
www.allitebooks.com

http://www.allitebooks.org

Developing Responsive
Web Applications with
AJAX and jQuery

Design and develop your very own responsive web
applications using Java, jQuery, and AJAX

Sandeep Kumar Patel

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Developing Responsive Web Applications with AJAX
and jQuery

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014

Production reference: 1180714

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-637-9

www.packtpub.com

Cover image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Sandeep Kumar Patel

Reviewers
Fernando Doglio

Md. Zahid Hasan

Mohammad Amzad Hossain

Jake Kronika

Commissioning Editor
Julian Ursell

Acquisition Editor
Mohammad Rizvi

Content Development Editor
Balaji Naidu

Technical Editors
Venu Manthena

Mrunmayee Patil

Copy Editors
Roshni Banerjee

Sarang Chari

Janbal Dharmaraj

Gladson Monteiro

Deepa Nambiar

Karuna Narayanan

Adithi Shetty

Project Coordinator
Aaron S. Lazar

Proofreaders
Simran Bhogal

Paul Hindle

Indexers
Hemangini Bari

Rekha Nair

Priya Subramani

Graphics
Abhinash Sahu

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Sandeep Kumar Patel is a senior web developer and the founder of
www.tutorialsavvy.com, a widely-read programming blog since 2012. He has
more than 4 years of experience in object-oriented JavaScript and JSON-based web
application development. He is GATE 2005 Information Technology (IT) qualified
and has a Master's degree from VIT University, Vellore. At present, he holds the
position of Web Developer in SAP Labs, India. You can find out more about him
from his LinkedIn profile (http://www.linkedin.com/in/techblogger).
He has received the DZone Most Valuable Blogger (MVB) award for technical
publications related to web technologies. His article can be viewed at
http://www.dzone.com/users/sandeepgiet. He has also received the Java
Code Geek (JCG) badge for a technical article published in JCG. His article can be
viewed at http://www.javacodegeeks.com/author/sandeep-kumar-patel/.

www.allitebooks.com

www.tutorialsavvy.com
http://www.linkedin.com/in/techblogger
http://www.dzone.com/users/sandeepgiet
http://www.javacodegeeks.com/author/sandeep-kumar-patel/
http://www.allitebooks.org

About the Reviewers

Fernando Doglio has been working as a web developer for the past 10 years.
During that time, he fell in love with the Web and has had the opportunity of
working with most of the leading technologies such as PHP, Ruby on Rails,
MySQL, Node.js, AngularJS, AJAX, REST APIs, and others.

In his spare time, he likes to tinker and learn new things, which is why his
GitHub account keeps getting new repos every month. He's also a big open
source supporter and tries to win the support of new people with the help
of his site: http://www.lookingforpullrequests.com/. He can be contacted
on Twitter at @deleteman123.

When not programming, he can be seen spending time with his family.

Md. Zahid Hasan is a professional web developer. He got his BSc and MSc in
Information and Communication Engineering from University of Rajshahi (RU),
Rajshahi. Now, he is working as a Lecturer in the department of Computer Science
and Engineering at Green University of Bangladesh. He previously worked as a
Software Developer at SEleven IT Limited for 2 years in Bangladesh.

He has a wide range of technical skills, Internet knowledge, and experience across
the spectrum of online development in the service of building and improving online
properties for multiple clients. He enjoys creating site architecture and infrastructure,
backend development using open source tools such as Linux, Apache, MySQL,
and PHP (LAMP), and frontend development with CSS and HTML/XHTML.

www.allitebooks.com

http://www.lookingforpullrequests.com/
http://www.allitebooks.org

Mohammad Amzad Hossain has 7 years of experience building large-scale
complex websites and web applications. He works as a Branch Manager in Sourcetop
Inc. where he leads an offshore team in Dhaka, Bangladesh. His day-to-day life
requires him to plan, analyze, guide, and provide solutions for complex requirements.
In his free time, he digs into recent trends in web development and follows hundreds
of RSS that help him to keep up in the fast-track world of development. He has a BSc
degree in Computer Science Engineering.

Jake Kronika, a software developer and UI architect with over 20 years of
experience, brings to bear extensive proficiency implementing both server-side and
user interface (UI) solutions including multiple responsive web applications to date.

He began his career early in life using online tools for static content and rapidly
progressed to building dynamic applications incorporating databases and server-side
scripting languages. He has been a Senior User Interface Software Engineer at ADP
Dealer Services in Seattle, WA, USA from 2011. Prior to this, he occupied numerous
senior-level positions in the UI space in Chicago, IL. He has also balanced considerable
freelance work under a sole proprietorship named Gridline Design & Development,
accessible at http://gridlined.com/, online since 1999.

Over the past several years, particularly as the HTML, CSS, and JavaScript portions
of websites have experienced rapid evolution, he has continually sought out and
digested new technological knowledge through reading, personal and client projects,
and other means. Some of his favorite current tools include Node.js and AngularJS,
Less/Sass, and Git VCS.

Prior to this book, he was a technical reviewer for the following Packt
Publishing titles:

•	 Django JavaScript Integration: AJAX and jQuery, Jonathan Hayward,
in January 2011

•	 jQuery UI 1.8: The User Interface Library for jQuery, Dan Wellman,
in August 2011

•	 jQuery Tools UI Library, Alex Libby, in February 2012

www.allitebooks.com

http://gridlined.com/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content

•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Introduction to a Responsive Web Application	 7

Benefits of a responsive design	 8
Server- versus client-side detection	 9
The technology stack	 9

HTML5	 10
CSS3 and media queries	 10
JavaScript	 11

Measuring responsiveness	 11
Devices and screens	 12
Media types	 12
Media queries	 14
Role of media queries	 15
Responsive frameworks	 15

Bootstrap	 16
The Foundation framework	 16
The Cascade framework	 16
The Pure CSS framework	 17
The Gumby framework	 17

Bootstrap 3 for a responsive design	 17
What are we building?	 18
Summary	 19

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Creating a Responsive Layout for a Web Application	 21
Required software and tools	 21
Setting up a Java-based web project	 22
Configuring Bootstrap 3	 25
Creating a wireframe for a web application	 27
Responsive layouts	 28
Creating a layout for large and small devices	 29
Developing the layout	 29

Bootstrap 3 containers	 29
Developing a row	 31
Developing the menu section	 33
Developing the hero section	 35
Developing the list of products section	 36

The combined layout	 41
Verifying the layout	 45

The Opera Mobile emulator	 45
Summary	 52

Chapter 3: Adding Dynamic Visuals to a Web Application	 53
Building a JSON servlet	 53

Creating a POJO class	 53
Creating a product store	 55
Converting from POJO to JSON	 58
Creating the servlet	 58

Building a jQuery AJAX method	 62
jQuery promises	 64
The jQuery templating mechanism	 66
The combined jQuery code	 68
The combined HTML markup	 69
Modifying the style of the product	 71

Building an image carousel	 74
Summary	 79

Chapter 4: Twitter Integration	 81
Introduction to Twitter4J	 81
Configuring Twitter4J in a web application	 82
Posting a tweet	 83

Creating a Twitter button	 83
Setting up a new Twitter application	 86

The Twitter Permissions tab	 88
The Twitter Details tab	 89
The Twitter Settings tab	 90
The Twitter API Keys tab	 90

Table of Contents

[iii]

Developing a Twitter servlet	 91
Request token	 93

Developing a Twitter callback servlet	 96
Access token	 96

Combining all the pieces	 98
Posting a tweet with an image	 102

Product store with an image	 103
Markup changes	 106
Changes in app.js	 107
Twitter servlet changes	 108
Changes in the Twitter callback servlet	 110
User Twitter timeline	 111

Summary	 111
Chapter 5: Facebook Integration	 113

Introduction to the Facebook SDK for JavaScript	 113
Creating a Facebook application	 115
Configuring the Facebook SDK	 117

The Settings tab	 118
The Basic configuration	 118
The Advanced configuration	 119
The Migrations configuration	 120

Configuring a Facebook login	 120
Configuring the Facebook Like and Share buttons	 122
Configuring Facebook comments	 127
The combined code	 128
Summary	 136

Chapter 6: Google+ Integration	 137
Introduction to the Google+ API	 137
Configuring Google+	 139

Creating a client ID	 139
Including the Google script	 141

Log in using Google+	 142
Integrating +1 recommendations	 144
Summary	 149

Chapter 7: Linking Dynamic Content from External Websites	 151
Introduction to the YouTube API	 151
Configuring a YouTube API	 151
Searching for a YouTube video	 154

The part parameter	 156
The fields parameter	 156
The YouTube button markup	 156

Table of Contents

[iv]

Asynchronous search in YouTube	 158
Rendering the YouTube search results	 162

Embedding a YouTube video	 165
Summary	 169

Chapter 8: Integrating E-Commerce or Shopping Applications
with Your Website	 171

Creating a shopping cart	 171
Adding a product to the cart	 171
Displaying the minimal view of the cart	 173
Displaying the cart details in a table	 174

Configuring the PayPal Developer API	 178
Integrating the PayPal Developer API	 180
Configuring the Shopify API	 191
Integrating the Shopify API	 192
Summary	 194

Chapter 9: Integrating the Google Currency Converter with
Your Web Application	 195

The Google Currency Converter API	 195
Configuring the Google Currency Converter API	 198
Integrating the Currency Converter API	 198
Developing our currency converter	 199

Building the currency list dropdown	 199
Processing the conversion request	 203

Exceptions	 208
Summary	 208

Chapter 10: Debugging and Testing	 209
Implementing the debugging mechanism	 210

Dimensions Toolkit	 210
The Designmodo Responsive Test tool	 210
The Opera Mobile emulator tool	 211
The Responsinator tool	 211
The Viewport Resizer tool	 212
The L-Square Responsive Design Inspector tool	 212
The FireBreak add-on	 212
The More Display Resolutions 1.0 add-on	 213
The BrowserStack Responsive tool	 214

Table of Contents

[v]

The MobileTest tool	 214
The TestSize tool	 215
The Am I Responsive tool	 215
The Responsive Design Checker tool	 216
The RUIT tool	 216
The Responsive Test online tool	 217

Testing the app as a whole	 217
Summary	 219

Index	 221

Preface
Welcome to Developing Responsive Web Applications with AJAX and jQuery. If you
want to learn and understand responsive layout development or social application
integration using AJAX and jQuery, then this book is for you. It covers a systematic
approach for building a responsive web application.

All the key features of a responsive application are explained with the detailed
code. It also explains how to debug and test a responsive web application
during development.

What this book covers
Chapter 1, Introduction to a Responsive Web Application, introduces you to the
responsiveness of an application and lists the key benefits of a responsive
application for a commercial site.

Chapter 2, Creating a Responsive Layout for a Web Application, explains how to develop
a layout that will support different screen sizes to render using Bootstrap 3.

Chapter 3, Adding Dynamic Visuals to a Web Application, explains how to make
a jQuery AJAX call for JSON data and render content in different parts of the
web application.

Chapter 4, Twitter Integration, demonstrates how to integrate the Twitter4J library to
incorporate different features such as tweets and posts from the web application.

Chapter 5, Facebook Integration, demonstrates how to integrate the Facebook SDK to
add the Facebook login and Like features in the web application.

Chapter 6, Google+ Integration, shows how to integrate the Google+ login and +1
feature into the web application.

Preface

[2]

Chapter 7, Linking Dynamic Content from External Websites, explains how to integrate
the YouTube API to embed a recommended video into a web application.

Chapter 8, Integrating E-Commerce or Shopping Applications with Your Website, illustrates
the integration of the PayPal payment API into the application. Also, it introduces
the integration of the Shopify API into the application.

Chapter 9, Integrating the Google Currency Converter with Your Web Application,
explains how to integrate the Google Currency API to help a user see the amount
in a different currency.

Chapter 10, Debugging and Testing, introduces the different available online and offline
tools to test a responsive application during development.

What you need for this book
The following list of tools and libraries are required for this book:

•	 Eclipse IDE for Java EE Developers
•	 Apache Tomcat 7.0
•	 Bootstrap 3.0
•	 jQuery 2.1.0

Who this book is for
This book is for Java web developers who want to create responsive web
applications. This book is also helpful for those who want to learn about the
integration of social applications into existing web applications. Finally, the book
is for everyone interested in better understanding AJAX-based responsive web
application development.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[3]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The data-toggle attribute has the value for the effect property such as collapse."

A block of code is set as follows:

<div class="navbar-collapse collapse" id="ts-top-menu">
 <ul class="nav navbar-nav">
 <li class="active">Category 1
 Category 2
 Category 3

</div>

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="asset/css/bootstrap.min.css">
<title>Responsive product Store</title>
</head>
<body>
 <div class="container-fluid"></div>
</body>
</html>

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"The Arguments option is for passing additional arguments."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.allitebooks.org

Introduction to a Responsive
Web Application

In this chapter, we be introduced to responsive web design followed by an
understanding of technology stack that made responsive web application
development possible.

The current trend of technology revolution has led us to a point where we can
see many wireless devices with different screen size, resolution, and processing
capabilities. It is really challenging and difficult to create different versions of
web applications for each and every device type. To address this challenge,
it needs a design solution that can address these problems. Responsive web design
provides the platform and flexibility where we can write code once and publish the
application everywhere.

Designing a website to look good at one particular resolution was the standard and
that standard was adequate for almost all purposes. Now, more and more people
are viewing web content on smartphones and tablets. The most successful websites
must have content designed to fit on any size screen or any type of device. Designing
content in this manner is also known as responsive web design. We need to give
all users, regardless of their access platform, a seamless experience, and responsive
web design offers a cost-efficient way of achieving that. Responsive web content can
dynamically change size, fonts, and colors to match whatever device your customers
might be using.

Introduction to a Responsive Web Application

[8]

The most important dimensions of a responsive design are as follows:

•	 An adaptive grid-based layout that must be responsive enough to the
client-side environment. There are two different approaches for an adaptive
layout: the first one is a fixed layout and the other one is a fluid layout.
Fluid layouts are always proportional to the screen size.

•	 Fluid images must maintain the aspect ratio. To maintain the aspect ratio,
we can go for two approaches, either setting the max-height to 100 percent
or max-width of 100 percent. This makes the images overflow in either
direction. The other way of handling the images is to clip a portion of
the image, though it is not recommended.

•	 The new CSS3 media queries make the browser more intelligent.
Now, browsers can make the decision to load the appropriate CSS
at runtime. This makes them adaptable to the client environment.

Responsive design is made possible through the use of three core
ingredients: a flexible grid-based layout, flexible images and media,
and CSS media queries.

Benefits of a responsive design
The most important benefits of responsive web application are as follows:

•	 Pleasant user experience in each type of device
•	 Reduced development cost compared to developing different applications

for each device type
•	 Reduced cost on advertising and marketing compared to maintaining

campaigns for every application for each device
•	 Better indexing in search engines and improved search engine

optimization (SEO)
•	 Increased conversion rates and lead generation as SEO is increased

(visibility of a web application in search engines)

Responsive web design uses a single code base, but in reality, different devices have
to be accounted for. While a desktop version can display a lot of content at once,
for smaller screens, you need to know exactly what content truly matters. To create
a great experience for all users, you need to consider that people will use different
devices in different circumstances and with different goals. With a responsive web
design, more effort and time will be involved to get the right user experience for
your target audience.

Chapter 1

[9]

If you look into different applications present online such as blogs and sports
applications, then you will notice that the end user behaviors are similar and follow
a common pattern. To provide the same experience for the end users, the layout and
other elements in the application must be designed for customization. This needs
more effort and time in developing the layout and the code.

Server- versus client-side detection
Addressing the issue of developing applications for different media types and
devices can be solved in two ways. The first one is the server-side detection where
middleware is responsible for reading the request header sent by the browser and
redirects the request to the appropriate version of the application. This requires you
to develop a different version of the application. It means an e-commerce site must
have a separate code base for each type of device.

The second one is the client-side detection. It should be done by the browser and
apply relative CSS based on the device or screen type. With this idea, the responsive
design is born. The real benefit is that one has to maintain a single code base for this.

The technology stack
The following diagram shows the building blocks for responsive web application
development. Each block in the diagram represents a technology that enables
responsive web application development.

Media

queriesapplication

web

Introduction to a Responsive Web Application

[10]

HTML5
HTML5 is the latest version of HTML, released by the W3C foundation with more
modern features included such as more semantics and usability features. This helps
in responsive web application development with more ease and less effort. Some of
the key points that highlight why HTML5 is a better candidate than other versions of
HTML are as follows:

•	 Inclusion of new HTML5 elements such as video and audio as native reduces
the use of an additional third-party plugin

•	 Enhanced existing elements such as form element reduce the need for an
additional amount of code to be written

•	 Inclusion of Canvas and SVG for graphic rendering and drawing adds
additional capabilities

CSS3 and media queries
Features such as media type detection and layout manipulation of media queries are
useful to build a responsive layout. Some of the key points of CSS3 are as follows:

•	 CSS3 animations and transitions reduce the need for JavaScript processing,
favoring, instead, a native implementation that can vastly improve
performance on mobile devices where processing power can be quite
limited, while falling back gracefully to immediate changes in browsers
that do not support them.

•	 Support of new measuring units such as rem helps in building a logical
relationship among elements' dimensions present inside a page.

•	 Ultimately, the vw and vh units will greatly enhance the ability of a
developer to size elements relative to the viewport.

•	 FlexBox provides numerous benefits with direction-based alignment and
element ordering inside a layout. For a responsive design, this means that
a default ideal order can be established via the document order to provide
greater SEO benefits, while different ordering can be provided based on
viewport size, device orientation type, and so on, to display content in the
best format for a given use case.

Chapter 1

[11]

JavaScript
JavaScript brings the capability of feature detection for the browser. It helps in
choosing the right component for the end user and makes the browser responsive
to its environment.

Some of the key points about JavaScript are as follows:

•	 Browser feature detection helps you to find features that are supported
by the browser. This helps in helps you to execute the appropriate code
in the application.

•	 Rendering behavior of the site can be altered using JavaScript.

Measuring responsiveness
There are many parameters for measuring the responsiveness of an application.
Layout, content, and navigation are the three most important parameters for a
responsive web application development. The following diagram shows the three
different building blocks of a responsive web application:

•Element positions •Page flow•Appearance

•	 Layout: While developing a responsive web application for all kinds
of devices, the layout should be developed based on the available size.
Based on the breakpoints for each device size, the layout gets altered.
This includes show and hide of a section in the layout.

•	 Content: For small screens, the available viewing space is very small.
While developing a responsive web application, the text content must
be responsive. It includes the typography, images, and other media
elements present inside the page.

•	 Navigation: For touch-enabled devices, the navigational elements will
be different to those on medium devices. How these navigational items
are to be presented to the end user is really a design challenge. It should
be rendered seamless to the end user while navigating in any devices.

Introduction to a Responsive Web Application

[12]

Devices and screens
If you look at the gadget market for handheld devices, you can find a wide range of
devices with different screen sizes. If you ask me what the optimal size for a device
screen is, I probably could not answer you without knowing the purpose. Each and
every device is good for a specific use. So, the optimal size of a screen is directly
dependent on the end user.

A wide screen with good graphics and pixel density may be the best fit for a gaming
end user. For a regular end user, a small device is a good fit. The web application
design must support all these screen sizes. The usability and the user experience
must be equivalent to all types of screens. Also, it is much more important when it
comes to an e-commerce site. If the end user is browsing the site on a mobile device
and the e-commerce device is only designed for a desktop, then it does not generate
the same pleasant experience that will lose the leads.

The soul of an e-commerce site is lead generation and it is only possible when the
application will provide seamless access to the end user irrespective of the browsing
device. This clearly requires the application to be responsive to its environment or
adapt itself based on the screen or device.

Media types
All these devices (desktops, tablets, mobiles, and laptops) fall in one of the
following media types. The following figure shows all the media types listed
in the W3C specification:

Chapter 1

[13]

TV

TTY

Media

type

•	 Braille: This is used for braille tactile feedback devices.
•	 Embossed: This is used for paged braille printers.
•	 Handheld: This is used for handheld devices. Smartphones and tablets do

not fall to this.
•	 Print: This is used for paged material and for documents viewed on screen in

the print preview mode.
•	 Projection: This is used for projected presentations, for example, projectors.
•	 Screen: This is used primarily for color computer screens and smartphones.
•	 Speech: This is used for speech synthesizers.
•	 TTY: This is used for media using a fixed-pitch character grid. It includes

teletypes, terminals, or portable devices with limited display capabilities.
•	 TV: This is used for television type devices. It includes low resolution, color,

limited-scrollability screens, and audio.
•	 Grid: This is used for visual and tactile media types.

Available expressions for media queries to filter the CSS rules are as follows:

•	 width: This is the width of the current window
•	 height: This is the height of the current window
•	 device-width: This is the width of the device

Introduction to a Responsive Web Application

[14]

•	 device-height: This is the height of the device
•	 orientation: This should be either landscape or portrait
•	 aspect-ratio: This is the aspect ratio of the current window
•	 device-aspect-ratio: This is the aspect ratio of the device
•	 color: This is the number of color bits per color component
•	 color-index: This is the number of available colors on the device
•	 monochrome: This is the number of bits per pixel in a monochrome

frame buffer
•	 resolution: This is the resolution of the device
•	 scan: This should be either progressive or interlace

Media queries
Media queries are one of the best features of CSS3. Using this feature, we can decide
which style sheet should be applied on the web page at runtime.

Media queries can be used as external or internal style sheets. An external style sheet
is easier to organize; it is not downloaded by browsers that don't support it, but it
uses an extra HTTP request. An internal style sheet, on the other hand, does not
require an extra HTTP request, but the whole style sheet is downloaded for browsers
even if they do not support media queries, and it can be harder to organize.

The following code is an example of an external media queries call:

<link rel="stylesheet" type="text/CSS" media="screen and (max-device-
width: 480px) " href="abc.css" />

The following code is an example of internal media queries:

body {
 background: gray;
}
@media all and (max-width: 480px){
body{
 background: blue;
 }
}

Chapter 1

[15]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Role of media queries
CSS3 provides a new set of features called media queries for responsive web
application development. These media queries are helpful for conditional CSS3 used
on a page based on the media type, device width, and other parameters. Generally,
the following parameters help in applying the correct CSS3 to the web page:

•	 Height and width of the device refers to the size of the device
•	 Height and width of the browser refers to the viewable area
•	 Screen resolution refers to the pixel and color depth of the screen
•	 Orientation of the device refers to the portrait or landscape mode

Using media queries, the layout can be designed in the following two ways:

•	 The adaptive layout: This is based on a pretty simple idea: instead of using
percentage, we will give our layout fixed sizes. The layout will adapt those
sizes depending of the width of the browser/viewport, thus creating a layout
with different breakpoints.

•	 The responsive layout: This is a mix between fluid and adaptive layouts.
It will use the relative units of the fluid layout and the breakpoints of the
adaptive one.

Responsive frameworks
There are many frameworks available from different vendors for responsive
web application development. Some of the popular libraries are explored in the
following sections.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.allitebooks.org

Introduction to a Responsive Web Application

[16]

Bootstrap
Some of the key points about the Bootstrap framework are as follows:

•	 Twitter's Bootstrap library is the most popular responsive framework.
•	 It is based on mobile-first design strategy. The source code of the projects is

available in the SASS and LESS format.
•	 Bootstrap 3, SASS, and LESS really helps in customizing modules needed for

the project.
•	 There are many resources and plugins available on the Internet for the

Bootstrap framework.
•	 You can get more information from http://getbootstrap.com/.

The Foundation framework
Some of the key points about the Foundation framework are as follows:

•	 Foundation framework is yet another popular responsive framework
by ZURB foundation

•	 Foundation Version 5 follows mobile-first design strategy (designing your
site or app for the small device first, and then expanding that to include
larger displays and more full-featured devices)

•	 The major benefit of Foundation framework is that the rem unit is used
for its sizing of fonts and positioning

•	 You can get more information from http://foundation.zurb.com/

The Cascade framework
Some of the key points about the Cascade framework are as follows:

•	 The Cascade framework is lightweight and modular.
•	 The code packages in the Cascade framework are done based on

their features.
•	 For example, for coloring purpose, there is a color module to be invoked

and used. All features of Cascade framework support Internet Explorer
from IE6 upwards or degrade gracefully.

http://getbootstrap.com/
http://foundation.zurb.com/

Chapter 1

[17]

•	 The whole library comes under four different modules: grid, typography,
icons, and components. It has also some reusable web page templates in a
different section.

•	 You can get more information from http://www.cascade-framework.com/.

The Pure CSS framework
Some of the key points about the Pure CSS framework are as follows:

•	 Pure CSS is a lightweight responsive framework by Yahoo Inc.
•	 The Pure CSS library is very tiny in size, and is about 4.4 KB minified and

compressed version. This library targets mobile devices.
•	 The core of this library is Normalize.css. The Normalize library provides

layout and styling of the HTML elements.
•	 You can get more information from http://purecss.io/.

