configure Vagrant with Puppet using these two
different methods.

Using Puppet in standalone mode
Puppet standalone is the simplest way to use Puppet with Vagrant. We simply tell
Vagrant where we have put our Puppet manifests and modules, and what manifest
should be run. The smallest amount of configuration we need within our Vagrant file
in order to use Puppet is this:

config.vm.provision "puppet" do |puppet|
end

This should go within the Vagrant.configure("2") do |config| … end block of
code within the Vagrant file.

Along with this configuration, we will need a Puppet manifest called default.pp
in the manifests folder of our project root. Vagrant will then use this to provision
the machine.

This will instruct Vagrant to run the Puppet provisioner either when the machine
boots up for the first time or if we run the vagrant provision command. The
default Vagrant Puppet setup will make the following assumptions, unless we
override the settings:

• Manifests will be located in the manifests folder
• Modules will also be located in the manifests folder (we may want to

point these elsewhere, especially if we are using third-party modules,
to keep them separate)

• The manifest file to use will be default.pp (It will obviously be within the
manifests folder; it can be useful to override this if we use Puppet modules
and manifests within the same project for multiple environments. We may
have a manifest for our Vagrant VM, one for our production environment
and one for a user acceptance testing platform, for example.)

Chapter 6

[81]

We can modify these options by provisioning configuration options, as opposed
to just telling Vagrant to provision with Puppet. When creating projects that
are managed by Vagrant, I like to put all my provision-related files within the
provision folder. In order to override these, within the Puppet configuration
for Vagrant, we can then specify options for the location of the Puppet manifests
(puppet.manifests_path), the name of the Puppet manifest to apply (puppet.
manifests_file), and the location of any Puppet modules, which we may
reference within our Puppet manifest (puppet.module_path). The following
customizes these options:

config.vm.provision "puppet" do |puppet|
 puppet.manifests_path = "provision/puppet/manifests"
 puppet.manifest_file = "default.pp"
 puppet.module_path = "provision/puppet/modules"
end

It is important for us to have the ability to at least change the manifest file, as
Vagrant also supports a multi-VM environment, where a single project can have a
number of virtual machines (for example, a web server and a database server). With
this setup, we will need to tell Vagrant which manifest file to use for each of the
machines, so that the web server can be properly configured as a web server and the
database server as a database server.

Puppet provisioning in action
With the knowledge we gained of creating Puppet modules and manifests from
Chapter 3, Provisioning with Puppet, we can now point our Vagrant configuration at
these files, and see it in action. If we run a Vagrant file on a project, which is suitably
configured, we will see the output of Puppet applying its settings to our virtual
machine in the terminal window, as shown in the following screenshot:

Provisioning Vagrant Machines with Puppet, Ansible, and Chef

[82]

The console output highlights details of each Puppet instruction that is run, including:

• The stage the instruction is within (this is the Puppet stage, as we discussed
in Chapter 3, Provisioning with Puppet, which allows us to group classes
together to control the ordering of certain actions)

• The module
• The resource type
• The resource name
• Whether the instruction was executed successfully

Using Puppet in client/server mode
As discussed earlier, we can also run Puppet within our Vagrant environment in
client/server mode using the Puppet agent on the virtual machine. The configuration
required for this is minimal; we simply tell Vagrant the address of the Puppet server
we are using and the name of our node (the virtual machine we are setting up):

config.vm.provision "puppet_server" do |puppet|
 puppet.puppet_server = "puppet.internal.michaelpeacock.co.uk"
 puppet.puppet_node = "vm.internal.michaelpeacock.co.uk"
end

The node name is the reference for the machine within the Puppet server, so the
Puppet server knows how our VM should be con igured. The node name is also used
to generate an SSL certi icate so that the VM can authenticate with the Puppet server
(more details on this are available on the Puppet website, https://puppetlabs.com,
and the Puppet blog, https://puppetlabs.com/blog/deploying-puppet-in-
client-server-standalone-and-massively-scaled-environments/.

Provisioning with Ansible on Vagrant
In order to use Ansible within a Vagrant project, we need to tell Vagrant where the
playbook and inventory files are:

config.vm.provision "ansible" do |ansible|
 ansible.playbook = "provision/ansible/playbook.yml"
end

https://puppetlabs.com
https://puppetlabs.com/blog/deploying-puppet-inclient-server-standalone-and-massively-scaled-environments/
https://puppetlabs.com/blog/deploying-puppet-inclient-server-standalone-and-massively-scaled-environments/

Chapter 6

[83]

Ansible needs to know which machines to provision; unlike with other provisioners,
where this is explicitly known from the Vagrantfile configuration, Ansible uses an
inventory file to configure this. The inventory file contains a list of environment
names and IP addresses; we use this file to restrict which commands Ansible runs on
specific environments. We can omit this file, and Vagrant will generate one for all of
the virtual machines it manages for us in the current project.

We can also create our own inventory file. At a minimum, it needs to know the
name of the virtual machine (from our Vagrantfile) and the IP address. To provide
only these two pieces of information, this requires the virtual machine to be running
on its own IP address (per the Vagrantfile networking configuration):

default ansible_ssh_host=10.11.100.123

Alternatively, we can provide the SSH port to use, so that Ansible can connect from
our host machine to our virtual machine:

default ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222

To tell Vagrant and Ansible about our own custom inventory file, we need to add it
to our Vagrantfile as follows:

config.vm.provision "ansible" do |ansible|
 ansible.playbook = "provision/ansible/playbook.yml"
 ansible.inventory_file = "provision/ansible/inventory"
end

Provisioning with Chef on Vagrant
Vagrant also supports two methods of using Chef:

• Chef-solo
• Chef in client/server mode with Chef client

Let's take a look at how to configure Vagrant with Chef using these two
different methods.

Provisioning Vagrant Machines with Puppet, Ansible, and Chef

[84]

Using Chef-solo
Chef-solo is the Chef equivalent of Puppet standalone.

The simplest way to use this within our project is simply to provide a Chef run list
to Vagrant; this tells Vagrant which cookbooks should be applied. The following is
an example of telling Vagrant to use the PHP cookbook:

config.vm.provision "chef_solo" do |chef|
 chef.add_recipe "php"
end

This takes the PHP cookbook from the default cookbooks folder and applies it to the
virtual machine.

As with Puppet, Vagrant makes some assumptions by default; they are as follows:

• Cookbooks are stored in the cookbooks folder within the project root. The
chef.cookbooks_path setting allows us to override the cookbooks folder
location. We can either provide a single path or an array of paths (wrapped
in square brackets, separated with commas) if we want Vagrant and Chef
to look in a range of folders for our cookbooks. The following code will go
into our Vagrant file to tell Vagrant to override the cookbooks folder with
provision/cookbooks:
config.vm.provision "chef_solo" do |chef|
 chef.cookbooks_path = "provision/cookbooks"
end

• We can also use Chef roles by providing:
 ° The location of the roles folder
 ° The roles we wish to add to the VM

More information on Chef roles can be found on the Opscode website
(http://docs.opscode.com/essentials_roles.html).
The following code in our Vagrant file will set up our project to use
Chef roles:
config.vm.provision "chef_solo" do |chef|
 chef.roles_path = "provision/roles"
 chef.add_role("web")
end

http://docs.opscode.com/essentials_roles.html

Chapter 6

[85]

Using Chef in client/server mode
Like Puppet, Chef also has a client/server method to provision machines using Chef
client on the VM. To use Chef client, we need to tell Vagrant where the Chef server is
located (through the chef.chef_server_url setting), and provide the authorization
key that will be used to authenticate the VM with the server (through the chef.
validation_key_path setting).

The following code in our Vagrant file will instruct Vagrant to provision from a
Chef server:

config.vm.provision "chef_client" do |chef|
 chef.chef_server_url = "http://chef.internal.michaelpeacock.
 co.uk:4000/" chef.validation_key_path = "key.pem"
end

We can also override the run list that the Chef server provides for our VM by
manually adding roles and recipes to this configuration. If we have specified
different environments on our Chef server, we can specify which environment
we want to use with the chef.environment configuration.

