
Rawal
Rohilla

Shelve in:
.NET

User level:
Intermediate

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Develop on Yammer
Develop on Yammer is your guide to integrating the Yammer social network with 
your company’s application ecosystem. By developing custom apps and features on 
the Yammer platform, you can make your workplace more productive, encourage 
communication and feedback, and get your colleagues collaborating across a range 
of platforms, including SharePoint, ASP.NET, and Windows Phone.

In this book, you will learn:

•  Reasons to develop on Yammer, and what Yammer integration options 
are available

•  How to add Yammer feeds to HTML-based business applications 
using Yammer Embed, to bring relevant updates and discussions into 
the contexts where they matter

•  How to use Yammer apps and develop custom Yammer features for 
business applications on the client side with the Yammer JavaScript SDK

•  How to implement secure authentication and authorization on Yammer
•  How to use Yammer Open Graph and REST APIs to provide Yammer 

social features like creating new posts, following people and topics, 
and getting and updating data from other line of business applications

•  How to work with the Yammer Windows Phone 8 SDK to add Yammer 
functionality to a Windows Phone app

Develop on Yammer is suitable for developers with a background in .NET/C# 
development. Readers should be comfortable working with JavaScript. Software 
architects will also find this book valuable for planning social integration across their 
companies’ business ecosystems.

9 781484 209448

54499
ISBN 978-1-4842-0944-8

www.allitebooks.com

http://www.allitebooks.org


Develop on Yammer
Social Integration for  

Modern Business Applications

Pathik Rawal

Pryank Rohilla

www.allitebooks.com

http://www.allitebooks.org


Develop on Yammer: Social Integration for Modern Business Applications

Pathik Rawal				    Pryank Rohilla

ISBN-13 (pbk): 978-1-4842-0944-8		  ISBN-13 (electronic): 978-1-4842-0943-1
DOI 10.1007/978-1-4842-0943-1 

Library of Congress Control Number: 2015950941

Copyright © 2015 by Pathik Rawal and Pryank Rohilla 

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material 
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, 
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, 
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter 
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly 
analysis or material supplied specifically for the purpose of being entered and executed on a computer system, 
for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only 
under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use 
must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright 
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every 
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion 
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified 
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither 
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may 
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Gwenan Spearing
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, Jim DeWolf, Jonathan Gennick, 

Robert Hutchinson, Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie,  
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Melissa Maldonado
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,  
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, 
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer 
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation. 

For information on translations, please e-mail rights@apress.com, or visit www.apress.com. 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Special Bulk  
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers  
at www.apress.com. For detailed information about how to locate your book’s source code, go to 
 www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary 
Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org


I dedicate this book to my late father, Shree. H.B Rawal 

—Pathik Rawal

www.allitebooks.com

http://www.allitebooks.org


v

Contents at a Glance

About the Authors��������������������������������������������������������������������������������������������������� xiii

About the Technical Reviewer����������������������������������������������������������������������������������xv

Acknowledgments��������������������������������������������������������������������������������������������������xvii

Preface��������������������������������������������������������������������������������������������������������������������xix

■■Chapter 1: Introduction to Yammer Development�������������������������������������������������� 1

■■Chapter 2: Integrations with Yammer Embed������������������������������������������������������� 19

■■Chapter 3: Yammer App Development Basics������������������������������������������������������ 47

■■Chapter 4: Authenticating Yammer Users������������������������������������������������������������ 63

■■Chapter 5: Writing Data into Yammer with Open Graph������������������������������������� 117

■■Chapter 6: Integration Using Yammer Rest APIs������������������������������������������������ 171

■■Chapter 7: Building Social Apps Using Yammer JavaScript SDK����������������������� 233

■■Chapter 8: Building Social Apps Using Yammer Windows Phone 8 SDK������������ 255

Index���������������������������������������������������������������������������������������������������������������������� 319

www.allitebooks.com

http://www.allitebooks.org


vii

Contents

About the Authors��������������������������������������������������������������������������������������������������� xiii

About the Technical Reviewer����������������������������������������������������������������������������������xv

Acknowledgments��������������������������������������������������������������������������������������������������xvii

Preface��������������������������������������������������������������������������������������������������������������������xix

■■Chapter 1: Introduction to Yammer Development�������������������������������������������������� 1

What Is Yammer?�������������������������������������������������������������������������������������������������������������� 2

Public Groups������������������������������������������������������������������������������������������������������������������������������������������ 3

Private Groups����������������������������������������������������������������������������������������������������������������������������������������� 4

Yammer Profiles�������������������������������������������������������������������������������������������������������������������������������������� 7

Conversations������������������������������������������������������������������������������������������������������������������������������������������ 8

Benefits of Integration with Yammer��������������������������������������������������������������������������������� 9

Microsoft Office 365 and Yammer��������������������������������������������������������������������������������������������������������� 10

Core of Yammer Development: The Yammer Platform����������������������������������������������������� 10

Yammer Integration Architecture������������������������������������������������������������������������������������ 11

Yammer Embed������������������������������������������������������������������������������������������������������������������������������������� 11

JavaScript���������������������������������������������������������������������������������������������������������������������������������������������� 11

REST APIs���������������������������������������������������������������������������������������������������������������������������������������������� 11

Open Graph (OG)������������������������������������������������������������������������������������������������������������������������������������ 11

SDKs������������������������������������������������������������������������������������������������������������������������������������������������������ 12

How to Start Yammer Integration������������������������������������������������������������������������������������ 12

Creating a Yammer Account������������������������������������������������������������������������������������������������������������������ 13

Case Study: SPDSUniverisity������������������������������������������������������������������������������������������� 17

Summary������������������������������������������������������������������������������������������������������������������������� 18

www.allitebooks.com

http://www.allitebooks.org


viii

■ Contents

■■Chapter 2: Integrations with Yammer Embed������������������������������������������������������� 19

Introducing Yammer Embed�������������������������������������������������������������������������������������������� 19

Yammer Embed Prerequisites��������������������������������������������������������������������������������������������������������������� 20

Different Types of Yammer Embed Feeds���������������������������������������������������������������������������������������������� 21

Yammer Embed Parameters������������������������������������������������������������������������������������������������������������������ 21

Adding Yammer Embed to a Web Page��������������������������������������������������������������������������� 22

Types of Yammer Feeds�������������������������������������������������������������������������������������������������� 25

Yammer User Feed�������������������������������������������������������������������������������������������������������������������������������� 25

Yammer Group Feed������������������������������������������������������������������������������������������������������������������������������ 26

Yammer Topic Feed������������������������������������������������������������������������������������������������������������������������������� 27

Yammer Object Feed����������������������������������������������������������������������������������������������������������������������������� 28

Yammer Embed with Single Sign-On������������������������������������������������������������������������������ 33

Using the Yammer Action Buttons����������������������������������������������������������������������������������� 34

How to Add a Yammer Action Button����������������������������������������������������������������������������������������������������� 35

Summary������������������������������������������������������������������������������������������������������������������������� 45

■■Chapter 3: Yammer App Development Basics������������������������������������������������������ 47

What Is a Yammer App?�������������������������������������������������������������������������������������������������� 47

Registering a Yammer App���������������������������������������������������������������������������������������������� 48

Configuring Yammer App Registration Details����������������������������������������������������������������� 52

Editing the Basic Info����������������������������������������������������������������������������������������������������������������������������� 53

Configuring App Directory Settings������������������������������������������������������������������������������������������������������� 55

Configuring Open Graph������������������������������������������������������������������������������������������������������������������������ 60

Summary������������������������������������������������������������������������������������������������������������������������� 61

■■Chapter 4: Authenticating Yammer Users������������������������������������������������������������ 63

Understanding Yammer Authentication��������������������������������������������������������������������������� 63

What Is OAuth 2.0?���������������������������������������������������������������������������������������������������������� 64

OAuth Roles������������������������������������������������������������������������������������������������������������������������������������������� 64

www.allitebooks.com

http://www.allitebooks.org


ix

■ Contents

Authentication on Yammer Using OAuth 2.0�������������������������������������������������������������������� 65

Yammer Authentication Flows����������������������������������������������������������������������������������������� 67

Server-Side Flow����������������������������������������������������������������������������������������������������������������������������������� 67

Client-Side Flow������������������������������������������������������������������������������������������������������������������������������������ 98

Summary����������������������������������������������������������������������������������������������������������������������� 116

■■Chapter 5: Writing Data into Yammer with Open Graph������������������������������������� 117

Introduction to Enterprise Social Graph������������������������������������������������������������������������ 117

Open Graph Protocol����������������������������������������������������������������������������������������������������� 119

Recent Activity Widget������������������������������������������������������������������������������������������������������������������������� 121

Open Graph Activity Details Page�������������������������������������������������������������������������������������������������������� 122

Format of Open Graph Activity������������������������������������������������������������������������������������������������������������� 123

Open Graph Activity Objects Schema�������������������������������������������������������������������������������������������������� 125

Delivery: The Open Graph Activity REST Endpoint������������������������������������������������������������������������������� 128

Open Graph Implementation Examples������������������������������������������������������������������������� 128

Single Activity with Object Types and Actions as a JSON String (Public Object)��������������������������������� 129

Single Activity with Delivery Rules (Private Object)����������������������������������������������������������������������������� 130

Multiple Activities�������������������������������������������������������������������������������������������������������������������������������� 131

Case Study: Open Graph in the SPDSUniversity App����������������������������������������������������� 131

Summary����������������������������������������������������������������������������������������������������������������������� 170

■■Chapter 6: Integration Using Yammer Rest APIs������������������������������������������������ 171

REST������������������������������������������������������������������������������������������������������������������������������ 171

Yammer REST APIs�������������������������������������������������������������������������������������������������������� 172

Yammer REST API Features����������������������������������������������������������������������������������������������������������������� 172

What You Can Do with Yammer REST APIs������������������������������������������������������������������������������������������ 173

Before You Start Using the Yammer REST APIs������������������������������������������������������������� 174

Authentication on Yammer������������������������������������������������������������������������������������������������������������������ 174

User Privileges������������������������������������������������������������������������������������������������������������������������������������� 174

Getting Started with Yammer REST APIs����������������������������������������������������������������������� 175

Yammer API Operations����������������������������������������������������������������������������������������������������������������������� 175

www.allitebooks.com

http://www.allitebooks.org


x

■ Contents

REST Endpoints������������������������������������������������������������������������������������������������������������� 177

Messages�������������������������������������������������������������������������������������������������������������������������������������������� 177

Yammer Topics������������������������������������������������������������������������������������������������������������������������������������ 185

Yammer Users������������������������������������������������������������������������������������������������������������������������������������� 186

Groups REST APIs�������������������������������������������������������������������������������������������������������������������������������� 193

Relationships��������������������������������������������������������������������������������������������������������������������������������������� 195

Yammer Notifications�������������������������������������������������������������������������������������������������������������������������� 196

Yammer Suggestions��������������������������������������������������������������������������������������������������������������������������� 197

Subscription REST APIs����������������������������������������������������������������������������������������������������������������������� 198

AutoComplete�������������������������������������������������������������������������������������������������������������������������������������� 199

Invitations REST APIs��������������������������������������������������������������������������������������������������������������������������� 200

Search REST APIs�������������������������������������������������������������������������������������������������������������������������������� 200

Yammer Networks������������������������������������������������������������������������������������������������������������������������������� 201

Yammer Output in a JSON/XML Viewer������������������������������������������������������������������������� 203

Data Export�������������������������������������������������������������������������������������������������������������������� 205

Yammer REST APIs Rate Limits������������������������������������������������������������������������������������� 206

Yammer REST Endpoint in Practice������������������������������������������������������������������������������� 207

Summary����������������������������������������������������������������������������������������������������������������������� 231

■■Chapter 7: Building Social Apps Using Yammer JavaScript SDK����������������������� 233

Introduction to the JavaScript SDK������������������������������������������������������������������������������� 234

Setup Required to Use the JavaScript SDK������������������������������������������������������������������� 234

Authentication Using JavaScript SDK���������������������������������������������������������������������������� 235

Authentication Functions��������������������������������������������������������������������������������������������������������������������� 235

Using the JavaScript SDK to Call Other REST APIs�������������������������������������������������������� 240

Additional Functions���������������������������������������������������������������������������������������������������������������������������� 240

Implementing Yammer Integration in a SharePoint-Hosted  
App Using JavaScript SDK��������������������������������������������������������������������������������������������� 241

Summary����������������������������������������������������������������������������������������������������������������������� 253

www.allitebooks.com

http://www.allitebooks.org


xi

■ Contents

■■Chapter 8: Building Social Apps Using Yammer Windows Phone 8 SDK������������ 255

Introduction to Windows Phone 8 SDK�������������������������������������������������������������������������� 255

Setup Required to Use Windows Phone App 8 SDK������������������������������������������������������� 256

Step 1: Register Your Yammer App and Set the Redirect URI�������������������������������������������������������������� 256

Step 2: Create an Instance of the Yammer.OAuthSDK.Model.OAuthClientInfo Class��������������������������� 256

Step 3: Configure a URI Association���������������������������������������������������������������������������������������������������� 257

Understanding Windows Phone SDK����������������������������������������������������������������������������� 257

Project “Yammer.OAuthSDK” Structure����������������������������������������������������������������������������������������������� 258

Important Methods of Yammer.OAuthSDK������������������������������������������������������������������������������������������� 260

Building a Windows Phone 8 App Using Yammer Windows Phone SDK������������������������ 264

Summary����������������������������������������������������������������������������������������������������������������������� 318

Index���������������������������������������������������������������������������������������������������������������������� 319

www.allitebooks.com

http://www.allitebooks.org


xiii

About the Authors

Pryank Rohilla works as a collaboration solutions architect for a 
Microsoft Gold partner in London. Pryank has 15 years of software 
development experience in Microsoft technologies. He is Microsoft 
certified and has worked as a developer, consultant, architect, tech lead, 
and delivery lead in various engagements. He lives in Reading, UK and his 
Twitter handle is @Pryankrohilla. In his free time, Pryank enjoy watching 
sports and spending time with family and friends.

Pathik Rawal is a succesful technical architect and is working as a 
Microsoft Technology Architect. He has 15 years of software development 
experience and has worked on many consulting and technical 
assignments. Pathik is Microsoft certified and he is enthusiastic about 
cloud and mobile platforms. He lives in London and can be reached on 
Twitter by @Pathikrawal. Pathik enjoys socializing with friends and family 
in his free time.

http://@Pryankrohilla
http://@Pathikrawal


xv

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft 
technologies. He works at BluArancio SpA (www.bluarancio.com) as a senior analyst/developer and  
is a Microsoft Dynamics CRM specialist. He is a Microsoft-certified solution developer for .NET,  
a Microsoft-certified application developer for .NET, a Microsoft-certified professional, and a prolific author 
and technical reviewer. Over the past 10 years, he’s written articles for Italian and international magazines 
and coauthored more than 10 books on a variety of computer topics.

www.bluarancio.com


xvii

Acknowledgments

Writing a book was not an easy task for me. It took a lot of time and a lot of support. Thanks to my wife for 
her endless support. I also need to thank the co-author and my friend Pathik Rawal, and the talented team of 
editors and reviewers at Apress. It would have not been competed without your collaboration.

—Pryank Rohilla

I wish to personally thank the following people for their contributions to my inspiration and knowledge 
and for their help in creating this book.

Pryank Rohilla (my co-author) 

Gwenan Spearing (my editor)

Melissa Maldonado (the coordinating editor)

Douglas Pundick (the development editor)

My family (wife Mittu and my two Kids Aayu and Jigi)

—Pathik Rawal 



xix

Preface

Yammer is more than just a social network for an organization. Through a range of development options, 
you can build deep integration across your company’s application ecosystem. You can embed relevant 
conversation feeds where they matter, such as on a company web site or CRM application. You can 
encourage easy interactions with the Yammer Like and Share buttons in the places where your users will 
see them. Or, you can even build a standalone app for one or more platforms, and share or collect relevant 
information with Yammer using Open Graph and Yammer’s REST API. In short, Yammer integration with 
business applications makes collaboration and interaction easier than ever, and it lowers the barrier for 
user engagement with line-of-business applications and data. It helps make users better connected and 
more productive.

The examples in this book cover Yammer integration with SharePoint, ASP.NET, and Windows Phone 8.  
Once you’ve mastered the Yammer development examples in this book, you will have a head start on 
integrating Yammer with other enterprise applications, such as Dynamics CRM, and even third-party 
applications like Salesforce. The possibilities are endless! Start here today. We hope you enjoy it.

Who This Book Is For
This book is targeted at developers with a background in .NET/C# development. Readers should also be 
familiar with HTML and JavaScript.

Software architects will also find this book valuable for planning social integration across their company’s 
business ecosystems.

What You Will Learn
Chapter 1: You are introduced to Yammer, including its features and benefits, and you find out about 
Yammer’s architecture and the development options available. You also learn how to set up an account with 
Yammer and meet SPDSUniversity, the case study used throughout the book.

Chapter 2: You find out how to add a Yammer feed to a web page or SharePoint site using Yammer 
Embed. This is the simplest and quickest way to integrate Yammer content into your business applications. 
Possible feeds include user feeds, group feeds, topic feeds, and Open Graph/object feeds. You also learn how 
to add the Yammer action buttons (Like, Follow, and Share) to a web page.

Chapter 3: Covers important information regarding Yammer App development, including registering 
your app, its configuration options, and how to submit an app to the Yammer Global Apps Directory.  
This chapter also covers initial configuration of Open Graph.

Chapter 4: This chapter outlines the Yammer authentication process using OAuth, including both 
client-side and server-side OAuth flows.

Chapter 5: Following on from the initial configuration in Chapter 3, this chapter provides a deep dive 
into Open Graph. You learn how to create custom Open Graph objects, and find out how to write data into 
Yammer from your enterprise applications, using the SPDS ASP.NET web application as an example.

http://dx.doi.org/10.1007/978-1-4842-0943-1_1
http://dx.doi.org/10.1007/978-1-4842-0943-1_2
http://dx.doi.org/10.1007/978-1-4842-0943-1_3
http://dx.doi.org/10.1007/978-1-4842-0943-1_4
http://dx.doi.org/10.1007/978-1-4842-0943-1_5
http://dx.doi.org/10.1007/978-1-4842-0943-1_3


xx

■ Preface

Chapter 6: You discover a truly flexible way to integrate with Yammer, using its REST APIs. These APIs 
allow you to access and write Yammer data between Yammer and many other line-of-business applications, 
including both inbound and outbound messages. Get a breakdown of Yammer endpoints and learn how to 
work with each of them.

Chapter 7: You use Yammer’s JavaScript SDK to integrate Yammer with an HTML-based enterprise 
business application, using the SharePoint hosted app from Chapter 4 as an example.

Chapter 8: The final chapter teaches you how to build a new Windows Phone 8 app and use Yammer’s 
Windows Phone 8 SDK to add Yammer functionality.

Source Code
The source code for this book can be found at www.apress.com/9781484209448. Scroll down and click the 
Source Code/Downloads tab to view the download link. 

http://dx.doi.org/10.1007/978-1-4842-0943-1_6
http://dx.doi.org/10.1007/978-1-4842-0943-1_7
http://dx.doi.org/10.1007/978-1-4842-0943-1_4
http://dx.doi.org/10.1007/978-1-4842-0943-1_8
www.apress.com/9781484209448


Chapter 1

Introduction to Yammer 
Development

Pryank Rohilla
Today, communication channels are constantly evolving and organizations are discovering that they need a 
new way to work together to succeed. Organizations have embraced various platforms and tools over time 
to deliver better employee experiences tuned to how they work and what they need to be successful, thus 
creating a highly productive workplace that delivers better performance and reduced costs. Figure 1-1 shows 
how enterprise communications have evolved.

Figure 1-1.  Evolution of enterprise communication channels

© Pathik Rawal and Pryank Rohilla 2015 
P. Rawal and P. Rohilla, Developing on Yammer, DOI 10.1007/978-1-4842-0943-1_1

1

Electronic supplementary material  The online version of this chapter (doi:10.1007/978-1-4842-0943-1_1) 
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-0943-1_1


Chapter 1 ■ Introduction to Yammer Development

2

Enterprise Social allows you to share information, connect with people, make quick decisions, and 
share updates. Rather than being a standalone tool, Enterprise Social tools work with existing line-of-
business applications and provides value in a digital workplace.

Enterprise Social can be part of the digital workplace in an enterprise and can integrate with adjacent 
technologies such as Collaboration, company portals, and Customer Relationship Management applications 
to solve business challenges inside and outside the company.

Yammer is an Enterprise Social networking tool launched in 2008 and acquired by Microsoft in 2012. 
Yammer provides a simple, scalable solution that lets employees collaborate and connect with coworkers 
in a private, secure manner. This chapter introduces Microsoft Yammer and explains basics of Yammer 
development. The chapter provides an introduction to the Yammer platform and the technical offerings that 
can be used to implement Yammer integration.

In this chapter, we cover the following:

•	 The Microsoft Yammer platform

•	 Yammer integration architecture

•	 How to start on integration with Yammer

•	 Setting up a Yammer profile

•	 Introduction to the case study used in the book—the fictitious SPDSUniversity app

What Is Yammer?
Yammer is a leading Enterprise Social network designed for businesses to get work done smarter and faster 
(www.Yammer.com).

Yammer is a micro-blogging and collaboration tool for members of a network. Yammer is also a 
productivity tool that helps employees collaborate quickly and take effective actions to deliver better results. 
Unlike Twitter or Facebook, Yammer is aligned to discussions and decisions happening inside your organization 
or business. As illustrated in Figure 1-2, Yammer helps you get connected to other users in your organization, 
allows users to collaborate together, reduces the time and effort required to reach people, helps you find 
information quickly, provides an easy interface to share information and grow ideas to deliver better results.

Figure 1-2.  Advantages of Yammer as an Enterprise Social collaboration platform

http://www.yammer.com/


Chapter 1 ■ Introduction to Yammer Development

3

Yammer provides a user-friendly web and mobile interface allowing users to stay connected easily.  
You create groups to collaborate and share information with internal and external people.

Yammer groups can be private or public, providing group owners with an easy way to manage who can 
see information shared in a group (Figure 1-3).

Figure 1-3.  Creating a new Yammer group

Let’s explore further how public groups are different from private groups.

Public Groups
Yammer’s public groups are an easy way to collaborate on common topic/agenda/departments/functions. 
Employees can create a new group or join public groups, as shown in Figure 1-4.



Chapter 1 ■ Introduction to Yammer Development

4

Messages that are posted in Yammer public groups are displayed in the Home view of every member of 
the group. Additionally, users who aren’t members of a public group can view messages on the group’s page. 
Anyone in a Yammer network can join a public group.

Private Groups
Yammer’s private groups are also a great way to improve team communications. Messages posted in 
private groups in Yammer are displayed in the Home view of every member in the group. However, people 
who aren’t members of the particular private group can’t view messages on the group’s page. As shown in 
Figure 1-5, Unlike with public groups, an administrator of a private group must invite members or approve 
membership.

Figure 1-4.  Creating a Yammer group or joining an existing group



Chapter 1 ■ Introduction to Yammer Development

5

Private group owners can select whether the group is visible to other members through the network’s 
Groups Directory when a group is created. Or you can do this through its Settings page, as shown in 
Figure 1-6.

Figure 1-5.  The Yammer private group is for approved users only

www.allitebooks.com

http://www.allitebooks.org


Chapter 1 ■ Introduction to Yammer Development

6

Also note that files or documents that are uploaded to private groups are invisible to members who are 
outside the group. However, their file names are displayed in the network’s Files directory.

■■ Note  In Basic Yammer groups, the Network Privacy setting can’t be changed after a group is created. 
However, in Enterprise Yammer networks, the Network Privacy setting can be changed by the Yammer 
administrator at any time.

Figure 1-6.  Private group Settings page



Chapter 1 ■ Introduction to Yammer Development

7

Yammer Profiles
Yammer Profile provide an easy and efficient way to let others know about you. Each user on Yammer 
gets their own Yammer profile. Users can update profiles to share their contact details, skills, knowledge, 
expertise, and interests with coworkers and company employees, as illustrated in Figure 1-7.

Figure 1-7.  Yammer provides interfaces to view, search, and manage user profiles

When other users visit a Yammer profile page, they can download the user’s electronic business card 
(vcard) and save it in Outlook (Figure 1-8).



Chapter 1 ■ Introduction to Yammer Development

8

Yammer also allows other users to search for contacts and see who is online on Yammer from a web or 
mobile device interface.

Conversations
Yammer is built around open communication, and it allows users to have conversations and share 
information in the open. Figure 1-9 is an overview of Yammer interface for sharing information and  
starting conversations with colleagues. Yammer provides an easy way to update latest events and projects, 
ask questions, share documents, and link with others.

Figure 1-8.  Yammer user’s vcard, which can be downloaded and saved in Outlook



Chapter 1 ■ Introduction to Yammer Development

9

Benefits of Integration with Yammer
Some of the main benefits of integration with the Yammer platform and Yammer adoption are:

•	 Central repository: Yammer helps pull activities across business applications into 
a single place where employees can easily discover relevant information and 
collaborate.

•	 Team collaboration: Yammer helps improve internal team collaboration and enables 
quick decision-making.

•	 Employee engagement: Yammer helps employees by providing tools that they need to 
thrive and unleashes their full productivity:

•	 By improving access to information and expertise.

•	 By increasing the effectiveness of company-wide communications.

•	 Business agility: With Yammer, you can connect employees, collaborate, and 
accelerate the feedback loop when entering new markets.

•	 Team communication: Yammer helps break down communication barriers.

•	 Increased productivity: Yammer helps drive productivity by making business 
applications social and business data easily discoverable, which in turn makes it 
easier for users to take meaningful actions. 

Figure 1-9.  Using Publisher to share the latest information 



Chapter 1 ■ Introduction to Yammer Development

10

■■ Note  Yammer is a fast-paced platform where new features are developed and released on a regular  
basis. For full details of new features and future releases, refer to the YCN (Yammer Customer Network) at  
https://about.yammer.com/success/engage/grow-your-network/release-schedule/.

Microsoft Office 365 and Yammer
Microsoft has included Yammer as an Enterprise Social offering in Office 365. Yammer thrives in the 
Microsoft Office 365 environment by providing deep integration with MS office applications and  
SharePoint Online.

In Microsoft Ignite 2015, Microsoft showcased the power of Office Graph and showed how Microsoft 
Delve provides personalized information to users. Users can initiate Yammer conversations directly  
from Delve.

Core of Yammer Development: The Yammer Platform
The Yammer platform enables users to integrate information across disparate business applications and 
collaborate through a common interface while working on various business applications.

Yammer platform provides a set of open APIs that enables you to integrate various line-of-business 
applications within your organization. These can be internal portals, business process automation systems, 
change and support management applications, or mobile applications.

The main benefits of Yammer integration are:

•	 Single sign-on with Yammer credentials: Users can register to your line-of-business 
applications using Yammer credentials.

•	 Share information and collaborate: Yammer allows users to get the right information 
at the right time, making it more valuable, and allows users to make better decisions.

•	 Embedded social capabilities: These are embedded in the business application like 
surfacing feeds to give context to the users, thus allowing users to share content and 
extend the reach of organization’s information.

•	 Ease of use: Integration with Yammer is a simple and scalable data level integration. 
Yammer integration enables you to send important updates from business 
applications and surface social data from Yammer into your applications.

•	 Consolidation of data: In an organization, information is processed and stored 
in multiple locations and in multiple business applications. By integrating your 
business applications into Yammer, you can display information in one common 
interface that makes information easily discoverable, meaningful, and actionable.

The main components of the Yammer platform are:

•	 Embed Feed: Share and display Yammer user feed, group feed, topic feed, or Open 
Graph objects on other applications.

•	 Action Buttons LIKE/FOLLOW/SHARE: An easy way to enable social interaction and 
publish an activity story related to that action on Yammer.

https://about.yammer.com/success/engage/grow-your-network/release-schedule/


Chapter 1 ■ Introduction to Yammer Development

11

•	 Open Graph: An integration protocol that allows you to define an activity that can be 
posted on Yammer as an object.

•	 SDKs: Available in various programming languages (JavaScript, .Net, Ruby, Python, 
Windows Phone 8, and iOS). Developers will learn in this book how to use Yammer 
SDKs to authenticate on Yammer and how to access Yammer APIs to develop 
integration solutions.

Yammer Integration Architecture
As mentioned, Yammer integration involves simple and scalable data online or on-premises applications:

•	 Embeddable plug-ins

•	 REST Application Programming Interface (API)

•	 Open Graph-enabled social apps

Yammer provides many components for integration with your line-of-business application.  
These components are REST APIs, JavaScript, Open Graph, embedded widgets, and SDKs for different 
platforms such a web applications, .NET desktop applications, mobile applications, and backend services.  
In this section, we will review each of the main elements of Yammer integration in turn.

Yammer Embed
Yammer’s embeddable plug-ins allow users to access social content across all of their business applications 
using their Yammer credentials. There are various embeddable plug-ins available and, in Chapter 2, we will 
cover the full details of the currently available Yammer Embed.

JavaScript
The JavaScript integration component enables you to integrate line-of-business applications using a  
client-side script. Yammer provides JavaScript SDK for user authentication and read/write into Yammer. We 
cover JavaScript in great detail in Chapter 7.

REST APIs
Yammer REST APIs are most commonly used for integration. They provide a secure HTTP interface that 
allows you to easily add social features to enterprise applications. The REST APIs provide endpoints for 
authenticated users to read/write data on Yammer. We cover the Yammer REST APIs in great details in 
Chapter 6.

Open Graph (OG)
Yammer uses the Open Graph (OG) protocol to connect applications to create the Enterprise Graph, which 
is a single mapping of people and objects they encounter at work. Figure 1-10 shows how Open Graph works.

In Figure 1-10, company employee Alex creates a training schedule on a business application. This 
business application integrates with Yammer using Yammer apps and Open Graph and allows Alex to share 
the training schedule with other users on Yammer. It’s visible via the Yammer Recent Activity widget.

http://dx.doi.org/10.1007/978-1-4842-0943-1_2
http://dx.doi.org/10.1007/978-1-4842-0943-1_7
http://dx.doi.org/10.1007/978-1-4842-0943-1_6


Chapter 1 ■ Introduction to Yammer Development

12

SDKs
Yammer SDKs are open source code that enable developers to implement authentication with Yammer and 
access Yammer APIs from various technology platforms. Yammer has released SDKs for these languages:

•	 JavaScript SDK

•	 .NET SDK

•	 Windows Phone 8 SDK

Chapter 7 describes the details of these SDKs, with examples on how to implement JavaScript SDKs and 
.NET SDK.

How to Start Yammer Integration
Yammer provides two types of integration:

•	 Lightweight integration using Yammer Embed feeds, which allow you to get Yammer 
feeds surfaced on your business applications. Yammer Embed provides the easiest 
and simplest approach to integrate Yammer into your business applications. This is 
covered in Chapter 2.

•	 Yammer Embed does not allow you to write or read Yammer data from your line-of-
business application. To overcome this limitation, Yammer provides deep integration 
using Yammer apps and Yammer SDKs. To get started with deep integration of 
Yammer with an application, you need to have following components:

•	 A valid Yammer account

•	 A Yammer app that provides an integration channel (Covered in more detail  
in Chapter 3)

•	 Yammer SDKs of your choice, which provide a platform to quickly integrate 
Yammer with other applications within your organization

Figure 1-10.  Line-of-business application using Enterprise Social graph to share information in real-time

http://dx.doi.org/10.1007/978-1-4842-0943-1_7
http://dx.doi.org/10.1007/978-1-4842-0943-1_2
http://dx.doi.org/10.1007/978-1-4842-0943-1_3


Chapter 1 ■ Introduction to Yammer Development

13

If you want to integrate Yammer with a web application, you can leverage JavaScript SDK. In case you 
want to integrate Yammer with a mobile application platform such as iOS or Windows Phone, Yammer has 
released SDKs for mobile platforms. This book explains the JavaScript SDK and Windows Mobile SDK using 
different examples.

Creating a Yammer Account
As Yammer is an Enterprise private social network and Yammer is also part of Microsoft Office 365 network, 
there are different ways to create an active Yammer account:

	 1.	 Create a Yammer account with a company email address and your personal 
profile. In this case, there are separate credentials for Yammer and it does not 
offer single sign-on.

	 2.	 Single sign-on using a company email address and configuring your personal 
profile.

	 3.	 Sign in to Yammer using a Microsoft Office 365 account and then manage your 
personal profile.

Let’s look at these three options in detail.

Setting Up Your Profile Without Single Sign-On
You will need your corporate email ID in order to create a Yammer account. Visit www.yammer.com and sign 
up by entering your corporate email address, as shown in Figure 1-11.

http://www.yammer.com/


Chapter 1 ■ Introduction to Yammer Development

14

Yammer will send you an email to confirm your email address. Once your account has been confirmed, 
you will be taken through the setup process. The setup process requires you do the following:

	 1.	 Set up your profile by entering information about yourself such as job title, 
department name, profile picture, and so on (Figure 1-12).  

Figure 1-11.  Sign up on Yammer using your company email address



Chapter 1 ■ Introduction to Yammer Development

15

	 2.	 (Optional) You can invite your colleagues to sign up on Yammer (Figure 1-13). 

Figure 1-12.  Sign up on Yammer

Figure 1-13.  Invite colleagues to join Yammer

www.allitebooks.com

http://www.allitebooks.org


Chapter 1 ■ Introduction to Yammer Development

16

That’s it! You can now log in to Yammer with your company email address.

Setting Up Your Yammer Profile with Single Sign-On and a Company  
Email Address
If your company has already set up single sign-on between Yammer and the company domain, you  
do not need to sign up on Yammer separately. In order to log into Yammer.com, navigate to  
https://www.yammer.com/companyname or [Company Name Portal address]. You will be redirected  
to the [COMPANY NAME] SSO system, as illustrated in Figure 1-14.

Figure 1-15.  SSO to Yammer from company federated domain (this page depends on company account 
federation configuration settings)

Figure 1-14.  Log on to Yammer

Occasionally, you will need to log into the [Company Name Portal address] to verify your identity. 
When prompted, simply enter your domain username and password, as shown in Figure 1-15.

https://www.yammer.com/companyname


Chapter 1 ■ Introduction to Yammer Development

17

Once you have successfully signed in, you will be redirected back to Yammer to view your company’s 
Yammer feed.

The most important change to understand is that Yammer.com will no longer be storing your password 
information. Instead, this is being handled by your company-implemented single sign-on solution, such as 
Active Directory Federation Services (ADFS).

Signing in to Yammer with a Microsoft Office 365 Account
With Office 365 sign-in for Yammer, users can access Yammer with their Office 365 credentials. Office 365 
users can seamlessly access Yammer from their Office 365 navigation bar, as shown in Figure 1-16, thus 
providing immediate access to their existing Yammer account linked to Office 365.

Figure 1-16.  Office 365 suite navigation bar and Yammer integration

Office 365 sign-in for Yammer is for Office 365 customers with the following criteria: Yammer Enterprise 
is activated in a network’s Office 365 Admin Center and Yammer single sign-on (SSO) is not enabled. Users 
will notice the Office 365 suite navigation bar (Figure 1-16) at the top of their Yammer network.

Case Study: SPDSUniverisity
In order to guide you to implement Yammer integration with line-of-business applications, we will use a 
case study of the fictitious global company called SPDS and explain how this company is using Yammer to 
provide integration with an internal application.



Chapter 1 ■ Introduction to Yammer Development

18

SPDS provides an internal learning and management system (LMS), called “SPDSUniversity,” for their 
employees to learn and develop their skills. The SPDSUniversity application offers different interfaces 
for web applications, Window mobile apps, and SharePoint apps. Based on the employee’s convenience, 
they use different interfaces. This application provides annual training schedule, recorded trainings, and 
announcements on future trainings events. But due to lack of user engagement, not all employees are using 
this application at its full potential.

Also, SPDS has adopted Yammer as their Enterprise Social networking tool to make employees 
collaborate quickly and take effective actions and deliver better results. SPDS wants to utilize Yammer 
capabilities and offer Yammer integration with the SPDSUniversity application by implementing Yammer 
Social features in LMS. There is strong case it will improve the employees’ engagement.

In this book, we will show you how to integrate Yammer with the SPDSUniveristy application and 
provide detailed explanations on the following integration possibilities:

•	 You will learn how to use Yammer Embed feeds to surface on an internal  
company portal.

•	 You will learn to implement “Sign in with Yammer” to provide authentication on a 
SharePoint app, a web application, and a Windows mobile app.

•	 You will learn how to use Yammer Open Graph from the SPDSUniversity training 
portal to:

•	 Send updates on Yammer about recent activities that can be used by Yammer 
users during discussions.

•	 Send updates on Yammer about a new training venue from an internal training 
application. Inform users about training locations and let them know how to 
reach the destination with a location map.

•	 Share important events like a new certification attained by users directly from 
the SPDSUniveristy application to Yammer using the Yammer Open Graph API.

•	 When a new training video is created, share this video link directly from the 
SPDSUniveristy application to Yammer.

•	 You will learn how users can share an upcoming training page on Yammer using 
REST APIs.

•	 You will also learn how users can bring relevant Yammer posts into the 
SPDSUniversity application using Yammer REST APIs and how to use Yammer REST 
APIs to search Yammer posts directly from the LMS web portal.

•	 You will learn how to develop more social integrations using Yammer JavaScript 
SDKs and create an app using Windows Phone 8 SDK.

Summary
In this chapter, we explored Yammer as an Enterprise Social platform and discussed its key features.  
We reviewed the core of Yammer Integration architecture and explained the different components of 
developing integrations with Yammer. We laid out the plan for integration by creating a Yammer account 
and provided details about the case study that we will be using throughout this book.

In following chapter we will start with Yammer integration using the Yammer Embed technology, which 
is simplest way to integrate Yammer with your business application and to view Yammer feeds directly from 
business applications.



Chapter 2

Integrations with Yammer Embed

Pryank Rohilla
Yammer has evolved as one of the top enterprise social networking platforms. Microsoft Office 365 and 
Yammer integration has helped organizations provide better productivity solutions for users. Along with 
standard capabilities, there is scope to bring Yammer social features and functionalities directly into  
line-of-business applications and allow users to collaborate and engage from their main business 
applications. Yammer Embed provides a way to get Yammer social features into business applications.

In this chapter, we will explain what Yammer Embed is and how to use Yammer Embed in your business 
applications. We explain with an example how to add Yammer Embed into an online company portal.

Introducing Yammer Embed
Yammer Embed is made up of lightweight JavaScript-based widgets that can be added to web applications to 
display snapshots of Yammer feeds based on a defined configuration. Yammer Embed provides an easy and 
simple approach to integrate Yammer in your business applications. Using Yammer Embed, users can view 
the latest announcements, comments, posts, add new comments, and share information and files directly 
from the mainstream business applications without having to visit the Yammer. This allows users to engage 
quickly with others and achieve better results.

There are different types of Yammer Embed feeds that can be added to external applications based 
on business needs. You can surface Yammer Embed feeds of a current user (My Feed), a specific Yammer 
group feed, a topic feed, or a Yammer Open Graph object feed. Figure 2-1 shows you an example of 
Yammer Embed added to a Project Center site. In this example, users can view and share the latest updates 
with colleagues directly from the Project Center site, which helps them be updated and share views with 
team members.

© Pathik Rawal and Pryank Rohilla 2015 
P. Rawal and P. Rohilla, Developing on Yammer, DOI 10.1007/978-1-4842-0943-1_2

19



Chapter 2 ■ Integrations with Yammer Embed

20

This is just one example. In this chapter we will explain different types of Yammer Embed and Yammer 
action buttons, including Like, Share, and Follow.

First let’s explore the requirements for adding Yammer Embed to your business applications.

Yammer Embed Prerequisites
In order to use Yammer Embed on a web page, you need to satisfy the following:

•	 An HTML-based and JavaScript-enabled web interface, preferably in a business 
system (like your company intranet).

•	 A Yammer network permalink such as:  
https://www.Yammer.com/spdsuniversity.onmicrosoft.com.

•	 Editable HTML container that’s 400 pixels or larger.

For less than 400 pixel container, Yammer will show Skinny mode, which will be less feature rich.

■■ Note  Yammer Embed does not support Microsoft Internet Explorer 8 or lower. Note that Yammer keeps 
updating its feature set, so some of the prerequisites and usage mechanisms may change in future. For the 
latest, refer to https://developer.Yammer.com.

As you can see, the requirements to have Yammer Embed on your business application are very simple 
and you do not need to develop any complex code. Let’s go through the different types of Yammer Embed 
feed that you can use in your applications.

Figure 2-1.  An example of a Yammer group feed embeded in a company’s Project Center site

https://www.yammer.com/spdsuniversity.onmicrosoft.com
https://developer.yammer.com/


Chapter 2 ■ Integrations with Yammer Embed

21

Different Types of Yammer Embed Feeds
As Yammer offers various social collaboration features, it is possible with Yammer Embed to surface different 
types of feeds based on your functional needs. For example, you may want to see the Yammer feeds 
belonging to your Learning and Training department on your Training and Knowledge management site, or 
perhaps your Sales and Marketing team wants to get the latest Yammer announcements and updates from 
the R&D Department’s group feeds on the CRM portal.

There are five types of Yammer feeds that can be embedded in HTML-based web applications, as 
listed in Table 2-1. Most of these feeds are self-explanatory, apart from Object feed, which we will cover 
more in detail.

Table 2-1.  Different Types of Yammer Embed Feeds

Feed Description Feed Type Use Case

MyFeed My feeds are where 
conversations/posts are 
delivered for a Yammer user

See MyFeed example User’s personal  
site/workspace site

User feed All the posts/conversations 
posted by a user in the Yammer 
network

User Portal Profile page of user

Topic feed A feed of posts/conversations 
that are hashtagged in Yammer

Topic An event or company 
announcement page in portal
Search results page, CRM 
portal landing page

Group feed A feed or posts/conversations 
that are posted in a specific 
private/public Yammer group

Group Teamsite page
Project page

Open Graph/ 
object feed

Posts/conversations about a 
custom object that is created 
using the Open Graph API

Commenting Blog page, CRM opportunity 
page, internal company news 
page

■■ Note  Users have to log in to Yammer to view the feed on a web application unless that application provides 
single sign-on to Yammer. For example, Microsoft SharePoint Online.

Yammer Embed Parameters
Before users can use Yammer feeds from a business application, you need to specify the parameters 
associated with Yammer Embed. These parameters are listed in Table 2-2.



Chapter 2 ■ Integrations with Yammer Embed

22

Let’s now explore how to specify these parameters when adding Yammer Embed to a web page.

Adding Yammer Embed to a Web Page
As mentioned, your application needs to support HTML and JavaScript to add Yammer Embed. Yammer 
Embed is a JavaScript widget that needs to fit in the HTML <div> element. You need a minimum height of 
400 pixels for the Yammer Embed <div> element.

The code snippet shown in Figure 2-2 is an example of Yammer Embed for a Yammer group.

Figure 2-2.  An example of a Yammer Embed feed code snippet

Table 2-2.  Yammer Embed Parameters

Embed Parameters      Definition

1 Container The ID of the HTML <DIV> element in which Yammer Feed is added

2 Network Network permalink. To retrieve the network permalink, You can navigate to the feed 
on the Yammer platform and copy it from the URL. More details are in the section 
to “How to Add Yammer Embed to a Page”

3 feedType Type of feed to be displayed: group, topic, user, or Open Graph object

4 feedID ID of the group, topic, or user feed (not applicable for Open Graph or MyFeed)

5 Config Currently supports headerless, which removes the title bar from the feed

6 objectProperties Open Graph Feeds/Like/Follow buttons supports all the properties available in the 
Yammer Activity Stream API

If you do not specify any object properties, the object will attempt to get the 
metadata from the web page, using <title> or <meta> tags as per the Open Graph 
specification (http://ogp.me/)

7 Private Open Graph object permissions may be constrained to a list of users, specified by 
full name and email address

8 Users The users who may see the private object

http://ogp.me/


Chapter 2 ■ Integrations with Yammer Embed

23

In the example in Figure 2-2, we have specified a Yammer group feed with the following parameters:

•	 div id: “Embedded feed”. Specify the ID of the <div> where you want to add the feed.

•	 style: Specify the height and width of the container.

•	 Source (src): Yammer Embed code is reference to the platform_Embed.js file. This 
reference is based on existing Yammer and it may change in the future. Refer to 
http://developer.yammer.com for the latest references.

Here are the Yammer Embed JavaScript method parameters:

•	 container: The name of the <div> ID that’s specified in HTML in the previous 
example is “Embedded-feed” as mentioned.

•	 Network: Specify the network name. In Figure 2-2, spdsonline.onmicrosoft.com is 
highlighted as “Network Permanent Link”.

•	 feedType: Specify the feed type. This is the type of feed you want to render on the 
page. This can be user, group, or topic. For example, in Figure 2-2, we selected group.

•	 feedID: Based on feed type, specify the value of object ID. In Figure 2-2, the Yammer 
group ID 4552935 is set to Feed ID.

You can add this code to any HTML and JS-enabled web page, but Yammer also provides an easy way to 
get the group feed scriptlet auto-generated from the Yammer site.

To get the Yammer Embed feed for a group, browse to your Yammer network, select the specific group 
feed page, and then select the Embed This Group in Your Site link, as shown in Figure 2-3.

Figure 2-3.  Yammer group SPDSUniversity feed page to get the Yammer Embed scriptlet

http://developer.yammer.com/


Chapter 2 ■ Integrations with Yammer Embed

24

Copy the script for embedding feeds on your HTML web page to view the Yammer group feed rendered 
on the web page, as shown in Figure 2-1.

There is another way to get Yammer Embed scriptlets: using the Yammer Embed widget.
Yammer has made life simpler for developers by providing an online tool to generate and preview 

the Yammer Embed feeds. You can browse to the web site https://www.Yammer.com/widget/configure 
and set the configuration parameters and preview the feed. Figure 2-4 is from the Yammer Embed Widget 
Configuration web page. As you can see, all the parameters are self-explanatory and described in the section 
entitled “Yammer Embed Parameters.”

Figure 2-4.  Yammer Embed widget configuration page

https://www.yammer.com/widget/configure


Chapter 2 ■ Integrations with Yammer Embed

25

Using this configuration web page, you can get a Yammer Embed script for any type of Yammer feeds. 
This can be for a user feed, a profile feed, a group feed, a topic feed, or Open Graph object feed. Once you get 
the Yammer Embed script, just add it to your web page using the HTML <script> element tag as shown in 
Figure 2-2.

The next section provides information about the different types of Yammer feeds.

Types of Yammer Feeds
Let's look at various types of Yammer Embed feeds that can be added based on your needs of business 
process and collaboration.

Yammer User Feed
Figure 2-5 illustrates the Yammer Embed script of the default feed of a currently logged in Yammer user.

Figure 2-5.  Yammer Embed script for a default feed

In this script, <div id="Embedded-feed"> (label 1) is an important value that needs to specified in the 
Yammer Embed script method yam.connect.EmbedFeed container parameter.

The second most important parameter is network (label 2) and you must specify your Yammer network 
there.

www.allitebooks.com

http://www.allitebooks.org


Chapter 2 ■ Integrations with Yammer Embed

26

Yammer Group Feed
In Figure 2-6, you can see that the Yammer feed type is group and is set to the default for a groupid.

Figure 2-6.  Yammer Embed script for a group feed in the SPDSUniversity Yammer network

In this script:

•	 Label 1 shows the ID of the <div> where the feed will be rendered.

•	 Label 2 is your Yammer network.

•	 Label 3 shows that the feedType is set to group to display the feed of a Yammer 
group.

•	 Label 4 shows the feedId, which is the group ID in this case.

•	 Label 5 (config:) specifies any other specific values, such as the default group to 
post to.

When this script is added to your HTML page, it will show the feed displayed in Figure 2-7.



Chapter 2 ■ Integrations with Yammer Embed

27

Figure 2-7.  Yammer Embed rendered on a web page for a group feed called “Yammer 101”

Yammer Topic Feed
In Figure 2-8, feedType is set to "topic" and feedId is "topic id".

Figure 2-8.  Yammer Embed script for a Yammer topic feed



Chapter 2 ■ Integrations with Yammer Embed

28

In the script shown in Figure 2-8, labels 1 and 2 are same as in the Yammer group feed, except:

•	 feedType (label 3) is changed to topic to display the feed of a Yammer topic.

•	 feedId (label 4) is the topic ID in this case.

When this feed is rendered on the page, it will show all the feeds from the Yammer network where posts 
have the “training” topic specified, as shown in Figure 2-9.

Figure 2-9.  Yammer Embed feed for the “Training” topic

So far we have explained Yammer Embed for user, group, and topic feeds, which are simple options that 
allow you to view feeds or a specific object or start a conversation related to a specific configured feed.

Next, let’s look at how to use Yammer Embed to provide commenting directly from your business 
applications.

Yammer Object Feed
Using Yammer Embed, you can comment on your internal communication site, a blog site, or an internal 
company news portal and then capture the comments or feedback from users directly and surface on 
Yammer using a Yammer Open Graph object. This is a very effective way to make your company portal more 
collaborative and get comments from users about specific articles, news, blogs, and so on.



Chapter 2 ■ Integrations with Yammer Embed

29

Implementing Commenting Using a Yammer Object Feed
The following script shows Yammer commenting, which can be added to your HTML page.

Figure 2-10.  Yammer Embed script for a Open Graph commenting section

In this script, you will notice that:

•	 The feedType parameter value is open-graph.

•	 The feedId parameter is blank because we are not rendering any existing feeds in 
this case.

•	 The objectProperties parameters are important for an open-graph type feed to 
highlight which type and object allows commenting. In this script, we have used a 
default page of a portal.

The output of this script will show a free text box that allows users to specify new comments that will 
appear as posts on Yammer.

The comment box is a Yammer Publisher control and it lets users comment directly from a web site/
portal using their Yammer profiles and shows this activity to their colleagues in the Yammer feed. 



Chapter 2 ■ Integrations with Yammer Embed

30

When you use Yammer Embed to post a public URL, Yammer creates an Open Graph object 
represented as a page object in Yammer, as shown in Figure 2-12. This Open Graph object displays all 
the open metadata that’s pulled from the Embed.ly service. Embed.ly visits the page in the background 
and retrieves the Open Graph metadata present on the page. This allows Yammer to display more 
information about the page on the Yammer feed, making it much more user friendly. Later in this 
chapter, you will learn how to use the Yammer Share button to create an Open Graph object post  
on Yammer.

■■ Note  Embed.Ly is an external service. For more information, refer to the embed.Ly web site.  

Figure 2-11.  Yammer Embed using Open Graph feedtype rendered on a web page

Using Embed.ly (www.Embed.ly)
As you can see in Figure 2-11, with Open Graph Yammer Embed posts the URL of a page but adds the 
“Sign in to Office 365” message. Basically, Yammer displays additional properties of the Open Graph object 
posted on Yammer.

http://www.embed.ly/


Chapter 2 ■ Integrations with Yammer Embed

31

■■ Note O pen Graph and its usage in Yammer is covered in Chapter 5.

Object Feed Configuration Parameters
For the Open Graph feed, you can specify different parameters to manage the different configurable features. 
The following sections explore the different parameters you can specify.

Headers and Footers in Object Feeds

Figure 2-13 shows the parameters needed to hide the Yammer header or footer in a Yammer Embed Open 
Graph object.

Figure 2-13.  Open Graph object script with config option to hide headers and footers

Figure 2-12.  Open Graph object created from posted messages using Embed.ly

http://dx.doi.org/10.1007/978-1-4842-0943-1_5


Chapter 2 ■ Integrations with Yammer Embed

32

Custom Publisher Messages

You can add custom messages in Publisher by using the promptText configuration parameter, as shown in 
Figure 2-14.

Figure 2-16.  Open Graph object feed to show the additional values using the Open Graph Preview parameter

Figure 2-14.  Open Graph object script with promptText option to specify custom message

Figure 2-15.  Open Graph object feed rendered with custom message

When this script renders on a web page, the Publisher control will display a custom message that reads 
“Comment on this customer,” as shown in Figure 2-15.

Open Graph Previews

Use the attribute illustrated in Figure 2-16 to display an Open Graph summary preview of the target URL in a 
new message on Yammer.



Chapter 2 ■ Integrations with Yammer Embed

33

When this script is rendered, you will see the preview like you saw in Figure 2-15. If it's set to false, users 
will not the Open Graph metadata associated with URL specified in the object properties.

Private Specified Object Feed

When Yammer Embed feed is placed on a page within a page, adding the private parameter option will 
allow developers to target audiences to restrict the access to only specified users in the specified Yammer 
network. Figure 2-17 shows you how to specify specific users using the private parameter in a Yammer 
Embed Feed.

Figure 2-17.  Open Graph Object feed script allowing only two users to view the feed

Another important aspect to consider when using Yammer Embed is how authentication works.  
The next section explains how to configure Yammer Embed for authentication on Yammer.

Yammer Embed with Single Sign-On
Your company can benefit from Yammer single sign-on (SSO), which allows users to log in to Yammer 
without entering seperate credentials. Using SSO with Yammer reduces the complexity and improves the 
usalibility of Yammer Embed feeds in business applications.

To use Yammer Embed with SSO, see the config section in Figure 2-18.



Chapter 2 ■ Integrations with Yammer Embed

34

If single sign-on is not enabled and you add a Yammer Embed script to your web site, users will be 
asked to log in to Yammer first before they can see the Yammer feeds, as shown in Figure 2-19.

Figure 2-18.  Yammer Embed script with single sign-on

Figure 2-19.  Users will be asked to log in before Yammer Embed displays the Yammer feeds

So far we have explained Yammer Embed and explored the different types of Yammer Embed feed 
options that you can add to your business applications. Later in this chapter, we will work on an example to 
show all the steps required to add Yammer Embed on a SharePoint-based company portal.

Let’s now look at the Yammer action buttons, which are part of Yammer Embed functionality.

Using the Yammer Action Buttons
Yammer Embed also provides Open Graph action buttons—Follow, Like, and Share—as shown in Figure 2-20. 
Using these action buttons, you can make it easier for users to engage and share information with others. These 
action buttons are similar to other social networking tools that provide these kinds of actionable components. 
This feature can be useful in company intranets, CRM systems, reporting portals, and so on. They allow users 
to like a new announcement, follow important documents/reports, share newly published company news with 
colleagues on Yammer, and more. It's a very quick and easy implementation to see what colleagues have liked, 
shared, or are following. You can display all three Open Graph buttons next to each other to let people use 
them as needed.