The Gumby framework
Some of the key points about the Gumby framework are as follows:

•	 The Gumby framework is incredibly customizable
•	 It's as easy as download, tweak, and deploy
•	 Gumby is built on the SASS authoring framework
•	 Most eye-catching features in Grid modules such as Basic Grid, Hybrid

Grid, Nested Grid, Sematic Grids, Tiles, and Fancy tiles are part of the
Gumby framework

•	 You can get more information from http://gumbyframework.com/

Bootstrap 3 for a responsive design
There are many components and utilities available for responsive web application
development in Bootstrap. Bootstrap features are available in the following three
different modules:

•	 CSS: This module has a lot of standard classes to use and is easily extendable
for customization

•	 Component: This module has all the reusable built-in components
•	 JavaScript: This module has the jQuery plugin in Bootstrap style

http://www.cascade-framework.com/
http://purecss.io/
http://gumbyframework.com/

Introduction to a Responsive Web Application

[18]

Some important features that we are going to use in our web application
development are presented in the following diagram:

Grid layout
Responsive

utilities

HTML5

elements

Helper

classes

JS

components

•	 Grid layout: This module has different grid classes for xs, sm, md, and lg
type devices. The details of these grid classes are listed as follows:

°° xs stands for extra small devices. For example, a phone's screen
resolution is less than 768 pixels.

°° xm stands for small devices. For example, a tablet's screen resolution
is greater than or equal to 768 pixels.

°° md stands for medium devices. For example, a desktop's screen
resolution is greater than or equal to 992 pixels.

°° lg stands for large devices. For example, a desktop's screen resolution
is greater than or equal to 1200 pixels.

•	 Typography: This module has different classes based on the font
size requirements.

•	 Responsive utilities: This module contains classes for conditional classes
based on the types of devices.

•	 HTML5 elements: This module has default style classes for all
HTML5 elements.

•	 Helper classes: This module has classes for frequently used alignment and
positioning issues.

•	 JS components: This module has additional components such as carousel,
tooltip, popover, and so on.

What are we building?
We are going to use the Bootstrap 3 framework for responsive web application
development. In the following chapters, we will build an e-commerce web
application that will be responsive in design.

Chapter 1

[19]

The plan is as follows:

•	 Building the layout for the application
•	 Populating the content in the layout
•	 Integrating the application with social media sites
•	 Integrating a payment system with the Add to Cart feature
•	 Building a currency converter
•	 Debugging and testing the web application for responsiveness

Summary
In this chapter, we have learned about the need for a responsive web application
and what challenges it brings to a web developer. We have also learned about the
latest responsive libraries available for development. We have understood how
a responsive layout can increase the user experience. In the following chapter,
we will learn to develop a responsive layout using CSS3.

Creating a Responsive
Layout for a

Web Application
In this chapter, we will set up our Java-based web project and develop the layout
required to create our responsive web application. The process of developing the
layout follows a step-wise approach. Initially, we will draw a wireframe for the
layout, and then, we will prepare code for each section using Bootstrap 3 classes.
Later on in this chapter, we will verify the layout with different screen sizes
using some tools.

Required software and tools
We need the following software to be installed to develop the responsive
web application:

•	 An Eclipse Java EE IDE of Juno/Kepler version for web developers
(http://www.eclipse.org)

•	 Apache Tomcat 7
•	 Opera Mobile emulator
•	 The draw.io online tool
•	 The Mozilla Firefox browser
•	 The Google Chrome browser

http://www.eclipse.org

Creating a Responsive Layout for a Web Application

[22]

Setting up a Java-based web project
In this section, we will set up a Java-based web project in Eclipse. To do this, we have
to create a new dynamic web project. The following screenshot shows the window to
create a new web project. In Eclipse, click on the File button and choose New to list
the different project types present in Eclipse.

The different available project types present are shown in the following screenshot.
When this window appears, choose the Dynamic Web Project option.

Chapter 2

[23]

When you have chosen the Dynamic Web Project option, a New Dynamic
Web Project window will open asking for Project name, as shown in the
following screenshot:

Creating a Responsive Layout for a Web Application

[24]

For our application, we will name the project MyResponsiveWebApp. The project
structure will look like the following screenshot:

The WebContent folder consists of all the HTML, CSS, and JavaScript files.
The Navigator view of this empty project will look like the following screenshot:

Chapter 2

[25]

Configuring Bootstrap 3
In this section, we will configure the Bootstrap 3 library in our web project.
Download the Bootstrap 3 library from http://getbootstrap.com/getting-
started/#download. Bootstrap 3 has three different folders in its distribution
package. They are explained as follows:

•	 js: This folder contains all the scripts required for the Bootstrap 3 library
•	 fonts: This folder contains all the font-related files including the Glyph icons
•	 css: This folder contains all the style sheet-related files with Bootstrap's

default theme

The following figure shows the structure of the Bootstrap 3 library:

jsdist

www.allitebooks.com

http://getbootstrap.com/getting-started/#download
http://getbootstrap.com/getting-started/#download
http://www.allitebooks.org

Creating a Responsive Layout for a Web Application

[26]

The details of each file present inside these folders are given as follows:

•	 The fonts folder contains the glyphicons-halflings-regular.eot,
glyphicons-halflings-regular.svg, glyphicons-halflings-regular.
woff, and glyphicons-halflings-regular.ttf files containing all icons
used in Bootstrap 3.

•	 The js folder contains the bootstrap.js and bootstrap.min.js script files.
The bootstrap.js file is the uncompressed version, while bootstarp.min.
js file is the compressed file.

•	 The css folder contains the bootstrap.css, bootstrap.min.css,
bootstrap.theme.css, and bootstrap.theme.min.css style sheet files.
The bootstrap.css file is the uncompressed version, while the bootstrap.
min.css file is compressed file. The bootstrap.theme.css file contains the
default Bootstrap styles in the uncompressed format. The bootstrap.theme.
min.css file contains default Bootstrap styles in the compressed format.

To configure Bootstrap 3 in the project, we need to put the css, js, and fonts
folders inside the WebContent folder and add the corresponding files, as shown
in the following screenshot:

Chapter 2

[27]

Creating a wireframe for a web
application
In this section, we will create a wireframe for our web application. An online
tool called draw-io is used to draw the wireframe. You can check out the tool at
https://www.draw.io/. The following screenshot shows the prototype of the
drawing created using the draw.io tool:

https://www.draw.io/

Creating a Responsive Layout for a Web Application

[28]

The page is divided in three rows and explained as follows:

•	 The first row is about the product categories (the menu). For example,
a product store can have books, electronics, and stationary sections.

•	 The second row is about the hero content. The hero section can
have a carousel that can contain different product offers or
important announcements.

•	 The third row is to display all the listed products for any selected category.
Each product can have an image, pricing, and social links. The listed
products are in a grid format. Each row in a grid may contain N number
of products depending on the screen's size.

The interaction of these components is explained as follows:

•	 The first row is the navbar containing all product categories. A click event
will be associated with each product category. The click event will make an
AJAX call for the list of products.

•	 The second row is a hero section. This section will display the product of
the day. For example, it may be a big image or a carousel highlighting an
important announcement or an offer.

•	 The third row will render all the listed products from the previous response
(the hero section). The number of products listed in the grid row depends on
the screen size. For example, a bigger screen will have five products and a
smaller screen will have two products.

Responsive layouts
A responsive layout has many benefits, which are as follows:

•	 Scaling based on the screen size: Based on the screen size of the client,
the layout adjusts itself for an optimized experience

•	 Single code file based: A single HTML file is always easy to maintain
than multiple versions of the file

•	 Similar user experience: A similar user experience is maintained in all
types of devices

•	 Lead generation: This will increase proportionally as per better
user experience

Chapter 2

[29]

Creating a layout for large and small
devices
Based on the wireframe, we have a flat design for large devices. In our application, the
important component is the list of products where products are shown as grids in the
row and column format. Based on the device's screen size, the number of products per
row will change. For example, a device with a large screen can show four products in
a row and a device with a small screen can show three products per row. The layout
of the page is a fluid layout and will change based on the screen's size.

Developing the layout
In this section, we will realize the previously discussed wireframe with real code.
From the preceding section, it is evident that we need to develop three sections,
mentioned as follows:

•	 The menu section
•	 The hero section
•	 The list of products section

Before going into the development of each section, we need to understand
the containers provided by Bootstrap. The following section discusses the
Bootstrap containers.

Bootstrap 3 containers
Bootstrap provides fixed- and fluid-width containers. The CSS classes, .container
and .container-fluid, are used to set up the base layout.

An example of the .container class is as follows:

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="../asset/css/bootstrap.min.css">
<title>Responsive product Store</title>
</head>
<body>
 <div class="container"></div>
</body>
</html>

Creating a Responsive Layout for a Web Application

[30]

The following screenshot shows Chrome's development toolbar's layout that has a
fixed width:

An example of the .container-fluid class is as follows:

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="asset/css/bootstrap.min.css">
<title>Responsive product Store</title>
</head>
<body>
 <div class="container-fluid"></div>
</body>
</html>

Chapter 2

[31]

The following screenshot shows Chrome's development toolbar's layout that has
no width:

Developing a row
In Bootstrap 3, the .row class is used to create a row. There can be many rows
in a single page. All the rows' classes must be enclosed inside a container class,
shown as follows:

<!DOCTYPE html>
<html>

<head>
 <link rel="stylesheet" href="asset/css/bootstrap.min.css">
 <title>Responsive product Store</title>
</head>

Creating a Responsive Layout for a Web Application

[32]

<body>
 <div class="container">
 <div class="row">
 Row1
 </div>
 <div class="row">
 Row2
 </div>
 <div class="row">
 Row3
 </div>
 </div>
<script src="asset/js/jquery-2.1.0.min.js"></script>
<script src="asset/js/bootstrap.min.js"></script>
</body>

</html>

The following screenshot shows the three different rows created in the browser:

Chapter 2

[33]

Developing the menu section
Based on the wireframe, a menu is similar to the navbar. The nav element is used
to create the navbar element in Bootstrap 3. Each menu item is nested in the li tag,
inside an unordered list (ul), shown as follows:

<!DOCTYPE html>
<html>

<head>
 <link rel="stylesheet" href="../asset/css/bootstrap.min.css">
 <title>Responsive product Store</title>
</head>

<body>
 <div class="container">
 <nav class="navbar navbar-inverse navbar-static-top"
role="navigation">
 <div class="container-fluid">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed" data-
toggle="collapse" data-target="#ts-top-menu">

 Navigation buttons

 </button>
 PRODUCTS
 </div>
 <!-- Collect the nav links, forms, and other content for
toggling -->
 <div class="navbar-collapse collapse" id="ts-top-menu">
 <ul class="nav navbar-nav">
 <li class="active">Category 1

 Category 2

 Category 3

 </div>
 </div>
 </nav>

Creating a Responsive Layout for a Web Application

[34]

 </div>
<script src="asset/js/jquery-2.1.0.min.js"></script>
<script src="asset/js/bootstrap.min.js"></script>
</body>

</html>

The navbar will be rendered in the browser, shown as follows:

For a smaller screen size, it will be rendered as shown in the following screenshot.
It has a button to expand the detailed menu list. This view is really helpful for small
screens due to the space constraint in the monitor. The following screenshot is taken
in Chrome in a smaller screen size:

Chapter 2

[35]

The expanded version for the preceding navbar looks like the following screenshot.
The property to expand and collapse is due to the data-toggle and data-target
attributes, which are explained as follows:

•	 The data-toggle attribute has the value for the property of the effect,
such as collapse

•	 The data-target attribute has the value for the target DOM element that
will expand and collapse on click event

Developing the hero section
Based on the wireframe, developing the hero section will be the main focus area.
To the represent the hero section, Bootstrap has a .jumbotron class.

The code of the jumbotron class is shown as follows:

<!DOCTYPE html>
<html>

<head>
 <link rel="stylesheet" href="asset/css/bootstrap.min.css">
 <title>Responsive product Store</title>
</head>

<body>
 <div class="container">
 <div class="jumbotron">

www.allitebooks.com

http://www.allitebooks.org

Creating a Responsive Layout for a Web Application

[36]

 <h1>Hero Section</h1>
 </div>
 </div>
<script src="asset/js/jquery-2.1.0.min.js"></script>
<script src="asset/js/bootstrap.min.js"></script>
</body>

</html>

The jumbotron class renders in browser, as shown in the following screenshot:

Developing the list of products section
Based on the wireframe, this section will display the list of products.
The ts-product class is the css class to represent each product. To align
products in a row inside a grid, we have used a container class called
.ts-product-container. The display:inline-block style sheet
property is used to put each product in a row.

To display the list of products in a grid, we have created another style sheet
called ts-responsive-web-style.css, as shown in the following code:

.ts-product-container{
 text-align:center;
}
.ts-product-container .ts-product{
 display: inline-block;
 height: 250px;
 margin: 10px 40px;

Chapter 2

[37]

 width: 200px;
 background: #eee;
 font-weight: bold;
}

The HTML code for the list of products is shown in the following code:

<!DOCTYPE html>
<html>

<head>
 <link rel="stylesheet" href="asset/css/bootstrap.min.css">
 <link rel="stylesheet" href="asset/css/ts-responsive-web-style.css">
 <title>Responsive product Store</title>
</head>

<body>
 <div class="container">
 <div class="panel-body ts-product-container">
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">

Creating a Responsive Layout for a Web Application

[38]

 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>

Chapter 2

[39]

 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">

Creating a Responsive Layout for a Web Application

[40]

 <h3>product</h3>
 </div>
 </div>
 </div>
 </div>
<script src="../asset/js/jquery-2.1.0.min.js"></script>
<script src="../asset/js/bootstrap.min.js"></script>
</body>

</html>

The list of products will be rendered as shown in the following screenshot:

The .container and .container-fluid classes are for
proper alignment and padding. All the .row elements must be
inside these containers. For more details, you can look at the
Bootstrap 3 documentation.

Chapter 2

[41]

The combined layout
In the previous sections of this chapter, we have seen how the individual components
are laid out. In this section, we will combine all the previous sections into a single code
file. You can see we have used the bootstrap.min.css file, which is the default style
for Bootstrap, and ts-responsive-web-style.css containing the application-specific
style. The whole code for the layout development is combined in the index.html file,
shown as follows:

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="asset/css/bootstrap.min.css">
<link rel="stylesheet" href="asset/css/ts-responsive-web-style.css">
<title>Responsive product Store</title>
</head>
<body>
<div class="container">
<div class="row">
 <nav class="navbar navbar-inverse navbar-static-top"
role="navigation">
 <div class="container-fluid">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed" data-
toggle="collapse" data-target="#ts-top-menu">
 Navigation buttons

 </button>
 PRODUCTS
 </div>
 <!-- Collect the nav links, forms, and other content for
toggling -->
 <div class="navbar-collapse collapse" id="ts-top-menu">
 <ul class="nav navbar-nav">
 <li class="active">Category 1
 Category 2
 Category 3

 </div>
 </div>
 </nav>
</div>
<div class="row">

Creating a Responsive Layout for a Web Application

[42]

 <div class="jumbotron">
 <h1>Hero Section</h1>
 </div>
</div>
<div class="row">
 <div class="panel-body ts-product-container">
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>

Chapter 2

[43]

 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">

Creating a Responsive Layout for a Web Application

[44]

 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <h3>product</h3>
 </div>
 </div>
</div>
</div>
</div>
<script src="asset/js/jquery-2.1.0.min.js"></script>
<script src="asset/js/bootstrap.min.js"></script>
</body>
</html>

Chapter 2

[45]

Verifying the layout
In this section, we will test our layout in different screen sizes. Also, we will test our
layout in the Opera Mobile emulator.

The Opera Mobile emulator
The Opera Mobile emulator provides the bridge between the real devices during
the development. It can be downloaded from http://www.opera.com/developer/
mobile-emulator.

The initial window of the emulator has different sections:

•	 The window listing different devices, for example, HTC, Samsung, Sony
Ericson, Motorola, and Nokia, as shown in the following screenshot:

•	 The Profile section has the list of devices that can be selected and used
for testing

www.allitebooks.com

http://www.opera.com/developer/mobile-emulator
http://www.opera.com/developer/mobile-emulator
http://www.allitebooks.org

Creating a Responsive Layout for a Web Application

[46]

•	 The Resolution field represents the width and height of the screen, as shown
in the following screenshot:

•	 The Pixel Density field represents the pixels per inch on the device's screen

•	 The User Interface field has the Touch, tablet, and keyboard options
•	 The User Agent String field has options such as Meego, Android,

and Desktop
•	 The Window Scale field has 25%, 50%, 100%, and 200% options to scale
•	 The Arguments option is for passing additional arguments

The whole screen will look like the following screenshot. Developers can choose
different options and configure the testing window screen. These options are really
helpful to test the application on a different emulated device.

Chapter 2

[47]

The emulator will open in a new window. The following screenshot shows the home
page for the emulator:

Creating a Responsive Layout for a Web Application

[48]

For the first time, we need to accept the agreement to open the browser.
The following screenshot shows the initial state of the browser:

The Opera browser has many different options, which are as follows:

•	 The address bar: This element is for passing the URL of the application
for browsing.

•	 The forward and backward button: This element is in the footer
section. These buttons are used to navigate forward and backward
in the browser history.

•	 The refresh button: This element is present in the footer. This button is used
to reload a page in the browser.

•	 The full screen option: This element is also present in the footer. It can be
used for full size of the screen for the emulator.

Chapter 2

[49]

The different menu options present inside the Opera emulator are as follows:

•	 Bookmarks: This is used to bookmark different URLs
•	 History: This contains all the browsed pages
•	 Start Page: This has the initial page containing a list of quick dial pages
•	 Saved Pages: This has all the saved pages
•	 Downloads: This has the list of the downloaded files
•	 Settings: This can change the browser settings such as privacy and

proxy settings
•	 Find in Page: This is used to find text in the current page
•	 Help: This has additional help for the browser
•	 Exit: This is to exit the browser

The following screenshot shows the menu options that we discussed in the
preceding section:

Creating a Responsive Layout for a Web Application

[50]

The following screenshot shows the Samsung Galaxy S II Version of the emulator.
This emulator represents the following:

•	 The number of products and as the screen size is very small, the number of
products is three in a single row

•	 Each product has the property to be displayed with the inline-block value

Chapter 2

[51]

The final layout will look like the following screenshot:

Creating a Responsive Layout for a Web Application

[52]

Summary
In this chapter, we learned to set up a Java-based web project in the Eclipse Juno
environment, wireframe a web page using the draw.io online tool, and configure
Bootstrap 3 in a Java-based web project. We also understood the concepts of some
of the Bootstrap 3 layout classes such as the fixed and fluid containers and how to
set the Opera Mobile emulator. We also understood the different options in the
Opera Mobile emulator, and developed different components for a web page
such as the navbar, hero section, and product list.

In the next chapter, we will learn how to use the jQuery calls to get dynamic and
responsive content.

Adding Dynamic Visuals to a
Web Application

In this chapter, we will learn how to create servlets returning JSON data followed by
understanding the concepts of jQuery AJAX and promising and templating a library
to render data in our page. In the later section of this chapter, we will learn how to
create a carousel for the hero section.

Building a JSON servlet
In this section, we will develop a Java servlet that will return a list of products as
a JSON array. Before building the servlet, we need to create a Java class named
Product. This class is known as a Plain Old Java Object (POJO) as it does not
implement any interface or extend any other classes. This class will have many
different properties that we are going to use to store the corresponding values.

Creating a POJO class
The value object of the Product class has all properties related to a product.
The different fields of a product are:

•	 Title: This field contains the title of the product and is of the type string.
The getTitle() and setTitle() methods are two getter and setter methods.

•	 Cost: This field contains the pricing of the product and is of the type integer.
The getCost() and setCost() methods are two getter and setter methods.

•	 Description: This field contains the information about the product and is of
the type string. The getDescription() and setDescription() methods
are the two getter and setter methods.

Adding Dynamic Visuals to a Web Application

[54]

•	 URL: This field contains the URI of the product image and is of the
type string. The getUrl() and setUrl() methods are two getter
and setter methods.

•	 Type: This field contains the type of the product and is of the type string.
The getType() and setType() methods are two getter and setter methods.

The following code shows the implementation of all the preceding fields in the
Product Java class:

package com.packt.product.obj;

public class Product {

 private String title;
 private int cost;
 private String description;
 private String url;
 private String type;

 public String getTitle() {
 return title;
 }
 public void setTitle(String title) {
 this.title = title;
 }
 public int getCost() {
 return cost;
 }
 public void setCost(int i) {
 this.cost = i;
 }
 public String getDescription() {
 return description;
 }
 public void setDescription(String description) {
 this.description = description;
 }
 public String getUrl() {
 return url;
 }
 public void setUrl(String url) {
 this.url = url;
 }
 public String getType() {
 return type;

Chapter 3

[55]

 }
 public void setType(String type) {
 this.type = type;
 }
}

Creating a product store
Also, we need to create a list of products for our application. For the purpose of this
book, we have used the names of some of the Packt Publishing books and videos.
The getAllListedBook() and getAllListedVideo() methods are the two methods
that return list of the hardcoded products. It should be noted that in a real-world
application, these methods would tie into a database to retrieve the appropriate
records instead of having a hardcoded values.cerateStaticJSON() method that
takes the list of products and returns its JSON equivalent string. The conversion of
POJO to JSON is done by the GSON library. All these methods are written in the
ProductStore class, as shown in the following code:

package com.packt.product.store;

import java.util.ArrayList;
import java.util.List;
import com.google.gson.Gson;
import com.google.gson.GsonBuilder;
import com.packt.product.obj.Product;

public class ProductStore {

 public static List<Product> getAllListedBook() {
 List<Product> listProduct = new ArrayList<Product>();

 Product product2 = new Product();
 product2.setTitle("Buddy press theme development");
 product2.setCost(12);
 product2.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");
 product2.setUrl("asset/image/books/2.png");
 product2.setType("book");

 Product product3 = new Product();
 product3.setTitle("Master Web Application Development with
AngularJS");
 product3.setCost(14);

www.allitebooks.com

http://www.allitebooks.org

Adding Dynamic Visuals to a Web Application

[56]

 product3.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");
 product3.setUrl("asset/image/books/3.png");
 product3.setType("book");

 Product product4 = new Product();
 product4.setTitle("Instant GSON");
 product4.setCost(10);
 product4.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");
 product4.setUrl("asset/image/books/4.png");
 product4.setType("book");

 Product product5 = new Product();
 product5.setTitle("jQuery UI Cookbook");
 product5.setCost(17);
 product5.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");
 product5.setUrl("asset/image/books/5.png");
 product5.setType("book");

 Product product6 = new Product();
 product6.setTitle("Learning IPython For Interactive Computing
And Data Visualization");
 product6.setCost(13);
 product6.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");
 product6.setUrl("asset/image/books/6.png");

 listProduct.add(product2);
 listProduct.add(product3);
 listProduct.add(product4);
 listProduct.add(product5);
 listProduct.add(product6);

 return listProduct;
 }
 public static List<Product> getAllListedVideo() {
 List<Product> listProduct = new ArrayList<Product>();

 Product product1 = new Product();
 product1.setTitle("Fast Track to Adobe Captivate 6");
 product1.setCost(12);
 product1.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");

Chapter 3

[57]

 product1.setUrl("asset/image/video/2.png");
 product1.setType("video");

 Product product2 = new Product();
 product2.setTitle("Cassandra Administration");
 product2.setCost(14);
 product2.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");
 product2.setUrl("asset/image/video/3.png");
 product2.setType("video");

 Product product3 = new Product();
 product3.setTitle("Play! Framework For Web Application
Development");
 product3.setCost(10);
 product3.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");
 product3.setUrl("asset/image/video/4.png");
 product3.setType("video");

 Product product4 = new Product();
 product4.setTitle("Getting Started With magneto");
 product4.setCost(17);
 product4.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");
 product4.setUrl("asset/image/video/5.png");
 product4.setType("video");

 Product product5 = new Product();
 product5.setTitle("Building a Network Application With Node");
 product5.setCost(13);
 product5.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");
 product5.setUrl("asset/image/video/6.png");
 product5.setType("video");

 Product product6 = new Product();
 product6.setTitle("Oracle Apex Technique");
 product6.setCost(13);
 product6.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");
 product6.setUrl("asset/image/video/7.png");
 product6.setType("video");

 listProduct.add(product1);

Adding Dynamic Visuals to a Web Application

[58]

 listProduct.add(product2);
 listProduct.add(product3);
 listProduct.add(product4);
 listProduct.add(product5);
 listProduct.add(product6);

 return listProduct;
 }

public static String cerateStaticJSON(List<Product> listOfProduct) {
 Gson gson = new GsonBuilder().setPrettyPrinting().create();
 String json = gson.toJson(listOfProduct);
 return json;
 }
}

Converting from POJO to JSON
In this section, we will convert our product list (that is a Java POJO array) to a JSON
array. We have used a GSON library from Google to covert the Java POJO objects
into a JSON string, as described in the following figure:

Java POJO GSON JSON

Some key points about JSON conversion in GSON are as follows:

•	 A GSON object needs to be instantiated using a new keyword with
GsonBuilder and a create method

•	 Using the toJson() method, a Java POJO object is converted to its
equivalent JSON string

Creating the servlet
Now, the main servlet, ProductServlet, which reads the request parameter type,
calls the appropriate method, and sends the response in the JSON string, is shown
as follows:

package com.packt.product.data;

import java.io.IOException;
import java.io.PrintWriter;

Chapter 3

[59]

import java.util.List;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.packt.product.obj.Product;
import com.packt.product.store.ProductStore;

@WebServlet("/ProductServlet")
public class ProductServlet extends HttpServlet {
 private static final long serialVersionUID = 1L;
 public ProductServlet() {
 super();
 }
 protected void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

String type = request.getParameter("type");
 List<Product> listOfProduct = null;

 if("book".equalsIgnoreCase(type)){
 listOfProduct = ProductStore.getAllListedBook();
 }else if("video".equalsIgnoreCase(type)){
 listOfProduct = ProductStore.getAllListedVideo();
 }
String productJsonString = ProductStore.cerateStaticJSON(listOfProdu
ct);
response.setContentType("application/json");
 PrintWriter out = response.getWriter();
 out.write(productJsonString);
 }
}

Some of the key points about ProductServlet are as follows:

•	 ProductServlet reads the type parameter from the URL and based on the
type, it calls the ProductStore method to get the list of products.