Vagrant VMs that use Chef server will have the corresponding
node and client entries on the Chef server, which is named with the
hostname of the VM. If we destroy the VM and recreate it, Chef will
generate an error because the client and node entries are already
present on the server. We need to remove these from the Chef server
when we destroy a VM. This can be done using the knife tool from
Chef, knife node delete our-vm-hostname && knife
client delete our-vm-hostname.

Provisioning with SSH – a recap
As we discussed in Chapter 2, Managing Vagrant Boxes and Projects, we can instruct
Vagrant to run a series of SSH commands on the VM. This can be used to provision
the server.

There are two ways to use SSH provisioning:

• Path: This provides a file to execute
• Inline: This is used to provide specific commands to run

Both of these are shown as follows:

config.vm.provision "shell", path: "provision/setup.sh"
config.vm.provision "shell", inline: "apt-get install apache2"

Provisioning Vagrant Machines with Puppet, Ansible, and Chef

[86]

Using multiple provisioners on a single
project
We can use multiple provisioners within a single project if we wish; we simply need
to put them in the order we wish for them to be executed within our Vagrant file. The
following command will first run an SSH command before provisioning with Puppet:

Vagrant.configure("2") do |config|
 Config.vm.box = "ubuntu/trusty64"

 config.vm.provision "shell", inline: "apt-get update"

 config.vm.provision "puppet" do |puppet|
 puppet.manifests_path = "provision/puppet/manifests"
 puppet.manifest_file = "default.pp"
 puppet.module_path = "provision/puppet/modules"
 end

end

Using multiple provisioners can be useful, especially if one is more suited at
specific tasks than another, or if we require some prerequisites. For example, when
using Puppet and Chef in client/server mode, they need to have an SSH key to
communicate with the server. We can use a shell provisioner to instruct the VM to
download the keys we prepared from a secure location, before the Puppet or Chef
provisioners kick in.

Overriding provisioning via the command
line
There may be instances where we want to restrict or enforce the execution of
provisioning or even a specific provisioner within a project. The following
commands are all executed from the host machine:

• We can cancel a running provision by pressing CMD + C at the terminal.
• We can instruct Vagrant to rerun provisioning on a VM using the vagrant

provision command.
• We can also add --no-provision to the up command to instruct Vagrant to

not run the provisioning tools when performing the up action, for example,
vagrant up --no-provision.

Chapter 6

[87]

• By default, Vagrant will only provision when it first boots a machine. For
subsequent boots of an existing machine, Vagrant knows that the machines
are configured, and it will not provision them. We can override this with the
--provision option, for example, vagrant up --provision.

• We can also provision with just a specific provisioner should we wish, for
example, if we want to instruct Vagrant to just run Puppet in standalone
mode (in a project that has multiple provisioners configured), we need to
run vagrant provision --provision-with=puppet.

Summary
In this chapter, we learned how we can apply our knowledge of Puppet and Chef
from Chapter 3, Provisioning with Puppet, Chapter 4, Using Ansible, and Chapter 5, Using
Chef, and configure Vagrant to use these tools to provision our virtual machines.

We started off by learning to use Puppet in standalone mode that uses the puppet
apply command to apply locally stored manifests and modules onto the machine.
Then, we continued using Puppet in the client/server mode that uses the Puppet
agent to retrieve the configuration from a central server to provision the machine.

We then learned how to use Ansible to run playbooks on specific machines along
with the fundamentals of Chef-solo, which applies locally stored cookbooks and
recipes to the machine. It also included the usage of Chef in client/server mode,
which uses the Chef client to retrieve the configuration from a central server to
provision the machine.

Other standard provisioners were also checked using SSH provisioning and multiple
provisioning options for the same project. Finally, we rounded off by running
multiple provisioners within a single project, overriding provisioning on the
command line and rerunning the provisioning tools with vagrant provision.

Now, we have fully mastered how to set up, use, and manage Vagrant along with
the provisioning tools to work on a single machine project. In Chapter 7, Working with
Multiple Machines, we will take a look at how to use Vagrant and our knowledge
of provisioners to manage a multimachine project, with provisioners configuring
different machines for different purposes for use within the project, for example, a
web server and a database server.

Working with Multiple
Machines

So far, we have seen how we can get Vagrant to a stage where our development
environment is contained in Vagrant-managed virtual machines, with one of the
key aspects being that these virtual machines mimic our production environment. It
gives us the flexibility of being able to encapsulate the development environment for
different projects so that we can easily switch from one to another without having to
modify the software on our own machines.

In many cases, the features we learned so far are enough. However, web projects are
becoming more and more complex, with developers continually improving, having to
deal with multiple machines in their architecture to help with scalability and stability.
While it can be said that scalability and stability issues won't impact our development
environment (as we won't have huge amounts of traffic coming to our development
environment, unless we load-test it), we want to ensure that the coupling between
servers within our code (such as application code connecting to a remote database)
works in our development environment before we put the project online.

Thankfully, Vagrant has support for running multiple virtual machines at the same
time within the same project. We can use this to test multimachine architectures and
distributed systems on our own local machine before we share our changes with
colleagues in a staging environment, and before the project goes live. Replicating a
multimachine environment in development greatly helps us improve the reliability
of our projects and instills confidence in the work that we do.

Working with Multiple Machines

[90]

In this chapter, we will learn the following topics:

• How to run multiple virtual machines within a single Vagrant project
• How to provide different distinct configuration to these virtual machines,

including the following:
 ° Names
 ° IP addresses on a private network so that they can communicate with

one another
 ° Base boxes
 ° Provisioning
 ° Shared folders

• How to connect to the different virtual machines over SSH without having to
know or remember their IP addresses

Using multiple machines with Vagrant
In order to use multiple virtual machines within our project, we need to tell Vagrant
about them, and we need to provide additional configuration for the individual
virtual machines.

Defining multiple virtual machines
Within the standard Vagrant project configuration file, we can tell Vagrant that
we wish to assign a name to a virtual machine being managed by the project.
Within this subconfiguration, we provide the information Vagrant needs that
is specific to that VM.

The syntax for the subconfigurations is as follows:

config.vm.define :name_of_the_vm do |name_of_the_vm|
 #configuration specific to the virtual machine
end

Chapter 7

[91]

This is applied to a project that requires two virtual machines, named server1 and
server2, both running the precise64 box:

-*- mode: ruby -*-
vi: set ft=ruby :

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

 config.vm.define :server1 do |server1|
 server1.vm.box = "hashicorp/precise64"
 end

 config.vm.define :server2 do |server2|
 server2.vm.box = "hashicorp/precise64"
 end

end

Connecting to the multiple virtual
machines over SSH
When our multiple machines boot up in our multimachine project, Vagrant
automatically maps different ports from our host machine to the SSH ports
on the various guest machines.

Working with Multiple Machines

[92]

Let's take a look at the console output when booting a Vagrant project with two
virtual machines within it:

Chapter 7

[93]

As shown in the preceding screenshot, Vagrant maps the SSH port on the virtual
machine designated server1 to port 2222 on the host machine, and the SSH port of
the machine designated server2 to the port 2200.

This gives us the opportunity of simply using the standard SSH command from a
terminal (or the likes of PuTTY on a Windows machine), to connect to localhost with
the port number that Vagrant assigns to each machine.

To connect to the machine that is mapped to port 2200, we simply run the ssh
vagrant@localhost –p2200 command. The –p2200 option tells the command to
use a nonstandard port, and specifies the port we wish to use, in this case 2200.

Alternatively, we can use the vagrant ssh command to connect to the virtual
machines. The difference is that in a multivirtual machine environment, we must
also provide the name of the virtual machine. For example, vagrant ssh server1.
This is the most common usage of connecting to a machine, rather than directly
connecting to the virtual machine via its IP address.

