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Preface
This book, Data Manipulation with R, is aimed at giving intermediate-to-advanced level 
users of R (who have knowledge about datasets) an opportunity to use state-of-the-art 
approaches in data manipulation. This book will discuss the types of data that can be 
handled using R and different types of operations for those data types. Upon reading 
this book, you will be able to eficiently manage and check the validity of your datasets 
with the effective use of R programming, including specialized packages for data 
management. You will come to know about the split-apply-combine strategy, which is 
a state-of-the-art approach in data management. You will also come to know the way 
to work with database software through ODBC with the help of very simple examples. 
This book ends with an introduction to text processing for text mining using R.

What this book covers
Chapter 1, Introduction to R Data Types and Basic Operations, discusses the way to get R, 
how to install it, and how to install various libraries. Upon introducing how to write 
commands in R, this chapter discusses different types of data used in R and their basic 
operations. Before introducing the data types in this chapter, we will highlight what 
an object in R is as well as their modes and classes. The mode of an object could be 
either numeric, character, or logical, whereas its class could be vector, factor, list, data 
frame, matrix, array, or others. This chapter also highlights how to work with objects 
in different modes and how to convert from one mode to another and what caution 
should be taken during conversion. Missing values in R and how to represent missing 
characters and numeric data types are also discussed here. Along with the data types 
and basic operations, this chapter sheds light on another important aspect, which is 
almost never mentioned in other textbooks—the object naming convention in R. We 
talk about popular object-naming conventions used in R.
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Chapter 2, Basic Data Manipulation, introduces some special features where we need to 
take care during data acquisition. Then, an important aspect of factor manipulation 
is discussed, as well as subsetting a factor variable and how to remove unused factor 
levels. This chapter also includes coverage of vector and matrix operations. Date 
processing has been discussed using an eficient R package: lubridate. Working 
with the date variable using the lubridate package is much more eficient than using 
any other existing package that is designed to work with the date variable. Also, 
string processing has been highlighted, and the chapter ends with a description of 
subscripting and subsetting.

Chapter 3, Data Manipulation Using plyr and dplyr, introduces the state-of-the-art 
approach called split-apply-combine to manipulate datasets. Data manipulation 
is an integral part of data cleaning and analysis. For a large dataset, it is always 
preferable to perform operations within the subgroup of a dataset to speed up the 
process. In R, this type of data manipulation can be done with base functionality, but 
for large datasets, it requires a considerable amount of coding and eventually takes 
longer to process. In the case of large datasets, we can split the dataset performing 
the manipulation or analysis and then combine them again into a single output. This 
chapter contains a discussion of the different functions in the plyr package that are 
used for group-wise data manipulation and also for data analysis. This chapter also 
contains examples and discussions of the dplyr package to work with data frames. 
Working with data frames using dplyr is much more eficient and intuitive. You will 
have a very good understanding of data frame processing through the examples of 
this chapter.

Chapter 4, Reshaping Datasets, deals with the orientation of datasets. Reshaping data 
is a common and tedious task in real-life data manipulation and analysis. A dataset 
might come with different levels of grouping, and we need some reorientation to 
perform certain types of analysis. To perform statistical analysis, we sometimes 
require wide data and sometimes long data, and in this case, we need to be able to 
luently and luidly reshape data to meet the requirements of statistical analysis. 
Important functions from the reshape2 package have been discussed in this chapter 
with examples.

Chapter 5, R and Databases, talks about dealing with database software and R. One of 
the major problems in R is that its memory is bound by the system virtual memory, 
and that is why working with a dataset requires the data to be smaller than its 
memory. However, in reality, the dataset is larger than the virtual memory and 
sometimes the length of arrays or vectors exceeds the maximum addressable range. 
To overcome these two limitations, R can be utilized with databases. Interacting with 
databases using R and dealing with large datasets with specialized packages and 
data manipulation with sqldf have been discussed with examples in this chapter.
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Chapter 6, Text Manipulation, covers the processing of text data for text mining. This 
chapter introduces various sources of text data and the process of obtaining that 
data. This chapter also discusses processing text data for text mining purposes by 
using various relevant packages.

What you need for this book
Knowledge about statistical data is required. You are expected to have basic 
knowledge of R. To run the examples from this book, R should be installed, and it can 
be found at http://www.r-project.org. The example iles are produced on R 3.0.2.

Who this book is for
This book is for intermediate-to-advanced level users of R who have knowledge 
about datasets, and also for those who regularly work with different research data, 
including but not limited to public health, business analysis, and the machine 
learning community.

Conventions
In this book, you will ind a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, ilenames, ile extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Once we have an R object, we can easily assess its mode by using mode()."

A block of code is set as follows:

num.obj <- seq(from=1,to=10,by=2)

logical.obj<-c(TRUE,TRUE,FALSE,TRUE,FALSE)

character.obj <- c("a","b","c")

is.numeric(num.obj)

[1] TRUE

is.logical(num.obj)

[1] FALSE

is.character(num.obj)

[1] FALSE

http://www.r-project.org
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When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

# Calling xlsx library

library(xlsx)

# importing xlsxanscombe.xlsx 

anscombe_xlsx <- read.xlsx2("xlsxanscombe.xlsx",sheetIndex=1)

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "Click on 
the Add... button and select an appropriate ODBC driver and then locate the desired 
ile and give a data source name."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

www.packtpub.com/authors
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Downloading the example code
You can download the example code iles from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are veriied, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search ield. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Introduction to R Data Types 
and Basic Operations

R is an object-oriented programming language and an environment that is a 
variation of the S language written by Ross Ihaka and Robert Gentlemen (hence, the 
name R). What can we do using R? The answer is we can do anything we can think 
of that is logical and/or structural. With R, we can perform data processing, write 
functions, produce graphs, perform complex data analysis, and also produce our 
own customized packages (a collection of functions to perform speciied tasks) to 
solve speciic problems. We can develop up-to-date statistical techniques through R 
packages. Most importantly, R is open source and is a freely available software that 
will remain free.

Assuming that readers have very preliminary or no knowledge of R, the layout of 
this chapter is divided in to two major sections; the irst one will be an introduction 
to R, and the second major section will relate to data types and basic operations.

The following are the reasons to use R:

• R is free: It comes with a license, but we do not have to pay anything to get 
it. It is not only free, but also open source. We can see the source code, change 
it as per our own requirements, and also distribute it without violating the 
license. Academicians across different disciplines around the world reviewed 
the core of the R system and also contributed to make it better.

www.allitebooks.com
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• R is a powerful software: It is used to perform data processing and data 
analysis, and to produce a variety of graphs. All the necessary functions for 
data processing are available in R. It has a substantial collection of libraries  
(a library is a collection of functions to perform certain types of task), which 
are written by researchers working in a variety of fields. That is why, 
whether you are a statistician, biologist, environmentalist, or data scientist, 
you should find a set of functions that serves your purpose. The graphic 
system in R is one of the most powerful tools in this era. We have full control 
over every part of graphs produced in R.

• R is up-to-date: R is now one of the standard platforms to implement our 
research work. We should be able to find an R package suitable for the most 
recent developments, whatever our field is.

• R is a community: R is being developed by a team of volunteers. Also, it 
includes large communities that are writing new functions every day and 
that can help us out if we face any problem.

• R is the language of communication: R is now becoming a prominent way 
of sharing new findings with other researchers in this field.

Here is a summary of why we should use R:

• R is free, and it will remain free.

• It involves up-to-date implementation of recent statistical techniques.

• There is flexibility. The user has control over each and every part of a dataset 
and each component of each output.

• It is customizable based on the user's need.

• It has a large number of built-in libraries.

• It has a cloud-computing feature.

• It has rich graphics.

• It has a wide range of flexible data structures.

• It intelligently handles missing values.

Getting different versions of R
The source code, documentation, and other related iles are maintained in 
the Comprehensive R Archive Network (CRAN), which can be found at 
http://cran.r-project.org/. CRAN is a collection of websites that contain 
identical materials consisting of the R distributions, contributed extensions, and 
documentation for R and binaries. The user can select anyone of the CRAN sites to 
download the R software. The user can download the software that is compatible to 
their computer's platform such as Windows, Mac, and Linux.

http://cran.r-project.org/
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To download binaries for different platforms, anyone can use the following links:

• For Linux, http://cran.at.r-project.org/bin/linux/

• For Mac OS X, http://cran.at.r-project.org/bin/macosx/

• For Windows, http://cran.at.r-project.org/bin/windows/

The preceding links are applicable to download the most recent version of R. The 
latest R Version 3.1.2 (Pumpkin Helmet) was released on October 31, 2014.

To get the old version of R, Windows users can look at the various releases at 
http://cran.r-project.org/bin/windows/base/old/, and Mac users can look at 
http://cran.r0-project.org/bin/macosx/old/ to download the desired one.

Installing R on different platforms
To install R on various platforms, the irst requirement is to download appropriate 
binaries that are compatible with the relevant platform. In this section, we will 
briely discuss installation on the Windows platform and will refer users to 
http://cran.r-project.org/doc/manuals/r-release/R-admin.html for the 
documentation for alternative platforms.

Installing R under Windows is as easy as installing any other software. After 
downloading the binary ile for Windows (it comes with an .exe ile), the name  
is for example, R-3.1.2-win.exe. This executable ile contains binaries for a  
base distribution and a large number of add-on packages from CRAN. Users can 
install it just by double-clicking on the ile and following the on-screen instructions. 
There is no special care that needs to be taken during installation; just go with the 
default selections.

Installing and using R libraries
R comes with a number of default packages, a collection of previously programmed 
functions for speciic tasks, and with datasets. This is usually known as a library, but 
the R community refers to it as a package. There are two types of R packages:

• Default packages that come with the R executable

• Add-on packages that do not come during installation; we need to install 
them manually on downloading

http://cran.at.r-project.org/bin/linux/
http://cran.at.r-project.org/bin/macosx/
http://cran.at.r-project.org/bin/windows/
http://cran.r-project.org/bin/windows/base/old/
http://cran.r0-project.org/bin/macosx/old/
http://cran.r-project.org/doc/manuals/r-release/R-admin.html
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When we open the R console, it automatically loads its default packages with the 
associated functions, and we do not need to load those packages manually. A list of 
installed packages can be obtained by typing library() in the R console. However, 
some of the packages need to load to execute functions. To load a speciic package, 
the corresponding R command is library(package), where package is the name of 
any library such as plyr, provided that the package has already been installed.

In some situations, we may require a special type of data processing and analysis. 
If the corresponding packages are not available in the default list, we need to install 
them. For example, the plyr package is not in the default list, so we need to install  
it separately.

There are two different ways to install a package:

• By manually downloading and installing it

• Installing it from within R

Manually downloading and installing 

packages
To download a package from CRAN and install it, follow these steps:

1. Go to http://www.r-project.org/.

2. Click on CRAN mirror under the Getting Started section.

3. Select any one of the regional servers from the list; for example, select the 
server from Austria at http://cran.at.r-project.org/.

4. Click on Contributed extension packages under the Source Code for all 
Platforms section.

5. Select Table of available packages, sorted by date of publication or Table 
of available packages, sorted by name and then download the desired 
package from the list.

6. While downloading, users need to choose the file that matches with the 
platform; for example, a Windows user will download the binary zip file.

7. Once the download is completed, open R.

8. Go to the Packages menu and select Install packages from local zip files.

http://www.r-project.org/
http://cran.at.r-project.org/
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One potential problem with manual downloads is that, 
sometimes, particular packages are dependent on other 
packages that are not included in the manual process 
of installation. To avoid this problem, we can install 
the desired package(s) from the R shell, as installing 
package(s) from the R shell resolves dependencies.

Installing packages within the R shell
To install a package from within the R console, we can use the install.packages()  
command; this command will prompt us to select the appropriate server CRAN. 
Note that to install packages using this approach, the computer must have active 
Internet connection.

For example, to install the plyr package, we can use the following command:

install.packages("plyr")

The previous command will prompt us to select a regional server and, after selecting 
the server from the available list, the package will be installed on the local computer.

Comparing R with other software
A growing number of libraries, currently more than 6,000, is the most noticeable 
feature of R, compared to other commercial software such as SAS, Stata, SPSS, and 
open source software such as Python and Octave. This feature enables R to have a 
huge number of tools for data management and statistical analysis. Data management 
capability is very limited in SPSS and Octave. The capability of R's data management 
is only comparable with commercial software such as SAS and open source software 
such as Python. R has no competitor that gets the most up-to-date packages for 
analysis in many areas such as inance, mathematics, data mining, machine learning, 
or even astronomy. Recently developed statistical analysis techniques are found in 
Python and Octave, but it took a while to get them in SPSS, Stata, and SAS.

R has a more intuitive syntax structure than the previously mentioned software. Its 
object-oriented features make it more lexible than SPSS, Stata, SAS, and Octave. 
Python shares the object-oriented features too, but it is less lexible than R. Open 
source software is designed to be developed by volunteer developers and offer 
very easy-to-implement function-writing capabilities. Although it is easy to write a 
function in Python and Octave, writing functions in R is even easier.
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R has one of the best graphics systems among all existing software. The grammar 
graphics implemented in the ggplot2 package makes it the most popular library 
for producing a variety of graphs with excellent quality. It is comparatively easy to 
modify all the components of a graph in R, compared to SPSS, Stata, SAS, Octave, 
and Python.

SPSS is very easy to use at irst for some basic analysis, but when it comes to data 
management, scripting, and complex statistical analysis, sometimes it fails, and 
sometimes, it is very hard to implement. Learning Stata is very easy for basic data 
management tools, but if we want to do a complex data management function, it 
is very hard to implement. R has a very steep learning curve like Python, Octave, 
and SAS. However, unlike Octave and SAS, we can ind a large number of freely 
available resources and tutorials on the Web to get help. These resources can make 
our learning easier compared to other software.

R as an enterprise solution
Revolution Analytics (http://www.revolutionanalytics.com/) is a statistical 
software company focused on developing open core versions of R, for enterprise, 
academic, and analytics customers. This type of enterprise solution supports big data 
analytics, various types of complex modeling of real-world problems, and day-to-
day activities in big enterprises.

Writing commands in R
The R programming language is basically command-line (interpreter-type) 
programming. We can perform any type of mathematical and statistical calculation, 
including data management analysis and graphics in the command line. The R 
command window is known as the R console, where the command and the results 
are produced upon execution of a given command.

Here is a very basic example of using the R console:

> (44/55)*100

[1] 80

> log(25)

[1] 3.218876

> log10(25)

[1] 1.39794

> exp(0.23)

[1] 1.2586

http://www.revolutionanalytics.com/
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> 453/365.25

[1] 1.240246

> 1-5*0.2

[1] 0

> 1-0.2-0.2-0.2-0.2-0.2 # An interesting calculation 

[1] 5.551115e-17

Using the R console, we can perform any type of calculation, but we always need 
to preserve the code to reproduce the result of any scientiic analysis. From this 
perspective, the R console is not user-friendly when it comes to saving commands. 
To save the necessary commands for future use and to ensure reproducibility of 
research results, R has a command editor, which is known as the script editor. The 
script editor is just like a plain text editor. We can preserve code and comments in R 
script iles. The R console allows only one line of command at a time, and it executes 
as soon as we enter. However, in the script ile, we can run a batch of code at a time. 
To write any type of comment related to any analysis in R, we can place a # (hash) 
sign as the starting character. Here is an example:

# This is a comment line

R data types and basic operations
In this major section of the chapter, we will introduce data types and structure and 
how to convert one type to another with very simple functions.

Modes and classes of R objects
Whatever we do in R, is stored as objects. An R object is anything that can be 
assigned to a variable of interest. This could be a single number or a set of numbers, 
characters, and special characters, for example, TRUE, FALSE, NA, NaN, and Inf. 
Also, these can be already deined in R as functions, such as seq (to generate a 
sequence of numbers with a speciied increment), names (to extract names such as 
variable names from a dataset), row.names (to extract the row names of the data, if 
any), or col.names (this is equivalent to names, and it extracts column names from a 
matrix or data frame).

Some examples of R objects are as shown in the following code:

# Constant

> 2

[1] 2

> "July"
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[1] "July"

> NULL

NULL

> NA

[1] NA

> NaN

[1] NaN

> Inf

[1] Inf

# Object can be created from existing object

# to make the result reproducible means every time we run the 
# following code we will get the same results # we need to set  
# a seed value

> set.seed(123)  

> rnorm(9)+runif(9)

[1] -0.2325549  0.7243262  2.4482476  0.7633118  0.7697945   
 2.7093348  1.1166220 -0.5565308 -0.1427868

One important thing about objects in R is that, if we do not assign an object to any 
variable, we will not be able to reuse it, and it does not store the object internally. 
In the preceding example, all are different objects, but they are not assigned to any 
variable. So, they are not stored, and we cannot use them later, until we enter the 
object's value itself. Thus, whenever we deal with an object, we will assign it to an 
appropriate variable; interestingly, the assigned variable is also an object in R!

To assign an object in R to a variable, we can deine the variable name in various 
ways, such as lowercase, uppercase, a combination of uppercase and lowercase, or 
even a combination of uppercase, lowercase, a number, and/or a dot. However, 
there are some rules to deine variable names. For example, the name cannot start 
with numbers; it must start with a character or an underscore. There is no special 
character allowed in variable names, such as @, #, $, and *. Though R does not have 
a standard guideline for naming conventions, according to Bååth (in the paper 
The State of Naming Conventions in R, which can be found at http://journal.r-
project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf), the most popular 
naming convention for functions is lowerCamelCase, while the most popular 
naming convention for arguments separates them by a period. For a variable name, 
we can use the same naming convention as that of arguments, but again, there is no 
strict rule for naming conventions in R.

http://journal.r-project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf
http://journal.r-project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf
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The following table is constructed from the same article by Bååth to give you an idea 
of the different naming conventions used in R and their popularity:

Object type Naming conventions Percentage

Function lowerCamelCase 55.5

period.separated 51.8

underscore_separated 37.4

singlelowercaseword 32.2

_OTHER.conventions 12.8

UpperCamelCase 6.9

Parameter 
(argument)

period.separated 82.8

lowerCamelCase 75.0

underscore_separated 70.7

singlelowercaseword 69.6

_OTHER.conventions 9.7

UpperCamelCase 2.4

Once we store the R object into a variable, it is still treated as an R object. Each 
and every object in R has some attributes to describe the nature of the information 
contained in it. The mode and class are the most important attributes of an R object. 
Commonly encountered modes of an individual R object are numeric, character, 
and logical. When we work with data in R, problems may arise due to incorrect 
operations in incorrect object modes. So, before working with data, we should study 
the mode; we need to know what type of operation is applicable.

The mode function returns the mode of R objects.