•	 If the type is book, then it calls the getAllListedBook() method and if the
type is video, it calls the getAllListedVideo() method.

•	 Finally, the createStaticJSON() method is called with a list of projects as
Java object to get converted into a JSON string. The generated JSON string is
then passed back as a response to the client using the PrintWriter method.

Adding Dynamic Visuals to a Web Application

[60]

All these servlet calls are the GET method by default, from the client. The following
screenshot shows the JSON data returned for the type book as a parameter in the
URL string:

Chapter 3

[61]

The following screenshot shows the JSON array for type video as a parameter in
the URL string. The JSON array is an array of objects where each object represents
a JSON string that is equivalent to the object of a Product class.

Adding Dynamic Visuals to a Web Application

[62]

Building a jQuery AJAX method
In this section, we will learn to develop a jQuery AJAX method in order to
make server calls. The following figure shows the block diagram of a typical
communication between a client and a server done through a sequence of
requests and responses, where each request is triggered by an AJAX call:

AJAX Servlet
Response

Request

jQuery provides an AJAX method $.ajax() to call the remote data. For our
application, we will call our servlet ProductServlet to download the product list
in the JSON format. The AJAX method makes an XMLHttpRequest request to the
servlet to get the data.

The syntax for the AJAX method is shown as follows:

$.ajax(<url>,{configuration properties})

accept

Some of the configuration properties are described as follows:

•	 accepts: This field represents the request method to use, such as GET or POST.
By default, if the parameter type is not specified, the call is assumed to be a
GET method request.

•	 beforeSend: This field can be a function attached to it and uses a
preprocessing of requests before making the final call to the server resource.

•	 cache: This field takes a Boolean value and represents the caching of
resources in the browser.

Chapter 3

[63]

•	 crossDomain: This field takes a Boolean value and indicates whether a
request is a cross domain call.

•	 type: This field represents the request method to use, such as GET or
POST. By default if the type is not specified, the call is assumed to be
a GET method request.

To make an AJAX request via jQuery for all titles of type book, we can pass the type
as a GET request named as the query string's parameter. The following code shows a
function that takes the type parameter as an argument and makes the AJAX request
to the servlet accordingly:

/*Returning jQuery Promise For a AJAX call with Product type*/
getProductDetails : function(type){
 var ajaxRequest=$.ajax("ProductServlet?type="+type);
 return ajaxRequest.promise();
}

The jQuery version that we have used for this application is 2.1.0. The method used
in the preceding code returns a promise object on debugging. We will see what this
promise object does in the next section.

Let's focus on the AJAX call for this method now. As the signature of the
getProductDetails() method suggests, it takes a string as a parameter
value and appends it to the URL with the type as a key.

The following screenshot shows the Firebug console of the jQuery AJAX call for
the type book:

Adding Dynamic Visuals to a Web Application

[64]

The following screenshot shows the Firebug console of the jQuery AJAX call for the
type video:

jQuery promises
jQuery promises are a great mechanism to handle the asynchronous callback issue.
Some of the key points about jQuery promises are listed as follows:

•	 A promise object represents the subset of a jQuery deferred object
•	 A deferred object is nothing but a normal object whose state is not known

at present or is yet to be known in the future
•	 A promise object provides a different callback method to handle its

future state

Chapter 3

[65]

AJAX call Promise object

The preceding figure is a graphical representation of how a jQuery promise object
works for an AJAX call.

The promise() method returns the promise object for handling. In our script code,
we have used the done() callback method to handle the AJAX call's success state,
as shown in the following code:

/*Handler For AJAX response*/
handleCallback : function(type){
 var promise = PACKT_PRODUCT_APP.getProductDetails(type);
 promise.done(function(data){
 PACKT_PRODUCT_APP.doProductRendering(data);
 });
 }

Adding Dynamic Visuals to a Web Application

[66]

The jQuery templating mechanism
jQuery provides a templating mechanism using an additional plugin called jquery.
tmpl.min.js. Some of the important points about jQuery templating are as follows:

•	 A jQuery template is wrapped around the <script> tag with type as
text/x-jquery-tmpl. The syntax of a jQuery template is shown as follows:
<script id="<templateid>" type="text/x-jquery-tmpl">
 HTML code goes here
</script>

•	 An expression is represented within a dollar ($) sign with curly braces and is
used for representing the value of a JavaScript object in the string. The syntax
is shown as follows:
${<expression>}

•	 The tmpl() method is for template compilation and is used for linking the
data to produce the markup for a product.

The following figure shows a graphical representation of how jQuery templates
work. It has two phases, which are the internal compilation phase and the linking
phase, explored as follows:

•	 The compilation phase: In this phase, the HTML template is compiled and
converted into a jQuery function

•	 The linking phase: In this phase, the JSON data is passed to the compiled
jQuery method to generate the real HTML markup for rendering

HTML template JSON data

HTML markup for

rendering

Chapter 3

[67]

Let's create our product template to use it in the web application. To begin with
templating, we need to decide which fields are to be displayed for a product while
rendering, as shown in the following code:

<script id="aProductTemplate" type="text/x-Jquery-tmpl">
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <span class="glyphicon glyphicon-certificate ts-cost-
icon">
 <label>${cost}$</label>

 <h5>${title}</h5>
 </div>
 <div class="panel-footer">
 <button type="button" class="btn btn-info btn-block">Buy</
button>
 </div>
 </div>
</script>

The HTML markup for a single product will render output as shown in the
following screenshot:

Adding Dynamic Visuals to a Web Application

[68]

The combined jQuery code
The whole code for the web application is shown as follows, where PACKT_PRODUCT_
APP is the object that contains all methods for running the web application:

var PACKT_PRODUCT_APP={
 /*Returning jQuery Promise For a AJAX call with Product type*/
 getProductDetails : function(type){
 var ajaxRequest=$.ajax("ProductServlet?type="+type);
 return ajaxRequest.promise();
 },
 /*Handler For AJAX response*/
 handleCallback : function(type){
 var promise = PACKT_PRODUCT_APP.getProductDetails(type);
 promise.done(function(data){
 PACKT_PRODUCT_APP.doProductRendering(data);
 });
 },
 /*jQuery Template building with JSON data*/
 doProductRendering: function(data){
 var productContainer =$('.ts-product-container'),
 aProductTemplate = $('#aProductTemplate').tmpl(data),
promiseOldPro = $(productContainer).find('.panel').fadeOut().
promise();

 $.when(promiseOldPro).then(function(){
 productContainer.html(aProductTemplate);
 });
 },
 /*Event Listener to Menu Item Click*/
 initCategoryClick:function(){
 $(".ts-bar").on('click','li',function(e){
 e.preventDefault();
 var li = e.currentTarget,
 type= $(li).attr('data-category');
 $(li).siblings('li').removeClass('active');
 $(li).addClass('active');
 PACKT_PRODUCT_APP.handleCallback(type);
 });
 }
};

$(document).ready(function(){

Chapter 3

[69]

 /*Initial Load Call Books */
 PACKT_PRODUCT_APP.handleCallback('book');
 /*Initialize Click Of Menu Item*/
 PACKT_PRODUCT_APP.initCategoryClick();
});

The document ready function is calling the two methods: handleCallback()
and initCategoryClick(). Some key points about these methods are as follows:

•	 handleCallback(): This method takes the book type as an input string to
load the page for the product type book.

•	 initCategoryClick(): This method attaches a listener for menu click. When
a book or video menu item is clicked, it attaches the active class to the target
menu item and calls the AJAX for rendering the appropriate product type.

The combined HTML markup
The combined code of the markup present in the index.html file is shown
as follows:

<!DOCTYPE html>

<html>
<head>
 <link href="asset/css/bootstrap.min.css" rel="stylesheet">
 <link href="asset/css/ts-responsive-web-style.css" rel="stylesheet">
 <title>Responsive product Store</title>
</head>

<body>
 <div class="container packt-app">
 <div class="row">
 <nav class="navbar navbar-inverse navbar-static-top">
 <div class="container-fluid">
 <div class="navbar-header">
 <button class="navbar-toggle collapsed" data-target="#ts-
top-menu"
 data-toggle="collapse" type="button"><span class="sr-
only">Navigation buttons</button> <a class="navbar-brand"
href="#">PRODUCTS
 </div>
 <!-- Collect the nav links, forms, and other content for
toggling -->

Adding Dynamic Visuals to a Web Application

[70]

 <div class="navbar-collapse collapse" id="ts-top-menu">
 <ul class="nav navbar-nav ts-bar">
 <li class="active" data-category="book">Books

 <li data-category="video">Video

 </div>
 </div>
 </nav>
 </div>

 <div class="row">
 <div class="jumbotron">
 <div class="row">
 <div class="col-sm-6"><img class="img-responsive"
src="asset/image/hero/1.jpg"></div>

 <div class="col-sm-6"><img class="img-responsive"
src="asset/image/hero/2.png"></div>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="panel-body ts-product-container"></div>
 </div>
 </div>
 <script id="aProductTemplate" type="text/x-jquery-tmpl">
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <span class="glyphicon glyphicon-certificate ts-cost-
icon">
 <label>${cost}$</label>

 <h5>${title}</h5>
 </div>
 <div class="panel-footer">
 <button type="button" class="btn btn-info btn-block">Buy</
button>
 </div>
 </div>
 </script>
 <script src="asset/js/jquery-2.1.0.min.js"></script>

Chapter 3

[71]

 <script src="asset/js/jquery.tmpl.min.js"></script>
 <script src="asset/js/bootstrap.min.js"></script>
 <script src="asset/js/app.js"></script>
</body>
</html>

Modifying the style of the product
In this section, we will modify the style of our product. This change is desirable.
There are two reasons to note, mentioned as follows:

•	 Even in a static (nonresponsive) layout, titles may be long enough to wrap to
new lines, forcing the product title require multiple lines of height to display.
It is possible to get around with this issue by forcing the height of all titles,
but this will result in having unnecessary white spaces in the title area.

•	 In a fluid (responsive) layout, any content that varies in size, complicates the
process of aligning the content across breakpoints, properly.

We have used the ellipsis symbol (...) when the title is too long to fill. This can be
achieved using the overflow, white-space, text-overflow, and width properties,
as shown in the following code:

.packt-app .ts-product-container .ts-product h5{
 overflow: hidden;
 white-space: nowrap;
 text-overflow:ellipsis;
 width:100%;
}

The combined style code is shown as follows:

.packt-app .ts-product-container{
 text-align:center;
 position:relative;
}
.packt-app .ts-product-container .ts-product{
 display: inline-block;
 float: left;
 margin: 10px 40px;
 width: 200px;
 background: #eee;
 font-weight: bold;
}
.packt-app .ts-product-container .ts-product .panel-body{
 background: #fff;

Adding Dynamic Visuals to a Web Application

[72]

}
.packt-app .ts-product-container .ts-product .panel-footer{
 height:48px;
 padding: 6px 15px;
 background: #fff;
}
.packt-app .ts-product-container .ts-product img{
 position: relative;
 top: 0px;
}
.packt-app .ts-product-container .ts-product h5{
 overflow: hidden;
 white-space: nowrap;
 text-overflow:ellipsis;
 width:100%;
}
.packt-app .jumbotron{
 background:transparent;
 padding-left:0px;
}
.packt-app .glyphicon.glyphicon-certificate.ts-cost-icon{
 font-size:50px;
 z-index:2;
 position: relative;
 right: 20px;
 top: 25px;
}
.packt-app .glyphicon.glyphicon-certificate.ts-cost-icon label{
 color: #FFA500;
 font-size: 12px;
 left: 16px;
 position: absolute;
 top: 13px;

}

The web application can be called using the following URL:
http://localhost:8080/MyResponsiveWebApp/index.html

Chapter 3

[73]

The output on our screen will look like the following screenshot:

Adding Dynamic Visuals to a Web Application

[74]

For the video type product, the screen will look like the following screenshot:

Building an image carousel
In this section, we will build an alternate version of our application's index.html
file that displays the hero section as a carousel. Bootstrap 3 provides the carousel
component based on jQuery.

Some of the key attributes about building a carousel are:

•	 data-ride: This attribute is used for the carousel animation on page load
•	 data-slide-to: This attribute is used for the carousel page indicator to

navigate to that page

Chapter 3

[75]

•	 data-slide: This attribute represents the navigation of the next and the
previous item in the carousel

Some of the key classes of building carousel are:

•	 carousel: This represents the class of the whole carousel container
•	 carousel-inner: This class is the wrapper class for the inner carousel items
•	 item: This represents each carousel element
•	 carousel-control: This is the wrapper class for controls such as the

previous and next actions
•	 carousel-indicators: This is the page indicator that is shown as a

rounded circle for pagination

The code for the carousel component is shown as follows:

<div id="carousel-packt-app" class="carousel slide" data-
ride="carousel">
<ol class="carousel-indicators">
 <li data-target="#carousel-packt-app" data-slide-to="0"
class="">
 <li data-target="#carousel-packt-app" data-slide-to="1"
class="active">

 <div class="carousel-inner">

 <div class="item">

 </div>
 <div class="item active">

 </div>
 </div>
 <a class="left carousel-control" href="#carousel-packt-app" data-
slide="prev">

 <a class="right carousel-control" href="#carousel-packt-app" data-
slide="next">

</div>

Adding Dynamic Visuals to a Web Application

[76]

To position the carousel in the center of the page, we have included the margin-left
property of the carousel item. The CSS code of the change is as follows:

#carousel-packt-app .item{
 margin-left:25%;
}

The carousel will look like the following screenshot:

Chapter 3

[77]

The combined HTML code for the index-carousel.html file is as follows:

<!DOCTYPE html>

<html>
<head>
 <link href="asset/css/bootstrap.min.css" rel="stylesheet">
 <link href="asset/css/ts-responsive-web-style.css" rel="stylesheet">
 <title>Responsive product Store</title>
</head>

<body>
 <div class="container packt-app">
 <div class="row">
 <nav class="navbar navbar-inverse navbar-static-top">
 <div class="container-fluid">
 <div class="navbar-header">
 <button class="navbar-toggle collapsed" data-target="#ts-
top-menu"
 data-toggle="collapse" type="button"><span class=
 "sr-only">Navigation buttons</button> <a class=
 "navbar-brand" href="#">PRODUCTS
 </div>
 <!-- Collect the nav links, forms, and other content for
toggling -->

 <div class="navbar-collapse collapse" id="ts-top-menu">
 <ul class="nav navbar-nav ts-bar">
 <li class="active" data-category="book"><a href=
 "#">Books

 <li data-category="video">Video

 </div>
 </div>
 </nav>
 </div>

 <div class="row">
 <div class="jumbotron">
 <div id="carousel-packt-app" class="carousel slide" data-
ride="carousel">
 <ol class="carousel-indicators">
 <li data-target="#carousel-packt-app" data-slide-to="0"
class="">
 <li data-target="#carousel-packt-app" data-slide-to="1"
class="active">

Adding Dynamic Visuals to a Web Application

[78]

 <div class="carousel-inner">
 <div class="item">

 </div>
 <div class="item active">

 </div>
 </div>
 <a class="left carousel-control" href="#carousel-packt-app"
data-slide="prev">

 <a class="right carousel-control" href="#carousel-packt-app"
data-slide="next">

 </div>
 </div>
 </div>

 <div class="row">
 <div class="panel-body ts-product-container"></div>
 </div>
 </div>
 <script id="aProductTemplate" type="text/x-jquery-tmpl">
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <span class="glyphicon glyphicon-certificate ts-cost-
icon">
 <label>${cost}$</label>

 <h5>${title}</h5>
 </div>
 <div class="panel-footer">
 <button type="button" class="btn btn-info btn-block">Buy</
button>
 </div>
 </div>
 </script>
 <script src="asset/js/jquery-2.1.0.min.js"></script>
 <script src="asset/js/jquery.tmpl.min.js"></script>
 <script src="asset/js/bootstrap.min.js"></script>
 <script src="asset/js/app.js"></script>
</body>
</html>

Chapter 3

[79]

Summary
In this chapter, we learned to create a Java servlet followed by converting a POJO
object to a JSON string, and learned how jQuery AJAX calls are made to the remote
servlet. We have also seen the use of jQuery promises to handle the callback issues
for the asynchronous method, the use of jQuery templates for compiling a HTML
template and building the rendering markup by linking the compiled template
with JSON data, and building a Carousel for the hero section.

In the next chapter, we will learn to integrate Twitter's social features into our
web application.

Twitter Integration
Social networking sites such as Twitter are the most powerful tool for online marketing
and lead generation for an e-commerce web application site. In this chapter, we will
learn how to integrate the Twitter4J API into our web application. We will also explore
the different features provided by Twitter4J.

Introduction to Twitter4J
Twitter4J is a Java library for developing Twitter-based Java applications. It is an
unofficial Twitter API. This can be downloaded from http://twitter4j.org/en/
index.html. The library is zipped in a twitter4j-4.0.1.zip file. When unzipped,
it contains a lib folder containing all the required .jar files. The included .jar files
are listed as follows:

•	 twitter4j-core-4.0.1.jar: This contains the core class for the
Twitter API.

•	 twitter4j-stream-4.0.1.jar: This contains the API classes for streaming.
Threads can be created to consume the stream generated by listener classes
that implement Twitter.

•	 twitter4j-async-4.0.1.jar: This contains API classes and the method for
asynchronous access to Twitter.

•	 twitter4j-media-support-4.0.1: This contains API classes and the
methods to work with different media types.

We also need to download a dependent JAR file, commons-codec-1.9-bin,
from http://commons.apache.org/proper/commons-codec/.

http://twitter4j.org/en/index.html
http://twitter4j.org/en/index.html
http://commons.apache.org/proper/commons-codec/

Twitter Integration

[82]

Configuring Twitter4J in a web application
All of the previous JAR files need to be copied to the lib folder present inside the
WEB-INF directory. The following screenshot shows the WEB-INF directory containing
all the required JAR files for this application:

All these JAR files need to be added to the classpath. We can verify that these JAR
files are added to the application by looking in the Java Build Path option present
in the project properties. The following screenshot shows the build path with all the
Twitter4J JAR files added properly to our application:

Chapter 4

[83]

Posting a tweet
In this section, we will learn how to tweet about a product using the Twitter4J API.
The approach to achieve this is as follows:

•	 Create a Twitter button
•	 Set up a new Twitter application
•	 Develop a Twitter servlet
•	 Develop a Twitter callback servlet

The following diagram shows the important entities involved in a Twitter-based
client application. The arrow marks represent the communication between each
component while posting a tweet to a user timeline:

Twitter

application

User Twitter

timeline

jQuery

s

e

r

v

l

e

t

Creating a Twitter button
In this section, we will create a Tweet button for each product. When this button is
clicked, a message is posted to the user's timeline about the product. The following
steps are executed to develop a Tweet button:

1.	 Additional HTML markup is added to the jQuery product template as follows:
<script id="aProductTemplate" type="text/x-jquery-tmpl">
<div class="ts-product panel panel-default">
 <div class="panel-body">

Twitter Integration

[84]

 <label>${cost}$</label>

 <h5>${title}</h5>
 </div>
 <div class="panel-footer">
 <button type="button" class="btn btn-info btn-block">Buy</
button>
 <button type="button" class="btn btn-info btn-block tweet-me"
data-bookTitle="${title}">Tweet</button>
 </div>
 </div>
</script>

2.	 Additional CSS styles are added to make the appearance of the Tweet button
similar to the Twitter theme. The change in style is as follows:
.packt-app .btn.tweet-me{
background: #55acee;
}

3.	 An additional click event handler is added to the script, which will be
called when the Tweet button is clicked:
/*Event Listener to Tweet Button Click*/
initTwitterApp: function () {
 $(".ts-product-container").on('click', '.tweet-me', function (e)
{
 e.preventDefault();
 var target = e.target, bookTitle = $(target).attr("data-
bookTitle"), message = "I like this book ''" + bookTitle + "''
.What's your opinion?'", aReqTwitPromise = PACKT_PRODUCT_APP.
postTwitAboutProduct(message);
 aReqTwitPromise.done(function (data) {
 window.open(data.url, "_self");
 });
 });
},
/*Calls the Servlet with message in parameter*/
postTwitAboutProduct: function (message) {

Chapter 4

[85]

 var aReqTwitPromise = $.ajax({
 url: "TwitterServlet",
 type: "POST",
 data: {
 msg: message
 }
 }).promise();
 return aReqTwitPromise;
}

The following screenshot shows the updated product with a Tweet button
on it. The Tweet button is present in the footer section of the product, and
the background color matches with the Twitter theme too:

Twitter Integration

[86]

Setting up a new Twitter application
A new Twitter application needs to be created using the https://dev.twitter.
com/apps/new link. The following screenshot shows a blank form to register a
new application:

The form has various fields asking about the application details. For our application,
we have entered the name as MyResponsiveWebAppTwitClient, and the callback
URL is http://127.0.0.1:8080/MyResponsiveWebApp/TwitterCallbackServlet.
The following screenshot shows the filled form for our application:

https://dev.twitter.com/apps/new
https://dev.twitter.com/apps/new

Chapter 4

[87]

Finally, in the bottom section of the page, there is an application agreement.
The following screenshot shows the agreement for our new application.
By checking the checkbox, we are agreeing to the terms and conditions:

Twitter Integration

[88]

Once you have agreed to the agreement and clicked on the Create Your Twitter
application button, it will create and register the application. We can verify that
the application is listed in the / link. The following screenshot shows that the new
application is listed in the app list:

It generates the application ID, 5956893, for our application. If you click on the
application, it will navigate to the details page, https://apps.twitter.com/
app/5956893/show. This page has four different tabs: Details, Settings, API Keys,
and Permissions.

The Twitter Permissions tab
The Permissions tab has all the settings related to the specific application. Every
Twitter application has the Read, Write and Access direct messages permission.
By default, each Twitter application has Read only access. Check out the following
screenshot showing the default permissions for the application:

For our application requirement, we need write access too. Select the third radio
button Read, Write and Access direct messages from the screen, and save the
settings using the Update settings button present at the bottom of the page:

https://apps.twitter.com/app/5956893/show
https://apps.twitter.com/app/5956893/show

Chapter 4

[89]

The Twitter Details tab
The Details tab has all the details about the application, such as Access level, API
key, Callback URL, App-only authentication, Request token URL, Authorize URL,
and Access token URL, as shown in the following screenshot:

Twitter Integration

[90]

The Twitter Settings tab
The Settings tab has all the details about the Callback URL, Name, Description,
Website, and Application icon. We can update all these details in this tab.
The following screenshot shows the content of this tab for our application:

The Twitter API Keys tab
The API Keys tab has all the information about the keys that are being used by
the application to access Twitter user data. The following screenshot shows all
the content of this tab:

Chapter 4

[91]

Developing a Twitter servlet
In the previous section, we registered our new Twitter application to post tweets
about our product to the respective user's timeline. The Twitter timeline posting
feature starts from the client side where the user needs to click on the Tweet button,
which calls a servlet, TwitterServlet.java, in the background to receive the
authorization URL of the application.