Networking the multiple virtual machines
In a single virtual machine project, the IP address of the virtual machine isn't that
important. In a multivirtual machine project, however, it is more likely that we want
the two machines to communicate with one another directly; in order to do this, we
need to be aware of their IP addresses, or we need to forward nonconflicting ports to
the localhost instead. As we want to have our Vagrant projects distributed to our team
members, and some of these team members may be within the same office, we need to:

• Predefine the IP address so that any of our projects code that needs to
communicate with the other virtual machine can do so, without the other
team members needing to change configurations

• Ensure that the virtual machines are running on a private network only that
are attached to the machine of the user running it; this will prevent the IP
address conflicts within the network

Working with Multiple Machines

[94]

In order to do this, we simply use the networking options, which we learned
in Chapter 2, Managing Vagrant Boxes and Projects. Because we want the virtual
machines to run in a private network, it makes sense to use a range of private IP
addresses, which are different to your own network. For example, my network range
is 192.168.1.xxx, so I will use the range 10.11.1.xxx for my virtual machine
network (the IP address ranges are a subset of the range of addresses preassigned for
internal networks), as shown in the following code:

-*- mode: ruby -*-
vi: set ft=ruby :

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

 config.vm.define :server1 do |server1|
 server1.vm.box = "hashicorp/precise64"
 server1.vm.network "private_network", ip: "10.11.1.100"
 end

 config.vm.define :server2 do |server2|
 server2.vm.box = "hashicorp/precise64"
 server2.vm.network :private_network, ip: "10.11.1.101"
 end

end

Let's test this out and test whether we can connect from one machine to the other:

1. Power up the project (vagrant up).
2. Connect to server1 (vagrant ssh server1).
3. Ping server2 from server1 (ping 10.11.1.101).

Chapter 7

[95]

The output shows that we are able to communicate over the network from server1
to server2 as follows:

Provisioning the machines separately
As the virtual machines in our projects are going to be used for different purposes,
we need to use different provisioning for the machines, so they both have only the
software and configurations needed to do their job.

We take the provisioning code, which we learned in Chapter 3, Provisioning with
Puppet, and Chapter 6, Provisioning Vagrant Machines with Puppet, Ansible, and Chef,
and we place the relevant code within the virtual machine's subconfiguration. There
are some key changes that we need to make:

• The opening line of the provision code must reference the server name of the
virtual machine it relates to

• For Puppet, we should use a different manifest file for the two virtual machines
• For Chef, we will apply different roles to the different machines

Working with Multiple Machines

[96]

The following code provisions both the machines using Puppet. They both rely on
the same set of Puppet modules, the same path that points to the manifests folder,
however, they both use different manifests to set up the projects (alternatively, we
can configure the machines and identify them as nodes to a Puppet master to retrieve
the appropriate configuration):

-*- mode: ruby -*-
vi: set ft=ruby :

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

 config.vm.define :server1 do |server1|
 server1.vm.box = "hashicorp/precise64"
 server1.vm.network "private_network", ip: "10.11.1.100"

 server1.vm.provision :puppet do |puppet|
 puppet.manifests_path = "provision/puppet/manifests"
 puppet.manifest_file = "server1.pp"
 puppet.module_path = "provision/puppet/modules"
 end

 end

 config.vm.define :server2 do |server2|
 server2.vm.box = "hashicorp/precise64"
 server2.vm.network :private_network, ip: "10.11.1.101"

 server2.vm.provision :puppet do |puppet|
 puppet.manifests_path = "provision/puppet/manifests"
 puppet.manifest_file = "server2.pp"
 puppet.module_path = "provision/puppet/modules"
 end

 end

end

Within the provisions for each machine, we would need to ensure that we allow both
the machines to communicate with one another. For example, by default, a MySQL
Server won't accept connections from a remote server, so we would need to modify
(or replace) the configuration file with one that allows this, or we would need to use
a Puppet module or Chef cookbook that allows us to modify this configuration value.

Chapter 7

[97]

You should check the documentation for any software you are
communicating with over the network to see how it needs to be
configured. With MySQL, you need to edit the my.cnf file, and
set the bind address to 0.0.0.0.

Destroying a multimachine project
If we want to completely remove the virtual machines for our project from our host
machine, we can use the vagrant destroy command, as with normal projects. The
difference being that Vagrant will ask us to confirm the removal of each machine
within the project:

Summary
In this chapter, we set up a Vagrant project that uses multiple virtual machines.
During the course of this chapter, we learned how to create multiple virtual
machines within a single project. In order to achieve this, we also looked at how to
assign specific names to these individual machines, how to connect to the individual
machines over SSH (as previously vagrant ssh would take us to just a single
machine), and how to configure the individual machines, specifying IP addresses,
base boxes, and different provisioning options for them.

Now, we learned the vast majority of Vagrant's functionality and how to use it
within different project scenarios. In the next chapter, we will take a look at how
to build our own custom base box to use with our projects, configuring a blank
operating system installation into a compatible base image.

Creating Your Own Box
So far, we have used Vagrant with the freely available base boxes. There are also
many other existing base Vagrant boxes out there. In Chapter 9, HashiCorp Atlas,
we will talk about how we can discover and distribute base boxes. When we
discussed Vagrant boxes initially in Chapter 1, Getting Started with Vagrant, and
Chapter 2, Managing Vagrant Boxes and Projects, we learned about how we can
export a Vagrant environment into a new base box.

Creating a new base box involves us either taking an existing box, making changes
to it, and exporting it, or creating a new virtual machine entirely, installing the
operating system and building up a base box for export. In this chapter, we will
take a look at how we can take a Linux installation disk and turn it into a working
Vagrant base box, which we can further customize as much as we like.

In this chapter, you will learn about the following topics:

• How to create a new VirtualBox machine, suitably configured for Vagrant
• How to install the VirtualBox Guest Additions
• How to set up the Linux installation to let Vagrant log in
• How to install Puppet
• How to install Chef
• How to clean up the box
• How to export the VM into a base box

Creating Your Own Box

[100]

Getting started
In order to create a new base box, we need to download a copy of the operating
system we want to use (we will use Ubuntu Server Version 13.04 64-bit from
http://releases.ubuntu.com/raring/). We then need to use VirtualBox to create
a virtual machine, powered by the operating system we have downloaded. Next,
we need to configure the virtual machine for Vagrant. Finally, we need to export the
virtual machine into a Vagrant base box.

You can also use other distributions of Linux or even Windows
if you wish. Specifics will vary with the operating system used,
so you will need to consult the relevant documentation.

The requirements for a new base box are detailed on the Vagrant website
(https://docs.vagrantup.com/v2/boxes/base.html).

Preparing the VirtualBox machine
In order to create the virtual machine with VirtualBox, we need to open
the VirtualBox and click on the New button in the upper-left corner of
the VirtualBox to start the process:

Let's name the machine vagrant-ubuntu-raring. This is the format recommended
by Vagrant. Select Linux in the Type dropdown and Version as Ubuntu (64 bit):

http://releases.ubuntu.com/raring/
https://docs.vagrantup.com/v2/boxes/base.html

Chapter 8

[101]

Vagrant recommends setting a memory allocation of 360 MB. This is typically
sufficient for a base installation, and users can override this within their Vagrantfile
if they need more resources:

Creating Your Own Box

[102]

We need our virtual machine to have some storage allocation, so let's select Create a
virtual hard drive now:

We need to select VMDK (Virtual Machine Disk) as the disk type:

Chapter 8

[103]

We need to create a drive, which is dynamically allocated:

Let's give the drive a maximum limit of 40.00 GB; the Vagrant documentation
suggests that this is typically sufficient for many projects:

Creating Your Own Box

[104]

Clicking on Create will then save the virtual machine within VirtualBox. We need
to make some additional configuration changes, which are not a part of the creation
wizard, so let's click on the VM on the left-hand side of the screen, and then click on
the Settings button:

The first additional change is Audio, so let's turn this off:

We need to ensure that the network adapter configured within VirtualBox is enabled
and uses NAT. Without this, Vagrant won't work:

Chapter 8

[105]

Finally, let's turn off USB support, as this is generally not required:

Now we need to switch on the virtual machine. When it powers on, it asks us
to select a startup disk, which contains the operating system we wish to install.
Clicking on the folder icon on this screen lets us select a custom file; in our case,
this will be our ubuntu-13.04-server-amd64.iso file.