The following example code describes how we can investigate the mode of an  
R object:

# Storing R object into a variable and then viewing the mode

> num.obj <- seq(from=1,to=10,by=2)

mode(num.obj)

[1] "numeric"

> logical.obj<-c(TRUE,TRUE,FALSE,TRUE,FALSE)

> mode(logical.obj)

[1] "logical"
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> character.obj <- c("a","b","c")

> mode(character.obj)

[1] "character"

For the numeric mode, R stores all numeric objects into either a 32-bit integer or a 
double-precision loating point.

If an R object contains both numeric and logical elements, the mode of that object 
will be numeric and, in this case, the logical element automatically gets converted 
to a numeric element. The logical element TRUE converts to 1 and FALSE converts to 
0. On the other hand, if any R object contains a character element, along with both 
numeric and logical elements, it automatically converts to the character mode.

Let's have a look at the following code:

# R object containing both numeric and logical element

> xz <- c(1, 3, TRUE, 5, FALSE, 9)

> xz

[1] 1 3 1 5 0 9

> mode(xz)

[1] "numeric"

# R object containing character, numeric, and logical elements

> xw <- c(1,2,TRUE,FALSE,"a")

> xw

[1] "1"     "2"     "TRUE"  "FALSE" "a"    

> mode(xw)

[1] "character"

The mode() function is not the only way to test R object modes. There are alternative 
ways too: is.numeric(), is.charater(), and is.logical(), as shown in the 
following code. The output of these functions is always logical:

> num.obj <- seq(from=1,to=10,by=2)

> logical.obj<-c(TRUE,TRUE,FALSE,TRUE,FALSE)

> character.obj <- c("a","b","c")

> is.numeric(num.obj)

[1] TRUE

> is.logical(num.obj)

[1] FALSE

> is.character(num.obj)

[1] FALSE
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Other than these three modes (numeric, logical, and character) of objects, another 
frequently encountered mode is function. Here is an example:

> mode(mean)

[1] "function"

# Also we can test whether "mean" is function or not as follows

> is.function(mean)

[1] TRUE

The class() function provides the class information of an R object. The primary 
purpose of the class() function is to know how different functions, including 
generic functions, work. For example, with the class information, the generic 
function print or plot knows what to do with a particular R object. To assess the 
class information of the object created earlier, we can use the class() function. Let's 
have a look at the following code:

> num.obj <- seq(from=1,to=10,by=2)

> logical.obj<-c(TRUE,TRUE,FALSE,TRUE,FALSE)

> character.obj <- c("a","b","c")

> class(num.obj)

[1] "numeric"

> class(logical.obj)

[1] "logical"

> class(character.obj)

[1] "character"

Although we can easily assess the mode and class of an R object through mode() 
and class(), there is another collection of R commands that is also used to assess 
whether a particular object belongs to a certain class. These functions start with 
is.; for example, is.numeric(), is.logical(), is.character(), is.list(), 
is.factor(), and is.data.frame(). As R is an object-oriented programming 
language, there are many functions (collectively known as generic functions) that 
will behave differently depending on the class of that particular object.

www.allitebooks.com

http://www.allitebooks.org
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The mode of an object tells us how it's stored. It could happen that two different 
objects are stored in the same mode with different classes. How the two objects are 
printed using the print command is determined by its class. Here is an example:

# Output omitted due to space limitation

> num.obj <- seq(from=1,to=10,by=2)

> set.seed(1234) # To make the matrix reproducible

> mat.obj <- matrix(runif(9),ncol=3,nrow=3)

> mode(num.obj)

> mode(mat.obj)

> class(num.obj)

> class(mat.obj)

# prints a numeric object

> print(num.obj) 

# prints a matrix object

> print(mat.obj)

Like character and numeric, there is another method you can use to store data when 
the data is categorical in nature. In categorical data, we usually have some unique 
values and their corresponding labels. To store this type of object in R, we use the 
factor class. This class allows less storage location, because it is required to store 
unique levels only once.

Interestingly, once we try to see the mode of a factor object, it always shows as 
numeric, even if it displays character data. Here is an example:

> character.obj <- c("a","b","c")

> character.obj

[1] "a" "b" "c"

> is.factor(character.obj)

[1] FALSE

# Converting character object into factor object using as.factor()

> factor.obj <- as.factor(character.obj)

> factor.obj

[1] a b c

Levels: a b c 

> is.factor(factor.obj)

[1] TRUE

> mode(factor.obj)

[1] "numeric"
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> class(factor.obj)

[1] "factor"

We have to be careful when dealing with the factor class data in R. The important 
thing to remember is that, for vectors (we will discuss vectors in the Vector section in 
this chapter), the class and mode will always be numeric, logical, or character. 
On the other hand, for matrices and arrays (we will discuss matrices and arrays in 
the Factor and its types section in this chapter), a class is always a matrix or array, but 
its mode can be numeric, character, or logical.

The R object structure and mode 

conversion
When we work with any statistical software, such as R, we rarely use single values 
for an object. We need to know how we can handle a collection of data values (for 
example, the age of 100 randomly selected diabetic patients), along with what type of 
objects are needed to store these data values. In R, the most convenient way to store 
more than one data value is vector (a collection of data values stored in a single 
object is known as a vector: for example, storing the ages of 100 diabetic patients in a 
single object). In fact, whenever we create an R object, it stores the values as a vector. It 
could be a single-element vector or a multiple-element vector. The num.obj vector we 
created in the previous section is a kind of vector that comprises numeric elements.

One of the simplest ways to create a vector in R is to use the c() function. Here is an 
example:

# creating vector of numeric element with "c" function

> num.vec <- c(1,3,5,7)

> num.vec

[1] 1 3 5 7

> mode(num.vec)

[1] "numeric"

> class(num.vec)

[1] "numeric"

> is.vector(num.vec)

[1] TRUE
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If we create a vector with mixed elements (character and numeric), the resulting 
vector will be a character vector. Here is an example:

# Vector with mixed elements 

> num.char.vec <- c(1,3,"five",7)

> num.char.vec

[1] "1"    "3"    "five" "7"   

> mode(num.char.vec)

[1] "character"

> class(num.char.vec)

[1] "character"

> is.vector(num.char.vec)

[1] TRUE

We can create a big new vector by combining multiple vectors, and the resulting 
vector's mode will be character, if any element of any vector contains a character. The 
vector can be named, or it can be without a name. In the previous example, vectors 
were without names.

The following example shows how we can create a vector with the name of  
each element:

# combining multiple vectors

> comb.vec <- c(num.vec,num.char.vec)

> mode(comb.vec)

[1] "character"

# creating named vector

> named.num.vec <- c(x1=1,x2=3,x3=5)

> named.num.vec

x1 x2 x3 

1  3  5

The name of the elements in a vector can be assigned separately using the names() 
command. In R, any single constant is also stored as a vector of the single element.
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Here is an example:

# vector of single element

> unit.vec <- 9

> is.vector(unit.vec)

[1] TRUE

R has six basic storage types of vectors, and each type is known as an atomic vector.

The following table shows the six basic vector types, their mode, and the  
storage mode:

Type Mode Storage mode

logical logical logical

integer numeric integer

double numeric double

complex complex complex

character character character

raw raw raw

Other than vectors, there are different storage types available in R to handle data 
with multiple elements; these are matrix, data frame, and list. We will discuss each of 
these types in subsequent sections.

To convert the object mode, R has user-friendly functions that can be depicted as 
as.x. Here, x could be numeric, logical, character, list, data frame, and so on. For 
example, if we need to perform a matrix operation that requires numeric mode, and 
the data is stored in some other mode, the operation cannot be performed. In this 
case, we need to convert that data into numeric mode.

In the following example, we will see how we can convert an object's mode:

# creating a vector of numbers and then converting it to logical  
# and character

> numbers.vec <- c(-3,-2,-1,0,1,2,3)

> numbers.vec

[1] -3 -2 -1  0  1  2  3

> num2char <- as.character(numbers.vec)

> num2char

[1] "-3" "-2" "-1" "0"  "1"  "2"  "3"

> num2logical <- as.logical(numbers.vec)
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> num2logical

[1]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE

# creating character vector and then convert it to numeric and logical

> char.vec <- c("1","3","five","7")

> char.vec

[1] "1"    "3"    "five" "7"   

> char2num <- as.numeric(char.vec)

Warning message:

NAs introduced by coercion 

> char2num

[1]  1  3 NA  7

> char2logical <- as.logical(char.vec)

> char2logical

[1] NA NA NA NA

# logical to character conversion

> logical.vec <- c(TRUE, FALSE, FALSE,  TRUE,  TRUE)

> logical.vec

[1]  TRUE FALSE FALSE  TRUE  TRUE

> logical2char <- as.character(logical.vec)

> logical2char

[1] "TRUE"  "FALSE" "FALSE" "TRUE"  "TRUE"

Note that, when we convert numeric mode to logical mode, only 0 (zero) gets FALSE, 
and all the other values get TRUE. Also, if we convert a character object to numeric, 
it produces numeric elements and NA (if any actual character is present), where a 
warning will be issued. Importantly, R does not convert a character object into a 
logical object but, if we try to do this, all the resulting elements will be NA. However, 
logical objects get successfully converted to character objects.

Finally, we can say that any object can be converted to a character without offering 
any warning. However, if we want to convert character objects to any other type, we 
have to be careful.
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Vector
R is a domain-speciic programming language, specially designed to perform 
statistical analysis on data. In statistics, when we analyze data, the irst thing that 
comes to mind is a variable with hundreds of observations in it. This reminds us 
of the picture of a vector. Probably, this is the main reason why, in R, the most 
elementary data type is a vector. A vector is a contiguous cell that contains data, 
where each cell can be accessed by an index:

> age <- c(10,20,30,40)

This is an example of a vector. The age of ive individuals is stored in the age  
vector. Pay attention to how the vector was formed and stored under the age 
variable. Here, c() is a function used to create a vector, but this does not store all the 
data in the system. <- is called an assignment operator that is used to store a vector 
under a variable.

Now, in the console, let's type the following line and press Enter:

> age

 [1] 10 20 30 40

We successfully stored all the ages under the age variable, but what is [1]? This 
means that the index of the value 10 is 1. 

If you want to see the irst values of the vector, type the following command:

> age[3]

[1] 30

Why did R only show the index of the irst value and not the other values? This is 
only to keep the output clean and informative. Every time R writes a new line, it irst 
gives the index number of the next value. Pretty soon, you will be familiar with this 
convention. We can store a single value under a variable, but it will be a vector with 
one element:

> height<- 175

To show you that height is not a scalar but a vector with one element, we will store 
one additional value in it:

> height[2]<- 180
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Pay attention to how we added another value inside an existing vector. Here, we 
put 180 in the second cell of the vector. Can you recall how we accessed the value in 
the second cell for the age variable? Using age[2], right? Similarly, we can assign a 
value to the second cell of the vector using the same syntax. Let's try to put another 
value inside the height variable:

> height[3] <- 165

Now, we can see all the values stored inside the height variable:

> height

[1] 175 180 165   

Although the basic data structure in R is vectors, there can be different types of 
vector. We use a numeric vector to store numeric data such as age, height, weight, 
and so on. Character vectors are used to store string data such as name, address, and 
so on. The way we can deine a character vector in R is simple:

> name<- c("Rob", "Bob", "Jude","Monica")

When we want to store a character in R, we need to use double quotes, as used in the 
previous example. This tells R that this is a string input. We can put numeric values 
using double quotes but, if we use a character without double quotes, then it will 
return an error message.

Another special type of vector is the logical vector. There are two ways we could 
deine a logical vector; irst, we will show you the more formal way and, second, 
we will show you the quick way. There can be two possible elements in a logical 
vector: TRUE and FALSE. This logical vector is used in logical operations in R. It 
can be used to select speciic rows from a dataset.

We can deine a logical vector in the following way:

> logical<- c(TRUE, FALSE, TRUE, FALSE)

This logical vector can be used as a row selector of the age vector in the following 
way:

> age[logical]

[1] 10 30
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Look closely to ind out what we just did. We have seen how we can extract age from 
a vector using indexing. A logical vector can be thought of as a vector of an index. 
The irst element of the logical vector is TRUE, which means that the irst element of 
the age vector will be selected. The second element of the logical vector is FALSE. 
This means that the second element of the age vector will not be selected. So, the 
logical vector will select only the elements of the age vector for which the logical 
vector is TRUE. So, inally, two elements of the age vector will be selected, and a vector 
of two elements will be returned. A question that may come to your mind is, What 
can we do with this feature? The answer will be clearer in the Data frame section.

Factor and its types
A factor is another important data type in R, especially when we deal with 
categorical variables. In an R vector, there is no limit on the number of distinct 
elements but, in factor variables, it takes only a limited number of distinct elements. 
This type of variable is usually referred to as a categorical variable during data 
analysis and statistical modeling. In statistical modeling, the behavior of a numeric 
variable and categorical variable is different, so it is important to store the data 
correctly to ensure valid statistical analysis.

In R, a factor variable stores distinct numeric values internally and uses another 
character set to display the contents of that variable. In other software, such as Stata, 
internal numeric values are known as values, and the character set is known as value 
labels. Previously, we saw that the mode of a factor variable is numeric; this is due to 
the internal values of the factor variable.

A factor variable can be created using the factor command; the only required input 
is a vector of values, which will be returned as a vector of factor values. The input 
can be numeric or character, but the levels of factor will always be a character. The 
following example shows how to create factor variables:

#creating factor variable with only one argument with factor() 

> factor1 <- factor(c(1,2,3,4,5,6,7,8,9))

> factor1

[1] 1 2 3 4 5 6 7 8 9

Levels: 1 2 3 4 5 6 7 8 9

> levels(factor1)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9"

> labels(factor)

[1] "1"

> labels(factor1)
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[1] "1" "2" "3" "4" "5" "6" "7" "8" "9"

#creating factor with user given levels to display

> factor2 <- factor(c(1,2,3,4,5,6,7,8,9),labels=letters[1:9])

> factor2

[1] a b c d e f g h i

Levels: a b c d e f g h i

> levels(factor2)

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i"

> labels(factor2)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9"

In a factor variable, the values themselves are stored as numeric vectors, whereas 
the labels store only unique characters, and a label stores only once for each unique 
character. Factors can be ordered if the ordered=T command is speciied; otherwise, 
they inherit the order of the levels speciied.

A factor could be numeric with numeric levels, but direct mathematical operations 
are not possible with this numeric factor. Special care should be taken if we want to 
use mathematical operations.

The following example shows a numeric factor and its mathematical operation:

# creating numeric factor and trying to find out mean

> num.factor <- factor(c(5,7,9,5,6,7,3,5,3,9,7))

> num.factor

[1] 5 7 9 5 6 7 3 5 3 9 7

Levels: 3 5 6 7 9

> mean(num.factor)

[1] NA

Warning message:

In mean.default(num.factor) :

argument is not numeric or logical: returning NA

From the preceding example, we see that we can create a numeric factor, but the 
mathematical operation is not possible. When we tried to perform a mathematical 
operation, it returned a warning message and produced the result NA. To perform any 
mathematical operation, we need to convert the factor to its numeric counterpart. One 
can assume that we can easily convert the factor to numeric using the as.numeric() 
function but, if we use the as.numeric() function, it will only convert the internal 
values of the factors, not the desired values.
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So, the conversion must be done with levels of that factor variable; optionally, we 
can irst convert the factor into a character using as.character() and then use 
as.numeric().

The following example describes this scenario:

> num.factor <- factor(c(5,7,9,5,6,7,3,5,3,9,7))

> num.factor

[1] 5 7 9 5 6 7 3 5 3 9 7

Levels: 3 5 6 7 9

#as.numeric() function only returns internal values of the factor

> as.numeric(num.factor)

[1] 2 4 5 2 3 4 1 2 1 5 4

# now see the levels of the factor

> levels(num.factor)

[1] "3" "5" "6" "7" "9"

> as.character(num.factor)

[1] "5" "7" "9" "5" "6" "7" "3" "5" "3" "9" "7"

# now to convert the "num.factor" to numeric there are two method

# method-1: 

> mean(as.numeric(as.character(num.factor)))

[1] 6

# method-2:

> mean(as.numeric(levels(num.factor)[num.factor]))

[1] 6

Data frame
A data frame is a rectangular arrangement of rows and columns of vectors and/
or factors, such as a spreadsheet in MS Excel. The columns represent variables in 
the data, and the rows represent observations or records. In other software, such 
as a database package, each column represents a ield, and each row represents a 
record. Dealing with data does not mean dealing with only one vector or factor 
variable; it is rather a collection of variables. Each column represents only one type 
of data: numeric, character, or logical. Each row represents case information across 
all columns. One important thing to remember about R data frames is that all vectors 
should be of the same length. In an R data frame, we can store different types of 
variables, such as numeric, logical, factor, and character. To create a data frame, we 
can use the data.frame() command.
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The following example shows us how to create a data frame using different vectors 
and factors:

#creating vector of different variables and then creating data frame

> var1 <- c(101,102,103,104,105)

> var2 <- c(25,22,29,34,33)

> var3 <- c("Non-Diabetic", "Diabetic", "Non-Diabetic", "Non-
Diabetic",  
"Diabetic")

> var4 <- factor(c("male","male","female","female","male"))

# now we will create data frame using two numeric vectors one 

# character vector and one factor

> diab.dat <- data.frame(var1,var2,var3,var4)

> diab.dat

   var1 var2         var3   var4

1  101   25 Non-Diabetic   male

2  102   22     Diabetic   male

3  103   29 Non-Diabetic female

4  104   34 Non-Diabetic female

5  105   33     Diabetic   male

Now, if we look at the class of individual columns of the newly created data frame, 
we will see that the irst two columns' classes are numeric, and the last two columns' 
classes are factor, though, initially, the class of var3 was character. One thing is 
obvious here—when we create data frames and any one of the column's classes is 
character, it automatically gets converted to factor, which is a default R operation. 
However, there is one argument, stringsAsFactors=FALSE, that allows us to 
prevent the automatic conversion of character to factor during data frame creation.

In the following example, we will see this:

#class of each column before creating data frame 

> class(var1)

[1] "numeric"

> class(var2)

[1] "numeric"

> class(var3)

[1] "character"

> class(var4)

[1] "factor"

# class of each column after creating data frame
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> class(diab.dat$var1)

[1] "numeric"

> class(diab.dat$var2)

[1] "numeric"

> class(diab.dat$var3)

[1] "factor"

> class(diab.dat$var4)

[1] "factor"

# now create the data frame specifying as.is=TRUE

> diab.dat.2 <- data.frame(var1,var2,var3,var4,stringsAsFactors=FALSE)

> diab.dat.2

var1 var2         var3   var4

1  101   25 Non-Diabetic   male

2  102   22     Diabetic   male

3  103   29 Non-Diabetic female

4  104   34 Non-Diabetic female

5  105   33     Diabetic   male

> class(diab.dat.2$var3)

[1] "character"

To access individual columns (variables) from a data frame, we can use a dollar ($) 
sign, along with the data frame name–for example, diab.dat$var1.