Chapter 2 ■ Integrations with Yammer Embed

35

These buttons are clickable interfaces. Like and Follow directly create an object on Yammer, and the Share 
button allows you to specify custom messages and select appropriate audiences for sharing the message.

How to Add a Yammer Action Button
Adding a Yammer action button is similar to adding Yammer Embed using JavaScript. There is a JavaScript 
snippet that you need to add to your HTML page. Let's look how to add to these buttons to your web 
applications.

Yammer Like Button
The Yammer Like button is the quickest way for people to share content with colleagues.

A single click on the Yammer Like button will like the content on the web page and share it on Yammer.
When you add the Yammer Like action button to a web page, on initial load users will see the Like 

button. When this button is clicked, an Open Graph object will be created, which will be visible on Yammer 
as an activity.

The Yammer Like button code snippet is similar to Yammer Embed and can be added to any  
HTML page:

yam.connect.actionButton({
container: "#Embedded-like",
network: "spdsuniversity.onmicrosoft.com",
action: "like"
});

When the Like button is clicked, a new Yammer activity is created against the user on Yammer and is 
visible in the Recent Activity widget, as shown in Figure 2-21. When users mouse over the widget, they can 
see the full details of the activity, as shown in Figure 2-21. Yammer also creates a dedicated page for this 
activity that employees can follow and discuss. 

Figure 2-20.  Yammer action buttons on a web page

www.allitebooks.com

http://www.allitebooks.org


Chapter 2 ■ Integrations with Yammer Embed

36

■■ Note T he Recent Activity widget displays the most important activities on Yammer. Yammer out-of-the-box 
features also use the Recent Activity widget to post people’s latest activities. You will read more details on Open 
Graph in Chapter 5.

Once the Like activity is complete, the Like button will change text and color to Liked, as shown in 
Figure 2-22. This allows users to Unlike the page/object if they want to.

Figure 2-21.  Yammer Recent Activity widget showing the user Alex has liked a page

Figure 2-22.  The Yammer Like button when a user has clicked it once

Users can unlike the page/object by clicking the Unlike button and it will change to Like again, as 
shown in Figure 2-23.

http://dx.doi.org/10.1007/978-1-4842-0943-1_5


Chapter 2 ■ Integrations with Yammer Embed

37

When users click the Unlike button, the action button will change back to Like, thereby allowing 
users to like it again if they desire. At the same time a new activity is posted on the Yammer Recent Activity 
widget—“User….Liked <Object title>,” as highlighted in Figure 2-24.

Figure 2-24.  A new activity on Yammer is visible when the user clicks the UnLike button

Figure 2-23.  The Yammer Like button, now with the text Unlike

The Yammer Like button is a very creative way to allow users to update others on information  
they liked.

Yammer Follow Button
The Yammer Follow button is like the Facebook Follow button. When users click on it, they will 
automatically be subscribed to an Open Graph object and receive all updates in their activity stream. A new 
OG object is created on Yammer for the page/object where the Follow button is clicked and an association 
between the user and the OG object is created.

The following JavaScript script is used to add on web page to display the Yammer Follow button:

yam.connect.actionButton({
 container: "#Embedded-follow",
 network: "spdsuniversity.com",
 action: "follow"
});

Once a user has clicked the Yammer Follow button, the button’s text changes to Followed, as shown in 
Figure 2-25.



Chapter 2 ■ Integrations with Yammer Embed

38

Similar to the Like button, when the Follow button is clicked, a new Yammer activity is created against 
the user on Yammer and is visible in the Recent Activity widget, as shown in Figure 2-26. When users mouse 
over it, they can see the full details, as shown in Figure 2-26.

Figure 2-26.  Yammer Recent Activity widget showing that user Alex has followed a page

Figure 2-25.  Yammer Follow button after a user has clicked it once

Once a user has clicked the Follow button, they can’t follow it again. The only option is to unfollow it by 
clicking the button again, as shown in Figure 2-27.



Chapter 2 ■ Integrations with Yammer Embed

39

Similar to the Like button, all the actions related to the Follow button are posted on the Recent Activity 
widget on Yammer.

Yammer Share Button
The Yammer Share Button allows users to easily share online content with groups and coworkers on 
Yammer using a browser pop-up.

To place a Yammer Share button on your page, embed the following code where you want the button to 
appear. The button will be rendered in the element with the ID yj-share-button.

<div id="yj-share-button"></div>

Then place the following code at the bottom of the page before closing the </body> tag.

<script type="text/javascript" src="https://c64.assets-Yammer.com/assets/ 
platform_social_buttons.min.js">
</script>
<script type="text/javascript">yam.platform.yammerShare();</script>

In the following example, you will see how the Share button will appear on a Microsoft SharePoint site.

■■ Note A s Yammer keeps updating and upgrading its platform, the previous Yammer action buttons and 
Embed feed options may change in future. For the latest, refer to https://developer.Yammer.com.

Figure 2-27.  Yammer Follow button giving the user the option to unfollow the followed object

https://c64.assets-yammer.com/assets/platform_social_buttons.min.js
https://c64.assets-yammer.com/assets/platform_social_buttons.min.js
https://developer.yammer.com/


Chapter 2 ■ Integrations with Yammer Embed

40

In this example, you’ll add Yammer Embed and Yammer action buttons to the case study SPDSUniversity 
portal, which is based on Microsoft SharePoint. Embedded Yammer feeds allow users to view the 
Yammer feed of the All Company group and to Like specific pages and share content on Yammer.

1.	 To do this, go to the Yammer “All Company” group feed page.

2.	 Click Embed This Group In Your Site under Access Options, as shown  
in Figure 2-28.  

Figure 2-28.  Yammer group feed page

3.	 This will open a pop-up window. Copy the script from the pop-up window shown in 
Figure 2-29. 

Example: Adding a Yammer Feed to a Microsoft  
SharePoint Portal Page



Chapter 2 ■ Integrations with Yammer Embed

41

Copy this JS snippet to the SharePoint portal in a Script Editor web part and save the page. Once you’re 
done, the Yammer Login button will be displayed, as shown in Figure 2-30.

Figure 2-29.  Yammer All Company group feed script

Figure 2-30.  The company portal page with Yammer Embed without a logged-in user

Click on the Login button and enter your Yammer credentials in the pop-up window, as shown in 
Figure 2-31.



Chapter 2 ■ Integrations with Yammer Embed

42

Once you’re logged on, the pop-up window will close and you will see the Yammer feed for the  
“All Company” group displayed on the page (Figure 2-32).

Figure 2-31.  Yammer Login pop-up window



Chapter 2 ■ Integrations with Yammer Embed

43

 4.	 Add the Like, Follow, and Share buttons to the page.

5.	 Edit the web page where you want to add the Yammer action buttons and add the 
following snippet to the page:

<div><div id="Embedded-like" style="display:inline;margin:10px;"></div>
<div id="Embedded-Follow" style="display:inline;margin:10px;"></div>
<div id="yj-share-button" style="display:inline;margin:10px;"></div>
 
</div>
<script type="text/javascript" src="https://assets.Yammer.com/assets/ 
platform_Embed.js"></script>

Figure 2-32.  All Company feed rendered on the page after logging in

https://assets.Yammer.com/assets/
platform_Embed.js
https://assets.Yammer.com/assets/
platform_Embed.js


Chapter 2 ■ Integrations with Yammer Embed

44

<script type="text/javascript" src="https://c64.assets-Yammer.com/assets/ 
platform_social_buttons.min.js">
</script>
 
<script type="text/javascript">
yam.connect.actionButton({
container: "#Embedded-like",
feedType: 'open-graph',
network: "spdsuniversity.onmicrosoft.com",
action: "like",
object: {
          url: "https:/abcsite.sharepoint.com/SitePages/YammerShare.aspx",
        "title":"SPDS Scholarship News",
          type: "page"
        }
});
yam.connect.actionButton({
container: "#Embedded-Follow",
network: "spdsuniversity.onmicrosoft.com",
action: "follow",
object: {
          url: "https:// abcsite.sharepoint.com/SitePages/YammerShare.aspx",
        "title":" SPDS Scholarship News ",
          type: "page"
        }
});
yam.platform.yammerShare();
</script>

6.	 Save the page and refresh it. You will see the Yammer action buttons on the page, 
as shown in Figure 2-33.  

Figure 2-33.  Yammer action buttons on the company portal page

https://c64.assets-yammer.com/assets/platform_social_buttons.min.js
https://c64.assets-yammer.com/assets/platform_social_buttons.min.js


Chapter 2 ■ Integrations with Yammer Embed

45

7.	 When you click the Yammer Share button, you will see a pop-up window with 
Yammer Publisher, as shown in Figure 2-34. You can add a specific group with 
whom you want to share this page. Also notice the Open Graph object being 
created automatically by Yammer with the details of the page.

Figure 2-34.  Yammer Publisher pop-up window that appears when you click the Yammer Share button

Similarly, you can use the Yammer Like and Follow buttons.

At this point in time, you have implemented the Yammer Embed feed and action buttons into the portal. 
Congratulations!

Summary
Hopefully, you are now able to use Yammer Embed in your applications. Yammer Embed feeds and Yammer 
action buttons provide an easy way to integrate Yammer into web applications and allow users to share 
application-specific updates on Yammer directly from web applications. You simply have to select the right 
Embed feed and action buttons based on each individual case.

www.allitebooks.com

http://www.allitebooks.org


Chapter 3

Yammer App Development Basics

Pathik Rawal
The first two chapters covered the basics of the Yammer platform, including how to use Yammer Embed 
in your existing business applications. Yammer Embed is a simple way to integrate your line-of-business 
application. The main challenge with Yammer Embed is that it does not provide deep integration between 
Yammer and your line-of-business applications when you want to read or write data into Yammer. Also, if 
you want to enable single sign-on in your business applications, that requires a deeper understanding of the 
Yammer platform.

The first step toward the deep integration of Yammer and your line-of-business applications is 
understanding the concepts surrounding a Yammer app. In this chapter, we will cover the basics of Yammer 
apps, including how to register your app with Yammer and how to manage your Yammer apps.

What Is a Yammer App?
Yammer apps provide a way to deeply integrate Yammer and your other line-of-business applications. As a 
developer, you register a Yammer app on your company’s Yammer network and use Yammer APIs and SDKs 
to build custom applications. This provides great flexibility around how your custom applications interact 
with Yammer.

Let’s use an example to explain the concept of the Yammer app. Suppose you are a Microsoft Dynamics 
CRM developer in SPDS and you want to offer an integration between Microsoft Dynamics CRM with 
Yammer. Business users want to be able to notify all the members of a Yammer Sales group directly from 
Microsoft Dynamic CRM each time a new opportunity is created. To build this feature, a deeper integration 
between Microsoft Dynamics CRM and Yammer is required.

The first thing you need to do is register a new Yammer app. Once your Yammer app is registered on the 
Yammer network, you will then use the key values provided by Yammer to develop custom applications to 
integrate Microsoft Dynamics CRM with Yammer.

As illustrated in Figure 3-1, the Yammer architecture allows different technology platforms to integrate 
with Yammer using a Yammer app.

© Pathik Rawal and Pryank Rohilla 2015 
P. Rawal and P. Rohilla, Developing on Yammer, DOI 10.1007/978-1-4842-0943-1_3

47



Chapter 3 ■ Yammer App Development Basics

48

Figure 3-1 gives you a high-level view of how to develop your line-of-business applications hosted on 
different development platforms to integrate with Yammer using Yammer apps. The key is that none of 
the business applications with custom code are hosted on Yammer. Rather, those applications are hosted 
outside of Yammer. When you write code to read and write data from Yammer, that code executes on its own 
hosting platform and a registered Yammer app plays an important role in providing a channel for writing or 
reading data from Yammer into your line-of-business applications.

As a developer, you have to register the Yammer app in your company’s Yammer network to integrate 
with the line-of-business applications. Therefore, in the following section, we will explain how to register a 
Yammer app.

Registering a Yammer App
There are no restrictions on creating Yammer apps and the good thing about this is that no approvals are 
required to create, build, and test Yammer apps either. Users can register a new Yammer app on their 
Yammer home network using the Yammer web interface.

Let’s start by registering a new SPDSUniversity Yammer app, which we will be using in our integration 
examples later in this book. The purpose of the SPDSUniversity Yammer app is to provide an integration 
channel between Yammer and other line-of-business applications of SPDS, which is mentioned in the case 
study. This Yammer app will allow business applications like the SPDSUniversity ASP.NET application, the 
SPDSUniversity SharePoint portal, and the SPDSUniversity Windows phone app to read and write data from 
Yammer. You will learn integration of all the above-mentioned line-of-business applications with Yammer in 
the remaining chapters. 

Here are the detailed steps for registering a new Yammer app on your Yammer network.

	 1.	 Log in to the Yammer network.

	 2.	 On your Yammer home page, click on the three dots (. . .), as shown in Figure 3-2.

Figure 3-1.  High-Level architecture view of integrating Yammer with other platforms using a Yammer app



Chapter 3 ■ Yammer App Development Basics

49

	 3.	 From the drop-down menu, click on Created Apps.

	 4.	 You will be presented with the Registered Applications page, as shown in 
Figure 3-3. It lists all your registered applications.

Figure 3-2.  Creating a new Yammer app using the Yammer user interface

Figure 3-3.  The list of registered applications by the logged-in user



Chapter 3 ■ Yammer App Development Basics

50

■■ Note   If you do not see the Created Apps menu, visit https://www.Yammer.com/client_Applications. 

	 5.	 To register a new Yammer app, click on the green Register New App button, as 
shown in Figure 3-3.

	 6.	 Enter the details of your new Yammer app. Figure 3-4 shows all the required 
fields for the SPDSUniversity Yammer app registration.

Figure 3-4.  New Yammer app registration screen

https://www.yammer.com/client_applications


Chapter 3 ■ Yammer App Development Basics

51

You also have to agree on the Yammer API terms and conditions before registering your Yammer app.
Table 3-1 provides a description of each field required for app registration. 

	 7.	 Click the Continue button to register the new Yammer app.

	 8.	 Once the Yammer app is successfully registered, Yammer allocates two important 
values—ClientID and Client Secret—to the Yammer app. These values 
are unique for each Yammer app and are required for OAuth authorization to 
Yammer from any external applications. You can view these values from the 
default page of the app labeled “Keys and Tokens,” as shown in Figure 3-5.

Table 3-1.  Yammer App Registration Fields

Field Description

Application Name The application name entered here will be the one that is used in the Yammer 
application directory and is visible on all Yammer activities. You can also modify the 
application name later by editing the Yammer App configuration details.

Organization The name of the organization affiliated with your app. Normally your company name.

Support Email An email address, which users of your app can contact for support.

Web Site Your organization’s web site.

Redirect URI URL where Yammer will redirect after the OAuth2.0 authentication flow is complete. 
This is a requirement of the OAuth 2.0 specification and must be present for 
applications to be authorized by URLs. In short, it is a URL that you control and is a 
key part of the multi-step OAuth authentication process. As with all application URLs, 
this Redirect URI should use SSL to protect the authentication process. You will learn 
about using the Redirect URI in a Yammer authorization process in Chapter 4.

Figure 3-5.  Registered Yammer app’s Keys and Tokens information

http://dx.doi.org/10.1007/978-1-4842-0943-1_4


Chapter 3 ■ Yammer App Development Basics

52

This Yammer app is now ready for integrations with other business applications. One important point to 
consider here is that the SPDSUniversity Yammer app is registered under the Yammer home network. 

When you register your Yammer app, it will be available only on your home network because Yammer 
sets the global flag to false. Apps without a global flag set are available only to the home network of the 
Yammer app. Developers and other users of the home network can use these local apps, but they won’t be 
available to others outside your network until you publish them to Yammer’s Global App Directory.

As shown in Figure 3-6, you can view and manage all registered apps on your home network. The user 
who is logged in to the system owns the listed Yammer apps.

In the next section, we will explore additional Yammer app configuration considerations using the 
Yammer user interface. You will also learn how to publish your Yammer app to the Global App Directory.

Configuring Yammer App Registration Details
Once your Yammer app is registered, you can configure additional information related to it. As illustrated in 
Figure 3-7, there are three sections—Basic Info, App Directory, and Open Graph.

Figure 3-6.  Yammer apps under the home network



Chapter 3 ■ Yammer App Development Basics

53

Let’s start with the Basic Info section.

Editing the Basic Info
The Basic Info link (Figure 3-8) on left side of the navigation under My App allows you as the owner of the 
app to edit the basic info that you entered while registering the Yammer. You can also enter additional details 
about the Yammer app.

Figure 3-7.  The Yammer app’s configuraiton sections



Chapter 3 ■ Yammer App Development Basics

54

Notice that the installation information section has some additional fields that were not presented 
when first registering the Yammer app. Let’s examine these now.

Redirect URI and JavaScript Origins are two important properties that are used in OAuth 2.0 
authentication and play important role in the entire process that makes end users’ experiences easy and 
smooth, particularly the Redirect URI.

The Redirect URI is the URL of the site or page to redirect. Users will be redirected to the redirect URI, 
and generally this will be the URL of the site’s home page or a landing page for the Yammer users for retrieval 
of access tokens. As with all application URLs, this Redirect URI should use SSL to protect the authentication 
process. Your Redirect URI will vary depending on how your line-of-business application is configured. 
Table 3-2 shows examples for static and dynamic domains.

The second important parameter is JavaScript Origins. It is the value of the application from where 
you will execute the code (your application code). For the majority of cases, it is the domain address of your 
application that will make REST API calls to Yammer using the JavaScript SDK. The JavaScript Origin field 
should be updated with all the URLs if you access Yammer REST APIs from different applications. Ensure 
that each of these origins is configured on a new line. Whenever possible, it is best to register domains that 
support SSL/TLS encryption.

Figure 3-8.  The Yammer app’s basic info

Table 3-2.  Redirect URI Examples for Static and Dynamic Domains

Domain Usage Redirect URls Example

Static domain configured for all users of the application https://www.application.com

https://dev.application.com

Dynamic subdomains for multiple users, for example, 
https://[instance-name].application.com

https://application.com

https://www.application.com/
https://dev.application.com
https://[instance-name].application.com
https://application.com/


Chapter 3 ■ Yammer App Development Basics

55

■■ Caution   If you do not configure JavaScript Origin for your Yammer app, it is possible that the Yammer 
OAuth authentication will not work.

Configuring App Directory Settings
The second set of configuration options available in the web interface relate to your app directory settings. 
To understand these, you first need to understand the Yammer app directory.

What Is the Yammer App Directory?
From the end user’s point of view, the Yammer app directory provides an easy way to discover new Yammer 
apps and install them in minutes. You can also visit https://www.Yammer.com/Apps to view the published 
apps in the app directory or click the dots “. . .” on your Yammer page, as illustrated in Figure 3-9.

Under the app directory, you can see the featured apps that Yammer shares with you, as illustrated in 
Figure 3-10. These apps are from different vendors who have developed generic Yammer integration apps 
that you can use based on available features. You can also see apps that your colleagues are using, as well as 
your installed apps.

Figure 3-9.  The Yammer app directory

https://www.yammer.com/apps


Chapter 3 ■ Yammer App Development Basics

56

The Yammer app directory and App Carousel provides an easy way for developers to publish their 
Yammer apps to a wider audience if they want to develop integrations for their publicly available services. 
You can see apps for publicly available apps like Sched.do or mindflash in the Yammer app directory.

Configuration Options
As shown earlier in Figure 3-7, you can navigate to the App Directory configuration setting by using the app 
directory link on the App Configuration page.

In this section, the majority of the fields are self-explanatory. You can get further info about them by 
clicking the “?” button next to each field.

The first field is Category. Select a category that best applies to your Yammer app and then enter a 
detailed description that will help Yammer users intuit its features.

In the Installation Information section, specify the terms of service URL and private policy URL, as your 
Yammer app is going to be used by many users, especially if you want to make a business application  
(like Sched.Do or mindflash.com). In this section we specify the Redirect URI that we talked about in detail 
earlier in this chapter. You’ll also learn more about it in Chapter 4.

Figure 3-10.  The Yammer app directory showing the Featured Apps, App Carousel, and Colleagues Are  
Using sections

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-0943-1_4
http://www.allitebooks.org


Chapter 3 ■ Yammer App Development Basics

57

Figure 3-11.  The Yammer app’s app directory configuration

It is also useful to upload images for the Yammer app’s icon, banner images, and collection of 
screenshots that can provide visual representation to users about your Yammer app before they actually 
experience it. You can add up to four screenshots in the App Directory configuration screen, as shown in 
Figure 3-12.



Chapter 3 ■ Yammer App Development Basics

58

Figure 3-12.  Yammer app’s app directory configuration for icons, banner images, and screenshots



Chapter 3 ■ Yammer App Development Basics

59

By default, when developers register their Yammer apps, it is best to do so to the home network only. 
To deploy a Yammer app to the Global App Directory, you need to submit your app to the Yammer support 
team. The Yammer support team will then contact you to ensure your app is ready to be added to the 
Yammer app directory. Your app can also be promoted to the Yammer App Carousel or to the featured apps, 
but that is based on your discussion with Yammer. Developers also have to read and sign the Yammer app 
directory agreement before submitting their app.

In the next section, you will learn about two different networks where you can deploy your Yammer app.

Submitting Your App to the Global App Directory
In order to deploy their Yammer apps to the Global App Directory, developers need to go through a vetting 
process with Yammer, and if approved, their app will be marked “Global” and will then be listed in the 
Global App Directory. Developers need to submit their apps by using the Yammer user interface, as shown 
in Figure 3-13. They do this to the Yammer support team using Yammer App’s Global Directory menu on 
the Yammer app configuration page. Once you’ve submitted your app, the Yammer support team will meet 
with you to ensure your app is feature-ready and good enough to be added to the Yammer app directory. 
Before submitting your app for review, ensure that you have completed app directory configuration sections, 
designed your web site and landing page for the app, and prepared some marketing materials. Your app may 
even be promoted in the featured Yammer App Carousel or on the Yammer blog.

Figure 3-13.  Yammer apps in the Global directoryk



Chapter 3 ■ Yammer App Development Basics

60

Once your Yammer app is marked as global, it will be listed in the Global App Directory, as shown in 
Figure 3-14. 

Users from all networks can discover and experience the apps listed in the Global Apps Directory and 
can benefit from the extended functionality they offer.

■■ Note   If you want to know more about how to publish a Yammer app in the Yammer app directly, refer to 
https://developer.Yammer.com.

Configuring Open Graph
The next section on the Yammer app’s configuration page is Open Graph. As mentioned in Chapter 1, Open 
Graph (OG) is a lightweight data integration protocol that allows developers to define an activity and post it 
to Yammer as an Open Graph object.

Yammer’s Open Graph protocol provides many out-of-the-box objects that you can use to write data 
into Yammer. It also allows you to configure custom Open Graph objects and action types. The Open Graph 
configuration page of the Yammer app is where you can specify custom Open Graph objects and action 
types, as shown in Figure 3-15.

Figure 3-14.  Yammer apps in the Global directory

https://developer.yammer.com/
http://dx.doi.org/10.1007/978-1-4842-0943-1_1


Chapter 3 ■ Yammer App Development Basics

61

Chapter 5 covers the Open Graph protocol, which focuses on using the Open Graph protocol to write 
data into Yammer. You will learn how to create and use custom Open Graph objects in Chapter 5 as well. 

Summary
In this chapter you learned about Yammer apps and the configuration of a Yammer app for the app 
directory. Yammer app registration is a simple process completed on the home network, whereby you can 
register, build, and test your apps. You also learned that from the Yammer app configuration page, you can 
submit your Yammer app to the Global App Directory for wider audiences.

In the next chapter, you learn how to implement Yammer authentication using the Yammer app called 
SPDSUniversity that you registered in this chapter.

Figure 3-15.  Yammer app’s custom Open Graph object types and action types

http://dx.doi.org/10.1007/978-1-4842-0943-1_5
http://dx.doi.org/10.1007/978-1-4842-0943-1_5


Chapter 4

Authenticating Yammer Users

Pathik Rawal
In the previous chapter, you learned Yammer App basics, including the registration and configuration 
processes of Yammer apps. In this chapter, we outline the Yammer authentication process. You will become 
familiar with the OAuth protocol and its server-side and client-side flows. You’ll also learn to tackle Yammer 
authentication in the exercise section of this chapter using both client-side OAuth flow and server-side 
OAuth flow.

In this chapter, we will cover following points

•	 Understand Yammer authentication

•	 Understand OAuth 2.0

•	 Understand OAuth flows

•	 Learn and implement server-side flow

•	 Learn and implement client-side flow

Understanding Yammer Authentication
The last chapter explained how to register your Yammer apps. Once your Yammer app is registered, you can 
implement Yammer authentication to connect your line-of-business applications with Yammer using user’s 
Yammer credential. Yammer uses OAuth 2.0 protocol to authorize business applications in order to access 
its REST APIs on behalf of a user.

Yammer app authentication using OAuth 2.0 is a three-legged OAuth authorization process, as shown 
in Figure 4-1. In the first step, user authentication happens to ensure that the user who is accessing your 
application is valid. In the second step, the app authorization happens, which ensures that users allow your 
app to access their data. In the final step, the app authentication happens, which ensures that users are 
sharing their data with an authentic app and not a dubious one.

© Pathik Rawal and Pryank Rohilla 2015 
P. Rawal and P. Rohilla, Developing on Yammer, DOI 10.1007/978-1-4842-0943-1_4

63



Chapter 4 ■ Authenticating Yammer Users

64

Once the Yammer app authentication flow is complete, your application will have all the required 
permissions (in the form of an access token) to update or retrieve data to Yammer on behalf of the user. If the 
user has admin privileges, your application can also perform administrative functionalities, such as delete a 
user, and so on.

What Is OAuth 2.0?
The OAuth web site defines OAuth as “An open protocol that allows secure API authorization in a simple and 
standard method from desktop and web applications.” OAuth (Open Authorization) 2.0 is the next evolution 
of the open authorization protocol, which was originally created in late 2006.

OAuth 2.0 enables an external application to gain access to another application/service on behalf of a 
user by organizing an approval flow between users and host application/services or by allowing the external 
application to retrieve access on its own.

■■ Note  OAuth 2.0 requires HTTPS.

OAuth Roles
From a developer perspective, it is important to understand the different OAuth roles that are part of the 
Yammer’s OAuth authentication process and understand how every role acts in the overall process of 
authentication. The four important roles are listed and described in Table 4-1.

Table 4-1.  OAuth Role Names and Descriptions

Role Description

Resource Owner The Yammer user who is granting access to their Yammer profile.

Client Application An external business application, such as the SPDSUniversity web application or a 
Windows mobile app.

Resource Server A server that hosts the resources and responds to the requests of the client 
applications. The client application will need to present an access token to the 
resource server to access the resources on Yammer.

Authorization Server A server that issues the access tokens to the client application. The access token 
is generated by the authorization server after successfully authenticating the 
resource owner.

Figure 4-1.  The Yammer app authentication flow



Chapter 4 ■ Authenticating Yammer Users

65

As illustrated in Figure 4-2, multiple parties act during the Yammer OAuth authentication process.  
The first main role is the resource owner, which, in the Yammer world, represents a user named “Alex Darrow”.  
Alex Darrow has a valid Yammer account. The second role is the Client Application role, which is the 
SPDSUniversity web application hosted on SPDS’s web server. To allow users to log in to the SPDSUniversity 
web application using their Yammer account, the client application needs to implement Yammer’s OAuth 
flow by implementing the “Sign In with Yammer” button on the web application login page. The third role  
is the Resource Server which hosts the user’s data and enables REST APIs to access user’s data. In our case,  
it is the Yammer server. The last role (but not the least) is the Authorization Server which issues access 
tokens to the client for accessing Alex’s Yammer profile and the data hosted on the resource server.

Figure 4-2.  OAuth roles

Table 4-2.  OAuth’s Credential Types

Credential Type Description

A “client” token and secret Authenticates an application to the provider

An “access” token and secret Authorizes the application to access a particular set of data

In the next section, you will explore the benefits of OAuth 2.0. Later in this chapter, you will learn about 
the role of the OAuth 2.0 protocol in Yammer with different authentication flows.

Authentication on Yammer Using OAuth 2.0
The OAuth allows the developer to implement the authentication mechanism within their application in 
order to authenticate Yammer users. The best thing about OAuth is that it does not require users of the 
Yammer app to share their passwords with the Yammer app’s developer. Instead using OAuth, users allow/
provide external application permission to access their Yammer accounts. Yammer then provides an access 
token to the business application, which is used to interact with Yammer on behalf of the user(s). The access 
token never expires and can only be revoked by the users. You can store the access token and use it to make 
subsequent calls to Yammer until the user revokes the access token. Once the user revokes the access token, 
you need to use the OAuth flow again to obtain a new one.

OAuth is designed to use two sets of credentials, as listed in Table 4-2.



Chapter 4 ■ Authenticating Yammer Users

66

When the user clicks on the “Sign In with Yammer” button in your line-of-business application page, 
the OAuth 2.0 authentication flow is initiated. As illustrated in Figure 4-3, an ASP.NET web application uses 
the “Sign In with Yammer” button. By implementing the “Sign In with Yammer” OAuth authentication in 
your business application, your application allows users of your application to sign in using user’s Yammer 
credentials rather than creating/managing a new set of credential separately. In the exercise sections of 
this chapter, you will learn to implement the “Sign In with Yammer” button on an Microsoft ASP.NET and 
Microsoft SharePoint-hosted app.

Figure 4-3.  The “Sign In with Yammer” button initiates the OAuth flow

In the next section, you’ll learn the different OAuth flows provided by OAuth authentication. Yammer 
supports two main OAuth flows—server-side flow and client-side flow.

PROTECTING ACCESS TOKENS

The access tokens are generated for individual users in Yammer and given to client applications when 
requested. The client token is generated for an indefinite time and never expires. It is recommended 
that the client application store the access token for each user. It is recommended that developers 
strongly protect the access token like any other security key or password. Developers should implement 
encryption in the client application to protect the access token.



Chapter 4 ■ Authenticating Yammer Users

67

Yammer Authentication Flows
The Yammer authentication that uses OAuth 2.0 involves a series of automated steps and mainly provides 
two different types of OAuth authentication flows, as listed in Table 4-3. In this section, we outline both flows 
in detail with an exercise of each flow so that you can learn to implement both OAuth flows in your line-of-
business applications.

Table 4-3.  The OAuth Flows Supported by the OAuth 2.0 Protocol

Flow Description

Server-side Developers can leverage the server-side flow, which is also referred to as an “authorization 
code grant,” from line-of-business applications developed using server technologies like 
ASP.NET web applications.

Client-side Developers can leverage the client-side flow, which is also referred to as an “implicit grant,” 
from line-of-business applications developed using client-side technologies like JavaScript 
and HTML.

Both flows require user authentication, app authorization, and app authentication, as described in 
Figure 4-1. Let’s explore both authentication flows and review the steps involved in both flows.

Server-Side Flow
The Yammer OAuth 2.0 endpoint supports web server applications that use programming languages and 
frameworks such as PHP, Java, Python, Ruby, and C#. The server-side flow requires the client application to 
secure the “client secret” value.

The “Sign In with Yammer” button is the simplest way to integrate an application with a Yammer 
app using OAuth 2.0. If your application is a web application like an ASP.NET custom web application 
or Microsoft SharePoint site, you can add the “Sign In with Yammer” button in HTML/ASPX code and 
implement redirection to the Yammer OAuth URL for authentication by using the HTML hyperlink tag or 
handling the Login button event in the code-behind. Later in this chapter, you’ll read a step-by-step guide 
for implementing OAuth authentication in a SPDSUniversity training application.

The server-side flow, also known as “authorization code grant type,” is the most commonly used 
because it is optimized for server-side applications, where source code is compiled and assemblies are 
deployed to the web server, and client secret confidentiality can be maintained. In the entire OAuth 2.0 flow, 
multiple redirection happens between the client application, the resource server, and the authorization 
server. So it is essential that the client application handle the redirection and communicate with the  
user-agent (i.e. the user’s web browser).

Each step involved in the authorization code grant or server-side flow is explained in Table 4-4.



Chapter 4 ■ Authenticating Yammer Users

68

Let’s explore these steps in Figure 4-4. We have three entities here and those are the end users, the 
external application, and Yammer. The end user is resource owner who first accesses the external application 
and clicks on the “Sign In with Yammer” button. Yammer then prompts the user with a login page.

Figure 4-4.  Steps invloved in server-side OAuth flow

Table 4-4.  Steps Invloved in Server-Side Flow

Step Name Description

#1 Application Request Authentication The OAuth 2.0 authentication is initiated as soon as 
the user (resource owner) clicks on the “Sign In with 
Yammer” button. Here, the user is redirected to the 
OAuth 2.0 authorization endpoint.

#2 Yammer Request Credentials Yammer then prompts the user with a login page.

#3 Yammer Request App Authorization The OAuth process prompts the user to authorize the 
Yammer app.

#4 Application Receives Authorization 
Code

Yammer redirects the user to the app’s Redirect URI 
with an authorization code.

#5 Application Request Access Token The client requests a token by using client_id,  
Client_Secretkey, and the code.

#6 Application Receives Access Token Based on the client app received by Yammer, Yammer 
sends the access token to the client application.

#7 Application makes further calls to 
Yammer

Using the access token, the client application can make 
additional calls to Yammer on behalf of the user who 
authorized it.



Chapter 4 ■ Authenticating Yammer Users

69

Let’s look at each of these steps in detail and explore how those parameters are passed between the 
client applications and Yammer’s OAuth provider.

Step #1: Application Request Authentication
The authorization sequence begins when your application redirects the browser to the Yammer OAuth URL; 
the URL includes query parameters that indicate the type of access being requested. First, you must form the 
Yammer OAuth URL to initiate the flow.

Your application should redirect the user to the Yammer OAuth URL along with the Yammer app’s 
ClientID and redirect_uri as per configuration. The OAuth URL is

https://www.yammer.com/dialog/oauth?client_id=[:client_id]&redirect_uri=[:redirect_uri]
 

Table 4-5 lists the query string parameters used in the Yammer OAuth URL.

Table 4-5.  Yammer OAuth URL’s Query String Parameters

Parameter Description

client_id Obtain the Client_Id for your Yammer app using the Yammer UI. Use the  
Https://Www.Yammer.Com/Client_Applications link for a list of registered client IDs.

redirect_uri The redirect_uri should match the redirect_uri configured for your app in the 
Yammer platform.

Figure 4-5.  SPDSUniversity app

For example, the OAuth URL for the SPDSUniversity web application is:

https://www.yammer.com/dialog/oauth?client_id=9aax1mFox7yMVBS2LpIJQ&redirect_uri= 
http://localhost:54173/Default.aspx

To obtain the client_id and redirect_uri, navigate to your SPDSUniversity registered app in Yammer, 
as illustrated in Figure 4-5.

https://www.yammer.com/dialog/oauth?client_id=%5b:client_id%5d&redirect_uri=%5b:redirect_uri
https://www.yammer.com/client_applications


Chapter 4 ■ Authenticating Yammer Users

70

■■ Note I f your redirect_uri does not match the configuration of your application, then Yammer will throw 
an error with the description “Invalid URI”.

Step #2: Server Request Credentials
The OAuth process will prompt the user with the Yammer login page, as illustrated in Figure 4-6.

Figure 4-6.  Yammer login page

This is the standard Yammer’s login page. The user enters the credentials and submits the request.  
As you notice in Figure 4-6, the Yammer’s login page displays the Yammer app name as “SPDSUniversity” 
and the network name on which the Yammer is registered as “SPDS”.

Step #3: Server Request App Authorization
In this step, the OAuth 2.0 authentication process shows an App Authorization screen. If the user allows your 
Yammer app, the app will be authorized and an authorization code will be generated for the user, as shown 
in Figure 4-7.



Chapter 4 ■ Authenticating Yammer Users

71

Step #4: Application Receives Authorization Code
The response will be sent to redirect_uri, as specified in the request URL. If the user approves the access 
request, the response contains an authorization code. If the user does not approve the request, the response 
contains an error message. The redirect URL’s parameters will be different when the user allows the Yammer 
app than when they deny it access. Let’s look at the redirect URL’s parameters in each case.

Redirect URL’s Parameters When the User Allows the Yammer App

In this case, the user allows the Yammer custom app to get authorization to Yammer on behalf of the user, so 
Yammer will redirect the user to your Yammer app’s redirect URL. The code appears at the end of URL as a 
query string, as shown in Figure 4-8. The following is the complete URL format:

http://[:redirect_uri]?code=[:code]
 

Figure 4-7.  App authorization

Figure 4-8.  Redirect URL when user “allows” the Yammer app



Chapter 4 ■ Authenticating Yammer Users

72

Table 4-6 describes the query string parameter.

Table 4-6.  Redirect URL’s Query String Parameter

Parameter Description

Code Yammer-generated authorization code that’s used to obtain an access token.

Table 4-7.  Redirect URL’s Query String Parameters When the User Denies Access

Parameter Description

Error This contains an actual error, for example “Access Denied”.

error_description The description of the error, for example “The user denied your request”.

invalid redirect_uri If redirect_uri does not match your Yammer app configuration, you get the 
“Invalid Redirect_uri” error.

Figure 4-9.  Redirect URL when the user denies the Yammer app

You can retrieve the code parameter from the redirect URL and store it in your application. The code 
will be used in further steps to retrieve the access token.

Redirect URL’s Parameters When the User Denies the Yammer App

In this case, the user denies authorization to Yammer, so Yammer will redirect the user to your Yammer app’s 
redirect URL with error information at the end of the URL. It’s a query string, as listed in Table 4-7 and shown 
in Figure 4-9.

http://localhost:54173/Default.aspx?error=access_denied&error_description=the%20user 
%20denied%20your%20request

So it’s easy for your application to understand the action taken by the users. Based on the parameters, 
you can implement the logic to make further calls to Yammer APIs. The best way to do this is to implement 
the response handler code based on the user’s action and then make further calls. You’ll learn more about 
this in the exercise section of this chapter.



Chapter 4 ■ Authenticating Yammer Users

73

Step #5: Application Request Access Token
Once the application receives the authorization code from Yammer, it may exchange the authorization code 
for an access token and a refresh token. This request is an HTTPS POST. Table 4-8 provides the endpoint 
details, and the endpoint includes the parameters listed in Table 4-9.

Table 4-8.  Endpoint to Retrieve the Access Token

Endpoint Description

https://www.yammer.com/oauth2/access_token.json?client_id= 
[:client_id]&client_secret=[:client_secret]&code=[:code]

The endpoint to obtain the 
access token from Yammer.

The code parameter was obtained in a previous step and the client_id and client_secret code can 
be configured in your application. You’ll learn in the exercise of this chapter that if your line-of-business 
application is an ASP.NET web application, you can use Web.Config to store these IDs.

Step #6: Application Receives Access Token
Yammer’s response contains an access token. The access token includes the user profile information, which 
can be parsed out. Developers can also store the “token,” which can be used to make further calls to Yammer 
on behalf of the user.

The following code snippet shows the JSON response string, which contains three objects—user, 
access_token, and network.

{
  "user":
  {
    "timezone": "Hawaii",
    "interests": null,
    "type": "user",
    "mugshot_url": "https://www.yammer.com/yamage-backstage/photos/...",
    "kids_names": null,
    "settings": {
      "xdr_proxy": "https://stagexdrproxy.yammer.com"
    },
    "schools": [],
    "verified_admin": "false",
    "birth_date": "",
    "expertise": null,
    "job_title": "",

Table 4-9.  The Parameters Used with the Access Token Endpoint

Parameter Description

Client_id An unique ID generated by Yammer for your app.

Client_secret An unique ID generated by Yammer for your app.

Code The authorization code you receive after the Yammer app is authorized.

https://www.yammer.com/oauth2/access_token.json?client_id=%5b:client_id%5d&client_secret=%5b:client_secret%5d&code=%5b:code
https://www.yammer.com/oauth2/access_token.json?client_id=%5b:client_id%5d&client_secret=%5b:client_secret%5d&code=%5b:code
https://www.yammer.com/yamage-backstage/photos/
https://stagexdrproxy.yammer.com/


Chapter 4 ■ Authenticating Yammer Users

74

    "state": "active",
    "contact": {
      "phone_numbers": [],
      "im": {
        "provider": "",
        "username": ""
      },
      "email_addresses": [
        {
          "type": "primary",
          "address": "test@yammer-inc.com"
        }
      ]
    },
    "location": null,
    "previous_companies": [],
    "hire_date": null,
    "admin": "false",
    "full_name": "TestAccount",
    "network_id": 155465488,
    "stats": {
      "updates": 2,
      "followers": 0,
      "following": 0
    },
    "can_broadcast": "false",
    "summary": null,
    "external_urls": [],
    "name": "clientappstest",
    "network_domains": [
      "yammer-inc.com"
    ],
    "network_name": "Yammer",
    "significant_other": null,
    "id": 1014216,
    "web_url": "https://www.yammer.com/yammer-inc.com/users/...",
    "url": "https://www.yammer.com/api/v1/users/101416",
    "guid": null
  },
  "access_token": {
    "view_subscriptions": true,
    "expires_at": null,
    "authorized_at": "2011/04/06 16:25:46 +0000",
    "modify_subscriptions": true,
    "modify_messages": true,
    "network_permalink": "yammer-inc.com",
    "view_members": true,
    "view_tags": true,
    "network_id": 155465488,
    "user_id": 1014216,
    "view_groups": true,
    "token": "ajsdfiasd7f6asdf8o",

https://www.yammer.com/yammer-inc.com/users/
https://www.yammer.com/api/v1/users/101416


Chapter 4 ■ Authenticating Yammer Users

75

    "network_name": "Yammer",
    "view_messages": true,
    "created_at": "2011/04/06 16:25:46 +0000"
  },
  "network": {
    "type": "network",
    "header_background_color": "#0092bc",
    "community": false,
    "navigation_background_color": "#3f5f9e",
    "navigation_text_color": "#ffffff",
    "permalink": "yammer-inc.com",
    "paid": true,
    "show_upgrade_banner": false,
    "name": "Yammer",
    "is_org_chart_enabled": true,
    "id": 155465488,
    "header_text_color": "#000000",
    "web_url": "https://www.yammer.com/yammer-inc.com"
  }
}

The access token received from Yammer contains three main objects as listed in Table 4-10.  
These objects are user, network, and access token.

Table 4-10.  The Response Object Contains Three Main Objects

Object Description

User Contains the user profile information like time zone, interest, job title, birth date, and 
so on.

Network Information about the network on which your Yammer app is deployed.

Access Token Contains the token with the network ID and user ID to which the token belongs.

Logically, step #6 is the end of the server-side authentication flow. You’ll need to store the OAuth’s 
access token for each user of your application and use that access token to make further calls on behalf of 
users to Yammer using REST APIs.

Step #7: Application Makes Further Calls to Yammer
In step #1, you learned how to obtain the access token. Once you obtain the access token, you can store 
it in secure manner and use it to make further calls. In Chapter 5, you’ll learn how to use Open Graph to 
read and write data to Yammer using the access token. In Chapter 6, you’ll learn to read and write data into 
Yammer using the Yammer REST APIs. In Chapter 7, you’ll learn to read and write data into Yammer using 
Yammer SDKs. Given that you need an access token to make further calls to Yammer, it’s very important to 
do Exercises 4-1 and 4-2 to obtain the access token. Exercises 4-1 and 4-2 will be used as a base for exercises 
you see in Chapters 5, 6, and 7.

https://www.yammer.com/yammer-inc.com
http://dx.doi.org/10.1007/978-1-4842-0943-1_5
http://dx.doi.org/10.1007/978-1-4842-0943-1_6
http://dx.doi.org/10.1007/978-1-4842-0943-1_7
http://dx.doi.org/10.1007/978-1-4842-0943-1_5
http://dx.doi.org/10.1007/978-1-4842-0943-1_6
http://dx.doi.org/10.1007/978-1-4842-0943-1_7


Chapter 4 ■ Authenticating Yammer Users

76

Implementing Server-Side Flow in an ASP.NET Web Application
In the following exercise, we will implement Yammer authentication using server-side flow in an ASP.NET 
web application. You need to have Microsoft Visual Studio 2012 Professional, Premium, or Ultimate installed 
on your local computer.

EXERCISE 4-1: IMPLEMENTING SERVER-SIDE OAUTH FLOW  
IN AN ASP.NET WEB APPLICATION

In this exercise, we will demonstrate how to implement server-side OAuth flow in an ASP.NET web 
application called SPDSUniversity Training Application. We will create an ASP.NET web application and 
implement OAuth authentication using the Yammer app called “SPDSUniversity” that you created in 
Chapter 3.

Create New Project

1.	 Launch Microsoft Visual Studio.

2.	 The first screen presented to you is the Visual Studio Start page, as illustrated in 
Figure 4-10.

Figure 4-10.  The Visual Studio Start page offers a quick way to get started

http://dx.doi.org/10.1007/978-1-4842-0943-1_3


Chapter 4 ■ Authenticating Yammer Users

77

3.	 On the left side of the start page, on the navigation pane, choose new project. 
Alternatively, you can use the File ➤ New Project command.

4.	 This brings up the New Project window. Select ASP.NET Web Forms Application. 
Then select Web ➤ Visual Studio 2012 ➤ ASP.NET Web Forms Application, as 
shown in Figure 4-11.

Figure 4-11.  Select the ASP.NET web application template for the new project

5.	 Enter the name as “SPDSUniversityWebApplication”.

6.	 Click OK.

7.	 Visual studio will create a new ASP.NET project with the Web.config file as part of 
the project, as illustrated in Figure 4-12.



Chapter 4 ■ Authenticating Yammer Users

78

Add the yammer_signin.png and SPDS-Uni.png files to the Images folder (the yammer_signin.png file 
can be downloaded from Yammer’s site and SPDS-Uni.png is available from the Source Code/Download 
area of the Apress web site at http://www.apress.com/9781484209448).

8.	 Right-click on the Images folder and then choose Add ➤ Existing Items. Find both 
images and click OK.

Figure 4-12.  The ASP.NET web site structure

http://www.apress.com/9781484209448


Chapter 4 ■ Authenticating Yammer Users

79

Figure 4-13.  The Yammer_signin.png and SPDS-Uni.Png files added to the Images folder

9.	 Open the Site.Master file.

10.	 Replace this text in line 7:

<title><%: Page.Title %> - My ASP.NET Application</title>

with:

<title><%: Page.Title %> - SPDS University</title>

11.	 Replace the text in line #43:

<a runat="server" href="~/">your logo here</a>

with

<a runat="server" href="~/"><img src="Images/SPDS-Uni.png" /></a>



Chapter 4 ■ Authenticating Yammer Users

80

Configuration Values in Web.config

We will use the Web.config file to configure the Yammer App configuration values like client_id, 
client_secret key, and redirect_uri. These parameters are required in order to call the OAuth 
URLs from your ASP.NET web application. The best place to configure those parameters is in the 
<AppSettings> section within Web.Config.

12.	 Add the following code to your Web.Config file (add the code at end of the file just 
above </Configuration>):

<appSettings>
  <add key="client_id" value="Fmi5JYfF5jqMLCcydqkJWQ" />
  <add key="client_secret" value="GBE5vp3mOUZuRVKqFPsXOA6eOLro95DOFVP5PPgSII0" />
  <add key="redirect_uri" value="http://localhost:54173/Default.aspx" />
  <add key="OAuthURL" value="https://www.yammer.com/dialog/oauth?client_id=" />
<add key="AccessTokenURL" value="https://www.yammer.com/oauth2/ 
access_token.json?" />
</appSettings>

Table 4-11 provides details about each key-value pair used in the previous code.

Table 4-11.  Key-Value Pairs Configured in Web.config

Key Value

client_id Replace value with “SPDSUniversity” Yammer app’s client_id.

client_secret Replace value with “SPDSUniversity” Yammer app’s client_secret.

redirect_uri Replace value with “SPDSUniversity” Yammer app’s redirect_uri.

OAuthURL https://www.yammer.com/dialog/oauth?client_id=, we will form the complete URL 
in the code

AccessTokenURL https://www.yammer.com/oauth2/access_token.json?, the OAuth’s access token URL

■■ Note  When you use the Microsoft Visual Studio Development Server to run a file system web application 
project, by default, the development server is invoked on a randomly selected port for the localhost. You can 
change the port number using the project property windows in Visual Studio. 

13.	 Navigate to https://www.yammer.com/client_applications, click on your 
Yammer app, and then click on the Basic Info section. You will see a screen 
as shown in Figure 4-14. Ensure that the redirect URI has the same value as 
configured in the previous Web.config file.

https://www.yammer.com/dialog/oauth?client_id
https://www.yammer.com/oauth2/access_token.json
https://www.yammer.com/oauth2/access_token.json
https://www.yammer.com/dialog/oauth?client_id
https://www.yammer.com/oauth2/access_token.json
https://www.yammer.com/client_applications


Chapter 4 ■ Authenticating Yammer Users

81

Application’s Home Page

14.	 To start designing the default.aspx file as the home page of your application, 
add the following code to default.aspx by opening it in the source view of Visual 
Studio. You need to replace the following markup in default.aspx with the content 
within <asp:Content runat="server" ID="BodyContent" ContentPlaceHolder
ID="MainContent">:

<h3>Welcome to SPDS University Application:</h3>
 <ol class="round">
   <li class="one">
     �<h2><asp:Label ID="lbllogin" runat="server" Text="You are not Loged in, 

You can login using Yammer Credential, click on Log In button on top 
right"></asp:Label>   </h2>

   </li>
 </ol>
 <asp:TextBox ID="txtCode" runat="server" Visible="False"></asp:TextBox>
 <asp:TextBox ID="txtaccesstoken" runat="server" Visible="false"></asp:TextBox>

15.	 Remove the following content placeholder from Default.aspx:

<asp:Content runat="server" ID="FeaturedContent" ContentPlaceHolderID= 
"FeaturedContent">

Figure 4-14.  Ensure that redirect URI is the same as the value in web.config



Chapter 4 ■ Authenticating Yammer Users

82

16.	 Login.aspx: You now need to modify the login.aspx file to add the “Log In with 
Yammer” button. Open login.aspx from account/login.aspx, find <section 
id="socialLoginForm">, and replace it with the following code:

<asp:ImageButton ID="imgbtnLogin" runat="server" ImageUrl="~/Images/ 
yammer_signin.png" OnClick="imgbtnLogin_Click" />

17.	 Login.aspx: Remove all the validation controls from login.aspx:

<asp:RequiredFieldValidator runat="server" ControlToValidate="UserName" 
CssClass="field-validation-error" ErrorMessage="The user name field is 
required." />

<asp:RequiredFieldValidator runat="server" ControlToValidate="Password" 
CssClass="field-validation-error" ErrorMessage="The password field is 
required." />

18.	 Login.aspx.cs: Remove the code from Page_Load() event.

19.	 Login.aspx.cs: Open the code-behind file Login.aspx.cs and add the following 
code in the using directive. This namespace is required to write code in order to 
read the app settings value from the Web.config file.

using System.Web.Configuration;

20.	 Login.aspx.cs: Add the following code to handle the “Login In with Yammer” 
button event. Open the Login.aspx file in Design view and double-click on the 
Login button. This will open the code-behind file Login.aspx.cs.

/// <summary>
///
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
    protected void imgbtnLogin_Click(object sender, ImageClickEventArgs e)
     {
           �string YammerURL = WebConfigurationManager.AppSettings["OAuthURL"] 

+ WebConfigurationManager.AppSettings["client_id"] + "&redirect_
uri=" + WebConfigurationManager.AppSettings["redirect_uri"];

            Response.Redirect(YammerURL);
      }

The button click event forms the OAuth URL. The final OAuth URL should be:

https://www.yammer.com/dialog/oauth?client_id= 9aax1mFox7yMVBS2LpIJQ&redirect_
uri=http://localhost:54173/Default.aspx"

Table 4-12 describes the query string parameters.

https://www.yammer.com/dialog/oauth?client_id


Chapter 4 ■ Authenticating Yammer Users

83

After forming the OAuth URL by reading values from the Web.Config file, the code calls  
Response.Redirect(YammerURL).

If the redirect_URI does not match the configuration of the SPDSUniversity Yammer app, Yammer will 
throws an error entitled “Invalid Redirect URI”. So be sure that the redirect_uri matches.

Handle the Yammer’s Response

Once the OAuth flow is complete, Yammer will redirect to the Redirect URI with the query string 
parameter, as illustrated in the following URL:

http://localhost:54173/Default.aspx?code=4G5y1ipTNt5nCtCw8DS1sw

21.	 Default.aspx.cs: Open the code-behind file called Default.aspx.cs and add the 
following code to the using directive. This namespace is required to write code in 
order to read app settings value from the Web.config file:

using System.Web.Configuration;

22.	 Default.aspx.cs: Add the following code to the Page_Load event to read the 
query string passed by Yammer in order to find the key "Code" and retrieve the 
value of the key. Once the code is retrieved, we will store it in a textbox and invoke 
the call to Yammer using the given code to get the access token.

/// <summary>
/// Page load event to check if query string contains a key called "Code"
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
        protected void Page_Load(object sender, EventArgs e)
        {
 
            string qsCode = Request.QueryString["Code"];
            if (qsCode != null)
            {
                txtCode.Text = qsCode;
                Obtain_Access_Token();
            }
            else
            {
            }
        }

Table 4-12.  OAuth URL’s Query String Parameters

Parameter Description

client_id Obtain the Client_ID for the SPDSUniversity Yammer app using the Yammer UI. Use the 
https://www.yammer.com/client_applications link for a list of registered client IDs.

redirect_uri The redirect_uri should match the redirect_uri configured for the SPDSUniversity app.

https://www.yammer.com/client_applications


Chapter 4 ■ Authenticating Yammer Users

84

The previous code reads the query string key "Code", if it is present, and then stores the code in a 
textbox and hides the Login button. Finally, we call the Obtain_Access_Token() method to obtain the 
access token.

Obtain the Access Token

To obtain the access token, we need to submit a GET request using an OAuth 2.0 endpoint, with these 
three parameters—client_id, client_secret, and code.

The complete endpoint is:

https://www.yammer.com/oauth2/access_token.json?client_id=[:client_id]& 
client_secret=[:client_secret]&code=[:code]

So let’s implement the code to obtain the access token.

