
www.allitebooks.com

http://www.allitebooks.org

Drush for Developers
Second Edition

Effectively manage Drupal projects using Drush

Juampy Novillo Requena

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Drush for Developers
Second Edition
Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2012

Second edition: January 2015

Production reference: 1240115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-378-6

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Juampy Novillo Requena

Reviewers
Greg Anderson

Chris Burgess

Jonathan Araña Cruz

Jeremy French

Todd Zebert

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Meeta Rajani

Content Development Editor
Anila Vincent

Technical Editor
Arvind Koul

Copy Editor
Relin Hedly

Project Coordinator
Neha Bhatnagar

Proofreaders
Bridget Braund

Ameesha Green

Indexer
Tejal Soni

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

About the Author

Juampy Novillo Requena started working as a web developer in London. After
spending a few years developing with plain PHP, Symfony, and Ruby on Rails, he
discovered Drupal. Drawn by the Drupal community and the mind-blowing effect of
getting a project done 10 times faster than before, Juampy has never looked back.

Since then, he's become more and more involved in the issue queues, which in turn
led him to become a maintainer of core and contributed modules. He organizes
events, gives sessions at national and international conferences, and has written the
book Drush User's Guide, Packt Publishing. He feels privileged to experiment, have
fun, and be challenged every day. He is known as juampy on Drupal.org and IRC.
His Twitter account is @juampy72.

This book is the result of my two years working at Lullabot. Most
of the contents explained here were originated by discussions or
contributions within the team. I am very thankful to the team who
worked on the MSNBC project, where we collaboratively developed
and implemented best practices that are represented in this book.

I also want to thank the technical reviewers; their suggestions and
corrections leveraged this book to a higher level.

Finally, a personal acknowledgement to the city of Niamey, Niger,
where I did most of the writing.

www.allitebooks.com

Drupal.org
http://www.allitebooks.org

About the Reviewers

Greg Anderson is an open source contributions engineer working on Drupal and
WordPress at Pantheon in San Francisco. He has been contributing to Drush since
just before the release of version 2, and remains an active co-maintainer to this day.

Chris Burgess is currently making the world better by building open source tools
for activist and nonprofit organizations to campaign and communicate. He has been
developing with Drupal since 2006, and he is immensely grateful to the Drupal and
wider open source communities for the learning and sharing environment that they
foster. Chris is based in Dunedin, New Zealand, with his two sons, Hunter and
Rowan, and partner, Saira. He works for Fuzion Aotearoa, and you can reach him at
@xurizaemon on Twitter, xur1z on IRC, or his Drupal.org profile at https://www.
drupal.org/u/xurizaemon.

Jonathan Araña Cruz is a co-maintainer of Drush. He combines both sysadmin
and Drupal development work. Jonathan has contributed several modules to Drupal,
and as a sysadmin, he manages Infrastructure as Code with Puppet.

Jonathan's Drupal profile can be found at https://www.drupal.org/u/jonhattan.

Jeremy French has worked in web development for over a decade, floating
through a wasteland of bespoke Content Management Systems, before finding
Drupal. He has developed sites for a number of household names and blue chips,
as well as a few interesting start-ups. Currently, he is working for a small agency,
living the dream of distributed working.

www.allitebooks.com

Drupal.org
https://www.drupal.org/u/xurizaemon.
https://www.drupal.org/u/xurizaemon.
https://www.drupal.org/u/jonhattan
http://www.allitebooks.org

Todd Zebert has been involved with Drupal since early version 6. He creates
websites and web apps with a variety of technologies. Currently, Todd works as
a lead web developer for Miles.

Todd has a diverse background in technology, including infrastructure, network
engineering, project management, and IT leadership. His experience with web
development started with the original Mosaic graphical web browser, SHTML/CGI,
and Perl. His fondness for Drupal and his interest in workflow, efficiency, repeatable
best practices, and DevOps drives his interest in Drush.

Todd is an entrepreneur involved with the start-up community. He's a believer
in volunteering, open source, and contributing back. He's an advocate for Science,
Technology, Engineering, Art, and Math (STEAM) education.

I'd like to thank the Drupal community, which is like no other.

Finally, I'd like to thank my pre-teen son with whom I get to share
my interest in technology and program video games together.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Introduction, Installation, and Basic Usage 7

Installation requirements 8
Operating system 9
PHP 9
Installing Composer 9
Drush installation on Linux and OSX 10
Manual installation 11

The Drush command structure 13
Executing a command 13
Providing arguments to a command 14
Altering a command's behavior through options 14
Structuring command invocations 15
Command aliases 16

Understanding Drush's context system 16
Setting the context manually 18
Summary 19

Chapter 2: Keeping Database Configuration and
Code Together 21

Meeting the update path 22
Rebuilding the registry 24

Breaking the registry 27
Rebuilding Drupal's registry 28

Running database updates 29
Managing features 31

Exporting configuration into code 32
Running the update path on a different environment 36

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Analyzing results 37
Reverting the feature components programmatically 38

Summary 41
Chapter 3: Running and Monitoring Tasks in Drupal Projects 43

Running periodic tasks with cron 44
Disabling Drupal's cron 44

Verifying the current cron frequency 45
Overriding cron frequency and exporting it to code 46

Running cron with Drush 48
Scheduling cron runs with Jenkins 48

Installing Jenkins 49
Creating a job through the web interface 49
Monitoring cron runs 52

Running a task outside cron 52
Example – moving a Feeds importer from Drupal's cron to Drush 53

Exporting the Feeds importer into code 54
Writing a Drush command to trigger the Feeds importer 55

Running long tasks in batches 57
A sample Drush command using the Batch API 58

Batch API operations 59
Running the command and verifying the output 61

Evaluating code on the fly and running scripts 63
The php-eval command 63
The php-script command 65

A script to create nodes and revisions 66
Logging messages in Drush 67

The verbose and quiet modes 69
Redirecting Drush output into a file 70

Implementing your own logging mechanism 72
Running a command in the background 74
Summary 76

Chapter 4: Error Handling and Debugging 77
Validating input 77

Validating an argument 78
Validating options 81

Ignoring options after the command name 81
Allowing additional options 82

Adding custom validation to a command 83
Rolling back when an error happens 85

Turning the update path into a single command 86
Browsing hook implementations 90

Table of Contents

[iii]

Inspecting the bootstrapping process 94
Inspecting hook and function implementations 97

Browsing and navigating hook implementations 97
Viewing source code of a function or method 99

Summary 100
Chapter 5: Managing Local and Remote Environments 103

Managing local environments 104
Managing remote environments 106

Verifying requirements 106
Accessing a remote server through a public key 106

Defining a group of remote site aliases for our project 108
Using site aliases in commands 110

Special site aliases 112
Running a command on all site aliases of a group 112
Avoiding a Drupal bootstrap with @none 113
Referencing the current project with @self 113

Adding site alias support to the update path 114
Inspecting the command implementation and hooks 114
Running the update path with a site alias 119

Copying database and files between environments 120
Defining Drush shell aliases for a team 122
Blocking the execution of certain commands 125
Ignoring tables on sql-sync 127

Summary 129
Chapter 6: Setting Up a Development Workflow 131

Moving configuration, commands, and site aliases out of Drupal 132
Installing Drupal Boilerplate 133
Relocating Drush files 136
Testing the new setup 138

Configuring the development database for the team 140
Configuring Jenkins to sync production to development 141
Fine-tuning the development database 145

Recreating the database on sql-sync 145
Excluding table data from production 146
Ignoring tables from production 146
Sanitizing data 149
Preventing e-mails from being sent 151

Running post sql-sync tasks in local environments 153
Summary 158

Index 159

Preface
In this book, I share with you how I use Drush in my day-to-day work. When
working on Drupal projects, Drush is omnipresent. It is a key tool to debug code, run
small scripts, and discover APIs. However, this is just the beginning; Drush's real
potential comes when teams use it to define a development workflow.

What this book covers
Chapter 1, Introduction, Installation, and Basic Usage, begins with Drush's requirements
and installation and then shows its basic usage through examples.

Chapter 2, Keeping Database Configuration and Code Together, explains how to export
configuration from the database into code in order to share it with the rest of the
team and other environments.

Chapter 3, Running and Monitoring Tasks in Drupal Projects, gives different options to
run tasks in Drupal projects such as cron, Batch API, and custom scripts.

Chapter 4, Error Handling and Debugging, explores tools that help us catch and process
errors, so as to navigate through the available hooks and functions in our project.

Chapter 5, Managing Local and Remote Environments, unveils all the magic behind site
aliases using a typical Drupal project that involves production and development
environments.

Chapter 6, Setting Up a Development Workflow, leverages all the concepts covered in the
book by defining a development workflow for a team.

Preface

[2]

What you need for this book
Here are the system requirements to run the examples in the book:

• Operating system: Any Unix-based system such as:
 ° Ubuntu (any version), available at http://www.ubuntu.com
 ° MAC OS X (any version)

• Software:
 ° PHP 5.2 or higher, available at http://www.php.net
 ° MySQL 5.0 or higher, available at http://www.mysql.com
 ° Apache 2.0 or higher, available at http://www.apache.org
 ° Drupal 7, available at http://drupal.org
 ° Git, available at http://git-scm.com
 ° Jenkins, available at https://wiki.jenkins-ci.org

Who this book is for
This book will fit best to backend developers with a basic knowledge of Drupal's APIs
and some experience using the command line. Perhaps, you already worked on one or
two Drupal projects, but have never dived deep into Drush's toolset. In any case, this
book will give you a lot of advice by covering real-world challenges in Drupal projects
that can be solved using Drush.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Drush runs using a different PHP.ini configuration than the web server that does
not have a request timeout."

http://www.ubuntu.com
http://www.php.net
http://www.mysql.com
http://www.apache.org
http://drupal.org
http://git-scm.com
https://wiki.jenkins-ci.org

Preface

[3]

A block of code is set as follows:

/**
 * Callback to delete revisions using Batch API.
 */
function node_revision_delete_batch_process($content_type,
 $max_revisions, &$context) {
 if (!isset($context['sandbox']['nids'])) {
 // Set initial values.
 $context['sandbox']['nids'] = node_revision_delete_candidates
 ($content_type, $max_revisions);
 $context['sandbox']['current'] = 0;
 $context['sandbox']['total'] = count($context
 ['sandbox']['nids']);
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

/**
 * Callback to delete revisions using Batch API.
 */
function node_revision_delete_batch_process($content_type,
 $max_revisions, &$context) {
 if (!isset($context['sandbox']['nids'])) {
 // Set initial values.
 $context['sandbox']['nids'] = node_revision_delete_
 candidates($content_type, $max_revisions);
 $context['sandbox']['current'] = 0;
 $context['sandbox']['total'] =
 count($context['sandbox']['nids']);
 }
}

Any command-line input or output is written as follows:

$ drush php-script logging.php

success: marks a successful message. [success]

error: reports an error message. [error]

warning: is used to alert about something. [warning]

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes for example, appear in the text like
this: "You can test it by clicking on the Build Now link on the left navigation menu
and then inspecting the Jenkins console output."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you really get the most out of.

To send us general feedback, simply e-mail to feedback@packtpub.com, and
mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem..

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Introduction, Installation, and
Basic Usage

Drush is a command-line interface for Drupal. It can also serve as an alternative to
write scripts using PHP instead of BASH. The Drush ecosystem is vast. Every year, at
DrupalCon, the Drush core team gives an update on the bleeding edge features being
developed by them and by contributors all over the world.

Tasks such as clearing caches, running database updates, executing batch scripts, and
managing remote websites are just a glimpse of what you can do with Drush.

Here is an example. Imagine that you have pushed new code for your website and
need to run database updates. Normally this would involve the following steps:

1. Back up your database.
2. Open your web browser and navigate to http://example.com/user.
3. Authenticate as administrator.
4. Navigate to http://example.com/update.php.
5. Run database updates and wait for a confirmation message.

Now, here is how you can accomplish the preceding steps with Drush:

$ drush @example.prod sql-dump > dump.sql

$ drush @example.prod updatedb --yes

www.allitebooks.com

http://example.com/user
http://example.com/update.php
http://www.allitebooks.org

Introduction, Installation, and Basic Usage

[8]

That's it. We did not even have to open an SSH connection or a web browser. The
first command created a database backup and the second one executed pending
database updates. In both these commands, we used @example.prod, which is a
Drush site alias used to load configuration details about a particular site. We will see
Drush site aliases in detail in Chapter 5, Managing Local and Remote Environments.

Drush is highly customizable. You can adjust it to fit a specific workflow. This is
especially helpful when working on a Drupal project within a team; you can define
security policies, wrap commands with sensible defaults, sanitize a copy of the
production database automatically, and so on. This is the area that this book will
focus on. We will go through some common processes during a Drupal project and
discover how we can automate or simplify them using Drush. Let's start!

This chapter is an introduction and will cover the following topics to get you up
to speed:

• Installation requirements
• Drush command structure
• Understanding Drush's context system

Installation requirements
The following are the installation requirements for Drush. If you have already
installed it, simply make sure that you are running version 7.0.0-alpha5 (https://
github.com/drush-ops/drush/releases/tag/7.0.0-alpha5) or higher by
executing drush --version in the command line, and skip forward to the next
section of this chapter.

https://github.com/drush-ops/drush/releases/tag/7.0.0-alpha5
https://github.com/drush-ops/drush/releases/tag/7.0.0-alpha5

Chapter 1

[9]

Operating system
Drush works on Unix-like operating systems (such as Ubuntu and OSX) and
Windows operating systems.

If you use Windows, consider using something like VirtualBox (https://www.
virtualbox.org) to install a virtual machine that runs, for example, Ubuntu
(http://www.ubuntu.com). If you still want to use Drush on Windows, there is
an installer available at http://www.drush.org/drush_windows_installer.
Note, however, that the installer installs an older version of Drush, so some of the
contents of this book won't work.

PHP
Let's start by making sure that you have PHP 5.3.0 or greater installed.
To do so, open a terminal and run the following command:

$ php -v

The output should look something like the following code screenshot:

As you can see, I am using PHP 5.5.9. If you get a Command not found message or
your version is lower than 5.3.0, you will need to install or upgrade PHP. Refer to
your vendor documentation to do this as the steps will vary.

Installing Composer
On Linux and OSX platforms, the recommended way to install Drush is through
Composer (https://getcomposer.org), a dependency manager that has become
the standard in the PHP world. Installing Composer can be accomplished with the
following commands:

$ cd $HOME

$ curl -sS https://getcomposer.org/installer | php

$ sudo mv composer.phar /usr/local/bin/composer

https://www.virtualbox.org
https://www.virtualbox.org
http://www.ubuntu.com
http://www.drush.org/drush_windows_installer
https://getcomposer.org

Introduction, Installation, and Basic Usage

[10]

If you find any issues while running the preceding commands or while installing
it through a packaging system such as homebrew, then take a look at the official
installation instructions for Composer (https://getcomposer.org/doc/00-intro.
md#globally-on-osx-via-homebrew). Once you have completed the installation,
you can verify that it works by running the following command:

$ composer about

Composer - Package Management for PHP

Composer is a dependency manager tracking local dependencies of your
projects and libraries.

See http://getcomposer.org/ for more information.

If you have already installed Composer, make sure that it is up to date
by running composer self-update (https://getcomposer.
org/doc/03-cli.md#self-update).

Drush installation on Linux and OSX
At the time of writing this book, the latest available version of Drush is 7.0.0-alpha5
(https://github.com/drush-ops/drush/releases/tag/7.0.0-alpha5). This
is the version that we will use. The Drush core team does a fantastic job of keeping
backwards compatibility between major versions, so if you have already installed a
more recent version of Drush, you should be okay as practically all the examples in
the book will work.

Let's go ahead and install Drush. Once Composer has been installed (see the
previous section on installing Composer), you can install Drush with the
following command:

$ composer global require drush/drush:7.0.0-alpha5 -v

Changed current directory to /home/juampy/.composer

./composer.json has been updated

Loading composer repositories with package information

Updating dependencies (including require-dev)

 - Installing drush/drush (7.0.0-alpha5)

 Downloading: 100%

 Extracting archive

drush/drush suggests installing youngj/httpserver

Writing lock file

Generating autoload files

https://getcomposer.org/doc/00-intro.md#globally-on-osx-via-homebrew
https://getcomposer.org/doc/00-intro.md#globally-on-osx-via-homebrew
https://getcomposer.org/doc/03-cli.md#self-update
https://getcomposer.org/doc/03-cli.md#self-update
https://github.com/drush-ops/drush/releases/tag/7.0.0-alpha5

Chapter 1

[11]

The preceding command has downloaded Drush 7.0.0-alpha5 into $HOME/.
composer/vendor/bin/drush. In order to use Drush from anywhere in the system,
we need to make sure that Composer's bin directory is present at our $PATH
environment variable. We can do so with the following commands:

$ sed -i '1i export PATH="$HOME/.composer/vendor/bin:$PATH"' \

 $HOME/.bashrc

$ source $HOME/.bashrc

Note the use of $HOME and $PATH, which are environment variables. $HOME contains
the location of your home directory, while $PATH represents a list of directories to look
for executable files. You can view the contents of these variables by executing echo
$HOME or echo $PATH. Take a look at your home directory to check whether there is
.bash_profile, .bash_login, or .profile file at $HOME. If you find them, adjust the
preceding commands, so the $PATH variable is adjusted in these files as well.