The virtual machine will then boot from the image file and take us to the installation
process. We should follow this process to set up the machine.

There are some specific values for some things that Vagrant expects, so wherever
appropriate we should ensure that we set them as follows:

• By convention, the operating system's hostname should be of the vagrant-
operating-system-name format, for example, vagrant-ubuntu-raring

• The domain is vagrantup.com
• The root password is vagrant
• The main account username is vagrant
• The main account password is vagrant

https://vagrantup.com

Creating Your Own Box

[106]

In most other cases, the default options will be fine, as we will configure other
aspects later. When prompted as to any packages to install by default, we should
select to install openssh-server.

VirtualBox Guest Additions
First, let's log in to our new virtual machine within VirtualBox. Once logged in, at the
terminal, we should run apt-get update to update our package manager.

Vagrant has a set of tools called Guest Additions that provide some key integration
points between the virtual machine and VirtualBox; this includes support for shared
folders and networking integration.

To install these tools, once the VM is running, we should click on the Devices menu
within Virtual Box and click on Install Guest Additions... (Host+D):

This simply boots a virtual CD within the virtual machine; we still need to actually
install the Guest Additions, as follows:

1. The first step is to install a prerequisite, which are the Linux headers:
sudo apt-get install linux-headers-$(uname -r) build-essential

2. Next, we will mount the virtual CD, which VirtualBox has loaded up into a
folder within the VM:
sudo mount /dev/cdrom /media/cdrom

3. Finally, we will run the installation command:
sudo sh /media/cdrom/VBoxLinuxAdditions.run

Chapter 8

[107]

Vagrant authentication
Vagrant communicates with base boxes over SSH. Vagrant itself has a private key,
for which we need to install the corresponding public key into the virtual machine.
Vagrant expects a specific user with a predefined password to also be within the
machine, and the user needs to be configured so that it isn't prompted for the
password when attempting to perform actions that require elevated privileges (sudo).

Vagrant user and admin group
Provided we created the Vagrant user during the installation process (as per the
main account user and password mentioned earlier), we then need to create an
admin group and add the Vagrant user to this group.

First, we need to create the group:

Sudo groupadd admin

To add the Vagrant user to this group, run the following command:

Sudo usermod -a -G admin vagrant

The sudoers file
In order to stop the virtual machine asking for the user's password when running
elevated actions, we need to modify the sudoers file. This is a file that tells the
operating system which users can perform elevated actions and the settings around
them. More information can be found at https://help.ubuntu.com/community/
Sudoers. We need to add a configuration line to this file, which tells the operating
system not to prompt for the password. Because the file is very important, and an
incorrect configuration would break the operating system, there is a program built
into Ubuntu, which won't save if the file is not edited correctly.

First, let's run this program:

visudo

At the bottom of the file, let's add this line to prevent the operating system from
prompting for the password:

%admin ALL=(ALL) NOPASSWD: ALL

Another requirement of Vagrant is that we add the following line near the top of
the file:

Defaults env_keep="SSH_AUTH_SOCK"

https://help.ubuntu.com/community/Sudoers
https://help.ubuntu.com/community/Sudoers

Creating Your Own Box

[108]

We also need to disable requiretty in the sudoers file by commenting out the
appropriate line as follows:

#Default requiretty

requiretty is an option that requires users to have a physical
connection to a server in order to run the sudo commands.

Insecure public/private key pair
The insecure public and private key pair is publicly available at https://github.
com/mitchellh/vagrant/tree/master/keys/.

An upcoming version of Vagrant will change how Vagrant works with
these insecure keys. When detected, they will be replaced with new keys for
your machine; however, at time of writing, this has not yet been released.

We need to copy the contents of the public key and paste it into the authorized_
hosts file. Provided we are logged in as the Vagrant user, we can run the following
command to let us edit this file:

nano ~/.ssh/authorized_hosts

If the .ssh folder does not already exist, we first need to create it using the mkdir
command. Alternatively, we can download the file contents and put it straight into
the authorized_hosts file:

wget
 https://raw.github.com/mitchellh/vagrant/master/keys/
 vagrant.pub –O ~/.ssh/authorized_hosts

The .ssh directory needs to have permissions of 0700, and the
authorized_hosts file needs to have permissions of 0644
(chmod 0644 ~/.ssh/authorized_keys).

Provisioners
Because Vagrant provides support for provisioners, we should install these into the
virtual machine so that Vagrant can tell them to provision our environments.

https://github.com/mitchellh/vagrant/tree/master/keys/
https://github.com/mitchellh/vagrant/tree/master/keys/

Chapter 8

[109]

Installing Puppet
Puppet is installed using the built-in package manager:

sudo apt-get install puppet

The version of Puppet in the various operating system repositories
may be slightly dated. Puppet can also be installed manually or
via the repository site provided by Puppet Labs. More information
is available on the Puppet labs website at http://docs.
puppetlabs.com/guides/installation.html.

Installing Chef
As per the Chef documentation at https://www.chef.io/download-chef-client/,
we can get a single command to install Chef for us:

curl -L https://www.chef.io/chef/install.sh | sudo bash

Cleaning up the VM
Before we package up the virtual machine into a Vagrant base box, let's clean up
some of the files we used. We made use of the tmp folder, so let's empty this. We
should also clean up our package manager's cache, as this uses additional space
when the base box is packaged:

rm –rf /tmp/*

sudo apt-get clean

Export
Finally, we use Vagrant's package subcommand on the host machine (not the guest)
to package up the box:

vagrant package --base vagrant-ubuntu-raring

The complete details of the package subcommand are available on the Vagrant
website (http://docs.vagrantup.com/v2/cli/package.html).

http://docs.puppetlabs.com/guides/installation.html
http://docs.puppetlabs.com/guides/installation.html
https://www.chef.io/download-chef-client/
http://docs.vagrantup.com/v2/cli/package.html

Creating Your Own Box

[110]

Summary
In this chapter, we learned how to create, a base box for our Vagrant projects from
scratch. This can be used to create base boxes from operating systems, which don't
necessarily have boxes available to download.

Now, we know how to create, manage, distribute, and even build development
environments from scratch for our projects!

Next, we will take a look at Vagrant Cloud, which lets us search for and discover
different base boxes as well as letting us distribute our own box—either to the public
or to a private team. Vagrant Cloud also has the functionality to allow us to share
our Vagrant development environment with others—be that to demonstrate the
functionality we have built on a Vagrant-supported project, or to provide SSH
access to a team member who can help us with support issues.

HashiCorp Atlas
HashiCorp Atlas (https://atlas.hashicorp.com), formerly Vagrant Cloud, is a
suite of online services provided by HashiCorp (the commercial company behind
Vagrant), which adds additional capabilities to Vagrant and brings together many
of their open source components. Primarily, Atlas supports two features:

• Vagrant Share: The ability to share access to your Vagrant environment and
to allow others to remotely connect to it

• Vagrant box discovery and sharing: The ability to share Vagrant boxes
with others, hosting the metadata for boxes, their versions, and facilitating
box updates

These features are available free of charge, though paying customers can gain access
to additional functionality, including the following:

• Custom and static domain names for Vagrant Share
• Private boxes that can be shared with specific teams privately
• Box hosting: Vagrant Cloud will actually store the box file on their platform

as well as the metadata
• Support for Windows and Mac Vagrant boxes
• Granular support for user access controls

In this chapter, you will learn about the following topics:

• How to discover and use boxes provided on Atlas
• How to distribute your own boxes on Atlas
• How to allow others to connect to your Vagrant machine through Atlas
• How to share your Vagrant machine through Atlas

https://atlas.hashicorp.com

HashiCorp Atlas

[112]

Discovering boxes
The Atlas website contains a directory of public boxes for Vagrant (https://atlas.
hashicorp.com/boxes/search). Within this directory, we can search for the specific
operating system or distribution version that we are interested in:

For each result, we can see the box name, which is formatted as the name of the
distributor followed by a slash, followed by the name or distribution name. In the
following case, we have the Ubuntu 12.04 LTS release that HashiCorp has provided
(named hashicorp/precise64):

If we click in a box, we can see which providers the box supports. In this case, we can
use the box with VirtualBox, VMware Fusion, and Hyper-V. It is important to use
boxes that support the provider we are using—not all boxes support all providers.