The response you’ll receive from Yammer will be in JSON or XML format based on the API endpoint you 
invoke. The JSON endpoint is https://www.yammer.com/oauth2/access_token.json and the XML 
endpoint is https://www.yammer.com/oauth2/access_token.xml. Your application should convert the 
given JSON string into an object. In this particular case, the response needs to be deserialized first. Then 
you retrieve the access token from the instance using DataContractJsonSerializer. So we will start 
adding few classes to help with serialize and deserialize, back and forth.

23.	 In Solution Explorer, right-click on References and select Add Reference.  
In the assemblies group of references, select the assembly called  
System.Runtime.Serialization.

24.	 In Solution Explorer, right-click on the project and select Add ➤ ASP.NET Folder ➤ 
App_Code. The App_Code folder is a special folder that stores classes, typed data 
sets, and other supporting classes for the project. The classes that are stored in 
App_Code are accessible throughout the application.

25.	 In Solution Explorer, right-click on the App_Code folder and then choose  
Add ➤ Class, as illustrated in Figure 4-15.

https://www.yammer.com/oauth2/access_token.json?client_id=%5B:client_id%5D&client_secret=%5B:client_secret%5D&code=%5B:code
https://www.yammer.com/oauth2/access_token.json?client_id=%5B:client_id%5D&client_secret=%5B:client_secret%5D&code=%5B:code
https://www.yammer.com/oauth2/access_token.json
https://www.yammer.com/oauth2/access_token.xml


Chapter 4 ■ Authenticating Yammer Users

85

Figure 4-15.  Add a new class to your web site project

26.	 You will be presented with a window, as illustrated in Figure 4-16, where you need 
to select the class template.

Figure 4-16.  Select the class template from the available list and then enter the class name

27.	 Enter the name of the class as SerializedJson.

28.	 Click Add.



Chapter 4 ■ Authenticating Yammer Users

86

29.	 Once the class is added, open the class in code mode and add the following code 
snippet to the class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Json;
using System.IO;
  
namespace SPDSUniversityWebApplication.App_Code
{
    [Serializable]
    public abstract class SerializedJson<T> where T : new()
    {
 
        public static T GetObjectInstanceFromJson(string data)
        {
            T returnInstance = default(T);
 
            try
            {
                MemoryStream m_stream = new MemoryStream();
                byte[] buf = System.Text.UTF8Encoding.UTF8.GetBytes(data);
                m_stream.Write(buf, 0, Convert.ToInt32(buf.Length));
                m_stream.Position = 0;
                �DataContractJsonSerializer sdc_JSON_Ser = new DataContractJson

Serializer(typeof(T));
                returnInstance = (T)sdc_JSON_Ser.ReadObject(m_stream);
            }
            catch (Exception ex)
            {
 
            }
 
            return returnInstance;
        }
 
    }
 
}

The SerializedJson class implements an abstract method called GetObjectInstanceFromJson, 
which accepts a JSON string. The method will then convert JSON to stream by using the MemoryStream 
class and then use the DataContractJsonSerializer class’s ReadObject method to read the JSON 
into an object.

The next step is to add classes for data contracts for different objects, including for access token, user, 
messages, and so on, using the DataContract and DataMember attributes.



Chapter 4 ■ Authenticating Yammer Users

87

30.	 Add a new class called User to the App_Code folder by right-clicking on App_Code 
folder and choosing Add ➤ Class. Specify the name of the class as illustrated in 
Figures 4-14 and 4-15.

31.	 After the class is created, add the following code snippet for the User class.

using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Json;
using System.IO;
using System.Diagnostics;
 
namespace SPDSUniversityWebApplication.App_Code
{
    [DataContract]
    public class User : SerializedJson<User>
    {
        [DataMember(Name = "id")]
        public string UserID { get; set; }
 
        [DataMember(Name = "network_id")]
        public string NetworkID { get; set; }
 
        [DataMember(Name = "state")]
        public string AccountStatus { get; set; }
 
        [DataMember(Name = "job_title")]
        public string JobTitle { get; set; }
 
        [DataMember(Name = "expertise")]
        public string Expertise { get; set; }
 
        [DataMember(Name = "full_name")]
        public string FullName { get; set; }
 
        [DataMember(Name = "first_name")]
        public string FirstName { get; set; }
 
        [DataMember(Name = "last_name")]
        public string LastName { get; set; }
 
        [DataMember(Name = "url")]
        public string ApiUrl { get; set; }
 
        [DataMember(Name = "web_url")]
        public string WebUrl { get; set; }
 
        [DataMember(Name = "mugshot_url")]
        public string PhotoUrl { get; set; }
 



Chapter 4 ■ Authenticating Yammer Users

88

        [DataMember(Name = "mugshot_url_template")]
        public string PhotoTemplateUrl { get; set; }
 
        [DataMember(Name = "department")]
        public string Department { get; set; }
 
        [DataMember(Name = "contact")]
        public ContactInfo ContactInfo { get; set; }
 
        [DataMember(Name = "web_preferences")]
        public SettingsAndFeedsAndGroups SettingsAndFeedsAndGroups { get; set; }
 
        [DataMember(Name = "previous_companies")]
        public List<EmployerData> PreviousEmployers { get; set; }
 
        [DataMember(Name = "schools")]
        public List<YammerSchool> Schools { get; set; }
 
        [DataMember(Name = "stats")]
        public UserStats UserStats { get; set; }
 
        public User()
        {
            this.ContactInfo = new ContactInfo();
            this.SettingsAndFeedsAndGroups = new SettingsAndFeedsAndGroups();
            this.PreviousEmployers = new List<EmployerData>();
            this.Schools = new List<YammerSchool>();
            this.UserStats = new UserStats();
        }
    }
 
    [DataContract]
    public class UserStats
    {
        [DataMember(Name = "followers")]
        public int Followers { get; set; }
 
        [DataMember(Name = "following")]
        public int Following { get; set; }
 
        [DataMember(Name = "updates")]
        public int Updates { get; set; }
    }
 
    [DataContract]
    public class YammerSchool
    {
        [DataMember(Name = "degree")]
        public string Degree { get; set; }
 
        [DataMember(Name = "description")]
        public string Description { get; set; }
 



Chapter 4 ■ Authenticating Yammer Users

89

        [DataMember(Name = "end_year")]
        public string EndYear { get; set; }
 
        [DataMember(Name = "start_year")]
        public string StartYear { get; set; }
 
        [DataMember(Name = "school")]
        public string School { get; set; }
    }
 
    [DataContract]
    public class EmployerData
    {
        [DataMember(Name = "description")]
        public string Description { get; set; }
 
        [DataMember(Name = "employer")]
        public string Employer { get; set; }
 
        [DataMember(Name = "end_year")]
        public string EndYear { get; set; }
 
        [DataMember(Name = "position")]
        public string Position { get; set; }
 
        [DataMember(Name = "start_year")]
        public string StartYear { get; set; }
    }
 
    [DataContract]
    public class SettingsAndFeedsAndGroups
    {
        [DataMember(Name = "network_settings")]
        public NetworkSettings NetworkSettings { get; set; }
 
        [DataMember(Name = "home_tabs")]
        public List<GroupsAndFeeds> GroupsAndFeeds { get; set; }
 
        public SettingsAndFeedsAndGroups()
        {
            this.NetworkSettings = new NetworkSettings();
            this.GroupsAndFeeds = new List<GroupsAndFeeds>();
        }
    }
 
    [DataContract]
    public class GroupsAndFeeds
    {
        [DataMember(Name = "name")]
        public string Name { get; set; }
 



Chapter 4 ■ Authenticating Yammer Users

90

        [DataMember(Name = "select_name")]
        public string SelectName { get; set; }
 
        [DataMember(Name = "type")]
        public string Type { get; set; }
 
        [DataMember(Name = "feed_description")]
        public string Description { get; set; }
 
        [DataMember(Name = "ordering_index")]
        public int OrderingIndex { get; set; }
 
        [DataMember(Name = "url")]
        public string Url { get; set; }
 
        [DataMember(Name = "group_id")]
        public string GroupID { get; set; }
 
        [DataMember(Name = "private")]
        public bool IsPrivate { get; set; }
    }
 
    [DataContract]
    public class NetworkSettings
    {
        [DataMember(Name = "message_prompt")]
        public string MessagePrompt { get; set; }
 
        [DataMember(Name = "allow_attachments")]
        public bool AllowAttachments { get; set; }
 
        [DataMember(Name = "show_communities_directory")]
        public bool ShowCommunitiesDirectory { get; set; }
 
        [DataMember(Name = "enable_groups")]
        public bool EnableGroups { get; set; }
 
        [DataMember(Name = "allow_yammer_apps")]
        public bool AllowYammerApps { get; set; }
 
        [DataMember(Name = "admin_can_delete_messages")]
        public bool AdminCanDeleteMessages { get; set; }
 
        [DataMember(Name = "allow_inline_document_view")]
        public bool AllowInlineDocumentView { get; set; }
 
        [DataMember(Name = "allow_inline_video")]
        public bool AllowInlineVideo { get; set; }
 
        [DataMember(Name = "enable_private_messages")]
        public bool EnablePrivateMessages { get; set; }
 



Chapter 4 ■ Authenticating Yammer Users

91

        [DataMember(Name = "allow_external_sharing")]
        public bool AllowExternalSharing { get; set; }
 
        [DataMember(Name = "enable_chat")]
        public bool EnableChat { get; set; }
    }
    [DataContract]
    public class ContactInfo
    {
        [DataMember(Name = "has_fake_email")]
        public bool HasFakeEmail { get; set; }
 
        [DataMember(Name = "email_addresses")]
        public List<EmailAddresses> EmailAddresses { get; set; }
 
        [DataMember(Name = "phone_numbers")]
        public List<PhoneNumbers> PhoneNumbers { get; set; }
 
        [DataMember(Name = "im")]
        public IM IM { get; set; }
 
        public ContactInfo()
        {
            this.EmailAddresses = new List<EmailAddresses>();
            this.PhoneNumbers = new List<PhoneNumbers>();
            this.IM = new IM();
        }
    }
 
    [DataContract]
    public class EmailAddresses
    {
        [DataMember(Name = "address")]
        public string Address { get; set; }
 
        [DataMember(Name = "type")]
        public string Type { get; set; }
 
        public EmailAddresses() { }
 
        public EmailAddresses(string address, string type)
        {
            this.Address = address;
            this.Type = type;
        }
    }
 
    [DataContract]
    public class PhoneNumbers
    {
        [DataMember(Name = "number")]
        public string PhoneNumber { get; set; }
 



Chapter 4 ■ Authenticating Yammer Users

92

        [DataMember(Name = "type")]
        public string Type { get; set; }
    }
 
    [DataContract]
    public class IM
    {
        [DataMember(Name = "provider")]
        public string Provider { get; set; }
 
        [DataMember(Name = "username")]
        public string UserName { get; set; }
    }
}

32.	 Add a new class called Data to the App_Code folder by right-clicking on the  
App_Code folder and choosing Add ➤ Class. Specify the name of the class as 
illustrated in Figures 4-14 and 4-15.

The Data.cs class defines two classes, AccessToken and TokenResponse by attaching 
DataContractAttribute to the classes and DataMemberAttribute to the members you want to 
serialize.

33.	 Replace the following code snippet in the Data.cs. It defines the AccessToken and 
TokenResponse classes.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Json;
using System.IO;
using System.Diagnostics;
 
namespace SPDSUniversityWebApplication.App_Code
{
 
    [DataContract]
    public class TokenResponse
    {
        [DataMember(Name = "user_id")]
        public string UserID { get; set; }
 
        [DataMember(Name = "network_id")]
        public string NetworkID { get; set; }
 
        [DataMember(Name = "network_permalink")]
        public string NetworkPermaLink { get; set; }
 
        [DataMember(Name = "network_name")]
        public string NetworkName { get; set; }
 



Chapter 4 ■ Authenticating Yammer Users

93

        [DataMember(Name = "token")]
        public string Token { get; set; }
    }
 
    [DataContract]
    public class AccessToken : SerializedJson<AccessToken>
    {
        [DataMember(Name = "access_token")]
        public TokenResponse TokenResponse { get; set; }
 
        [DataMember(Name = "user")]
        public User CurrentUser { get; set; }
 
        public AccessToken()
        {
            this.TokenResponse = new TokenResponse();
            this.CurrentUser = new User();
        }
    }
}

34.	 Add a new class called YammerUtility to the App_Code folder by right-clicking on 
that folder and choosing Add ➤ Class. Specify the name of the class as illustrated 
in Figures 4-14 and 4-15.

35.	 Add the following code to the YammerUtility.cs file.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Net;
using System.IO;
 
namespace SPDSUniversityWebApplication.App_Code
{
    public class YammerUtility
    {
        private static HttpWebResponse HTTPWebRes;
        private static HttpWebRequest HTTPWebReq;
 
        /// <summary>
        ///
        /// </summary>
        /// <param name="Url"></param>
        /// <param name="authHeader"></param>
        /// <param name="AddCookies"></param>
        /// <returns></returns>
        �public static string InvokeHttpGetRequest(string Url, string 

authHeader = null, bool AddCookies = false)
        {
            string results = string.Empty;
 



Chapter 4 ■ Authenticating Yammer Users

94

            try
            {
                HTTPWebReq = WebRequest.CreateHttp(Url);
                HTTPWebReq.Method = "GET";
   
                if (!string.IsNullOrEmpty(authHeader))
                    �HTTPWebReq.Headers.Add("Authorization", "Bearer " + 

authHeader);
 
                HTTPWebRes = (HttpWebResponse)HTTPWebReq.GetResponse();
 
                Stream dataStream = HTTPWebRes.GetResponseStream();
                StreamReader reader = new StreamReader(dataStream);
 
                results = reader.ReadToEnd();
 
                reader.Close();
            }
            catch (Exception ex)
            {
                Console.WriteLine("Error in MakeGetRequest: " + ex.Message);
            }
 
            return results;
        }
 
    }
}

In the previous class definition, the AccessToken class contains two other objects—TokenResponse 
(defined in Data.cs) and User (defined in user.cs).

36.	 Add the method Obtain_Access_Token() to the Default.aspx.cs file.

/// <summary>
        /// Obtain the access Token
        /// </summary>
        private void Obtain_Access_Token()
        {
            string accessToken = default(string);
            �string AccesTokenURL = WebConfigurationManager.

AppSettings["AccessTokenURL"] + "client_id=" + 
WebConfigurationManager.AppSettings["client_id"] + "&client_
secret=" + WebConfigurationManager.AppSettings["client_secret"] + 
"&code=" + txtCode.Text;

            �string response = SPDSUniversityWebApplication.App_Code.
YammerUtility.InvokeHttpGetRequest(AccesTokenURL);

            if (!string.IsNullOrEmpty(response))
            {
                �SPDSUniversityWebApplication.App_Code.AccessToken jat = 

SPDSUniversityWebApplication.App_Code.AccessToken.GetObject 
InstanceFromJson(response);

 



Chapter 4 ■ Authenticating Yammer Users

95

                if (!string.IsNullOrEmpty(jat.TokenResponse.Token))
                {
                    accessToken = jat.TokenResponse.Token;
                    lbllogin.Text = "Welcome " + jat.CurrentUser.FullName;
                    txtaccesstoken.Text = accessToken;
                    Session["accesstoken"] = accessToken;
                }
            }
        }

We added three classes to the project. Figure 4-17 shows the class diagrams

Figure 4-17.  The Yammer authentication classes

The access token received from Yammer will be valid for a very long time, so you should save the token 
for a user and keep using it. For the ASP.NET application, the best approach is to store it in the cookies.

■■ Note  Once the access token expires, developers have to re-run the previous steps to generate a new code 
and access token. If a new access token is requested for the user who has already authorized your app, that 
user will not be promoted to authorize the app again.



Chapter 4 ■ Authenticating Yammer Users

96

Figure 4-19.  The Login.aspx page in run mode

Figure 4-18.  The Default.aspx file in run mode

38.	 Click on the “Log In” button, which will redirect you to the Login page. That 
page allows users to log in using their registered accounts or using Yammer, as 
illustrated in Figure 4-19.

Run the Application

37.	 Press F5 to execute the application. It will open in Internet Explorer with the 
Default.aspx file as the home page. The page will look similar to Figure 4-18.



Chapter 4 ■ Authenticating Yammer Users

97

39.	 Click on the “Sign In with Yammer” button.

40.	 You will be prompted with the Yammer Login page. Enter your login credentials and 
click “Log In,” as shown in Figure 4-20.

41.	 You will be presented with the Default.aspx page showing a message, as 
illustrated in Figure 4-21.

Figure 4-20.  Yammer Login page



Chapter 4 ■ Authenticating Yammer Users

98

At this point, you have successfully implemented OAuth 2.0 server-side flow in an ASP.NET web 
application. In the next section, you will look at the client-side flow using a similar exercise. It will 
showcase the client-side flow in a Microsoft SharePoint-hosted app.

Client-Side Flow
Yammer’s OAuth authentication also supports client-side flows for authentication and authorization of 
JavaScript-centric applications. Client-side flows are optimized for public clients, such as those implemented 
in JavaScript or on mobile devices, where client credentials cannot be stored.

The client-side flow is also referred as an “implicit grant,” which is different from the server-side flow. 
In the client-side flow, the client makes a single request only to obtain the access token, as the authorization 
code is not required in this case.

The steps involved in an implicit grant or a client-side flow are as follows:

Step Name Description

#1 Application Request Authentication The OAuth 2.0 authentication is initiated as soon as the 
user (resource owner) clicks on the “Sign In with Yammer” 
button; here, the user is redirected to the OAuth 2.0 
authorization endpoint.

#2 Yammer Request Credentials Yammer authorization server then prompts the user with 
a login page.

#3 Yammer Request App Authorization The OAuth process prompts the user to authorize the 
Yammer app.

#4 Application Receives Access Token Once authorized, Yammer sends the access token to the 
client app.

Step #1: Application Request Authentication
The authorization sequence begins when your application redirects a browser to the Yammer OAuth URL; 
the URL includes query parameters that indicate the type of access being requested. First, as for server-side 
flow, you must create the Yammer OAuth URL to initiate the flow.

Figure 4-21.  The message after successful completion of OAuth 2.0 flow



Chapter 4 ■ Authenticating Yammer Users

99

For the SPDSUniversity SharePoint-hosted app, the complete OAuth URL will look like this:

https://www.yammer.com/dialog/oauth?client_id=9aax1mFox7yMVBS2LpIJQ&redirect_uri= 
http://localhost:54173/Default.aspx&response_type=token
 

To obtain the client_id and redirect_uri, navigate to your registered app in Yammer, as illustrated in 
Figure 4-22.

Table 4-13.  OAuth URL’s Query String Parameters

Parameter Description

client_id Obtain the Client_ID for your Yammer app using the Yammer UI. Use the  
https://www.yammer.com/client_applications link for list of the registered client ID.

redirect_uri This redirect_uri should match the redirect_uri configured for your app in the 
Yammer platform.

response_type The response_type=token parameter.

Figure 4-22.  The SPDSUniversity app’s Key and Tokens Configuration

Step #2: Server Request Credentials
The OAuth process will prompt the user with the Yammer Login window. Users then enter their credentials 
and submit the request, as shown in Figure 4-23.

Your application should redirect the user to the OAuth URL along with the Yammer app’s ClientID and 
redirect_URI as per configuration. The OAuth URL is

https://www.yammer.com/dialog/oauth?client_id=[:client_id]&redirect_uri=[:redirect_uri] 
&response_type=token
 

Table 4-13 lists all the parameters required in order to request the access token.

https://www.yammer.com/client_applications
https://www.yammer.com/dialog/oauth?client_id=%5B:client_id%5D&redirect_uri=%5B:redirect_uri


Chapter 4 ■ Authenticating Yammer Users

100

Step #3: Server Request App Authorization
In this step, the OAuth 2.0 authentication process shows an App Authorization screen, as shown in Figure 4-24. 
If the user has allowed your Yammer app, the app will be authorized and an access token will be generated for 
that user.

Figure 4-23.  Yammer Login page



Chapter 4 ■ Authenticating Yammer Users

101

Step #4: Application Receives Access Token
The response will be sent to the redirect_uri as specified in the request URL. If the user approves the 
access request, then the response contains an authorization code. If the user does not approve the request, 
the response contains an error message. The redirect URL’s parameters will be different when the user 
allows the Yammer app compared to when they deny it access. Let’s look at the redirect URL’s parameters in 
each case.

Redirect URL’s Parameters When Users Allow the Yammer App

Yammer will redirect the users to your Yammer app’s redirect URL as per its configuration with the 
authorization code (parameter) as part of the URL. It’s a query string and is listed in Table 4-14.

http://[:redirect_uri]#access_token=[:access_token]

Figure 4-24.  App authorization

Table 4-14.  OAuth URL’s Query String Parameters

Parameter Description

redirect_uri The redirect_uri used in the OAuth URL.

access_token Yammer-generated access_token for the user who has authorized the app.



Chapter 4 ■ Authenticating Yammer Users

102

Redirect URL’s Parameters When Users Deny the Yammer App

When the user denies access to the Yammer custom app, Yammer will redirect the users to your Yammer 
app’s redirect URL as per its configuration. The error information is within the URL as query string. Table 4-15 
lists all the query string parameters from the redirect URL.

Table 4-15.  OAuth URL’s Query String Parameter

Parameter Description

Error This contains the actual error; for example, “Access Denied”.

error_description The description of the error; for example, “The user denied your request”.

invalid redirect_uri If redirect_uri does not match your Yammer app configuration, you get an 
error entitled “Invalid Redirect_uri”.

For example, the following URL contains “access denied” in the error parameter and “the user denied 
your request” in the error description parameter.

http://localhost:54173/Default.aspx?error=access_denied&error_description=the%20user%20
denied%20your%20request

In this section you learned about the steps involved in client-side flow, which is mainly used in business 
applications that use client scripting like JavaScript.

Implementing Client-Side Flow in a Microsoft SharePoint-Hosted App
In the next exercise, we will implement Yammer authentication using client-side flow in a Microsoft 
SharePoint-hosted app. You need to have Visual Studio 2012 Professional, Premium, or Ultimate installed on 
your local computer. You also need to have the Office Developer Tools for Visual Studio 2012 installed. These 
can be downloaded from http://msdn.microsoft.com/en-us/office/apps/fp123627.

EXERCISE 4-2: CLIENT-SIDE FLOW USING THE “SIGN IN WITH 
YAMMER” BUTTON WITH THE JAVASCRIPT SDK

In this exercise, we will create a SPDS University, Microsoft SharePoint-hosted app for Microsoft 
SharePoint Online. There will be a “Log In with Yammer” button on the Microsoft SharePoint App’s  
target page.

Prerequisites for Creating a Basic Microsoft SharePoint-Hosted App

•	 A computer that is configured for app isolation with Microsoft SharePoint 2013 installed 
on it. If you’re using an Office 365 Developer Site, you already have a Microsoft 
SharePoint 2013 environment that supports OAuth.

•	 Visual Studio 2012 or higher.

•	 Office Developer Tools for Visual Studio 2012.

http://msdn.microsoft.com/en-us/office/apps/fp123627


Chapter 4 ■ Authenticating Yammer Users

103

Create a New Microsoft SharePoint App Project

1.	 Start Visual Studio by using the Run as Administrator option.

2.	 The first screen presented to you is the Visual Studio Start page, as illustrated in 
Figure 4-25.

Figure 4-25.  Visual Studio Start page offers a quick way to get started

3.	 On the left side of the start page, on the navigation pane, choose New Project. 
Alternatively you can use the File ➤ New Project menu command.

4.	 This brings up the New Project window, as illustrated in Figure 4-26. Expand the 
Visual C# node, expand the Office/SharePoint node, and then choose Apps ➤ App 
for SharePoint 2013.



Chapter 4 ■ Authenticating Yammer Users

104

5.	 You will be presented with the Specify the App for SharePoint Settings window. Name 
your app and provide the URL of the Microsoft SharePoint 2013 site that you want to 
use to debug your app. Under the “How do you want to host your app for SharePoint” 
option, choose SharePoint-hosted. Then click the Finish button, as shown in Figure 4-27.

Figure 4-26.  Select the app for the SharePoint template under Office/SharePoint

Figure 4-27.  Specify the app for the SharePoint settings and provide the URL of the SharePoint web site that 
you want to use for debugging



Chapter 4 ■ Authenticating Yammer Users

105

After the wizard finishes, you should have a structure in Solution Explorer that resembles Figure 4-28. 
The solution comprises one App Project that contains the SharePoint-hosted app structure with an 
AppManifest.xml file.

Figure 4-28.  The SharePoint-hosted app project structure

Create Customer Ribbon Action

We will now add a new “Menu Item Custom Action” item to the SharePoint app. But first we will add a 
page for the custom action.

6.	 Right-click on the Page node in the web project and add a new page. Name the 
page CustomActionTarget.aspx, as shown in Figure 4-29.



Chapter 4 ■ Authenticating Yammer Users

106

Add a Control “Menu Item Custom Action”

7.	 Right-click on the page node for the SharePoint project and add a new “Menu Item 
Custom Action” item. Name it MenuItem_PosttoYammer, as illustrated in Figure 4-30.

Figure 4-29.  Adding a new page to the SharePoint app project

Figure 4-30.  Add a new menu item custom action to the SharePoint app project



Chapter 4 ■ Authenticating Yammer Users

107

8.	 You’ll be presented with the Specify the Properties to Create Custom Action Menu 
Item window, as illustrated in Figure 4-31. From there, you need to set the following 
properties for the custom action (refer to Table 4-16 for each property value).

Figure 4-31.  Set the properties for the custom action

Table 4-16.  OAuth URL’s Query String Parameter

Property Question Answer

Where do you want to expose the custom action? Choose Host Web

Where is the custom action scoped to? Choose List Template

Which particular item is the custom action scoped to? Choose Custom List

What is the text on the menu item? Type “Invoke post to Yammer custom action”

9.	 You’ll be presented with another window, entitled Specify the Properties to Create 
Custom Action Menu Item, as illustrated in Figure 4-32. From there, you need  
to set the following properties for the custom action (refer to Table 4-17 for  
property value).



Chapter 4 ■ Authenticating Yammer Users

108

10.	 After setting the properties for the custom action menu item, click Finish.

Visual Studio generates the following markup in the elements.xml file of the menu item custom action 
feature:

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
  <CustomAction Id="75be0d47-8c42-4f9b-afd4-7bb601ffc5e0.MenuItem_PostToYammer"
                RegistrationType="List"
                RegistrationId="100"
                Location="EditControlBlock"
                Sequence="10001"
                Title="Invoke &apos;Post To Yammer&apos; action">
    <!--
    Update the Url below to the page you want the custom action to use.
    Start the URL with the token ~remoteAppUrl if the page is in the
    associated web project, use ~appWebUrl if page is in the app project.
    -->

Figure 4-32.  Set the properties for the custom action

Table 4-17.  Specify the Properties for the Custom Action

Property Question Answer

What is the text on the menu item? Enter “Invoke ’Post To Yammer Action”

Where the custom action does navigates to? Choose the CustomActionTarget.aspx which we created in 
previous step

http://schemas.microsoft.com/sharepoint/


Chapter 4 ■ Authenticating Yammer Users

109

    �<UrlAction Url="~appWebUrl/Pages/CustomActionTarget.aspx?{StandardTokens}&amp; 
SPListItemId={ItemId}&amp;SPListId={ListId}" />

  </CustomAction>
</Elements>

Implement the Authentication

We have all controls in the project so now we can start implementing the authentication using the 
JavaScript SDK. First we’ll modify the CustomActionTarget.aspx page by adding some code in the 
HTML markup.

11.	 Add the following HTML markup to CustomActionTarget.aspx. Add this within 
the <asp:Content ContentPlaceHolderId="PlaceHolderAdditionalPageHead" 
runat="server"> placeholder:

<script type="text/javascript" src="../Scripts/jquery-1.9.1.min.js"></script>
<script type="text/javascript" src="/_layouts/15/sp.runtime.js"></script>
<script type="text/javascript" src="/_layouts/15/sp.js"></script>
<script type="text/javascript" data-app-id="Fmi5JYfF5jqMLCcydqkJWQ" 
src="https://c64.assets-yammer.com/assets/platform_js_sdk.js"></script>

Here you need to replace data-app-id with your Yammer app’s ID. You need to get the client ID that 
was generated when you registered the app on Yammer.com.

The second parameter sec refers to the JavaScript SDK.

12.	 Replace the following code snippet with ContentPlaceHolderID= 
"PlaceHolderMain" in the CustomActionTarget.aspx file:

<asp:Content ContentPlaceHolderId="PlaceHolderMain" runat="server">
      <div>
        <h3>Yammer Authenication Example</h3>
        <br />
        <span id="yammer-login"></span>
      </div>
 
      <div class="logged-in" style="display:none">
            <p>User is now signed in to the app using Yammer</p>
            �<button id="disconnect" class="yj-btn yj-btn-alt">Log out from 

your Yammer account</button>
      </div>
      <div class="logged-in" style="display:none">
            <h2>Authentication Logs</h2>
            <pre id="authResult"></pre>
      </div>
 
</asp:Content>

This code will display the “Log In with Yammer” button, as illustrated in Figure 4-33. It uses an HTML 
span control with ID="yammer-login" to create that button.



Chapter 4 ■ Authenticating Yammer Users

110

13.	 Add the following JavaScript code to ContentPlaceHolderID="PlaceHolderAddit
ionalPageHead" of CustomActionTarget.aspx:

01:  <script>
02:        yam.connect.loginButton('#yammer-login',
03:              function (resp) {
04:                  if (resp.authResponse) {
05:                      console.log(resp);
06:                      displayAuthResult(resp);
07:                  }
08:              });
 
09:        function displayAuthResult(resp) {
10:            �document.getElementById("yammer-login").innerHTML = 'Welcome to 

Yammer!, The user ID is:  ' + resp.access_token.user_id;
11:           toggleLoginStatus(true);
12:            $('#authResult').append(' ========= <br/>');
13:            $('#authResult').append(' Access Token: <br/>');
14:            $('#authResult').append(' ========= <br/>');
15:            for (var field in resp.access_token) {
16:                $('#authResult').append(' ' + field + ': ' +
17:                   resp.access_token[field] + '<br/>');
18:           }
19:        }
 
20:        function toggleLoginStatus(loggedIn) {
21:            if (loggedIn) {
22:                $('.not-logged-in').hide();
23:                $('.logged-in').show('slow');
24:            } else {
25:                $('.not-logged-in').show('slow');
26:                $('.logged-in').hide();
27:            }
28:        }
29:  </script>

Figure 4-33.  The “Log In with Yammer” button created using the span control with Id=“yammer-Login”



Chapter 4 ■ Authenticating Yammer Users

111

This JavaScript code on line 2 calls the yam.connect.loginButton function by passing two 
parameters—the selector (ID of span control "yammer-login" as a selector) and the callback function 
(function that will be fired after the login flow is completed). The span control <span id="yammer-
login"></span> in the ContentPlaceHolderId="PlaceHolderMain" will become a standard 
“Log In with Yammer” button. When this button is clicked, it will initiate the Yammer client-side 
OAuth workflow. Once the user approves or denies the SPDSUniversity app, the OAuth callback 
will fire. The callback function on lines 3-8 first checks if AuthResponse is true and then calls the 
displayAuthResult function by passing the resp parameter. The displayAuthResult function code 
on line 9 changes the inner HTML of the span control to a welcome message and the user ID of the 
logged in user. The for loop on lines 15-18 displays all the properties of the resp.

14.	 The complete code of CustomActionTarget.aspx is shown in the following code 
snippet:

<%@ Page Language="C#" MasterPageFile="~masterurl/default.master" 
Inherits="Microsoft.SharePoint.WebPartPages.WebPartPage, Microsoft.SharePoint, 
Version=15.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>
 
<%@ Register TagPrefix="Utilities" Namespace="Microsoft.SharePoint.Utilities" 
Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral,  
PublicKeyToken=71e9bce111e9429c" %>
<%@ Register TagPrefix="WebPartPages" Namespace="Microsoft.SharePoint.
WebPartPages" Assembly="Microsoft.SharePoint, Version=15.0.0.0, 
Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>
<%@ Register TagPrefix="SharePoint" Namespace="Microsoft.SharePoint.
WebControls" Assembly="Microsoft.SharePoint, Version=15.0.0.0, 
Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>
 
<asp:Content ContentPlaceHolderID="PlaceHolderAdditionalPageHead" 
runat="server">
   �<SharePoint:ScriptLink Name="sp.js" runat="server" OnDemand="true" 

LoadAfterUI="true" Localizable="false" />

   �<script type="text/javascript" src="../Scripts/jquery-1.9.1.min.js"></script>
<script type="text/javascript" src="/_layouts/15/sp.runtime.js"></script>
<script type="text/javascript" src="/_layouts/15/sp.js"></script>
<script type="text/javascript" data-app-id="Fmi5JYfF5jqMLCcydqkJWQ" 
src="https://c64.assets-yammer.com/assets/platform_js_sdk.js"></script>

    <script>
      yam.connect.loginButton('#yammer-login',
         function (resp) {
              if (resp.authResponse) {
                  console.log(resp);
                  displayAuthResult(resp);
              }
          });



Chapter 4 ■ Authenticating Yammer Users

112

    function displayAuthResult(resp) {
        �document.getElementById('yammer-login').innerHTML = 'Welcome to 

Yammer!, The user ID is:  ' + resp.access_token.user_id;
        toggleLoginStatus(true);
        $('#authResult').append(' ========= <br/>');
        $('#authResult').append(' Access Token: <br/>');
        $('#authResult').append(' ========= <br/>');
        for (var field in resp.access_token) {
            $('#authResult').append(' ' + field + ': ' + 
               resp.access_token[field] + '<br/>');
        }

    }

    function toggleLoginStatus(loggedIn) {
        if (loggedIn) {
            $('.not-logged-in').hide();
            $('.logged-in').show('slow');
        } else {
            $('.not-logged-in').show('slow');
            $('.logged-in').hide();
        }
    }

</script>

</asp:Content>
<asp:Content ContentPlaceHolderId="PlaceHolderMain" runat="server">
   <div>
      <h3>Yammer Authenication Example</h3>
      <br />
      <span id="yammer-login"></span>
  </div>

   <div class="logged-in" style="display: none">
          <h2>Authentication Logs</h2>
          <pre id="authResult"></pre>
      </div>

</asp:Content>

Run the Solution

15.	 You can run this app now and see that Visual Studio deploys the app to your site. 
To deploy it from Visual Studio, select Deploy from the project’s context menu, as 
illustrated in Figure 4-34.



Chapter 4 ■ Authenticating Yammer Users

113

16.	 Visual Studio will deploy the solution to the SharePoint Online site. In the first step, 
it will prompt you to log in to your SharePoint Online site, enter your Office 365 
credentials, and click on Sign In, as shown in Figure 4-35.

Figure 4-34.  Visual Studio’s deploy solution

Figure 4-35.  Log in to the Office 365 site

17.	 You will be prompted to authorize the app. Click on the Trust It button and Visual 
Studio will deploy the app in the target site, as shown in Figure 4-36.



Chapter 4 ■ Authenticating Yammer Users

114

Figure 4-36.  SharePoint prompts you to authorize the app

18.	 You will be presented with the SharePoint app’s default page, as shown in Figure 4-37.

Figure 4-37.  The app’s default page

19.	 Now click on the “Log In with Yammer” button. You will be prompted with the 
Yammer Login screen, as illustrated in Figure 4-38.



Chapter 4 ■ Authenticating Yammer Users

115

Figure 4-38.  Clicking on the “Log In with Yammer” button opens the Yammer Login page

After you log into Yammer using your Yammer credentials, Yammer will return to the callback function 
you have written in the Default.aspx function. In this case it is the inline callback function that 
checks if resp.authResponse is not null. If it is not null, that means the user is already logged into 
Yammer. The code then displays the fields available in access_token—user_id, network_id, 
network_permalink, network_name, token, view_members, view_groups, view_message, 
view_subscriptions, modify_subscriptions, modify_message, view_tags, created_at, 
authorized_at, and expires_at, as shown in Figure 4-39.



Chapter 4 ■ Authenticating Yammer Users

116

Figure 4-39.  CustomActionTarget.aspx displays the fields from access_token after the user logs in successfully

At this point, you have successfully implemented OAuth 2.0 client-side flow in a SharePoint-hosted app.

Summary
By now you are aware of Yammer apps and understand the authorization process on Yammer for integration 
with your business applications. Examples provided in this chapter have given you a kick-start to enable 
Yammer integration in your business applications. In Chapters 5, 6, and 7, you’ll learn advanced Yammer 
integration concepts using different technologies like Open Graph and REST APIs.

http://dx.doi.org/10.1007/978-1-4842-0943-1_5
http://dx.doi.org/10.1007/978-1-4842-0943-1_6
http://dx.doi.org/10.1007/978-1-4842-0943-1_7


Chapter 5

Writing Data into Yammer  
with Open Graph

Pathik Rawal
In Chapters 1-4, we covered an introduction to Yammer, explained the Yammer platform, discussed the 
Yammer apps, and explored how to implement authentication on Yammer. We hope you read those chapters 
fully and understood the concepts of using Yammer apps for integration with external applications.

In this chapter, you will learn how to write data from your business applications into Yammer using the 
Open Graph protocol. This chapter covers:

•	 Introduction to Enterprise Social Graph

•	 The Open Graph Protocol

•	 Lab exercise on how to create custom Open Graph objects

•	 Lab exercise on how to write data from an ASP.NET web application into Yammer 
using an Open Graph activity

Introduction to Enterprise Social Graph
Yammer Enterprise Social Graph (AKA Enterprise Social Graph) is an adoption of the Open Graph Protocol 
that provides capabilities to establish the connection between employees, content, and data from different 
line-of-business applications. Figure 5-1 is a visual representation of Enterprise Social Graph. Implementing 
Enterprise Social Graph in business applications improves information sharing and allows users to get 
updated information related to business processes and make quicker decisions, thus improving productivity.

© Pathik Rawal and Pryank Rohilla 2015 
P. Rawal and P. Rohilla, Developing on Yammer, DOI 10.1007/978-1-4842-0943-1_5

117

http://dx.doi.org/10.1007/978-1-4842-0943-1_1
http://dx.doi.org/10.1007/978-1-4842-0943-1_4


Chapter 5 ■ Writing Data into Yammer with Open Graph 

118

Today’s business applications maintain lots of data about business processes and employees. For 
example, a CRM application manages customers and prospects information, while a SharePoint site 
manages the product catalogues. But this setup does not provide a seamless access for employees and 
creates silos of information about customers and products in two different applications. Using Yammer 
Enterprise Social Graph, you can establish a connection between customers and the products the company 
wants to sell. Creating the Enterprise Social Graph—”a single mapping of Actions and objects they encounter 
at work,” which will allow employees to understand more easily how information flows from different 
business processes.

Before exploring the technical aspects, let’s look at an example in an organization. In SPDS University 
web application, the company’s training manager creates training schedules that he wants to share with all 
the employees. This is achieved by Yammer’s Enterprise Social Graph, which uses the Recent Activity widget 
to display the latest updates, as illustrated in Figure 5-2.

Figure 5-1.  Line-of-business applications and Yammer integration using Enterprise Social Graph

Figure 5-2.  Line-of-business application using Enterprise Social Graph to share information in real-time



Chapter 5 ■ Writing Data into Yammer with Open Graph 

119

In Yammer Enterprise Social Graph, the “actors” are users, the “actions” are what users are working on, 
and the “objects” are applications used by users or the output created by users. The mapping shows how these 
three interact. The mappings derived using Enterprise Social Graph, as illustrated in Figure 5-2, are as follows:

Actor: Alex, the Training Manager, plans to share the “training schedule” with others using the 
SPDS University web application on an ASP.NET platform. The SPDS University web application 
is integrated into Yammer using the Enterprise Social Graph.

Action: Alex takes an action by creating a training schedule.

Object: A new “training schedule” object is created in the SPDS University web application 
hosted on ASP.NET.

Enterprise Social Graph creates a new activity on Yammer in the Recent Activity section.

Using Yammer, this mapping can be presented in a meaningful way using the Recent Activities widget 
so that users can discover information easily, as illustrated in Figure 5-2.

You’ll learn more about the Recent Activities widget later in this chapter.

■■ Note   Enterprise Social Graph is similar to Facebook’s social graph. Facebook’s social graph connects 
people to people, photos, places, events, music, games, work, education, or universities; for example, “A user is 
watching (Action) the FIFA world cup final (an event).” Facebook records the actions of users and stores them 
into Open Graph as stories. These stories then can be shared on the user’s newsfeed so that other users can 
discover information and collaborate easily.

Open Graph Protocol
As mentioned in the introduction, Yammer Enterprise Social Graph is an implementation of Open Graph 
(http://ogp.me/), and it’s important for you to know what Open Graph is and how it can be used for 
Yammer integration with business applications.

Open Graph (OG) is a lightweight social data integration protocol that allows developers to define an 
activity and post it to Yammer as an Open Graph object. Open Graph provides:

•	 APIs to write data (activities) into Yammer on behalf of users from line-of-business 
applications

•	 Rich metadata around an object (page objects, place objects, person objects, and so on) 
that is uniquely identified by an URL

•	 Integration of business data into Yammer Enterprise Social Graphs

•	 Provision to configure custom Open Graph Objects that provide richer activities in 
terms of custom objects well suited for line-of-business applications

In other words, Open Graph is a strongly typed API consisting of objects and actions. Objects are 
the “nouns” or targets for actions taken by people in your app. For example, Anne Wallace uploaded the 
Microsoft Dynamics CRM 2015 User Guide to the SPDSUniversity app. The activity you write using Open 
Graph is displayed in the Recent Activity widget, as illustrated in Figure 5-3.

http://ogp.me/


Chapter 5 ■ Writing Data into Yammer with Open Graph 

120

■■ Tip   For general details on Open Graph outside of Yammer’s implementation, check out http://ogp.me/.

When Open Graph activity is created and posted on Yammer, it’s actual implementation is a JSON 
object that’s posted to Yammer using a Yammer REST API. You will learn later in this chapter how to create 
Open Graph activities and post them on Yammer from external applications. Let’s first explore how Open 
Graph activity is visualized on Yammer.

As of now, there are two ways that Open Graph activity is visualized on Yammer:

•	 Recent Activity widget

•	 Open Graph Activity Details page (OG Details page)

Both of these features are interlinked, where the Recent Activity widget gives users an overview of the 
activity and the OG Details page provides the details of the activity and related actions taken by users. Let’s 
look at the details of each of these features.

Figure 5-3.  Enterprise Social Graph activities displayed in the Recent Activity widget

http://ogp.me/#_blank


Chapter 5 ■ Writing Data into Yammer with Open Graph 

121

As mentioned, the Recent Activity widget can also be used by Open Graph to post the updates or 
actions taken in business applications. Figure 5-5 illustrates an activity that shows that Alex has viewed the 
Microsoft Dynamics CRM 2015 User Guide document and another post shows that Alex has downloaded the 
Microsoft Dynamics CRM 2015 User Guide document. In both cases, Anne was working on SharePoint and 
predefined integration points allowed updates to be shared on Yammer.

Figure 5-4.  Yammer Recent Activity widget shows all the important activities on Yammer

Recent Activity Widget
The Recent Activity widget displays the most important activities on Yammer. Yammer’s out-of-the-box 
features also use the Recent Activity widget to post people’s latest activities. People’s most important or latest 
updates are posted automatically to the Recent Activity stream, which is illustrated in Figure 5-4. This stream 
shows the activities of different users:

•	 Tyler Chessman has joined the network

•	 Dorena Paschke is now following David

•	 Dorena Paschke is now following Molly Dempsey



Chapter 5 ■ Writing Data into Yammer with Open Graph 

122

The Recent Activity widget is linked to the Open Graph Activity Details page. The next section discusses 
how the activity details appear on that page.

Open Graph Activity Details Page
Yammer also allows users to navigate to activity details posted on the Recent Activity widget, where they can 
then collaborate and take appropriate actions on the selected activity. Users can comment on an activity, 
share the activity with others, create an announcement, praise someone, or create a poll. As illustrated in 
Figure 5-6, Alex Darrow has commented on Anne Wallace’s activity, which is about an active document  
on SharePoint.

Figure 5-5.  Yammer Recent Activity widget also shows the important activities of a user from  
external applications



Chapter 5 ■ Writing Data into Yammer with Open Graph 

123

So, hopefully you now understand the concept of Open Graph. Let’s start with the technical aspects of 
Open Graph. First we explain the format used by Open Graph for creating an activity and the schema for 
posting Open Graph activity on Yammer. Then we will learn about the Yammer REST API endpoint used to 
deliver the Open Graph activity on Yammer with different examples.

Format of Open Graph Activity
Open Graph supports a standard format for Open Graph activity that developers should know how to write 
data into Yammer using the Open Graph protocol. Open Graph supports the following JSON format for 
integration:

<Actor> <Action> <Object> on <App Name>:<Message>

Action and Object are the main building blocks of an Open Graph activity. Actions are the Yammer 
actions that the user can perform, like creating files, deleting objects, liking, following, and so on. Objects are 
the nouns on which actions can be performed, like page, document, place, person, and so on.

Figure 5-6.  Yammer Open Graph Activity Detail page



Chapter 5 ■ Writing Data into Yammer with Open Graph 

124

Table 5-1.  Elements Specified in Open Graph Object Format

Activity Elements Description Required

Actor A user object represents the Yammer user who performs an action in 
a Yammer app. Here, the actor is the main character of an activity post 
to whom the post is delivered, along with others (depending on the 
delivery rules). If the actor is missing from the OG object, no post will 
be created on Yammer.

Yes

Action It’s the verb that describes what action is taken, such as create, update, 
delete, follow, and like.

Yes

Object Also known as an Open Graph object (OG object). It represents a 
Yammer object such as a Page, Place, Person, Team, and Project, 
etc. This is the key of the activity on which action is taken and it’s 
distinctively identified with a URL and associated title, which is 
displayed in the Yammer post. Whenever an activity is created, the 
Object value must be specified.

There are various types of OG objects that have different properties. 
These are explained later in this chapter. Based on each object, which 
is sent with an activity, Yammer creates a new object if it does not exist 
and displays the associated properties. Can be a title of page, map of 
location, etc.

Yes

App Name The name of your app, which is a channel to write data into Yammer. Yes

Message The message that describes the activity. The max length is 200 
characters. The default value is a blank message.

Optional

User A collection of user objects to whom the activity will be delivered or 
notify users who are part of the activity. Default is blank.

Optional

To understand Open Graph format, let’s look at the following example. In Figure 5-7, the Open Graph 
object is a page named “New CRM Training” posted on Yammer using an the SPDSUniversity app by a user 
(actor) named Garret Vargas with the Create action.



Chapter 5 ■ Writing Data into Yammer with Open Graph 

125

Now that you know the format of an Open Graph activity, let’s look at the different schema of objects 
used to create and post an Open Graph activity on Yammer.

Open Graph Activity Objects Schema
Open Graph provides a very rich set of schemas. Open Graph supports built-in objects and actions, and 
developers can define custom objects and actions based on the requirements. In this section, we will explain 
the different supported object types, object attributes, supported actions on objects, and delivery rules that 
you can apply while creating a Yammer Open Graph activity from your line-of-business applications.

Supported Object Types
Let’s look at the different supported object types in an Open Graph activity. Table 5-2 lists all supported 
object types.

Table 5-2.  Supported Objects and Descriptions in an Open Graph Activity

Object Description

page (default) Represents a page in Yammer. You can refer to an external page that’s hosted 
outside of Yammer. Yammer renders the page in Activity Detail view. The page 
object is the default object.

Place This object type represents a place, such as a venue, a business, a landmark, or 
any other location that can be identified by longitude and latitude.

This is useful when you’re posting an activity related to events, parties, 
conferences, and so on, and you want to share the accurate location with users 
on Yammer. For example, for next company event, you want to share the extract 
map location. You can post this location on Yammer with an Open Graph object.

Person This object type represents a person. It can be used when recognizing a colleague 
or informing others about someone using OG object.

Figure 5-7.  An example of Open Graph using the standard format



Chapter 5 ■ Writing Data into Yammer with Open Graph 

126

There are additional Open Graph object types as mentioned in Table 5-3, and they can be used in 
similar ways as the standard supported object types.

Open Graph Object Attributes
In the previous section, we learned that the object is an important component of Open Graph. The object 
supports multiple properties or attributes for different kinds of objects. These attributes provide information 
about the object that you are specifying in the Open Graph activity. So, it’s ideal to specify as many attributes 
as you can specify when posting an Open Graph activity from your application.

For example, when you’re sharing the latest news page on Yammer from your portal using the Open 
Graph protocol, you can specify the Title and Description as attributes of the page’s object in an Open Graph 
activity. This will be displayed in Yammer’s Recent Activity widget. Table 5-4 lists all standard attributes for 
an Open Graph object.

Table 5-4.  Open Graph Object’s Attributes

Object Attribute Description

URL Canonical URL of the object. This attribute is used as an ID of the object that uniquely 
identifies the object in the graph. (Required)

Title Title of the object as it should appear in stories. (Optional)

Type Reference to associated OpenGraphObjectType. (Optional)

Image Thumbnail image that represents the object. (Optional)

Description Description of the object in one or two sentences. (Optional)

Site Name If the object you are creating is part of another object in the hierarchy (like a page 
object (child) in a site object or parent), this attribute is used as the name of the 
overall object. (Optional)

Locale This attribute is used to specify the locale. This locale should be in the format 
language_TERRITORY. The default is en_US. (Optional)

Table 5-3.  Additional Objects Types and Descriptions in Open Graph Activity

Object Description

Department This object type represents the user’s department.

Team This object type represents the user’s hierarchy team.

Project This object type represents the project.

Folder This object type represents a folder within Yammer.

File This object represents a file that can be a document, image, and so on.

Document This object represents a document such as a PDF, word document, and so on.

Image This object type represents an image object.

Audio This object type represents an audio file.

Video This object type represents a video file.



Chapter 5 ■ Writing Data into Yammer with Open Graph 

127

Supported Actions on Object
Actions are the verb performed on the objects. With Yammer Open Graph objects, you must specify actions 
associated with an object. Table 5-5 describes the actions.

Apart from these standard actions, Yammer allows you to create custom actions as per your 
requirements. Later in this chapter, we will explain how to create custom actions associated with an object. 
Before that, let’s look at different delivery rules that can be associated with an Open Graph activity.

Delivery Rules
The Open Graph object also supports adding delivery rules to the Open Graph activity. The delivery rules 
enable developers to target the recipients for the activity. Suppose you want to ensure that the activity 
you are posting is visible to specific users on Yammer. You can use the private: true parameter with an 
additional user: element to specify your target recipients.

The private parameter can be used to target the activity to certain recipients. By default, the private 
parameter is false but you can set it to true. In that case, the activity will be delivered only to the target users 
included in the activity “users” list and to the actor of the activity. Table 5-6 lists two important parameters 
for specifying a delivery rule for an activity.

So far we have seen all the built-in objects defined by Yammer that are available globally (to all Yammer 
apps). However, you may wish to create a custom object that’s more suitable for your line-of-business 
application.

Before exploring the Open Graph activity delivery REST endpoint, let’s discuss the custom objects  
and actions.

Table 5-5.  Supported Actions on Object

Action Description

Create To create a new object.

Update To update an existing object.

Delete To delete an object.

Follow To select the Follow tag on existing object.

Like To select the Like tag on an existing object.

Table 5-6.  Delivery Rules Parameter of an Activity

Parameter Description

private:false (default) Activity will be delivered to everyone.

private:true Activity will be delivered to target recipient 
specified by the users: element in the JSON string.



Chapter 5 ■ Writing Data into Yammer with Open Graph 

128

Custom Objects and Actions
Open Graph enables developers to create custom objects and actions for a particular Yammer app. The 
custom objects and action TYPES you create are scoped to your Yammer app only. For example, the 
SPDSUniversity app may want to create training_object:training_material or training_object:survey 
objects to create richer activities.

Custom objects are very useful when you want to provide a reference to business processes associated 
with activities. For example, you are planning to integrate between Yammer and the company’s CRM 
application and there is a need to post new sales opportunities to the Sales group on Yammer so that every 
Sales team member is notified. For this, you can create a custom Open Graph object in Yammer called 
Opportunity and post the information via the CRM application using the Yammer custom Open Graph 
object.

Later in this chapter (in Exercise 5-1), we will explain the custom activity implementation for the 
Yammer SPDSUniversity app.

You have learned about the Open Graph activity schema, but in order to post activities on Yammer, 
you need to understand the REST endpoint-related Open Graph activity. In next section. let’s look at REST 
endpoint, which is used to deliver Open Graph activities to Yammer from line-of-business applications.

Delivery: The Open Graph Activity REST Endpoint
In order to post custom Open Graph objects as activities on Yammer, you need an endpoint that can do this. 
Yammer exposes a REST API endpoint that allows users to post or deliver activities on Yammer.

The REST API endpoint is:

https://www.yammer.com/api/v1/activity.json

In order to use this REST API endpoint, you need to create a JSON payload for the Open Graph activity. 
The OAUTH access token is then sent as the “bearer” in the “authorization” request handler and the content 
type is specified as application/Json in the request body. Figure 5-8 shows the request header as a JSON 
payload with a bearer token.

■■ Note   To learn more about the “bearer” token, refer to http://tools.ietf.org/html/draft- 
ietf-oauth-v2-bearer-23.

Let’s now look at different examples of creating an Open Graph activity.

Open Graph Implementation Examples
The following examples show how to create JSON for different types of Open Graph activities, which you can 
then use from line-of-business applications while posting data to Yammer.

Figure 5-8.  Request header with bearer token for an Open Graph activity endpoint

https://www.yammer.com/api/v1/activity.json
http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer-23
http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer-23


Chapter 5 ■ Writing Data into Yammer with Open Graph 

129

Single Activity with Object Types and Actions as a  
JSON String (Public Object)
The following shows the JSON code for the Training Calendar activity created by Alex Darrow on the 
SPDSUniversity app. It includes the message, “Hi all, the training schedule is now available!”

{
"activity":{
"actor":{"name":"Pathik Rawal",
"email":"pr@spdsuniversity.onmicrosoft.com"},
"action":"create",
"object": {
"url":"https://spdsuniversity.sharepoint.com/sites/SPDS/Lists/Modern%20Calendar/calendar.
aspx ",
"title":"SPDS University's Training Calendar"
},
"message":"SPDS University's Training Calendar- View updated calendar!",
}
}

The activity is then posted on Yammer, as shown in Figure 5-9.