Finally, we can test that Drush has been installed successfully and contains the
right version:

$ cd $HOME

$ drush --version

 Drush Version : 7.0.0-alpha5

Manual installation
If you prefer to install Drush manually, then follow these steps:

1. Start by opening a web browser, and download and uncompress the contents
of Drush 7.0.0-alpha5 (https://github.com/drush-ops/drush/releases/
tag/7.0.0-alpha5) into your home directory.

2. Open a terminal and move the drush directory into your system's
shared directory:
$ sudo mv $HOME/drush /usr/share

3. Set proper permissions to the drush executable file:
$ sudo chmod u+x /usr/share/drush/drush

4. Create a symbolic link of the Drush executable to any of the directories listed
at your $PATH environment variable so that you do not have to type /usr/
share/drush/drush every time you use it.
$ echo $PATH

/home/juampy/.composer/vendor/bin:/usr/local/sbin:

https://github.com/drush-ops/drush/releases/tag/7.0.0-alpha5
https://github.com/drush-ops/drush/releases/tag/7.0.0-alpha5

Introduction, Installation, and Basic Usage

[12]

 /usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:

 /usr/local/games

$ sudo ln -s /usr/share/drush/drush /usr/local/bin/drush

5. The next step consists of installing Composer dependencies for Drush:
$ cd /usr/share/drush

$ composer install

Loading composer repositories with package information

Installing dependencies (including require-dev) from lock file

 - Installing d11wtq/boris (v1.0.8)

 - Installing pear/console_table (1.1.5)

 - Installing phpunit/php-token-stream (1.2.2)

 - Installing symfony/yaml (v2.2.1)

 - Installing sebastian/version (1.0.3)

 - Installing sebastian/exporter (1.0.1)

 - Installing sebastian/environment (1.0.0)

 - Installing sebastian/diff (1.1.0)

 - Installing sebastian/comparator (1.0.0)

 - Installing phpunit/php-text-template (1.2.0)

 - Installing phpunit/phpunit-mock-objects (2.1.5)

 - Installing phpunit/php-timer (1.0.5)

 - Installing phpunit/php-file-iterator (1.3.4)

 - Installing phpunit/php-code-coverage (2.0.9)

 - Installing phpunit/phpunit (4.1.3)

 - Installing symfony/process (v2.4.5)

 pear/console_table suggests installing pear/Console_Color
(>=0.0.4)

 phpunit/phpunit suggests installing phpunit/php-invoker (~1.1)

Generating autoload files

6. Finally, verify the installation:
$ cd $HOME

$ which drush

 /usr/local/bin/drush

$ drush --version

 Drush Version : 7.0.0-alpha5

Chapter 1

[13]

The main README file at the Drush repository has a great section on POST-INSTALL
tasks (https://github.com/drush-ops/drush#post-install) with additional
information on configuring PHP and extra settings for environments such as MAMP.
It's worth taking a look at it.

The Drush command structure
Drush offers a broad list of commands that cover practically all the aspects of a
Drupal project. If you are already fluent with executing commands in the terminal,
you can skip this section. Otherwise, keep on reading to discover what arguments
and options are and how these affect the behavior of a command.

We can view the available list of commands by running drush help. Additionally,
running drush help some-command will show you detailed information about a
particular command.

Executing a command
Let's start with a very simple command such as core-status, which prints
environment information about Drush and, if available, a Drupal site. Assuming that
we have a Drupal project installed at /home/juampy/projects/drupal, let's run this
command here and see its output:

$ drush core-status

 Drupal version : 7.29-dev

 Site URI : http://default

 Database driver : mysql

 Database username : root

 Database name : drupal7x

 Database : Connected

 Drupal bootstrap : Successful

 Drupal user :

 Default theme : bartik

 Administration theme : seven

 PHP executable : /usr/bin/php

 PHP configuration : /etc/php5/cli/php.ini

 PHP OS : Linux

 Drush version : 7.0.0-alpha5

 Drush temp directory : /tmp

https://github.com/drush-ops/drush#post-install

Introduction, Installation, and Basic Usage

[14]

 Drush alias files :

 Drupal root : /home/juampy/projects/drupal

 Site path : sites/default

 File directory path : sites/default/files

 Temporary file directory path : /tmp

The preceding output informs us about the main configuration of the Drupal project
plus some Drush environment settings.

Providing arguments to a command
The core-status command accepts a single argument that specifies which setting is
to be retrieved (you can see this information by running drush help core-status).
An argument is a string of text that acts as an input data for a command. Arguments
are entered after the command name and are separated by spaces. Therefore, if we
need to print just the items containing version in the setting name, we can execute
the following command:

$ drush core-status version

 Drupal version : 7.29-dev

 Drush version : 7.0.0-alpha5

Drush commands might accept zero to any number of arguments depending
on their nature. Beware that some commands expect arguments to be given in a
certain order. For example, the variable-set command, used to change Drupal
environment variables, requires the first argument to be the variable name and the
second argument to be the variable's new value. Hence, the following example sets
the site-name variable to the My awesome site value:

$ drush variable-set site-name "My awesome site"

site-name was set to "My awesome site". [success]

Altering a command's behavior through
options
Drush commands might accept options through the command line, which alter
their default behavior. Options are in the form of --option-name or --option-
name=value. Additionally, some options have a shorter version. For example, you
can accept all confirmations for a Drush command by appending --yes or its shorter
version: -y.

Chapter 1

[15]

Let's take a look at options with an example. The core-status command has an
option to show the database password. We will now add it to the command and
inspect the output:

$ cd /home/juampy/projects/drupal

$ drush core-status --show-passwords database

 Database driver : mysql

 Database username : root

 Database password : mysecretpw

 Database name : drupal7x

 Database : Connected

The --show-passwords option orders the core-status command that we want to
see the database password of the Drupal site being bootstrapped.

Structuring command invocations
Excluding some exceptions, there is no strict ordering for options and arguments
when you run a command. Besides, Drush does a great job parsing arguments and
options no matter how we mix them up in the input. However, our commands will
be more readable if we follow this pattern:

$ drush [global options] [command name] [command options] [arguments]

Here is an example:

$ drush --verbose core-status --show-passwords database

And the following are the commands used in the previous example:

• --verbose: This is a Drush global option. You can see all the available global
options by running drush topic core-global-options.

• core-status: This is the command that we are running.
• --show-passwords: This is an option of the core-status command.
• database: This is an argument for the core-status command.

Besides the fact of higher clarity by using the preceding structure, there are some
commands in Drush that require options to be given in this order. This is the case
of the core-sync Drush command, which is a wrapper of the actual Unix rsync
command used to copy files and directories. Let's take a look at the following example:

$ drush rsync @self:%files/ /tmp/files --dry-run

You will destroy data from /tmp/files and replace with data from /home/
juampy/projects/drupal/sites/default/files/

Do you really want to continue? (y/n):

Introduction, Installation, and Basic Usage

[16]

The preceding command copies files recursively from a Drupal project into /tmp/
files. The --dry-run option is an rsync specific option that attempts to copy files
but does not make any actual changes. Now, let's try to run the same command but
this time placing the option before the command name:

$ drush --dry-run rsync @self:%files/ /tmp/files

Unknown option: --dry-run. See `drush help core-rsync` for available
options. To suppress this error, add the option –strict=0. [error]

We can see in the preceding output that Drush attempted to evaluate the --dry-
run option and failed as it did not recognize it. This example demonstrates that
you should carefully read the description of a command by running drush help
command-name in order to understand its options, arguments, and ordering.

Command aliases
Most of Drush commands support a shorter name to be used when invoking them.
You can find them in parenthesis next to each command name when running drush
help, or in the Aliases section when viewing the full help of a command.

For example, the core-status command can also be executed with status or just
st, which means that the following commands will return identical results:

$ drush core-status

$ drush status

$ drush st

For clarity, we will not use command aliases in
this book, but these help us to work faster. So,
it is worthwhile to use them.

Understanding Drush's context system
Drush is decoupled from Drupal. This means that it does not necessarily need a
Drupal site to work with. Some commands do require a Drupal project to bootstrap,
while for others, this might be optional. Let's take core-status as an example. This
command gives us information about the current context. If we run this command
outside of a Drupal project, we will obtain configuration details for Drush and our
local environment:

$ cd $HOME

$ drush core-status

Chapter 1

[17]

 PHP executable : /usr/bin/php

 PHP configuration : /etc/php5/cli/php.ini

 PHP OS : Linux

 Drush version : 7.0.0-alpha5

 Drush temp directory : /tmp

 Drush alias files :

Now, if we change directory to a Drupal project, we will get extra information
about it:

$ cd /home/juampy/projects/drupal

$ drush core-status

 Drupal version : 7.29-dev

 Site URI : http://default

 Database driver : mysql

 Database username : root

 Database name : drupal7x

 Database : Connected

 Drupal bootstrap : Successful

 Drupal user :

 Default theme : bartik

 Administration theme : seven

 PHP executable : /usr/bin/php

 PHP configuration : /etc/php5/cli/php.ini

 PHP OS : Linux

 Drush version : 7.0.0-alpha5

 Drush temp directory : /tmp

 Drush alias files :

 Drupal root : /home/juampy/projects/drupal

 Site path : sites/default

 File directory path : sites/default/files

 Temporary file directory path : /tmp

In the preceding scenario, Drush finds out that it is currently at the root of a Drupal
project that uses the default location to store its settings (sites/default). Therefore,
it is able to bootstrap Drupal and load its configuration.

www.allitebooks.com

http://www.allitebooks.org

Introduction, Installation, and Basic Usage

[18]

Setting the context manually
We do not have to be at the root of a Drupal project in order to run Drush commands
against it. Instead, we can append additional options that will let Drush find it.
For example, we could run the core-status command from a different directory,
adding the --root option that points to the root of our Drupal project:

$ cd /home/juampy

$ drush --root=/home/juampy/projects/drupal core-status

 Drupal version : 7.29-dev

 Site URI : http://default

 Database driver : mysql

 Database username : root

 Database name : drupal7x

 Database : Connected

 Drupal bootstrap : Successful

 Drupal root : /home/juampy/projects/drupal

 Site path : sites/default

As we can see at the command output, Drush did bootstrap Drupal although we
were not at its root directory. On a multisite Drupal installation, where settings.
php is not at sites/default, we need to specify the site within our Drupal project
that we want to bootstrap with the --uri option:

$ cd /home/juampy

$ drush --root=/home/juampy/projects/drupal --uri=mysite core-status

 Drupal version : 7.29-dev

 Site URI : other_site

 Database driver : mysql

 Database username : root

 Database name : other_site

 Database : Connected

 Drupal bootstrap : Successful

Chapter 1

[19]

 Drupal root : /home/juampy/projects/drupal

 Site path : sites/mysite

 ...

Summary
This chapter was an introduction to the principles of Drush. We covered the
installation requirements so that you could set them up on your local environment
and then proceeded with the installation of Drush.

Next, we went through some command-line basics that involved how to invoke
commands, and how to append options and arguments as well. We saw some
caveats regarding the order of options and arguments and suggested a structure to
construct command invocations that is easy to read.

The last section of the chapter gave some tips on how to set the context of a Drupal
project for Drush. We saw that Drush is pretty intelligent and can automatically
figure out whether we are on a Drupal project in order to bootstrap it, or we can
alternatively pass extra options to inform where our Drupal project is.

In the next chapter, we will go through one of the most important challenges
of developing Drupal projects and how Drush can help us with it: keeping
configuration and code together.

Keeping Database
Configuration and

Code Together
One of the most remarkable articles that I read when I started to learn Drupal is
The Development -> Staging -> Production Workflow Problem in Drupal (http://www.
developmentseed.org/blog/2009/jul/09/development-staging-production-
workflow-problem-drupal), by Development Seed. Dated back to 2009, yet it still
outlines, with such clarity, one of the most important challenges in Drupal projects;
the fact that although a part of Drupal's configuration resides in the database and not
in code, these must evolve together under a version control system such as Git.

This quote in particular really did hit me:

"The ideal development workflow involves communication in both directions.
Content needs to be migrated upstream to staging and development servers, and
configuration needs to be migrated downstream to staging and production."

Let's dissect this:

Content needs to be migrated upstream to staging and development servers...

This means that the database should be copied from production to other
environments (staging, development, and your local environment) on a regular basis
in order to test code and configuration changes against recent content. This process
helps you to verify that a copy of the production environment's database updates
with new code as you would expect. This should eliminate surprises when deploying
a new release to production.

http://www.developmentseed.org/blog/2009/jul/09/development-staging-production-workflow-problem-drupal
http://www.developmentseed.org/blog/2009/jul/09/development-staging-production-workflow-problem-drupal
http://www.developmentseed.org/blog/2009/jul/09/development-staging-production-workflow-problem-drupal

Keeping Database Configuration and Code Together

[22]

Now, let's see the second statement:

…configuration needs to be migrated downstream to staging and production.

By configuration, the article refers to custom code plus exported configuration such
as user roles, content types, fields, layouts, and so on. These two are pushed from
your local environment downstream to other environments (development, staging,
and production).

Both streams have something in common: either when we install the production
environment's database on our local environment or when we deploy new code, the
database needs to be updated. Updating means going through a list of steps that
can be accomplished via Drupal's administration interface or using Drush. In this
chapter, we will automate this process, which we will call the update path.

Meeting the update path
The update path is a list of steps that update the database of a Drupal project so that
it is in sync with the code.

Running the update path in a Drupal project involves the following steps:

1. Rebuilding Drupal's registry.
2. Running database updates.
3. Importing configuration.
4. Clearing caches.

In the following sections, we will dive deeper into each of the preceding steps. These
can be accomplished manually with Drupal's administration interface. However,
this is a tedious process. Ideally, we would like to make the deployment process as
straightforward as possible, so here is how we can automate the preceding steps
with Drush commands in a Bash script that we will save as /home/juampy/scripts/
update_path.sh:

#!/bin/sh
#
Run the update path in the current project.
#
Usage:
Change directory into a Drupal project and run:
sh /path-to-this-script/update_path.sh
#

Chapter 2

[23]

You may need to change permissions on this script with the
following:
chmod u+x /path-to-this-script/update_path.sh

echo "Starting update path"

1. Registry Rebuild.
drush --verbose registry-rebuild --no-cache-clear
2. Run database updates.
drush --verbose --yes updatedb
3. Clear the Drush cache.
Sometimes Features may need this due to a bug in Features module.
drush cache-clear drush
4. Revert all features.
drush --verbose --yes features-revert-all
5. Clear all caches.
drush --verbose cache-clear all
echo "Update path completed."

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

What we are doing in the preceding script is rebuilding some of the data structures
that Drupal stores in the database from most generic to most specific. You would
run this script when:

• You have just downloaded a copy of the production environment's database
• You have just pulled in the most recent version of the project's source code
• You have made changes in the site's configuration and want to revert

them back
• You have just deployed a new release into a different environment (for

example, staging)

Keeping configuration in sync with the code is critical in order to work within a team
and to avoid unexpected results when deploying code to other environments.

//www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Keeping Database Configuration and Code Together

[24]

All the commands in the script use the --verbose option. This helps us to verify
that Drush is loading the right context, and if there are any PHP warnings or notices
during the process, we will see them. The output generated when running the script
is quite long because of the --verbose option, but at its simplest form, it would be
like the following code:

$ cd /home/juampy/projects/drupal

$ sh /home/juampy/scripts/update_path.sh

Starting update path

There were 896 files in the registry before and 896 files now.

Registry has been rebuilt. [success]

No database updates required [success]

Current state already matches defaults, aborting. [ok]

'all' cache was cleared. [success]

Update path completed.

In the preceding execution, the registry did not change, no database updates were
run nor were features reverted. In the following sections, we will look into more
detail on each of the steps of the update path in order to discover how to solve some
of the challenges we might find when upgrading the database with new code.

Rebuilding the registry
Drupal's registry system is an autoloading mechanism for PHP classes and
interfaces. It keeps track of the location of the file that contains each class in order
to load it whenever it is required. Classes can be autoloaded by listing them at the
files[] section of the .info file of a module.

There are scenarios where Drupal enters in a deadlock caused by a missing class
that is required during an early stage of the bootstrap process. You might face
this error while upgrading a module or after moving an installed module into a
different directory.

In the following sections, we will create a scenario where Drupal's registry will break
and then fix it by running the registry-rebuild Drush command.

Preparing the trap
Beware! Proceed with the following steps on a testing environment.

The trap to break Drupal's registry will consist of:

1. Installing Field collection (https://www.drupal.org/project/field_
collection) and Entity (https://drupal.org/project/entity) modules.

https://www.drupal.org/project/field_collection
https://www.drupal.org/project/field_collection
https://drupal.org/project/entity

Chapter 2

[25]

2. Adding a field of type Field collection to the Page content type.
3. Creating a node of type Page.
4. Moving the Entity module to a different location within the sites/all/

modules directory.

Let's start by downloading and installing the Field collection module in a Drupal
project:

$ cd /home/juampy/projects/drupal

$ drush pm-download field_collection

Project field_collection (7.x-1.0-beta7) downloaded to /.../sites/all/
modules/contrib/field_collection. [success]

$ drush --yes pm-enable field_collection

The following projects have unmet dependencies:

field_collection requires entity

Would you like to download them? (y/n): y

Project entity (7.x-1.5) downloaded to/.../sites/all/modules/contrib/
entity. [success]

Project entity contains 2 modules: entity_token, entity.