There are some other ways to access variables from a data frame, such as  
the following:

• The data frame name followed by double square brackets with variable 
names within quotation marks–for example, diab.dat[["var1"]]

• The data frame name followed by single square brackets with the column 
index–for example, diab.dat[,1]

Besides these, there is one other way that allows us to access each of the individual 
variables as separate objects. The R attach() function allows us to access individual 
variables as separate R objects. When we use the attach() command, we need to 
use detach() to remove individual variables from the working environment.

Let's have a look at the following code:

# To run the folloing code snipped, 

# the code block 16 need to run.

# Especially var1 var2 var3 and var4. 
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# After that, from code block 17 "diab.dat.2" object should run

 

# The following line will remove var1 to var4 

# object from the workspace

> rm(var1);rm(var2);rm(var3);rm(var4)

# The following command will allow 

# us to access individual variables 

> attach(diab.dat.2)

# Printing valuse of var1

> var1

# checking calss of var3

> class(var3)

# Now to detach the data frame from the workspace

> detach(diab.dat.2)

# Now if we try to print individual varaiable it will give error

> var1

Matrices
A matrix is also a two-dimensional arrangement of data, but it can take only one 
class. To perform any mathematical operations, all columns of a matrix should 
be numeric. However, in data frames, we can store numeric, character, or factor 
columns. To perform any mathematical operation, especially a matrix operation, we 
can use matrix objects. However, in data frames, we are unable to perform certain 
types of mathematical operation, such as matrix multiplication. To create a matrix, 
we can use the matrix() command or convert a numeric data frame to a matrix 
using as.matrix().

We can convert the data frame that we created earlier as diab.dat to a matrix using 
as.matrix(). However, this is not suitable for performing mathematical operations, 
as shown in the following example:

# data frame to matrix conversion

> mat.diab <- as.matrix(diab.dat)

> mat.diab

     var1  var2 var3           var4    

[1,] "101" "25" "Non-Diabetic" "male"  

[2,] "102" "22" "Diabetic"     "male"  

[3,] "103" "29" "Non-Diabetic" "female"
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[4,] "104" "34" "Non-Diabetic" "female"

[5,] "105" "33" "Diabetic"     "male"

> class(mat.diab)

[1] "matrix"

> mode(mat.diab)

[1] "character"

# matrix multiplication is not possible with this newly created matrix

> t(mat.diab) %*% mat.diab

Error in t(mat.diab) %*% mat.diab : 

requires numeric/complex matrix/vector arguments

# creating a matrix with numeric elements only

# To produce the same matrix over time we set a seed value

> set.seed(12345) 

> num.mat <- matrix(rnorm(9),nrow=3,ncol=3)

> num.mat

           [,1]       [,2]       [,3]

[1,]  0.5855288 -0.4534972  0.6300986

[2,]  0.7094660  0.6058875 -0.2761841

[3,] -0.1093033 -1.8179560 -0.2841597

> class(num.mat)

[1] "matrix"

> mode(num.mat)

[1] "numeric"

# matrix multiplication

> t(num.mat) %*% num.mat

          [,1]       [,2]       [,3]

[1,] 0.8581332 0.36302951 0.20405722

[2,] 0.3630295 3.87772320 0.06350551

[3,] 0.2040572 0.06350551 0.55404860
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Arrays
An array is a multiply subscripted data entry that allows the storing of data 
frames, matrices, or vectors of different types. Data frames and matrices are of two 
dimensions only, but an array can be of any number of dimensions. Sometimes, we 
need to store multiple matrices or data frames into a single object; in this case, we can 
use arrays to store this data.

Here is a simple example to store three matrices of order 2 x 2 in a single array object:

> mat.array=array(dim=c(2,2,3))

# To produce the same results over time we set a seed value

> set.seed(12345)

> mat.array[,,1]<-rnorm(4)

> mat.array[,,2]<-rnorm(4)

> mat.array[,,3]<-rnorm(4)

> mat.array

, , 1

          [,1]       [,2]

[1,] 0.5855288 -0.1093033

[2,] 0.7094660 -0.4534972

, , 2

           [,1]       [,2]

[1,]  0.6058875  0.6300986

[2,] -1.8179560 -0.2761841

, , 3

           [,1]       [,2]

[1,] -0.2841597 -0.1162478

[2,] -0.9193220  1.8173120
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List
A list object is a generic R object that can store other objects of any type. In a list 
object, we can store single constants, vectors of numeric values, factors, data frames, 
matrices, and even arrays.

Recalling the var1, var2, var3, and var4 vectors, the data frame created using these 
vectors, and also recalling the array created in the Arrays section, we will create a list 
object in the following example:

> var1 <- c(101,102,103,104,105)

> var2 <- c(25,22,29,34,33)

> var3 <- c("Non-Diabetic", "Diabetic", "Non-Diabetic", "Non-
Diabetic", "Diabetic")

> var4 <- factor(c("male","male","female","female","male"))

> diab.dat <- data.frame(var1,var2,var3,var4)

> mat.array<-array(dim=c(2,2,3))

> set.seed(12345)

> mat.array[,,1]<-rnorm(4)

> mat.array[,,2]<-rnorm(4)

> mat.array[,,3]<-rnorm(4)

# creating list

> obj.list <- list(elem1=var1,elem2=var2,elem3=var3,elem4=var4,elem5=d
iab.dat,elem6=mat.array) 

> obj.list

$elem1

[1] 101 102 103 104 105

$elem2

[1] 25 22 29 34 33

$elem3
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[1] "Non-Diabetic" "Diabetic"     "Non-Diabetic" "Non-Diabetic" 
"Diabetic"    

$elem4

[1] male   male   female female male  

Levels: female male

$elem5

  var1 var2         var3   var4

1  101   25 Non-Diabetic   male

2  102   22     Diabetic   male

3  103   29 Non-Diabetic female

4  104   34 Non-Diabetic female

5  105   33     Diabetic   male

$elem6

, , 1

          [,1]       [,2]

[1,] 0.5855288 -0.1093033

[2,] 0.7094660 -0.4534972

, , 2

           [,1]       [,2]

[1,]  0.6058875  0.6300986

[2,] -1.8179560 -0.2761841

, , 3

           [,1]       [,2]

[1,] -0.2841597 -0.1162478

[2,] -0.9193220  1.8173120

To access individual elements from a list object, we can use the name of that 
element or use double square brackets with the index of those elements. For 
example, obj.list[[1]] will give the irst element of the newly created list object.
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Missing values in R
Missing values are part of the data-manipulation process, and we will encounter 
some missing values in almost every dataset. So, it is important to know how R 
handles missing values and how they are represented. In R, a numeric missing value 
is represented by NA, while character missing values are represented by <NA>. To test 
if there is any missing value present in a dataset (data frame), we can use is.na() 
for each column; alternatively, we can use this function in combination with the 
any() function.

The following example shows whether there is any missing value present in a 
dataset:

> missing_dat <- data.frame(v1=c(1,NA,0,1),v2=c("M","F",NA,"M"))

> missing_dat

  v1   v2

1  1    M

2 NA    F

3  0 <NA>

4  1    M

> is.na(missing_dat$v1)

[1] FALSE  TRUE FALSE FALSE

> is.na(missing_dat$v2)

[1] FALSE FALSE  TRUE FALSE

> any(is.na(missing_dat))

[1] TRUE

Summary
In this chapter, we irst talked very briely about what R is, where and how to get it, 
and how to install it. We then covered why we should use R and compared it with 
other available software. After that, we described what R objects are, their modes, 
and classes. We also highlighted how we can convert modes of objects using R 
functions, such as as.numeric and as.character. Finally, we discussed different R 
objects, such as vector, factor, data frame, matrix, array, and list. The chapter ended 
with an introduction to how missing values are represented and dealt with in R.

In the next chapter, we will discuss data manipulation with different R objects in 
greater detail.
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Basic Data Manipulation
When preparing a dataset for statistical analysis, data processing and manipulations, 
such as checking, cleaning, and creating new variables, are two important tasks. In 
this chapter, the basics of data manipulation will be discussed with examples that 
will give us an idea about checking a dataset, and cleaning it, if necessary.

This chapter will deal with the following topics:

• Acquiring data

• Vector and matrix operations

• Factor manipulations

• Factors from numeric variables

• Date processing using lubridate

• Character and string manipulations

• Subscripting and subsetting datasets

Acquiring data
A dataset can be stored in a computer or any other storage device, in different 
ile formats. R provides the useful facility, to access different ile formats through 
different commands. Some of the commonly used ile formats are as follows:

• Comma separated values (*.csv)

• Text file with tab delimited

• Microsoft Excel file (*.xls or *.xlsx)

• R data object (*.RData)
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Other than the ile formats mentioned in the preceding list, the dataset can be  
stored in another statistical software format; for example, Stata, SPSS, or SAS. In R, 
using the foreign library, we can acquire a dataset from other statistical software.  
In the following examples, we will see how we can acquire data in R from different 
ile formats.

Firstly, we will import a .csv ile, CSVanscombe.csv. This ile contains four pairs 
of numeric variables, (x1,y1) to (x4,y4). The noticeable feature of this ile is that 
the actual data starts from the third row, and the irst two rows contain a brief 
description about the dataset.

Now, we will use read.csv() function to import the ile, and store it in the 
anscombe object in R, which will be a data frame, as shown in the following code:

# Before running the following command we need to set the file

# location using setwd(). For example setwd("d:/chap2").

# assuming Windows operating system

anscombe <- read.csv("CSVanscombe.csv"",skip=2) 

# if the setwd() has not be used then the code will be as

anscombe <- read.csv("d:chap2/CSVanscombe.csv",skip=2)

Note that in the preceding code, skip=2 argument is used, 
which tells R that the actual data starts from the third row.

If a .csv ile contains both numeric and character variables, and we use read.csv(), 
the character variables get automatically converted to the factor type.

We can prevent character variables from this automatic conversion to factor, by 
specifying stringsAsFactors=FALSE within the read.csv() function, as shown in 
the following code:

# import csv file that contains both numeric and character variable  
# stored in iris.csv file

# firstly using default and then using stringsAsFactors=FALSE

iris_a <- read.csv("iris.csv")

str(iris_a)

'data.frame':   150 obs. of  5 variables:

$ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

$ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

$ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

$ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

$ Species     : Factor w/ 3 levels "setosa","versicolor",..:  
1 1 1 1 1 1 1 1 1 1 ...
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In the following example, we will see the difference if we specify the 
stringsAsFactors = FALSE argument:

# Now using stringsAsFactors=FALSE

iris_b <- read.csv("iris.csv",stringsAsFactors=F)

'data.frame':   150 obs. of  5 variables:

$ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

$ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

$ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

$ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

$ Species     : chr  "setosa" "setosa" "setosa" "setosa" ...

We see that in the irst data frame, the class of the species variable is factor, whereas 
in the second data frame the class of the same variable is character. So, we have to 
be careful when importing the .csv ile with mixed variables.

Sometimes, it could happen that the ile extension is *.csv, but the data is not 
comma separated; rather, the data supplier has used a semicolon (;) as a separator, or 
any other symbol. In that case, we can still use the read.csv() function, but in this 
case we have to specify the separator.

Let's look at the example with a semicolon-separated .csv ile, of the same iris data:

iris_semicolon <-  
  read.csv("iris_semicolon.csv",stringsAsFactors=FALSE,sep=";")

str(iris_semicolon)

'data.frame':   150 obs. of  5 variables:

 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

 $ Species     : chr  "setosa" "setosa" "setosa" "setosa" ...

Similarly, if the values are tab separated, we can use read.csv() with sep= "\t". 
Alternatively, we can use read.table(). The following is an example:

anscombe_tab <- read.csv("anscombe.txt",sep="\t")

anscombe_tab_2 <- read.table("anscombe.txt",header=TRUE)

Notice that here when we used read.table(), we had to specify whether the 
variable name is present or not, using the argument header=TRUE.

If the dataset is stored in the *.xls or *.xlsx format, we have to use certain R 
packages to import those iles; one of the packages is xlsx, which is designed to read 
iles formatted as *.xlsx.
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The following is an example to import the xlsxanscombe.xlsx ile:

# Calling xlsx library

library(xlsx)

# importing xlsxanscombe.xlsx 

anscombe_xlsx <- read.xlsx2("xlsxanscombe.xlsx",sheetIndex=1)

In R, single or multiple data frames or other objects can be stored in the *.RData 
format. This ile format is convenient to store more than one dataset in a single ile. 
To acquire a dataset for any other type of object from the *.RData ile, we can use the 
load() function. The following is an example to load multiple datasets, and  
a vector of R objects from a single *.RData ile:

# loading robjects.RData file

load("robjects.RData")

# to see whether the objects are imported correctly

objects()

"character.obj" "diab.dat" "logical.obj" "num.obj" "var1"  
  "var2" "var3" "var4"

Note that the objects() command is used to look at all of the objects in the current 
R session. Now to see the mode and class of each object, we can easily use the mode() 
and class() function. See the section, Modes and classes of R objects in Chapter 1, for 
more details.

To import a Stata ile into R, we need to call the foreign library and then use 
the read.dta() function. Similarly, if we want to import an SPSS data ile, the 
corresponding function will be read.spss(); the output will always be a data frame.

Here is an example of importing a Stata ile:

library(foreign)

iris_stata <- read.dta("iris_stata.dta") 

R can only read Stata 5-12 version data.

In this section, we saw that a dataset can be stored in different formats, and R has 
some user friendly functionality to deal with each of them. The noticeable feature of 
this section is some of the arguments within the read.csv() function, such as skip, 
stringsAsFactors, and sep. To import any data correctly, we have to use these 
arguments carefully.



Chapter 2

[ 35 ]

Vector and matrix operations
Matrix operation is one of the most commonly used mathematical operations that we 
perform during data processing and data analysis. All of the matrix operations must 
be conformable for the operation, mathematically.

The following are the rules that must be followed for matrix operations:

• Addition or subtraction rule: There should be at least two vectors, or 
matrices with the same dimensions

• Multiplication rule: There should be at least two vectors or matrices with 
number of columns of first matrix should be same as the number of rows in 
second one

• Element wise multiplication: For element wise multiplication, both matrices 
must be of the same dimension

The following is the R code to perform matrix operations:

# Creating random matrix with two 3x3 and one 4x3 dimension

# we will use runif() function to generate random number from 

# standard uniform distribution

set.seed(1234) # To make the result reproducible

matA <- matrix(rnorm(12),ncol=3)

matB <- matrix(rnorm(9),ncol=3)

matB2 <- matrix(runif(9),ncol=3)

# Matrix addtion addition

matB + matB2# both has dimension 3x3

           [,1]       [,2]       [,3]

[1,] -0.4644296  0.3917120 -0.5932429

[2,]  0.6862780  0.1660850  3.1812950

[3,]  1.2892642 -0.4262042  0.2078681

In matrix addition, the default plus (+) symbol works well, but the dimensions of the 
matrices should be the same. The resultant matrix will also have the same dimensions.

In the following example, we will see if two matrices have different dimensions then 
matrix addition cannot be performed:

 # Matrix addtion addition with varying dimension

matA + matB

Error in matA + matB : non-conformable arrays

If the matrices are not of same dimensions, then matrix addition will not work.

# Matrix multiplication

matA %*% matB
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           [,1]      [,2]       [,3]

[1,]  0.4230620 0.4281611  1.9715294

[2,] -1.0367218 0.5218026  0.8709481

[3,] -1.3367123 0.6089153 -2.3603264

[4,]  0.8276759 1.4477557  0.5093074

In matrix multiplication, the important thing to note is that the symbol is not the 
default multiplication symbol asterisk (*), rather it is %*%. If we do not use this 
symbol, then it will try to perform element wise multiplication. But if the matrix does 
not have the same dimensions, then the element wise multiplication will not happen, 
and in that case, an error report will come in.

# Multiplication with default multiplication symbol *

matA * matB

Error in matA * matB : non-conformable arrays

# Element wise multiplication

matB * matB2

            [,1]        [,2]         [,3]

[1,] -0.24205483 -0.05536304 -0.204210306

[2,]  0.04008173 -0.34600174  1.849224683

[3,]  0.31641252 -0.44192179  0.009893013

# Matrix multiplication with two 3x3 matrix 

# with proper use of symbols %*%

matB %*% matB2

           [,1]        [,2]       [,3]

[1,] -0.5867067 -0.87037213 -0.3355362

[2,]  0.4990147  0.85801532 -0.1971938

[3,] -0.2231869 -0.07027022 -0.4535422

Factor manipulation
A variable that takes only a limited number of distinct values is usually known 
as a categorical variable, and in R, this is known as a factor. During data analysis, 
sometimes the factor variable plays an important role, particularly in studying the 
relationship between two categorical variables. In this section, we will see some 
important aspects of factor manipulation. When a factor variable is irst created, 
it stores all its levels, along with the factor. But if we take any subset of that 
factor variable, it inherits all its levels from the original factor levels. This feature 
sometimes creates confusion in understanding the results.

Let's now see an example of this feature.
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We will irstly create a factor variable from the datamanipulation character string, 
with the English alphabet in lowercase as levels. Each letter of this string represents a 
value of that factor variable. Then, we will display the data with the table() function, 
where we will see lots of zero frequency corresponding to the letters that did not 
appear in the factor variable, as shown in the following code. We then drop those 
levels that are not part of the original factor variable, and will display the data again:

# creating an R object whose value is "datamanipulation"

char.obj <- "datamanipulation"

# creating a factor variable by extracting each single letter from 
# the character string. To extract each single letter the substring()  
# function has been used. Note: nchar() function gives number of  
# character count in a character type R object

factor.obj <- factor(substring(char.obj,1:nchar(char.obj), 
1:nchar(char.obj)),levels=letters)

# Displaying levels of the factor variable

levels(factor.obj)

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n"  
"o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

# Displaying the data using the table() function

table(factor.obj)

factor.obj

a b c d e f g h i j k l m n o p q r s t u v w x y z 

4 0 0 1 0 0 0 0 2 0 0 1 1 2 1 1 0 0 0 2 1 0 0 0 0 0

Notice that there are only a few nonzero values in the table, because the original 
factor variable does not have the entire alphabet as its value. Now, we will drop the 
levels that do not appear in the original factor variable.

To do so, we will create another factor variable from the original factor variable,  
as shown in the following code:

# re-creating factor variable from existing factor variable

factor.obj1 <- factor(factor.obj)

# Displaying levels of the new factor variable

levels(factor.obj1)

 [1] "a" "d" "i" "l" "m" "n" "o" "p" "t" "u"

# displaying data using table() function

table(factor.obj1)

factor.obj1

a d i l m n o p t u

4 1 2 1 1 2 1 1 2 1
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The important feature to notice here is that we can drop unused factor levels by 
recreating factor variables from the original factor variable. This is most useful 
when we use a subset of a factor variable.