Figure 5-9.  Open Graph activiy delivered as a public post and visible to all in the Recent Activity widget

https://spdsuniversity.sharepoint.com/sites/SPDS/Lists/Modern%20Calendar/calendar.aspx
https://spdsuniversity.sharepoint.com/sites/SPDS/Lists/Modern%20Calendar/calendar.aspx


Chapter 5 ■ Writing Data into Yammer with Open Graph 

130

Single Activity with Delivery Rules (Private Object)
We look at the previous example again, but this time the target recipients are specified with the user: 
element so that activities are visible to specified users only:

{
"activity":{
"actor":{"name":"Pathik Rawal",
"email":"pr@spdsuniversity.onmicrosoft.com"},
"action":"create",
"object": {
"url":"https://spdsuniversity.sharepoint.com/sites/SPDS/Lists/Modern%20Calendar/calendar.
aspx ",
"title":"SPDS University's Training Calendar"
},
"private":"true",
"message":"SPDS University's Training Calendar- View updated calendar!",
"users":[
  {"name":"Anne Wallace", "email":"annw@spdsuniversity.onmicrosoft.com"},
  {"name":"Tyler Chessman", "email":"tylerc@spdsuniversity.onmicrosoft.com"}
 ]
}
}

The activity is then posted on Yammer, as shown in Figure 5-10, and it will be visible to Anne Wallace 
and Tyler Chessman only.

Figure 5-10.  Open Graph activity delivered as private and visible to Anne Wallace and Tyler Chessman only

https://spdsuniversity.sharepoint.com/sites/SPDS/Lists/Modern%20Calendar/calendar.aspx
https://spdsuniversity.sharepoint.com/sites/SPDS/Lists/Modern%20Calendar/calendar.aspx


Chapter 5 ■ Writing Data into Yammer with Open Graph 

131

Multiple Activities
Yammer also allows developers to deliver multiple activities in one batch. When developers wrap multiple 
activities in one batch, this will prevent the client application from hitting the rate limit of the Yammer 
API. You will learn more about rate limits in Chapter 6. The following JSON code shows multiple activities 
wrapped in one batch:

{
"activity":{
"actor":{"name":"Pathik Rawal",
"email":"pr@spdsuniversity.onmicrosoft.com"},
"action":"create",
"object": {
"url":"https://spdsuniversity.sharepoint.com/sites/SPDS/Lists/Modern%20Calendar/calendar.
aspx ",
"title":"SPDS University's Training Calendar"
},
"message":"SPDS University's Training Calendar- View updated calendar!",
}
{
"activity":{
"actor":{"name":"Pathik Rawal",
"email":"pr@spdsuniversity.onmicrosoft.com"},
"action":"create",
"object": {
"url":"https://spdsuniversity.sharepoint.com/sites/SPDS/Lists/Modern%20Calendar/calendar.
aspx ",
"title":"SPDS University's Training Calendar"
},
"private":"true",
"message":"SPDS University's Training Calendar- View updated calendar!",
"users":[
  {"name":"Anne Wallace", "email":"annw@spdsuniversity.onmicrosoft.com"},
  {"name":"Tyler Chessman", "email":"tylerc@spdsuniversity.onmicrosoft.com"}
 ]
}
}

Case Study: Open Graph in the SPDSUniversity App
Finally it’s time to do lab exercises to learn how to integrate line-of-business application with Yammer 
using Open Graph. In the first exercise, you learn how to create custom objects and actions in Yammer for 
the SPDSUniversity line-of-business application. In Exercise 5-2, you learn how to integrate ASP.NET web 
applications into Yammer using the Open Graph protocol.

http://dx.doi.org/10.1007/978-1-4842-0943-1_6
https://spdsuniversity.sharepoint.com/sites/SPDS/Lists/Modern%20Calendar/calendar.aspx
https://spdsuniversity.sharepoint.com/sites/SPDS/Lists/Modern%20Calendar/calendar.aspx
https://spdsuniversity.sharepoint.com/sites/SPDS/Lists/Modern%20Calendar/calendar.aspx
https://spdsuniversity.sharepoint.com/sites/SPDS/Lists/Modern%20Calendar/calendar.aspx


Chapter 5 ■ Writing Data into Yammer with Open Graph 

132

Exercise 5-1 takes you through the process of creating objects and actions on an object.

EXERCISE 5-1: CREATE CUSTOM OPEN GRAPH OBJECTS  
FOR THE SPDSUNIVERSITY APP

In this exercise you learn to create Open Graph’s custom objects. First take a look at Table 5-7, which 
describes custom objects and their actions used in this exercise.

We will create the objects mentioned in Table 5-7 using the Yammer user interface. Let’s start:

1.	 Navigate to https://www.yammer.com/client_applications.

2.	 Alternatively, you can navigate to the registered apps using the Ellipsis button (…) 
and then choose Created Apps from drop-down menu, as illustrated in Figure 5-11.

Figure 5-11.  Registered Applications view

Table 5-7.  Open Graph's Custom Objects and Actions

Namespace Object Types Action Types

training_object Seminar Present: is creating
Past: created

Survey Present: is creating
Past: created

training_material Present: is creating
Past: created

training_monthly_calendar Present: is creating
Past: created

training_video Present: is creating
Past: created

https://www.yammer.com/client_applications


Chapter 5 ■ Writing Data into Yammer with Open Graph 

133

3.	 Click on the SPDSUniversity app from the Registered Application screen.

4.	 From the Yammer App configuration page, click on Open Graph on the left side  
of the screen.

5.	 You will be presented with the screen shown in Figure 5-13. Enter training_object 
for the namespace of the custom Open Graph object.

Figure 5-13.  The Yammer app's Open Graph page to configure namespace

Figure 5-12.  Yammer App configuration page



Chapter 5 ■ Writing Data into Yammer with Open Graph 

134

6.	 After entering the namespace, we will configure the object type called seminar. 
In the Type textbox, enter seminar. In the singular form, enter a seminar and the 
plural form should be seminars. Finally, click on Save.

7.	 Configure the object type called survey. In the Type textbox, enter survey,  
and in singular form, enter a survey. The plural form should be surveys.  
Finally, click on Save.

Figure 5-14.  The Yammer app’s Open Graph types

Figure 5-15.  The Yammer app’s Open Graph type definitions



Chapter 5 ■ Writing Data into Yammer with Open Graph 

135

8.	 Now you’ll configure the object type called training_material. In the Type 
textbox, enter training_material. In the singular form, enter a training 
material. The plural form should be training materials. Then click on Save.

9.	 In this step, you’ll configure the object type called training_monthly_calendar. In 
the Type textbox, enter a training monthly calendar. In the singular form, enter 
a training monthly calendar. The plural form should be training monthly 
calendars. Then click on Save.

Figure 5-16.  The Yammer app’s Open Graph type definitions

Figure 5-17.  The Yammer app’s Open Graph type definitions



Chapter 5 ■ Writing Data into Yammer with Open Graph 

136

10.	 Now configure the object type called training_video, In the Type textbox, enter 
training_video. In the singular form, enter a training video. The plural form is 
training videos. Then click on Save.

At this point of time, you have successfully configured the Open Graph custom objects for the  
Yammer app called SPDSUniversity. We will use those objects in the next exercise to write data into 
Yammer’s activity.

EXERCISE 5-2: BUILD ASP.NET SPDSUNIVERSITY WEB APPLICATION 
INTEGRATION WITH YAMMER USING OPEN GRAPHS

In this exercise, we are going to use the same web application that we developed in Exercise 4-1 to 
implement writing data into Yammer using Open Graph. We are going to add more classes, methods, 
and UI control to write data into Yammer from an ASP.NET web applications using the Open Graph 
protocol.

Open the Existing Project

In Chapter 4, you learned about implementing authentication by developing ASP.NET web application. 
If you have not developed that ASP.NET web application by following the detailed steps in Exercise 4-1, 
we strongly recommend that you read Chapter 4 and create a new project by following the step-by-step 
guide to implement authentication.

Figure 5-18.  The Yammer app’s Open Graph types definitions

http://dx.doi.org/10.1007/978-1-4842-0943-1_4
http://dx.doi.org/10.1007/978-1-4842-0943-1_4


Chapter 5 ■ Writing Data into Yammer with Open Graph 

137

1.	 Launch Microsoft Visual Studio and open the existing project that you created in 
Exercise 4-1. The structure of the project should look like Figure 5-19.

Classes for Yammer Activity

Yammer REST APIs exchange data using XML (Extensible Mark-Up Language) and JSON (JavaScript 
Object Notation) textual data formatting. When you make a request to Yammer, Yammer responds by 
returning XML or JSON data, depending on which data format you request. You can then parse that 
data and go joyfully on your programming way. We’ll write a bunch of .NET classes that we can use to 
serialize and deserialize back and forth. Let’s take a look at a few classes required at this stage.

Figure 5-19.  Existing ASP.NET web application project structure developed in Exercise 4-1



Chapter 5 ■ Writing Data into Yammer with Open Graph 

138

2.	 OG_GraphObj_Instance.cs: Add a class to the App_Code folder and name it  
OG_GraphObj_Instance.cs, as illustrated in Figure 5-20.

Figure 5-20.  Add a new class to the project

Table 5-8.  .NET Classes to Write Data into Yammer Using Open Graph

Class Description

OG_GraphObj_Instance This class represents the actual Graph Object that describes the object using 
attributes like URL (unique property), type of object, image, name, and title of 
the object.

OG_Actor This class represents the actor—a user who acts on the object, using attributes 
name and email.

OG_Activity This class represents the activity with attributes for actor and action.

OG_GraphObj This class represents the activity object and a function to convert the object 
into a string.

YammerUtility We have already designed this class in a previous chapter and we going to add 
few methods to this class to enhance the functionality of our web applications.



Chapter 5 ■ Writing Data into Yammer with Open Graph 

139

3.	 Open the class file and add the following code to the class. This class defines 
properties such as URL, Type, Title, Image, and Description for the Open Graph 
object.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Xml.Serialization;
using System.Diagnostics;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Json;
 
namespace SPDSUniversityWebApplication.App_Code
{
    /// <summary>
    �/// This class represents the actual Graph Object which 

describes the object using attributes
    �/// like URL (Unique property), type of object, image, name and 

title of the object
    /// </summary>
    [DataContract]
    public class OG_GraphObj_Instance
    {
        [DataMember(Name = "url")]
        public string Url { get; set; }
 
        [DataMember(Name = "type")]
        public string Type { get; set; }
 
        [DataMember(Name = "title")]
        public string Title { get; set; }
 
        [DataMember(Name = "image")]
        public string Image { get; set; }
 
        [DataMember(Name = "description")]
        public string Description { get; set; }
    }
 
}

An Open Graph object is the key piece of any activity. It represents an entity instance in your app, such 
as an URL, Title, Page, Place, Person, Team, Project, and Folder, and so on.



Chapter 5 ■ Writing Data into Yammer with Open Graph 

140

4.	 OG_Actor.cs: Add another class to the App_Code folder and name it OG_Actor.cs. 
After that, open the class file and add the following code to the class. This class 
represents an actor, which defines properties such as name and email.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Json;
using System.IO;
using System.Xml.Serialization;
using System.Diagnostics;
 
namespace SPDSUniversityWebApplication.App_Code
{
    /// <summary>
    �/// This class represents the Actor, user who acts on the 

object, using attributes name and email
    /// </summary>
    [DataContract]
    public class OG_Actor
    {
        [DataMember(Name = "name")]
        public string Name { get; set; }
 
        [DataMember(Name = "email")]
        public string Email { get; set; }
 
        public OG_Actor() { }
 
        public OG_Actor(string name, string email)
        {
            this.Name = name;
            this.Email = email;
        }
    }
}

Table 5-9.  OG_GraphObj_Instance Class’s Attributes

Property Description

URL This URL property represents the URL of the object, such as the URL of 
the document path or the web URL.

Type The type represents the object type, such as document, page, and link.

Title The title property represents the title that will be shown in the recent 
activity widget.

Image Represents an image that can be associated with an object.

Description Represents the details description for the object.



Chapter 5 ■ Writing Data into Yammer with Open Graph 

141

The actor class defines the properties listed in Table 5-10.

5.	 OG_Activity.cs: Add another class to the App_Code folder and name it  
OG_Activity.cs. Open the class file and add the following code to the class.  
This class represents the actual Yammer activity that defines properties such as an 
instance of OG_Actor, an instance of OG_GraphObj_Instance, and a list object for 
users, messages, and actions such as create, update, delete, like, and follow.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Json;
using System.IO;
using System.Xml.Serialization;
using System.Diagnostics;
 
namespace SPDSUniversityWebApplication.App_Code
{
    /// <summary>
    /// Summary description for YammerOG_Activity
    /// </summary>
    [DataContract]
    public class OG_Activity
    {
        [DataMember(Name = "actor")]
        public OG_Actor Actor { get; set; }
 
        [DataMember(Name = "action")]
        public string Action { get; set; }
 
        [DataMember(Name = "object")]
        public OG_GraphObj_Instance Object { get; set; }
 
        [DataMember(Name = "message")]
        public string Message { get; set; }
 
        [DataMember(Name = "private")]
        public bool Private { get; set; }
 

Table 5-10.  OG_Actor Class’s Attributes

Property Description

Name This property represents the Yammer’s username

Email This property represents the Yammer user email as per the Yammer account.



Chapter 5 ■ Writing Data into Yammer with Open Graph 

142

        [DataMember(Name = "users")]
        public List<OG_Actor> Users { get; set; }
 
        public OG_Activity()
        {
            this.Actor = new OG_Actor();
            this.Object = new OG_GraphObj_Instance();
            this.Users = new List<OG_Actor>();
            this.Private = false;
        }
    }
} 

6.	 OG_GraphObj.cs: Finally, add a class to the App_Code folder and name  
it OG_GraphObj.cs to the project and add the following code to the class file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Json;
using System.IO;
using System.Xml.Serialization;
using System.Diagnostics;
 
namespace SPDSUniversityWebApplication.App_Code
{
    /// <summary>
    /// This class represents the Activity Object and a function to 
convert object into string

Table 5-11.  OG_Activity Class’s Attributes

Property Description

Action This property represents the action on an object, such as Create, Update, Delete, Like,  
and Follow.

Message This property represents the message for the activity post, such as “This is for the new  
sales proposal”.

Private This property represents the visibility of the pot, whether you want to mark it as private  
or public.

Users This property represents the user collection object in which more users can be added to the 
activity who will be notified when this activity is posted.

Actor This property represents a user who performing the activity.

Object The object property represents the OG_GraphObj_Instance, which is described in the 
OG_GraphObj_Instance.css class, which contains properties like URL, Title, Description, 
Image, and the types.



Chapter 5 ■ Writing Data into Yammer with Open Graph 

143

    /// </summary>
    [DataContract]
    public class OG_GraphObj
    {
        [DataMember(Name = "activity")]
        public OG_Activity Activity { get; set; }
 
        public OG_GraphObj()
        {
            this.Activity = new OG_Activity();
        }
 
        public override string ToString()
        {
            string jsonData = string.Empty;
 
            try
            {
                �DataContractJsonSerializer ys = new DataContractJson

Serializer(typeof(OG_GraphObj));
                MemoryStream msBack = new MemoryStream();
                ys.WriteObject(msBack, this);
                msBack.Position = 0;
                StreamReader sr = new StreamReader(msBack);
                jsonData = sr.ReadToEnd();
 
                //replace \\ with / as in jsonData
                jsonData = jsonData.Replace("\\/", "/");
            }
            catch (Exception ex)
            {
                �Debug.WriteLine("An Error occurred in serializing 

into string: " + ex.Message);
            }
 
            return jsonData;
        }
    }
}
 

7.	 YammerUtility.cs: This sample application has a class (YammerUtility.cs) that 
contains all common methods to support the integration. Open YammerUtility.cs.

8.	 Add the following namespace in the YammerUtility.cs file:

using System.Text;



Chapter 5 ■ Writing Data into Yammer with Open Graph 

144

9.	 Add the following to the class named PostRequesttoYammer in YammerUtility.cs:

/// <summary>
///
/// </summary>
/// <param name="postBody"></param>
/// <param name="url"></param>
/// <param name="authHeader"></param>
/// <param name="contentType"></param>
/// <returns></returns>
�public static string PostRequesttoYammer(string postBody, string url, 
string authHeader = null, string contentType = null)
{
    string results = string.Empty;
 
    try
    {
 
        HTTPWebReq = WebRequest.CreateHttp(url);
        HTTPWebReq.Method = "POST";

        if (!string.IsNullOrEmpty(authHeader))
            �HTTPWebReq.Headers.Add("Authorization",  

"Bearer " + authHeader);
 
        byte[] postByte = Encoding.UTF8.GetBytes(postBody);
 
        if (string.IsNullOrEmpty(contentType))
            �HTTPWebReq.ContentType = "application/ 

x-www-form-urlencoded";
        else
            HTTPWebReq.ContentType = contentType;
 
        HTTPWebReq.ContentLength = postByte.Length;
        Stream postStream = HTTPWebReq.GetRequestStream();
        postStream.Write(postByte, 0, postByte.Length);
        postStream.Close();
 
        �HTTPWebRes = (HttpWebResponse)HTTPWebReq.GetResponse();
        postStream = HTTPWebRes.GetResponseStream();
        �StreamReader postReader = new StreamReader(postStream);
 
        results = postReader.ReadToEnd();
 
        postReader.Close();
        postStream.Close();
    }
    catch (Exception ex)
    {
    }
 
    return results;
}



Chapter 5 ■ Writing Data into Yammer with Open Graph 

145

This method takes four parameters, as described in Table 5-12.

Posting Object Type: Document

Default.aspx: You have added all the necessary classes to the App_Code folder, so now it’s time to add 
the user interface to the web page. This includes adding a button to the default.aspx page, which will 
include an on click event to trigger the method to write data into Yammer using Open Graph.

10.	 In the App_Data folder, add the following XML and name it Courses.xml:

<?xml version="1.0" encoding="utf-8" ?>
<Courses>
  <Course>
    <Name>SharePoint 2013 App Development</Name>
    <Level>Advanced</Level>
    <Duration>3 Days</Duration>
    <Trainer>Alex Darrow</Trainer>
    <Noofseats>10</Noofseats>
  </Course>
  <Course>
    <Name>Yammer Integration</Name>
    <Level>Advanced</Level>
    <Duration>3 Days</Duration>
    <Trainer>Alex Darrow</Trainer>
    <Noofseats>10</Noofseats>
  </Course>
  <Course>
    <Name>Microsoft AX for Developer</Name>
    <Level>Advanced</Level>
    <Duration>3 Days</Duration>
    <Trainer>Alex Darrow</Trainer>
    <Noofseats>10</Noofseats>
  </Course>
  <Course>

Table 5-12.  PostRequesttoYammer Method’s Parameters

Property Description

postBody The actual body of the post. For Open Graph, the string should be in 
the <Actor> <Action> <Object> on <App Name>: <Message> format.

url The endpoint URL of the Yammer API. In this case, it is  
https://www.yammer.com/api/v1/activity.json.

authHeader The access token received so the user can make subsequent calls.

contentType The content type HTTP web request object. In this case, it’s 
application/x-www-form-urlencoded.

https://www.yammer.com/api/v1/activity.json


Chapter 5 ■ Writing Data into Yammer with Open Graph 

146

    <Name>C# 4.5 for Developer</Name>
    <Level>Advanced</Level>
    <Duration>2 Days</Duration>
    <Trainer>Alex Darrow</Trainer>
    <Noofseats>10</Noofseats>
  </Course>
</Courses>

11.	 Add the following <div> control in Default.aspx, just after </ol>.

<div id="CourseDiv" runat="server">
        <h3>Upcoming Training&nbsp;</h3>
        <p>
            �<asp:XmlDataSource ID="XmlDataSourceCourse" 

runat="server" DataFile="~/App_Data/Courses.xml"></
asp:XmlDataSource>

 
            �<asp:GridView ID="GridView1" runat="server" XPath="/

Employees/Employee" DataSourceID="XmlDataSourceCourse"
                �AutoGenerateColumns="False" HeaderStyle-

BackColor="#3AC0F2" HeaderStyle-ForeColor="White" 
BackColor="White" BorderColor="#336666" 
BorderStyle="Double" BorderWidth="3px" 
CellPadding="4" GridLines="Horizontal" 
Height="124px" Width="985px">

                <Columns>
                    <�asp:TemplateField HeaderText="Name" 

HeaderStyle-Width="50">
                        <ItemTemplate>
                            <%# XPath("Name") %>
                        </ItemTemplate>
 
<HeaderStyle Width="50px"></HeaderStyle>
                    </asp:TemplateField>
                    �<asp:TemplateField HeaderText="Name" 

HeaderStyle-Width="50">
                        <ItemTemplate>
                            <%# XPath("Level") %>
                        </ItemTemplate>
 
<HeaderStyle Width="50px"></HeaderStyle>
                    </asp:TemplateField>
                    �<asp:TemplateField HeaderText="Name" 

HeaderStyle-Width="50">
                        <ItemTemplate>
                            <%# XPath("Duration") %>
                        </ItemTemplate>
 



Chapter 5 ■ Writing Data into Yammer with Open Graph 

147

<HeaderStyle Width="50px"></HeaderStyle>
                    </asp:TemplateField>
                    �<asp:TemplateField HeaderText="Name" 

HeaderStyle-Width="50">
                        <ItemTemplate>
                            <%# XPath("Trainer") %>
                        </ItemTemplate>
 
<HeaderStyle Width="50px"></HeaderStyle>
                    </asp:TemplateField>
                       �<asp:TemplateField HeaderText="Name" 

HeaderStyle-Width="50">
                        <ItemTemplate>
                            <%# XPath("Noofseats") %>
                        </ItemTemplate>
 
<HeaderStyle Width="50px"></HeaderStyle>
                    </asp:TemplateField>
 
                </Columns>
                <FooterStyle BackColor="White" ForeColor="#333333" />
 
                �<HeaderStyle BackColor="#336666" ForeColor="White" 

Font-Bold="True"></HeaderStyle>
                �<PagerStyle BackColor="#336666" ForeColor="White" 

HorizontalAlign="Center" />
                �<RowStyle BackColor="White" ForeColor="#333333" />
                �<SelectedRowStyle BackColor="#339966" Font-

Bold="True" ForeColor="White" />
                <SortedAscendingCellStyle BackColor="#F7F7F7" />
                <SortedAscendingHeaderStyle BackColor="#487575" />
                <SortedDescendingCellStyle BackColor="#E5E5E5" />
                <SortedDescendingHeaderStyle BackColor="#275353" />
            </asp:GridView>
        </p>
 
    </div>

12.	 Add the following key in <AppSettings> in the web.config file.

<add key="activityURL" value="https://www.yammer.com/api/v1/activity.json" />

13.	 Add the following HTML markup for a button in the Default.aspx file.

<table>
    <tr><td><asp:Button ID="btnWriteDataOG" CssClass="button" runat="server" 
OnClick="btnWriteDataOG_Click" Text="Write Document into Yammer Using OG" 
Width="363px" /></td></tr>
</table>

https://www.yammer.com/api/v1/activity.json


Chapter 5 ■ Writing Data into Yammer with Open Graph 

148

The button will look like the one shown in Figure 5-21.

14.	 Default.aspx.cs: You will now add the code in the code-behind file Default.
aspx.cs, which is a button’s click event handler code to create the Open Graph 
object by using the classes you created in the previous steps. The following code 
creates an object of the class OG_GraphObj and assigns values to properties like 
actor, message, and actions. The next few lines create an instance of the class 
YammerGraphObjectInstance, which is used to specify the URL property, the title 
of the activity, the description of the activity, including an image and type of object 
(document).

/// <summary>
        /// Event Handler to write Document object
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        protected void btnWriteDataOG_Click(object sender, EventArgs e)
        {
            �SPDSUniversityWebApplication.App_Code.OG_GraphObj 

yammergraphobject = new SPDSUniversityWebApplication.
App_Code.OG_GraphObj();

 

Figure 5-21.  The Write Document button



Chapter 5 ■ Writing Data into Yammer with Open Graph 

149

            �yammergraphobject.Activity.Actor = new 
SPDSUniversityWebApplication.App_Code.OG_Actor("Pathik 
Rawal", "pr@spdsuniversity.onmicrosoft.com");

            �yammergraphobject.Activity.Message = "Learn the sales 
process in Microsoft Dynamics CRM.";

            yammergraphobject.Activity.Action = "create";
 
            �SPDSUniversityWebApplication.App_Code.OG_

GraphObj_Instance yammergraphobjectinst = new 
SPDSUniversityWebApplication.App_Code.OG_GraphObj_
Instance();

 
            �yammergraphobjectinst.Url = "https://

spdsuniversity.sharepoint.com/_layouts/15/
WopiFrame.aspx?sourcedoc=%7B7614951D-3C30-
4924-B815-1354570EE805%7D&file=2014%20Expenses.
xlsx&action=default";

            �yammergraphobjectinst.Title = "Microsoft Dynamics CRM 
2015 User Guide";

            �yammergraphobjectinst.Description = "Microsoft Dynamics 
CRM 2015 User Guide";

            �yammergraphobjectinst.Image = "https://www.yammer.com/
api/v1/uploaded_files/29860625/version/28812608/preview/
UAPP_LOGO.png";

            yammergraphobjectinst.Type = "document";
 
            �yammergraphobject.Activity.Object = yammergraphobjectinst;
 
            string postData = yammergraphobject.ToString();
            �string activityURL = WebConfigurationManager.

AppSettings["activityURL"];
            �string response = SPDSUniversityWebApplication.App_Code.

YammerUtility.PostRequesttoYammer(postData, activityURL, 
txtaccesstoken.Text.ToString(), "application/json");

 
        }

https://spdsuniversity.sharepoint.com/_layouts/15/WopiFrame.aspx?sourcedoc=%7B7614951D-3C30-4924-B815-1354570EE805%7D&file=2014%20Expenses.xlsx&action=default
https://spdsuniversity.sharepoint.com/_layouts/15/WopiFrame.aspx?sourcedoc=%7B7614951D-3C30-4924-B815-1354570EE805%7D&file=2014%20Expenses.xlsx&action=default
https://spdsuniversity.sharepoint.com/_layouts/15/WopiFrame.aspx?sourcedoc=%7B7614951D-3C30-4924-B815-1354570EE805%7D&file=2014%20Expenses.xlsx&action=default
https://spdsuniversity.sharepoint.com/_layouts/15/WopiFrame.aspx?sourcedoc=%7B7614951D-3C30-4924-B815-1354570EE805%7D&file=2014%20Expenses.xlsx&action=default
https://spdsuniversity.sharepoint.com/_layouts/15/WopiFrame.aspx?sourcedoc=%7B7614951D-3C30-4924-B815-1354570EE805%7D&file=2014%20Expenses.xlsx&action=default
https://www.yammer.com/api/v1/uploaded_files/29860625/version/28812608/preview/UAPP_LOGO.png
https://www.yammer.com/api/v1/uploaded_files/29860625/version/28812608/preview/UAPP_LOGO.png
https://www.yammer.com/api/v1/uploaded_files/29860625/version/28812608/preview/UAPP_LOGO.png


Chapter 5 ■ Writing Data into Yammer with Open Graph 

150

When the page is posted to Yammer using Open Graph, the post will look like Figure 5-22, showing the 
Recent Activity view.

Posting Object Type: Page

The Page Object type represents a web page that can be posted as an object into Yammer using the 
Open Graph. The important object attributes for page are URL of the Page, Title, and Description, Image, 
and Type.

Action type: Create, Update, and Delete can be used on object page. Use the right action term provided 
in the code snippet (such as action: create, action: update, and action: delete).

15.	 Add the Write Page Object into Yammer Using OG button to the markup  
in Default.aspx below the button control in the previous step.

<tr><td><asp:Button ID="btnWriteDataOGPage" runat="server" 
OnClick="btnWriteDataOGPage_Click" Text="Write Page Object into 
Yammer Using OG" Width="363px" /></td></tr>

The button will look like the one shown in Figure 5-23.

Figure 5-22.  Document Object activity on Yammer



Chapter 5 ■ Writing Data into Yammer with Open Graph 

151

16.	 Add a button click event in Default.aspx.cs. Add the following code to  
Default.aspx.cs:

/// <summary>
       /// Write a Page Object into Yammer.
       /// </summary>
       /// <param name="sender"></param>
       /// <param name="e"></param>
       �protected void btnWriteDataOGPage_Click(object sender, 

EventArgs e)
       {
           �SPDSUniversityWebApplication.App_Code.OG_GraphObj 

yammergraphobject = new SPDSUniversityWebApplication.
App_Code.OG_GraphObj();

 
           �yammergraphobject.Activity.Actor = new 

SPDSUniversityWebApplication.App_Code.OG_Actor 
("Pathik Rawal", "pr@spdsuniversity.onmicrosoft.com");

           �yammergraphobject.Activity.Message = "SPDS University's 
Training Calendar- View updated calendar";

           yammergraphobject.Activity.Action = "create";
 
           �SPDSUniversityWebApplication.App_Code.OG_GraphObj_Instance 

yammergraphobjectinst = new SPDSUniversityWebApplication.
App_Code.OG_GraphObj_Instance();

 

Figure 5-23.  The Write Page Object button



Chapter 5 ■ Writing Data into Yammer with Open Graph 

152

           �yammergraphobjectinst.Url = "https://spdsuniversity.
sharepoint.com/sites/SPDS/Lists/Modern%20Calendar/
calendar.aspx";

           �yammergraphobjectinst.Title = "SPDS University's Training 
Calendar";

           �yammergraphobjectinst.Description = "SPDS University's 
Training Calendar- upcoming trainings";

           �yammergraphobjectinst.Image = "https://www.yammer.com/
api/v1/uploaded_files/29860625/version/28812608/preview/
UAPP_LOGO.png";

           yammergraphobjectinst.Type = "page";
 
           �yammergraphobject.Activity.Object = yammergraphobjectinst;
 
           string postData = yammergraphobject.ToString();
           �string activityURL = WebConfigurationManager.

AppSettings["activityURL"];
           �string response = SPDSUniversityWebApplication.App_Code.

YammerUtility.PostRequesttoYammer(postData, activityURL, 
txtaccesstoken.Text.ToString(), "application/json");

 
       }

Table 5-13.  Object Attribute for a Page Object

Object Attribute Description

Title This property represents the title of the page.

URL This property represents the URL of the page.

Image Thumbnail image displayed as a title.

Description Page description.

When the page is posted to Yammer using Open Graph, the post will look as shown in Figure 5-24,  
the Recent Activity view.

https://spdsuniversity.sharepoint.com/sites/SPDS/Lists/Modern%20Calendar/calendar.aspx
https://spdsuniversity.sharepoint.com/sites/SPDS/Lists/Modern%20Calendar/calendar.aspx
https://spdsuniversity.sharepoint.com/sites/SPDS/Lists/Modern%20Calendar/calendar.aspx
https://www.yammer.com/api/v1/uploaded_files/29860625/version/28812608/preview/UAPP_LOGO.png
https://www.yammer.com/api/v1/uploaded_files/29860625/version/28812608/preview/UAPP_LOGO.png
https://www.yammer.com/api/v1/uploaded_files/29860625/version/28812608/preview/UAPP_LOGO.png


Chapter 5 ■ Writing Data into Yammer with Open Graph 

153

Posting Object Type: Place

The Page Object type represents a place that can be posted as an object into Yammer using Open 
Graph. This object type represents a place—such as a venue, a business, a landmark, or any other 
location—that can be identified by longitude and latitude.

17.	 Add the Write Place Object into Yammer Using OG button markup in Default.aspx, 
below the button you added in the previous step.

<tr><td><asp:Button ID="btnWriteDataOGPlace" runat="server" 
OnClick="btnWriteDataOGPlace_Click" Text="Write Place Object into 
Yammer Using OG" Width="363px" /></td></tr>

18.	 Add a button click event in Default.aspx.cs. Add the following code to  
Default.aspx.cs.

/// <summary>
        ///  Write a Place Object into Yammer.
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        �protected void btnWriteDataOGPlace_Click(object sender, 

EventArgs e)
        {
            �SPDSUniversityWebApplication.App_Code.OG_GraphObj 

yammergraphobject = new SPDSUniversityWebApplication.
App_Code.OG_GraphObj();

 

Figure 5-24.  Page Object activity on Yammer



Chapter 5 ■ Writing Data into Yammer with Open Graph 

154

            �yammergraphobject.Activity.Actor = new 
SPDSUniversityWebApplication.App_Code.OG_Actor 
("Pathik Rawal", "pr@spdsuniversity.onmicrosoft.com");

            �yammergraphobject.Activity.Message = "SPDS's new 
Training Venue";

            yammergraphobject.Activity.Action = "create";
            �SPDSUniversityWebApplication.App_Code.OG_

GraphObj_Instance yammergraphobjectinst = new 
SPDSUniversityWebApplication.App_Code.OG_ 
GraphObj_Instance();

 
            �yammergraphobjectinst.Url = "https://www.google.co.uk/

maps/place/Oxford+St,+London/@51.5154003,-0.1412821,17z/
data=!3m1!4b1!4m2!3m1!1s0x48761ad554c335c1:0xda2164b934c
67c1a?hl=en";

            �yammergraphobjectinst.Title = "SPDS's new  
Training Venue";

            �yammergraphobjectinst.Description = "We are in process 
of moving our training location to a new address in the 
heart of the city";

            �yammergraphobjectinst.Image = "https://www.yammer.com/
api/v1/uploaded_files/29860625/version/28812608/preview/
UAPP_LOGO.png";

            �yammergraphobjectinst.Type = "place";
            �yammergraphobject.Activity.Object = 

yammergraphobjectinst;
            string postData = yammergraphobject.ToString();
            �string activityURL = WebConfigurationManager.

AppSettings["activityURL"];
            �string response = SPDSUniversityWebApplication.App_Code.

YammerUtility.PostRequesttoYammer(postData, activityURL, 
txtaccesstoken.Text.ToString(), "application/json");

 
        }

When the place is posted to Yammer using Open Graph, the post will look like Figure 5-25, which shows 
the activity details view. Figure 5-26 shows the Activity Details page.

Table 5-14.  Object Attribute for a Place Object

Object Attribute Description

Title This property represents the title of the place.

URL This property represents the URL of the place, possibly the maps in Google.

Image Thumbnail image displayed as a title.

Description Page description.

https://www.google.co.uk/maps/place/Oxford+St,+London/@51.5154003,-0.1412821,17z/data=!3m1!4b1!4m2!3m1!1s0x48761ad554c335c1:0xda2164b934c67c1a?hl=en
https://www.google.co.uk/maps/place/Oxford+St,+London/@51.5154003,-0.1412821,17z/data=!3m1!4b1!4m2!3m1!1s0x48761ad554c335c1:0xda2164b934c67c1a?hl=en
https://www.google.co.uk/maps/place/Oxford+St,+London/@51.5154003,-0.1412821,17z/data=!3m1!4b1!4m2!3m1!1s0x48761ad554c335c1:0xda2164b934c67c1a?hl=en
https://www.google.co.uk/maps/place/Oxford+St,+London/@51.5154003,-0.1412821,17z/data=!3m1!4b1!4m2!3m1!1s0x48761ad554c335c1:0xda2164b934c67c1a?hl=en
https://www.yammer.com/api/v1/uploaded_files/29860625/version/28812608/preview/UAPP_LOGO.png
https://www.yammer.com/api/v1/uploaded_files/29860625/version/28812608/preview/UAPP_LOGO.png
https://www.yammer.com/api/v1/uploaded_files/29860625/version/28812608/preview/UAPP_LOGO.png


Chapter 5 ■ Writing Data into Yammer with Open Graph 

155

Figure 5-26.  Yammer Open Graph activity showing a place object in detail view

Figure 5-25.  Yammer Open Graph activity showing a place object



Chapter 5 ■ Writing Data into Yammer with Open Graph 

156

Posting Object Type: Person

The person object type represents a person or Yammer user that can be specified as an object into 
Yammer using Open Graph.

This object type represents a person.

19.	 Add the Write Person Object into Yammer Using OG button markup in  
Default.aspx, just below the button markup you added in the previous step.

<tr><td><asp:Button ID="btnWriteDataOGPerson" runat="server" 
OnClick="btnWriteDataOGPerson_Click" Text="Write Person Object  
into Yammer Using OG" Width="363px"  /></td></tr>

20.	 Add the button click event in Default.aspx.cs.

/// <summary>
        /// Write Data into Yammer using object type Person
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        �protected void btnWriteDataOGPerson_Click(object sender, 

EventArgs e)
        {
            �SPDSUniversityWebApplication.App_Code.OG_GraphObj yOG_obj 

= new SPDSUniversityWebApplication.App_Code.OG_GraphObj();
 
            �yOG_obj.Activity.Actor = new 

SPDSUniversityWebApplication.App_Code.OG_Actor("Pathik 
Rawal", "pr@spdsuniversity.onmicrosoft.com");

            �yOG_obj.Activity.Message = "Brian Johnson is now 
#certified  #DynamicCRM2014 expert ";

            yOG_obj.Activity.Action = "create";
            �SPDSUniversityWebApplication.App_Code.OG_GraphObj_

Instance yOGobjInst = new SPDSUniversityWebApplication.
App_Code.OG_GraphObj_Instance();

 
            �yOGobjInst.Url = "https://www.yammer.com/SPDSpetro.com/

users/brianj";
            yOGobjInst.Title = "CRM Certificed";
            �yOGobjInst.Description = "Please join me in 

conguratulating Brian Johnson on his achievement";
            �yOGobjInst.Image = "https://www.yammer.com/api/v1/uploaded_

files/29860625/version/28812608/preview/UAPP_LOGO.png";
            yOGobjInst.Type = "person";
            yOG_obj.Activity.Object = yOGobjInst;
            string postData = yOG_obj.ToString();
            �string activityURL = WebConfigurationManager.

AppSettings["activityURL"];
            �string response = SPDSUniversityWebApplication.App_Code.

YammerUtility.PostRequesttoYammer(postData, activityURL, 
txtaccesstoken.Text.ToString(), "application/json");

 
        } 

https://www.yammer.com/SPDSpetro.com/users/brianj
https://www.yammer.com/SPDSpetro.com/users/brianj
https://www.yammer.com/api/v1/uploaded_files/29860625/version/28812608/preview/UAPP_LOGO.png
https://www.yammer.com/api/v1/uploaded_files/29860625/version/28812608/preview/UAPP_LOGO.png


Chapter 5 ■ Writing Data into Yammer with Open Graph 

157

When the person object is posted to Yammer using Open Graph, the post will look as illustrated in 
Figure 5-27, which shows the activity details view. Figure 5-28 shows the Activity Details page.

Figure 5-27.  Yammer Open Graph activity showing a person object

Figure 5-28.  Yammer Open Graph activity showing a person object in detail view



Chapter 5 ■ Writing Data into Yammer with Open Graph 

158

Posting Object Type: Videos

Similar to the page object, the video object type represents a video file that can be posted to Yammer 
using Open Graph.

Action type: create, update, and delete can be used. Use the right action term provided in the code 
snippet; for example action: create, action: update, and action: delete.

This object type represents a video object.

21.	 Add the Write Video Object into Yammer Using OG button to the markup in  
Default.aspx.

<tr><td><asp:Button ID="btnWriteDataOGVideo" class="btn btn-
primary btn-lg" runat="server" OnClick="btnWriteDataOGVideo_Click" 
Text="Write Video Object  " Width="363px" /></td></tr>

22.	 Add the button click event in Default.aspx.cs.

/// <summary>
        /// Posting a Video using Open Graph
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        �protected void btnWriteDataOGVideo_Click(object sender, 

EventArgs e)
        {
            �SPDSUniversityWebApplication.App_Code.OG_GraphObj 

yOG_obj = new SPDSUniversityWebApplication.App_Code.
OG_GraphObj();

 
            �yOG_obj.Activity.Actor = new 

SPDSUniversityWebApplication.App_Code.OG_Actor 
("Pathik Rawal","pr@spdsuniversity.onmicrosoft.com");

            �yOG_obj.Activity.Message = "Explore Microsoft Dynamics 
CRM more deeply-Introduction to Microsoft Dynamics CRM 
2013 .";

            yOG_obj.Activity.Action = "create";
            �SPDSUniversityWebApplication.App_Code.OG_

GraphObj_Instance yammergraphobjectinst = new 
SPDSUniversityWebApplication.App_Code.OG_GraphObj_
Instance();

 
            �yammergraphobjectinst.Url = "http://video.ch9.ms/

ch9/62c8/87663cbb-5485-4264-b23d-371d2b7362c8/
IntroToDynamicsCRM2013M02.mp3";

            �yammergraphobjectinst.Title = "Introduction to Microsoft 
Dynamics CRM 2013";

            �yammergraphobjectinst.Description = "Find out about 
accounts and contacts (and the relationship between 
them), activities, Yammer, views, importing data, and 
processes..";

http://video.ch9.ms/ch9/62c8/87663cbb-5485-4264-b23d-371d2b7362c8/IntroToDynamicsCRM2013M02.mp3
http://video.ch9.ms/ch9/62c8/87663cbb-5485-4264-b23d-371d2b7362c8/IntroToDynamicsCRM2013M02.mp3
http://video.ch9.ms/ch9/62c8/87663cbb-5485-4264-b23d-371d2b7362c8/IntroToDynamicsCRM2013M02.mp3


Chapter 5 ■ Writing Data into Yammer with Open Graph 

159

            �yammergraphobjectinst.Image = "https://www.yammer.com/
api/v1/uploaded_files/29860625/version/28812608/preview/
UAPP_LOGO.png";

            yammergraphobjectinst.Type = "video";
 
            yOG_obj.Activity.Object = yammergraphobjectinst;
            string postData = yOG_obj.ToString();
            �string activityURL = WebConfigurationManager.

AppSettings["activityURL"];
            �string response = SPDSUniversityWebApplication.App_Code.

YammerUtility.PostRequesttoYammer(postData, activityURL, 
txtaccesstoken.Text.ToString(), "application/json");

 
        }
 

When the video object is posted to Yammer using Open Graph, the post will show the video icons 
illustrated in Figure 5-29, which shows the activity details view. Figure 5-30 shows the Activity  
Details page.

Figure 5-29.  Yammer Open Graph activity showing a video object

https://www.yammer.com/api/v1/uploaded_files/29860625/version/28812608/preview/UAPP_LOGO.png
https://www.yammer.com/api/v1/uploaded_files/29860625/version/28812608/preview/UAPP_LOGO.png
https://www.yammer.com/api/v1/uploaded_files/29860625/version/28812608/preview/UAPP_LOGO.png


Chapter 5 ■ Writing Data into Yammer with Open Graph 

160

Posting Custom Object Type: Training Object

The training_object object type is custom object that represents a training object for the web 
application SPDS University web application, which can be posted as an object into Yammer using  
Open Graph.

Action type: create can be used. Use the right action term provided in the code snippet; for example 
action: create. This exercise only defines the create action for training_object, but you can 
enhance the object’s actions by creating more actions like update and delete.

This object type represents a video object.

23.	 Add the Write Training Object into Yammer Using OG button markup  
in Default.aspx.

<tr><td>
<asp:Button ID="btnWriteDataOG_Custom" runat="server" 
OnClick="btnWriteDataOGCustom_Click" Text="Write Custom 
(trainingobject) Object into Yammer Using OG" Width="573px" />
</td></tr>

Figure 5-30.  Yammer Open Graph activity showing a video object in detail view



Chapter 5 ■ Writing Data into Yammer with Open Graph 

161

24.	 Add the button click event in Default.aspx.cs.

/// <summary>
        /// Writing to Yammer using Open Graph's Custom Objects
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        �protected void btnWriteDataOGCustom_Click(object sender, 

EventArgs e)
        {
            �SPDSUniversityWebApplication.App_Code.OG_GraphObj 

yOG_obj = new SPDSUniversityWebApplication.App_Code.
OG_GraphObj();

 
            �yOG_obj.Activity.Actor = new 

SPDSUniversityWebApplication.App_Code.OG_Actor 
("Pathik Rawal","pr@spdsuniversity.onmicrosoft.com");

            �yOG_obj.Activity.Message = "A Survey on upcoming 
trainings.";

            yOG_obj.Activity.Action = "create";
            �SPDSUniversityWebApplication.App_Code.OG_

GraphObj_Instance yammergraphobjectinst = new 
SPDSUniversityWebApplication.App_Code.OG_GraphObj_
Instance();

 
            �yammergraphobjectinst.Url = "http://localhost:43615/

Survey.aspx";
            �yammergraphobjectinst.Title = "A Survey on upcoming 

trainings";
            �yammergraphobjectinst.Description = "A survey on 

upcoming trainings";
            �yammergraphobjectinst.Image = "https://www.yammer.com/

api/v1/uploaded_files/29860625/version/28812608/preview/
UAPP_LOGO.png";

            yammergraphobjectinst.Type = "training_object:survey";
 
            yOG_obj.Activity.Object = yammergraphobjectinst;
            string postData = yOG_obj.ToString();
            �string activityURL = WebConfigurationManager.

AppSettings["activityURL"];
            �string response = SPDSUniversityWebApplication.App_Code.

YammerUtility.PostRequesttoYammer(postData, activityURL, 
txtaccesstoken.Text.ToString(), "application/json");

 
        }
 

When the custom object is posted to Yammer using Open Graph, the post will look like Figure 5-31, 
which shows the activity details view. Figure 5-32 shows the Activity Details page.

https://www.yammer.com/api/v1/uploaded_files/29860625/version/28812608/preview/UAPP_LOGO.png
https://www.yammer.com/api/v1/uploaded_files/29860625/version/28812608/preview/UAPP_LOGO.png
https://www.yammer.com/api/v1/uploaded_files/29860625/version/28812608/preview/UAPP_LOGO.png


Chapter 5 ■ Writing Data into Yammer with Open Graph 

162

Figure 5-32.  Yammer Open Graph activity showing a custom object in detail view

Figure 5-31.  Yammer Open Graph activity showing a custom object



Chapter 5 ■ Writing Data into Yammer with Open Graph 

163

25.	 Default.aspx. The complete default.aspx code is as follows:

<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.
Master" AutoEventWireup="true" CodeBehind="Default.aspx.cs" Inherits
="SPDSUniversityWebApplication._Default" %>
 
<asp:Content runat="server" ID="BodyContent" ContentPlaceHolderID= 
"MainContent">
    <h3>Welcome to SPDS University Application:</h3>
    <ol class="round">
        <li class="one">
            <h2>
                �<asp:Label ID="lbllogin" runat="server" Text="You 

are not Loged in, You can login using Yammer 
Credential, click on Log In button on top right"> 
</asp:Label>

            </h2>
        </li>
    </ol>
    <div id="CourseDiv" runat="server">
        <h3>Upcoming Training&nbsp;</h3>
        <p>
            �<asp:XmlDataSource ID="XmlDataSourceCourse" 

runat="server" DataFile="~/App_Data/Courses.xml"> 
</asp:XmlDataSource>

 
            �<asp:GridView ID="GridView1" runat="server" XPath="/

Employees/Employee" DataSourceID="XmlDataSourceCourse"
                �AutoGenerateColumns="False" HeaderStyle-

BackColor="#3AC0F2" HeaderStyle-ForeColor="White" 
BackColor="White" BorderColor="#336666" 
BorderStyle="Double" BorderWidth="3px" 
CellPadding="4" GridLines="Horizontal" 
Height="124px" Width="985px">

                <Columns>
                    �<asp:TemplateField HeaderText="Name" 

HeaderStyle-Width="50">
                        <ItemTemplate>
                            <%# XPath("Name") %>
                        </ItemTemplate>
 
<HeaderStyle Width="50px"></HeaderStyle>
                    </asp:TemplateField>
                    �<asp:TemplateField HeaderText="Name" 

HeaderStyle-Width="50">
                        <ItemTemplate>
                            <%# XPath("Level") %>
                        </ItemTemplate>
 



Chapter 5 ■ Writing Data into Yammer with Open Graph 

164

<HeaderStyle Width="50px"></HeaderStyle>
                    </asp:TemplateField>
                    �<asp:TemplateField HeaderText="Name" 

HeaderStyle-Width="50">
                        <ItemTemplate>
                            <%# XPath("Duration") %>
                        </ItemTemplate>
 
<HeaderStyle Width="50px"></HeaderStyle>
                    </asp:TemplateField>
                    �<asp:TemplateField HeaderText="Name" 

HeaderStyle-Width="50">
                        <ItemTemplate>
                            <%# XPath("Trainer") %>
                        </ItemTemplate>
 
<HeaderStyle Width="50px"></HeaderStyle>
                    </asp:TemplateField>
                       �<asp:TemplateField HeaderText="Name" 

HeaderStyle-Width="50">
                        <ItemTemplate>
                            <%# XPath("Noofseats") %>
                        </ItemTemplate>
 
<HeaderStyle Width="50px"></HeaderStyle>
                    </asp:TemplateField>
 
                </Columns>
                <FooterStyle BackColor="White" ForeColor="#333333" />
 
                �<HeaderStyle BackColor="#336666" ForeColor="White" 

Font-Bold="True"></HeaderStyle>
                �<PagerStyle BackColor="#336666" ForeColor="White" 

HorizontalAlign="Center" />
                <RowStyle BackColor="White" ForeColor="#333333" />
                �<SelectedRowStyle BackColor="#339966" Font-

Bold="True" ForeColor="White" />
                <SortedAscendingCellStyle BackColor="#F7F7F7" />
                <SortedAscendingHeaderStyle BackColor="#487575" />
                <SortedDescendingCellStyle BackColor="#E5E5E5" />
                <SortedDescendingHeaderStyle BackColor="#275353" />
            </asp:GridView>
        </p>
 



Chapter 5 ■ Writing Data into Yammer with Open Graph 

165

    </div>
    <table>
        �<tr><td> <asp:Button ID="btnWriteDataOG" CssClass="button" 

runat="server" OnClick="btnWriteDataOG_Click" Text="Write 
Document into Yammer Using OG" Width="363px" /></td></tr>

         �<tr><td> <asp:Button ID="btnWriteDataOGPage" runat="server" 
OnClick="btnWriteDataOGPage_Click" Text="Write Page Object 
into Yammer Using OG" Width="363px"/></td></tr>

        �<tr><td><asp:Button ID="btnWriteDataOGPlace" runat="server" 
OnClick="btnWriteDataOGPlace_Click" Text="Write Place Object 
into Yammer Using OG" Width="363px" /></td></tr>

         �<tr><td><asp:Button ID="btnWriteDataOGPerson" runat="server" 
OnClick="btnWriteDataOGPerson_Click" Text="Write Person 
Object into Yammer Using OG" Width="363px"  /></td></tr>

          �<tr><td><asp:Button ID="btnWriteDataOGVideo" 
class="btn btn-primary btn-lg" runat="server" 
OnClick="btnWriteDataOGVideo_Click" Text="Write Video 
Object " Width="363px" /></td></tr>

           �<tr><td><asp:Button ID="btnWriteDataOGImage" 
runat="server" OnClick="btnWriteDataOGImage_Click" 
Text="Write Image Object into Yammer Using OG" 
Width="363px" /></td></tr>

         �<tr><td><asp:Button ID="btnWriteDataOG_Custom" 
runat="server" OnClick="btnWriteDataOGCustom_Click" 
Text="Write Custom (trainingobject) Object into Yammer 
Using OG" Width="573px" /></td></tr>

    </table>
 
    �<asp:TextBox ID="txtCode" runat="server" Visible="False"> 

</asp:TextBox>
    <asp:TextBox ID="txtaccesstoken" runat="server" 
Visible="false"></asp:TextBox>
 
</asp:Content>
<asp:Content ID="Content1" runat="server" ContentPlaceHolderID="Head
Content">
    <style type="text/css">
        .auto-style1 {
            width: 100%;
        }
    </style>
</asp:Content>
 



Chapter 5 ■ Writing Data into Yammer with Open Graph 

166

26.	 Here is the Default.aspx.cs's page_load event code:

/// <summary>
        �/// Page load event to check if query string contains a key 

called "Code"
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        protected void Page_Load(object sender, EventArgs e)
        {
 
            string qsCode = Request.QueryString["Code"];
            if (qsCode != null)
            {
                txtCode.Text = qsCode;
                Obtain_Access_Token();
            }
            else
            {
                CourseDiv.Visible = false;
                btnWriteDataOG.Visible = false;
                btnWriteDataOGPage.Visible = false;
                btnWriteDataOGPlace.Visible = false;
                btnWriteDataOGPerson.Visible = false;
                btnWriteDataOGVideo.Visible = false;
                btnWriteDataOG_Custom.Visible = false;
 
            }
        }

27.	 Here is the Default.aspx.cs’s Obtain_Access_Token method:

/// <summary>
        /// Obtain the access Token
        /// </summary>
        private void Obtain_Access_Token()
        {
            string accessToken = default(string);
            �string AccesTokenURL = WebConfigurationManager.

AppSettings["AccessTokenURL"] + "client_id=" + 
WebConfigurationManager.AppSettings["client_id"] 
+ "&client_secret=" + WebConfigurationManager.
AppSettings["client_secret"] + "&code=" + txtCode.Text;

            �string response = SPDSUniversityWebApplication.App_Code.
YammerUtility.InvokeHttpGetRequest(AccesTokenURL);

            if (!string.IsNullOrEmpty(response))
            {
                �SPDSUniversityWebApplication.App_Code.AccessToken 

jat = SPDSUniversityWebApplication.App_Code.
AccessToken.GetInstanceFromJson(response);

 



Chapter 5 ■ Writing Data into Yammer with Open Graph 

167

                if (!string.IsNullOrEmpty(jat.TokenResponse.Token))
                {
                    accessToken = jat.TokenResponse.Token;
                    �lbllogin.Text = "Welcome " + jat.CurrentUser.

FullName;
                    txtaccesstoken.Text = accessToken;
                }
            }
        }
 

■■ Note T o learn more about JSON for JavaScript and .NET, visit https://msdn.microsoft.com/en-us/
library/bb299886.aspx.

Run Application

1.	 In Visual Studio, click on the Debug button, as illustrated in Figure 5-33. Then select 
your desired browser from the drop-down menu.

Figure 5-33.  Visual Studio’s debug application feature

https://msdn.microsoft.com/en-us/library/bb299886.aspx
https://msdn.microsoft.com/en-us/library/bb299886.aspx


Chapter 5 ■ Writing Data into Yammer with Open Graph 

168

2.	 You will be presented with the screen shown in Figure 5-34. Click on the  
Log In button.

3.	 You will be presented with a Login screen as illustrated in Figure 5-35. Our SPDS 
University web Application provides the “Sign In with Yammer” button. Click on it.