Twitter Integration

[92]

The following screenshot shows the new project structure. There are a few new Java
classes added to the project to enable Twitter application integration:

A Twitter application works by a set of token communications. The following
diagram shows the main building blocks of a Twitter application lifecycle:

Request token

Access token

User timeline

Chapter 4

[93]

Request token
Each registered Twitter application has an API key token and an API secret token.
These tokens when combined are known as a request token for the application. The
following diagram shows the two different keys combined to form a request token:

API key
API

secret

Request

token

A request token is used to get the authorization URL for the application. In our
application, we have saved these tokens in the TwitterAppConfig.java file.
The code for TwitterAppConfig is listed as follows:

package com.packt.social.client;
public interface TwitterAppConfig{
 final static String TWIT_CONSUMER_KEY = "v6ig4X1aiL4sEWitUspLsw";
 final static String TWIT_CONSUMER_SECRET_KEY =
"sRUJ3YyVPvUkM78Fv5cJONzf0ZwvGY7VXR96yFI94";
}

TwitterServlet is the middleware code for our application which will make use
of this request token to get the authorization URL. The steps involved to get the
authorization URL are explained in the following list of points:

•	 A Twitter object needs to be created from TwitterFactory
•	 The API key and secret string need to be added to create an OAuth consumer
•	 This OAuth consumer is required to get an OAuth request token
•	 This OAuth request token will generate the authorization URL for our

Twitter application

Twitter Integration

[94]

Additionally, we are saving the request token to reuse it on the callback servlet.
You can save it in persistent storage or as a user session object. The following
diagram shows a graphical representation of the preceding process:

TwitterFactory

Twitter object

API key API secret

Request token

A TwitterUtil class is created so we have some reusable code for this application.
The code for this utility class is listed in the next code snippet. This utility has methods
for temporary storage of messages. In a real-time application, this can be optimized
with a better persistence mechanism. Have a look at the following code:

package com.packt.social.client;
import java.io.InputStream;
import twitter4j.auth.RequestToken;
public class TwitterUtil {
 public static RequestToken reqToken =null;
 public static String message;
 public static InputStream imgStrem;
 public static void saveRequestToken(RequestToken req, String msg)
{
 reqToken =req;
 message = msg;
 }
 public static void saveRequestToken(RequestToken req, String
msg,InputStream imageStrem) {
 reqToken =req;
 message = msg;
 imgStrem = imageStrem;
 }
}

Chapter 4

[95]

The code for TwitterServlet.java is listed as follows:

package com.packt.product.data;
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import twitter4j.JSONException;
import twitter4j.JSONObject;
import twitter4j.Twitter;
import twitter4j.TwitterException;
import twitter4j.TwitterFactory;
import twitter4j.auth.RequestToken;
import com.packt.social.client.TwitterAppConfig;
import com.packt.social.client.TwitterUtil;
@WebServlet("/TwitterServlet")
public class TwitterServlet extends HttpServlet implements
TwitterAppConfig {
 private static final long serialVersionUID = 1L;
 public TwitterServlet() {
 super();
 }
 protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
 Twitter twitter = new TwitterFactory().getInstance();
 twitter.setOAuthConsumer(TWIT_CONSUMER_KEY, TWIT_CONSUMER_
SECRET_KEY);
 RequestToken requestToken = null;
 String url = null;
 String twitMsgPost = request.getParameter("msg");
 try {
 requestToken = twitter.getOAuthRequestToken();
 /* Saving the Request Token:
 * Can be implemented in Database.
 * In this example, we have saved the token
 * in static field for the purposes of demonstration.
 * For real implementation, please use other mechanisms.
 */
 TwitterUtil.saveRequestToken(requestToken, twitMsgPost);
 url = requestToken.getAuthorizationURL();
 } catch (TwitterException e){

Twitter Integration

[96]

 e.printStackTrace();
 }
 response.setContentType("application/json");
 PrintWriter out = response.getWriter();
 JSONObject reqToken = new JSONObject();
 try {
 reqToken.put("url", url);
 reqToken.put("token", requestToken.getToken());
 reqToken.put("tokenSecret",requestToken.getTokenSecret());
 } catch (JSONException e) {
 e.printStackTrace();
 }
 out.write(reqToken.toString());
 }
}

Developing a Twitter callback servlet
A callback URL is required for a Twitter application. After successful authorization,
this is the location that the application returns to for further processing. While
creating the application, this callback option is present for configuration. For our
application, we have used http://127.0.0.1:8080/MyResponsiveWebApp/
TwitterCallbackServlet.

Access token
An access token is used to post a tweet in the user timeline. An access token is made
up of a combination of oauth_verifier and an API secret.

OAuth

verifier
API secret

Access

token

After authorization, the control returns to the callback servlet .The callback servlet
retrieves the request token saved in the storage. Using the request token and the
oauth_verifier key, it generates the access token. This OAuth token is then set
to a Twitter object to post the tweet or status in the user timeline.

Chapter 4

[97]

The code for TwitterCallbackServlet.java is listed as follows:

package com.packt.product.data;
import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import twitter4j.Twitter;
import twitter4j.TwitterException;
import twitter4j.TwitterFactory;
import twitter4j.auth.AccessToken;
import twitter4j.auth.RequestToken;
import com.packt.social.client.TwitterAppConfig;
import com.packt.social.client.TwitterUtil;
@WebServlet("/TwitterCallbackServlet")
public class TwitterCallbackServlet extends HttpServlet implements
TwitterAppConfig{
 private static final long serialVersionUID = 1L;
 public TwitterCallbackServlet() {
 super();
 }
 protected void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
 Twitter twitter = new TwitterFactory().getInstance();
 twitter.setOAuthConsumer(TWIT_CONSUMER_KEY, TWIT_CONSUMER_
SECRET_KEY);
 AccessToken aToken = null;
 RequestToken reqToken = TwitterUtil.reqToken;
 try{
 aToken = twitter.getOAuthAccessToken(reqToken,request.
getParameter("oauth_verifier"));
 twitter.setOAuthAccessToken(aToken);
 twitter.updateStatus(TwitterUtil.message);
 } catch (TwitterException e) {
 e.printStackTrace();
 }
 request.getRequestDispatcher("/index.html").forward(request,
response);
 }
}

Twitter Integration

[98]

The next screenshot shows the pop-up window asking for the user's authorization
to post the tweet in the user's timeline; the user can authorize the application by
providing the correct username and password:

You can check the list of tweets on the timeline. The following screenshot shows
the tweet list of the user:

Combining all the pieces
In this section, we will see the combined code for the whole application and the look
and feel of the entire page.

The updated code for the index.html file is listed as follows:

<!DOCTYPE html>
<html>
<head>
 <link href="asset/css/bootstrap.min.css" rel="stylesheet">

Chapter 4

[99]

 <link href="asset/css/ts-responsive-web-style.css" rel="stylesheet">
 <title>Responsive product Store</title>
</head>
<body>
 <div class="container packt-app">
 <div class="row">
 <nav class="navbar navbar-inverse navbar-static-top">
 <div class="container-fluid">
 <div class="navbar-header">
 <button class="navbar-toggle collapsed" data-target="#ts-
top-menu"
 data-toggle="collapse" type="button"><span class=
 "sr-only">Navigation buttons</button> <a class=
 "navbar-brand" href="#">PRODUCTS
 </div>
 <!-- Collect the nav links, forms, and other content for
toggling -->
 <div class="navbar-collapse collapse" id="ts-top-menu">
 <ul class="nav navbar-nav ts-bar">
 <li class="active" data-category="book"><a href=
 "#">Books
 <li data-category="video">Video

 </div>
 </div>
 </nav>
 </div>
 <div class="row">
 <div class="jumbotron">
 <div class="row">
 <div class="col-sm-6"><img class="img-responsive" src=
 "asset/image/hero/1.jpg"></div>
 <div class="col-sm-6"><img class="img-responsive" src=
 "asset/image/hero/2.png"></div>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="panel-body ts-product-container"></div>
 </div>
 </div>
 <script id="aProductTemplate" type="text/x-jquery-tmpl">
 <div class="ts-product panel panel-default">
 <div class="panel-body">

Twitter Integration

[100]

 <span class="glyphicon glyphicon-certificate ts-cost-
icon">
 <label>${cost}$</label>

 <h5>${title}</h5>
 </div>
 <div class="panel-footer">
 <button type="button" class="btn btn-info btn-block">Buy</
button>
 <button type="button" class="btn btn-info btn-block tweet-
me" data-bookTitle="${title}">Tweet</button>
 </div>
 </div>
 </script>
 <script src="asset/js/jquery-2.1.0.min.js"></script>
 <script src="asset/js/jquery.tmpl.min.js"></script>
 <script src="asset/js/bootstrap.min.js"></script>
 <script src="asset/js/app.js"></script>
</body>
</html>

The updated code for app.js is listed as follows:

var PACKT_PRODUCT_APP={
 /*Returning jQuery Promise For a AJAX call with Product type*/
 getProductDetails : function(type){
 var ajaxRequest=$.ajax("ProductServlet?type="+type);
 return ajaxRequest.promise();
 }
 /*Handler For AJAX response*/
 handleCallback : function(type){
 var promise = PACKT_PRODUCT_APP.getProductDetails(type);
 promise.done(function(data){
 PACKT_PRODUCT_APP.doProductRendering(data);
 });
 },
 /*jquery Template building with JSON data*/
 doProductRendering: function(data){
 var productContainer =$('.ts-product-container'),
 aProductTemplate = $('#aProductTemplate').tmpl(data),
promiseOldPro = $(productContainer).find('.panel').fadeOut().
promise();
 $.when(promiseOldPro).then(function(){
 productContainer.html(aProductTemplate);

Chapter 4

[101]

 });
 }
 /*Event Listener to Menu Item Click*/
 initCategoryClick:function(){
 $(".ts-bar").on('click','li',function(e){
 e.preventDefault();
 var li = e.currentTarget, type= $(li).attr('data-
category');
 $(li).siblings('li').removeClass('active');
 $(li).addClass('active');
 PACKT_PRODUCT_APP.handleCallback(type);
 });
 }
 /*Event Listener to Twitter Button Click*/
 initTwitterApp : function(){
 $(".ts-product-container").on('click','.tweet-me',function(e){
 e.preventDefault();
 var target = e.target,
 bookTitle = $(target).attr("data-bookTitle"),
 message= "I like this book ''"+bookTitle+"'' .What's your
opinion?'",
 aReqTwitPromise = PACKT_PRODUCT_APP.postTwitAboutProduct(message);
 aReqTwitPromise.done(function(data){
 window.open(data.url,"_self");
 });
 });
}
 /*Calls the Servlet with message in parameter*/
 postTwitAboutProduct:function(message){
 var aReqTwitPromise=$.ajax({url:"TwitterServlet",type:"POST",data:
{msg:message}}).promise();
 return aReqTwitPromise;
 }
};
$(document).ready(function(){
 /*Initial Load Call Books */
 PACKT_PRODUCT_APP.handleCallback('book');
 /*Initialize Click Of Menu Item*/
 PACKT_PRODUCT_APP.initCategoryClick();
 /*Initialize Click Of Twitter Button*/
 PACKT_PRODUCT_APP.initTwitterApp();
});

Twitter Integration

[102]

The screen will look like the following screenshot:

Posting a tweet with an image
In this section, we will learn how to post a tweet with an image included in the
message. In the previous section, we developed the Twitter client for text message
status updates. This section is all about posting a media item.

To demonstrate this, we have made some changes to the code.

Chapter 4

[103]

Product store with an image
The product store, where all our products have been stored, now points to a URL to
display the corresponding images. Have a look at the following code:

package com.packt.product.store;
import java.util.ArrayList;
import java.util.List;
import com.google.gson.Gson;
import com.google.gson.GsonBuilder;
import com.packt.product.obj.Product;
public class ProductStore{
 public static List<Product> getAllListedBook(){
 List<Product> listProduct = new ArrayList<Product>();
 Product product2 = new Product();
 product2.setTitle("Buddy press theme development");
 product2.setCost(12);
 product2.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");
product2.setUrl("http://127.0.0.1:8080/MyResponsiveWebApp/asset/image/
books/2.png");
 product2.setType("book");
 Product product3 = new Product();
 product3.setTitle("Master Web Application Development with
AngularJS");
 product3.setCost(14);
 product3.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");
product3.setUrl("http://127.0.0.1:8080/MyResponsiveWebApp/asset/image/
books/3.png");
 product3.setType("book");
 Product product4 = new Product();
 product4.setTitle("Instant GSON");
 product4.setCost(10);
 product4.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");
 product4.setUrl("http://127.0.0.1:8080/MyResponsiveWebApp/asse
t/image/books/4.png");
 product4.setType("book");
 Product product5 = new Product();
 product5.setTitle("Jquery UI Cookbook");
 product5.setCost(17);
 product5.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");

Twitter Integration

[104]

product5.setUrl("http://127.0.0.1:8080/MyResponsiveWebApp/asset/image/
books/5.png");
 product5.setType("book");
 Product product6 = new Product();
 product6.setTitle("Learning IPython For Interactive Computing And
Data Visualization");
 product6.setCost(13);
 product6.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");
product6.setUrl("http://127.0.0.1:8080/MyResponsiveWebApp/asset/image/
books/6.png");
 listProduct.add(product2);
 listProduct.add(product3);
 listProduct.add(product4);
 listProduct.add(product5);
 listProduct.add(product6);
 return listProduct;
 }
 public static List<Product> getAllListedVideo() {
 List<Product> listProduct = new ArrayList<Product>();
 Product product1 = new Product();
 product1.setTitle("Fast Track to Adobe Captivate 6");
 product1.setCost(12);
 product1.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");

product1.setUrl("http://127.0.0.1:8080/MyResponsiveWebApp/asset/
image/video/2.png");
 product1.setType("video");
 Product product2 = new Product();
 product2.setTitle("Cassandra Administration");
 product2.setCost(14);
 product2.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");
product2.setUrl("http://127.0.0.1:8080/MyResponsiveWebApp/asset/image/
video/3.png");
 product2.setType("video");
 Product product3 = new Product();
 product3.setTitle("Play! Framework For Web Application
Development");
 product3.setCost(10);
 product3.setDescription("Lorem ipsum dollar.Lorem ipsum dollar.
Lorem ipsum dollar.");

Chapter 4

[105]

product3.setUrl("http://127.0.0.1:8080/MyResponsiveWebApp/asset/image/
video/4.png");
 product3.setType("video");
 Product product4 = new Product();
 product4.setTitle("Getting Started With Magento");
 product4.setCost(17);
 product4.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");
product4.setUrl("http://127.0.0.1:8080/MyResponsiveWebApp/asset/image/
video/5.png");
 product4.setType("video");
 Product product5 = new Product();
 product5.setTitle("Building a Network Application With Node");
 product5.setCost(13);
 product5.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");
product5.setUrl("http://127.0.0.1:8080/MyResponsiveWebApp/asset/image/
video/6.png");
 product5.setType("video");
 Product product6 = new Product();
 product6.setTitle("Oracle Apex Technique");
 product6.setCost(13);
 product6.setDescription("Lorem ipsum dollar.Lorem ipsum
dollar.Lorem ipsum dollar.");
product6.setUrl("http://127.0.0.1:8080/MyResponsiveWebApp/asset/image/
video/6.png");
 product6.setType("video");
 listProduct.add(product1);
 listProduct.add(product2);
 listProduct.add(product3);
 listProduct.add(product4);
 listProduct.add(product5);
 listProduct.add(product6);
 return listProduct;
 }
 public static String createStaticJSON(List<Product>
listOfProduct){
 Gson gson = new GsonBuilder().setPrettyPrinting().create();
 String json = gson.toJson(listOfProduct);
 return json;
 }
}

Twitter Integration

[106]

Markup changes
The product template now has the new attribute data-imgURI. This attribute has the
URL to the book image. The modified jQuery template is listed in the following code:

<script id="aProductTemplate" type="text/x-jquery-tmpl">
 <div class="ts-product panel panel-default">
 <div class="panel-body">
 <span class="glyphicon glyphicon-certificate ts-cost-
icon">
 <label>${cost}$</label>

 <h5>${title}</h5>
 </div>
 <div class="panel-footer">
 <button type="button" class="btn btn-info btn-block">Buy</
button>
 <button type="button" class="btn btn-info btn-block tweet-me"
data-bookTitle="${title}" data-imgURI="${url}">Tweet</button>
 </div>
 </div>
 </script>

The following screenshot from the Firebug console shows the HTML markup for the
product; you can notice the attribute containing the URL to the image:

Chapter 4

[107]

Changes in app.js
When the Tweet button is clicked now, the data-imgURI value will be posted to the
servlet. The changes in the jQuery code are listed as follows:

var PACKT_PRODUCT_APP={
 /*Returning jQuery Promise For an AJAX call with Product type*/
 getProductDetails : function(type){
 var ajaxRequest=$.ajax("ProductServlet?type="+type);
 return ajaxRequest.promise();
 }
 /*Handler For AJAX response*/
 handleCallback : function(type){
 var promise = PACKT_PRODUCT_APP.getProductDetails(type);
 promise.done(function(data){
 PACKT_PRODUCT_APP.doProductRendering(data);
 });
 }
 /*jQuery Template building with JSON data*/
 doProductRendering: function(data){
 var productContainer =$('.ts-product-container'),
aProductTemplate = $('#aProductTemplate').tmpl(data), promiseOldPro
= $(productContainer).find('.panel').fadeOut().promise();
 $.when(promiseOldPro).then(function(){
 productContainer.html(aProductTemplate);
 });
 }
 /*Event Listener to Menu Item Click*/
 initCategoryClick:function(){
 $(".ts-bar").on('click','li',function(e){
 e.preventDefault();
 var li = e.currentTarget,
 type= $(li).attr('data-category');
 $(li).siblings('li').removeClass('active');
 $(li).addClass('active');
 PACKT_PRODUCT_APP.handleCallback(type);
 });
 }
 /*Event Listener to Twitter Button Click*/
 initTwitterApp : function(){
 $(".ts-product-container").on('click','.tweet-me',function(e){
 e.preventDefault();
 var target = e.target,
 bookTitle = $(target).attr("data-bookTitle"),
 imgURI = $(target).attr("data-imgURI"),

Twitter Integration

[108]

 message= "I like this book ''"+bookTitle+"''
.What's your opinion?'", aReqTwitPromise = PACKT_PRODUCT_APP.
postTwitAboutProduct(message, imgURI);
 aReqTwitPromise.done(function(data){
 window.open(data.url,"_self");
 });
 });
 }
 /*Calls the Servlet with message in parameter*/
 postTwitAboutProduct:function(message,imgURI){
 var aReqTwitPromise=$.ajax({url:"TwitterServlet",type:"POST",d
ata:{msg:message, imgUri:encodeURI(imgURI)}}).promise();
 return aReqTwitPromise;
 }
};
$(document).ready(function(){
 /*Initial Load Call Books */
 PACKT_PRODUCT_APP.handleCallback('book');
 /*Initialize Click Of Menu Item*/
 PACKT_PRODUCT_APP.initCategoryClick();
 /*Initialize Click Of Twitter Button*/
 PACKT_PRODUCT_APP.initTwitterApp();
});

Twitter servlet changes
In the Twitter servlet, we have added some code to catch the image URI parameter
and saved it to the input stream. The code changes are listed as follows:

package com.packt.product.data;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.net.URL;
import java.net.URLConnection;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import twitter4j.JSONException;
import twitter4j.JSONObject;
import twitter4j.Twitter;
import twitter4j.TwitterException;
import twitter4j.TwitterFactory;

Chapter 4

[109]

import twitter4j.auth.RequestToken;
import com.packt.social.client.TwitterAppConfig;
import com.packt.social.client.TwitterUtil;
@WebServlet("/TwitterServlet")
public class TwitterServlet extends HttpServlet implements
TwitterAppConfig {
 private static final long serialVersionUID = 1L;
 public TwitterServlet() {
 super();
 }
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
IOException {
 Twitter twitter = new TwitterFactory().getInstance();
 twitter.setOAuthConsumer(TWIT_CONSUMER_KEY, TWIT_CONSUMER_
SECRET_KEY);
 RequestToken requestToken = null;
 String url = null;
 String twitMsgPost = request.getParameter("msg");
 String twitImgUri = request.getParameter("imgUri");
 URL imgUri = null;
 InputStream imageStrem = null;
 try {
 imgUri = new URL(twitImgUri);
 URLConnection conn = imgUri.openConnection();
 requestToken = twitter.getOAuthRequestToken();
 imageStrem = conn.getInputStream();
 TwitterUtil.saveRequestToken(requestToken, twitMsgPost,
imageStrem);
 url = requestToken.getAuthorizationURL();
 } catch (TwitterException e) {
 e.printStackTrace();
 }
 response.setContentType("application/json");
 PrintWriter out = response.getWriter();
 JSONObject reqToken = new JSONObject();
 try{
 reqToken.put("url", url);
 reqToken.put("token", requestToken.getToken());
 reqToken.put("tokenSecret", requestToken.
getTokenSecret());
 } catch (JSONException e) {
 e.printStackTrace();
 }
 out.write(reqToken.toString());
 }
}

Twitter Integration

[110]

Changes in the Twitter callback servlet
In the callback servlet, we have created a status object and we have added the
text content and the image media input stream to be posted on the user client.
The following code has the change in the callback servlet:

package com.packt.product.data;
import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import twitter4j.StatusUpdate;
import twitter4j.Twitter;
import twitter4j.TwitterException;
import twitter4j.TwitterFactory;
import twitter4j.auth.AccessToken;
import twitter4j.auth.RequestToken;
import com.packt.social.client.TwitterAppConfig;
import com.packt.social.client.TwitterUtil;
@WebServlet("/TwitterCallbackServlet")
public class TwitterCallbackServlet extends HttpServlet implements
TwitterAppConfig{
 private static final long serialVersionUID = 1L;
 public TwitterCallbackServlet() {
 super();
 }
 protected void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
 Twitter twitter = new TwitterFactory().getInstance();
 twitter.setOAuthConsumer(TWIT_CONSUMER_KEY, TWIT_CONSUMER_
SECRET_KEY);
 AccessToken aToken = null;
 RequestToken reqToken = TwitterUtil.reqToken;
 try{
 aToken = twitter.getOAuthAccessToken(reqToken,request.
getParameter("oauth_verifier"));
 twitter.setOAuthAccessToken(aToken);
 StatusUpdate status = new StatusUpdate(TwitterUtil.
message);
 status.setMedia("Book", TwitterUtil.imgStrem);
 twitter.updateStatus(status);
 } catch (TwitterException e) {

Chapter 4

[111]

 e.printStackTrace();
 }
 request.getRequestDispatcher("/index.html").forward(request,
response);
 }
}

User Twitter timeline
Now, when a user tweets about a product, the tweet has both text and image in the
content. This can be verified in the timeline. The following screenshot shows my
timeline, which contains the tweet about my book Instant GSON.

Summary
In this chapter, we learned how to configure the Twitter4J API for a web
application, create a new Twitter client application to work with our web
application, and integrate the Twitter application to the web application
using Twitter4J, jQuery, and AJAX.

In the next chapter, we will learn how to integrate Facebook features to our
web application.

Facebook Integration
In this chapter, we will learn how to integrate Facebook into our responsive web
application. We will learn how to integrate different features, such as logging in
using a Facebook account and integrating a Like button into each product as well
as integrating comments. The presence of Facebook features enables users to share
information about the product on their timeline, which includes visibility of the
web application.

Introduction to the Facebook SDK for
JavaScript
In this section, we will learn how to configure the Facebook JavaScript SDK for
our application. There are no specific files to be downloaded to configure the SDK.
Facebook provides a JavaScript all.js file to call the Facebook API.

<script src="http://connect.facebook.net/en_US/all.js">
</script>

Facebook supports different locales for configuration. For our application,
we have called the US English locale. In the preceding script, en_US represents
the locale parameter.

This JavaScript file can be called in the bottom section of the body to be loaded.
It can also be called asynchronously by script injection. The following code shows
the code to load the JavaScript library asynchronously:

<script>
(function(d, s, id){
 var js,
 fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) {return;}
 js = d.createElement(s);
 js.id = id;

Facebook Integration

[114]

 js.src = "//connect.facebook.net/en_US/all.js";
 fjs.parentNode.insertBefore(js, fjs);
}(document, 'script', 'facebook-jssdk'));
</script>

There are some standard methods provided by the Facebook SDK that will be used
by the client application to use different features. The following diagram shows all
the methods supported by the Facebook SDK:

FB.getAuthResponse

FB
 S

D
K

FB.Event.unsubscribe

FB.Event.subscribe

FB.getLoginStatus

FB.logout

FB.init

FB.api

FB.ui

FB.login

Chapter 5

[115]

SDK method Description
FB.init This initializes the SDK with your Application ID

generated during configuration
FB.api This is useful to make API calls to the Graph API
FB.ui This is used to trigger Facebook dialogs to the end user,

asking for various permissions
FB.login This is used to log in to Facebook using the OAuth

dialog box
FB.logout This is used to log the user out from Facebook
FB.getLoginStatus This is used to check whether the user is logged in and

authenticated for the application
FB.getAuthResponse This method is similar to FB.getLoginStatus, but it is

synchronous and returns the authResponse object
FB.Event.subscribe This method is used to subscribe to Facebook events

auth.login, auth.authResponseChange, and
auth.statusChange, and get callbacks to your
function when an event is fired

FB.Event.
unsubscribe

This method is used to unsubscribe the specified
Facebook events

To initialize the Facebook SDK, the HTML markup must be present inside the page.
This HTML element is the base for the Facebook application's integration.

Creating a Facebook application
In this section, we will learn how to create and register a Facebook application.
Facebook provides a portal to register a new application. You can access this
application using the https://developers.facebook.com/apps link.
The following screenshot shows the page for the application:

https://developers.facebook.com/apps

Facebook Integration

[116]

You can see a button for creating a new application. You will then see the following
screenshot come up when you click on the Create New App button:

The preceding form is for creating a new application. It will ask for the Display
Name, Namespace, and Category of the application. We have filled in the form and
given the application name as MyResponsivePacktApp. The following screenshot
shows the completed form:

Chapter 5

[117]

After filling in these input elements and clicking on the Create App button, it will
navigate you to the application dashboard. This dashboard has the application ID and
other details. The following screenshot shows the application ID for our application:

Now, the application is listed, and you can see it present in the table. The following
screenshot shows the application as a card:

Configuring the Facebook SDK
In this section, we will learn how to initialize the Facebook JavaScript SDK for
our application. The Settings tab of the Facebook application has all the fields
to configure our application based on our requirements.