Factors from numeric variables
Numeric variables are convenient during statistical analysis, but sometimes we  
need to create categorical (factor) variables from numeric variables. We can create  
a limited number of categories from a numeric variable using a series of conditional 
statements, but this is not an eficient way to perform this operation. In R, cut 
is a generic command to create factor variables from numeric variables. In the 
following example, we will see how we can create factors from a numeric variable, 
using a series of conditional statements. We will also use the cut command to 
perform the same task.

# creating a numeric variable by taking 100 random numbers 

# from normal distribution

set.seed(1234) # setting seed to reproduce the example

numvar <- rnorm(100)

# creating factor variable with 5 distinct category

num2factor <- cut(numvar,breaks=5)

class(num2factor)

[1] "factor"

levels(num2factor)

[1] "(-2.35,-1.37]"  "(-1.37,-0.389]" "(-0.389,0.592]"  
"(0.592,1.57]"   "(1.57,2.55]"

table(num2factor)

num2factor

(-2.35,-1.37] (-1.37,-0.389] (-0.389,0.592]  (0.592,1.57]  (1.57,2.55] 

      7            43              29             13            8

By default, the levels are produced using the actual range of values. Sometimes, 
the range of values is given a speciic name for convenience. For example, the ive 
categories of the preceding factor might be called the lowest group, lower-middle 
group, middle group, upper-middle group, and highest group, as shown in the 
following code:

# creating factor with given labels

num2factor <- cut(numvar,breaks=5,labels=c("lowest group","lower  
middle group", "middle group", "upper middle", "highest group"))
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# displaying the data is tabular form

data.frame(table(num2factor))

          num2factor Freq

1       lowest group    7

2 lower middle group   43

3       middle group   29

4       upper middle   13

5      highest group    8

# creating factor variable using conditional statement

num2factor <- factor(ifelse(numvar<=-1.37,1, 
  ifelse(numvar<=-0.389,2,ifelse(numvar<=0.592,3,ifelse 
    (numvar<=1.57,4,5)))),labels=c("(-2.35,-1.37]",  
      "(-1.37,-0.389]", "(-0.389,0.592]",  
        "(0.592,1.57]",   "(1.57,2.55]"))

# displaying data using table function

table(num2factor)

num2factor

 (-2.35,-1.37] (-1.37,-0.389] (-0.389,0.592] (0.592,1.57] (1.57,2.55] 

       7             43            29             13           8

Once we have converted the numeric variable to the factor variable and discarded 
the numeric variable, we cannot go back to the original numeric variable. Therefore, 
we should be careful when converting the numeric variable to the factor variable.

Date processing using lubridate
R can handle date variables in several ways. There are built-in R functions available 
to process date variables, and there are also some useful contributed packages 
available. The built-in R function as.Date() can handle only dates but not time, 
whereas the chron package, contributed by James and Hornik in 2008, can handle 
both date and time. However, it cannot work with time zones. Using the POSIXct 
and POSIXlt class objects, we can work with time zones. But there is another R 
package, lubridate, contributed by Grolemund and Wickham in 2011, that has 
a much more user friendly functionality to process date and time, with time zone 
support. In this section, we will see how we can easily process date and time using 
the lubridate package, and compare it with built-in R functions.
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Like other statistical software, R also has a base date, and using that base date, R 
internally stores date objects. In R, dates are stored as the number of days elapsed 
since January 1, 1970. So if we convert any date object to its internal number, it will 
show the number of days. We can reformat the number into a date using the date 
class. The following are some examples:

# creating date object using built in as.Date() function

as.Date("1970-01-01")

[1] "1970-01-01"

# looking at the internal value of date object

as.numeric(as.Date("1970-01-01"))

[1] 0

# Second January 1970 is showing number of elapsed day is 1.

as.Date("1970-01-02")

[1] "1970-01-02"

as.numeric(as.Date("1970-01-02"))

[1] 1

Using the as.Date() function, we can easily create the date object; the typical format 
of the date object in this function is year, month, and then day. But we can also 
create a date object with other formats by specifying the format argument within the 
as.Date() function, as shown in the following example:

# creating date object specifying format of date

as.Date("Jan-01-1970",format="%b-%d-%Y")

[1] "1970-01-01"

Note that when specifying the format of the date, we have to give the format that is 
aligned with the input string. For the complete list of code that is used to specify date 
formats, users are directed to the help documentation of the strptime function. Users 
can access the complete list by just typing in help(strptime) in the R console.

The lubridate package provides intuitive functionality to work with the date object 
in R. The following are some of the examples to create the date object using the 
lubridate package:

# loading lubridate package

library(lubridate)

# creating date object using mdy() function

mdy("Jan-01-1970")

"1970-01-01 UTC"
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Note that the default time zone in the mdy, dmy, or ymd function is Coordinated 
Universal Time (UTC). One of the most interesting and important features of the 
lubridate package is that it can process date variables in heterogeneous formats. 
Heterogeneous formats means users can store date information in various ways; for 
example, the second chapter due on 2013, August, 24, the irst chapter submitted 
on 2013, 08, 18, or 2013 August 23. From this heterogeneous date, we can extract 
the valid date object that can be processed further within R using the lubridate 
package, as shown in the following code:

# creating heterogeneous date object

hetero_date <- c("second chapter due on 2013, august, 24",  
"first chapter submitted on 2013, 08, 18", "2013 aug 23")

# parsing the character date object and convert to valid date

ymd(hetero_date)

[1] "2013-08-24 UTC" "2013-08-18 UTC" "2013-08-23 UTC"

Although the lubridate package can handle heterogeneous dates, the sequence 
of year, month, and day should be similar across all values within the same object, 
otherwise during date extraction there will be a missing value that will be generated, 
along with a warning message. For example, if we alter the last date to 23 aug 2013, 
it will not get converted into a valid date, as shown in the following code:

hetero_date <- c("second chapter due on 2013, august, 24",  
"first chapter submitted on 2013, 08, 18", "23 aug 2013")

ymd(hetero_date)

[1] "2013-08-24 UTC" "2013-08-18 UTC" NA              

Warning message:

1 failed to parse.

During the date manipulation, sometimes we need to change the month, only within 
an existing R date object. The following is an example of doing this, using the core R 
function, and also using the lubridate package:

# Creating date object using base R functionality

date <- as.POSIXct("23-07-2013",format = "%d-%m-%Y", tz = "UTC")

date

[1] "2013-07-23 UTC"

# extracting month from the date object

as.numeric(format(date, "%m"))

[1] 7

# manipulating month by replacing month 7 to 8

date <- as.POSIXct(format(date,"%Y-8-%d"), tz = "UTC")

date

[1] "2013-08-23 UTC"

# The same operation is done using lubridate package

www.allitebooks.com

http://www.allitebooks.org
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date <- dmy("23-07-2013")

date

[1] "2013-07-23 UTC"

month(date)

[1] 7

month(date) <- 8

date

[1] "2013-08-23 UTC"

In a dataset, the variable might have both date and time information, and we  
need to round them to the nearest day or month. The following example shows  
the date-rounding functionality; this example also displays how to convert the  
time zone:

# accessing system date and time 

# the output of this section will be vary for the readers

current_time <- now()

current_time

[1] "2013-08-23 23:43:01 BDT"

# changing time zone to "GMT"

current_time_gmt <- with_tz(current_time,"GMT")

current_time_gmt

[1] "2013-08-23 17:43:01 GMT"

# rounding the date to nearest day

round_date(current_time_gmt,"day")

[1] "2013-08-24 GMT"

# rounding the date to nearest month

round_date(current_time_gmt,"month")

[1] "2013-09-01 GMT"

# rounding date to nearest year

round_date(current_time_gmt,"year")

[1] "2014-01-01 GMT"

In this section, we saw that dealing with dates using the lubridate package is really 
user friendly and intuitive.

Sometimes we need to change the time zone in date variables for data analysis 
purposes. For example, we might need to change the time zone from GMT to EST. 
Using the _tz() function in the lubridate package made this easy and intuitive  
to change the time zone. Here is a simple example:

date <- ymd("20141221")

date
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[1] "2014-12-21 UTC"

with_tz(date,"EST")

[1] "2014-12-20 19:00:00 EST"

Sometimes we need to access individual components of a date and time variable, 
such as accessing year, month, and day, as well as the days of week, and many more. 
The following is a list of available easy functions from the lubridate packages. 
These functions are easy to use, and easy to understand.

• To get the year part from a date time variable: year()

• To get the month only: month()

• To get the week number of a particular date: weak()

• To get the day from a date variable (day of month): day() or mday()

• To get the day number between 1 and 365 (day of year): yday()

• To get the day of week: wday()

• To get the hour, min, and second: hour(), minute(), second()

• To access the time zone: tz()

Here is an example for each of the functions we just listed:

date <- ymd("20141221")

year(date)

[1] 2014

month(date)

[1] 12

month(date,label=T)

[1] Dec

Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < Oct < 
Nov < Dec

month(date,label=T,abbr=F)

[1] December

Levels: January < February < March < April < May < June < July < 
August < September < October < November < December

week(date)

[1] 51

day(date)

[1] 21

mday(date)

[1] 21

yday(date)

[1] 355

wday(date)

[1] 1

wday(date,label=T)
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[1] Sun

Levels: Sun < Mon < Tues < Wed < Thurs < Fri < Sat

hour(date)

[1] 0

minute(date)

[1] 0

second(date)

[1] 0

tz(date)

[1] "UTC"

Now, we will draw attention to the reader on the output of hour(), minute(), and 
second(); the output of these functions is zero, which means that the date object 
contains only the date part, and as a result, the time part is set to zero. So, the results 
indicate that the date is recorded at 12:00 AM. At the point we change the time zone 
of the date object, the value will be different; here is an example:

 hour(with_tz(date,"EST"))

[1] 19

Character manipulation
In any statistical software, all the data is expected to be either numeric or at least 
a factor, but sometimes we have to work with character data. In the area of text 
mining, character, or string, manipulation is the most important. R has complete 
functionality to manipulate character (string) data for further analysis. Besides default 
R functionality, there is one contributed package to deal with character data, which 
is more user friendly and intuitive, compared to the base R counterpart. Wickham 
developed the stringr package in 2010 to manipulate character data with some 
user friendly functions. In this section, we will introduce different functions and 
their counterparts in a table, so that the readers are able to use the functions from the 
stringr package easily:

Base R functions stringr functions

paste(): This function is used to 
concatenate a vector of characters, 
with a default separator as a space.

str_c(): This has a functionality similar to 
paste(), but it uses empty as the default separator. 
It also silently removes zero-length arguments.

nchar(): This returns the number 
of characters in a character string. 
For NA, it returns 2, which is not 
expected. For example:

nchar(c("x","y",NA))

[1] 1 1 2

str_length(): This is the same as nchar(), but 
it preserves NA. For example:

str_length(c("x","y",NA))

[1] 1 1 NA
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Base R functions stringr functions

substr(): This extracts or replaces 
substrings in a character vector.

str_sub(): This is the equivalent of substr(), 
but it returns a zero-length vector if any of its 
inputs are of zero length. It also accepts negative 
positions, which are calculated from the left of 
the last character. The end position defaults to -1, 
which corresponds to the last character.

Unavailable str_dup(): This is used to duplicate the 
characters within a string.

Unavailable str_trim(): This is used to remove the leading 
and trailing whitespaces.

Unavailable str_pad(): This is used to pad a string with extra 
whitespaces on the left, right, or both sides.

Other than the functions listed in the preceding table, there are some other user 
friendly functions for pattern matching. Those functions are str_detect, str_locate, 
str_extract, str_match, str_replace, and so on. To get more details about these 
functions, readers should refer to the stringr: modern, consistent string processing 
paper, by Wickham, which can be found at http://journal.r-project.org/
archive/2010-2/RJournal_2010-2_Wickham.pdf.

Subscripting and subsetting
Subscripting and subsetting a dataset is an integral part of data manipulation. If 
we need to extract a smaller part of any R object (vector, data frame, matrix, or list) 
that contains more than one element, we need to use subscripts. Subscripting is 
an approach to access individual elements of an R object; for example, accessing a 
particular element of a vector. Usually, numeric integers are used for subscripting, but 
logical vectors can also be used for the same purposes. In R, the subscript starts from 1, 
and if we specify any negative subscript, it omits that position from the source object.

The following is an example of an R vector with 10 elements, and the effect of 
positive and negative subscripting:

# creating a 10 element vector

num10 <- c(3,2,5,3,9,6,7,9,2,3)

# accessing fifth element

num10[5]

[1] 9

# checking whether there is any value of num10 object greater  
# than 6

num10>6

http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf
http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf
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[1] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE

# keeping only values greater than 6

num10[num10>6]

[1] 9 7 9

# use of negative subscript removes first element "3"

num10[-1]

[1] 2 5 3 9 6 7 9 2 3

Note that the subscripted indexes are written within square brackets. For  
one-dimensional vectors, we use a single index to access elements, but for  
two-dimensional objects, such as data frames or matrices, we have to use  
two-dimensional subscripts. In that case, we have to use double square brackets  
for indexing. The irst index is for representing rows, and the second is for 
representing columns; for example:

# creating a data frame with 2 variables

data_2variable <- data.frame(x1=c(2,3,4,5,6),x2=c(5,6,7,8,1))

data_2variable

   x1 x2

1  2  5

2  3  6

3  4  7

4  5  8

5  6  1

# accessing only first row

data_2variable[1,]

  x1 x2

1  2  5

# accessing only first column

data_2variable[,1]

[1] 2 3 4 5 6

# accessing first row and first column

data_2variable[1,1]

[1] 2

Similar indexing is used for matrices. For the list object, the indexing is different than 
that of data frames, or matrices. To get access to a list object, we have to use [[]] 
for indexing; for example, the index [[1]] gets the irst element of a list. If the list is 
nested within another list, we need to use a series of double square brackets, within 
double square brackets.
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The following example creates a list object and accesses its elements:

list_obj<- list(dat=data_2variable,vec.obj=c(1,2,3))

list_obj

$dat

  x1 x2

1  2  5

2  3  6

3  4  7

4  5  8

5  6  1

$vec.obj

[1] 1 2 3

# accessing second element of the list_obj objects

list_obj[[2]]

[1] 1 2 3

Now, if we want to get access to the individual elements of list_obj[[2]], we have 
to use the following command:

list_obj[[2]][1]

[1] 1

If the list object is named, we can get access to the elements of that list, using the 
name as follows:

# accessing dataset from the list object

list_obj$dat

x1 x2

1  2  5

2  3  6

3  4  7

4  5  8

5  6  1

Subsetting is just storing subscripted objects. Once we extract any subscripted R 
object, and store it in another variable, the newly created object is the subset of the 
original variable.

Downloading the example code

You can download the example code iles for all 
Packt books you have purchased from your account 
at http://www.packtpub.com. If you purchased 
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the 
iles e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
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Summary
In this chapter, we have covered some of the special features that we need to 
consider during data acquisition. We also discussed the important aspect of factor 
manipulation, especially when subsetting a factor variable, and how to remove 
unused factor levels. The processing of date variables was covered with the use of 
the lubridate package, with its user friendly and intuitive functions, and also string 
processing has been highlighted. The chapter ended with an explanation of the 
concepts of subscripting and subsetting. For more details on date processing and 
string manipulation readers should refer to the stringr: modern, consistent string 
processing paper by Wickham, which can be found at http://journal.r-project.
org/archive/2010-2/RJournal_2010-2_Wickham.pdf, and the dates and times 
made easy with lubridate journal, by Grolemund and Wickham, which can be found at 
http://www.jstatsoft.org/v40/i03/paper.

In the next chapter, we will discuss data manipulation with the plyr package, where 
we will focus on the split-apply-combine strategy and a state-of-the-art approach in 
the group-wise data manipulation using R.

http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf
http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf
http://www.jstatsoft.org/v40/i03/paper
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Data Manipulation Using  
plyr and dplyr

We often collect data across different places and time points and across human 
characteristics. A census collects data across different states. In a longitudinal study, 
we collect information over different time points. Those individuals could be male 
or female, and their occupation could be different. All individuals under any study 
could be split into different groups based on these geographical, temporal, and 
occupational characteristics. We usually analyze data as a whole, but sometimes it is 
useful to perform some tasks separately among different groups.

As an example, if we collect details of the income of different individuals from six 
different regions, then we might be interested in seeing the income distribution 
among different professions (considering ive different professions), across six regions. 
This income could vary depending on whether the person is a male or female. In 
this situation, we can conceptualize this problem by splitting the dataset based on 
profession, gender, and region. There should be 5 x 6 x 2=60 different groups, and 
we need to calculate the average income separately for each groups. Finally, we want 
to combine the result to see all the information side by side. This group-wise operation 
is often termed as the split-apply-combine approach of data analysis.

In this approach, irst we split the dataset into some mutually exclusive groups. We 
then apply a task on each group and combine all the results to get the desired output. 
This group-wise task could be generating new variables, summarizing existing 
variables, or even performing regression analysis on each group. Finally, combining 
approaches helps us get a nice output to compare the results from different groups.
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This chapter will deal with the following topics:

• Applying the split-apply-combine strategy

• Utilities of the plyr library

• Different functions in the plyr package for handling different data structures

• Comparing base R and plyr

• Powerful data manipulation with the dplyr library

Applying the split-apply-combine 

strategy
For the purpose of demonstration, we will use an iris lower dataset, which is readily 
available in R. The iris lower has three different species: iris setosa, iris virginica, 
and iris versicolor. Fifty samples from each species were collected and, for each 
sample, four variables were measured: the length and width of the sepals and 
petals. The name of each lower is stored under the species column, and the length 
and width of sepal is stored under the Sepal.Length and Sepal.Width columns, 
respectively. Similarly, the length and width of the petal are stored under the Petal.
Length and Petal.Width columns, respectively. The following command shows the 
irst few rows from the iris data frame:

> head(iris)

  Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1          5.1         3.5          1.4         0.2  setosa

2          4.9         3.0          1.4         0.2  setosa

3          4.7         3.2          1.3         0.2  setosa

4          4.6         3.1          1.5         0.2  setosa

5          5.0         3.6          1.4         0.2  setosa

6          5.4         3.9          1.7         0.4  setosa

Now we will use the split-apply-combine strategy to ind the average width and length 
of sepal and petal for three different species of iris. The strategy will be as follows:

1. First we will split the dataset into three subsets according to the species of  
the flower.

2. Next, for each subset, we will compute the average width and length of the 
sepal and petal.
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3. Finally, we will combine all the results to compare them with each other.