Figure 5-34.  SPDS University's home page

Figure 5-35.  SPDS University’s Login page



Chapter 5 ■ Writing Data into Yammer with Open Graph 

169

4.	 Yammer will present the Login page, shown in Figure 5-36.

5.	 Yammer will redirect users to the redirect_uri with code in the URL as a query 
string parameter, as illustrated in Figure 5-37. The home page also displays the 
Welcome <<User name>> message. The <<User Name>> is retrieved from the 
access token response in the Obtain_Access_Token() method.

Figure 5-36.  Yammer’s Login page



Chapter 5 ■ Writing Data into Yammer with Open Graph 

170

At this point of time, you have implemented how to write data into Yammer using Open Graph  
out-of-the-box and created custom objects for the Yammer app SPDSUniversity as a ASP.NET web 
application.

We hope using these exercises you can now use Yammer Open Graph to provide integration with your 
external applications. This could be your existing sales, HR, operations, or internal learning applications, 
which can be integrated into Yammer to allow employees to see appropriate updates and take quick actions 
as required to complete the tasks.

Summary
This chapter covered an introduction to the Enterprise Yammer Social Graph and explained the Open Graph 
activity format and schema. You also learned how to use Open Graph to integrate external applications into 
Yammer. You saw some examples of posting data to Yammer from external applications using the Open 
Graph activities.

In Chapter 6, we will explain the integration of line-of-business applications using Yammer REST APIs.

Figure 5-37.  SPDS University home page

http://dx.doi.org/10.1007/978-1-4842-0943-1_6


Chapter 6

Integration Using Yammer  
Rest APIs

Pryank Rohilla
In Chapter 5, we explained how to use Yammer Open Graph API to bring information stored in different 
business applications into Yammer and allow users to discover data from other applications and see the full 
view in a structured manner. This is all good, but it provides only one-way integration—from your business 
applications to Yammer. What if you want to integrate Yammer data into your business applications and make 
your applications more social and able to share content? The Yammer REST APIs provide this capability.

In this chapter, we will explain Yammer REST APIs, which allow developers to access Yammer data 
from line-of-business applications running on different platforms. Yammer’s REST APIs allow inbound and 
outbound flow of messages. This chapter covers:

•	 Explanation of REST

•	 Introduction to Yammer’s REST APIs

•	 Yammer features that can be accessed using REST APIs from line-of-business 
applications

•	 Yammer’s REST service endpoints details

•	 Lab exercise using the SPDS University application to see how to access data from 
Yammer and write data into Yammer using Yammer’s REST API endpoints

REST
As per Wikipedia, “Representational State Transfer (REST) is a software architecture style consisting of 
guidelines and best practices for creating scalable web services”.

REST relies on stateless, client-server, cacheable HTTP channel and is a lightweight alternative to using 
web services or RPC. RESTs benefits include:

•	 It’s platform independent

•	 It’s programming-language independent

•	 Can be used when firewalls exist

•	 REST services use HTTP as main communication channel and have a uniform 
interface where resources are identified as URIs. This allows easy implementation of 
REST endpoints.

© Pathik Rawal and Pryank Rohilla 2015 
P. Rawal and P. Rohilla, Developing on Yammer, DOI 10.1007/978-1-4842-0943-1_6

171

http://dx.doi.org/10.1007/978-1-4842-0943-1_5


Chapter 6 ■ Integration Using Yammer Rest APIs 

172

Any service based on the REST protocol is called a RESTful service. In a RESTful application, 
REST-enabled resources are maintained in an accessible data store. When a request is sent to a RESTful 
application to perform an action (create, retrieve, delete, or update), the RESTful application performs the 
operation and provides a response, as shown in Figure 6-1. All RESTful applications use HTTP requests to 
post and get data.

Figure 6-1.  Client web application communication with web server using REST API over an HTTP channel

As all REST API resources have unique HTTP-accessible URIs, REST enables data caching and is 
optimized to work with the distributed infrastructure. For more information about REST, you may find the 
following third-party references useful:

•	 Wikipedia (http://en.wikipedia.org/wiki/REST) provides a good overview of REST

•	 HTTP 1.1 method definitions (http://www.w3.org/Protocols/rfc2616/rfc2616-
sec9.html); includes a specification for GET, POST, PUT, and DELETE

Yammer REST APIs
Like other social networking applications Yammer has provided REST APIs to develop custom integrations 
with business applications. Yammer REST APIs are most common way to integrate your line-of-business 
applications with Yammer and enables you to add social features to virtually any type of business application 
within your organization.

Yammer REST API is the lowest-level API provided by Yammer and enables developers to build both 
client and server applications. In this chapter, we will go through all the available Yammer REST endpoints 
and try to explain them in a manner that will allow you to implement integrations with your business 
applications. First, let’s look at the main features of Yammer APIs.

Yammer REST API Features
Before you develop integrations with Yammer REST APIs, it’s useful to know about various features provided 
by them. Here are the main features of using Yammer REST APIs:

•	 The REST API is available for any platform that can make HTTP calls over SSL. Current 
supported platforms are Ruby, Python, JavaScript, iOS, .NET, and Windows Phone.

•	 Yammer APIs mainly support JSON (JavaScript Object Notation), but it also supports 
XML format for many APIs.

http://en.wikipedia.org/wiki/REST
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html


Chapter 6 ■ Integration Using Yammer Rest APIs 

173

•	 Developers simply need to create HTTP requests going to Yammer and process the 
JSON returned from Yammer in response on their business applications.

•	 Using Yammer REST APIs, you can work on different Yammer objects, including 
messages, users, groups, and so on.

•	 Yammer REST APIs enable developers to access Yammer’s data using simple HTTP 
methods like GET and POST.

■■ Note A s Yammer keeps adding new features, we suggest you review the latest API reference on the 
Yammer Developer Network for the currently supported API set (https://developer.yammer.com).

What You Can Do with Yammer REST APIs
As mentioned, Yammer REST APIs help you develop and add social features to your business application, 
and you can easily post messages or activity updates from any platform. Here are some useful examples of 
what you can do.

•	 Bring Yammer’s social experience to your business applications.

•	 You can use REST APIs to view, create, edit, or delete messages on Yammer.

•	 You can use Yammer REST APIs to append or delete attachments or topics to 
messages or message threads.

•	 You can provide and manage subscriptions to Yammer topics, discussion 
threads, and users from business applications.

•	 You can use Yammer REST APIs to view organizational charts and relationships.

•	 You can add or remove relationship between users.

•	 You can send email invites to users who have not joined Yammer using  
REST APIs.

•	 Search Yammer content from other applications.

•	 Using Yammer REST APIs, you can search for Yammer data directly from your 
business applications.

•	 You can use the Yammer autocomplete feature in your business applications.

•	 Meet compliance needs.

•	 Yammer also provides a data export API, which can help IT administrators 
archive Yammer Network content and be compliant with an organization’s rules 
and legal requirements.

•	 Monitor Yammer usage.

•	 You can use data export to do reporting on Yammer content, provide useful 
insight on adoption, and help measure ROI from the Yammer investment.

https://developer.yammer.com/


Chapter 6 ■ Integration Using Yammer Rest APIs 

174

Before You Start Using the Yammer REST APIs
Before you start using the Yammer REST endpoints, it is important to familiarize yourself with the high-level 
requirements.

•	 Authentication on Yammer

•	 User privileges

Let’s explore why these are required.

Authentication on Yammer
Just like any enterprise application, before requesting Yammer data, any request to access Yammer data 
must be authorized by the authenticated user. This authorization is done using the Yammer Authentication 
model based on the OAuth2.0 protocol, which we covered in detail in Chapter 4. As you know when you 
do user authentication, Yammer provides an access token that’s linked to the authorized user. Developers 
should send an authorization header with the access token to make sure the request to POST/GET/DELETE 
using the Yammer REST API is authenticated by Yammer.

The format of the authentication header is:

Authorization: Bearer [Access Token]

Any operation that modifies the Yammer data can be performed only by the user who owns that data. 
It’s important to understand that the user's access token much be strongly protected when used with REST 
APIs. If a security breach occurs, an attacker can post and read messages to/from Yammer. So, you need to 
use measures like encryption, permission, and least privilege policy to protect the user authorization access 
tokens in your business applications.

User Privileges
Your enterprise Yammer network has three types of users and each user type has a different set of 
permissions on Yammer. As a developer, you should consider which accounts are used while doing 
integration using Yammer REST APIs.

The different user types are described in Table 6-1.

Table 6-1.  Yammer User Account Types and Privileges

User Account Type Privileges

User Read own messages
Post messages
Delete own messages

Admin All User permissions and change some admin settings

Verified Admin All User permissions and delete any Yammer message or file
Read any content in private Yammer groups.
Acquire access tokens for impersonation.
Export all Yammer network content.

http://dx.doi.org/10.1007/978-1-4842-0943-1_4


Chapter 6 ■ Integration Using Yammer Rest APIs 

175

Getting Started with Yammer REST APIs
Yammer REST APIs are useful wrappers that speed up the development of your applications. There are 
different Yammer REST APIs for different Yammer objects:

•	 Messages

•	 Users

•	 Groups

•	 Relationships

•	 Notifications

•	 Suggestions

•	 Subscriptions

•	 Autocomplete

•	 Search

•	 Networks

Yammer API Operations
Table 6-2 provide the available HTTP methods that can be used for invoking Yammer resources.

Table 6-2.  Yammer API Operations

HTTP Method Description REST HTTP Mapping

GET Get a specific Yammer resource GET on Yammer REST API endpoint

POST Update an existing resource or 
create a new one

POST on Yammer REST API endpoint, where you pass 
in data associated with a related resource

DELETE Delete a specific resource DELETE on Yammer REST API endpoint, where you 
specify the resource to be deleted

The operations that are supported for the different types of resources are summarized in Table 6-3.



Chapter 6 ■ Integration Using Yammer Rest APIs 

176

There are few other considerations you should know about when implementing Yammer REST APIs in 
your applications:

•	 Admin actions: When you plan to use administrative Yammer API for actions like 
adding or deleting Yammer users, you should only use authorization access tokens 
from a Yammer-verified admin user.

•	 Versioning: The Yammer API version is visible in the URL of the REST API 
endpoints. For example, /api/v1. As per the Yammer guidelines, there could be 
additional elements added to output from endpoints. When elements are added or 
removed a new version of the API is typically released.

•	 Calling styles: There are several ways to invoke the API from your business 
applications.

•	 Using a REST endpoint directly

•	 Using a REST endpoint from JavaScript (no server-side code required)

•	 Using a server-side application (explained later in the SPDSUniversity 
application exercise)

•	 Using REST endpoints directly. You need to specify Yammer actions using the 
HTTP verbs POST, GET, PUT, or DELETE. The Yammer resource is specified by a 
unique URI:

https://www.yammer.com/api/v1/users.json

Table 6-3.  Operations Supported for the Yammer Resources

GET POST DELETE

Messages   

Topics   

Groups   

Users s  

Relationships   

Notifications   

Suggestions   

Subscriptions   

Autocomplete   

Search   

Invitations   

Network   

Dataexport  (Verified admin only)  

https://www.yammer.com/api/v1/users.json


Chapter 6 ■ Integration Using Yammer Rest APIs 

177

•	 REST from JavaScript: Developers can invoke the Yammer REST API from JavaScript 
using the callback query parameter and a callback function. This allows developers 
to write rich applications without need to write server-side code:

function PostYammerMessage(val) {
   var msg = document.getElementById('msgtxt').value;
   var groupID = "71618329";
    if(msg == ""){
     alert ("Message cannot be empty!");
     return false;
    }

 yam.platform.request(
   {
    url: "https://api.yammer.com/api/v1/messages.json"
    , method: "POST"
    , data: {
     "body" : msg,
     "group_id" : groupID
    }
    , success: function (msg) { alert("Yammer message Post was Successful!"); }
    , error: function (msg) { alert("Yammer Post failed"); }
    }
    )
 }

In the previous code, the PostYammerMessage() function accepts a message and then posts the request 
to Yammer’s messages REST endpoint to a Yammer group.

Later in this chapter, we will explain the use of REST endpoints using an example. But before that, you 
need to understand the basics of the different Yammer REST endpoints.

REST Endpoints
Let’s go through all the available endpoints and explore how to use them in your application.

■■ Note  Yammer provides a full list of the latest APIs and a new interface (API Explorer) to try the APIs 
endpoints. For full details, go to https://developer.yammer.com/.

The API references used in this book are from https://developer.yammer.com/.

Messages
All posted Yammer messages are displayed as feeds and messages are grouped into threaded conversations, 
as shown in Figure 6-2. Using Yammer REST APIs, you can post a message to Yammer, reply to a post, follow 
a post, share a post, delete a post, email a Yammer message, and do many other operations.

https://api.yammer.com/api/v1/messages.json
https://developer.yammer.com/
https://developer.yammer.com/


Chapter 6 ■ Integration Using Yammer Rest APIs 

178

Yammer has provided many APIs to view and retrieve messages. Yammer’s feed is the information hub, 
and it provides three feed views that users can toggle among, as highlighted in Figure 6-3.

Figure 6-2.  Yammer messages

Figure 6-3.  Yammer’s feed section

As shown in Figure 6-3, the three view options are Top, All, and Following. The Top view shows the 
conversations most relevant to user, based on what that user subscribes to and her interactions with the 
Yammer network content. The All view renders all the conversations to which that Yammer user has access 
within his Yammer network, and the Following view displays messages that users actively subscribe to. This 
includes conversations that the user’s followers have participated in or liked, conversations that have been 
tagged with a Yammer topic that users follow, and conversations that have been posted in one of the user’s 
Yammer groups.



Chapter 6 ■ Integration Using Yammer Rest APIs 

179

Retrieve All Public Messages
You use the message.json REST API endpoint to get all the public messages and conversations in the user’s 
Yammer network. This is linked to the All view in the Yammer web interface.

Endpoint:

https://www.yammer.com/api/v1/messages.json

Or:

https://www.yammer.com/api/v1/messages.xml

Table 6-4 lists the required parameters.

Table 6-4.  Yammer Messages REST API Parameters

Parameter Type Description Example

older_than: integer Retrieve messages that are  
older than the specific  
message ID. Good for 
displaying messages in paging 
format on your application.

https://www.Yammer.com/api/v1/
messages.json?older_than=426

This will show you messages prior to 
message ID 426. If you have added the 
limit parameter, you’ll get only 10 
messages. So you will get 10 messages 
prior to 426.

newer_than: integer Retrieve messages that are 
newer than the specific 
message ID. Good when you 
want to get the latest messages 
after you got an initial set of 
messages.

https://www.Yammer.com/api/v1/
messages.json?newer_than=426

This will show you messages from 426 
and, based on the limit, a total number of 
messages you want to see for any given 
request.

threaded: Boolean 
(true/ false)

If this parameter is set to true, 
Yammer retrieves only the first 
message in a given thread of 
discussion.

https://www.Yammer.com/api/v1/
messages.json?threaded=true

Limit integer Retrieve specified number of 
messages

https://www.Yammer.com/api/v1/
messages.json?limit=5

Only five messages will be returned by 
Yammer.

Later in this chapter, you will go through a detailed exercise on how to retrieve messages from Yammer 
using the SPDSUniversity business application case study.

Other Message REST APIs Used to GET Yammer Messages
Table 6-5 lists the related RESTful APIs used to GET messages from different feeds on Yammer, such as my_
feed.json, which is the user’s feed, algo.json, which is the algorithmic feed, and following.json, which is 
the feed the resource users are following.

https://www.yammer.com/api/v1/messages.json
https://www.yammer.com/api/v1/messages.xml
https://www.yammer.com/api/v1/messages.json?older_than=426221346
https://www.yammer.com/api/v1/messages.json?older_than=426221346
https://www.yammer.com/api/v1/messages.json?newer_than=426221346
https://www.yammer.com/api/v1/messages.json?newer_than=426221346
https://www.yammer.com/api/v1/messages.json?threaded=true
https://www.yammer.com/api/v1/messages.json?threaded=true
https://www.yammer.com/api/v1/messages.json?limit=5
https://www.yammer.com/api/v1/messages.json?limit=5


Chapter 6 ■ Integration Using Yammer Rest APIs 

180

All the previously mentioned endpoints use the same parameters as mentioned in Table 6-4.

Manipulating/Updating Messages REST API
Yammer’s REST APIs provide a simple way to post messages to Yammer. You can use the same APIs to post 
your message to the whole company, broadcast to everyone in the network, post to a specific group, send a 
private message, add topics, and so on.

In order to post messages to Yammer, you need different IDs like a Group ID, User ID, Message ID, and 
Feed ID. You can use the GET method of message.json to retrieve the IDs of different objects. Tables 6-6 and 
6-7 list the endpoints and their related parameters.

Table 6-5.  Yammer Messages REST API Endpoints

Endpoint ( HTTP Method: GET) Description

https://www.yammer.com/api/v1/messages/my_feed.json
or
https://www.yammer.com/api/v1/messages/my_feed.xml

Provides an endpoint for a Yammer 
user’s feed, based on the Following and 
Top conversations.

https://www.yammer.com/api/v1/messages/algo.json
or
https://www.yammer.com/api/v1/messages/algo.xml

Endpoint to get the Top conversations

https://www.yammer.com/api/v1/messages/following.json
or
https://www.yammer.com/api/v1/messages/following.xml

This endpoint shows the messages 
feed for a user who is following and is 
shown in the Following view, including 
people, groups, and topics that the user 
is following

https://www.yammer.com/api/v1/messages/sent.json
or
https://www.yammer.com/api/v1/messages/sent.xml

Use this endpoint to get messages sent 
by a user

https://www.yammer.com/api/v1/messages/private.json
or
https://www.yammer.com/api/v1/messages/private.xml

This endpoint provides output for any 
private messages received by the user

https://www.yammer.com/api/v1/messages/received.json
or
https://www.yammer.com/api/v1/messages/received.xml

Use this endpoint to get all the messages 
received by a user.

Table 6-6.  Yammer POST Messages REST API Endpoints

Endpoint ( HTTP Method: POST) Description

https://www.yammer.com/api/v1/messages.json
OR
https://www.yammer.com/api/v1/messages.xml

To POST a message

https://www.yammer.com/api/v1/messages/my_feed.json
https://www.yammer.com/api/v1/messages/my_feed.xml
https://www.yammer.com/api/v1/messages/algo.json
https://www.yammer.com/api/v1/messages/algo.xml
https://www.yammer.com/api/v1/messages/following.json
https://www.yammer.com/api/v1/messages/following.xml
https://www.yammer.com/api/v1/messages/sent.json
https://www.yammer.com/api/v1/messages/sent.xml
https://www.yammer.com/api/v1/messages/private.json
https://www.yammer.com/api/v1/messages/private.xml
https://www.yammer.com/api/v1/messages/received.json
https://www.yammer.com/api/v1/messages/received.xml
https://www.yammer.com/api/v1/messages.json
https://www.yammer.com/api/v1/messages.xml


Chapter 6 ■ Integration Using Yammer Rest APIs 

181

Here’s an example:

function postAMessage() {
    var testMessage = { "body": "Hello Test, have you seen this" + location.href };
    yam.platform.request({
        url: "messages.json",
        method: "POST",
        data: testMessage,
        success: function (msg) {
            console.log("Message Posted Successfully");
        },
        error: function (msg) {
            console.log("Message Posting Error: " + msg.statusText);
        }
    });
}

Other parameters for the POST message Open Graph (OG) object parameter include:

•	 og_<property>: This parameter is required if your message contains an Open Graph 
(OG) object as an attachment.

•	 og_fetch (true/false): If this parameter is set to true, Yammer will get all the 
available Open Graph parameters for a specified page URL.

Table 6-7.  Yammer POST Messages REST API Parameters

Parameter Type Example

Body: The message as string string String data = "group_id=4659506" + 
"&body=" + "Greeting, This is my first 
post";

Group_ID: The ID of the target group to 
which this message is to be posted

integer String data = "group_id=4659506" + 
"&body=" + "Greeting, This is my  
first post";

Replied_to_id: The message ID this is in 
response to

integer String data = "replied_to_id=433483891" + 
"&body=" + "Greeting, This is my  
first post";

Direct_to_id: Sends a private message to a 
user indicated by the user ID

integer String data = "direct_to_id=1522209393" 
+ "&body=" + "Greeting, this is private 
message";

broadcast: The broadcast-=true is used 
to broadcast the message to all Yammer 
users on a particular network. For the 
broadcast=true parameter, the Yammer 
admin user’s access token should be used

Boolean String data = "broadcast=" + "&body=" + 
"Greeting, this is private message";

topicn: Specifies the topics in the message. 
Can use topic1 through topic20.

String data = "group_id=4659506&body= 
A message with Topic" + "&topic1=" + 
"YammerBook!!"



Chapter 6 ■ Integration Using Yammer Rest APIs 

182

If you want to delete a message that contains an OG object, you need to specify the og_url parameter. 
Along with this there are other optional parameters specified in Table 6-8. Refer to the Open Graph site for 
the latest details (http://ogp.me/).

Table 6-8.  Yammer POST Messages REST API Additional Parameters for OG Objects

Parameter Description

og_url This is required and must be a canonical URL of the Object Graph object, which can be 
used as a permanent ID.
For example:
https://myblog/book/title123

og_title Title of the Open Graph object. This will be displayed in a message. For example:  
The Book

og_image URL of a thumbnail image that you want to add to represent the OG object.

og_description Description of the OG object.

og_object_type The type of your object. For example: audio.song. Also note, depending on the type, 
there may be other required properties. Check the Open Graph documentation 
(https://developer.yammer.com/v1.0/docs/schema).

og_site_name A unique value to relate objects from a common domain, for example, Yammer Blog.

og_meta Use this parameter to specify additional information for custom rendering.

og_fetch Get Open Graph object attributes from the Internet (default: false).

Table 6-9.  Yammer’s Delete a Message REST API Endpoint

Endpoint ( HTTP Method: DELETE) Parameters

https://www.yammer.com/api/v1/
messages/[:id]

[:id] is the message id to be deleted. Note that in 
order to delete the message, it must be added/edited on 
Yammer by current user.

Delete a Posted Message from Your Business Application

You can remove a message from your application using Yammer. Table 6-9 provides the endpoint details.

■■ Note  Yammer DELETE requests should be specified with query string parameters. If your app does not 
support the HTTP DELETE method, try HTTP POST with the parameter _method=DELETE.

Adding an Attachment to a Message

You can easily add an attachment file to a message from your application. Again, the Yammer message must 
be related to the current user.

http://ogp.me/
https://myblog/book/title123
https://developer.yammer.com/v1.0/docs/schema
https://www.yammer.com/api/v1/messages/[:id]
https://www.yammer.com/api/v1/messages/[:id]


Chapter 6 ■ Integration Using Yammer Rest APIs 

183

Emailing Messages to Yammer

Using Yammer REST API, you can programmatically send a copy of any message in Yammer as email to a 
currently logged in user. Figure 6-4 shows how the message will appear in email.

Figure 6-4.  A copy of private message sent as an email

Table 6-10.  Yammer REST API Endpoints to Add an Attachement to a POST Message

HTTP Method Endpoint Description Parameter

(HTTP method: POST)
https://www.yammer.com/api/v1/
pending_attachments

Use this endpoint to create  
a new pending attachment.

Attachment: Use HTTP multipart 
request to upload attachments with 
Yammer Message

(HTTP method: DELETE)
https://www.yammer.com/api/v1/
pending_attachments/[:id]

To delete a pending 
attachment.

Attachment: Use HTTP multipart 
request to specify attachments that 
you want to delete from a Yammer 
message.

Table 6-11 provides the endpoints and the parameters for emailing a message.

Table 6-11.  Yammer REST API Endpoint to Add an Attachement to a Message POST

Endpoints ( HTTP Method: POST) Parameter

https://www.yammer.com/api/v1/messages/email message_id: The ID of the message to be sent as email.

Example:

https://www.yammer.com/api/v1/messages/email?message_id=436054827

https://www.yammer.com/api/v1/pending_attachments
https://www.yammer.com/api/v1/pending_attachments
https://www.yammer.com/api/v1/pending_attachments/[:id]
https://www.yammer.com/api/v1/pending_attachments/[:id]
https://www.yammer.com/api/v1/messages/email
https://www.yammer.com/api/v1/messages/email?message_id=436054827


Chapter 6 ■ Integration Using Yammer Rest APIs 

184

Viewing a Thread
This endpoint (Table 6-12) is used to get the Yammer conversation thread of a message.

Table 6-12.  Yammer REST API Endpoint to view a Yammer Converation Thread

Endpoints ( HTTP Method: POST) Parameter

JSON: https://www.yammer.com/api/v1/threads/[:id].json

XML:

https://www.yammer.com/api/v1/threads/[:id].xml

threadId: The ID of the message  
to be sent as email.

Figure 6-5.  The XML output of the Yammer conversation thread view

Examples:

https://www.yammer.com/api/v1/threads/436054827.json

https://www.yammer.com/api/v1/threads/436054827.xml.

Figure 6-5 shows how the XML looks in Yammer conversation thread output. You can see that the 
output type is thread and determine which group it is related to.

https://www.yammer.com/api/v1/threads/%5B:id%5D.json
https://www.yammer.com/api/v1/threads/436054827.xml
https://www.yammer.com/api/v1/threads/436054827.json
https://www.yammer.com/api/v1/threads/436054827.xml


Chapter 6 ■ Integration Using Yammer Rest APIs 

185

Liking a Message
Yammer provides many different uses of the Like button; for example, people can use the Like button when 
they prefer a post and feel it is informative.

Yammer provides REST APIs (Table 6-13) to programmatically mark a message as Liked by the current 
user. Chapter 7 provides a step-by-step guide on how to implement this feature in your line-of-business 
applications.

Table 6-13.  Yammer REST API Endpoints to Posting a Like on Yammer

Endpoints ( HTTP Method: POST) Parameter

https://www.yammer.com/api/v1/messages/ 
liked_by/current.json?message_id=[:id]

message_id: The ID of the message to mark as liked by 
the logged-in user.

You can also use the Yammer Like button as shown in Chapter 2 with the Yammer Embed functionality.
Example: 

https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id=436054827

Unlike a Message
Yammer provides REST APIs (Table 6-14) to programmatically unmark a message liked by current users. 
Chapter 7 provides a step-by-step guide on how to implement this feature in your line-of-business 
applications. The implementation remains the same as you saw in previous examples. The only difference is 
the method type. Instead of using POST, you use DELETE.

Table 6-14.  Yammer REST API Endpoint to Delete a Like on Yammer

Endpoints ( HTTP Method: DELETE) Parameter

https://www.yammer.com/api/v1/messages/ 
liked_by/current.json?message_id=[:id]

message_id: The ID of the message to unmark the  
liked message.

Example:

https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id= 436054827

Yammer Topics
Yammer Topics provides a better way to organize your messages around specific subjects. The user who is 
posting or editing a message can add topics it and this will allow users to view all the messages posted using 
the same topics. Users can follow topics. Once a user follows a topic, any posts that contain the topic name 
will appear in the user’s MyFeed.

If you want to show the trending topics or get all the Yammer posts by topic, the following Yammer 
REST endpoints (Table 6-15) can be useful.

http://dx.doi.org/10.1007/978-1-4842-0943-1_7
https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id=[:id]
https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id=[:id]
http://dx.doi.org/10.1007/978-1-4842-0943-1_2
https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id= 436054827
http://dx.doi.org/10.1007/978-1-4842-0943-1_7
https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id=[:id]
https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id=[:id]
https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id= 436054827


Chapter 6 ■ Integration Using Yammer Rest APIs 

186

Table 6-15.  Yammer REST API Endpoint for Topics

Endpoints Description Parameter

POST

https://www.yammer.com/api/
v1/topics/[:id].json

To create a TOPIC on Yammer

You can use all other parameters 
like posting to a group to reply 
to an existing message or to add 
topics.

Example: String data ="group_
id=4659506&body=A message 
with Topic" + "&topic1=" + 
"YammerBook!!"

Topic: integer

1 to 20: The ID of the message to 
mark as liked by the current user.

Body: String
The actual message

GET

JSON: https://www.yammer.com/
api/v1/topics/[:id].json
or
XML: https://www.yammer.com/
api/v1/topics/[:id].xml

If you know the topic ID and  
want to retrieve all users who  
have used that topic.

Example: https://www.yammer.
com/api/v1/topics/1788026.
json

Id: The ID of the topic to be 
used/followed by users in your 
network.

GET

https://www.yammer.com/api/
v1/messages/about_topic/
[:id].json
or
https://www.yammer.com/api/
v1/messages/about_topic/
[:id].xml

If you know the topic ID, you can 
retrieve all messages that have the 
specified topic or hashtag.

Example:
https://www.yammer.com/
api/v1/messages/about_
topic/1788026.json

Id: The ID of the topic to used/
followed by users in your 
network.

Yammer Users
In Yammer, users are the key player of any social platform. Performing user management in Yammer 
through your line-of-business applications is as important as managing users of your sites. You can view 
all the users in the network and see their profiles, who they following, and so on, using the Yammer web 
interface (Figure 6-6).

https://www.yammer.com/api/v1/topics/%5B:id%5D.json
https://www.yammer.com/api/v1/topics/%5B:id%5D.json
https://www.yammer.com/api/v1/topics/[:id].json
https://www.yammer.com/api/v1/topics/[:id].json
https://www.yammer.com/api/v1/topics/%5B:id%5D.xml
https://www.yammer.com/api/v1/topics/%5B:id%5D.xml
https://www.yammer.com/api/v1/topics/1788026.json
https://www.yammer.com/api/v1/topics/1788026.json
https://www.yammer.com/api/v1/topics/1788026.json
https://www.yammer.com/api/v1/messages/about_topic/%5B:id%5D.json
https://www.yammer.com/api/v1/messages/about_topic/%5B:id%5D.json
https://www.yammer.com/api/v1/messages/about_topic/%5B:id%5D.json
https://www.yammer.com/api/v1/messages/about_topic/%5B:id%5D.xml
https://www.yammer.com/api/v1/messages/about_topic/%5B:id%5D.xml
https://www.yammer.com/api/v1/messages/about_topic/%5B:id%5D.xml
https://www.yammer.com/api/v1/messages/about_topic/1788026.json
https://www.yammer.com/api/v1/messages/about_topic/1788026.json
https://www.yammer.com/api/v1/messages/about_topic/1788026.json


Chapter 6 ■ Integration Using Yammer Rest APIs 

187

Yammer has provided a REST endpoint to work on the user object in different manners:

•	 Get all users on a given network for your internal analysis or audit.

•	 Engage users on an internal application by showing their Yammer profile info on 
business applications.

•	 Make applications more social by adding details of messages liked by users, topics 
specified by users, and group membership of users.

•	 Update information about users from business applications.

•	 Suspend or delete a user.

•	 Delete messages directly from business applications behalf of a user.

•	 Search users on Yammer by email address and share their Yammer profiles in 
business applications.

•	 Show relationships between users and show the org chart of the current user in 
business applications.

Table 6-16 lists the APIs available from Yammer related to user objects.

Figure 6-6.  Yammer people



Chapter 6 ■ Integration Using Yammer Rest APIs 

188

The best way to view data about a particular user in XML or JSON is to use the browser window and 
retrieve the user’s data. You can get the user ID from previous examples and form the URL as https://www.
yammer.com/api/v1/users/current.xml or https://www.yammer.com/api/v1/users/current.json.

Type the URL in the browser to retrieve the XML, as shown in Listing 6-1 for user ID 1510462475. You 
will notice when you get the details of the user that you get full profile information, number of followers, 
number of people followed by the user, the user type, user permissions, different feeds of the user (home, 
company, and all), number of messages liked by the user, sites bookmarked by the user, and other related 
details.

Listing 6-1.  View any user’s data by using the user’s ID. You can also retrieve the user’s data in JSON format 
by using a JSON endpoint instead of the XML one

<response>
<type>user</type>
<id>1541217186</id>
<network-id>2022718</network-id>
<state>active</state>
<guid nil="true"/>
<job-title>Marketing Assistant</job-title>
<location>U.S.</location>
<significant-other>Janet</significant-other>
<kids-names>Charlie, Donna</kids-names>
<interests>
Running, Yoga, Cooking, Creative Writing, Digital Cameras
</interests>
<summary>
I have been at SDPS for five years as a Marketing assistant. I like to help marketing teams 
in effective campaigns.
</summary>
<expertise>
Marketing Communication, Creative Writing, Product Vision, Consumer Advocate, Market 
Analysis
</expertise>
<full-name>Alex Darrow</full-name>
<activated-at>2015-04-23T18:05:54Z</activated-at>
<show-ask-for-photo>false</show-ask-for-photo>
<first-name>Alex</first-name>
<last-name>Darrow</last-name>
<network-name>spdsuniversity.onmicrosoft.com</network-name>
<network-domains>
<network-domain>spdsuniversity.onmicrosoft.com</network-domain>
</network-domains>
<url>https://www.yammer.com/api/v1/users/1541217186</url>

Table 6-16.  View Data About the Current User

Endpoints ( HTTP Method: GET) Parameter

https://www.yammer.com/api/v1/users/current.json
or
https://www.yammer.com/api/v1/users/current.xml

This endpoint does not require a 
parameter.

https://www.yammer.com/api/v1/users/current.xml
https://www.yammer.com/api/v1/users/current.xml
https://www.yammer.com/api/v1/users/current.json
https://www.yammer.com/api/v1/users/1541217186
https://www.yammer.com/api/v1/users/current.json
https://www.yammer.com/api/v1/users/current.xml


Chapter 6 ■ Integration Using Yammer Rest APIs 

189

<web-url>
https://www.yammer.com/spdsuniversity.onmicrosoft.com/users/alexd
</web-url>
<name>alexd</name>
<mugshot-url>
https://mug0.assets-yammer.com/mugshot/images/48x48/tFGfQ6ktQDj9szvM2mjpTdgZ2XGRCMJQ
</mugshot-url>
<mugshot-url-template>
https://mug0.assets-yammer.com/mugshot/images/{width}x{height}/
tFGfQ6ktQDj9szvM2mjpTdgZ2XGRCMJQ
</mugshot-url-template>
<birth-date/>
<timezone>Pacific Time (US & Canada)</timezone>
<external-urls/>
<admin>false</admin>
<verified-admin>false</verified-admin>
<can-broadcast>false</can-broadcast>
<department>Sales and Marketing</department>
<email>alexd@spdsuniversity.onmicrosoft.com</email>
<can-create-new-network>true</can-create-new-network>
<can-browse-external-networks>true</can-browse-external-networks>
<previous-companies>
<previous-company>
<employer>SPDS</employer>
<position>Product Manager</position>
<description>Responsible for new product design</description>
<start-year>2010</start-year>
<end-year>2012</end-year>
</previous-company>
</previous-companies>
<schools>
<school>
<school>Univeristy of Maine, Penn State University</school>
<degree>BSc, MA, Business Communication</degree>
<description>
Course requirements and Online Media Communications electives
</description>
<start-year>2004</start-year>
<end-year>2008</end-year>
</school>
</schools>
<contact>
<im>
<provider/>
<username/>
</im>
<phone-numbers>
<phone-number>
<type>work</type>
<number>+1 858 555 0110</number>
</phone-number>

https://www.yammer.com/spdsuniversity.onmicrosoft.com/users/alexd
https://mug0.assets-yammer.com/mugshot/images/48x48/tFGfQ6ktQDj9szvM2mjpTdgZ2XGRCMJQ
https://mug0.assets-yammer.com/mugshot/images/%7Bwidth%7Dx%7Bheight%7D/tFGfQ6ktQDj9szvM2mjpTdgZ2XGRCMJQ
https://mug0.assets-yammer.com/mugshot/images/%7Bwidth%7Dx%7Bheight%7D/tFGfQ6ktQDj9szvM2mjpTdgZ2XGRCMJQ


Chapter 6 ■ Integration Using Yammer Rest APIs 

190

<phone-number>
<type>mobile</type>
<number>+1 858 555 0109</number>
</phone-number>
</phone-numbers>
<email-addresses>
<email-address>
<type>primary</type>
<address>alexd@spdsuniversity.onmicrosoft.com</address>
</email-address>
</email-addresses>
<has-fake-email>false</has-fake-email>
</contact>
<stats>
<following>5</following>
<followers>3</followers>
<updates>0</updates>
</stats>
<settings>
<xdr-proxy/>
</settings>
<web-preferences>
<absolute-timestamps>false</absolute-timestamps>
<threaded-mode>true</threaded-mode>
<network-settings>
<message-prompt>What are you working on?</message-prompt>
<allow-attachments>true</allow-attachments>
<show-communities-directory>true</show-communities-directory>
<allow-notes>true</allow-notes>
<allow-yammer-apps>true</allow-yammer-apps>
<enable-groups>true</enable-groups>
<admin-can-delete-messages>false</admin-can-delete-messages>
<allow-inline-document-view>true</allow-inline-document-view>
<allow-inline-video>true</allow-inline-video>
<enable-private-messages>true</enable-private-messages>
<allow-external-sharing>true</allow-external-sharing>
<enable-chat>true</enable-chat>
</network-settings>
<enter-does-not-submit-message>true</enter-does-not-submit-message>
<preferred-my-feed>algo</preferred-my-feed>
<prescribed-my-feed>algo</prescribed-my-feed>
<sticky-my-feed>false</sticky-my-feed>
<enable-chat>true</enable-chat>
<dismissed-feed-tooltip>false</dismissed-feed-tooltip>
<dismissed-group-tooltip>false</dismissed-group-tooltip>
<dismissed-profile-prompt>false</dismissed-profile-prompt>
<dismissed-invite-tooltip>false</dismissed-invite-tooltip>
<dismissed-apps-tooltip>false</dismissed-apps-tooltip>
<dismissed-invite-tooltip-at nil="true"/>
<dismissed-browser-lifecycle-banner nil="true"/>
<make-yammer-homepage>true</make-yammer-homepage>



Chapter 6 ■ Integration Using Yammer Rest APIs 

191

<locale>en-US</locale>
<yammer-now-app-id>42686</yammer-now-app-id>
<has-yammer-now>false</has-yammer-now>
<has-mobile-client>false</has-mobile-client>
</web-preferences>
<follow-general-messages>false</follow-general-messages>
</response>
 

Figure 6-7 shows the sample JSON output of the current user using the REST APIs.

Figure 6-7.  Sample JSON output of current user using the REST APIs

Retrieve All Users
You can use Yammer’s REST API endpoints (Table 6-17) to retrieve all users in a Yammer network. These 
endpoints support parameters for paging, sort_by, and so on, as listed in Table 6-18.



Chapter 6 ■ Integration Using Yammer Rest APIs 

192

Table 6-17.  Yammer REST API Endpoint for Getting Users

Endpoints (HTTP Method: GET) Description Parameter

https://www.yammer.com/api/
v1/users.json
or
https://www.yammer.com/api/
v1/users.xml

Retrieve all users in a Yammer 
network

This endpoint does not require a 
parameter

https://www.yammer.com/api/
v1/users/[:id].json
or
https://www.yammer.com/api/
v1/users/[:id].xml

View data about any user ID: User ID of Yammer network

https://www.yammer.com/
api/v1/users/by_email.
json?email=user@domain.com
or
https://www.yammer.com/
api/v1/users/by_email.
xml?email=user@domain.com

Retrieve user’s data about any  
user using an email ID
Example:
https://www.yammer.com/
api/v1/users/by_email.
xml?email=alexd@spds.com 
or https://www.yammer.com/
api/v1/users/by_email.
json?email=alexd@spds.com

Email: Email ID if existing Yammer 
user on your Yammer network

https://www.yammer.com/api/
v1/users/in_group/:Group_
Id.json
or
https://www.yammer.com/api/
v1/users/in_group/:Group_
Id.xml

Get users in a group groupId: Add a group specified by 
the numeric string ID

Table 6-18.  Query String Parameters for Retrieving Users

Parameter Description

page Pagination to 50 users will be shown per page from the Yammer 
network

letter Retrieve users whose username starts with a given letter

sort_by=[ messages | followers ] The default behavior for sorting messages while retrieving is 
alphabetically
You can use this parameter to sort number of messages the user 
has posted or followers of the users

reverse=TRUE Should be used with sort_by to reverse the sorting order

Delete=True You can suspend user account by passing Delete=true as a 
parameter
Note: This can cause the user Yammer account to be deleted and 
you’ll have to contact admin to get it reinitiated.

https://www.yammer.com/api/v1/users.json
https://www.yammer.com/api/v1/users.json
https://www.yammer.com/api/v1/users.xml
https://www.yammer.com/api/v1/users.xml
https://www.yammer.com/api/v1/users/%5B:id%5D.json
https://www.yammer.com/api/v1/users/%5B:id%5D.json
https://www.yammer.com/api/v1/users/%5B:id%5D.xml
https://www.yammer.com/api/v1/users/%5B:id%5D.xml
https://www.yammer.com/api/v1/users/by_email.json?email=user@domain.com
https://www.yammer.com/api/v1/users/by_email.json?email=user@domain.com
https://www.yammer.com/api/v1/users/by_email.json?email=user@domain.com
https://www.yammer.com/api/v1/users/by_email.xml?email=user@domain.com
https://www.yammer.com/api/v1/users/by_email.xml?email=user@domain.com
https://www.yammer.com/api/v1/users/by_email.xml?email=user@domain.com
https://www.yammer.com/api/v1/users/by_email.xml?email=alexd@spds.com
https://www.yammer.com/api/v1/users/by_email.xml?email=alexd@spds.com
https://www.yammer.com/api/v1/users/by_email.xml?email=alexd@spds.com
https://www.yammer.com/api/v1/users/by_email.json?email=alexd@spds.com
https://www.yammer.com/api/v1/users/by_email.json?email=alexd@spds.com
https://www.yammer.com/api/v1/users/by_email.json?email=alexd@spds.com
https://www.yammer.com/api/v1/users/in_group/:Group_Id.json
https://www.yammer.com/api/v1/users/in_group/:Group_Id.json
https://www.yammer.com/api/v1/users/in_group/:Group_Id.json
https://www.yammer.com/api/v1/users/in_group/:Group_Id.xml
https://www.yammer.com/api/v1/users/in_group/:Group_Id.xml
https://www.yammer.com/api/v1/users/in_group/:Group_Id.xml


Chapter 6 ■ Integration Using Yammer Rest APIs 

193

You can specify the query string parameters listed in Table 6-18.

Create a User
You can create a user using the REST endpoints in Table 6-19.

Table 6-19.  Yammer REST API Endpoints for Creating Users

REST Endpoint (HTTP Method: POST) Description Parameter

POST https://www.yammer.com/api/v1/
users.json

Use this API to provision a new user. 
For this endpoint the current user 
must be a verified Yammer Network 
admin.

email: Mixed
Email for new user

full_name: Mixed
Full name of user

PUT https://www.yammer.com/api/v1/
users/[:id].json

To update information about an 
existing Yammer user.

user_id: Integer
User id specified by 
the numeric string ID

job_title: Mixed
updated job title

Additional parameters are supported for creating or updating users:

email (required for creating a new user), full_name, job_title, department_name, location, 
im_provider, im_username, work_telephone, work_extension, mobile_telephone, external_
profiles, ignificant_other, kids_names, interests, summary, expertise, education[] (school, 
degree,description,start_year,end_year) - accepts multiple attributes i.e. education[]=UCLA, 
BS,Economics,1998,2002&education[]=USC,MBA,Finance,2002,2004, previous_companies[] (company, 
position,description,start_year,end_year) - accepts multiple attributes i.e. previous_
companies[]=Geni.com,Engineer,2005,2008

Groups REST APIs
As you know, Yammer uses the concept of groups. Groups are a great way to reach a specific audience in 
your network, such as a specific department in your company like HR or IT. Yammer groups can be private 
or public. Figure 6-8 shows how Yammer messages, users, and groups are linked.

https://www.yammer.com/api/v1/users.json
https://www.yammer.com/api/v1/users.json
https://www.yammer.com/api/v1/users/%5b:id%5d.json
https://www.yammer.com/api/v1/users/%5b:id%5d.json


Chapter 6 ■ Integration Using Yammer Rest APIs 

194

Yammer REST APIs (Table 6-20) allow developers to integration these groups by joining a new group or 
leaving existing groups.

Figure 6-8.  Yammer groups

Table 6-20.  Yammer REST API Endpoints for Groups

Endpoints Description Parameter

GET
https://www.yammer.com/api/v1/
group_memberships.json?group_
id=[:id]

To get the current user to join the  
specified group in group_id
Example: https://www.yammer.com/api/
v1/group_memberships.json?group_
id=4695277

group_id: The ID of the 
group to join

DELETE
https://www.yammer.com/api/v1/
group_memberships.json?group_
id=[:id]

Similar to the join the group, you can use 
this functionality to leave the group. You 
will need to specify the group_id by the 
numeric string ID.
Example:
https://www.yammer.com/api/v1/group_
memberships.json?group_id=4695277

group_id: The ID of the 
group you’re leaving

https://www.yammer.com/api/v1/group_memberships.json?group_id=[:id]
https://www.yammer.com/api/v1/group_memberships.json?group_id=[:id]
https://www.yammer.com/api/v1/group_memberships.json?group_id=[:id]
https://www.yammer.com/api/v1/group_memberships.json?group_id=4695277
https://www.yammer.com/api/v1/group_memberships.json?group_id=4695277
https://www.yammer.com/api/v1/group_memberships.json?group_id=4695277
https://www.yammer.com/api/v1/group_memberships.json?group_id=[:id]
https://www.yammer.com/api/v1/group_memberships.json?group_id=[:id]
https://www.yammer.com/api/v1/group_memberships.json?group_id=[:id]
https://www.yammer.com/api/v1/group_memberships.json?group_id=4695277
https://www.yammer.com/api/v1/group_memberships.json?group_id=4695277


Chapter 6 ■ Integration Using Yammer Rest APIs 

195

Relationships
Microsoft introduced the org chart in the My Profile section of SharePoint 2010. It’s a very nice feature that 
provides a visual org chart. Yammer provides a very similar org chart, as shown in Figure 6-9.

Figure 6-9.  Organization chart example on Yammer

Table 6-21.  REST Endpoints Points Top View or Manipulate Organization Chart

REST Endpoint Description Parameters

GET
https://www.yammer.com/
api/v1/relationships.
json

View existing chart 
relationship

user_id: Integer (user ID of user who is not 
the currently logged-in user)

subordinate: Email addresses of users who 
are in relation to user, so are added to the user 
org chart. All three (subordinate, superior, and 
colleague) can be passed in one request and 
can be passed multiple times.

id: Integer
The user ID of the user you want to remove 
relationship in organization chart. Must be 
combined with type.

POST https://www.
yammer.com/api/v1/
relationships.json

Add an org chart 
relationship.

You have to specify a user_
id if the user is not  
the current user for whom 
the relationship is being 
added.

Specify [ subordinate | 
superior | colleague ] to 
create the relationship

user_id: Integer
To view or edit the relationships of a user who 
is different than the currently logged-in user.

Subordinate: Email addresses values of users 
who are in relation to user, so add them to the 
user org chart. All three (subordinate, superior, 
and colleague) can be passed in one request 
and can be passed multiple times.

id: Integer
The user ID of the user you want to remove 
relationship in organization chart Must be 
combined with type.

By using REST APIs, developers can manipulate the org chart.
Use the REST endpoints listed in Table 6-21 to view or manipulate the Yammer org chart.

https://www.yammer.com/api/v1/relationships.json
https://www.yammer.com/api/v1/relationships.json
https://www.yammer.com/api/v1/relationships.json
https://www.yammer.com/api/v1/relationships.json
https://www.yammer.com/api/v1/relationships.json
https://www.yammer.com/api/v1/relationships.json


Chapter 6 ■ Integration Using Yammer Rest APIs 

196

To delete existing relationships from the user organization chart, use the endpoints listed in Table 6-22.

Table 6-22.  REST Endpoints to Delete Members from an Organization Chart

Endpoint (HTTP Method: DELETE) Description Parameters

https://www.yammer.com/api/
v1/relationships/[:id].
json?type=[relationship_type]

Deletes the relationship  
between users by 
relationship_type. You  
have to specify a user ID for 
whom the relationship is 
deleted.

user_id: integer

To view/edit the relationships of a 
user other than the current user.

[ subordinate | superior | 
colleague ]=email_address string
Specify email addresses of the other 
users (colleagues, superior, and 
subordinate) to add them to the org 
chart.

Id: Integer
Pass the user ID of the user for whom 
you want to remove relationship

type=relationship_type
string
Specify each for subordinate, superior, 
and colleague in the DELETE requests 
for which you want to remove the 
relationship.

Yammer Notifications
Yammer Notifications (Figure 6-10) are a quick way to let people know when some actions are being 
performed related to them. Yammer notifies users of each interaction the users are a part of on the Yammer 
network via notification bar, email, SMS, or IM.

Figure 6-10.  Yammer’s notification center

https://www.yammer.com/api/v1/relationships/[:id].json?type=[relationship_type]
https://www.yammer.com/api/v1/relationships/[:id].json?type=[relationship_type]
https://www.yammer.com/api/v1/relationships/[:id].json?type=[relationship_type]


Chapter 6 ■ Integration Using Yammer Rest APIs 

197

Yammer REST APIs provide an easy way to retrieve notifications for a particular user so that user can 
take immediate required actions or reciprocate.

Table 6-23 shows the endpoint for getting the notifications feed for the currently logged-in user.

Table 6-23.  REST Endpoint to Get Notification Feed for Current User

Endpoint (HTTP Method: GET) Description

https://www.yammer.com/api/v1/streams/
notifications.json

This endpoint is used to get the Yammer notifications 
feeds for the current user.

Figure 6-11.  Yammer’s suggested people to follow

Yammer Suggestions
Yammer suggests users join similar group (Suggested Groups) or follow similar people (Suggested People) in 
the same network. This helps users expand their social circles. Figure 6-11 shows the suggestion process on a 
Yammer web interface.

Similarly, developers can use the available REST API endpoints to provide suggestions to users based 
on certain application types that they work on regularly (Table 6-24). This allows users to find relevant 
messages more quickly and collaborate with teams and share information.

https://www.yammer.com/api/v1/streams/notifications.json
https://www.yammer.com/api/v1/streams/notifications.json


Chapter 6 ■ Integration Using Yammer Rest APIs 

198

Subscription REST APIs
When you follow or subscribe to other users in your network, all the Yammer messages will also appear in 
your Yammer feed. Let’s consider an example—you are working on a project and you follow other project 
members who are also on Yammer network. Each time a new post is submitted by other users, all these posts 
appear in your feeds, providing you with an easy way to get insight. Yammer REST APIs provide an endpoint 
to retrieve subscriptions (Table 6-25) or manage the subscriptions by following or unfollowing actions of the 
POST method.

Table 6-26.  Parameters for REST Endpoints for Manging Subsriptions

Parameter Description

target_type Used with target_id and allows you to specify a user or tag a current user to support 
subscribe and unsubscribe.

target_id Yammer object ID to which the current user will subscribe or unsubscribe.

Table 6-24.  REST Endpoints to Show suggested groups to join and suggested user to follow

Endpoint (HTTP Method: GET) Description Parameters

https://www.yammer.com/api/v1/
suggestions.json

This endpoint is used to provide a 
list of suggested Yammer groups 
that the current user can join.

Limit: To get the specified 
number of suggestions.

Table 6-25.  REST Endpoints to Manage Scubscriptions

Endpoint Description

GET https://www.yammer.com/api/v1/
subscriptions/to_user/[:id].json

Use this endpoint to determine if the current user is subscribed 
to another user specified by the user id. If the current user is 
not following the specified user, the REST endpoint returns 
HTTP 404.

GET https://www.yammer.com/api/v1/
subscriptions/to_thread/[:id].json

Use this endpoint to determine if as a user you are subscribed 
to a discussion thread based on the thread ID.
If the current user is not following the specified discussion 
thread, the REST endpoint returns HTTP 404.

GET https://www.yammer.com/api/v1/
subscriptions/to_topic/[:id].json

This allow you to check the subscription for a particular topic. 
It takes the topic ID as a parameter. If the topic is not followed 
error 404 is returned.

POST https://www.yammer.com/api/v1/
subscriptions

This endpoint is used to subscribe to a user or a Yammer topic. 
It supports the target_type and target_id parameters, which 
are explained in Table 6-26.

DELETE https://www.yammer.com/api/
v1/subscriptions

This endpoint is used to unsubscribe to a user or a Yammer 
topic. It supports the target_type and target_id parameters, 
which are explained in Table 6-26.

https://www.yammer.com/api/v1/suggestions.json
https://www.yammer.com/api/v1/suggestions.json
https://www.yammer.com/api/v1/subscriptions/to_user/%5B:id%5D.json
https://www.yammer.com/api/v1/subscriptions/to_user/%5B:id%5D.json
https://www.yammer.com/api/v1/subscriptions/to_thread/%5B:id%5D.json
https://www.yammer.com/api/v1/subscriptions/to_thread/%5B:id%5D.json
https://www.yammer.com/api/v1/subscriptions/to_topic/%5B:id%5D.json
https://www.yammer.com/api/v1/subscriptions/to_topic/%5B:id%5D.json
https://www.yammer.com/api/v1/subscriptions
https://www.yammer.com/api/v1/subscriptions
https://www.yammer.com/api/v1/subscriptions
https://www.yammer.com/api/v1/subscriptions


Chapter 6 ■ Integration Using Yammer Rest APIs 

199

AutoComplete
Autocomplete suggests to the users prepopulated values as the users type in the word. As you start typing the 
name of a user or group in Yammer, it will try to autocomplete your entry. It will show you similar usernames 
or group names in drop-down list.

Autocomplete is a useful feature when users are composing a new Yammer message from their 
application and want to add a group, user, or topic. As soon as you start typing the name of user/group/
topic, Yammer starts giving you suggestions based on its existing values.

For example, if the user is typing a new message to all the trainers in a company from an internal 
training application and want to recognize a trainer on new training calendar, they can start typing “Hello 
@Al”. When the user pauses, they are prompted with the username Alex to complete what they are typing. 
Table 6-27 lists the REST endpoints related to autocomplete.

Method: GET
Endpoint: https://yammer.com/api/v1/autocomplete/ranked

Table 6-27.  Parameters for REST Endpoints Related to Autocomplete

Parameter Type Description

Prefix string Specified text for getting the output of the fields in the specified 
models. (Users, group, topic, etc.). For example, the prefix text “al” 
will return results for models that have fields beginning with “al”.

models=modelName:count string Specify comma-separated values of models that can be searched 
on and a count of results should be returned for each model.