Facebook Integration

[118]

The Settings tab
The Settings tab has the configuration parameters such as domain name, site URL,
mobile site URL, and contact mail. Generally, the settings are divided into three
different subcategories, which are as follows:

•	 Basic
•	 Advanced
•	 Migrations

The Basic configuration
In the Basic configuration, you can change the website URL and contact person
name. Generally, it has all the normal standard fields. The following screenshot
shows the Basic configuration for our application:

Chapter 5

[119]

The Advanced configuration
The Advanced configuration tab has all the configuration parameters for application
restrictions and security parameters. The following screenshot shows the Advanced
configuration for our application:

Facebook Integration

[120]

The Migrations configuration
The Migrations tab has all the configuration parameters for streaming security,
publishing scopes, and offers. The following screenshot shows the Migrations
configuration for our application:

Configuring a Facebook login
In this section, we will learn how to integrate a Facebook login into our application.
The markup that generates the Facebook login button is listed in the following code:

<div class="fb-login-button pull-left"
perms='read_stream'
data-width="200"
data-colorscheme="dark"
show-faces="true"
autologoutlink="true">
</div>

The attributes used in the markup are explained as follows:

•	 perms: This attribute represents the permissions asked by the application
from the user account

•	 data-width: This attribute represents the width of the container for the
login button

•	 data-colorscheme: This attribute represents the color scheme for the
login widget

Chapter 5

[121]

•	 show-faces: This attribute has the Boolean value and represents whether
to show the user image or not

•	 Autologoutlink: This attribute has the Boolean value and represents
whether to show the log out button on successful login

The following screenshot shows the Facebook Log In component rendered in
our application:

Once you click on this Log In button, a dialog box opens up in a new window
asking for the username and password of the user for Facebook authentication.
The following screenshot shows the dialog box for our application:

Facebook Integration

[122]

After successful login, the Log Out box will appear, as shown in the
following screenshot:

Configuring the Facebook Like and Share
buttons
In this section, we will learn how to integrate the Facebook Like button into our
product pages. Facebook provides the markup and attributes to create a Like
and Share button. The following HTML syntax shows the required markup for
these buttons:

<div class="fb-like"
 data-href="${url}"
 data-layout="button_count"
 data-action="like"
 data-show-faces="true"
 data-share="true">
</div>

The attributes used in the markup are explained as follows:

•	 data-href: This attribute has the value for the targeted link for the
Like button.

•	 data-layout: This attribute has the value for the style of the button.
•	 data-action: This attribute has the value for the action to be done when a

user clicks on the Like button.
•	 data-show-faces: This attribute has a Boolean value. It represents whether

the users' faces have to be shown or not.
•	 data-share: This attribute has a Boolean value and represents whether the

Share button should be displayed or not.

Chapter 5

[123]

The init() method must be called to initialize the Facebook object. The following
code shows the init() method with parameters:

FB.init({
 appId: '1393917464220470',
 status: true,
 cookie: true,
 xfbml: true,
 oauth: true
});

The init() method takes a number of parameters in its configuration.
The parameters are explained as follows:

•	 appId: This contains the ID for the Facebook application.
•	 status: This field takes a Boolean value and ensures that the current login

status of the user is freshly retrieved on every page load.
•	 cookie: This determines whether a cookie is created for the session or not.

If enabled, it can be accessed by the server-side code.
•	 xfbml: This determines whether XFBML tags used by social plugins are

parsed, and therefore, whether the plugins are rendered or not.
•	 oauth: This takes the Boolean value to determine whether it supports the

OAuth mechanism.

The modified jQuery template is listed in the following code:

<script id="aProductTemplate" type="text/x-jquery-tmpl">
 <div class="ts-product panel panel-default">
 <div class="panel-head">
 <div class="fb-like" data-href="${url}" data-
layout="button_count" data-action="like" data-show-faces="true"
data-share="true">
 </div>
 </div>
 <div class="panel-body">
 <span class="glyphicon glyphicon-certificate ts-cost-
icon">
 <label>${cost}$</label>

 <h5>${title}</h5>
 </div>
 <div class="panel-footer">

Facebook Integration

[124]

 <button type="button" class="btn btn-info btn-block">Buy</
button>
 <button type="button" class="btn btn-info btn-block tweet-
me" data-bookTitle="${title}" data-imgURI="${url}">Tweet</button>
 </div>
 </div>
 </script>

The following screenshot shows the Facebook Like and Share buttons added to one
of the books:

Chapter 5

[125]

On clicking on the Share button, it will ask for authentication, and after successful
authentication, a new dialog box comes up with a text area element asking for
the message to be shared on the user timeline. This dialog box looks like the
following screenshot:

After writing the message and clicking on the Share Link button, it will be
shared on the user's timeline. The following screenshot shows the message
shared on my timeline:

Facebook Integration

[126]

To embed this post, we can get the code by clicking on the Embed this Post option
in the dropdown. The following screenshot shows the dialog box with the code
required to embed the post:

The code is listed as follows:

<div id="fb-root"></div>
<script>
 (function(d, s, id) {
 var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id))
 return;
 js = d.createElement(s);
 js.id = id;
 js.src = "//connect.facebook.net/en_US/all.js#xfbml=1";
 fjs.parentNode.insertBefore(js, fjs);
 }(document, 'script', 'facebook-jssdk'));
</script>
<div class="fb-post" data-href="https://www.facebook.com/permalink.
php?story_fbid=684830454911033&id=100001522557151" data-
width="466">

Chapter 5

[127]

 <div class="fb-xfbml-parse-ignore">
 <a href="https://www.facebook.com/permalink.php?story_fbid=684
830454911033&id=100001522557151">Post
 by <a href="https://www.facebook.com/profile.
php?id=100001522557151">Sandeep Patel.
 </div>
</div>

Configuring Facebook comments
In this section, we will learn how to integrate a Facebook comment section into
the application so that each client can comment on their experience with the
product and application.

The following HTML markup is used to generate the comment box for our application:

<div class="fb-comments"
data-href="http://localhost:8080/MyResponsiveWebApp/index.html" data-
numposts="5"
data-colorscheme="light">
</div>

The attributes used in the markup are explained as follows:

•	 data-href: This attribute has the link for the targeted application
•	 data-numposts: This attribute has the value for the number of posts to

be displayed in the comment box
•	 data-colorscheme: This attribute has the theme name for the look and

feel of the comment box

The following screenshot shows the comment box generated by the HTML markup:

Facebook Integration

[128]

Users can comment on this application using Facebook, Microsoft Outlook, AOL,
and Hotmail. The following screenshot shows all the options that can be used
to comment:

After posting a comment, it will appear at the bottom section of the comment
box. The following screenshot shows the comment that we have posted to test
the application:

The combined code
This section has all the combined code of this chapter. There are many changes
in the HTML markup, script, and style for the integration of Facebook features
in our application.

Chapter 5

[129]

All the markup and template code is present in the index.html file listed as follows:

<!DOCTYPE html>
<html>
<head>
 <link href="asset/css/bootstrap.min.css" rel="stylesheet">
 <link href="asset/css/ts-responsive-web-style.css" rel="stylesheet">
 <title>Responsive product Store</title>
</head>
<body>
 <div class="container packt-app">
 <div class="row">
 <nav class="navbar navbar-inverse navbar-static-top">
 <div class="container-fluid">
 <div class="navbar-header">
 <button class="navbar-toggle collapsed" data-target="#ts-
top-menu"
 data-toggle="collapse" type="button"><span class=
 "sr-only">Navigation buttons</button> <a class=
 "navbar-brand" href="#">PRODUCTS
 </div>
 <!-- Collect the nav links, forms, and other content for
toggling -->
 <div class="navbar-collapse collapse" id="ts-top-menu">
 <ul class="nav navbar-nav ts-bar">
 <li class="active" data-category="book"><a href=
 "#">Books
 <li data-category="video">Video

 </div>
 </div>
 </nav>
 </div>
 <div class="row">
 <div class="fb-login-button pull-left" perms='read_stream,friends_
birthday'data-width="200" data-colorscheme="dark" show-faces="true"
autologoutlink="true" ></div>
 <div class="jumbotron">
 <div class="row">
 <div class="col-sm-6"><img class="img-responsive" src=
 "asset/image/hero/1.jpg"></div>

Facebook Integration

[130]

 <div class="col-sm-6"><img class="img-responsive" src=
 "asset/image/hero/2.png"></div>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="panel-body ts-product-container"></div>
 </div>
 <div class="fb-comments" data-href="http://localhost:8080/
MyResponsiveWebApp/index.html" data-numposts="5" data-
colorscheme="light"></div>
 </div>
 <script id="aProductTemplate" type="text/x-jquery-tmpl">
 <div class="ts-product panel panel-default">
 <div class="panel-head">
 <div class="fb-like" data-href="${url}" data-
layout="button_count"
 data-action="like" data-show-faces="true" data-
share="true">
 </div>
 </div>
 <div class="panel-body">
 <span class="glyphicon glyphicon-certificate ts-cost-
icon">
 <label>${cost}$</label>

 <h5>${title}</h5>
 </div>
 <div class="panel-footer">
 <button type="button" class="btn btn-info btn-block">Buy</
button>
 <button type="button" class="btn btn-info btn-block tweet-
me" data-bookTitle="${title}" data-imgURI="${url}">Tweet</button>
 </div>
 </div>
 </script>
 <script src="asset/js/jquery-2.1.0.min.js"></script>
 <script src="//connect.facebook.net/en_US/all.js"></script>
 <script src="asset/js/jquery.tmpl.min.js"></script>
 <script src="asset/js/bootstrap.min.js"></script>
 <script src="asset/js/app.js"></script>
</body>
</html>

Chapter 5

[131]

All the script changes are present in the app.js file listed as follows:

var PACKT_PRODUCT_APP={
 /*Returning jQuery Promise For an AJAX call with Product type*/
 getProductDetails : function(type){
 var ajaxRequest=$.ajax("ProductServlet?type="+type);
 return ajaxRequest.promise();
 }
 /*Handler For AJAX response*/
 handleCallback : function(type){
 var promise = PACKT_PRODUCT_APP.getProductDetails(type);
 promise.done(function(data){
 PACKT_PRODUCT_APP.doProductRendering(data);	
 });
 },
 /*jQuery Template building with JSON data*/
 doProductRendering: function(data){
 var productContainer =$('.ts-product-container'),
 aProductTemplate = $('#aProductTemplate').tmpl(data
), promiseOldPro = $(productContainer).find('.panel').fadeOut().
promise();
 $.when(promiseOldPro).then(function(){
 productContainer.html(aProductTemplate);
 });
 },
 /*Event Listener to Menu Item Click*/
 initCategoryClick:function(){
 $(".ts-bar").on('click','li',function(e){
 e.preventDefault();
 var li = e.currentTarget,
 type= $(li).attr('data-category');
 $(li).siblings('li').removeClass('active');
 $(li).addClass('active');
 PACKT_PRODUCT_APP.handleCallback(type);
 });
 },
 /*Event Listener to Twitter Button Click*/
 initTwitterApp : function(){
 $(".ts-product-container").on('click','.tweet-me',function(e){
 e.preventDefault();
 var target = e.target,

Facebook Integration

[132]

 bookTitle = $(target).attr("data-bookTitle"),
 imgURI = $(target).attr("data-imgURI"),
 message= "I like this book ''"+bookTitle+"'' .What's
your opinion?'",
 aReqTwitPromise = PACKT_PRODUCT_APP.
postTwitAboutProduct(message, imgURI);	
 aReqTwitPromise.done(function(data){
 window.open(data.url,"_self");
 });
 });
 },
 /*Calls the Servlet with message in parameter*/
 postTwitAboutProduct:function(message,imgURI){
 var aReqTwitPromise=$.ajax({url:"TwitterServlet",type:"POST",d
ata:{msg:message, imgUri:encodeURI(imgURI)}}).promise();
 return aReqTwitPromise;
 },
 /*Initialize Facebook Login*/
 initFBLogin: function () {
 FB.init({
 appId: '1393917464220470',
 status: true,
 cookie: true,
 xfbml: true,
 oauth: true
 });
 FB.Event.subscribe('auth.login',
 function (response) {
 var accessToken = response.authResponse.accessToken;
 if (response.status === 'connected') {
 console.log("Successfully Logged in.")
 }
 });
 FB.Event.subscribe('auth.logout',
 function (response) {
 location.reload();	
 });
 }
};
$(document).ready(function(){
 /*Initial Load Call Books */

Chapter 5

[133]

 PACKT_PRODUCT_APP.handleCallback('book');
 /*Initialize Click Of Menu Item*/
 PACKT_PRODUCT_APP.initCategoryClick();
 /*Initialize Click Of Tweet Button*/
 PACKT_PRODUCT_APP.initTwitterApp();
 /*Initialize Click Of Facebook Login Button*/
 PACKT_PRODUCT_APP.initFBLogin();
});

All the CSS style changes are present in the ts-responsive-web-style.css file
listed as follows:

.packt-app .ts-product-container{
 text-align:center;
 position:relative;
}
.packt-app .ts-product-container .ts-product{
 display: inline-block;
 float: left;
 margin: 10px 40px;
 width: 200px;
 background: #eee;
 font-weight: bold;
}
.packt-app .ts-product-container .ts-product .panel-body{
 background: #fff;
}
.packt-app .ts-product-container .ts-product .panel-footer{
 height: 100%;
 padding: 6px 15px;
 background: #fff;
}
.packt-app .ts-product-container .ts-product img{
 position: relative;
 top: 0px;
}
.packt-app .ts-product-container .ts-product h5{
 overflow: hidden;
 white-space: nowrap;
 text-overflow:ellipsis;
 width:100%;
}

Facebook Integration

[134]

.packt-app .jumbotron{
 background:transparent;
 padding-left:0px;
}
.packt-app .glyphicon.glyphicon-certificate.ts-cost-icon{
 font-size:50px;
 z-index:2;
 position: relative;
 right: 20px;
 top: 25px;
}
.packt-app .glyphicon.glyphicon-certificate.ts-cost-icon label{
 color: #FFA500;
 font-size: 12px;
 left: 16px;
 position: absolute;
 top: 13px;
}
#carousel-packt-app .item{
 margin-left:25%;
}
.packt-app .btn.tweet-me{
 background: #55acee;
}
.fb-login-button {
 background: none repeat scroll 0 0 #000000;
 padding: 14px 0 17px 55px;
 position: absolute !important;
 top: 45px;
 z-index: 1001;
}
.packt-app .panel-head{
 background: #fff;
 height: 40px;
 padding:5px;
}
.fb-comments {
 margin-left:20%;
}

Chapter 5

[135]

The following screenshot shows the home page for our application after integrating
the Facebook features:

Facebook Integration

[136]

Summary
In this chapter, we have learned about integrating Facebook features into our
web application. The key things that we have learned from this chapter are how
to initialize the Facebook SDK for the application, subscribe Facebook Events, and
use Facebook comments and Facebook features, such as Like and Share buttons,
in the application to promote products in social media.

In the next chapter, we will learn how to integrate the Google+1 feature into our
web application.

Google+ Integration
In this chapter, we will learn about the Google+ integration to our responsive web
application. We will understand how to integrate different features such as login
using a Google+ account and integrating a +1 button to each product. Integrating the
Google feature helps to promote the web application, which increases the probability
of a lead generation.

Introduction to the Google+ API
Google+ is another famous social network by Google Inc. The Google+ API
provides access to its features through the programming interface to integrate
in the web application. To access the API, we need to register a client application
in Google Developers Console. This developer console can be accessed by visiting
https://console.developers.google.com. The following screenshot shows the
default view of the developer console:

https://console.developers.google.com

Google+ Integration

[138]

We can see a Create Project button to register a new client application to access the
Google+ API. After clicking on this button, a new pop up is displayed on the screen
to register a new application. The following screenshot shows the window that
appears when you need to register a new application:

For our application, we have used Packt Responsive Application in the Project
name field and packt-responsive-app in the Project ID field. During the creation
of the application, there is one inner window showing the activities. The following
screenshot shows the activity window:

After successful creation of the client application, it will appear in the table.
The following screenshot shows the table with our client application listed in a row:

Chapter 6

[139]

Configuring Google+
Google+ supports OAuth 2.0 access for its API. OAuth 2.0 allows users to share
specific data while keeping their usernames, passwords, and other information
private. Configuring the Google+ API on a web application needs the following
steps to be executed:

•	 Creating a client ID
•	 Including Google script

Creating a client ID
In this section, we will learn how to create a client ID for our application. To create
a new client ID, we need to go to the APIS & AUTH tab. The following screenshot
shows the details inside the APIS & AUTH section:

Google+ Integration

[140]

You can see a button to create a new application ID for our application. After clicking
on this button, a new window opens up to create the new application ID. In this
window, we have the following two important fields:

•	 Authorized JavaScript origins: For development purposes, we have given
http://localhost:8080 as the URL. This should be changed before going
live to a real domain name.

•	 Authorized redirect URI: For development purposes, we have given
http://localhost:8080/MyResponsiveWebApp as the URL. This URL
needs to be changed to a real domain path before going live.

The following screenshot shows the window that appears when you create the new
client ID:

Chapter 6

[141]

After the successful creation of the client ID, it is listed on the page. The following
screenshot shows Client ID, Client secret, and other details about the application:

Including the Google script
We need to include a JavaScript library provided by the Google API in our
application. The JavaScript file client:plusone.js has all the required methods in
order to use Google+ features. We can include this file just before the </body> tag
to load the file synchronously. The following code shows the <script> tag in order
to load this file:

<script src="https://apis.google.com/js/client:plusone.js"></
script>

Also, we can load this file asynchronously by using the script injection technique.
The following code loads the library asynchronously in our page:

<script type="text/javascript">
 (function() {
 var po = document.createElement('script');
 po.type = 'text/javascript';
 po.async = true;
 po.src = 'https://apis.google.com/js/client:plusone.js';
 var s = document.getElementsByTagName('script')[0];
s.parentNode.insertBefore(po, s);
 })();
</script>

Google+ Integration

[142]

Log in using Google+
The Google+ Sign in button can be added using HTML markup or through
JavaScript. We will follow the markup approach for development. The following
HTML code shows the syntax to add the Google+ sign in the button:

 <span
 class="g-signin"
 data-callback="signinCallback"
 data-clientid="YOUR_CLIENT_ID"
 data-cookiepolicy="single_host_origin"
 data-scope="https://www.googleapis.com/auth/plus.login">

The details of these attributes are listed as follows:

•	 data-callback: This function is called when the Sign in button is rendered
and also after the sign in flow is complete.

•	 data-clientid: This client ID is obtained from the Google
Developers Console.

•	 data-cookiepolicy: This parameter determines the policy for storing
users' session information.

•	 data-scope: This parameter takes the single or multiscope values. For
authentication purpose, login is the scope.

You can find an attribute in the previous code asking for the client ID. In the
Creating a client ID section, we created the client ID. We can use this client ID
in the previous markup.

More about this attribute can be found on https://developers.
google.com/+/web/signin/reference#sign-in_button_
attributes.

The following code shows the markup for our application to add a Sign in button:

 <span
 class="g-signin"
 data-callback="signinCallback"
 data-clientid="781737073387-254c6ldrq9pcep1gs76tj92fr4dfdmri.
apps.googleusercontent.com"

https://developers.google.com/+/web/signin/reference#sign-in_button_attributes
https://developers.google.com/+/web/signin/reference#sign-in_button_attributes
https://developers.google.com/+/web/signin/reference#sign-in_button_attributes

Chapter 6

[143]

 data-cookiepolicy="single_host_origin"
 data-scope="https://www.googleapis.com/auth/plus.login">

The preceding markup will create a Google+ sign in the button similar to the
following button:

After clicking on this Sign in button, a pop-up window comes up asking for
permission from the user to authenticate the application. The following
screenshot shows the permission window for the Google+ authentication:

Google+ Integration

[144]

Integrating +1 recommendations
In this section, we will learn how to add a Google +1 button to our products. Before
integrating the Google +1 button, we have to change the product image URL for
the books to point to real live links. It is required for the demonstration of Google+
recommendations. The following code shows the getAllListedBook() method.
You can see that we have changed the image URL links to the images hosted on
the http://www.packtpub.com website:

public class ProductStore {
 public static List<Product> getAllListedBook() {
 List<Product> listProduct = new ArrayList<Product>();
 Product product3 = new Product();
 product3.setTitle("Master Web Application Development with
AngularJS");
 product3.setCost(14);
 product3.setDescription("Lorem ipsum dollar.Lorem ipsum dollar.
Lorem ipsum dollar.");
 product3.setUrl("http://www.packtpub.com/sites/default/
files/1820OS.jpg");
 product3.setType("book");
 Product product4 = new Product();
 product4.setTitle("Instant GSON");
 product4.setCost(10);
 product4.setDescription("Lorem ipsum dollar.Lorem ipsum dollar.
Lorem ipsum dollar.");
	 product4.setUrl("http://www.packtpub.com/sites/default/
files/2036OS_GSON_Froncover.jpg");
 product4.setType("book");
 Product product5 = new Product();
 product5.setTitle("Jquery UI Cookbook");
 product5.setCost(17);
 product5.setDescription("Lorem ipsum dollar.Lorem ipsum dollar.
Lorem ipsum dollar.");
 product5.setUrl("http://www.packtpub.com/sites/default/
files/2186OS.jpg");
 product5.setType("book");
 Product product6 = new Product();
 product6.setTitle("Learning IPython For Interactive Computing And
Data Visualization");
 product6.setCost(13);
 product6.setDescription("Lorem ipsum dollar.Lorem ipsum dollar.
Lorem ipsum dollar.");

http://www.packtpub.com

Chapter 6

[145]

 product6.setUrl("http://www.packtpub.com/sites/default/
files/9932OS.jpg");
 listProduct.add(product3);
 listProduct.add(product4);
 listProduct.add(product5);
 listProduct.add(product6);
 return listProduct;
 }
}

Google provides the HTML markup to be used in order to create the Google +1
recommendation button. The required markup is listed as follows:

<div class="g-plus-button">
 <div class="g-plusone"
data-width="180"
data-href="${url}">
 </div>
</div>

The attributes in the preceding markup are explained as follows:

•	 data-width: This specifies the width of the Google+ button
•	 data-href: This specifies the link to be shared and recommended

To know more about Google+, visit
https://developers.google.com/+/api/.

Google also provides JavaScript code in the platform.js file to be included in the
application. The following code shows the platform.js file loaded asynchronously:

<script type="text/javascript">
 (function() {
 var po = document.createElement('script');
 po.type = 'text/javascript';
 po.async = true;
 po.src = 'https://apis.google.com/js/platform.js';
 var s = document.getElementsByTagName('script')[0];
s.parentNode.insertBefore(po, s);
 })();
</script>

https://developers.google.com/+/api/

Google+ Integration

[146]

We have modified our jQuery template to include the +1 button. The following code
shows the modified jQuery template:

 <script id="aProductTemplate" type="text/x-jquery-tmpl">
 <div class="ts-product panel panel-default">
 <div class="panel-head">
 <div class="fb-like" data-href="${url}" data-
layout="button_count" 	 data-action="like" data-show-faces="true"
data-share="true">
 </div>
 </div>
 <div class="panel-body">
 <span class="glyphicon glyphicon-certificate ts-cost-
icon">
 <label>${cost}$</label>

 <h5>${title}</h5>
 </div>
 <div class="panel-footer">
 <button type="button" class="btn btn-info btn-block">Buy</
button>
 <button type="button" class="btn btn-info btn-block twit-
me" data-bookTitle="${title}" data-imgURI="${url}">Twit</button>
 <div class="g-plus-button">
 <div class="g-plusone" data-width="180" data-
href="${url}"></div>
 </div>
 </div>
 </div>
 </script>

Chapter 6

[147]

The following screenshot shows the product with the Google +1 button integrated in
the footer section of the code:

The following screenshot shows the Firebug console view of the Google +1 button
markup. An IFrame is created automatically around the +1 button markup. The main
reason to use an IFrame is that the other CSS will not hamper the style of the button.
The following screenshot shows the IFrame created for wrapping the +1 button:

Google+ Integration

[148]

After clicking on the +1 button, a pop-up window appears asking for the comment to
be written in the post. The following screenshot shows the pop-up window:

After filling in the comment text area in the pop-up window and clicking on the
Share button, the post will be shared in the user timeline as a card. The following
screenshot shows the user timeline with the post:

Chapter 6

[149]

Summary
In this chapter, we learned about the Google+ API configuration for our application
along with configuring Google Developers Console, integrating Google+ login, and
integrating Google +1 recommendations to the product. In the next chapter, we will
explore the YouTube API that will be integrated into our web application.

Linking Dynamic Content
from External Websites

In this chapter, you will learn how to integrate the YouTube API into our web
application. We will explore and learn to use the video-search feature for our web
application. Users of the web application can get an instant review and key features
of the product. This will help users in making a quick buying decision and increase
the number of leads.