The following extensions will be enabled: field_collection, entity

Do you really want to continue? (y/n): y

entity was enabled successfully. [ok]

field_collection was enabled successfully. [ok]

Drush took care of downloading the dependency of Field collection on the
Entity module and installed it automatically. Let's move on to the next step, where
we will set up a scenario where Drupal's registry system will crash. We need to add
a Field collection field to a content type (for example, the Basic Page content
type). We can do so by opening a browser and navigating to Structure | Content
Types | Basic Page | Manage Fields. Alternatively, we can run the following
Drush command:

$ drush field-create page items,field_collection,field_collection_embed

http://default/admin/structure/types/manage/page/fields/items

Keeping Database Configuration and Code Together

[26]

The command returned a URL to further edit the field settings. We now need to
create a node of type Basic Page. Open your browser and navigate to
Add Content | Basic Page:

Once we click Save, we can see the page node's full display:

Chapter 2

[27]

Breaking the registry
Now, let's break the registry by moving the Entity module to a different location.
Currently, it is installed at sites/all/modules/contrib/entity. We will move it
to sites/all/modules, where Drupal should be able to find it too:

$ mv sites/all/modules/contrib/entity sites/default/modules/

After moving the Entity module and reloading the node page in the browser, we
will see a PHP error that refers to the Entity class not being found:

If we open other pages of our website, we will experience the same error. Normally,
when we see an error like this in a Drupal project, the first thing we would try will be
to clear all caches. However, in this case, this solution won't work as we will face the
same error when Drush bootstraps Drupal:

$ drush cache-clear all

require_once(/.../sites/all/modules/contrib/entity/includes/entity.
inc):failed to open stream: No such file or directory [warning]

www.allitebooks.com

http://www.allitebooks.org

Keeping Database Configuration and Code Together

[28]

Rebuilding Drupal's registry
This is the time when Registry Rebuild kicks in to help. Let's first download it into
sites/all/drush/commands. The reason for using this path and not sites/all/
modules/contrib is that Registry Rebuild is not a module. It just implements
a PHP script and a Drush command. By placing it at sites/all/drush/command,
Drush can discover it automatically and it will be available when we deploy this
project to other environments:

$ drush @none pm-download \

 --destination=sites/all/drush/commands registry_rebuild

The directory sites/all/drush/commands does not exist.

Would you like to create it? (y/n): y

Project registry_rebuild (7.x-2.2) downloaded to /.../sites/all/drush/
commands/registry_rebuild. [success]

Project registry_rebuild contains 0 modules: .

Note the use of @none right before the command name while downloading Registry
Rebuild. The @none alias is a Drush site alias. In essence, a Drush alias contains
an array that defines where a Drupal project is and how it can be accessed. The
@none Drush site alias is a special one as it tells Drush not to attempt bootstrapping
a Drupal project at all. We need @none in this case because if we don't use it, Drush
would discover that our current directory is a Drupal project and would try to
bootstrap it, thus crashing again. We will cover site aliases in Chapter 5, Managing
Local and Remote Environments.

In the preceding output, Drush informs us that Registry Rebuild does not have
any modules. However, it just implements the registry-rebuild command, which
we will use now to fix Drupal's registry:

$ drush registry-rebuild

The registry has been rebuilt via registry_rebuild (A). [success]

All caches have been cleared with drush_registry_rebuild_cc_all.
 [success]

The registry has been rebuilt via drush_registry_rebuild_cc_all (B).
 [success]

All caches have been cleared with drush_registry_rebuild_cc_all.
 [success]

All registry rebuilds have been completed. [success]

Now, if we open again the node page in our web browser or navigate through our
Drupal site, we won't see any errors. The drush cache-clear all command will
work as well.

Chapter 2

[29]

It is safe to rebuild the registry as it ensures that Drupal can bootstrap successfully.
This is the reason why it is executed in the first place at the update_path.sh script.

Running database updates
Right after rebuilding the registry, the next thing that needs to be done to get code
and configuration in sync is to run all pending database updates found in Drupal
core, contributed, and custom modules. A database update can involve creating new
tables to store field data, add indexes, populate existing data, and so on.

Creating a database update involves implementing hook_update_N() (https://api.
drupal.org/api/drupal/modules%21system%21system.api.php/function/hook_
update_N/7). This hook has the following signature: hook_update_N(&$sandbox),
where $sandbox is an array that keeps track of the state and progress of the database
update. Let's see it in action with a practical example; imagine that we want to add
a Boolean field to our Basic Page content type called Flag with a default value of 0
(zero). Here is Drupal's administration interface where we will add the field:

There is a problem with this setup; although the new content of type Page will have
the Flag field set to zero, the existing content has a value of NULL because the table
that stores data for our new Flag field is empty. This will cause the Views conditions
or custom code that relies on the Flag field to be zero to return odd results. See the
following SQL query, where we list the contents of the table containing data for
the Flag field:

$ cd /home/juampy/projects/example

https://api.drupal.org/api/drupal/modules%21system%21system.api.php/function/hook_update_N/7
https://api.drupal.org/api/drupal/modules%21system%21system.api.php/function/hook_update_N/7
https://api.drupal.org/api/drupal/modules%21system%21system.api.php/function/hook_update_N/7

Keeping Database Configuration and Code Together

[30]

$ drush sql-cli

Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> select * from field_data_field_flag;

Empty set (0.00 sec)

Confirmed! There is no value for existing content at the Flag field. We need to write
a database update that sets field_flag = 0 on the existing content. Assuming
that we have a custom module called mymodule already installed at sites/all/
modules/custom/mymodule, here is a database update for mymodule.install:

<?php
/**
 * @file
 *
 * Install hook implementations for module mymodule.
 */

/**
 * Set default value of 0 for field_flag on existing content.
 */
function mymodule_update_7100(&$sandbox) {
 // Load up all Basic Page nodes.
 $query = new EntityFieldQuery();
 $query->entityCondition('entity_type', 'node')
 ->entityCondition('bundle', 'page');
 $results = $query->execute();

 // Loop over each page node and set field_flag to 0.
 foreach (node_load_multiple(array_keys($results['node'])) as $node)
 {
 $node->field_flag[LANGUAGE_NONE][0]['value'] = 0;
 node_save($node);
 }
}

If you have a large amount of content, this database update should
make use of the Batch API so that it can process nodes in chunks
in order to avoid hitting memory limits or timeouts. Take a look at
the Code section at https://api.drupal.org/api/drupal/
modules%21system%21system.api.php/function/hook_
update_N/7 for further documentation.

https://api.drupal.org/api/drupal/modules%21system%21system.api.php/function/hook_update_N/7
https://api.drupal.org/api/drupal/modules%21system%21system.api.php/function/hook_update_N/7
https://api.drupal.org/api/drupal/modules%21system%21system.api.php/function/hook_update_N/7

Chapter 2

[31]

Now, let's run database updates to see the database update in action:

$ drush --verbose updatedb

 Mymodule 7100 Set default value of 0 for field_flag on existing
content.

 Do you wish to run all pending updates? (y/n): y

 Executing mymodule_update_7100 [notice]

 Performed update: mymodule_update_7100 [ok]

 'all' cache was cleared. [success]

 Finished performing updates. [ok]

Once we have run database updates, we can verify that the existing content has the
right default values by inspecting the database:

$ drush sql-cli

Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> select entity_id, field_flag_value from field_data_field_flag;

+-----------+------------------+

| entity_id | field_flag_value |

+-----------+------------------+

| 1 | 0 |

| 2 | 0 |

| 3 | 0 |

| 4 | 0 |

+-----------+------------------+

We can see that each node has a value of 0 for the Flag field, which is what we
initially wanted. Now that we know how to write and execute database updates in
Drush, let's move on to the next step in the update path.

Managing features
The Features module is the standard tool to export configuration into code for Drupal
projects, so it can be under version control systems such as Git. The Features module
is not perfect though and it can frustrate you at times until you understand how it
works and its limitations (at least, that has been my personal experience with it so
far). However, with the examples that we will see in this chapter, you will get a good
understanding of it. Drush will be present throughout the whole process, of course.

Keeping Database Configuration and Code Together

[32]

There are two processes that we will use while working with the Features module:

• Exporting configuration from the database into a module's code: This can
be achieved through the features-export command

• Importing configuration components located in a module's code into the
database: This can be achieved through the features-revert command.

A common scenario involving these two processes is when you add a new field
in your local environment and want this field to be installed in the development
environment. You would export the field into the code at your local environment,
then push your changes to the repository, and finally log in to the development
environment to pull code changes and import the new configuration. Let's see the
whole process with an example.

Feature components can be safely exported into custom
modules that already contain code in their module file.

Exporting configuration into code
Let's start by taking the field we added in the previous section (field_flag) and
export it into a custom module. The first thing to do is to download and install the
Features module:

$ drush pm-download features

Project features (7.x-2.2) downloaded to/.../sites/all/modules/contrib/
features. [success]

$ drush --yes pm-enable features

The following extensions will be enabled: features

Do you really want to continue? (y/n): y

features was enabled successfully. [ok]

Once the Features module has been installed, we can export the field into code.
A field is composed of a field base, which contains the field definition and default
settings, and a set of field instances. Each instance represents a field attached to an
entity. In this case, we have one field base (field_flag) and one field instance (the
Flag field attached to the Basic Page content type). We are going to export these
two into the existing custom module mymodule. The first thing we need to do is to
figure out the machine name of the field base:

$ drush features-components

Enter a number to choose which component type to list.

 [0] : Cancel

Chapter 2

[33]

 [1] : all

 [2] : dependencies

 [3] : field_base

 [4] : field_instance

 [5] : filter

 [6] : image

 [7] : menu_custom

 [8] : menu_links

 [9] : node

 [10] : taxonomy

 [11] : user_permission

 [12] : user_role

 [13] : views_view

3

 Available sources

 field_base:body

 field_base:field_flag

 field_base:comment_body

 field_base:field_tags

 field_base:field_image

We found it. field_base:field_flag is the field base of our Flag field. Let's export
it into the module mymodule:

$ drush features-export mymodule field_base:field_flag

Module located at sites/all/modules/custom/mymodule will be updated. Do
you want to continue? (y/n): y

Created module: mymodule in sites/all/modules/custom/mymodule [ok]

Now, we will repeat the operation for the field instance of Flag:

$ drush features-components

Enter a number to choose which component type to list.

 [0] : Cancel

 [1] : all

 [2] : dependencies

 [3] : field_base

 [4] : field_instance

 [5] : filter

Keeping Database Configuration and Code Together

[34]

 [6] : image

 [7] : menu_custom

 [8] : menu_links

 [9] : node

 [10] : taxonomy

 [11] : user_permission

 [12] : user_role

 [13] : views_view

4

 Available sources

 field_instance:comment-comment_node_article-comment_body

 field_instance:comment-comment_node_page-comment_body

 field_instance:node-article-body

 field_instance:node-article-field_image

 field_instance:node-article-field_tags

 field_instance:node-page-body

 field_instance:node-page-field_flag

Gotcha, the field instance is called field_instance:node-page-field_flag. Now,
we can export it into the module mymodule:

$ drush features-export mymodule field_instance:node-page-field_flag

Module located at sites/all/modules/custom/mymodule will be updated. Do
you want to continue? (y/n): y

Created module: mymodule in sites/all/modules/custom/mymodule [ok]

That's it. Now, we have the field base and field instance of the Flag field exported
into code. Let's move on to the next step.

The user interface to export the feature components is more user friendly than the
command-line interface; so, when in doubt, open it in a browser by navigating to
Structure | Features | Create / Recreate and then select which components you
want to export. Importing configuration into the database.

Let's try to delete the Flag field in our local environment and then run features-
revert on the module mymodule so that its configuration gets imported into the
database. The result should be that the Flag field gets reinstalled:

$ drush field-delete field_flag

Do you want to delete the field_flag field? (y/n): y

Chapter 2

[35]

Drush has deleted the Flag field. We will now list the available fields to verify that
field_flag is not present:

$ drush field-info fields

 Field name Field type

 comment_body text_long

 body text_with_summary

 field_tags taxonomy_term_reference

 field_image image

It is now confirmed that field_flag is not listed in the preceding code. Now, we
will revert the module mymodule, so the exported Flag field that it contains gets
installed back into the database again:

$ drush features-revert mymodule

Do you really want to revert mymodule.field_base? (y/n): y

Reverted mymodule.field_base. [ok]

Do you really want to revert mymodule.field_instance? (y/n): y

Reverted mymodule.field_instance. [ok]

Finally, let's list again the available fields in the database:

$ drush field-info fields

 Field name Field type

 comment_body text_long

 body text_with_summary

 field_tags taxonomy_term_reference

 field_image image

 field_flag list_boolean

As we can see, in the preceding output, the field has been installed in our database.
This was, at the bare minimum, the process of exporting and then importing
configuration using the Features module. This strategy is used to apply new
configuration in other environments, which is what we will do in the following
section: Running the update path on a different environment.

The examples that we covered so far in this chapter taught us to write database
updates and export configuration into a module. This should be enough insight
to deploy our code into a different environment (for example, the development
environment), and then run the updatepath.sh script in order to import the
new configuration.

Keeping Database Configuration and Code Together

[36]

Running the update path on a different
environment
So far in this chapter, we created a Flag field, exported it to an existing custom
module called mymodule, and then wrote a database update that sets its default value
to zero on the existing content. Let's suppose that we have committed this code to a
version control system such as Git and then deployed it
to the development environment, where:

• Drush is installed
• The Features module is installed in the Drupal project
• The custom module mymodule was installed, but it did not have the new code

that we just deployed
• The script that contains the update path is located at /var/www/exampledev/

update_path.sh

If we run the update path script on this environment, we should expect the Flag
field to be added and set to zero for the existing content. Let's run it to see if we
are right:

(Development) $ cd /var/www/exampledev/docroot

(Development) $ sh -x ../update_path.sh

Starting update path for 'current site'

We have initiated the execution of the update path script. We added the -x flag so
that we can see each command within update_path.sh being executed and listed in
the following output with a plus sign at the start of the line:

+ drush --verbose registry-rebuild

The registry has been rebuilt via registry_rebuild (A). [success]

All caches have been cleared with drush_registry_rebuild_cc_all.
 [success]

The registry has been rebuilt via drush_registry_rebuild_cc_all (B).
 [success]

There were 139 files in the registry before and 139 files now. All
caches have been cleared with drush_registry_rebuild_cc_all. [success]

All registry rebuilds have been completed. [success]

The first step was completed and the registry has been rebuilt. Now, let's see the
database update in action:

+ drush --verbose --yes updatedb

Chapter 2

[37]

Mymodule 7100 Set default value of 0 for field_flag on existing
content.

Do you wish to run all pending updates? (y/n): y

Executing mymodule_update_7100

Performed update: mymodule_update_7100 [ok]

'all' cache was cleared. [success]

+ drush --verbose cache-clear drush

'drush' cache was cleared. [success]

Our custom database update was completed successfully. Now, it's time to revert the
exported components with the Features module:

+ drush --verbose --yes features-revert-all

The following modules will be reverted: mymodule

Do you really want to continue? (y/n): y

Reverted mymodule.field_base. [ok]

Reverted mymodule.field_instance. [ok]

The Features module found new components in the module mymodule and
imported them; so, the new Flag field has been created. We complete the process by
moving on to the last step that consists of clearing all caches:

+ drush --verbose --yes cache-clear all

'all' cache was cleared. [success]

+ echo Update path completed.

Update path completed.

Analyzing results
The update path was completed successfully. Let's check whether the Flag field has
been created:

(Development) $ drush field-info fields

 Field name Field type

 comment_body text_long

 body text_with_summary

 field_tags taxonomy_term_reference

 field_image image

 field_flag list_boolean

www.allitebooks.com

http://www.allitebooks.org

Keeping Database Configuration and Code Together

[38]

This is correct. The Flag field exists in the database. Now, let's make sure that the
existing content has the correct default value:

(Development) $ drush sql-cli

Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> select * from field_data_field_flag;

Empty set (0.00 sec)

Wait! Why does the existing content not have the Flag field set to zero when we
ran this same database update in our local environment? The reason is that the
update path script runs database updates before importing configuration, so by the
time our database update was executed, the Flag field was not installed yet. In the
following section, we will fix this by programmatically installing the field during
the database update.

We could alter the update path script so that it runs drush features-revert-all
before running database updates, but this would make it impossible to make changes
in the database before importing a new configuration.

Reverting the feature components
programmatically
As we saw in the previous section, there are cases where we need to import
configuration manually before we run database updates. Therefore, we will add a
new database update to the module mymodule where we do the following:

• Import the Flag field configuration located at module mymodule
• Make sure that the field is created and throws an error otherwise
• Set a default value for this field for the existing content

Here is sites/all/modules/custom/mymodule/mymodule.install with the
new database update:

<?php
/**
 * @file
 *
 * Install hook implementations for module mymodule.
 */

/**
 * Dummy database update.

