
www.allitebooks.com

http://www.allitebooks.org

Dart Cookbook

Over 110 incredibly effective, useful, and hands-on recipes
to design Dart web client and server applications

Ivo Balbaert

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Dart Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2014

Production reference: 1171014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-962-1

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Ivo Balbaert

Reviewers
Sergey Akopkokhyants

Claudio d'Angelis

Joris Hermans

Acquisition Editor
Sam Wood

Content Development Editor
Azharuddin Sheikh

Technical Editor
Anand Singh

Copy Editors
Sarang Chari

Adithi Shetty

Project Coordinator
Kinjal Bari

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Indexer
Monica Ajmera Mehta

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

About the Author

Ivo Balbaert is currently a lecturer in (Web) Programming and Databases at CVO Antwerpen
(www.cvoantwerpen.be), a community college in Belgium. He received a PhD in Applied
Physics from the University of Antwerp in 1986. He worked for 20 years in the software
industry as a developer and consultant for several companies, and for 10 years as a project
manager at the Antwerp University Hospital. In 2000, he switched to partly teaching and partly
developing software (KHM Mechelen, CVO Antwerp).

Ivo also wrote an introductory book in Dutch about developing in Ruby and Rails called
Programmeren met Ruby en Rails, Van Duuren Media, 2009. In 2012, he authored a book on
the Go programming language called The Way To Go, iUniverse. Last year, in collaboration with
Dzenan Ridzanovic, he also wrote Learning Dart, Packt Publishing.

I would like to thank my wife, Christiane, for her support and patience during
the development of this book.

www.allitebooks.com

www.cvoantwerpen.be
http://www.allitebooks.org

About the Reviewers

Sergey Akopkokhyants is a software architect with more than 20 years of professional
experience in designing and developing client- and server-side applications. He is also a
certified Java developer and project manager. He has general knowledge of many tools,
languages, and platforms. For the last 5 years, he has been responsible for customizing and
producing web-oriented applications for wholesale business management solutions projects;
he has been doing this for several worldwide mobile communication companies. Sergey's
responsibilities include architecture design and guidance of client software development
using Flex, ActionScript, HTML, JavaScript, and client-server integration with Java. He is also
the founder of and an active contributor to several open source projects on GitHub, including
the Dart Web Toolkit (DWT) and Angular Dart UI. He is passionate about web design and
development and likes sharing his expertise with others, helping them to increase their skills
and productivity. Also, he was one of the reviewers of Learning Dart, Packt Publishing.

Claudio d'Angelis is an Italian programmer with 10 years of experience in document
digitization, web development, and Linux administration. As an early adopter of Dart,
he continues to contribute to the community. His contributions include writing articles,
open source projects, speaking at conferences, and presenting episodes on Google
Developers Live.

Joris Hermans is a web developer enthusiast who works for Truvo, an online directory
company. He is also the proud owner of lots of Dart packages, a real-time dart framework
named force, a search engine named Bounty Hunter, a persistent abstraction layer named
cargo, a dependency injection for Dart called wired, and so on. He also likes to speak about
the Web and Dart, so it is possible that you will meet him at a conference.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Working with Dart Tools	 7

Introduction	 7
Configuring the Dart environment	 8
Setting up the checked and production modes	 9
Rapid Dart Editor troubleshooting	 12
Hosting your own private pub mirror	 14
Using Sublime Text 2 as an IDE	 15
Compiling your app to JavaScript	 17
Debugging your app in JavaScript for Chrome	 19
Using the command-line tools	 21
Solving problems when pub get fails	 23
Shrinking the size of your app	 24
Making a system call	 25
Using snapshotting	 26
Getting information from the operating system	 27

Chapter 2: Structuring, Testing, and Deploying an Application	 31
Introduction	 32
Exiting from an app	 32
Parsing command-line arguments	 33
Structuring an application	 35
Using a library from within your app	 38
Microtesting your code with assert	 40
Unit testing a Polymer web app	 41
Adding logging to your app	 44
Documenting your app	 47
Profiling and benchmarking your app	 49

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Publishing and deploying your app	 51
Using different settings in the checked and production modes	 52

Chapter 3: Working with Data Types	 55
Introduction	 56
Concatenating strings	 56
Using regular expressions	 57
Strings and Unicode	 59
Using complex numbers	 60
Creating an enum	 64
Flattening a list	 67
Generating a random number within a range	 68
Getting a random element from a list	 69
Working with dates and times	 70
Improving performance in numerical computations	 73
Using SIMD for enhanced performance	 76

Chapter 4: Object Orientation	 81
Introduction	 81
Testing and converting types	 82
Comparing two objects	 84
Using a factory constructor	 86
Building a singleton	 90
Using reflection	 91
Using mixins	 95
Using annotations	 97
Using the call method	 99
Using noSuchMethod	 100
Making toJSON and fromJSON methods in your class	 103
Creating common classes for client and server apps	 106

Chapter 5: Handling Web Applications	 109
Introduction	 110
Responsive design	 110
Sanitizing HTML	 111
Using a browser's local storage	 113
Using application cache to work offline	 116
Preventing an onSubmit event from reloading the page	 119
Dynamically inserting rows in an HTML table	 120
Using CORS headers	 124
Using keyboard events	 125
Enabling drag-and-drop	 127

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Enabling touch events	 132
Creating a Chrome app	 135
Structuring a game project	 140
Using WebGL in your app	 142
Authorizing OAuth2 to Google services	 146
Talking with JavaScript	 150
Using JavaScript libraries	 154

Chapter 6: Working with Files and Streams	 157
Introduction	 157
Reading and processing a file line by line	 158
Writing to a file	 162
Searching in a file	 163
Concatenating files	 166
Downloading a file	 169
Working with blobs	 172
Transforming streams	 174

Chapter 7: Working with Web Servers	 179
Introduction	 179
Creating a web server	 180
Posting JSON-formatted data	 183
Receiving data on the web server	 186
Serving files with http_server	 191
Using sockets	 193
Using WebSockets	 196
Using secure sockets and servers	 202
Using a JSON web service	 205

Chapter 8: Working with Futures, Tasks, and Isolates	 209
Introduction	 209
Writing a game loop	 210
Error handling with Futures	 212
Scheduling tasks using Futures	 217
Running a recurring function	 219
Using isolates in the Dart VM	 222
Using isolates in web apps	 228
Using multiple cores with isolates	 231
Using the Worker Task framework	 233

Chapter 9: Working with Databases	 237
Introduction	 237
Storing data locally with IndexedDB	 238

www.allitebooks.com

http://www.allitebooks.org

iv

Table of Contents

Using Lawndart to write offline web apps	 242
Storing data in MySQL	 245
Storing data in PostgreSQL	 250
Storing data in Oracle	 255
Storing data in MongoDB	 258
Storing data in RethinkDB	 262

Chapter 10: Polymer Dart Recipes	 267
Introduction	 268
Data binding with polymer.dart	 268
Binding and repeating over a list	 274
Binding to a map	 276
Using custom attributes and template conditionals	 278
Binding to an input text field or a text area	 281
Binding to a checkbox	 282
Binding to radio buttons	 284
Binding to a selected field	 286
Event handling	 288
Polymer elements with JavaScript interop	 290
Extending DOM elements	 292
Working with custom elements	 294
Automatic node finding	 297
Internationalizing a Polymer app	 299

Chapter 11: Working with Angular Dart	 303
Introduction	 303
Setting up an Angular app	 304
Using a controller	 306
Using a component	 310
Using formatters as filters	 314
Creating a view	 317
Using a service	 319
Deploying your app	 321

Index	 325

Preface
Dart is the new open source programming language for the Web, developed by Google with
a steadily growing popularity; it is a single language for both the client and server, which is
appropriate for a full range of devices on the Web—including phones, tablets, laptops, and
servers. It encompasses the lessons of the last two decades of web programming. This book
provides you with a broad range of step-by-step recipes that will increase your expertise in
writing all kinds of Dart applications, including web apps, scripts, and server-side apps. It can be
used as a companion to Learning Dart, Dzenan Ridzanovic and Ivo Balbaert, Packt Publishing.

What this book covers
Chapter 1, Working with Dart Tools, talks about increasing your mastery of the Dart tools and
platform. We discuss some of the more advanced and hidden features of the Dart Editor, such
as configuration, compilation to JavaScript, and the pub package manager. When relevant, we
also take a look at how to perform tasks with command-line tools.

Chapter 2, Structuring, Testing, and Deploying an Application, focuses mainly on all the
different tasks in the life cycle of your project that make it more professional, helping you
save a lot of time during the maintenance phase. This includes structuring the project and
installing a logging tool in it and then testing, documenting, profiling, and publishing it.

Chapter 3, Working with Data Types, is about working with the different data types Dart has
to offer. We will talk about the basic data types as well as strings, random numbers, complex
numbers, dates and times, enums, and lists. Along the way, we will cover many tricks that will
help you out in specific circumstances.

Chapter 4, Object Orientation, delves deeper into the object-oriented nature of Dart to
find some new techniques and insights that will help us to be more productive in building
our apps.

Chapter 5, Handling Web Applications, covers a wide range of web-related topics dealing with
safety, browser storage, caching, event handling, WebGL, and of course, Dart working together
with JavaScript.

Preface

2

Chapter 6, Working with Files and Streams, shows you how to work with files in different
circumstances, both in synchronous and asynchronous ways. We will delve into the code
to download a file both on a web and server clients, with blobs as a special case. We also
discuss how transforming a stream works.

Chapter 7, Working with Web Servers, looks at how you can write full-fledged and performant
web servers in Dart, more specifically how to receive data on the server, how to serve files,
and how to deploy a web service. Sockets and their secure variants, as well as web sockets,
are also discussed.

Chapter 8, Working with Futures, Tasks, and Isolates, concentrates on the asynchronous tools
in Dart to write elegant code in future and combine their possibilities with the execution of
tasks and isolates to enhance the concurrency of our apps.

Chapter 9, Working with Databases, explains how to store data in databases, on the
client or server or both. On the client side, we look at IndexedDB and the Lawndart data
manager. Then, we investigate how to store data on the server in SQL as well as NoSQL
database systems.

Chapter 10, Polymer Dart Recipes, shows how to use Polymer to modularize the way a web
client interface is built by using web components that encapsulate structure, style, and
behavior. The structure and style come from a combination of HTML5 and CSS with special
extensions that enable two-way data binding. Behavior is described by code contained in a
class that hooks up with the component.

Chapter 11, Working with Angular Dart, covers how Angular makes it possible to write web-
based apps with Model-View-Controller (MVC) capabilities in order to make both development
and testing easier. The templating system is discussed along with controllers, components,
views, formatters, and services.

What you need for this book
To work with this book's code, you need the Dart SDK and Dart Editor, which you can
download from www.dartlang.org. Simply unzip the downloaded file and you are good to
go. Because Dart Editor is based on Eclipse, you also need a Java Runtime (http://www.
oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.
html). Choose the appropriate version for your system (32-bit or 64-bit); after the download,
double-click on the .exe file to install it.

www.dartlang.org
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html

Preface

3

Who this book is for
If you want to become a better Dart developer and get insights and tips on how to put that
knowledge into practice, then this book is for you. Because Dart runs on both clients and
servers, web, mobile, and server-side developers alike can benefit from these recipes. The
book assumes you know the basics of Dart and have some Dart code. You should also have a
basic knowledge of HTML and how web applications with browser clients and servers work.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "In the
checked mode, types are checked by calling assertions of the form assert (var1 is T),
to control that var1 is of type T".

A block of code is set as follows:

main() {
 // running an external program process without interaction:
Process.run('notepad', ['tst.txt']).then((ProcessResultrs){
print(rs.exitCode);
print(rs.stdout);
print(rs.stderr);
 });
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

main() {
 // running an external program process without interaction:
Process.run('notepad', ['tst.txt']).then((ProcessResultrs){
print(rs.exitCode);
print(rs.stdout);
print(rs.stderr);
 });
}

Preface

4

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "First try this; right-click on
your project and select Close Folder."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

1
Working with Dart Tools

In this chapter, we will cover the following recipes:

ff Configuring the Dart environment

ff Setting up the checked and production modes

ff Rapid Dart Editor troubleshooting

ff Hosting your own private pub mirror

ff Using Sublime Text 2 as an IDE

ff Compiling your app to JavaScript

ff Debugging your app in JavaScript for Chrome

ff Using the command-line tools

ff Solving problems when pub get fails

ff Shrinking the size of your app

ff Making a system call

ff Using snapshotting

ff Getting information from the operating system

Introduction
This chapter is about increasing our mastery of the Dart platform. Dart is Google's new language
for the modern web, web clients, as well as server applications. Compared to JavaScript, Dart
is a higher-level language so it will yield better productivity. Moreover, it delivers increased
performance. To tame all that power, we need a good working environment, which is precisely
what Dart Editor provides. Dart Editor is quite a comprehensive environment in its own right and
it is worthwhile to know the more advanced and hidden features it exposes. Some functionalities
are only available in the command-line tools, so we must discuss these as well.

Working with Dart Tools

8

Configuring the Dart environment
This recipe will help customize the Dart environment according to our requirements. Here, we
configure the following:

ff Defining a DART_SDK environment variable

ff Making dart-sdk\bin available for the execution of the Dart command-line tools

Getting ready
We assume that you have a working Dart environment installed on your machine. If not, go
to https://www.dartlang.org/tools/download.html and choose Option 1 for your
platform, which is the complete bundle. Downloading and uncompressing it will produce a
folder named dart, which will contain everything you need. Put this in a directory of your
choice. This could be anything, but for convenience keep it short, such as d:\dart on
Windows or ~/dart on Linux. On OS X, you can just drop the directory in the App folder.

How to do it...
1.	 Create a DART_SDK environment variable that contains the path to the dart-sdk

folder. On Windows, create and set DART_SDK to d:\dart\dart-sdk or <your-
dart-sdk-path>\dart-sdk when using a dart from another folder (if you need
more information on how to do this, refer to http://www.c-sharpcorner.com/
UploadFile/6cde20/use-of-environment-variable-in-windows-8/).
On Linux, add this to your configuration file .bashrc and/or .profile using the
export DART_SDK=~/dart/dart-sdk code. On OS X, export DART_SDK=/
Applications/dart/dart-sdk or in general export DART_SDK=/path/to/
dart-sdk.

2.	 The installation directory has a subfolder dart-sdk\bin, which contains the
command-line tools. Add this subfolder to the path of your environment. On Windows,
add %DART_SDK%\bin instead to the front of the path (system environment) variable
and click on OK. On Linux or OS X, add export PATH=$PATH:$DART_SDK/bin to
your configuration file.

3.	 Reset your environment configuration file or reboot your machine afterwards for the
changes to take effect.

https://www.dartlang.org/tools/download.html
http://www.c-sharpcorner.com/UploadFile/6cde20/use-of-environment-variable-in-windows-8/
http://www.c-sharpcorner.com/UploadFile/6cde20/use-of-environment-variable-in-windows-8/

Chapter 1

9

How it works...
Setting the DART_SDK environment variable, for example, enables plugins such as dart-maven
to search for the Dart SDK (dart-maven is a plugin that provides integration for Google Dart
into a maven-build process). If the OS of your machine knows the path where the Dart tools
reside, you can start any of them (such as the Dart VM or dartanalyzer) anywhere in a terminal
or command-line session.

Test the environment variable by typing dart in a terminal and press Enter. You should see
the following help text:

Usage: dart [<vm-flags>] <dart-script-file> [<dart-options>]

Executes the Dart script passed as <dart-script-file>

Setting up the checked and production
modes

When developing or maintaining, an app's execution speed is not so important, but
information about the program's execution is. On the other hand, when the app is put in a
customer environment to run, the requirements are nearly the opposite; speed is of utmost
importance, and the less information the program reveals about itself, the better. That's why
when an app runs in the Dart Virtual Machine (VM), it can do so in two runtime modes:

ff The Checked mode: This is also known as the debug mode. The checked mode is
used during development and gives you warnings and errors of possible bugs in the
code.

ff The Production mode: This is also known as the release mode. You deploy an app
in the production mode when you want it to run as fast as possible, unhindered by
code checks.

Getting ready
Open your app in Dart Editor and select the startup web page or Dart script, usually
web\index.html.

www.allitebooks.com

http://www.allitebooks.org

Working with Dart Tools

10

How to do it...
1.	 When working in Dart Editor, the checked mode is the default mode. If you want the

production mode, open the Run menu and select Manage Launches (Ctrl + Shift +
M). The Manage Launches window appears, as shown in the following screenshot:

The Manage Launches window

2.	 Under Dartium settings, you will see the checkbox Run in checked mode. (If you
have selected a Dart script, it will be under the header VM settings.) Uncheck this to
run the script in the production mode. Next, click on Apply and then on Close, or on
Run immediately. This setting will remain in place until you change it again.

Scripts that are started on the command line (or in a batch file) with the dart command run
in the Dart VM and thus in the production mode. If you want to run the Dart VM in the checked
mode, you have to explicitly state that with the following command:

dart –c script.dart or: dart --checked script.dart

You can start Dartium (this is Chromium with the Dart VM) directly by launching the Chrome
executable from dart\chromium; by default, it runs Dart Editor in the production mode. If
you would like to start Dartium in the checked mode, you can do this as follows:

ff On Windows, in the dart\chromium folder, click on the chrome file

ff On Linux, in the ~/dart/chromium folder, open the ./chrome file

ff On OS X, open the DART_FLAGS folder and then open path/Chromium.app

Chapter 1

11

Verify this setting by going to the following address in the Chrome browser that you just started
chromium://version.

When a web app runs in the Dart VM in Chrome, it will run in the production mode, by default.

How it works...
In the checked mode, types are checked by calling assertions of the form assert (var1 is
T) to make sure that var1 is of type T. This happens whenever you perform assignments,
pass parameters to a function, or return results from a function.

However, Dart is a dynamic language where types are optional. That's why the VM must, in
the production mode, execute your code as if the type annotations (such as int n) do not
exist; they are effectively thrown away. So at runtime, the following statement int x = 1 is
equivalent to var x = 1.

A binding x is created but the type annotation is not used.

Avoiding type checks makes the production mode a lot faster. Also, the VM
uses the type inference to produce faster code; it observes the type of the
value (here, 1) assigned to x and optimizes accordingly.

There's more...
With the checked mode, Dart helps you catch type errors during development. This is in
contrast to the other dynamic languages, such as Python, Ruby, and JavaScript, where
these are only caught during testing, or much worse, they provoke runtime exceptions. You
can easily check whether your Dart app runs in the checked mode or not by calling the
function isCheckedMode() from main() (see the script test_checked_mode\bin\
test_checked_mode.dart in the Chapter 1 folder of the code bundle), as shown in the
following code:

main() {
 isCheckedMode();
 // your code starts here
}

void isCheckedMode() {
 try {
 int n = '';
 throw new Exception("Checked Mode is disabled!");
 } on TypeError {

chromium://version

Working with Dart Tools

12

 print("Checked Mode is enabled!");
 }
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

The exception message will be shown in the browser console. Be sure to remove this call
or comment it out before deploying it to the production mode; we don't want an exception
at runtime!

See also
ff The Compiling your app to JavaScript recipe of this chapter for how to enable the

checked mode in the JavaScript version of the app

ff The Using the command-line tools recipe of this chapter for other options

Rapid Dart Editor troubleshooting
Dart Editor is based upon the Eclipse Integrated Development Environment (IDE), so it needs
the Java VM to run. Sometimes, problems can arise because of this; if this is the case, be
sure to consult the Dart Editor Troubleshooting page on the Dart website at https://www.
dartlang.org/tools/editor/troubleshoot.html.

Getting ready
Some of the JVM settings used by Dart Editor are stored in the DartEditor.ini file in
the dart installation directory. This typically contains the following settings (on a Windows
system):

-data
@user.home\DartEditor
-vmargs
-d64
-Dosgi.requiredJavaVersion=1.6
-Dfile.encoding=UTF-8
-XX:MaxPermSize=128m
-Xms256m
-Xmx2000m

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://www.dartlang.org/tools/editor/troubleshoot.html
https://www.dartlang.org/tools/editor/troubleshoot.html

Chapter 1

13

The line beneath –data will read @user.home/.dartEditor on a
Linux system.

How to do it...
If you notice strange or unwanted behavior in the editor, deleting the settings folder pointed
to by –data and its subfolders can restore things to normal. This folder can be found at
different locations depending on the OS; the locations are as follows:

ff On a Windows system, C:\Users\{your username}\DartEditor

ff On a Linux system, $HOME/.dartEditor

ff On an OS X system, $HOME/Library/Application Support/DartEditor

Deleting the settings folder doesn't harm your system because a new settings folder is created
as soon as you reopen Dart Editor. You will have to reload your projects though. If you want to
save the old settings, you can rename the folder instead of just deleting it; this way, you can
revert to the old settings if you ever want to.

How it works...
The settings for data points to the DartEditor folder are in the users home directory, which
contains various settings (the metadata) for the editor. Clearing all the settings removes the
metadata the editor uses.

There's more...
The -d64 or –d32 value specifies the bit width necessary for the JVM. You can check these
settings for your installation by issuing the command java –version in a terminal session,
whose output will be as follows:

java version "1.7.0_51"

Java(TM) SE Runtime Environment (build 1.7.0_51-b13)

Java HotSpot(TM) 64-Bit Server VM (build 24.51-b03, mixed mode)

If this does not correspond with the –d setting, make sure that your downloaded Dart Editor
and the installed JVM have the same bit width, by downloading a JVM for your bit width.

Working with Dart Tools

14

If you work with many Dart projects and/or large files, the memory
consumption of the JVM will grow accordingly and your editor will become very
slow and unresponsive.

Working within a 32-bit environment will pretty much limit you to 1GB memory
consumption, so if you see this behavior, it is recommended to switch to
a 64-bit system (Dart Editor and JVM). You can then also set the value of
the –Xmx parameter (which is by default set to 2000m = 2 GB) to a higher
setting, according to the amount of memory you have installed. This will visibly
improve the loading and working speed of your editor!

If your JVM is not installed in the default location, you can add the following line to the .ini
file in the line before -vmargs:

-vm

 /full/path/to/java

If you face a problem, it might be solved by upgrading Dart SDK and the Dart Editor to the latest
version. In the Dart Editor menu, select Help and then About Dart Editor. If a new version is
available, this will automatically download, and when done, click on Apply the update.

Hosting your own private pub mirror
Another possibility for when the pub repository is not reachable (because you have no Internet
access or work behind a very strict firewall) is to host your own private pub mirror.

How to do it...
Follow these steps to host your own private pub mirror:

1.	 You need a server that speaks to the pub's HTTP API. Documentation on that
standalone API does not yet exist, but the main pub server running at pub.
dartlang.org is open source with its code living at https://github.com/
dart-lang/pub-dartlang. To run the server locally, go through these steps:

1.	 Install the App Engine SDK for Python.

2.	 Verify that its path is in $PATH.

3.	 Install the pip installation file, beautifulsoup4, and pycrypto webtest packages.

4.	 From the top-level directory, run this command to start the pub server
dev_appserver.py app.

5.	 Verify that it works in your browser with http://localhost:8080/.

pub.dartlang.org
pub.dartlang.org
https://github.com/dart-lang/pub-dartlang
https://github.com/dart-lang/pub-dartlang
http://localhost:8080/

Chapter 1

15

2.	 You need to set a PUB_HOSTED_URL environment variable to point to the URL of your
mirror server, so that the pub will look there to download the hosted dependencies,
for example, PUB_HOSTED_URL = http://me:mypassword@127.0.0.1:8042.

3.	 Manually upload the packages you need to your server, visit http://
localhost:8080/admin (sign in as an administrator), go to the Private Key tab,
and enter any string into the private key field.

How it works...
The server from https://pub.dartlang.org/ is written in Python and is made to run on
Google App Engine, but it can be run from an Intranet as well.

Using Sublime Text 2 as an IDE
Dart Editor is a great environment, but Sublime Text also has many functionalities and can be
used with many other languages, making it the preferred editor for many developers.

Getting ready
You can download Sublime Text free of cost for evaluation, however, for continued use, a
license must be purchased from http://www.sublimetext.com/.

Tim Armstrong from Google developed a Dart plugin for Sublime Text, which can be
downloaded from GitHub at https://github.com/dart-lang/dart-sublime-bundle,
or you can find it in the code download with this book. The easiest way to get started is to
install the Package Control plugin first by following the instructions at https://sublime.
wbond.net/installation#st2.

How to do it...
In Sublime Text, press Ctrl + Shift + P (Windows or Linux) or Cmd + Shift + P (OS X; this goes
for all the following commands), click on Install Package to choose that option, and then
click and choose Dart to install the plugin. Any Dart file you then open shows the highlighted
syntax, matching brackets, and so on.

Also, click on Menu Preferences, Settings, and then on User and add the path to your dart-
sdk as the first line in this JSON file:

{
"dartsdk_path": "path\to\dart-sdk",
…
}

http://localhost:8080/admin
http://localhost:8080/admin
https://pub.dartlang.org/
http://www.sublimetext.com/
https://github.com/dart-lang/dart-sublime-bundle
https://sublime.wbond.net/installation#st2
https://sublime.wbond.net/installation#st2

Working with Dart Tools

16

If you want to manually install this plugin, copy the contents of the dart-sublime-bundle-
master folder to a new directory named Dart in the Sublime packages directory. This
directory has different locations on different OS. They are as follows:

ff On Windows, this will likely be found at C:\Users\{your username}\AppData\
Roaming\Sublime Text 2\Packages

ff On Linux, this will likely be found at $HOME/Sublime Text 2/Pristine Packages

ff On OSX, this will likely be found at ~/Library/Application Support/Sublime
Text 2/Packages

How it works...
The plugin has a number of code snippets to facilitate working with Dart, for example, typing
lib expands the library statement. Other snippets include imp for import, class for a class
template, method for a method template, and main for a main() function. Typing a snippet
in the pop-up window after pressing Ctrl + SHIFT + P lets you see a list of all the snippets. Use
Ctrl + / to (un)comment the selected code text.

The plugin has also made a build system for you. Ctrl + B will invoke the dartanalyzer
and then compile the Dart code to JavaScript with the dart2js compiler, as shown in the
following screenshot. Editing and saving a pubspec.yaml file will automatically invoke the
pub get command.

Working in Sublime Text 2

Chapter 1

17

See also
ff Refer to the Configuring the Dart environment recipe for the path to the Dart SDK

Compiling your app to JavaScript
Deploying a Dart app in a browser means running it in a JavaScript engine, so the Dart code
has to first be compiled to JavaScript. This is done through the dart2js tool, which is itself
written in Dart and lives in the bin subfolder of dart-sdk. The tool is also nicely integrated
in Dart Editor.

How to do it...
ff Right-click on .html or the .dart file and select Run as JavaScript.

ff Alternatively, you can right-click on the pubspec.yaml file and select Pub Build
(generates JS) from the context menu. You can also click on the Tools menu while
selecting the same file, and then on Pub Build.

How it works...
The first option invokes the pub serve command to start a local web server invoking dart2js
along its way in the checked mode. However, the compiled .dart.js file is served from the
memory by the internal development web server on http://127.0.0.1:4031. This is only
good for development testing.

In the second option, the generated files are written to disk in a subfolder build/web
of your app. In this way, you can copy this folder to a production web server and deploy
your web app to run in all the modern web browsers (you only need to deploy the .js file,
not the .precompiled.js file or the .map file). However, Pub Build in Dart Editor enables
the checked mode by default; use the pub build command from a console for the
production mode.

There's more...
The dart2js file can also be run from the command line, which is the preferred way to build
non-web apps.

Working with Dart Tools

18

The command to compile the dart script to an output file prorabbits.js
using -o <file> or -out <file> is dart2js -o prorabbits.js
prorabbits.dart.

If you want to enable the checked mode in the JavaScript version, use the
–c or - checked option such as dart2js –c -o prorabbits.
js prorabbits.dart. The command dart2js –vh gives a detailed
overview of all the options.

The pub build command, issued on a command line in the folder where
pubspec.yaml is located, will do the same as in option 2 previously, but
also apply the JavaScript shrinking step; the following is an example output for
app test_pub:

f:\code\test_pub>pub build

Loading source assets... (0.7s)

Building test_pub... (0.3s)

[Info from Dart2JS]:

Compiling test_pub|web/test.dart...

[Info from Dart2JS]: Took
0:00:01.770028 to compile test_pub|web/test.dart. Built 165
files to "build"

You can minify both the JavaScript version and the Dart version of your app.

Producing more readable JavaScript code
To produce more readable JavaScript code (instead of the minified version of the production
mode, refer to the Shrinking the size of your app recipe), use the command pub build
--mode=debug, which is the default command in Dart Editor.

Alternatively, you can add the following transformers section to your app's
pubspec.yaml file:

name: test_pub
description: testing pub

transformers:
- $dart2js:
 minify: false
 checked: true

dependencies:
 js: any

dev_dependencies:
 unittest: any

Chapter 1

19

For more information, refer to https://www.dartlang.org/tools/
pub/dart2js-transformer.html.

Producing a single Dart file
The dart2js tool can also be used as Dart to Dart to create a single .dart file that contains
everything you need for the app with this command:

dart2js --output-type=dart --minify -oapp.complete.dart app.dart

This takes the Dart app, tree shakes it, minifies it, and generates a single .dart file to deploy.
The advantage is that it pulls in dependencies like third-party libraries and tree shakes it to
eliminate the unused parts.

See also
You may be interested in the following recipes in this chapter:

ff Using the command-line tools

ff Shrinking the size of your app

ff Debugging your app in JavaScript for Chrome

Debugging your app in JavaScript for
Chrome

In this recipe, we will examine how to debug your app in the Chrome browser.

How to do it…
1.	 From the menu in the upper right-hand corner, select Tools and then Developer

Tools.

2.	 Verify via Settings (which is the wheel icon in the upper right corner of the Developer
Tools section) that the Enable JavaScript source maps option is turned on. Make sure
that debugging is enabled, either on all the exceptions or only on uncaught exceptions.

3.	 Choose Sources in the Developer Tools menu, then press Ctrl + O to open a file
browser and select the Dart script you wish to debug.

Clicking on the left margin before a line of code places a breakpoint,
which is indicated by a fat blue arrow.

www.allitebooks.com

https://www.dartlang.org/tools/pub/dart2js-transformer.html
https://www.dartlang.org/tools/pub/dart2js-transformer.html
http://www.allitebooks.org

Working with Dart Tools

20

4.	 Now reload the application and you will see that the execution stops at the
breakpoint. On the right, you have a debug menu, which allows you to inspect scope
variables, watch the call stack, and even create watch expressions, as shown in the
following screenshot:

Debugging JS in Chrome

How it works...
Chrome uses the source map file <file>.js.map generated while compiling the JavaScript
code to map the Dart code to the JavaScript code in order to be able to debug it.

There's more...
In this recipe, we will examine how to debug your app in the Firefox browser.

Chapter 1

21

Debugging your app in JavaScript for Firefox
In Firefox, the source maps feature is not yet implemented. Use Shift + F2 to get the developer
toolbar and the command line. In the top menu, you will see Debugger. Place a breakpoint
and reload the file. Code execution then stops and you can inspect the value of the variables,
as shown in the following screenshot:

Debugging JS in Firefox

Using the command-line tools
Some things can be done more easily on the command-line, or are simply not (yet) included in
Dart Editor. These tools are found in dart-sdk/bin. They consist of the following:

ff dart: The standalone Dart VM to run Dart command-line apps, such as server-side
scripts and server apps

ff dartanalyzer: This is used to check code statically

ff pub: This is the package and repository manager

ff dartfmt: This is the code formatting tool

ff docgen: This is the documentation generator tool

Working with Dart Tools

22

How to do it...
1.	 For every tool, it might be useful to know or check its version. This is done with the --

version option such as dart --version with a typical output of Dart VM version:
1.3.0 (Tue Apr 08 09:06:23 2014) on "windows_ia32".

2.	 The dart –v –h option lists and discusses all the possible options of the VM. Many
tools also take the --package_root=<path> or –p=<path> option to indicate
where the packages used in the imports reside on the filesystem.

3.	 dartanalyzer is written in Java and works in Dart Editor whenever a project is
imported or Dart code is changed; it is started dartanalyzer prorabbits.dart
with output:

Analyzing prorabbits.dart...

No issues found (or possibly errors and hints to improve the code)

4.	 The previous output verifies that the code conforms to the language specification
https://www.dartlang.org/docs/spec/, pub functionality is built into Dart
Editor, but the tool can also be used from the command line (refer to test_pub). To
fetch packages (for example, for the test_pub app), use the following command in
the folder where pubspec.yaml lives, pub get, with a typical output as follows:
Resolving dependencies... (6.6s)
Got dependencies!

5.	 A packages folder is created with symlinks to the central package cache on
your machine. The latest versions are downloaded and the package versions are
registered in the pubspec.lock file, so that your app can only use these versions.

6.	 If you want to get a newer version of a package, use the pub upgrade command.
You can use the –v and -- trace options to produce a detailed output to verify
its workings.

Always do a pub upgrade if the project you start working on already
contains versions of packages!

7.	 The dartfmt tool is also a built in Dart Editor. Right-click on any Dart file and choose
Format from the context menu. This applies transformations to the code so that it
conforms to the Dart Style Guide, which can be seen at https://www.dartlang.
org/articles/style-guide/.You can also use it from the command line, but
then the default operation mode is cleaning up whitespace. Use the –t option to
apply code transforms such as dartfmt -t –w bank_terminal.dart.

https://www.dartlang.org/docs/spec/
https://www.dartlang.org/articles/style-guide/
https://www.dartlang.org/articles/style-guide/

Chapter 1

23

See also
ff Solving problems when pub get fails

ff Compiling your app to JavaScript (for pub build)

ff Documenting your code from Chapter 2, Structuring, testing, and deploying
an application

ff Publishing your app to a pub (for pub publishing)

ff Using snapshotting to start an app in Dart VM

ff For additional information, refer to https://www.dartlang.org/tools/

Solving problems when pub get fails
The pub package manager is a complex tool with many functionalities, so it is not surprising
that occasionally something goes wrong. The pub get command downloads all the libraries
needed by your app, as specified in the pubspec.yaml file. Running pub get behind a proxy
or firewall used to be a problem, but it was solved in the majority of cases. If this still haunts
you, look at the corresponding section at https://www.dartlang.org/tools/editor/
troubleshoot.html.

Getting ready
This recipe is especially useful when you encounter the following error in your Dart console
while trying to open a project in Dart Editor during the pub get phase:

Pub install fails with 'Deletion failed'

How to do it...
First try this; right-click on your project and select Close Folder. Then, restart the editor and
open your project again. In many cases, your project will load fine. If this does not work, try the
pub gun command:

1.	 Delete the pub cache folder from C:\Users\{your username}\AppData\
Roaming\Pub.

2.	 Delete all the packages folders in your project (also in subfolders).

3.	 Delete the pubspec.lock file in your project.

4.	 Run pub get again from a command line or select Tools in the Dart Editor menu,
and then select Pub Get.

https://www.dartlang.org/tools/
https://www.dartlang.org/tools/editor/troubleshoot.html
https://www.dartlang.org/tools/editor/troubleshoot.html

Working with Dart Tools

24

How it works...
The Pub\Cache subfolder contains all the packages that have been downloaded in your Dart
environment. Your project contains symlinks to the projects in this cache, which sometimes
go wrong, mostly on Windows. The pubspeck.lock file keeps the downloaded projects
constrained to certain versions; removing this constraint can also be helpful.

There's more...
Temporarily disabling the virus checker on your system can also help pub get to succeed
when it fails with the virus checker on.

The following script by Richard Schmidt that downloads packages from the pub repository
and unpacks it into your Dart cache may also prove to be helpful for this error, which can
be found at https://github.com/hangstrap/downloadFromPub. Use it as dart
downloadFromPub.dart package m.n.l.

Here, package is the package you want to install and m.n.l is the version number such as
0.8.1. You will need to build this like any other dart package, and if during this process the
pub get command fails, you will have to download the package and unpack it manually;
however, from then on, you should be able to use this script to work around this issue.

When pub get fails in Dart Editor, try the following on the command line to get more
information on the possible reasons for the pub --trace 'upgrade' failure.

There is now also a way to condense these four steps into one command in a terminal
as follows:

pub cache repair

Shrinking the size of your app
On the web, the size of the JavaScript version of your app matters. For this reason, dart2js
is optimized to produce the smallest possible JavaScript files.

How to do it...
When you're ready to deploy, minify the size of the generated JavaScript with –m or --
minify, as shown in the following command:

dart2js –m -o prorabbits.js prorabbits.dart

Using pub build on the command line minifies JavaScript by default because this command
is meant for deployment.

https://github.com/hangstrap/downloadFromPub

Chapter 1

25

How it works...
The dart2js file utilizes a tree-shaking feature; only code that is necessary during
execution is retained, that is, functions, classes, and libraries that are not called are
excluded from the produced .js file. The minification process further reduces the size by
replacing the names of variables, functions, and so on with shorter names and moving code
around to use a few lines.

There's more...
Be careful when you use reflection.

More Information Section 1
Using reflection in the Dart code prevents tree shaking. So only import the dart:mirrors
library when you really have to. In this case, include an @MirrorsUsed annotation, as shown
in the following code:

library mylib;

@MirrorsUsed(targets: 'mylib')
import 'dart:mirrors';

In the previous code, all the names and entities (classes, functions, and so on) inside of
mylib will be retained in the generated code to use reflection. So create a separate library to
hold the class that is using mirrors.

Make sure your deployment web server uses gzipping to
perform real-time HTTP compression.

See also
ff You might want to consult the Using Reflection recipe in Chapter 4, Object Orientation.

Making a system call
A fairly common use case is that you need to call another program from your Dart app,
or an operating system command. For this, the abstract class Process in the dart:io
package is created.

Working with Dart Tools

26

How to do it...
Use the run method to begin an external program as shown in the following code snippet,
where we start Notepad on a Windows system, which shows the question to open a new file
tst.txt (refer to make_system_call\bin\ make_system_call.dart):

import 'dart:io';

main() {
 // running an external program process without interaction:
 Process.run('notepad', ['tst.txt']).then((ProcessResult rs){
 print(rs.exitCode);
 print(rs.stdout);
 print(rs.stderr);
 });
}

If the process is an OS command, use the runInShell argument, as shown in the
following code:

Process.run('dir',[], runInShell:true).then((ProcessResult rs)
{ … }

How it works...
The Run command returns a Future of type ProcessResult, which you can interrogate
for its exit code or any messages. The exit code is OS-specific, but usually a negative value
indicates an execution problem.

Use the start method if your Dart code has to interact with the process by writing to its
stdin stream or listening to its stdout stream.

Both methods work asynchronously; they don't block the main app. If your
code has to wait for the process, use runSync.

Using snapshotting
One of the advantages of running a Dart app on its own VM is that we can apply snapshotting,
thereby reducing the startup time compared to JavaScript. A snapshot is a file with an
image of your app in the byte form, containing all the Dart objects as they appear in the
heap memory.

Chapter 1

27

How to do it...
To generate a script snapshot file called prorabbits from the Dart script prorabbits.
dart, issue the following command:

dart --snapshot=prorabbits prorabbits.dart

Then, start the app with dart prorabbits args, where args stands for optional
arguments needed by the script.

How it works...
A script snapshot is the byte representation of the app's objects in the memory (more
precisely in the heap of the started isolate) after it is loaded, but before it starts executing.
This enables a much faster startup because the work of tokenizing and parsing the app's code
was already done in the snapshot.

There's more...
This recipe is intended for server apps or command-line apps. A browser with a built-in Dart
VM can snapshot your web app automatically and store that in the browser cache; the next
time the app is requested, it starts up way faster from its snapshot. Because a snapshot is
in fact a serialized form of an object(s), this is also the way the Dart VM uses to pass objects
between isolates. The folder dart/dart-sdk/bin/snapshots contains snapshots of the
main Dart tools.

See also
ff Occasionally, your app needs access to the operating system, for example, to get the

value of an environment variable to know where you are in the filesystem, or to get the
number of processors when working with isolates. Refer to the Using isolates in the
Dart VM and Using isolates in web apps recipes, in Chapter 8, Working with Futures,
Tasks, and Isolates, for more information on working with isolates.

Getting information from the operating
system

In this recipe, you will see how to interact with the underlying operating system on which your
app runs by making system calls and getting information from the system.

Working with Dart Tools

28

Getting ready
The Platform class provides you with information about the OS and the computer the app is
executing on. It lives in dart:io, so we need to import this library.

How to do it...
The following script shows the use of some interesting options (refer to the code files tools\
code\platform\bin\platform.dart of this chapter):

import 'dart:io';

Map env = Platform.environment;

void main() {
 print('We run from this VM: ${Platform.executable}');
// getting the OS and Dart version:
 print('Our OS is: ${Platform.operatingSystem}');
 print('We are running Dart version: ${Platform.version}');
 if (!Platform.isLinux) {
 print('We are not running on Linux here!');
 }
 // getting the number of processors:
 int noProcs = Platform.numberOfProcessors;
 print('no of processors: $noProcs');
 // getting the value of environment variables from the Map env:
 print('OS = ${env["OS"]}');
 print('HOMEDRIVE = ${env["HOMEDRIVE"]}');
 print('USERNAME = ${env["USERNAME"]}');
 print('PATH = ${env["PATH"]}');
 // getting the path to the executing Dart script:
 var path = Platform.script.path;
 print('We execute at $path');
 // on this OS we use this path separator:
 print('path separator: ${Platform.pathSeparator}');
}

When run, the above code gives the following output:

Our OS is: windows
We are running Dart version: 1.3.3 (Wed Apr 16 12:40:55 2014) on
"windows_ia32"
We are not running on Linux here!

Chapter 1

29

no of processors: 8
OS = Windows_NT
HOMEDRIVE = C:
USERNAME = CVO
PATH = C:\mongodb\bin;C:\MinGW\bin;...
We execute at /F:/Dartiverse/platform/bin/platform.dart
path separator: \

How it works...
Most of the options are straightforward. You can get the running VM from Platform.
executable. You can get the OS from Platform.operatingSystem; this can also be
tested on a Boolean property such as Platform.isLinux. The Dart version can be tested
with the Platform.version property. The Platform.environment option returns a
nice map structure for the environment variables of your system, so you can access their
values by name, for example, for a variable envVar, use var envVar = Platform.
environment["envVar"].

To get the path of the executing Dart script, you can use the path property of Platform.
script because the latter returns the absolute URI of the script. When building file paths
in your app, you need to know how the components in a path are separated; Platform.
pathSeparator gives you this information.

There's more...
Don't confuse this class with Platform from dart:html, which returns information about
the browser platform.

www.allitebooks.com

http://www.allitebooks.org

2
Structuring, Testing,

and Deploying an
Application

In this chapter, we will cover the following topics:

ff Exiting from an app

ff Parsing command-line arguments

ff Structuring an application

ff Using a library from within your app

ff Microtesting your code with assert

ff Unit testing a Polymer web app

ff Adding logging to your app

ff Documenting your app

ff Profiling and benchmarking your app

ff Publishing and deploying your app

ff Using different settings in the checked and production modes

Structuring, Testing, and Deploying an Application

32

Introduction
In this chapter, we focus mainly on all the different tasks in the lifecycle of your project that
make it more professional, and will save much more time in the maintenance phase. This
includes structuring the project, installing a logging tool in it, testing, documenting, profiling,
and publishing it. However, first we see how we can end an app, and how a server app can
take command-line arguments.

Exiting from an app
A Dart program starts its execution from the main() function in one thread (or isolate) in the
Dart VM. The Dart VM by design always starts up single threaded. The program can end in
three different ways:

ff It can end in a normal way by executing the last statement from main() and
returning the exit code with the value 0, which means success

ff It can terminate abnormally with a runtime exception, returning exit code different
from 0, such as 255 in the case of an unhandled exception

ff It can wait in an event loop for user interaction (such as in the browser or a web
server waiting for requests), and then terminate when the browser is closed or
another app is started in the same browser tab

However, how can we exit the app from the code itself? This can be useful, for example, in a
server-side VM app with some Futures that may or may not return.

How to do it...
The first possibility is to use the exit(int code) top-level function from dart:io, as in
exit_app.dart, to stop the app from an endless loop or at a certain condition, and return
the exit code:

import 'dart:io';

void main() {
 var message = "Dart is fun!";
 int i = 0;
 while (true) {
 print(message);
 i++;
 if (i == 10) {
 print("That's enough!");

Chapter 2

33

 exit(10);
 }
 }
}

You can also set the exit code value with the property exitCode, as shown in the following
code:

exitCode = 10;
// … other code can be executed
exit(exitCode);

How it works...
The exit (code) function will terminate the running Dart VM process and return the integer
code as the exit value to the parent process or OS environment, indicating the success,
failure, or other exit state of the program. You can choose the value of the code; there is a
convention to use 0 for success, 1 for warnings, and 2 for errors. Another convention is zero
for success, non-zero for failure, and a program returning a warning for a successful exit
because it naturally reached its end. A concrete example is the dartanalyzer program, which
returns 0 if the code generates warnings.

Setting the exit code is preferred because the program can still run to its natural completion,
or some cleanup or finalizing code (such as closing a file or database connection) can be
run before exit(exitCode) ends the app. It is also good practice to start main() with
exitCode = 0, presuming success as the normal ending state.

What exit codes mean is platform-specific; you will not run into cross-platform
issues if you use exit codes in the range of 0–127.

Parsing command-line arguments
A server app that runs a batch job often takes parameter values from the command line. How
can we get these values in our program?

How to do it...
The obvious way to parse command-line arguments is as follows (see command_line_
arguments.dart):

void main(List<String> args) {
 print("script arguments:");

Structuring, Testing, and Deploying an Application

34

 for(String arg in args)
 print(arg);
}

Now, the command dart command_line_arguments.dart param1 param2 param3
gives you the following output:

script arguments:

param1

param2

param3

However, you can also test this from within Dart Editor, open the menu Run, and select
Manage Launches (Ctrl + Shift + M). Fill in the parameters in the Script arguments window:

Script arguments

What if your parameters are in the key:value form, as shown in the following code?

par1:value1 par2:value2 par3:value3

In this case, use the following code snippet:

for(String arg in args) {
 List<String> par = arg.split(':');
 var key = par[0];
 var value = par[1];
 print('Key is: $key - Value is: $value');
 }

Chapter 2

35

The previous code snippet gives you the following output:

Key is: par1 - Value is: value1

Key is: par2 - Value is: value2

Key is: par3 - Value is: value3

The split method returned List<String> with a key and value for each parameter. A more
sophisticated way to parse the parameters can be done as follows:

final parser = new ArgParser();
argResults = parser.parse(args);
List<String> pars = argResults.rest;
print(pars); // [par1:value1, par2:value2, par3:value3]

Again, use split to get the keys and values.

How it works...
The main() function can take an optional argument List<String> args to get
parameters from the command line. It only takes a split of the parameter strings to get the
keys and values.

The second option uses the args package from the pub repository, authored by the Dart
team. Include args:any in the dependencies section of the pubspec.yaml file. Then, you
can use the package by including import 'package:args/args.dart'; at the top of the
script. The args package can be applied both in client and server apps. It can be used more
specifically for the parsing of GNU and POSIX style options and is documented at https://
api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/args/args.

See also
ff Refer to the Searching in files recipe in Chapter 6, Working with Files and Streams,

for an example of how to use the args package with a flag

Structuring an application
All Dart projects that are meant to be used in a production environment should follow best
software engineering practices and hence, must contain a particular structure of folders. A well-
structured project breathes professionalism and gives developers a sense of recognition; it is
much easier to find your way in a standardized structure. Moreover, it is also necessary if you
want to use a bunch of application-specific libraries in your app, as we will see in the next recipe.

https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/args/args
https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/args/args

Structuring, Testing, and Deploying an Application

36

Getting ready
An app that is meant to run on its own, either as a command-line application or a web
application, is an application package; it needs a main() entry point. A library package will
be used as a dependency in other apps. All Dart projects depend on the configuration file
pubspec.yaml, which describes the app and its dependencies, together with the pubspec.
lock file. This dictates which libraries will be contained in the top-level packages folder. This
file and the packages folder are generated by the pub tool (more specifically, the pub get
and pub upgrade commands) and should not be edited.

How to do it...
If you develop an application in Dart Editor when starting up a new project, you will need to
choose a project template to begin with, as shown in the following table:

Project type Template Project folder

Client or server
app to be run
standalone

Command line bin

Web or Polymer app Web application or web
application using Polymer,
or project

 web

Chrome app Chrome-packaged
application

 web

Library Package lib

The bin folder contains a startup script with a main() function. It can also contain shell
scripts, for example, a script to start a server. In the web folder, you will typically have index.
html and a main.dart file, or in general, the app.html and app.dart files. Other resource
files such as CSS, JavaScript files, and images can be contained in their own folders css, js,
and images. A Polymer project will typically contain a web\component subfolder. Don't place
any scripts with main() in a lib folder.

Chapter 2

37

Then, you will want to enhance the structure of the project as follows:

Folder Project type Files
at top-
level

All README.md, LICENSE, CHANGELOG, and AUTHORS files

doc All getting_started.md, todo.txt

example All Example scripts showing how to use the app

lib Web Folders for src, view, and model

src Server Folders for src and model

test All Unit test scripts

How it works...
The templates from Dart Editor provide you with a basic structure, but usually you'll want to
add some folders as specified previously to provide a recognizable and professional structure
where you can easily find what you want to look at, for example, which tests are included with
the project. As we will see in the next recipe, in order to use application libraries, they have to
be placed in the lib folder.

There's more...
The README file (readme.md, which is in the markdown syntax; refer to http://
en.wikipedia.org/wiki/Markdown) and the CHANGELOG file are shown in the pub
repository on the page of your package, so their content is important.

Optional folders are as follows:

ff mock: This contains classes to simulate certain behaviors of your app in testing
environments, for example, a text file instead of a real database

ff tool: This contains tooling scripts needed in the project such as a build script, test
runners, and so on

ff benchmark: When the performance is critical, this folder can contain examples to
test it

http://en.wikipedia.org/wiki/Markdown
http://en.wikipedia.org/wiki/Markdown

Structuring, Testing, and Deploying an Application

38

An alternative structure for an app with both client and server components can be placed on
top of the previous structure:

ff client

ff server

ff core (or shared)

The https://www.dartlang.org/tools/pub/package-layout.html link on the Dart
site contains some additional information.

See also
ff You might also want to read the Publishing and deploying your app recipe in

this chapter

Using a library from within your app
As indicated in the previous recipe, every kind of app can contain a lib folder, which at the
very least contains the model classes. These model classes are very important because they
form the backbone of your project, so they must be accessible in your entire application. You
can do this by placing them at the top in a lib folder, or even better in the lib/model. This
central position will also make them stand out and easy to find for other readers of your code.

How to do it...
Take a look at the structure of the bank_terminal project. The model classes Person
and BankAccount are placed in the lib\model folder. Give your project a name in the
pubspec.yaml file:

name: bank_terminal

Then, use the same name for the library script you created in the lib folder bank_
terminal.dart, which contains the following code:

library bank_terminal;

import 'dart:convert';

part 'model/bank_account.dart';
part 'model/person.dart';

https://www.dartlang.org/tools/pub/package-layout.html

Chapter 2

39

The library has the same name as your app! This is not required for the Dart
script itself, but it is a common and advised practice.

Now when a pub get or pub upgrade command is performed, a bank_terminal folder
appears in packages. You can then make this library available for use in your other Dart
scripts by importing it as any hosted package you would have downloaded from the pub. For
example, in web\bank_terminal.dart we have the following code:

import 'package:bank_terminal/bank_terminal.dart';

In this case, the model classes are made available. The project structure is shown in the
following screenshot:

Using a library in your app

How it works...
The pub tool was designed to work this way to make it easy to use internal libraries for your
app. Every script that declares a library in the lib folder (or its subfolders) will be picked up
by the pub get or pub upgrade commands. The result is that the library with all its code is
considered a separate "internal" package, and thus placed in the packages folder together
with other packages your app depends on. This makes for a clean code model, and it also
makes it easier for the pub to deploy your code.

www.allitebooks.com

http://www.allitebooks.org

Structuring, Testing, and Deploying an Application

40

There's more...
The pub tool can be extended to several subfolders of lib, each containing their own library file
(for example, a script model.dart that starts with the library model in the model folder)
and then one top-level library file project_name.dart, containing the following code as its
first lines:

library project_name;
import 'model/model.dart'; // importing library model
import 'view/view.dart'; // importing library view

…

This way, the different libraries from model, view, and so on are imported into one big library,
which is then imported by the app as follows:

import 'package:project_name/project_name.dart';

Microtesting your code with assert
Writing tests for your app is necessary, but it is not productive to spend much time on trivial
tests. An often underestimated Dart keyword is assert, which can be used to test conditions in
your code.