# Step 1: Splitting dataset

iris.setosa <- subset(iris,Species=="setosa",          
select=c(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width))

iris.versicolor <- subset(iris,Species=="versicolor", 
select=c(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width))

iris.virginica <-  subset(iris,Species=="virginica", 
select=c(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width))

# Step 2: Applying mean function to calculate mean

setosa <- colMeans(iris.setosa)

versicolor <- colMeans(iris.versicolor)

virginica <-colMeans(iris.virginica)

# Step 3: Combining results

rbind(setosa=setosa,versicolor=versicolor,virginica=virginica)

This is the detailed code to implement the split-apply-combine approach. We could 
implement the strategy with less code, as follows:

# Step 1: Splitting dataset

iris.split <- split(iris,as.factor(iris$Species))

# Step 2: Applying mean function to calculate mean

iris.apply <- lapply(iris.split,function(x)colMeans(x[-5]))

# Step 3: Combining results

iris.combine <- do.call(rbind,iris.apply)

iris.combine 

           Sepal.Length Sepal.Width Petal.Length Petal.Width

setosa            5.006       3.428        1.462       0.246

versicolor        5.936       2.770        4.260       1.326

virginica         6.588       2.974        5.552       2.026

In later sections in this chapter, we will see how the plyr package comes in handy 
for implementing the split-apply-combine approach on all kind of data structures. 
Using the plyr package, one line of code would be suficient to implement these 
three steps.

www.allitebooks.com
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Introducing the plyr and dplyr libraries
We have seen how we can implement the split-apply-combine approach on a data 
frame using three lines of code. The plyr package helps us to implement the approach 
in one line. Since R has multiple data structures, we need multiple functions to work 
on different data structures. R has three main data structures: list, array, and data 
frames. So, there could be three different types of input, and the output could produce 
three different types of data structures. There could be 3 x 3 = 9 possible input-
output combinations, and for this reason, plyr has 9 functions to incorporate all the 
input-output combinations. In addition, we have three additional functions that take 
six different types of input but display only one type of output.

The plyr package works on every type of data structure, whereas the dplyr package 
is designed to work only on data frames. The dplyr package offers a complete set 
of functions to perform every kind of data manipulation we need in the process of 
analysis. These functions take a data frame as the input and also produce a data frame 
as output; hence the name: dplyr. There are two different types of function in the 
dplyr package: a single-table function and an aggregate function. The single-table 
function takes a data frame as input and takes an action, such as subsetting the data 
frame, generating new columns in the data frame, or rearranging the data frame. The 
aggregate function takes a column as input, and produces a single value as output, 
which is mostly used for summarizing columns. These functions do not allow us to 
perform any group-wise operation, but let's combine these functions with the  
group_by() function. This allows us to implement the split-apply-combine approach.

plyr's utilities
The most important utility of the plyr package is that a single line of code can perform 
all the split, apply, and combine steps. What we have done using three lines of code in 
the irst section can be implemented in just one line using the plyr package:

library(plyr)

ddply(iris, .(Species), function(x) colMeans(x[-5]))

Here, ddply() is a function from the plyr package, which takes a data frame as 
input and produces a data frame as output. Hence, the name of the function is ddply. 
Here, the argument works as follows:

• The first argument is the name of the data frame. We put iris, since the iris 
dataset is in the data frame structure and we want to work on it.

• The second argument is for a variable or variables, according to which we 
want to split our data frame. In this case, we have Species.

• The third argument is a function that defines what kind of task we want to 
perform on each subset.
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One question that should come into our mind is how the function takes data as 
input. Here, we will split the data frame into three different groups as follows: 

• The first subset, which is also a data frame, will be considered as an input  
of the function. The function will calculate all the column means and store 
them somewhere.

• The second subset will be considered as input for the function, and so on.

• All the outputs will be combined to form a single data frame.

This is like the bysort command in Stata, but with a lot more lexibility. Since there 
are different types of data structure in R, one single function cannot handle all types 
of data structure. That is why we have multiple functions in the plyr package that 
have a very similar naming convention. It is very easy to remember all the functions, 
and it is easy to apply them when we need.

Intuitive function names in the plyr library
To perform any kind of data processing, we need to know the type of input that we 
have to provide and the expected output format. In most R functions, it is dificult 
to understand from function names what types of input they accept and what the 
expected types of output are. Function names in the plyr package are much more 
intuitive and instructive about their input and output types, compared to any other 
available packages. Each function is named according to the type of input it takes, 
and the type of output it produces. The irst letter of the function name speciies the 
input, and the second letter speciies the output type; a represents array, d represents 
data frame, l represents list, and _ (underscore) represents the output discarded. 
For example, the function name adply() takes input as an array and produces 
output as a data frame. The following table gives us a complete idea about function-
naming conventions used in the plyr package:

Input Output

Array Data frame List Discarded

Array Aaply() adply() alply() a_ply()

Data frame daply() ddply() dlply() d_ply()

List laply() ldply() llply() l_ply()

We can see that there are three types of input and four types of output. Users can 
easily get an idea of the types of input and output from the function names.

Another interesting feature is that we do not need to learn all 12 functions. Instead, it 
is suficient to learn the three types of input and four types of output.
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Other than the function names in the table, there are some special cases involving 
operating on arrays that correspond to the mapply() function in base R. In base R, 
mapply() can take multiple inputs as separate arguments, whereas a*ply() takes 
only a single array argument. However, the separate argument in mapply() should 
be of the same length. The mapply() functions that are equivalent to plyr are 
maply(), mdply(), mlply(), and m_ply().

Note that, whenever a function name is written using a star symbol, such as *ply(), 
it indicates that the input is an array. The output can be in any format: array, data 
frame, or list. Optionally, the output can be discarded.

To explain the intuitive nature of the input and output, we will now provide an 
example using the iris data that we used in an earlier example. This time, we will use 
iris3 dataset; this is the same data, but it is stored in a three-dimensional array 
format. We will calculate the mean of each variable for each species, as shown in the 
following code:

# class of iris3 dataset is array 

class(iris3) 

[1] "array" 

# dimension of iris3 dataset 

dim(iris3) 

[1] 50 4 3

The following code snippet, calculates the column mean for each 
species, with the input as an array, and the output as a data frame:

# Calculate column mean for each species and output will be 

# data frame 

iris_mean <- adply(iris3,3,colMeans) 

class(iris_mean) 

[1] "data.frame" 

iris_mean 

X1 Sepal L. Sepal W. Petal L. Petal W. 

1 Setosa 5.006 3.428 1.462 0.246 

2 Versicolor 5.936 2.770 4.260 1.326 

3 Virginica 6.588 2.974 5.552 2.0266

Since iris3 is an array, we need to specify according to which dimension we will 
split the array. We specify this using the .margins parameter, in the adply function. 
We put .margins=3 in adply function as: adply(iris3,.margins=3,colMeans) to 
tell the adply function that we want the splitting according to the third dimension of 
a three dimensional array object. If we wanted to split the data according to row or 
column, we would put 1 or 2, respectively. It is also legitimate to use a combination 
of dimensions. In that case, c(1,2) could be a choice.
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The following code snippet calculates the column mean for each species, with the 
input as an array as well as the output as arrays:

# again we will calculate the mean but this time output will be an # 
array 

iris_mean <- aaply(iris3,3,colMeans) 

class(iris_mean) 

[1] "matrix"

iris_mean 

X1 Sepal L. Sepal W. Petal L. Petal W. 

Setosa 5.006 3.428 1.462 0.246 

Versicolor 5.936 2.770 4.260 1.326 

Virginica 6.588 2.974 5.552 2.026 

# note that here the class is showing "matrix", 

# since the output is a # two dimensional array which represents 

# matrix. Now calculate mean again with output as list 

iris_mean <- alply(iris3,3,colMeans) 

class(iris_mean) 

[1] "list" 

iris_mean 

$'1' 

Sepal L. Sepal W. Petal L. Petal W. 

5.006 3.428 1.462 0.246 

$'2' 

Sepal L. Sepal W. Petal L. Petal W. 

5.936 2.770 4.260 1.326 

$'3' 

Sepal L. Sepal W. Petal L. Petal W. 

6.588 2.974 5.552 2.026 

attr(,"split_type") 

[1] "array" 

attr(,"split_labels") 

X1 

1 Setosa 

2 Versicolor 

3 Virginica
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Inputs and arguments
The functions in the plyr package accept various input objects: data frames, arrays, 
and lists. Each input object has its own rule to split the process. In this section, we 
will discuss inputs and arguments. The rules of splitting are described shortly in  
this section.

Arrays are sliced by dimension into lower dimensional pieces. The corresponding 
common function is a*ply(), where the array is the common input, and the output 
can be an array, data frame, or list.

Data frames are sliced and subset by a combination of variables from the input 
dataset. The corresponding common function is d*ply(), where the data frame is the 
common input, and the output can be one among an array, data frame, or list.

The elements of a list are processed separately, and the common function is l*ply(), 
where the common input is a list, and the output can be an array, data frame, or list.

Depending on the input type, there are two or three main arguments for the common 
functions: a*ply(), d*ply(), and l*ply(). The following are the main arguments 
for these common functions:

• a*ply(.data, .margins, .fun, ..., .progress = "none")

• d*ply(.data, .variables, .fun, ..., .progress = "none")

• l*ply(.data, .fun, ..., .progress = "none")

The irst argument, .data, is the input dataset that needs to be processed by being 
split, and the output will be combined from each split. The .margins or .variables 
argument speciies how the data should be split up into smaller pieces. The .fun 
argument speciies the processing task; this can be any function that is applicable to 
each split of the input. If we omit the .fun argument, the input data is just converted 
into the output structure speciied by the function. If we want to monitor the 
progress of the processing task, the progress argument should be speciied. It will 
not show the progress status by default.

In the following example, we will see what will happen if we do not specify the .fun 
argument in any function of the plyr package. If we give the input as an array and 
want the output as a data frame, but we haven't given a .fun argument, the adply() 
function will just convert the array object into a data frame. Here is an example:

# converting 3 dimensional array to a 2 dimensional data 

#frame 

iris_dat <- adply(iris3, .margins=3) 

class(iris_dat)
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[1] "data.frame" 

str(iris_dat) 

'data.frame': 150 obs. of 5 variables: 

$ X1 : Factor w/ 3 levels "Setosa","Versicolor",..: 1 1 1 1 1 1 1 1 1 
1 ... 

$ Sepal L.: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... 

$ Sepal W.: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... 

$ Petal L.: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... 

$ Petal W.: num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

The .margins argument works in a manner similar to the apply() function in base 
R. It does the following: 

• Slices up a row by specifying .margins = 1

• Slices up a column by specifying.margins = 2

• Slices up the individual cells by specifying.margins = c(1,2)

The .margins argument works correspondingly for higher dimensions, with a 
combinatorial explosion in the number of possible ways to slice up the array.

Multiargument functions
Sometimes, we have to deal with functions that take multiple arguments, and the 
values of each argument can come from a data frame, a list, or an array. The plyr 
package has intuitive and user-friendly functions to work with multiargument 
functions. In this section, we will see an example of generating random numbers 
from a normal distribution, with various combinations of mean and standard 
deviation. The values of mean and standard deviation are stored in a data frame. 
Now, we will generate random numbers using default R functions, such as the for 
loop, and also using the mlply() function from the plyr package. The parameter 
combinations are given in the following table:

Sample 
size (n) 

Mean Standard 
deviation 

25 0 1 

50 2 1.5 

100 3.5 2 

200 2.5 5 

500 0.1 2 
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With these parameter combinations, we will generate normal random numbers using 
default R and plyr, as shown in the following code:

# define parameter set 

parameter.dat <- data.frame(n=c(25,50,100,200,400),

                            mean=c(0,2,3.5,2.5,0.1),

                            sd=c(1,1.5,2,5,2)) 

# displaying parameter set 

parameter.dat 

n mean sd 

1 25 0.0 1.0 

2 50 2.0 1.5 

3 100 3.5 2.0 

4 200 2.5 5.0 

5 400 0.1 2.0 

# random normal variate generate using base R 

# set seed to make the example reproducible 

set.seed(12345) 

# initialize blank list object to store the generated variable

dat <- list() 

for(i in 1:nrow(parameter.dat)) 

{ 

dat[[i]] <- rnorm(n=parameter.dat[i,1], 

mean=parameter.dat[i,2],sd=parameter.dat[i,3]) 

}

# estimating mean from the newly generated data 

estmean <- lapply(dat,mean) 

estmean 

[[1]] 

[1] -0.001177287 

[[2]] 

[1] 2.417842 

[[3]] 

[1] 3.667193 

[[4]] 

[1] 2.999662 

[[5]] 

[1] 0.1765926 

# Performing same task as above but this time use plyr package 

dat_plyr <- mlply(parameter.dat,rnorm) 

estmean_plyr <- llply(dat_plyr,mean) 

estmean_plyr 

$'1' 

[1] 0.4252469 
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$'2' 

[1] 2.037528 

$'3' 

[1] 3.070231 

$'4' 

[1] 2.144276 

$'5' 

[1] 0.05399488

Comparing base R and plyr
In this section, we will compare the code side by side to solve the same problem 
using both default R and plyr. Reusing the iris3 data, we are now interested in 
producing ive-number summary statistics for each variable group by species. The 
ive numbers will be minimum, mean, median, maximum, and standard deviation. 
The output will be a list of data frames.

To calculate the ive-number summary statistics, follow these steps:

1. Define a function that will calculate five-number summary statistics for a 
given vector.

2. Produce the output of this function in a data frame object.

3. Apply this function in the iris3 dataset using a for loop.

4. Apply the same function using the apply() function of the plyr package.

An example that explains the calculation of the ive-number summary statistics  
is as follows:

# Function to calculate five number summary 

fivenum.summary <- function(x) 

{ 

results <-data.frame(min=apply(x,2,min), 

mean=apply(x,2,mean), 

median=apply(x,2,median), 

max=apply(x,2,max), 

sd=apply(x,2,sd)) 

return(results) 

}



Data Manipulation Using plyr and dplyr

[ 60 ]

Here, you can see how we calculate the summaries for the ive numbers using a for 
loop, with default R:

# initialize the output list object 

all_stats <- list() 

# the for loop will run for each species 

for(i in 1:dim(iris3)[3]) 

{ 

sub_data <- iris3[,,i] 

all_stat_species <- fivenum.summary(sub_data) 

all_stats[[i]] <- all_stat_species 

}

# class of the output object 

class(all_stats) 

[1] "list" 

all_stats 

[[1]] 

min mean median max sd 

Sepal L. 4.3 5.006 5.0 5.8 0.3524897 

Sepal W. 2.3 3.428 3.4 4.4 0.3790644 

Petal L. 1.0 1.462 1.5 1.9 0.1736640 

Petal W. 0.1 0.246 0.2 0.6 0.1053856 

[[2]] 

min mean median max sd 

Sepal L. 4.9 5.936 5.90 7.0 0.5161711 

Sepal W. 2.0 2.770 2.80 3.4 0.3137983 

Petal L. 3.0 4.260 4.35 5.1 0.4699110 

Petal W. 1.0 1.326 1.30 1.8 0.1977527

[[3]] 

min mean median max sd 

Sepal L. 4.9 6.588 6.50 7.9 0.6358796 

Sepal W. 2.2 2.974 3.00 3.8 0.3224966 

Petal L. 4.5 5.552 5.55 6.9 0.5518947 

Petal W. 1.4 2.026 2.00 2.5 0.2746501
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Let's calculate the same statistics, but this time using the alply() function from the 
plyr package:

all_stats <- alply(iris3,3,fivenum.summary) 

class(all_stats) 

[1] "list" 

all_stats 

$'1' 

min mean median max sd 

Sepal L. 4.3 5.006 5.0 5.8 0.3524897 

Sepal W. 2.3 3.428 3.4 4.4 0.3790644 

Petal L. 1.0 1.462 1.5 1.9 0.1736640 

Petal W. 0.1 0.246 0.2 0.6 0.1053856 

$'2' 

min mean median max sd 

Sepal L. 4.9 5.936 5.90 7.0 0.5161711 

Sepal W. 2.0 2.770 2.80 3.4 0.3137983 

Petal L. 3.0 4.260 4.35 5.1 0.4699110 

Petal W. 1.0 1.326 1.30 1.8 0.1977527 

$'3' 

min mean median max sd 

Sepal L. 4.9 6.588 6.50 7.9 0.6358796 

Sepal W. 2.2 2.974 3.00 3.8 0.3224966 

Petal L. 4.5 5.552 5.55 6.9 0.5518947 

Petal W. 1.4 2.026 2.00 2.5 0.2746501 

attr(,"split_type") 

[1] "array" 

attr(,"split_labels") 

X1 

1 Setosa 

2 Versicolor 

3 Virginica
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Powerful data manipulation with dplyr
Mostly, in real-life situations, we usually start our analysis with a data frame-
type structure. What do we do after getting a dataset and what are the basic 
data-manipulation tasks we usually perform before starting modeling? They are 
explained here:

1. We check the validity of a dataset based on conditions.

2. We sort the dataset based on some variables, in ascending or  
descending order.

3. We create new variables based on existing variables.

4. Finally, we summarize them.

This is a list of tasks we usually perform over full datasets. The dplyr package has 
all the necessary functions to perform all the tasks listed and some more additional 
tasks that come in handy in the data-manipulation process. Group-wise operation is 
also possible using the dplyr package. In the dplyr package, every task is performed 
using a function that is called a verb. We may need to use multiple verbs on the same 
data frame. This could force us to write either a very long line or multiple lines of 
code. Chaining is a powerful feature of dplyr that allows the output from one verb 
to be piped into the input of another verb using a short, easy-to-read syntax.

Filtering and slicing rows
Sometimes, it is more important to subset the data frame based on values of a 
variable or multiple variables. The filter() function allow us to perform this task. 
If we want to just see all the observations under the virginica species, then we need 
to use the following code:

filter(iris,Species=="virginica")

We could also create a data frame with sepal length less than 6 cm and sepal width 
less than or equal to 2.7 cm:

filter(iris,Species=="virginica" &  Sepal.Length<6  & Sepal.
Width<=2.7)

We could also extract the subset of a data frame using the slice() function. If we 
want to subset the irst 10 observations, the last 10 observations, or even the 95th to 
105th observation, then we could use the following code, respectively:

slice(iris, 1:10)

slice(iris, 140:150)

slice(iris, 95:105)
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Arranging rows
To sort the whole data frame based on a single variable or multiple variables, we 
could use the arrange() function. We could sort the dataset according to the lowest 
length of sepal to the highest length of sepal:

arrange(iris, Sepal.Length)

We could also sort the dataset by sorting the data frame for sepal length and then for 
sepal width:

arrange(iris, Sepal.Length, Sepal.Width)

If we want to sort the data frame in ascending order for sepal length, but descending 
order for sepal width, we can use the desc() function from this package:

arrange(iris, Sepal.Length, desc(Sepal.Width))

It seems that the arrange() function in the dplyr package is very similar to the 
order() function, but it has a lot more lexibility and an intuitive structure of  
input arguments.