Chapter 2

[39]

 */
function mymodule_update_7100(&$sandbox) {
 // This database update failed so we have moved the code
 // to the next database update with a few adjustments.
}

/**
 * Set default value of 0 for field_flag on existing content.
 */
function mymodule_update_7101(&$sandbox) {
 // Import field Flag into the database.
 $items['mymodule'] = array('field_base', 'field_instance');
 features_revert($items);

 // Make sure that the field Flag has been installed.
 if (empty(field_info_instance('node', 'field_flag', 'page'))) {
 $t_args = array('@function' => __FUNCTION__);
 throw new DrupalUpdateException(t('Field flag was not found in
 update @function.', $t_args));
 }

 // Load up all Basic Page nodes.
 $query = new EntityFieldQuery();
 $query->entityCondition('entity_type', 'node')
 ->entityCondition('bundle', 'page');
 $results = $query->execute();
 // Loop over each Page node and set field_flag to 0.
 foreach (node_load_multiple(array_keys($results['node'])) as
 $node) {
 $node->field_flag[LANGUAGE_NONE][0]['value'] = 0;
 node_save($node);
 }
}

We removed code at mymodule_update_7100() as it failed and then added a new
database update at mymodule_update_7101() where it first installs the Flag field
before we work with it. Now, we can push this database update to the development
environment. Once the code is here, we can run the update path script again:

(Development) $ cd /var/www/exampledev/docroot

(Development) $ sh ../scripts/update_path.sh

Starting update path.

...

Keeping Database Configuration and Code Together

[40]

Executing mymodule_update_7101 [notice]

WD features: Revert completed for mymodule / field_base. [notice]

WD features: Revert completed for mymodule / field_instance. [notice]

Performed update: mymodule_update_7101 [ok]

...

Update path completed.

As we can see, in the preceding code, the feature components in the module
mymodule were imported during the database update, thus installing the Flag field.
The following code confirmed that the Flag field was created:

 // Make sure that the field Flag has been installed.
 if (empty(field_info_instance('node', 'field_flag', 'page'))) {
 $t_args = array('@function' => __FUNCTION__);
 throw new DrupalUpdateException(t('Field flag was not found in
 update @function.', $t_args));
 }

We can finally verify that the existing content has the default value of 0 for the
Flag field:

(Development) $ drush sql-cli

Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> select entity_id, field_flag_value from field_data_field_flag;

+-----------+------------------+

| entity_id | field_flag_value |

+-----------+------------------+

| 8 | 0 |

| 9 | 0 |

| 10 | 0 |

| 11 | 0 |

| 12 | 0 |

| 13 | 0 |

+-----------+------------------+

6 rows in set (0.00 sec)

Yippee! The field has been installed and it has the right value for the existing content.

Chapter 2

[41]

Summary
Keeping code and configuration together is one of the most important challenges in
a Drupal project. In this chapter, we covered a strategy to accomplish this challenge,
using a script that we called the update path. Next, we went through each of its steps
in detail, explaining some useful scenarios in order to gain further insight into what
these are meant to accomplish.

We started by explaining what Drupal's registry is and how to make sure that it
does not break while bootstrapping, using the registry-rebuild Drush command.
We actually broke the registry of a sample Drupal project and demonstrated how
Registry Rebuild can get it back to work.

The next step in the update path discussed running database updates. We wrote a
custom database update on a module and then executed it using Drush. The last step
on the update path consisted of importing configuration using the Features module.
Thanks to the Features module, we are able to export all sorts of configuration from
a Drupal project into code, so it can be under version control and then deployed in
other environments.

In the next chapter, we will dive into running tasks in Drupal projects. Drush has a
lot of tools in its belt for this, which we will discover through practical examples.

Running and Monitoring
Tasks in Drupal Projects

Looking at Wikipedia for the definition of a task (http://en.wikipedia.org/wiki/
Task), I found two of them. Here they are:

• In project management, an activity that needs to be accomplished within a
defined period of time

• In computing, a program execution context

Some examples of tasks in Drupal projects are clearing caches, indexing content into
a search engine, or importing content from a third-party API. These can be classified
in the following types:

• One-off: This includes Drupal's database updates
• On demand: This includes reindexing all content in Apache Solr
• Periodic: This would be the case of Drupal's cron

Drush is really good at running long tasks in an isolated process. It supports both
Batch and Queue APIs, so the workload can be either split into batches or workers,
respectively. In this chapter, we will see some tips and examples of best practices to
run tasks against a Drupal project using Drush. Here are the main topics:

• Running periodic tasks with cron
• Running a task outside cron
• Running long tasks in batches
• Evaluating code on the fly and running scripts
• Logging messages in Drush
• Redirecting Drush output into a file
• Running a command in the background

http://en.wikipedia.org/wiki/Task
http://en.wikipedia.org/wiki/Task

Running and Monitoring Tasks in Drupal Projects

[44]

Running periodic tasks with cron
The first place to go to set up periodic tasks is Drupal's cron (https://www.drupal.
org/cron). Cron is a built-in tool that runs periodically to perform tasks such as
clearing caches, checking for updates, or indexing content subject to be searched.
Modules can implement hook_cron() (https://api.drupal.org/api/drupal/
modules%21system%21system.api.php/function/hook_cron/7) in order to have
their tasks executed via cron.

Drupal's default behavior is to run cron automatically every three hours. It can also
be triggered manually through the administration interface or using Drush. Running
cron with Drush is desirable for the following reasons:

• Drush runs using a different PHP.ini configuration than the web server that
does not have a request timeout. Furthermore, other PHP variables such as
memory_limit can be adjusted to higher values, if needed.

• Cron's output can be logged in to a file and monitored, so actions can be
taken if there is an error.

• Drush can easily trigger cron on remote Drupal sites.

It is desirable to evaluate which tasks run in Drupal's cron and how often it runs.
Here are some examples of what could happen if you don't keep an eye on this:

• If cron takes too long to complete, it won't run at the frequency that you set it
to and tasks will pile up.

• If cron has to run tasks A, B, and C, and if task B provokes a PHP error, the
whole process will terminate and task C won't be processed. This gets worse
over time if the PHP error keeps happening on successive runs as task C
won't be processed until the error is fixed.

Disabling Drupal's cron
Drupal has a mechanism to trigger cron automatically by injecting a small piece
of AJAX within a client's response, which makes a request to http://mysite.
example.com/cron.php?cron_key=some_token. If we are about to trigger Drupal's
cron exclusively through Drush, then we should disable this.

https://www.drupal.org/cron
https://www.drupal.org/cron
https://api.drupal.org/api/drupal/modules%21system%21system.api.php/function/hook_cron/7
https://api.drupal.org/api/drupal/modules%21system%21system.api.php/function/hook_cron/7

Chapter 3

[45]

Verifying the current cron frequency
The Drupal variable that defines how often cron should be triggered is called cron_
safe_threshold. This variable has a default value in Drupal's source code of 10800
seconds (3 hours) while Drush hardcodes it to 0. Let's check the current value of the
variable in a clean Drupal project:

$ cd /home/juampy/projects/drupal

$ drush variable-get cron_safe_threshold

cron_safe_threshold: 0

We see that it has a value of 0. However, this time, Drush is fooling us as it
hardcodes it to 0 while bootstrapping Drupal. Drupal's variables are first searched
in the variable table of the database and then they can be overridden via the global
$conf variable (this is normally done in settings.php). Let's look for this variable
in the database to see whether it has a value:

$ cd /home/juampy/projects/drupal

$ drush sql-cli

Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> select value from variable where name = 'cron_safe_threshold';

Empty set (0.00 sec)

mysql> exit

Bye

Gotcha! The variable does not exist in the database. Let's open the Cron settings page
at Drupal's administration interface to see what is set there:

Running and Monitoring Tasks in Drupal Projects

[46]

As we can see, it is set to 3 hours. The reason is that Drupal requests the value for
this field from the Drupal variable cron_safe_threshold. If this variable is not set,
it defaults to the constant DRUPAL_CRON_DEFAULT_THRESHOLD, which has a value of 3
hours. Here is the line of code in Drupal core for this particular page:

./modules/system/system.admin.inc:1634:
'#default_value' => variable_get('cron_safe_threshold',
 DRUPAL_CRON_DEFAULT_THRESHOLD),

Overriding cron frequency and exporting it to code
Now, we will set this variable to 0 in the database and then export it into code with
the Features module, which we have already installed in the previous chapter. In
order to export Drupal variables into code, we need to download and install the
Strongarm module (https://www.drupal.org/project/strongarm):

$ drush pm-download strongarm

Project strongarm (7.x-2.0) downloaded

 to sites/all/modules/contrib/strongarm. [success]

$ drush --yes pm-enable strongarm

The following extensions will be enabled: strongarm, ctools

Do you really want to continue? (y/n): y

strongarm was enabled successfully. [ok]

ctools was enabled successfully. [ok]

Next, let's set the value of the cron_safe_threshold variable to 0 in the database:

$ drush variable-set cron_safe_threshold 0

cron_safe_threshold was set to "0". [success]

Next, we will check whether the right value has been set in the database. Remember
that when we looked for it before, the value did not exist in the variable table:

$ drush sql-cli

Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> select value from variable where name = 'cron_safe_threshold';

+----------+

| value |

+----------+

| s:1:"0"; |

+----------+

1 row in set (0.00 sec)

https://www.drupal.org/project/strongarm

Chapter 3

[47]

That's correct. We now have the right value in the database as a serialized string,
therefore, we can export it into code. The Features module classifies Drupal
configuration into component types such as field_base, image, or user_role. The
features-components command lists all available components to be exported. Let's
figure out the component's machine name for the cron_safe_threshold variable:

$ drush features-components

Enter a number to choose which component type to list.

 [0] : Cancel

 [1] : all

 [2] : dependencies

 [3] : field_base

 [4] : field_instance

 [5] : filter

 [6] : image

 [7] : menu_custom

 [8] : menu_links

 [9] : node

 [10] : taxonomy

 [11] : user_permission

 [12] : user_role

 [13] : variable

13

 Available sources

 variable:admin_theme

 variable:clean_url

 variable:comment_page

 variable:cron_key

 variable:cron_last

 variable:cron_safe_threshold

 variable:css_js_query_string

 ...

www.allitebooks.com

http://www.allitebooks.org

Running and Monitoring Tasks in Drupal Projects

[48]

We found it. The component machine name is variable:cron_safe_threshold. As
this is a site-wide setting, we will create a new module called mysite and store the
variable here. This module can also accommodate site-wide custom code:

$ drush features-export mysite variable:cron_safe_threshold

Will create a new module in sites/all/modules/mysite

Do you really want to continue? (y/n): y

Created module: mysite in sites/all/modules/mysite [ok]

Now, we can commit these changes into our version control system and deploy
them into other environments, so that Drupal won't run cron automatically once the
configuration has been imported with the features-revert command. We are now
ready to set up cron with Drush, which we will cover in the following section.

Running cron with Drush
This is how we can run cron with Drush:

$ cd /home/juampy/projects/drupal

$ drush core-cron

Cron run successful. [success]

Some cron tasks, such as indexing content with Apache Solr's search engine, need to
know the current hostname. Drush is unable to figure this out by itself, so we will
provide this information with the --uri option, as in the following example:

$ drush --uri=http://d7.local core-cron

Cron run successful. [success]

Scheduling cron runs with Jenkins
There are several ways to run cron periodically with Drush. The most common
ones are:

• Using Linux's crontab (http://en.wikipedia.org/wiki/Cron), a
command-line job scheduler

• Using a Continuous Integration system such as Jenkins (http://jenkins-
ci.org)

http://en.wikipedia.org/wiki/Cron
http://jenkins-ci.org
http://jenkins-ci.org

Chapter 3

[49]

For the former, there is plenty of documentation within the drush topic docs-
cron command, so we won't cover this option although it is worth reading it. The
latter has the benefit that it provides a web interface that makes it very easy to
monitor and trigger alerts, such as sending an e-mail when Drupal cron fails. In the
following section, we will set up Jenkins to run Drupal's cron.

Installing Jenkins
Jenkins can run jobs in the local environment where it is installed and in remote
environments, providing a set of SSH credentials (http://en.wikipedia.org/
wiki/Secure_Shell). In this case, we will go for the simplest possible example; we
will install Jenkins in our local environment to trigger cron for our Drupal project.

The installation process for Jenkins varies depending on the operating system, so
refer to the official documentation at https://wiki.jenkins-ci.org/display/
JENKINS/Installing+Jenkins in order to get it working.

Once the installation is complete, open http://localhost:8080 in your web
browser and proceed to create the job that will run Drupal's cron.

Creating a job through the web interface
We will now create and configure the job that will run and monitor Drupal's cron
runs. Let's start by clicking on New Item in the top-left corner of the web interface
and fill in the form to create our new job:

http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/Secure_Shell
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins

Running and Monitoring Tasks in Drupal Projects

[50]

We have called our job Cron runner and chose the Freestyle project type. Once we
submit the form, we are redirected to the job settings form. The first thing we want
to set is how often this job will run. In the following screenshot, we will set it to run
every two hours:

The syntax used to define the frequency of execution is very similar to the one for
crontab. This syntax is flexible but tricky, so to make sure we got it right, Jenkins
prints a human-readable version of what we entered right under the Schedule
text area.

The next section to complete in this form is to add Build steps to the job. For this, we
will have just one build step that will consist of running a few commands in order to
run Drupal's cron through Drush. The following screenshot illustrates this:

Chapter 3

[51]

If there are any errors in the preceding step when the job is running, Jenkins will
notice them as it will evaluate the output. This is useful for the following section that
we will configure: Post-build Actions. We will add an action here to be notified via
e-mail if a build fails:

We are done setting up our Jenkins job. We can now click on Save and build the
job manually by clicking on Build Now on the left sidebar to test it. Here is the
output of the job:

Started by user anonymous

[EnvInject] - Loading node environment variables.

[EnvInject] - Preparing an environment for the build.

[EnvInject] - Keeping Jenkins system variables.

[EnvInject] - Keeping Jenkins build variables.

[EnvInject] - Injecting contributions.

Building in workspace /var/lib/jenkins/jobs/Cron runner/workspace

[workspace] $ /bin/sh -xe /tmp/hudson1449097994163880172.sh

+ cd /home/juampy/projects/drupal

+ /usr/share/drush/drush --verbose cron --uri=http://d7.local

Initialized Drupal 7.29-dev root directory at

 /home/juampy/projects/drupal [notice]

Initialized Drupal site d7.local at sites/default [notice]

Indexing node 316. [ok]

Cron run successful. [success]

Finished: SUCCESS

As we can see from the preceding output, it is like running the command directly.
Now, we can let Jenkins take care of running cron for us from now on.

Running and Monitoring Tasks in Drupal Projects

[52]

Monitoring cron runs
Jenkins will keep a list of past builds with all its related information such as input
parameters, start and end time, output, and some useful statistics that will help you
figure out the status of the job:

This was just a basic example of how to set up a Jenkins job to run Drupal's cron
with Drush. Jenkins has a huge community that maintains a long list of plugins that
extend its functionality. You can browse them at the official website (https://wiki.
jenkins-ci.org/display/JENKINS/Plugins) or by navigating to Manage Jenkins
| Manage Plugins through the administration interface of your Jenkins installation.

Running a task outside cron
So far in this chapter, we have seen how to disable Drupal's automatic cron and
how to schedule it to be run by Drush. Now, we have got to the point where we
can evaluate whether there are any tasks running at cron in our Drupal project that
should be moved out of it.

https://wiki.jenkins-ci.org/display/JENKINS/Plugins
https://wiki.jenkins-ci.org/display/JENKINS/Plugins

Chapter 3

[53]

Here are the reasons why a task that runs within hook_cron() (https://api.
drupal.org/api/drupal/modules%21system%21system.api.php/function/
hook_cron/7) might need to be moved to its own process:

• The task might take a variable time to complete; sometimes, it will run in a
couple of seconds, whereas for others, it might take an hour

• You want to run the task manually if you need to, and enter different input
parameters depending on the circumstances

• The task's runtime log is highly valuable; therefore, it has to be saved into a
different logfile with its own purging strategy

Whatever the reason, you can run any code within a custom Drush command
and then schedule its processing through any of the methods mentioned in the
previous section.

Example – moving a Feeds importer from
Drupal's cron to Drush
Modules add their tasks to Drupal's cron through hook_cron(). The Feeds
module (https://www.drupal.org/project/feeds), for example, can import
content from external sources with cron. Let's suppose that we have a Feeds
importer that reads BBC's World Service RSS feed (http://feeds.bbci.co.uk/
news/world/rss.xml) and creates articles in our Drupal site. We initially
configured the Feeds importer to run within Drupal's cron, but for now, we want
to create a Drush command that triggers it so that we can run this process out of
hook_cron() in an independent process.

https://api.drupal.org/api/drupal/modules%21system%21system.api.php/function/hook_cron/7
https://api.drupal.org/api/drupal/modules%21system%21system.api.php/function/hook_cron/7
https://api.drupal.org/api/drupal/modules%21system%21system.api.php/function/hook_cron/7
https://www.drupal.org/project/feeds
http://feeds.bbci.co.uk/news/world/rss.xml
http://feeds.bbci.co.uk/news/world/rss.xml

Running and Monitoring Tasks in Drupal Projects

[54]

Exporting the Feeds importer into code
The first thing that we should do is to disable the Feeds importer from running
in cron. Here is what the main settings of our feed look like in Drupal's
administration interface:

Now, in order to have everything in one module, we will export the Feeds importer
into code and then write a custom Drush command to trigger it from the command
line. In order to export the Feeds importer, we need to figure out its component
machine name with the Features module:

$ drush features-components

Enter a number to choose which component type to list.