Introduction to the YouTube API
YouTube provides three different APIs for a client application to access.
The following figure shows the three different APIs provided by YouTube:

YouTube API

Data API Analytic API Streaming API

Configuring a YouTube API
In the Google Developers Console, we need to create a client project. We will
be creating a new project, called PacktYoutubeapi. The URL for the Google
Developers Console is https://console.developers.google.com.

https://console.developers.google.com

Linking Dynamic Content from External Websites

[152]

The following screenshot shows the pop-up window that appears when you want to
create a new client project in the Developers Console:

After the successful creation of the new client project, it will be available in the
Console's project list. The following screenshot shows our new client project listed
in the Developers Console:

There is an option available to enable access to the YouTube API for our application.
The following screenshot shows the YouTube API listed in the Developers Console.
By default, the status of this API is OFF for the application.

Chapter 7

[153]

To enable this API for our application, we need to toggle the STATUS button
to ON. The following screenshot shows the status of the YouTube API, which is
ON for our application:

To access YouTube API methods, we need to create an API key for our client
application. You can find the option to create a public API key in the APIs & auth
section. The following screenshot shows the Credentials subsection where you can
create an API key:

Linking Dynamic Content from External Websites

[154]

In the preceding screenshot, you can see a button to create a new API key.
After clicking on this button, it provides some choices to create an API key, and
after the successful creation of an API key, the key will be listed in the Credentials
section. The following screenshot shows the API key generated for our application:

Searching for a YouTube video
In this section, we will learn about integrating a YouTube-related search video.
YouTube Data API Version 3.0 is the new API to access YouTube data. It requires
the API key that has been created in the previous section.

The main steps that we have to follow to do a YouTube search are:

1.	 After adding the YouTube Search button, click on it to trigger the
search process.

2.	 The script reads the data-booktitle attribute to get the title. This will serve
as a keyword for the search. Check the following screenshot for the HTML
markup showing the data-booktitle attribute:

Chapter 7

[155]

3.	 Then, it creates an AJAX request to make an asynchronous call to the
YouTube API, and returns a promise object.

4.	 After the successful completion of the AJAX call, the promise object is
resolved successfully.

5.	 Once the data is available, we fetch the jQuery template for the search results
and compile it with a script function. We then link it to the search data
returned by the AJAX call and generate the HTML markup for rendering.

jQuery AJAX YouTube Data API

jQ puery romise jQ tuery emplate

The base URL for the YouTube search is through a secure HTTP protocol,
https://www.googleapis.com/youtube/v3/search. It takes different parameters
as input for the search and filter criteria. Some of the important parameters are
field and part.

https://www.googleapis.com/youtube/v3/search

Linking Dynamic Content from External Websites

[156]

The part parameter
The part parameter is about accessing a resource from a YouTube API. It really
helps the application to choose resource components that your application actually
uses. The following figure shows some of the resource components:

p
a

rt
s

The fields parameter
The fields parameter is used to filter out the exact fields that are needed by the
client application. This is really helpful to reduce the size of the response.

For example, fields = items(id, snippet(title)) will result in a small
footprint of a response containing an ID and a title.

The YouTube button markup
We have added a button in our jQuery product template to display the search option
in the product. The following code shows the updated template:

<script id="aProductTemplate" type="text/x-jquery-tmpl">
 <div class="ts-product panel panel-default">
 <div class="panel-head">
 <div class="fb-like" data-href="${url}" data-
layout="button_count"
 data-action="like" data-show-faces="true" data-
share="true">

Chapter 7

[157]

 </div>
 </div>
 <div class="panel-body">
 <span class="glyphicon glyphicon-certificate ts-cost-
icon">
 <label>${cost}$</label>

 <h5>${title}</h5>
 </div>
 <div class="panel-footer">
 <button type="button" class="btn btn-danger btn-block
packt-youtube-button" data-bookTitle="${title}">YouTube Search</
button>
 <button type="button" class="btn btn-info btn-block">Buy</
button>
 <button type="button" class="btn btn-info btn-block twit-
me" data-bookTitle="${title}" data-imgURI="${url}">Tweet</button>
 <div class="g-plus-button">
 <div class="g-plusone" data-width="180" data-
href="${url}"></div>
 </div>
 </div>
 </div>
</script>

The following screenshot shows the updated product markup with a YouTube
button added to the product template:

Linking Dynamic Content from External Websites

[158]

Asynchronous search in YouTube
When any user clicks on the YouTube Search button, a list of related videos will
appear at the top of the page. In this chapter, we are mainly focusing on the search
feature of YouTube using the keyword option. The query parameter that does this
work is q.

The following URL shows an example of how to search the Cassandra Administration:

https://www.googleapis.com/youtube/v3/search?q=Cassandra+Administrati
on&part=snippet&key=AIzaSyBTYn7fvH1mpIKlw8W5K4Ju-hNaievd9Fs

JSON's data object response for the preceding URL has five item objects as a response
but due to the space constraint, only one item detail is listed as follows:

{
 "kind": "youtube#searchListResponse",
 "etag": "\"ePFRUfYBkeQ2ncpP9OLHKB0fDw4/7OUuUA4io00-
QTaWxOM2dzJxZ14\"",
 "nextPageToken": "CAUQAA",
 "pageInfo": {
 "totalResults": 14063,
 "resultsPerPage": 5
 },
 "items": [
 {
 "kind": "youtube#searchResult",
 "etag": "\"ePFRUfYBkeQ2ncpP9OLHKB0fDw4/
BUpjVqlJL1lhr3TGWJnPVlmTM0g\"",
 "id": {
 "kind": "youtube#video",
 "videoId": "UTE6kQXVa-M"
 },
 "snippet": {
 "publishedAt": "2013-11-22T12:27:36.000Z",
 "channelId": "UC3VydBGBl132baPCLeDspMQ",
 "title": "Cassandra Administration Tutorial: Building a
Cluster of Multiple Nodes | packtpub.com",
 "description": "Learn how to scale out a Cassandra cluster
from a single node. Prepare the seed node Configure the cluster
Conduct verification tests Part of Cassandra...",
 "thumbnails": {
 "default": {
 "url": "https://i.ytimg.com/vi/UTE6kQXVa-M/
default.jpg"
 },

https://www.googleapis.com/youtube/v3/search?q=Cassandra+Administration&part=snippet&key=AIzaSyBTYn7fvH1mpIKlw8W5K4Ju-hNaievd9Fs
https://www.googleapis.com/youtube/v3/search?q=Cassandra+Administration&part=snippet&key=AIzaSyBTYn7fvH1mpIKlw8W5K4Ju-hNaievd9Fs

Chapter 7

[159]

 "medium": {
 "url": "https://i.ytimg.com/vi/UTE6kQXVa-M/
mqdefault.jpg"
 },
 "high": {
 "url": "https://i.ytimg.com/vi/UTE6kQXVa-M/
hqdefault.jpg"
 }
 },
 "channelTitle": "packt1000",
 "liveBroadcastContent": "none"
 }
 },
]
}

The response JSON format from YouTube is shown in the following screenshot:

The details of the fields are explained as follows:

•	 kind: This represents a type of JSON object. As this JSON object is a list
of search results, the type is searchListResponse.

•	 etag: This represents the unique tag of this resource.
•	 nextPageToken: This represents a unique token value that needs to be

passed on the subsequent request in order to access the next set of results
through pagination.

•	 pageInfo: This consists of the pagination information:
°° totalResults: This returns the total number of results for a query.
°° resultsPerPage: This returns the maximum number of records

per page.

•	 items: This contains the actual result of the search.

Linking Dynamic Content from External Websites

[160]

To know more about etag, refer to
http://en.wikipedia.org/wiki/HTTP_ETag.

The following screenshot shows the details of the items property:

The details of the fields are explained as follows:

•	 kind: This represents a type of object. As this represents an individual
record of every search, the type is seacrhResult.

•	 etag: This represents a unique string for the resource object.
•	 id: This represents a unique identifier and has two subfields kind

and videoId:
°° kind: This represents the type as video.
°° videoId: This represents a unique video ID of the resultant video.

This ID can further be used to embed videos to a page.

•	 snippet: This represents the actual value of the video.

http://en.wikipedia.org/wiki/HTTP_ETag

Chapter 7

[161]

The following screenshot shows the inside details of the items property:

The details of the fields are explained as follows:

•	 publishedAt: This represents the date and time of when the API is published.
•	 channelId: This represents a unique channel identifier and designates the

channel to which the video belongs.
•	 title: This represents title of the video.
•	 description: This represents the description of the video.
•	 thumbnails: This contains the image URL for the video and has three

different subfields:
°° default: This contains the URL for the thumbnail image with

default quality.
°° medium: This contains the URL for the thumbnail image with

medium quality.
°° high: This contains the URL for the thumbnail image with

high quality.

Linking Dynamic Content from External Websites

[162]

•	 channelTitle: This represents the name of the channel to which the
video belongs.

•	 liveBroadcastContent: This represents the live broadcast information,
if any, which exists for a video.

Rendering the YouTube search results
We have created a separate jQuery template to represent individual search results.
Once the markup is ready to be rendered, we place the markup in a video container.
For this, we have added an additional row in our page layout. The following code
shows the additional row markup to render YouTube-related results in the page:

<div class="row youtube-video-container hide">
 <div class="page-header text-default">
 <h2>YouTube Related Search Video</h2>
 </div>
 <div class="col-sm-6">
 <ul class="media-list ts-video-container">
 </div>
 <div class="col-sm-6">
 <!--Space for Embedding video-->
 </div>
</div>

The following code has the jQuery template to represent each video result in the list:

<script id="aVideoTemplate" type="text/x-jquery-tmpl">
 <li class="media btn-link youtube-video" data-videoId="${id.
videoId}">

 <img class="media-object" src="${snippet.thumbnails.default.
url}" alt="${snippet.title}">

 <div class="media-body">
 <h4 class="media-heading">${snippet.title}</h4>
 ${snippet.description}
 </div>

 </script>

Chapter 7

[163]

The following screenshot shows YouTube's response rendered at the top of the page.
The search keyword is Cassandra Administration for a q parameter value. It
returns five results per page. We have only rendered the first page as an unordered
elements list.

Linking Dynamic Content from External Websites

[164]

The jQuery code that implemented this search is listed in the following code:

 /*Returns a jQuery Promise Object For YouTube Search*/
 doYouTubeSearch : function(searchKeyWord){
 var baseUrl ="https://www.googleapis.com/youtube/v3/search",
 searchRequest = $.ajax({url:baseUrl,
 data:{
 q: searchKeyWord,
 part:"snippet",
 key :"AIzaSyBTYn7fvH1mpIKlw8W5K4Ju-hNaievd9Fs"
 }
 });
 return searchRequest.promise();
 },
 /*Event Listener for click event YouTube search button*/
 initYouTubeButton : function(){
 $('.packt-app').on('click',' button.packt-youtube-
button',function(e){
 var title = $(e.target).attr('data-bookTitle'),
 promisedData = PACKT_PRODUCT_APP.
doYouTubeSearch(title);
 promisedData.done(function(data){
 /*By Default, Initial result returns only 5 video,
 *other related video can be called using
 *Pagination info returned in the response
 */
 var videoItemArray = data.items;
 PACKT_PRODUCT_APP.doVideoRendering(videoItemArray);
 });
 });
 },
 /*jQuery Template building with JSON data*/
 doVideoRendering: function(data){
 var videoItemContainer =$('.ts-video-container'),
 aVideoTemplate = $('#aVideoTemplate').tmpl(data),
promiseOldPro = $(videoItemContainer).find('.panel').fadeOut().
promise();
 $.when(promiseOldPro).then(function(){
 $('.youtube-video-container').removeClass('hide');
 videoItemContainer.html(aVideoTemplate);
 });
 }

Chapter 7

[165]

The Firebug inspection shows the following markup generated in the container:

Embedding a YouTube video
There are different approaches to embed a YouTube video in an HTML page.
YouTube provides two different APIs to embed a video to a page: the JavaScript API
and IFrame API. In this section, we have used the IFrame API in order to embed the
video in our page. To use this API, we need to include the iframe_api API provided
by YouTube. The script code to include this API in our page is as follows:

<script src="https://www.youtube.com/iframe_api"></script>

Linking Dynamic Content from External Websites

[166]

We have added iframe in the container. When we click on one of the search results,
it receives the video ID and renders it on IFrame as a video. The jQuery code
performing this is listed as follows:

initVideoPlay: function(){
 $('.packt-app').on('click',' li.youtube-video',function(e){
 var videoId = $(e.currentTarget).attr('data-videoId'),
 embedURL= "https://www.youtube.com/embed/"+videoId;
 $('iframe#ytplayer').attr('src',embedURL);
 });
 }

The embedded URL has the format https://www.youtube.com/embed/<videoId>.
IFrame takes this URL to render the video player of YouTube. We have added an
IFrame in the layout and kept it hidden initially. The following code shows the
IFrame embedded in the markup:

<div class="row youtube-video-container hide">
 <div class="page-header text-default">
 <h2>YouTube Related Search Video</h2>
 </div>
 <div class="col-sm-6">
 <ul class="media-list ts-video-container">
 </div>
 <div class="col-sm-6">
 <iframe id="ytplayer" type="text/html" width="100%"
height="300" src="" frameborder="0" allowfullscreen></iframe>
 </div>
</div>

In the preceding code, the width of the IFrame is 100 percent. So, it will be a fluid
layout on the available size of the container. The following screenshot shows the
video player loaded with the target video on clicking the first item from the list of
video links:

https://www.youtube.com/embed/<videoId>

Chapter 7

[167]

The HTML markup for the IFrame video player in Firebug looks like the
following screenshot:

Linking Dynamic Content from External Websites

[168]

After the integration of the video search feature of YouTube, the changed page will
look like the following screenshot:

Chapter 7

[169]

Summary
In this chapter, we have learned about the YouTube API. We have seen how to create
a Google client API to use the YouTube data. We have also seen how to use jQuery
AJAX and promise to make a request to YouTube videos. Also, we have explored
the YouTube provided IFrame API to embed videos in our page. In the next chapter,
we will integrate a payment system into our web application.

Integrating E-Commerce or
Shopping Applications with

Your Website
In this chapter, you will learn how to integrate a third-party e-commerce or
shopping API to your web application. You will also learn how to integrate the
PayPal pay feature into the products. We will also explore and get introduced
to the Shopify application.

Creating a shopping cart
In this section, we will develop an Add to Cart feature in our application. A real
shopping cart has many features, but for the purpose of our application, we will
develop a minimal shopping cart. The features that we are going to develop in this
section are as follows:

•	 Adding a product to the cart
•	 Displaying the minimal view of the cart
•	 Displaying the cart details in a table

Adding a product to the cart
A new button is added to every product template; this button is labeled as
Add To Cart. The modified jQuery template is listed as follows:

<script id="aProductTemplate" type="text/x-jquery-tmpl">
 <div class="ts-product panel panel-default">
 <div class="panel-head">

Integrating E-Commerce or Shopping Applications with Your Website

[172]

 <div class="fb-like" data-href="${url}" data-
layout="button_count" data-action="like" data-show-faces="true" data-
share="true">
 </div>
 </div>
 <div class="panel-body">
 <span class="glyphicon glyphicon-certificate ts-cost-
icon">
 <label>${cost}$</label>

 <h5>${title}</h5>
 </div>
 <div class="panel-footer">
 <button type="button" class="btn btn-danger btn-block
packt-youtube-button" data-bookTitle="${title}">YouTube Search</
button>
 <button type="button" class="btn btn-info btn-block add-
to-cart" data-bookTitle="${title}" data-cost="${cost}">

 Add To Cart
 </button>
 <button type="button" class="btn btn-info btn-block twit-
me" data-bookTitle="${title}" data-imgURI="${url}">Tweet</button>
 <div class="g-plus-button">
 <div class="g-plusone" data-width="180" data-
href="${url}"></div>
 </div>
 </div>
 </div>
 </script>

The attributes used in the button are listed as follows:

•	 data-cost: This attribute contains the cost of the product
•	 data-bookTitle: This attribute contains the name of the book

Chapter 8

[173]

The modified product with the new Add To Cart button will look like the
following screenshot:

Displaying the minimal view of the cart
In this section, we will develop the minimal view of a shopping cart. A minimal view
is very useful for an end user, as it shows the summary of response in an instant.
A minimal view in our application has the following features:

•	 Counter: This component shows the number of products added at present by
the user. The default count is 0.

•	 Click event: This event is attached to the button and displays the details of
the cart in a table.

Integrating E-Commerce or Shopping Applications with Your Website

[174]

The HTML markup for the minimal cart view is listed as follows. The Bootstrap 3
classes, glyphicon and glyphicon-shopping-cart, are used to produce a cart
icon for the cart:

<div class="packt-my-cart-min">
 <button type="button" class="btn btn-info btn-block btn-cart">
 <span class="glyphicon glyphicon-shopping-cart pull-left cart-
icon">MyCart
 0
 </button>
</div>

The following screenshot shows the minimal view of the shopping cart for
our application:

Displaying the cart details in a table
In this section, we will develop a detailed shopping cart view. When a user clicks on
the minimal cart view, a pop-up window appears with a table containing the entire
product list that is added to the cart by the user.

The HTML code for the pop-up window with modal is listed as follows. The modal
has the style class derived from the Bootstrap 3 library:

<div class="modal fade" id="my-cart">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-
dismiss="modal" aria-hidden="true">×</button>
 <h4 class="modal-title">My Cart Detail</h4>
 </div>
 <div class="modal-body">
 </div>
 <div class="modal-footer">
 <button type="button" class="btn btn-default" data-
dismiss="modal">Close</button>
 </div>
 </div>
 </div>
</div>

Chapter 8

[175]

The preceding HTML markup has used Bootstrap 3 CSS classes to build the basic
structure of the modal. These classes are listed as follows:

•	 modal: This class indicates the start point of a modal markup
•	 modal-dialog: This class adds styling similar to a dialog box
•	 modal-content: This class indicates the content area of the dialog
•	 modal-header: This class styles the header of the modal
•	 modal-footer: This class indicates the footer area of a modal

The jQuery template for the detailed table of the cart is listed as follows:

<script id="myCartTemplate" type="text/x-jquery-tmpl">
<table class="table table-responsive ">
 <thead>
 <tr class="active">
 <th colspan="3">My Cart Details</th>
 </tr>
 <tr class="active">
 <th>Sr No</th>
 <th>Item Name</th>
 <th>Price(USD)</th>
 </tr>
 </thead>
 <tbody>
 {{each ITEMS}}
 <tr>
 <td>1</td>
 <td>${title}</td>
 <td>${cost}</td>
 </tr>
 {{/each}}

 </tbody>
 <tfoot>
 <tr class="active">
 <th>Total</th>
 <th></th>
 <th>${TOTALCOST} USD</th>
 </tr>
 </tfoot>
</table>
<div class="row">

Integrating E-Commerce or Shopping Applications with Your Website

[176]

 <button type="button" class="btn btn-danger btn-block pay-button"
data-cartAmount="${TOTALCOST}">
 Pay With Paypal
 </button>
</div>
</script>

In the preceding code, we have used Bootstrap 3's utility classes for the tables and
buttons. Details of these classes are listed as follows:

•	 To style the table, we have used the following classes:
°° table: This class is used for basic styling such as padding and for

inserting the horizontal divider
°° table-responsive: This class is used to make the table responsive
°° active: This class is for the color that appears when you hover over

a particular row or cell

•	 To style the button, we have used the following classes:

°° btn: This class is used for the basic styling of the button
°° btn-danger: This class is used for the background color of the button
°° btn-block: This class is used for the size of the button with 100

percent width

The jQuery code to create and update the shopping cart is listed as follows:

Product:function(title,cost){
 this.title = title;
 this.cost = cost;
 },

 MY_CART:[],

 addToMyCart: function(product){
 var cartCount = $('.cart-count');
 $('.packt-app').on('click','.add-to-cart',function(e){
 var target = $(e.target),
 title = $(target).attr('data-bookTitle'),
 cost = parseInt($(target).attr('data-cost'),10),
 product = new PACKT_PRODUCT_APP.Product(title, cost),
 isExist = PACKT_PRODUCT_APP.isExist(product.title);
 if(!isExist){
 PACKT_PRODUCT_APP.MY_CART.push(product);
 }else{

Chapter 8

[177]

 alert("Item already Exist In you cart.");
 }
 cartCount.html(PACKT_PRODUCT_APP.MY_CART.length);
 });
 },

 getTotalCost : function(){
 var sum =0;
 $.each(PACKT_PRODUCT_APP.MY_CART,function(index, product){
 sum += product.cost;
 });
 return sum;
 },
/*This method checks whether an item is already present inside the
cart or not*/
 isExist: function(title){
 var isExist =false;
 $.each(PACKT_PRODUCT_APP.MY_CART,function(index, product){
 if(title === product.title){
 isExist = true;
 }
 });
 return isExist;
 },
/*This method has listener for the cart button click and display the
modal*/
 showMyCart : function(){
 $('.packt-app').on('click','.btn-cart',function(e){
 var data ={
 "ITEMS":PACKT_PRODUCT_APP.MY_CART,
 "TOTALCOST":PACKT_PRODUCT_APP.getTotalCost()
 },
 cartTemplate = $('#myCartTemplate').tmpl(data);
 $('#my-cart .modal-body').html(cartTemplate);
 $('#my-cart').modal('show');
 });
 }

Integrating E-Commerce or Shopping Applications with Your Website

[178]

All these methods are present inside the PACKT_PRODUCT_APP object. When this
modal pop-up window comes up to the screen, it looks like the following screenshot.
It has a table listing all the products present inside the cart with the total billed
amount and a button for the PayPal payment.