Selecting and renaming
Most of the time, we do not work on all the variables in a data frame. Selecting a few 
columns could make the analysis process less complicated. We could easily select a 
smaller number of columns from a data frame. In our example, we selected the Sepal.
Length and Sepal.Width species of the iris data frame using the select() function:

select(iris, Species, Sepal.Length, Sepal.Width) 

We could also change the column name using the rename() function:

rename(iris, SL=Sepal.Length, SW= Sepal.Width, PL=Petal.Length, PW= 
Petal.Width )

Adding new columns
Very often, we need to create new columns for the purpose of analysis. In the iris 
data frame, if we want to convert the width and length of sepal and petal from 
centimeter to meter, we could use the mutate() function as follows:

mutate(iris, SLm=Sepal.Length/100, SWm= Sepal.Width/100, PLm=Petal.
Length/100, PWm= Petal.Width/100 ) 
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Also, we could standardize these variables in the following way:

mutate(iris, SLsd=(Sepal.Length-mean(Sepal.Length))/sd(Sepal.Length), 

                      SWsd= (Sepal.Width-mean(Sepal.Width))/sd(Sepal.
Width),

                      PLsd=(Petal.Length-mean(Petal.Length))/sd(Petal.
Length),

                      PWsd= (Petal.Width-mean(Petal.Width))/sd(Petal.
Width) ) 

If we want to keep only the new variables and drop the old ones, we could easily use 
the transmute() function:

transmute(iris, SLsd=(Sepal.Length-mean(Sepal.Length))/sd(Sepal.
Length), 

                      SWsd= (Sepal.Width-mean(Sepal.Width))/sd(Sepal.
Width),

                      PLsd=(Petal.Length-mean(Petal.Length))/sd(Petal.
Length),

                      PWsd= (Petal.Width-mean(Petal.Width))/sd(Petal.
Width) ) 

Selecting distinct rows
We can extract distinct values of a variable or multiple variables using the 
distinct() function. Sometimes, we might encounter duplicate observations in a 
data frame. The distinct() function helps eliminates these observations:

distinct(iris,Species,Petal.Width)

Column-wise descriptive statistics
We could summarize different variables based on different summary statistics using 
the summarise() function. Here, we summarized the length and width of sepal and 
petal by calculating their average:

summarise(iris, meanSL=mean(Sepal.Length),

                             meanSW=mean(Sepal.Width), 

                             meanPL=mean(Petal.Length), 

                             meanPW=mean(Petal.Width))
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Group-wise operations
The functions we discussed in previous sections from the dplyr package work on the 
whole data frame. If we want to use a group-wise operation on different columns, 
we need to use a combination of the group_by() function and the other functions:

iris.grouped<- group_by(iris, Species)  

summarize(iris.grouped, count=n(), 

                       meanSL= mean(Sepal.Length),

                      meanSW=mean(Sepal.Width), 

                      meanPL=mean(Petal.Length), 

                      meanPW=mean(Petal.Width))

Here, the combination of the group_by() and summarise() functions could be 
considered as an implementation of the split-apply-combine approach on a data 
frame. Here, group_by() takes the data frame as an input and produces a data 
frame too. However, this data frame is a special type of data frame where grouping 
information is stored inside it. When this special type of data frame is supplied as an 
input of the summarise() function, it knows that the calculation should be group-
wise. Here, all the calculations using n(), mean() are performed group-wise.

Chaining
Sometimes, it could be necessary to use multiple functions to perform a single task. 
From the iris data, we may want to use the group_by() operation to get a special 
data frame. Then we may want to use the select() function to select only the 
sepal length and width. It would then be interesting to see location and dispersion 
summary statistics. Finally, we might want to see species with maximum average 
sepal length and maximum average sepal width:

iris

iris.grouped<- group_by(iris, Species)

iris.grouped.selected<- select(iris.grouped, Sepal.Length, Sepal.
Width)   

iris.grouped.selected.summarised<- summarise(iris.grouped.selected, 

                      meanSL=mean(Sepal.Length),

                      sdSL=sd(Sepal.Length),

                     meanSW= mean(Sepal.Width),

                     sdSW= sd(Sepal.Width))

filter(iris.grouped.selected.summarised, meanSL==max(meanSL) | 
meanSW==max(meanSW))
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The worklow is very intuitive but, each time we applied a function, we saved a new 
data frame. The dplyr package has a nice operator that prevents us from saving a 
new data frame each time we perform an action on it. This operator is called the %>% 
chain operator; it is similar to the pipe operation in shell scripting. The %>% operator 
turns x %% f(y) into f(x,y). This operator not only allow us to save storage, but 
also makes the code cluster more intuitive for other people to understand, It also 
helps you read your code in future:

 iris %>%

       group_by( Species) %>%

       select(Sepal.Length, Sepal.Width)   %>%

       summarise( meanSL=mean(Sepal.Length),

                             sdSL=sd(Sepal.Length),

                             meanSW= mean(Sepal.Width),

                             sdSW= sd(Sepal.Width)) %>%

       filter(meanSL==max(meanSL) | meanSW==max(meanSW))

When we have a script ile with a huge number of lines, this feature comes in handy. 
A cluster of these lines of code in a script ile will help us understand that these lines 
of code were written to perform one task. This also saves us the effort of writing an 
additional data frame name each time.

Summary
In this chapter, we discussed the importance of the split-apply-combine strategy.  
We understood what the split-apply-combine strategy is and why it is important in 
data manipulations. The split-apply-combine strategy can be implemented using 
base R, but it requires a large amount of code and is not memory or time eficient.  
To overcome this limitation, we discussed the plyr package in which group-wise 
data manipulation can be implemented eficiently. The functions within plyr are 
intuitive and instructive in terms of input and output types. A large variety of data 
processing can be done using only a few functions with common input and various 
types of output. For further reading, an interested user can refer to the paper The 
Split-Apply-Combine Strategy for Data Analysis by Wickham, which can be found at 
http://www.jstatsoft.org/v40/i01/paper. We also discussed how we can use 
dplyr as a powerful tool to manipulate data frame.

In the following chapter, you will learn about reshaping a dataset, which is another 
important aspect of group-wise data manipulation.

http://www.jstatsoft.org/v40/i01/paper
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Reshaping Datasets
Reshaping data is a common and tedious task in real-life data manipulation and 
analysis. A dataset might come with different levels of grouping, and we need 
to implement a reorientation to perform certain types of analysis. The layout of 
datasets could be long or wide. In a long layout, multiple rows represent a single 
subject's record, whereas, in a wide layout, a single row represents a single subject's 
record. Statistical analysis sometimes requires wide data and sometimes long data. 
In such cases, we need to be able to luently and luidly reshape the data to meet 
the requirements of statistical analysis. Data reshaping is just a rearrangement of 
the form of the data—it does not change the content of the dataset. In this chapter, 
we will show you different layouts of the same dataset and see how they can be 
transferred from one layout to another. This chapter mainly highlights the melt and 
cast paradigms of reshaping datasets, melt and cast is implemented in the reshape 
contributed package. Later on, this same package is reimplemented with a new 
name, reshape2, which is much more time-and memory-eficient (refer to Reshaping 
Data with the reshape Package paper by Hadley Wickham, which can be found at 
http://www.jstatsoft.org/v21/i12/paper). In this chapter, we will discuss the 
layout of a dataset and understand how we can change the layout using the new 
paradigm of reshaping datasets with melt and cast. To run the example of this 
chapter, you need to install both the reshape and reshape2 packages.

http://www.jstatsoft.org/v21/i12/paper
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Typical layout of a dataset
A single dataset can be rearranged in many different ways but, before going into 
this rearrangement, let's look at how we usually perceive a dataset. Whenever we 
think about any dataset, we think of a two-dimensional arrangement, where a row 
represents a subject's (a subject could be a person and is typically the respondent in 
a survey) information for all the variables in a dataset, and a column represents the 
information for each characteristic for all subjects. This means rows indicate records, 
and columns indicate variables, characteristics, or attributes. This is the typical 
layout of a dataset. In this arrangement, one or more variables might play the role of 
an identiier, and others are measured characteristics. For the purpose of reshaping, 
we could group the variables into two groups: identiier variables and measured 
variables. They are explained here:

• Identifier variables: These help identify the subject from whom we took 
information on different characteristics. Typically, identifier variables are 
qualitative in nature and take a limited number of unique values. In database 
terms, an identifier is termed as the primary key, and this can be a single 
variable or a composite of multiple variables.

• Measured variables: These are those characteristics whose information we 
took from a subject of interest. These can be qualitative, quantitative, or a mix 
of both.

Long layout
In this layout, the dataset is arranged in such a way that a single subject's 
information is stored in multiple rows. We need a composite identiication variable 
to identify a unique row. This type of layout is usually seen in a longitudinal dataset. 
The following is an example of this type of dataset:

sid exmterm math literature language

1 1 50 40 70

1 2 65 45 80

2 1 75 55 75

2 2 69 59 78
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Notice that in the dataset, we repeated sid but, if we consider both sid and exmterm, 
each row can be identiied uniquely. This layout is known as the long layout. The 
following is the R code to produce this data frame:

# Example of typical two dimensional data

# A demo dataset "students" with typical layout. This data  
# contains two students' exam score of "math", "literature"  
# and "language" in different term exam.

students <- data.frame(sid=c(1,1,2,2),

exmterm=c(1,2,1,2),

math=c(50,65,75,69),

literature=c(40,45,55,59),

language=c(70,80,75,78))

students

  sid exmterm math literature language

1   1       1   50         40      70

2   1       2   65         45      80

3   2       1   75         55      75

4   2       2   69         59      78

Wide layout
In this layout, each row represents all the information of a single subject. Usually, 
only one identiication variable is enough to identify a unique subject, but a 
composite identiication variable can be used. The main difference between a 
wide layout and a long layout is that the wide layout contains all the measured 
information in different columns. The following is the wide layout of the same data 
that we initially stored in the long layout:

sid math.1 literature.1 language.1 math.2 literature.2 language.2

1 50 40 70 65 45 80

2 75 55 75 69 59 78

Notice that, in this layout, each row contains all the information corresponding to a 
single value of sid. This layout is known as the wide form. In a later section, we will 
see how we can convert a long layout to a wide one and vice versa using R.
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New layout of a dataset
In R, the layout of a dataset is known to be different from the typical layout that we 
discussed in the previous section. This new layout consists of only the identiication 
variables and a value per variable. The identification variable identiies a subject, 
along with which measured variable the value represents and which is the long 
layout in this paradigm. In this new paradigm, each row represents one observation 
of one variable. Interestingly, the typical long and wide layouts are both known as 
wide layout in this new paradigm. In the new paradigm, long data is also known as 
molten data, and the process of producing molten data is known as melting from 
the wide layout. The difference between this new layout of the data and the typical 
layout is that it now contains only the ID variable and a new column value, which 
represents the value of that observation. The following is an example of molten data 
that comes from the typical long layout:

sid exmterm variable value

1 1 math 50

1 2 math 65

2 1 math 75

2 2 math 69

1 1 literature 40

1 2 literature 45

2 1 literature 55

2 2 literature 59

1 1 language 70

1 2 language 80

2 1 language 75

2 2 language 78

In this dataset, we see that each row contains all the information of one student, 
which is known as the wide data. The following is the R code to generate this  
molten data:

# Example of molten data 

library(reshape)

molten_students <- melt.data.frame 
  (students,id.vars=c("sid","exmterm"))"
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The melt.data.frame function converts the wide data to a long (molten) form, 
and the new layout will contain only the identiication variables, along with two 
other columns named variable and value. In the new layout, each row contains 
the observation of a single variable, which is also known as the long form. The 
variable column represents the identiication information, along with what is being 
measured, and the value column contains the measurement itself.

Reshaping the dataset from the typical 

layout
In this section, we will see how we can convert a typical long layout to a typical wide 
layout, and vice versa. To perform this conversion, we will use the built-in reshape() 
function. This takes several arguments, but we will use the following arguments:

• data: This argument specifies the dataset that we want to change the  
layout of.

• direction: This argument specifies whether the data is long or wide.  
Note that, here, long and wide indicate the typical layout.

• idvar: This argument specifies the identification variable. It could be  
a single variable or multiple variables.

• timevar: This argument specifies how many times the values of idvar repeat 
for each subject.

The following example converts the students' data that was created earlier from a 
long layout to a wide layout:

# Reshaping dataset using reshape function

wide_students <- reshape 
  (students,direction="wide",idvar="sid",timevar="exmterm")

wide_students

sid math.1 literature.1 language.1 math.2 literature.2 language.2

   1     50           40         70     65           45         80

   2     75           55         75     69           59         78
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After reshaping the data, we see that the rows contain each student's exam record. 
Now, we will change the layout from wide to long using the same function:

# Now again reshape to long format

long_students <- reshape 
  (wide_students,direction="long",idvar="id")

long_students

 sid exmterm math.1 literature.1 language.1

   1       1     50           40         70

   2       1     75           55         75

   1       2     65           45         80

   2       2     69           59         78

The limitation of this default reshape function is that it can only deal with the long 
and wide structures. In reality, data might contain multiple nested levels. To deal 
with complex data structures, the reshape function is not useful; we should use the 
reshape package instead.

Reshaping the dataset with the reshape 

package
As we have seen, there are two different paradigms to deine the layout of a dataset. 
To change the layout of a dataset, here are the steps of a new paradigm. We need 
to use the reshape package, where all the functions are implemented following the 
new layout. The main idea of the reshape package is melting a dataset and then 
casting it to a suitable layout. In the section, New layout of a dataset, we talked about 
melting a dataset and what it looks like. Just to recall, in molten data each row 
represents a single observation of a single variable in the dataset. Also, it contains 
only the identifier variables and a value variable to represent what is being 
measured. In this section, we will discuss melting with more examples and casting 
with molten datasets.



Chapter 4

[ 73 ]

Melting data
In R, melting is a generic operation and can be applied to various data types, 
including data frames, arrays, and matrices. Though melting can be applied to 
different R objects, the most common use is to melt a data frame. To perform melting 
operations using the melt function, we need to know what the identification 
variables and measured variables in the original input dataset are.

If we do not specify the identification variables and measured variables, by 
default any factor variables are assumed as the ID variables, and any numeric 
variables are assumed as measured variables. To avoid this ambiguous operation, it 
would be good to specify it explicitly. If we specify only one type of variable, either 
identification or measured, the function assumes that the remaining variable is 
of the other category. For example, if we specify only the ID variables, the remaining 
variables will be considered as measured variables, and vice versa. The following 
example will clarify these points:

# original data

students

  sid exmterm math literature language

1   1       1   50         40       70

2   1       2   65         45       80

3   2       1   75         55       75

4   2       2   69         59       78

# Melting by specifying both id and measured variables

melt(students,id=c("sid","exmterm"),

   measured=c("math","literature","language"))

  

 sid exmterm   variable value

1    1       1       math    50

2    1       2       math    65

3    2       1       math    75

4    2       2       math    69

5    1       1 literature    40

6    1       2 literature    45

7    2       1 literature    55

8    2       2 literature    59

9    1       1   language    70

10   1       2   language    80
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11   2       1   language    75

12   2       2   language    78

# Melting by specifying only id variables

melt(students,id=c("sid","exmterm"))

   sid exmterm   variable value

1    1       1       math    50

2    1       2       math    65

3    2       1       math    75

4    2       2       math    69

5    1       1 literature    40

6    1       2 literature    45

7    2       1 literature    55

8    2       2 literature    59

9    1       1   language    70

10   1       2   language    80

11   2       1   language    75

12   2       2   language    78

In the melting process, the melt function does not assume the ID or measured 
variables; there could be any number of variables in any order. This gives the 
lexibility to deal with complex dataset. One important thing to note is that, whenever 
we use the melt function, all the measured variables should be of the same type: that 
is, the measured variables should be either numeric, factor, character, or date.

Missing values in molten data
There could be two types of missing value in practice: sampling zero (that is, no 
response) and structural missing. The sampling zero values are explicitly coded 
and represented in the dataset, but the structural missing values depend on the 
structure of the dataset. Structural missing value are implicit in the dataset; they are 
represented by the absence of a certain combination of the ID variable. If we change 
the structure of a dataset from nested to crossed, the implicit missing no longer 
exists in the data. Rather, it explicitly appears in the new structure, and care should 
be taken to deal with that data. The following simple example is taken from the 
Reshaping Data with the reshape Package paper by Hadley Wickham, which can be 
found at http://www.jstatsoft.org/v21/i12/paper. It clearly explains implicit 
and explicit missing values in two different data structures.

http://www.jstatsoft.org/v21/i12/paper
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Consider a dataset with two ID variables: sex (male or female) and pregnant (yes or 
no). When the variables are nested, the missing value pregnant male is represented 
by its absence in the dataset, as shown in the following table. However, in a crossed 
view, we need to add the explicit missing value, as there will now be a cell that must 
be illed with a value.

Sex Pregnant Value

Male No 10

Female No 14

Female Yes 4

The cross view of this table can be represented as follows:

Sex Pregnant Not Pregnant

Male 10

Female 4 14

To deal with the implicit missing value, it is good to use na.rm=TRUE with the melt 
function to remove the structural missing value. If we do not specify na.rm=TRUE 
during melting, we have to specify this during data analysis.

Casting molten data
Once we have molten data, we can rearrange it in any layout using the cast function 
from the reshape package. There are two main arguments required to cast molten 
data. They are as follows:

• data: This is the molten data that we want to reshape.

• formula: This is the casting formula to determine the layout of the output 
data; for example, which variable should go into columns and which should 
go into rows. If we do not specify a formula, the cast will return the classic 
data frame.

There are other argument options to perform certain types of operations, if required. 
The basic casting formula is col_var_1+col_var_2 ~ row_var_1+ row_var_2, 
which describes the variables to appear in columns and rows. The following example 
shows how the cast function works:

# Melting students data

molten_students <- melt(students,id.vars=c("sid","exmterm"))

molten_students
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   sid exmterm   variable value

1    1       1       math    50

2    1       2       math    65

3    2       1       math    75

4    2       2       math    69

5    1       1 literature    40

6    1       2 literature    45

7    2       1 literature    55

8    2       2 literature    59

9    1       1   language    70

10   1       2   language    80

11   2       1   language    75

12   2       2   language    78

Now use the cast function to return to the original data structure by specifying both 
row and column variables as follows:

cast(molten_students,sid+exmterm~variable)

  sid exmterm math literature language

1   1       1   50         40       70

2   1       2   65         45       80

3   2       1   75         55       75

4   2       2   69         59       78

The following is the same operation, but specifying only row variables:

cast(molten_students,...~variable)

  sid exmterm math literature language

1   1       1   50         40       70

2   1       2   65         45       80

3   2       1   75         55       75

4   2       2   69         59       78

We will now rearrange the data in such a way that sid is now a separate column for 
each student, as follows:

cast(molten_students,...~sid)

  exmterm   variable  1  2

1       1       math 50 75

2       1 literature 40 55
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3       1   language 70 75

4       2       math 65 69

5       2 literature 45 59

6       2   language 80 78

We will rearrange the data again in such a way that exmterm is now a separate 
column for each term, as follows:

cast(molten_students,...~exmterm)

  sid   variable  1  2

1   1       math 50 65

2   1 literature 40 45

3   1   language 70 80

4   2       math 75 69

5   2 literature 55 59

6   2   language 75 78

Note that the column names of the last two examples are 
not valid column names because they contain numbers. 
This is a limitation of R.