Format supported is: modelName1:count1, modelName2:count2.
countn is an integer and model Name can be one of the following:

•	 user

•	 group

•	 topic

•	 file

•	 page (note)

•	 open_graph_object

•	 department

•	 external_network

•	 domain

For example: the parameter models=user:2,group:2,topic:2 would 
return autocomplete six results for users, groups, and topics.

We will show you how to use autocomplete with REST API endpoints in the exercise later in this chapter.

■■ Tip  When using the Autocomplete REST endpoint, avoid excessive network activity and ensure your 
application adheres to the rate limits. As of now, Yammer Autocomplete has a maximum of five words per search.

We also suggest that as a developer you use caching mechanisms to cache the Yammer returned results to 
improve the performance of the application for autocomplete. Users will sometimes start to type text and then 
press Delete or Backspace. Use the cache results for the same prefix rather sending multiple requests.

https://yammer.com/api/v1/autocomplete/ranked


Chapter 6 ■ Integration Using Yammer Rest APIs 

200

Invitations REST APIs
The invitations REST APIs (Table 6-28) give developers the ability to send email to users who have not joined 
the Yammer network programmatically. The Yammer admin can invite people outside your organization, 
but if the person (who inviting users) is not the Yammer admin, only the official company domain’s email 
addresses will be allowed.

Table 6-28.  REST Endpoints to Invite Users

REST Endpoint (POST) Description Parameters

https://www.yammer.com/
api/v1/invitations.json

Use this endpoint to send an email 
invitation to join the Yammer 
network.

Email: A valid email address. 
Supports inviting multiple users.

Search REST APIs
Yammer’s another cool feature is search, which allows developers to use REST API to search users, groups, 
and messages that match the search string programmatically.

The search endpoint (Table 6-29) returns a list of messages, users, topics, and groups that match the 
user’s search query.

Table 6-29.  Search Related REST Endpoints

REST Endpoint (GET) Description Parameters

https://www.yammer.com/api/
v1/search.json

The search endpoint returns a 
list of messages, users, topics, 
and groups that match the 
search query text.

Search: String
In the search query, Yammer fetches 
all results that match the search 
query.

Page: Integer

Output is restricted to 20 results count 
per given object type for each page. 
Along with the results, you get the 
total count of results with each query.  
For example, Page=1 (the default) will 
return items 1-20, page=2 will return 
items 21-30, and so on, depending on 
the results.

num_per_page: Integer

This parameter limits the count of 
results of per object type per page. By 
default, its 20 maximum results.

The return JSON contains the following objects

•	 Messages

•	 Groups

•	 Topics

https://www.yammer.com/api/v1/invitations.json
https://www.yammer.com/api/v1/invitations.json
https://www.yammer.com/api/v1/search.json
https://www.yammer.com/api/v1/search.json


Chapter 6 ■ Integration Using Yammer Rest APIs 

201

•	 Uploaded files

•	 Pages

•	 Praises

Later in the training web application exercise, you will see how to include search results from Yammer 
using the REST APIs.

Yammer Networks
Yammer provides two types of networks—the internal network and external network (Figure 6-12). An 
internal network, also known as a home network, is private to an organization and only for its internal 
employees.

Figure 6-12.  Yammer networks

An external network is a separate extension of your home network where organizations can invite 
users from outside their organization, such as partners, vendors, and so on. While external networks can 
accommodate users with different email domains, access is invite-only based on users invited by the home 
network.

The network endpoint (Table 6-30) allows users to select different Yammer networks. The network 
permalink in indicated in the URL https://www.yammer.com/network_permalink/resource_path.

https://www.yammer.com/network_permalink/resource_path


Chapter 6 ■ Integration Using Yammer Rest APIs 

202

There are different OAuth tokens when you make REST API requests from your application for each 
user per network.

Return JSON contains the following properties:

Name
Permalink
Web_URL
show_upgrade_banner
header_background_color
header_text_color
navigation_background_color
navigation_text_color
paid
moderated
created_at
enable_job_title
enable_work_phone

is_org_chart_enabled
is_group_enabled
is_chat_enabled
is_translation_enabled
profile_fields_config
unseen_message_count
preferred_unseen_message_count
private_unseen_thread_count
inbox_unseen_thread_count
is_primary
unseen_notification_count
enable_mobile_phone

For an example, follow these steps:

	 1.	 Open a browser windows and log in to Yammer.

	 2.	 Open another tab in the same browser window and type https://www.yammer.
com/api/v1/networks/current.json.

The REST API request will return the following JSON detailing lists of Yammer networks of which the 
current user is a member.

Return value:

{"type":"network","id":54605,"name":"Yammer Developers Network","community":true,"permalink"
:"yammerdevelopersnetwork","web_url":"https://www.yammer.com/yammerdevelopersnetwork", 
"show_upgrade_banner":false,"header_background_color":"#F7CC65","header_text_
color":"#000000","navigation_background_color":"#292929","navigation_text_color":"#FFFFFF
","paid":true,"moderated":true,"is_org_chart_enabled":false,"is_group_enabled":true,"is_
chat_enabled":true,"is_translation_enabled":true,"created_at":"2009/07/02 22:33:32 
+0000","profile_fields_config":{"enable_job_title":true,"enable_work_phone":false,"enable_
mobile_phone":false},"unseen_message_count":1,"preferred_unseen_message_count":1,"private_
unseen_thread_count":0,"inbox_unseen_thread_count":0,"is_primary":false,"unseen_
notification_count":1}]

Table 6-30.  REST Endpoints to Get a List of Networks for the User

REST Endpoint (GET) Description Parameters

https://www.
yammer.com/api/v1/
networks/current.
json

Gets a list of Yammer networks for the 
current user using this REST endpoint. 
It also supports Include_suspended for 
networks where the user account is in 
the suspended state.

include_suspended=TRUE
This field is optional and gets a list of 
Yammer networks where the user is 
suspended.

exclude_own_messages_from_
unseen=TRUE

Excludes the messages of users from an 
unseen count. This field is optional.

https://www.yammer.com/api/v1/networks/current.json
https://www.yammer.com/api/v1/networks/current.json
https://www.yammer.com/api/v1/networks/current.json
https://www.yammer.com/api/v1/networks/current.json
https://www.yammer.com/api/v1/networks/current.json
https://www.yammer.com/api/v1/networks/current.json


Chapter 6 ■ Integration Using Yammer Rest APIs 

203

This covers the main Yammer REST API endpoints. You can refer to these endpoints based on your 
integration requirements. There are few additional APIs we will talk in this chapter, but first let’s look at how 
to view Yammer’s REST endpoint output.

Yammer Output in a JSON/XML Viewer
As mentioned, the output of the REST API comes in two formats—JSON and XML. You can retrieve the 
output of the REST API using the browser. While working with JSON, you may need a JSON viewer.

First we will retrieve the JSON by using the REST APIs. To do this, open Internet Explorer or any other 
browser (see Figure 6-13).

Figure 6-13.  JSON showing current user membership to different Yammer networks

Figure 6-14.  Using Internet Explorer to retrieve a message

Figure 6-15.  Open/save JSON output

Type this URL in the address bar: https://www.yammer.com/api/v1/messages.json.
You will be prompted with the screen shown in Figure 6-14.

If you use Chrome, the JSON will be rendered in the browser window, which you can copy directly. You 
can save the JSON on your local system or open the JSON in a tool like Notepad.

The next step is to use the online JSON viewer. There are many JSON viewers available. The one used in 
this book is jsonviewer.stack.hu. Open a browser and type in the URL: http://jsonviewer.stack.hu/.

You will be presented with the screen shown in Figure 6-15.

Now click on the Text tab and copy and paste the JSON you retrieved in previous step. Alternatively, you 
can use the Load JSON Data button to supply an URL and the viewer will load the JSON from that resource.

After pasting in the JSON, click on the Viewer tab (Figure 6-16). You will be presented with the screen 
shown in Figure 6-17. Clicking on Viewer changes the mode of the viewer. You can expand or collapse the 
JSON tree on the left side to view the name and the values on the right side.

https://www.yammer.com/api/v1/messages.json
http://jsonviewer.stack.hu/


Chapter 6 ■ Integration Using Yammer Rest APIs 

204

In order to view the output in the XML, change the REST APIs endpoint URL by changing the .JSON to 
.XML. For example, from https://www.yammer.com/api/v1/messages.xml (Figure 6-17), type the XML URL 
in the browser window. The browser will render the output XML file shown in Figure 6-18.

Figure 6-16.  Using the JSON viewer, you can copy the JSON and use a viewer to view the JSON object

Figure 6-17.  The JSON object viewer window

https://www.yammer.com/api/v1/messages.xml


Chapter 6 ■ Integration Using Yammer Rest APIs 

205

Figure 6-18.  The XML is parsed by Internet Explorer

The previous methods to view output from REST endpoints are helpful for debugging and validating 
purposes when developing integrations.

Now, let’s look at additional REST endpoints provided by Yammer for administration and analysis 
purposes.

Data Export

■■ Note T his option is for verified Yammer Admin users only.

The Yammer REST API for data export contains the raw data you would use to perform social mining on 
the enterprise.

Developers and Yammer administrators can use the available reporting tools to use data exports from 
Yammer to get reporting models for data visualizations. Developers can use Microsoft Excel and Power 
BI to get these detailed reports. This helps your organization start analyzing the information contained 
in Yammer, identify key trends/insights, and use those trends/insights to become a more responsive 
organization.



Chapter 6 ■ Integration Using Yammer Rest APIs 

206

■■ Tip T here are MSDN blogs which provides details how to use standard data exports from Yammer and 
convert them into detailed reporting models with rich data visualizations. 

Yammer exports include the following list of elements:

•	 Admins

•	 Files

•	 Groups

•	 Messages

•	 Networks

•	 Pages

•	 Topics

•	 Users

Using Data Export APIs, you can automate the process of getting regular reports. The data export is 
a .ZIP file that includes messages, users, topics, and groups that are exported in separate .CSV files. This 
contains complete details of each data type, such as message ID, timestamps, participants, group names, 
topic IDs, user IDs, usernames, and so on.

The Files and Notes folders will be exported in folders that are separated from your Yammer network. 
Notes will be exported in the .HTML format. Note that data exports will only return Files and Notes created 
or modified during the time mentioned in the data export request.

Yammer (https://developer.yammer.com/v1.0/docs/data-export-api) has provided good guidance 
on Yammer Data Export using the Yammer Data Export API and a script for your Yammer network admin

Method: GET
Endpoint: https://www.yammer.com/apa/v1/export

Yammer REST APIs Rate Limits
When you develop business applications integrations that use Yammer REST APIs, you may run into a 
situation where you are notified that you have been rate limited. This means the business application has 
tried to get information from Yammer too many times. Yammer limits the number of times you can call 
REST APIs in a given timeframe. When this limit is exceeded, Yammer returns the status code 429(Too Many 
Requests). So when you’re designing the integrations with Yammer, you have to consider these rate limits.

Yammer enforces the rate limit per user, per Yammer app. Table 6-31 lists the different rate limits.

Table 6-31.  Yammer REST Endpoint Rate Limits

Yammer Resource Limit

Messages In 30 seconds you can make only 10 requests

Autocomplete In 10 seconds you can make only 10 requests

Notifications In 30 seconds you can make only 10 requests

All Other Resources In 10 seconds you can make only 10 requests

https://developer.yammer.com/v1.0/docs/data-export-api
https://www.yammer.com/apa/v1/export


Chapter 6 ■ Integration Using Yammer Rest APIs 

207

■■ Note N ote that these rate limits are subject to change. For the latest, check https://developer.yammer.com.

All rate limits are independent of each other. For example, your application can make 10 messages and 
10 notifications separately in the same 30 seconds.

There are certain guidelines that you need to adhere to make sure your application is not blocked due to 
rate limits.

•	 Do not exceed one poll per minute when polling for messages using the Yammer 
REST APIs.

•	 Try to limit the frequency of checking new messages from your application. This 
impacts the message’s latency.

•	 As autocomplete objects are designed to provide instant response for a user as they 
start typing the text, the Yammer REST APIs allow more frequent polling.

Now that you understand the concepts and details of the Yammer REST APIs, it is important that you 
can implement them properly. The following exercise will help you adopt Yammer REST APIs in your real 
world integration scenarios. In the next section, we will cover an exercise on implementing the Yammer 
REST endpoints.

Yammer REST Endpoint in Practice
 

EXERCISE 6-1: ASP.NET SPDSUNIVERSITY WEB APPLICATION 
INTEGRATION WITH YAMMER USING REST APIS

In this exercise, you are going to use the same web application developed in Chapter 4, Exercise 4-1 
to implement writing and reading data from Yammer using Yammer RESTful APIS. You are going to add 
classes, methods, and UI controls to write data into Yammer from an ASP.NET web application using 
Yammer REST APIs.

Open the Existing Project

In Chapter 4, you learned about implementing authentication by developing a ASP.NET web application. 
If you have not developed that ASP.NET web application by following the detailed steps in Exercise 4-1, 
we strongly recommend you read Chapter 4 and create a new project by following step-by-step guide.

1.	 Launch Microsoft Visual Studio and open the project created in Exercise 4-1. The 
structure of the project should look like Figure 6-19.

http://developer.yammer.com
http://dx.doi.org/10.1007/978-1-4842-0943-1_4
http://dx.doi.org/10.1007/978-1-4842-0943-1_4
http://dx.doi.org/10.1007/978-1-4842-0943-1_4


Chapter 6 ■ Integration Using Yammer Rest APIs 

208

Figure 6-19.  Existing ASP.NET web application project structure developed in Exercise 4-1

The solution developed in Exercise 4-1 implements the authentication and stores the access token in a 
textbox that will be used to make further calls to Yammer.



Chapter 6 ■ Integration Using Yammer Rest APIs 

209

Post a Message

The actual fun of working with Yammer data begins in this section. You will start by posting a message 
to Yammer from the SPDSUniversity web application.

2.	 Open the YammerUtility.cs and add the following code to the using directive:

using System.Web.Configuration;

3.	 You need to add a method to the YammerUtility.cs class. The method is a generic 
PostRequesttoYammer method. Add the following code to the YammerUtility.cs 
class.

/// <summary>
        /// PostRequesttoYammer
        /// </summary>
        /// <param name="Body"></param>
        /// <param name="url"></param>
        /// <param name="authHeader"></param>
        /// <param name="contentType"></param>
        /// <returns></returns>
        �public static string PostRequesttoYammer(string Body, string url, 

string authHeader = null, string contentType = null)
        {
            string results = string.Empty;
 
            try
            {
                 
                HTTPWebReq = WebRequest.CreateHttp(url);
                HTTPWebReq.Method = "POST";
 
                �//if an authHeader was provided, add it as a Bearer token to 

the request
                if (!string.IsNullOrEmpty(authHeader))
                    �HTTPWebReq.Headers.Add("Authorization", "Bearer " + 

authHeader);
 
                byte[] postByte = Encoding.UTF8.GetBytes(Body);
 
                if (string.IsNullOrEmpty(contentType))
                    �HTTPWebReq.ContentType = "application/x-www-form-

urlencoded";
                else
                    HTTPWebReq.ContentType = contentType;
 
                HTTPWebReq.ContentLength = postByte.Length;
                Stream RequestStream = HTTPWebReq.GetRequestStream();
                RequestStream.Write(postByte, 0, postByte.Length);
                RequestStream.Close();
 



Chapter 6 ■ Integration Using Yammer Rest APIs 

210

                HTTPWebRes = (HttpWebResponse)HTTPWebReq.GetResponse();
                RequestStream = HTTPWebRes.GetResponseStream();
                StreamReader streamReader = new StreamReader(RequestStream);
 
                results = streamReader.ReadToEnd();
 
                streamReader.Close();
                RequestStream.Close();
            }
            catch (Exception ex)
            {
                �Console.WriteLine("Error has occured in PostRequesttoYammer:  

" + ex.Message);
            }
 
            return results;
        }

This method takes four parameters—body, endpoint, authheader, and content type. The body is the 
message to be posted, URL is the endpoint of the Yammer REST API, and authheader is simply a bearer 
(an access token) received from OAuth. Finally you have the content type value.

4.	 Now add the endpoint URL to the web.config file. Add the following code to 
<AppSetting>:

<add key="Messageendpoint" value="https://www.yammer.com/api/v1/ 
messages.json" />

On the Default.aspx page, you will add some static content for demonstration purposes. Here we will 
add the upcoming trainings details.

5.	 Add the following HTML markup to Default.aspx in <asp:Content 
runat="server" ID="BodyContent" ContentPlaceHolderID="MainContent">:

<table class="table" id="tblupcoming" border="1" runat="server" style="border-
style: solid;border-width:medium">
                 
                 <tr>
                    <th class="auto-style7" scope="col">
                        Course
                        Name</th>
                    <th class="auto-style6" scope="col">
                        Level</th>
                    <th class="auto-style5" scope="col">
                        Type</th>
                    <th class="auto-style4" scope="col">
                        Seats Available</th>
                 
                </tr>
     



Chapter 6 ■ Integration Using Yammer Rest APIs 

211

                <tr class="row1">
                    <td class="auto-style7">
                        SharePoint 2013</td>
                    
                    <td class="auto-style6">
                        Level 300</td>
                    <td class="auto-style5">
                         
                        Online</td>
                    <td class="auto-style4">
                      5</td>
                </tr>
 
           <tr class="row2">
                    <td class="auto-style7">
                        Microsoft Dynamic 2014 Advanced
                    </td>
                   
                    <td class="auto-style6">
                        Level 300</td>
                    <td class="auto-style5">
                         
                        In Person</td>
                    <td class="auto-style4">
                        10</td>
                </tr>
          <tr class="row1">
                    <td class="auto-style7">
                     Office 365 Ignite Training
                    </td>
                   
                    <td class="auto-style6">
                        Level 300</td>
                    <td class="auto-style5">
                         
                        In Person</td>
                    <td class="auto-style4">
                       
                        10</td>
                </tr>
 
           <tr class="row1">
                    <td class="auto-style7" colspan="4">
                          �<asp:Button ID="btnPost" runat="server" Text="Post 

Upcoming Trainings on Yammer" Width="514px" 
OnClick="btnPost_Click" />

                    </td>
                </tr>
 
</table>
 



Chapter 6 ■ Integration Using Yammer Rest APIs 

212

    <asp:TextBox ID="txtCode" runat="server" Visible="False"></asp:TextBox>
    �<asp:TextBox ID="txtaccesstoken" runat="server" Visible="false"> 

</asp:TextBox>
 
    �<asp:Label ID="lblMessage" runat="server" ForeColor="#FF3300" Text=" "> 

</asp:Label>
    <br />

6.	 Add the following code to the Page_Load event to hide the table when the page 
loads. Note that you need to add just two lines of code, as highlighted, which is 
tblupcoming.Visible = true and tblupcoming.Visible = false. You add 
these to the if and else blocks, as the rest of code already exists:

/// <summary>
        �/// Page load event to check if query string contains a key called 

"Code"
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        protected void Page_Load(object sender, EventArgs e)
        {
 
            string qsCode = Request.QueryString["Code"];
            if (qsCode != null)
            {
                txtCode.Text = qsCode;
                Obtain_Access_Token();

tblupcoming.Visible = true;

            }
            else
            {

tblupcoming.Visible = false;

            }
        }

7.	 Add the following code button event handler code to Default.aspx.cs:

/// <summary>
        /// Post to Yammer Button's Click event
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        protected void btnPost_Click(object sender, EventArgs e)
        {
            //Get the current URL of the Page
            string url = HttpContext.Current.Request.Url.AbsoluteUri;
            //Read the Message endpoint from web.config file
             �string Messageendpoint = WebConfigurationManager.AppSettings["Mes

sageendpoint"];
 



Chapter 6 ■ Integration Using Yammer Rest APIs 

213

            ///Construct the messagebody
             �string Messagebody = "group_id=4966305" + "&body=Hi All, We have 

seats available for upcoming trainings, Kindly self-nominate 
before the registration deadline. View all training using the 
following link: " + url;

 
            �//call the YammerUtlity's PostRequesttoYammer methis passing the 

message, endpoint and the access token stored in a textbox
            �string response = SPDSUniversityWebApplication.App_Code.

YammerUtility.PostRequesttoYammer(Messagebody, Messageendpoint, 
txtaccesstoken.Text);

 
            if(!string.IsNullOrEmpty(response))
            {
                lblMessage.Text = "Message posted";
            }
 
        }

The “Post Upcoming Trainings to Yammer” button’s click event first gets the current page URL, then it 
gets the message endpoint from the web.config file, followed by the code to construct the message 
body. It finally invokes the YammerUtility’s PostRequesttoYammer method. The post targets a specific 
group, which is mentioned in the POST body with a tag group_id=4966305.

Run the Application

Let’s see this application in action now. You can use Visual Studio to debug and run the application.

8.	 Click on the Debug button using the Google Chrome option, as shown in  
Figure 6-20.

Figure 6-20.  Run the application using Debug in Google Chrome or in the browser of your choice



Chapter 6 ■ Integration Using Yammer Rest APIs 

214

9.	 You will be presented with the screen shown in Figure 6-21, where you see a 
message saying, “You are not logged in...” Click on the Log In button on the  
top-right side of the screen.

Figure 6-21.  SPDS University web application’s home page

10.	 You will be presented with the login page shown in Figure 6-22. Click on the “Sign 
In with Yammer” button, which implements the OAuth authentication.

Figure 6-22.  SPDS University web application’s login page with a “Sign In with Yammer” button



Chapter 6 ■ Integration Using Yammer Rest APIs 

215

11.	 You will be presented with the Yammer login page. Enter your credentials and click 
Log In, as shown in Figure 6-23.

Figure 6-23.  Yammer’s Login page



Chapter 6 ■ Integration Using Yammer Rest APIs 

216

12.	 Next you will be presented with the home page of the SPDSUniversity application, 
with upcoming training details as shown in Figure 6-24. To demonstrate the 
messaging posting from this application to Yammer, click on the “Post Upcoming 
Trainings on Yammer” button.

Figure 6-24.  SPDS University home page with a “Post Upcoming Trainings on Yammer” button

Figure 6-25.  The message is posted on Yammer

13.	 After you click on the “Post Upcoming Trainings on Yammer” button, your message 
will be posted on Yammer (Figure 6-25).



Chapter 6 ■ Integration Using Yammer Rest APIs 

217

Retrieve Messages Using the Message API

Next you can retrieve all messages using message RESTful APIs. We will add a new web form to the 
ASP.NET project and will implement an ASP.NET grid control to display messages retrieved from Yammer.

14.	 Add a new web form to the project by right-clicking on the project in the Solution 
Explorer and choosing Add ➤ New Item.

15.	 You will be presented with another window. Enter the name of the web form as 
YammerMessage and click OK.

Figure 6-26.  Add a web form to the project

You are now going to add a Grid View control to the new page. This grid will render the posts retrieved 
from Yammer.

16.	 Add the following code to YammerMessage.aspx within <asp:Content 
runat="server" ID="BodyContent" ContentPlaceHolderID="MainContent">:

<div>
    �<asp:GridView ID="grdYammerMessage" runat="server" 

AutoGenerateColumns="false">
<Columns>
       



Chapter 6 ■ Integration Using Yammer Rest APIs 

218

            <asp:BoundField DataField="id" HeaderText="Post ID" />
            <asp:BoundField DataField="weburl" HeaderText="URL" />
            �<asp:BoundField DataField="ContentExcerpt" HeaderText= 

"Post Body" />
               �<asp:BoundField DataField="YammerPostLikedBy.Count" 

HeaderText="Number of Likes" />
         
        </Columns>
    </asp:GridView>
 
</div>

 
17.	 Add a class called YammerMessage.cs to the App_code folder and then add the 

following code to the Yammer.cs file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Runtime.Serialization;
 
namespace SPDSUniversityWebApplication.App_Code
{
    [DataContract]
    public class YammerPost
    {
        [DataMember(Name = "id")]
        public string ID { get; set; }
 
        [DataMember(Name = "sender_id")]
        public string SenderID { get; set; }
 
        [DataMember(Name = "replied_to_id")]
        public string RepliedToID { get; set; }
 
        [DataMember(Name = "created_at")]
        public string CreatedAt { get; set; }
 
        [DataMember(Name = "network_id")]
        public string NetworkID { get; set; }
 
        [DataMember(Name = "message_type")]
        public string MessageType { get; set; }
 
        [DataMember(Name = "sender_type")]
        public string SenderType { get; set; }
 
        [DataMember(Name = "url")]
        public string Url { get; set; }
 
        [DataMember(Name = "web_url")]
        public string WebUrl { get; set; }
 



Chapter 6 ■ Integration Using Yammer Rest APIs 

219

        [DataMember(Name = "group_id")]
        public string GroupId { get; set; }
 
        [DataMember(Name = "body")]
        public YammerPostContent MessageContent { get; set; }
 
        [DataMember(Name = "rich")]
        public YammerPostContent MessageContent1 { get; set; }
 
        [DataMember(Name = "thread_id")]
        public string ThreadID { get; set; }
 
        [DataMember(Name = "client_type")]
        public string ClientType { get; set; }
 
        [DataMember(Name = "client_url")]
        public string ClientUrl { get; set; }
 
        [DataMember(Name = "system_message")]
        public bool SystemMessage { get; set; }
 
        [DataMember(Name = "direct_message")]
        public bool DirectMessage { get; set; }
 
        [DataMember(Name = "chat_client_sequence")]
        public string ChatClientSequence { get; set; }
 
        [DataMember(Name = "content_excerpt")]
        public string ContentExcerpt { get; set; }
 
        [DataMember(Name = "language")]
        public string Language { get; set; }
 
        [DataMember(Name = "privacy")]
        public string privacy { get; set; }
 
        [DataMember(Name = "group_created_id")]
        public string group_created_id { get; set; }
 
        [DataMember(Name = "liked_by")]
        public YammerPostLikedBy YammerPostLikedBy { get; set; }
 
        public YammerPost()
        {
 
            this.MessageContent = new YammerPostContent();
        }
    }
     



Chapter 6 ■ Integration Using Yammer Rest APIs 

220

    [DataContract]
    public class YammerPostContent
    {
        [DataMember(Name = "parsed")]
        public string ParsedText { get; set; }
 
        [DataMember(Name = "plain")]
        public string PlainText { get; set; }
 
        [DataMember(Name = "rich")]
        public string RichText { get; set; }
 
    }
 
    [DataContract]
    public class YammerPostLikedBy
    {
        [DataMember(Name = "count")]
        public int Count { get; set; }
 
        [DataMember(Name = "names")]
        public List<YammerLikedbyNames> Names { get; set; }
  
    }
 
    [DataContract]
    public class YammerLikedbyNames
    {
        [DataMember(Name = "full_name")]
        public string FullName { get; set; }
 
        [DataMember(Name = "permalink")]
        public string Permalink { get; set; }
 
        [DataMember(Name = "user_id")]
        public int Userid { get; set; }
 
        [DataMember(Name = "network_id")]
        public int Networkid { get; set; }
 
    }
 
    [DataContract]
    public class YammerPosts: SerializedJson<YammerPosts>
    {
        [DataMember(Name = "messages")]
        public List<YammerPost> Posts { get; set; }
 



Chapter 6 ■ Integration Using Yammer Rest APIs 

221

        public YammerPosts()
        {
            this.Posts = new List<YammerPost>();
        }
    }
}

This code contains the main classes listed in Table 6-32.

Table 6-32.  Login Function Parameters

Name Type Description

YammerPost Class Instance of Yammer post with properties like message ID, message 
body, liked by count and names.

YammerPostContent class This class contains the actual message body in pursed text, plain text, 
and rich text.

YammerPostLikedBy Class This class contains properties like count and object of the 
YammerLikedbyNames class.

YammerLikedbyNames Class This class contains the names object with properties like by name,  
user_id, and network_id.

YammerPosts Class Yammer Post's collection object, which contains the YammerPost object.

18.	 Open the YammerMessage.aspx.cs file and add the following code to the using 
directive:

using System.Web.Configuration;

19.	 The final code for post retrieval is to be added to the YammerMessage.aspx.cs file. 
This is a Load_YammerPost function, which will be invoked from the Page_load event.

/// <summary>
        �/// Load_YammerPost method invokes YammerUtility.InvokeHttpGetRequest 

and then the response is SerializedJson
        /// </summary>
        private void Load_YammerPost()
        {
            string response = default(string);
            //Read the Message endpoint from web.config file
            �string Messageendpoint = WebConfigurationManager.AppSettings 

["Messageendpoint"];
 
            �//call the YammerUtlity's PostRequesttoYammer methis passing the 

message, endpoint and the access token stored in a textbox
            if (Session["accesstoken"] != null)
            {
                �response = SPDSUniversityWebApplication.App_Code.

YammerUtility.InvokeHttpGetRequest(Messageendpoint, 
Session["accesstoken"].ToString());

 



Chapter 6 ■ Integration Using Yammer Rest APIs 

222

                �SPDSUniversityWebApplication.App_Code.YammerPosts allposts = 
SPDSUniversityWebApplication.App_Code.YammerPosts.GetObjectIns
tanceFromJson(response);

 
                grdYammerMessage.DataSource = allposts.Posts;
                grdYammerMessage.DataBind();
            }
 
        }

This method first retrieves the message endpoint from the web.config file, then it invokes the 
YammerUtility.InvokeHttpGetRequest method by passing the message endpoint and access token 
stored in the session variable. The JSON response is then serialized and the object is used as the data 
source of the grid control.

20.	 Now add markup for the button control in the Default.aspx file, next to the “Post 
Upcoming Trainings on Yammer” cell:
   
�<asp:Button ID="btnPostView" runat="server" Text="Retrieve all Post from 
Yammer" Width="514px" OnClick="btnPostView_Click" />
 

21.	 Finally, add the click event for the “Retrieve all Post from Yammer” button you 
added in the previous step.

/// <summary>
/// Post to Yammer Button's Click event
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
protected void btnPostView_Click(object sender, EventArgs e)
{
     Response.Redirect("YammerPost.aspx");
}

Run the Application

Let’s see this application in action now. You can use Visual Studio to debug and run the application.

22.	 Click on the Debug button using Google Chrome, as shown in Figure 6-5, and then 
click on the Log In button on the top-right, as shown in Figure 6-6. Follow the login 
process.

23.	 After you are successfully logged into the application, you will see the home page 
shown in Figure 6-27.



Chapter 6 ■ Integration Using Yammer Rest APIs 

223

24.	 You will be presented with a screen as shown in Figure 6-28. The page uses 
an ASP.NET grid control to show you all the message retrieved from Yammer. 
It displays four properties—message_Id (as the post ID), the web URL of the 
message, the message body as Post Body, and number of likes for that particular 
message.

Figure 6-27.  SPDS University home page with the “Retrive All Post from Yammer” button



Chapter 6 ■ Integration Using Yammer Rest APIs 

224

Figure 6-28.  SPDS University home page with the “Retrive all Post from Yammer” button

In this section, we show you how to retrieve messages from Yammer using the REST APIs. In the next 
section, you will see more REST APIs in action.

Search Yammer Using REST APIs

25.	 You will now add the endpoint URL to the web.config file. Add the following code 
to <AppSetting> (you can do it only to a shared resource):

<add key="Searchendpoint" value="https://www.yammer.com/api/v1/search.json" />

26.	 Add markup for the button control in the Default.aspx file next to the  
“Post Upcoming Trainings on Yammer” cell:

<tr class="row1">
                <td class="auto-style7" colspan="2">
                    �<asp:Button ID="btnSearch" runat="server" Text="Search On 

Yammer" Width="514px" OnClick="btnSearch_Click" />



Chapter 6 ■ Integration Using Yammer Rest APIs 

225

                </td>
            <td class="auto-style7" colspan="2">
                    &nbsp;</td>
            </tr>
   

27.	 Add the click event for the “Retrieve all Post from Yammer” button you added in the 
previous step.

/// <summary>
/// Search Button Event
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
protected void btnSearch_Click(object sender, EventArgs e)
{
    Response.Redirect("YammerSearch.aspx");
}

28.	 Add a new web form to the project by right-clicking on the project in the Solution 
Explorer and choosing Add ➤ New Item.

29.	 You will be presented with another window, as shown in Figure 6-29. Enter the 
name of the web form as YammerSearch and click OK.

Figure 6-29.  Add a web form to the project to implement Yammer Search using REST API



Chapter 6 ■ Integration Using Yammer Rest APIs 

226

30.	 Replace ContentPlaceHolderID="MainContent" with the following code.

<asp:Content ID="Content3" ContentPlaceHolderID="MainContent" runat="server">
    <table class="auto-style1">
        <tr>
            <td class="auto-style2">Seach keyword</td>
            <td>
                �<asp:TextBox ID="txtSearch" runat="server" Width="590px">Enter 

seach keyword</asp:TextBox>
            </td>
        </tr>
        <tr>
            <td class="auto-style2">Pages </td>
            <td>
                �<asp:TextBox ID="txtPages" runat="server" Width="590px">Enter 

number of pages</asp:TextBox>
            </td>
        </tr>
        <tr>
            <td class="auto-style2">Search items/Page</td>
            <td>
                �<asp:TextBox ID="txtItems" runat="server" Width="590px">Enter 

items per page</asp:TextBox>
            </td>
        </tr>
        <tr>
            <td class="auto-style2">&nbsp;</td>
            <td>
                �<asp:Button ID="btnsearch" runat="server" OnClick="btnsearch_

Click" Text="Search Now" />
            </td>
        </tr>
<tr>
            <td>
 
            </td>
            <td>
 
                 �<asp:GridView ID="grdYammerMessage" 

AutoGenerateColumns="false" runat="server" ShowHeader="true" 
Width="100%" BorderWidth="2" GridLines="Both">

                    <Columns>
                        <asp:BoundField HeaderText="ID"  DataField="ID" />
                         �<asp:BoundField HeaderText="SenderID"  

DataField="SenderID" />
                         �<asp:BoundField HeaderText="Message" 

DataField="ContentExcerpt" HeaderStyle-Width="600" />
                         �<asp:BoundField HeaderText="WebUrl" 

DataField="WebUrl" />
                         



Chapter 6 ■ Integration Using Yammer Rest APIs 

227

                    </Columns>
                </asp:GridView>
            </td>
        </tr>
    </table>
</asp:Content>

This code adds three input textboxes (the search keyword, the number of result pages, and the search 
items per page) and the button to invoke the search APIs.

31.	 Open the YammerSearch.aspx.cs file and add the following code to the using 
directive:

using System.Web.Configuration;

32.	 Add the search button click event to YammerSearch.aspx.cs.

/// <summary>
        /// Search Button event
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        protected void btnsearch_Click(object sender, EventArgs e)
        {
            string response = default(string);
            //Read the Message endpoint from web.config file
            �string Messageendpoint = WebConfigurationManager.

AppSettings["Searchendpoint"] + "?search=" + txtSearch.Text + 
"&page=" + txtPages.Text + "&num_per_page=" + txtItems.Text;

 
            �//call the YammerUtlity's PostRequesttoYammer methis passing the 

message, endpoint and the access token stored in a textbox
            if (Session["accesstoken"] != null)
            {
                �response = SPDSUniversityWebApplication.App_Code.

YammerUtility.InvokeHttpGetRequest(Messageendpoint, 
Session["accesstoken"].ToString());

 
                �SPDSUniversityWebApplication.App_Code.SearchResults results = 

SPDSUniversityWebApplication.App_Code.SearchResults.GetObjectI
nstanceFromJson(response);

 
                grdYammerMessage.DataSource = results.Results.Posts;
                grdYammerMessage.DataBind();
 
            }
 
        }



Chapter 6 ■ Integration Using Yammer Rest APIs 

228

33.	 Add a new class to the project and name it SearchResults.cs. Then add the 
following code to the class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Runtime.Serialization;
 
namespace SPDSUniversityWebApplication.App_Code
{
    [DataContract]
    public class SearchResults : SerializedJson<SearchResults>
    {
        [DataMember(Name = "messages")]
        public YammerPosts Results { get; set; }
 
    }
 
}

That’s it from search. The class object will be used to store the converted JSON response (the serialized 
object). The exercise uses a minimum of object properties from JSON. You can add more properties in 
the class to convert the entire JSON object into a C# object.

Run the Application

Let’s see this feature of the application in action now. You can use Visual Studio to debug and run the 
application.

34.	 Click on the debug button using the Google Chrome option, as shown in Figure 6-5. 
Then click on the Log In button at the top right, as shown in Figure 6-6. Follow the 
login process.

35.	 After you have successfully logged into the application, you will see home page 
shown in Figure 6-30.



Chapter 6 ■ Integration Using Yammer Rest APIs 

229

Figure 6-30.  SPDSUniversity home page with the “Search on Yammer” button

36.	 You’ll be presented with a search page, as shown in Figure 6-31. This page allows 
users to enter the search keyword and the number of pages and items per page. 
Click on the Search on Yammer button now.



Chapter 6 ■ Integration Using Yammer Rest APIs 

230

Figure 6-31.  Search page with three textboxes as per the search API parameters and the result

The page uses an ASP.NET grid control to show the result retrieved from Yammer. It displays four 
properties—message_Id (as Post ID), the web URL of the message, the message body as the post body, 
and the sender ID for that particular message. For demonstration purposes, a simple grid is used to 
display the result. You can add more features to display other properties and allow users to navigate to 
actual data pages.

In this exercise, you learned to implement Yammer REST APIs to post a massage, retrieve Yammer posts, 
and search the API in action. You should be able to call other REST APIs in a similar way.

It’s not possible to create exercises for all endpoints in this book, so we expect you to look at your 
business case and adopt appropriate endpoints per your business needs. 



Chapter 6 ■ Integration Using Yammer Rest APIs 

231

Summary
Yammer REST API are one of the easiest and most comprehensive ways to do integrations with business 
applications. As a developer, you need to understand the architecture of Yammer REST API endpoints and 
the important requirements to start using Yammer REST services endpoints. You should also follow the best 
practices and rate limits when using Yammer REST APIs for creating objects in Yammer. In the following 
chapter, we will cover the different Yammer SDKs and use them to integrate with HTML-based business 
applications.



Chapter 7

Building Social Apps Using 
Yammer JavaScript SDK

Pathik Rawal
In the last chapter, you learned about the Yammer REST web service interface and learned how to use 
Yammer REST APIs in your business applications. In this chapter, you will learn about the Yammer SDKs 
released by Yammer. Yammer has released the following SDKs specifically for developers to build on the 
Yammer platform:

•	 JavaScript SDK

•	 Windows Phone 8 SDK

•	 .NET SDK

•	 iOS SDK

•	 Ruby

•	 Python

Yammer SDKs are open source code, which enables you to access Yammer APIs from various 
technology platforms. Yammer SDKs enable developers to include Yammer authentication and integrate 
Yammer data into their business applications using client-side and server-side code.

In this chapter, we’re going to use Yammer’s JavaScript SDK to integrate Yammer with HTML-based 
enterprise business applications.

■■ Note  SDK (Software Development Kit) is a programming kit that includes platform APIs, programming tools, 
and help documentation that allows developers to develop applications for a specific platform.

© Pathik Rawal and Pryank Rohilla 2015 
P. Rawal and P. Rohilla, Developing on Yammer, DOI 10.1007/978-1-4842-0943-1_7

233



Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

234

Introduction to the JavaScript SDK
Let’s start working with Yammer’s JavaScript SDK. The Yammer JavaScript SDK allows developers to 
integrate Yammer into JavaScript-enabled applications using its rich set of functions for adding social 
plugins, making API calls, and implementing the Yammer login. The JavaScript SDK provides the 
following features:

•	 Enables developers to authenticate users with OAuth 2.0 client-side flow

•	 Enables developers to use Yammer login in line-of-business applications to 
authenticate users

•	 Makes it easy to call into Yammer’s API to integrate business applications  
with Yammer

•	 Makes it easy to call into Yammer’s Open Graph and leverage social graphs

JavaScript SDK includes a rich set functions that allow developers to integrate line-of-business 
applications with Yammer.

Before we implement the Yammer JavaScript SDK, let’s explore the setup that’s required to use the SDK 
for integrations and learn how to configure authentication to Yammer from a business application using 
Yammer’s JavaScript SDK functions.

Setup Required to Use the JavaScript SDK
Let’s first explore the very basic setup required to use Yammer JavaScript SDK so it can integrate with 
external applications. The Yammer SDK for JavaScript doesn’t have to be downloaded or installed.  
Instead you simply need to include a short piece of regular JavaScript code located on Yammer server 
(https://c64.assets-yammer.com/assets/platform_js_sdk.js) in your HTML. That will load the SDK on 
to your web pages or application interface.

The Yammer SDK reference is available at:

https://c64.assets-yammer.com/assets/platform_js_sdk.js

■■ Note  At the time of writing this book, c64 is the version released by Yammer. You should refer to the 
Yammer developer documentation for the latest SDK versions.

The following snippet of code shows the basic version of the JavaScript SDK. You should insert it in the 
<head> tag on each page you want to load it.

<script type="text/javascript" data-app-id="YOUR-APP-CLIENT-ID"  
src="https://c64.assets-yammer.com/assets/platform_js_sdk.js"></script>

This script will load and initialize the SDK. You must replace the value in data-app-id with the ID of your 
own Yammer App. You can find this ID using the client https://www.yammer.com/client_applications,  
as explained in Chapter 3.

Another important configuration is the JavaScript origins section of your Yammer app’s configuration. 
An origin is the URL of your web application, SharePoint site, or SharePoint-hosted app.

https://c64.assets-yammer.com/assets/platform_js_sdk.js
https://c64.assets-yammer.com/assets/platform_js_sdk.js
https://c64.assets-yammer.com/assets/platform_js_sdk.js
https://www.yammer.com/client_applications
http://dx.doi.org/10.1007/978-1-4842-0943-1_3


Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

235

You need to enter all the URLs of your line-of business-applications. In our case study, this would be 
the SPDSUniversity SharePoint-hosted app. It’s URL could be https://spdsuniversity.sharepoint.com/
sites/Dev or https://spdsuniversity-1a08e7eeb36b03.sharepoint.com/sites/Dev.

That’s all that is required from a setup point of view. In the next section, we will take a closer look at 
JavaScript SDK’s authentication functions. You will learn about other JavaScript SDK’s functions that allow 
you to call Yammer REST APIs from your line-of-business applications.

Authentication Using JavaScript SDK
The Yammer’s JavaScript SDK provides a secure way to authenticate Yammer users in external applications. 
Yammer’s JavaScript SDKs can be leveraged in a variety of applications, including HTML sites, web 
applications, Windows 8 apps, and SharePoint-hosted app on the Microsoft platform. In Chapter 4, you built 
a SPDSUniversity SharePoint-hosted app for SharePoint Online using the JavaScript SDK to authenticate 
the Yammer users. In this section, we will extend the functionality of that app to post and retrieve data from 
Yammer by using the JavaScript SDK.

First, let’s explore the different authentication functions provided by the Yammer JavaScript SDK.

Authentication Functions
The Yammer JavaScript SDK includes core authentication functions to authenticate users and retrieve user 
data from Yammer into your line-of-business applications. The core authentication functions are the heart 
of the Yammer JavaScript SDK and easily can be invoked from client-side HTML code. Table 7-1 lists all  
the available authentication functions in the Yammer JavaScript SDK.

In the following section, you will learn more about each of the authentication functions listed in Table 7-1.

Function: loginButton
The simplest way to implement OAuth 2.0 authentication flow is to use the “Sign In with Yammer” button. 
You pass a selector parameter in the login function and second parameter is a callback function to handle 
the response. The HTML element such as <span id="yammer-login"></span> gets converted into a 
standard “Sign In with Yammer” button, as shown in Figure 7-1.

Table 7-1.  Yammer JavaScript SDK’s Authentication Functions

Function Table Head

yam.platform.loginButton Provides a “Log In with Yammer” button using simple HTML markup.

yam.platform.GetLoginStatus Returns the Yammer user’s login status and, if user is already logged in, 
it returns the access token.

Yam.platform.logout This function is used to log out the logged in user.

yam.platform.login Invokes the Yammer Login window in a popup. Ensure that you call 
this function inside a function(response) within getLoginStatus.

Figure 7-1.  Sign In with Yammer button

https://spdsuniversity.sharepoint.com/sites/Dev
https://spdsuniversity.sharepoint.com/sites/Dev
https://spdsuniversity-1a08e7eeb36b03.sharepoint.com/sites/Dev
http://dx.doi.org/10.1007/978-1-4842-0943-1_4


Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

236

Let’s look at the syntax and parameters of the loginButton function.
Here is the syntax of the loginButton function:

yam.platform.loginButton(''#yammer-login'', [callback])

The loginButton function uses two parameters, listed in Table 7-2.

The complete implementation of the loginButton function is provided in the following code snippet:

<span id="yammer-login"></span>
<script>
yam.connect.loginButton('#yammer-login',
              function (resp) {
                  if (resp.authResponse) {
                      displayAuthResult(resp);
                  }
              });
</script>

When this button is clicked by user, it initiates the OAuth authentication workflow on Yammer. When 
the user approves or denies the Yammer app, the callback function will execute. To determine whether the 
user has logged in and has approved your Yammer app, you can check the resp.authResponse property 
value.

If the user isn’t logged into your application or isn’t logged into Yammer, you can use the Login window 
to prompt them to do both. If the user isn’t logged into Yammer, he will first be prompted to log in. If he is 
accessing Yammer for the first time, he will be asked to grant permission to the Yammer app to access his 
data, as shown in Figure 7-2.

Table 7-2.  loginButton Function Parameters

Name Type Required

#selector HTML element name as string Yes

[callback] Function Yes



Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

237

Function: getLoginStatus
The JavaScript SDK function getLoginStatus can be called to determine whether the user is already logged 
into Yammer. The GetLoginStatus function takes two parameters—a callback function and Boolean 
parameter (true or false) to forceRefresh. When getLoginStatus is called for the first time, it calls the 
Yammer API. After a successful call, the callback function will be triggered. The server response is passed to 
the callback function.

Here is the syntax of the getLoginStatus function:

yam.platform.getLoginStatus(callback, [forceRefresh])

The getLoginStatus function uses two parameters, listed in Table 7-3.

Figure 7-2.  Validation by Yammer to allow an external application to use the user’s data

Table 7-3.  getLoginStatus Function Parameters

Name Type Required Description

[callback] Function Yes The callback function

[forceRefresh] Boolean No If passed as false, then the cached response is returned; otherwise, 
the function is called again instead of the cached response



Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

238

The complete implementation of the getLoginStatus() function is provided in the following code snippet

1. <script>
2. yam.connect.getLoginStatus(
3. function(response)
4. {
5.  if(response.authResponse){
6.    alert("Already Logged in");
7.    callback();
8.   }
9.  else
10. {
11. alert("Not Logged in");
12. yam.platform.login(function(response)
13. {
14. // Hanlde Resposne here
15.      };
16. });
17.  </script>

■■ Note  You do not need to store the access token, as subsequent calls to yam.platform.request() will 
automatically use the token returned by this call.

Let’s explore this code snippet line by line:

•	 Line 2: The method yam.connect.getLoginStatus() gets the login status of the user.

•	 Line 3: This line has the callback function that gets called in response to the 
getLoginStatus() method.

•	 Line 5: The if block checks the Boolean field response.authResponse to determine 
if it is true or not.

•	 Lines 6 and 7: If response.authResponse is true then the if block is called and it 
calls the alert message to display the “Logged in” string. The developer can then 
write the code to call the REST APIs from line 5 on behalf of the logged in user. For 
demonstration purposed, a callback() function is called that can make further calls 
to the other Yammer APIs.

•	 Line 9: If respone.authResponse=false then the else block is called.

•	 Line 12: Within the else block, the line yam.platform.login() opens a window for 
the user to log in to Yammer.

Function: login
The yam.platform.login() function is an alternative way to trigger the Yammer login pop-up. This is 
different from the “Sign In with Yammer” button, which we explained earlier.

Here’s the syntax of the login function:

yam.platform.login([opts], [callback])



Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

239

The login function uses two parameters, listed in Table 7-4.

Yam.platform.login() can be used with a GetLoginStatus() method, as shown in the following 
example:

yam.getLoginStatus(
  function(response) {
    if (response.authResponse) {
      console.log("logged in");
      console.dir(response); //print user information to the console
    }
    else {
      �yam.platform.login(function (response) { //prompt user to login and authorize your app,  

as necessary
        if (response.authResponse) {
          console.dir(response); //print user information to the console
        }
      });
    }
  }
);

You should call the yam.platform.login() method inside a function(response) within 
getLoginStatus(), as shown in this example. The yam.platform.login() function prompts the user to log 
in using the Yammer Login screen and then the authorization screen appears so you can authorize your app. 
Once users take action, the pop-up is closed and the callback function is triggered.

Function: logout
The logout() function enables users to log out from Yammer directly from their business applications.  
You can check the login status of the user before calling this function, which will ensure that all components 
required for logout function are loaded.

The syntax of the logout function is as follows:

yam.platform.logout([callback])

The logout function uses one parameter, explained in Table 7-5.

Table 7-4.  The login Function’s Parameters

Function Description

[opts] Object

[callback] Function

Table 7-5.  The logout Function Parameters

Name Type Required Description

[callback] Function Yes The callback function



Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

240

Implementation of the logout function is very simple, as illustrated in the following code snippet:

yam.platform.logout(function (response) {
            // write your code here
})

So, now you have learned the various authentication functions provided by the Yammer JavaScript SDK 
to implement the authentication using OAuth 2.0 flow in your line-of-business applications. Next, you will 
learn about calling Yammer REST APIs using JavaScript SDKs.

Using the JavaScript SDK to Call Other REST APIs
Once you implement the authentication using OAuth 2.0 flow, you need to call the Yammer REST APIs to 
write or read data from Yammer in your business applications. Let’s explore the functions provided by the 
JavaScript SDK to make REST APIs calls.

Additional Functions
The Yammer JavaScript SDK includes functions that allow developers to retrieve data from Yammer into 
their line-of-business applications. Table 7-6 lists the function in Yammer JavaScript SDK.

In the following section, you will learn about the yam.platform.request function in more detail.

Function: request
The Yammer JavaScript SDK also provides a function that can be used to call other REST APIs. This function 
can be used to read or write data to Yammer. For example, to post a message to a Yammer group or to post a 
private message on behalf of a user, you use the JavaScript SDK’s yam.platform.request() method to call all 
the REST APIs.

Here’s the syntax of the yam.platform.request function:

yam.platform.request(options)

The yam.platform.request() takes one parameter—Option—which contains four sub-parameters,  
as listed in Table 7-7.

Table 7-6.  Yammer JavaScript SDK’s Additional Function

Function Table Head

yam.platform.request This function can be used to call all 
other Yammer REST APIs.



Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

241

The yam.platform.request() makes Yammer API calls with a bearer token for the current users.  
The bearer token is set using the yam.platform.setAuthToken() method.

The complete implementation of the yam.platform.request function is provided in the following  
code snippet:

yam. platform.request({
                url: "messages.json",
                method: "GET",
                success: function (msg) {
console.dir ("Get was Successful!: " + msg);
},
                        error: function (msg)
{
 console.dir(msg);
}
})

You can make calls to the REST API without the hostname, as shown in the previous example. The 
previous example uses url:message.json instead of a complete hostname like https://api.yammer.com/
api/v1/ messages.json. When calling REST APIs through the JavaScript SDK, you will need to use the  
api.yammer.com as documented on https://developer.yammer.com/yammer-sdks/.

In Exercise 7-1, you will learn to integrate SharePoint-hosted apps with Yammer using JavaScript 
SDK. Exercise 7-1 is an extension of Exercise 4-2. In Exercise 4-2, you learned how to implement OAuth 2.0 
authentication, which uses JavaScript SDK’s authentication function discussed in this chapter. So before you 
start Exercise 7-1, go back and work through Exercise 4-2 if you have not already done so.

Implementing Yammer Integration in a SharePoint-Hosted 
App Using JavaScript SDK
In Exercise 7-1, you will implement Yammer integration in a SharePoint-hosted app using JavaScript SDK. 
You need Visual Studio 2012 Professional or higher and Office Developer Tools for Visual Studio 2012. These 
can be downloaded from http://msdn.microsoft.com/en-us/office/apps/fp123627.

Table 7-7.  yam.platform.request Function Parameters

Name Type Required Description

URL String Yes REST API endpoint, for example,  
messages.json or activity.json

Method String Yes POST or GET

Callback Function Yes Success callback function

Callback Function Yes Failure callback function

https://api.yammer.com/api/v1/%20messages.json
https://api.yammer.com/api/v1/%20messages.json
http://api.yammer.com
https://developer.yammer.com/yammer-sdks/
http://msdn.microsoft.com/en-us/office/apps/fp123627


Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

242

EXERCISE 7-1: MESSAGES MANAGEMENT: POST  
A MESSAGE TO A YAMMER GROUP

In this exercise, we will extend the functionality of the SharePoint-hosted app we built in Exercise 4-2 
by adding more social features to it in order to post messages and so on.

1.	 Open the Visual Studio Solution SPDSUniversity SharePoint hosted-app for 
SharePoint Online that we developed in Exercise 4-2.

2.	 Add the following code to the ContentPlaceHolderId="PlaceHolderMain" for 
an input text box (to type the message to be posted) and button (to call the post 
message function) markup in CustomActionTarget.aspx.

<div style="position: absolute; top: 510px; left: 20px; width: 
300px; height:80px; background-color: azure; border:dotted;  
border-width:medium">
        <br />
          �<input type="text" id="txtmessage" value="hi" 

style="width:250px; height:20px;"  />
        <br />
          �<input type="button" onclick="postAMessage()"  

value="Post Message to Yammer" />
</div>

3.	 Add a function called postAMessage() to the section ContentPlaceHolderId= 
"PlaceHolderAdditionalPageHead" in the CustomActionTarget.aspx file.

function postAMessage() {
          var ItemURL = "https://SPDSpetro.sharepoint.com/";
          var group_id = 4966305;
          var message = document.getElementById('txtmessage').value
          postMessagetoYammer(ItemURL, message, group_id);
}

This function calls the PostMessagetoYammer function, defined in the  
YammerCore.js, by passing the ItemURL, the message, and the group_id.

The group_id is hard-coded in this example; however, you can use the message 
retrieval REST API to get the group_Id to post a message to group.