Installing new boxes
To install a public box, we use the vagrant box add command, and pass the name
of the box:

vagrant box add hashicorp/precise64

https://atlas.hashicorp.com/boxes/search
https://atlas.hashicorp.com/boxes/search

Chapter 9

[113]

The name of the box can either be a URL or file path to an existing box file
(for example, if we have one stored on our network that we wish to use) or
an Atlas box name, like in the preceding command.

Updating existing boxes
One of the key benefits of using Atlas for box discovery is that changes and
versions of these boxes can be managed. If a particular box contains a bug or
security vulnerability, distributors may update their boxes to fix these issues,
or contain new functionality. This can be useful, as it saves us the need to update
our provisioning configuration to make these updates.

When in a Vagrant projects folder, we can run the following command to check for
updates for the projects box and update it:

vagrant box update

This will download the new box; however, we won't see the effect of the new box
unless we destroy our Vagrant machine and rebuild it from the updated box.

If we want to update a specific box, as opposed to the one that is tied to the project
we are in, we can use the box flag to provide the name of the box we want to update:

vagrant box update --box the-box/name

Checking for outdated boxes
We can quickly check to see whether any of the boxes we installed are out of date,
by running the following command:

vagrant box outdated --global

If we omit the global flag, then the command is only within the context of the
current Vagrant project with the flag it relates to all boxes installed:

HashiCorp Atlas

[114]

Distributing boxes
To distribute boxes with Atlas, we need to create an account and log in to the Atlas
website (https://atlas.hashicorp.com/account/new). The username that we
select when registering is used as the prefix for boxes we distribute—unless, of
course, we go onto a paid plan, which has organizational support, or we collaborate
with others on a box. Once logged in, we need to click on the Create Box link to go to
the box creation form (https://atlas.hashicorp.com/boxes/new).

On this page, we need to provide a name and description for our box. As we are on
the free plan, we cannot make this a private box, so it will be made public:

https://atlas.hashicorp.com/account/new
https://atlas.hashicorp.com/boxes/new

Chapter 9

[115]

As the boxes distributed through Atlas can be versioned, to let us roll out new
updates to users of the box, we need to create an initial version for the box, along
with a description of what the version contains:

Next, we need to click on Create new provider to add a new provider that is
supported by this version of the box:

HashiCorp Atlas

[116]

Finally, we specify the provider, and provide a URL to where the box can be
downloaded. With the free version of Atlas, we need to provide a link to the
box, as there is no storage allowance for Vagrant Cloud to host the file for us:

Once a box has been created and published, it can be discovered and installed, as we
discussed in the Discovering boxes section, by the public, or by us using the name of
the box in our Vagrantfile, for example, mkpeacock/testbox.

Sharing and connecting with Atlas
With Atlas, there are three new Vagrant commands at our disposal, which are
as follows:

• vagrant connect

• vagrant share

• vagrant login

Logging Vagrant into Vagrant Cloud
In order to share our Vagrant environment, we need to connect our Vagrant
installation to our Vagrant Cloud account. We can check to see whether this is
already the case by running the following command:

vagrant login --check

This will check to see whether we are already logged in:

Chapter 9

[117]

As we are not logged in, we need to run vagrant login in order to log in. First, we are
prompted for our username or e-mail address from Atlas, and then for our password:

Once logged in, we can use the logout flag to log out of Atlas:

vagrant login --logout

Sharing a Vagrant virtual machine over
HTTP(S)
In order to share the web interface with a Vagrant virtual machine, the virtual
machine must either have its own IP address on our local network or an HTTP(S)
port forwarded from the guest to the host machine. Vagrant requires this so that
your host machine can connect to the relevant port on your virtual machine.

HashiCorp Atlas

[118]

Provided we have either given the virtual machine its own network address or
forward a port to a recognizable HTTP(S) port, then we can run the vagrant share
command to create a public URL for this machine. We can also specify the HTTP and
HTTPS ports that we are using on the virtual machine if Vagrant doesn't detect them
with the --http and --https flags:

After running vagrant share, Vagrant will generate a name and URL to access the
share from. As we are on a free plan, we cannot customize or reserve URLs. Our
terminal session is now locked to run this sharing session, so we need to leave this
running. If we visit the URL in a browser, we should be able to see whatever web
service we are running on our virtual machine:

To stop sharing, we need to close the terminal or stop the vagrant share command
from running:

Chapter 9

[119]

Sharing and connecting to a Vagrant virtual
machine
By default, vagrant share only shares HTTP(S) traffic. We can, however, pass the
--ssh flag to also share SSH access that will allow other Vagrant users to connect to
the machine:

vagrant share --ssh

After running this command, we will be prompted to provide and confirm a
password to be used to encrypt the SSH key so that the users are required to provide
a password when they connect. If required, this can be omitted with the --ssh-no-
password flag instead of --ssh. We can also make a single use SSH connection with
--ssh-once, as shown in the following screenshot:

As with a regular share command, we get a URL and a name. We can prevent
HTTP(S) from being shared by passing the --disable-http flag.

HashiCorp Atlas

[120]

Once the sharing process is running, we can provide the name and password to
whomever we want to be able to connect to the machine. They simply run the
vagrant connect --ssh difficult-elephant-4464 command (where the last
parameter is the name of the connection generated by Atlas) to start a connection
with the machine, and provide the password when prompted:

The user is then logged into the Vagrant machine!

Summary
In this chapter, we learned about the extra functionality offered by the Vagrant
Cloud service.

We discovered how to find third-party Vagrant boxes for use with our projects, how
to check for updates for boxes that use Atlas, and how to distribute our own base
boxes through Atlas. Finally, we looked at authenticating with Atlas to share our
Vagrant environment with our colleagues.

Now that we know more about the functionality offered by Vagrant, we can use it
effectively in our projects!

A Sample LEMP Stack
Now that we have a good knowledge of using Vagrant to manage software
development projects and how to use the Puppet provisioning tool, let's take a
look at how to use these tools to build a Linux, Nginx, MySQL, and PHP (LEMP)
development environment with Vagrant.

In this appendix, you will learn the following topics:

• How to update the package manager
• How to create a LEMP-based development environment in Vagrant,

including the following:
 ° How to install the Nginx web server
 ° How to customize the Nginx configuration file
 ° How to install PHP
 ° How to install and configure MySQL
 ° How to install e-mail sending services

With the exception of MySQL, we will create simple Puppet modules to install and
manage the software required. For MySQL, we will use the official Puppet module
from Puppet Labs; this module makes it very easy for us to install and configure all
aspects of MySQL.

Creating the Vagrant project
First, we want to create a new project, so let's create a new folder called lemp-stack
and initialize a new ubuntu/trusty64 Vagrant project within it by executing the
following commands:

mkdir lemp-stack

cd lemp-stack

vagrant init ubuntu/trusty64 ub

A Sample LEMP Stack

[122]

The easiest way for us to pull in the MySQL Puppet module is to simply add it as a
git submodule to our project. In order to add a git submodule, our project needs to
be a git repository, so let's initialize it as a git repository now to save time later:

git init

To make the virtual machine reflective of a real-world production server, instead of
forwarding the web server port on the virtual machine to another port on our host
machine, we will instead network the virtual machine. This means that we would
be able to access the web server via port 80 (which is typical on a production web
server) by connecting directly to the virtual machine.

In order to ensure a fixed IP address to which we can allocate a hostname on
our network, we need to uncomment the following line from our Vagrantfile by
removing the # from the start of the line:

config.vm.network "private_network", ip: "192.168.33.10"

The IP address can be changed depending on the needs of our project.

As this is a sample LEMP stack designed for web-based projects, let's configure our
projects directory to a relevant web folder on the virtual machine:

config.vm.synced_folder ".", "/var/www/project", type: "nfs"

We will still need to configure our web server to point to this folder; however, it is
more appropriate than the default mapping location of /vagrant.