Configuring the PayPal Developer API
In this section, we will configure the PayPal Developer API in our application for the
payment process. To access the PayPal API, we need to create a client application in
the Developer's Console. The developer link for the console is https://developer.
paypal.com. The following screenshot shows the Developer Console to create a new
PayPal application:

https://developer.paypal.com
https://developer.paypal.com

Chapter 8

[179]

For our application, we have created a PayPal client application named
PacktPaymentApp. Once the client application is created successfully, it will
be listed in the dashboard along with its details. The following screenshot
shows the details of our client application registered in PayPal:

Integrating E-Commerce or Shopping Applications with Your Website

[180]

On the APP DETAILS page, we can get the client's ID and a secret key for use.
We can also configure the return URL for the application. A return URL is the
location where the client application will return on success. The following
screenshot shows the form to configure the return URL:

Integrating the PayPal Developer API
In this section, we will integrate the PayPal SDK into our application. The PayPal
SDK has two JAR files to be included in the project. It can be downloaded from
https://github.com/paypal/rest-api-sdk-java. The details of the two JAR
files that are to be included in the project are as follows:

•	 paypal-core-1.6.0.jar: This JAR file has all the core classes for the
PayPal payment

•	 rest-api-sdk-0.9.0.jar: This JAR file consists of all the classes that are
required to convert it into a REST-based access

https://github.com/paypal/rest-api-sdk-java

Chapter 8

[181]

The following screenshot shows the JAR files added to the classpath of our project:

For the integration of the PayPal payment in the application, we have created some
Java classes for the shopping cart payment. The sdk_config.properties file has all
the settings required by PayPal's client application to run. The following code shows
the contents of the sdk_config.properties file:

#Connection Information
http.ConnectionTimeOut=5000
http.Retry=1
http.ReadTimeOut=30000
http.MaxConnection=100
#HTTP Proxy configuration
#If you are using proxy set http.UseProxy to true and replace the
following values with your proxy parameters
http.ProxyPort=8080
http.ProxyHost=127.0.0.1
http.UseProxy=false
http.ProxyUserName=null
http.ProxyPassword=null
#Set this property to true if you are using the PayPal SDK within a
Google App Engine java app
http.GoogleAppEngine = false
#Service Configuration
service.EndPoint=https://api.sandbox.paypal.com
#Live EndPoint
#service.EndPoint=https://api.paypal.com
#Credentials
clientID=EBWKjlELKMYqRNQ6sYvFo64FtaRLRR5BdHEESmha49TM
clientSecret=EO422dn3gQLgDbuwqTjzrFgFtaRLRR5BdHEESmha49TM

Integrating E-Commerce or Shopping Applications with Your Website

[182]

We have created the following Java files to integrate the PayPal payment into
our application:

•	 PaypalAppConfig: This Java class is of an interface type and contains the
client API and a secret key

•	 PaypalUtil: This Java class contains all the static methods to be used by the
servlet for the PayPal payment

•	 PaypalServlet: This Java class contains the code for the PayPal payment
request process

The following screenshot shows the updated project structure with the new PayPal
implemented classes:

The following code shows the contents of the PaypalAppConfig.java file:

package com.packt.social.client;
public interface PaypalAppConfig {
 final static String PAYPAL_CLIENT_ID = "AUUi_
RDyfS24viLSIUN93MZN2z2KN51shJUC9t5PQP79gn2XrOGBu4n6OjKL";
 final static String PAYPAL_CLIENT_SECRET =
"EGESVBCgrNVJRtVmQuGKa32PTDtarZFJuvy5sRgB0JRJfpOnwVndQgi2eZUq";
}

The following code shows the contents of the PaypalUtil.java file:

package com.packt.social.client;

import java.util.ArrayList;

Chapter 8

[183]

import java.util.List;
import com.packt.product.obj.Product;
import com.paypal.api.payments.Amount;
import com.paypal.api.payments.Item;
import com.paypal.api.payments.ItemList;
import com.paypal.api.payments.Payer;
import com.paypal.api.payments.Payment;
import com.paypal.api.payments.RedirectUrls;
import com.paypal.api.payments.Transaction;
import com.paypal.core.rest.OAuthTokenCredential;
import com.paypal.core.rest.PayPalRESTException;

public class PaypalUtil {

 /**
 * Creates an Total Amount for List of Products
 * @param listOfProd
 * @return
 */
 public static Amount createAmount(List<Product> listOfProd){
 Amount totalAmount = new Amount();
 int sumOfCost =0;
 for(Product aproduct : listOfProd){
 sumOfCost += aproduct.getCost();
 }
 totalAmount.setCurrency("USD");
 totalAmount.setTotal(String.valueOf(sumOfCost));
 return totalAmount;
 }

 /**
 * Creates a Access Token
 * @return
 */
 public static String getAccessToken(){
 String accessToken =null;
 try {
 accessToken = new OAuthTokenCredential(PaypalAppCo
nfig.PAYPAL_CLIENT_ID, PaypalAppConfig.PAYPAL_CLIENT_SECRET).
getAccessToken();
 } catch (PayPalRESTException e) {
 e.printStackTrace();
 }
 return accessToken;

Integrating E-Commerce or Shopping Applications with Your Website

[184]

 }

 /**
 * Creates a Payment method
 * @return
 */
 public static Payer getPayerMethod(){
 Payer payer = new Payer();
 payer.setPaymentMethod("paypal");
 return payer;
 }

 /**
 * Creates aList of Item form List of Product
 * @param saleProductList
 * @return
 */
 public static List<Item> createItemList(ArrayList<Product>
saleProductList){
 ArrayList<Item> items = new ArrayList<Item>();
 for(Product aProduct : saleProductList){
 Item item = new Item();
 item.setName(aProduct.getTitle());
 item.setPrice(String.valueOf(aProduct.getCost()));
 //We have taken USD and quantity as 1 for our application.
 //You can configure it dynamically while doing your
application
 item.setCurrency("USD");
 item.setQuantity("1");
 items.add(item);
 }
 return items;
 }

 /**
 * Creates a transaction list
 * @param amount
 * @param listItem
 * @return
 */
 public static List<Transaction> getTransactionList(Amount
amount,List<Item> listItem){
 List<Transaction> transactions = new ArrayList<Transaction>();
 Transaction transaction = new Transaction();

Chapter 8

[185]

 ItemList itemList = new ItemList();
 itemList.setItems(listItem);
 transaction.setItemList(itemList);
 transaction.setDescription("creating a PayPal Payment
MyResponsiveWebApp for Amount "+amount);
 transaction.setAmount(amount);
 transactions.add(transaction);
 return transactions ;
 }

 /**
 * Creates a Payment Object
 * @param payer
 * @param transactions
 * @param redirectUrls
 * @return
 */
 public static Payment createPayment(Payer payer, List<Transaction>
transactions,RedirectUrls redirectUrls){
 Payment payment = new Payment();
 payment.setIntent("sale");
 payment.setPayer(payer);
 payment.setTransactions(transactions);
 payment.setRedirectUrls(redirectUrls);
 return payment;
 }

 /**
 * Creates a pair of Redirect URL
 * @return
 */
 public static RedirectUrls getRedirectURL(){
 RedirectUrls redirectUrls = new RedirectUrls();
 redirectUrls.setCancelUrl("http://localhost:8080/MyResponsiveW
ebApp?cancel=true");
 redirectUrls.setReturnUrl("http://localhost:8080/MyResponsiveW
ebApp?success=true");
 return redirectUrls ;
 }
}

Integrating E-Commerce or Shopping Applications with Your Website

[186]

The following code shows the contents of the PaypalServlet.java file:

package com.packt.product.data;

import java.io.IOException;
import java.io.PrintWriter;
import java.lang.reflect.Type;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.google.gson.Gson;
import com.google.gson.reflect.TypeToken;
import com.packt.product.obj.Product;
import com.packt.social.client.PaypalUtil;
import com.paypal.api.payments.Amount;
import com.paypal.api.payments.Item;
import com.paypal.api.payments.Payer;
import com.paypal.api.payments.Payment;
import com.paypal.api.payments.RedirectUrls;
import com.paypal.api.payments.Transaction;
import com.paypal.core.rest.APIContext;
import com.paypal.core.rest.PayPalRESTException;

@WebServlet("/PaypalServlet")
public class PaypalServlet extends HttpServlet {
 private static final long serialVersionUID = 1L;
 public PaypalServlet() {
 super();
 }
 protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
 String saleJsonString = request.getParameter("saleData");
 Type listType = new TypeToken<ArrayList<Product>>() {
 }.getType();
 ArrayList<Product> saleProductList = new Gson().fromJson(
 saleJsonString, listType);
 List<Item> itemsForSale = PaypalUtil.createItemList(saleProdu
ctList);
 String accessToken = null;

Chapter 8

[187]

 try {
 accessToken = PaypalUtil.getAccessToken();
 Amount amountToPay = PaypalUtil.
createAmount(saleProductList);
 Payer payer = PaypalUtil.getPayerMethod();
 List<Transaction> transactions = PaypalUtil.
getTransactionList(
 amountToPay, itemsForSale);
 RedirectUrls redirectUrls = PaypalUtil.getRedirectURL();
 Payment payment = PaypalUtil.createPayment(payer,
transactions,
 redirectUrls);
 Map<String, String> sdkConfig = new HashMap<String,
String>();
 sdkConfig.put("mode", "sandbox");
 APIContext apiContext = new APIContext(accessToken);
 apiContext.setConfigurationMap(sdkConfig);
 Payment createdPayment = payment.create(apiContext);
 String paypalResJsonString = createdPayment.toJSON();
 response.setContentType("application/json");
 PrintWriter out = response.getWriter();
 out.write(paypalResJsonString);
 } catch (PayPalRESTException e) {
 e.printStackTrace();
 }
 }
}

The PayPal payment flow is explained in the following figure:

PayPalServlet
PayPal

Application
PayPal SDK

jQuery

Integrating E-Commerce or Shopping Applications with Your Website

[188]

The jQuery script code to attach an event and make an AJAX call to the servlet is
listed as follows:

processPayPalPay : function(){
 $('.packt-app').on('click','.pay-button',function(e){
 var ajaxRequest=$.ajax({
 url:"PaypalServlet",
 dataType :"json",
 data:{"saleData":JSON.stringify(PACKT_PRODUCT_APP.
MY_CART)},
 method:"POST"
 });
 ajaxRequest.done(function(data){
 //approval_url redirect the user to PayPal for
approval
 window.open(data.links[1].href,"_self");
 });
 });
 }

After clicking on the PayPal payment option, the AJAX call gets triggered to the
servlet. The following screenshot shows the request parameter that goes along
with the AJAX call:

A successful processing returns a JSON response. The JSON response looks like the
following code:

{
 "id": "PAY-85X50102CT245630YKOBXJMQ",
 "create_time": "2014-05-26T17:06:58Z",
 "update_time": "2014-05-26T17:06:58Z",
 "intent": "sale",
 "payer": {
 "payment_method": "PayPal",

Chapter 8

[189]

 "payer_info": {
 "shipping_address": {}
 }
 },
 "transactions": [
 {
 "amount": {
 "currency": "USD",
 "total": "24.00",
 "details": {
 "subtotal": "24.00"
 }
 },
 "description": "creating a PayPal Payment MyResponsiveWebApp for
Amount {\n \"currency\": \"USD\",\n \"total\": \"24\"\n}",
 "item_list": {
 "items": [
 {
 "quantity": "1",
 "name": "Instant GSON",
 "price": "10.00",
 "currency": "USD"
 },
 {
 "quantity": "1",
 "name": "Master Web Application Development with
AngularJS",
 "price": "14.00",
 "currency": "USD"
 }
]
 }
 }
],
 "state": "created",
 "links": [
 {
 "href": "https://api.sandbox.PayPal.com/v1/payments/payment/PAY-
85X50102CT245630YKOBXJMQ",
 "rel": "self",
 "method": "GET"
 },
 {
 "href": "https://www.sandbox.PayPal.com/cgi-bin/webscr?cmd\
u003d_express-checkout\u0026token\u003dEC-4FJ20307KN251643F",
 "rel": "approval_url",
 "method": "REDIRECT"

Integrating E-Commerce or Shopping Applications with Your Website

[190]

 },
 {
 "href": "https://api.sandbox.PayPal.com/v1/payments/payment/PAY-
85X50102CT245630YKOBXJMQ/execute",
 "rel": "execute",
 "method": "POST"
 }
]
}

From the preceding JSON responses, we can take the approval_url link and use
it to redirect the user to complete the payment process. The following screenshot
shows how the current window is redirected to the PayPal page for an approval
of the payment from the user's side. A user can log in to the PayPal site to approve
the payment.

Chapter 8

[191]

After a successful payment has been made by the user, the site redirects to
http://localhost:8080/MyResponsiveWebApp/?cancel=success&token=EC-
09P460143X2598615 along with a token number. The following screenshot shows
the address bar of the browser that contains the new URL that we configured in the
PaypalUtil.java method:

Configuring the Shopify API
In this section, we will provide you with a quick introduction to the Shopify API.
Shopify provides a platform to build your own online store. We can create a new
Shopify application using https://app.shopify.com/services/partners/dev_
shops/new, and we need to sign up for a new account to access this URL.
The following screenshot shows the form to create a new Shopify store:

https://app.shopify.com/services/partners/dev_shops/new
https://app.shopify.com/services/partners/dev_shops/new

Integrating E-Commerce or Shopping Applications with Your Website

[192]

Integrating the Shopify API
After the store has been successfully created, we can see the Dashboard toolbar on
the left-hand side of the screen. The following screenshot shows the toolbar of the
application that we created:

The best thing about Shopify is that it has all the features made available to the
admin user by its admin pages. This reduces the code development efforts that
users might need to put in. We can access the admin page for our application using
https://myresponsivepacktshop.myshopify.com/admin. We can add a product
using the Products tab. The following screenshot shows the form to add a product:

https://myresponsivepacktshop.myshopify.com/admin

Chapter 8

[193]

Once the product is added, it will be listed in the products list. The following
screenshot shows the product that was mentioned earlier added to our list:

We can also customize the theme and add new features, or create a new application
based on the project's requirement. In this chapter, we are not covering all the details
about Shopify, as the chapter's main aim is to provide the readers with details about
integrating payments into their application.

Integrating E-Commerce or Shopping Applications with Your Website

[194]

Summary
In this chapter, we learned how to implement key features such as the
implementation of a shopping cart with a minimal and detailed view and
how to configure the PayPal payment API. We also briefly explored the Shopify
API and its configuration. In the next chapter, we will learn to develop Google's
Currency Converter API along with the web application.

Integrating the Google
Currency Converter with

Your Web Application
In this chapter, you will learn how to integrate the Currency Converter API into your
web application. You will also learn how to build the Google Currency Converter API
using a JAR file and integrate it into your shopping cart to change the currency type.

The Google Currency Converter API
Google provides a Currency Conversion API for Java-based projects. This API is
really helpful to get equivalent currency amounts within custom applications.
The link for this project is https://code.google.com/p/currency-converter-
api/. The following screenshot shows the project page in Google Code:

https://code.google.com/p/currency-converter-api/
https://code.google.com/p/currency-converter-api/

Integrating the Google Currency Converter with Your Web Application

[196]

The source code for this project is available at http://currency-converter-api.
googlecode.com/svn/trunk/. The following screenshot shows the source page of
Currency Converter:

The source code can be copied to your local filesystem using SVN checkout. Before
you check out, you need to install SVN on your system. The command for SVN
checkout is shown in the following screenshot:

http://currency-converter-api.googlecode.com/svn/trunk/
http://currency-converter-api.googlecode.com/svn/trunk/

Chapter 9

[197]

To get a JAR file from this source, we need to configure Maven in the development
system; then, we can run a Maven installation. Maven is a tool that can now be
used to build and manage any Java-based project. Maven is based on the concept
of a Project Object Model (POM). To find out more about Maven, go to
http://maven.apache.org/what-is-maven.html.

The following screenshot shows the command prompt running the mvn installation
for the currency project:

Maven's base command is mvn, and it takes a number of switch options to perform
different application-related tasks. Some of these options are listed as follows:

•	 clean: This option cleans the files and directories generated by Maven
during its build

•	 install: This option installs the built artifact into the local repository
•	 deploy: This option deploys the built artifact to the remote repository
•	 compile: This option compiles Java sources

The mvn clean install command will generate the required currency-
converter-api-1.0.jar JAR file. We can also use the pom.xml dependency
markup to install and build the JAR file. The following code shows the POM
dependency code for a Maven-type project:

<dependency>
 <groupId>com.tunyk.currencyconverter</groupId>
 <artifactId>currency-converter-api</artifactId>
 <version>1.0</version>
</dependency>

http://maven.apache.org/what-is-maven.html

Integrating the Google Currency Converter with Your Web Application

[198]

Configuring the Google Currency
Converter API
In this section, we will configure the currency JAR file in our application. There are
four dependency JAR files that are required to be added in order to configure the
currency JAR file. The required JAR files are ehcache, log4j, slf4j, and slf4j log.
The following figure shows the versions of these JAR files that have been used in
this chapter:

log4j-1.2.14.jar

slf4j-log4j12-
1.5.10.jar

ehcache-core-
2.4.5.jar

slf4j-api-1.5.10.jar

currency-converter-
api-1.0.jar

The API documentation for this library can be found at http://currency-
converter-api.googlecode.com/svn/apidocs/index.html.

Integrating the Currency Converter API
In this section, we will integrate the Currency Converter JAR libraries into our
web application. In the previous section, we generated the libraries needed for the
configuration. All these JAR files must be added to the classpath of the project. To
bundle these libraries with the web application, we added them to the lib folder
present in the WEB-INF directory. The following screenshot shows the JAR files
present inside the lib folder:

http://currency-converter-api.googlecode.com/svn/apidocs/index.html
http://currency-converter-api.googlecode.com/svn/apidocs/index.html

Chapter 9

[199]

Developing our currency converter
In our application, we will provide a feature for currency conversion in the shopping
cart. This will help the end user to compare the total cost with other currencies.
For this reason, we will create a jQuery template that has a drop-down menu that
contains a list of the currencies supported by the API. When a user selects one of
the currencies, he or she makes an AJAX call to find the equivalent value of the
total amount of the shopping cart in that currency type. To build this converter
component, we have to go through the following steps:

1.	 Building the currency list dropdown.
2.	 Processing the conversion request.

Building the currency list dropdown
In this section, we will develop a dropdown with all the currencies supported
by the Google Currency API. This API has a com.tunyk.currencyconverter.
api.Currency enum with the list of currencies as constants. We have built
a servlet named AllCurrencyListServlet.java that is called when the
page loads to retrieve the list of currencies as a JSON array. The code for
AllCurrencyListServlet is as follows:

package com.packt.product.data;

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.packt.social.client.GoogleCurrencyUtil;

@WebServlet("/AllCurrencyListServlet")
public class AllCurrencyListServlet extends HttpServlet {

 private static final long serialVersionUID = 1L;
 public AllCurrencyListServlet() {
 super();
 }

Integrating the Google Currency Converter with Your Web Application

[200]

 protected void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
 String currencyListJsonString = GoogleCurrencyUtil.
getCurrencyList();
 response.setContentType("application/json");
 PrintWriter out = response.getWriter();
 out.write(currencyListJsonString);
 }
}

In the previous servlet, we called a method, getCurrencyList(), from the
GoogleCurrencyUtil.java class. This method uses the GSON library to convert the
currency's enum values to the JSON array. The code for this method is as follows:

package com.packt.social.client;

import java.util.Arrays;
import java.util.List;
import com.google.gson.Gson;
import com.tunyk.currencyconverter.BankUaCom;
import com.tunyk.currencyconverter.api.Currency;
import com.tunyk.currencyconverter.api.CurrencyConverter;
import com.tunyk.currencyconverter.api.CurrencyConverterException;

public class GoogleCurrencyUtil {
 /**
 * Returns Currency list as JSON String
 * @return
 */
 public static String getCurrencyList(){
 List<Currency> list = Arrays.asList(Currency.values());
 Gson gson = new Gson();
 String json = gson.toJson(list);
 return json;
 }
}

The following code snippet represents the jQuery template of the currency converter:

<script id="currencyConverterTemplate" type="text/x-jquery-tmpl">
<div class="row converter-container">
 <div class="col-xs-7">
 <h4 class="pull-left">Convert Currency To</h4>

Chapter 9

[201]

 </div>
 <div class="col-xs-3 col-xs-pull-3">
 <select id="currencyConverter" class="form-control">
 {{each currency}}
 <option>${$value}</option>
{{/each}}
 </select>
 </div>
 <div class="col-xs-2">
 <h4 id="equivalent-currency" class="text-success pull-left">
 </h4>
 </div>
</div>
</script>

The following screenshot shows the currency converter dropdown populated with
all the supported currencies:

Integrating the Google Currency Converter with Your Web Application

[202]

The following screenshot shows the response from the servlet call to get all the
currency types as a JSON array:

The jQuery script code to download and compile the template is as follows:

getAllCurrencyList: function(){
 var ajaxRequest=$.ajax({
 url:"/AllCurrencyListServlet"
 });
 ajaxRequest.done(function(data){
 var aConverterTemplate = $('#currencyConverterTemplate').
tmpl({"currency":data});
 $('#my-cart .modal-footer').html(aConverterTemplate)
 });
 }

Chapter 9

[203]

In the previous code, the getAllCurrencyList() method makes an AJAX request
to the AllCurrencyListServlet servlet to load the currency list. Once the response
arrives, the converter template is compiled and linked with the response data to
build the markup for the converter's dropdown.

Processing the conversion request
In this section, we will develop the real request that is passed to the servlet for
processing. A jQuery event listener is attached to the change event on the currency
dropdown, which is shown as follows:

changeCurrencyValue : function(){

 $('.packt-app').on('change','#currencyConverter',function(e){
 var target = e.target,
 selectedValue = $(target).val(),
 totalCost = PACKT_PRODUCT_APP.getTotalCost(),
 promisedCurrency = PACKT_PRODUCT_APP.requestCurrencyVa
lue(totalCost,selectedValue);
 promisedCurrency.done(function(data){
 $('#equivalent-currency').html(data.value);
 });
 });
 },
 requestCurrencyValue : function(amount,currencyType){

 var ajaxRequest=$.ajax({
 url:"/ConvertCurrencyServlet",
 method:"POST",
 data:{
 "amount":amount,
 "currencyType":currencyType
 }
 });
 return ajaxRequest.promise();
 }

In the preceding code, an AJAX request is made to ConvertCurrencyServlet
as a post method using a parameter. The following screenshot shows the request
parameters that get posted to the server when a user selects a currency type from
the dropdown.

Integrating the Google Currency Converter with Your Web Application

[204]

The amount parameter represents the total value of the cart in USD, and the
currencyType parameter represents the user-selected currency type.

The code for the ConvertCurrencyServlet servlet is as follows:

package com.packt.product.data;

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.google.gson.JsonObject;
import com.packt.social.client.GoogleCurrencyUtil;
import com.tunyk.currencyconverter.api.Currency;

@WebServlet("/ConvertCurrencyServlet")
public class ConvertCurrencyServlet extends HttpServlet {
 private static final long serialVersionUID = 1L;

 public ConvertCurrencyServlet() {
 super();
 }
 protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

Chapter 9

[205]

 String amount = request.getParameter("amount");
 String targetCurrency = request.getParameter("currencyType");
 Float floatAmount = GoogleCurrencyUtil.
convertStringToFloat(amount);
 Currency currencyType = GoogleCurrencyUtil.getCurrencyType(ta
rgetCurrency);
 float currencyListJsonString = GoogleCurrencyUtil.convertCurre
ncy(floatAmount,currencyType);
 response.setContentType("application/json");
 PrintWriter out = response.getWriter();
 JsonObject jsonObject = new JsonObject();
 jsonObject.addProperty("value", Float.toString(currencyListJso
nString)+" "+targetCurrency);
 out.write(jsonObject.toString());
 }
}

In the preceding servlet, we used the GoogleCurrencyUtil methods to perform
some repetitive tasks. The code for these methods is as follows:

package com.packt.social.client;

import com.tunyk.currencyconverter.BankUaCom;
import com.tunyk.currencyconverter.api.Currency;
import com.tunyk.currencyconverter.api.CurrencyConverter;
import com.tunyk.currencyconverter.api.CurrencyConverterException;

public class GoogleCurrencyUtil {

 /**
 * ConverCurrency to Float
 * @param amount
 * @param currency
 * @return
 */
 public static float convertCurrency(Float amount,Currency
currency){
 CurrencyConverter currencyConverter = null;
 Float otherCurrencyValue = null;
 try {
 currencyConverter = new BankUaCom(Currency.USD, currency);
 otherCurrencyValue = currencyConverter.
convertCurrency(amount);
 } catch (CurrencyConverterException e) {
 e.printStackTrace();

Integrating the Google Currency Converter with Your Web Application

[206]

 }

 return otherCurrencyValue;
 }

 /**
 * Return an Equivalent Enum Currency type for
 * a String type currency
 * @param currencyType
 * @return
 */
 public static Currency getCurrencyType(String currencyType){
 return Currency.valueOf(currencyType);

 }
 /**
 * Convert String to Float
 * @param amount
 * @return
 */
 public static Float convertStringToFloat(String amount){
 return Float.valueOf(amount);

 }
}

The response of the servlet is a JSON string with a property name value that contains
the equivalent currency value. The following screenshot shows the Firebug console
with a response from the server:

Chapter 9

[207]

Once the response arrives at the browser, the AJAX success handler gets executed
and the equivalent currency type is displayed in a pop-up window. The following
screenshot shows the pop-up window with a converted currency value:

The following screenshot shows the HTML markup in the Firebug console for the
currency converter:

Integrating the Google Currency Converter with Your Web Application

[208]

Exceptions
In this section, we will learn about the different exceptions that are supported by
this API. It has two exception classes, namely CurrencyConverterException and
CurrencyNotSupportedException, as shown in the following screenshot:

CurrencyConverterException CurrencyNotSupportedException

Exception

The two exception classes are explained as follows:

•	 CurrencyConverterException: This exception generally occurs when an
improper input is given to a conversion API

•	 CurrencyNotSupportedException: This exception occurs when the targeted
currency type is not supported by the API

We can find the list of currency types supported by the API at http://currency-
converter-api.googlecode.com/svn/apidocs/com/tunyk/currencyconverter/
api/Currency.html.

Summary
In this chapter, we learned how to configure the Google Currency Converter
API, make AJAX requests to these API services, and integrate the API with a web
application as a feature to help the end user check the equivalent currency value of
the cart at that period of time. In the next chapter, we will be introduced to a list of
online and offline tools to test responsive applications.

http://currency-converter-api.googlecode.com/svn/apidocs/com/tunyk/currencyconverter/api/Currency.html
http://currency-converter-api.googlecode.com/svn/apidocs/com/tunyk/currencyconverter/api/Currency.html
http://currency-converter-api.googlecode.com/svn/apidocs/com/tunyk/currencyconverter/api/Currency.html

Debugging and Testing
In this chapter, we will learn how to debug a responsive web application.
We will also look at a list of available tools to test responsive pages.
The following list contains some of the tools that we will get
introduced to:

•	 Dimensions Toolkit
•	 Designmodo Responsive Test
•	 Opera Mobile emulator
•	 Responsinator
•	 Viewport Resizer
•	 L-Square Responsive Design Inspector
•	 FireBreak
•	 More Display Resolutions 1.0
•	 The BrowserStack Responsive tool
•	 MobileTest
•	 TestSize
•	 Am I Responsive
•	 Responsive Design Checker
•	 Responsive UI Testing Tool (RUIT)
•	 Responsive Test

Debugging and Testing

[210]

Implementing the debugging mechanism
In this section, we will list some of the available offline and online tools that can help
a web developer during development.

Dimensions Toolkit
Dimensions Toolkit is available in both online and offline as a Chrome extension. It
can be found at the link http://www.dimensionstoolkit.com. The main features
of this tool include auto refresh such as live reload, resizable dimensions, and
custom breakpoints. It also has default breakpoints of 320px, 480px, 768px, and
1024px set. To create a new test in the online version, go to the link http://www.
dimensionstoolkit.com/a. The following screenshot shows the new test window
in the online version:

The Designmodo Responsive Test tool
The Designmodo Responsive Test tool is an online tool from the Designmodo
team. It can be found at the link http://designmodo.com/responsive-test.
This tool provides a draggable container interface to change the layout width.
It is also equipped with predefined device presets such as MacBook Air 13/11
inch screen size and so on. The following screenshot shows the testing grid for
this tool:

http://www.dimensionstoolkit.com
http://www.dimensionstoolkit.com/a
http://www.dimensionstoolkit.com/a
http://designmodo.com/responsive-test

Chapter 10

[211]

The Opera Mobile emulator tool
The Opera Mobile Emulator tool is a desktop application developed by The Opera
Foundation, Inc. It has many customization features such as resolution, screen size,
and display type for emulating a test environment. We have already learned about
this tool in Chapter 2, Creating a Responsive Layout for a Web Application.