4.	 Add a new JavaScript file by right-clicking on the project and choosing Add ➤ New 
Item ➤ Web ➤ JavaScript File, as illustrated in Figure 7-3. Enter YammerCore.js 
into the Name box.

https://spdspetro.sharepoint.com/


Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

243

5.	 Open YammerCore.js and add the following code:

function postMessagetoYammer(ItemURL, message, group_id) {
    var testMessage = { "body": "Hello Test, have you seen this" + ItemURL };
    yam.platform.request({
        url: "https://api.yammer.com/api/v1/messages.json",
        method: "POST",
       data: {
           "body": testMessage,
           "group_id": group_id
        } ,
        success: function (msg) {
            console.log("Message Posted Successfully");
        },
        error: function (msg) {
            console.log("Message Posting Error: " + msg.statusText);
 
        }
    });
}

Figure 7-3.  Add a new JavaScript file and name it YammerCore.js

https://api.yammer.com/api/v1/messages.json


Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

244

■■ Note  As you are using Yammer SDK, you do not need to set the header for the bearer token. The Yammer 
SDK does it for your and generates the request header with the authentication bearer retrieved by using the 
OAuth flow. 

6.	 Add the JavaScript reference to YammerCore.js in the section called ContentPlace 
HolderId="PlaceHolderAdditionalPageHead" in the CustomActionTarget.aspx file.

<script src="../Scripts/yammercore.js"></script>

Messages Management: Like a Message

■■ Note  Yammer JavaScript SDK provides the following REST API to mark a message as liked by the current 
user. https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id=[:id]

Where the ID represents the target message ID and request requires a POST method. 

1.	 In CustomActionTarget.aspx, add a button’s markup “Like a Message” button in 
ContentPlaceHolderId="PlaceHolderMain".

<div style="position: absolute; top: 610px; left: 20px; width: 300px; 
height:100px; background-color: azure; border:dotted; border-width:medium">
        Like A Message
        <br />
        �Message Id <input type="text" id="txtmessageid" value="507867284" 

style="width: 250px; height: 20px;" />
        <br />
 
        �<input type="button" onclick="likeMessage()" value="Like a  

Message on Yammer" />
        <br />
</div>

2.	 Add a function called likeMessage() to the script tag, which will be triggered on 
the “Like a Message on Yammer” button. This function then calls another function 
called likeaMessage(), which is defined in the YammerCore.js file.

function likeMessage() {
          var messageid = document.getElementById('txtmessageid').value;
          likeaMessage(messageid);
}

■■ Note  The likemessage function gets the message ID from the textbox and calls likeaMessage, defined in 
YammerCore.js, by passing the message ID. 

https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id=[:id]


Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

245

3.	 Open YammerCore.js and add the following code to define a new function called 
likeaMessage(messageid).

function likeaMessage(messageid) {

    �var endpoint = "https://www.yammer.com/api/v1/messages/liked_by/ 
current.json?message_id=[:id]".replace('[:id]', messageid)

     yam.platform.request({
        url: endpoint,
        data:'',
        method: "POST",
        success: function (msg) {
            console.log("Message liked Successfully");
        },
        error: function (msg) {
            console.log("Message Posting Error: " + msg.statusText);
 
        }
    });
}

This code snippet first forms the endpoint for invoking the “like a message” API. The endpoint is 
https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id=[:id], first 
replace the [:id] with the message ID of the message you would like to mark as liked. In this example, 
message_id is passed from customActionTarget.aspx using an input text box. The next code is the 
standard yam.platform.request call done by passing the URL (the endpoint we form in the first line 
of the function, data as empty string, method:POST, and callback functions to handle the success and 
failure scenarios.

Messages Management: Unlike a Liked Message

The Yammer JavaScript SDK provides following REST API, which is the same one we saw in the previous 
section, “Like a Message”.

https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id=[:id]

Where the ID represents the target message ID and request requires a DELETE method.

1.	 Add the following code to add a button to the CustomActionTarget.aspx file.

<div style="position: absolute; top: 810px; left: 20px; width: 300px; 
height:80px; background-color: azure; border:dotted; border-width:medium">
        �<input type="button" onclick="UnlikeMessage()" value="Unlike a Message 

on Yammer" />
        <br />
</div>

https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id=%5B:id%5D%22.replace('[:id]
https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id=%5B:id%5D%22.replace('[:id]
https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id=%5b:id
https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id=[:id]


Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

246

2.	 Add a function called likeMessage() to the script tag, which will be triggered on 
the “Like a Message on Yammer” button. This function then calls another function, 
called likeaMessage(), which is defined in the YammerCore.js file.

function UnlikeMessage() {
          var messageid = document.getElementById('txtmessageid').value;
          UnlikeaMessage(messageid);
}

3.	 Add the following code to define a function called UnlikeaMessage in the 
YammerCore.js file.

function UnlikeaMessage(messageid) {
    �var endpoint = "https://www.yammer.com/api/v1/messages/liked_by/ 

current.json?message_id=[:id]".replace('[:id]', messageid)
     yam.platform.request({
        url: endpoint,
        data:'',
        method: "DELETE",
        success: function (msg) {
            console.log("Message was unliked Successfully");
        },
        error: function (msg) {
            console.log("Message Posting Error: " + msg.statusText);
 
        }
    });
}

This code snippet first forms the endpoint for invoking the “unlike a message” API. The endpoint is 
https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id=[:id], so we 
need to replace the [:id] with the message ID of the message you would like to mark as unliked.  
In this example, the message_id is passed from customActionTarget.aspx using an input textbox.  
The next code is the standard yam.platform.request call created by passing the URL (the endpoint we 
form in the first line of the function, data as empty string, method :DELETE and call back functions to 
handle the success and failure scenarios.

Run the SharePoint-Hosted App

You have added all the necessary code for the SharePoint-hosted app, so you can now run the 
application and see the integration of the app with Yammer using JavaScript SDK in action.

1.	 In Solution Explorer, open the shortcut menu for the app in the SharePoint project, 
and then choose Deploy, as illustrated in Figure 7-4.

https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id=%5B:id%5D%22.replace('[:id]
https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id=%5B:id%5D%22.replace('[:id]
https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id=%5b:id


Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

247

2.	 Once the app is deployed, navigate to https:// spdsuniversity.sharepoint.com/ 
sites/dev/_layouts/15/start.aspx#/SitePages/DevHome.aspx using your 
browser, as illustrated in Figure 7-5. Click on SPDSUniversityApp, as highlighted.

Figure 7-4.  Deploy the SharePoint-hosted app using Visual Studio

https://contosopetro.sharepoint.com/sites/dev/_layouts/15/start.aspx#/SitePages/DevHome.aspx
https://contosopetro.sharepoint.com/sites/dev/_layouts/15/start.aspx#/SitePages/DevHome.aspx


Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

248

3.	 You will be presented with the app’s default page, called CustomActionTarget.aspx, 
as illustrated in Figure 7-6.

Figure 7-5.  Deployed SharePoint-hosted app on the SharePoint Online Dev site



Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

249

4.	 Enter the URL of the SharePoint-hosted app, as shown in Figure 7-7. This should be 
the URL of the SharePoint web where your SharePoint-hosted app is deployed.

Figure 7-6.  SharePoint-hosted app’s default page, CustomActionTarget.aspx



Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

250

5.	 The first thing you need to do is log in using the “Log In with Yammer” button.  
Once you click on that button, you will be presented with Yammer’s Login window,  
as shown in Figure 7-8. Enter your Yammer credentials and click on the Login button.

Figure 7-7.  Yammer app’s JavaScript Origins section



Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

251

6.	 After a successful login, you will be taken back to the CustomActionTarget.aspx 
page, where the displayAuthResult() function will display the access token for 
the logged-in user, which we already saw in Chapter 4. As illustrated in Figure 7-9, 
the page also has three div sections that display buttons and textboxes for posting 
a message, liking a message, and unliking a message.

Figure 7-8.  Yammer’s login window, which is initiated by clicking on the “Log In with Yammer” button

http://dx.doi.org/10.1007/978-1-4842-0943-1_4


Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

252

So, in this exercise, we extended the SPDS University SharePoint-hosted app to integrate Yammer 
functionalities by using the Yammer JavaScript SDK.

In a similar manner, you can use the Yammer JavaScript SDK in your business application to provide 
authentication using Yammer and then read and write data to Yammer.

Figure 7-9.  After successful login, the page displays the markup to test other features of the JavaScript SDK



Chapter 7 ■ Building Social Apps Using Yammer JavaScript SDK

253

Summary
By now you are familiar with the Yammer SDKs released by Yammer. First, you learned about the Yammer 
JavaScript SDK, the authentication functions, and the other functions available in the SDK. You also learned 
to integrate a JavaScript-enabled application with Yammer. In the next chapter, you will learn how to 
integrate a Windows phone app with Yammer using the Windows Phone SDK.



Chapter 8

Building Social Apps Using 
Yammer Windows Phone 8 SDK

Pathik Rawal
In last chapter you learned about Yammer JavaScript SDK. The JavaScript SDK helps you integrate  
HTML-based line-of-business applications with Yammer. In this chapter, you will learn about the Yammer 
Windows Phone SDK, released by Yammer. The Windows Phone SDK allows you to integrate Windows 
phone apps with Yammer. You can leverage the Windows Phone SDK to allow users to log in to your 
Windows Phone SDK using Yammer. You can implement the “Sign In with Yammer” button using the 
Windows Phone SDK to speed up the registration process and build a functional login system in minutes.

Introduction to Windows Phone 8 SDK
Yammer Windows Phone SDK is an open source program that enables developers to build Windows mobile 
apps on the Yammer platform or integrate Yammer functionality into their existing Windows phone apps. 
Like Yammer’s other SDKs for enterprise applications, the Windows Phone SDK helps organizations build 
more mobile capabilities and develop integrations with Yammer.

The Yammer Windows Phone SDK is a class library project that’s best suitable for Microsoft Windows 
Phone 8 apps.

The Windows Phone SDK enables:

•	 Developers to authenticate users with OAuth 2.0 in a Windows phone app

•	 Developers to call into Yammer’s API to integrate Windows phone app with Yammer

•	 Developers to call into Yammer’s Open Graph and leverage social graph

The Windows Phone SDK is available at https://github.com/yammer/windows-phone-oauth-sdk-demo. 
This SDK consists of two projects:

•	 Yammer.OAuthSDK: A class library that contains helper classes for Windows phone app. 
The library provides methods for login, authorization processes, and other APIs calls.

•	 OAuthWPDemo: A sample project that demonstrates how to use the SDK to build the 
Windows Phone API for the Yammer network.

■■ Note  This chapter does not explain how to develop Windows Phone 8 mobile apps. Refer to MSDN or other 
Apress books to explore Windows Phone 8 app development.

© Pathik Rawal and Pryank Rohilla 2015 
P. Rawal and P. Rohilla, Developing on Yammer, DOI 10.1007/978-1-4842-0943-1_8

255

https://github.com/yammer/windows-phone-oauth-sdk-demo#_blank%23Windows%20Phone%20SDK


Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

256

In the next section, you will learn about the basic setup required in order to leverage the Windows 
Phone SDK.

Setup Required to Use Windows Phone App 8 SDK
Before you learn about the different methods and functions, it’s important to understand the basic setup 
required to integrate the Windows Phone SDK.

Step 1: Register Your Yammer App and Set the Redirect URI
Register a new Yammer app as explained in Chapter 3 and configure the redirect URI to a custom one.  
The redirect URI has be unique to your WP8 app. For example, SPDSWP8App://Yammer. Make sure the 
scheme name (in this case SPDSWP8App) is unique to your company and Windows phone 8 app.

Step 2: Create an Instance of the  
Yammer.OAuthSDK.Model.OAuthClientInfo Class
The Yammer App registered in your Yammer network is identified by a unique ClientID, a client secret key, 
and a redirect URI, as shown in Figure 8-1.

Figure 8-1.  Registered Yammer app’s keys and tokens

The first step in setting up your Windows phone app is to create an instance of the class called 
Yammer.OAuthSDK.Model.OAuthClientInfo. This class defines the properties that store the Yammer App 
configuration values. The best place to do this is in the resource dictionary in your Yammer App.xaml file.

Adding Code to App.xaml
Define an object of class model OAuthClientInfo in the App.xaml file with the ClientID, ClientSecret, and 
RedirectURI values matching the Yammer app configuration values.

<model:OAuthClientInfo xmlns:model="clr-namespace:Yammer.OAuthSDK.Model;assembly= 
Yammer.OAuthSDK" x:Key="MyOAuthClientInfo"
            ClientId="ZaV9YiPAdnqa273m3HTH5w"
            ClientSecret="BzLv9AsfUrVaCY7XTvgFBxjGizsxGK7BPcs5YftkVtE"
            RedirectUri="SPDSWP8App://Yammer" />

http://dx.doi.org/10.1007/978-1-4842-0943-1_3


Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

257

Adding Code to App.xaml.cs
You can now define a property in App.xaml.cs. A property declared in App.xaml.cs will be available 
application-wide. Add the following code in App.xaml.cs for the getter property.

public OAuthClientInfo MyOAuthClientInfo
{
    get
    {
        return Resources["MyOAuthClientInfo"] as OAuthClientInfo;
    }
}

Step 3: Configure a URI Association
This step is important from the user experience perspective, as during the login process in your Windows 
phone app, the user will be redirected to an IE browser Windows app. The developer needs to do URI 
association so that the after a successful login, users are redirected to the Windows phone app from the IE 
browser.

Configure Project Manifest “WMAppManifest.xml”
The configuration of URI association is done in the WMAppManifest.xml file, which is part of your Windows 
phone project.

The next step is to add an Extensions element in the app manifest file. Add the following code  
(below the tokens element) to WMAppManifest.xml. The Extensions element uses the Protocol element to 
specify the URI association (using a scheme name). Your Extensions element should look like this:

<Extensions>
  <Protocol Name="SPDSWP8App" NavUriFragment="encodedLaunchUri=%s" TaskID="_default" />
</Extensions>

Updating App.xaml.cs
Now you need to override the default URI-mapper class with the app’s redirect URI in the 
InitializePhoneApplication() method in App.xaml.cs:

// Override the default URI-mapper class with our OAuth URI handler.
RootFrame.UriMapper = new OAuthResponseUriMapper(MyOAuthClientInfo.RedirectUri);

That is all the basic setup required to use the Windows Phone SDK in your Windows phone app. 
Exercise 8-1 demonstrates the step-by-step process to leverage the Windows Phone SDK, including the basic 
setup required in order to leverage the capabilities of Yammer’s Windows Phone SDK.

Understanding Windows Phone SDK
Before we jump into the implementation of Yammer SDK for Windows Phone, let’s explore the Windows 
Phone SDK’s project structure and the functions provided by the SDK project. Later in this section, you will 
see the actual implementation of each function provided by the SDK.



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

258

Project “Yammer.OAuthSDK” Structure
Yammer.OAuthSDK is the C# class library project that contains all essential classes methods to integrate 
Yammer functionality into the Windows Phone App. This is a mandatory project you have to add to your 
Windows Phone App Visual Studio Solution to create an app for integration with Yammer. We will also 
explain how to implement this app in your project using an example later in this chapter.

Look at the class structure of the Yammer.OAuthSDK project, as shown in Figure 8-2.

Figure 8-2.  Class structure of the Windows Phone SDK

As you can see, this SDK project contains a folder named Model in the Yammer.OAuthSDK project.  
This folder contains all the model classes required for OAuth authentication for the Windows phone app.

All the classes under the Model folder are defined in the Yammer.OAuthSDK.Model namespace.  
The purpose of each class is listed in Table 8-1.



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

259

There is another folder named Util in the Yammer.OAuthSDK project, also shown in Figure 8-1, that 
contains utility classes. All these classes are defined in the Yammer.OAuthSDK.Utils namespace. Table 8-2 
provides details of these classes.

Table 8-1.  List of Classes Available in the Yammer.OAuthSDK.Model Namespace

Class Name Purpose Methods

AccessToken The object that contains the 
actual access token.

Token

AuthenticationResponse The root object that 
desterilizes from a Yammer 
OAuth API call response.

AccessToken
OAuthError

OAuthClientInfo Constants used to identify 
your app on the Yammer 
platform.

ClientId
ClientSecret
RedirectUri

OAuthError Object used to deserialize an 
error response from a Yammer 
API call.

Type
Message
Code
Stat
HttpStatusCode HttpStatusDescription

Table 8-2.  List of Classes Available in the Yammer.OAuthSDK.Utils Namespace

Class Name Purpose Available Methods

Constants This class defines all constants for 
constants that point to the Yammer 
API endpoints and constants that are 
used as the URL parameters for the 
API calls and responses.

Private variable:

ApiEndpoints
OAuthParameters

CryptoUtils Utils class to handle cryptographic 
and encoding related operations.

Private variable:

redirectUri

Method:

GenerateUrlFriendlyNonce()
EncryptAndStoreMapUri()
DecryptStored()
UrlTokenEncode()
UrlTokenDecode()

OAuthResponseUriMapper Converts a uniform resource  
identifier (URI) into a new URI to be 
redirected and based on the OAuth 
parameters received.

Private variable:

redirectUri

Method:

OAuthResponseUriMapper()
MapUri()

(continued)



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

260

Class Name Purpose Available Methods

OAuthUtils Utils class to handle Yammer OAuth 
API operations.

Private variable:

const string tokenFilePath
const string nonceFilePath
string AccessToken

Method:

LaunchSignIn()
HandleApprove()
GetJsonFromApi()
DeleteStoredToken()
HandleExceptions()

SerializationUtils Utils class to handle serialization 
operations.

Private variable:
Method:

DeserializeJson()

StorageUtils Utils class to handle storage-related 
operations.

Method:

DeleteFromIsolatedStorage()
WriteToIsolatedStorage()
WriteToIsolatedStorage()
ReadStringFromIsolatedStorage()
ReadBytesFromIsolatedStorage()

The Yammer.OAuth.Model and Yammer.OAuthSDK.Utils namespaces both contain important and 
mandatory classes to support Yammer integration with the Windows phone app.

In the next section, we will deep dive into some important functions mentioned in these classes.

Important Methods of Yammer.OAuthSDK
Before developing a Windows phone app, let’s look at the Windows Phone App SDK methods that are 
available in the Yammer.OAuthSDK.Utils namespace. Table 8-3 lists three important methods provided by 
the SDK.

Table 8-3.  Important Windows Phone 8 SDK Functions

Method Purpose

LaunchSignIn Initiates the user login.

HandleApprove Handles the OAuth approved response asynchronously by storing  
the information received from Yammer, like Code and State.

GetJsonFromApi Calls the Yammer REST APIs asynchronously.

In the following section, you will dive deeply into each of these methods listed in Table 8-3. You will 
learn the actual implementation of each method with the syntax and parameter of each method.

Table 8-2.  (continued)



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

261

LaunchSignIn Method
The LaunchSignIn method initiates the user login. Developers can invoke this method from a Windows 
phone app by using a “Login with Yammer” button. When called, this methods invokes the Internet 
Explorer browser on the Windows phone. The IE browser navigates to the Yammer login URL  
(https://www.yammer.com/dialog/oauth?client_id={0}&redirect_uri={1}&state={2}), which allows 
Yammer to authenticate the user as well as authorize the Yammer app.

The syntax of LaunchSignIn is as follows:

OAuthUtils.LaunchSignIn(clientId, redirectUri);

The LaunchSignIn method accepts two parameters, as listed in Table 8-4.

Table 8-4.  LaunchSignIn Method Parameters

Name Type Required Description

clientId String Yes The client ID of your Yammer App.

redirectUri String Yes The URL of your application where Yammer will  
redirect to after the authentication flow is complete.

The following code snippet provides the actual implementation of LaunchSignIn() method:
   
public static void LaunchSignIn(string clientId, string redirectUri)
{
    var ieTask = new WebBrowserTask();
    �// need to generate and store this nonce to identify the request is ours when it  

comes back
    string nonce = CryptoUtils.GenerateUrlFriendlyNonce();
    StorageUtils.WriteToIsolatedStorage(nonce, nonceFilePath);
    �string url = string.Format(Constants.ApiEndpoints.OAuthUserAuthentication, clientId, 

redirectUri, nonce);
    ieTask.Uri = new Uri(url, UriKind.Absolute);
    ieTask.Show();
}

HandleApprove Method
This is another very important method for Windows Phone SDK. HandleApprove is invoked after the 
user is redirected back to the Windows phone app. This method handles the OAuth-approved response 
asynchronously by storing the information received from Yammer, like Code and State.

The syntax of HandleApprove is as follows:

OAuthUtils.HandleApprove(clientId, clientSecret, Code, State,[ onSuccess],[onFailure])

The HandleApprove method accepts four parameters, as listed in Table 8-5.

https://www.yammer.com/dialog/oauth?client_id={0}&redirect_uri={1}&state={2}


Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

262

The following code snippet provides the actual implementation of the HandleApprove() method:
    
public static void HandleApprove(string clientId,
    string clientSecret,
    string code,
    string state,
    Action onSuccess,
    Action onCSRF = null,
    Action<AuthenticationResponse> onErrorResponse = null,
    Action<Exception> onException = null)
{
    �// we get the stored nonce from the Isolated Storage to verify it against the one we get 

back from Yammer
    string nonce = StorageUtils.ReadStringFromIsolatedStorage(nonceFilePath);
    if (state != nonce)
    {
        // might be a CSRF attack, so we discard the request
        if (onCSRF != null)
        {
            onCSRF();
        }
        return;
    }
    �string url = string.Format(Constants.ApiEndpoints.OAuthAppAuthentication, clientId, 

clientSecret, code);
    var appAuthUri = new Uri(url, UriKind.Absolute);
 
    var webclient = new WebClient();
 
    OpenReadCompletedEventHandler handler = null;
    handler = (s, e) =>
    {
        webclient.OpenReadCompleted -= handler;
        if (e.Error == null)
        {
            �// the token should have been sent back in json format, we use serialization to 

extract it
            �AuthenticationResponse oauthResponse =  

SerializationUtils.DeserializeJson<AuthenticationResponse>(e.Result);

Table 8-5.  HandleApprove Function Parameters

Name Type Required Description

clientId String Yes The client ID of your Yammer app.

client Secret String Yes The clientSecret key of your Yammer app.

Code String Yes The code value obtained back from Yammer on the RedirectUri 
callback.

State String Yes The optional state value used to mitigate CSRF attacks.



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

263

            AccessToken = oauthResponse.AccessToken.Token;
            onSuccess();
        }
        else
        {
            HandleExceptions(e.Error, onErrorResponse, onException);
        }
    };
 
    webclient.OpenReadCompleted += handler;
    �// make the actual call to the Yammer OAuth App Authentication endpoint to get our  

token back
    webclient.OpenReadAsync(appAuthUri);
}

GetJsonFromApi Method
The GetJsonFromApi method calls the Yammer REST APIs asynchronously. Developers can use this method 
to call any REST APIs that do not require any additional parameters.

The syntax of GetJsonFromApi is as follows:

public static void GetJsonFromApi(Uri endpoint,  Action<string> onSuccess,  
Action<AuthenticationResponse> onErrorResponse = null, Action<Exception> onException = null)

The GetJsonFromApi method accepts four parameters, as listed in Table 8-6.

Table 8-6.  GetJsonFromApi Function Parameters

Name Type Required Description

endpoint String Yes An API URI endpoint that doesn’t require any extra 
parameters.

onSuccess String Yes Action to be executed if call is successful.

onErrorResponse String Yes Action to be executed if you get an error response from 
Yammer.

onException String Yes Action to be executed if there is an unexpected exception.

The following code snippet provides the actual implementation of the GetJsonFromApi() method:
   
public static void GetJsonFromApi(Uri endpoint,
    Action<string> onSuccess,
    Action<AuthenticationResponse> onErrorResponse = null,
    Action<Exception> onException = null)
{
    if (endpoint == null || onSuccess == null)
    {
        throw new ArgumentNullException();
    }
 



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

264

    var webclient = new WebClient();
    �// We shouldn't use the url query paramters to send the token, we should use the header 

to send it more securely instead
    webclient.Headers[HttpRequestHeader.Authorization] = "Bearer " + AccessToken;
 
    DownloadStringCompletedEventHandler handler = null;
    handler = (s, e) =>
    {
        webclient.DownloadStringCompleted -= handler;
        if (e.Error == null)
        {
            var result = e.Result;
            // We just pass the raw text data response to the callback
            onSuccess(result);
        }
        else
        {
            HandleExceptions(e.Error, onErrorResponse, onException);
        }
    };
 
    webclient.DownloadStringCompleted += handler;
    webclient.DownloadStringAsync(endpoint);
}

Now that we have explained all the important requirements and structure of the Windows Phone SDK 
for Yammer integration, let’s create a Windows phone app using this SDK.

Building a Windows Phone 8 App Using Yammer Windows 
Phone SDK
This section provides a step-by-step guide on creating a new Windows phone app. You will use the Yammer 
Windows Phone App SDK in your project and call Yammer REST APIs for groups, message, users, and so on. 
Finally, you’ll use Visual Studio’s emulator to test your app.



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

265

3.	 On the left side of the start page, on the navigation pane, choose New Project. 
Alternatively, you can choose the File ➤ New Project ➤ Windows Phone App menu 
command.

4.	 This brings up the New Project window, where you can choose the type of project 
for the Windows phone app. Figure 8-4 demonstrates creating a simple Windows 
phone app from a Windows phone app template.

Figure 8-3.  The Visual Studio start page provides a quick way to get started

EXERCISE 8-1: BUILDING A WINDOWS 8 PHONE APP

Create New Project

1.	 If you already installed Visual Studio and the Windows Phone SDK tools, launch 
Microsoft Visual Studio.

2.	 The first screen presented to you is the Visual Studio start page, shown in  
Figure 8-3.



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

266

5.	 Next you will be presented with a window to select the Windows app platform to 
target for this application. Choose Windows Phone 8.0.

Figure 8-4.  Visual Studio provides a number of templates to choose from; to get started, select the Windows 
phone app

Figure 8-5.  Select the Windows phone version



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

267

6.	 After the wizard finishes, you should have a structure in Solution Explorer that 
resembles Figure 8-6. The solution includes one Windows phone app project, which 
contains the app structure with an App.xml file.

Figure 8-6.  Windows phone app project strucutre

Add Yammer.OAuthSDK to the Solution

7.	 Download the Windows Phone SDK for Yammer from GitHub.

8.	 To add the Yammer.OAuthSDK project to your newly created solution, in the Visual 
Studio Solution Explorer, right-click on the solution name and then choose  
Add ➤ Existing Project, as demonstrated in Figure 8-7.



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

268

9.	 Navigate to the folder where Yammer.OAuth.SDK.csproj is located (Figure 8-8).

Figure 8-7.  To add an existing project to solution in Visual Studio



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

269

10.	 Click open.

Referencing the Yammer.OAuthSDK to Windows Phone App Project

11.	 Once the Yammer Windows Phone SDK is added to your solution, you have to 
reference it in the Windows phone app project. In the Solution Explorer, expand the 
Windows phone app project, right-click on Reference and select Add Reference.

Figure 8-8.  Browse to the Yammer.OAuthSDK project file on your development machine



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

270

12.	 You’ll will be presented with a dialog box, as demonstrated in Figure 8-10.

Figure 8-9.  To add the reference to the Yammer.OAuthSDK project that was added to the solution in the 
previous steps



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

271

Figure 8-10.  Select the project from the list to be added as a reference

13.	 From the right side of this dialog box, choose Solution ➤ Project ➤ Yammer.
OAuthSDK and click OK.

Understanding the Visual Studio Solution Structure

14.	 Your solution should have two projects, as illustrated in Figure 8-11.



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

272

Table 8-7 lists the Windows Phone SDK’s Visual Studio projects available in SDK.

Figure 8-11.  Windows phone solution structure

Table 8-7.  Windows Phone SDK Projects

Name Description

Yammer.OAuthSDK This is class library project that contains helper functions that allow you 
to integrate OAuth login and functions to make APIs calls.

YammerIntegrationWindowsApp A sample Windows Phone 8 application that demonstrates how to set 
up and use these helper classes in an app.

Add an Extension: WMAppManifest.xml

We will start by adding an extension to the WMAppManifest.xml file. Since you’ll be using Visual Studio 
Emulator to build and test this Windows phone app, the redirect_uri parameter must be set so that 
the IE browser on your Windows phone redirects the users to the Windows phone app after successful 
authentication and app authorization. To set up the redirect_uri, you need to set up the extension in 
the WMAppManifest.xml file.

The configuration of URI association is done in the WMAppManifest.xml file, which is part of your 
Windows phone project.



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

273

1.	 Add the following code snippet to WMAppManifest.xml, just below  
the </Token> tag:

<Extensions>
<Protocol Name="SPDSWP8App" NavUriFragment="encodedLaunchUri=%s" 
TaskID="_default" />
</Extensions>

■■ Note  The Protocol Name="SPDSWP8App" should match the App.xaml RedirectURI of the Yammer app 
redirect URI configuration.

2.	 The next project file to modify is App.xaml. You’ll use this file to configure 
the Yammer app configuration values like ClientID, ClientSecret key, and 
RedirectURI. These parameters are required in order to call the Yammer REST API 
from your Windows phone app. The best place to configure those parameters is in 
the App.xaml file within <Application. Resources>.

3.	 Open the App.xaml file by double-clicking on the filename in Visual Studio Solution 
Explorer.

4.	 Add the following code to the Application Resources section (tag name 
<Application.Resources>), directly below the <local:LocalizedStrings> tag.

<model:OAuthClientInfo xmlns:model="clr-namespace:Yammer.OAuthSDK.
Model;assembly=Yammer.OAuthSDK" x:Key="MyOAuthClientInfo"
            ClientId="Fmi5JYfF5jqMLCcydqkJWQ"
            ClientSecret="GBE5vp3mOUZuRVKqFPsXOA6eOLro95DOFVP5PPgSII0"
            RedirectUri="SPDSWP8App://WPSample" />

The redirectURI in this configuration should match your redirect_URI in the Yammer’s app 
configuration, as illustrated in Figure 8-12.



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

274

■■ Note  The clr-namespace refers to the Yammer.OAuthSDK.Model class in the SDK library project you added 
in previous steps.

5.	 Open the App.xaml.cs file by double-clicking on the filename in the Solution 
Explorer. Add the following two lines of code to the using section on the top of the 
code-behind:

using Yammer.OAuthSDK.Model;
using Yammer.OAuthSDK.Utils;

Figure 8-12.  Ensure that your Yammer app's redirect URI matches OAuthClientInfo’s redirect URI



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

275

6.	 Add the following code to declare an object of class OAuthClientInfo model class 
in the App.xaml.cs file. This object will be used to refer to the values for ClientID, 
ClientSecret key, and RedirectURI.

public OAuthClientInfo MyOAuthClientInfo
{
    get
    {
        return Resources["MyOAuthClientInfo"] as OAuthClientInfo;
    }
}

7.	 Now you’ll modify the InitializePhoneApplication method within the  
App.xaml.cs file to override the default URI-Mapper class of the RootFrame 
with the OAuth URI handler, which will be used to redirect the user to the 
Windows phone app from the IE browser after the successful authentication and 
authorizations. Add the following code to the method:

// Override the default URI-mapper class with our OAuth URI handler.
            �RootFrame.UriMapper = new OAuthResponseUriMapper(MyOAuthClientIn

fo.RedirectUri);

■■ Note  MainPage.xaml is the default page with some UI element. It is actually a startup UI for the Silverlight 
application in the Windows phone app. Here, you can use the Silverlight controls for developing user interface 
with different layouts.

8.	 Open MainPage.xaml by double-clicking on the filename in the Solution Explorer. 
MainPage.xaml has the following markup code for the Windows phone page’s title 
and app name. In the StackPanel named x: Name="TitlePanel, change it to the 
text block of your choice for the Yammer app name and main page title.

<!--TitlePanel contains the name of the application and page title-->
        �<StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">
            �<TextBlock Text="SPDS University Windows Phone App" 

Style="{StaticResource PhoneTextNormalStyle}" Margin="12,0"/>
            �<TextBlock Text="SPDS University" Margin="9,-7,0,0" 

Style="{StaticResource PhoneTextTitle1Style}"/>
        �</StackPanel>



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

276

9.	 Add the following code in <Grid x:Name="ContentPanel". This code contains the 
button markup code:

<!--ContentPanel - place additional content here-->
    <Grid x:Name="ContentPanel" Grid.Row="1" Margin="0,0,0,0">
        <Grid.ColumnDefinitions>
            <ColumnDefinition />
            <ColumnDefinition />
        </Grid.ColumnDefinitions>
        <Grid.RowDefinitions>
            <RowDefinition />
            <RowDefinition />
            <RowDefinition />
            <RowDefinition />
            <RowDefinition />
            <RowDefinition />
            <RowDefinition />
            <RowDefinition />
        </Grid.RowDefinitions>
        �<Button Name="btnSignInWithYammer" HorizontalAlignment="Center" 

VerticalAlignment="Top" Click="btnSignInWithYammer_Click">
            �<Image Source="Assets\yammer-signin.gif" Width="179" Height="28" 

Stretch="Fill" />
        </Button>
    </Grid>

■■ Note  Yammer-signin.gif: Use the image of your choice stored in the Asset folder of your Windows 
app solution. You can also download an image from https://www.filepicker.io/api/file/
KYDbdovdQAG9ABZ0LLiT.

10.	 Add the text block control markup to <Grid x:Name="ContentPanel"> to 
store the token status. In the code-behind, we will use this text block to store 
the status=Yes if the Yammer app has already received the access token and 
Status=no if the access token for the current user has not been received. You can 
place this outside of the content panel grid:

<TextBlock x:Name="txbIsTokenPresent" Text="Is Token Present: No." 
TextAlignment="Center" />

After you have defined all the markup in the MainPage.xaml page, you add the code to the code-behind 
class of MainPage.xaml.

11.	 Open MainPage.xaml.cs to add some code-behind to refer to the class library  
from a Yammer.OAuthSDL project like the Yammer.OAUthSDK.Model and  
Yammer.OAUthSDK.Utils classes.

using Yammer.OAuthSDK.Model;
using Yammer.OAuthSDK.Utils;

https://www.filepicker.io/api/file/KYDbdovdQAG9ABZ0LLiT
https://www.filepicker.io/api/file/KYDbdovdQAG9ABZ0LLiT


Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

277

12.	 Declare three variables on top of the page class:

string clientId = default(string);
string clientSecret = default(string);
string redirectUri = default(string);

13.	 Next you need to read the Yammer app configuration values defined in App.xaml 
in the previous steps. To do that, add the following code to MainPage.xaml’s 
constructor (add the following code to the InitializeComponent();) to populate 
the ClientID, ClientSecret, and RedirectUri variables.

// we extract these values from the App's Resource Dictionary config
          clientId = ((App)App.Current).MyOAuthClientInfo.ClientId;
          �clientSecret = ((App)App.Current).MyOAuthClientInfo.ClientSecret;
          �redirectUri = ((App)App.Current).MyOAuthClientInfo.RedirectUri;

14.	 We added the login button markup in the MainPage.xaml, so now it is time to add 
an event handler code for the login button.

private void btnSignInWithYammer_Click(object sender, RoutedEventArgs e)
 {
     OAuthUtils.LaunchSignIn(clientId, redirectUri);
   
 }

•	 The LaunchSignIn method launches Internet Explorer using a  
WebBrowserTask to redirect the user to the proper user authentication endpoint  
(see https://www.yammer.com/dialog/oauth?client_id={0}&redirect_
uri={1} which is defined in the constants class of the Yammer SDK.

•	 The LaunchSignIn method also stores the access token in an isolated space 
which will be used to make further calls.

•	 Generate and store this nonce to identify the request is yours when it comes back.

15.	 Add the UpdateTokenMessage method to the MainPage.xaml.cs file.

private void UpdateTokenMessage(bool isTokenPresent)
{
    �Dispatcher.BeginInvoke(() => txbIsTokenPresent.Text = isTokenPresent ? 

txbIsTokenPresent.Text.Replace("No.", "Yes.") : txbIsTokenPresent.Text.
Replace("Yes.", "No."));

}

The final method you’ll add to the MainPage.xaml.cs file handles the redirect call. This is required as 
the IE browser window will redirect users to the Windows app after a successful user authentication. 
This method

Once the login is successful, the IE browser redirects users to REDIRECT_URI, which is configured in the 
Windows Phone App and App.xaml.cs’s <Extension> tag.

https://www.yammer.com/dialog/oauth?client_id={0}&redirect_uri={1}
https://www.yammer.com/dialog/oauth?client_id={0}&redirect_uri={1}


Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

278

The Windows Phone App provides an OnNavigatedTo() event, which is used to handle the request.

16.	 Add the following code to implement the OnNavigatedTo method in  
MainPage.xaml.cs.
         
protected override void OnNavigatedTo(NavigationEventArgs e)
{
    base.OnNavigatedTo(e);
     
    // Check the arguments from the query string passed to the page.
    IDictionary<string, string> uriParams = NavigationContext.QueryString;
 
    // "Approve"
    �if (uriParams.ContainsKey(Constants.OAuthParameters.Code) && uriParams.

ContainsKey(Constants.OAuthParameters.State) && e.NavigationMode != 
NavigationMode.Back)

    {
        OAuthUtils.HandleApprove(
            clientId,
            clientSecret,
            uriParams[Constants.OAuthParameters.Code],
            uriParams[Constants.OAuthParameters.State],
            onSuccess: () =>
            {
               UpdateTokenMessage(true);
            }, onCSRF: () =>
            {
                �MessageBox.Show("Unknown 'state' parameter. Discarding 

the authentication attempt.", "Invalid redirect.", 
MessageBoxButton.OK);

            }, onErrorResponse: errorResponse =>
            {
                �Dispatcher.BeginInvoke(() => MessageBox.Show(errorResponse.

OAuthError.ToString(), "Invalid operation", MessageBoxButton.OK));
            }, onException: ex =>
            {
                �Dispatcher.BeginInvoke(() => MessageBox.Show(ex.ToString(), 

"Unexpected exception!", MessageBoxButton.OK));
            }
        );
    }
    // "Deny"
    �else if (uriParams.ContainsKey(Constants.OAuthParameters.Error) && 

e.NavigationMode != NavigationMode.Back)
    {
        string error, errorDescription;
        error = uriParams[Constants.OAuthParameters.Error];
        �uriParams.TryGetValue(Constants.OAuthParameters.ErrorDescription, out 

errorDescription);
 



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

279

        �string msg = string.Format("error: {0}\nerror_description:{1}", error, 
errorDescription);

        �MessageBox.Show(msg, "Error response is received.", MessageBoxButton.OK);
 
        OAuthUtils.DeleteStoredToken();
 
        UpdateTokenMessage(false);
    }
 
               // if token already exist
    if (!string.IsNullOrEmpty(OAuthUtils.AccessToken))
    {
       // UpdateTokenMessage(true);
    }
}

Code flow:

•	 First check the arguments from the query string passed to the page and store them in 
the dictionary object called uriParams.

•	 Check if the uriParams contains the code and state in the query string and the 
NavigationMode != NavigationMode.Back.

•	 If it contains code and state, then the user has approved (authorized) the app to use the 
user’s data.

•	 Make a call to Yammer SDK’s HandleApprove method to retrieve the access token.

•	 Finally, call the UpdateTokenMessage method to update the UI status flag of the token 
existence in isolated storage.

Run the Application

1.	 Build the solution and run the Windows phone app using the emulator, as shown in 
Figure 8-13.

Figure 8-13.  Run the Windows Phone App using the emulator

2.	 In Run mode, the home page will look like Figure 8-14.



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

280

When the Login with Yammer button is clicked, the Windows app will redirect you to the 
IE browser, as illustrated in Figure 8-15.

Figure 8-14.  Windows phone landing page



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

281

3.	 Enter the login details and click on Log In.

4.	 The next screen presented is the app authorization screen. It allows users to allow 
or deny the Yammer app to access and update the user’s data.

Figure 8-15.  The Yammer Login screen presented to the user in Internet Explorer



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

282

5.	 After a successful log in to Yammer, IE will redirect you to the Windows phone 
home page again (as per the settings in the Yammer app ➤ Redirect_URI and the 
extension in App.xaml.cs).

Messages Management: Post a Message to Yammer’s Group

Yammer Windows phone enables developers to post a message to Yammer on behalf of users from their 
Windows phone apps.

1.	 Modify Constants.cs (Project Yammer.OAuthSDK) by declaring a constant variable 
for the message endpoints in the public static class ApiEndpoints.

public const string Message = @"https://www.yammer.com/api/v1/messages.json";

2.	 Modify OAuthUtils.cs (Project Yammer.OAuthSDK). Add the following code to 
implement of the post message in the Windows phone SDK project’s  
OAuthUtils.cs file.

      

Figure 8-16.  The OAuth process prompts the user to authorize the Yammer App

https://www.yammer.com/api/v1/messages.json


Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

283

public static void PostMessage(Uri endpoint, string method, string data,
    Action<string> onSuccess,
    Action<AuthenticationResponse> onErrorResponse = null,
    Action<Exception> onException = null)
{
    if (endpoint == null || onSuccess == null)
    {
        throw new ArgumentNullException();
    }
 
    var webclient = new WebClient();
    �// We shouldn't use the url query paramters to send the token, we should 

use the header to send it more securely instead
    �webclient.Headers[HttpRequestHeader.Authorization] = "Bearer " + 

AccessToken;
    // webclient.Headers["Content-Type"] = "application/json";
 
    UploadStringCompletedEventHandler handler = null;
    handler = (s, e) =>
    {
        webclient.UploadStringCompleted -= handler;
        if (e.Error == null)
        {
            var result = e.Result;
            // We just pass the raw text data response to the callback
            onSuccess(result);
        }
        else
        {
            HandleExceptions(e.Error, onErrorResponse, onException);
        }
    };
 
    webclient.UploadStringCompleted += handler;
    webclient.UploadStringAsync(endpoint, method, data);
}

3.	 Add the following code to MainPage.xaml for a button just below the “Log In to 
Yammer” button using the following code:

<Button Name="btnPostMsg" Grid.Row="1" HorizontalAlignment="Center" 
Background="Black" VerticalAlignment="Top" Click="btnPostMsgYammer_Click">
                Post a Message
</Button>
                

4.	 Add a text block to store the response.

<TextBlock x:Name="txtResponses" Text="" TextAlignment="Center"  
Grid.Column="1" Grid.Row="12" />



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

284

5.	 Add the following code to MainPage.xaml.cs for the button’s click event handler.
         
private void btnPostMsgYammer_Click(object sender, RoutedEventArgs e)
{
    // Call this API to test if the auth token works
    �var messageApiEndpoint = new Uri(Constants.ApiEndpoints.Message,  

UriKind.Absolute);
    �String data = "body=We are in process of launching more technical 

trainings this year. Check our training portal home page for more details ";
 
    �OAuthUtils.PostMessage(messageApiEndpoint, "POST", data, onSuccess: 

response =>
    {
        �// we just dump the unformated json string response into a textbox
        �Dispatcher.BeginInvoke(() => txtResponses.Text = "Message Posted");
    },
      onErrorResponse: errorResponse =>
      {
          Dispatcher.BeginInvoke(() =>
          {
              �MessageBox.Show(errorResponse.OAuthError.ToString(), "Invalid 

operation", MessageBoxButton.OK);
              txtResponses.Text = string.Empty;
          });
      },
         onException: ex =>
         {
             Dispatcher.BeginInvoke(() =>
             {
                 �MessageBox.Show(ex.ToString(), "Unexpected exception!", 

MessageBoxButton.OK);
                 txtResponses.Text = string.Empty;
             });
         }
 );
    Dispatcher.BeginInvoke(() => txtResponses.Text = "Posting…");
 
}

In this method, YOU define a string variable called "data" which will hold the actual message to post. 
To post this message on a particular group, use the group_id. If group_id is omitted then the message 
will be posted to "ALL Company", which is your default group to post a message.

Once the message is constructed, call the OAuthUtils.PostMessage method by passing arguments. In 
addition, you can modify the data string variable to do the following.



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

285

Messages Management: Like a Message

You can use the Yammer Windows Phone SDK to mark a message as Liked by the current user. Yammer 
provides current.json to support this activity. You’ll need the message_id in order to mark a message 
as Liked. In the following example, the post message, which was used while posting a message, is  
used with method type set to "POST". To like a message, the data parameter that was used as the 
message string to post is not required; therefore, it is passed as an empty string. The full URL of the 
current.json endpoint is:

https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id=[:id]

where the ID represents the target message ID and method is the POST for marking a message as liked.

1.	 Declare a constant variable for the current.json endpoints in Constants.cs 
(Project Yammer.OAuthSDK).

�public const string current = @"https://www.yammer.com/api/v1/messages/ 
liked_by/current.json";

2.	 Add a button’s markup for the “Like a Message” button using the following code in 
MainPage.xaml:

<Button Name="btnlikemsg" Grid.Row="2" HorizontalAlignment="Center" 
Background="Black" VerticalAlignment="Top" Click="btnLiketMsgYammer_Click">
                Like a Message
</Button>

3.	 Add the following code for the event handler for the button’s click event to 
MainPage.xaml.cs:
   
private void btnLiketMsgYammer_Click(object sender, RoutedEventArgs e)
{
    // Call this API to test if the auth token works
    �var messageApiEndpoint = new Uri(Constants.ApiEndpoints.current + 

"?message_id=508413888", UriKind.Absolute);
    String data = "";
 

Table 8-8.  Variable Available for Data String

Variable Example

Reply_to_Id String data = “replied_to_id=432948966” + “&body=” + “Great!!”;

Add Topics String data = “group_id=4659506&body=A message with Topic” + “&topic1=” + 
“YammerBook!!”;

Private Message String data = “direct_to_id=1522209393&body=A message”;
Where direct_to_id is the user ID

Share a Post String data = “shared_message_id=433483891” + “&body=” + “Sharing an useful 
blog!!”;

https://www.yammer.com/api/v1/messages/liked_by/current.json?message_id=[:id]
https://www.yammer.com/api/v1/messages/liked_by/current.json
https://www.yammer.com/api/v1/messages/liked_by/current.json


Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

286

    �OAuthUtils.PostMessage(messageApiEndpoint, "POST", data,  
onSuccess: response =>

    {
        �// we just dump the unformated json string response into a textbox
        �Dispatcher.BeginInvoke(() => txtResponses.Text = "Message Liked");
    },
      onErrorResponse: errorResponse =>
      {
          Dispatcher.BeginInvoke(() =>
          {
              �MessageBox.Show(errorResponse.OAuthError.ToString(),  

"Invalid operation", MessageBoxButton.OK);
              txtResponses.Text = string.Empty;
          });
      },
         onException: ex =>
         {
             Dispatcher.BeginInvoke(() =>
             {
                 �MessageBox.Show(ex.ToString(), "Unexpected exception!", 

MessageBoxButton.OK);
                 txtResponses.Text = string.Empty;
             });
         }
 );
    Dispatcher.BeginInvoke(() => txtResponses.Text = "Liking…");
 
}

Messages Management: Unlike a Liked Message

You can use the message endpoint method to unlike a message that was marked as Liked by the 
current users. You’ll need message_id to unlike a message. The “mutator” method to unlike a message 
is DELETE.

1.	 We will add a PostMessage function with six parameters in the SDK. We need 
this method to pass the method parameter DELETE. Add the following code in the 
OAuthUtils.cs file:

public static void PostMessage(Uri endpoint, string method, string data,
    Action<string> onSuccess,
    Action<AuthenticationResponse> onErrorResponse = null,
    Action<Exception> onException = null)
{
    if (endpoint == null || onSuccess == null)
    {
        throw new ArgumentNullException();
    }
 



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

287

    var webclient = new WebClient();
    �// We shouldn't use the url query paramters to send the token, we should 

use the header to send it more securely instead
    �webclient.Headers[HttpRequestHeader.Authorization] = "Bearer " + 

AccessToken;
    // webclient.Headers["Content-Type"] = "application/json";
 
    UploadStringCompletedEventHandler handler = null;
    handler = (s, e) =>
    {
        webclient.UploadStringCompleted -= handler;
        if (e.Error == null)
        {
            var result = e.Result;
            // We just pass the raw text data response to the callback
            onSuccess(result);
        }
        else
        {
            HandleExceptions(e.Error, onErrorResponse, onException);
        }
    };
 
    webclient.UploadStringCompleted += handler;
    webclient.UploadStringAsync(endpoint, method, data);
}

2.	 Add a button’s markup for the “Unlike a Message” button using the following code 
in MainPage.xaml:

<Button Name="btnunlikemsg" HorizontalAlignment="Center" Background="Black" 
VerticalAlignment="Top" Click="btnUnLikeMsgYammer_Click">
                        Unlike a Message
</Button>

3.	 Add an event handler for the unlike button to MainPage.xaml.cs:

/// <summary>
        �/// UnLike a Message Button event handler to Like a message specified 

by message_Id
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void btnUnLikeMsgYammer_Click(object sender, RoutedEventArgs e)
        {
            // Call this API to test if the auth token works
            �var messageApiEndpoint = new Uri(Constants.ApiEndpoints.current + 

"?message_id=508402750", UriKind.Absolute);
            String data = "";
 



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

288

            �OAuthUtils.PostMessage(messageApiEndpoint, "DELETE", data, 
onSuccess: response =>

            {
                �// we just dump the unformated json string response into a 

textbox
                �Dispatcher.BeginInvoke(() => txtResponses.Text = "Message 

Unliked");
            },
              onErrorResponse: errorResponse =>
              {
                  Dispatcher.BeginInvoke(() =>
                  {
                      �MessageBox.Show(errorResponse.OAuthError.ToString(), 

"Invalid operation", MessageBoxButton.OK);
                      txtResponses.Text = string.Empty;
                  });
              },
                 onException: ex =>
                 {
                     Dispatcher.BeginInvoke(() =>
                     {
                         �MessageBox.Show(ex.ToString(), "Unexpected 

exception!", MessageBoxButton.OK);
                         txtResponses.Text = string.Empty;
                     });
                 }
         );
            Dispatcher.BeginInvoke(() => txtResponses.Text = "Unliking…");
 
        }

The previous event handler calls the same method that was called to like a message and post a 
message. The only difference is that the method type is DELETE instead of POST.

Messages Management: Retrieve All Messages

The Yammer REST API https://www.yammer.com/api/v1/messages.json enables developers 
to retrieve all messages for the current user. The Windows Phone SDK provides a method called 
GetJsonFromApi from the OAuthUtil class to retrieve all messages from Yammer and serialize the 
JSON to a .NET object. The following code snippet explains step-by-step how to call the SDK’s method. 
It uses a separate phone application page that contains a list view object to display returned records.

4.	 Add a page to the Windows phone project. In Visual Studio’s Solution Explorer, right-click 
on the Windows Phone Project and choose Add ➤ New Item.

https://www.yammer.com/api/v1/messages.json


Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

289

5.	 You’ll be presented with the Add New Item screen, as shown in Figure 8-18.

Figure 8-17.  Add a new page using Add New Item



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

290

6.	 Select Windows Phone Portrait Page and enter the ViewAllMessages name.  
Click Add.

7.	 Since we’re using a ListView control to display the retrieved messages, use the 
App.xaml file to define the styles. The styles are very basic with the intension of 
demonstrating the Yammer REST APIs’ capabilities. Add the following code to the 
App.xaml file within the <Application.Resources> tags.

<Style x:Key="MessagesList" TargetType="ListBox">
            <Setter Property="Margin" Value="5"/>
            <Setter Property="Grid.Row" Value="1"/>
            <Setter Property="Background" Value="White"/>
        </Style>
        <Style x:Key="SimpleBlock" TargetType="TextBlock">
            <Setter Property="HorizontalAlignment" Value="Center"/>
            <Setter Property="FontSize" Value="18"/>
            <Setter Property="FontWeight" Value="Bold"/>
            <Setter Property="Foreground" Value="YellowGreen"/>
            <Setter Property="TextAlignment" Value="Left"/>
            <Setter Property="VerticalAlignment" Value="Center"/>
 
        </Style>
        <Style x:Key="TitleBlock" TargetType="TextBlock">
            <Setter Property="FontSize" Value="18"/>
            <Setter Property="FontWeight" Value="Bold"/>
            <Setter Property="Foreground" Value="WhiteSmoke"/>

Figure 8-18.  Add a new windows page



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

291

            <Setter Property="TextAlignment" Value="Left"/>
            <Setter Property="VerticalAlignment" Value="Center"/>
        </Style>

This example uses the Yammer REST APIs that return the JSON object. In order to convert JSON to a 
.NET object, define a class and all the serializable properties for the object.

8.	 Add a new folder called Common, which will contain all common classes.

Figure 8-19.  Add a folder to the project

9.	 Define a class for the message object and name it YammerMessage.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Runtime.Serialization;



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

292

using System.Runtime.Serialization.Json;
using Yammer.OAuthSDK.Utils;
using SPDSUniversityWinPhoneApp.Common;
  
namespace SPDSUniversityWinPhoneApp.Common
{
    [DataContract]
    public class YammerMessage
    {
        [DataMember(Name = "id")]
        public string ID { get; set; }
 
        [DataMember(Name = "sender_id")]
        public string SenderID { get; set; }
 
        [DataMember(Name = "replied_to_id")]
        public string RepliedToID { get; set; }
 
        [DataMember(Name = "created_at")]
        public string CreatedAt { get; set; }
 
        [DataMember(Name = "network_id")]
        public string NetworkID { get; set; }
 
        [DataMember(Name = "message_type")]
        public string MessageType { get; set; }
 
        [DataMember(Name = "sender_type")]
        public string SenderType { get; set; }
 
        [DataMember(Name = "url")]
        public string Url { get; set; }
 
        [DataMember(Name = "web_url")]
        public string WebUrl { get; set; }
 
        [DataMember(Name = "group_id")]
        public string GroupId { get; set; }
 
        [DataMember(Name = "body")]
        public YammerMessageContent MessageContent { get; set; }
 
        [DataMember(Name = "rich")]
        public YammerMessageContent MessageContent1 { get; set; }
 
        [DataMember(Name = "thread_id")]
        public string ThreadID { get; set; }
 
        [DataMember(Name = "client_type")]
        public string ClientType { get; set; }
 



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

293

        [DataMember(Name = "client_url")]
        public string ClientUrl { get; set; }
 
        [DataMember(Name = "system_message")]
        public bool SystemMessage { get; set; }
 
        [DataMember(Name = "direct_message")]
        public bool DirectMessage { get; set; }
 
        [DataMember(Name = "chat_client_sequence")]
        public string ChatClientSequence { get; set; }
 
        [DataMember(Name = "content_excerpt")]
        public string ContentExcerpt { get; set; }
 
        [DataMember(Name = "language")]
        public string Language { get; set; }
 
        [DataMember(Name = "notified_user_ids")]
        public string notified_user_ids { get; set; }
 
        [DataMember(Name = "privacy")]
        public string privacy { get; set; }
         
        [DataMember(Name = "group_created_id")]
        public string group_created_id { get; set; }
 
        public YammerMessage()
        {
          
            this.MessageContent = new YammerMessageContent();
        }
    }
 
}

10.	 Define the YammerMessageContent class using the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Json;
using Yammer.OAuthSDK.Utils;
using SPDSUniversityWinPhoneApp.Common;
  



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

294

namespace SPDSUniversityWinPhoneApp.Common
{
    [DataContract]
    public class YammerMessageContent
    {
        [DataMember(Name = "parsed")]
        public string ParsedText { get; set; }
 
        [DataMember(Name = "plain")]
        public string PlainText { get; set; }
 
        [DataMember(Name = "rich")]
        public string RichText { get; set; }
 
    }
 
}

11.	 Define a class for the messages collection object using the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Json;
using Yammer.OAuthSDK.Utils;
using SPDSUniversityWinPhoneApp.Common;
 
[DataContract]
public class YammerMessages
{
    [DataMember(Name = "messages")]
    public List<YammerMessage> Messages { get; set; }
 
    public YammerMessages()
    {
        this.Messages = new List<YammerMessage>();
    }
}

12.	 Add the following code to the newly added class file. First add references to the 
class libraries:

using System.Runtime.Serialization;
using System.Runtime.Serialization.Json;
using Yammer.OAuthSDK.Utils;



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

295

13.	 Use the ViewAllMessages.xaml file to define the user interface to display 
messages retrieved from Yammer. To do this, use the following code snippet and 
add it to the <Grid x:Name="ContentPanel"> grid control:

<ListBox x:Name="ListBoxAllMessage" ItemsSource="{Binding}" >
                <ListBox.ItemTemplate>
                    <DataTemplate>
                         
                        <StackPanel Orientation="Vertical">
                            �<Line Stroke="White" X1="0" Y1="25" X2="800" 

Y2="25" />
                            �<TextBlock Text="{Binding ID}" 

Style="{StaticResource SimpleBlock}" />
                            �<TextBlock Text="{Binding MessageContent.