Before we run our Puppet provisioner to install our LEMP stack, we should instruct
Vagrant to run the apt-get update command on the virtual machine. Without this,
it isn't always possible to install new packages. So, let's add the following line to our
Vagrant file within the |config| block:

config.vm.provision "shell", inline: "apt-get update"

As we will put our Puppet modules and manifests in a provision folder, we need to
configure Vagrant to use the correct folders for our Puppet manifests and modules as
well as the default manifest file. Adding the following code to our Vagrantfile will do
this for us:

config.vm.provision :puppet do |puppet|
 puppet.manifests_path = "provision/manifests"
 puppet.module_path = "provision/modules"
 puppet.manifest_file = "vagrant.pp"
end

Appendix

[123]

Creating the Puppet manifests
Let's start by creating some folders for our Puppet modules and manifests by
executing the following commands:

mkdir provision

cd provision

mkdir modules

mkdir manifests

For each of the modules we want to create, we need to create a folder within the
provision/modules folder for the module. Within this folder, we need to create a
manifests folder, and within this, our Puppet manifest file, init.pp. Structurally,
this looks something like the following:

|-- provision
| |-- manifests
| | `-- vagrant.pp
| `-- modules
| |-- our module
| |-- manifests
| `-- init.pp
`-- Vagrantfile

Installing Nginx
Let's take a look at what is involved to install Nginx through a module and manifest
file provision/modules/nginx/manifests/init.pp. First, we define our class,
passing in a variable so that we can change the configuration file we use for Nginx
(useful for using the same module for different projects or different environments
such as staging and production environments), then we need to ensure that the
nginx package is installed:

class nginx ($file = 'default') {

 package {"nginx":
 ensure => present
 }

Note that we have not closed the curly bracket for the nginx
class. That is because this is just the first snippet of the file; we
will close it at the end.

A Sample LEMP Stack

[124]

Because we want to change our default Nginx configuration file, we should update
the contents of the Nginx configuration file with one of our own (this will need to be
placed in the provision/modules/nginx/files folder; unless the file parameter is
passed to the class, the file default will be used):

file { '/etc/nginx/sites-available/default':
 source => "puppet:///modules/nginx/${file}",
 owner => 'root',
 group => 'root',
 notify => Service['nginx'],
 require => Package['nginx']
}

Finally, we need to ensure that the nginx service is actually running once it has
been installed:

service { "nginx":
 ensure => running,
 require => Package["nginx"]
 }
}

This completes the manifest. We do still, however, need to create a default
configuration file for Nginx, which is saved as provision/modules/nginx/files/
default. This will be used unless we pass a file parameter to the nginx class when
using the module. The sample file here is a basic configuration file, pointing to the
public folder within our synced folder. The server name of lemp-stack.local
means that Nginx will listen for requests on that hostname and will serve content
from our projects folder:

server {
 listen 80;

 root /var/www/project/public;
 index index.php index.html index.htm;

 server_name lemp-stack.local;

 location / {
 try_files $uri $uri/ /index.php?$query_string;
 }

 location ~ \.php$ {
 try_files $uri =404;
 fastcgi_split_path_info ^(.+\.php)(/.+)$;

Appendix

[125]

 #fastcgi_pass 127.0.0.1:9000;
 fastcgi_param SERVER_NAME $host;
 fastcgi_pass unix:/var/run/php5-fpm.sock;
 fastcgi_index index.php;
 fastcgi_intercept_errors on;
 include fastcgi_params;
 }

 location ~ /\.ht {
 deny all;
 }

 location ~* \.(jpg|jpeg|gif|css|png|js|ico|html)$ {
 access_log off;
 expires max;
 }

 location ~* \.svgz {
 add_header Content-Encoding "gzip";
 }
}

Because this configuration file listens for requests on lemp-stack.
local, we need to add a record to the hosts file on our host
machine, which will redirect traffic from lemp-stack.local to
the IP address of our virtual machine.

Installing PHP
To install PHP, we need to install a range of related packages, including the Nginx PHP
module. This would be in the file provision/modules/php/manifests/init.pp.

On more recent (within the past few years) Linux and PHP installations, PHP uses a
handler called php-fpm as a bridge between PHP and the web server being used. This
means that when new PHP modules are installed or PHP configurations are changed,
we need to restart the php-fpm service for these changes to take effect, whereas in the
past, it was often the web servers that needed to be restarted or reloaded.

A Sample LEMP Stack

[126]

To make our simple PHP Puppet module flexible, we need to install the php5-fpm
package and restart it when other modules are installed, but only when we use
Nginx on our server. To achieve this, we can use a class parameter, which defaults
to true. This lets us use the same module in servers that don't have a web server,
and where we don't want to have the overhead of the FPM service, such as a server
that runs background jobs or processing:

class php ($nginx = true) {

If the nginx parameter is true, then we need to install php5-fpm. Since this package
is only installed when the flag is set to true, we cannot have PHP and its modules
requiring or notifying the php-fpm package, as it may not be installed; so instead we
need to have the php5-fpm package subscribe to these packages:

 if ($nginx) {
 package { "php5-fpm":
 ensure => present,
 subscribe => [Package['php5-dev'], Package['php5-curl'],
Package['php5-gd'], Package['php5-imagick'], Package['php5-mcrypt'],
Package['php5-mhash'], Package['php5-pspell'], Package['php5-json'],
Package['php5-xmlrpc'], Package['php5-xsl'], Package['php5-mysql']]
 }
 }

The rest of the manifest can then simply be the installation of the various PHP
modules that are required for a typical LEMP setup:

 package { "php5-dev":
 ensure => present
 }

 package { "php5-curl":
 ensure => present
 }

 package { "php5-gd":
 ensure => present
 }

 package { "php5-imagick":
 ensure => present
 }

 package { "php5-mcrypt":

Appendix

[127]

 ensure => present
 }

 package { "php5-mhash":
 ensure => present
 }

 package { "php5-pspell":
 ensure => present
 }

 package { "php5-xmlrpc":
 ensure => present
 }

 package { "php5-xsl":
 ensure => present
 }

 package { "php5-cli":
 ensure => present
 }

 package { "php5-json":
 ensure => present
 }
}

Installing the MySQL module
Because we are going to use the Puppet module for MySQL provided by Puppet
Labs, installing the module is very straightforward; we simply add it as a git
submodule to our project with the following command:

git submodule add https://github.com/puppetlabs/puppetlabs-mysql.git
provision/modules/mysql

You might want to use a specific release for this module, as
the code changes on a semi-regular basis. A stable release
is available at https://github.com/puppetlabs/
puppetlabs-mysql/releases/tag/3.1.0.

https://github.com/puppetlabs/puppetlabs-mysql/releases/tag/3.1.0
https://github.com/puppetlabs/puppetlabs-mysql/releases/tag/3.1.0

A Sample LEMP Stack

[128]

Default manifest
Finally, we need to pull these modules together, and install them when our machine
is provisioned. To do this, we simply add the following modules to our vagrant.pp
manifest file in the provision/manifests folder.

Installing Nginx and PHP
We need to include our nginx class and optionally provide a filename for the
configuration file; if we don't provide one, the default will be used:

class {
 'nginx':
 file => 'default'
}

Similarly for PHP, we need to include the class and in this case, pass an nginx
parameter to ensure that it installs PHP5-FPM too:

class {
 'php':
 nginx => true
}

Hostname configuration
We should tell our Vagrant virtual machine what its hostname is by adding a host
resource to our manifest:

host { 'lemp-stack.local':
 ip => '127.0.0.1',
 host_aliases => 'localhost',
}

E-mail sending services
Because some of our projects might involve sending e-mails, we should install e-mail
sending services on our virtual machine. As these are simply two packages, it makes
more sense to include them in our Vagrant manifest, as opposed to their own modules:

package { "postfix":
 ensure => present
}

package { "mailutils":
 ensure => present
}

Appendix

[129]

MySQL configuration
Because the MySQL module is very flexible and manages all aspects of MySQL, there
is quite a bit for us to configure. We need to perform the following steps:

1. Create a database.
2. Create a user.
3. Give the user permission to use the database (grants).
4. Configure the MySQL root password.
5. Install the MySQL client.
6. Install the MySQL client bindings for PHP.