How to do it...
Look at the code file microtest.dart, where microtest is an internal package as seen in
the previous recipe:

import 'package:microtest/microtest.dart';

void main() {
 Person p1 = new Person("Jim Greenfield", 178, 86.0);
 print('${p1.name} weighs ${p1.weight}');
 // lots of other code and method calls
 // p1 = null;
 // working again with p1:
 assert(p1 is Person);
 p1.weight = 100.0;
 print('${p1.name} now weighs ${p1.weight}');
}

Chapter 2

41

We import the microtest library, which contains the definition of the Person class. In
main(), we create a Person object p1, go through lots of code, and then want to work
with p1 again, possibly in a different method of another class. How do we know that p1
still references a Person object? In the previous snippet, it is obvious, but it can be more
difficult. If p1 was, for example, dereferenced, without assert we would get the exception
NoSuchMethodError: method not found: 'weight='.

However, if we use the assert statement, we get a much clearer message: AssertionError:
Failed assertion: line 9 pos 9: 'p1 is Person' is not true. You can test it by uncommenting
the line p1 = null.

How it works...
The assert parameter is a logical condition or any expression (such as calling a function
returning a Boolean value) that resolves to false or true. If its value is false, the normal
execution is stopped by throwing an AssertionError.

Use assert to test any non-obvious conditions in your code; it can replace a lot of simple
unit tests or unit tests that can be difficult to set up. Rest assured assert only works in the
checked mode; it does not affect the performance of your deployed app because it is ignored
in the production mode.

There's more...
Testing with assert is often very useful when entering a method to test conditions on
parameters (preconditions), and on leaving a method testing the return value (postconditions).
You can also call a test function (which has to return a Boolean value) from assert such as
assert(testfunction());.

Unit testing a Polymer web app
A project should contain a number of automated tests that can be run after every code
change to ensure that the previous functionality still works. Dart's unittest framework is
the best tool for the job, and the Dart website has some excellent articles to get you started.
However, testing Polymer web applications is a lot trickier because of the way Polymer works,
as it hides HTML in shadow DOM and also because it works in an asynchronous fashion,
independent of the testing code.

Getting ready
We will create some tests in the ClickCounter example (the standard web application template
using the polymer library). You can find the code in the polymer1 app. We include the
unittest library in the pubspec.yaml file, and create a test folder.

Structuring, Testing, and Deploying an Application

42

How to do it...
In the test folder, we create a test_polymer1.html page; a web page that loads the
Polymer component required to test this functionality. The following is the minimum content
required for the component:

<head>
 <title>test_polymer1</title>
 <link rel="import" href="../web/polymer1.html">
 <script type="application/dart" src="test_polymer1.dart"></
script>
 </head>

test_polymer1.dart contains the test script:
import 'package:unittest/unittest.dart';
import 'dart:html';
import 'package:polymer/polymer.dart';
import '../web/clickcounter.dart';

main() {
 initPolymer();

 var _el;

 setUp((){
 _el = createElement('<click-counter>Click counter test</click-
counter>');

 document.body.append(_el);
 });

 tearDown((){
 _el.remove();
 });

 // tests:
 test('shadowroot elements are created', (){
expect(querySelector('click-counter').children, isNotNull);
expect(querySelector('click-counter').shadowRoot.text, isNotNull);
 });
 test('initial text ok', (){
 expect(querySelector('click-counter').shadowRoot.text.
contains('click count: 0'), isTrue);
 });

Chapter 2

43

 // test button with text Transaction:
 test('button with id click exists', (){
var button = querySelector('click-counter').shadowRoot.
querySelector('#click');
 expect(button, isNotNull);
 });
 test('button click() increments counter', (){
ButtonElement button = querySelector('click-counter').shadowRoot.
querySelector('#click');
 button.click();
 button.click();
 button.click();
 // get counter value:
 ClickCounter cc = querySelector('click-counter');
 expect(cc.count, 3); // after 3 clicks
 });
}

createElement(String html) =>
 new Element.html(html, treeSanitizer: new NullTreeSanitizer());

class NullTreeSanitizer implements NodeTreeSanitizer {
 void sanitizeTree(node) {}
}

When the script is run, the following output appears:

unittest-suite-wait-for-done

PASS: shadowroot elements are created

PASS: initial text ok

PASS: button with id click exists

PASS: button click() increments counter

All 4 tests passed.

unittest-suite-success

Structuring, Testing, and Deploying an Application

44

How it works...
The test web page loads the Polymer component, and the test script loads the unittest
and polymer packages and component classes (clickcounter.dart). In main(), we
load the polymer package with initPolymer(); in setup(), we use a helper method
createElement(), with an HTML string containing the polymer tag <clickcounter>
as argument to instantiate the Polymer component and add it to the page. This was done in
order to avoid the default HTML sanitization createElement(), which uses a null sanitizer
instead of the built-in sanitizer (refer to Chapter 5, Handling Web Applications, for more
information on this topic). Then, we start testing, for example:

ff expect(querySelector('click-counter').children, isNotNull); so
that the Polymer component tree is created

ff var button = querySelector('click-counter').shadowRoot.
querySelector('#click'); expect(button, isNotNull); so that the
button with the ID 'click' is created

ff expect(querySelector('click-counter').shadowRoot.text.
contains('click count: 0'), isTrue); so that the text initially displayed is
'click count: 0'.

Notice how we have to dig into shadowRoot of the Polymer component to get this information
as follows:

ff Verify that after clicking the button three times invoked by button.click(), our
count property has the value 3:
ClickCounter cc = querySelector('click-counter');
expect(cc.count, 3);

See also
ff To discover more information about the Dart unittest library, refer to the book

Learning Dart, Ivo Balbaert, Dzenan Ridjanovic, Packt Publishing, or the excellent
articles at https://www.dartlang.org/articles/writing-unit-tests-
for-pub-packages/ and https://www.dartlang.org/articles/dart-
unit-tests/. These should help give you further background knowledge and
information on how to extend the use of Dart Unittest in your own work.

Adding logging to your app
Every production app needs a logger functionality that allows you to output log messages at
varying levels of severity (information/warning/debug) to the (web browser's debug) console
or a file. This recipe will enable you to do just that quickly and easily.

https://www.dartlang.org/articles/writing-unit-tests-for-pub-packages/
https://www.dartlang.org/articles/writing-unit-tests-for-pub-packages/
https://www.dartlang.org/articles/dart-unit-tests/
https://www.dartlang.org/articles/dart-unit-tests/

Chapter 2

45

Getting ready
Use the logging package developed by the Dart team available from pub for this purpose. Add
it to your pubspec.yaml file, and add the code line import 'package:logging/logging.
dart'; to your code. See it in action in bank_terminal_polymer. We add the import to the
code of the Polymer component and model class BankAccount.

How to do it...
1.	 In web\bank_account.dart, we have at the top level the following code:

import 'package:logging/logging.dart';
final Logger log = new Logger('Bank Account');

2.	 We change the constructor to the following code:
BankAccount.created() : super.created() {
 setupLogger();
 log.info('Bank Account component is created');
 }
setupLogger() is the place where you can define the format of your
logs, the following code presents a minimal format:
setupLogger() {
 // Set up logger.
 Logger.root.level = Level.ALL;
 Logger.root.onRecord.listen((LogRecord rec) {
print('${rec.level.name}: ${rec.time}: ${rec.message}');
 });
 }

3.	 In checkAmount(), we add the following warning message:
checkAmount(String in_amount) {
 try {
 amount = double.parse(in_amount);
 } on FormatException catch(ex) {
 log.warning("Amount $in_amount is not a double!");
 return false;
 }
 return true;
 }

Structuring, Testing, and Deploying an Application

46

4.	 In the model class in lib\bank_account.dart file, we add an "info" message
when the BankAccount object is created: log.info('Bank Account is
created'), and in the transact method, we add "severe message" when the
balance becomes negative:
transact(double amount) {
 balance += amount;
 if (amount < 0 && (-amount) > balance) {
 log.severe("Balance will go negative!");
 }
 date_modified = new DateTime.now();
}

5.	 If we then run the app, input an amount 50q, and then an amount -5000, which will
make our balance negative. This means we will get the following console output:

INFO: 2014-04-28 11:27:33.525: Bank Account component is created

FINE: 2014-04-28 11:27:33.551: [Instance of '_Binding']: bindProperties: [value]
to [bank-account].[Symbol("bac")]

FINE: 2014-04-28 11:27:33.557: [bank-account] cancelUnbindAll

FINE: 2014-04-28 11:27:33.561: [bank-app] cancelUnbindAll

INFO: 2014-04-28 11:27:33.561: Bank Account is created

FINE: 2014-04-28 11:27:39.172: >>> [bank-account]: dispatch enter

INFO: 2014-04-28 11:27:39.176: <<< [bank-account]: dispatch enter

WARNING: 2014-04-28 11:27:44.089: Amount 50qs is not a double!

SEVERE: 2014-04-28 11:29:02.778: Balance will go negative!

INFO: 2014-04-28 11:29:02.778: <<< [bank-account]: dispatch transact

How it works...
The object of the Logging class must first be configured; otherwise, nothing happens. This is
done in setupLogger(), which does the following things:

ff It sets the level of the messages (choose between SHOUT, SEVERE, WARNING, INFO,
CONFIG, FINE, FINER, FINEST, ALL, or OFF, or predefine your own).

ff It sets up an event handler to listen for the onRecord stream. This processes objects
of type LogRecord, which have access to the name, time, message, and stacktrace.
Then, you code what you want to do with this event, print it to the console, write it in a
file, send it in a mail, and so on.

Chapter 2

47

There's more...
The following remarks tell you what to do in some special cases. To quickly display errors in a
web app, you can add the following code in your code:

window.console.error('Something bad occurred');

If you want to log something asynchronously, use this snippet:

Future futr = doAsync();
futr.then((result) {
 log.fine('This result came back: $result');
 processResult(result);
})
.catchError((e, stackTrace) => log.severe('Something went wrong - ',
e, stackTrace));

Documenting your app
A project needs to be documented so that future developers can change and expand it. From
release 1.2 onwards, the docgen tool is provided as an API Documentation Generator, which
generates and serves documentation for the Dart SDK and packages, as well as for your
applications. This recipe is designed to show you how to best document the application you
have built.

Getting ready
Run pub get on your project before running the docgen tool. We will illustrate this with the
bank_terminal_polymer app.

How to do it...
1.	 In a command-line session at the top level of your app, run:

docgen .

2.	 When the documentation is generated, issue the following command:

docgen --serve .

Structuring, Testing, and Deploying an Application

48

This installs the dartdoc-viewer tool and starts up a local web server for your
docs, which you can access via the URL http://localhost:8080. The following is
a screenshot from the BankAccount class documentation (you can change the view
with the Options menu):

Viewing documentation

How it works...
The command creates a docs folder in your app, and writes JSON files with the API
information in them for your app's lib folder, as well as for every imported package and the
Dart SDK. Dartdoc comments (/** … */) are included.

There's more...
To make the docs available from an intranet web server or from an Internet web server,
perform the following steps:

1.	 Copy dartdoc-viewer (compiled to JavaScript) onto the server.

2.	 Copy the generated files to a docs directory under the main URL.

Also, private declarations are ignored unless the flag --include-private is used.
Various other options are documented at https://www.dartlang.org/tools/
docgen/#options.

https://www.dartlang.org/tools/docgen/#options
https://www.dartlang.org/tools/docgen/#options

Chapter 2

49

A command that specifies the output folder and does not generate docs for the SDK and
packages will be as follows:

docgen --out out/doc/api --no-include-sdk --no-include-dependent-packages
--compile lib/app.dart

Profiling and benchmarking your app
One of the key success factors of Dart is its performance. The Dart VM has a built-in optimizer
to increase the execution speed. This optimizer needs a certain amount of execution time
before it has enough information to do its work. This is no problem for an app in production,
but when testing, you must ensure this condition is met. In this recipe, we are going to focus
on how to best benchmark your application.

Getting ready
The benchmark_harness package from the Dart team is built specifically for this purpose.
Add it to the pubspec.yaml file and import it in your code. We will illustrate this with the
template_benchmark app. Also, make sure that all the issues detected by the checked
mode are solved (because these could have an effect on the execution speed) and that the
app is run in the production mode (refer to the Setting up the checked and production modes
recipe in Chapter 1, Working with Dart Tools).

How to do it...
Perform the following steps to get the benchmark harness working:

1.	 Import the benchmark library:
import 'package:benchmark_harness/benchmark_harness.dart';

2.	 Define a class TemplateBenchmark with its own main() and run() methods. It
is a subclass of class BenchmarkBase in the benchmark library. The benchmark is
started from run():
class TemplateBenchmark extends BenchmarkBase {
 const TemplateBenchmark() : super("Template");

 static void main() {
 new TemplateBenchmark().report();
 }

 void run() {
 fib(20);
 }

www.allitebooks.com

http://www.allitebooks.org

Structuring, Testing, and Deploying an Application

50

// recursive algorithms:
 int fib(int i) {
 if (i < 2) return i;
 return fib(i-1) + fib(i-2);
 }

// int fib(n) => n<2 ? n : fib(n-2) + fib(n-1);

// iterative algorithm:
// int fib(int i){
// int a = 0; int b = 1;
// for (int n=a; n < b; n++) {
// a = a + b; b = a;
// }
// return a;
// }

void setup() { }
void teardown() { }
}

3.	 The following code starts the whole benchmark machinery:
main() {
 TemplateBenchmark.main();
}

4.	 If we benchmark the Fibonacci algorithm for the two recursive implementations
(with if and with the ternary operators) and the iterative algorithm, we get the
following results:

Template(RunTime): 482.392667631452 us.

Template(RunTime): 498.00796812749 us.

Template(RunTime): 0.2441818187589752 us.

As we expected, the iterative algorithm performs orders of magnitude better than working
recursively.

Chapter 2

51

How it works...
Create a new benchmark by extending the BenchmarkBase class (here,
TemplateBenchmark). The benchmarked code is called from the run() method within
this subclass. The setup() and teardown() function code are run before and after the
benchmark to prepare for the benchmark or clean up after it. These are not taken into
account for the benchmark itself. The top-level main() function runs the benchmark by
calling main() from the subclass of BenchmarkBase.

See also
ff Refer to the new Observatory tool to profile Dart apps at https://www.dartlang.

org/tools/observatory/

Publishing and deploying your app
There comes a point in time where you consider your app to be production ready, and you
are eager to hand it over to your clients or users. If it is a web app in the Dart world at this
moment in time, this means compiling to JavaScript. Luckily, the pub tool will take care of this
stage in your app's life, so that your app can be deployed successfully.

Getting ready
This is pretty straightforward. To prepare, you need to run and test your application in both the
checked and production modes.

How to do it...
Run the pub build command (see the Compiling your app to JavaScript recipe in Chapter
1, Working with Dart Tools), either from the command line or in Dart Editor. This creates
the build folder with the subfolder bin or web, respectively, for a command-line or web
application. The build folder contains complete deliverable files. The files generated in there
can be deployed like any static content. Upload the JavaScript files together with the web
pages and resources to any production web server.

How it works...
The pub build command is Dart's optimized command to create the deployment assets. It
performs tree shaking so that only the code that is necessary during execution is retained, that
is, functions, classes, and libraries that are not called are excluded from the produced .js file.
The minification process further reduces the size of the file by replacing the names of variables,
functions, and so on with shorter names and moving the code around to use a few lines.

https://www.dartlang.org/tools/observatory/
https://www.dartlang.org/tools/observatory/

Structuring, Testing, and Deploying an Application

52

There's more...
Some application hosting sites to run your app in the cloud are as follows:

ff Heroku is a Platform as a Service for cloud-hosted web apps. It doesn't yet officially
support the Dart runtime, but it can already be used to do just that. Refer to
http://blog.sethladd.com/2012/08/running-dart-in-cloud-with-
heroku.html and the Dart server code lab at https://www.dartlang.org/
codelabs/deploy for more information.

ff DartVoid at http://www.dartvoid.com/ using the Vane middleware framework;
it comes with support for MongoDB.

ff Google itself offers the possibility of running a Dart server on Google Compute Engine
(refer to http://alexpaluzzi.com/tag/dartlang/) and on Google's other
cloud virtual machines in the future.

Once your app is ready to be shared with other developers, it can also be published to the pub
repository (pub.dartlang.org). This is done with the pub publish command; this will
verify the contents of your pubspec.yaml configuration file and the app's folder structure.
For more detailed information, refer to https://www.dartlang.org/tools/pub/
publishing.html.

Using different settings in the checked and
production modes

Often the development and deployment environments are different. For example, the
app has to connect to a different database or a different mail server in either environment
to use a mocked service in development and the real service in production, or something
like that. How can we use different setups in both modes, or achieve a kind of precompiler
directive-like functionality?

How to do it...
Perform the following steps to use different settings:

1.	 Add a transformers section to pubspec.yaml with an environment line that specifies
a map of the settings, names and values, as follows (see the code in dev_prod_
settings):
transformers: # or dev_transformers
- $dart2js:
 environment: {PROD: "true", DB: "MongoPROD"}

http://blog.sethladd.com/2012/08/running-dart-in-cloud-with-heroku.html
http://blog.sethladd.com/2012/08/running-dart-in-cloud-with-heroku.html
https://www.dartlang.org/codelabs/deploy
https://www.dartlang.org/codelabs/deploy
http://www.dartvoid.com/
http://alexpaluzzi.com/tag/dartlang/
pub.dartlang.org
https://www.dartlang.org/tools/pub/publishing.html
https://www.dartlang.org/tools/pub/publishing.html

Chapter 2

53

2.	 You can, for example, get the value of the DB setting from const String.
fromEnvironment('DB'), as you can see in the following code:
import 'dart:html';

void main() {
 print('PROD: ${const String.fromEnvironment('PROD')}');
 bool prod = const String.fromEnvironment('PROD') == 'true';
 if (prod) {
// do production things
window.alert("I am in Production!");
 connectDB(const String.fromEnvironment('DB'));
 }
 else { // do developer / test things }
 log('In production, I do not exist');
}

log(String msg) {
 if (const String.fromEnvironment('DEBUG') != null) {
 print('debug: $msg');
 }
}

connectDB(String con) {
 // open a database connection
}

3.	 When run in the Dart VM (and in the checked mode), the console gives PROD: null
as an output when run as JavaScript in Chrome; an alert dialog appears and the
console in the Developer Tools shows PROD: true.

How it works...
The import initializer option requires a manual code change in order to switch the
environment. The transformers option uses environment declarations that are provided by
the surrounding system compiling or running the Dart program. This is better because it only
requires changing the configuration file pubspec.yaml. However, at the moment, it is only
defined for dart2js, in order to deploy to JavaScript.

Make sure that the environment is indented; otherwise, you may get the error
"transformers" must have a single key: the transformer identifier.

3
Working with

Data Types

In this chapter, we will cover the following recipes:

ff Concatenating strings

ff Using regular expressions

ff Strings and Unicode

ff Using complex numbers

ff Creating an enum

ff Flattening a list

ff Generating a random number within a range

ff Retrieving a random element from a list

ff Working with dates and times

ff Improving performance in numerical computations

ff Using SIMD for enhanced performance

Working with Data Types

56

Introduction
This chapter is about working with the different data types Dart has to offer. The basic data
types available are var (stores any object); num (stores any number type); int, double,
String, bool, List (arrays); and Map (associative arrays). All of these data types are
declared in the dart:core library. We will talk about strings, random numbers, complex
numbers, dates and times, enums, and lists. We will cover a lot of tricks to help you out
in specific circumstances. To get a quick overview of all the data types in Dart, refer to
https://www.dartlang.org/docs/dart-up-and-running/contents/ch02.
html#built-in-types.

Concatenating strings
Concatenation can be done in a variety of ways in Dart (refer to the concat_trim_strings
file, and download it from www.packtpub.com/support).

How to do it...
Strings can be concatenated as follows:

 String s1 = "Dart", s2 = "Cook", s3 = "Book";
 var res = "Dart" " Cook" "Book"; (1)
 res = "Dart" " Cook"
 "Book"; (2)
 res = s1 + " " + s2 + s3; (3)
 res = "$s1 $s2$s3"; (4)
 res = [s1, " ", s2, s3].join(); (5)

 var sb = new StringBuffer(); (6)
 sb.writeAll([s1, " ", s2, s3]);
 res = sb.toString();
 print(res); // Dart CookBook

How it works...
Adjacent string literals are taken together as one string as shown in line (1), even if they are
on different lines as shown in line (2). The + operator does the same thing (3), as well as
string interpolation (4), which is the preferred way. Still there is another way to add join()
to List<String> as shown in line (5). The most efficient way, especially if you want to
apply the + operator in a for loop, is to work with StringBuffer as shown in line (6); the
concatenation only happens when toString() is called.

https://www.dartlang.org/docs/dart-up-and-running/contents/ch02.html#built-in-types
https://www.dartlang.org/docs/dart-up-and-running/contents/ch02.html#built-in-types
www.packtpub.com/support

Chapter 3

57

So if you have to glue a large number of strings together, use
StringBuffer. Avoid concatenation using +. This will save you
memory and will execute the file much faster.

There's more...
The writeAll method can take an optional separator argument, as in sb.writeAll([s1,
" ", s2, s3],'-');, resulting in Dart- -Cook-Book.

Using regular expressions
Regular expressions are an indispensable tool in every programming language to search for
matching patterns in strings. Dart has the RegExp class from dart:core, which uses the
same syntax and semantics as JavaScript.

How to do it...
We use RegExp in the following code (see using_regexp.dart) to quickly determine
whether a credit card number seems valid:

var visa = new RegExp(r"^(?:4[0-9]{12}(?:[0-9]{3})?)$");
var visa_in_text = new RegExp(r"\b4[0-9]{12}(?:[0-9]{3})?\b");
var input = "4457418557635128";
var text = "Does this text mention a VISA 4457418557635128 number?";

void main() {
 print(visa.pattern);
 // is there a visa pattern match in input?
 if (visa.hasMatch(input)) {
 print("Could be a VISA number");
 }
 // does string input contain pattern visa?
 if (input.contains(visa)) {
 print("Could be a VISA number");
 }
 // find all matches:
 var matches = visa_in_text.allMatches(text);
 for (var m in matches) {
 print(m.group(0));
 }

Working with Data Types

58

visa_in_text.allMatches(text).forEach((m) => print(m[0]));
 // let's hide the number:
 print(text.replaceAll(visa_in_text, 'XXXXXXXXXXXXXXXX'));
 print(visa.isCaseSensitive);
 print(visa.isMultiLine);
}

The previous code gives the following output:

How it works...
Credit card numbers are just a sequence of 13 to 16 digits, with one to four specific digits
at the start that identify the card company. A regular expression is specified as a raw string
r"…", where … is the pattern. The hasMatch code tells you whether there is a match or not,
and allMatches produces a collection you can walk through. In most cases, the convenience
method for a single match, firstMatch is what you need. The allMatches.length part
gives you the number of matches. The for loop can also be written more functionally as
visa_in_text.allMatches(text).forEach((m) => print(m[0]));.

There's more...
To further verify the card number before calling the credit card verification service, you should
code the Luhn algorithm (http://en.wikipedia.org/wiki/Luhn_algorithm). The
class RegExp implements Perl-style regular expressions. However, it lacks a number of
advanced features such as named capturing groups or conditionals.

Refer to https://api.dartlang.org/apidocs/channels/
stable/dartdoc-viewer/dart:core.RegExp for all the details on
Dart. For more information on the regular expression syntax itself, refer to
http://www.regular-expressions.info/refquick.html.

http://en.wikipedia.org/wiki/Luhn_algorithm
https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/dart:core.RegExp
https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/dart:core.RegExp
http://www.regular-expressions.info/refquick.html

Chapter 3

59

Strings and Unicode
Dart Strings are immutable sequences of UTF-16 code units. UTF-16 combines surrogate
pairs, and if you decode these, you get Unicode code points. Unicode terminology is terse, but
Dart does a good job of exposing the different parts.

How to do it...
We will see the different methods to perform action on strings with special characters in
unicode.dart:

String country = "Egypt";
String city = "Zürich";
String japanese = "日本語"; // nihongo meaning 'Japanese'

void main() {
 print('Unicode escapes: \uFE18'); // the ⎕ symbol
 print(country[0]); // E
 print(country.codeUnitAt(0)); // 69
 print(country.codeUnits); // [69, 103, 121, 112, 116]
 print(country.runes.toList()); // [69, 103, 121, 112, 116]
 print(new String.fromCharCode(69)); // E
 print(new String.fromCharCodes([69, 103, 121, 112, 116])); // Egypt
 print(city[1]); // ü
 print(city.codeUnitAt(1)); // 252
 print(city.codeUnits); // [90, 252, 114, 105, 99, 104]
 print(city.runes.toList()); // [90, 252, 114, 105, 99, 104]
 print(new String.fromCharCode(252)); // ü
 print(new String.fromCharCodes([90, 252, 114, 105, 99, 104])); //
Zürich
 print(japanese[0]); // 日
 print(japanese.codeUnitAt(0)); // 26085
 print(japanese.codeUnits); // [26085, 26412, 35486]
 print(japanese.runes.toList()); // [26085, 26412, 35486]
 print(new String.fromCharCode(35486)); // 語
 print(new String.fromCharCodes([26085, 26412, 35486]));
// 日本語
}

www.allitebooks.com

http://www.allitebooks.org

Working with Data Types

60

How it works...
Within a string, Unicode characters can be escaped by using \u. The index operator [] on a
string gives you the string representation of the UTF-16 code unit. These are also accessible
as integers representing code points (also called runes) through the codeUnitAt() or
codeUnits methods. The static member charCode(s) can take UTF-16 code units or
runes. They work in the following way; if the char-code value is 16 bits (a single UTF-16 code
unit), it is copied literally. Otherwise, it is of length 2 and the code units form a surrogate pair.

There's more...
The dart:convert code contains a UTF-8 encoder/decoder that transforms between strings
and bytes. The utf8encoding.dart file shows how you can use these methods, as shown
in the following code:

import 'dart:convert' show UTF8;

String str = "Acción"; // Spanish for 'Action'

void main() {
List<int> encoded = UTF8.encode(str);
 print(encoded); // [65, 99, 99, 105, 195, 179, 110]
 // The UTF8 code units are reinterpreted as
 // Latin-1 code points (a subset of Unicode code points).
 String latin1String = new String.fromCharCodes(encoded);
 print(latin1String); // AcciÃ³n
 print(latin1String.codeUnits);
// [65, 99, 99, 105, 195, 179, 110]
 var string = UTF8.decode(encoded);
 print(string); // Acción
}

Using complex numbers
Dart has no built-in type for complex numbers, but it is easy to build your own. The complex_
numbers library (based on similar libraries by Tiago de Jesus and Adam Singer) provides
constructors, utility methods, and four arithmetic operations both defined as operators and
static methods.

Chapter 3

61

How to do it...
We now define a ComplexNumber class, containing all utility methods for normal usage:

library complex_numbers;

import 'dart:math' as math;

class ComplexNumber {
 num _real;
 num _imag;

// 1- Here we define different ways to build a complex number:
 // constructors:
 ComplexNumber([this._real = 0, this._imag = 0]);
 ComplexNumber.im(num imag) : this(0, imag);
 ComplexNumber.re(num real) : this(real, 0);

// 2- The normal utility methods to get and set the real and
// imaginary part, to get the absolute value and the angle, to //
compare two complex numbers:
 num get real => _real;
 set real(num value) => _real = value;

 num get imag => _imag;
 set imag(num value) => _imag = value;

 num get abs => math.sqrt(real * real + imag * imag);

 num get angle => math.atan2(imag, real);

 bool operator ==(other) {
 if (!(other is ComplexNumber)) {
 return false;
 }
 return this.real == other.real && this.imag == other.imag;
 }

 String toString() {
 if (_imag >= 0) {
 return '${_real} + ${_imag}i';
 }
 return '${_real} - ${_imag.abs()}i';
 }

Working with Data Types

62

// 3- operator overloading:
// The basic operations for adding, multiplying, subtraction and //
division are defined as overloading of the operators +, *, - and /
 ComplexNumber operator +(ComplexNumber x) {
 return new ComplexNumber(_real + x.real, _imag + x.imag);
 }

 ComplexNumber operator -(var x) {
 if (x is ComplexNumber) {
return new ComplexNumber(this.real - x.real, this.imag - x.imag);
 } else if (x is num) {
 _real -= x;
 return this;
 }
 throw 'Not a number';
 }

 ComplexNumber operator *(var x) {
 if (x is ComplexNumber) {
 num realAux = (this.real * x.real - this.imag * x.imag);
 num imagAux = (this.imag * x.real + this.real * x.imag);

 return new ComplexNumber(realAux, imagAux);
 } else if (x is num) {
 return new ComplexNumber(this.real * x, this.imag * x);
 }
 throw 'Not a number';
 }

 ComplexNumber operator /(var x) {
 if (x is ComplexNumber) {
num realAux = (this.real * x.real + this.imag * x.imag) / (x.real *
x.real + x.imag * x.imag);
num imagAux = (this.imag * x.real - this.real * x.imag) / (x.real *
x.real + x.imag * x.imag);
 return new ComplexNumber(realAux, imagAux);
 } else if (x is num) {
 return new ComplexNumber(this.real / x, this.imag / x);
 }
 throw 'Not a number';
 }

// 4- Here we define the same operations as methods:
 static ComplexNumber add(ComplexNumber c1, ComplexNumber c2) {

Chapter 3

63

 num rr = c1.real + c2.real;
 num ii = c1.imag + c2.imag;
 return new ComplexNumber(rr, ii);
 }

 static ComplexNumber subtract(ComplexNumber c1, ComplexNumber c2)
 {
 num rr = c1.real - c2.real;
 num ii = c1.imag - c2.imag;
 return new ComplexNumber(rr, ii);
 }

 static ComplexNumber multiply(ComplexNumber c1, ComplexNumber c2)
 {
 num rr = c1.real * c2.real - c1.imag * c2.imag;
 num ii = c1.real * c2.imag + c1.imag * c2.real;
 return new ComplexNumber(rr, ii);
 }

 static ComplexNumber divide(ComplexNumber c1, ComplexNumber c2)
 {
num real = (c1.real * c2.real + c1.imag * c2.imag) / (c2.real *
c2.real + c2.imag * c2.imag);
num imag = (c1.imag * c2.real - c1.real * c2.imag) / (c2.real *
c2.real + c2.imag * c2.imag);
 return new ComplexNumber(real, imag);
 }
}

How it works...
The ComplexNumber class is built using standard Dart functionalities:

ff Private getters for real and imaginary parts to return their values and setters to
change them

ff A constructor with two optional arguments and two named constructors for a complex
number, respectively, without real or imaginary parts

ff Some utility methods such as toString() and overloading of ==

ff Operator overloading for +, -, *, and /

ff The same operations implemented as static methods taking two complex numbers

Working with Data Types

64

There's more...
Keep an eye on the pub package math-expressions by Frederik Leonhardt, as evaluation
of expressions with complex numbers is one of its goals.

Creating an enum
Enum does not exist in Dart as a built-in type. Enums provide additional type checking and
thus, help enhance code maintainability. So what alternative do we have? Look at the code
in project enum, where we want to differentiate the degree of an issue reported to us (we
distinguish between the following levels: TRIVIAL, REGULAR, IMPORTANT, and CRITICAL).

How to do it...
The first way to achieve the creating an enum functionality is shown in enum1.dart:

class IssueDegree {
 final _value;
 const IssueDegree(this._value);
 toString() => 'Enum.$_value';

static const TRIVIAL = const IssueDegree('TRIVIAL');
static const REGULAR = const IssueDegree('REGULAR');
static const IMPORTANT = const IssueDegree('IMPORTANT');
static const CRITICAL = const IssueDegree('CRITICAL');
}

void main() {
 var issueLevel = IssueDegree.IMPORTANT;
 // Warning and NoSuchMethodError for IssueLevel2:
 // There is no such getter ALARM in IssueDegree
 // var issueLevel2 = IssueDegree.ALARM;

 switch (issueLevel) {
 case IssueDegree.TRIVIAL:
 print("Ok, I'll sort it out during lunch");
 break;
 case IssueDegree.REGULAR:
 print("We'll assign it to Ellen, our programmer");
 break;
 case IssueDegree.IMPORTANT:

Chapter 3

65

 print("Let's discuss it in a meeting tomorrow morning");
 break;
 case IssueDegree.CRITICAL:
 print('Warn the Boss!');
 break;
 }
}

This snippet prints Let's discuss it in a meeting tomorrow morning.

An alternative way, shown in enum2.dart, is to define the enum behavior in an abstract class
and then to implement that, as shown in the following code:

import 'enum_abstract_class.dart';

class IssueDegree<String> extends Enum<String> {

 const IssueDegree(String val) : super (val);

static const IssueDegree TRIVIAL = const IssueDegree('TRIV);
static const IssueDegree REGULAR = const IssueDegree('REG');
static const IssueDegree IMPORTANT = const IssueDegree('IMP');
static const IssueDegree CRITICAL = const IssueDegree('CRIT');
}

main() {
 assert(IssueDegree.REGULAR is IssueDegree);
 // switch code
}

The switch code of the first example also works for this implementation. To simplify the code,
the const values can also be defined outside the class, as in enum3.dart. Then, it is no
longer needed to precede them with the enum class name, as shown in the following code:

import 'enum_abstract_class.dart';

const IssueDegree TRIVIAL = const IssueDegree('TRIV');
const IssueDegree REGULAR = const IssueDegree('REG');
const IssueDegree IMPORTANT = const IssueDegree('IMP');
const IssueDegree CRITICAL = const IssueDegree('CRIT');

class IssueDegree<String> extends Enum<String> {
 const IssueDegree(String val) : super (val);
}

main() {

Working with Data Types

66

 assert(REGULAR is IssueDegree);

 var issueLevel = IMPORTANT;
 switch (issueLevel) {
 case TRIVIAL:
 print("Ok, I'll sort it out during lunch");
 break;
 // rest of the code
}

How it works...
The first option uses an enum class with a const constructor to set a private _value; the
class contains the different values as constants. The constants can only be defined inside
the class, and you get autocompletion (in Dart Editor or other editors with the Dart plugin) for
them for free! In this way, you can use this enum-like class in a switch, and both dartanalyzer
and the runtime point out the error to you if a non-existent value is used. The enum_class.
dart file provides the template code for this case; make sure you create the constant values,
as shown in the following code:

class Enum {
 final _value;
 const Enum(this._value);
 toString() => 'Enum.$_value';

 static const VAL1 = const Enum('VAL1');
 static const VAL2 = const Enum('VAL2');
 static const VAL3 = const Enum('VAL3');
 static const VAL4 = const Enum('VAL4');
 static const VAL5 = const Enum('VAL5');
}

The second way uses an abstract class Enum (defined in enum_abstract_class.dart)
that takes a generic parameter <T>, as shown in the following code:

abstract class Enum<T> {
 final T _value;
 const Enum(this._value);
 T get value => _value;
}

Making the values top-level constants simplifies the code.

Chapter 3

67

There's more...
The Ecma TC52 Dart Standards Committee has investigated a proposal for enums that will be
discussed in September 2014 (refer to http://www.infoq.com/news/2014/07/ecma-
dart-google), so providing built-in support for enums probably will be implemented in a
future Dart version.

Flattening a list
A list can contain other lists as elements. This is effectively a two-dimensional list or array.
Flattening means making a single list with all sublist items contained in it. Take a look at the
different possibilities in flatten_list.dart.

How to do it...
We show three ways to flatten a list in the following code:

List lst = [[1.5, 3.14, 45.3], ['m', 'pi', '7'], [true, false, true]];
// flattening lst must give the following resulting List flat:
// [1.5, 3.14, 45.3, m, pi, 7, true, false, true]

void main() {
 // 1- using forEach and addAll:
 var flat = [];
 lst.forEach((e) => flat.addAll(e));
 print(flat);
 // 2- using Iterable.expand:
 flat = lst.expand((i) => i).toList();
 // 3- more nesting levels, work recursively:
 lst = [[1.5, 3.14, 45.3], ['m', 'pi', '7'], "Dart", [true, false,
true]];
 print(flatten(lst));
}

How it works...
The simplest method uses a combination of forEach and addAll. The second method uses
the fact that List implements Iterable, and so has the expand method. The expand
method is used here with an identity function as its argument; every element is returned
without applying a function.

http://www.infoq.com/news/2014/07/ecma-dart-google
http://www.infoq.com/news/2014/07/ecma-dart-google

Working with Data Types

68

Using expand does not work if the list contains ints (or Strings, doubles, and so on) as
single list elements, or if there are multiple levels of nesting. In that case, we will have to work
recursively, as implemented in the flatten method:

Iterable flatten(Iterable iterable)
 => iterable.expand((e) => e is List ? flatten(e) : [e]);

There's more...
Why would you want to flatten a list of lists? There may be application needs to do this, for
example, when you use two-dimensional lists or matrices in the game logic, but an obvious
reason is that working with a list of lists is much more expensive performance wise.

Generating a random number within a range
You may have often wondered how to generate a random number from within a certain range.
This is exactly what we will look at in this recipe; we will obtain a random number that resides
in an interval between a minimum (min) and maximum (max) value.

How to do it...
This is simple; look at how it is done in random_range.dart:

import 'dart:math';

var now = new DateTime.now();
Random rnd = new Random();
Random rnd2 = new Random(now.millisecondsSinceEpoch);

void main() {
 int min = 13, max = 42;
 int r = min + rnd.nextInt(max - min);
 print("$r is in the range of $min and $max"); // e.g. 31
 // used as a function nextInter:
 print("${nextInter(min, max)}"); // for example: 17

 int r2 = min + rnd2.nextInt(max - min);
 print("$r2 is in the range of $min and $max"); // e.g. 33
}

Chapter 3

69

How it works...
The Random class in dart:math has a method nextInt(int max), which returns a
random positive integer between 0 and max (not included). There is no built-in function for our
question but it is very easy, as shown in the previous example. If you need this often, use a
function nextInter for it, as shown in the following code:

int nextInter(int min, int max) {
 Random rnd = new Random();
 return min + rnd.nextInt(max - min);
}

The variable rnd2 shows another constructor of Random, which takes an integer as a seed for
the pseudo-random calculation of nextInt. Using a seed makes for better randomness, and
should be used if you need many random values.

Getting a random element from a list
For certain applications such as games, it is necessary to have a means to retrieve a random
element from a collection in Dart. This recipe will show you a simple way to do this.

How to do it...
This is easy to do; refer to the random_list.dart file:

import 'dart:math';

Random rnd = new Random();
var lst = ['Bill','Joe','Jennifer','Louis','Samantha'];

void main() {
 var element = lst[rnd.nextInt(lst.length)];
 print(element); // e.g. 'Louis'
 element = randomListItem(lst);
 print(element); // e.g. 'Samantha'
}

How it works...
We generate a random index number based on the list length and use it to retrieve a random
element from the list. If you need this often, use the one-line function randomListItem for
it, as shown in the following code:

randomListItem(List lst) => lst[rnd.nextInt(lst.length)];

Working with Data Types

70

See also
ff Consult the previous recipe for more information about the use of Random

Working with dates and times
Proper date-time handling is needed in almost every data context. What does Dart give us to
ease working with dates and times? Dart has the excellent built-in classes DateTime and
Duration in dart:core. As a few of its many uses, you can do the following:

ff Compare and calculate with date times

ff Get every part of a date-time

ff Work with different time zones

ff Measure timespans with Stopwatch

However, the DateTime class does not provide internationalization; for this purpose, you
need to use the intl package from the Dart team.

How to do it...
The following are some useful techniques (try them out in date_time.dart):

ff Formatting dates (from DateTime to a string) to standard formats, but also to any
format using the package intl, as shown in the following code:
import 'package:intl/intl.dart';
import 'package:intl/date_symbol_data_local.dart';

 print(now.toIso8601String()); // 2014-05-08T14:03:21.238
 print(now.toLocal()); // 2014-05-08 14:03:21.238
 print(now.toString()); // 2014-05-08 14:03:21.238
 print(now.toUtc()); // 2014-05-08 12:03:21.238Z
 // using intl to format:
 var formatter = new DateFormat('yyyy-MM-dd');
 String formatted = formatter.format(now);
 print(formatted); // 2014-05-08
 print(new DateFormat("EEEEE").format(now)); // Thursday
 print(new DateFormat("yMMMMEEEEd").format(now)); //
Thursday, May 8, 2014
 print(new DateFormat("y-MM-E-d").format(now)); //
2014-05-Thu-8
 print(new DateFormat("jms").format(now)); // 2:19:08 PM

Chapter 3

71

 print(new DateFormat('dd/MMM/y HH:mm:ss').format(now)); //
08/May/2014 14:39:07
 // locale data:
 initializeDateFormatting("fr_FR", null).then(formatDates);
// …
}

formatDates (var d) {
 print(new DateFormat("EEEEE", 'fr_FR').format(now)); //
jeudi
 print(new DateFormat("yMMMMEEEEd", 'fr_FR').format(now)); //
jeudi 8 mai 2014
 print(new DateFormat("y-MM-E-d", 'fr_FR').format(now)); //
2014-05-jeu.-8
}

ff Parsing dates (from a string to a DateTime) when the given string is not in one of the
acceptable date formats; an exception is thrown and caught as shown in the
following code:
 try {
 DateTime dt = DateTime.parse("2014-05-08T15+02:00");
 } on FormatException catch(e) {
 print('FormatException: $e');
 }

ff Working with timezone information:
print(now.toLocal());// time in local timezone
print(now.toUtc()); // time in Coordinated Universal Time
print(now.timeZoneName); // Romance (zomertijd)
print(now.timeZoneOffset); // 2:00:00.000000

ff Finding the last day of the month can be done as follows:
 var date = new DateTime(2014,6,0);
 print(date.day); // 31
 // more general:
var lastDayDateTime = (now.month < 12) ? new
DateTime(now.year, now.month + 1, 0) : new
DateTime(now.year + 1, 1, 0);
 print(lastDayDateTime.day); // 31

Working with Data Types

72

How it works...
Formatting a DateTime instance can be done with a few to… methods from dart:core,
such as toLocal() to get the time in the local time zones (as defined by your machine).
However, intl gives you much more flexibility; make a DateFormat object with the
specific format string as an argument, and then call the format method to get a
formatted string back.

For example, d gives the day number, E gives the weekday in an abbreviated form, EE
gives the full day's name, M gives the month number, y gives the year, H gives the hour (0-
24), j gives the hour (0-12) with AM or PM, m gives the minute, and so on. Many format
combinations are possible (and you can build your own).

For a complete overview of format combinations, refer to
https://api.dartlang.org/apidocs/channels/
stable/dartdoc-viewer/intl/intl.DateFormat.

If you want formatting for a particular locale (such as be_NL, cs_CZ, de_DE, and so on), you
must first load the specific locale data by importing date_symbol_data_local.dart and
then calling initializeDateFormatting. The first parameter is the specific locale. If you
give it the value null, all the available locale data is loaded, as shown in the following code:

initializeDateFormatting("fr_FR", null).then(formatDates);

Next, when constructing the DateFormat object, the locale (such as 'fr_FR') has to be
given as the second parameter:

new DateFormat("yMMMMEEEEd", 'fr_FR')

The formatDates method shows the following code in action:

formatDates (var d) {
 print(new DateFormat("EEEEE", 'fr_FR').format(now)); // jeudi
 print(new DateFormat("yMMMMEEEEd", 'fr_FR').format(now)); // jeudi
8 mai 2014
 print(new DateFormat("y-MM-E-d", 'fr_FR').format(now)); // 2014-
05-jeu.-8
}

Parsing a well-formed string into a DateTime string is done with the static DateTime.parse
method, which takes the string and produces DateTime. The input format must conform to
an ISO 8601 format. If the input format cannot be parsed, FormatException is thrown, so
use try/catch to handle this.

https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/intl/intl.DateFormat
https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/intl/intl.DateFormat

Chapter 3

73

The toUTC option gives you the time in Coordinated Universal Time (UTC) format, which is for
all practical purposes identical to Greenwich Mean Time (GMT). Use timeZoneName to get
an abbreviated name of the time zone for the DateTime object. The difference between UTC
and the time zone of a DateTime object is calculated by calling timeZoneOffset.

To find the last day of the month, giving a day value of zero for the next month returns the
previous month's last day.

There's more...
Be aware that a DateTime object is always in the local time zone, unless explicitly created in
the UTC time zone with the DateTime.utc constructor; this can be done as follows:

DateTime moonLanding = new DateTime.utc(1969, DateTime.JULY, 20);

In this constructor, only the year is required, all the other date and time parts are optional.

If you have other Datetime questions, look up the API docs at https://api.dartlang.
org/apidocs/channels/stable/dartdoc-viewer/dart-core.DateTime.

Improving performance in numerical
computations

Unlike Java and C#, who have dedicated 8, 16, 32, and 64 bit signed and unsigned integer
types, and 32-bit and 64-bit floats, Dart does not have bounded integer types or 32-bit
floating point number types; it only has two numeric types, int (an arbitrarily sized integer)
and double (conforming to the IEEE-754 spec), and their super type num. This was done to
make the language more dynamic and easier to learn and use. However, the Dart VM does a
good job of inferring the range of integers, and optimizes whenever possible. Here, we provide
a number of discussions and tips to give your code the highest performance possible when it
involves numerical computing.

How to do it...
The VM uses three integer types internally and switches between them behind the scenes as
numbers grow and shrink in size. They are as follows:

ff smi (small integer): You can think of this integer type as being 32 bit on a 32-bit
machine and 64 bit on a 64-bit machine

ff mint (medium integer): This integer type is always 64 bit

ff bigint (big integer): The machine's RAM is the limit for this integer type

https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/dart-core.DateTime
https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/dart-core.DateTime

Working with Data Types

74

You can't use these classes in the Dart code; the VM automatically promotes an integer from
smi to mint, and to bigint when necessary. However, you can get better performance if you
ensure that your integer values stay in smaller ranges. For example, refer to the integer_
promotion.dart file:

import 'dart:math';

void main() {
 int points = 42; // starts as a smi
 print(points); // 42
 points = pow(points, 10); // becomes a mint
 print(points); // 17080198121677824
 points = pow(points, 3); // becomes a bigint
 print(points); // 49828603059827911309997192674768286219621357322
24
}

Don't use the bigint range unless you really have to because
this will result in a performance hit. If possible, stay in the smi
range; if not, use the mint range.

Working with lists of numbers, numbers can be stored in an object List(), or in a generic
type List<int> or List<double>. While the latter is better than the first, it is best to
use Dart typed lists, which is available in the dart:typed_data package such as
UInt8List, Int64List, or Float32List. So instead of using List<double>, which is
always slower, use Float32List or Floact64List. Be careful when using web apps; not
every browser supports typed_data yet. For example, Internet Explorer 10 supports it, but
version 9 does not.

Use typed lists when computing; calculations will run
more efficiently.

Taking into account these considerations, it is advisable to benchmark a few versions of
your app with different number of type usages (for example, comparing Float32List with
Float64List, or even with a normal list), in order to see which one performs best in the
specific context of your app.

Chapter 3

75

How it works...
Advice mostly arises from the way the Dart VM can optimize working with the different
numerical types. Because JavaScript can't use the exact same optimizations, dart2js
sometimes works differently; refer to the next section for special advice in this case.

Small machine integers (smis) fit in a register and can be loaded and stored directly in a field
instead of being fetched from memory because they never require memory allocation. That's
why they are fast. However, their range depends on the CPU architecture, so assume a 31-bit
range unless you require more bits. Operations with bigints cannot be optimized by the VM.
Working with doubles is very efficient because they are unboxed, that is, they don't need to
be put on the heap.

Dart-typed lists can only store numbers and not null values. They behave as an array of
bounded integer and float values, each entry containing its value, and the VM optimizes their
usage. Typed lists are most of the time much more compact, providing better memory and
CPU cache usage; for example, if you need only 8 bits of precision, use Int8List. They are
also faster to process when Garbage Collection (GC) occurs because they never store object
references. So they don't have to be scanned by the GC.

There's more...
From a language design point of view, using the int and num types is the best; the Dart
VM experts would probably want us to work only with double because that is where most
optimizations can be done.

Working with JavaScript
In JavaScript, every number is represented as double (it only knows the IEEE-754 type).

If your app will be used in the compiled JavaScript form, it is better to use only
the num type. Also, use is num instead of testing is int or is double
because the Dart VM and dart2js behave differently here too. If you insist on
using the int type, stay within the smi range.
In any case, use Dart-typed lists as they map trivially to JavaScript-typed
arrays. However, avoid Int64List or Uint64List because dart2js does
not support 64-bit integers due to lack of support of typed data in Internet
Explorer 9 (causing a runtime exception if used).

Parsing numbers
Avoid extensive use of double.parse(String s) or even int.parse(String s)as at
the time of writing their performance was not optimized.

Working with Data Types

76

See also
ff Consult http://dartogreniyorum.blogspot.be/2013/05/performance-

optimization-and-dart.html, where the use of typed data results in a
performance increase by two times

ff You might also want to consult the Benchmarking your app recipe in Chapter 2,
Structuring, Testing, and Deploying an Application

Using SIMD for enhanced performance
A lot of modern CPUs and GPUs provide Single Instruction Multiple Data (SIMD) support.
Four 32-bit data values (integers or floats) can be processed in parallel with the help of
128-bit special registers. This provides a potential speedup of 400 percent for image
processing, 3D graphics, audio processing, and other numeric computation algorithms. Also,
machine-learning algorithms (such as for automatic speech recognition) that use a Gauss
Mixture Model (GMM) benefit from SIMD.

How to do it…
Dart lets you work with this feature by using the special SIMD x types from the typed_data
library. It offers the following four types:

ff Int32x4, which represents four 32-bit integer values

ff Float32x4, which represents four single-precision floating point values

ff List structures to contain the 32-bit integer values, such as Int32x4List

ff Float32x4List, list structure to contain the 32-bit floating point values

http://dartogreniyorum.blogspot.be/2013/05/performance-optimization-and-dart.html
http://dartogreniyorum.blogspot.be/2013/05/performance-optimization-and-dart.html

Chapter 3

77

Let's see some examples of SIMD operations in simd.dart; the different types are
highlighted in the following snippet:

import 'dart:typed_data';

void main() {
 var a = new Float32x4(14.1, 6.7, 56.3, 78.41);
 var b = new Float32x4(12.3, 5.4, 81.7, 13.43);
 Float32x4 sum = new Float32x4.zero(); //
 print(sum); // [0.000000, 0.000000, 0.000000, 0.000000]
 sum = a + b;
 print(sum); // [26.400002, 12.100000, 138.000000, 91.840004]
 print(sum.z); // 138.0
 // b.y = 3.14; // --> NoSuchMethodError
 b = b.withY(3.14);
 print(b); // [12.300000, 3.140000, 81.699997, 13.430000]
 b = b.shuffle(Float32x4.WYXZ);
 print(b); // [13.430000, 3.140000, 12.300000, 81.699997]
 // a < b; // There is no such operator in Float32x4
 Int32x4 mask = a.greaterThan(b); // Create selection mask.
 Float32x4 c = mask.select(a, b); // Select.
 print(c); // [14.100000, 6.700000, 56.299999, 81.699997]
 // selectively applying an operation:
 Float32x4 v = new Float32x4(22.0, 33.0, 44.0, 55.0);
 // mask = [0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0]
 mask = new Int32x4.bool(true, true, false, true);
 // r = [4.0, 9.0, 16.0, 25.0].
 Float32x4 r = v - v;
 v = mask.select(r, v);
 print(v); // [0.000000, 0.000000, 44.000000, 0.000000]
}

If your application needs a list of Float32 objects and you
can deploy them on an SIMD platform, then be sure to use
Float32x4List instead of List<Float32x4> to get
better performance.

Working with Data Types

78

How it works...
The Float32x4 object offers the standard set of arithmetic operations and more. A
Float32x4 object is in fact an immutable object with operations that create new immutable
Float32x4 objects. The Int32x4 object is more limited, being useful for comparison,
branching, and selection. In code that is optimized for these types, the values are mapped
directly to SIMD registers, and operations on them compile into a single SIMD instruction with
no overhead. You can think of an SIMD value as a horizontal compartment being subdivided
into four lanes, respectively called x, y, z, and w, as shown in the following screenshot:

The SIMD architecture

An operation on two SIMD values happens on all the lanes simultaneously. With .x and other
values, you can read the values of the individual lanes, but attention, this is slow. Because an
SIMD value is immutable, a b.y = value statement is illegal. However, the withX methods
let you do this, but again this is slow. Reordering values in one SIMD is done with a number of
shuffle methods, where the lane order (WYXZ) indicates the new order. An SIMD instance
contains four numbers, so comparisons such as < or >= cannot be defined. If you want
to make c equal to the higher values of a and b, first you have to create a mask with the
greaterThan operation, and then perform a select operation on it. An analogous masking
technique is used if you want to perform an operation on some of the lanes only.