 [0] : Cancel

 [1] : all

 [2] : dependencies

 [3] : feeds_importer

 [4] : field_base

 [5] : field_instance

Chapter 3

[55]

 [6] : filter

 [7] : image

 [8] : menu_custom

 [9] : menu_links

 [10] : node

 [11] : taxonomy

 [12] : user_permission

 [13] : user_role

 [14] : variable

 [15] : views_view

3

 Available sources

 feeds_importer:bbc_world_news

 feeds_importer:node Provided by: feeds_import

 feeds_importer:opml Provided by: feeds_news

 feeds_importer:user Provided by: feeds_import

The Feeds importer's machine name is feeds_importer:bbc_world_news. We can
now export it to a new custom module:

$ drush features-export newsfetcher \

 --destination=sites/all/modules/custom feeds_importer:bbc_world_news

Will create a new module in sites/all/modules/custom/newsfetcher

Do you really want to continue? (y/n): y

Created module: newsfetcher in sites/all/modules/custom/newsfetcher

[ok]

Writing a Drush command to trigger the Feeds
importer
When we exported the feed into code, we created a custom module: newsfetcher.
We will now add a custom Drush command at sites/all/modules/custom/
newsfetcher/newsfetcher.drush.inc that will take care of triggering the import
process. Here are its contents:

/**
 * Implements hook_drush_command().
 *
 * Defines the command to fetch news.
 */

Running and Monitoring Tasks in Drupal Projects

[56]

function newsfetcher_drush_command() {
 $items = array();
 $items['news-fetch'] = array(
 'description' => "Fetches latest news from BBC's RSS feed.",
);
 return $items;
}

The preceding code uses the bare minimum settings to define a Drush command.
The following function is the command implementation:

/**
 * Implements drush_hook_COMMAND().
 *
 * Callback for news-fetch Drush command.
 */
function drush_newsfetcher_news_fetch() {
 // Load the Feeds importer.
 $source = feeds_source('bbc_world_news');

 // Set the import URL.
 $fetcher_config = $source->getConfigFor($source->importer-
 >fetcher);
 $fetcher_config['source'] =
 'http://feeds.bbci.co.uk/news/world/rss.xml';
 $source->setConfigFor($source->importer->fetcher,
 $fetcher_config);
 $source->save();

 // Execute the import.
 $source->startImport();
}

In order to test our new command, let's install our newsfetcher module and then
run it to see its result:

$ drush pm-enable newsfetcher

The following extensions will be enabled: newsfetcher

Do you really want to continue? (y/n): y

newsfetcher was enabled successfully. [ok]

$ drush news-fetch

Created 55 nodes. [status]

Chapter 3

[57]

That's it! Now, we can run this task either manually or by scheduling it through
crontab or any other job scheduling mechanism. As we just saw, the process of
moving a task out of cron consists of figuring out how the task integrates with
Drupal's cron, then disabling this integration, and finally writing a custom Drush
command that triggers the task.

If you want to read further on how to write custom Drush commands, take a look
at the Drush documentation by running drush topic docs-commands and drush
topic docs-examplecommand. The drushify command is a very helpful resource
too as it creates a template command file for a given module (https://www.drupal.
org/project/drushify).

Running long tasks in batches
There might be times where a task (for example, a Drush command or a PHP script)
might take so long to complete that it hits one of PHP's constraints such as memory_
limit, max_execution_time, or max_input_vars. In these cases, when you foresee
that a task might take a considerable amount of time or resources to complete, it is
safer to split the work into chunks that can be completed in smaller, independent, and
consecutive processes. This is what Drupal's Batch API (https://www.drupal.org/
node/180528) is for. In this section, we will explain how it works and examine how a
contributed module uses it in order to complete a large task safely.

The most common errors we might find during a long process are:

• Allowed memory size of [some number] bytes exhausted: This means
that our script attempted to use more memory than the maximum allowed to
PHP at the memory_limit setting.

• Fatal error: Maximum execution time of 30 seconds exceeded: This
means that our script took longer than the maximum amount of seconds
defined by the PHP setting max_execution_time.

• MySQL server has gone away: This happens when we hit a timeout in the
MySQL server. It can be provoked for various reasons (http://dev.mysql.
com/doc/refman/5.0/en/gone-away.html) and sometimes can be fixed by
adjusting my.cnf, but in essence, this is just another symptom of the fact that
our process is trying to accomplish too much in just one go.

Drupal's Batch API is tricky. The real challenge is not that the API is badly
architected, but that you need to make sure that the code that will run on each pass
does not hit any PHP constraint.

www.allitebooks.com

https://www.drupal.org/project/drushify
https://www.drupal.org/project/drushify
https://www.drupal.org/node/180528
https://www.drupal.org/node/180528
http://dev.mysql.com/doc/refman/5.0/en/gone-away.html
http://dev.mysql.com/doc/refman/5.0/en/gone-away.html
http://www.allitebooks.org

Running and Monitoring Tasks in Drupal Projects

[58]

This book won't cover Queue API. If you are interested, you
can research its API reference section at https://api.
drupal.org/api/drupal/modules!system!system.
queue.inc/group/queue/7.

A sample Drush command using the
Batch API
Content revisioning is one of the most powerful features of Drupal. It gives editors
the chance to edit a node and, if they are unhappy with their edits, they can roll back
to a previous version of the content. The drawback of this feature is that the database
size can grow quite quickly in certain scenarios. Here are a couple of them:

• A particular set of nodes is constantly being updated by editors; thus, the
amount of revisions for them can grow up to hundreds or even thousands,
which affects its performance

• A Feeds importer that runs periodically updates a long list of nodes on every
run, generating new revisions for these nodes, which would increase the
database size considerably over time

There might be some cases when we realize that we do not even need revisioning
for a given content type. If this is the case, we can switch it off at the content type
settings (warning, you will still need to delete old revisions of the existing content
in order to recover the database space). In other content types such as Page and
Article, you might prefer to keep the latest 10 revisions and automatically delete
the older ones.

The Node Revision Delete module (https://www.drupal.org/project/node_
revision_delete) is a contributed module used to delete old revisions of content.
It can perform this task periodically through Drupal's cron or can be triggered
through the administration interface or Drush. When run from Drupal's cron, it will
just delete a few revisions. When triggered through the administration interface or
Drush, it will delete all the older revisions of the selected content types. The latter
can be quite a lengthy process on databases with a lot of revisions.

The following is the approach of the Node Revision Delete module: you first run
the Drush command in order to do an initial, long, content revision pruning.
Then, through the administration interface, you configure the module; so on
every cron run, it evaluates whether it has to delete revisions from a list of selected
content types.

https://api.drupal.org/api/drupal/modules!system!system.queue.inc/group/queue/7
https://api.drupal.org/api/drupal/modules!system!system.queue.inc/group/queue/7
https://api.drupal.org/api/drupal/modules!system!system.queue.inc/group/queue/7
https://www.drupal.org/project/node_revision_delete
https://www.drupal.org/project/node_revision_delete

Chapter 3

[59]

Here is the command implementation. Note the use of the Batch API in order to
prepare the job:

// http://cgit.drupalcode.org/node_revision_delete/
 tree/node_revision_delete.drush.inc#n37
/**
 * Implements drush_COMMANDFILE_COMMANDNAME().
 */
function drush_node_revision_delete($content_type,
 $revisions_to_keep) {
 // Set up the batch job.
 $batch = array(
 'operations' => array(
 array('node_revision_delete_batch_process', array($content_type,
$revisions_to_keep))
),
 'title' => t('Node Revision Delete batch job'),
 'init_message' => t('Starting...'),
 'error_message' => t('An error occurred'),
 'finished' => 'node_revision_delete_batch_finish',
 'file' => drupal_get_path('module', 'node_revision_delete') .
 '/node_revision_delete.batch.inc',
);

 // Start the batch job.
 batch_set($batch);
 drush_backend_batch_process();
}

A batch job defines an array of operations to run (these are the ones that will
do the actual processing) and a finished callback (the one that will evaluate
results at the end and render a report). In this case, these are node_revision_
delete_batch_process and node_revision_delete_batch_finish, respectively.
Let's see them in detail.

Batch API operations
An operation within a batch set is composed of a callback function plus a list of
parameters needed by this callback. We define this while setting up the batch job in
the following lines:

 'operations' => array(
 array('node_revision_delete_batch_process',
 array($content_type, $revisions_to_keep))
),

Running and Monitoring Tasks in Drupal Projects

[60]

The node_revision_delete_batch_process callback takes care of the
following functions:

• Defining the list of target nodes whose revisions will be deleted
• Deleting a number of revisions
• Updating the current state of the batch operation

Let's see each of these steps one by one in the source code of the function:

1. Setting up the list of target nodes whose revisions will be deleted.
/**
 * Callback to delete revisions using Batch API.
 */
function node_revision_delete_batch_process($content_type,
 $max_revisions, &$context) {
 if (!isset($context['sandbox']['nids'])) {
 // Set initial values.
 $context['sandbox']['nids'] =
 node_revision_delete_candidates($content_type,
 $max_revisions);
 $context['sandbox']['current'] = 0;
 $context['sandbox']['total'] =
 count($context['sandbox']['nids']);
 }

In the preceding snippet, the $context['sandbox'] array is being used to
store the current progress of the batch operation plus the list of nids, which
have revisions to be deleted. Take into account that the node_revision_
delete_batch_process callback function will be called as many times as
needed until the $context['finished'] flag is set to 1. You are free to use
the $context['sandbox'] array any way you want in order to implement
the logic that decides when the batch job is completed. Let's move on to
step two.

2. Deleting a number of revisions.
 // Perform the actual revision deletion.
 $nid = $context['sandbox']['nids'][$context
 ['sandbox']['current']];
 $deleted_revisions = _node_revision_delete_
 do_delete($nid, $max_revisions);

 // Evaluate if we are done with the current node.

Chapter 3

[61]

 if (empty($deleted_revisions->pending)) {
 $context['sandbox']['current']++;
 }

The preceding piece of code deletes a few revisions and then updates
numbers within the $sandbox array. The $context['sandbox']
['current'] array is used to determine the current node that we are
pruning. Now, we will see how we evaluate whether the job has completed.

3. Updating the current state of the batch operation.
The last part of the process callback starts by gathering some details that will
be used to report how many revisions for each node ID were deleted:

 // Save some details for the final report.
 if (isset($context['results'][$nid])) {
 $context['results'][$nid] += $deleted_revisions->count;
 }
 else {
 $context['results'][$nid] = $deleted_revisions->count;
 }

Finally, the status of the batch operation is updated. As we mentioned before,
if $context['finished'] equals to 1, then the batch operation is completed
successfully. If it is not completed, $context['finished'] will contain the progress
in a scale from 0 to 1. What we are doing in the following code is dividing the
amount of processed nodes with the total amount of nodes to process:

 // Inform the batch engine that we are not finished,
 // and provide an estimation of the completion level we reached.
 $context['finished'] = empty($context['sandbox']['nids']) ? 1 :
 $context['sandbox']['current'] / $context['sandbox']['total'];
}

Running the command and verifying the output
Given a Drupal site with a few nodes and a lot of revisions, here is the sample
command output that deletes the old ones. In the following output, we are just
keeping the last two revisions of the Article content type. We are also using the
--verbose option, as we want to see how Drush spawns new processes for each
loop when deleting revisions:

$ drush --verbose node-revision-delete article 2

/home/juampy/.composer/vendor/drush/drush/drush.php --php=/usr/bin/php

 --php-options=' -d magic_quotes_gpc=Off -d magic_quotes_runtime=Off

Running and Monitoring Tasks in Drupal Projects

[62]

 -d magic_quotes_sybase=Off' --backend=2 --verbose

 --config=.git/../drush/drushrc.php --root=/home/juampy/projects/drupal

 --uri=http://default batch-process 17 17 -u 0 2>&1

Command dispatch complete [notice]

/home/juampy/.composer/vendor/drush/drush/drush.php --php=/usr/bin/php

 --php-options=' -d magic_quotes_gpc=Off -d magic_quotes_runtime=Off

 -d magic_quotes_sybase=Off' --backend=2 --verbose

 --config=.git/../drush/drushrc.php --root=/home/juampy/projects/drupal

 --uri=http://default batch-process 17 17 -u 0 2>&1

Command dispatch complete [notice]

/home/juampy/.composer/vendor/drush/drush/drush.php --php=/usr/bin/php

 --php-options=' -d magic_quotes_gpc=Off -d magic_quotes_runtime=Off

 -d magic_quotes_sybase=Off' --backend=2 --verbose

 --config=.git/../drush/drushrc.php --root=/home/juampy/projects/drupal

 --uri=http://default batch-process 17 17 -u 0 2>&1

...

...

Deleted 49 revisions for node with nid 307. [status]

Deleted 44 revisions for node with nid 305. [status]

Deleted 39 revisions for node with nid 311. [status]

Deleted 38 revisions for node with nid 306. [status]

Deleted 32 revisions for node with nid 309. [status]

Deleted 29 revisions for node with nid 312. [status]

...

Command dispatch complete [notice]

What we see in the preceding code is that Drush is spawning a new process to
continue executing the task as it is not completed. It does so by invoking a command
called batch-process. It stays on this loop until it's finally completed.

On a Drupal project with hundreds or thousands of revisions, the task will take a
long time to complete, but it won't fail as it does the processing in small pieces of
work. If you ever need to face a task where the amount of data to process is huge,
consider making use of this approach.

Chapter 3

[63]

Evaluating code on the fly and running
scripts
Sometimes, you need to test a piece of code after Drupal has bootstrapped, but you do
not know how. I remember, when I started using Drupal, that I would copy index.
php in test.php, replace the last line with whatever code I wanted to test, and then
open this file in the web browser to see its result. This was an easy approach, but I felt
it was wrong because I was hijacking Drupal's router: index.php.

Drush has two commands to let you run code after Drupal has been bootstrapped.
This accomplishes the same goal as the approach mentioned in the preceding code
(copying and hijacking index.php), but in a cleaner way. These commands are:

• php-eval: This lets you run PHP code in the command-line interface. It is
useful when you want to test a few statements. This is like using the PHP's
interactive shell (http://php.net/manual/en/features.commandline.
interactive.php), but in a Drupal context.

• php-script: This executes a given script file after Drupal has been
bootstrapped. It is ideal to run small snippets of code.

The php-eval command
The php-eval command evaluates the given argument after bootstrapping Drupal,
using the PHP's eval() function (http://php.net/manual/en/function.eval.
php). It can format the output of the script in plain text plus other formats such as
JSON or YAML. This comes in handy whenever you need to test a particular API or
want to pipe the output of a PHP statement into something else as part of a larger
script. Let's see some examples that illustrate this:

Print the title of node with nid as 314:

$ drush php-eval 'return node_load(314)->title;'

'This is the title of node 314'

You can enter several statements by separating them with semicolons:

$ drush php-eval '$node=node_load(314); return $node->title;'

'This is the title of node 314'

http://php.net/manual/en/features.commandline.interactive.php
http://php.net/manual/en/features.commandline.interactive.php
http://php.net/manual/en/function.eval.php
http://php.net/manual/en/function.eval.php

Running and Monitoring Tasks in Drupal Projects

[64]

It is best to wrap the PHP statements with single quotes because using double quotes
will result in the command-line interface evaluating the string:

$ echo $HOME

/home/juampy

$ drush php-eval "return file_unmanaged_copy('$HOME/Pictures/image.jpg',
'public://image.jpg');"

'public://image.jpg'

In the preceding command, the $HOME variable is being replaced by its value (/home/
juampy). Knowing this subtle difference will save you time and headaches when
using this command. For example, see the error that Drush reports back when we
run one of the following statements wrapped in double quotes:

$ drush php-eval "$node=node_load(314); return $node->title;"

PHP Parse error: syntax error, unexpected '=' in /home/juampy/.composer/
vendor/drush/drush/commands/core/core.drush.inc(1074) : eval()'d code on
line 1

The preceding command throws a PHP error because the command-line interface
interprets the string wrapped in double quotes attempting to replace $node with its
value, which turns into an empty string when passed to the Drush command. Using
single quotes, we can prevent a string that contains a $ symbol from being treated as
a variable and being expanded by the shell before execution.

Finally, you can use the --format option if you want to transform the output for
later processing. In the following command, we will load a node and return its data
as a JSON structure:

$ drush php-eval --format=json 'return node_load(316);'
{
 "nid": "316",
 "uid": "1",
 "title": "Sample node",
 "log": "",
 "status": "1",
 ...
 "body": {
 "und": [
 {
 "value": "Body of the node.",
 "summary": "",
 "format": "filtered_html",

Chapter 3

[65]

 "safe_value": "Body of the node.",
 "safe_summary": ""
 }
]
 },
 ...
}

The php-script command
The php-eval command is very useful for quickly testing one or two PHP
statements, but there will be times where you need to run a few lines of code. As I
discovered the php-eval command, I find myself using it more and more. If you
ever need to check out how a certain Drupal API works or want to browse it in a
data structure (a node, for example), write a small script to test this and then run it
with the php-eval command.

Let's see this in action with a practical example. Consider that we have added an
Image field to our Page content type. Then, when we are about to work with the
field data, we realize that we do not know its structure. Here is a little script that
will let us discover it:

<?php
/**
 * @file
 * Prints the contents of the image field of a node.
 *
 * Usage: drush php-script image_field.php
 */

$node = node_load(315);
print_r($node->field_image);

After saving the preceding snippet at the root of our Drupal project, we can run it
with the following command:

$ drush php-script image_field.php

Array (

 [und] => Array (

 [0] => Array (

 [fid] => 1

 [uid] => 1

Running and Monitoring Tasks in Drupal Projects

[66]

 [filename] => face.jpg

 [uri] => public://face.jpg

 [filemime] => image/jpeg

 [filesize] => 49324

 [status] => 1

 [timestamp] => 1409675594

 [rdf_mapping] => Array ()

 [alt] =>

 [title] =>

 [width] => 376

 [height] => 503

)

)

)

Easy, isn't it? All of Drupal's APIs are available for this script as Drush has
bootstrapped our Drupal project right before running it.