The MySQL server class has a range of parameters that can be passed to configure
it, including databases, users, and grants. So, first, we need to define what the
databases, users, and grants are that we want to be configured:

$databases = {
 'lemp' => {
 ensure => 'present',
 charset => 'utf8'
 },
}

$users = {
 'lemp@localhost' => {
 ensure => 'present',
 max_connections_per_hour => '0',
 max_queries_per_hour => '0',
 max_updates_per_hour => '0',
 max_user_connections => '0',
 password_hash => 'MySQL-Password-Hash',
 },
}

The password_hash parameter here is for a hash generated by
MySQL. You can generate a password hash by connecting to an
existing MySQL instance and running a query such as SELECT
PASSWORD('password').

A Sample LEMP Stack

[130]

The grant maps our user and database and specifies what permissions the user
can perform on that database when connecting from a particular host (in this case,
localhost—so from the virtual machine itself):

$grants = {
 'lemp@localhost/lemp.*' => {
 ensure => 'present',
 options => ['GRANT'],
 privileges => ['ALL'],
 table => 'lemp.*',
 user => 'lemp@localhost',
 },
}

We then pass these values to the MySQL server class. We also provide a root
password for MySQL (unlike earlier, this is provided in plain text), and we can
override the options from the MySQL configuration file. This is unlike our own
Nginx module that provides a full file—in this instance, the MySQL module provides
a template configuration file and the changes are replaced in that template to create a
configuration file:

class { '::mysql::server':
 root_password => 'lemp-root-password',
 override_options => { 'mysqld' => { 'max_connections' => '1024' } },
 databases => $databases,
 users => $users,
 grants => $grants,
 restart => true
}

As we will have a web server running on this machine, which needs to connect to
this database server, we also need the client library and the client bindings for PHP,
so that we can include them too:

include '::mysql::client'

class { '::mysql::bindings':
 php_enable => true
}

Appendix

[131]

Launching the virtual machine
In order to launch our new virtual machine, we simply need to run the following
command:

Vagrant up

As per Chapter 6, Provisioning Vagrant Machines with Puppet, Ansible, and Chef,
we should now see our VM boot and the various Puppet phases execute. If all
goes well, we should see no errors in this process.

Summary
In this chapter, we learned about the steps involved in creating a brand new Vagrant
project, configuring it to integrate with our host machine, and setting up a standard
LEMP stack using the Puppet provisioning tool. Now you should have a basic
understanding of Vagrant and how to use it to ensure that your software projects are
managed more effectively!

Index
A
Ansible

about 56
books, URL 55
commands, running 63
cron module 62
Galaxy, URL 63
group module, URL 63
installing 56, 57
inventory, creating 57
modules 58
operating systems, URL 56
playbooks 56
playbooks, creating 58
provisioning with 83
roles, using 63
software, installing 59
used, for server provision 64, 65
user module, URL 63

Ansible, file management
about 60
file, copying 60, 61
folders, creating 62
group module, creating 63
symlink, creating 61
user module, creating 63

Ansible software, installing
nginx package, installing 59
nginx service, running 60
package manager, updating 59

apt module
URL 59

Atlas
account, URL 114
box creation form, URL 114

boxes, discovering 112
boxes, distributing 114-116
boxes, URL 112
connecting with 116
existing boxes, updating 113
features 111
new boxes, installing 113
outdated boxes, checking for 113
sharing with 116
URL 111
Vagrant, connecting to

Vagrant Cloud 116, 117
Vagrant virtual machine, connecting to 119
Vagrant virtual machine, sharing over

HTTP(S) 117, 118
Vagrant virtual machine,

sharing to 119, 120
authentication, Vagrant

about 107
admin group 107
sudoers file 107, 108
user group 107

C
Chef

about 67, 68
Chef-solo, using 84
commands, running 74, 75
common resource functionalities 76
cookbooks, creating with 68
cookbooks, using 77
cron resource type, managing 74
groups, creating 75
groups, managing 75
installing 109

[134]

on Vagrant, provisioning with 83
recipes, creating with 68
resources 69
roles, URL 84
run anatomy, URL 77
sudoers file, updating 76
URL, for tutorial 77
used, for provisioning servers 77
users, creating 75, 76
users, managing 75
using, in client/server mode 85

Chef, file management
about 71
file, copying 71, 72
folders, creating 73
multiple folders, creating in single process

with looping 73
symlink, creating 72

Chef Infrastructure Automation Cookbook
URL 67

Chef, resource types
cron 69
execute 69
file 69
group 69
package 69
service 69
template 69
URL 69
user 69

Chef, software installing
about 69
nginx package, installing 70
nginx service, running 71
package manager, updating 70

Chef-solo
configuration, URL 77
using 84

commands
autorunning 29, 30

cookbooks
creating, with Chef 68

cron module
URL 62

F
file module

URL 61

G
group module

URL 63
Guest Additions, VirtualBox 106

H
HashiCorp Atlas. See Atlas
host and guest machine interaction,

managing
about 27
networking 28, 29
port forwarding 27
synced folders 28

hostname
configuring 128

I
Instant Chef Starter

URL 67
inventory, Ansible

creating 57

L
Linux, nginx, MySQL and

PHP (LEMP) 44, 121

M
manifests

about 128
e-mail sending, services 128
hostname configuration 128
MySQL configuration 129, 130
nginx, installing 128
PHP, installing 128

modules, Ansible
about 58

[135]

Apt 58
Copy 58
Git 58
Service 58
URL 58

multimachine project
destroying 97

multiple provisioners
using, on single project 86

multiple virtual machines
connecting, over SSH 91-93
defining 90
networking 93-95
provisioning 95, 96
using, with Vagrant 90

MySQL
configuring 129, 130
installing 127

N
Network File System (NFS) 28
networking 28, 29
nginx

installing 123-128
notify parameter 42

O
Opscode community site, Chef cookbooks

URL 77

P
package subcommand 109
parameters 41
PHP

installing 125-128
port forwarding 27
project

creating 19-22
provisioners

about 108
Chef, installing 109
Puppet, installing 109

provisioning
about 36, 37
overriding, via command line 86

with Ansible, on Vagrant 82, 83
with Chef, on Vagrant 83
with Puppet, on Vagrant 80
with SSH 85
with Vagrant 79

provisioning, options
Ansible 29
Chef 29
Puppet 29
Shell 29

Puppet
about 37
blog, URL 82
books, URL 36
classes 38
commands, running 48
configurable classes, creating 51-53
cron resource type, managing 48
default manifests 38-40
file management 45
group resource type, managing 49
idempotent feature 37
installing 109
modules 53
notify parameter 42
provisioning, in action 81, 82
provisioning with, on Vagrant 80
refreshonly parameter 42
resource 40
subscribe parameter 42
sudoers file, updating 50, 51
URL 82
used, for creating manifests 38
used, for creating modules 38
used, for server provision 53
user resource type, managing 49, 50
user resource type, URL 49
using, in client/server mode 82
using, in standalone mode 80, 81

Puppet, file management
about 45
file, copying 45
folders, creating 47
multiple folders, creating 47
symlink, creating 46

Puppet Forge
URL 53

[136]

Puppet manifests
creating 123
MySQL module, installing 127
nginx, installing 123-125
PHP, installing 125, 126
URL 127

Puppet, resources
executing, in stages 43
execution, ordering 41
requisites 41
types 40
types, URL 41

Puppet, resource types
cron 40
exec 40
file 40
group 40
package 40
service 40
user 40

Puppet software, installing
about 43
nginx package, installing 44
nginx service, running 45
package manager, updating 44