Chapter 3

79

At this time, you can get this performance acceleration on all IA32/X64 platforms, and on
ARM only if the processor supports NEON technology, and its implementation is pending for
JavaScript. Thanks to the work of John McCutchan, Dart was the first web technology to use
SIMD processing.

See also
ff For more information on SIMD, refer to http://en.wikipedia.org/wiki/SIMD

ff Dart can even beat the Java VM when using SIMD; for more information refer to
http://dartogreniyorum.blogspot.be/2013/05/dart-beats-java-in-
numerical-computing.html

http://en.wikipedia.org/wiki/SIMD
http://dartogreniyorum.blogspot.be/2013/05/dart-beats-java-in-numerical-computing.html
http://dartogreniyorum.blogspot.be/2013/05/dart-beats-java-in-numerical-computing.html

4
Object Orientation

In this chapter, we will cover the following recipes:

ff Testing and converting types

ff Comparing two objects

ff Using a factory constructor

ff Building a singleton

ff Using reflection

ff Using mixins

ff Using annotations

ff Using the call method

ff Using noSuchMethod

ff Creating toJSON and fromJSON methods in your class

ff Creating common classes for client and server apps

Introduction
Dart, although optionally typed, is an object-oriented language like Ruby, so it is an object.
This is in contrast to JavaScript, where object orientation is not inherent in the language and
was added later in different ad hoc ways. We can expect huge benefits from working with a
real object-oriented language to build our client web applications. So, let's delve a bit deeper
into the object-oriented nature of Dart, and find some new techniques and insights.

Object Orientation

82

Testing and converting types
Everything in Dart is an object and has a type; an instance of a class descended from an
object through a single inheritance chain, even null is of type Null. Type annotating a variable
is not required in Dart, for example, contrary to Java. In this case, the variable is declared
with var and is of type dynamic. Values sometimes have to be converted from one type to
another. In order to avoid runtime type errors when the conversion fails, we can test if the
value is of the type we want to cast it to before the conversion. For the code examples, refer to
types.dart.

How to do it...
We can test and convert types with the help of the following steps:

1.	 We can test and show the type of an object, as shown in the following code:
void main() {
 var p = new Person();
 p.name = "Joe";
if (p is Person) {
 print('p is called ${p.name}');
 print('p is of type ${p.runtimeType}'); }
else {
 // p has value null and is of type Null
 print('p has value $p and is of type ${p.runtimeType}');
 }
}

class Person {
 String nmeame;
}

The preceding code prints p is of type Person.

2.	 Conversion between types of variables:

�� To convert everything to a string, use the $ operator in string interpolation or
the toString() method

�� To convert a string str to int, use int.parse(str)

�� To convert a string str to double, use double.parse(str)

�� To handle a possible FormatException in the previous two conversions,
use try / catch

�� To convert int to double, use toDouble()

Chapter 4

83

�� To convert double to int, use toInt(), but truncation of the decimal
part will occur

�� To convert a string to DateTime, use DateTime.parse(str) with
try / catch

�� To handle a possible FormatException when str is not a recognizable
date and time format

�� To convert DateTime to a string, use toLocal(), toUtc(), or a
DateFormat object (refer to the Working with dates and times recipe in
Chapter 3, Working with Data Types)

�� To convert bool to int, use the int toInt(bool val) => val ? 1 :
0; function

How it works...
To test if an object p is of a certain type, use the is (or its negation is!) operator. Because
types are optional in Dart, you can only ask for runtimeType of an object, which is of type
Type. The p is Object message is always true, and null is T (with T being a type) is
only true if T == null.

The toString() method is a method of Object and returns Instance of Type by default,
where Type is the class name of the object. Override this method to have more specific
behaviors in your classes. In Dart, bool and int are two different types, but you can mimic
C-like behavior by using a ternary operator in toInt(bool).

Conversion between types is not always safe; use try/catch if a
FormatException occurs.

There's more...
There is also a shorter version, the is test if (p is Person) { p.name = 'Bob';}
can be shortened to (p as Person).firstName = 'Bob'; with the as operator being
a typecast of p to Person is done. However, you can only use this form when you are certain
that p can be of that type; when p is null or not a Person Dart will throw an exception.

See also
ff Refer to the Working with dates and times recipe in Chapter 3, Working with Data

Types for date and time conversions

Object Orientation

84

Comparing two objects
How can you determine whether two objects are equal or not? Basically, this is defined by
objects (refer to the How it works… section of this recipe). Obviously, two equal objects will be
of the same class (so the same type) and have the same value(s).

How to do it...
In the comparing_objects program, we define a class Person, override == and
hashcode, and test the equality of some objects, as shown in the following code:

void main() {
 var p1 = new Person("Jane Wilkins", "485-56-7861", DateTime.
parse("1973-05-08"));
 var p2 = new Person("Barack Obama", "432-94-1282", DateTime.
parse("1961-08-04"));
 var p3 = p1;
 var p4 = new Person("Jane Wilkins", "485-56-7861", DateTime.
parse("1973-05-08"));

 // with == and hashCode from Object:
 // (comment out == and hashCode in class Person)
 print(p2==p1); //false: p1 and p2 are different
 print(p3==p1); //true: p3 and p1 are the same object
 print(p4==p1); //false: p4 and p1 are different objects
 print(identical(p1, p3)); //true
 print(identical(p1, p4)); //false
 print(p1.hashCode); // 998736967
 print(p2.hashCode); // 676682609
 print(p3.hashCode); // 998736967
 // with specific == and hashCode for class Person:
 print(p2==p1); //false: p1 and p2 are different
 print(p3==p1); //true: p3 and p1 are the same object
 print(p4==p1); //true: p4 and p1 are the same Person
 print(identical(p1, p3)); //true
 print(identical(p1, p4)); //false
 print(p1.hashCode); // 105660000000
 print(p2.hashCode); // -265428000000
 print(p3.hashCode); // 105660000000
}

class Person {
 String name;

Chapter 4

85

 String ssn; // social security number
 DateTime birthdate;

 Person(this.name, this.ssn, this.birthdate);
 toString() => 'I am $name, born on $birthdate';
 operator ==(Person other) => this.ssn == other.ssn;
 int get hashCode => birthdate.millisecondsSinceEpoch;
}

How it works...
The Object superclass has a bool ==(other) method that defines the equality of objects.
This returns true only when this and other are the same object, that is, they reference
the same object in the (heap) memory. This is the default behavior, unless you override it in
your classes. The != operator is the negation of this. Another way to test this is the top-level
identical function from dart:core bool identical(Object a, Object b).

Every object has an integer hashcode returned by the getter int get hashCode. Two
objects that are equal have the same hashcode, but this can differ between two runs of a
program. Any subclass can have its own version to define equality between its objects.

If you override == in a class, you should override hashCode as
well for consistency.

There's more...
If you want to use instances of a class as keys in maps, then you have to overload the ==
operator and the hashCode method.

See also
ff Refer to the Working with dates and times recipe in Chapter 3, Working with Data

Types for date and time conversions

Object Orientation

86

Using a factory constructor
Dart gives us many flexible and succinct ways to build objects through constructors:

ff With optional arguments, such as in the Person constructor where salary is
optional:
class Person{
 String name;
 num salary
 Person(this.name, {this.salary});
}

ff With named constructors (a bonus for readable self-documenting code), for example,
where a BankAccount for the same owner as acc is created:
BankAccount.sameOwner(BankAccount acc): owner = acc.owner;

ff With const constructors, as shown in the following code:
class ImmutableSquare {
finalnum length;
static finalImmutableSquare ONE = const ImmutableSquare(1);
constImmutableSquare(this.length);
}

However, modern modular software applications require more flexible ways to build and return
objects, often extracted into a factory design pattern (for more information, refer to http://
en.wikipedia.org/wiki/Factory_(object-oriented_programming)). Dart has
this pattern built right into the language with factory constructors.

How to do it...
In the factory program, we explore some usage examples as follows:

1.	 Returning an object from a cache, as shown in the following code:
main() {
 var sv = new Service('Credit Card Validation');
 sv.serve('Validate card number');
 Person p = new Person("S. Hawking");
 print(p); // S. Hawking
}

class Service {
 final String name;
 bool mute = false;

http://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
http://en.wikipedia.org/wiki/Factory_(object-oriented_programming)

Chapter 4

87

 // _cache is library-private, thanks to the _ in front of its
name.
 static final Map<String, Service> _cache = <String, Service>{};

 Service._internal(this.name);

 factory Service(String name) {
 if (_cache.containsKey(name)) {
 return _cache[name];
 } else {
 final serv = new Service._internal(name);
 _cache[name] = serv;
 return serv;
 }
 }

 void serve(String msg) {
 if (!mute) {
 print(msg); // Validate card number

 }
 }
}

2.	 Creating an object from a subtype, as shown in the following code:
class Person {
 factory Person(name) => new Teacher(name);
}

class Teacher implements Person {
 String name;
 Teacher(this.name);
 toString() => name;
}

Using an abstract class, abstract_factory1-3 shows you how to use a factory
constructor with it:

ff The factory constructor can be used with an abstract class, as shown in the
following code:
void main() {
 // factory as a default implementation of an abstract class:
 Cat cat = new Animal();
 var catSound = cat.makeNoise();

Object Orientation

88

 print(catSound); // Meow
}

abstract class Animal {
 String makeNoise();
 factory Animal() => new Cat();
}

class Cat implements Animal { String makeNoise() => 'Meow'; }
class Dog implements Animal { String makeNoise() => 'Woef';}

ff Another example of using the factory constructor with an abstract class is shown in
the following code:
import 'dart:math';

void main() {
 Cat an = new Animal();
 print(an.makeNoise());
}

abstract class Animal {
 // simulates computation:
 factory Animal() {
 var random = new Random();
 if (random.nextBool())
 return new Cat();
 else
 return new Dog();
 }
}

class Cat implements Animal { String makeNoise() => 'Meow'; }
class Dog implements Animal { String makeNoise() => 'Woef'; }

ff The next example also illustrates how to use a factory constructor with an
abstract class:

void main() {
 Cat cat = new Animal("cat");
 Dog dog = new Animal("dog");
 print(cat.makeNoise());
}

abstract class Animal {

Chapter 4

89

 String makeNoise();
 factory Animal(String type) {
 switch(type) {
 case "cat":
 return new Cat();
 case "dog":
 return new Dog();
 default:
 throw "The '$type' is not an animal";
 }
 }
}

class Cat implements Animal { String makeNoise() => 'Meow'; }
class Dog implements Animal { String makeNoise() => 'Woef'; }

How it works...
In the first example, we had a number of services gathered in _cache, but each service
can be created only once through a private _internal constructor; every named service
is unique.

In the second example, we showed that a class with a factory constructor cannot be directly
extended; instead, the subtype must implement the class. In the third example, we showed
three variants of using an abstract class with a factory constructor.

Why and when would you want to use a factory constructor? Sometimes, we don't want a
constructor to always make a new object of the class it is in. The following are some use cases
for a factory constructor; the code examples show you a usage example for all of them:

ff To return an object from a cache in order to reuse it

ff To create an object from a subtype of the class the constructor is in

ff To limit the instances to one unique object (the singleton pattern)

ff Even an abstract class can contain a factory constructor to return a default
implementation of a concrete class (this is the only way an abstract class can
have a constructor)

The factory constructor is invoked just as any other constructor by new. The consumer of the
class doesn't know the constructor is really a factory, so you can refactor regular constructors
into factory constructors to enhance flexibility without forcing clients to change their code. The
factory could also involve much more preparation and computation, and the consumer of the
class may not be aware of it; the consumer may just create a new instance. A factory invoking
a private constructor is also a common pattern, as we saw in the first example.

Object Orientation

90

The keyword this cannot be used inside a factory constructor
because the constructor has no access to it.

There's more...
The factory constructor is also extensively used in standard libraries, for example, the DOM type
CustomEvent only has factory constructors. This is because the browser has to produce these
instances; the Dart object is just a wrapper. Another use case in Dart can be that you want to
abstract an implementation of a certain feature. Some browsers support it natively, while others
don't. You can then look into the factory to see whether the browser can handle it and then
choose the right implementation according to the capabilities of the browser.

Building a singleton
In some cases, you only need one unique instance of a class because this is simply enough
for the app you're working with, or perhaps to save resources. This recipe shows you how to do
this in Dart.

How to do it...
The singleton example shows how to do this (substitute your singleton class name for
Immortal). Use a factory constructor to implement the singleton pattern, as shown in the
following code:

class Immortal {
 static final Immortal theOne = new Immortal._internal('Connor
MacLeod');
 String name;
 factory Immortal(name) => theOne;
 // private, named constructor
 Immortal._internal(this.name); }

main() {
 var im1 = new Immortal('Juan Ramirez');
 var im2 = new Immortal('The Kurgan');
 print(im1.name); // Connor MacLeod
 print(im2.name); // Connor MacLeod
 print(Immortal.theOne.name); // Connor MacLeod
 assert(identical(im1, im2));
}

All Immortal instances are the same object.

Chapter 4

91

How it works...
The Immortal class contains an object of its own type, which instantiates itself by calling the
private _internal constructor. Because it will be unique, we declare it as static. The factory
constructor always returns this instance; only one instance of the Singleton class (named
Immortal here) can ever exist in the executing isolate. It has to be a factory constructor
because only this type can return a value. The code can even be shortened, shown as follows:

class Singleton {
 factory Singleton() => const Singleton._internal_();
 const Singleton._internal_();
}

Using reflection
The Dart mirror-based reflection API (contained in the dart:mirrors library) provides a
powerful set of tools to reflect on code. This means that it is possible to introspect the complete
structure of a program and discover all the properties of all the objects. In this way, methods can
be invoked reflectively. It will even become possible to dynamically evaluate code that was not
yet specified literally in the source code. An example of this would be calling a method whose
name was provided as an argument because it is looked up in the database table.

Getting ready
The part of your code that uses reflection should have the following import code:

import 'dart:mirrors';

How to do it...
To perform reflection we perform the following actions:

ff In the reflection project, we use a class Embrace to reflect upon:
void main() {
 var embr = new Embrace(5);
 print(embr); // Embraceometer reads 5
 embr.strength += 5;
 print(embr.toJson()); // {strength: 10}
 var embr2 = new Embrace(10);
 var bigHug = embr + embr2;
 // Start reflection code:

Object Orientation

92

ff Use of MirrorSystem, as shown in the following code:
 final MirrorSystem ms = currentMirrorSystem();
 // Iterating through libraries
 ms
 .libraries
 .forEach((Uri name, LibraryMirror libMirror){
 print('$name $libMirror');
 });

ff Use of InstanceMirror and ClassMirror, as shown in the following code:
 InstanceMirror im = reflect(embr);
 InstanceMirror im2 = im.invoke(#toJson, []);
 print(im2.reflectee); // {strength: 10}
 ClassMirror cm = reflectClass(Embrace);
 ClassMirror cm2 = im.type;
 printAllDeclarationsOf(cm);
 InstanceMirror im3 = cm.newInstance(#light, []);
 print(im3.reflectee.strength);
 im3.reflectee.withAffection();
}

printAllDeclarationsOf(ClassMirror cm) {
 for (var k in cm.declarations.keys) print(MirrorSystem.
getName(k));
print(MirrorSystem.getName(m.simpleName));
}

class Embrace {
 num _strength;
 num get strength => _strength;
 set strength(num value) => _strength=value;
 Embrace(this._strength);
 Embrace.light(): _strength=3;
 Embrace.strangle(): _strength=100;
Embrace operator +(Embrace other) => new
Embrace(strength + other.strength);
 String toString() => "Embraceometer reads $strength";
 Map toJson() => {'strength': '$_strength'};

withAffection() {
 for (var no=0; no <= 3; no++) {
 for (var s=0; s <=5; s++) { strength = s; }
 }
 }
}

Chapter 4

93

ff Running the previous program produces the following output:

Embraceometer reads 5

{strength: 10}

dart:core LibraryMirror on 'dart.core'

dart:mirrors LibraryMirror on 'dart.mirrors'

dart:nativewrappers LibraryMirror on ''

dart:typed_data LibraryMirror on 'dart.typed_data'

dart:async LibraryMirror on 'dart.async'

dart:convert LibraryMirror on 'dart.convert'

dart:collection LibraryMirror on 'dart.collection'

dart:_internal LibraryMirror on 'dart._internal@0x1f109d24'

dart:isolate LibraryMirror on 'dart.isolate'

dart:math LibraryMirror on 'dart.math'

dart:builtin LibraryMirror on 'builtin'

dart:io LibraryMirror on 'dart.io'

file:///F:/Dartiverse/ADartCookbook/book/Chapter 4 - Object orientation/code/
reflection/bin/reflection.dart LibraryMirror on ''

{strength: 10}

_strength

strength

strength=

+

toString

toJson

withAffection

Embrace

Embrace.light

Embrace.strangle

3

Object Orientation

94

How it works...
The currentMirrorSystem class returns a MirrorSystem object on the current isolate;
the libraries getter gives you the list of libraries in the scope of the current code.

The InstanceMirror subclass is a representation of an instance of an object and
ClassMirror is the representation of the class definition.

Use the top-level reflect method on an object to get InstanceMirror. This allows you
to dynamically invoke code on the object producing another InstanceMirror; using its
reflectee property gives you access to the actual instance.

Note that the invoke method takes as its first argument a symbol (recognizable from its
prefix) for the method name. Symbols were introduced in Dart because they survive
minification.

The top-level reflectClass method on a class results in ClassMirror; the same type of
object is given by calling type on InstanceMirror of that class. The ClassMirror class
has a declarations getter that returns a map from the names of the declarations to the
mirrors on them. Static methods can be called on ClassMirror.

For every type of object in Dart, there exists a corresponding mirror object. So we have
VariableMirror, MethodMirror, ClassMirror, LibraryMirror, and so on. Invoking
newInstance on a ClassMirror class with the name of a constructor as a symbol
produces InstanceMirror; you can then call methods on the real object via reflectee.

There's more...
There are some things we should be aware of when using reflection:

ff The mirror API is still evolving, so expect some additions and adjustments in the
future. The implementation is most complete for code running in the Dart VM.

ff Mirroring in dart2js lags a bit behind. The processes of minifying and tree shaking
your app performed by dart2js will generally not detect the reflected code. So the use
of reflection at runtime might fail, resulting in noSuchMethod() errors. To prevent
this from happening, use the Mirrors annotation, as shown in the following code,
which helps the dart2js compiler to generate a smaller code:
@MirrorsUsed(override:'*')
import 'dart:mirrors';

ff One of the restrictions is the reflections across isolates. At the time of writing this
book, reflection only works if the reflection code and the object being reflected are
running in the same isolate.

Chapter 4

95

ff Suppose you have an undocumented method that returns a Future value and you
want to know the properties and methods of that object without digging into the
source code. Run the following code snippet:
import 'dart:mirrors';

undocumentedMethod().then((unknown){
 	 var r = reflect(unknown).type; // ClassMirror
 var m = r.declarations;
for (var k in m.declarations.keys) print(MirrorSystem.getName(k));
});

See also
ff When you want to use reflection in the code, which has to be minified and tree

shaken, read the Shrinking the size of your app recipe in Chapter 1, Working
with Dart Tools

Using mixins
In Dart, just like in Ruby, your classes can use mixins to assign a certain behavior to
your class. Say an object must be able to store itself, so its class mixes in a class called
Persistable that defines save() and load() methods. From then on, the original class
can freely use the mixed-in methods. The mechanism is not used for specialized subclassing
or is-a relationships, so it doesn't use inheritance. This is good because Dart uses a single
inheritance, so you want to choose your unique direct superclass with care.

How to do it...
ff Look at the mixins project; the Embrace class from the previous recipe needs to

persist itself, so it mixes with the abstract class Persistable, thereby injecting the
save and load behavior. Then, we can apply the save() method to the embr object,
thereby executing the code of the mixin as follows:
void main() {
 var embr = new Embrace(5);

ff Using the mixins methods, as shown in the following code:
 print(embr.save(embr.strength));
 print(embr is Movement); // true
 print(embr is Persistable); // true
}

Object Orientation

96

ff Mixing in Persistable, as shown in the following code:
class Embrace extends Movement with Persistable {
 // code omitted, see previous recipe
}

class Movement {
 String name;
 Movement();
 }

ff Defining Persistable, as shown in the following code:
abstract class Persistable {
 save(var s) {
 // saving in data store
 return "You are saved with strength $s!";
 }
 load() => "You are loaded!";
}

The previous program produces the output You are saved with strength 5!

How it works...
The abstract class Persistable is mixed in with the keyword with. The class Embrace is a
subclass of class Movement, Embrace is Movement; if you don't have a direct superclass, as
shown in the following code:

class Embrace extends Object with Persistable

So it means that in order to use a mixin, you will always need to extend a class. Objects of the
class Embrace are also of the mixed-in type Persistable.

There's more...
The class that is mixed in is usually an abstract class, but it doesn't have to be. You can also
mix in several classes to give a taste of multiple inheritance, as shown in the following code:

class Developer extends Person with Intellectual, Addicted

The mixed-in class has to obey some restrictions as follows:

ff It must not declare a constructor

ff Its superclass is an object

ff It may not contain calls to the superclass

Chapter 4

97

The mixin concept very much resembles the implementation of an interface mechanism,
which exists in many other languages. However, it is much more powerful because the mixed
in class(es) can contain real code that can be executed, whereas interfaces can't contain
code; only definitions of methods. So that's why using mixins is a good practice.

Always examine your inheritance relationship to see if it can be better
described by a mixin than with a superclass.

In Dart, you can also use the implements keyword; a class can implement one or more other
classes. What's the difference between implementing and mixing in? Implementing means
that the class provides its own code for the public methods from the class it implements,
while mixing in means that the class can use the code from the mixin class itself.

Using annotations
Dart shares with other languages such as Java and C# the ability to attach (or annotate)
variables, classes, functions, methods, and other Dart program structures with metadata
words preceded by an @ sign. This is done to give more information about the structure,
or indicate that it has a special characteristic or behavior. Examples are @override, @
deprecated, and @observable (used in Polymer), so they are liberally used by the Dart
team. Also, Angular.dart uses them abundantly. Moreover, you can also define your
own annotations.

How to do it...
In the project annotations, we gave our Embrace class the metadata @ToFix. The
strangle method is denoted by @deprecated, and we indicate with @override in
Embrace that we want to override the method consumedCalories inherited from
Movement, as shown in the following code:

const Anno = "Meta";

void main() {
 var embr = new Embrace(5);
 print(embr);
 var str = new Embrace. strangle();
}

@Anno
@ToFix("Improve the algorithms", "Bill Gates")
class Embrace {
// code ommitted, see previous recipes

Object Orientation

98

@deprecated
 Embrace.strangle(): _strength = 100;

@override consumedCalories() { } // warning!

}

class Movement {
 String Name;
 Movement();
 consumedCalories() {
 // calculation of calories
 }
}

class ToFix {
 final String note, author, date;
 const ToFix(this.note, this.author, {this.date});
}

How it works...
The @deprecated instance is used to indicate something that you no longer want users of
your library to use, and that will probably stop working in a future version. When the analyzer
in Dart Editor sees this annotation, it marks the code component that follows (and everywhere
it is used) with a strike-through line. Moreover, it will give a warning: '…' is deprecated. The @
override instance is also a good (but not necessary) indication that you want to override
an inherited behavior. Here, the editor also uses this instance to point to possible bugs; if you
had written @override consumedcalories(), then you would get the warning Method
does not override an inherited method; so typos are eliminated.

To make your own annotations, you must make sure that it is defined as a constant
expression that starts with an identifier, such as const Anno in the example, which could be
used as @Anno. More specifically, it must be a reference to a compile-time constant variable
or call to a constant constructor. We used the class ToFix to give our class the annotation @
ToFix("Improve the algorithms").

There's more...
Annotations are defined in Dart through the class Annotation in the analyzer library. With
the reflection mirror library (see the Using reflection recipe), it is possible to extract metadata
at runtime and use its values to influence program execution.

Chapter 4

99

See also
ff See the annotations used in Angular.dart in Chapter 11, Angular Dart Recipes

Using the call method
This is a hidden gem in Dart. It enables you to give a parameter to an object, thereby invoking
the call method from the object's class.

How to do it...
See its usage in the call project, as shown in the following code:

var u = "Julia";

void main() {
 var embr = new Embrace(5);

The call method can be used in the following ways:

1.	 Invoke call, as shown in the following code:
 embr(u); // callable method!
 var m = new Mult();
 print(m(3, 4));
}

class Embrace {
 // see code in recipe: Using reflection

2.	 Define the call method, as shown in the following code:
 call(var user) { print("$user is called, and hugged with
strength $strength!"); }
 }

class Mult{
 call(int a, int b) => a * b;
}

We get the following output on the screen:

Julia is called, and hugged with strength 5!

12

Object Orientation

100

How it works...
We pass the value u to the embr object in the embr(u) call, which invokes the call method.
This method defines what the instances of your class do when invoked as functions via the
() syntax. The advantage of using this in a normal class is perhaps not that clear. It is more
useful when making a class that in fact wants to emulate a function, such as the Mult class.
An object of this call can take two integers and return their product. This example is trivial and
not worth writing a special class for it, but there are cases where this ability can be put to use.

There's more...
The Mult class contains only one function. We could also have written it as a Multi function,
as shown in the following code:

int Multi(int a, int b) => a * b;

We could have even invoked it with print(Multi(3, 4)); // 12.

All functions in Dart are of type Function, but we can be more specific by defining a
typedef. A typedef is a way to give a name to a function's signature, that is, the type of its
arguments and return type. The typedef IntOp generalizes the type of Multi, as shown
in the following code:

 typedef int IntOp(int a, int b);
Then we can write for example, when f is defined as a Function:
 assert(Multi is IntOp);
 f = Multi;
 print(f(3, 4)); // 12
 assert(f is IntOp);

Using noSuchMethod
When a method is called on an object, and this method does not exist in its class, or any of
its superclasses in the inheritance tree, then noSuchMethod() from Object is called. The
default behavior of noSuchMethod is to throw a NoSuchMethodError, method not found:
'methodname'. However, Dart can do more; as in some other dynamic languages, every
class can implement noSuchMethod to make its behavior more adaptive and flexible. This is
because of the fact that Dart is dynamically typed, so it is possible to call a method that does
not exist in a dynamic variable. In Java, you get a compile time error for this. In Dart too, an
error is thrown but at runtime. By using noSuchMethod(), we can circumvent this and put it
to our use.

Chapter 4

101

How to do it...
See noSuchMethod in action in the nosuchmethod project:

void main() {
 var embr = new Embrace(5);
 print(embr.missing("42", "Julia")); // is a missing method!
}

@proxy
class Embrace {
 // see code in previous recipes
 @override
 noSuchMethod(Invocation msg) => "got ${msg.memberName} "
 "with arguments ${msg.positionalArguments}";
}

This script gives the output got Symbol("missing") with arguments [42, Julia].

How it works...
When missing is called and not found, noSuchMethod is found and executed instead. The
exact signature of the method is noSuchMethod(Invocation msg). When it is invoked, an
object msg of type Invocation is passed to it, which contains the names of the method and
its arguments. If noSuchMethod returns a value, that value becomes the result of the original
Invocation. Invocation also has Boolean getters isMethod, isAccessor, isGetter,
and isSetter to find out whether the called method was a normal method, getter, or setter.
With this information being passed, we could do something more useful than just print it, as
shown in the following code:

noSuchMethod(Invocation msg) =>
 msg.memberName == #meth1 ? Function.apply(meth2,
 msg.positionalArguments,
 msg.namedArguments)
 : super.noSuchMethod(msg);

Here, we check whether the called method was meth1 (notice that memberName is of type
Symbol) and if so, we call the meth2 method by passing the supplied arguments. Calling
meth2 is done through the static method apply() in the Function class, which allows
functions to be called in a generic fashion. Use the @override annotation to indicate that
you are intentionally overriding a member. Use the @proxy annotation on the class header
itself to avoid analyzer warnings if you use noSuchMethod() to implement every possible
getter, setter, and method for a class.

Object Orientation

102

There's more...
Another good reason to use noSuchMethod is to reduce boilerplate code when writing a lot of
similar methods. To make sure that code completion still works, use the following structure:

abstract class Class1Api {
 method1();
 method2();
 //...
}

class Class1 implements Class1Api {
 noSuchMethod(Invocation inv) {
 //...
 }
}

main() {
 Class1 cl = new Class1();
 // cl. // remove comment and type cl. to see method1()
 // and so on in code completion
}

All the methods that will implement in noSuchMethod are summed up in the abstract
class Class1Api, and then the code completion list will present them. See the code in the
boilerplate.dart file and the following screenshot:

Chapter 4

103

See also
ff See the Using annotations recipe in this chapter for more information on @override

and @proxy

Making toJSON and fromJSON methods in
your class

JavaScript Object Notation (JSON) is probably the most widely used data format in web
applications, so it is a common requirement for a class to be able to serialize its objects to
JSON strings, or reconstruct objects from JSON strings.

Getting ready
JSON is lightweight (not as verbose as XML) and text-based, so it is easily readable by
humans. It starts from the notion that the state (or content) of an object is in fact like a map;
the keys are the field names, and their values are the concrete data stored in the fields. For
example, (see project json/job.dart), say we have a class Job defined, as shown in the
following code:

class Job {
 String type;
 int salary;
 String company;
 Job(this.type, this.salary, this.company);
}

Next, we construct a job object with the following code:

var job = new Job("Software Developer", 7500, "Julia Computing LLC")
;

Then, it can be represented as the following JSON string:

 '{
 "type": "Software Developer",
 "salary": 7500,
 "company": "Julia Computing LLC"
 }'

The values can themselves be lists or maps or lists of maps. For more information about
JSON, refer to http://en.wikipedia.org/wiki/JSON.

http://en.wikipedia.org/wiki/JSON

Object Orientation

104

How to do it...
ff The following is the code to give our class JSON functionality:

import 'dart:convert';

class Job {
 String type;
 int salary;
 String company;
 Job(this.type, this.salary, this.company);

ff The following is the code to encode or serialize data:
 String toJson() {
 var jsm = new Map<String, Object>();
 jsm["type"] = type;
 jsm["salary"] = salary;
 jsm["company"] = company;
 var jss = JSON.encode(jsm);
 return jss;
 }

ff The following is the code to decode or deserialize data:
 Job.fromJson(String jsonStr) {
 Map jsm = JSON.decode(jsonStr);
 this.type = jsm["type"];
 this.salary = jsm["salary"];
 this.company = jsm["company"];
 }
}
void main() {
 var job = new Job("Software Developer", 7500, "Julia Computing
LLC") ;
 var jsonStr = job.toJson();
 print(jsonStr);
 var job2 = new Job.fromJson(jsonStr);
 assert(job2 is Job);
 assert(job2.toJson() == jsonStr);
}

The output of jsonStr is {"type":"Software Developer","salary":7500,"company":"Julia
Computing LLC"}.

The assert statements confirm that the decoded object is of type Job and is equal to the
JSON string we started from.

Chapter 4

105

How it works...
A JSON string can be stored in a file or database, or sent over the network to a server. So our
class needs to be able to:

ff Write its objects out in JSON format, which is also called serializing or encoding; we'll
conveniently call this method toJson()

ff Read a JSON string and construct an object (or many objects) from it; this is called
deserializing or decoding, and we'll make a method fromJson() to do just this

Part of the work is done by functions in the imported dart:convert library, which produces
and consumes JSON data, respectively:

ff JSON.encode(): This serializes a Dart object into a JSON string, ready to be stored
or sent over a network

ff JSON.decode(): This builds Dart objects from a string containing JSON data, which
is just read from storage or received over the network

These functions on JSON (which is an object of the class JSONCodec) can process data
from the types null, num, bool, String, List, and Map automatically and also from a
combination of these (the keys of the map need to be strings). In our Job class, the data is
processed, as explained in the following points:

ff toJson() makes the map from the object and then calls JSON.encode() on it to
return a JSON string

ff fromJson() (conveniently implemented as a named constructor) takes the JSON
string, calls JSON.decode() to return a map, and builds the object

There's more...
If your data is not that complicated, you can build the JSON string in the code yourself,
possibly as a getter, as shown in the following snippet:

String get toJson => '{"type": "$type", "salary": "$salary",
"company": "$company" } ';

If you have to construct JSON strings literally in your code, make
sure to always use double quotes to indicate strings; Dart single
quotes cannot be used here.

When an object contains other objects (composition or association, such as a BankAccount
object containing a Person object for the owner), the fromJson() and toJson() methods
from the outer object will call the corresponding methods with the same name for all the
contained objects.

Object Orientation

106

If you want a more sophisticated solution that supports the encoding and decoding of
arbitrary objects, look for the jsonx package on pub, by Man Hoang. This library can decode
a JSON string into a strongly typed object, which gets type checking and code completion
support, or encodes an arbitrary object into a JSON string. When working with JSON, it is
preferred to validate it; this can be done online at http://jsonlint.com/.

Creating common classes for client and
server apps

In distributed apps such as the client-server pattern, you often want to work with the same
model classes on both ends. Why? Because client input needs to be validated at the client
side and for this, we need the model in the client app. Data has to pass through the model
before being stored so that if we want to store the data in a client database (indexed_db) as
well as in a server data store, we need the model on both the sides.

How to do it...
You can see how common classes are created for client and server apps in the client_
server_db app. This is a to-do application; the client is started from web/app.html and the
server is started from bin/server.dart. The client stores the to-do data in indexed_db,
while the server stores the data in memory. Both client and server need the model classes.

The project structure is shown in the following screenshot:

Common library

http://jsonlint.com/

Chapter 4

107

How it works...
If you want to be able to import your common model library from another package, the files
must be under the lib directory. In this example, we see from pubspec.yaml that the name
of the app is client_server. The model (with the Task and Tasks classes) has its own
folder lib/model, which contains the model classes defined in the shared_model library
within lib/shared_model.dart. The client-app web/app.dart uses indexed_db; it
therefore imports a library idb_client to work with indexed_db, as shown in the
following code:

import 'package:client_server/idb_client.dart';

The idb_client library, defined in lib/idb_client.dart, imports the shared_ model
library, as shown in the following code:

library idb_client;

import 'package:client_server/shared_model.dart';
import 'dart:async';
import 'dart:html';
import 'dart:indexed_db';
import 'dart:convert';

part 'idb/idb.dart';
part 'view/view.dart';

In this way, the client app knows about the model. The server app also knows about the model
by importing it (see bin/server.dart):

import 'dart:io';
import 'dart:convert';
import 'package:client_server/shared_model.dart';
// rest of code

Object Orientation

108

There's more…
Here's another common use case for shared models; say the class has a method that
performs HTTP requests; on the client, you will use HttpRequest from the dart:html
library, while on the server, you will use the one from dart:io instead. For security reasons,
both dart:io and dart:html cannot be imported in the same library, so it's a common
practice to define the shared class as an abstract class, and then delegate the concrete
implementation of the HttpRequest method to both the client and server classes, which
extend the shared abstract class.

See also
ff Refer to the Structuring an application and Making and using a library recipes in

Chapter 2, Structuring, Testing, and Deploying an Application for your app

5
Handling Web
Applications

In this chapter, we will cover the following recipes:

ff Responsive design

ff Sanitizing HTML

ff Using a browser's local storage

ff Using an application cache to work offline

ff Preventing an onSubmit event from reloading the page

ff Dynamically inserting rows in an HTML table

ff Using CORS headers

ff Using keyboard events

ff Enabling drag-and-drop

ff Enabling touch events

ff Creating a Chrome app

ff Structuring a game project

ff Using WebGL in your app

ff Authorizing OAuth2 to Google services

ff Talking with JavaScript

ff Using JavaScript libraries

Handling Web Applications

110

Introduction
Web applications are what Dart was made for, so it comes as no surprise that we have a
lot of questions to deal with in this area. Dart here as a client language presents itself as
an alternative to JavaScript (to which it compiles), but also to CoffeeScript and TypeScript.
Because the language is a higher-level one and more robust, Dart enables developers to
reach a higher rate of productivity. Its structure and tooling makes possible the building of
complex software systems with large teams. When running in its virtual machine, Dart delivers
a very shortened app startup time, and higher performance during execution. All these
enhancements make Dart a prime choice to develop browser apps. You'll find topics in this
chapter that deal with safety, browser storage, all kinds of interactive events, WebGL, and of
course, working together with JavaScript.

Responsive design
Nowadays, users have to interact with computer screens of all different sizes, from
smartphones and tablets to laptops, desktop monitors, and TVs. To design a web application
in such a way that page layouts adapt intelligently to the user's screen width resolutions is
called responsive design; for example, an advanced four-column layout 1292 pixels wide, on
a 1025-pixel-wide screen, that autosimplifies into two columns when viewed on a tablet or
smartphone. Its significance is now broadened to encompass web applications that respond
to the user's environment intelligently, but also to make the web app adapt to the user's
behavior. If you do only one thing to make your app's responsive design aware, apply what you
read in this topic.

How to do it...
Add the following <meta> tag (the so-called viewport tag) to the <head> section of your
HTML pages:

 <meta name="viewport"
 content="width=device-width, initial-scale=1.0">

Chapter 5

111

How it works...
This will set you up for cross-device layout peace of mind. viewport is another word
for screen width and this tag was originally devised by Apple. Setting content to
"width=device-width" will query your device for its standard width and set your layout
width accordingly. To be extra certain that your layout will be displayed as you intended it, you
can also set the zoom level with content="initial-scale=1". This will make sure that
upon opening the page, your layout will be displayed properly at a 1:1 scale; no zooming will
be applied. You can even prevent any zooming by adding a third attribute value "maximum-
scale=1". However, you must make sure that everything is readable for everybody; using this
would probably hinder people with visual problems.

See also
ff If you want to start learning more about responsive design, a nice tutorial is available

at http://www.adamkaplan.me/grid/

Sanitizing HTML
We've all heard of (or perhaps even experienced) cross-site scripting (XSS) attacks,
where evil minded attackers try to inject client-side script or SQL statements into web pages.
This could be done to gain access to session cookies or database data, or to get elevated
access-privileges to sensitive page content. To verify an HTML document and produce a new
HTML document that preserves only whatever tags are designated safe is called sanitizing
the HTML.

How to do it...
Look at the web project sanitization. Run the following script and see how the text
content and default sanitization works:

1.	 See how the default sanitization works using the following code:
var elem1 = new Element.html('<div class="foo">content</div>');
document.body.children.add(elem1);
var elem2 = new Element.html('<script class="foo">evil content</
script><p>ok?</p>');
document.body.children.add(elem2);

The text content and ok? from elem1 and elem2 are displayed, but the console
gives the message Removing disallowed element <SCRIPT>. So a script is removed
before it can do harm.

http://www.adamkaplan.me/grid/

Handling Web Applications

112

2.	 Sanitize using HtmlEscape, which is mainly used with user-generated content:
import 'dart:convert' show HtmlEscape;

In main(), use the following code:
 var unsafe = '<script class="foo">evil content</
script><p>ok?</p>';
 var sanitizer = const HtmlEscape();
 print(sanitizer.convert(unsafe));

This prints the following output to the console:
<script class="foo">evil content</scrip
t><p>ok?</p>

3.	 Sanitize using node validation. The following code forbids the use of a <p> tag in
node1; only <a> tags are allowed:
var html_string = '<p class="note">a note aside</p>';
var node1 = new Element.html(
 html_string,
 validator: new NodeValidatorBuilder()
 ..allowElement('a', attributes: ['href'])
);

The console prints the following output:

Removing disallowed element <p>

Breaking on exception: Bad state: No elements

4.	 A NullTreeSanitizer for no validation is used as follows:
final allHtml = const NullTreeSanitizer();
class NullTreeSanitizer implements NodeTreeSanitizer {
 const NullTreeSanitizer();
 void sanitizeTree(Node node) {}
}

It can also be used as follows:

var elem3 = new Element.html('<p>a text</p>');
elem3.setInnerHtml(html_string, treeSanitizer: allHtml);

Chapter 5

113

How it works...
First, we have very good news: Dart automatically sanitizes all methods through which HTML
elements are constructed, such as new Element.html(), Element.innerHtml(), and
a few others. With them, you can build HTML hardcoded, but also through string interpolation,
which entails more risks. The default sanitization removes all scriptable elements and attributes.

If you want to escape all characters in a string so that they are transformed into HTML special
characters (such as ;/ for a /), use the class HTMLEscape from dart:convert as
shown in the second step. The default behavior is to escape apostrophes, greater than/less
than, quotes, and slashes. If your application is using untrusted HTML to put in variables, it
is strongly advised to use a validation scheme, which only covers the syntax you expect
users to feed into your app. This is possible because Element.html() has the following
optional arguments:

Element.html(String html, {NodeValidator validator, NodeTreeSanitizer
treeSanitizer})

In step 3, only <a> was an allowed tag. By adding more allowElement rules in cascade, you
can allow more tags. Using allowHtml5() permits all HTML5 tags.

If you want to remove all control in some cases (perhaps you are dealing with known safe
HTML and need to bypass sanitization for performance reasons), you can add the class
NullTreeSanitizer to your code, which has no control at all and defines an object
allHtml, as shown in step 4. Then, use setInnerHtml() with an optional named attribute
treeSanitizer set to allHtml.

Using a browser's local storage
Local storage (also called the Web Storage API) is widely supported in modern browsers.
It enables the application's data to be persisted locally (on the client side) as a map-like
structure: a dictionary of key-value string pairs, in fact using JSON strings to store and retrieve
data. It provides our application with an offline mode of functioning when the server is not
available to store the data in a database. Local storage does not expire, but every application
can only access its own data up to a certain limit depending on the browser. In addition, of
course, different browsers can't access each other's stores.

Handling Web Applications

114

How to do it...
Look at the following example, the local_storage.dart file:

import 'dart:html';

Storage local = window.localStorage;

void main() {
 var job1 = new Job(1, "Web Developer", 6500, "Dart Unlimited") ;

Perform the following steps to use the browser's local storage:

1.	 Write to a local storage with the key Job:1 using the following code:
 local["Job:${job1.id}"] = job1.toJson;
 ButtonElement bel = querySelector('#readls');
 bel.onClick.listen(readShowData);
}

2.	 A click on the button checks to see whether the key Job:1 can be found in the local
storage, and, if so, reads the data in. This is then shown in the data <div>:
 readShowData(Event e) {
 var key = 'Job:1';
 if(local.containsKey(key)) {
// read data from local storage:
 String job = local[key];
 querySelector('#data').appendText(job);
 }
 }

class Job {
 int id;
 String type;
 int salary;
 String company;
 Job(this.id, this.type, this.salary, this.company);
 String get toJson => '{ "type": "$type", "salary": "$salary",
"company": "$company" } ';
}

Chapter 5

115

The following screenshot depicts how data is stored in and retrieved from local storage:

How it works...
You can store data with a certain key in the local storage from the Window class as follows using
window.localStorage[key] = data; (both key and data are Strings).

You can retrieve it with var data = window.localStorage[key];.

In our code, we used the abbreviation Storage local = window.localStorage;
because local is a map. You can check the existence of this piece of data in the local
storage with containsKey(key); in Chrome (also in other browsers via Developer Tools).
You can verify this by navigating to Extra | Tools | Resources | Local Storage (as shown in
the previous screenshot) window.localStorage also has a length property; you can query
whether it contains something with isEmpty, and you can loop through all stored values
using the following code:

for(var key in window.localStorage.keys) {
String value = window.localStorage[key];
// more code
}

Handling Web Applications

116

There's more...
Local storage can be disabled (by user action, or via an installed plugin or extension), so we
must alert the user when this needs to be enabled; we can do this by catching the exception
that occurs in this case:

try {
 window.localStorage[key] = data;
} on Exception catch (ex) {
 window.alert("Data not stored: Local storage is disabled!");
}

Local storage is a simple key-value store and does have good cross-browser coverage.
However, it can only store strings and is a blocking (synchronous) API; this means that it can
temporarily pause your web page from responding while it is doing its job storing or reading
large amounts of data such as images. Moreover, it has a space limit of 5 MB (this varies with
browsers); you can't detect when you are nearing this limit and you can't ask for more space.
When the limit is reached, an error occurs so that the user can be informed.

These properties make local storage only useful as a temporary
data storage tool; this means it is better than cookies, but not
suited for a reliable, database kind of storage.

Web storage also has another way of storing data called sessionStorage used in the same
way, but this limits the persistence of the data to only the current browser session. So, data is
lost when the browser is closed or another application is started in the same browser window.

See also
ff For more information on the JSON format, refer to the Making toJSON and fromJSON

methods recipe in Chapter 4, Object Orientation in your class

ff A better alternative to simple local storage is IndexedDB; see the Storing data locally
in IndexedDB recipe in Chapter 9, Working with Databases

Using application cache to work offline
When, for some reason, our users don't have web access or the website is down for
maintenance (or even broken), our web-based applications should also work offline. The
browser cache is not robust enough to be able to do this, so HTML5 has given us the
mechanism of ApplicationCache. This cache tells the browser which files should be made
available offline. The effect is that the application loads and works correctly, even when the
user is offline. The files to be held in the cache are specified in a manifest file, which has a
.mf or .appcache extension.

Chapter 5

117

How to do it...
Look at the appcache application; it has a manifest file called appcache.mf.

1.	 The manifest file can be specified in every web page that has to be cached. This is
done with the manifest attribute of the <html> tag:
<html manifest="appcache.mf">

If a page has to be cached and doesn't have the manifest attribute, it must be
specified in the CACHE section of the manifest file. The manifest file has the following
(minimum) content:

CACHE MANIFEST
2012-09-28:v3

CACHE:
Cached1.html
appcache.css
appcache.dart
http://dart.googlecode.com/svn/branches/bleeding_edge/dart/client/
dart.js

NETWORK:
*

FALLBACK:
/ offline.html

2.	 Run cached1.html. This displays the This page is cached, and works offline! text.
Change the text to This page has been changed! and reload the browser. You
don't see the changed text because the page is created from the application cache.

3.	 When the manifest file is changed (change version v1 to v2), the cache becomes
invalid and the new version of the page is loaded with the This page has been
changed! text.

4.	 The Dart script of the page, appcache.dart, should contain the following minimal
code to access the cache:

main() {
 new AppCache(window.applicationCache);
}

class AppCache {
 ApplicationCache appCache;

 AppCache(this.appCache) {

Handling Web Applications

118

 appCache.onUpdateReady.listen((e) => updateReady());
 appCache.onError.listen(onCacheError);
 }

 void updateReady() {
 if (appCache.status == ApplicationCache.UPDATEREADY) {
 // The browser downloaded a new app cache. Alert the user:
 appCache.swapCache();
 window.alert('A new version of this site is available.
Please reload.');
 }
 }

 void onCacheError(Event e) {
 print('Cache error: ${e}');
 // Implement more complete error reporting to developers
 }
}

How it works...
The CACHE section in the manifest file enumerates all the entries that have to be cached.
The NETWORK: and * options mean that to use all other resources, the user has to be online.
FALLBACK specifies that offline.html will be displayed if the user is offline and a resource
is inaccessible. A page is cached when either of the following is true:

ff Its HTML tag has a manifest attribute pointing to the manifest file

ff The page is specified in the CACHE section of the manifest file

The browser is notified when the manifest file is changed, and the user will be forced to
refresh its cached resources. Adding a timestamp and/or a version number such as # 2014-
05-18:v1 works fine. Changing the date or the version invalidates the cache, and the
updated pages are again loaded from the server.

To access the browser's app cache from your code, use the window.applicationCache
object. Make an object of the class AppCache, and alert the user when the application cache
has become invalid (the status is UPDATEREADY) by defining an onUpdateReady listener.

Chapter 5

119

There's more...
The other known states of the application cache are UNCACHED, IDLE, CHECKING,
DOWNLOADING, and OBSOLETE. To log all these cache events, you could add the following
listeners to the appCache constructor:

appCache.onCached.listen(onCacheEvent);
appCache.onChecking.listen(onCacheEvent);
appCache.onDownloading.listen(onCacheEvent);
appCache.onNoUpdate.listen(onCacheEvent);
appCache.onObsolete.listen(onCacheEvent);
appCache.onProgress.listen(onCacheEvent);

Provide an onCacheEvent handler using the following code:

void onCacheEvent(Event e) {
 print('Cache event: ${e}');
}

Preventing an onSubmit event from
reloading the page

The default action for a submit button on a web page that contains an HTML form is to
post all the form data to the server on which the application runs. What if we don't want
this to happen?

How to do it...
Experiment with the submit application by performing the following steps:

1.	 Our web page submit.html contains the following code:
<form id="form1" action="http://www.dartlang.org" method="POST">
 <label>Job:<input type="text" name="Job" size="75"></input>
 </label>
 <input type="submit" value="Job Search">
 </form>

Comment out all the code in submit.dart. Run the app, enter a job name, and click
on the Job Search submit button; the Dart site appears.

Handling Web Applications

120

2.	 When the following code is added to submit.dart, clicking on the no button for a
longer duration makes the Dart site appear:
import 'dart:html';

void main() {
 querySelector('#form1').onSubmit.listen(submit);
}

submit(Event e) {
 e.preventDefault();
 // code to be executed when button is clicked

}

How it works...
In the first step, when the submit button is pressed, the browser sees that the method is
POST. This method collects the data and names from the input fields and sends it to the URL
specified in action to be executed, which only shows the Dart site in our case.

To prevent the form from posting the data, make an event handler for the onSubmit event
of the form. In this handler code, e.preventDefault(); as the first statement will cancel
the default submit action. However, the rest of the submit event handler (and even the same
handler of a parent control, should there be one) is still executed on the client side.

Dynamically inserting rows in an HTML table
When displaying data coming from a database, you often don't know how many data records
there will be. Our web page and the HTML table in it have to adapt dynamically. The following
recipe describes how to do this.

How to do it...
Look at the html_table application. The web page contains two <table> tags:

 <table id="data"></table>
 <table id="jobdata"></table>

Chapter 5

121

On running the app, you will be redirected to the following web page, which displays data in an
HTML table:

Displaying data in an HTML table

The data is shown by the code in the html_table.dart file.

1.	 To make the code more flexible, the necessary element objects are declared up front;
we use the class Job to insert some real data:
TableElement table;
TableRowElement row;
TableCellElement cell;
List<Job> jobs;

class Job {
 String type;
 int salary;
 String company;
 Job(this.type, this.salary, this.company);
}

The first table is shown with the preceding code.

2.	 Find the created table using the following query:
 table = querySelector('#data');

3.	 Insert a row at index 0, and assign that row to a variable:
 row = table.insertRow(0);

Handling Web Applications

122

4.	 Insert a cell at index 0, assign that cell to a variable, and provide it with content, as
shown in the following code:
 cell = row.insertCell(0);
 cell.text = 'cell 0-0';

5.	 Insert more cells with a message cascading approach and style them using the
following code:
 row.insertCell(1)
 ..text = 'cell 0-1'
 ..style.background = 'lime';
 row.insertCell(2)
 ..text = 'cell 0-2'
 ..style.background = 'red';

6.	 Insert a new row at the end of the table:
row = table.insertRow(-1);
 row.insertCell(0).text = 'cell 1-0';

Here is the code to display data from a List, applying the same
methods as above:
 var job1 = new Job("Software Developer", 7500, "Julia Computing
LLC") ;
 var job2 = new Job("Web Developer", 6500, "Dart Unlimited") ;
 var job3 = new Job("Project Manager", 10500, "Project Consulting
Inc.") ;
 jobs = new List<Job>();
 jobs
 ..add(job1)
 ..add(job2)
 ..add(job3);
 table = querySelector('#jobdata');
 // insert table headers:
 InsertHeaders();
 // inserting data:
 InsertData();

InsertHeaders() {
 row = table.insertRow(-1);
 cell = row.insertCell(0);
 cell.text = "Jobtype";
 cell.style.background = 'lightblue';

Chapter 5

123

 cell = row.insertCell(1);
 cell.text = "Salary";
 cell = row.insertCell(2);
 cell.text = "Company";
 cell.style.background = 'lightblue';
 }

InsertData() {
 for (var job in jobs) {
 row = table.insertRow(-1);
 cell = row.insertCell(0);
 cell.text = job.type;
 cell = row.insertCell(1);
 cell.text = (job.salary).toString();
 cell = row.insertCell(2);
 cell.text = job.company;
 }
}

7.	 The preceding code gets the content from the indicated cell:
print(table.rows[1].cells[1].text); // prints 7500

How it works...
We use the methods insertRow() and insertCell() from TableElement and
TableRowElement, respectively, and the properties of TableCellElement. Rows and
columns are numbered from 0. As shown in the last line of the code, the content of specific
cells can be retrieved by using an indexer [] on a specific row and cell.