A script to create nodes and revisions
Here is a longer example. Previously in this chapter, we reviewed how Node
Revision Delete uses the Batch API to delete the older revisions of content.
Before actually running the command, we needed to create some nodes with a lot of
revisions otherwise the Drush command wouldn't have found anything to delete.
Here is the script that we used in order to create such context prior to run drush
--verbose node-revision-delete article 2:

<?php
/**
 * @file
 * Script to create a bunch of nodes with revisions.
 *
 * Usage: drush php-script create_revisions.php
 */

$nodes_to_create = 10;
while ($nodes_to_create > 0) {
 // Minimum default values. We enable revisions with 'revision'
 => 1.
 $values = array(
 'type' => 'article',

Chapter 3

[67]

 'uid' => 1,
 'status' => 1,
 'revision' => 1,
);
 // Create the node entity and then use a wrapper to work with
 it.
 $entity = entity_create('node', $values);
 $node_wrapper = entity_metadata_wrapper('node', $entity);

 // Set a random title and save the node.
 $node_wrapper->title->set('Node title ' . rand(1, 100));
 $node_wrapper->save();

 // Create revisions for this node by simply re-saving the node a
 few times.
 $revisions = rand(20, 50);
 while ($revisions > 0) {
 $node_wrapper->save();
 $revisions--;
 }
 $nodes_to_create--;
}

We ran the preceding script by entering drush php-script create_revisions.
php, which prepared the test content that we needed in order to delete old revisions
with Node Revision Delete. This is another example of how writing small scripts
and running them with Drush can be very useful in your day-to-day development.

The php-script and php-eval commands are two great tools to have in your
belt. Both of them are very useful to debug logic in an isolated environment and to
actually run code that does not necessarily need to be reused within a Drupal project.

Logging messages in Drush
Writing log entries helps in spotting flaws as you read the logs to find out where
a bug might be. How much we should log messages and prepare to catch errors
depends on the nature of the task. A good approach is that the more critical the task,
the more logging and error checking it should do. However, overly verbose logging
would make our logfiles huge and hard to read. It's better if we log just the minimum
needed notices, and all the errors and warnings found.

Running and Monitoring Tasks in Drupal Projects

[68]

Drush uses the drush_log() function. This function accepts different logging levels.
Here are some of them:

• success: This marks a successful message
• error: This reports an error message
• warning: This is used to alert about something unexpected
• info: This is used to print additional information

Each of the preceding list has synonyms. For example, instead of success, you can
also use ok, completed, or status. In order to keep things simple, we will just use
the preceding levels in the following examples. Let's see how each of them behave,
given the following script:

<?php
/**
 * @file logging.php
 * Sample script to test drush_log().
 */

drush_log('success: marks a successful message.', 'success');
drush_log('error: reports an error message.', 'error');
drush_log('warning: is used to alert about something.',
 'warning');
drush_log('info: is used to print additional information.',
 'info');

Here is the output when we run it in the command-line interface:

$ drush php-script logging.php

success: marks a successful message. [success]

error: reports an error message. [error]

warning: is used to alert about something. [warning]

We can see that each message is printed along with its type, which is wrapped with
straight brackets. If your command-line interface supports colors, [success] would
be in green (yay!), [error] would be in red (ugh!), and [warning] would be printed
in yellow (oops!). Here is something to ask ourselves though, why did the [info]
statement not show up? We will see this in the following section.

Drush supports Drupal's watchdog() function by converting it
into a drush_log() call. This is just for compatibility purposes so
that Drupal code can be executed by Drush. When writing Drush
commands, always use drush_log().

Chapter 3

[69]

It is best practice to use dt() to wrap strings when logging
or printing messages in order to support translations and
placeholder replacement. However, the examples in the book
don't use it, so they are easier to read.

The verbose and quiet modes
By default, Drush will only print warnings and errors on the screen. There are two
options which can change this behavior:

• Drush, running in the verbose mode (--verbose): This will print bootstrap
information and all types of log entries

• Drush, running in the quiet mode (--quiet): This will only print warnings
and errors

Hence, running Drush in the verbose mode will add [info] messages to the output:

$ drush --verbose php-script logging.php

success: marks a successful message. [success]

error: reports an error message. [error]

warning: is used to alert about something. [warning]

info: is used to print additional information. [info]

Command dispatch complete [notice]

There you are! Now, our [info] entry is shown in the output plus an extra [notice]
message added by Drush itself was printed. Now, let's verify what happens if we run
Drush in the quiet mode. We should see just errors and alerts:

$ drush --quiet php-script logging.php

error: reports an error message. [error]

warning: is used to alert about something. [warning]

There is some reasoning in the conditional behavior of drush_log(). It is intended
to give you flexibility to decide what should be logged. Drupal's cron is a great
example. According to the documentation at drush topics docs-cron, this is the
recommended way to run cron (some options have been removed for clarity):

$ /usr/local/drush/drush --root=/path/to/drupal \

--uri=mysite.example.com --quiet cron

Running and Monitoring Tasks in Drupal Projects

[70]

In the preceding command, Drupal's cron was executed in the quiet mode. Why
would we want that? The reason is that some scheduling systems (such as crontab)
will send an e-mail alert if the job that got executed returned any output. The quiet
mode skips the [success] messages, leaving just [alerts] and [warnings]. This is
very useful because it will avoid us getting an e-mail every time cron runs. Instead,
with the quiet mode, we will only be notified by e-mail if there was something
unexpected in the process logged as a warning or as an error.

Redirecting Drush output into a file
Some Drush commands will take time to complete and generate a long output. In
such cases, it is useful to record the output into a logfile. After running a migration
script, for example, you would like to thoroughly read the log, so you can check
whether each migration step is completed as expected. As for cron runs, you would
like to keep a log of them so that when you receive an alert, you can look at the log of
the last cron runs to debug it.

Now, before you decide to redirect the output of a command into a log, you should
be aware of the nature of input and output streams (http://en.wikipedia.org/
wiki/Standard_streams). Each process (Drush executing a command, for example),
will have three streams:

• STDIN: This is the standard input stream used to receive data (when
you request the user to choose a topic out of a list using the
drush topic command).

• STDOUT: This is the standard output stream used to print back results. If you
are running a command in the command-line interface, the screen would be
the one receiving this data and printing it for you.

• STDERR: This is the standard error stream used to log errors. If you are
running a command and viewing its results, messages logged to STDERR will
be printed on the screen, but you can choose to print them somewhere else.
We will see some examples of this.

The drush_log() function prints messages to STDERR. If you run a Drush command,
messages logged with drush_log() will appear on the screen once the command
is completed. However, when redirecting the output of a command into a file,
you should be explicit about exactly what you want to log, or you risk not logging
everything you want. Let's see an example that outlines this, given the following
script that we will run with Drush:

<?php
/**
 * @file iostreams.php

http://en.wikipedia.org/wiki/Standard_streams
http://en.wikipedia.org/wiki/Standard_streams

Chapter 3

[71]

 * Sample script to test I/O streams.
 */

drush_log('Success message using drush_log()', 'success');
drush_print('Message using drush_print()');
print 'Simply printing a message with PHP\'s print function';

Here is the output when we execute it with Drush; redirect the output into a logfile
named iostreams.log, and then print the contents of the resulting file:

$ drush php-script iostreams.php > iostreams.log

Success message using drush_log() [success]

$ cat iostreams.log

Message using drush_print()

Simply printing a message with PHP's print function

Now, this is interesting. The message that logged using drush_log() was printed
on screen as it was written to STDERR, while the other two were saved to iostreams.
log as both drush_print() and print write messages to STDOUT. This, most
probably, is not what you want. We would prefer everything to be logged into our
logfile (or if not everything, warnings, errors, and useful information). We need to be
specific if we want both STDERR and STDOUT streams to be piped into a file. Here is
how this can be achieved:

$ drush php-script iostreams.php &> iostreams.log

$ cat iostreams.log

Success message using drush_log() [success]

Message using drush_print()

Simply printing a message with PHP's print function

Depending on your needs, you might want to log both STDOUT and STDERR or just
one of them. You can find great examples on how to redirect output into a file at
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-3.html.

There is a nice article on why there is a different stream to log errors and how it
works. If you are curious to dig further, you can visit http://www.jstorimer.com/
blogs/workingwithcode/7766119-when-to-use-stderr-instead-of-stdout.
Furthermore, PHP defines constants for each of the available streams. Visit http://
php.net/manual/en/features.commandline.io-streams.php for
more information.

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-3.html
http://www.jstorimer.com/blogs/workingwithcode/7766119-when-to-use-stderr-instead-of-stdout
http://www.jstorimer.com/blogs/workingwithcode/7766119-when-to-use-stderr-instead-of-stdout
http://php.net/manual/en/features.commandline.io-streams.php
http://php.net/manual/en/features.commandline.io-streams.php

Running and Monitoring Tasks in Drupal Projects

[72]

Implementing your own logging mechanism
The drush_log() function uses an internal function to format and print messages
called _drush_print_log(). By looking at Drush's source code, we can see that this
function is obtained through a Drush context called DRUSH_LOG_CALLBACK. Here is
an excerpt of the function taken from Drush's source code:

// /home/juampy/.composer/vendor/drush/drush/includes/drush.inc
function drush_log($message, $type = 'notice', $error = null) {
 $log =& drush_get_context('DRUSH_LOG', array());
 $callback = drush_get_context('DRUSH_LOG_CALLBACK',
 '_drush_print_log');
 $entry = array(
 'type' => $type,
 'message' => $message,
 'timestamp' => microtime(TRUE),
 'memory' => memory_get_usage(),
);
 $entry['error'] = $error;
 $log[] = $entry;
 drush_backend_packet('log', $entry);
 return $callback($entry);
}

In the preceding function, Drush uses a context variable to obtain the function name
that is used to write the log message. By overriding this context variable, we would
be able to implement our own function. Let's take a simple example that implements
a logging function that prints to STDOUT whatever we log with drush_log():

<?php
/**
 * @file custom_logging.php
 * Sample script to test drush_log().
 */

/**
 * Prints all log messages to STDOUT.
 *
 * @param
 * The associative array for the entry.
 *
 * @return
 * TRUE in all cases.
 */

Chapter 3

[73]

function mycustom_log($entry) {
 $message = '[' . $entry['type'] . '] ' . $entry['message'];
 return drush_print($message, 0, STDOUT);
}

// Overrides Drush default's logging callback.
drush_set_context('DRUSH_LOG_CALLBACK', 'mycustom_log');

// Logs some messages to test the new setting.
drush_log('Success message using drush_log()', 'success');
drush_print('Message using drush_print()');
print 'Simply printing a message with PHP\'s print function';

Now, let's run the preceding code and simply redirect the STDOUT stream into a file;
then, print the contents of the resulting file:

$ drush php-script custom_logging.php > custom_logging.log

$ cat custom_logging.log

[success] Success message using drush_log()

Message using drush_print()

Simply printing a message with PHP's print function

[debug] Returned from hook drush_core_php_script

[notice] Command dispatch complete

[memory] Peak memory usage was 8.63 MB

We can see that our context override statement worked like a charm; we got all log
messages printed to STDOUT including the one using drush_log(). We also saw that
Drush itself logged some extra messages while shutting down using drush_log()
and these got logged here too. If you want to apply this to an entire Drupal project
(warning! this would need thorough testing), you could add the following snippet at
sites/all/drush/customlog.drush.inc:

<?php
/**
 * Custom callback to log messages.
 *
 * @see _drush_print_log()
 */
function mycustom_log($entry) {
 $message = '[' . $entry['type'] . '] ' . $entry['message'];
 return drush_print($message, 0, STDOUT);
}

/**

Running and Monitoring Tasks in Drupal Projects

[74]

 * Implements hook_drush_init().
 *
 * Overrides Drush's callback to write log messages.
 */
function customlog_drush_init() {
 drush_set_context('DRUSH_LOG_CALLBACK', 'mycustom_log');
}

With the preceding code in place, every time our code or Drush itself uses drush_
log(), it would go through our custom logging callback.

If you just want to see messages in real time on the screen, then use drush_print(),
which prints messages immediately to STDOUT.

Running a command in the background
Imagine the following scenario: a new release is ready to go into the production
environment. It contains changes for how articles are indexed into Apache Solr. The
team has decided that once the new release has been deployed into production, you
will log in to it via SSH and run a couple of Drush commands to mark the Article
content type to be reindexed and to run the Drush command to reindex content so
that all articles are submitted again to Apache Solr. This process, on large databases
with a lot of content, might take a few hours to complete. If the SSH connection
breaks or if we close it, the process would be killed automatically. Therefore, we
should instruct it to run in the background.

Here is an example where we access the production environment and run the
command in the noninteractive mode; so, even though we close the SSH connection,
it would still run and save the output into a log that we can read once it finishes:

$ ssh produser@www.example.com

 Welcome to the Production environment!

(Production) $ cd /var/www/exampleproject/docroot

(Production) $ drush solr-mark-all article

Marked content for reindexing

(Production) $ nohup drush --verbose solr-index \

 --uri=www.example.com &> /tmp/solr_reindex.log &

[1] 12804

Chapter 3

[75]

The preceding command returned to us the process identifier (PID) of the
background process that is running our command (12804). It uses a few functions
that you might have not seen before. These include the following:

• nohup: This is used to run a command that will ignore hangup signals.
A hangup signal is the one sent by a process to all its subprocesses if it
closes. This is what avoids the process to be killed when we close the SSH
connection with the production environment.

• &> /tmp/solr_reindex.log: We have seen in the previous section that
if we want to ensure that messages printed to STDOUT and STDERR get saved
in a logfile, we need to redirect the output using &>. This is what we are
doing here.

• &: This is the ampersand symbol at the end. This is used to run the command
as a subprocess in the background. This lets us trigger the command and
allows us to keep interacting with the command-line interface to monitor its
progress or simply exit to close the SSH connection.

So, our process is running on its own now. If we list all running processes and filter
them out by the keyword solr, we can see it listed here:

(Production) $ ps -aux | grep solr

produser 12804 6.0 0.8 331708 71548 pts/12 S 15:42 0:02 /usr/
bin/php -d

 magic_quotes_gpc=Off -d magic_quotes_runtime=Off -d magic_quotes_
sybase=Off

 /usr/share/drush/drush.php --php=/usr/bin/php --php-options= -d magic_
quotes_gpc=Off

 -d magic_quotes_runtime=Off -d magic_quotes_sybase=Off solr-index

 --uri=www.example.com

Note that the two first things listed are the user who triggered the process (produser)
and the process identifier or PID (12804), while the last bit is the actual Drush
command. Now, if we view the logfile interactively with the tail command, we can
see that the process is redirecting the output of the command here as expected:

$ tail -f /tmp/solr_reindex.log

Indexing node 15674. [ok]

Indexing node 15675. [ok]

WD Apache Solr: Adding 200 documents. [notice]

WD Apache Solr: Indexing succeeded on 200 documents [info]

Inspected 200 of 41045 entities. Submitted 200

Running and Monitoring Tasks in Drupal Projects

[76]

 documents to Solr [ok]

Indexing node 15676. [ok]

Indexing node 15677. [ok]

...

Indexing node 15678. [ok]

Indexing node 15878. [ok]

WD Apache Solr: Adding 200 documents. [notice]

WD Apache Solr: Indexing succeeded on 200 documents [info]

Inspected 400 of 41045 entities. Submitted 400

 documents to Solr [ok]

Indexing node 15879. [ok]

...

Now, we can close the SSH connection and come back later and check whether the
process was completed. If for any reason we would need to terminate the process,
we can do it with the kill command plus the PID:

(master)$ kill 12804

[1]+ Terminated nohup drush solr-index --uri=www.example.com &>

/tmp/solr_reindex.log

Summary
Running tasks in a Drupal project becomes more and more important as the project
matures and scales. Things like monitoring, cleaning up and upgrading our project
need to be performed in a way that the task won't stress the system too much so that
Drupal doesn't crash.

Drupal's cron is a very easy and convenient mechanism to run periodic tasks. We
explained how to make Drupal not fire cron when serving regular web traffic and
then we moved this responsibility to Drush plus a scheduling system: Jenkins. In the
next section, we saw how to decouple a particular task from cron so that it runs as an
independent process. Long tasks can use the Batch API in order to split the workload
into smaller chunks that can complete safely.

We closed the chapter with a few tips on how to log a command's output into a file,
such as the different output modes that Drush offers (verbose or quiet).

In the next chapter, we will dive even deeper into how Drush runs commands by
adding error handing and discovering a few debugging tools.

Error Handling and
Debugging

Up to this point in the book, we have covered many topics about running code with
Drush. The next step is to make sure that our code runs smoothly by ensuring that
input data is correct and by implementing error handling. We will also see a few
tools to help us understand Drush's bootstrap even further.

In this chapter, we will cover the following topics to meet the preceding goals:

• Validating input
• Rolling back on errors
• Browsing Drush's available hooks
• Monitoring Drush's bootstrap process
• Inspecting Drupal's hooks and function implementations

Validating input
Drush can validate input arguments before handing them over to the command's
callback. In this section, we will see how to process arguments and options in
order to make sure that the command's callback (the function that actually does the
processing of a command) receives the right input data.