R cannot automatically label row or column names 
unambiguously, so we have to be careful about column 
names during analysis.

The reshape2 package
Though the reshape package has various functions to perform, there are various 
tasks that cannot be done using built-in R functions; this package is slow. To make 
this more time-and memory-eficient, Wickham reimplemented this package and 
developed another package, reshape2. The reason behind the development of the 
new reshape2 package is to keep the functionality of the original reshape package 
so that users do not get confused. Some important new features of the reshape2 
package are as follows:

• It is much better than the original reshape package in terms of memory and 
time efficiency

• It uses several functions instead of only the cast function

• The multidimensional marginal total can be calculated
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The melt function in the reshape2 package works the same as the melt function in 
the reshape package. The only difference is that the melt function in the reshape2 
package is faster and more memory-eficient than the melt function in the reshape 
package. The melt function is pretty eficient at converting all data structures to 
molten data frames. The next step is to reshape the molten data frame into either a 
data frame or array structure. In the reshape package, this task is done using only 
the cast function. The output of the cast function, whether a data frame or array, 
depends on how we put the formula. In the reshape2 package, we have the dcast 
function to produce the data frame as output and acast to produce an array from a 
molten data frame.

We will also use the students dataset here. First, we will melt the dataset using the 
melt function in the reshape2 package, and then we will illustrate how we can use 
the dcast and acast functions to reshape the data:

library(reshape2)

molten_students <- melt(students,id.vars=c("sid","exmterm"))

The basic casting formula is x_variable + x_2 ~ y_variable + y_2 ~ z_
variable ~. For the purpose of illustration, consider x_variable, x_2 as the irst  
set of variables, y_variable, y_2 as the second set of variables, z_variable ,z_2  
as the third set of variables, and so on. The irst set of variables is used to make 
the row uniquely identiiable. For the molten dataset molten_students we are 
considering sid as irst set of variable and variable as second set of variable in the 
following example:

> dcast(molten_students, sid~variable)

Aggregation function missing: defaulting to length

  sid math literature language

1   1    2          2        2

2   2    2          2        2

Here, we can see that we have only two rows, although we do not have all the data 
here. This happened because the sid variable has only two unique values. To make 
the column uniquely identiiable using just the sid variable, we only need two rows:

> dcast(molten_students, sid+exmterm~variable)

  sid exmterm math literature language

1   1       1   50         40       70

2   1       2   65         45       80

3   2       1   75         55       75

4   2       2   69         59       78
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Now we have four rows, because the sid and exmterm variables together can create 
only four unique rows. We have complete data here. So, in the process of data 
analysis, we should use the entire identiication variable as the irst set of variables. 
This is also true for the acast function:

> acast(molten_students, sid~variable)

Aggregation function missing: defaulting to length

  math literature language

1    2          2        2

2    2          2        2

Here, there is no sid variable in the data, because acast produces an array and the 
value of the sid variable is used as the row index for this data:

> acast(molten_students, sid+exmterm~variable)

    math literature language

1_1   50         40       70

1_2   65         45       80

2_1   75         55       75

2_2   69         59       78

This sheds light on how the combination of the sid and exmterm variables is 
considered as an index of the output array.

The second set of variables is used to produce column name. The combination of the 
values of the second set of variables is used as the column name of the output data 
frame in the dcast and acast functions:

> dcast(molten_students, sid~variable+exmterm)

  sid math_1 math_2 literature_1 literature_2 language_1 language_2

1   1     50     65          40           45         70         80

2   2     75     69          55           59         75         78

> acast(molten_students, sid~variable+exmterm)

  math_1 math_2 literature_1 literature_2 language_1 language_2

1     50     65           40           45         70         80

2     75     69           55           59         75         78

Here, we can see that the combination of the second set of variables is considered as 
the column name of the output data frame and array.
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The third set of variables is only applicable for the acast function since an array 
could go beyond two dimensions, but data frame is strictly restricted to two 
dimensions. This is why we could not use the third set of variables in the formula for 
the dcast function:

> acast(molten_students, sid~exmterm~variable)

, , math

   1  2

1 50 65

2 75 69

, , literature

   1  2

1 40 45

2 55 59

, , language

   1  2

1 70 80

2 75 78

Summary
This chapter introduced a theoretical framework for reshaping a dataset. The 
limitations of conventional approaches were pointed out, and the new paradigm of 
data layout was highlighted. In the new paradigm, employing only two functions 
allows users to rearrange datasets into various layouts as required. This chapter 
also discussed structural missing, sampling zero values, and how to deal with these 
missing values during the melting process. For faster and large data rearrangement, 
you were redirected to the reshape2 package.

In the next chapter, we will discuss how R can be connected with databases and 
handle large-scale data.
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R and Databases
We noticed earlier that a dataset can be stored in any format using different software 
as well as relational databases. Usually, large-scale datasets are stored in database 
software. In data mining and statistical learning, we need to process large-scale 
datasets. One of the major problems in R is memory usage. R is RAM intensive, and 
for that reason, the size of a dataset should be much smaller than its RAM. Also, one 
of the major drawbacks of R is its inability to deal with large datasets.

This chapter introduces how to deal with large datasets that are bigger than  
the computer's memory and dealing with a dataset by interacting with database 
software. In the irst few sections, we describe how to interact with database software 
with Open Database Connectivity (ODBC) and import datasets. This chapter will 
present an example of memory issues and then describe ODBC using an example of 
MS Excel and MS Access, dealing with large datasets with specialized contributed R 
packages. This chapter ends with an introduction to data manipulation using SQL 
through the sqldf package.

The irst are two examples demonstrating memory problems in R:

• The following example explains the memory limitation of a computer  
system. R stores everything in RAM, and a typical personal computer 
consists of limited RAM (depending on the computer's operating system, 
that is, 32-bit or 64--bit).

# Trying to create a vector of zero with length 2^32-1. 

# Note that the RAM of the computer on we are generating  
# this example is 8 GB with 64-bit Windows-7 

# Professional edition. Processor core i5.

x <- rep(0, 2^31-1)

Error: cannot allocate vector of size 16.0 Gb



R and Databases

[ 82 ]

In addition: Warning messages:

1: Reached total allocation of 8078Mb: see help(memory.size) 

2: Reached total allocation of 8078Mb: see  
help(memory.size) 

3: Reached total allocation of 8078Mb: see  
help(memory.size) 

4: Reached total allocation of 8078Mb: see  
help(memory.size)

• The preceding example clariies that R cannot allocate a vector that has size 
larger than the RAM. Now we will see another example that is related to the 
maximally addressable range of different types of numbers. The maximum 
addressable range for integers is 231-1.

# Maximum addressable range of inter vector

as.integer(2^31-1)

[1] 2147483647

# If we try to assign a vector of length greater than  
# maximum addressable length then that will produce NA

as.integer(2^31)

[1] NA

Warning message:

NAs introduced by coercion

The topic of database administration is beyond the scope of this book, but we can 
easily discuss connectivity with databases using R.

R and different databases
Before going on to discuss large-scale data handling using R, we will discuss how R 
can interact with database software through ODBC. There are two principal ways to 
connect to a database: the irst uses the ODBC facility available on many computers 
and the second uses the DBI package of R along with a specialized package for the 
particular database needed to be accessed. If there is a specialized package available 
for a database, we may ind that the corresponding DBI-based package gives better 
performance than the ODBC approach. On the other hand, if a database does not 
have a specialized package to access, using ODBC may be the only option.
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R and Excel
An Excel ile can be imported into R using ODBC. We will now create an ODBC 
connection with an MS Excel ile with the connection string xlopen.

To create an ODBC connection string with an MS Excel ile, we need to open the 
control panel of the operating system and then open Administrative Tools and then 
choose ODBC. A dialog box will now appear. Click on the Add... button and select 
an appropriate ODBC driver and then locate the desired ile and give a data source 
name. In our case, the data source name is xlopen. The name of the Excel ile can be 
anything, and in our case the ile name is xlsxanscombe.xlsx. The following R code 
will import the corresponding Excel ile into the R environment:

# calling ODBC library into R

library(RODBC)

# creating connection with the database using odbc package.

# We created the connection following the steps outlined in the  
# preceding paragraph

xldb<- odbcConnect("xlopen")

# In the odbcConnect() function the minimum argument required

# is the ODBC connection string. 

# Now the connection created, using that connection we will import data

xldata<- sqlFetch(xldb, "CSVanscombe")

# Note here that "CSVanscombe"is the Excel worksheet name.

We can use other packages to import an Excel ile, but at the same time R has  
the facility to import data using the ODBC approach. To use the ODBC approach 
on an Excel ile, we irstly need to create the connection string using the system 
administrator. The process of creating a connection is beyond the scope of this  
book, but we will learn about the topic briely.
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R and MS Access
To import data from the MS Access database, the procedure is the same as with 
Excel. First, we need to create a connection string from the system administrator  
and then connect with the database from R using the RODBC package.

Let us consider the Access database containing three different tables: coveragepage, 
questionnaire1, and questionnaire2. The connection string to access this 
database is accessdata. The following command can be used to import all the  
three tables as separate data frames in R:

# calling odbc library

library(RODBC)

# connecting with database

access_con<- odbcConnect("accessdata") 

# import separate table as separate R data frame

coverage_page<- sqlFetch(access_con, "coverpage")

ques1 <- sqlFetch(access_con, "questionnaire1")

ques2 <- sqlFetch(access_con, "questionnaire2")

Using MS Excel and MS Access, we can deal with fairly large datasets, but sometimes 
it so happens that the dataset is too large and handling with Excel or Access is dificult. 
Also, Excel cannot deal with relational databases. To overcome this limitation, R has 
another functionality, which we will discuss in the following sections.

Relational databases in R
In this section, we will try to provide a concise overview of different packages in R 
for handling massive data and illustrate some of them.

A popular approach to dealing with bigger datasets is the use of SQL, a different 
programming language. It might not be dificult for someone to learn another 
programming language, but as we are dealing with and talking about using R, 
the community of R users try to develop specialized packages to deal with large 
datasets. Those contributed packages successfully create interfaces between R and 
different database software packages that use relational database management 
systems, such as MySQL (RMySQL), PostgreSQL (RPgSQL), and Oracle (ROracle). 
To get the full beneit of these specialized packages, we have to install third-party 
software, and one of the most popular packages is RMySQL. This package allows  
us to make connections between R and the MySQL server. 
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MySQL, which can deal with a mid-size, multi-platform RDBMS is a popular software 
in the open source community. Some of its advantages include high-performance, 
being open source, and being free for non-commercial use. In order to install this 
package properly, we need to download both the MySQL server and RMySQL.

There are several R packages available that allow direct interactions with large 
datasets within R, such as filehash, ff, and bigmemory. The idea is to avoid  
loading the whole dataset into memory.

The ilehash package
The filehash package, which is used for solving large-data problems, was contributed 
by Roger Peng (The Interacting with Data using the ilehash Package for R paper, available 
at http://cran.r-project.org/web/packages/filehash/vignettes/filehash.
pdf). The idea behind the development of this package was to avoid loading the 
dataset into a computer's virtual memory. We must rather dump the large dataset into 
the hard drive and then assign an environment name for the dumped objects. Once 
a dataset is dumped into the hard drive, we can access the data using the assigned 
environment. In this way, we can deal with larger datasets and avoid the use of the 
computer's virtual memory and allow faster data manipulation. We will now discuss 
the basic steps of using this package through some examples.

Firstly, create a database that can be accessed later on. To create a database, we have 
to use the dbCreate function, which needs to be initialized (via dbInit) in order 
to be accessed, as shown in the following code. The dbInit function returns an S4 
object that inherits from the filehash class.

library(filehash)

dbCreate("exampledb")

filehash_db<- dbInit("exampledb")

The primary interface of filehash databases consists of the functions dbFetch, 
dbInsert, dbExists, dbList, and dbDelete. All of these functions are generic in 
nature and speciic methods exist for the database that work in the backend. The 
irst argument that is taken by the functions within this package is an object of the 
filehash class. To insert some data into the database, we can simply call dbInsert. 
We retrieve those data values with dbFetch, as shown in the following code:

dbInsert(filehash_db, "xx", rnorm(50))

value<- dbFetch(filehash_db, "xx")

summary(value)

http://cran.r-project.org/web/packages/filehash/vignettes/filehash.pdf
http://cran.r-project.org/web/packages/filehash/vignettes/filehash.pdf
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The dbList function lists all of the keys that are available in the database, the 
dbExists function tests to see if a given key is in the database, and the dbDelete 
function deletes a key-value pair from the database, as shown in the following code:

dbInsert(filehash_db, "y", 4709)

dbDelete(filehash_db, "xx")

dbList(filehash_db)

dbExists(filehash_db, "xx")

There is another very useful command, dbLoad(), that works in a similar way to the 
attach() function. Using the filehash package, the objects are attached but stored 
on the local hard disk. We may also assess the objects in the filehash database 
using the usual standard R subset and accessor functions such as $, [[, and [, as 
shown in the following code:

filehash_db$x<- runif(100)

summary(filehash_db$x)

summary(filehash_db[["x"]])

filehash_db$y<- rnorm(100, 2)

dbList(filehash_db)

After initializing a database using the default DB1 format, it opens a ile connection 
for reading and writing to the database ile on the disk. This ile connection will 
remain open until the database is closed via dbDisconnect or the database object in 
R is removed. There is a limit on the number of ile connections that can be open at 
the same time, so to protect any database from unexpected results, we need to make 
sure the ile connections are closed properly.

Just like save.image in base R, there are some utilities included in the filehash 
package and two of them are dumpObjects and dumpImage. The dumpObjects utility 
saves an object into the filehash database so that it can be accessed in the future 
if required. It does not save objects into R itself, which allows faster processing. 
Similarly, dumpImage saves the entire workspace to a filehash database. The 
dumpList function takes a list and creates a filehash database with values from the 
list. The list must have a non-empty name for every element in order for dumpList 
to succeed. The dumpDF utility creates a filehash database from a data frame where 
each column of the data frame is an element in the database. Essentially, dumpDF 
converts the data frame to a list and then calls dumpList. The following example 
shows how we can use dumpDF:

dumpDF(read.table("anscombe.txt", header=T), dbName="massivedata")

massive_environment<- db2env(db="massivedata")
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The irst element of dumpDF() is a data object. R will read the data within dumpDF(), 
so its memory does not have a copy of it. Space saved! So now the large dataset, 
large.dat, can be accessed through the env01 environment. To access it, we use 
with(). Suppose we want to perform a linear regression of y on x and access the 
data using the variable names. In such cases, if you assign an object name for the 
read.table command, the memory will have a copy of the data, which is not 
desirable. Using the with()function, we can it a model or compute summary 
statistics as usual as follows:

fit<- with(massive_environment, lm(Y1~X1))

with(massive_environment, summary(Y1))

with(massive_environment, Y1[1] <- 99))

The ff package
As we have seen in the example in the introductory section of this chapter, R can 
only address objects that it within the memory limits of its RAM and the maximally 
addressable range of 231-1 bytes. To overcome this limitation, Adler and Glaser, in 
2010, developed the ff package. This package extends the R system and stores data 
in the form of native binary lat iles in persistent storage such as hard disks, CDs,  
or DVDs rather than in the RAM. This package enables users to work on several 
large datasets simultaneously. It also allows the allocation of vectors or arrays that 
are larger than the RAM. The package comprises of two parts: one is the low-level 
layer written in C++ and the other is the high-level layer in R. This package is 
designed for convenient access to large datasets.

As users will only deal with the high-level layer, the following are the tasks we  
do in this layer:

• Opening/creating lat iles: There are two basic functions, ff and ffm, to deal 
with opening and creating lat iles. If we specify the length argument or the 
dim argument, a new ile is created, otherwise R will open an existing ile.

• I/O operations: These operations are controlled by the [ (for reading)  
and the [ <- (for writing) operators.

• Generic functions and methods for the ff and ffm objects: Methods  
for dim and length are provided and the sample function is converted  
to a generic function.
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The primary argument for the functions ff and ffm require a ilename in the file 
argument to specify the lat ile. Whenever length (for ff) or dim (for ffm) is 
speciied, as shown in the following code, a new lat ile is created, otherwise  
an existing ile is opened:

# A flat file with a length 10 is created 

library(ff)

file1 <- ff(filename="file1", length=10,vmode="double")

str(file1)

list()

 - attr(*, "physical")=Class 'ff_pointer' <externalptr> 

  ..- attr(*, "vmode")= chr "double"

  ..- attr(*, "maxlength")= int 10

  ..- attr(*, "pattern")= chr "/"

  ..- attr(*, "filename")= chr "D:/Book on R/Writing/outline/data_ch2/
file1"

  ..- attr(*, "pagesize")= int 65536

  ..- attr(*, "finalizer")= chr "close"

  ..- attr(*, "finonexit")= logi TRUE

  ..- attr(*, "readonly")= logi FALSE

  ..- attr(*, "caching")= chr "mmnoflush"

 - attr(*, "virtual")= list()

  ..- attr(*, "Length")= int 10

  ..- attr(*, "Symmetric")= logi FALSE

 - attr(*, "class") =  chr [1:2] "ff_vector" "ff"

The entries of file1 can be modiied with the []<- operator. For example, the irst 
10 entries of the rivers dataset that contains the length of the 141 rivers in North 
America can be stored in an ff object, as shown in the following code:

# calling rivers data

data(rivers)

file1[1:10] <- rivers[1:10]

# Note that here file1 is an ff object whereas 

# file1[...] returns default R vector

str(file1)
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If required, we can perform sampling on the ff objects as follows:

# set seed to reproduce the example

set.seed(1337)

sample(file1,5,replace=FALSE)

[1] 735 392 524 450 600

Flat ile objects are referenced when forming R objects using external pointers.  
In order to clear the references, the garbage collector, gc(), can be used as follows:

gc()

Calling gc() clears the reference to the ile, but does not delete the ile from the hard 
drive. Since the data is still present, the lat ile can be opened again at a later stage.