See also...
ff The API docs at https://api.dartlang.org/apidocs/channels/stable/

dartdoc-viewer/dart-dom-html.TableElement will show you more
useful methods

https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/dart-dom-html.TableElement
https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/dart-dom-html.TableElement

Handling Web Applications

124

Using CORS headers
In the web application security model, the same-origin policy is an important concept. The
basic principle is that content provided by unrelated websites must be strictly separated on
the client side; otherwise, confidentiality or data integrity might be compromised, perhaps
through cross-site scripting attacks. In other words, web pages or scripts running on pages
can only access scripts or pages from the same domain as they came from; no access to
other sites is allowed. For example, http://www.example.com/dir/page2.html cannot
access http://en.example.com/dir/other.html. However, in a number of cases, this
is too strict, as in AJAX calls with HttpRequest we have to load data from another server
(refer to Chapter 7, Working with Web Servers). To make this possible, the CORS mechanism
(cross-origin resource sharing) was developed, which is supported by most modern web
browsers. This recipe will enable you to easily achieve this by performing the following steps.

How to do it...
The following steps show how you can configure your web server to add CORS headers:

1.	 When a web server sends CORS headers back in the response, the client is also
allowed to send requests to servers in other domains. So in every request handling
code, we must add a call to a method such as addCorsHeaders as shown in the
following code:
void handleGet(HttpRequest request) {
 HttpResponse res = request.response;
 addCorsHeaders(res);
 // other code to prepare the response
 // …
 res.write(content);
 res.close();
}

2.	 Now we need to define the addCorsHeaders method; it contains the following code:
void addCorsHeaders(HttpResponse response) {
 response.headers.add('Access-Control-Allow-Origin', '*, ');
 response.headers.add('Access-Control-Allow-Methods', 'POST,
OPTIONS');
 response.headers.add('Access-Control-Allow-Headers', 'Origin,
X-Requested-With, Content-Type, Accept');
}

http://www.example.com/dir/page2.html
http://en.example.com/dir/other.html

Chapter 5

125

How it works...
All CORS-related headers are prefixed with Access-Control-. The Access-Control-
Allow-Origin option has to be included in all valid CORS responses. The value * means
that access is allowed from all domains. In development, this can be useful so that you can
run apps from Dart Editor, which uses a 3030 port by default for its internal server. However,
for a production application, you should sum up the allowed origins as follows:

ff Access-Control-Allow-Origin at http://www.example-social-network.com

ff Access-Control-Allow-Origin at http://www.snapshot.com

So, effectively, we name all the websites to which access is allowed. In our code, the POST
and OPTIONS requests are allowed from any origin. An OPTIONS request is sent to get
permission from the server to post data, in case the client is running from a different origin.
So before the POST request, a so-called preflighted OPTIONS request is sent to determine if
the actual request is allowed.

In general, using CORS headers is not safe, and the allowed origins
should be summed up. However, for development purposes, it is
useful to allow them.

There's more...
Refer to http://enable-cors.org/server.html for more detailed information on using
CORS on different platforms.

Using keyboard events
Handling keyboard events in normal web applications is not so common. However, if you are
writing a web game, you'll almost certainly want to catch arrow key input, and the like. This
recipe shows us how we can handle those events.

How to do it...
Look at the keyboard project. The web page is a copy of the page used in the Preventing an
onSubmit event recipe, but now submit stays enabled. Suppose we also want to ensure that
pressing the Enter key provokes submit, just like clicking on the submit button.

1.	 To that end, we add the following event listener to main():
document.onKeyPress.listen(_onKeyPress);

http://www.example-social-network.com
http://www.snapshot.com
http://enable-cors.org/server.html

Handling Web Applications

126

2.	 The _onKeyPress method is as follows:

_onKeyPress(KeyboardEvent e){
 if (e.keyCode == KeyCode.ENTER) submit(e);
}

Now, pressing Enter will cause the form to be submitted.

How it works...
The document object from dart:html has three events to work with key input:
onKeyPress, onKeyDown, and onKeyUp. They all generate a stream of KeyboardEvent
objects that capture user interaction with the keyboard. However, these events are also
defined for window, the parent object of document, and any Element on the page, so you
can use them very specifically on a certain InputElement or <div> region.

The keyCode of the event is an integer from a list of constants, which specifies a value for
every key, such as KeyCode.A, KeyCode.SPACE, and KeyCode.LEFT for the left arrow key,
and so on. This lends itself very easily to a switch/case construct, as follows:

_onKeyPress(KeyboardEvent e){
 e.preventDefault();
 print('The charCode is ${e.charCode}');
 if (e.keyCode == KeyCode.ENTER) submit(e);
 if (e.ctrlKey) return;

 switch(e.keyCode) {
 case KeyCode.DOWN:
 // move sprite down
 break;
 case KeyCode.UP:
 // move sprite up
 break;
 case KeyCode.F1:
 // show help
 break;
 }
}

The event also has an integer character code getter named charCode. If the key was a
special key, this can also be tested with e.ctrlKey, e.altKey, e.metaKey, e.ShiftKey,
and e.altGraphKey:

if (e.ctrlKey) return;

Chapter 5

127

There's more...
The Dart classes for keyboard handling try to minimize cross-browser differences (usually
related to special keys), and to do a good job with as many international keyboard layouts
as possible.

Enabling drag-and-drop
Imagine developing a board game and the player has to use the keyboard to move the
pieces; this wouldn't be acceptable anymore. Before HTML5, drag-and-drop using the mouse
was a feature that had to be implemented through an external library like Dojo or jQuery.
However, HTML5 provides native browser support to make nearly every element on a web
page draggable, thus allowing more user-friendly web apps. This recipe shows you how to
implement drag-and-drop (abbreviated as DnD) with Dart.

How to do it...
Run the drag_drop project. The result is a board of images as shown in the following
screenshot, where the images are draggable and you can swap an image with any other
image, as shown in the following screenshot:

Drag-and-drop images

Handling Web Applications

128

Perform the following steps to enable drag-and-drop

1.	 The elements that we want to drag-and-drop must get the draggable attribute
in HTML, so in drag_drop.html, we indicate this for the <div> elements of
the board:
<div id="tiles">
 <div id="tile1" class="pict" draggable="true"></div>
 <div id="tile2" class="pict" draggable="true"></div>
 ...
 </div>

2.	 In the accompanying script drag_drop.dart, we make a class, DragnDrop, to
integrate all the drag-and-drop event handling. All our <div> tiles have a CSS class
pict and are hence captured in the cols collection. The main() function makes
an object, dnd, and calls the init() method on it:
void main() {
 var dnd = new DragnDrop();
 dnd.init();
}

class DragnDrop {
 Element dragSource;
 Map tiles;
 var rand = new Random();
 var cols = document.querySelectorAll('.pict');
 // ...
}

3.	 The init() function constructs a map with images from the img folder in
generateMap(). It sets up listeners for all the Dnd events of our tiles, and the
images are set up as background images for the tiles via style.setProperty by
calling getRandomTile():
void init() {
 generateMap();
 for (var col in cols) {
 col
 ..onDragStart.listen(_onDragStart)
 ..onDragEnd.listen(_onDragEnd)
 ..onDragEnter.listen(_onDragEnter)
 ..onDragOver.listen(_onDragOver)
 ..onDragLeave.listen(_onDragLeave)
 ..onDrop.listen(_onDrop)
 ..style.setProperty("background-image", getRandomTile(),
"")

Chapter 5

129

 ..style.setProperty("background-repeat", "no-repeat", "")
 ..style.setProperty("background-position", "center", "");
 }
 }

 void generateMap() {
 tiles = new Map();

 for (var i = 1; i <= 9; i++) {
 tiles[i] = "url(img/tiles_0$i.jpg)";
 }
 }

String getRandomTile() {
 var num = rand.nextInt(10);
 var imgUrl = tiles[num];
 while (imgUrl == null) {
 num = rand.nextInt(10);
 imgUrl = tiles[num];
 }
 tiles.remove(num);
 return imgUrl;
 }

4.	 The code for each of the Dnd event handlers is as follows:
void _onDragStart(MouseEvent event) {
 Element dragTarget = event.target;
 dragTarget.classes.add('moving');
 dragSource = dragTarget;
 event.dataTransfer.effectAllowed = 'move';
 // event.dataTransfer.setData('text/html', dragTarget.
innerHtml);
 }

 void _onDragEnd(MouseEvent event) {
 Element dragTarget = event.target;
 dragTarget.classes.remove('moving');
 for (var col in cols) {
 col.classes.remove('over');
 }
 }

 void _onDragEnter(MouseEvent event) {

Handling Web Applications

130

 Element dropTarget = event.target;
 dropTarget.classes.add('over');
 }

 void _onDragOver(MouseEvent event) {
 // This is necessary to allow us to drop.
 event.preventDefault();
 event.dataTransfer.dropEffect = 'move';
 }

 void _onDragLeave(MouseEvent event) {
 Element dropTarget = event.target;
 dropTarget.classes.remove('over');
 }

 void _onDrop(MouseEvent event) {
// Stop the browser from redirecting and bubbling up the //
event:
 event.stopPropagation();
 // Don't do anything if dropping onto the same tile we're
dragging.
 Element dropTarget = event.target;
 if (dragSource != dropTarget) {
 var swap_image = dropTarget.style.backgroundImage;
 dropTarget.style.backgroundImage = dragSource.style.
backgroundImage;
 dragSource.style.backgroundImage = swap_image;
 }
 }

How it works...
Drag-and-drop makes an element on a page draggable by working with the following event life
cycle: Drag, DragStart, DragEnd, DragEnter, DragLeave, DragOver, and finally Drop.
They generate a stream of MouseEvents caught by the onDragEvent event handlers (where
the event is Start, End, and so on). The event.target option changes for each type of
event, depending on where we are in the drag-and-drop event model.

The basic requirement for an element to move is that it has the attribute
draggable="true". In drag-and-drop, we can distinguish three objects:

ff The source element is where the drag originates (this can be an image, list, link, file
object, or block of HTML code)

Chapter 5

131

ff The data payload is what we're trying to drop

ff The target element is an area to catch the drop or the drop zone, which accepts the
data the user is trying to drop

Nearly everything can be drag enabled, including images, files, links, or other DOM nodes.
However, not all elements can be targets, for example images, but our example shows that it
is easy to work around that.

The visual effects that accompany drag-and-drop are implemented through CSS. Every tile has
the CSS class pict, which contains the attribute cursor: move, which gives users a visual
indicator that something is moveable.

When a drag action is initiated, _onDragStart is executed, adding the CSS class moving to
our tiles. This class can be found in drag_drop.css:

.pict.moving {
 opacity: 0.25;
 -webkit-transform: scale(0.8);
 -moz-transform: scale(0.8);
 -ms-transform: scale(0.8);
 transform: scale(0.8);
}

We see that the opacity is reduced to 0.25 and size is scaled with factor 0.8, exactly what we
see when a drag operation is started. In this example, we don't need it, but if the dragging
involves HTML text, _onDragStart should contain the following code line:

event.dataTransfer.setData('text/html', dragTarget.innerHtml);

The preceding code indicates what data will be transferred during the drag-and-drop process.
The dataTransfer property is where it all happens; it stores the piece of data sent in a
drag action. The dataTransfer option is set in the DragStart event and read/handled in
the Drop event. Calling e.dataTransfer.setData(format, data) will set the object's
content to the MIME type and the data payload will be passed as arguments.

The _onDragEnter function is executed when we hover over another tile; this adds the CSS
class over, making the borderlines dashed:

.column.over {
 border: 2px dashed #000;
}

Finally, the _onDrop event swaps the tile images. If HTML text has to be swapped, the
following lines should be added:

dragSource.innerHtml = dropTarget.innerHtml;
dropTarget.innerHtml = event.dataTransfer.getData('text/html');

Handling Web Applications

132

The article at http://www.html5rocks.com/en/tutorials/dnd/basics/ by Eric
Bidelman is a good resource, but it uses JavaScript to explain the DnD event model. To
make it easier to work with DnD in Dart, Marco Jakob developed the library dart-html5-
dnd, available on pub. For more information on this nice package, refer to http://code.
makery.ch/dart/html5-drag-and-drop/. DnD functionality is also implemented in the
dart:svg library.

See also
ff See the Enabling touch events recipe in this chapter to learn how to implement

drag-and-drop using touch

Enabling touch events
Drag-and-drop is very handy on mobile devices where we don't have a mouse connected;
we only have our fingers to interact with the screen. This recipe will show you how to add
interactivity via touch events to your web app. The way to do this is very similar to the previous
recipe. We will reuse the drag-and-drop example.

How to do it...
Let's look at the touch project as explained in the following steps:

1.	 Prevent zooming with the following <meta> tag in touch.html:
 <meta name="viewport"
 content="width=device-width, initial-scale=1.0, user-
scalable=no">

We use the same <div> structure, each with class = "draggable", as shown in
the previous recipe.

2.	 In touch.dart, we make a class, Touch, to contain the code specific to the touch
events. An object, touch, is instantiated and the init() method is called, which
prepares the board (each tile gets a different background image) and binds the touch
events to event handlers:
void main() {
 var touch = new Touch();
 touch.init();
}

class Touch {

http://www.html5rocks.com/en/tutorials/dnd/basics/
http://code.makery.ch/dart/html5-drag-and-drop/
http://code.makery.ch/dart/html5-drag-and-drop/

Chapter 5

133

 Element dragSource;
 Map tiles;
 var rand = new Random();
 var cols = document.querySelectorAll('.pict');

 void init() {
 generateMap();
 for (var col in cols) {

 col
 ..onTouchStart.listen(_onTouchStart)
 ..onTouchEnd.listen(_onTouchEnd)
 ..onTouchMove.listen(_onTouchMove)
 ..style.setProperty("background-image", getRandomTile(), "")
 ..style.setProperty("background-repeat", "no-repeat", "")
 ..style.setProperty("background-position", "center", ""); }
 }

3.	 The following is the code for the TouchStart event:
void _onTouchStart(TouchEvent event) {
 event.preventDefault(); //stop scrolling by default
 Element dragTarget = event.target; //capture drag target
 //add style to element to indicate its moving
 dragTarget.classes.add('moving');
 dragSource = dragTarget;
 }

4.	 The following is the code for TouchMove:
 void _onTouchMove(TouchEvent event) {
 event.preventDefault();
 Element dropTarget = event.target;
 dragSource.classes.add('moving');
// Get the current x,y position of the first finger touch //
and find the element it is over
 dropTarget = document.elementFromPoint(event.touches[0].
page.x, event.touches[0].page.y);
 // If the finger is over an element indicate that in the UI
 if (dropTarget != null) {
 dropTarget.classes.add('over');
 }
 }

Handling Web Applications

134

5.	 The following is the code for TouchEnd:
 void _onTouchEnd(TouchEvent event) {
 event.stopPropagation();
 event.preventDefault();
// Don't do anything if dropping onto the same tile we're //
dragging.
 Element dropTarget = event.target;
 if (dragSource != dropTarget) {
 var swap_image = dropTarget.style.backgroundImage;
 dropTarget.style.backgroundImage = dragSource.style.
backgroundImage;
 dragSource.style.backgroundImage = swap_image;
 }
 }

How it works...
The meta tag is necessary on mobile devices, and user-scalable=no will prevent the
device from zooming in/out of the web page. We want DnD in our example and the finger
gestures should not be mingled with zooming.

The three main touch events that we will have to handle in our code are touchStart,
touchEnd, and touchMove. They are defined in Element, so touch can be used for nearly
everything on the page. They generate a stream of TouchEvents, and they contain the
following three (read only) Touch objects:

ff touches: These are all the current contact points with the touch surface, that is,
fingers on the screen

ff changedTouches: These are points of contact whose states changed between the
previous touch event and this one

ff targetTouches: These are all the current contact points with the surface and also
all touches started on the same element which are the target of the event

This list are of type TouchList. A Touch object has, among other properties, a position given
by page.x and page.y, and a target element.

The three TouchEvent handlers start with e.preventDefault(); this stops the browsers
default scrolling behavior. We don't want scrolling, we want dragging here. The element that is
dragged is styled with dragTarget.classes.add('moving');. The area where the drop
could take place is continually monitored in the TouchMove handler with the following code:

dropTarget = document.elementFromPoint(event.touches[0].page.x, event.
touches[0].page.y);

Chapter 5

135

The element in that position is assigned the CSS class over. In the TouchEnd handler, the
background images of the source and target element are switched.

There's more...
If you want a scenario where the element that is touched and dragged performs a certain
movement, you can capture its coordinates in the TouchStart handler with the
following code:

if (event.touches.length > 0) {
 touchStartX = event.touches[0].page.x;
}

In TouchMove, you move the element, probably as a function of the difference between
newtouchX and touchStartX:

if (touchStartX != null && event.touches.length > 0) {
 int newTouchX = event.touches[0].page.x;
 if (newTouchX > touchStartX) {
 moveElement(newTouchX - touchStartX);
 }
}

Alternatively, if working on a canvas element, you could start drawing by
making use of the touch coordinates. See the Dart site for the complete
example code for such scenarios at https://www.dartlang.org/
samples/#touch_events.

See also
ff See the Responsive Design recipe in this chapter for more information on the

<meta> tag used

Creating a Chrome app
You can build native-like apps with the Dart web technology through Chrome apps. Such apps
can be large for some browsers and appear to be part of the surrounding operating system;
they run offline by default, and you can make them available from the Chrome Web Store. This
recipe will show you how to start working with this type of app.

https://www.dartlang.org/samples/#touch_events
https://www.dartlang.org/samples/#touch_events

Handling Web Applications

136

How to do it...
Perform the following steps to create a Chrome app. The code for this recipe can be found in
the project chrome_pack:

1.	 Start with creating a new Dart project and choose the Chrome packaged
application template.

2.	 The Pub Get command starts automatically, and installs the Chrome package
from the pub.

3.	 The first thing you will notice is the presence of a new file manifest.json, with
the following initial content:
{
 "name": "Chrome pack",
 "version": "1",
 "manifest_version": 2,
 "icons": {"128": "dart_icon.png"},
 "app": {
 "background": {
 "scripts": ["background.js"]
 }
 }
}

We don't have to change anything here, but you can add a "description" tag if
you like.

4.	 The background.js file indicates which page the application should start with:
chrome.app.runtime.onLaunched.addListener(function(launchData) {
 chrome.app.window.create('chrome_pack.html', {
 'id': '_mainWindow', 'bounds': {'width': 800, 'height': 600 }
 });
});

5.	 The chrome_pack.html file has a <p> tag with the ID text_id and references the
script chrome_pack.dart. This script first has to import the Chrome package:
import 'dart:html';
import 'package:chrome/chrome_app.dart' as chrome;

int boundsChange = 100;
var txtp = querySelector("#text_id");
int n = 0;

Chapter 5

137

6.	 In main(), we get information about the platform the app is being executed in; in our
case, this displays {arch: x86-32, nacl_arch:x86-64, os: win} and we
register rewriteText as a Click event handler:
void main() {
 chrome.runtime.getPlatformInfo().then((var m) {
 txtp.text = m.toString();
 });
 txtp.onClick.listen(rewriteText);
}

7.	 At each click event, we show a message with the number of times clicked in the <p>
tag and we resize the window:
void rewriteText(MouseEvent e) {
 txtp.text = "Hey, you clicked ${n++} times on a Chrome packaged
app!";
 resizeWindow(e);
}

void resizeWindow(MouseEvent e) {
chrome.ContentBounds bounds = chrome.app.window.current().
getBounds();
 bounds.width += boundsChange;
 bounds.left -= boundsChange ~/ 2;
 chrome.app.window.current().setBounds(bounds);
 boundsChange *= -1;
}

8.	 We cannot run this app from Dart Editor as it is; if you try it, you get the exception
Unsupported operation: 'chrome.runtime' is not available.

9.	 Instead, we have to compile it to JavaScript. Open a command window and go to the
web folder of your app. The easiest way to do this is to select the web folder in Dart
Editor, click on the right mouse button and select Copy File Path. You can paste
this path on your command line after cd and press Enter. Then, type the command
dart2js chrome_pack.dart –o chrome_pack.dart.js.

10.	 The option –o allows you to give an output file name. Alternatively, from within Dart
Editor, on the Dart file navigate to Tools | Pub Build.

Handling Web Applications

138

11.	 Now, we have to configure Chrome to install our app as a packaged app. Start
chrome://extensions in the Chrome browser and check the Developer mode.
Then, click on the Load unpacked extension button and browse to the folder
containing the manifest.json file, and the app will be installed in Chrome, as
shown in the following screenshot:

Loading an app in Chrome

12.	 Click on the Launch link to start the app, as shown in the following screenshot:

A running Chrome-packaged app

chrome://extensions

Chapter 5

139

13.	 When you want to deploy your app to the Chrome Webstore, just click on
Pack Extension.

14.	 The following are the steps to be followed when you make changes to the code:

�� Save your changes

�� Regenerate the JavaScript using dart2js (either from within Dart Editor or
from the command line)

�� Click on the reload button against your app's entry

How it works...
The chrome package was made by members of the Dart team to provide interoperability from
Dart to the Chrome APIs.

The manifest.json file is the app's configuration file. It tells Chrome which background
JavaScript file to run on starting up (app | background | scripts | background.js), which
icons to use, which permissions the app has, and so on.

In the ninth step, dart2js compiles your Dart script to the JavaScript file indicated after –o.
Configuring your app as a Chrome-packaged app, as shown from the tenth step to the twelfth,
is straightforward.

There's more...
Chrome apps run inside a Chrome process separate from the browser, so they look like
any other native application. Compared to pure web apps, they have greater access to the
underlying hardware, such as the file system, USB or serial ports, socket-level protocols, and
so on via the chrome.* API libraries.

You cannot use window.localStorage in this type of app, but you can use chrome.
storage to get an API with similar features (and more); the following is a code snippet that
sets a value for a key, and gets the value back:

chrome.storage.local.set({'key':'val'})
chrome.storage.local.get(['key'])

Because of the extensive use of Chrome-specific functionalities in these apps, it is generally
not possible to reuse your Chrome-packaged app code in a normal web application.

Handling Web Applications

140

See also
ff The chrome package is documented at http://dart-gde.github.io/chrome.

dart/index.html#chrome/chrome_app.

ff Learn more about Chrome-packaged apps at https://developer.chrome.com/
apps/about_apps

ff For more information on dart2js, see the Compiling your app to JavaScript recipe in
Chapter 1, Working with Dart Tools

Structuring a game project
Board games, for the greater part, have the same structure; what the user sees (the view) is a
surface containing a grid of cells (model classes) that can be of different shapes. Along with
a few utility classes to choose a color at random, this constitutes a solid base to build a board
game. With his experience in building game projects, Dzenan Ridjanovic has extracted this
game structure in the boarding project, which can be found at https://github.com/
dzenanr/boarding.

How to do it...
Download the game project as a zip from the preceding URL, unzip it, and open it in Dart
Editor. The code that is the starting part of a new board game can be found in the lib
folder; the library that is boarding (in boarding.dart) imports the view classes Surface
and Shape:

library boarding;

import 'dart:html';
import 'dart:math';

import 'package:boarding/boarding_model.dart';

part 'view/shape.dart';
part 'view/surface.dart';

The script boarding_model.dart declares the library boarding_model, which imports
the model classes Grid, Cell, Cells, and some utility methods:

library boarding_model;

import 'dart:math';

part 'model/cell.dart';

http://dart-gde.github.io/chrome.dart/index.html#chrome/chrome_app
http://dart-gde.github.io/chrome.dart/index.html#chrome/chrome_app
https://developer.chrome.com/apps/about_apps
https://developer.chrome.com/apps/about_apps
https://github.com/dzenanr/boarding
https://github.com/dzenanr/boarding

Chapter 5

141

part 'model/grid.dart';

part 'util/color.dart';
part 'util/random.dart';

By building upon these classes, you can build the specific board game you want. Concrete
implementations can be found in the folder example that contains a memory game and a
tic-tac-toe game (ttt). For example, the memory game start up script imports two libraries,
and adds its own specific Memory class, which inherits from the Grid and Board classes
that extend Surface:

library memory;

import 'dart:async';
import 'dart:html';
import 'package:boarding/boarding_model.dart';
import 'package:boarding/boarding.dart';

part 'model/memory.dart';
part 'view/board.dart';

playAgain(Event e) {
 window.location.reload();
}

main() {
 new Board(new Memory(4), querySelector('#canvas')).draw();
 querySelector('#play').onClick.listen(playAgain);
}

How it works...
The Surface class has a draw() method, which draws lines (if needed), and cells:

draw() {
 clear();
 if (withLines) lines();
 cells();
 }

The classes Circle, Rectangle, Square, Line, and Tag (for a text) in shape.dart know
how to draw themselves. The Grid class in the model folder knows how to construct itself
with the objects of class Cell. The cell.dart file has the code for the class Cell, which
can find out if two cells intersect, and it also has a collection of cells. Use this project as a
starting point to build your own games!

Handling Web Applications

142

There's more...
Another way of doing this is by using the animationFrame method from the window
class. With this technique, we start gameLoop in the main() function and let it call itself
recursively, as shown in the following code:

main() {
// redraw
 window.animationFrame.then(gameLoop);
}

gameLoop(num delta) {
 // animation code;
 window.animationFrame.then(gameLoop);
}

See also
ff Take a look at the pub package game_loop from John McCutchan (https://

github.com/johnmccutchan/game_loop). Another popular package is StageXL
developed by Bernhard Pichler (www.stagexl.org). It is intended for Flash/
ActionScript developers who want to migrate their projects as well as their skills to
HTML5; visual effects, animation, sound—it's all there.

Using WebGL in your app
The HTML5 Canvas API allows you to draw in only two dimensions. Using Web Graphics
Library (WebGL), you can show interactive 2D graphics and 3D graphics within any modern
web browser (Internet Explorer 11 has only partial support for WebGL) without the use
of plugins. WebGL elements are drawn on a canvas element, and can be combined with
other HTML elements. Programs that use WebGL are a mixture of Dart (or JavaScript) code
for control, and are of specific WebGL shader code. This shader code is executed on the
computer's Graphic Processing Unit (GPU), allowing GPU-accelerated usage of physics
effects and image processing as part of the web page canvas, so we have real parallel
processing here!

WebGL provides a low-level 3D API; mastering it needs more than a recipe, probably a course
or book on its own. However, this recipe will provide you with the basics in the webgl project
and we point to some links to get further information.

https://github.com/johnmccutchan/game_loop
https://github.com/johnmccutchan/game_loop
www.stagexl.org

Chapter 5

143

Look at the code of the project webgl. When executed, we see a rectangular red point on a
black surface. When we click on the surface, new points are shown:

Drawing with WebGL

How to do it...
Start using WebGL by performing the following steps:

1.	 First, go to http://get.webgl.org/ to determine if your browser and GPU
support WebGL; you should see a spinning cube.

2.	 The webgl.html page simply defines a <canvas> tag on which we will draw, using
the following code:
<canvas id="webgl" style="border: none;" width="500"
 height="500"></canvas>

3.	 To use WebGL in the code, import the dart_webgl package:
import 'dart:web_gl';

4.	 Now define the shader code for the drawing:
// Vertex shader program
var VSHADER_SOURCE = '''attribute vec4 a_Position;\n
 void main() {\n
 gl_Position = a_Position;\n
 gl_PointSize = 10.0;\n
 }\n''';

http://get.webgl.org/

Handling Web Applications

144

// Fragment shader program
var FSHADER_SOURCE = '''void main() {\n
gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);\n // Set the point
color
 }\n''';

To set the vertex coordinates of the point to a fixed value, use the following code:
gl_Position = vec4(0.0, 0.0, 0.0, 1.0);

5.	 The main() function starts by getting a reference to the canvas and the 3D
rendering context:
void main() {
 // Retrieve <canvas> element
 var canvas = querySelector("#webgl");
 if (canvas == null) {
 print('Failed to retrieve the <canvas> element');
 }
 // Get the rendering context for WebGL
 RenderingContext gl = canvas.getContext3d();
 if (gl == null) {
 print('Failed to get the rendering context for WebGL');
 return;
 }

6.	 Then, the shader code must be compiled and linked to the code:
// compiling the GPU code
 Shader fragShader = gl.createShader(FRAGMENT_SHADER);
 gl.shaderSource(fragShader, FSHADER_SOURCE);
 gl.compileShader(fragShader);

 Shader vertShader = gl.createShader(VERTEX_SHADER);
 gl.shaderSource(vertShader, VSHADER_SOURCE);
 gl.compileShader(vertShader);

 Program program = gl.createProgram();
 gl.attachShader(program, vertShader);
 gl.attachShader(program, fragShader);
 gl.linkProgram(program);

 if (!gl.getProgramParameter(program, LINK_STATUS)) {
 print("Could not initialise shaders");
 return;
 }
 gl.useProgram(program);

Chapter 5

145

7.	 We then get an index to the location in a program of the named attribute variable
a _Position:
var a_Position = gl.getAttribLocation(program, 'a_Position');
 if (a_Position < 0) {
 print('Failed to get the storage location of a_Position');
 return;
 }

8.	 We register the event handler to be called when the mouse is clicked:
canvas.onMouseDown.listen((ev) => click(ev, gl, canvas, a_
Position));

9.	 Specify the color to clear <canvas>. Clear the canvas and draw the point:
 gl.clearColor(0.0, 0.0, 0.0, 1.0);
 gl.clear(COLOR_BUFFER_BIT);
 gl.drawArrays(POINTS, 0, 1);
 }

10.	 The click handler uses an array g_points to remember the mouse click positions:

 List<num> g_points = new List<num>();

 void click(ev, RenderingContext gl, canvas, a_Position) {
 var x = ev.clientX; // x coordinate of a mouse pointer
 var y = ev.clientY; // y coordinate of a mouse pointer
 var rect = ev.target.getBoundingClientRect();

x = ((x - rect.left) - canvas.width / 2) / (canvas.width / 2);
y = (canvas.height / 2 - (y - rect.top))/ (canvas.height / 2);

 // Store the coordinates to g_points array
 g_points.add(x);
 g_points.add(y);

 gl.clear(COLOR_BUFFER_BIT);

 var len = g_points.length;
 for (var i = 0; i < len; i += 2) {
 // Pass the position of a point to a_Position variable
gl.vertexAttrib3f(a_Position, g_points[i],
 g_points[i + 1], 0.0);
 gl.drawArrays(POINTS, 0, 1);
 }
}

Handling Web Applications

146

How it works...
The shader code in the fourth step consists of a vertex shader program (to draw the shape
boundaries) and fragment shader (for colors, texturing, and lighting) program; they are hard
coded in strings assigned to the constants VSHADER_SOURCE and FSHADER_SOURCE.

The piece of code in the sixth step looks daunting, but don't worry, this code can simply be
reused in other drawings.

Step 7 is necessary to make a connection between the a_position variable in the shader
code, and the variable with the same name in Dart. Notice that the click event handler in
steps 8 and 10 needs the GL context and canvas as second and third parameters.

There's more...
WebGL in itself has no built-in support to load a 3D scene defined in a regular 3D file format.
The viewer code or a library such as three.dart, which is a port of Three.js (get it from
the pub as three is necessary to display a 3D scene). To create content, use a regular content-
creation tool and export the content to a viewer-readable format.

See also
ff View and study the beautiful 3D solar system visualization example made by the Dart

team at https://github.com/dart-lang/dart-samples/tree/master/
html5/web/webgl/solar3

ff The tutorial at http://www.learnwebgl.com was rewritten for Dart by John
Thomas McDole; find it at https://github.com/jtmcdole/dart-webgl

ff The website to find out more about WebGL at http://www.khronos.org/webgl/
wiki/Main_Page

ff If you want to read more about Shaders, visit http://aerotwist.com/
tutorials/an-introduction-to-shaders-part-1/

Authorizing OAuth2 to Google services
You certainly have already seen websites where you can log in using your Google, Facebook,
or Twitter account, instead of having to enter your information all over again. This service
is most probably powered by OAuth2, which means (the second version of) the open (web)
standard for authorization. It provides secured access to the server side of your application for
clients that have been given an access token by a third-party OAuth2 authorization server. The
credentials are guaranteed to be verified by the token and are not given to you as the website
owner. The Dart team and community have provided us with some nice packages to easily
implement this functionality.

https://github.com/dart-lang/dart-samples/tree/master/html5/web/webgl/solar3
https://github.com/dart-lang/dart-samples/tree/master/html5/web/webgl/solar3
http://www.learnwebgl.com
https://github.com/jtmcdole/dart-webgl
http://www.khronos.org/webgl/wiki/Main_Page
http://www.khronos.org/webgl/wiki/Main_Page
http://aerotwist.com/tutorials/an-introduction-to-shaders-part-1/
http://aerotwist.com/tutorials/an-introduction-to-shaders-part-1/

Chapter 5

147

How to do it...
If you want to use OAuth2 authentication from Google in a client app, there is the
google_oauth2_client library. Add google_oauth2_client to your pubspec.yaml
dependencies and let pub in Dart Editor install it, or invoke pub get in the command line.
Add the following to your script, import 'package:google_oauth2_client/google_
oauth2_browser.dart';, to start working with it in code.

Perform the following steps to use OAuth2 authentication from Google:

1.	 You need to register at the Google API Console site and create a Client ID by
performing the following steps:

�� Go to https://console.developers.google.com/project and
create a project, for example, oauth2-test; it will be given a project ID.

�� From the Project Dashboard, go to APIs & auth, Credentials. Click on the
Create New Client ID button. Choose Web application as the type.

�� In Authorized JavaScript Origins, insert the URL
http://127.0.0.1:3030, used by the Dart Editor to launch web apps.
Click on the Create Client ID button and a new screen appears with your
client ID.

2.	 Add an auth variable initialized with the Oauth Client ID you just registered:
final auth = new GoogleOAuth2(
 "xxxxxxxxxxxxxxxxx.apps.googleusercontent.com", // insert Client
id
 ["openid", "email"],
 tokenLoaded:oauthReady);

3.	 Add a Log in with Google button in the main() code:
var logIn = new ButtonElement()
 ..text = "Log in with Google"
 ..onClick.listen((_) {
 auth.login();
});

document.body.children.add(logIn);

In the same way, you could also provide a logout facility:

var logOut = new ButtonElement()
 ..text = "Log out"
 ..onClick.listen((_) {
 auth.logout();
 });

document.body.children.add(logOut);

https://console.developers.google.com/project

Handling Web Applications

148

4.	 To see what is returned from the authentication, we add the following code:
void oauthReady(Token token) {
 print(token);
}

5.	 Suppose we want to use that token to access our Google+ profile data and display
the user's full name. Go to the project dashboard (refer to step 2), select Boost your
app with a Google API, then Enable an API, and then enable the Google+ API. Go
to the API access screen and create a Public API Access Key. You will have to insert
this value in plus.key in step 8.

6.	 Now add google_plus_v1_api to the pubspec.yaml file and add the following
import line:
import "package:google_plus_v1_api/plus_v1_api_browser.dart"
 as plusclient;

7.	 Add plusclient.Plus.PLUS_ME_SCOPE after the e-mail scope in the
auth variable.

8.	 Now add the following code to oauthReady:

// get the users full name
 var plus = new plusclient.Plus(auth);
 // set the API key
 plus.key = "Axxxxxxxxxxxxxxxxxxx-x-xxxxxxxxx-x";
 plus.oauth_token = auth.token.data;
 plus.people.get("me").then((person) {
 // log the users full name to the console
 print("Hello ${person.name.givenName} ${person.name.
familyName}");
 });

How it works...
Steps 3 to 5 illustrate how to make use of the OAuth client. Clicking on the login button
will display the Google login screen, where the user has to enter their e-mail address and
password, as shown in the following screenshot:

Chapter 5

149

Google account login screen

A screen appears to grant access to your application, based on the scopes you specified in
the auth variable ["openid", "email"]. After that, the tokenLoaded event is fired, an
oAuth token is returned, and its callback function oauthReady can print it out; it has the
following format (sensitive data being replaced by x):

[Token type=Bearer,
data=xxx.xxxx-xxxxxxxxxxxxxxxxxxxx,
expired=false,
expiry=2014-05-24 15:46:19.445,
email=xxxxxxxxxxxxxx@gmail.com,
userId=xxxxxxxxxxxxxxxxxxxxxx]

This token will be sent to your web application on the server. To summarize, the user is
authenticated to your application as an existing Google account through the OAuth2 protocol.

From step 7 onwards, we use our token to log in to Google+. In step 9, auth.token is given
to the Google+ client, and this prints out givenName and familyName from the Google+
service, for example, Hello John Doe.

Handling Web Applications

150

In general, if you want to access a certain URL urlxyz through OAuth2 and you already have
an auth token, use the following code:

var request = new HttpRequest();
request.onLoad.listen(...);
request.open(method, urlxyz);
auth.authenticate(request).then((request) => request.send());

There's more...
The Dart team has made the oauth2 client library, which allows you to obtain OAuth2
authorization from a non-Google server. With it, a user is authenticated for your app, without
having to store passwords on your website. After the user has been authenticated, your
application has an oauth2 token for that user, which can be used to access other services.
To start working with it in the code, add oauth2 to your pubspec.yaml dependencies and
let the pub in Dart Editor install it, or invoke pub get on the command line. Then, add the
following to your script:

import 'package:oauth2/oauth2.dart';

The way to go about this is a bit more involved, but with what you have learned now, you will be
able to grasp the example code given at http://pub.dartlang.org/packages/oauth2.

To authenticate via OAuth2 from Facebook, Windows Live, or Google in a server-side
application, use the pub package by Christophe Hurpeau.

See also
ff For more detailed information on OAuth2 and Google, see the article Using OAuth2

to access Google APIs at https://developers.google.com/accounts/docs/
OAuth2?csw=1

ff If you want to learn more about Oauth2, refer to http://oauth.net/2/

Talking with JavaScript
If we take into account the enormous amount of JavaScript code and libraries that exist, and
are still being developed, it is very important that we have a simple way to use JavaScript code
from within Dart applications, in particular to get access from Dart to the JavaScript code that
is running in the same web page. The earliest attempts used window.postMessage, and
then a package called js was built. Because of the huge importance of this topic, the Dart
team now has provided us with a core library, dart:js, to interoperate with JavaScript. This
provides better performance, reduces the size of the compiled JavaScript file, and makes
it also easier to use. Once dart:js is ready, the package js has been rewritten to use
dart:js under the covers.

http://pub.dartlang.org/packages/oauth2
https://developers.google.com/accounts/docs/OAuth2?csw=1
https://developers.google.com/accounts/docs/OAuth2?csw=1
http://oauth.net/2/

Chapter 5

151

How to do it...
Take a look at the project js_interop, as explained in the following steps:

1.	 To start using dart:js in our project, we have to import it in our code:
import 'dart:js';

2.	 In js_interop.html, we declare a Dart script, and the JavaScript program js_
interop.dart will look into the code of interact.js:
<script type="application/dart" src="js_interop.dart"></script>
<script type="application/javascript"
 src="interact.js"></script>

3.	 The interact.js file contains the following code: a variable jsvar, a class
Person with the properties name and gender, and the methods greeting and
sayHello:
var jsvar = "I want Dart";

function Person(name, gender) {
 this.name = name;
 this.gender = gender;
 this.greeting = function(otherPerson) {
 alert('I greet you ' + otherPerson.name);
 };
}

Person.prototype.sayHello = function () {
 alert ('hello, I am ' + this.name);
};

4.	 First, we get the contents of a JavaScript variable:
 var dart = context['jsvar'];
 print(dart); // I want Dart

5.	 Then, we make a Person object:
var pers1 = new JsObject(context['Person'], ['An',
 'female']);
var pers2 = new JsObject(context['Person'], ['John',
 'male']);

Handling Web Applications

152

6.	 We access and set the properties using the following code:
 print(pers1['name']); // An
 print(pers2['gender']); // male
 pers2['gender'] = 'female';
 print(pers2['gender']); // female

7.	 We call the methods on the Person object:
 pers1.callMethod('sayHello', []);
 pers2.callMethod('greeting', [pers1]);

The preceding steps display alert windows with the messages hello, I am An and I
greet you An.

8.	 Now we get the global object in JavaScript (normally a window) via context, and
display an alert window with callMethod:
 context.callMethod('alert', ['Hello from Dart!']);

9.	 Use jsify to create a JavaScript object and array:
 var jsMap = new JsObject.jsify({'a': 1, 'b': 2});
 print(jsMap); // [object Object]
 var jsArray = new JsObject.jsify([1, 2, 3]);
 print(jsArray); // [1, 2, 3]

How it works...
The dart:js library provides Dart access to JavaScript objects in web applications, not in
server applications. More specifically, it exposes wrapped or proxy versions of any JavaScript
objects you access. This enables Dart to safely sandbox JavaScript away and prevents its
problems from leaking into the Dart application. You can get and set properties and call
JavaScript functions and methods on JavaScript objects, while conversions between Dart
and JavaScript are taken care of as far as possible. At this moment, the bridge is not fully
bidirectional; JavaScript has no access to Dart objects, but it can call Dart functions.

Inclusion of the script tag in the HTML <script src="packages/
browser/interop.js"></script> code is no longer needed.

The main type of object is JsObject with which we can reach out to JavaScript objects; in
other words, we create a Dart proxy object to the JavaScript object. To get the global object
in JavaScript (which is mostly window), use the top-level getter function context; this is
used in step 8. However, context is also used to get the values of JavaScript variables, as
shown in step 4.

Chapter 5

153

You can create JavaScript objects as shown in step 5. Use the JsObject() constructor.
This takes the name of a JavaScript constructor function and the list of arguments that it
needs as arguments. As shown in step 6, we can use the [] index operator to get the value
of properties and []= to set them; instead of a numerical index, we use the property name
string as the key. The seventh and eighth step demonstrate that we can call a JavaScript
method on an object with callMethod, taking the name of the method and the list of its
arguments as parameters. Finally, in step 9, we see that JsObject.jsify turns a Dart map
into a JavaScript object using the keys as properties; the same method also turns a Dart list
into a JavaScript array.

There's more...
To be able to compare, we will now show the same code but rewritten with the js package. In
js_interop2.html, we have the same JavaScript, but running together with the Dart script
js_interop2.dart. We add the js package to our pubspec.yaml file as js:any, and let
pub get do its magic. To make the package available to our Dart script, we add the following
code to js_interop2.dart:

import 'package:js/js.dart' as js;

Rewriting the Dart code from js_interop.dart gets us the following output:

void main() {
 // getting a variable:

 var dart = js.context['jsvar'];
 print(dart); // I want Dart
 // making objects:

 var pers1 = new js.Proxy(js.context.Person, ['An', 'female']);
 var pers2 = new js.Proxy(js.context.Person, ['John', 'male']);
// accessing and setting properties:
 print(pers1.name); // prints the whole object: [An, female]
 pers1.name = 'Melissa'; // change name property
 print(pers1.name); // Melissa
// calling methods:

 pers1.sayHello.call(); // window: hello, I am Melissa
 pers2.greeting.call(pers1); // window: I greet you Melissa
 // getting the global object in JavaScript via context
 js.context.alert('Hello from Dart via JavaScript');
 // using jsify:

 var jsMap = js.map({'a': 1,'b': 2});
 print(jsMap); // [object Object]

 var jsArray = js.array([1, 2, 3]);
 print(jsArray); // [1, 2, 3]
}

Handling Web Applications

154

The syntax is a bit easier than dart:js but because the names in the js package cannot
be minified since it uses dart:mirrors and noSuchMethod, using this library can result in
a noticeable increase in code size when compiled to JavaScript. If this is a big disadvantage
for you, use dart:js instead. We use the js package in the next recipe to talk to the Google
Visualizations API.

See also
ff See the Using JavaScript libraries recipes for more information on how to use

JavaScript libraries

ff A small library that makes it easy to call Dart from Javascript is available at
https://github.com/jptrainor/js_bridge, it's a thin layer around dart:js.

Using JavaScript libraries
In this recipe, we use the js package as an interface from our Dart script to the Google Chart
JavaScript API. This gives us many rich and highly customizable ways to graphically represent
data in our Dart web apps and, because it is built with HTML5/SVG, it works cross-browser
(even for older IE versions) and cross-platform (also for iOS and Android).

How to do it...
Take a look at the project googlechart:

1.	 In the <body> tag of the HTML file, place the following:
<div id="chart" style="width: 900px; height: 500px;"></div>
<script type="text/javascript"
 src="https://www.google.com/jsapi"></script>
<script type="application/dart"
 src="googlechart.dart"></script>

The <div> tag with the ID chart is where the chart will be drawn; the code to do this
is contained in googlechart.dart.

2.	 The following is the data we want to represent in a chart:
var listData = [
 ['Year', 'Sales', 'Expenses'],
 ['2004', 1000, 400],
 ['2005', 1170, 460],
 ['2006', 660, 1120],
 ['2007', 1030, 540]
];

https://github.com/jptrainor/js_bridge

Chapter 5

155

3.	 After importing the js package, we load the corechart package from the Google
API and tell our code to execute the method drawChart when this is done:
import 'dart:html';
import 'package:js/js.dart' as js;

main() {
 js.context.google.load('visualization', '1', js.map(
 { 'packages': ['corechart'],
 'callback': drawChart,
 }));
}

4.	 Calling the drawChart method then loads the data and draws the chart:
void drawChart() {
 var gviz = js.context.google.visualization;
 var arrayData = js.array(listData);
 var tableData = gviz.arrayToDataTable(arrayData);
 var options = js.map({
 'title': 'Company Performance, ',
 'hAxis': {'title': 'Year', 'titleTextStyle': {'color':
 'red'}}
 });
 var chart = new js.Proxy(gviz.ColumnChart,
querySelector('#chart'));
 chart.draw(tableData, options);
}

Performing the previous steps gives the following output in the browser:

Using Google Charts with js

Handling Web Applications

156

Also, notice that when hovering over the columns, a tooltip is shown with the exact data for
that column.

How it works...
In the first step, the highlighted script tag refers to the online Google visualization libraries
that have to be loaded dynamically before you can use them to draw charts. Step 2 defines
the data; this could have been loaded from a file or database. In step 4, we get a reference
gviz to the JavaScript Google Visualizations object via js.context. Then, the data is
transformed into a JavaScript array with js.array; the chart options such as title, x axis,
color, and so on are passed via js.map. Then, we construct a proxy chart to the JavaScript
object, on which the draw method is invoked.

So basically, there are four steps to create a chart:

1.	 Load the jsapi library.

2.	 List the data.

3.	 Configure the options.

4.	 Create the chart.

See also
ff Want to learn more about Google Charts? Then visit https://google-

developers.appspot.com/chart/interactive/docs/, where you can find a
wealth of examples. These are written in JavaScript, but with what you now know, you
can easily translate them to Dart.

https://google-developers.appspot.com/chart/interactive/docs/
https://google-developers.appspot.com/chart/interactive/docs/

6
Working with Files

and Streams

In this chapter, we will cover the following recipes:

ff Reading and processing a file line by line

ff Writing to a file

ff Searching in a file

ff Concatenating files

ff Downloading a file

ff Working with blobs

ff Transforming streams

Introduction
Working with files is the bread and butter of every programming language when reaching out
for data in the environment. The classes and methods dealing with this functionality can be
found in the dart:io package, together with support for networking (sockets and HTTP). This
package can only be used in Dart command-line applications, not in browser apps, so our
code runs in a Dart VM.

When working with files, and I/O in general, there are two modes of operation:

ff Synchronous operations, where code execution waits for the I/O result

ff Asynchronous operations, where the code execution is not blocked and continues
while I/O is taking place

Working with Files and Streams

158

Because the Dart VM is single threaded, a synchronous call blocks the application. So,
for scalability reasons, the asynchronous way is the best practice using the Future and
Stream classes from the dart:async package. Most methods on files come in pairs, the
asynchronous and the synchronous versions, such as copy and copySync. Unless you really
have to wait for the result, use the asynchronous way so that screens and apps do not appear
to be blocked and can still respond.

If you need a recap, visit the tutorials at https://www.dartlang.
org/docs/tutorials/futures/ and https://www.
dartlang.org/docs/tutorials/streams/. In this chapter,
we will focus on recipes to handle files.

Reading and processing a file line by line
Files containing data in the comma separated values (csv) format are structured so that
one line contains data about one object, so we need a way to read and process the file line
by line. As an example, we use the data file winequality-red.csv, that contains 1,599
sample measurements, 12 data columns, such as pH and alcohol, per sample, separated by
a semicolon (;), of which you can see the top 20 in the following screenshot:

https://www.dartlang.org/docs/tutorials/futures/
https://www.dartlang.org/docs/tutorials/futures/
https://www.dartlang.org/docs/tutorials/streams/
https://www.dartlang.org/docs/tutorials/streams/

Chapter 6

159

How to do it...
Examine the code of the command-line project processing_lines using the
following methods:

1.	 Using the readAsLines method as shown in the following code:
import 'dart:io';
// for step 3:
import 'dart:async';
import 'dart:convert';

main() {
 File data= new File("../winequality-red.csv");
 data.readAsLines().then(processLines)
 .catchError((e) => handleError(e));
}

processLines(List<String> lines) {
 // process lines:
 for (var line in lines) {
 print(line);
 }
}

handleError(e) {
 print("An error $e occurred");
}

The previous code gives the following output:

2.	 Extracting the data of each line to an object as shown in the following code:
processLines(List<String> lines) {
// process lines:
 for (var line in lines) {
 print(line);
 // when not header line, split line on separator:
 if (!header) {

Working with Files and Streams

160

 List<String> fields = line.split(";");
 Wine wn = new Wine();
 wn.fixed_acidity = fields[0];
 wn.volatile_acidity = fields[1];
 // extracting remaining properties
 wn.alcohol = fields[10];
 wn.quality = fields[11];
 print(wn);
 }
 header = false;
 }
}
class Wine {
 var fixed_acidity;
 var volatile_acidity;
 // other properties
 var alcohol;
 var quality;

 toString() => "This wine has $fixed_acidity fixed acidity, "
 "alcohol % of $alcohol and quality $quality.";
}

The preceding code gives the This wine has 6.8 fixed acidity, alcohol % of 11.3 and
quality 6 output.

3.	 Use the openRead method as an alternative as shown in the following code:
main() {
 File data= new File("../winequality-red.csv");
 // using openRead:
 Stream<List<int>> input = data.openRead();
 input
 .transform(UTF8.decoder) // Decode to UTF8.
 // Convert stream to individual lines.
 .transform(const LineSplitter())
 .listen((String line) { // Callback to process results.
 print('$line: ${line.length} bytes');
 // Further processing of line, e.g. as in processLines
 }, onDone: () {
 print('File is now closed.');
 }, onError: (e) {
 print(e.toString());
 });
}

Chapter 6

161

The previous code gives the following output:

7.8;0.88;0;2.6;0.098;25;67;0.9968;3.2;0.68;9.8;5: 48 bytes

7.8;0.76;0.04;2.3;0.092;15;54;0.997;3.26;0.65;9.8;5: 51 bytes

How it works...
In step 1, we created a File object reference to our data file. On this object, we call the
asynchronous readAsLinesmethod method that returns Future with a return value
of the type List<String>. Each line is read as a string, and all lines form a list. When
the file is read in its entirety and this value is returned, it is executed with the callback
functionprocessLines that effectively gets List<String> as its argument. In
processLines, we can get at each line and transform or process it. If readAsLines
returns with an error, catchError is fired, and handleError callback is executed
(we could have shortened this line to catchError(handleError);).

For example, when the file is not found, we have the following message:

An error FileSystemException: Cannot open file, path = 'winequality-red.csv' (OS Error: The
system cannot find the specified file. , errno = 2) occurred

In step 2, we split each data field. At that moment, we can create a Wine object for each line,
start doing calculations with the data, and so on.

The readAsLines method takes an optional argument of the type encoding, such as
this:readAsLines(encoding: ASCII); instead of ASCII, you can use LATIN1 or UTF-8.