Error Handling and Debugging

[78]

Validating an argument
By default, Drush won't require any input arguments to execute a command, not even
when you define them in the command callback. We can see this in the following
example, which defines a command that expects one argument named $argument_1.
We have placed this file at sites/all/drush/testcommand.drush.inc in our sample
Drupal project:

<?php
/**
 * @file
 * Sample Drush command to test arguments.
 */

/**
 * Implements hook_drush_command().
 */
function testcommand_drush_command() {
 $items = array();

 $items['testcommand'] = array(
 'description' => "Tests Drush command arguments",
 'arguments' => array(
 'argument_1' => 'This is a sample argument.',
),
);

 return $items;
}

/**
 * Implements drush_hook_COMMAND().
 */
function drush_testcommand($argument_1) {
 var_dump($argument_1);
}

We have defined a command called testcommand. Now, let's execute it
without arguments:

$ drush testcommand

Missing argument 1 for drush_testcommand()

 testcommand.drush.inc:26 [warning]

NULL

Chapter 4

[79]

Drush logged a warning that came from PHP regarding an undefined variable
expected by our command's callback, which we did not enter. As a consequence,
when we printed the value of $argument_1, we got a NULL value. As you can
see, Drush did not do any validation. If we want it to, we have to be explicit by
adding the 'required-arguments' => TRUE option at the command definition
(testcommand_drush_command()). Here is our command definition after we add it:

 $items['testcommand'] = array(
 'description' => 'Tests Drush command arguments',
 'arguments' => array(
 'argument_1' => 'This is a sample argument.',
),
 'required-arguments' => TRUE,
);

Here is the output when we run our command again without any input arguments:

$ drush testcommand

Missing required argument: 'argument_1'. See

`drush help testcommand` for information on usage. [error]

Thanks to the required-arguments setting, Drush now forces us to enter a value
for the required argument $argument_1. If our command expects more than one
argument and only some of them are required, the required-arguments setting can
also be set to a number, which defines the minimum amount of arguments that the
command expects. Here is an updated version of our sample command, where the
first and second arguments are required and the third one is optional:

/**
 * Implements hook_drush_command().
 */
function testcommand_drush_command() {
 $items = array();

 $items['testcommand'] = array(
 'description' => 'Tests Drush command arguments',
 'arguments' => array(
 'argument_1' => 'This is a sample argument.',
 'argument_2' => 'This is a sample argument.',
 'argument_3' => 'This is a sample argument.',
),
 'required-arguments' => 2,
);

 return $items;

Error Handling and Debugging

[80]

}

/**
 * Implements drush_hook_COMMAND().
 */
function drush_testcommand($argument_1, $argument_2, $argument_3 =
 NULL) {
 var_dump(array($argument_1, $argument_2, $argument_3));
}

Our command callback signature matches with the required-arguments setting:
the first two arguments are required and the third one is optional (hence, it defaults
to NULL). Now, we will test it with different input arguments to see how it behaves.
First, we will run it with no arguments and then with just one argument:

$ drush testcommand

Missing required arguments: 'argument_1, argument_2'.

See `drush help testcommand` for information on usage. [error]

$ drush testcommand one

Missing required arguments: 'argument_1, argument_2'.

See `drush help testcommand` for information on usage. [error]

We can see in the preceding command executions that we must provide at least two
arguments to our command or else Drush will fail to process it. Now, we will run the
command with two and then three arguments, which will pass validation and then
print the values:

$ drush testcommand one two

array(3) {

 [0] => string(1) "one"

 [1] => string(1) "two"

 [2] => NULL

}

$ drush testcommand one two three

array(3) {

 [0] => string(3) "one"

 [1] => string(3) "two"

 [2] => string(5) "three"

}

As we expected, validation is successful and our command prints the input values.

Chapter 4

[81]

Validating options
Drush has a stricter behavior for options than for arguments. It will evaluate all
given options and if any of them is not supported by Drush core or the command
being executed, it will throw an error. Here is an example:

$ drush version --foo

Unknown option: --foo. See `drush help version` for

available options. To suppress this error, add the

option --strict=0. [error]

As we can see in the error message, this validation can be disabled by appending the
--strict=0 option to the command invocation:

$ drush --strict=0 version --foo

 Drush Version : 7.0.0-alpha5

When defining a command, there are two settings that alter how Drush processes
its options. These are mentioned in the following sections.

Ignoring options after the command name
The strict-option-handling command can be set to TRUE at the command
definition when we want to allow extra options that are not known by Drush. Drush
uses this setting for the core-rsync command, which accepts custom options for
the rsync command that gets executed in the background to perform a recursive
directory copy. Here is a simplified version of the core-rsync command definition:

 $items['core-rsync'] = array(

 'description' => 'Rsync the Drupal tree to/from another server using
ssh.',

 'arguments' => array(

 'source' => 'May be rsync path or site alias. See rsync
documentation and example.aliases.drushrc.php.',

 'destination' => 'May be rsync path or site alias. See rsync
documentation and example.aliases.drushrc.php.',

),

 'options' => array(

 ...

 '{rsync-option-name}' => "Replace {rsync-option-name} with the
rsync option (or option='value') that you would like to pass through to
rsync.",

),

Error Handling and Debugging

[82]

 'strict-option-handling' => TRUE,

);

The core-rsync command definition accepts rsync specific options and uses
strict-option-handling. Here is a sample command invocation with some
options for Drush and others that are to be passed to rsync:

$ drush --yes core-rsync -v -az --exclude-paths='.git:.svn' local-files/
@site:%files

We mentioned in Chapter 1, Introduction, Installation, and Basic Usage, that you can
place options either before or after the command name as Drush will evaluate
them all. When strict-option-handling is set, all the options placed before the
command name are processed by Drush, while options placed after the command
are processed by the command. In the preceding example, -v -az --exclude-
paths='.git:.svn' are all options that will be passed to the rsync command.

The core-rsync command calls drush_get_original_cli_args_and_options()
in order to obtain the list of options provided in the command line and pass them
to rsync. If you ever need to build a wrapper for a system command and want to
accept its options, this function will come in handy.

Allowing additional options
The allow-additional-options setting can be used at the command definition
and depending on whether it is a TRUE value or an array, it means different things
for Drush.

If allow-additional-options equals TRUE, then Drush won't validate options at
all. This setting is used, for example, by the help command to give you the freedom
to copy and paste any command after drush help, no matter which arguments
and options it has. It will simply extract the command name and print back its
full description:

$ drush help core-status --full --foo --bar

Provides a birds-eye view of the current Drupal installation, if any.

Examples:

 drush core-status version Show all status lines that

contain version information.

...

Chapter 4

[83]

Alternatively, allow-additional-options might contain an array of command
names whose options will be supported too. This is useful when your command calls
other commands using drush_invoke() and needs to support its options as well.
For example, sql-cli is a Drush command that opens an interactive connection
with the database. Internally, it calls the sql-connect command in order to build a
connection string. Here, we can see the definition of sql-cli taken from Drush core:

 $items['sql-cli'] = array(

 'description' => "Open a SQL command-line interface using Drupal's
credentials.",

 'bootstrap' => DRUSH_BOOTSTRAP_DRUSH,

 'allow-additional-options' => array('sql-connect'),

 'aliases' => array('sqlc'),

 'examples' => array(

 'drush sql-cli' => "Open a SQL command-line interface using
Drupal's credentials.",

 'drush sql-cli --extra=-A' => "Open a SQL CLI and skip reading
table information.",

),

 'remote-tty' => TRUE,

);

The sql-cli command supports the options defined by the sql-connect command
thanks to allow-additional-options' => array('sql-connect'). This is why,
in the examples section, there is an example where it uses the --extra option. This
approach is way more flexible than manually defining the --extra option because if
sql-connect adds further options in the future, we won't need to make any changes
in the command definition of sql-cli to support them.

Adding custom validation to a command
If we need to make custom validation of our input parameters, then it is time to
implement drush_hook_COMMAND_validate(). This hook gets executed right before
a command's callback. We will now add this hook to the contributed module: Node
Revision Delete, which we worked with in previous chapters. Let's first see how
the command works:

$ cd /home/juampy/projects/drupal

$ drush help node-revision-delete

Deletes old node revisions for a given content type.

Examples:

Error Handling and Debugging

[84]

 drush nrd article 50 Keeps the latest 50 revisions of every

 article. Deletes the rest.

Arguments:

 type A content type's machine name.

 revisions The maximum amount of revisions

 to keep per node for this content type.

Aliases: nrd

The node-revision-delete command accepts two arguments: a content type name
and a number of revisions to keep for each node. These two arguments are set to
be required through the 'required-arguments' => TRUE option, but we are not
checking whether the content type exists or if the amount of revisions is a positive
integer. Here is our validate hook that does so:

// sites/all/modules/contrib/node_revision_delete/
 node_revision_delete.drush.inc
/**
 * Implements drush_hook_COMMAND_validate().
 */
function drush_node_revision_delete_validate($content_type,
$revisions_to_keep) {
 // Make sure the content type exists.
 $content_types = array_keys(node_type_get_types());
 if (!in_array($content_type, $content_types)) {
 drush_set_error('NODE_REVISION_DELETE_WRONG_TYPE', dt('The
 content type "!type" does not exist. Available content types
 are !types', array(
 '!type' => $content_type,
 '!types' => implode(', ', $content_types),
)));
 }

 // Make sure the number of revisions is a positive integer.
 if (!is_numeric($revisions_to_keep) ||
 intval($revisions_to_keep) != $revisions_to_keep ||
 $revisions_to_keep <= 0) {
 drush_set_error('NODE_REVISION_DELETE_WRONG_REVISIONS',
 dt('The amount of revisions to keep must be a positive
 integer.'));
 }
}

Chapter 4

[85]

Our drush_node_revision_delete_validate()validate hook takes the command
arguments as input variables. Drush takes care of capturing input arguments from
the command line and setting them into these two variables ($content_type
and $revisions_to_keep). If the validate function returns FALSE or drush_set_
error() is called, Drush won't execute the command.

The drush_set_error() function accepts three arguments:

• A machine name version of the error; this is useful when you want to classify
errors and reuse error messages

• An optional error message to be printed to STDERR
• An optional label to add before the error message

Let's test our validation callback now:

$ drush node-revision-delete basic_page 1.5

The content type "basic_page" does not exist. Available

content types are article, feed, feed_item, page [error]

The amount of revisions to keep must be a positive

integer. [error]

There we are. Our validation callback calls drush_set_error() as we did not
enter valid arguments, which writes to STDERR and makes Drush stop processing
the command and trigger the rollback mechanism, which we will explain in the
following section.

You can find additional documentation about error codes at drush
topic docs-errorcodes.

Rolling back when an error happens
When drush_set_error() is called during a command execution, the rollback
mechanism jumps into action. The rollback mechanism gives us a chance to exit
gracefully if something goes wrong. It is especially useful when we only want to
perform a final action if a command is completed successfully. Drush itself uses the
rollback mechanism when dealing with core and module upgrades, performing
actions such as restoring original files back in place, and deleting the downloaded
files of the new version if there is an error.

Error Handling and Debugging

[86]

Here is the full sequence of invocations for a given command. In the following list,
hook is the filename where the Drush command is implemented (excluding the
.drush.inc extension) and COMMAND is the actual command name:

1. hook_drush_init()

2. drush_COMMAND_init()

3. drush_hook_COMMAND_pre_validate()

4. drush_hook_COMMAND_validate()

5. drush_hook_pre_COMMAND()

6. drush_hook_COMMAND()

7. drush_hook_post_COMMAND()

8. hook_drush_exit()

Also, here is the list of rollback functions that Drush will attempt to call if there is an
error. Notice that it goes in backward order as the preceding list:

1. drush_hook_post_COMMAND_rollback()

2. drush_hook_COMMAND_rollback()

3. drush_hook_pre_COMMAND_rollback()

4. drush_hook_COMMAND_validate_rollback()

5. drush_hook_COMMAND_pre_validate_rollback()

If there is an error, Drush will stop the execution and attempt to call rollback
functions for every hook that was executed. For example, if an error happens at
drush_hook_pre_COMMAND(), then Drush will call drush_hook_pre_COMMAND_
rollback(), drush_hook_COMMAND_validate_rollback(), and drush_hook_
COMMAND_pre_validate_rollback(). You can find plenty of documentation about
these hooks at drush topic docs-api.

Turning the update path into a single
command
In order to see a practical example, we will retake the update path script that we
covered in Chapter 2, Keeping Database Configuration and Code Together. The update path
was a Bash script that called a few Drush commands in order to keep the configuration
in the database in sync with the exported configuration in code. Here it is:

1. Registry Rebuild.

drush --verbose registry-rebuild --no-cache-clear

2. Run database updates.

drush --verbose --yes updatedb

Chapter 4

[87]

3. Clear the Drush cache.

Sometimes Features may need this due to a bug in Features module.

drush cache-clear drush

4. Revert all features.

drush --verbose --yes features-revert-all

5. Clear all caches.

drush --verbose cache-clear all

What we will do now is to work on a new iteration for the preceding piece of logic.
We will implement the following features:

• We will wrap these commands within a custom Drush command (a Drush
command can call other commands).

• We will implement drush_hook_pre_COMMAND() and drush_hook_post_
COMMAND() in order to enable and disable Drupal's maintenance mode,
respectively, as a measure of precaution when we update the database.

• If something goes wrong during our command, drush_hook_post_
COMMAND() won't be invoked and instead drush_hook_COMMAND_rollback()
will do, so our site will stay in maintenance mode. This is ideal as we do
not want to show visitors a broken site. We will simply log an alert in the
rollback callback for the administrator to take action.

Here is our update path command that we will implement within our sample Drupal
project at sites/all/drush/updatepath.drush.inc. We will now explain it hook
by hook. The first thing at the top of the file is the command definition:

<?php
/**
 * @file
 * Drush implementation of the update path.
 */

/**
 * Implements hook_drush_command().
 */
function updatepath_drush_command() {
 $items = array();
 $items['updatepath'] = array(
 'description' => 'Runs the update path in the current site
 performing tasks such as database update, reverting
 features, etc.',

Error Handling and Debugging

[88]

);
 return $items;
}

Next, we will implement drush_hook_pre_command(), where we will enable
Drupal's maintenance mode and kill user sessions in order to make sure that
Drupal won't accept web requests when the update path command runs:

/**
 * Implements drush_hook_pre_command().
 */
function drush_updatepath_pre_updatepath() {
 drush_log('Enabling maintenance mode and killing active
 sessions.', 'status');
 variable_set('maintenance_mode', 1);
 db_query('truncate table {sessions}');
}

Now, we will actually implement each of the steps of our update path. We are
making extensive use of drush_invoke_process() here, which is a Drush function
that runs commands as subprocesses. Ideally, we should evaluate the result of these
invocations in order to stop the executions if there are errors, but for simplicity, we
will skip this check for now:

/**
 * Implements drush_hook_command().
 */
function drush_updatepath() {
 drush_invoke_process('@self', 'registry-rebuild', array(), array(
 'no-cache-clear' => TRUE,
));
 drush_invoke_process('@self', 'updatedb', array(), array('yes'
 => true));
 drush_invoke_process('@self', 'cc', array('type' => 'drush'));
 drush_invoke_process('@self', 'features-revert-all', array(),
 array(
 'yes' => true,
));
 drush_invoke_process('@self', 'cc', array('type' => 'all'));
}

The @self argument is a Drush site alias. It is used to reference a Drupal project
and is covered in detail in Chapter 5, Managing Local and Remote Environments.

Chapter 4

[89]

If everything goes well with the previous callbacks, then drush_hook_post_
command() will be invoked. Here, we are implementing it in order to disable
the maintenance mode and logging a message to inform that the site is not in
maintenance mode anymore:

/**
 * Implements drush_hook_post_command().
 */
function drush_updatepath_post_updatepath() {
 drush_log('Disabling maintenance mode.', 'status');
 variable_del('maintenance_mode');
}

Alternatively, if there was an error during our command, our site will stay in
maintenance mode because drush_hook_post_command() won't be invoked, but
drush_hook_command_rollback() will. We are implementing this hook in the
following code just to alert that maintenance mode is still on:

/**
 * Implements drush_hook_command_rollback().
 */
function drush_updatepath_rollback() {
 drush_log('Oh no! Something went wrong. Review the above log and
 disable maintenance mode when done.', 'error');
}

Let's run drush updatepath in our sample Drupal project and verify its output.
Note that we are using the --verbose options to see [status] messages. The
following output is a simplified version for clarity:

$ cd /home/juampy/projects/drupal

$ drush --verbose updatepath

Enabling maintenance mode and killing active sessions. [status]

The registry has been rebuilt via registry_rebuild (A). [success]

The Drupal caches have NOT been cleared after all

 registry rebuilds. [warning]

It is highly recommended you clear the Drupal caches as

 soon as possible. [warning]

All registry rebuilds have been completed. [success]

No database updates required [success]

'all' cache was cleared. [success]

Finished performing updates. [ok]

Error Handling and Debugging

[90]

'drush' cache was cleared. [success]

Current state already matches defaults, aborting. [ok]

'all' cache was cleared. [success]

Disabling maintenance mode. [success]

We can see that the first and last messages of the preceding output are our pre and
post command hooks. There is also a warning from the Registry Rebuild module
telling us to clear caches as soon as possible, which we do right after we run database
updates. This was a smooth run. Now, let's suppose that there is an error. The last
message, instead of being Disabling maintenance mode. [success], would be
the following one:

Oh no! Something went wrong. Review the above log and

 disable maintenance mode when done. [error]

The preceding message is called due to Drush's rollback mechanism. We are simply
alerting that the maintenance mode is still active. If you need to take action when a
command fails, then the rollback mechanism is the place to do it.