PuTTY
URL 27

R
recipes, Chef

creating 68
URL 77

refreshonly parameter 42

S
servers

provisioning, Chef used 77
SSH

multiple virtual machines,
connecting to 91-93

provisioning with 85
standalone mode

Puppet using 80, 81
subscribe parameter 42

sudoers file
about 107, 108
URL 107

supervisord
about 39
URL 38

supervisor module
URL 39

symlink
creating 46

synced folders 28

T
template module

URL 60

U
user module

URL 63

V
Vagrant

about 8, 33
authentication 107
configuration file 9
documentation, URL 100
download page 15
installing 15-17
multiple virtual machines, using 90
new base box, URL 100
project, creating 19-22, 121, 122
provisioning, options 30
provisioning with 79
provisioning, with Chef 83
provisioning, with Puppet 80
requisites 10
URL 8, 10, 27
Vagrant-controlled guest machines,

controlling 22
VirtualBox, installing 11-15
virtual machine, powering up 23, 24
virtual machine, resuming 25
virtual machine setup, approaches 35

[137]

virtual machine, shutting down 25
virtual machine, suspending 24

Vagrant authentication
insecure private key pair 108
insecure public key pair 108

Vagrant boxes
adding 31
add subcommand 31
current environments box, updating 33
listing 32
list subcommand 31, 32
managing 30, 31
outdated subcommand 31, 32
remove subcommand 31, 32
removing 32
repackage subcommand 31-33
repackaging 33
updates, checking for 32
update subcommand 31-33

Vagrant boxes, Atlas
discovering 112
distributing 114-116
existing boxes, updating 113
new boxes, installing 112

outdated boxes, checking for 113
Vagrant Cloud. See Atlas
Vagrant virtual machine, Atlas

sharing, over HTTP(S) 117, 118
VirtualBox

installing 11-15
machine, preparing 100-106

virtual machine (VM)
cleaning up 109
launching 131

virtual machine, Vagrant-controlled
connecting to, over SSH 27
managing 22
off Vagrantfile changes, updating 26
powering up 23
resuming 25
shutting down 25
starting, from scratch 25
suspending 24

Y
Yaml Ain't Markup Language (YAML) 56

Thank you for buying
Creating Development Environments with Vagrant

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Configuration Management with
Chef-Solo
ISBN: 978-1-78398-246-2 Paperback: 116 pages

A comprehensive guide to get you up and running
with Chef-Solo

1. Explore various techniques that will help you
save time in Infrastructure management.

2. Use the power of Chef-Solo to run your servers
and configure and deploy applications in an
automated manner.

3. This book will help you to understand the
need for the configuration management tool
and provides you with a step-by-step guide to
maintain your existing infrastructure.

OpenStack Cloud Computing
Cookbook
Second Edition
ISBN: 978-1-78216-758-7 Paperback: 396 pages

Over 100 recipes to successfully set up and manage
your OpenStack cloud environments with complete
coverage of Nova, Swift, Keystone, Glance, Horizon,
Neutron, and Cinder

1. Updated for OpenStack Grizzly.

2. Learn how to install, configure, and manage
all of the OpenStack core projects including
new topics like block storage and software
defined networking.

3. Learn how to build your Private Cloud
utilizing DevOps and Continuous Integration
tools and techniques.

Please check www.PacktPub.com for information on our titles

Rapid Ghost [Video]
ISBN: 978-1-78355-299-3 Duration: 01:23 hours

Experience effortless blogging with Ghost

1. Create attractive blogs using the amazing new
blogging platform.

2. Configure and customize your Ghost blog
using custom themes and add-ons.

3. Get a better understanding of Ghost
by setting up your own blog with
easy-to-follow instructions.

Performance Testing with
JMeter 2.9
ISBN: 978-1-78216-584-2 Paperback: 148 pages

Learn how to test web applications using Apache
JMeter with practical, hands-on examples

1. Create realistic and maintainable scripts for
web applications.

2. Use various JMeter components to achieve
testing goals.

3. Removal of unnecessary errors and
code compilation.

4. Acquire skills that will enable you to leverage
the cloud for distributed testing.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Vagrant
	Introducing Vagrant
	Requirements for Vagrant
	Getting started
	Installing VirtualBox
	Installing Vagrant

	Summary

	Chapter 2: Managing Vagrant
Boxes and Projects
	Creating our first Vagrant project
	Managing Vagrant-controlled guest machines
	Powering up a Vagrant-controlled virtual machine
	Suspending a virtual machine
	Resuming a virtual machine
	Shutting down a virtual machine
	Starting from scratch
	Updating based on Vagrantfile changes
	Connecting to the virtual machine over SSH

	Managing integration between host and guest machines
	Port forwarding
	Synced folders
	Networking

	Autorunning commands
	Managing Vagrant boxes
	Adding Vagrant boxes
	Listing Vagrant boxes
	Checking for updates
	Removing Vagrant boxes
	Repackaging a Vagrant box
	Updating the current environment's box

	Too many Vagrants!
	Summary

	Chapter 3: Provisioning with Puppet
	Provisioning
	Puppet
	Creating modules and manifests with Puppet
	Puppet classes
	Default Puppet manifests
	Resources
	Resource execution ordering

	The notify, subscribe, and refreshonly parameters
	Executing resources in stages

	Installing software
	Updating our package manager
	Installing the nginx package
	Running the nginx service

	File management
	Copying a file
	Creating a symlink
	Creating folders
	Creating multiple folders in one go

	Cron management
	Running commands
	Managing users and groups
	Creating groups
	Creating users
	Updating the sudoers file

	Creating configurable classes
	Puppet modules
	Using Puppet to provision servers

	Summary

	Chapter 4: Using Ansible
	Understanding Ansible
	Installing Ansible
	Creating an inventory

	Creating Ansible playbooks
	Modules – what Ansible can do
	Installing software
	Updating our package manager
	Installing the nginx package
	Running the nginx service

	Understanding file management
	Copying a file
	Creating a symlink
	Creating folders

	Managing cron
	Running commands
	Managing users and groups
	Creating groups
	Creating users

	Using Ansible roles
	Using Ansible to provision servers

	Summary

	Chapter 5: Using Chef
	Knowing about Chef
	Creating cookbooks and recipes with Chef
	Resources – what Chef can do
	Installing software
	Updating our package manager
	Installing the nginx package
	Running the nginx service

	Understanding file management
	Copying a file
	Creating a symlink
	Creating folders
	Creating multiple folders in a single process with looping

	Managing cron
	Running commands
	Managing users and groups
	Creating groups
	Creating users
	Updating the sudoers file

	Knowing common resource functionalities
	Using Chef cookbooks
	Using Chef to provision servers

	Summary

	Chapter 6: Provisioning Vagrant Machines with Puppet, Ansible, and Chef
	Provisioning within Vagrant
	Provisioning with Puppet on Vagrant
	Using Puppet in standalone mode
	Puppet provisioning in action

	Using Puppet in client/server mode

	Provisioning with Ansible on Vagrant
	Provisioning with Chef on Vagrant
	Using Chef-solo
	Using Chef in client/server mode

	Provisioning with SSH – a recap
	Using multiple provisioners on a single project
	Overriding provisioning via the command line
	Summary

	Chapter 7: Working with Multiple Machines
	Using multiple machines with Vagrant
	Defining multiple virtual machines

	Connecting to the multiple virtual machines over SSH
	Networking the multiple virtual machines
	Provisioning the machines separately

	Destroying a multimachine project
	Summary

	Chapter 8: Creating Your Own Box
	Getting started
	Preparing the VirtualBox machine
	VirtualBox Guest Additions
	Vagrant authentication
	Vagrant user and admin group
	The sudoers file
	Insecure public/private key pair

	Provisioners
	Installing Puppet
	Installing Chef

	Cleaning up the VM
	Export
	Summary

	Chapter 9: HashiCorp Atlas
	Discovering boxes
	Installing new boxes
	Updating existing boxes
	Checking for outdated boxes

	Distributing boxes
	Sharing and connecting with Atlas
	Logging Vagrant into Vagrant Cloud
	Sharing a Vagrant virtual machine over HTTP(S)
	Sharing and connecting to a Vagrant virtual machine

	Summary

	Appendix: A Sample LEMP Stack
	Creating the Vagrant project
	Creating the Puppet manifests
	Installing Nginx
	Installing PHP

	Installing the MySQL module
	Default manifest
	Installing Nginx and PHP
	Hostname configuration
	E-mail sending services
	MySQL configuration

	Launching the virtual machine
	Summary

	Index