In step 3, we see an alternative way to be used when the file is too large to fit in memory (the
code line with readAsLines is now no longer needed). With openRead, the file is read in
chunks as a stream of integers. In this stream, we use the transform method to convert
to UTF-8 and then to split it into separate lines. The listen event then activates a callback
function for each line read. The onDone option defines a callback function when the last line
of the file is read in; onError defines an error handler. For this to work, we need to import
dart:async and dart:convert. If you find the syntax used in the listen callback a bit
too clunky, you can always write it with named event handlers as in processing_lines2.
dart as follows:

// previous lines left out
.listen(processLine, onDone: close, onError: handleError);
}

processLine(line) { print('$line: ${line.length} bytes'); }
close() { print('File is now closed.'); }
handleError(e) { print(e.toString()); }

Working with Files and Streams

162

The other possibilities are as follows:

ff Use the method readAsBytes if you want to be able to process individual bytes in
the file

ff Use the method readAsString if you want to read the file in memory as one
big string

ff Use the method readAsLinesSync if you want to read the file in memory as one big
string and wait until that is done

See also
ff See the Transforming streams recipe in this chapter.

Writing to a file
In this recipe, we demonstrate the three most important ways to write to a file. You can find
the code in the project writing_files.

How to do it...
The three ways to write to a file are discussed as follows:

1.	 First, we import the packages io and convert as shown in the following code:
import 'dart:io';
import 'dart:convert';

void main() {

2.	 We can write to a file using writeAsString as shown in the following code:
 final filename = 'outString.txt';
 new File(filename).writeAsString('Dart is an elegant
 language').then((File file) {
 // do something with the file.
});

3.	 We can write to a file using writeAsBytes as shown in the following code:
 final string = '你好世界';
 // Encode to UTF8.
 var encodedData = UTF8.encode(string);
 new
 File('outUTF8.txt').writeAsBytes(encodedData).then((file)
 => file.readAsBytes()).then((data) {
 // Decode to a string, and print.

Chapter 6

163

 print(data);
 // [228, 189, 160, 229, 165, 189, 228, 184, 150, 231, 149, 140]
 print(UTF8.decode(data)); // prints '你好世界'.
});

4.	 We can write to a file using openWrite as shown in the following code:
 var file = new File('out3.txt');
 var sink = file.openWrite();
 sink.write('File was written to at ${new DateTime.now()}\n');
 // close the IOSink to free system resources!
 sink.close();
}

How it works...
Step 1 uses the asynchronous writeAsString method to write one (big) string to a file,
and this file is then automatically closed. In the callback function called by then, you could,
for example, send the file over the network. Step 2 shows how to write raw bytes to a file with
writeAsBytes. This is necessary when the file contains non-readable or Unicode characters.

There's more...
What do we do when we want to write to our file in chunks? Then, we use the openWrite
method as shown in step 3. When called on a File object, this creates an IOSink object
for that file, which you can write to with any of the following methods: write, writeln,
writeCharCode, writeAll. In contrast to the write methods of the previous steps, the
IOSink object must be explicitly closed when no longer needed. The openWrite method
takes two optional arguments as shown in the following code:

file.openWrite(mode: FileMode.APPEND, encoding: ASCII);

The default mode is FileMode.WRITE.

Searching in a file
In this recipe, we demonstrate how to search for certain words in a text file. You can find the
code in the search.dart script in the project searching_file. As an example text file, we
use taoprog.txt.

Working with Files and Streams

164

How to do it...
The program is launched from the command-line in the bin folder (or in Dart Editor with a
Managed Launch with Script arguments -n search1 search2taoprog.txt) as shown
in the following screenshot:

In dart search.dart -n search1 search2 taoprog.txt , where search1 and
search2 are words to be searched for, there can be one or more search words. For example,
let's search for mysterious and machine, in which case, the output is as follows:

Chapter 6

165

The flag –n is optional; if included, we see a line number printed in front of the line.

The following is the code from the script:

import 'dart:io';
import 'package:args/args.dart';

const HOWTOUSE = 'usage: dart search.dart [-n] search-pattern file';
const LINENO = 'line-number';
ArgResults argResults;
var searchTerms = "";
File file;

Perform the following steps to search in a file:

1.	 We can search a file using the args package as shown in the following code:
void main(List<String> args) {
 final parser = new ArgParser()..addFlag(LINENO, negatable:
 false, abbr: 'n');
 argResults = parser.parse(args);
 if (argResults.rest.length < 2) {
 print(HOWTOUSE);
 exit(1);
 }
 }

2.	 We can search a file by capturing the filename and the search terms as shown in the
following code:
 final strFile = argResults.rest.last;
 File file = new File(strFile);
 searchTerms = argResults.rest.sublist(0,
 argResults.rest.length - 1);
 searchFile(file, searchTerms);
}

3.	 We can search a file by reading in the file and searching, as shown in the
following code:
 searchFile(File file, searchTerms) {
 file.readAsLines().then(searchLines).catchError(print);
 }

 searchLines(lines) {
 for (var i = 0; i < lines.length; i++) {
 for (var j = 0; j < searchTerms.length; j++) {
 if (lines[i].contains(searchTerms[j])) {
 printMatch(lines[i], i);
 }

Working with Files and Streams

166

 }
 }
}

4.	 We can search a file by printing out the match line found as shown in the
following code:
void printMatch(String line, int i) {
 StringBuffer sb = new StringBuffer();
 if (argResults[LINENO]) sb.write('${i + 1}: ');
 sb.write(line);
 print(sb.toString());
}

How it works...
In step 1, we see that the args package is used to parse the command-line arguments. The
option –n is either there or not (on or off, a Boolean value), which is why it is added as a flag
to the parser object; negatable:false prevents you from writing no-n as an argument.
We parse and then test to see that we have at least two arguments (a search term and a
filename). If not, the string in the constant HOWTOUSE is displayed as a help option. Step 2
prepares the scene; the last argument is the filename, the rest of the arguments given by
the sublist method is the list of search terms.

The actual searching happens in step 3; we use the readAsLines method to read the file.
When this is done, the callback function searchLines is called in a nested for loop, where
each line in succession is tested for all search terms as to whether it contains the term. So
printMatch prints the line out and also whether –n specified was preceded by its line number.

See also
ff See the Parsing command-line arguments recipe in Chapter 2, Structuring, Testing,

and Deploying an Application, for more information on using the args package at
https://pub.dartlang.org/packages/args

ff You can find an example that searches recursively through a folder structure at
https://code.google.com/p/dart/source/browse/branches/bleeding_
edge/dart/samples/dgrep/bin/dgrep.dart

Concatenating files
Let's suppose that we have a number of text files we want to glue together in one big file. This
recipe with code in the project concat_files shows you how this can be done.

https://pub.dartlang.org/packages/args
https://code.google.com/p/dart/source/browse/branches/bleeding_edge/dart/samples/dgrep/bin/dgrep.dart
https://code.google.com/p/dart/source/browse/branches/bleeding_edge/dart/samples/dgrep/bin/dgrep.dart

Chapter 6

167

How to do it...
The program is launched from the command line in the bin folder (or in Dart Editor with a
Managed Launch with Script arguments file1.txt file2.txt file.txt) as dart
concat.dart file1.txt file2.txt file.txt, where file1.txt and file2.txt
are the files to be concatenated (there can be two or more files) into file.txt. The following
is the code to perform this:

import 'dart:io';
import 'package:args/args.dart';

ArgResults argResults;
File output;

void main(List<String> arguments) {
 final parser = new ArgParser();
 argResults = parser.parse(arguments);
 final outFile = argResults.rest.last;
 List<String> files = argResults.rest.sublist(0, argResults.
 rest.length - 1);
 if (files.isEmpty) {
 print('No files provided to concatenate!');
 exit(1);
 }
output = new File(outFile);
if (output.existsSync()) {
 output.delete();
 }
 concat(files);
 }

concat(List<String> files) {
 for (var file in files) {
 var input = new File(file);
 try {
 var content = input.readAsStringSync();
 content += "\n";
 output.writeAsStringSync(content, mode: FileMode.APPEND);
 } catch (e) {
 print("An error $e occurred");
 }
 }
}

Working with Files and Streams

168

How it works...
We use the args package to get the output file name and the files to concatenate. To start
with an empty output file, we delete it when it already exists. Then, we loop over all the input
files, successively reading an input file and write it to the output in the append mode. We do
all these operations in the synchronous mode, because we don't want the content of the files
to be mingled.

There's more...
In concat2.dart, which you can find within the concat_files folder, we see an
asynchronous version that also works here—only the code in the concat method has
to change. Have a look at the following code:

IOSink snk;

Future concat(List<String> files) {
snk = output.openWrite(mode: FileMode.APPEND);
 return Future.forEach(files, (file) {
 Stream<List<int>> stream = new File(file).openRead();
 return stream.transform(UTF8.decoder)
 .transform(const LineSplitter())
 .listen((line) {
 snk.write(line + "\n");
 }).asFuture().catchError((_) => _handleError(file));
 });
}

_handleError(String file) {
 FileSystemEntity.isDirectory(file).then((isDir) {
 if (isDir) {
 print('error: $file is a directory');
 } else {
 print('error: $file not found');
 }
 });
}

We write to an IOSink object snk using the openWrite method in the append mode. The
Future.forEach method asynchronously runs the callback provided on each file. The
forEach method runs the callback for each element in order, moving to the next element only
when the Future returned by the callback completes. The stream is transformed; transformers
are used here to convert the data to UTF-8 and split string values into individual lines.

Chapter 6

169

See also
ff Refer to the Parsing command-line arguments recipe, Chapter 2, Structuring, Testing,

and Deploying an Application, for more information on using the args package, and
the Transforming streams recipe in this chapter.

Downloading a file
This recipe shows you the simplest ways to download a file through code, first in a
command-line application and then from a web application. As an example, we download
the front page of the Learning Dart website from http://learningdart.org.

Getting ready
A client program (be it web or command-line) receives content, such as files or web pages,
from a web server using the HTTP protocol. The dart:html and dart:io package provides
us with the basic classes we need to do this, which are as follows:

ff The Uriclass class (from dart:core) has all we need to parse, encode, and
decode web addresses; the method Uri.parse is often used

ff The HttpRequest class (from dart:html) has the getString method to fetch a
file from a URL

ff The HttpClientclass class (from dart:io) has all kinds of methods, such as
get and post, to send a request (class HttpClientRequest) to a web server
and get a response (class HttpClientResponse) back

How to do it...
1.	 For a web app, this is shown in download_string.dart, which is started from

download_string.html (these files can be found in the download_file project)
as shown in the following code:
import 'dart:html';

main() {
 HttpRequest.getString('http://learningdart.org')
 .then(processString)
 .catchError(print);
}

processString(str) {
 print(str);
}

http://learningdart.org

Working with Files and Streams

170

2.	 For a command-line app in the program download_file.dart, we see the basic
mechanism of how to do this for a command-line app as follows:
import 'dart:io';
import 'dart:convert';

var client;

main() {
 var url = Uri.parse('http://learningdart.org');
 client = new HttpClient();
 client.getUrl(url)
 .then((HttpClientRequest req) => req.close())
 .then((HttpClientResponse resp) => writeToFile(resp));
}

writeToFile(resp) {
 resp.transform(UTF8.decoder)
 .toList().then((data) {
 var body = data.join('');
 var file = new File('dart.txt');
 file.writeAsString(body).then((_) {
 client.close();
 });
 });
}

How it works...
For a web app, we use the getString method on HttpRequest to fetch the file from the
URL as one big string, which is asynchronously passed to processString. It could do just
about anything with the string it gets back, for example, if it were a JSON or XML string, we
could parse this and get data out of it to show on our web page. So HttpRequestcan is
used to fetch data over HTTP and FTP protocols from a URL, without producing complete
web page updates. This is, in fact, the way to make AJAX calls (or XMLHttpRequest) and
as a consequence, partial page updates. We will use it in the following recipe to fetch a large
blob file.

Don't confuse this class with another class with the same name
HttpRequest from dart:io, which must be used in server-side
applications (we will use it extensively in the recipes of the following
chapter). A web server, or more formally, an HTTP server, that listens
for HTTP requests coming in on a specific host and port, generates
such an object for each request it receives.

Chapter 6

171

For a command-line app, first we transform the web address string to a Uri object with the
static method parse. Then we make an HttpClient object and invoke the getUrl request
on URL (the Uri object). This works in two steps, each returning a Future, which are:

ff The first .then completes with a request object that has been made but not sent yet.
In the callback, you can still change or add to the request headers or the body. A call
to close sends the request to the server. This step serves to make the request and
send it.

ff The second .then completes when the response object is received from the server,
and you can access headers and the body (the body is available as a stream). This
step serves to process the response; here, we call writeToFile.

If there is a body, it must be processed. Avoid memory leaks by
calling the method drain().

In writeToFile, we read the response data, transforming it from UTF-8 to a string
(helped by the join method that transforms the list into a string), and write it to a file with
writeAsString. When this finishes, the HttpClient object is closed; this releases the
network connections that have been made.

There's more...
The following are some variations to accomplish the same thing for a command-line app:

Using pipe
The .then variable in the command line can be simplified to the following:

.then((HttpClientResponse resp) => resp.pipe(new
 File('dart.txt').openWrite()));

The pipe method on the response object can send the stream immediately to the file to be
written. This will perform better when downloading bigger files.

Using the http package
An even more simplified approach can be taken using the http package by the Dart team,
which was made to facilitate coding requests and responses (see download_file2.dart).
Have a look at the following code:

import 'dart:io';
import 'package:http/http.dart' as http;

main() {
 var url = Uri.parse('http://learningdart.org');

Working with Files and Streams

172

 http.get(url).then((response) {
 new File('dart.txt').writeAsBytes(response.bodyBytes);
 });
}

See also
ff See the Writing to a file recipe for information on the writeAsBytes method

Working with blobs
In the previous recipe, in step 1, we used a client HttpRequest object and its method
getString. In this recipe, we want to download a blob (binarylargeobject) file, for
example, a large image, audio, or video file. But first, you need to prepare for this if you need
to do more than just download a string from a URL resource to process it on the client. You
need to go through the following steps (for the code, see request_prep.dart in the project
request_blob).

Getting ready
1.	 Create an HttpRequest object as shown in the following code:

import 'dart:html';

void main() {
var path = 'http://learningdart.org';
var request = new HttpRequest();

2.	 Open it (here, with the HTTP GET method) as shown in the following code:
request
..open('GET', path)

3.	 In this stage, we could also have configured its header with the setRequestHeader()
method, for example, request.setRequestHeader('Content-
type','application/json') when you are sending a JSON string.

4.	 Define a callback function, such as requestComplete, to execute when the
response comes back; this is done in the onLoadEnd event as shown in the
following code:
..onLoadEnd.listen((e) => requestComplete(request))

5.	 Use the send method to make the request as shown in the following code:
..send();
}

Chapter 6

173

Here, we send an empty string, because it is a GET request, but with a POST request, we
could send data such as request.send(JSON.encode(data));.

In the callback, we test the status of the request if it is 200; if everything is OK, we can
process responseText. Have a look at the following code:

requestComplete(HttpRequest request) {
 if (request.status == 200) {
 print('headers: ${request.responseHeaders}');
 print('type: ${request.responseType}');
 print('text: ${request.responseText}');
 }
 else {
 print('Request failed, status={$request.status}');
 }
}

How to do it...
Now, we show you how to do the same thing for a blob in request_blob.dart (run it from
request_blob.html) using the following code:

import 'dart:html';

1.	 To make a FileReader object, use the following code:
FileReader flr = new FileReader();
ImageElement img;

void main() {
 img = document.querySelector('#anImage');
 // var path = 'stadium.jpg';
 var path =
 'https://farm1.staticflickr.com/2/
 1418878_1e92283336_m.jpg';

2.	 To build the request for a blob, use the following code:
 var request = new HttpRequest();
 request
 ..open('GET', path)
 ..responseType = 'blob'
 ..overrideMimeType("image/jpg")
 ..onLoadEnd.listen((e) => requestComplete(request))
 ..send('');
}

Working with Files and Streams

174

3.	 To handle the response, use the following code:
requestComplete(HttpRequest request) {
 if (request.status == 200 &&request.readyState == HttpRequest.
DONE) {
 Blob blob = request.response;
 flr.onLoadEnd.listen((e) {
 img.src = flr.result;
 });
 flr.readAsDataUrl(blob);
 }
 else {
 print('Request failed, status={$request.status}');
 }
}

Try it out with the 5 MB file stadium.jpg.

How it works...
To read the blob, we will need a FileReader object; we constructed this in step 1. In step
2, we build the request object, which is fairly general, except that we set responseType
and mimeType. In the callback function in step 3, we test with request.readyState ==
HttpRequest.DONE to be sure that the request has been fully handled. Then, we performed
the following steps:

ff We created a Blob object from the Blob class in dart:html and set it to
the response

ff We read the blob with the method readAsDataUrl

ff When this was completed (signaled by the onLoadEnd event), the source of the
image tag was set to the result of the FileReader object

Transforming streams
Listening to a stream captures the sequence of results coming from an event-like action, such
as clicking on a button in a web page or opening a file with the openRead method. These
results are data that can be processed, but the errors that occur are also part of the stream.
Dart can work with streams in a very functional way, such as filtering the results with where or
mapping the results to a new stream (for a complete list of these methods, refer to https://
api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/dart:async.
Stream). To modify the incoming results, we can also use a transformer; this recipe shows
you how to do this (refer to the project transforming_stream).

https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/dart:async.Stream
https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/dart:async.Stream
https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/dart:async.Stream

Chapter 6

175

How to do it...
In our script, we have a list, persons, where the items are themselves lists consisting of a
name and a gender. We want to walk through the list and emit a greeting message based on
the gender of the person, but if the gender is unknown, we skip that person. The following
code shows us how we can do this with a transformer:

import 'dart:async';

var persons = [
 ['Carter', 'F'],
 ['Gates', 'M'],
 ['Nuryev', 'M'],
 ['Liszt', 'U'],
 ['Besançon', 'F']
];

void main() {

We need to perform the following steps to transform the streams:

1.	 To make a stream from the list, use the following code:
var stream = new Stream.fromIterable(persons);

2.	 To define a stream transformer, use the following code:
var transformer = new
 StreamTransformer.fromHandlers(handleData: convert);

3.	 To filter and transform the stream, and listen to its output to process further, use the
following code:
stream
.where((value) => value[1] != 'U')
.transform(transformer)
.listen((value) => print("$value"));
}

convert(value, sink) {
 // create new value from the original value
 var greeting = "Hello Mr. or Mrs. ${value[0]}";
 if (value[1] == 'F') {
 greeting = "Hello Mrs. ${value[0]}";
 }

Working with Files and Streams

176

 else if (value[1] == 'M') {
 greeting = "Hello Mr. ${value[0]}";
 }
 sink.add(greeting);
}

After performing the preceding steps, we get the following output:

Hello Mrs. Carter

Hello Mr. Gates

Hello Mr. Nuryev

Hello Mrs. Besançon

How it works...
To turn a list into a stream, we used the fromIterable method as in step 1. Discarding
some values from the stream can be done with where; see the first clause in step 3.

Step 2 details how to transform a stream. This method takes an object (here called
transformer) of the class StreamTransformer, which allows you to change the contents
of the stream. The constructor named fromHandlers takes an optional handleData
argument that calls our callback function convert for each value passed from the stream.
The convert option builds a new value based on the content of the old value and adds it in
place of the old value of the sink variable. Only those transformed values are output on the
stream, passed on to listen, and processed there. The sink option is an instance of the
abstract class StreamSink, which is a generic destination of data and can be implemented
by any data receiver.

There's more...
We have already used transform in this chapter when reading a file with openRead, as
shown in the following code:

Stream<List<int>> input = file.openRead();
input
.transform(UTF8.decoder)
.transform(const LineSplitter())

Chapter 6

177

The inputStream stream is a List<int> list, and thus strongly typed. First, the incoming
integers are transformed into a stream of UTF-8 characters, and then the input is split into
subsequent lines. Instead of transform, we could have used the map method on the stream
as well.

HttpRequest in the browser does not support getting the response as a stream. To work along
that pattern, you have to use WebSockets (refer to Chapter 7, Working with Web Servers).

See also
ff Refer to the Reading a file recipe, the second example in the Concatenating files

recipe, and the Writing files recipe for more examples on transforming streams

7
Working with
Web Servers

In this chapter, we will cover the following recipes:

ff Creating a web server

ff Posting JSON-formatted data

ff Receiving data on the web server

ff Serving files with http_server

ff Using sockets

ff Using WebSockets

ff Using secure sockets and servers

ff Using a JSON web service

Introduction
Dart, besides being an excellent web programming language is, also suitable for writing
server applications. In this chapter, we will specifically look at Dart's dart:io library to
write web servers and their functionality. This library is built to work asynchronously so that
the server can handle many requests at the same time (concurrently). It provides the class
HttpRequest to write command-line clients. The Dart team also wrote the http_server
package available from pub package manager. This package needs dart:io and provides
some higher-level classes to make it easier to write clients and servers.

Working with Web Servers

180

Creating a web server
The class HttpServer is used to write web servers; this server listens on (or binds to) a
particular host and port for incoming HTTP requests. It provides event handlers (better called
request handlers in this case) that are triggered when a request with incoming data from
a web client is received.

How to do it...
We make a project called simple_webserver starting from the template command-line
application and import dart:io as follows:

import 'dart:io';
//Define host and port:
InternetAddress HOST = InternetAddress.LOOPBACK_IP_V6;
const int PORT = 8080;

main() {
 // Starting the web server:
 HttpServer.bind(HOST, PORT)
 .then((server) {
 print('server starts listening on port
 ${server.port}');
 // Starting the request handler:
 server.listen(handleRequest);
 })
 .catchError(print);
}

handleRequest(HttpRequest req) {
 print('request coming in');
 req.response
 ..headers.contentType = new ContentType("text", "plain",
 charset: "utf-8")
 ..write(' I heard you loud and clear.')
 ..write(' Send me the data!')
 ..close();
}

Chapter 7

181

How it works...
A web server runs on a host (either specified by a name or an IP address) and uses a port
on that host to listen for requests. We define these here upfront as stated in comment 1.
HOST could be a string, such as localhost, or an object of the class InternetAddress. The
LOOPBACK schema is the same as localhost; this is used for testing on a local machine. For
production purposes, use ANY_IP_V6 to allow for incoming connections from the network.
Instead of IP_V6, you could also use IP_V4, but IP_V6 is more general and includes an
IP_V4 listener.

A port can be any valid number above 1024 that is not in use. If another program is already
listening on the same port (or the server is still running), an error occurs.

Next, we use the static method bind to create the web server; this returns a Future object to
run asynchronously. When the bind is successful, the callback then() is called with the new
HttpServer object as a parameter. We print out the port to the console, so we can confirm it
is running. The catchError function will be triggered in the case of an exception and equally
prints to the console.

Always provide error handling in the code of a server!

Next, the callback handler handleRequest is set up; it will be triggered for any incoming
request that it accepts as a parameter. In other words when a request comes in, the
server creates an HttpRequest object and passes it to the callback handleRequest
of listen().

In this first example, we write to its response object after first setting the content type in the
headers and close it when we're done. The response object is of the class HttpResponse;
it will contains the server's answer to the request.

To see it in action, start the server from the editor or on the command line with the
following command:

dart simple_webserver.dart

Working with Web Servers

182

This produces the following server console output:

Console output from the web server

Then, start any browser with the URL http://localhost:8080 to see the response text
appear on the client as shown in the following screenshot:

The browser client shows the response

There is more...
The HttpRequest object also has properties that provide information about the client's
request; the most important ones are as follows:

ff method: This is derived from the way the web form was submitted. In the <form
action="http://localhost:4041"method="GET"> code, the values it can
take are GET, POST, PUT, or DELETE.

ff headers: This gives general information on the request, such as content type,
content length, and date.

ff uri: This gives the location where the request originated from.

http://localhost:8080

Chapter 7

183

Posting JSON-formatted data
This is a recipe for a client web app that sends a request to a web server. The request
contains the form's data that is posted in the JSON format.

How to do it...
Look at the project post_form for the code.

1.	 Our form (refer the next diagram) will post data for a job in IT; we reuse the class
Job in the Making toJSON and fromJSON methods in your class recipe from
Chapter 4, Object Orientation. We keep the example short and simple, but
add two new properties, posted and open. Have a look at the following code:
class Job {
 String type;
 int salary;
 String company;
 DateTime posted; // date of publication of job
 bool open = true; // is job still vacant ?
 Job(this.type, this.salary, this.company, this.posted);
 // toJSON and fromJSON methods
}

2.	 The model class is made available to the code in post_form.dart using the
following code:
import '../model/job.dart';

3.	 We add our own event handler for the submit button using the following code:
void main() {
 querySelector("#submit").onClick.listen(submitForm);
}

4.	 The method submitForm makes and sends the request as follows:
submitForm(e) {
 e.preventDefault(); // Don't do the default submit.
 // send data to web server:
 req = new HttpRequest();
 req.onReadyStateChange.listen(onResponse);
 // POST the data to the server.
 var url = 'http://127.0.0.1:PORT';
 req.open('POST', url);
 req.send(_jobData()); // send JSON String to server
}

Working with Web Servers

184

5.	 The _jobData function prepares the data to send as follows:
_jobData() {
 // read out data:
 InputElementicomp, isal, iposted, iopen;
 SelectElementitype;
 icomp = querySelector("#comp");
 itype = querySelector("#type");
 isal = querySelector("#sal");
 iposted = querySelector("#posted");
 iopen = querySelector("#open");
 var comp = icomp.value;
 var type = itype.value;
 varsal = isal.value.trim();
 var posted = DateTime.parse(iposted.value.trim());
 var open = iopen.value;
 // make Job object
 Job jb = new Job(type, int.parse(sal), comp, posted);
 // JSON encode object:
 return jb.toJson();
}

6.	 The onResponse function gets the response from the server and shows it on the
screen as shown in the following code:
void onResponse(_) {
if (req.readyState == HttpRequest.DONE) {
 if (req.status == 200) {
 serverResponse = 'Server: ' + req.responseText;
 }
 } else if (req.status == 0) {
 // Status is 0: most likely the server isn't running.
 serverResponse = 'No server';
 }
 querySelector("#resp").text = serverResponse;
}

Chapter 7

185

The following screenshot shows how our screen looks after sending the data:

The client sends job data

In the previous screenshot, no server is shown because there is no web server to process
the request.

How it works...
In step 1, we added a DateTime property. Such a type is not natively serializable to JSON;
the encode method does not know how to handle this case. We have to define this ourselves
and provide a toEncodable closure as the second optional argument of JSON.encode; this
returns an appropriate serialization of DateTime. The following code is the revised toJson
method in the class Job:

String toJson() {
 var jsm = new Map<String, Object>();
 jsm["type"] = type;
 jsm["salary"] = salary;
 jsm["company"] = company;
 jsm["posted"] = JSON.encode(posted, toEncodable: (p){
 if(p is DateTime)
 return p.toIso8601String();
 return p;
 });
 jsm["open"] = open;
 var jss = JSON.encode(jsm);
 return jss;
}

Working with Web Servers

186

The important part happens in step 4, where the HttpRequest object is sent; req.open
posts the data to the URL of the server (here we test it locally with the localhost address
127.0.0.1). We also define a callback function onResponse for the onReadyStateChange
event that signals when a server response comes in.

The send() function happens asynchronously, so it returns as soon as the request is sent;
req.send takes the data to be sent as the argument, and this is the JSON string prepared in
the function _jobData in step 5. This reads out the data values from the screen and makes
a Job object with them, and JSON formats that object with toJson.

Finally in step 6, when the request is complete and the server responds with the OK status
200, which means success, the text response from the server is shown; otherwise it shows
No server. The state in which the communication with the server is carried, is given by the
readyState field. The ready state can have five possible values: unsent, opened, headers
received, loading, and done. When the ready state changes, HttpRequest fires an
event named onReadyStateChange and the onResponse callback function gets called.

See also
ff See the Working with blobs recipe in Chapter 6, Working with Files and Streams, to

learn how to make a request to download a blob file

Receiving data on the web server
In the previous recipe, we made a client app that sends its data to a web server in JSON
format. In this recipe, we will make the web server that receives this data step by step,
possibly process it, and then send it back to the client. You can find the code in the script
server\webserver.dart in the project post_form.

How to do it...
Perform the following steps to make this work:

1.	 The following is the code that starts the web server:
import 'dart:io';

const HOST = '127.0.0.1';
const PORT = 4040;

void main() {
 HttpServer.bind(HOST, PORT).then(acceptRequests,
 onError: handleError);
}

Chapter 7

187

2.	 The acceptRequests function describes how the web server handles incoming
requests based on their method as follows:
void acceptRequests(server) {
 server.listen((HttpRequest req) {
 switch (req.method) {
 case 'POST':
 handlePost(req);
 break;
 case 'GET':
 handleGet(req);
 break;
 case 'OPTIONS':
 handleOptions(req);
 break;
 default: defaultHandler(req);
 }
 },
 onError: handleError, // Listen failed.
 onDone: () => print('Web server shuts down.'));
 print('Listening for GET and POST on http://$HOST:$PORT');
}

3.	 The different request handlers are shown in the following code:
void handlePost(HttpRequest req) {
 HttpResponse res = req.response;
 addCorsHeaders(res);
 res.statusCode = HttpStatus.OK;
 req.listen(processData, onError: handleError);
}

processData(List<int> buffer) {
 res.write('OK, I received: ');
 res.write(new String.fromCharCodes(buffer));
 // process incoming data
 res.close();
}

handleGet(HttpRequest req) { // not needed here }

void handleOptions(HttpRequest req) { // not needed here }

void addCorsHeaders(HttpResponse res) {
 res.headers.add('Access-Control-Allow-Origin', '*');

Working with Web Servers

188

 res.headers.add('Access-Control-Allow-Methods', 'POST, OPTIONS');
 res.headers.add('Access-Control-Allow-Headers',
 'Origin, X-Requested-With, Content-Type, Accept');
}

void defaultHandler(HttpRequest req) {
 res = req.response;
 res.statusCode = HttpStatus.METHOD_NOT_ALLOWED;
 res.write("Unsupported request: ${req.method}.");
 res.close();
}

handleError(e) {
 print(e);
 // other error handling
}

Run the client from the previous recipe (start web\post_form.html) and post a job in JSON
format to the server. The web server responds with an acknowledgement and returns the data
back to the client. The client shows the following response:

The response of the web server

Chapter 7

189

How it works...
In step 1, we used an alternative way (compared to the Making a web server recipe) to start
up the server; we give two callback functions for the Future object returned by bind:

ff The first parameter is the acceptRequests function, which receives an
HttpServer object as a parameter and then listens for incoming requests

ff The second parameter is the optional onError argument with the callback function
handleError; this is invoked when the binding fails, for example, when the port is
in use

Another, more elegant way of writing this is shown in the following code:

HttpServer.bind(HOST, PORT)
.then(acceptRequests)
.catchError(handleError);

Step 2 gives us the processing of requests. For every incoming request, the server creates an
HttpRequest object and passes it to the callback of listen(). So, the HttpServer object
produces a stream of HttpRequest objects to be processed. Here, we see how you can use
a switch/case to act differently on different kinds of requests (other request method), using
the same exception-catching mechanism as in step 1. A second optional onDone parameter
is a function that is called when the server is shut down.

In step 3, we built different request handlers. We always set the status code of the response,
such as res.statusCode = HttpStatus.OK;; there are a lot of predefined values. See
the docs for the class HttpStatus. In particular, you can use HttpStatus.NOT_FOUND in
an error handler to signal a 404 File not Found HTTP error.

One thing to notice here is that we let the server send CORS headers to the client. This allows
the client to send POST requests in the event that this web server is different from the one
serving the original web application. Then, the client must first send an OPTIONS request, but
for this, we don't have to write client code; it is handled automatically by the HttpRequest
object. For a POST request, the code in handlePost listens for the client's data in req.
listen. When all of the data is received, this is passed as a List<int> buffer to the
callback function processData. In our case, this makes a string from the data and writes
it back to the response. The response is a data stream that the server can use to send data
back to the client. Other methods of writing to this stream are writeln(), writeAll(), and
writeCharCodes().

At this point in the code, the real server processing of the data, such as writing to a file (for
example code see the There's more… section) or saving in a database, will be done. Closing
the response sends it to the client.

Working with Web Servers

190

There's more...
If the server has to set the content type for the response, do this as follows before the first
write to the response in handlePost:

res.headers.contentType =
new ContentType("application", "json", charset: 'utf-8');

Here, we make it clear that we send JSON data using the UTF-8 character set.

Writing data to a file on the server
If we wanted to write the data received from the client to a file, we could do this as follows:

ff Add the following line to handlePost before req.listen:
BytesBuilder builder = new BytesBuilder();

ff In the following code, we see processData:
processData(List<int> buffer) {
 builder.add(buffer);
}

ff The builder option collects the buffered data in chunks through the add method
until all the data is delivered. Then, the onDone method in acceptRequests
is called, such as onDone writeToFile). In the following code, we see
writeToFile:
writeToFile(builder) {
 var strJson = UTF8.decode(builder.takeBytes());
 var filename = "jobs.json";
 new File(filename).writeAsString(strJson, mode:
 FileMode.APPEND).then((_) {
 res.write('Job data was appended to file');
 res.close();
 });
}

See also
ff See the Using CORS headers recipe in Chapter 5, Handling Web Applications, for

more information on CORS

Chapter 7

191

Serving files with http_server
One of the main functions of a web server that we take for granted is the serving of static
files. We can write this functionality completely with the classes from dart:io, but the Dart
team has written a pub package called http_server with the aim to simplify web server
programming to provide web content. We will use http_server in this recipe to code a web
server that serves files. You can find the code in the project serving_files.

How to do it...
Perform the following steps to construct a web server for server files:

1.	 In the first example, serving_file.dart, you see the code for a web server
delivering a file called Learning Dart Packt Publishing.html:
import 'dart:io';
import 'package:http_server/http_server.dart';

InternetAddress HOST = InternetAddress.LOOPBACK_IP_V6;
const PORT = 8080;

void main() {
 VirtualDirectory staticFiles = new VirtualDirectory('.');
 HttpServer.bind(HOST, PORT).then((server) {
 server.listen((req) {
 staticFiles.serveFile(new File('Learning Dart Packt
 Publishing.html'), req);
 });
 });
}

Start the server by running bin\serving_file.dart and open a browser with the
URL localhost:8080. You will see the Learning Dart web page.

2.	 To serve all files from the current directory, and all its subfolders, expand the code as
shown in the following code (to see serving_curdir.dart):
import 'dart:io';
import 'dart:async';
import 'package:http_server/http_server.dart';

InternetAddress HOST = InternetAddress.LOOPBACK_IP_V6;
const PORT = 8080;
VirtualDirectory staticFiles;

void main() {

Working with Web Servers

192

 staticFiles = new VirtualDirectory('.')
 ..allowDirectoryListing = true;

 runZoned(startServer, onError: handleError);
}

startServer() {
 HttpServer.bind(HOST, PORT).then((server) {
 server.listen(staticFiles.serveRequest);
 });
}

handleError(e, stackTrace) {
 print('An error occurred: $e $stackTrace');
}

Start the server by running bin\serving_curdir.dart, and open a browser with
the URL localhost:8080. You will see a list of what's inside the bin folder as shown
in the following screenshot:

Directory listing from a web server

How it works...
In step 1, we first add the package http_server to our project (adding it to pubspec.yaml
and importing it in the code). Then, we define the folder from which serving will take place by
making an object staticFiles from the class VirtualDirectory. This class handles all
the details of serving files, specifying here that it will serve from the current directory. On this
object, we call the method serveFile with a reference to the file as an argument.

Chapter 7

193

In step 2, the serveRequest method handles a single request for any file in the current
directory (the property allowDirectoryListing makes the content viewable). Notice that
the server request handler is enveloped in a call to the method runZoned from dart:async.
This is not needed to make it work, but it illustrates a way to make our code more robust.
When using runZoned, the function given as its first argument is executed as if in a sandbox,
and the second optional argument onError handles all uncaught exceptions, synchronous
or asynchronous. You can find more details about the use of zones at https://www.
dartlang.org/articles/zones/.

There's more...
ff If you need the path to the current executing script, use the following code:

var path = Platform.script.toFilePath();

ff If you need the path to the web folder, use the following code:
final HTTP_ROOT_PATH =
 Platform.script.resolve('web').toFilePath();

ff You can point a virtual directory to that path in order to start serving files from that
folder using the following code:
final virDir = new VirtualDirectory(HTTP_ROOT_PATH);

Together, the classes HttpServer, VirtualDirectory, and Platform are sufficient to
implement a basic web server. When different responses are needed according to the URL,
the class Router (see the Using WebSockets recipe) can simplify the code.

Use the pub package path and its cross-platform methods, such
as join and split if you need to manipulate the path to certain
folders or files. In particular, toUri() and fromUri() are useful
when converting between a URI and a path.

Using sockets
At a somewhat lower level in the OSI model than HTTP clients and servers, we find sockets.
They also enable interprocess communications across a network between clients and servers
and are implemented on top of the TCP/IP. The classes that offer that functionality can be
again found in dart:io as follows:

ff Socket: This is used by a client to establish a connection to a server

ff ServerSocket: This is used by a server to accept client connections

https://www.dartlang.org/articles/zones/
https://www.dartlang.org/articles/zones/

Working with Web Servers

194

How to do it...
The following steps will show you how to make a server socket work:

1.	 The following is the code for the server (see the project sockets,
socket_server.dart):
import 'dart:io';
import 'dart:convert';

InternetAddress HOST = InternetAddress.LOOPBACK_IP_V6;
const PORT = 7654;

void main() {
 ServerSocket.bind(HOST, PORT)
 .then((ServerSocket srv) {
 print('serversocket is ready');
 srv.listen(handleClient);
 })
 .catchError(print);
);
}

void handleClient(Socket client){
 print('Connection from: '
 '${client.remoteAddress.address}:${client.remotePort}');
 // data from client:
 client.transform(UTF8.decoder).listen(print);
 // data to client:
 client.write("Hello from Simple Socket Server!\n");
 client.close();
}

Start the server by running bin\socket_server.dart.

2.	 The following is the code for a client (see the project sockets,
socket_client.dart):
import 'dart:io';

InternetAddress HOST = InternetAddress.LOOPBACK_IP_V6;
const PORT = 7654;

void main() {
 Socket.connect("google.com", 80).then((socket) {
 print('Connected to: '

Chapter 7

195

 '${socket.remoteAddress.address}:${socket.remotePort}');
 socket.destroy();
 });
 // prints: Connected to: 173.194.65.101:80

 Socket.connect(HOST, PORT).then((socket) {
 print(socket.runtimeType);
 // data to server:
 socket.write('Hello, World from a client!');
 // data from server:
 socket.listen(onData);
 });
}

onData(List<int> data) {
 print(new String.fromCharCodes(data));
}

3.	 Start one (or more) client(s) by running bin\socket_client.dart.

The following is the output from the server console:

serversocket is ready

Connection from: ::200:0:8017:7b01%211558873:6564

Hello, World from a client!

The following is the output from a client console:

_Socket

Hello from Simple Socket Server!

Connected to: 74.125.136.139:80

We can see that there is two-way communication.

How it works...
In step 1, a server to handle client socket connections is created by binding ServerSocket to
a specific TCP port that it will listen on. This bind method returns a Future <ServerSocket>.
Again, we will use the Future.then method to register our callback so that we know when the
socket has been bound to the port. Then, the server starts listening and calls handleClient
for each incoming connection. This callback prints the remote address from the client, prints
the data the client has sent, writes a message to the client, and then closes the connection.

Working with Web Servers

196

In step 2, the client first opens a connection to www.google.com on port 80 (the port that
serves web pages). After the socket is connected to the server, the IP address and port are
printed to the screen. Then, the socket is shut down using socket.destroy. In the second
part of this step, we connect to the local socket server, write a message to it with socket.
write, and start listening to the server with socket.listen. We transform the data that
comes in as a list of integers into a string that is printed out.

There's more...
Socket communication is often blocked by firewalls; if this is an issue, take a look at
WebSockets in the following recipe.

Dart also supports UDP socket programming; the article by James Locum offers a detailed
discussion at http://jamesslocum.com/post/77759061182.

Using WebSockets
This recipe will show you how to use WebSockets in a client-server application (both web
and command-line clients) and what its advantages are. You can find the code in the
project websockets.

Getting ready
HTTP is a simple request-response-based protocol, and then the connection is broken
from the application's point of view until the next request. In a modern web application (for
example, in online multiplayer games), the client and server are of equal importance; changes
in the state of the application can take place on both sides. So, we need a bi-directional
communication channel between the client(s) and the server that allows for two-way real
time updates and more interaction; this is exactly what WebSockets has to offer. WebSocket
connections between a browser and a server are made through a handshake request. This
is a regular HTTP client request with an upgrade flag in the header, also containing a Sec-
WebSocket-Key, which is a random value that has been base64 encoded. To complete the
handshake, the server responds with a Sec-WebSocket-Accept response.

WebSockets are implemented in all modern browsers (Internet Explorer v10 and above), and
can also be used in non-web applications. The communication takes place over TCP port 80,
so it can pass unhindered through firewalls.

www.google.com
http://jamesslocum.com/post/77759061182

Chapter 7

197

How to do it...
Perform the following steps to make a WebSockets server work:

1.	 Use the following code to set up a WebSockets server (see websocket_server.dart):
import 'dart:io';
import 'dart:async';

InternetAddress HOST = InternetAddress.ANY_IP_V6;
const PORT = 8080;

main() {
 runZoned(startWSServer, onError: handleError);
}

startWSServer() {
 HttpServer.bind(HOST, PORT)
 .then((server) {
 print('Http server started on $HOST $PORT');
 server.listen(handleRequest);
 });
}

handleError(e, stackTrace) {
 print('An error occurred: $e $stackTrace');
}

handleRequest(HttpRequest req) {
 if ((req.uri.path == '/ws') // command-line client
 || WebSocketTransformer.isUpgradeRequest(req) // web-client
){
 // Upgrade a HttpRequest to a WebSocket connection.
 WebSocketTransformer.upgrade(req).then(handleWebSocket);
 }
 else {
 print("Regular ${req.method} request for: ${req.uri.path}");
 serveNonWSRequest(req);
 }
}

handleWebSocket(WebSocket socket) {
 print('Client connected!');
 socket.listen((String msg) {
 print('Message received: $msg');

Working with Web Servers

198

 socket.add('echo from server: $msg');
 },
 onError: (err) {
 print('Bad WebSocket request $err');
 },
 onDone: () {
 print('Client disconnected');
 });
}
serveNonWSRequest(req) {
 var resp = req.response;
 resp.statusCode = HttpStatus.FORBIDDEN;
 resp.reasonPhrase = "WebSocket connections only";
 resp.response.close();
}

2.	 The following code is used for a command-line WebSocket client (websocket_
client.dart):
import 'dart:io';

const HOST = 'localhost';
const PORT = 8080;

main() {
 var wsurl = "ws://$HOST:$PORT/ws";
 WebSocket.connect(wsurl)
 //Open the websocket and attach the callbacks
 .then((socket) {
 socket.add('from client: Hello Websockets Server!');
 socket.listen(onMessage, onDone: connectionClosed);
 })
 .catchError(print);
}

void onMessage(String msg){
 print(msg);
 }

 void connectionClosed() {
 print('Connection to server closed');
}

Chapter 7

199

If we run the server script, websocket_server.dart, and then start a client websocket_
client.dart, we get the following output on the server console:

Http server started on InternetAddress('::1', IP_V6)8080 Client
connected! Message received: from client: Hello Websockets Server!

The client console prints the following output:

echo from server: Hello Websockets Server!

To make a web client, we need a web page websocket_webclient.html that invokes a
script websocket_webclient.dart. The web page is kept very simple with an input field
that will collect a string to send to the server and a <div> element that shows the response
from the server as follows:

<h1>WebSocket Sample</h1>
<input id="input" type="text"></input>
<div id="output"></div>
<script type="application/dart"
 src="websocket_webclient.dart"></script>

The following is the script code:

import 'dart:html';

void main() {
 TextInputElement inp = querySelector('#input');
 DivElement out = querySelector('#output');

 String srvuri = 'ws://localhost:8080/ws';
 WebSocket ws = new WebSocket(srvuri);

 inp.onChange.listen((Event e){
 ws.send(inp.value.trim());
 inp.value = "";
});

ws.onOpen.listen((Event e) {
 outputMessage(out, 'Connected to server');
});

ws.onMessage.listen((MessageEvent e){
 outputMessage(out, e.data);
});

ws.onClose.listen((Event e) {
 outputMessage(out, 'Connection to server lost...');

Working with Web Servers

200

});

ws.onError.first.then((_) {
 print("Failed to connect to ${ws.url}. "
 "Please rerun bin/websocket_server.dart and try again.");
 });
}

void outputMessage(Element e, String message){
 print(message);
 e.appendText(message);
 e.appendHtml('
');
 //Make sure we 'autoscroll' the new messages
 e.scrollTop = e.scrollHeight;
}

When the server runs, start the web client by opening websocket_webclient.html, and
type in some text. The text received by the web server is echoed back and shown both on the
page and in the editor console as follows:

A WebSocket web client

Chapter 7

201

How it works...
In step 1, the server is run in a runZoned() clause to add additional exception handling
capabilities (see the Serving files with http_server recipe). We start a web server as usual.
In handleRequest, we check whether the path of the request ends in /ws. In that case,
we have a command-line client issuing a WebSocket request. A web client making a
WebSocket request will add an upgrade flag in the headers. For this, we can test it with the
isUpgradeRequest method of the WebSocketTransformer class. If that is the case, we
call the upgrade method on the same class, and when done, we call the handleWebSocket
method. This starts listening for client connections, prints out any client message in the server
console, and echoes this back to the client. If the message was a JSON string, we could have
decoded it before it starts listening to client connections with socket.map((string)=>
JSON.decode(string)).

In the case of a normal HTTP request, serveNonWSRequest is used to block it, but of
course, we could do normal web request handling as well.

The command-line client in step 2 uses the WebSocket class from dart:io. It connects to
a WebSocket server with a ws:// URL as a parameter to the connect method. Then, it can
write to the socket with add and receive messages on the socket with listen.

The web client in step 3 uses the WebSocket class from dart:html. Calling its constructor
with the URI of the server opens the web socket connection. The send method called on
this instance sends the client data (here, the text of the input field) to the server. When the
response from the server can be read from the socket, the onMessage event is fired and
shows the response. Other useful events of the WebSocket instance are:

ff onOpen: This is called when the connection is made

ff onClose: This is called when the socket is no longer available (because the server
was shut down or a network connection failure)

ff onError: This is called when an error occurs during the client-server dialog

There's more...
The pub package route can be used to associate callbacks with URL patterns. In this recipe,
instead of testing the /ws pattern, we could have used Router from the package route
to do that for us. We import this package, and then startWSServer will contain the
following code:

import 'package:route/server.dart' show Router;

startWSServer() {
 HttpServer.bind(HOST, PORT).then((server) {
 print('Http server started on $HOST $PORT');
 Router router = new Router(server);

Working with Web Servers

202

 router.serve('/ws').transform(new WebSocketTransformer()).
 listen(handleWebSocket);
 });
}

As a more general example of how routing can be useful, consider the following example. Let's
suppose our clients search for stock data with URLs ending with /stocks and /stocks/
GOOG. Then, we can define pattern1 and pattern2 as instances of the class UrlPattern with
a regular expression containing the following pattern:

// Pattern for all stocks(plural).
final stocksUrl = new UrlPattern(r'/stocks\/?');
// Pattern for a single stock('/stock/GOOG', for example).
final stockUrl = new UrlPattern(r'/stock/(\d+)\/?');

Our router instance will then bind the callback functions serveStocks and serveStock to
those patterns through the serve method:

var router = new Router(server)
..serve(stocksUrl, method: 'GET').listen(serveStocks)
..serve(stockUrl, method: 'GET').listen(serveStock)
 // all other possible patterns and method combinations
..defaultStream.listen(serveNotFound);

As shown in the first example, patterns can also be simple strings like /stockdata.

See also
ff Look at the Serving files with http_server recipe for more information

on runZoned

ff The Dart website has a very good tutorial on a search app implemented with
WebSockets and Dartiverse Search, at https://www.dartlang.org/docs/
dart-up-and-running/contents/ch05.html

Using secure sockets and servers
In this recipe, we describe the steps to make your web server encrypt its communication with
clients using Secure Sockets Layer (SSL) on the HTTPS protocol.

https://www.dartlang.org/docs/dart-up-and-running/contents/ch05.html
https://www.dartlang.org/docs/dart-up-and-running/contents/ch05.html

Chapter 7

203

Getting ready
Dart uses SSL/TSL security; it relies on X.509 certificates to validate servers and (optionally)
clients. The server provides a certificate that will verify itself as a trusted server to the client.
When the client accepts the certificate, symmetric session keys will be exchanged and used
to encrypt the communications between the server and the client. So, in order for your server
to provide a secured connection, it has to have a security certificate installed, provided by a
Certificate Authority (CA).

Dart uses a Network Security Services (NSS) database to store the server's private key and
certificate. For our example, we will use the test certificate database in the subfolder pkcert,
which is also provided as an illustration in the tutorial at https://www.dartlang.org/
docs/tutorials/httpserver/.

You can set up an NSS key database yourself to create certificates for test purposes. James
Locum provides a detailed description on how to do this at http://jamesslocum.com/
post/70003236123.

How to do it...
The program secure_server.dart shows us the code needed to start a secure server;
perform the following steps to use secure sockets and service:

1.	 Import the dart:io package as follows:
import 'dart:io';

InternetAddress HOST = InternetAddress.LOOPBACK_IP_V6;
const int PORT = 8080;

main() {

2.	 Read the certificate using the following code:
 var testcertDb =
 Platform.script.resolve('pkcert').toFilePath();
 SecureSocket.initialize(database: testcertDb, password:
 'dartdart');

3.	 Start the HTTP server with the certificate using the following code:
 HttpServer.bindSecure(HOST, PORT, certificateName:
 'localhost_cert').then((server) {
 print('Secure Server listening');
 server.listen((HttpRequest req) {
 print('Request for ${req.uri.path}');
 var resp = req.response;
 resp.write("Don't worry: I encrypt your messages!");

https://www.dartlang.org/docs/tutorials/httpserver/
https://www.dartlang.org/docs/tutorials/httpserver/
http://jamesslocum.com/post/70003236123
http://jamesslocum.com/post/70003236123

Working with Web Servers

204

 resp.close();
 });
 });
}

4.	 If we now use the URL https://localhost:8080 in a browser, we first get a
screen warning us that this connection is not trusted (because it is only a test
certificate). If we continue, we see the response of the server in the browser's
screen as shown in the following screenshot:

A secure socket connection

The following is the code for a secure command-line client (secure_client.dart):

import 'dart:io';

InternetAddress HOST = InternetAddress.LOOPBACK_IP_V6;
const int PORT = 4777;
SecureSocket socket;

void main() {
 SecureSocket.connect(HOST, PORT, onBadCertificate:
 (X509Certificate c) {
 print("Certificate WARNING: ${c.issuer}:${c.subject}");
 return true;
 }).then(handleSecureSocket);
}

handleSecureSocket(SecureSocket ss) {
 // send to server:
 ss.write("From client: can you encrypt me server?");
 // read from server:
 ss.listen((List data) {
 String msg = new String.fromCharCodes(data).trim();
 print(msg);
 });
}

Chapter 7

205

The client console gives the following output:

Certificate WARNING: CN=myauthority:CN=localhost

How it works...
In step 1, we read the certificate. The first line with Platform.script finds the path to
the folder pkcert, where the certificate database is located. Then we call the initialize
method on the class SecureSocket, providing the certificate. In step 2, the secure server is
started by binding to a host and port and providing the name of the certificate. Step 3 shows
us a browser connecting to the secure server.

In step 4, we see how a command-line client can connect to the secure server by calling
SecureSocket.connect(). This needs an onBadCertificate callback, which must
return a Boolean value that indicates whether to accept or reject a bad certificate. The test
certificate will trigger this callback, so we need to return true in order to use this certificate.
With respect to the write and listen methods of SecureSocket, let's write to and read
from the secure server.

See also
ff Refer to the Getting information from the operating system recipe in Chapter 1,

Working with Dart Tools, for more details about the Platform class

ff For more information about certificates and creating them, refer to https://help.
ubuntu.com/12.04/serverguide/certificates-and-security.html

Using a JSON web service
In this recipe, we make a browser app ask data from a web service (Yahoo stock data) in JSON
format, decode that data, and dynamically build up the web page showing the data.

Getting ready
This is what the URL we will use will look like: http://query.yahooapis.com/v1/
public/yql?q=SELECT.