The Responsinator tool
Responsinator is an online tool that provides a quick view of a web application with
a simulated screen size. The most important benefit of this tool is you can create a
customized version of an application. This tool can be found at the link http://www.
responsinator.com. The following screenshot shows the home testing screen for the
Responsinator tool:

http://www.responsinator.com
http://www.responsinator.com

Debugging and Testing

[212]

The Viewport Resizer tool
The Viewport Resizer tool is an online tool to test a responsive application in
different viewport sizes. This tool is also available as a bookmark for offline use.
This tool can be found at the link http://lab.maltewassermann.com/viewport-
resizer. The following screenshot shows the testing bar for different viewports:

The L-Square Responsive Design
Inspector tool
The L-Square Responsive Design Inspector tool is used as a Firefox add-on to
measure the size of the screen. It has horizontal and vertical rulers across the screen
for measurement. This add-on can be found at the link https://addons.mozilla.
org/en-US/firefox/addon/l-square for installation.

The FireBreak add-on
The FireBreak add-on is for the Firefox browser. This tool is used to inspect break
points in responsive applications. After the installation of this add-on, you can see
a small section on the top-right of the browser showing the current pixel size of the
window. On resizing the window, the pixel value changes instantaneously showing
the current size of the screen. The following screenshot shows the FireBreak add-on
at the top of the window:

http://lab.maltewassermann.com/viewport-resizer
http://lab.maltewassermann.com/viewport-resizer
https://addons.mozilla.org/en-US/firefox/addon/l-square
https://addons.mozilla.org/en-US/firefox/addon/l-square

Chapter 10

[213]

The More Display Resolutions 1.0 add-on
The More Display Resolutions 1.0 add-on is for the Firefox browser. It has a
draggable interface that is used to resize the screen's container. It also has the power
to take a screenshot of the application in the different sizes of the screen. This add-on
can be found at the link https://addons.mozilla.org/en-US/firefox/addon/
more-display-resolutions. The following screenshot shows the More Display
Resolutions 1.0 add-on with different preset screen sizes:

https://addons.mozilla.org/en-US/firefox/addon/more-display-resolutions
https://addons.mozilla.org/en-US/firefox/addon/more-display-resolutions

Debugging and Testing

[214]

The BrowserStack Responsive tool
The BrowserStack Responsive tool is an online tool from BrowserStack. This tool is
connected with real devices present in a remote location. This tool can be found at
the link http://www.browserstack.com/responsive.

The MobileTest tool
The MobileTest tool is an online tool to test different mobile screen sizes for a web
application. This tool is now in beta version, but it is still useful to test the application
on mobile devices. This tool can be found at the link http://mobiletest.me.
The following screenshot shows the home page of this tool:

http://www.browserstack.com/responsive
http://mobiletest.me

Chapter 10

[215]

The TestSize tool
The TestSize tool is an online tool to test an application for different screen sizes.
This can be found at the link http://testsize.com. The following screenshot
shows the home page of this tool:

The Am I Responsive tool
The Am I Responsive tool is an online tool to test responsive web applications.
This tool is found at the link http://ami.responsivedesign.is. The following
screenshot shows the home page of this new tool:

http://testsize.com
http://ami.responsivedesign.is

Debugging and Testing

[216]

The Responsive Design Checker tool
The Responsive Design Checker tool is an online tool to test responsive
design. The sizes are present in inches. It can be found at the link http://
responsivedesignchecker.com. The following screenshot shows the
home page asking for the URL of the targeted web application:

The RUIT tool
The RUIT tool is an online tool for responsive applications. This tool is available at
http://ruit.mytechlabs.com. The following screenshot shows the home page of
this tool:

http://responsivedesignchecker.com
http://responsivedesignchecker.com
http://ruit.mytechlabs.com

Chapter 10

[217]

The Responsive Test online tool
The Responsive Test tool is an online tool to test responsive applications.
It is available at http://responsivetest.com. The following screenshot
shows the home page of this tool:

Testing the app as a whole
In this section, we will use some of the previously listed tools for our developed
application. Also, we will check how our developed application looks in different
screen sizes.

The following screenshot shows the Resolution 1.0 test screen for our
responsive application:

http://responsivetest.com

Debugging and Testing

[218]

The following screenshot shows the iPad view taken from the Responsive Test
online tool:

The following screenshot shows the iPhone screen from the Responsinator tool.
You can see that the following screen is showing a single product in each row:

Chapter 10

[219]

The following screenshot is taken from the Designmodo online tool for Samsung
Galaxy Tab 10.1:

So, from the previous screenshots taken from different tools, we can conclude that
the application is responsive on various devices with different screen sizes.

Summary
In this chapter, we listed some of the tools that can help during development to test
a responsive application. We also explored some tools available for debugging and
testing the responsiveness of our developed application.

Index
Symbols
.container class 40
.container-fluid class 40
.jar files

twitter4j-async-4.0.1.jar 81
twitter4j-core-4.0.1.jar 81
twitter4j-media-support-4.0.1 81
twitter4j-stream-4.0.1.jar 81

.ts-product-container 36

A
accepts field, jQuery AJAX 62
access token 96-98
active class 176
adaptive layout 15
address bar, Opera browser 48
Add to Cart button

attributes 172
Am I Responsive tool

about 215
URL 215

amount parameter 203
API Keys tab, Twitter application 90
API key token 93
API secret token 93
appId parameter, init() method 123
application

Resolution 1.0 test screen 217
testing 217

Arguments option, Opera Mobile
emulator 46

asynchronous search, YouTube
performing 158

attributes, Add to Cart button
data-bookTitle 172
data-cost 172

attributes, Facebook login button
Autologoutlink 121
data-colorscheme 120
data-width 120
perms 120
show-faces 121

attributes, Google +1 recommendation
button

data-href 145
data-width 145

attributes, Google+ Sign in button
data-callback 142
data-clientid 142
data-cookiepolicy 142
data-scope 142

Autologoutlink attribute 121

B
beforeSend field, jQuery AJAX 62
Bootstrap 3

Component 17
CSS 17
glyphicon class 174
glyphicon-shopping-cart class 174
Grid layout 18
Helper classes 18
HTML5 elements 18
JavaScript 17
JS components 18
Responsive utilities 18
Typography 18

[222]

Bootstrap 3 containers 29, 30
Bootstrap 3 CSS classes

modal 175
modal-content 175
modal-dialog 175
modal-footer 175
modal-header 175

Bootstrap 3 library
configuring 25, 26
css folder 25, 26
fonts folder 25, 26
js folder 25, 26
structure 25, 26
URL 25

Bootstrap 3 utility classes
active 176
btn 176
btn-block 176
btn-danger 176
table 176
table-responsive 176

bootstrap.css file 26
Bootstrap framework

features 16
URL 16

bootstrap.theme.css file 26
bootstrap.theme.min.css file 26
Braille, media types 13
BrowserStack Responsive tool

about 214
URL 214

btn-block class 176
btn class 176
btn-danger class 176
building blocks, responsive

web application development
about 9
content 11
CSS3 10
HTML5 10
JavaScript 11
layout 11
navigation 11

C
cache field, jQuery AJAX 62
carousel, building

attributes 74
classes 75

carousel class 75
carousel-control class 75
carousel-indicators class 75
carousel-inner class 75
Cascade framework

features 16
URL 17

Click Event, minimal cart view 173
combined HTML markup, jQuery AJAX 69
combined jQuery code, jQuery AJAX

about 68
handleCallback() method 69
initCategoryClick() method 69

commons-codec-1.9-bin
URL 81

Component, Bootstrap 3 17
configuration properties, jQuery AJAX

accepts field 62
beforeSend field 62
cache field 62
crossDomain field 63
type field 63

content 11
ConvertCurrencyServlet method 203
cookie parameter, init() method 123
Cost field, Product class 53
Counter, minimal cart view 173
crossDomain field, jQuery AJAX 63
CSS3

about 10
features 10
media queries 10

CSS module, Bootstrap 3 17
Currency Converter API. See Google

Currency Converter API
CurrencyConverterException class 208
CurrencyNotSupportedException class 208
currencyType parameter 204

[223]

D
data-action attribute 122
data-bookTitle attribute,

Add to Cart button 172
data-callback attribute 142
data-clientid attribute 142
data-colorscheme attribute 120
data-cookiepolicy attribute 142
data-cost attribute, Add to Cart button 172
data-href attribute 122, 145
data-layout attribute 122
data-ride attribute 74
data-scope attribute 142
data-share attribute 122
data-show-faces attribute 122
data-slide attribute 75
data-slide-to attribute 74
data-target attribute 35
data-toggle attribute 35
data-width attribute 120, 145
debugging mechanism

implementing 210
dependency JAR

ehcache 198
log4j 198
slf4j 198
slf4j log 198

Description field, Product class 53
Designmodo online tool

Samsung Galaxy Tab 10.1 219
Designmodo Responsive Test tool

about 210
features 210
URL 210

Details tab, Twitter application 89
devices, responsive web design

application 12
Dimensions Toolkit

about 210
features 210
online version 210
URL 210

display
inline-block stylesheet property 36

draw-io
about 27
URL 27

E
Eclipse Java EE IDE

URL 21
Embossed, media types 13
etag

URL 160
exceptions, Google Currency Converter API

about 208
CurrencyConverterException class 208
CurrencyNotSupportedException class 208

F
Facebook application

combined code 128
creating 115-117

Facebook comments
configuring 127, 128

Facebook JavaScript SDK
configuring 113, 114
FB.api method 115
FB.Event.subscribe method 115
FB.Event.unsubscribe method 115
FB.getAuthResponse method 115
FB.getLoginStatus method 115
FB.init method 115
FB.login method 115
FB.logout method 115
FB.ui method 115
methods 114

Facebook Like button
configuring 122-126

Facebook login button
attributes 120
configuring 120-122

Facebook SDK
configuring 117
Settings tab 118

Facebook Share button
configuring 122-126

[224]

FB.api method 115
FB.Event.subscribe method 115
FB.Event.unsubscribe method 115
FB.getAuthResponse method 115
FB.getLoginStatus method 115
FB.init method 115
FB.login method 115
FB.logout method 115
FB.ui method 115
fields parameter, YouTube search 156
FireBreak add-on

about 212
features 212

forward and backward button, Opera
browser 48

Foundation framework
features 16
URL 16

full screen option, Opera browser 48

G
getAllCurrencyList() method 203
getAllListedBook() method 144
getCurrencyList() method 200
Glyph icons 25
Google+

about 137
configuring 139

Google +1 button integration
Firebug console view 147
in footer section 147

Google +1 recommendation button
attributes 145
integrating 144-148

Google+ API
about 137
accessing 137

Google+ configuration
about 139
client ID, creating 139-141
Google script, including 141

Google Currency Converter API
about 195
configuring 198
conversion request, processing 203-207
developing 199

dropdown, building 199-203
exceptions 208
integrating 198
SVN checkout 196
URL 195
URL, for API documentation 198
URL, for source code 196
URL, for supported currency types 208

Google Developers Console
application, registering 138
default view 137
URL 137, 151

Google+ login
integrating 142, 143

Google+ Sign in button
adding 142
attributes 142

Grid layout, Bootstrap 3 18
Grid, media types 13
Gumby framework

features 17
URL 17

H
Handheld, media types 13
handleCallback() method 69
Helper classes, Bootstrap 3 18
hero section code

developing 35, 36
HTML5

about 10
features 10

HTML5 elements, Bootstrap 3 18

I
IFrame

creating, for Google +1 button 147
iframe_api API 165
initCategoryClick() method 69
init() method

about 123
appId parameter 123
cookie parameter 123
oauth parameter 123
status parameter 123
xfbml parameter 123

[225]

item class 75
items property, YouTube

about 160
channelId field 161
channelTitle field 162
default, thumbnails field 161
description field 161
etag field 160
high, thumbnails field 161
id field 160
kind field 160
kind, id field 160
liveBroadcastContent field 162
medium, thumbnails field 161
publishedAt field 161
snippet field 160
thumbnails field 161
title field 161
videoId, id field 160

J
Java-based web project

setting up 22-24
Java files, PayPal payment integration

PaypalAppConfig 182
PaypalServlet 182
PaypalUtil 182

Java POJO objects
converting, to JSON string 58

JavaScript
about 11
features 11

JavaScript, Bootstrap 3 17
jQuery AJAX

building 62-74
combined HTML markup 69
combined jQuery code 68
jQuery promises 64
jQuery templating mechanism 66
product style, modifying 71-74

jQuery promises
key points 64, 65

jQuery template
modifying, for Google +1 button 146

jQuery templating mechanism
about 67

compilation phase 66
important points 66
linking phase 66

JS components, Bootstrap 3 18
JSON conversion

key points 58
JSON servlet

building 53-61
POJO class, creating 53, 54
POJO, converting to JSON 58
ProductServlet, creating 58-61
product store, creating 55-58

L
large devices

layout, creating for 29
layout

about 11
creating, for large devices 29
creating, for small devices 29
developing 29
verifying 45

layout development
Bootstrap 3 containers 29, 30
combining 41
hero section code, developing 35, 36
menu section, developing 33-35
products list, developing 36-40
row, creating 31, 32

layout verification
Opera Mobile emulator 45-49

L-Square Responsive Design Inspector tool
about 212
creating 212
URL 212

M
Maven

about 197
URL 197

media queries
about 14
external media queries 14
functionalities 15
internal media queries 14

[226]

using 15
media types

Braille 13
Embossed 13
Grid 13
Handheld 13
Print 13
Projection 13
Screen 13
Speech 13
TTY 13
TV 13

menu options, Opera Mobile emulator
bookmarks option 49
downloads option 49
exit option 49
Find in Page option 49
help option 49
history option 49
saved pages option 49
settings option 49
start page option 49

menu section
developing 33-35

minimal view, shopping cart
Click Event 173
Counter 173
displaying 173

MobileTest tool
about 214
features 214
URL 214

modal class 175
modal-content class 175
modal-dialog class 175
modal-footer class 175
modal-header class 175
More Display Resolutions 1.0 add-on

about 213
features 213
URL 213

mvn clean install command 197
mvn command

clean option 197
compile option 197
deploy option 197
install option 197

N
nav element 33
navigation 11

O
OAuth 2.0 139
oauth parameter, init() method 123
Opera browser

address bar 48
forward and backward button 48
full screen option 48
options 48
refresh button 48

Opera Mobile emulator
about 45-48, 211
Arguments option 46
features 211
home page 47
menu options 49
Pixel Density field 46
Profile section 45
Resolution field 46
Samsung Galaxy S II Version 50
URL 45
User Agent String field 46
User Interface field 46
Window Scale field 46

P
part parameter, YouTube search 156
PaypalAppConfig, Java files 182
paypal-core-1.6.0.jar file 180
PayPal Developer API

configuring 178-180
integrating 180-190
URL, for developer console 178

PayPal SDK
JAR files 180
paypal-core-1.6.0.jar 180
rest-api-sdk-0.9.0.jar 180
URL 180

PaypalServlet, Java files 182, 186

[227]

PaypalUtil, Java files 182
Permissions tab, Twitter application 88
perms attribute 120
Pixel Density field, Opera Mobile

emulator 46
Plain Old Java Object (POJO) 53
POJO class

creating 53, 54
Print, media types 13
Product class

Cost field 53
Description field 53
Title field 53
Type field 54
URL field 54

ProductServlet
creating 58
key points 59

products list
developing 36-40

product store
creating 55-58

Profile section, Opera Mobile emulator 45
Projection, media types 13
Project Object Model (POM) 197
Pure CSS framework

features 17
URL 17

R
refresh button, Opera browser 48
request parameters

amount 204
currencyType 204

request token
about 93
forming 93-95

Resolution field, Opera Mobile emulator 46
response JSON format, YouTube

about 159
etag field 159
items field 159
kind field 159
nextPageToken field 159
pageInfo field 159

resultsPerPage, pageInfo field 159
totalResults, pageInfo field 159

Responsinator tool
about 211
features 211
URL 211

Responsive Design Checker tool
about 216
URL 216

responsive frameworks
about 15
Bootstrap 16
Cascade 16
Foundation 16
Gumby 17
Pure CSS 17

responsive layout
about 15
benefits 28

Responsive Test online tool
about 217
iPad view 218
iPhone screen 218
URL 217

Responsive utilities, Bootstrap 3 18
responsive web design application

about 7
benefits 8
Bootstrap 3 17
building 18
building blocks 9-11
devices 12
dimensions 8
media queries 14
media types 12
responsiveness, measuring 11
screens 12
server, versus client-side detection 9

rest-api-sdk-0.9.0.jar file 180
row

developing 31, 32
RUIT tool

about 216
URL 216

[228]

S
Samsung Galaxy S II Version 50
Screen, media types 13
screens, responsive web design

application 12
Settings tab, Facebook SDK

about 118
advanced configuration 119
basic configuration 118
migrations configuration 120

Settings tab, Twitter application 90
Shopify API

configuring 191
integrating 192, 193
URL 191
URL, for admin page 192

shopping cart
Add to Cart feature 171
cart details, displaying in table 174-178
creating 171
features 171
jQuery template 175
minimal view, displaying 173
product, adding 171, 172

show-faces attribute 121
small devices

layout, creating for 29
software

required, to develop responsive web
application 21

Speech, media types 13
status parameter, init() method 123

T
table class 176
table-responsive class 176
TestSize Tool

about 215
URL 215

Title field, Product class 53
toJson() method 58
ts-product class 36

TTY, media types 13
TV, media types 13
tweet, posting

Twitter application, creating 86-88
Twitter application settings 86
Twitter button, creating 83-85

tweet, posting with image
changes in app.js 107
markup changes 106
product store, with image 103
Twitter callback servlet changes 110
Twitter servlet changes 108
user Twitter timeline 111

Twitter4J
about 81
configuring, in web application 82
tweet, posting 83
tweet, posting with image 102
URL 81

twitter4j-async-4.0.1.jar 81
twitter4j-core-4.0.1.jar 81
twitter4j-media-support-4.0.1 81
twitter4j-stream-4.0.1.jar 81
Twitter application

API Keys tab 90
code, combining 98-102
creating 86-88
Details tab 89
Permissions tab 88
Settings tab 90

Twitter button
creating 83-85

Twitter callback servlet
access token 96
developing 96

Twitter servlet
developing 91, 92
request token 93

TwitterServlet 93
TwitterUtil class 94
type field, jQuery AJAX 63
Type field, Product class 54
Typography, Bootstrap 3 18

[229]

U
unordered list (ul) 33
URL field, Product class 54
User Agent String field,

Opera Mobile emulator 46
User Interface field,

Opera Mobile emulator 46

V
Viewport Resizer tool

about 212
features 212
URL 212

W
web application

Twitter4J, configuring 82
wireframe, creating for 27, 28

Window Scale field,
Opera Mobile emulator 46

wireframe
creating, for web application 27, 28

X
xfbml parameter, init() method 123

Y
YouTube API

about 151
configuring 151-154
enabling, for application 153
methods, accessing 153

YouTube button markup 156, 157
YouTube Data API Version 3.0 154
YouTube-related search video

integrating 154
YouTube search

asynchronous search 158-161
fields parameter 156
part parameter 156
performing 154, 155
query parameter 158
results, rendering 162-165
URL 155
URL, for searching Cassandra

Administration 158
YouTube button markup 156, 157

YouTube video
embedding 165-168

Thank you for buying
Developing Responsive Web Applications

with AJAX and jQuery

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Instant Responsive Web Design
ISBN: 978-1-84969-925-9 Paperback: 70 pages

Learn the important components of responsive web
design and make your websites mobile-friendly

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2.	 Learn how to make your websites beautiful on
any device.

3.	 Understand the differences between various
responsive philosophies.

4.	 Expand your skill set with the quickly growing
mobile-first approach.

Responsive Web Design with
jQuery
ISBN: 978-1-78216-360-2 Paperback: 256 pages

Learn to optimize your responsive web designing
techniques using jQuery

1.	 Learn to swiftly design responsive websites by
harnessing the power of jQuery.

2.	 Get your responsive site ready to meet the
device-agnostic world.

3.	 Display highlighted content in a carousel and
implement touch gestures to control them.

4.	 Understand the mobile-first philosophy and
put its concept into practice.

Please check www.PacktPub.com for information on our titles

Magento Responsive
Theme Design
ISBN: 978-1-78398-036-9 Paperback: 110 pages

Leverage the power of Magento to successfully
develop and deploy a responsive Magento theme

1.	 Build a mobile-, tablet-, and desktop-friendly
e-commerce site.

2.	 Refine your Magento store's product and
category pages for mobile.

3.	 Easy-to-follow, step-by-step guide on how to
get up and start running with Magento.

jQuery UI 1.10: The User Interface
Library for jQuery
ISBN: 978-1-78216-220-9 Paperback: 502 pages

Build highly interactive web applications with
ready-to-use widgets

1.	 Packed with clear explanations of how to
easily design elegant and powerful frontend
interfaces for your web applications.

2.	 A section covering the widget factory including
an in-depth example of how to build a custom
jQuery UI widget.

3.	 Revised with updated code and targeted at
both jQuery UI 1.10 and jQuery 2.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to a
Responsive Web Application
	Benefits of a responsive design
	Server- versus client-side detection
	The technology stack
	HTML5
	CSS3 and media queries
	JavaScript

	Measuring responsiveness
	Devices and screens
	Media types
	Media queries
	Role of media queries
	Responsive frameworks
	Bootstrap
	The Foundation framework
	The Cascade framework
	The Pure CSS framework
	The Gumby framework

	Bootstrap 3 for a responsive design
	What are we building?
	Summary

	Chapter 2
: Creating a Responsive Layout for a Web Application
	Required software and tools
	Setting up a Java-based web project
	Configuring Bootstrap 3
	Creating a wireframe for a web application
	Responsive layouts
	Creating a layout for large and small devices
	Developing the layout
	Bootstrap 3 containers
	Developing a row
	Developing the menu section
	Developing the hero section
	Developing the list of products section

	The combined layout
	Verifying the layout
	The Opera Mobile emulator

	Summary

	Chapter 3
: Adding Dynamic Visuals to a Web Application
	Building a JSON servlet
	Creating a POJO class
	Creating a product store
	Converting from POJO to JSON
	Creating the servlet

	Building a jQuery AJAX method
	jQuery promises
	The jQuery templating mechanism
	The combined jQuery code
	The combined HTML markup
	Modifying the style of the product

	Building an image carousel
	Summary

	Chapter 4
: Twitter Integration
	Introduction to Twitter4J
	Configuring Twitter4J in a web application
	Posting a tweet
	Creating a Twitter button
	Setting up a new Twitter application
	The Twitter Permissions tab
	The Twitter Details tab
	The Twitter Settings tab
	The Twitter API Keys tab

	Developing a Twitter servlet
	Request token

	Developing a Twitter callback servlet
	Access token

	Combining all the pieces
	Posting a tweet with an image
	Product store with an image
	Markup changes
	Changes in app.js
	Twitter servlet changes
	Changes in the Twitter callback servlet
	User Twitter timeline

	Summary

	Chapter 5
: Facebook Integration
	Introduction to the Facebook SDK for JavaScript
	Creating a Facebook application
	Configuring the Facebook SDK
	The Settings tab
	The Basic configuration
	The Advanced configuration
	The Migrations configuration

	Configuring a Facebook login
	Configuring the Facebook Like and Share buttons
	Configuring Facebook comments
	The combined code
	Summary

	Chapter 6
: Google+ Integration
	Introduction to the Google+ API
	Configuring Google+
	Creating a client ID
	Including the Google script

	Log in using Google+
	Integrating +1 recommendations
	Summary

	Chapter 7
: Linking Dynamic Content from External Websites
	Introduction to the YouTube API
	Configuring a YouTube API
	Searching for a YouTube video
	The part parameter
	The fields parameter
	The YouTube button markup
	Asynchronous search in YouTube
	Rendering the YouTube search results

	Embedding a YouTube video
	Summary

	Chapter 8 : Integrating E-Commerce
 or Shopping Applications with Your Website
	Creating a shopping cart
	Adding a product to the cart
	Displaying the minimal view of the cart
	Displaying the cart details in a table

	Configuring the PayPal Developer API
	Integrating the PayPal Developer API
	Configuring the Shopify API
	Integrating the Shopify API
	Summary

	Chapter 9
: Integrating the Google Currency Converter with
Your Web Application
	The Google Currency Converter API
	Configuring the Google Currency Converter API
	Integrating the Currency Converter API
	Developing our currency converter
	Building the currency list dropdown
	Processing the conversion request

	Exceptions
	Summary

	Chapter 10
: Debugging and Testing
	Implementing the debugging mechanism
	Dimensions Toolkit
	The Designmodo Responsive Test tool
	The Opera Mobile emulator tool
	The Responsinator tool
	The Viewport Resizer tool
	The L-Square Responsive Design
Inspector tool
	The FireBreak add-on
	The More Display Resolutions 1.0 add-on
	The BrowserStack Responsive tool
	The MobileTest tool
	The TestSize tool
	The Am I Responsive tool
	The Responsive Design Checker tool
	The RUIT tool
	The Responsive Test online tool

	Testing the app as a whole
	Summary

	Index