R and sqldf
The sqldf package is an R package that allows users to run SQL statements  
within R. SQL is the popular programming language for manipulating data  
from relational databases, and the sqldf package creates an opportunity to  
work directly with SQL statements on an R data frame. With this package,  
the user can do the following tasks easily:

• Write alternate syntax for data frame manipulation, particularly for purposes 
of faster processing, since using sqldf (with SQLite as the underlying 
database) is often faster compared to performing the same manipulations  
in built-in R functions

• Read portions of large iles into R without reading the entire ile

The user need not perform the following tasks once they use sqldf because  
these are automatically done:

• Database setup

• Writing the create table statement, which deines each table
• Importing and exporting to and from the database

• The coercing of the returned columns to the appropriate class in  
common cases
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Data manipulation using sqldf
We can perform any type of data manipulation to an R data frame either in memory 
or during import. The following example shows the selection of a portion of the iris 
dataset using the sqldf package:

# Selecting the rows from iris dataset where sepal length > 2.5

# and store that in subiris data frame

library(sqldf)

subiris<- sqldf("select * from iris where Sepal_Width> 3")

head(subiris)

   Sepal_Length Sepal_Width Petal_Length Petal_Width Species

1          5.1         3.5          1.4         0.2  setosa

2          4.7         3.2          1.3         0.2  setosa

3          4.6         3.1          1.5         0.2  setosa

4          5.0         3.6          1.4         0.2  setosa

5          5.4         3.9          1.7         0.4  setosa

6          4.6         3.4          1.4         0.3  setosa

nrow(subiris)

[1] 67

We can also select a smaller number of columns while iltering out some of the rows 
with a speciied condition. The following example selects only sepal length, petal 
length, and species; however, this time, rows are iltered by values for petal length 
greater than 1.4:

subiris2<-

sqldf("select Sepal_Length,Petal_Length,Species from iris where Petal_
Length> 1.4")

nrow(subiris2)

[1] 126

head(subiris2)

  Sepal_Length   Petal_Length    Species

1          4.6        1.5        setosa

2          5.4        1.7        setosa

3          5.0        1.5        setosa

4          4.9        1.5        setosa

5          5.4        1.5        setosa

6          4.8        1.6        setosa
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If the dataset is too large and cannot entirely be read into the R environment,  
we can import a portion of that dataset using sqldf. The following example shows 
how we can import a portion of a csv ile using the sqldf functionality. We will use 
the read.csv.sql() function to perform this task. This is an interface to sqldf that 
works like read.csv in R, except that it also provides a sql= argument. Not all of  
the other arguments of read.csv are supported.

In the following example, we will import the iris.csv ile. We will import only 
sepal width and petal width along with the species information where petal width  
is greater than 0.4:

iriscsv<-read.csv.sql("iris.csv",sql="select  
Sepal_Width,Petal_Width,Species from file where Petal_Width>0.4")

head(iriscsv)

     Sepal_Width Petal_Width      Species

1         3.3         0.5        "setosa"

2         3.5         0.6        "setosa"

3         3.2         1.4    "versicolor"

4         3.2         1.5    "versicolor"

5         3.1         1.5    "versicolor"

6         2.3         1.3    "versicolor"

An important thing to note is that in the original iris.csv ile, the variable  
names were dot separated, but when we pass a SQL statement, we need to use  
an underscore as the variable name, otherwise it will output an error as follows:

iriscsv<-read.csv.sql("iris.csv",sql="select Sepal.Width,Petal.
Width,Species from file where Petal.Width>0.4")

Error in sqliteExecStatement(con, statement, bind.data) : 

  RS-DBI driver: (error in statement: no such column: Sepal.Width)

We sometimes need to draw a random sample from a dataset but the original data 
ile might be too large. In the following example, we will show how we can draw a 
random sample size of 10 from the iris data that is stored in the iris.csv ile:

iris_sample<- 

read.csv.sql("iris.csv",sql="select * from file order by random(*) 
limit 10")

iris_sample
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     Sepal_Length Sepal_Width Petal_Length Petal_Width    Species

1           6.5         3.0          5.2         2.0  "virginica"

2           5.0         3.5          1.3         0.3     "setosa"

3           6.0         2.2          4.0         1.0 "versicolor"

4           6.9         3.1          5.4         2.1  "virginica"

5           6.2         2.8          4.8         1.8  "virginica"

6           5.1         3.8          1.9         0.4     "setosa"

7           5.8         2.6          4.0         1.2 "versicolor"

8           5.9         3.2          4.8         1.8 "versicolor"

9           6.4         2.9          4.3         1.3 "versicolor"

10          6.4         3.1          5.5         1.8  "virginica"

We can perform group-wise processing and aggregation using sqldf, which is a 
faster alternative to the aggregate function. For example,  if we want to calculate  
the mean of each variable in the iris data for each species, the following is the code:

# Calculate group wise mean from iris data

iris_avg<-sqldf("select Species, avg(Sepal_Length),avg(Sepal_
Width),avg(Petal_Length),avg(Petal_Wid 
th) from iris group by Species")

colnames(iris_avg) <- c("Species","Sepal_L","Sepal_W","Petal_L","Peta
l_W")

iris_avg

     Species Sepal_L Sepal_W Petal_L Petal_W

1     setosa   5.006   3.428   1.462   0.246

2 versicolor   5.936   2.770   4.260   1.326

3  virginica   6.588   2.974   5.552   2.026

The base R counterpart for performing the same operation is as follows:

aggregate(iris[,-5],list(iris$Species),mean)

     Group.1 Sepal.Length Sepal.Width Petal.Length Petal.Width

1     setosa        5.006       3.428        1.462       0.246

2 versicolor        5.936       2.770        4.260       1.326

3  virginica        6.588       2.974        5.552       2.026

Though both functions give us the same results, for larger datasets, sqldf is much 
faster than base R.
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Summary
At the beginning of this chapter, we showed you how we can deal with an MS Excel 
ile as a database and how an MS Access database table can be imported into R. 
One of the major problems in R is that its memory is bound by the system virtual 
memory, and that is why the data should be smaller in size than the memory of 
a dataset to be able to work with it. But in reality, datasets are often larger than 
the virtual memory and sometimes the length of the array or vector exceeds the 
maximum addressable range. To overcome these two limitations, R can be utilized 
with relational databases. Contributed R packages exist to help in dealing with such 
large datasets, and they have been highlighted in this chapter, particularly filehash 
and ff. We also discussed sqldf for faster data manipulation.
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Text Manipulation
Text data is one of the most important areas in the ield of data analytics. Every 
day, we are producing a huge amount of text data through various media. For 
example, Twitter posts, blog writing, and Facebook posts are major sources of text 
data. Text data can be used to retrieve information in sentiment analysis and even 
entity recognition. In this chapter, we will discuss how R can be used to process 
text data, which we can utilize in any text analytics areas. These types of data can 
also be used in text categorization, predictive analytics, lexical analysis, document 
summarization, and even in natural language processing. First, we will discuss the 
default functions of R for processing text data. Then, we will introduce a stringr 
library to work with text data. We will cover the following topics in this chapter:

• What is text data?
• Sources of text data

• Obtaining text data

• Text processing using default functions

• Text processing using stringr

• Structuring text data for text mining

Text data and its source
Text data is any type of text on any topic. Here is a list of text data and its sources:

• Tweets from any individual, or from any company

• Facebook status updates

• RSS feeds from any news site

• Blog articles
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• Journal articles

• Newspapers

• Verbatim transcripts of an in-depth interview

These are the most common sources of text data. In the area of text analytics, Twitter 
data has been used frequently to ind topic trends through topic modeling. Text data 
has also been used to predict certain diseases from tweets. The HTML web ile are 
also a great source of text data.

Getting text data
Text data can be embedded into any dataset as a string variable. Also, text data can 
be stored as plain text iles even in the HTML ile format. In this section, we will see 
how we can read or import text data into the R environment for further processing.

The easiest way to get text data is to import from a .csv ile where some of the 
variables contain character data. For example, the tweets.csv ile contains 50 
Twitter statuses on a certain topic. Since this is a .csv ile, we can import it using 
the read.csv() function, but we have to protect automatic factor conversion by 
specifying the stringsAsFactors=FALSE argument. An example of importing text 
data from the tweets.csv ile is as follows:

textData <- read.csv("tweets.csv",stringsAsFactors=FALSE)

str(textData)

''data.frame'':   50 obs. of  2 variables:

 $ ID    : int  1 2 3 4 5 6 7 8 9 10 ...

 $ TWEETS: chr  "Sohum Spa at Movenpick HotelSpa Bangalore reveals 
Indian traditions for relaxation" "Sohum Spa at Movenpick HotelSpa 
Bangalore reveals Indian traditions for relaxation" "SalesMarketing 
Manager at Prestige Leisure Resorts Pvt Ltd" "Assistant Front Office 
Manager at The LEELA PalaceBangalore" ...

So, this is just as simple as importing any other data in R. Now, let's look at an 
example of obtaining text data from a plain text ile. The tweets.txt ile is the plain 
text ile. We will import this ile using the generic readLines() function:

textData1<-readLines("tweets.txt")"")

str(textData1)

 chr [1:51] "ID\tTWEETS " "1\tSohum Spa at Movenpick HotelSpa 
Bangalore reveals Indian traditions for relaxation" ...
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If we see the structure of the textData and textData1 objects, there is a difference. 
The textData object, which is imported by read.csv(), is a data frame, whereas 
the textData1 object imported by readLines() is just a vector of characters. To 
convert the character vector into a data frame, we need some basic processing. We 
will talk about this in a later section. Importing text data from an HTML page, which 
is technically known as web scraping, is one of the widely used sources of text data. 
In this example, we will see how we can import data from the web. Interestingly, the 
readLines()generic function can be used to read an HTML ile too, but later on, we 
need to process it to have a structured database. Here is an example to importing a 
Wikipedia article:

# Creating object with the URL

conURL <- "http://en.wikipedia.org/wiki/R_%28programming_language%29"

# Establish the connection with the URL

link2URL <- url(conURL)

# Reading html code

htmlCode <- readLines(link2URL)

# Closing the connection

close(link2URL)

# Printing the result

htmlCode

Like the previous textData1 object. This is also a character string, but this time it 
contains the HTML code. From this HTML code, we are able to generate structured 
data for further use.

To obtain text data from social networking sites such as Twitter and Facebook, there 
are designated R libraries. To extract Twitter data, we can use tweetR and, to extract 
data from Facebook, we could use facebookR. In the section Working with Twitter 
data, we will discuss this in detail.

The tm text mining library has some other functions to import text data from various 
iles such as PDF iles, plain text iles, and even from doc iles. Readers are advised to 
look into the tm library for further information. Discussing the tm library in detail is 
beyond the scope of this chapter.
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Text processing using default functions
Some of you might not be interested in text mining, but you still need to process text 
data in your day-to-day activities. In this section, we will try to give some examples 
that will be helpful for your daily needs. The following are the general tasks that we 
need to perform frequently:

• Removing certain characters or words from a string

• Splitting the character string to get structured information

• Matching certain parts of the characters to find out some patterns

• Changing lowercase to uppercase, and vice versa

• Calculating the number of characters in a string

• Extracting a certain part from a string

• Extracting only digits from a string

We will see an example for each case listed previously. First, we will remove a 
certain word from a string. To do so, we will use the textData object. This object has 
two variables, and one of them contains text data. We will use the irst observation 
from that text variable:

# Extracting first observation

text2process <- textData$TWEET[1]

text2process 

[1] "Sohum Spa at Movenpick HotelSpa Bangalore reveals Indian 
traditions for relaxation"

Now, we are interested in removing the prepositions, such as for and at, from the 
text. To do so, we will use the gsub function, which replaces certain text based 
on pattern matching. The important arguments of the gsub function are pattern, 
replacement, and the string is as follows:

prepRemovedText <- gsub(pattern="for",replacement="",x=text2process)

prepRemovedText

[1] "Sohum Spa at Movenpick HotelSpa Bangalore reveals Indian 
traditions  relaxation"

This example shows that the word for has been removed from the original string.

We can also split the string so that it has a different data structure. For example, if we 
split the text2process object using the splitting character as a blank space, then it 
will be a vector of the character, with each word separated. Here is an example:

splittedText <- strsplit(text2process,split=" ")

splittedText
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[[1]]

 [1] "Sohum"      "Spa"        "at"         "Movenpick"  "HotelSpa"   
"Bangalore"  "reveals"    "Indian"     "traditions" "for"        
"relaxation"

The strsplit function takes a character string as input and the character in split 
argument speciies the location of split. The output is initially stored in a list object, 
but to get the output as a vector, we can remove the object from the list in the 
following way:

unlist(splittedText)

 [1] "Sohum"      "Spa"        "at"         "Movenpick"  "HotelSpa"   
"Bangalore"  "reveals"    "Indian"     "traditions" "for"        
"relaxation"

Converting lowercase and uppercase strings is another important function 
when we work with text data. Since R is case-sensitive, the words Spa and spa are 
different, though, in fact, they are the same word. So, to remove ambiguity, we can 
convert either all the words to lowercase or change them all to uppercase.

To convert into lowercase and then to uppercase, let's take a look at the  
following example:

tolower(text2process)

[1] "sohum spa at movenpick hotelspa bangalore reveals indian 
traditions for relaxation"

toupper(text2process)

[1] "SOHUM SPA AT MOVENPICK HOTELSPA BANGALORE REVEALS INDIAN 
TRADITIONS FOR RELAXATION"

During data analysis and in text processing, we need to know the number of characters 
in a character string. For example, in some databases, the id variable could be text, and 
it should contain a certain number of characters. In this case, we need to count whether 
the required number of characters is present or not. In this example, we will see how to 
calculate the number of characters from a string. The total number of characters in the 
text2process string can be found using the nchar() function. This function counts 
each character, including a blank space:

nchar(text2process)

[1] 82

Now, we will pass the same function, but this time the input will be the unlisted split 
character vector:

nchar(unlist(splittedText))

 [1]  5  3  2  9  8  9  7  6 10  3 10
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This time, we have a vector of an integer because the input of the nchar() function, 
here, is a vector of the character object. So, it returns the number of characters for 
each component of that input vector.

In some cases, the text variable contains both date and time information. For 
example, 02Feb2015:11:15PM is a character string. We need to extract only the  
date part for further processing. To do the task, take a look at this example:

# Creating the character string with date and time information

dateTimeobject <- "02Feb2015:11:15PM"

# Extracting only the character between 1 to 9 

# including 1st and 9th 

substr(dateTimeobject,1,9)

[1] "02Feb2015"

So, the substr function can be used to extract a portion of text from a character string.

During text processing, sometimes, we need to extract only the digits from a 
character string. In the example, we will see how we can do this task. In R, we have 
default color names that can be accessed through the color() function. Some of the 
color names contains digits such as red1, red2, and so on. In this example, we will 
extract only the digits from color names:

# to see the color names

colors()

# Now to extract the digit from the color names

as.integer(gsub("\\D", "", colors()))

This table gives us an idea about the facilities in the stringr library and its link with 
the default R functions: 

Base R functions stringr functions

paste(): This function is used to 
concatenate a vector of characters, 
with a default separator as a space.

str_c(): This has a functionality similar to 
paste(), but it uses empty as the default separator. 
It also silently removes zero-length arguments.

nchar(): This returns the number 
of characters in a character string. 
For NA, it returns 2, which is not 
expected. Here is an example:

nchar(c("x","y",NA))

[1] 1 1 2

str_length(): This is the same as nchar(), but it 
preserves NA. Here is an example:

str_length(c("x","y",NA))

[1] 1 1 NA
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substr(): This extracts or replaces 
substrings in a character vector.

str_sub(): This is the equivalent of substr(), 
but it returns a zero-length vector if any of its inputs 
are of zero length. It also accepts negative positions, 
which are calculated from the left-hand side of 
the last character. The end position defaults to -1, 
which corresponds to the last character.

Unavailable str_dup(): This is used to duplicate the characters 
within a string.

Unavailable str_trim(): This is used to remove the leading 
and trailing white spaces.

Unavailable str_pad(): This is used to pad a string with extra 
white spaces on the left-hand side, right-hand side, 
or both sides.

Other than the functions listed in the preceding table, there are some other  
user-friendly functions for pattern matching. These functions are str_detect, 
str_locate, str_extract, str_match, str_replace, and so on. To get more details 
about these functions, you should refer to the stringr: . It is a modern, consistent 
string-processing paper by Hadley Wickham, which can be found at http://
journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf.

Working with Twitter data
Twitter is one of the best sources of text data. In this section, we will extract text data 
from Twitter using the #rstats hashtag. After extracting the text, we will clean it 
and then produce a wordcloud. The required libraries for this particular section are 
as follows: 

• twitteR

• tm

• wordcloud

To extract data from Twitter, irst, we need to connect with the Twitter account 
through a valid authentication process. The code to authenticate the R session with 
Twitter to extract data, is as follows:

library(twitteR)

# need to provide actual string for each key by replacing xxxx

setup_twitter_oauth(consumer_key="xxxx",

                    consumer_secret="xxxx",

                    access_token="xxxx",   access_secret="xxxx")

http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf
http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf
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Once the authentication process is complete, we can extract text data. In the following 
code, we extracted data for 500 tweets with a #rstats hashtag. We restricted the 
tweets to English only. The results of this section will be changed over time.

# Extracting 500 recent tweets with #rstats hashtag 

# and language of the tweets is English

tweets<-searchTwitter("#rstats", n=500,lang='en')

The object will be listed in nature with lots of information related to tweets. We  
can easily check the structure of the newly created objects using the following  
str() function:

str(tweets)

To prepare a word cloud, we will use only the status text from the extracted tweets. 
To do so, we need to convert the list object into a data frame and then take only the 
text column. The code chunk to get only the text column is as follows:

datTweet<-plyr::ldply(tweets,as.data.frame)

vecStatus <- datTweet$text

The next step is to clean the text by removing HTML tags, retweets tags (RT), and 
punctuation symbols:

#Clean Text

vecStatus = gsub("(RT|via)((?:\\b\\W*@\\w+)+)","",vecStatus)

vecStatus = gsub("http[^[:blank:]]+", "", vecStatus)

vecStatus = gsub("@\\w+", "", vecStatus)

vecStatus = gsub("[ \t]{2,}", "", vecStatus)

vecStatus = gsub("^\\s+|\\s+$", "", vecStatus)

vecStatus <- gsub('\\d+', '', vecStatus)

vecStatus = gsub("[[:punct:]]", " ", vecStatus)

# additional cleaning by tm library

library(tm)

corpus = Corpus(VectorSource(vecStatus))

corpus = tm_map(corpus,removePunctuation)

corpus = tm_map(corpus,stripWhitespace)

corpus = tm_map(corpus,tolower)

corpus = tm_map(corpus,removeWords,stopwords("english"))
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Once we clean the text, it is now ready to produce a word cloud of the texts. To make 
a word cloud, we will call the wordclund library and then use the wordcloud()
function, as shown in the following example:

library(wordcloud)

wordcloud(corpus)

The following screenshot shows the wordcloud corresponding to the 500 extracted 
tweets using rstats hashtag:

Summary
In this chapter, we tried to discuss the source of text data and how plain text can be 
handled using R. We also compared functions from the stringr library with the 
default R functions to process text data. In the inal section, we showed you how to 
extract text data from Twitter posts and then clean the data to produce a word cloud. 
The processed text data can be used in other text-mining applications, such as topic 
modeling and sentiment analysis.
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