To get the data, we use the Yahoo Query Language (YQL), q= indicating the start of the query
represented by SELECT. Suppose we want to look up stock data for Yahoo, Google, Apple, and
Microsoft, the selected query will be of the following form:

select * from yahoo.finance.quotes where symbol
 in(YHOO,AAPL,GOOG,CMSFT)
 &env=http://datatables.org/Falltables.env&format=json

https://help.ubuntu.com/12.04/serverguide/certificates-and-security.html
https://help.ubuntu.com/12.04/serverguide/certificates-and-security.html
http://query.yahooapis.com/v1/public/yql?q=SELECT
http://query.yahooapis.com/v1/public/yql?q=SELECT

Working with Web Servers

206

How to do it...
Look at the code in stockviewer_dart:

import 'dart:html';
import 'dart:convert';

main() {
 LoadData();
}

1.	 Call the web server asynchronously using the following code:
void LoadData() {
 var stock = "GOOG";
 var request =
 "http://query.yahooapis.com/v1/public/
 yql?q=select%20*%20from%20yahoo.finance.quotes%20"
 "where%20symbol%20in%20(%22$stock%22)%0A%09%09"
 "&env=http%3A%2F%2Fdatatables.org%2Falltables.
 env&format=json";
 var result =
 HttpRequest.getString(request).then(OnDataLoaded);
}

2.	 Web service responses callback as shown in the following code:
void OnDataLoaded(String response) {
 String json = response.substring(response.indexOf("symbol")
 - 2, response.length - 3);
 Map data = JSON.decode(json);
 var table = CreateTable();
 var props = data.keys;
 props.forEach((prop) => ProcessStockEntry(prop, data,
 table));
 document.body.nodes.add(table);
}

Chapter 7

207

3.	 Create the HTML table with the data as shown in the following code:
TableElement CreateTable() {
 TableElement table = new TableElement();
 var tBody = table.createTBody();
 return table;
}

void ProcessStockEntry(String prop, Map data, TableElement
 table) {
 String value = data["$prop"];
 var row = table.insertRow(-1); // Add new row to our table
 var propCell = row.insertCell(0); // Add new cell for
 property
 String prophtml = '$prop:';
 propCell.setInnerHtml(prophtml);
 var valueCell = row.insertCell(1); // Add new cell for the
 value
 String valuehtml = '$value';
 valueCell.setInnerHtml(valuehtml);
}

The browser shows the stock data as shown in the following screenshot:

Stock data from the JSON web service

Working with Web Servers

208

How it works...
In step 1, the request string is URI encoded, and the stock symbol we want is inserted. Then, the
web server is called with the getString method from HttpRequest. Step 2 shows the code
that analyzes the response when this has arrived. We extracted the map with the stock data
(starting with the symbol) and decoded that JSON string into the map data. We then created
an HTML table, and for each of the properties in the stock data (Ask, AverageDailyVolume,
Bid, and so on), we inserted a table row with the key and the data in step 3.

See also
ff See the Downloading a file recipe for more information on the getString method

8
Working with Futures,

Tasks, and Isolates

In this chapter, we will cover the following recipes:

ff Writing a game loop

ff Error handling with Futures

ff Scheduling tasks using Futures

ff Running a recurring function

ff Using isolates in the Dart VM

ff Using isolates in web apps

ff Using multiple cores with isolates

ff Using the Worker Task framework

Introduction
The Future class from dart:async lies in the basis of all asynchronous programming in
Dart. A Future is, in fact, a computation that is deferred; it represents an object whose value
will be available sometime in the future. It is not available immediately, because the function
that returns its value depends on some kind of input/output and is, thus, unpredictable by
nature. Here are some examples: a time-consuming computation, reading in a big dataset,
and searching through a number of websites.

Working with Futures, Tasks, and Isolates

210

In the two previous chapters, quite a lot of recipes used Futures; in Chapter 6, Working with
Files and Streams, we had the following recipes using Futures:

ff Reading and processing a file line by line

ff Concatenating files the asynchronous way

ff Downloading a file

In the preceding chapter, we used Futures in the following recipes:

ff Making a web server

ff Receiving data on the web server

ff Using sockets

In this chapter, we will concentrate on how to write elegant code for Futures and combine their
possibilities with the execution of tasks and isolates to enhance the performance of our apps.

Dart runs single-threaded, so it uses, by default, only one CPU on a multi-core machine; if you
want concurrency, you must use isolates. In the second part of the chapter, you will find recipes
featuring isolates, Dart's mechanism to provide concurrency and parallelism in applications.

Writing a game loop
In game apps, the refresh rate of the screen is vital; it must be high enough to ensure
agreeable and realistic gameplay. Refreshing means periodically redrawing the screen. This
recipe shows you how to build that in your app. It is illustrated in the code of gameloop, a
simple version of the well-known memory game that uses the boarding package by Dzenan
Ridzanovic. The goal is to click quickly enough to get identical pairs of the colored squares.
Start it by running game.html (don't use pub serve for the launch, select Run and then
Manage Launches, and in Pub Settings, uncheck use pub serve to serve the application).

How to do it...
1.	 The game starts off in main() of game.dart (only the relevant parts of the code are

shown here):
import'dart:async';
import'dart:html';
// ... other code
part'model/memory.dart';
part'view/board.dart';

main() {
 new Board(new Memory(4), querySelector('#canvas')).draw();
}

Chapter 8

211

2.	 In the constructor of the Board class, the game loop is started with the call to
window.animationFrame:
 class Board extends Surface {
 // code left out

 Board(Memory memory, CanvasElement canvas) :
 this.memory = memory,
 super(memory, canvas) {
 // code left out
 querySelector('#canvas').onMouseDown.listen((MouseEvent e) {
 // code left out
 if (memory.recalled) { // game over
 new Timer(const Duration(milliseconds: 5000), ()
 =>memory.hide());
 }
 else if (cell.twin.hidden) {
 new Timer(const Duration(milliseconds: 800), ()
 =>cell.hidden = true);
 }
});

window.animationFrame.then(gameLoop);
}

3.	 And here is the gameloop method itself:
voidgameLoop(num delta) {
 draw();
 window.animationFrame.then(gameLoop);
}

void draw() {
 super.draw();
 if (memory.recalled) { // game over
 // code left out
 }
}

How it works...
In step 1, the game is started by instantiating an object of the Board class (from view/
board.dart) and calling the draw method on it. In step 2, the most important statement is
the last one in the constructor, window.animationFrame.then(gameLoop);.

This method of the Window class in dart:html returns a Future that completes just before
the window is about to repaint, so this is the right time to redraw our screen.

Working with Futures, Tasks, and Isolates

212

Use animationFrame to do this, because the animation then uses
a consistent frame rate, and thus, looks smoother, and it also works at
the screen's refresh rate. Don't use Future or Timer to draw frames;
use Timer only if you have to code for a browser that does not support
animationFrame!

This is done in the callback method gameloop in step 3; first draw() is executed, then
window.animationFrame, and then (gameLoop). So, this recursively calls gameloop again
and again. This way, we are sure that the animation will continue.

There's more...
We also see how the class Timer from dart:async is used. For example, in the end-of-game
condition (memory is recalled), the colored pattern is hidden from sight after 5 seconds by the
following Timer object:

new Timer(const Duration(milliseconds: 5000), () =>memory.hide());

After this duration of time, the anonymous callback function,() =>memory.hide(), is
executed. Use the named constructor, Timer.periodic, with the same arguments to
execute a callback function periodically.

See also
ff Refer to the Running a recurring function recipe in this chapter to find out more about

the Timer class

Error handling with Futures
This recipe shows you how to handle errors comprehensively when working with Futures. The
accompanying code future_errors.dart (inside the bin map in the future_errors
project) illustrates the different possibilities; however, this is not a real project, so it is not
meant to be run as is.

Chapter 8

213

Getting ready
When the function that returns a Future value completes successfully (calls back) signaled
in the code by then, a callback function handleValue is executed that receives the value
returned. If an error condition took place, the callback handleError handles it. Let's say
this function is getFuture(), with Future as the result and a return value of type T, then this
becomes equivalent to the following code:

Future<T> future = getFuture();
future.then(handleValue)
.catchError(handleError);

handleValue(val) {
 // processing the value
}

handleError(err) {
 // handling the error
}

The highlighted code is sometimes also written as follows, only to make the
return values explicit:

future.then((val) =>handleValue(val))
.catchError((err) =>handleError(err));

When there is no return value, this can also be written as shown in the following code:

future.then(() =>nextStep())

When the return value doesn't matter in the code, this can be written with an _ in place of that
value, as shown in the following code:

future.then((_) =>nextStep(_))

But, in any case, we prefer to write succinct code, as follows:

future.then(nextStep)

The then and catcherror objects are chained as they are called, but that doesn't mean
that they are both executed. Only one executes completely; compare it to the try-catch block in
synchronous code. The catcherror object can even catch an error thrown in handleValue.

This is quite an elegant mechanism, but what do we do when the code gets a little more
complicated?

Working with Futures, Tasks, and Isolates

214

How to do it...
Let's see the different ways you can work with Futures in action:

ff Chaining Futures: Let's suppose we have a number of steps that each will return a
Future and so run asynchronously, but the steps have to execute in a certain order.
We could chain these as shown in the following code:
firstStep()
 .then((_) =>secondStep())
 .then((_) =>thirdStep())
 .then((_) =>fourthStep())
 .catchError(handleError);

ff Concurrent Futures: If, on the other hand, all the steps return a value of the type
T, and their order of execution is not important, you can use the static method of
Future, wait, as shown in the following code:
List futs = [firstStep(), secondStep(), thirdStep(),
fourthStep()];
Future.wait(futs)
.then((_) =>processValues(_))
.catchError(handleError);

ff Run the script wait_error.dart to see what happens when an error occurs in one
of the steps (either by throw or a Future.error call):
import'dart:async';

main() {
 Future<int> a = new Future(() {
 print('a');
 return 1;
});
Future<int> b = new Future.error('Error occured in b!');
Future<int> c = new Future(() {
 print('c');
 return 3;
});
Future<int> d = new Future(() {
 print('d');
 return 4;
});

Future.wait([a, b, c, d]).then((List<int> values) =>
print(values)).catchError(print);

Chapter 8

215

 print('happy end');
}

The output is as follows:

happy end

a

c

d

Error occurred in b!

ff The following code helps to catch a specific error or more than one error:
firstStep()
.then((_) =>secondStep())
 // more .then(steps)
.catchError(handleArgumentError,
test: (e) => e is ArgumentError)
.catchError(handleFormatException,
test: (e) => e is FormatException)
.catchError(handleRangeError,
test: (e) => e is RangeError)
.catchError(handleException, test: (e) => e is Exception);

ff Often, you want to execute a method that does a cleanup after asynchronous
processing no matter whether this processing succeeds or ends in an error. In that
case, use whenComplete:
firstStep()
.then((_) =>secondStep())
.catchError(handleError)
.whenComplete(cleanup);

With respect to handling synchronous and asynchronous errors, let's suppose that we want
to call a function mixedFunction, with a synchronous call to synFunc that could throw an
exception and an asynchronous call to asynFunc that could do likewise, as shown in the
following code:

mixedFunction(data) {
 var var2 = new Var2();
 var var1 = synFunc(data); // Could throw error.
 return var2.asynFunc().then(processResult); // Could throw error.
}

Working with Futures, Tasks, and Isolates

216

If we call this function mixedFunction(data).catchError(handleError);, then
catchError cannot catch an error thrown by synFunc. To solve this, they call in a Future.
sync, function as shown in the following code:

mixedFunction(data) {
 return new Future.sync(() {
 var var1 = synFunc(data); // Could throw error.
 return var1.asynFunc().then(processResult); // Could throw error.
 });
}

That way, catchError can catch both synchronous and asynchronous errors.

How it works...
In variation 1, catchError will handle all errors that occur in any of the executed steps.
For variation 2, we make a list with all the steps. The Future.wait option will do exactly
as its name says: it will wait until all of the steps are completed. But they are executed in no
particular order, so they can run concurrently. All of the functions are triggered without first
waiting for any particular function to complete. When they are all done, their return values are
collected in a list (here called val) and can be processed. Again, catchError handles any
possible error that occurs in any of the steps.

In the case of an error, the List value is not returned; we see that, in the example on wait_
error, happy end is first printed, then a, c, and d complete, and then the error from b is
caught; if d also throws an error, only the b error is caught. The catchError function doesn't
know in which step the error occurred unless that is explicitly conveyed in the error.

In the same way as in the catch block, we can also test in catchError when a specific
exception occurs using its second optional test argument, where you test the type of the
exception. This is shown in variation 3; be sure then, to test for a general exception as the last
clause. This scenario will certainly be useful if a number of different exceptions can occur and
we want a specific treatment for each of them.

Analogous to the optional finally clause in a try statement, asynchronous processing can
have a whenComplete handler as in variation 4, which always executes whether there is an
error or not. Use it to clean up and close files, databases, and network connections, and so on.

Finally, in variation 5, the normal catchError function won't work, because it can only
handle exceptions arising from asynchronous code execution. Use Future.synchere, which
is able to return the result or error from both synchronous and asynchronous method calls.

Chapter 8

217

Scheduling tasks using Futures
The Dart VM is single-threaded, so all of an app's code runs in one thread, also called the
main isolate. This is because main() is the function where Dart code starts executing an
isolate, because Dart's concurrency model is based on isolates as separate processes that
exchange messages. We will talk about isolates in depth in the coming recipes, but if your
code doesn't start a new isolate, all of it runs in one isolate. But, in this one isolate, you can
have lots of asynchronous pieces of code (let's call them tasks) running at the same time;
in what order do they execute, and can we influence that order? It turns out that a better
understanding of Dart's event loop and task queuing mechanism enables us to do that. This
recipe will clarify Dart's scheduling mechanism and give you hints and tips for an ordered
execution of tasks.

How to do it...
Have a look at the program tasks_scheduling.dart (the tasks are numbered
consecutively and according to the way they are started):

import'dart:async';

main() {
 print('1) main task #1');
 scheduleMicrotask(() => print('2) microtask #1'));
 newFuture.delayed(new Duration(seconds:1),
 () =>print('3) future #1 (delayed)'));
 new Future(() => print('4) future #2'));
 print('5) main task #2');
 scheduleMicrotask(() => print('6) microtask #2'));
 new Future(() => print('7) future #3'))
 .then((_) => print('8) future #4'))
 .then((_) => print('9) future #5'))
 .whenComplete(cleanup);
 scheduleMicrotask(() => print('11) microtask #3'));
 print('12) main task #3');
}

cleanup() {
 print('10) whenComplete #6');
}

Working with Futures, Tasks, and Isolates

218

The following screenshot shows the output of the program, the order of which is explained in
the next section:

How it works...
The main isolate proceeds as follows:

1.	 First the code in main() is executed, line after line and synchronously.

2.	 Then the event-loop mechanism kicks in, and this looks at the two queues in the
system in the following order:

�� First, it takes a look at the microtask queue this queue is for all tasks that
need to be executed before the event queue, for example, the changes that
have to be done internally before the DOM starts rendering the modified
screen. All of the tasks in this queue are executed before going to the
following step.

�� Then, the event queue is handled, here, the tasks of all outside events,
such as mouse events, drawing events, I/O, timers, messages between Dart
isolates, and so on, are scheduled. Of course, in each queue, the tasks are
handled one by one in the first in first out order.

While the event-loop is handling the microtask queue, no work is done on
the event-queue, so the app can't draw or react to user events and seems
effectively blocked. So, keep the microtask queue as short as possible.
Preferably, put your tasks on the event queue.

Chapter 8

219

In principle, when both queues are empty, the app can exit. Tasks (these are pieces of code
to run later, asynchronously) can be scheduled using the following classes and methods
from dart:async:

1.	 Make a new Future object with a function to execute; this is appended to the
event queue.

2.	 With Future.delayed, you can specify the execution of a function to occur after a
certain duration; this also goes to the event queue.

3.	 Call the top-level scheduleMicrotask() function, which appends an item to the
microtask queue.

Don't use a Timer class to schedule a task; this class has no
facilities to catch exceptions, so an error during a timer task will
blow up your app.

Chaining Futures in a series of then statements effectively ensures that they are executed
in that order (see step 1 of the previous recipe). Also, a whencomplete clause will execute
immediately after all the previous then statements.

So this is the order of execution: main(), then à microtask queue, then event queue, and then
delayed tasks.

As a general best practice, don't put a compute-intensive task
on either queue, but create that task in a separate isolate (or
worker for a web app).

See also
ff See the upcoming recipes about isolates in this chapter, such as Using isolates in

web apps and Using multiple cores with isolates

Running a recurring function
Let's suppose your code needs to run a certain function periodically at a certain interval. This
recipe shows how you can do this very easily.

How to do it...
Look at the following code of recurring_function.dart:

import'dart:async';

var count = 0;

Working with Futures, Tasks, and Isolates

220

const TIMEOUT = const Duration(seconds: 5);
const MS = const Duration(milliseconds: 1);

void main() {
 // 1. Running a function repeatedly:
 const PERIOD = const Duration(seconds:2);
 newTimer.periodic(PERIOD, repeatMe);
 // 3. Running a function once after some time:
 const AFTER70MS = const Duration(milliseconds:70);
 new Timer(AFTER70MS, () => print('this was quick!'));
 // 4. Running a function asap:
 Timer.run(() => print('I ran asap!'));
 // 5. Calculating a period and provoking a timeout:
 startTimeout(500);
}

repeatMe(Timer t) {
 print("I have a repetetive job, and I'm active is ${t.isActive}!");
 count++;
 // 2. Stop the repetition:
 if (count==4 &&t.isActive) {
 t.cancel();
 print("I'm active is ${t.isActive} now");
 }
}

startTimeout([intvariableMS]) {
 var duration = variableMS == null ? TIMEOUT : MS * variableMS;
 return new Timer(duration, handleTimeout);
}

handleTimeout() {
 print('I was timed out!');
}

The following is the output from this code; if you need help figuring out the order, read the
next section:

I ran asap!

this was quick!

I was timed out!

I have a repetetive job, and I'm active is true!

Chapter 8

221

I have a repetetive job, and I'm active is true!

I have a repetetive job, and I'm active is true!

I have a repetetive job, and I'm active is true!

I'm active is false now

How it works...
The Timer class from dart:async gives us this functionality through the periodic named
constructor as shown in comment 1. This takes two arguments, a Duration object and a
function (here repeatMe) to run, which has the timer as the single parameter. This comes
in handy to stop the repetition, which is shown in comment 2 with the cancel() method
after 4 repetitions. The isActive property can be used to test whether the repetition is still
going on. Comment 3 shows how to run a function only once after a time interval; just use the
normal Timer constructor with the same arguments, but the callback doesn't have a Timer
parameter. To run a function as soon as the event-loop mechanism permits, use the static
run method as shown in comment 4. A negative or zero duration is equivalent to calling run.
Comment 5 shows that a Timer class can also be useful to stop a running function or even
the entire app.

There's more...
The durations or periods don't have to be constant from the start; they can be calculated
before starting the Timer. Timers can also be used in web applications, but for drawing
purposes, use window.animationFrame. When your app is compiled to JavaScript, the
finest time granularity that the browser can give you is 4 milliseconds.

See also
ff Refer to the Writing a game-loop recipe in this chapter for more information on

window.animationFrame

ff Refer to the Exiting from an app recipe in Chapter 2, Structuring, Testing, and
Deploying an Application, for other alternatives to stop a running app

Working with Futures, Tasks, and Isolates

222

Using isolates in the Dart VM
Dart code runs in a single thread, in what is called a single process or isolate. In the
standalone Dart VM, all code starts from main() and is executed in the so-called root
isolate. To make an app more responsive or to increase its performance, you can assign parts
of the code to other isolates. Moreover, because there are no shared resources between
isolates, isolating third-party code increases the application's overall security. A Dart server
app or command-line app can run part of its code concurrently by creating multiple isolates.
If the app runs on a machine with more than one core or processor, it means these isolates
can run truly in parallel. When the root isolate terminates the Dart VM exits and, with it, all
isolates that are still running. Dart web apps currently can't create additional isolates, but they
can create workers by adding instances of the dart:html Worker class, thereby adding
JavaScript Web workers to the web app. In this recipe, we show you how to start up a new
isolate from the main isolate and how to communicate with it using ports.

How to do it...
Examine the code in using_spawn.dart to create isolates with spawn, as shown in the
following code:

import'dart:async';
import'dart:isolate';

main() {
 // 1- make a ReceivePort for the main isolate:
 varrecv = new ReceivePort();
 // 2- spawn a new isolate that runs the code from the echo
 // function
 // and pass it a sendPort to send messages to the main isolate
 Future<Isolate> remote = Isolate.spawn(echo, recv.sendPort);
 // 3- when the isolate is spawned (then), take the first message
 remote.then((_) =>recv.first).then((sendPort) {
 // 4- send a message to the isolate:
 sendReceive(sendPort, "Do you hear me?").then((msg) {
 // 5- listen and print the answer from the isolate
 print("MAIN: received $msg");
 // 6- send signal to end isolate:
 returnsendReceive(sendPort, "END");
 }).catchError((e) => print('Error in spawning isolate $e'));
 });
 }

 // the spawned isolate:

Chapter 8

223

 void echo(sender) {
 // 7- make a ReceivePort for the 2nd isolate:
 var port = new ReceivePort();
 // 8- send its sendPort to main isolate:
 sender.send(port.sendPort);
 // 9- listen to messages
 port.listen((msg) {
 var data = msg[0];
 print("ISOL: received $msg");
 SendPortreplyTo = msg[1];
 replyTo.send('Yes I hear you: $msg, echoed from spawned isolate');
 // 10- received END signal, close the ReceivePort to save
 // resources:
 if (data == "END") {
 print('ISOL: my receivePort will be closed');
 port.close();
 }
 });
}

Future sendReceive(SendPort port, msg) {
 ReceivePortrecv = new ReceivePort();
 port.send([msg, recv.sendPort]);
 returnrecv.first;
}

This script produces the following output:

ISOL: received [Do you hear me?,SendPort]

MAIN: received Yes I hear you: [Do you hear me?,SendPort], echoed from spawned isolate

ISOL: received [END, SendPort]

ISOL: my receivePort will be closed

From the output, we see that the main isolate receives its message echoed back from
the second isolate. Examine the code in using_spawnuri.dart to create isolates with
spawnUri:

import'dart:async';
import'dart:isolate';

main() {
 varrecv = new ReceivePort();
 Future<Isolate> remote =

Working with Futures, Tasks, and Isolates

224

 Isolate.spawnUri(Uri.parse("echo.dart"),
 ["Do you hear me?"], recv.sendPort);
 remote.then((_) =>recv.first).then((msg) {
 print("MAIN: received $msg");
 });
}

The following is the code from echo.dart:

import'dart:isolate';

void main(List<String>args, SendPortreplyTo) {
 replyTo.send(args[0]);
}

The following is the output:

MAIN: received Do you hear me?

How it works...
Isolates are defined in their own library called dart:isolate. They conform to the well-
known actor-model: they are like separate little applications that only communicate with each
other by passing asynchronous messages back and forth; in no way can they share variables
in memory. The messages get received in the order in which you send them. Each isolate has
its own heap, which means that all values in memory, including global variables, are available
only to that isolate. Sending messages, which comes down to serializing objects across
isolates, has to obey certain restrictions. The messages can contain only the following things:

ff Primitive values (null, bool, num, double, and String)

ff Instances of SendPort

ff Lists and maps whose elements are any of these

When isolates are created via spawn, they are running in the same process, and then it is
also possible to send objects that are copied (currently only in the Dart VM).

An isolate has one ReceivePort to receive messages (containing data) on; it can listen
to messages. Calling the sendport getter on this port returns SendPort. All messages
sent through SendPort are delivered to the ReceivePort they were created from. On
SendPort, you use the send method to send messages; a ReceivePort uses the listen
method to capture these messages.

For each ReceivePort port there can be many SendPort. A ReceivePort is meant to live
for as long as there is communication, don't create a new one for every message. Because
Dart does not have cross-isolate garbage collection, ReceivePort is not automatically
garbage-collected when nobody sends messages to them anymore.

Chapter 8

225

Treat ReceivePort like resources, and close them when they
aren't used anymore.

When working with isolates, a ReceivePort in the main or root isolate is obligatory.

Keeping the ReceivePort open will keep this main isolate alive;
close it only when the program can stop.

Schematically, we could represent it as shown in the following diagram:

A new isolate is created in one of the following two ways:

ff Through the static method Isolate.spawn(fnIsolate, msg), the new isolate
shares the same code from which it was spawned. This code must contain a top-level
function or static one-argument method fnIsolate, which is the code the isolate
will execute (in our example, the echo function); msg is a message. In step 2, msg is
the SendPort of the main isolate; this is necessary because the spawned isolate will
not know where to send its results.

ff Through the static method Isolate.spawnUri(uriOfCode,
List<String>args, msg), the new isolate executes the code specified in the Uri
uriOfCode (in our example, the script echo.dart), and passes it the argument list
args and a message msg (again containing the SendPort).

Working with Futures, Tasks, and Isolates

226

Isolates start out by exchanging SendPort in order to be able to communicate. Both methods
return a Future with isolate, or an error of type IsolateSpawnException, which must be
caught. This can be done by chaining a catchError clause or using the optional onError
argument of spawn. However, an error occurring in a spawned isolate cannot be caught by the
main isolate, which is logical, because both are independent code sets being executed. You
can see this for yourself by running isolates_errors.dart. Keep in mind the following
restrictions when using spawn and spawnUri:

ff Spawn works in server apps but doesn't work in Dart web apps. The browser's main
isolate, the DOM isolate, does not allow this. This is meant to prevent concurrent
access to the DOM.

ff However, spawnUri does work in Dart web apps and server apps, and the isolate
resulting from this invocation can itself spawn other isolates. The Dart VM translates
these isolates into web workers (refer to http://www.html5rocks.com/en/
tutorials/workers/basics/).

There's more...
So, if you have a compute-intensive task to run inside your app, then to keep your app
responsive, you should put the task into its own isolate or worker. If you have many such
tasks, then how many isolates should you deploy? In general, when the tasks are compute-
intensive, you should use as many isolates as you expect to have cores or processors
available. Additional isolates that are purely computational are redundant. But if some of
them also perform asynchronous calls (such as I/O for example), then they won't use much
processor time. In that case, having more isolates than processors makes sense; it all
depends on the architecture of your app. In extreme cases, you could use a separate isolate
for each piece of functionality or to ensure that data isn't shared.

Always benchmark your app to check whether the number of isolates
are optimized for the job. You can do this as follows: in the Run Manage
Launches tool, tick the choices in the VM settings, pause isolate on start,
and pause isolate on exit. Then, open the observatory tool through the
image button on the left-hand side of Dart Editor to the red square for
termination, where you can find interesting information about allocations
and performance.

http://www.html5rocks.com/en/tutorials/workers/basics/
http://www.html5rocks.com/en/tutorials/workers/basics/

Chapter 8

227

As demonstrated in the second example, spawnUri provides a way to dynamically (that is, in
run-time) load and execute code (perhaps even an entire library). Don't confuse Futures and
isolates; they are different and are also applied differently.

ff An isolate is used when you want some code to truly run in parallel, such as a mini
program running separately from your main program. You send isolate messages, and
you can receive messages from isolates. Each isolate has its own event-loop.

ff A Future is used when you want to be notified when a value is available later in the
event-loop. Just asking a Future to run a function doesn't make that function run in
parallel. It just schedules the function onto the event-loop to be run at a later time.

At this moment, isolates are not very lightweight in the sense of Erlang processes, where
each process only consumes a small amount of memory (of the order of Kb). Evolving
isolates towards that ideal is a longer-term goal of the Dart team. Also, exception handling
and debugging within isolates are a bit rough or difficult; expect this to change. It is also not
specified how isolates map to operating system entities such as threads or processes; this
can depend on the environment and platform. Isolates haven't been extended yet to inter-VM
communication.

Working with Futures, Tasks, and Isolates

228

When two Dart VMs are running on the server, it is best to use TCP sockets
for communication. You can start ServerSocket to listen for incoming
requests and use Socket to connect to the other server.

See also
ff Refer to the Using isolates in web apps recipe for another example using spawnUri.

Find another example of isolates in the Using multiple cores with isolates recipe.

ff Refer to the Using Sockets recipe for more information on Sockets and
ServerSockets in the next chapter.

ff Refer to the Profiling and benchmarking your app recipe in Chapter 2, Structuring,
Testing, and Deploying an Application, for more information on benchmarking.

Using isolates in web apps
In this recipe, you will learn how to use isolates in a web application in the project using_
web_isolates. This example runs in the Dart VM embedded in a browser as well as
compiled to JavaScript. In the latter case, it uses HTML5 Web workers, which runs in the
background independently of other scripts without affecting the performance of the page.

How to do it...
The main isolate in using_web_isolates.dart runs the following code:

import'dart:isolate';
import'dart:html';
import'dart:async';

main() {
 Element output = querySelector('output');
 SendPortsendPort;
 ReceivePortreceivePort = new ReceivePort();
 receivePort.listen((msg) {
 if (sendPort == null) {
 sendPort = msg;
 } else {

Chapter 8

229

 output.text += 'Received from isolate: $msg\n';
 }
});

String workerUri = 'worker.dart';
int counter = 0;
// start 3 isolates:
for (int i = 1; i <= 3; i++) {
 Isolate.spawnUri(Uri.parse(workerUri), [], receivePort.sendPort).
 then((isolate) {
 print('isolate spawned');
 newTimer.periodic(const Duration(seconds: 1), (t) {
 sendPort.send('From main app: ${counter++}');
 if (counter == 10) {
 sendPort.send('END');
 t.cancel();
 }
 });
 });
 }
}

The following is the code for the isolate worker.dart:

import'dart:isolate';

main(List<String>args, SendPortsendPort) {
 ReceivePortreceivePort = new ReceivePort();
 sendPort.send(receivePort.sendPort);

 receivePort.listen((msg) {
 if (msg == 'END') receivePort.close;
 sendPort.send('ECHO: $msg');
 });
}

Working with Futures, Tasks, and Isolates

230

The following is the output shown on the web page:

Isolates in a web app

We see the messages coming in from the three isolates. At the count of 10, the timer stops,
and the isolates receive a message to shut down.

How it works...
The main isolate first sets up a ReceivePort and a listener to the isolates. This listener
first captures the isolate's sendPort and then appends each message on the web page. An
isolate in a web app must be started with spawnUri; the code sits in the script worker.
dart. Then the root isolate starts a timer and sends each second the number of seconds
passed. After 10 seconds, the timer is canceled, and an END message is sent.

We start three isolates, each executing the same code. The main method in the isolates
code receives List<String>args as its first argument. This comes from the second
parameter of spawnUri; this is a way for the main isolate to send initial data to the isolate,
but here it was the empty list. Each isolate first sets up its ReceivePort, and sends its
sendPort to the main isolate, so communication lines are established. Then, it starts
listening and echoes back what it receives. The isolate exits when the END message is
received. When compiling to JavaScript with dart2js, .js is automatically added to the end
of the script name worker.dart.

See also
ff Refer to the Using isolates in the Dart VM recipe for a general explanation on isolates.

Chapter 8

231

Using multiple cores with isolates
In this recipe, we show you that the Dart VM uses multiple cores on a processor without
having to specify anything to the VM. This allows a much better performance and throughput
than if a Dart app could only use one processor.

How to do it...
Look at the following code for many_cores.dart (in the project using_isolates):

import'dart:isolate';

main() {
 int counter = 0;
 ReceivePortreceivePort = new ReceivePort();
 receivePort.listen((msg) {
 if (msg is SendPort) {
 msg.send(counter++);
 } else {
 print(msg);
 }
 });

 // starting isolates:
 for (var i = 0; i < 5; i++) {
 Isolate.spawn(runInIsolate, receivePort.sendPort);
 }
}

// code to run isolates
runInIsolate(SendPortsendPort) {
ReceivePortreceivePort = new ReceivePort();
// send own sendPort to main isolate:
sendPort.send(receivePort.sendPort);

receivePort.listen((msg) {
 var k = 0;
 var max = (5 - msg) * 500000000;
 for (var i = 0; i < max; ++i) {
 i = ++i - 1;
 k = i;
 }

Working with Futures, Tasks, and Isolates

232

 sendPort.send("I received: $msg and calculated $k");
 });
}

After some time, the calculated results are shown as follows:

I received: 4 and calculated 499999999

I received: 3 and calculated 999999999

I received: 2 and calculated 1499999999

I received: 1 and calculated 1999999999

I received: 0 and calculated 2499999999

The following is a screenshot of the CPU activity on an eight-core machine. It is clear that four
cores are busy running the isolates corresponding to the four isolates that were spawned in
the for-loop previously:

Multicore processing with isolates

How it works...
The first thing the main and other isolates do is make their ReceivePort. The isolates
run the code in runInIsolate and get the port to send their results to. Have a look at the
following command:

Isolate.spawn(runInIsolate, receivePort.sendPort);

Chapter 8

233

The isolates send their own sendPort to main. The main isolate listens on its port; when it
receives sendPort, it sends an integer counter to the isolate:

if (msg is SendPort) {
 msg.send(counter++);
 // other code
 }

The isolates listen until they receive their counter value, and then start their long-running
calculation. Upon completion, the result is sent to the root isolate, where it is displayed. The
program never stops because the ReceivePort in main is never closed.

Using the Worker Task framework
The isolate library only gives us the low-level, basic building blocks, so working with isolates
in a realistic application environment can be challenging. Specifically for this purpose, the
worker concurrent task executor framework was developed by Diego Rocha, available
from pub package manager. It was made to abstract all the isolate managing and message
passing and make concurrency in Dart as easy as possible. Worker also contains built-in error
handling, so you needn't worry about that either. This recipe will show you how to use this
framework so that you can concentrate on higher-level application details.

How to do it...
In the project using_worker, you can find a number of programs (using_worker1 through
using_worker4) illustrating the use of this framework. The script using_worker.dart
illustrates the main steps, namely creating a task, creating a worker, give a task to the worker,
and process the results:

import'package:worker/worker.dart';

Worker worker;

void main() {
 // 1- Make a Task object:
 Task task = new HeavyTask();
 // 2- Construct a Worker object:
 worker = new Worker();
 // specifying poolSize and spawning lazy isolates or not:
 // worker = new Worker(poolSize: noIsol, spawnLazily: false);
 // 3- Give a task to the worker
 // 4- when the results return, process them
 worker.handle(task).then(processResult);
}

Working with Futures, Tasks, and Isolates

234

//5 - Task custom class must implement Task interface
classHeavyTask implements Task {

execute() {
 returnlongRunningComputation();
}

boollongRunningComputation() {
 varstopWatch = new Stopwatch();
 stopWatch.start();
 while (stopWatch.elapsedMilliseconds< 1000);
 stopWatch.stop();
 return true;
 }
}

processResult(result) {
 print(result);
 // process result
 // 4- Close the worker object(s)
 worker.close();
}

How it works...
First, add the package worker to pubspec.yaml, and import it in the code. A task is
something that needs to be executed. This is an abstract class in the library, providing an
interface for tasks and specifying that your custom Task class must implement the execute
method, which returns a result. In our script the custom Task is HeavyTask, and execute
simulates a long running computation using the Stopwatch class.

A worker object creates and manages a pool containing a number (poolSize) of isolates
providing you with an easy way to perform blocking tasks concurrently. It spawns isolates
lazily as Tasks are required to execute; the spawned isolates are available in a queue named
isolates. The currently active isolates are stored in an iterable called workingIsolates,
and the free isolates can be retrieved from an iterable called availableIsolates.

In the language of isolates, this is what happens; when a Worker instance is created, it starts
listening to the ReceivePort of the current isolate, and a pool of isolates is created. The
isolates in this pool are used to process any task passed to the worker. When a task is passed
to the worker to be handled, it returns a Future. This Future will only complete when the Task
is executed or when it fails to be executed.

Chapter 8

235

By default, worker is created with poolSize equal to the number of processors on the
machine (Platform.numberOfProcessors), and the isolates are spawned lazily (that is,
only when needed). You can, however, change the number of isolates and also whether the
isolates are spawned lazily or not using optional constructor parameters, as follows:

worker = new Worker(poolSize: noIsol, spawnLazily: false);

The work is started by handing over the task to the worker with worker.handle(task). The
handle method takes a task, and returns a Future object, so we process the result when it
is returned with worker.handle(task).then(processResult);.

Also, make sure that, after the processing is done, worker gets closed or the program
keeps running.

When executing a number of tasks, you can add them to a List<Future> task as shown in
the following code:

intnoTasks = 500;
for (var i=1; i<=noTasks; i++) {
 tasks.add(worker.handle(new HeavyTask()));
}

And then process them with:
Future.wait(tasks).then(processResult);

This mechanism is illustrated in the using_worker2 and using_worker3 examples.

There's more…
Another good scenario to use isolates or use worker class in particular is that of a web server
that has a few different services. Perhaps one of those services has to do some calculations
and takes a while to respond, whereas, the others are light and respond right away. When
the heavy service is requested not using isolates, all other requests are blocked, waiting to
be processed, even if they are requesting one of the light services. If you do use an isolate or
worker and run the heavy service in parallel, it will take roughly the same time to respond to
the first request, but all the subsequent requests won't have to wait.

See also
ff See the Using isolates in the Dart VM recipe in this chapter for background

information on isolates

ff See the Error handling with Futures recipe in this chapter for more information on
how to use Futures

9
Working with

Databases

In this chapter, we will cover the following recipes:

ff Storing data locally with IndexedDB

ff Using Lawndart to write offline web apps

ff Storing data in MySQL

ff Storing data in PostgreSQL

ff Storing data in Oracle

ff Storing data in MongoDB

ff Storing data in RethinkDB

Introduction
Data is like food for applications; without it, they would have no meaning. Furthermore, data
must be persisted; storing data can be done on the client, server, or both. On the client side,
we look at IndexedDB and the Lawndart data manager, which provides offline data storage
without having to worry whether IndexedDB is supported or not. Then, we investigate how
to store data on the server in SQL as well as NoSQL database systems. By the end of this
chapter, you will have a whole spectrum of choices to select the database in which you will
store your app's data.

Working with Databases

238

Storing data locally with IndexedDB
IndexedDB is a more robust client-side storage mechanism than local storage in a browser.
Likewise, it provides offline capabilities and is based on saving and retrieving data as key-
value pairs, but it lets you store significantly bigger amounts of data and allows for high
performance searching using database keys. IndexedDB is supported in modern browsers, but
is only partially supported in Internet Explorer above Version 10 (refer to http://caniuse.
com/#feat=indexeddb for details).

How to do it...
You can find the code for this recipe in the using_indexeddb project. We use the same
method from the Posting JSON-formatted data recipe in Chapter 7, Working with Web Servers,
but now we only store the data locally in IndexedDB. The following is the relevant code from
using_indexeddb.dart:

import 'dart:indexed_db';

void main() {
 //test if browser supports IndexedDB:
 if (!IdbFactory.supported) {
 window.alert("Sorry, this browser does not support IndexedDB");
 return;
 }
 js = new JobStore();
 //creating and opening the database:
 js.openDB();
 querySelector("#store").onClick.listen(storeData);
 }

storeData(Event e) {
 var job = _jobData();
 //writing data to IndexedDB
 js.add(job);
}

It is important that the data access code is isolated from the business logic code in job.
dart. This is according to the principle of separation of concerns, which makes it a lot easier
to change to another database system; only the data access code needs to be changed.
The functionalities required to work with IndexedDB is found in the JobStore class in
jobstore_idb.dart:

library store;

import 'dart:html';
import 'dart:async';

http://caniuse.com/#feat=indexeddb for details
http://caniuse.com/#feat=indexeddb for details

Chapter 9

239

import 'dart:indexed_db';
import 'job.dart';

class JobStore {
 static const String JOB_STORE = 'jobStore';
 static const String TYPE_INDEX = 'type_index';
 Database _db;
 final List<Job> jobs = new List();

 Future openDB() {
 return window.indexedDB
 .open('JobDB',version: 1,onUpgradeNeeded: _initDb)
 .then(_loadDB)
 .catchError(print);
 }

 void _initDb(VersionChangeEvent e) {
 _db = (e.target as Request).result;
 var store = _db.createObjectStore(JOB_STORE, autoIncrement: true);
 store.createIndex(TYPE_INDEX, 'type', unique: false);
 }

 Future add(Job job) {
 // create transaction and get objectstore:
 var trans = _db.transaction(JOB_STORE, 'readwrite');
 var store = trans.objectStore(JOB_STORE);
 store.add(job.toMap())
 // called when add completes
 .then((addedKey) {
 print(addedKey);
 job.dbKey = addedKey;
 });
 return trans.completed.then((_) {
 // called when transaction completes
 jobs.add(job);
 return job;
 });
}

Future _loadDB(Database db) {
 _db = db;
 var trans = db.transaction(JOB_STORE, 'readonly');
 var store = trans.objectStore(JOB_STORE);

Working with Databases

240

 var cursors = store.openCursor(autoAdvance: true).
 asBroadcastStream();
 cursors.listen((cursor) {
 var job = new Job.fromJson(cursor.value);
 jobs.add(job);
 });

 return cursors.length.then((_) {
 return jobs.length;
 });
}

Future update(Job job) {
 var trans = _db.transaction(JOB_STORE, 'readwrite');
 var store = trans.objectStore(JOB_STORE);
 return store.put(job.toMap());
}

Future remove(Job job) {
 var trans = _db.transaction(JOB_STORE, 'readwrite');
 var store = trans.objectStore(JOB_STORE);
 store.delete(job.dbKey);
 return trans.completed
 .then((_) {
 job.dbKey = null;
 jobs.remove(job);
 });
}

Future clear() {
 var trans = _db.transaction(JOB_STORE, 'readwrite');
 var store = trans.objectStore(JOB_STORE);
 store.clear();
 return trans.completed
 .then((_) {
 jobs.clear();
 });
 }
}

Chapter 9

241

The following is a screenshot along with a view of the IndexedDB database in Chrome
Developer Tools:

How it works...
Interacting with IndexedDB is implemented in the dart:indexed_db library, so we have to
import it wherever needed. It is always good to test whether the browser can store data in
IndexedDB. To determine whether IndexedDB is supported, use the supported getter from the
IdbFactory class. All interactions with IndexedDB are asynchronous and return Futures.

As shown in the second comment, openDB() is called. The window.indexedDB.open
method is the method used to open or create a new database. If the given database name
and version already exist, then that database is opened. For a new database name or higher
version number, the upgrade needed event is triggered. In its event handler, this lacks
clarity; insert object type for the screen text term too, where the records get an automatically
incremented key, is created within database JobDB. We also show how to create an index
in jobstore in the type field of class Job with the createIndex method. An IndexedDB
database can contain many object stores, and each store can have many indexes. Handling
the possible errors when opening a database with .catchError is really important. We also
keep a central Database object _db to be used in the database methods.

Working with Databases

242

A common scenario is that all the records from a certain store are
read into the app to show them after opening the database. This is
done in _loadDB. If we look at the other methods (add, update,
remove, and clear), we will see a common pattern, which all
database operations must perform within a Transaction object.
This retrieves as parameters the object store name JOB_STORE
and a certain mode such as readonly or readwrite. Reading a
number of records, such as in _loadDB, works through the opening
cursor and then listening to it (using listen). Each listen event
reads a new record through cursor.value, which is transformed
into a Job object and added to the list.

An object to be stored must be given in the map format to the store's add method. When
autoincrement is set to true for this store, the generated key number is returned as
addedKey. When the transaction is complete (trans.completed.then), we add the newly
created job to our list. The same pattern is followed in the update, remove, and clear
methods, which call the methods put, delete, and clear, respectively, in the object store.

See also
ff Refer to the Using Browser Local Storage recipe in Chapter 5, Handling Web

Applications, if you want to compare local storage with IndexedDB

Using Lawndart to write offline web apps
What if the main requirement is that your app can work detached, providing universal offline
key-value storage, whether IndexedDB is supported by your client's browsers or not? Then,
Lawndart comes to the rescue.

Lawndart (https://github.com/sethladd/lawndart, but available via pub package) is
not a new database, but rather a manager, which automatically chooses the best local storage
mechanism available on the client. It was developed by Seth Ladd as a Dart rework
of Lawnchair (http://brian.io/lawnchair/). You can see it in action in the project
using_lawndart.

How to do it...
Import the Lawndart package by adding lawndart:any to your pubspec.yaml file. The
following is the relevant code from the startup script using_lawndart.dart:

void main() {
 js = new JobStore();
 // 1- creating and opening the database:

https://github.com/sethladd/lawndart
http://brian.io/lawnchair/

Chapter 9

243

 js.open();
 querySelector("#store").onClick.listen(storeData);
}

storeData(Event e) {
 var job = _jobData();
 // 2- writing data to storage
 js.add(job);
 }
 The database specific code is isolated in jobstore_lawndart.dart:
 library store;

 import 'dart:async';
 import 'package:lawndart/lawndart.dart';
 import 'job.dart';

 class JobStore {
 static const String JOB_DB = 'jobDb';
 static const String JOB_STORE = 'jobStore';
 final List<Job> jobs = new List();
 // 3- making a Store object:
 var _store = new Store(JOB_DB, JOB_STORE);

 Future open() {
 // 4- opening storage and retrieving all records:
 return _store.open().then(_loadDB).catchError(print);
 }

 loadDB() {
 Stream dataStream = _store.all();
 return dataStream.forEach((dbjob) {
 var job = new Job.fromJson(dbjob);
 jobs.add(job);
 });
}

add(Job job) {
 // 5- storing data:
 _store.save(job.toMap(), job.dbKey.toString()).then((addedKey) {
 jobs.add(job);
 });
}

Working with Databases

244

Future update(Job job) {
 return _store.save(job.toMap(), job.dbKey.toString());
}

Future remove(Job job) {
return _store.removeByKey(job.dbKey.toString());
}

clear() {
 store.nuke().then(() {
 jobs.clear();
 });
 }
}

How it works...
Lawndart presents an asynchronous, but consistent, interface to the local storage, IndexedDB,
and Web SQL. Your app simply works with an instance of the class Store, and the factory
constructor will try IndexedDB, Web SQL, and finally, local storage. This is shown in the third
comment, where an object of class Store is made; the object also constructs the local
database needed. In the first comment, the open method in the JobStore object triggers
openmethod on the Store object (fourth comment). The _loadDB option then reads the
entire store; this is accomplished through the all method, which returns Stream of values.
Adding and updating data is done by calling the save method on the store object (fifth 5).
Deleting a record is done through removeByKey; clearing an entire database needs the nuke
method. Notice that the code that uses Lawndart is much cleaner than IndexedDB, as shown
in the previous recipe.

See also
ff Cargo is another pub package developed by Joris Hermans, which accomplishes a

similar goal. It is a storage package that abstracts local storage, storage on the client
as well as on the server, and stores JSON files on the disk. For more information, refer
to https://pub.dartlang.org/packages/cargo.

ff The complete API documents can be found at http://www.dartdocs.org/
documentation/lawndart/.

https://pub.dartlang.org/packages/cargo
http://www.dartdocs.org/documentation/lawndart/
http://www.dartdocs.org/documentation/lawndart/

Chapter 9

245

Storing data in MySQL
MySQL is undeniably the most popular open source SQL database. Dart can talk to MySQL
using the pub package sqljocky by James Ots (https://github.com/jamesots/
sqljocky). In this section, we will demonstrate how to use this driver step by step. You can
see it in action in the using_mysql project.

Getting ready
ff To get the database software, download and install the MySQL Community

Server installer from http://dev.mysql.com/downloads/mysql/. This is
straightforward. However, if you need any help with the installation, visit http://
dev.mysql.com/doc/refman/5.7/en/installing.html.

ff Run the MySQL database system by starting mysqld on a command prompt from the
bin folder of the MySQL installation. We need to create a database and table to store
data. The easiest way is to start the MySQL Workbench program, make a connection,
and then click on the button Create a new schema in the connected server, name it
jobsdb, and click on apply.

ff Select the schema by double-clicking on it, and then clicking on the button on the
right to the previous button Create a new table in the active schema. Name the table
jobs, and create the dbKey, type, salary, company, posted and open columns;
dbKey is the primary key. To import the driver to your application, add sqljocky to
pubspec.yaml and save it. A pub get command is then done automatically.

How to do it...
The application starts with using_mysql.dart, where a JobStore object is created,
the database is opened, records are written to the jobs table, and then these records are
retrieved, as shown in the following code:

import 'job.dart';
import 'jobstore_mysql.dart';

Job job;
JobStore js;

void main() {
 js = new JobStore();
 // 1- create some jobs:
 job = new Job("Web Developer", 7500, "Google", new DateTime.now());
 js.jobs.add(job);
 job = new Job("Software Engineer", 5500, "Microsoft",
 new DateTime.now());

https://github.com/jamesots/sqljocky
https://github.com/jamesots/sqljocky
http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/doc/refman/5.7/en/installing.html
http://dev.mysql.com/doc/refman/5.7/en/installing.html

Working with Databases

246

 js.jobs.add(job);
 job = new Job("Tester", 4500, "Mozilla", new DateTime.now());
 js.jobs.add(job);
 // 2- opening the database:
 js.open();
 // 3- storing data in database:
 js.storeData();
 // 4- retrieving and displaying data from database:
 js.readData();
}

After running the preceding code, we can verify that the insertions succeeded in MySQL
Workbench in the jobs table:

The readData method reads the data from the jobs table and prints it to the console:

dbKey: 1, type : Web Developer, salary: 7500, company: Google, posted: 2014-07-02
14:34:12.000, open: 1

dbKey: 2, type : Software Engineer, salary: 5500, company: Microsoft, posted: 2014-07-02
14:34:12.000, open: 1

dbKey: 3, type : Tester, salary: 4500, company: Mozilla, posted: 2014-07-02 14:34:12.000,
open: 1

Chapter 9

247

After the first run, readData will not show any output because it gets executed before the
insertions in the database are complete; verify the output through a second run.

The interaction with MySQL through sqljocky takes place in the JobStore class in
jobstore_mysql.dart:

import 'package:sqljocky/sqljocky.dart';
import 'package:options_file/options_file.dart';
import 'job.dart';

ConnectionPool pool;

class JobStore {
 final List<Job> jobs = new List();
 Job job;

 // 5- opening a connection to the database:
 open() {
 pool = getPool(new OptionsFile('connection.options'));
 }

 ConnectionPool getPool(OptionsFile options) {
 String user = options.getString('user');
 String password = options.getString('password');
 int port = options.getInt('port', 3306);
 String db = options.getString('db');
 String host = options.getString('host', 'localhost');
 return new ConnectionPool(host: host, port: port, user: user,
 password: password, db: db);
 }

 storeData() {
 for (job in jobs) {
 insert(job);
 }
}

// 6- inserting a record in a table:
insert(Job job) {
var jobMap = job.toMap();
pool.prepare('insert into jobs (dbKey, type, salary, company, posted,
open) values (?, ?, ?, ?, ?, ?)').then((query) {
 var params = new List();
 params.add(job.dbKey);

Working with Databases

248

 params.add(job.type);
 params.add(job.salary);
 params.add(job.company);
 params.add(job.posted);
 params.add(job.open);
 return query.execute(params);
 }).then((_) {
 }).catchError(print);
}

readData() {
 pool.query('select * from jobs').then((results) {
 processJob(results);
 });
}

processJob(results) {
 results.forEach((row) {
 print('dbKey: ${row.dbKey}, type : ${row.type}, ' 'salary:
 ${row.salary}, company: ${row.company}, ' 'posted: ${row.posted},
 open: ${row.open}');
 });
}

// 7- updating a record in a table:
update(Job job) {
 var jobMap = job.toMap();
 pool.prepare('update jobs set type = ?, salary = ?, company = ?,
 posted = ?, open = ? where dbKey = ?').then((query) {
 var params = new List();
 params.add(job.dbKey);
 params.add(job.type);
 params.add(job.salary);
 params.add(job.company);
 params.add(job.posted);
 params.add(job.open);
 return query.execute(params);
 }).then((_) {
 }).catchError(print);
}

// 8- deleting a record in a table:
delete(Job job) {
 var jobMap = job.toMap();

Chapter 9

249

 pool.prepare('delete from jobs where dbKey = ?').then((query) {
 var params = new List();
 params.add(job.dbKey);
 return query.execute(params);
 }).then((_) {
 }).catchError(print);
 }
}

How it works...
The connection information for the database is stored in the connection.options file. In
the fifth comment, a connection to the database is opened by calling getPool, which returns
a ConnectionPool object that maintains a pool of database connections. The getPool
option takes as argument an OptionsFile object, from the options_file package, and
reads the information from connection.options:

connection.options to define how to connect to a mysql db

user=root

password=????? # substitute your password here

port defaults to 3306

port=3306

db=jobsdb

host defaults to localhost

host=localhost

All interactions with the database work via queries. If there is a free connection in
ConnectionPool when queries are executed, it will be used; otherwise, the query is queued
until there is a free connection. As we can see in readData, a select query is made via
pool.query(selectStr);. This returns a Future object, so the processing of the results
takes place in the then section. This can be done using the following code:

results.forEach((row) {
print('dbKey: ${row.dbKey}, type : ${row.type}, …');

The preceding line can also be written as follows:

results.forEach((row) {
print('dbKey: ${row[0]}, type : ${row[1]}, …');

Working with Databases

250

Insert, update, and delete queries (coded in the methods with the same name) have to
first go through the prepare stage and then the execute stage. Let's see a few examples.
For insert, this query becomes as follows (refer to the sixth comment):

pool.prepare('insert into jobs (dbKey, type, salary, company,
 posted, open) values (?, ?, ?, ?, ?, ?)').then((query) {})

An insert query on a table that contains an autoincrement field will return the value of that
field in ${result.insertId}. For update, this query becomes as follows (refer to the
seventh comment):

pool.prepare('update jobs set type = ?, salary = ?, company = ?,
 posted = ?, open = ? where dbKey = ?').then((query) {}

The query for delete is as follows (refer to comment 8):

pool.prepare('delete from jobs where dbKey = ?').then((query) {}

The ? character represents values to be substituted in the SQL string. These values are placed
in the specified order in the params list, which is given as an argument to query.execute.
A query with multiple parameter sets can be executed with query.executeMulti(). If
you need a number of queries to be executed as a whole (or all or none succeed), use the
Transaction class from sqljocky in the following format:

pool.startTransaction().then((trans) {
trans.query('...').then((result) {
trans.commit().then(() {...});
});
});

There's more...
The complete API documents can be found at http://jamesots.github.io/sqljocky/
docs/.