PlainText}" Margin="5" Style="{StaticResource 
TitleBlock}" />

                            �<Line Stroke="White" X1="0" Y1="25" X2="800" 
Y2="25" />

                            
                        </StackPanel>
                         
                    </DataTemplate>
                </ListBox.ItemTemplate>
 
            </ListBox>
           
            <TextBlock x:Name="txtResponses" Text="" TextAlignment="Center" />
         

The previous code uses a ListBox control with an item template. The item template defines a 
StackPanel to display a line, a text block for the message ID, a text block for the MessageContent.
PlainText, and another line as a row separator. Define the appropriate binding as per the 
YammerMessage class definition.

The code-behind file of ViewAllMessage.xaml implements the server-side code that calls the Yammer 
REST API using the SDK’s helper functions.

private void Loaddata()
{
    // Call this API to test if the auth token works
    �var messageApiEndpoint = new Uri(Constants.ApiEndpoints.Message, UriKind.

Absolute);
 
    OAuthUtils.GetJsonFromApi(messageApiEndpoint, onSuccess: response =>
    {
        �byte[] byteArray = System.Text.UTF8Encoding.UTF8.GetBytes(response);
        MemoryStream res = new MemoryStream(byteArray);
 
        �YammerMessages msgs =  

SerializationUtils.DeserializeJson<YammerMessages>(res);
 
        ListBoxAllMessage.DataContext = msgs.Messages;



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

296

        ListBoxAllMessage.ItemsSource = msgs.Messages;
 
        // we just dump the unformated json string response into a textbox
        �Dispatcher.BeginInvoke(() => txtResponses.Text = "Messages Retrieved");
    },
      onErrorResponse: errorResponse =>
      {
          Dispatcher.BeginInvoke(() =>
          {
              �MessageBox.Show(errorResponse.OAuthError.ToString(), "Invalid 

operation", MessageBoxButton.OK);
              txtResponses.Text = string.Empty;
          });
      },
         onException: ex =>
         {
             Dispatcher.BeginInvoke(() =>
             {
                 �MessageBox.Show(ex.ToString(), "Unexpected exception!", 

MessageBoxButton.OK);
                 txtResponses.Text = string.Empty;
             });
         }
 );
    Dispatcher.BeginInvoke(() => txtResponses.Text = "Retrieving ...");
}
 
}

The Loaddata method calls the Windows Phone SDK’s GetJsonFromApi method, which returns the 
JSON stream, which is then deserialized into a .NET object. Finally, the collection object called msgs of 
the YammerMessages class is assigned to ListBox as an ItemsSource property.

14.	 Use the following code snippet to reference the namespaces that the 
ViewAllMessages.xaml page will be using frequently.

using Yammer.OAuthSDK.Utils;
using Yammer.OAuthSDK.Model;
using Yammer.OAuthSDK.Utils;
using System.IO;
using System.Text;



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

297

15.	 Modify the page’s Constructor method to call the Loaddata() method.

public ViewAllMessages ()
        {
            InitializeComponent();
            Loaddata();
        }

16.	 Now add a button control to the main windows phone page to allow users to 
navigate to the View All Messages page. Add the following code for a button control:

<Button Name="ViewallMessage" Grid.Row="4"  HorizontalAlignment="Center" 
VerticalAlignment="Top" Click="ViewallMessage_Click">
              View All Messages
</Button>

17.	 MainPage.xaml.cs: Add an event handler for the ViewAllMessage button.

private void ViewallMessage_Click(object sender, RoutedEventArgs e)
{
    �NavigationService.Navigate(new Uri("/ViewAllMessages.xaml",  

UriKind.Relative));
}

User Management: Retrieve all Users

In the previous section, you implemented code to retrieve all messages for the current user. Yammer 
is a social site and the most important actor on any social site are the users. We’ll see how to retrieve 
Yammer’s users using the REST APIs.

18.	 Add a ViewAllUsers phone page. We’ll add another page to the existing project to 
display the users’ properties on a grid view control. To add a page to your solution, 
in Visual Studio’s Solution Explorer, right-click on the Windows Phone Project and 
then choose Add ➤ New Item (Figure 8-20).



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

298

Figure 8-20.  Adding a page using Visual Studio Solution Explorer

19.	 You’ll be presented with the Add New Item screen. Select Windows Phone Portrait 
Page and enter the name ViewAllMessages. Click Add.



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

299

20.	 Add an endpoint in the Constants class. Define a constant property in Yammer.
OAUthSDK’s Constants class.
   
public const string allUsersUrl = "https://www.yammer.com/api/v1/users.json";

21.	 Add a new class for the Yammer users’ data contract. The user object is very 
big in nature and it holds many properties that are stored in Yammer, like user’s 
first name, last name, full name, department, title, and so on. Along with those 
properties, Yammer also stores the user’s social graph like group members, 
followers, following, and so on. If you cannot use the class from this book directly, 
do not worry as the sample code is available for download.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Json;
using System.IO;
using System.Diagnostics;
  

Figure 8-21.  Adding new items using the Add New Item screen

https://www.yammer.com/api/v1/users.json


Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

300

namespace SPDSUniversityWinPhoneApp.Common
{
    [DataContract]
    public class YammerUser
    {
        [DataMember(Name = "id")]
        public string UserID { get; set; }
 
        [DataMember(Name = "network_id")]
        public string NetworkID { get; set; }
 
        [DataMember(Name = "state")]
        public string AccountStatus { get; set; }
 
        [DataMember(Name = "job_title")]
        public string JobTitle { get; set; }
 
        [DataMember(Name = "expertise")]
        public string Expertise { get; set; }
 
        [DataMember(Name = "full_name")]
        public string FullName { get; set; }
 
        [DataMember(Name = "first_name")]
        public string FirstName { get; set; }
 
        [DataMember(Name = "last_name")]
        public string LastName { get; set; }
 
        [DataMember(Name = "url")]
        public string ApiUrl { get; set; }
 
        [DataMember(Name = "web_url")]
        public string WebUrl { get; set; }
 
        [DataMember(Name = "mugshot_url")]
        public string PhotoUrl { get; set; }
 
        [DataMember(Name = "mugshot_url_template")]
        public string PhotoTemplateUrl { get; set; }
 
        [DataMember(Name = "department")]
        public string Department { get; set; }
 
        [DataMember(Name = "contact")]
        public YammerContactInfo ContactInfo { get; set; }
 
        [DataMember(Name = "web_preferences")]
        �public YammerSettingsAndFeedsAndGroups SettingsAndFeedsAndGroups  

{ get; set; }
 



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

301

        [DataMember(Name = "previous_companies")]
        public List<YammerEmployer> PreviousEmployers { get; set; }
 
        [DataMember(Name = "schools")]
        public List<YammerSchool> Schools { get; set; }
 
        [DataMember(Name = "stats")]
        public YammerUserStats UserStats { get; set; }
 
        public YammerUser()
        {
            this.ContactInfo = new YammerContactInfo();
            �this.SettingsAndFeedsAndGroups = new 

YammerSettingsAndFeedsAndGroups();
            this.PreviousEmployers = new List<YammerEmployer>();
            this.Schools = new List<YammerSchool>();
            this.UserStats = new YammerUserStats();
        }
    }
 
    [DataContract]
    public class YammerUserStats
    {
        [DataMember(Name = "followers")]
        public int Followers { get; set; }
 
        [DataMember(Name = "following")]
        public int Following { get; set; }
 
        [DataMember(Name = "updates")]
        public int Updates { get; set; }
    }
 
    [DataContract]
    public class YammerSchool
    {
        [DataMember(Name = "degree")]
        public string Degree { get; set; }
 
        [DataMember(Name = "description")]
        public string Description { get; set; }
 
        [DataMember(Name = "end_year")]
        public string EndYear { get; set; }
 
        [DataMember(Name = "start_year")]
        public string StartYear { get; set; }
 
        [DataMember(Name = "school")]
        public string School { get; set; }
    }
 



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

302

    [DataContract]
    public class YammerEmployer
    {
        [DataMember(Name = "description")]
        public string Description { get; set; }
 
        [DataMember(Name = "employer")]
        public string Employer { get; set; }
 
        [DataMember(Name = "end_year")]
        public string EndYear { get; set; }
 
        [DataMember(Name = "position")]
        public string Position { get; set; }
 
        [DataMember(Name = "start_year")]
        public string StartYear { get; set; }
    }
 
    [DataContract]
    public class YammerSettingsAndFeedsAndGroups
    {
        [DataMember(Name = "network_settings")]
        public YammerNetworkSettings NetworkSettings { get; set; }
 
        [DataMember(Name = "home_tabs")]
        public List<YammerGroupsAndFeeds> GroupsAndFeeds { get; set; }
 
        public YammerSettingsAndFeedsAndGroups()
        {
            this.NetworkSettings = new YammerNetworkSettings();
            this.GroupsAndFeeds = new List<YammerGroupsAndFeeds>();
        }
    }
 
    [DataContract]
    public class YammerGroupsAndFeeds
    {
        [DataMember(Name = "name")]
        public string Name { get; set; }
 
        [DataMember(Name = "select_name")]
        public string SelectName { get; set; }
 
        [DataMember(Name = "type")]
        public string Type { get; set; }
 
        [DataMember(Name = "feed_description")]
        public string Description { get; set; }
 



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

303

        [DataMember(Name = "ordering_index")]
        public int OrderingIndex { get; set; }
 
        [DataMember(Name = "url")]
        public string Url { get; set; }
 
        [DataMember(Name = "group_id")]
        public string GroupID { get; set; }
 
        [DataMember(Name = "private")]
        public bool IsPrivate { get; set; }
    }
 
    [DataContract]
    public class YammerNetworkSettings
    {
        [DataMember(Name = "message_prompt")]
        public string MessagePrompt { get; set; }
 
        [DataMember(Name = "allow_attachments")]
        public bool AllowAttachments { get; set; }
 
        [DataMember(Name = "show_communities_directory")]
        public bool ShowCommunitiesDirectory { get; set; }
 
        [DataMember(Name = "enable_groups")]
        public bool EnableGroups { get; set; }
 
        [DataMember(Name = "allow_yammer_apps")]
        public bool AllowYammerApps { get; set; }
 
        [DataMember(Name = "admin_can_delete_messages")]
        public bool AdminCanDeleteMessages { get; set; }
 
        [DataMember(Name = "allow_inline_document_view")]
        public bool AllowInlineDocumentView { get; set; }
 
        [DataMember(Name = "allow_inline_video")]
        public bool AllowInlineVideo { get; set; }
 
        [DataMember(Name = "enable_private_messages")]
        public bool EnablePrivateMessages { get; set; }
 
        [DataMember(Name = "allow_external_sharing")]
        public bool AllowExternalSharing { get; set; }
 
        [DataMember(Name = "enable_chat")]
        public bool EnableChat { get; set; }
    }
 



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

304

    [DataContract]
    public class YammerContactInfo
    {
        [DataMember(Name = "has_fake_email")]
        public bool HasFakeEmail { get; set; }
 
        [DataMember(Name = "email_addresses")]
        public List<YammerEmailAddresses> EmailAddresses { get; set; }
 
        [DataMember(Name = "phone_numbers")]
        public List<YammerPhoneNumbers> PhoneNumbers { get; set; }
 
        [DataMember(Name = "im")]
        public YammerIM IM { get; set; }
 
        public YammerContactInfo()
        {
            this.EmailAddresses = new List<YammerEmailAddresses>();
            this.PhoneNumbers = new List<YammerPhoneNumbers>();
            this.IM = new YammerIM();
        }
    }
 
    [DataContract]
    public class YammerEmailAddresses
    {
        [DataMember(Name = "address")]
        public string Address { get; set; }
 
        [DataMember(Name = "type")]
        public string Type { get; set; }
 
        public YammerEmailAddresses() { }
 
        public YammerEmailAddresses(string address, string type)
        {
            this.Address = address;
            this.Type = type;
        }
    }
 
    [DataContract]
    public class YammerPhoneNumbers
    {
        [DataMember(Name = "number")]
        public string PhoneNumber { get; set; }
 
        [DataMember(Name = "type")]
        public string Type { get; set; }
    }
 



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

305

    [DataContract]
    public class YammerIM
    {
        [DataMember(Name = "provider")]
        public string Provider { get; set; }
 
        [DataMember(Name = "username")]
        public string UserName { get; set; }
    }
 
}

22.	 MainPage.xaml: Add the following code for a button control to the main Windows 
phone page to allow users to navigate to the View All Users page.

<Button Name="btnUsers" Grid.Row="5" HorizontalAlignment="Center" 
VerticalAlignment="Top" Click="btnAllUserYammer_Click">
Get all Users
</Button>

23.	 MainPage.xaml.cs: Add the following code and the event handler for the  
“Get All User” button:

private void btnAllUserYammer_Click(object sender, RoutedEventArgs e)
{
    �NavigationService.Navigate(new Uri("/ViewAllUsers.xaml",  

UriKind.Relative));
}

24.	 ViewAllUsers.xaml: Add the following code for the ListBox markup code:

In the <Grid x:Name=“ContentPanel”> section, define the user interface to display messages retrieved 
from Yammer. To do this, use the following code snippet. Use the style properties you defined in previous 
sections of this chapter to “Retrieve All Messages”.

<ListBox x:Name="ListBoxAllUsers" ItemsSource="{Binding}" >
                <ListBox.ItemTemplate>
                    <DataTemplate>
 
                        <StackPanel Orientation="Vertical">
                            �<Line Stroke="White" X1="0" Y1="25" X2="800" Y2="25" />
                            �<TextBlock Text="{Binding ID}" Style="{StaticResource 

SimpleBlock}" />
                            �<TextBlock Text="{Binding FullName}" Margin="5" 

Style="{StaticResource TitleBlock}" />
                            �<Line Stroke="White" X1="0" Y1="25" X2="800" Y2="25" />
 
                        </StackPanel>
 



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

306

                    </DataTemplate>
                </ListBox.ItemTemplate>
 
            </ListBox>
 
            <TextBlock x:Name="txtResponses" Text="" TextAlignment="Center" />

The previous code snippet uses a ListBox control with an Item template. The Item template defines a 
StackPanel to display a line, a text block for the message ID, a text block for MessageContent.PlainText, 
and another line as a row separator. Define the appropriate binding as per the YammerUsers class 
definition.

25.	 ViewAllUsers.xaml.cs: Add the following code for the LoadData method.

The code-behind file of ViewAllUsers.xaml.cs implements the server-side code that calls the 
Yammer REST API using the SDK’s helper functions.

private void Loaddata()
{
    // Call this API to test if the auth token works
    var messageApiEndpoint = �new Uri(Constants.ApiEndpoints.allUsersUrl,  

UriKind.Absolute);
 
    OAuthUtils.GetJsonFromApi(messageApiEndpoint, onSuccess: response =>
    {
        byte[] byteArray = System.Text.UTF8Encoding.UTF8.GetBytes(response);
        MemoryStream res = new MemoryStream(byteArray);
 
        �List<YammerUser> users = SerializationUtils.DeserializeJson 

<List<YammerUser>>(res);
 
        ListBoxAllUsers.DataContext = users;
        ListBoxAllUsers.ItemsSource = users;
 
        // we just dump the unformated json string response into a textbox
        Dispatcher.BeginInvoke(() => txtResponses.Text = "Messages Retrieved");
    },
      onErrorResponse: errorResponse =>
      {
          Dispatcher.BeginInvoke(() =>
          {
              �MessageBox.Show(errorResponse.OAuthError.ToString(), "Invalid 

operation", MessageBoxButton.OK);
              txtResponses.Text = string.Empty;
          });
      },



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

307

         onException: ex =>
         {
             Dispatcher.BeginInvoke(() =>
             {
                 �MessageBox.Show(ex.ToString(), "Unexpected exception!", 

MessageBoxButton.OK);
                 txtResponses.Text = string.Empty;
             });
         }
 );
    Dispatcher.BeginInvoke(() => txtResponses.Text = "Retrieving ...");
}

The Loaddata method calls the Windows Phone SDK’s GetJsonFromApi method, which returns the 
JSON stream, which is then deserialized into a .NET object. The collection object messages of the 
YammerUsers class is then assigned to ListBox as an ItemsSource property.

26.	 Accessing namespaces: Use the following code to reference the namespaces that 
the page will be using frequently.

using System.Runtime.Serialization;
using System.Runtime.Serialization.Json;
using SPDSUniversityWinPhoneApp.Common;
using Yammer.OAuthSDK.Utils;
using Yammer.OAuthSDK.Model;
using System.IO;
using System.Text;

27.	 Modify page constructor method: Modify the page’s Constructor method to call 
the LoadData() method.

public ViewAllUsers ()
        {
            InitializeComponent();
            Loaddata();
        }

User Management: View Data About the Current User

The Yammer REST API provides an endpoint https://www.yammer.com/api/v1/users/current.json 
to retrieve the current user’s information. It includes profile information like username, job title, 
department, and contact info (email address, phone number, IM, and so on). Once you have the right 
permissions or the user has authorized your Yammer app to use her data, you can retrieve any piece of 
information belonging to a user node.

1.	 Add a page to the Windows phone project: In the sample application we are 
building, we’ll add a new Windows phone page to display the user’s information. To 
do that, add a new Windows phone page to your Windows phone project as you did 
in previous examples.

https://www.yammer.com/api/v1/users/current.json


Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

308

2.	 Add an endpoint in the Constants class: Define a Constant property in the 
Yammer.OAUthSDK’s Constants class.

public const string CurrentUserUrl = "https://www.yammer.com/api/v1/users/
current.json";

3.	 ViewUserInfo.xaml: Define the user interface to display user information retrieved 
from Yammer. To do this, use the following code snippet:

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
            <StackPanel Grid.Row="0" Margin="12,17,0,28">
                <StackPanel Orientation="Horizontal">
                    �<TextBlock Text="User Name:" Margin="9,0,2,5"  

Style="{StaticResource InputLabel}" />
                    �<TextBlock x:Name="tbUserName" Text="" Margin="9,-7,2,5" 

Style="{StaticResource InputLabel}"/>
                </StackPanel>
 
                <StackPanel Orientation="Horizontal">
                    �<TextBlock Text="job_title:" Margin="9,-7,0,5" 

Style="{StaticResource InputLabel}" />
                    �<TextBlock x:Name="tbjob_title" Text="" Margin="9,-7,0,5" 

Style="{StaticResource InputLabel}"/>
                </StackPanel>
  
                <StackPanel Orientation="Horizontal">
                    �<TextBlock Text="Followers:" Margin="9,-7,0,2" 

Style="{StaticResource InputLabel}" />
                    �<TextBlock x:Name="tbFollowers" Text="" Margin="9,-7,0,5" 

Style="{StaticResource InputLabel}" />
                </StackPanel>
 
                <StackPanel Orientation="Horizontal">
                    �<TextBlock Text="Location:" Margin="9,-7,0,5" 

Style="{StaticResource InputLabel}" />
                    �<TextBlock x:Name="tbLocation" Text="" Margin="9,-7,0,5" 

Style="{StaticResource InputLabel}" />
                </StackPanel>
 
                �<TextBlock x:Name="txtResponses" Text="" 

TextAlignment="Center" />
            </StackPanel>
</Grid>

4.	 ViewUserInfo.xaml.cs: Loaddata method.

In the code-behind of the ViewUserInfo.xaml.cs file, you can use the same code that was used to 
retrieve the user list. The only difference is to replace the List<YammerUser> collection object with the 
YammerUser object as the returned JSON object will hold only one user’s information. I also added a 
separator function called RenderUI by passing the deserialize JSON YammerUser object.

https://www.yammer.com/api/v1/users/current.json
https://www.yammer.com/api/v1/users/current.json


Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

309

private void Loaddata()
{
    // Call this API to test if the auth token works
    �var messageApiEndpoint = new Uri(Constants.ApiEndpoints.CurrentUserUrl, 

UriKind.Absolute);
 
    OAuthUtils.GetJsonFromApi(messageApiEndpoint, onSuccess: response =>
    {
        string s = response;
        byte[] byteArray = System.Text.UTF8Encoding.UTF8.GetBytes(response);
        MemoryStream res = new MemoryStream(byteArray);
 
        �YammerUser YammerUser = SerializationUtils.DeserializeJson 

<YammerUser>(res);
 
        RenderUI(YammerUser);
 
        // we just dump the unformated json string response into a textbox
        �Dispatcher.BeginInvoke(() => txtResponses.Text = "User Info 

Retrieved");
    },
      onErrorResponse: errorResponse =>
      {
          Dispatcher.BeginInvoke(() =>
          {
              �MessageBox.Show(errorResponse.OAuthError.ToString(),  

"Invalid operation", MessageBoxButton.OK);
              txtResponses.Text = string.Empty;
          });
      },
         onException: ex =>
         {
             Dispatcher.BeginInvoke(() =>
             {
                 �MessageBox.Show(ex.ToString(), "Unexpected exception!", 

MessageBoxButton.OK);
                 txtResponses.Text = string.Empty;
             });
         }
 );
    Dispatcher.BeginInvoke(() => txtResponses.Text = "Retrieving …");
}

5.	 RenderUI method: This is a very simple method that assigns the YammerUser’s 
properties to the UI object to display the user information.
         
private void  RenderUI(YammerUser yammeruser)
{
    tbUserName.Text = yammeruser.FullName;
    tbjob_title.Text = yammeruser.JobTitle;
    tbFollowers.Text = yammeruser.UserStats.Following.ToString();
     
}



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

310

That’s it! You can view the current user’s information. You can extend the code to display the other 
pieces of user information like user stats (followers, following, and so on), group membership details, 
and more.

6.	 Accessing namespaces: Use the following code snippet to access namespaces that 
the page will be using frequently.

using Yammer.OAuthSDK.Model;
using Yammer.OAuthSDK.Utils;
using YammerBook_Sample.Common;
using System.IO;
using System.Text;
 
public ViewUserInfo ()
        {
            InitializeComponent();
            Loaddata();
        }

7.	 MainPage.xaml: Now you need to integrate the newly added page with MainPage.
xaml. To do that, add another button control as you did in previous examples and 
write the code-behind onClick event handler to navigate to the newly added page. 
First, add the “View Current User Info” markup to MainPage.xaml:

<Button Name="btnViewUser" HorizontalAlignment="Center" Style="{StaticResource 
TabItemFirst}" VerticalAlignment="Top" Click="btnViewUserYammer_Click">
       View Current User Info
</Button>

8.	 MainPage.xaml.cs: You’ll need to implement a click event handler for the button 
you added to MainPage.xaml. To do this, open the MainPage.xaml.cs file and add 
the following code snippet.

private void btnViewUserYammer_Click(object sender, RoutedEventArgs e)
{
    �NavigationService.Navigate(new Uri("/ViewUserInfo.xaml",  

UriKind.Relative));
}

User Management Search by Email Address

The Yammer REST API provides an endpoint called https://www.yammer.com/api/v1/users/ 
[:id].json to retrieve the current users’ information and it includes profile information like username, 
job title, department, and contact info (email addresses, phone number, IM, and so on). Once you have 
the right permission or the user has already authorized your Yammer app to use the user’s data, you can 
retrieve any piece of information belonging to a user node. This is very similar to the REST API to view 
the current user; the only difference is that this API needs the user ID to retrieve the other user’s data 
instead of the retrieving data for the logged-in user.

1.	 Add a page to Windows phone project.

https://www.yammer.com/api/v1/users/%5B:id%5D.json
https://www.yammer.com/api/v1/users/%5B:id%5D.json


Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

311

In the sample application we are building, we’ll add a new Windows phone page to display the user’s 
information. For that, you need to add a new Windows phone page to your Windows phone project as 
you have done in previous examples. You can also use the same page used in the previous example, 
called ViewUserInfo.xaml, to display the other user data by using passing parameters between pages 
to decide on calling REST API for the current user or for other users. In this book, we are going to keep it 
simple and use another page to display other user information.

2.	  Add an endpoint in the Constants class. Define a constant property in  
Yammer.OAUthSDK’s Constants class.

public const string SearchUserByEmail= "https://www.yammer.com/api/v1/users/
by_email.json?email=";

3.	 Define the user interface to display user information retrieved from Yammer. For 
this, use the following code snippet.

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
            <StackPanel Grid.Row="0" Margin="12,17,0,28">
                <StackPanel Orientation="Horizontal">
                    �<TextBlock Text="User Name:" Margin="9,0,2,5"  

Style="{StaticResource InputLabel}" />
                    �<TextBlock x:Name="tbUserName" Text="" Margin="9,-7,2,5" 

Style="{StaticResource InputLabel}"/>
                </StackPanel>
 
                <StackPanel Orientation="Horizontal">
                    �<TextBlock Text="job_title:" Margin="9,-7,0,5" 

Style="{StaticResource InputLabel}" />
                    �<TextBlock x:Name="tbjob_title" Text="" Margin="9,-7,0,5" 

Style="{StaticResource InputLabel}"/>
                </StackPanel>
  
                <StackPanel Orientation="Horizontal">
                    �<TextBlock Text="Followers:" Margin="9,-7,0,2" 

Style="{StaticResource InputLabel}" />
                    �<TextBlock x:Name="tbFollowers" Text="" Margin="9,-7,0,5" 

Style="{StaticResource InputLabel}" />
                </StackPanel>
 
                <StackPanel Orientation="Horizontal">
                    �<TextBlock Text="Location:" Margin="9,-7,0,5" 

Style="{StaticResource InputLabel}" />
                    �<TextBlock x:Name="tbLocation" Text="" Margin="9,-7,0,5" 

Style="{StaticResource InputLabel}" />
                </StackPanel>
 
                �<TextBlock x:Name="txtResponses" Text="" 

TextAlignment="Center" />
            </StackPanel>
</Grid>

https://www.yammer.com/api/v1/users/by_email.json?email=
https://www.yammer.com/api/v1/users/by_email.json?email=


Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

312

4.	 SearchUserInfo.xaml.cs: Loaddata method.

In the code-behind of the SearchUserInfo.xaml.cs file, you can use the same code that was used to 
retrieve the user list. The only difference is to replace the List<YammerUser> collection object with the 
YammerUser object as the returned JSON object will hold only one user’s information. I also added a 
separator function called RenderUI by passing the deserialize JSON YammerUser object.

private void Loaddata()
{
    // Call this API to test if the auth token works
    var emailaddress = "Rob.Bieber@Costco.com";
    var messageApiEndpoint = new Uri(Constants.ApiEndpoints.SearchUserByEmail + 
emailaddress.ToString(), UriKind.Absolute);
 
    OAuthUtils.GetJsonFromApi(messageApiEndpoint, onSuccess: response =>
    {
        string s = response;
        byte[] byteArray = System.Text.UTF8Encoding.UTF8.GetBytes(response);
        MemoryStream res = new MemoryStream(byteArray);
 
        �List<YammerUser> YammerUser = SerializationUtils.DeserializeJson 

<List<YammerUser>>(res);
 
        RenderUI(YammerUser[0]);
 
        // we just dump the unformated json string response into a textbox
        �Dispatcher.BeginInvoke(() => txtResponses.Text = "User Info Retrieved");
    },
      onErrorResponse: errorResponse =>
      {
          Dispatcher.BeginInvoke(() =>
          {
              �MessageBox.Show(errorResponse.OAuthError.ToString(), "Invalid 

operation", MessageBoxButton.OK);
              txtResponses.Text = string.Empty;
          });
      },
         onException: ex =>
         {
             Dispatcher.BeginInvoke(() =>
             {
                 �MessageBox.Show(ex.ToString(), "Unexpected exception!", 

MessageBoxButton.OK);
                 txtResponses.Text = string.Empty;
             });
         }
 );
    Dispatcher.BeginInvoke(() => txtResponses.Text = "Retrieving …");
}



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

313

5.	 RenderUI method: This is very simple method that assigns the YammerUser’s 
properties to a UI object to display the user information.

private void  RenderUI(YammerUser yammeruser)
{
    tbUserName.Text = yammeruser.FullName;
    tbjob_title.Text = yammeruser.JobTitle;
    tbFollowers.Text = yammeruser.UserStats.Following.ToString();
     
}

That’s it. You can view the current user’s information. You can extend the code to display the other piece of 
user information like user stats (followers, following, and so on), group members, ship details, and so on.

6.	 Accessing namespaces: Use the following code snippet to namespaces that the 
page will be using frequently.

using Yammer.OAuthSDK.Model;
using Yammer.OAuthSDK.Utils;
using YammerBook_Sample.Common;
using System.IO;
using System.Text;

7.	 Modify the page constructor method. Modify the page’s constructor method to call 
the LoadData() method

public SearchUserInfo ()
        {
            InitializeComponent();
            Loaddata();
        }

8.	 Now you need to integrate the newly added page with MainPage.xaml. To do that, 
you add another button control as you have done for previous examples and write 
the code-behind onClick event handler to navigate to the newly added page. First 
add the Search User Info markup to the MainPage.xaml file.

<Button Name="btnSearchUser" HorizontalAlignment="Center" 
Style="{StaticResource TabItemFirst}" VerticalAlignment="Top" 
Click="btnSearchUserYammer_Click">
Search User Info
</Button>

9.	 You need to implement a click event handler for the button you added to  
MainPage.xaml. To do this, open the MainPage.xaml.cs file and add the following 
code snippet:

�private void btnSearchUserYammer_Click(object sender, RoutedEventArgs e)
{
    �NavigationService.Navigate(new Uri("/SearchUserInfo.xaml", UriKind.Relative));
}



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

314

User Management” Retrieve All Users from a Group

The Yammer REST API provides an endpoint called https://www.yammer.com/api/v1/users/ 
in_group/[:id].json to retrieve all users who are members of a Yammer group in your  
Yammer network.

10.	 Add a page to the Windows phone project.

In the sample application we are building, we’ll add a new Windows phone page to display users who are 
member of a Yammer group. To do that, add a new Windows phone page to your Windows Phone project 
as you did in previous examples. You can also use the same page used in the ViewAllUsers.xaml 
example to display the user’s list by using passing parameters between pages to decide on calling REST 
API for the current user or for other users. In this book, we going to keep it simple and use another page 
to display other user information.

11.	  Add an endpoint to the Constants class. Define a constant property to the Yammer.
OAUthSDK’s Constants class.

public const string ViewUserinGroup = "https://www.yammer.com/api/v1/users/
in_group/";

12.	 Define the user interface to display the users list retrieved from Yammer. To do this, 
use the following code snippet:

<!--ContentPanel - place additional content here-->
        <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
            <ListBox x:Name="ListBoxAllUsers" ItemsSource="{Binding}" >
                <ListBox.ItemTemplate>
                    <DataTemplate>
 
                        <StackPanel Orientation="Vertical">
                            �<Line Stroke="White" X1="0" Y1="25" X2="800" 

Y2="25" />
                            �<TextBlock Text="{Binding Department}" 

Style="{StaticResource SimpleBlock}" />
                            �<TextBlock Text="{Binding FullName}" Margin="5" 

Style="{StaticResource TitleBlock}" />
                            �<Line Stroke="White" X1="0" Y1="25" X2="800" 

Y2="25" />
 
                        </StackPanel>
 
                    </DataTemplate>
                </ListBox.ItemTemplate>
 
            </ListBox>
 
            <TextBlock x:Name="txtResponses" Text="" TextAlignment="Center" />
        </Grid>

https://www.yammer.com/api/v1/users/in_group/%5B:id%5D.json
https://www.yammer.com/api/v1/users/in_group/%5B:id%5D.json
https://www.yammer.com/api/v1/users/in_group/
https://www.yammer.com/api/v1/users/in_group/


Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

315

13.	 ViewAllUserinaGroup.xaml.cs: LoadData method.

In the code-behind of the ViewAllUserinaGroup.xaml.cs file, you can use the same code that was 
used to retrieve the user list. The only difference is the REST API endpoint.

private void Loaddata()
{
    // Call this API to test if the auth token works
    var GroupId = 4659506;
    �var messageApiEndpoint = new Uri(Constants.ApiEndpoints.ViewUserinGroup +  

GroupId + ".json", UriKind.Absolute);
   
    OAuthUtils.GetJsonFromApi(messageApiEndpoint, onSuccess: response =>
    {
        byte[] byteArray = System.Text.UTF8Encoding.UTF8.GetBytes(response);
        MemoryStream res = new MemoryStream(byteArray);
 
        �List<YammerUser> users = SerializationUtils.DeserializeJson 

<List<YammerUser>>(res);
 
        ListBoxAllUsers.DataContext = users;
        ListBoxAllUsers.ItemsSource = users;
 
        // we just dump the unformated json string response into a textbox
        Dispatcher.BeginInvoke(() => txtResponses.Text = "Users Retrieved");
    },
      onErrorResponse: errorResponse =>
      {
          Dispatcher.BeginInvoke(() =>
          {
              �MessageBox.Show(errorResponse.OAuthError.ToString(),  

"Invalid operation", MessageBoxButton.OK);
              txtResponses.Text = string.Empty;
          });
      },
         onException: ex =>
         {
             Dispatcher.BeginInvoke(() =>
             {
                 �MessageBox.Show(ex.ToString(), "Unexpected exception!", 

MessageBoxButton.OK);
                 txtResponses.Text = string.Empty;
             });
         }
 );
    Dispatcher.BeginInvoke(() => txtResponses.Text = "Retrieving …");
}



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

316

14.	 Accessing namespaces. Add the following code snippet to namespaces that the 
page will be using frequently:

using Yammer.OAuthSDK.Model;
using Yammer.OAuthSDK.Utils;
using YammerBook_Sample.Common;
using System.IO;
using System.Text;

15.	 Modify the page constructor method. Modify the page’s constructor method to call 
the Loaddata() method.

public ViewAllUserinaGroup()
        {
            InitializeComponent();
            Loaddata();
        }

16.	 Now you need to integrate the newly added page with MainPage.xaml. To do that, 
you add another button control as you did in previous examples and write the  
code-behind onClick event handler to navigate to the newly added page. First add 
the “View Users in a Group Info” markup in the MainPage.xaml:

<Button Name="btnViewUserinGroup" HorizontalAlignment="Center" 
Style="{StaticResource TabItemFirst}" VerticalAlignment="Top" 
Click="btnViewUserinGroup_Click">
 View Users in a Group
</Button>

17.	 You need to implement a click event handler for the button you added to the 
MainPage.xaml file. To do this, open the MainPage.xaml.cs file and add the 
following code snippet:

Code Snippet : Use the MainPage.xaml.cs to handle the click event, OnClick users 
will be redirected to “ViewAllUsersinaGroup.xaml” page

private void btnViewUserinGroup_Click(object sender, RoutedEventArgs e)
{
   NavigationService.Navigate(new Uri("/ViewAllUsersinaGroup.xaml",  
UriKind.Relative));
}

Run the Windows Phone App

18.	 Build the solution and run the Windows phone app using the emulator  
(Figure 8-22).



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

317

Figure 8-22.  Run the Windows phone app using the emulator

Figure 8-23.  Run the Windows phone app using the emulator

20.	 Now click on the “Sign In with Yammer” button, which will initiate the OAuth 
authentication flow that you’ve seen in previous steps. After successfully logging in, 
you will be redirected to this home page.

21.	 To post a message on Yammer, click on “Post a Message”. Likewise you will be 
able to like a message and unlike a message using those buttons. Note that we 
have hard-coded the message_id in the previous scenarios; however, you can use 
the “View All message” button to retrieve the messages and then use like or unlike.

19.	 In Run mode, the home page will look like Figure 8-23.



Chapter 8 ■ Building Social Apps Using Yammer Windows Phone 8 SDK

318

22.	 To view all the messages on a separate Windows Phone page, click on the View All 
Messages button. You will be presented with the All messages view in a grid, as 
illustrated in Figure 8-24.

In this exercise, you have learned how to integrate the Windows phone app with Yammer using the 
Yammer Windows Phone SDK.

Summary
By now you are familiar with the Yammer SDKs released by Yammer. In this chapter, you explored how to 
implement the “Sign In with Yammer” button using Yammer’s SDKs for Windows Phone App and then 
learned how to implement Yammer features into the Windows Phone by using the Windows Phone SDK.

We hope this book has helped you understand the value of Yammer and develop integrations with 
Yammer using existing integration features. As the Yammer team keeps adding new features, we recommend 
that you follow https://developer.yammer.com to get the latest updates on new features that you can use to 
develop integration with Yammer.

Figure 8-24.  View All Message page displays the message’s ID and body

https://developer.yammer.com/


�       � A, B
Active Directory Federation  

Services (ADFS), 17

�       � C, D
Client-side flow.  

See also Microsoft SharePoint-hosted app
application request authentication, 98–99
implicit grant, 98
JavaScript-centric applications, 98
server request app  

authorization, 100–101
server request credentials, 99–100
token access, 101–102

�       � E, F
Enterprise Social Graph.  

See also Open graph (OG) protocol
business processes  

and employees, 118
information sharing,  

real-time, 118–119
line-of-business applications, 117–118
Yammer integration, 117–118

�       � G
GetJsonFromApi method

code snippet, 263–264
function parameters, 263
syntax of, 263
Yammer REST APIs, 263

Global app directory
user interface, 59
Yammer app Carousel/blog, 59
Yammer apps, 60

�       � H, I
HandleApprove method

code snippet, 262–263
parameters, 261–262
syntax of, 261
windows phone app, 261

�       � J, K
JSON/XML viewer

Internet Explorer, 203–205
JSON object viewer window, 204
open/save JSON output, 203

�       � L
LaunchSignIn method

code snippet, 261
parameters, 261
syntax of, 261
user login, 261

�       � M, N
Microsoft SharePoint

company group feed script, 40–41
group feed page, 40
login pop-up window, 42–45
without logged-in user, 41

Microsoft SharePoint-hosted app
app’s default page, 114
authentication implementation, 109–112
basic, 102
CustomActionTarget.aspx, 115–116
customer ribbon action, 105–106
log in to the Office 365 site, 113
“log in with Yammer” button,  

Yammer login page, 114–115

Index

© Pathik Rawal and Pryank Rohilla 2015 
P. Rawal and P. Rohilla, Developing on Yammer, DOI 10.1007/978-1-4842-0943-1

319



■ index

320

menu item custom action, 106–109
new creation, 103–105
SharePoint, app, 113–114
Visual Studio’s deploy solution, 112–113

�       � O
OAuth 2.0 web site.  

See also Client-side flow; Ser-side flow
definition, 64
OAuth’s credential types, 65
protocol support, 67
role names and descriptions, 64–65
sign in with Yammer button, 66

Open graph (OG) protocol, 60–61.  
See also SPDSUnisity app

applications, 119
custom objects and actions, 128
delivery rules, 127
details page, 122–123
elements specification, 124
JSON format, integration, 123
multiple activities, 131
object attributes, 126
recent activity widget, 119–122
REST endpoint, 128
single activity

delivery rules (private object), 130
JSON string (public object), 129

social data integration protocol, 119
supported actions on object, 127
supported object types, 125–126
using standard format, 124–125
visualization, 120

�       � P, Q
Page object type

activity on Yammer, 152–153
attributes, 150
default.aspx.cs., 151–152
object attributes, 152
write page object button, 150–151

Person object type
default.aspx.cs., 156, 158–159
in detail view, 157
on Yammer, 156
Yammer open  

graph activity, 157, 159–160
Place object type

attributes, 154
default.aspx.cs., 153–154
description, 153
Yammer open graph activity, 154–155

�       � R
Recent Activity widget

Enterprise Social Graph activities, 120
external applications, 121–122
Yammer activities, 121

�       � S
Server-side flow

access token, receiving, 73–75
application request authentication, 69
application’s home page, 81–83
authorization code, 71–72

grant type, 67
configuration values, Web.config, 80–81
default.aspx file in run mode, 96
login.aspx page in run mode, 96
message after successful  

completion of OAuth 2.0 flow, 97–98
new project creation, 76–79
programming languages and frameworks, 67
server request app authorization, 70–71
server request credentials, 70
steps, 68
token access, 84–95
Yammer, 75

login page, 97
response, 83–84

SharePoint-hosted app
CustomActionTarget.aspx, 242, 248–249
JavaScript SDK, 252
likeaMessage, 244–245
log in with Yammer, 250–251
postAMessage(), 242
SharePoint online Dev site, 247–248
unlike message, 245–246
Visual Studio, 246–247
Visual Studio Solution SPDS University, 242
Yammer app’s JavaScript  

origins section, 249–250
YammerCore.js, 242–244

Single sign-on (SSO), 33–34
SPDSUniversity app

ASP.NET web application project structure, 137
custom objects and actions, 132
default.aspx file, 145–148
document object activity on Yammer, 150
home page, 168–170
login page, 168
namespace configuration, 133
.NET classes, 138
new class to project, 138
OG_Activity.cs, 141–142
OG_Actor.cs, 140–141

Microsoft SharePoint-hosted app (cont.)



■ Index

321

OG_GraphObj.cs, 142–143
OG_GraphObj_Instance class’s attributes, 140
page object type, 150–153
person object type, 156–157
place object type, 153–155
PostRequesttoYammer  

method’s parameters, 145
properties, 139
registered applications view, 132
training_object object type, 160–163, 165–167
types definitions, 134–136
video object type, 158–160
Visual Studio’s debug application feature, 167
write document button, 148
Yammer app configuration page, 133
Yammer’s login page, 169
YammerUtility.cs, 143–144

SSO. See Single sign-on (SSO)

�       � T, U, V
Training_object object type

default.aspx.cs., 161, 164, 166
description, 160
token access method, 166–167
Yammer open graph activity, 161–162

�       � W, X
Web.config, configuration values

key-value pairs configuration, 80
redirecting URI, 81
Yammer app configuration, 80

Windows phone 8 app.  
See also WMAppManifest.xml

emulator, 279
existing project, Visual Studio, 267–268
landing page, 279–280
messages management

like message, 285–286
retrieve all messages, 288–295, 297
unlike liked message, 286–288
Yammer’s group, 282–285

OAuth process, 282
project file, development machine, 268–269
project list, reference, 270–271
run the application, 316–318
SDK projects, 272
solution structure, 271–272
templates, 265–266
user management

email address, 310–313
retrieve all  

users, 297–299, 301–307, 314–316
view data about current user, 307, 309–310

Visual Studio start page, 265
Windows phone app project strucutre, 267
Windows phone version, 266
Yammer login screen, 280–281
reference to Yammer.OAuthSDK project, 270

Windows phone 8 SDK.  
See also Yammer.OAuthSDK” Structure

adding code
App.xaml.cs, 257
to App.xaml, 256

class library project, 255
open source program, 255
registering, 256
URI Association configuration, 257
Yammer app’s keys and tokens, 256
Yammer.OAuthSDK and OAuthWPDemo 

projects, 255
WMAppManifest.xml

App.xaml.cs file, 275
InitializePhoneApplication method, 275
Grid x:Name=“ContentPanel”, 276
MainPage.xaml., 275–277
OnNavigatedTo() event, 278
redirect URI, 272, 274
updateTokenMessage method, 277

�       � Y, Z
Yammer account, creation

Microsoft office 365 account, 13, 17
setup process, 14–15
sign up, company email address, 13–14
single sign-on and company email address, 16

Yammer app development
APIs and SDKs, 47
app directory, 55–57
basic info link, 53–54
high-level architecture view, 47–48
home network, 52
icons, banner images and screenshots, 58
installation information section, 56
line-of-business applications, 48
Microsoft Dynamics CRM, 47
registering, 48, 50–51
SPDS University, 48
web interface, 48

Yammer authentication. See also OAuth 2.0 web site
business applications, 63
flow chart, 63–64

Yammer development
benefits of integration, 9–10
conversations, 8–9
creation, Yammer group, 3
enterprise social collaboration platform, 2
enterprise social networking tool, 2



■ index

322

evolution, enterprise  
communication channels, 1

integration, 2
micro-blogging and collaboration tool, 2
platform, 10–11
private groups, 4–6
public groups, 3–4
SPDS Univerisity, 17–18
user-friendly web and mobile interface, 3
Yammer profiles, 7–8

Yammer Embed
action buttons

documents/reports, 34
follow, 37–39
like, 35–36
share, 39
unlike, 36–37
web page, 34–35

Embed.ly, 30–31
feeds, 21
line-of-business applications, 19
object feed configuration parameters

custom publisher messages, 32–33
open graph object script, 31
private specified object feed, 33

parameters, 21–22
project center site, 19
SSO, 33–34
web page, 20

code snippet, 22
JavaScript method parameters, 23
scriptlet, 23
widget configuration page, 24

Yammer feeds
group, 26
object, 28–29
topic, 27–28
user, 25

Yammer integration architecture
JavaScript, 11
lightweight, 12
OG protocol, 11
REST APIs, 11
SDKs, 12
Yammer Embed, 11–13

Yammer.OAuthSDK structure
C# class library project, 258
classes, 258–260
functions, 260
GetJsonFromApi method, 263–264
HandleApprove method, 261–263
LaunchSignIn method, 261
windows phone SDK, class structure, 258

Yammer REST APIs
authentication, 174
benefits, 171
business application, 173
creation

autocomplete, 199
groups, 193–194
invitations, 200
networks, 201–203
notification, 196–197
relationships, 195–196
scubscriptions, 198
search, 200–201
suggestions, 197–198
users, 193

data export, 205–206
features, 172
line-of-business applications, 172
lowest-level API, 172
objects, 175
operations, 175–177
rate limits, 206–207
REST endpoints

adding, attachement, 183
conversation thread view, 184
delete, message, 182
GET messages, 179–180
liking, message, 185
messages, 177–178
opening, existing project, 207–208
post messages, 180–182, 209–216
practice, 207
private message, 183
public messages, 179
query string parameters, 191–192
retrieve messages, 217, 219, 221–222, 224
search, 224–228, 230
topics, 185–186
users, 186–188, 190–192

RESTful service, 172
social networking applications, 172
third-party references, 172
user privileges, 174

Yammer’s JavaScript SDK
client-side and  

server-side code, 233
features, 234
getLoginStatus, 237–238
line-of-business applications, 234–235
loginButton, 235–237
login() function, 238–239
logout() function, 239–240
REST APIs, 240–241
web pages/application interface, 234

Yammer development (cont.)


	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: Introduction to Yammer Development
	 What Is Yammer?
	 Public Groups
	 Private Groups
	 Yammer Profiles 
	 Conversations 

	 Benefits of Integration with Yammer
	 Microsoft Office 365 and Yammer

	 Core of Yammer Development: The Yammer Platform
	 Yammer Integration Architecture
	 Yammer Embed 
	 JavaScript 
	 REST APIs 
	 Open Graph (OG)
	 SDKs

	 How to Start Yammer Integration
	 Creating a Yammer Account
	Setting Up Your Profile Without Single Sign-On
	Setting Up Your Yammer Profile with Single Sign-On and a Company Email Address 
	Signing in to Yammer with a Microsoft Office 365 Account 


	 Case Study: SPDSUniverisity 
	 Summary

	Chapter 2: Integrations with Yammer Embed
	 Introducing Yammer Embed
	 Yammer Embed Prerequisites
	 Different Types of Yammer Embed Feeds 
	 Yammer Embed Parameters 

	 Adding Yammer Embed to a Web Page
	 Types of Yammer Feeds
	 Yammer User Feed 
	 Yammer Group Feed 
	 Yammer Topic Feed 
	 Yammer Object Feed 
	Implementing Commenting Using a Yammer Object Feed
	Using Embed.ly ( www.Embed.ly)
	Object Feed Configuration Parameters
	Headers and Footers in Object Feeds
	 Custom Publisher Messages 
	Open Graph Previews
	 Private Specified Object Feed 



	 Yammer Embed with Single Sign-On
	 Using the Yammer Action Buttons
	 How to Add a Yammer Action Button
	Yammer Like Button
	Yammer Follow Button
	Yammer Share Button


	 Summary

	Chapter 3: Yammer App Development Basics
	 What Is a Yammer App?
	 Registering a Yammer App
	 Configuring Yammer App Registration Details
	 Editing the Basic Info
	 Configuring App Directory Settings
	What Is the Yammer App Directory?
	Configuration Options
	Submitting Your App to the Global App Directory

	 Configuring Open Graph

	 Summary

	Chapter 4: Authenticating Yammer Users
	 Understanding Yammer Authentication
	 What Is OAuth 2. 0 ?
	 OAuth Roles

	 Authentication on Yammer Using OAuth 2.0
	 Yammer Authentication Flows
	 Server-Side Flow 
	Step #1: Application Request Authentication 
	Step #2: Server Request Credentials 
	Step #3: Server Request App Authorization 
	Step #4: Application Receives Authorization Code 
	Redirect URL’s Parameters When the User Allows the Yammer App
	Redirect URL’s Parameters When the User Denies the Yammer App

	Step #5: Application Request Access Token 
	Step #6: Application Receives Access Token 
	Step #7: Application Makes Further Calls to Yammer 
	Implementing Server-Side Flow in an ASP.NET Web Application

	 Client-Side Flow 
	Step #1: Application Request Authentication 
	Step #2: Server Request Credentials 
	Step #3: Server Request App Authorization 
	Step #4: Application Receives Access Token 
	Redirect URL’s Parameters When Users Allow the Yammer App
	Redirect URL’s Parameters When Users Deny the Yammer App 

	Implementing Client-Side Flow in a Microsoft SharePoint-Hosted App 


	 Summary

	Chapter 5: Writing Data into Yammer with Open Graph
	 Introduction to Enterprise Social Graph
	 Open Graph Protocol 
	 Recent Activity Widget 
	 Open Graph Activity Details Page 
	 Format of Open Graph Activity
	 Open Graph Activity Objects Schema
	Supported Object Types 
	Open Graph Object Attributes 
	 Supported Actions on Object 
	 Delivery Rules 
	 Custom Objects and Actions 

	 Delivery: The Open Graph Activity REST Endpoint 

	 Open Graph Implementation Examples
	 Single Activity with Object Types and Actions as a JSON String (Public Object)
	 Single Activity with Delivery Rules (Private Object) 
	 Multiple Activities 

	 Case Study: Open Graph in the SPDSUniversity App 
	 Summary

	Chapter 6: Integration Using Yammer Rest APIs
	 REST
	 Yammer REST APIs
	 Yammer REST API Features 
	 What You Can Do with Yammer REST APIs

	 Before You Start Using the Yammer REST APIs
	 Authentication on Yammer
	 User Privileges 

	 Getting Started with Yammer REST APIs
	 Yammer API Operations 

	 REST Endpoints
	 Messages
	Retrieve All Public Messages
	Other Message REST APIs Used to GET Yammer Messages
	Manipulating/Updating Messages REST API
	Delete a Posted Message from Your Business Application
	Adding an Attachment to a Message
	Emailing Messages to Yammer 

	Viewing a Thread
	Liking a Message 
	Unlike a Message

	 Yammer Topics
	 Yammer Users
	Retrieve All Users
	Create a User

	 Groups REST APIs
	 Relationships 
	 Yammer Notifications
	 Yammer Suggestions 
	 Subscription REST APIs
	 AutoComplete
	 Invitations REST APIs
	 Search REST APIs
	 Yammer Networks

	 Yammer Output in a JSON/XML Viewer
	 Data Export
	 Yammer REST APIs Rate Limits 
	 Yammer REST Endpoint in Practice
	 Summary

	Chapter 7: Building Social Apps Using Yammer JavaScript SDK
	 Introduction to the JavaScript SDK
	 Setup Required to Use the JavaScript SDK
	 Authentication Using JavaScript SDK
	 Authentication Functions
	Function: loginButton 
	Function: getLoginStatus
	Function: login
	Function: logout


	 Using the JavaScript SDK to Call Other REST APIs
	 Additional Functions
	Function: request


	 Implementing Yammer Integration in a SharePoint-Hosted App Using JavaScript SDK
	 Summary

	Chapter 8: Building Social Apps Using Yammer Windows Phone 8 SDK
	 Introduction to Windows Phone 8 SDK
	 Setup Required to Use Windows Phone App 8 SDK
	 Step 1: Register Your Yammer App and Set the Redirect URI
	 Step 2: Create an Instance of the Yammer.OAuthSDK.Model.OAuthClientInfo Class
	Adding Code to App.xaml 
	Adding Code to App.xaml.cs 

	 Step 3: Configure a URI Association 
	Configure Project Manifest “WMAppManifest.xml”
	Updating App.xaml.cs


	 Understanding Windows Phone SDK
	 Project “Yammer.OAuthSDK” Structure 
	 Important Methods of Yammer.OAuthSDK
	LaunchSignIn Method 
	 HandleApprove Method 
	 GetJsonFromApi Method 


	 Building a Windows Phone 8 App Using Yammer Windows Phone SDK
	 Summary

	Index