Storing data in PostgreSQL
PostgreSQL is another popular open source SQL database. Dart can talk to PostgreSQL
using the pub package postgresql by Greg Lowe (https://github.com/xxgreg/
postgresql). In this section, we will demonstrate how to use this driver step by step.
You can see it in action in the using_postgresql project.

http://jamesots.github.io/sqljocky/docs/
http://jamesots.github.io/sqljocky/docs/
https://github.com/xxgreg/postgresql
https://github.com/xxgreg/postgresql

Chapter 9

251

Getting ready
To get the database software, download and install the PostgreSQL Server installer from
http://www.postgresql.org/download/ using the following steps:

1.	 The database server is configured to start automatically. We need to create a
database and table to store data. The easiest way is to start the pgAdmin program,
make a new connection, and then select Edit, New Object, and New Database from
the menu, name it jobsdb, and click on OK.

2.	 Select the public schema, and again select Edit, New Object, and then New Table.

3.	 Name the table jobs, and create dbKey, type, salary, company, posted, and
open as columns; dbKey is the primary key.

4.	 To import the driver to your application, add postgresql to the pubspec.yaml file
and save it. A pub get command is then done automatically.

How to do it...
The application starts from using_postgresql.dart, where a JobStore object is
created, the database is opened, records are written to the jobs table, and then these
records are retrieved:

import 'job.dart';
import 'jobstore_postgresql.dart';

Job job;
JobStore js;

void main() {
 js = new JobStore();
 // 1- create some jobs:
 job = new Job("Web Developer", 7500, "Google", new DateTime.now());
 js.jobs.add(job);
 job = new Job("Software Engineer", 5500, "Microsoft",
 new DateTime.now());
 js.jobs.add(job);
 job = new Job("Tester", 4500, "Mozilla", new DateTime.now());
 js.jobs.add(job);
 // 2- storing data in database:
 js.openAndStore();
 // 3- retrieving and displaying data from database:
 js.openAndRead();
}

http://www.postgresql.org/download/

Working with Databases

252

After running the preceding code, we can verify via pg Admin in the jobs table that the
insertions succeeded, as shown in the following screenshot:

Data in PostgreSQL

The readData method reads the data from the jobs table and prints it to the console:

1 - Web Developer - 7500 - Google - 2014-07-03 00:00:00.000 true

2 - Software Engineer - 5500 - Microsoft - 2014-07-03 00:00:00.000 true

3 - Tester - 4500 - Mozilla - 2014-07-03 00:00:00.000 true

The interaction with PostgreSQL through the driver takes place in the JobStore class in
jobstore_postgresql.dart:

library store;

import 'package:postgresql/postgresql.dart';
import 'job.dart';

class JobStore {
 final List<Job> jobs = new List();
 Job job;
 Connection conn;
 varuri = 'postgres://username:passwd@localhost:5432/jobsdb';

 // 5- opening a connection to the database:
 openAndStore() {
 connect(uri).then((_conn) {
 conn = _conn;
 storeData();
 })
 .catchError(print);
}

Chapter 9

253

storeData() {
 for (job in jobs) {
 insert(job);
}
// 6- close the database connection:
close();
}

// 7- inserting a record in a table:
insert(Job job) {
 var jobMap = job.toMap();
 conn.execute('insert into jobs values (@dbKey, @type, @salary,
 @company, @posted, @open)',
 jobMap)
 .then((_) { print('inserted'); })
 .catchError(print);
}

openAndRead() {
 connect(uri).then((_conn) {
 conn = _conn;
 readData();
})
.catchError(print);
}

// 8- reading records from a table:
readData() {
 conn.query('select * from jobs').toList().then((results) {
 processJob(results);
 close();
 });
}

// 9- working with record data:
processJob(results) {
for (var row in results) {
 // Refer to columns by nam:
 print('${row.dbKey} - ${row.type} - ${row.salary} -
 ${row.company} - ${row.posted} ${row.open}');
 // print(row[0]); // Or by column index.
 }
}

Working with Databases

254

close() { conn.close(); }

// 10- updating a record in a table:
update(Job job) {
 var jobMap = job.toMap();
 conn.execute('update jobs set type = @type, salary = @salary,
 company = @company, '
 'posted = @posted, open = @open where dbKey = @dbKey', jobMap)
 .then((_) { print('updated'); })
 .catchError(print);
}

// 11- deleting a record in a table:
delete(Job job) {
 var jobMap = job.toMap();
 conn.execute('delete from jobs where dbKey = @dbKey', jobMap)
 .then((_) { print('deleted'); })
 .catchError(print);
 }
}

How it works...
Obtaining a connection with a Postgres database needs a valid connection string of the
following form:

var uri = 'postgres://username:password@localhost:5432/database';

This is given as an argument to the connect method, as shown in the fifth comment; the
writing of the data in storeData is done in the callback handler, in order to be sure that
we have a Connection object at that point. Inserting a record happens in comment 7; the
values to be inserted in the insert SQL in the @ markers must be given through a map
(here jobMap):

conn.execute('insert into jobs values (@dbKey, @type, @salary,
 @company, @posted, @open)', jobMap).then((_) { … }

So all the insert, update, and delete queries are given as string arguments to the method
conn.execute. Strings will be escaped to prevent SQL injection vulnerabilities. After the
inserts, we explicitly close the connection with conn.close() to save resources. Select
queries are performed through conn.query:

conn.query('select * from jobs').toList().then((results) {…}

Chapter 9

255

The processing of the results is done in the callback handler:

for (var row in results) {
 print('${row.type} - ${row.salary}');
print(row[1]);

Fields can be retrieved by their name or index. As always, we catch the errors with
catchError, which at least prints the error to the console. Similar to MySQL, a connection
Pool object can be used to avoid the overhead of obtaining a connection for each request:

var pool = new Pool(uri, min: 2, max: 5);
pool.start().then((_) {
print('min amount connections established.');
pool.connect().then((conn) { // Obtain connection from pool
 // … }
}

The connection method runInTransaction allows queries that need to be executed in
"an all or none" way, to be bundled in a transaction.

See also
ff The complete API docs can be found at http://www.dartdocs.org/

documentation/postgresql/0.2.14/index.html#postgresql

Storing data in Oracle
Oracle is the most popular commercial SQL database. Dart can talk to Oracle using the pub
package oracledart by Alexander Aprelev (https://github.com/aam/oracledart).
This is a Dart native extension of C++, using the dart_api interface to integrate into Dart.
It requires Oracle Instant Client to be present on the machine, and its OCCI binaries must be
included in the PATH variable.

In this section, we will demonstrate how to use this driver step by step. You can see it in action
in the project using_oracle.

http://www.dartdocs.org/documentation/postgresql/0.2.14/index.html#postgresql
http://www.dartdocs.org/documentation/postgresql/0.2.14/index.html#postgresql
https://github.com/aam/oracledart

Working with Databases

256

Getting ready
To get the database software, download and execute the Oracle installer from
http://www.oracle.com/technetwork/database/enterprise-edition/
downloads/index-092322.html.

ff The database server is started through the menu option Start Database.

ff We need to create a table to store data. Start the SQL command-line terminal and
paste the contents of the script jobs.txt. This creates the table jobs, together
with the dbKey, type, salary, company, posted, and open columns; dbKey is
the primary key.

ff To import the driver to your application, add oracledart to pubspec.yaml and
save it. A pub get command is then done automatically.

How to do it...
The application starts from using_oracle.dart, where a JobStore object is created,
the database is opened, records are written to the jobs table, and then these records
are retrieved. The code from using_oracle.dart is identical to the code from using_
postgresql.dart, except that we now import jobstore_oracle.dart; so please refer
to the previous recipe. The jobstore_oracle.dart file contains the code to talk to the
database driver:

// 1- importing the driver:
import 'package:oracledart/oracledart.dart';
import 'job.dart';

class JobStore {
 final List<Job> jobs = new List();
 Job job;
 OracleConnection conn; // connection object
 OracleResultset resultset;
 OracleStatement stmt;
 var connStr = ' "(DESCRIPTION=" "(ADDRESS=(PROTOCOL=TCP)
 (HOST=oracledb)(PORT=1521))"'
 '"(CONNECT_DATA=(SERVICE_NAME=XE)(SERVER=DEDICATED)))"';

 // 2- opening a connection to the database:
 openAndStore() {
 connect("SYS", "avalon", connStr).then((oracleconnection) {
 conn = oracleconnection;
 print('connected with Oracle!');
 storeData();

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index-092322.html
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index-092322.html

Chapter 9

257

 }).catchError(print);
 }

 storeData() {
 for (job in jobs) {
 insert(job);
 }
}

// 3- inserting a record in a table:
insert(Job job) {
 var jobMap = job.toMap();
 var insertSql = 'insert into jobs values (:1, :2, :3, :4, :5, :6)';
 stmt = conn.createStatement(insertSql);
 stmt.setInt(1, jobMap['dbKey']);
 stmt.setString(2, jobMap['type']);
 stmt.setInt(3, jobMap['salary']);
 stmt.setString(4, jobMap['company']);
 stmt.setString(5, jobMap['posted']);
 stmt.setString(6, jobMap['open']);
 stmt.executeQuery();
}

openAndRead() {
 connect("SYS", "avalon", connStr).then((oracleconnection) {
 conn = oracleconnection;
 readData();
 }).catchError(print);
}

// 8- reading records from a table:
readData() {
 resultset = conn.select("select * from jobs");
 processJob(resultset);
}

// 9- working with record data:
processJob(results) {
 while (resultset.next()) {
 print('dbKey: ${resultset.getInt(0)}');
 print('type: ${resultset.getString(1)}');
 print('salary: ${resultset.getInt(2)}');
 print('company: ${resultset.getString(3)}');

Working with Databases

258

 print('posted: ${resultset.getString(4)}');
 print('open: ${resultset.getString(5)}');
 }
}
}

How it works...
First, import the oracledart package. The connect method takes the user, his/her
password, and then a connection string. In its callback, an OracleConnection object
conn is made available. Querying tables is done with conn.select(selectSql), where
selectSql is the selected SQL string. This returns an OracleResultset object that you
can iterate throughout with next(). Values of fields can only be extracted by an index with
getInt or getString.

If you need parameters in your statement, as is probably the case for insert, update, or delete
statements, you first need to call conn.createStatement(sqlStr), where sqlStr
contains :i indicators (i equals to ith index, starting from 0). These :i position holders must
be filled with stmt.setInt(i, value) or stmt.setString(i, value). Then, the
statement can be executed with stmt.executeQuery().

There's more…
In this and the previous recipes, we discussed the SQL database servers that Dart can talk
to at this time using specialized drivers. However, for example, for the popular Microsoft SQL
Server there is no driver yet. In this case, we can use the pub odbc package by Juan Mellado
(https://code.google.com/p/dart-odbc/). The ODBC binding is made with a Dart
native extension, which makes it a bit more involved to be used, and for now it only exists in a
32-bit version.

Storing data in MongoDB
MongoDB, by the company with the same name (http://www.mongodb.org/), is the most
popular database among the NoSQL databases. Let's look at some facts about MongoDB:

ff MongoDB is an open source, distributed, document-oriented database; each data
record is actually a document.

ff A table is called a collection in MongoDB. Documents are stored in a JSON-like format
called BSON.

ff The most advanced driver from Dart to MongoDB is the pub package mongo_dart by
Vadim Tsushko, Ted Sander, and Paul Evans. This recipe will show you how to create,
read, update, and delete actions in a MongoDB database from a Dart app. You can
see it in action in the using_mongodb project.

https://code.google.com/p/dart-odbc/
http://www.mongodb.org/

Chapter 9

259

Getting ready
Install the latest production release for your system from http://www.mongodb.org/
downloads. This is easy. However, if you need more details, refer to http://docs.
mongodb.org/manual/installation/. Start the mongod server process (for example,
from c:\mongodb\bin on Windows) before the Dart app. To make the jobsdb database,
start a mongo shell and type use jobsdb; it's that simple. Alternatively, this can also be
done via mongo_dart. NoSQL databases are schemaless, so the collections (which is what
tables are called here) are created when the first document (or record) is inserted.

How to do it...
The application starts from using_mongodb.dart, where a JobStore object is
created, the database is opened, records are written to the jobs table, and then these
records are retrieved. The code from using_mongodb.dart is identical to the code from
using_postgresql.dart, except that we now import jobstore_mongodb.dart;
so please refer to the Storing data in PostgreSQL recipe. When running this script, first
comment out js.openAndRead();. In the second run, uncomment this and comment out
js.openAndStore();; otherwise, the reads take place before the inserts are completed.
The jobstore_mongodb.dart code contains the code to talk to the database driver:

import 'package:mongo_dart/mongo_dart.dart';
import 'job.dart';

const String DEFAULT_URI = 'mongodb://127.0.0.1/';
const String DB_NAME = 'jobsdb';
const String COLLECTION_NAME = 'jobs';

class JobStore {
 final List<Job> jobs = new List();
 Job job;
 Db db;
 DbCollection jobsColl;

 JobStore() {
 // 1- make a new database
 db = new Db('${DEFAULT_URI}${DB_NAME}');
 // make a new collection
 jobsColl = db.collection(COLLECTION_NAME);
}

openAndStore() {
 db.open().then((_) {

http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://docs.mongodb.org/manual/installation/
http://docs.mongodb.org/manual/installation/

Working with Databases

260

 storeData();
 }).catchError(print);
}

storeData() {
 for (job in jobs) {
 insert(job);
 }
}

// 2- inserting a document in a collection:
insert(Job job) {
 var jobMap = job.toMap();
 jobsColl.insert(jobMap).then((_) {
 print('inserted job: ${job.type}');
 }).catchError(print);
}

openAndRead() {
 db.open().then((_) {
 readData();
 }).catchError(print);
}

// 3- reading documents:
readData() {
 jobsColl.find().toList().then((jobList) {
 processJob(jobList);
 }).catchError(print);
}

// 4- working with document data:
processJob(jobList) {
 jobList.forEach((jobMap) {
 Job job = new Job.fromMap(jobMap);
 print('${job.dbKey} - ${job.type} - ${job.salary} - '
 '${job.company} - ${job.posted} ${job.open}');
 });
}

// 5- updating a document:
update(Job job) {
 var jobMap = job.toMap();

Chapter 9

261

 jobsColl.update({"dbKey": jobMap["dbKey"]},jobMap).then((_) {
 print('job updated');
 }).catchError(print);
}

// 6- deleting a document:
delete(Job job) {
 var jobMap = job.toMap();
 jobsColl.remove(jobMap).then((_) {
 print('job updated');
 }).catchError(print);
 }
}

After running the preceding script, verify in a mongo shell with use jobsdb and db.jobs.
find() that the documents have been inserted, as shown in the following screenshot:

How it works...
The mongo_dart library makes it very easy to work with MongoDB. In comment 1, we
created the Db and DbCollection objects in the constructor of JobStore. To manipulate
documents, you have to first call the open method on the Db object.

To write a document to the collection, use the insert method on the DbCollection object,
but its argument must be in the Map format. Reading documents is done with the find
method. The list that is returned contains items of type Map, so to construct real objects, we
have to make a new named constructor fromMap in class Job. Updating a document uses a
method of the same name, but its first argument must be a selector to find the document that
must be updated. Deleting a document uses the remove method.

Working with Databases

262

See also
ff The complete API documents can be found at http://www.dartdocs.org/

documentation/mongo_dart/0.1.39/index.html#mongo_dart

ff Another MongoDB client by Vadim Tsushko is an object-document mapper tool called
Objectory, which can be used on the client as well as the server (https://github.
com/vadimtsushko/objectory)

Storing data in RethinkDB
RethinkDB (http://www.rethinkdb.com/) is a simple NoSQL database that stores JSON
documents. Its main focus lies on ease of use, both for the developer, with an intuitive query
language that can simulate table joins, as well as for the administrator, with friendly web tools
to monitor, shard, and replicate. Another advantage is its automatic parallelization of queries.
At the moment, the database system runs on OS X and a lot of Linux flavors.

We will talk to RethinkDB with a driver available on pub package called rethinkdb_driver,
developed by William Welch (https://github.com/billysometimes/rethinkdb). You
can see it in action in the using_rethinkdb project.

Getting ready
Install the latest production release for your system from http://www.rethinkdb.com/
docs/install/. Then, perform the following steps:

1.	 Start the RethinkDB server by issuing the command rethinkdb in a terminal.

2.	 Then, go to localhost:8080 in your browser — this starts an administrative UI
where you can control the database server (from one machine to a cluster).

3.	 Click on the Tables tab at the top and use the Add Database button to create the
database jobsdb.

4.	 To create the jobs table, click on the Tables tab at the top of the page and then use
the Add Table button.

5.	 The table jobs has the columns dbKey, type, salary, company, posted, and
open columns; dbKey is the primary key.

http://www.dartdocs.org/documentation/mongo_dart/0.1.39/index.html#mongo_dart
http://www.dartdocs.org/documentation/mongo_dart/0.1.39/index.html#mongo_dart
https://github.com/vadimtsushko/objectory
https://github.com/vadimtsushko/objectory
http://www.rethinkdb.com/
https://github.com/billysometimes/rethinkdb
http://www.rethinkdb.com/docs/install/
http://www.rethinkdb.com/docs/install/

Chapter 9

263

How to do it...
The application starts from using_rethinkdb, where a JobStore object is created,
the database is opened, records are written to the jobs table, and then these records
are retrieved. The code from using_rethinkdb is identical to the code from using_
postgresql.dart, except that we now import jobstore_rethinkdb.dart;, so
please refer to the Storing data in PostgreSQL recipe. The jobstore_rethinkdb.dart
file contains the following code to talk to the database driver:

import 'package:rethinkdb_driver/rethinkdb_driver.dart';
import 'job.dart';

class JobStore {
 final List<Job> jobs = new List();
 Job job;
 Rethinkdb rdb = new Rethinkdb();
 Connection conn;

 // opening a connection to the database:
 openAndStore() {
 rdb.connect(db: "jobsdb", port:8000, host: "127.0.0.1").
 then((_conn) {
 conn = _conn;
 storeData(conn);
 }).catchError(print);
}

storeData(conn) {
 List jobsMap = new List();
 for (job in jobs) {
 var jobMap = job.toMap();
 jobsMap.add(jobMap);
}
// storing data:
rdb.table("jobs").insert(jobsMap).run(conn)
.then((response)=>print('documents inserted'))
.catchError(print);
// close the database connection:
close();
}

openAndRead() {
rdb.connect(db: "jobsdb", port:8000, host: "127.0.0.1").then((_conn) {
conn = _conn;

Working with Databases

264

readData(conn);
}).catchError(print);
}

// reading documents:
readData(conn) {
 rdb.table("jobs").getAll("1,2,3").run(conn).then((results) {
 processJob(results);
 close();
 });
}

// working with document data:
processJob(results) {
for (var row in results) {
 // Refer to columns by nam:
 print('${row.dbKey} - ${row.type} - ${row.salary} - ${row.company} -
 ${row.posted} ${row.open}');
 }
}

close() {
conn.close();
}

// updating a document:
update(Job job) {
 rdb.table("jobs").update({"dbKey":job.dbKey})
 .run(conn).then((response)=>print('document updated')
).catchError(print);
}

// deleting a document:
delete(Job job) {
 rdb.table("jobs").get(job.dbKey).delete()
 .run(conn).then((response)=>print('document deleted')
).catchError(print);
 }
}

Chapter 9

265

How it works...
As always, we have to import the driver's code. Then, we define a Rethinkdb object on which
all methods are defined, and a global Connection object. Opening a connection is done with
the following command, where the host can also be the real name of the server. The connect
option also takes an optional authorization key argument, authKey. In the callback
handler, all document manipulation can be done using the following code:

rdb.connect(db: "jobsdb", port:8000, host: "127.0.0.1")

For example, to read documents, use the command getAll, which takes a list of the
document keys as an argument:

rdb.table("jobs").getAll(keysList).run(conn).then((results) {…}

To insert documents, use the insert command:

rdb.table("jobs").insert(docMap).run(conn).then((results) {…}

The insert command takes a list as an argument along with its documents, where each
document is in the map format. The update command matches documents with their
arguments, and the delete command needs a document key as its argument.

See also
Of course, there are many other NoSQL databases. The following are a few references to
other drivers:

ff For CouchDB, there is the wilt package (https://pub.dartlang.org/
packages/wilt) and the couchclient library (https://pub.dartlang.org/
packages/couchclient)

ff For Redis, you have the redis_client package (https://pub.dartlang.org/
packages/redis_client)

ff For Memcached, there is the memcached_client library (https://pub.
dartlang.org/packages/memcached_client)

ff For Riak, there is the riak_client package (https://pub.dartlang.org/
packages/riak_client)

https://pub.dartlang.org/packages/wilt
https://pub.dartlang.org/packages/wilt
https://pub.dartlang.org/packages/couchclient
https://pub.dartlang.org/packages/couchclient
https://pub.dartlang.org/packages/redis_client
https://pub.dartlang.org/packages/redis_client
https://pub.dartlang.org/packages/memcached_client
https://pub.dartlang.org/packages/memcached_client
https://pub.dartlang.org/packages/riak_client
https://pub.dartlang.org/packages/riak_client

10
Polymer Dart Recipes

In this chapter, we will cover the following recipes:

ff Data binding with polymer.dart

ff Binding and repeating over a list

ff Binding to a map

ff Using custom attributes and template conditionals

ff Binding to an input text field or a text area

ff Binding to a checkbox

ff Binding to radio buttons

ff Binding to a selected field

ff Event handling

ff Polymer elements with JavaScript interop

ff Extending DOM elements

ff Working with custom elements

ff Automatic node finding

ff Internationalizing a Polymer app

Polymer Dart Recipes

268

Introduction
Polymer (as defined at http://www.polymer-project.org/) is a web development
feature designed to fully utilize the evolving web platform on modern browsers; it modularizes
the way a web client interface is defined. Web pages can now be built and composed with
web components that can simply be accessed by their names. Web components are reusable
chunks of styled HTML5 or extensions from native HTML tags. Moreover, they enable two-way
data binding to make data from code elements visible and editable in the DOM. They can
also contain code to change their behavior, either in JavaScript or Dart, through a class that
backs up the components. A Polymer web component thus encapsulates structure, style,
and behavior. Polymer is a library on top of web components and in some browsers that don't
support web components, yet, it has been a polyfill.

Polymer.dart is the Dart port of Polymer created and supported by the Dart team. At the
time of writing this, the version of polymer.dart is 0.14.0, and it is quickly aiming towards a
stable production version; its main documentation page can be found at https://www.
dartlang.org/polymer-dart/.

Polymer.dart runs in the following browsers: IE10, IE11, Safari 6, the latest version of Chrome,
the latest version of Firefox, and the latest version of Chrome for Android. A lot has changed in
the polymer.dart world since its first version, so if you need to refresh your memory, refer to
https://www.dartlang.org/docs/tutorials/polymer-intro/.

Although simple, the first recipe is a complete example showing data binding and event
handling to change the state of code objects. Refer to it if you need a picture of the whole
machinery of programming a component. We will look at more detailed examples of how to do
certain things in the following recipes.

Data binding with polymer.dart
In the first recipe, we will go through an example that shows the complete mechanics of
working with a Polymer component and data binding, and at the same time emphasizes
some important best practices to work with polymer.dart. You can find the code in the
project bank_terminal. The app creates an object of class BankAccount (which can be
found in the lib folder) and populates it with the data that is shown. You can also provide
a transaction amount and the balance of the account is updated. This is depicted in the
following screenshot:

http://www.polymer-project.org/
https://www.dartlang.org/polymer-dart/
https://www.dartlang.org/polymer-dart/
https://www.dartlang.org/docs/tutorials/polymer-intro/

Chapter 10

269

How to do it...
Perform the following steps to bind data with polymer.dart:

1.	 First, install the polymer dependency in your project by adding polymer:
">=0.11.0 <0.12.0" to the pubspec.yaml file. Save the file in the editor and run
pub get from the command line. This has to be accompanied by an import line; in
web\bank_app.dart, we use import'package:polymer/polymer.dart'; but
also in web\bank_app.html with a <link rel="import"> tag as the first line.

2.	 Also, in that file, you must indicate one or more starting points of app execution in the
transformers section, as shown in the following code:
transformers:
- polymer:
entry_points:
- web/bank_terminal.html
- web/index.html

Polymer Dart Recipes

270

3.	 The root folder of the app contains a build.dart file, with the following content:
import'package:polymer/builder.dart';

main() {
 build(entryPoints: ['web/bank_terminal.html']);
}

4.	 The entry point bank_terminal.html must contain the <script> and <link>
tags in the <head> section, in the following order:
<script src="packages/web_components/platform.js"></script>
 <script src="packages/web_components/dart_support.js"></script>
<!-- import the bank-app custom element -->
<link rel="import"href="bank_app.html">
 <script type="application/dart">export
 'package:polymer/init.dart';</script>
<script src="packages/browser/dart.js"></script>

5.	 The Polymer component with the name bank-app is instantiated in the <body>
section of the same entry file:
<bank-app></bank-app>

6.	 The component is defined in bank_app.html as follows:
<link rel="import"href="packages/polymer/polymer.html">
<polymer-element name="bank-app">
<style>
.auto-style1 {
 width: 25%;
 border: 1px solid #0000FF;
}

.auto-style2 {
 width: 107px;
}

.btns {
 width: 127px;
}

.red {
 color: red;
}
</style>
<template>

Chapter 10

271

<table class="auto-style1" on-keypress="{{enter}}">
<tr>
<td class="auto-style2">Number</td>
<td>{{bac.number}}</td>
</tr>
<tr>
<td class="auto-style2">Owner</td>
<td>{{bac.owner.name}}</td>
</tr>
<tr>
<td class="auto-style2">Starting balance</td>
<td> {{bac.balance}}</td>
</tr>
<tr>
<td class="auto-style2"> After transaction:</td>
<td> {{balance}}</td>
</tr>
<tr>
<td class="auto-style2">Amount</td>
<td><input id="amount" type="text"/></td>
</tr>
<tr>
<td>
t</td>
</tr>
</table>
</template>
<script type="application/dart" src="bank_app.dart"></script>
</polymer-element>

7.	 The code of the Polymer component can be found in bank_app.dart:
import'dart:html';
import'package:polymer/polymer.dart';
import'package:bank_terminal/bank_terminal.dart';

@CustomTag('bank-app')
classBankAppextendsPolymerElement {
 @observableBankAccountbac;
 @observable double balance;
 doubleamount = 0.0;

 BankApp.created() : super.created() { }

 @override

Polymer Dart Recipes

272

 attached() {
 super.attached();
 varjw = new Person("John Witgenstein");
 bac = newBankAccount(jw, "456-0692322-12", 1500.0);
 balance = bac.balance;
 }

 transact(Event e, vardetail, Node target) {
 InputElementamountInput = shadowRoot.querySelector("#amount");
 if (!checkAmount(amountInput.value)) return;
 bac.transact(amount);
 balance = bac.balance;
 }

 enter(KeyboardEvent e, vardetail, Node target) {
 if (e.keyCode == KeyCode.ENTER) {
 transact(e, detail, target);
 }
 }

 checkAmount(String in_amount) {
 try {
 amount = double.parse(in_amount);
 } onFormatExceptioncatch(ex) {
 returnfalse;
 }
 returntrue;
 }
}

How it works...
The actual numbers in step 1 for the polymer dependency may vary, but because the
changes between versions can still be significant, it is better to use explicit versions rather
than any other version here in order to not break your app; you can then also upgrade it when
ready after thorough testing. The build.dart script in step 3 ensures that the project is
built whenever a file in it is saved. The <link> tag in step 4 imports the Polymer element
bank-app, which lives in bank_app.html. The platform.js and dart_support.js files
contain the so-called platform polyfills; this is the JavaScript code to make new web standards
such as custom elements, shadow DOM, template elements, and HTML imports work. They
are called polyfills because at a later stage the browser should provide native code for these
standards. The init.dart script starts up polymer.dart, and dart.js checks whether there
is a Dart VM available to run the code directly. If this is not the case, the app runs from the
compiled JavaScript code. Step 5 uses the name of the Polymer element as an HTML tag.

Chapter 10

273

Step 6 comprises the HTML code for the Polymer component. It defines its style (in a
<style> tag) and structure (within a <template> tag) between the <polymer-element>
tags; its starting tag has the name of the component as an attribute, which is name="bank-
app". We see how one-way data binding is achieved with the {{ … }} syntax of the polymer
expression, as in <td>{{bac.number}}</td> or <td>{{bac.owner.name}}</td>.
The dots between the curly braces take the place of a variable from the code, whose value
is shown in that place in the web page. In the code, these variables are annotated with @
published.Event. Interaction is achieved through declarative on-event = "{{ … }}"
handlers, such as on-click="{{transact}}" in the button. Here, the dots stand for the
name of a method in the code to be executed when the event happens. After <template>,
the accompanying Dart script bank_app.dart is referenced through a <script> tag.

Finally, in step 7, we get to the Dart class that is backing up for our Polymer component and
see the BankApp class extend PolymerElement; its class inherits from PolymerElement.
The class declaration must be preceded by the annotation @CustomTag('bank-app') to
associate it with the Polymer component. Variables that have to be visualized on the web page
are annotated with @observable.

Override a custom element life cycle method such as attached to execute component-
specific code. This method is executed when an element is inserted into the DOM; so it is
a good place to initialize an app. It is obligatory to provide the created named constructor
for your component. The constructor or any overridden method must call the superclass
constructor or method first. The transact or enter method shows the signature for
an event handler, enter(KeyboardEvent e, var detail, Node target). The
transact method shows how we can get the value for an input element in our Polymer
component; use the shadowRoot.querySelector method. After the format of the
input amount is checked, the transact method of the class BankAccount in the bank_
terminal library changes the state of the bac object.

The name of a Polymer component must contain at least one dash (-). Notice the naming
scheme; if the name of the Polymer component is pol-comp1:

ff Then it is referenced in the HTML code as < pol-comp1>

ff It is defined in the files pol_comp1.html and pol_comp1.dart

ff Its class name is Polcomp1

There's more…
Polymer components can also be added dynamically via code, instead of being statically
declared in the page's HTML. Suppose you want to add a component named pol-comp1 in a
<div> tag with an ID of add-comp1. You can do this with the following code:

querySelector('#add-comp1').children.add(new Element.tag('pol-
comp1'));

Polymer Dart Recipes

274

In step 3, you could call a linter instead of an ordinary build by replacing this line, as shown in
the following code:

main(args) {
 lint(entryPoints: ['web/index.html'], options: parseOptions(args));
}

This will display more extensive syntax or usage warnings in your code.

Binding and repeating over a list
In this recipe, we show you how the data of a list can be displayed in a Polymer component.
So we perform data binding from the code to the UI here as well as in the following recipe. You
can find the code for this recipe in the project databinding_list.

How to do it...
1.	 The script starts from web\index.html, where a component with the name pol-

list is imported through the line:
<link rel="import"href="pol_list.html">

From this, we know that the component is defined in pol_list.html, and the code
behind it is in a file named pol_list.dart. For a discussion of the other tags, see
the previous recipe.

2.	 We define a list of companies that we want to display in the file pol_list.dart:
import'dart:html';
import'package:polymer/polymer.dart';

@CustomTag('pol-list')
classPollist extends PolymerElement {
 final List companies = toObservable(['Google', 'Apple',
 'Microsoft', 'Facebook']);

 Pollist.created() : super.created() {
 companies.add('HP');
}

addcompanies(Event e, var detail, Node target) {
 companies.add('IBM');
 companies.add('Dell');
 }
}

Chapter 10

275

3.	 The structure of the component is outlined in pol_list.html:
<link rel="import"href="packages/polymer/polymer.html">
<polymer-element name="pol-list">
<template>

<template repeat="{{comp in companies}}">
 {{comp}} is an excellent company to work for.
</template>

<p>We selected {{companies.length}} companies for you. </p>
<button on-click="{{addcompanies}}">Add some companies</button>

</template>
<script type="application/dart"
src="pol_list.dart"></script>
</polymer-element>

To register the click event handler, you must use a dash in on-click;
the on-click option will result in ReferenceError.

The following screenshot is what the web page displays when the app is run and the button
is clicked:

Binding to a list

Polymer Dart Recipes

276

How it works...
We want to view the contents of the list on our page; this is made possible in step 2 by using
the toObservable function from the polymer package. This function converts a literal
List to an ObservableList (@observable doesn't work for a list or map). However, the
list is changed in the created event, which is called when the component is instantiated. Also,
companies is changed by pressing the button, which calls the method addcompanies.

Step 3 shows how a template loop is created. The <template repeat="{{item in
list}}"> content </template> syntax means that for every item in the list the content
inside the template (here, the tag) is rendered.

From the running app, as shown in the previous screenshot, we see that whenever the
observed list is changed, these changes are reflected in the web page. It also shows that the
data binding syntax {{ }} can display properties of objects (here, length of the list).

There's more...
The same repeating template can be applied for every collection type, which is a type that
implements Iterable.

Binding to a map
In this recipe, we show you how the data of a map can be displayed in a Polymer component.
You can find the code in the project databinding_map.

How to do it...
1.	 The script starts with web\index.html, where a component with the name pol-

map is imported through the following line:
<link rel="import"href="pol_map.html">

From this code, we know that the component is defined in pol_map.html, and the
code behind it is in a file named pol_map.dart. For a discussion of the other tags,
see the first recipe.

2.	 We define a map companies, which we want to display in the file pol_map.dart:
import'dart:html';
import'package:polymer/polymer.dart';

@CustomTag('pol-map')
classPolmap extends PolymerElement {
Map companies = toObservable({1: 'Google', 2: 'Microsoft'});

Chapter 10

277

Polmap.created() : super.created() {
 companies[3] = 'HP';
}

addcompanies(Event e, var detail, Node target) {
 companies[4] = 'Facebook';
 companies[5] = 'Apple';
 }
}

3.	 The structure of the Polymer component is outlined in pol_map.html:
<link rel="import"href="packages/polymer/polymer.html">
<polymer-element name="pol-map">
<template>
<p>The list of companies: </p>
<template repeat="{{key in companies.keys}}">
<p> {{key}}: {{companies[key]}}</p>
</template>
<button on-click="{{addcompanies}}">Add some companies</button>
<p>My favorite company is: {{companies[1]}}</p>
</template>
<script type="application/dart"
 src="pol_map.dart"></script>
</polymer-element>

The following screenshot is what the web page displays when the app is running and the
button is clicked:

Polymer Dart Recipes

278

How it works...
We want to view the contents of Map in our page. This is made possible in step 2 by using the
toObservable function from the polymer package. This function converts a literal map to
an Observable map. However, Mapcompanies is changed in the created event, which
is called when the component is instantiated. Also, companies is changed by pressing the
button, which calls the method addcompanies.

Step 3 shows how a template loop is created using <template repeat="{{key in
companies.keys}}"> content </template>.

This means that for every key in the list companies.keys, the content inside the template
(here, <p>{{key}}: {{companies[key]}}</p>) is rendered.

We could have also worked with companies.values, or any of the other map getters and
methods such as companies.length. From the running app, as shown in the previous
screenshot, we see that whenever the observed map is changed, these changes are reflected
in the web page.

See also
ff Refer to the Binding and repeating over a list recipe in this chapter on how to use the

repeating template construct

Using custom attributes and template
conditionals

In this recipe, we will explore two polymer.dart features:

ff Custom attributes: Like HTML attributes for normal tags, these are attributes for your
Polymer component, and they can be changed in the code

ff Template conditionals: The UI can be controlled by declarative conditions of the
form <template if={{condition}}></template>, where a condition is an
expression involving observed or published variables

You can find the code in the project custom_attrib.

Chapter 10

279

How to do it...
In this example, we simulate an oven, with the temperature as its attribute. We show the
temperature in a textual form, and also test the temperature to display an appropriate
message, as shown in the following screenshot:

Custom attributes and template conditionals

1.	 The script starts with web\index.html, where a component with the name
pol-oven is imported through the following line:
<link rel="import"href="pol_oven.html">

This component is used three times on the page:
 <body>
<pol-oven temperature="210"></pol-oven>
<pol-oven temperature="500"></pol-oven>
<pol-oven temperature="3000"></pol-oven>
</body>

From this code, we know that the component is defined in pol_oven.html, and the
code behind it is in a file named pol_oven.dart. For a discussion of the other tags,
see the first recipe.

2.	 The code for pol-oven is defined in pol_oven.dart:
import'package:polymer/polymer.dart';

@CustomTag('pol-oven')
classPoloven extends PolymerElement {
 @published int temperature = 0;

 Poloven.created() : super.created() { }
}

Polymer Dart Recipes

280

3.	 The structure of the component is outlined in pol_oven.html:
<link rel="import"href="packages/polymer/polymer.html">
<polymer-element name="pol-oven">
<template>
<p>The oven is heated to {{temperature}} degrees Celsius. </p>
<template if="{{temperature > 400}}">
<p>This is too hot. </p>
</template>
<template if="{{temperature > 1000}}">
<p>We will burn here. </p>
</template>
</template>
<script type="application/dart" src="pol_oven.dart"></script>
</polymer-element>

How it works...
In step 1, we see that the same component, pol-oven, can be used multiple times on
the same page; each occurrence being a different instance of the component. Of course, a
combination of different components is also possible, each time the component contains its
attribute temperature with a different value.

In step 2, it is shown that a custom attribute must be annotated with @published;
this means that it is not merely displayed (and updated when changed, indicated with @
observable), but is also an attribute to be used in the polymer tag.

Finally, in step 3, we see that the attribute values are displayed, but also that a piece of the
UI code is displayed whether the evaluated condition is true or false. If the attribute value
changes in the code, the conditional templates are automatically re-evaluated, possibly
changing the UI.

See also
ff Refer to the Binding to a checkbox recipe in this chapter for another example

Chapter 10

281

Binding to an input text field or a text area
In this recipe, we will show you how to bind an input value from a text field or text area to a
variable; so in effect, we now perform data binding from the UI to the code, and we have two-
way data binding. You can find the code in the project pol_text.

How to do it...
1.	 The script starts with web\index.html, where a component with the name pol-

text is imported through the following line:
<link rel="import"href="pol_text.html">

From this, we know that the component is defined in pol_text.html, and the code
behind it is in a file named pol_text.dart. For a discussion of the other tags, see
the first recipe.

2.	 The code for pol-text is defined in pol_text.dart:
import'package:polymer/polymer.dart';

@CustomTag('pol-text')
classPoltext extends PolymerElement {
 @observable String comps;

 Poltext.created() : super.created() { }
}

3.	 The structure of the component is outlined in pol_text.html:
<link rel="import"href="packages/polymer/polymer.html">
<polymer-element name="pol-text">
<template>
<div>
Which company do you want to work for?
<input type="text" value="{{comps}}">
<p> or type a few companies:
<textarea value="{{comps}}"></textarea>
</p>
</div>
<div>
These are your favorite companies: {{comps}}

Polymer Dart Recipes

282

</div>
</template>
<script type="application/dart" src="pol_text.dart"></script>
</polymer-element>

Two-way binding to text fields

How it works...
The input (content) from the simple text field or text area is bounded by the expression value
= {{variable}} to variable. It shows up in the simple {{variable}} expression on the
page, but also immediately reflects in the other input field, which proves that we have two-way
data binding.

Binding to a checkbox
In this recipe, we will show you how to bind an input value from a checkbox to a variable; so in
effect, we now perform data binding from the UI to the code and have two-way data binding.
You can find the code in the project pol_check.

How to do it...
1.	 The script starts with web\index.html, where a component with the name pol-

check is imported through the following line:
<link rel="import"href="pol_check.html">

From this, we know that the component is defined in pol_check.html, and the
code behind it is in a file named pol_check.dart. For a discussion of the other
tags, refer to the first recipe.

Chapter 10

283

2.	 The code for pol-check is defined in pol_check.dart:
import'package:polymer/polymer.dart';
@CustomTag('pol-check')
classPolcheck extends PolymerElement {
 @observable bool receive = false;

 Polcheck.created() : super.created();
}

3.	 The structure of the component is outlined in pol_check.html:
<link rel="import"href="packages/polymer/polymer.html">
<polymer-element name="pol-check">
<template>
<div>
Do you want to receive our jobs newsletter?
<input type="checkbox" checked="{{receive}}">
</div>
<div>
You will receive the newsletter: {{receive}}
<p>Confirmed:</p>
<template if={{receive}}>You will receive the newsletter</
template>
<template if={{!receive}}>You will not receive the newsletter</
template>
</div>
</template>
<script type="application/dart" src="pol_check.dart"></script>
</polymer-element>

The following screenshot is what you see when you run the app:

Two-way binding to checkboxes

Polymer Dart Recipes

284

How it works...
In step 3, the value from the checked attribute of the checkbox is bound by the expression
checked="{{receive}} to the variable receive. Through step 2, the value shows up
in the simple {{receive}} expression on the page, but it is also used in template
conditionals here.

See also
ff Refer to the Using custom attributes and template conditionals recipe in this chapter

for more information on template conditionals

Binding to radio buttons
In this recipe, we will show you how to bind an input value from a radio button to a variable; so
in effect, we now perform data binding from the UI to the code and have two-way data binding.
You can find the code in the project pol_radio.

How to do it...
1.	 The script starts with web\index.html, where a component with the name pol-

radio is imported through the following line:
<link rel="import"href="pol_radio.html">

From this, we know that the component is defined in pol_radio.html, and the
code behind it is in a file named pol_radio.dart. For a discussion of the other
tags, refer to the first recipe.

2.	 The code for pol-radio is defined in pol_radio.dart:
import'dart:html';
import'package:polymer/polymer.dart';

@CustomTag('pol-radio')
classPolradio extends PolymerElement {
 @observable String favoriteJob = '';

 Polradio.created() : super.created();

 voidgetFavoriteJob(Event e, var detail, Node target) {
 favoriteJob = (e.target as InputElement).value;
 }
}

Chapter 10

285

3.	 The structure of the component is outlined in pol_radio.html:
<link rel="import"href="packages/polymer/polymer.html">
<polymer-element name="pol-radio">
<template>
<div on-change="{{getFavoriteJob}}">
What is your favorite job?
<div>
<label for="sd">Software developer <input name="job" type="radio"
id="sd" value="Software developer"></label>
</div>
<div>
<label for="wd">Web Developer <input name="job" type="radio"
id="wd" value="Web developer"></label>
</div>
<div>
<label for="tt">Tester<input name="job" type="radio" id="tt"
value="Tester"></label>
</div>
</div>
<div>
You selected: {{favoriteJob}}
</div>
</template>
<script type="application/dart" src="pol_radio.dart"></script>
</polymer-element>

The following screenshot is what you see when you run the app:

Polymer Dart Recipes

286

How it works...
On the web page (step 3), we see that the three radio buttons are grouped together by giving
them the same value for the name attribute, which is name="job". Their values are literal
strings, which they can deliver to code. This connection is made because the radio buttons
are encapsulated in a <div> tag, which has a change event-handler defined in it:

<div on-change="{{getFavoriteJob}}">

The method getFavoriteJob in step 2 will extract the selected radio button's value, and
assign it to the variable favoriteJob:

favoriteJob = (e.target as InputElement).value;

This variable is defined as @observable, so it shows up on the page with
{{favoriteJob}}.

Binding to a selected field
In this recipe, we will show you how to bind a selected value from a <select> tag to a
variable; so in effect, we now perform data binding from the UI to the code and have two-way
data binding. We show a list of companies. You can find the code in the project pol_select.

How to do it...
1.	 The script starts with web\index.html, where a component with the name pol-

select is imported through the following line:
<link rel="import"href="pol_select.html">

From this, we know that the component is defined in pol_select.html, and the
code behind it is in a file named pol_select.dart. For a discussion of the other
tags, see the first recipe.

2.	 The code for pol-select is defined in pol_select.dart:
import'package:polymer/polymer.dart';

@CustomTag('pol-select')
classPolselect extends PolymerElement {
 final List companies = toObservable(['Google', 'Apple',
 'Mozilla', 'Facebook']);
 @observable int selected = 2; // Make sure this is not null;
 // set it to the default selection index.

Chapter 10

287

@observable String value = 'Mozilla';

 Polselect.created() : super.created();
}

3.	 The structure of the component is outlined in pol_select.html:
<link rel="import"href="packages/polymer/polymer.html">
<polymer-element name="pol-select">
<template>
<select selectedIndex="{{selected}}" value="{{value}}">
<option template repeat="{{comp in companies}}"> {{comp}} </
option>
</select>
<div>
You selected company {{selected}}

or from index: {{companies[selected]}}

or from binding: {{value}}
</div>
</template>
<script type="application/dart" src="pol_select.dart"></script>
</polymer-element>

The following screenshot is what you see when you run the app:

Binding with a select field

How it works...
Step 2 defines the list of companies to be shown. It also declares an index to be selected in
List and value as a variable. Step 3 shows that to populate a <select> tag, the repeating
template from the Binding and repeating over a list recipe in this chapter can be used. It also
shows that the selectedIndex attribute is set from the code. When another company is
selected, this also changes the values of selected and value.

Polymer Dart Recipes

288

Event handling
In this recipe, we will show you how to handle events in a Polymer component. You can find
the code in the project event_handling.

How to do it...
1.	 The script starts with web\index.html, where a component with the name pol-

select is imported through the following line:
<link rel="import"href="pol_events.html">

From this, we know that the component is defined in pol_events.html, and the
code behind it is in a file named pol_events.dart. For a discussion of the other
tags, refer to the first recipe.

2.	 The code for pol-events is defined in pol_events.dart:
import'package:polymer/polymer.dart';

@CustomTag('pol-events')
classPolevents extends PolymerElement {
@observable String which_event = "no event";
@observable String thing = "";
@observable String message = "";

Polevents.created() : super.created();

enter(KeyboardEvent e, var detail, Node target) {
 if (e.keyCode == KeyCode.ENTER) {
 which_event = "you pressed the ENTER key";
 }
}

btnclick(MouseEvent e, var detail, Node target) {
 message = (target as Element).attributes['data-msg'];
 which_event = "you clicked the button";
}

txtChange(Event e, var detail, Node target) {
 varinp = (target as InputElement).value;
 which_event = "you entered $inp in the text field";
}

cbClick(Event e, var detail, Node target) {

Chapter 10

289

which_event = "you changed the checkbox";
}

selChange(Event e, var detail, Node target) {
 which_event = "you selected another option";
 }
}

3.	 The structure of the component is outlined in pol_events.html:
<link rel="import"href="packages/polymer/polymer.html">
<polymer-element name="pol-events">
<template>
<div class="auto-style1" on-keypress="{{enter}}">
<input type="text" on-change="{{txtChange}}" value="{{thing}}">
<input type="checkbox" on-click="{{cbClick}}">
<select on-click="{{selChange}}">
<option>option 1</option>
<option>option 2</option>
<option>option 3</option>
</select>
<button on-click="{{btnclick}}" data-msg="Message from
button">Invoke button click</button>
</div>
<div> This event occurred: {{which_event}} </div>
<p>{{ message }}</p>
</template>
<script type="application/dart" src="pol_events.dart"></script>
</polymer-element>

Experiment with the different events. Each time you will see some text displaying which
event was invoked, for example, when selecting from the drop-down list, you will see what's
shown in the following screenshot:

Handling events

Polymer Dart Recipes

290

How it works...
In step 3, we see a number of event-handlers defined in different HTML elements. They all
have the same form, which is on-event={{nameOfHandler}}.

In Dart Editor and most plugins, you can find out which events are possible to handle in which
tag by pressing Ctrl + Space bar within the HTML tag. Remember to put the dash between on
and the event name; onevent throws a ReferenceError error in runtime.

In step 2, we see a number of different handlers; they all have the same signature:

nameOfHandler(Event e, var detail, Node target) {
 // code to be executed when event occurs
}

The target node is the HTLM node upon which the event occurred. If this was
InputElement, you can get the input value with varinp = (target as
InputElement).value;; notice how the data-msg attribute from the button is read out
with message = (target as Element).attributes['data-msg'];.

Polymer elements with JavaScript interop
In this recipe, we will show you how to work with a JavaScript object in a Polymer component.
You can find the code in the project pol_js.

How to do it...
1.	 The script starts with web\index.html, where a component with the name pol-

js is imported through <link rel="import"href="pol_js.html"> and
instantiated through <pol-js></pol-js>.

From this, we know that the component is defined in pol_js.html, and its code
is in a file named pol_js.dart. For a discussion of the other tags, refer to the
first recipe.

2.	 The index.html file also includes a JavaScript person.js object:
function Person(name, gender) {
this.name = name;
this.gender = gender;
 this.greeting = function(otherPerson) {
 alert('I greet you ' + otherPerson.name);
 };
}

Person.prototype.sayHello = function(times) {

Chapter 10

291

return times + ' x: hello, I am ' + this.name;
};

3.	 The structure of the component is outlined in pol_js.html:
<link rel="import"href="packages/polymer/polymer.html">
<polymer-element name="pol-js">
<template>
<p>From JS interop: {{result}} </p>
<p>
<button on-click="{{btnClick}}">Click me</button>
</p>
</template><script type="application/dart"
src="pol_js.dart"></script>
</polymer-element>

4.	 The code for pol-js is defined in pol_js.dart:
import'dart:html';
import'dart:js';
import'package:polymer/polymer.dart';

@CustomTag('pol-js')
classPolJs extends PolymerElement {
 @observable String result;

 PolJs.created() : super.created();

 btnClick(Event e, var detail, Node target) {
 var pers1 = new JsObject(context['Person'], ['An', 'female']);
 result = pers1.callMethod('sayHello', [10]);
}
}

You will get what is shown in the following screenshot after you click on the Click me button:

Polymer interop with JavaScript

Polymer Dart Recipes

292

How it works...
In the JavaScript from step 2 (which is known to the web page), a class Person with a method
sayHello is defined. The parameter times says how many times the greeting is to be
repeated. In step 3, a variable result is bound to be displayed, and an event btnClick is
defined in the button. Step 4 shows us the code that does this; an object pers1 is created,
and the method sayHello is called upon it and assigned to result. Notice that we had to
import 'dart:js'; to make Dart–JavaScript interaction possible.

See also
ff To learn more about the Dart and JavaScript interaction, refer to the Talking with

JavaScript recipe in Chapter 5, Handling Web Applications

Extending DOM elements
Instead of making a new Polymer component from scratch, as we did in the previous recipes,
you can also start from a native HTML element and build upon that. This is made possible
because our component is backed up by a class that can inherit the properties and behavior
of an existing HTML element class. For our example, we will extend a Div element. You can
find the code in the project dom_extend.

How to do it...
1.	 The script starts with web\index.html, where a component with the name dom-

extend is imported through the following line:
<link rel="import"href="dom_extend.html">

From this, we know that the component is defined in dom_extend.html, and the
code behind it is in a file named dom_extend.dart. For a discussion of the other
tags, refer to the first recipe. Because we make a specialized <div> tag, we have to
indicate this with an is attribute, as follows:

<body>
<div is="dom-extend">Initial div content </div>
</body>

2.	 The code for dom-extend is defined in dom_extend.dart:
import'dart:html';
import'package:polymer/polymer.dart';

@CustomTag('dom-extend')
classDomextend extends DivElement with Polymer, Observable {

Chapter 10

293

 Domextend.created() : super.created() {
 polymerCreated();
 text = "I am not an ordinary div!";
 }
}

3.	 The structure of the component is outlined in dom_extend.html:
<link rel="import"href="packages/polymer/polymer.html">
<polymer-element name="dom-extend" extends="div">
<template>
<style>
:host {
 background: lime;
 color: red;
 font-size: 12px;
 font-weight: bold, italic;
 border: 1px solid #ccc;
}
</style>
<content>Initial dom-extend content</content>
</template>
<script type="application/dart" src="dom_extend.dart"></script>
</polymer-element>

We will get the following output after running this app:

Extending a DOM element

Polymer Dart Recipes

294

How it works...
In step 1, you could read the is="dom-extend" attribute meaning, this is <div>, but it
inherits the style, structure, and behavior of the dom-extend Polymer component. Step
2 shows us that class Domextend extends DivElement with Polymer, observable that
Domextend itself inherits from class DivElement and mixes with the Polymer and
Observable classes. Compare this with what we have for a normal Polymer component
(from the Binding and repeating over a list recipe in this chapter), which only inherits from the
PolymerElement class; class Pollist extends PolymerElement.

The polymer class is the mixing class for Polymer elements; it provides utility features
on top of the custom web elements standard. If it is used in this way, you must call
polymerCreated() from within the constructor. The constructor also changes the text in
the <div> tag.

In step 3, we have a second but necessary statement, <polymer-element name="dom-
extend"extends="div"> with extends="div", which Domextend inherits from
DivElement in full.

We have also used the host selector in order to style the shadow DOM <style>:host
{ … } </style>. This style can be overridden by the embedding web page. If this
is not what you want, just use the normal style selectors, such as class, ID, and so on. The
<content></content> area is used for content insertion; when a component has children,
those children go where the <content> tags are. Here, the initial text is overwritten by the
Polymer component dom-extend.

Working with custom elements
Instead of making a new Polymer component from scratch or starting with an existing HTML
element and building upon that as we did in the previous recipe, you can also simply use
custom-made Polymer elements.

This recipe will implement some of the core and paper elements of the Polymer project
(http://www.polymer-project.org/docs/elements/). The paper_elements
project is the Polymer implementation of Google's Material Design UI widgets (for more
information, refer to http://www.polymer-project.org/docs/elements/material.
html). There will be more and more of these, either written in JavaScript with a custom Dart
wrapper to use them, or purely in Dart, and you can also combine them with your own Polymer
components. You can find the code in the project pol_custom.

http://www.polymer-project.org/docs/elements/
http://www.polymer-project.org/docs/elements/material.html
http://www.polymer-project.org/docs/elements/material.html

Chapter 10

295

How to do it...
1.	 In our pubspec.yaml file, we add the following dependencies:

dependencies:
polymer: '>=0.11.0 <0.12.0'
core_elements: '>=0.0.6 <0.1.0'
paper_elements: '>=0.0.1 <0.1.0'

2.	 The script starts with web\index.html, where our core and paper components are
imported through the following lines:
<link rel="import"href="packages/core_elements/core_icon.html">
<link rel="import"href="packages/core_elements/core_icons.html">
<link rel="import"href="packages/core_elements/core_menu.html">
<link rel="import"href="packages/core_elements/core_item.html">
<link rel="import"href="packages/paper_elements/paper_input.html">
<link rel="import"href="packages/paper_elements/paper_radio_group.
html">
<link rel="import"href="packages/core_elements/core_splitter.
html">

We randomly chose some components from the several dozen available.

The components are instantiated in the <body> tag:

<body unresolved>
<core-menu selected="0">
<core-item icon="settings" label="Settings"></core-item>
<core-item icon="dialog" label="Dialog"></core-item>
<core-item icon="search" label="Search"></core-item>
</core-menu>
<paper-input label="Waiting for input..."></paper-input>
<paper-radio-group selected="small">
<paper-radio-button name="small" label="Small"></paper- radio-
button>
<paper-radio-button name="medium" label="Medium"></paper-radio-
button>
<paper-radio-button name="large" label="Large"></paper-radio-
button>
</paper-radio-group>
<div horizontal layout>
<div>left

</div>
<core-splitter direction="left"></core-splitter>
<div flex>right</div>
</div>
</body>

Polymer Dart Recipes

296

Running this app will give you the following output:

Core and paper elements

How it works...
The core_elements and paper_elements pub packages are wrappers and ports for
Polymer's element collections with the same name. They package the elements into single
pub packages to be able to add them as a pubspec dependency. Most core elements are
wrapped with Dart proxy classes to make them easier to interact with Dart scripts.

In step 2, a random selection of these elements is imported and instantiated in the page.
Most properties are changeable via attributes such as icons, labels, and so on. The <body>
tag needs the unresolved attribute to ensure that no Polymer custom elements are
displayed before Polymer is ready. Since these are custom elements, there are no steps 3 and
4 as in the previous recipes!

Chapter 10

297

There's more...
The Index.html file also shows how to use the core and paper icons; import them with the
following code:

<link rel="import"href="packages/paper_elements/paper_icon_button.
html">
<link rel="import" href="packages/core_elements/src/core-icons/
iconsets/social-icons.html">

In the preceding code, you choose the name according to the set you want to load, for
example, social icons. Then, use the icon by setting the icon attribute; the value consists of
icons set, -ID, a colon followed by the icon name. This icon for example, shows a +1 value:

<paper-icon-button id="bookmark-button" icon="social:plus-one"
style="fill:steelblue;"></paper-icon-button>

Automatic node finding
Like jQuery with its $ function, Polymer also has a very handy way to locate nodes in the
DOM of the page. This recipe shows you how to use it. You can find the code in the project
find_nodes.

How to do it...
1.	 The script starts with web\index.html, where a component with the name find-

nodes is imported through the following line:
<link rel="import"href="find_nodes.html">

From this, we know that the component is defined in find_nodes.html, and the
code behind it is in a file named find_nodes.dart. For a discussion of the other
tags, refer to the first recipe.

2.	 The code for find-nodes is defined in find_nodes.dart:
import'dart.html';
import'package:polymer/polymer.dart';

@CustomTag('find-nodes')
classFindnodes extends PolymerElement {
 Findnodes.created() : super.created();

 btnclick(MouseEvent e, var detail, Node target) {
 // making the paragraph visible:

Polymer Dart Recipes

298

 $['show'].style
 ..display = 'inline'
 ..color = 'red';
 // changing the text inside the div:
 Element insideDiv = $['findme'];
 insideDiv.text = 'I was looked up by \$ and changed!';
 }
}

3.	 The structure of the component is outlined in find_nodes.html:
<link rel="import"href="packages/polymer/polymer.html">
<polymer-element name="find-nodes">
<template>
<div class="auto-style1">
<div id="findme">Hello from inside a div</div>
<button on-click="{{btnclick}}">Click to find</button>
</div>
<p id="show" style="display:none">==> I was found by $ and
became visible! </p>
</template>
<script type="application/dart"
src="find_nodes.dart"></script>
</polymer-element>

The following screenshot shows you what you will see when you run the app:

Binding with a select field

Chapter 10

299

How it works...
In step 2, we see that the paragraph with ID show is shown when the button is clicked
because of the line $['show'].style.display = 'inline'; in the event handler.
Likewise, an element reference to <div> with the ID findme is found with $['findme'].
The code uses automatic node finding, a Polymer feature, to get a reference to each HTML
element. Every node in a custom element (so inside the shadow DOM!) that is tagged with an
id attribute can be referenced by its ID using the syntax $['ID'].

This example requires Polymer dart 0.8.0 or higher.

Internationalizing a Polymer app
What if you want your web app to display information in several languages, depending on the
language of the web client user? This recipe will show you how to accomplish this. You can
find the code in the project pol_intl.

How to do it...
1.	 Add the intl package from the pub package to your app through pubspec.yaml.

2.	 The script starts with web\pol_intl.html, where a component with the name
localized_text is imported through the following line:
<link rel="import"href="localized_text.html">

From this, we know that the component is defined in localized_text.html, and
the code behind it is in a file named localized_text.dart. For a discussion of
the other tags, see the first recipe.

3.	 The structure of the component is outlined in localized_text.html:
<link rel="import"href="packages/polymer/polymer.html">
<polymer-element name="localized-text">
<template>
<p>{{startMsg}}</p>

<select value="{{selectedLocale}}">
<option value="en_US">English</option>
<option value="fr">French</option>
<option value="nl_NL">Dutch</option>
<option value="de">German</option>
<option value="it">Italian</option>

Polymer Dart Recipes

300

<option value="jp">Japanese</option>
</select>

</template>
<script type="application/dart"
src="localized_text.dart"></script>
</polymer-element>

4.	 The code for localized-text is defined in localized_text.dart:
import'package:polymer/polymer.dart';
import'package:intl/intl.dart';
import'messages_all.dart';

@CustomTag('localized-text')
classLocalizedText extends PolymerElement {
 @observable String selectedLocale;
 @observable String startMsg;

 LocalizedText.created() : super.created() {
 updateLocale(Intl.defaultLocale);
 }

 voidselectedLocaleChanged() {
 initializeMessages(selectedLocale).then(
 (succeeded) =>updateLocale(selectedLocale));
 }

 voidupdateLocale(localeName) {
 Intl.defaultLocale = selectedLocale;
 startMsg = start();
}

start() =>Intl.message("Please choose your language and then start
the tour.",
name: 'startMsg',
desc: "Starting the tour",
args: [], // needed if arguments.
examples: {"" : 0});
}

Chapter 10

301

The following screenshot shows what you will see when you run the app:

Using intl with Polymer

How it works...
The package intl is imported in step 1; it is maintained by the Dart team, which provides
internationalization and localization facilities, for example, message translation, plurals and
genders, date/number formatting and parsing, and bidirectional text. In step 3, a drop-down
list of languages is offered to choose a language from. The value of the chosen option is
bound to the variable selectLocale. The purpose of the rest of the code is to translate the
content of startMsg to this language.

In step 4, the method selectedLocaleChanged() is triggered when a language is chosen.
This calls the updateLocale method with selectedLocale, which sets the value as
defaultLocale and sets startMsg to the result of the start() function. This executes
Intl.message for the message we want to translate, returning that message in the chosen
language. All messages to be localized are written as functions that return the result of an
Intl.message call.

Internally, intl works as follows:

ff The messages to be translated are stored in a file named intl_messages.json,
with their names and the message in the default language. They are extracted
from the program source, either manually or by running dart extract_json.
dartlocalized_text.dart, which produces the JSON file.

ff From this file, the different translation_locale.json files are produced; one
for each language to be used. These files contain a map with the locale, and its
name and translation for each message. For example, here is the Italian version
translation_it.json:
{"_locale" : "it",
 "startMsg" : "Scegliere la lingua e poi iniziareil tour."}

Polymer Dart Recipes

302

Now, run dart generate_from_json.dartlocalized_text.
darttranslation_fr.jsontranslation_nl.json . This will generate
messages_all.dart, messages_fr.dart, messages_nl.dart, and so on.

ff Now import messages_all.dart in the main Dart script, and the mechanism is in
place. If the number of messages is small, you could work with the messages_ files
themselves, without having to generate them from JSON files.

There's more...
For more detailed information on intl, see its documentation at http://www.dartdocs.
org/documentation/intl/0.11.3/index.html#intl.

If instead of letting your user choose the language, you want to derive it from the information
the browser gives you, then use the following code:

import"package:intl/intl_browser.dart";
...
findSystemLocale().then(runTheRestOfTheProgram);

http://www.dartdocs.org/documentation/intl/0.11.3/index.html#intl
http://www.dartdocs.org/documentation/intl/0.11.3/index.html#intl

11
Working with
Angular Dart

This chapter contains the following recipes:

ff Setting up an angular app

ff Using a controller

ff Using a component

ff Using formatters as filters

ff Creating a view

ff Using a service

ff Deploying your app

Introduction
In this chapter, we are going to use Angular Dart to build client web applications. Angular
Dart (https://github.com/angular/angular.dart) is the porting of AngularJS to
Dart. AngularJS, or Angular for short (refer to www.angularjs.org), is a popular open
source JavaScript framework, maintained by Google, to develop single-page dynamic web
applications. Its goal is to create web-based apps with Model-View-Controller (MVC) or
Model-View-ViewModel (MVVM) capabilities in an effort to make both development and
testing easier.

https://github.com/angular/angular.dart
www.angularjs.org

Working with Angular Dart

304

It accomplishes this using declarative programming to build UI and wire software components
so that you can concentrate on your application's logic and not on DOM manipulation. It
uses a templating system with a number of so-called directives (starting with ng-) to specify
customizable and reusable HTML tags and expressions that control the behavior of certain
elements: in effect, you extend HTML with custom elements and attributes. Google uses
Angular Dart to build internal applications. Each recipe explored in this chapter exposes a
major component of Angular. The most up-to-date documents can be found at https://
docs.angulardart.org/.

Setting up an Angular app
This recipe is a preliminary step necessary for every other recipe in this chapter. It shows you
how to make the Angular Dart functionality available to your app.

How to do it...
1.	 There is no angular template yet in Dart Editor, so start your app from a web

application (mobile friendly), and call it, for example, angular_setup. Clear the
sample code from the html and dart files.

2.	 Add angular to the dependencies in pubspec.yaml. Saving will start the
pub get procedure.

3.	 Also add js and shadow_dom to pubspec.yaml.

4.	 Add the shadow DOM script to the html file:
 <script
 src="packages/shadow_dom/shadow_dom.min.js"></script>

5.	 Also, include the Angular transformer:
transformers:
- angular

6.	 Provide the ng-app attribute in the <html> element.

7.	 Add the following statement to the top of your main Dart script:
import 'package:angular/angular.dart';
import 'package:angular/application_factory.dart';

8.	 In main(), insert the code applicationFactory().run();.

9.	 Provide the ng-cloak attribute in the <body> element.

10.	 Add the following section to your CSS file:
[ng-cloak], .ng-cloak {
 display: none !important;
}

https://docs.angulardart.org/
https://docs.angulardart.org/

Chapter 11

305

How it works...
Step 2 downloads the basic Angular Dart framework as well as the packages it depends on.
Notice that it uses the web_components package. Steps 3 and 4 turn on the Shadow DOM
for older browsers that do not yet implement this feature natively, in which case, the package
js is needed for JavaScript interoperability.

Shadow DOM is the ability of the browser to include a sub-tree of DOM elements into the
rendering of a tag, the so-called shadow root. For example, an <input type="date">
element hides a whole HTML table to create a slick calendar that highlights the range of
dates and that reacts to click events. It is on this basis that web components are built. For
more detailed information, refer to http://www.html5rocks.com/en/tutorials/
webcomponents/shadowdom/.

Step 5 is necessary to deploy your app when you convert your app to JavaScript (refer to the
Deploying your app recipe). The ng-app directive in Step 6 tells Angular which element is the
root element of the application: everything inside of it is part of the page template managed
by Angular. In most cases, this is the outermost <html> tag; anything inside of this element is
part of the page template managed by Angular. After the page is loaded, Angular looks for the
ng-app directive. Upon finding it, it bootstraps the application, with the root of the application
DOM being the element on which the ng-app directive was defined.

Step 7 makes Angular available to your code, and step 8 starts Angular's event-loop to handle
every browser event. If anything in the model changes in this event handling, all corresponding
bindings in the view are updated.

Steps 8 and 9 are necessary to avoid the display of {{…}} before the correct values from the
model are inserted. This happens because there is a little time gap between the time when
you load HTML and the time when Angular is ready with bootstrapping, compiling the DOM,
and substituting in the real values for the data binding expressions.

There's more...
If you need the mirrors library, dart:mirrors, to use Dart's reflection capabilities, provide a
temporary fix using the mirrors annotation:

@MirrorsUsed(override:'*')
import 'dart:mirrors';

The processes of minifying and tree-shaking your app performed by the dart2js compiler will
generally not detect reflected code so that the use of reflection at runtime might fail, resulting
in noSuchMethod() errors. To prevent this from happening, use the mirrors annotation,
which helps the dart2js compiler to generate smaller code.

http://www.html5rocks.com/en/tutorials/webcomponents/shadowdom/
http://www.html5rocks.com/en/tutorials/webcomponents/shadowdom/

Working with Angular Dart

306

For more information on mirrors, see the Using reflection recipe in Chapter 4, Object Orientation,
and also https://www.dartlang.org/articles/reflection-with-mirrors/.

Using a controller
The web page is our view in the MVC pattern. The controller object is responsible for showing
data from the model (binding them to DOM elements in the view) and in response to events,
possibly changing model data and displaying these changes in the view. All public fields of the
controller can be shown, and all public methods can be invoked from within the view. Data
binding is done through the same syntax as in Polymer using double curly braces {{ … }}. A
controller should contain only the business logic needed for a single app or view; it should not
manipulate the DOM.

In this recipe, we'll show you how to work with an Angular controller step by step. You can
follow along with the code in the project angular_controller.

How to do it...
Our app will show job type data in a list, and when a job is selected, its details are shown, as
shown in the following screenshot:

The controller in action

https://www.dartlang.org/articles/reflection-with-mirrors/

Chapter 11

307

Its working is explained as follows:

ff The Job class, which is the model, is defined in angular_controller.dart
as follows:
class Job {
 String type;
 int salary;
 String company;
 DateTime posted; // date of publication of job
 bool open = true; // is job still vacant?
 List<String> skills;
 String info;
 Job(this.type, this.salary, this.company, this.posted, this.
skills, this.info);
}

ff The controller is a separate class, JobListingController, in the same file:
@Controller(
 selector: '[job-listing]',
 publishAs: 'ctrl')
class JobListingController {
 Job selectedJob;
 List<Job> jobs;

 JobListingController() {
 jobs = _loadData();
 }

 void selectJob(Job job) {
 selectedJob = job;
 }

 // model data:
 List<Job> _loadData() {
 return [
 new Job('Web Developer',7500, 'Google', DateTime.
parse('2014-07-03'),
 ["HTML5", "CSS", "Dart"], "on-site job Palo Alto, California"),
 // other job data
];
 }
}

Working with Angular Dart

308

ff In the web page, everything happens in <div> marked with job-listing:
<div job-listing>
 <h3>Job List</h3>

 <li class="pointer"
 ng-repeat="job in ctrl.jobs"
 ng-click="ctrl.selectJob(job)">
 {{job.type}}

 <h3>Job Details</h3>
 <div>Type: {{ctrl.selectedJob.type}}</div>
 <div>Company: {{ctrl.selectedJob.company}}</
div>
 <div>Salary: {{ctrl.selectedJob.salary}}</
div>
 <div>Posted: {{ctrl.selectedJob.posted}}</
div>
 <div>Skills:

 <li ng-repeat="skill in ctrl.selectedJob.skills">
 {{skill}}

 </div>
 <div>More info: {{ctrl.selectedJob.info}}</
div>
</div>

ff To start up the Angular machinery, something more has to be done now as shown in
the following code:
void main() {
 applicationFactory()
 .addModule(new AppModule())
 .run();
}

class AppModule extends Module {
 AppModule() {
 bind(JobListingController);
 }
}

Chapter 11

309

How it works...
The controller in step 2 contains the list of jobs to be shown; it loads them in through _
loadData() in its constructor. It also holds the selected job, if any. This controller is marked
with the @ annotation. Have a look at the following code:

@Controller(
 selector: '[job-listing]',
 publishAs: 'ctrl')

The string after selector, between brackets, is the name of a CSS selector (here, job-
listing) in the page. In step 3, we see that there is a <div> element that has this name
as selector. This <div> element defines a scope in which the controller is active and known.
When Angular sees this <div> element, it instantiates the controller class, making its content
available. The publishAs code gives the name (here, ctrl) that the controller is known by in
the <div> scope in the view: that's why we see that name appear throughout the HTML code.

In , all the jobs from the list in the controller known as ctrl are shown through the
directive ng-repeat="job in ctrl.jobs"; this iterates over the model (the job property
in JobListingController) and the clone in the compiled DOM for each job in the list.
More specifically, only type is shown because the tag contains {{job.type}}.

The same tag also contains an ng-click directive, which registers an event-handler
for a click event on the list item ng-click="ctrl.selectJob(job)". This can be
attached to any HTML element, and here it calls the method selectJob in the controller,
passing the job that was clicked. In step 2, we see that this method passes this job to
selectedJob. Because this variable now gets a value, the view updates, and all {{ctrl.
selectJob. } expressions are evaluated and shown, including the list of skills, where an
ng-repeat="skill in ctrl.selectedJob.skills" directive is used.

To make this work in Angular, we need to wrap our controller in the class AppModule, which
inherits from Module. To instantiate this new module, it has to be added to the Angular
engine via the method addModule(), a dependency injection technique that is used for
other Angular items too as we will see in the next recipes; in general, an Angular app will have
a list of modules with which it works.

There's more...
A control in the view can be disabled when a certain condition is met if you add the
following HTML attribute: ng-disabled="ctrl.condition", where condition is a
Boolean property or function in the controller. To make the control visible or not, use
ng-show or ng-hide.

Working with Angular Dart

310

Using a component
In this recipe, we'll show you how to work with an Angular component step by step.
Components are lightweight, reusable, and self-contained UI widgets that have a single
specific purpose. We'll use a component that shows a graphical representation of the job's
salary. You can follow along with the code in the project angular_component.

How to do it...
Our app shows job type data in a list, together with a number of stars, to indicate the
salary. This is also shown when selecting a job to show its details, as shown in the
following screenshot:

A component showing the salary

Chapter 11

311

Its working is explained as follows:

ff The following is the startup script angular_component.dart:
import 'package:angular/angular.dart';
import 'package:angular/application_factory.dart';
import 'package:angular_component/salary/salary_component.dart';
import 'package:angular_component/job_listing.dart';

void main() {
 applicationFactory()
 .addModule(new AppModule())
 .run();
}

class AppModule extends Module {
 AppModule() {
 bind(JobListingController);
 bind(SalaryComponent);
 }
}

ff In the web page, we see a new HTML element <x-salary> for our component, as
follows:
<x-salary max-sal="10" salary="job.rate_salary"></x-salary>

This is also found in the job details section, which is now surrounded by the following
code:

<div ng-if="ctrl.selectedJob != null">
 …
<x-salary max-sal="10" salary="ctrl.selectedJob.rate_salary"></x-
salary>
…
</div>

The component is defined in the folder lib\salary, with an HTML file angular_
component.html that defines its structure, a Dart file that describes its behavior,
and a CSS file to style it.

ff The following is the Dart code:
import 'package:angular/angular.dart';

@Component(
 selector: 'x-salary',

Working with Angular Dart

312

 templateUrl: 'packages/angular_component/salary/salary_
component.html',
 cssUrl: 'packages/angular_component/salary/salary_component.
css',
 publishAs: 'cmp')
class SalaryComponent {
 static const String _STAR_ON_CHAR = "\u2605";
 static const String _STAR_OFF_CHAR = "\u2606";
 static const String _STAR_ON_CLASS = "star-on";
 static const String _STAR_OFF_CLASS = "star-off";

 static final int DEFAULT_MAX = 5;

 List<int> stars = [];

 @NgOneWay('salary')
 int salary;

 @NgAttr('max-sal')
 void set maxSal(String value) {
 var count = (value == null)
 ? DEFAULT_MAX
 : int.parse(value, onError: (_) => DEFAULT_MAX);
 stars = new List.generate(count, (i) => i + 1);
 }

 String starClass(int star) =>
 star > salary ? _STAR_OFF_CLASS : _STAR_ON_CLASS;

 String starChar(int star) => star > salary ? _STAR_OFF_CHAR :
_STAR_ON_CHAR;
}

ff The following is the HTML code for the component:
<span class="stars"
 ng-repeat="star in cmp.stars"
 ng-class="cmp.starClass(star)">
 {{cmp.starChar(star)}}

Chapter 11

313

How it works...
In step 1, you can see that we refactored the code of JobListingController into its own
library in lib\job_listing.dart. A component called SalaryComponent is now also
bound to AppModule. Step 2 demonstrates how the component is used in HTML as a new
kind of tag <x-salary>, with properties max-sal and salary. Why x- ? In order to be W3C
compliant, custom components should have a dash (-) in their names.

Additionally, we see how we control the inclusion of HTML sections in Angular with ng-
if="condition". If the condition is false, then that <div> section is removed from
the DOM.

In step 3, we see how the definition of the class SalaryComponent is preceded by the @
Component annotation. Its selector part states the HTML element that will instantiate the
component, which also defines its scope. Note that templateUrl and cssUrl refer to the
definition of the component, and publishAs is the name for the component in its scope,
which is used in step 4. How does the component depict the salary? The star character
comes from the Unicode "\u2605", shown through {{cmp.starChar(star)}}. When
the component is instantiated, its properties get set, in particular, salary="job.rate_
salary". rate_salary is a getter in the class Job: the properties are set as int get
rate_salary => salary~/1000. Thus, the salary in the component is the number of
thousands in the job's salary. Note that salary is annotated by @NgOneWay, which means
that it is a one-way property and its value flows from the object to the UI, but the UI cannot
change it in the code. Note that max-sal, being an attribute, is annotated by @NgAttr. The
NgAttr annotation on a field maps this to a DOM attribute. The stars list gets set to a list
of max-sal numbers by List.generate(): [1,2,3,4,5,6,7,8,9,10]. The ng-class
directive sets the CSS class on the component dynamically; its expression is the name of the
class to be added to it, which amounts to "star-on" or "star-off". The star is pictured
yellow when star is still smaller than or equal to salary. Thus, for every thousand dollars
in salary, a yellow star is shown by ng-repeat, while max-sal determines the number of
uncolored stars.

There's more...
If a user needs to be able to change a property through the web page (for example, changing
the salary), they will have to declare it as @TwoWay in the code. In our example, this can be
done by defining an ng-click="event-handler" for our component.

See also
ff For another example of a component, see the Creating a view recipe in this chapter

Working with Angular Dart

314

Using formatters as filters
Formatters are helper tools to view your data differently from how they are stored in the
model. Angular has built-in formatters, for example, Date to format date-times, Currency
to format money data, and LimitTo to limit the view to a certain number of results. The
Filter class displays items based on whether they satisfy the criteria set up in the filter.
Sorting works through an orderBy attribute in ng-repeat. In this recipe, we will show you
how to use filters to make different views on your data possible. You can follow along with the
code in the project angular_formatter.

How to do it...
The job listing is now preceded by an input field; when you start typing the job type, the list of
only those jobs that start with these letters are shown. The checkboxes allow you to filter on
company, and the type of job is shown in uppercase in the job details section, as shown in the
following screenshot:

Using formatters to limit the view

Perform the following steps to use formatters as filters:

1.	 We've added two filters: the first on the job type, the second on the company. They
are expressed through HTML in angular_formatter.html. Have a look at the
following code:
 <div id="filters">
 <div>
 <label for="type-filter">Filter jobs by type</label>
 <input id="type-filter" type="text"

Chapter 11

315

 ng-model="ctrl.typeFilterString">
 </div>
 <div> Filter jobs by company:

 <label>
 <input type="checkbox"
 ng-model="ctrl.companyFilterMap[company]">{{company}}
 </label>

 </div>
 <input type="button" value="Clear Filters" ng-click="ctrl.
clearFilters()">
</div>

2.	 The actual filtering takes place in the same file; instead of a simple ng-repeat =
"job in ctrl.jobs", we now have the following:
ng-repeat="job in ctrl.jobs
 orderBy:'type'
 filter:{type:ctrl.typeFilterString}
 companyfilter:ctrl.companyFilterMap"

We have shown here the different filter parts on consecutive lines for readability, but
in HTML, they must be on one line.

In the controller code (lib\job_listing.dart), we now have two lists:
 List<Job> jobs;
 List companies = [];

The _loadData() option now returns jobs, and in the constructor companies is
filled through as follows:
for (job in jobs) {
 companies.add(job.company);
}

The filters need the following code:
final companyFilterMap = <String, bool>{};
String typeFilterString = "";

void clearFilters() {
 companyFilterMap.clear();
 typeFilterString = "";
}

Furthermore, we have refactored the model code (class Job) in its own file lib\
model\job.dart.

Working with Angular Dart

316

The company filter is a custom formatter that has to be coded. We find it in lib\
formatter\company_filter.dart as follows:
library company_filter;

import 'package:angular/angular.dart';

@Formatter(name: 'companyfilter')
class CompanyFilter {
 List call(JobList, filterMap) {
 if (JobList is Iterable && filterMap is Map) {
 // If there is nothing checked, treat it as "everything is
checked"
 bool nothingChecked = filterMap.values.every((isChecked) =>
!isChecked);
 return nothingChecked
 ? JobList.toList()
 : JobList.where((i) => filterMap[i.company] == true).toList();
 }
return const [];
 }
}

3.	 In <div job-listing> in angular_formatter.html, we now format the job
type as {{job.type | uppercase}}.

4.	 In lib\formatter, we code this uppercase formatter as follows:
import 'package:angular/angular.dart';

@Formatter(name: 'uppercase')
class UppercaseFormatter {
 call(String name) {
 if (name == null || name.isEmpty) return '';
 return name.toUpperCase();
 }
}

5.	 The angular_formatter.dart script has two additional import statements and
two bind statements for the formatters, as follows:
import 'package:angular_formatter/formatter/company_filter.dart';
import 'package:angular_formatter/formatter/uppercase_formatter.
dart';

class AppModule extends Module {
 AppModule() {

Chapter 11

317

 bind(JobListingController);
 bind(SalaryComponent);
 bind(CompanyFilter);
 bind(UppercaseFormatter);
}

How it works...
In step 1, we see the two filters. The filter on type is done with an input text field that has
a special attribute, ng-model="ctrl.typeFilterString". This tells us that the
JobListingController must have a property typeFilterString, which is bound to this
input field by ng-model. The same goes for the checkboxes, which are bound to a controller
property, companyFilterMap:

ng-model="ctrl.companyFilterMap[company]"

Indeed, we see these properties declared in the additional controller code in step 3. Note that
companyFilterMap is a map built from the company names and the Boolean values of the
checkboxes. Step 2 shows us the filtering declaration: first the jobs are ordered by type, then
the type filter is applied (if any), and then the company filters (if any). The results are piped (or
chained) with a | operator from one filter to the other.

Step 4 shows the code for the company filter: it has to be a separate class, CompanyFilter,
that is annotated with @Formatter(name: 'companyfilter'), where the name is
used in the ng-repeat attribute. This class must have a call method, as first argument
the model object to be formatted (here, JobList), the second argument filterMap is
the filter to be applied. So the return value of call is the filtered (formatted) job list. The
filterMap parameter is the data that comes from the checkbox inputs. Steps 5 and 6 show
how to add a simple uppercase formatter. In step 7, we add our custom filters and formatters
to our AppModule.

See also
ff The Angular.dart framework here makes use of the special method call, which

is explained in the Using the call method recipe in Chapter 4, Object Orientation

Creating a view
In this recipe, we isolate the code for the filters from previous recipe in its own component:
search_job in the folder lib\component\. You can follow along with the code in the
project angular_view.

Working with Angular Dart

318

How to do it...
The change we make in this recipe is transparent to the user; the web page stays the same,
but the project code is refactored.

1.	 In our main web page angular-view.html, the <div id="filters"> section is
now replaced by the HTML code for the component. Have a look at the following code:
 <search-job
 type-filter="ctrl.typeFilter"
 company-filter-map="ctrl.companyFilterMap">
 </search-job>

2.	 In the constructor of JobListingController, the following code is added:
 for (var company in companies) {
 companyFilterMap[company] = false;
 }

3.	 The behavior of the component is coded in search_job_component.dart
as follows:
import 'package:angular/angular.dart';

@Component(
 selector: 'search-job',
 templateUrl: 'packages/angular_view/component/search_job_
component.html',
 publishAs: 'cmp')
class SearchJobComponent {
 Map<String, bool> _companyFilterMap;
 List<String> _companies;

 @NgTwoWay('type-filter')
 String typeFilter = "";

 @NgTwoWay('company-filter-map')
 Map<String, bool> get companyFilterMap => _companyFilterMap;
 void set companyFilterMap(values) {
 _companyFilterMap = values;
 _companies = companyFilterMap.keys.toList();
 }

 List<String> get companies => _companies;

 void clearFilters() {

Chapter 11

319

 _companyFilterMap.keys.forEach((f) => _companyFilterMap[f] =
false);
 typeFilter = "";
 }
}

4.	 The structure of the filter component is now coded in search_job_component.
html as follows:
<div id="filters">
 <div>
 <label for="type-filter">Filter jobs by type</label>
<input id="type-filter" type="text" ng-
model="cmp.typeFilter" value=" ">
 </div>
 <div>
 Filter jobs by company: <label> <input type="checkb
ox" ng-model="cmp.comp
anyFilterMap[company]">{{company}}
 </label>

 </div>
 <input type="button" value="Clear Filters"
 ng-click="cmp.clearFilters()">
</div>

How it works...
In step 1, we see that the main web page is now greatly simplified; instead of containing all
of the markup to set up the search and filter views, it now just contains the reference to the
component search_job. This component has two attributes, whose values must be set by
ctrl, our JobListingController. Step 2 shows the code to set companyFilterMap.
The two filter attributes are declared in step 3 as @NgTwoWay. Indeed the user must be
able to set them, and we want to be able to clear them in code in clearFilters(). The
component template code in step 4 is not changed.

Using a service
The following step is to read the data from a JSON file, which we will use in this recipe. Angular
has a built-in core functionality called the HTTP Service to make HTTP requests to a server. In
our example, the job data has been serialized to the JSON format in the file jobs.json, and
we will make an HTTP request to the web server to get this data. You can follow along with the
code in the project angular_service.

Working with Angular Dart

320

How to do it...
The change we make in this recipe is nearly transparent to the user; the web page stays the
same, but because making an HTTP request is asynchronous, we will work with a Future
and must provide a message, such as "Loading data…", as long as the request is
being executed.

1.	 In our JobListingController controller class, lib\job_listing.dart, we
define a new variable of the type Http: final Http _http; . The constructor
now becomes the following:

JobListingController(this._http) {
 _loadData();
}

The bulk of the change takes place in its _loadData() method, as shown in the
following code:
static const String LOADING_MESSAGE = "Loading jobs listing...";
static const String ERROR_MESSAGE = "Sorry! The jobs database
cannot be reached.";
String message = LOADING_MESSAGE;

void _loadData() {
 jobsLoaded = false;
 _http.get('jobs.json')
 .then((HttpResponse response) {
jobs = response.data.map((d) => new Job.fromJson(d)).toList();
 jobsLoaded = true;
 for (var job in jobs) { // extract companies:
 companies.add(job.company);
 }
 })
 .catchError((e) {
 print(e);
 message = ERROR_MESSAGE;
 });
 }

In the class Job we have a new named constructor, as follows:
Job.fromJson(Map<String, dynamic> json) : this(json['type'],
json['salary'], json['company'], DateTime.parse(json['posted']),
json['skills'], json['info']);

Chapter 11

321

How it works...
In step 1, we see that Angular uses dependency injection when instantiating the controller to
supply it with an Http object. Step 2 shows how the get method from the Http service is
used to make a GET request and to fetch data from the server (here the data is local, but it
could be fetched from a remote site). This method returns a Future <HttpResponse> when
the request is fulfilled. That's why we have to use a .then construct to register a callback
function and a .catchError to handle exceptions. In the callback function, we have the data
in response.data. With map, we call for each job as a JSON string. The named constructor
fromJson in the class Job from step 3 to transform it into a Job object. Finally, a list is made
with all job data, which is bound to the view in the same way as in the previous recipes.

See also
ff For more information about Futures, refer to Chapter 8, Working with Futures, Tasks,

and Isolates

ff For more details about JSON HTTP requests, refer to the Downloading a file recipe in
Chapter 6, Working with Files and Streams

Deploying your app
To run in any modern browser, your Angular app has to be compiled to minimal JavaScript.
Minimal means tree-shaken (so that unused code is left out) and minified (shortening of
names and minimum use of spaces).

But first, test your app in other browsers by performing the following steps:

1.	 First, test in your default browser by right-clicking on the startup web page and
selecting Run as JavaScript. This will compile to JavaScript and execute the app in
the browser, but the compiled code will be kept in memory and not written to disk.

2.	 To change browsers, go to the menu-item and navigate to Tools | Preferences | Run
| Debug, uncheck Use system default browser, and select the other browser. You
can also just start that browser and copy the URL from the app in your
default browser.

How to do it...
1.	 Include the Angular transformer into the app's pubspec.yaml file:

 transformers:
- angular

2.	 Also, add the js and shadow_dom packages to your pubspec.yaml file.

Working with Angular Dart

322

3.	 Add the shadow DOM script to the startup HTML file, as follows:
 <script src="packages/shadow_dom/shadow_dom.min.js"></script>

4.	 Use pub build either from the command line or from Dart Editor.

How it works...
Step 2 will make sure that Angular can work with Shadow DOM in all browsers (for more
information on Shadow DOM, refer to the How it works section in the Setting up an angular
app recipe in this chapter).

Instead of shadow_dom.min.js, you can use
shadow_dom.debug.js while debugging.

Step 3 will generate all deployable files in your app's directory in a subfolder named build/
web. For example, if we apply this to the angular_view app, we get a JavaScript file,
angular_view.dart.js, of about 1.7 MB to start up together with angular_view.html.
The following screenshot gives us an overview of the angular_view project:

Overview of the project layout

Chapter 11

323

See also
ff You can learn more about transformers at https://www.dartlang.org/tools/

pub/assets-and-transformers.html. For more information about compiling
to JavaScript, see the Compiling your app to JavaScript recipe in Chapter 1, Working
with Dart Tools and the Publishing and deploying your app recipe in Chapter 2,
Structuring, Testing, and Deploying an Application.

https://www.dartlang.org/tools/pub/assets-and-transformers.html
https://www.dartlang.org/tools/pub/assets-and-transformers.html

Index
Symbols
@deprecated instance 98

A
Access-Control-Allow-Origin

URL 125
Angular app

setting up 304, 305
Angular Dart

URL 303
AngularJS

URL 303
annotations

using 97, 98
app

benchmarking 49, 50
compiling, to JavaScript 17, 18
debugging, in Chrome browser 19, 20
debugging, in Firefox 21
deploying 51, 52, 321-323
documenting 47-49
exiting from 32, 33
library, using 38-40
logging, adding 44-46
profiling 49
publishing 51, 52
size, shrinking 24, 25
structuring 35-37
WebGL, using 142-146

application. See app
application cache

used, for working offline 116-119
assert

used, for microtesting code 40, 41

asynchronous operations 157
automatic node

finding 297, 298
availableIsolates 234

B
binding

over list 274-276
to checkbox 282-284
to input text field 281, 282
to map 276-278
to radio buttons 284-286
to selected field 286, 287
to text area 281, 282

blobs 172-174
browser's local storage

using 113-116

C
call method

using 99, 100
Cargo

URL 244
catchError function 181
Certificate Authority (CA) 203
certificates

URL 205
checkbox

binding to 282, 283
checked mode

about 9
Dartium, starting 10
different settings, using 52, 53
setting up 10-12

326

Chrome
app, creating 135-138
app, debugging 19, 20
package, URL 140

class
fromJSON method, creating 103-106
toJSON method, creating 103-106

client and server apps
common classes, creating for 106-108

command-line arguments
parsing 33-35

command-line tools
dart 21
dartanalyzer 21
dartfmt 21
docgen 21
pub 21
using 21, 22

comma separated values (csv) format 158
complex numbers

using 60-63
component

using 310-313
concatenating

strings 56
controller

using 306-309
Coordinated Universal Time (UTC) 73
CORS headers

URL 125
using 124

cross-site scripting (XSS) attacks 111
custom attributes

using 278-280
custom elements

working with 294-297

D
Dart

about 7
environment, configuring 8
environment, testing 9
URL 12

dart2js tool 19
dartanalyzer tool 21

Dart Editor
about 12
troubleshooting 13, 14

dartfmt tool 21, 22
Dartiverse Search

URL 202
dart tool 21
Dart VM

isolates, using 222-227
DartVoid

URL 52
data

about 237
binding, with polymer.dart 268-273
receiving, on web server 186-189
storing, in MongoDB 258-261
storing, in MySQL 245-250
storing, in Oracle 255-258
storing, in PostgreSQL 250-254
storing, in RethinkDB 262-265
storing locally, with IndexedDB 238-242
writing to file, on server 190

data types
URL 56

dates and times
URL 73
working with 70-73

debug mode. See checked mode
docgen tool 21
DOM elements

extending 292-294
drag-and-drop

enabling 127-132

E
Ecma TC52 Dart Standards Committee

URL 67
enum

about 64
creating 64-66

environment
configuring 8
downloading 8
testing 9

error handling
with Futures 213-216

327

event handling 288-290
exiting

from app 32, 33

F
factory constructor

using 86-90
factory design pattern

URL 86
file

concatenating 166-168
data writing, on server 190
downloading 169-171
downloading, http package used 171
downloading, pipe used 171
operation modes 157
processing, line by line 158-162
reading, line by line 158-161
searching in 163-166
serving, with http_server 191-193
writing to 162, 163

file, operation modes
asynchronous operations 157
synchronous operations 157

filters
formatters, using as 314-317

Firefox browser
app, debugging 21

format
combinations, URL 72

formatters
using, as filters 314-317

fromJson() 105
fromJSON method

creating, in class 103-106
Future class 209
Futures

Chaining Futures 214
Concurrent Futures 214
error handling with 212-216
used, for scheduling tasks 217-219

G
game loop

writing 210-212

game project
structuring 140-142

Garbage Collection (GC) 75
Gauss Mixture Model (GMM) 76
GitHub

URL 15
Google

URL 150
Google services

OAuth2, authorizing to 146-150
Graphic Processing Unit (GPU) 142
Greenwich Mean Time (GMT) 73

H
Heroku

URL 52
HTML

sanitizing 111-113
HTML table

API docs, URL 123
rows, inserting dynamically 120-123

http package
using 171

HttpRequest object 182
http_server

files, serving with 191-193
HttpServer class 180

I
IDE

Sublime Text, using as 16
IndexedDB

used, for storing data locally 238-242
information

obtaining, from operating system 27-29
input text field

binding to 281, 282
integer types, VM

bigint (big integer) 73
mint (medium integer) 73
smi (small integer) 73

intl
URL 302

328

isolates
multiple cores, using with 231-233
using, in Dart VM 222-227
using, in web apps 228-230

J
JavaScript

app, compiling to 17, 18
libraries, using 154-156
readable JavaScript code, producing 18
talking with 150-154
working with 75

JavaScript interop
polymer element with 290-292

JavaScript Object Notation (JSON)
about 103
URL 103, 106

JSON.decode() 105
JSON.encode() 105
JSON-formatted data

posting 183-186
JSON web service

using 205-208

K
keyboard events

using 125, 126

L
Lawnchair

URL 242
Lawndart

API docs, URL 244
URL 242
used, for writing offline web pages 242-244

Learning Dart
URL 169

library
using, from app 38-40

list
about 67
flattening 67
random element, obtaining 69

logging
adding, to app 44-47

Luhn algorithm
URL 58

M
map

binding to 276-278
markdown

URL 37
memcached_client library

URL 265
microtesting

code, assert used 40, 41
mirrors

URL 306
mixed-in class

restrictions 96
mixins

using 95, 96
Model-View-Controller (MVC) 303
Model-View-ViewModel (MVVM) 303
MongoDB

API docs, URL 262
data, storing in 259-262
URL 258

multiple cores
using, with isolates 231-233

MySQL
API docs, URL 250
data, storing in 245-250

MySQL Community Server installer
URL 245

N
Network Security Services (NSS) 203
noSuchMethod

using 100-102
numbers

parsing 75
numerical computations

JavaScript, working with 75

329

numbers, parsing 75
performance, improving 73-75

O
OAuth2

authorizing, to Google services 146-150
URL 150

offline web-apps
writing, Lawndart used 242-244

onClose event 201
onError event 201
onOpen event 201
onSubmit event

preventing, from reloading page 119, 120
operating system

information, obtaining from 27-29
Oracle

data, storing in 255-258
Oracle installer

URL 256

P
Package Control plugin

URL 15
page reload

preventing, by onSubmit event 119, 120
pipe

using 171
Polymer

app, internationalizing 299-302
project, URL 294
URL 268

polymer.dart
data, binding with 268-274
URL 268

Polymer element
with JavaScript interop 290-292

Polymer web app
unit testing 41-44

PostgreSQL
data, storing in 250-255
URL 251

private pub mirror
hosting 14, 15

production mode
about 9
different settings, using 52, 53
setting up 10-12

program
ending, ways 32

pub build command
URL 51

pub package manager tool 23, 24
pub tool 21

R
radio buttons

binding to 284, 285
random element

obtaining, from list 69
random number

generating, within range 68
recurring function

running 219-221
redis_client package

URL 265
reflection

considerations 94
using 91-95

regular expressions
about 57, 58
syntax, URL 58

release mode. See production mode
repeating

over list 274-276
response object 181
responsive design

about 110
URL 111

RethinkDB
data, storing in 262-265
URL 262

riak_client
URL 265

rows
inserting dynamically, in HTML table 120-123

330

S
secure sockets

using 202-204
Secure Sockets Layer (SSL) 202
selected field

binding to 286, 287
server

data, writing to file 190
using 203-205

ServerSocket 193
service

using 319-321
Shaders

URL 146
SIMD

URL 79
using, for enhanced performance 76-78

single Dart file
producing 19

Single Instruction Multiple Data. See SIMD
singleton

building 90
snapshotting

using 26, 27
sockets

using 193-195
streams

transforming 174-176
strings

and unicode 59, 60
concatenating 56

Sublime Text
URL 15
using, as IDE 15, 16

synchronous operations 157
system call

making 25

T
tasks

scheduling, with Futures 217-219
template conditionals

using 278-280
text area

binding to 281, 282

time. See dates and times
toJson() 105
toJSON method

creating, in class 103-106
toString() method 83
touch events

enabling 132-135
transformers

URL 323
troubleshooting

Dart Editor 12-14
two objects

comparing 84, 85
types

converting 82, 83
testing 82, 83

U
UDP socket programming

James Locum article, URL 196
unicode

and strings 59, 60
unit testing

Polymer web app 41-44

V
view

creating 317-319
Virtual Machine (VM)

about 9
integer types 73

W
web apps

isolates, using in 228-230
web components

URL 305
Web Graphics Library (WebGL)

URL 146
using, in app 142-146

web server
creating 180, 181
data, receiving on 186-189

WebSockets
onClose event 201

331

onError event 201
onOpen event 201
using 196-201

wilt package
URL 265

window.indexedDB.open method 241
Worker Task framework

using 233-235
workingIsolates 234

Y
Yahoo Query Language (YQL) 205

Z
zones

URL 193

Thank you for buying
Dart Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Dart
ISBN: 978-1-84969-742-2 Paperback: 388 pages

Learn how to program applications with Dart 1.0,
a language specifically designed to produce
better-structured, high-performance applications

1.	 Develop apps for the Web using Dart and HTML5.

2.	 Build powerful HTML5 forms, validate and store
data in local storage, and use web components to
build your own user interface.

3.	 Make games by drawing and integrating audio and
video in the browser.

CoffeeScript Application
Development
ISBN: 978-1-78216-266-7 Paperback: 258 pages

Write code that is easy to read, effortless to maintain,
and even more powerful than JavaScript

1.	 Learn the ins and outs of the CoffeeScript
language, and understand how the transformation
happens behind the scenes.

2.	 Use practical examples to put your new skills
to work towards building a functional web
application, written entirely in CoffeeScript.

3.	 Understand the language concepts from short,
easy-to-understand examples which can be
practised by applying them to your ongoing project.

Please check www.PacktPub.com for information on our titles

Object-Oriented JavaScript
Second Edition
ISBN: 978-1-84969-312-7 Paperback: 382 pages

Learn everything you need to know about OOJS in this
comprehensive guide

1.	 Think in JavaScript.

2.	 Make object-oriented programming accessible
and understandable to web developers.

3.	 Apply design patterns to solve JavaScript coding
problems.

4.	 Learn coding patterns that unleash the unique
power of the language.

Building Web and Mobile
ArcGIS Server Applications
with JavaScript
ISBN: 978-1-84969-796-5 Paperback: 274 pages

Master the ArcGIS API for JavaScript, and build exciting,
custom web and mobile GIS applications with the
ArcGIS Server

1.	 Develop ArcGIS Server applications with
JavaScript, both for traditional web browsers
as well as the mobile platform.

2.	 Acquire in-demand GIS skills sought by many
employers.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Working with Dart Tools
	Introduction
	Configuring the Dart environment
	Setting up the checked and production modes
	Rapid Dart Editor troubleshooting
	Hosting your own private pub mirror
	Using Sublime Text 2 as an IDE
	Compiling your app to JavaScript
	Debugging your app in JavaScript for Chrome
	Using the command-line tools
	Solving problems when pub get fails
	Shrinking the size of your app
	Making a system call
	Using snapshotting
	Getting information from the operating system

	Chapter 2: Structuring, Testing, and Deploying an Application
	Introduction
	Exiting from an app
	Parsing command-line arguments
	Structuring an application
	Using a library from within your app
	Microtesting your code with assert
	Unit testing a polymer web app
	Adding logging to your app
	Documenting your app
	Profiling and benchmarking your app
	Publishing and deploying your app
	Using different settings in checked and production mode

	Chapter 3: Working with Data Types
	Introduction
	Concatenating strings
	Using regular expressions
	Strings and Unicode
	Using complex numbers
	Creating an enum
	Flattening a list
	Generating a random number within a range
	Getting a random element from a list
	Working with dates and times
	Improving performance in numerical computations
	Using SIMD for enhanced performance

	Chapter 4: Object Orientation
	Introduction
	Testing and converting types
	Comparing two objects
	Using a factory constructor
	Building a singleton
	Using reflection
	Using mixins
	Using annotations
	Using the call method
	Using noSuchMethod
	Making toJSON and fromJSON methods in your class
	Creating common classes for client and server apps

	Chapter 5: Handling Web Applications
	Introduction
	Responsive design
	Sanitizing HTML
	Using a browser's local storage
	Using application cache to work offline
	Preventing an onSubmit event from reloading the page
	Dynamically inserting rows in an HTML table
	Using CORS headers
	Using keyboard events
	Enabling drag-and-drop
	Enabling touch events
	Creating a Chrome app
	Structuring a game project
	Using WebGL in your app
	Authorizing OAuth2 to Google services
	Talking with JavaScript
	Using JavaScript libraries

	Chapter 6: Working with Files and Streams
	Introduction
	Reading and processing a file line by line
	Writing to a file
	Searching in a file
	Concatenating files
	Downloading a file
	Working with blobs
	Transforming streams

	Chapter 7: Working with Web Servers
	Introduction
	Creating a web server
	Posting JSON formatted data
	Receiving data on the web server
	Serving files with http_server
	Using sockets
	Using WebSockets
	Using secure sockets and servers
	Using a JSON web service

	Chapter 8: Working with Futures, Tasks, and Isolates
	Introduction
	Writing a game loop
	Error-handling with Futures
	Scheduling tasks using Futures
	Running a recurring function
	Using isolates in the Dart VM
	Using isolates in web apps
	Using multiple cores with isolates
	Using the Worker Task framework

	Chapter 9: Working with Databases
	Introduction
	Storing data locally with IndexedDB
	Using Lawndart to write offline web apps
	Storing data in MySQL
	Storing data in PostgreSQL
	Storing data in Oracle
	Storing data in MongoDB
	Storing data in RethinkDB

	Chapter 10: Polymer Dart Recipes
	Introduction
	Data binding with polymer.dart
	Binding and repeating over a list
	Binding to a map
	Using custom attributes and template conditionals
	Binding to an input text field or a text area
	Binding to a checkbox
	Binding to radio buttons
	Binding to a selected field
	Event handling
	Polymer elements with JavaScript interop
	Extending DOM elements
	Working with custom elements
	Automatic node finding
	Internationalizing a Polymer app

	Chapter 11: Working with Angular Dart
	Introduction
	Setting up an Angular app
	Using a controller
	Using a component
	Using formatters as filters
	Creating a view
	Using a service
	Deploying your app

	Index