Browsing hook implementations
So far, we saw some hooks that Drush supports before and after running a
command. In order to discover them, Drush offers a debugging mode to view all the
hooks that we can implement for a given command and check whether they were
executed or not on runtime.

In the following example, we will define a very simple command that we will use
to test the handy option --show-invoke, which prints all the function callbacks
where Drush attempts to find a match. We will create this command under $HOME/.
drush/testhooks.drush.inc, which makes it available for us everywhere in the
command-line interface for our user:

<?php
/**
 * @file
 * Sample Drush command to test hook invocations.
 */

/**
 * Implements hook_drush_command().
 */
function testhooks_drush_command() {

Chapter 4

[91]

 $items = array();
 $items['testhooks'] = array(
 'description' => 'Dummy command to test command invocations.',
 // No bootstrap at all.
 'bootstrap' => DRUSH_BOOTSTRAP_DRUSH,
);
 return $items;
}

/**
 * Implements drush_hook_COMMAND().
 */
function drush_testhooks() {
 // Leaving it empty. Just want to see what happens before and
 after.
}

Now that we have our sample command, which Drush hooks do we have available?
How should we name them after? Let's run the command with the --show-invoke
option to see them:

$ cd /home/juampy

$ drush --show-invoke testhooks

Available drush_invoke() hooks for testhooks: [ok]

drush_testhooks_pre_validate

drush_archive_testhooks_pre_validate

drush_browse_testhooks_pre_validate

...

drush_testhooks_validate

drush_archive_testhooks_validate

drush_browse_testhooks_validate

...

drush_testhooks_pre_testhooks

drush_archive_pre_testhooks

drush_browse_pre_testhooks

...

drush_testhooks [* Defined in /home/juampy/.drush/testhooks.drush.inc]

drush_archive_testhooks

drush_browse_testhooks

...

Error Handling and Debugging

[92]

drush_testhooks_post_testhooks

drush_archive_post_testhooks

drush_browse_post_testhooks

...

Available rollback hooks for testhooks: [ok]

drush_testhooks_rollback

Drush first checks whether each hook has been implemented at testhooks.drush.
inc and then looks at all the command files in core and the following locations (see
drush topic docs-commands for further details):

• Drush's core commands directory. For example, /home/juampy/.composer/
vendor/drush/drush/commands.

• Directories added manually through the --include option, such as
drush --include=/home/juampy/projects/drupal/sites/all/drush
testhooks.

• The system-wide shared directory. For example, /usr/share/drush/
commands.

• The .drush folder in our home directory, which is where we implemented
our testhooks command in the preceding section

• The /drush and /sites/all/drush directories within the current
Drupal installation.

• All the enabled modules in the current Drupal installation.

Now, let's change directory into our sample Drupal project and run it again. Notice
that we defined our command at testhooks_drush_command() to use 'bootstrap'
=> DRUSH_BOOTSTRAP_DRUSH, which means that we don't want to bootstrap Drupal
at all:

$ cd /home/juampy/projects/drupal

$ drush --show-invoke testhooks

Available drush_invoke() hooks for testhooks: [ok]

drush_testhooks_pre_validate

drush_archive_testhooks_pre_validate

drush_browse_testhooks_pre_validate

drush_registry_rebuild_testhooks_pre_validate

drush_testcommand_testhooks_pre_validate

drush_updatepath_testhooks_pre_validate

...

Chapter 4

[93]

Drush did not look for command implementations at Drupal project's installed
modules as our command does not need it. For commands that do not need to
bootstrap a Drupal site, this is a performance boost as Drush does not spend time
doing it before running our command. However, if your command might benefit
from having a Drupal project bootstrapped, then you can set the bootstrap setting
to DRUSH_BOOTSTRAP_MAX, which attempts to bootstrap a Drupal project if it is
available. We will now update our command definition at /home/juampy/.drush/
testhooks.drush.inc and then run it again within our Drupal project to verify that
it now looks into the installed modules for command hook implementations. Here is
the command with the bootstrap setting changed:

/**
 * Implements hook_drush_command().
 */
function testhooks_drush_command() {
 $items = array();
 $items['testhooks'] = array(
 'description' => 'Dummy command to test command invocations.',
 // No bootstrap at all.
 'bootstrap' => DRUSH_BOOTSTRAP_MAX,
);
 return $items;
}

Here is the output when we run the command:

$ cd /home/juampy/projects/drupal

$ drush --show-invoke testhooks

Available drush_invoke() hooks for testhooks: [ok]

drush_testhooks_pre_validate

drush_archive_testhooks_pre_validate

drush_browse_testhooks_pre_validate

drush_ctools_testhooks_pre_validate

drush_features_testhooks_pre_validate

drush_newsfetcher_testhooks_pre_validate

Error Handling and Debugging

[94]

There you are! Now, Drush is also looking for command hook implementations at
contributed (ctools, features) and custom modules (newsfetcher) in our Drupal
project. If we implement any of these functions, they will be called by Drush. We
will dive even deeper into Drush's bootstrap phases in the following section.

Inspecting the bootstrapping process
When Drush is called, it goes over a set of bootstrap steps that are very similar to
how Drupal bootstraps on a web request. Drush commands might require minimum
bootstrap phase to run. Here is a simplified list of each of Drush's bootstrap steps
based on the documentation at drush topic docs-bootstrap:

1. DRUSH_BOOTSTRAP_DRUSH: This is the minimum bootstrap phase. It just loads
Drush configuration and core files.

2. DRUSH_BOOTSTRAP_DRUPAL_ROOT: This checks whether there is a valid
Drupal's root directory available. It is useful for commands that deal with a
whole Drupal installation and not a specific site at the sites directory.

3. DRUSH_BOOTSTRAP_DRUPAL_SITE: This will load Drush's configuration of a
specific site within the sites directory of a Drupal project, but it won't load
settings.php.

4. DRUSH_BOOTSTRAP_DRUPAL_CONFIGURATION: This loads the site's settings.
php file.

5. DRUSH_BOOTSTRAP_DRUPAL_DATABASE: This connects to the site's database,
so database queries against a Drupal project can be made from this
phase onwards.

6. DRUSH_BOOTSTRAP_DRUPAL_FULL: This loads all the available APIs in the
Drupal project.

7. DRUSH_BOOTSTRAP_DRUPAL_LOGIN: This logs in as a given user defined by
the --user option. The default value is to use the anonymous user.

8. DRUSH_BOOTSTRAP_MAX: This will try to bootstrap Drupal as far as possible,
but it does not require a Drupal project to be available.

The default phase, if none is set, when defining a command at hook_drush_
command() is DRUSH_BOOTSTRAP_DRUPAL_LOGIN. We used the last one (DRUSH_
BOOTSTRAP_MAX) at our testhooks custom command in order to execute it both with
and without the context of a Drupal project.

Chapter 4

[95]

Drush's --debug option can also provide useful information regarding how far
Drush reached in the bootstrap process. Here is a sample command output:

$ cd /home/juampy/projects/drupal

$ drush --debug testhooks

We started by changing the directory into our Drupal project and then ran our
sample command with the --debug option to see how the bootstrap process works.
Here is the output step by step:

Drush bootstrap phase : _drush_bootstrap_drush() [bootstrap]

Loading drushrc "/home/juampy/.drush/drushrc.php" into

 "home.drush" scope. [bootstrap]

Loading drushrc

 "sites/all/drush/drushrc.php" into "drupal" scope. [bootstrap]

Step 1 (DRUSH_BOOTSTRAP_DRUSH) is completed. Drush has been bootstrapped and
it has loaded all the configuration files that it found available: one at the .drush
directory under our home path and the other at the current Drupal project where we
are. Let's move on to step 2:

Drush bootstrap phase :

 _drush_bootstrap_drupal_root() [bootstrap]

Initialized Drupal 7.29-dev root directory at

 /home/juampy/projects/drupal [notice]

The DRUSH_BOOTSTRAP_DRUPAL_ROOT phase is completed. We now know that we
are within a Drupal project and can access its root directory with drush_get_
context('DRUSH_DRUPAL_ROOT') from our command if we need to. Let's move on
to the next phase:

Drush bootstrap phase :

 _drush_bootstrap_drupal_site() [bootstrap]

Initialized Drupal site default at sites/default [notice]

The DRUSH_BOOTSTRAP_DRUPAL_SITE phase is completed. We can now gain access
to the directory of the selected site under the sites directory with drush_get_
context('DRUSH_SELECTED_DRUPAL_SITE_CONF_PATH'). Here is the output for the
next phase:

Drush bootstrap phase :

 _drush_bootstrap_drupal_configuration() [bootstrap]

Error Handling and Debugging

[96]

The DRUSH_BOOTSTRAP_DRUPAL_CONFIGURATION phase has completed loading the
settings.php file located at sites/default within our Drupal project. Let's move
on to the next step:

Drush bootstrap phase :

 _drush_bootstrap_drupal_database() [bootstrap]

Successfully connected to the Drupal database. [bootstrap]

The DRUSH_BOOTSTRAP_DRUPAL_DATABASE phase is completed and now we can
query the database in our command using Drupal's database APIs:

Drush bootstrap phase :

 _drush_bootstrap_drupal_full() [bootstrap]

In DRUSH_BOOTSTRAP_DRUPAL_FULL, all of the available APIs in our Drupal project
are loaded and our command can make use of them if needed:

Drush bootstrap phase :

 _drush_bootstrap_drupal_login() [bootstrap]

Successfully logged into Drupal as (uid=0) [bootstrap]

We did not provide a user with the --user option when we ran our command,
so Drush used the special user with uid as 0 (the anonymous user) on the DRUSH_
BOOTSTRAP_DRUPAL_LOGIN phase. If you need a specific user to run a command (for
example, when your code is creating content), consider adding the --user option to
your command with the user ID that you need:

Found command: testhooks (commandfile=testhooks) [bootstrap]

Calling hook drush_testhooks [debug]

Returned from hook drush_testhooks [debug]

Command dispatch complete [notice]

 Timer Cum (sec) Count Avg (msec)

 page 0.308 1 308.06

Peak memory usage was 26.38 MB [memory]

Our command was executed and Drush finished the process. Note that there was no
log entry for DRUSH_BOOTSTRAP_MAX as this is not a phase, but an order for Drush to
bootstrap as far as possible.

Chapter 4

[97]

Inspecting hook and function
implementations
The Devel module (https://www.drupal.org/project/devel) has a couple of
commands that are extremely useful when either looking for hook implementations
or locating functions within a Drupal installation. We will see them in action in the
following sections.

Browsing and navigating hook
implementations
The fn-hook command lists all modules implementing a given hook name. This
command comes in very handy when you want to implement a hook, but want to
check before whether any other modules implement it and what do they do.

Let's take hook_cron() as an example. In Chapter 3, Running and Monitoring Tasks in
Drupal Projects, we spoke about the importance of extracting some tasks out of hook_
cron() and moved them into a custom Drush command so that they could run on
their own process and scheduling. Let's go to our sample Drupal project and run the
command to see which modules implement hook_cron(). We will assume that the
Devel module is already downloaded and installed:

$ cd /home/juampy/projects/drupal

$ drush fn-hook cron

Enter the number of the hook implementation you wish to view.

 [0] : Cancel

 [1] : ctools

 [2] : dblog

 [3] : feeds

 [4] : field

 [5] : job_scheduler

 [6] : node

 [7] : node_revision_delete

 [8] : search

 [9] : system

 [10] : update

https://www.drupal.org/project/devel

Error Handling and Debugging

[98]

We can see in the preceding output that the fn-hook command lists all modules
implementing hook_cron() sorted by module weight and filename, so you can get
an idea of the order in which these callbacks will be executed. The output is listed as
a select list where each module has an option number; Drush waits for us to enter a
value in the command line. We will choose option 3 (the Feeds module) and hit Enter:

3

// file: /home/juampy/projects/drupal/sites/all/modules/contrib/feeds/
feeds.module, lines 48-63

/**

 * Implements hook_cron().

 */

function feeds_cron() {

 if ($importers = feeds_reschedule()) {

 foreach ($importers as $id) {

 feeds_importer($id)->schedule();

 $rows = db_query("SELECT feed_nid FROM {feeds_source} WHERE id =
:id", array(':id' => $id));

 foreach ($rows as $row) {

 feeds_source($id, $row->feed_nid)->schedule();

 }

 }

 feeds_reschedule(FALSE);

 }

 // Expire old log entries.

 db_delete('feeds_log')

 ->condition('request_time', REQUEST_TIME - 604800, '<')

 ->execute();

}

Drush printed the Feed module's hook_cron() implementation, plus a heading with
its file location and start and end lines. How cool is that?

Chapter 4

[99]

Viewing source code of a function or method
The second handy command that comes with the Devel module to quickly view
a particular piece of code is fn-view. It is specially helpful when you remember a
function name, but not where it is defined. This command accepts a function or class
method and prints its contents and location, if found. Here is an example where we
print the contents of the drupal_debug() function, a debugging function provided
by the Devel module that prints a variable into a temporary logfile:

$ drush fn-view drupal_debug

// file: /home/juampy/projects/drupal/sites/all/modules/contrib/devel/
devel.module, lines 1788-1797

/**

 * Logs a variable to a drupal_debug.txt in the site's temp directory.

 *

 * @param mixed $data

 * The variable to log to the drupal_debug.txt log file.

 * @param string $label

 * (optional) If set, a label to output before $data in the log file.

 *

 * @return void|false

 * Empty if successful, FALSE if the log file could not be written.

 *

 * @see dd()

 * @see http://drupal.org/node/314112

 */

function drupal_debug($data, $label = NULL) {

 $out = ($label ? $label . ': ' : '') . print_r($data, TRUE) . "\n";

 // The temp directory does vary across multiple simpletest instances.

 $file = file_directory_temp() . '/drupal_debug.txt';

 if (file_put_contents($file, $out, FILE_APPEND) === FALSE) {

 drupal_set_message(t('Devel was unable to write to %file.',
array('%file' => $file)), 'error');

 return FALSE;

 }

}

Error Handling and Debugging

[100]

We can also view class methods with fn-view. Here, we are viewing the contents of
the render() method of the views_handler_field class, which is the base class to
define custom fields in the Views module:

$ drush fn-view views_handler_field::render

// file: /home/juampy/projects/drupal/sites/all/modules/contrib/views/
handlers/views_handler_field.inc, lines 1021-1024

 function render($values) {

 $value = $this->get_value($values);

 return $this->sanitize_value($value);

 }

These two methods are very useful to inspect code quickly. Keep in mind that both
of them have their limitations: fn-hook cannot list all the available hooks in a Drupal
project and instead expects you to provide the hook to search for, while fn-view can
only print functions that are loaded by Drupal automatically either by the .info or
.module files.

Summary
In this chapter, we covered many tools to help you write safe code and make the
most of Drush's APIs. We started by discovering how input data is processed by
Drush and how we can alter its behavior to fit our needs. Custom validation can also
be implemented in a hook so that it runs its checks before the actual command.

Preparing our commands for unexpected errors is key in any project. Drush's
rollback mechanism gives us a chance to take action if a command fails, so we can
make any required cleanup and logging. We saw how our update path script can
benefit from this mechanism in order to become more robust.

For times when we are writing a custom command, being aware of which Drush
hooks are available and when they are executed is useful in order to split the logic in
the most appropriate way. The --show-invoke option provides detailed information
about each of the callbacks that Drush attempts to call during a command execution.

Whenever we use a command, Drush goes through a bootstrap process in a way
that mimics Drupal's bootstrap. Understanding each of the different phases is vital
in order to decide which APIs are available for a given command's callback. We saw
that we can inspect Drush's bootstrap process on the fly with the --debug option.

Chapter 4

[101]

Finally, we wrapped up the chapter with some usage examples of the Devel
module's fn-hook and fn-view commands, which can be helpful to navigate
through hook implementations and functions.

In the next chapter, we will discover one of the killer features of Drush: managing
local and remote sites using site aliases.

Managing Local and
Remote Environments

I remember the first time I used a Drush site alias. Someone in the team mentioned
them and after reading the documentation, I set up one for the production
environment. Then, to test it, I entered drush @prod.example.com core-status.
Drush silently logged in to the production server, ran the command, and printed the
result back to my screen. It was a revelation. Until then, running Drush commands
in the production environment involved:

• Opening a remote session with the production environment
• Changing directory to the root of the Drupal project
• Running Drush commands
• Closing the remote session

The fact of being able to run Drush commands for the production environment from
my local environment was mind-blowing. A stream of ideas came to my head: I
would be able to check module versions, run a small piece of code to test something,
download the database and files, and so on. All my respects to the Drush team
(especially to Greg Anderson) for creating site aliases.

In this chapter, we will see how Drush site aliases can be configured to manage the
different environments of a Drupal project. Here are the topics that we will cover:

• Managing local environments
• Managing remote environments
• Special site aliases
• Running the update path in remote sites
• Copying database and files between environments

Managing Local and Remote Environments

[104]

Managing local environments
Drush site aliases offer a useful way to manage local environments without having to
be within Drupal's root directory.

A site alias consists of an array of settings for Drush to access a Drupal project. They
can be defined in different locations, using various file structures. You can find all
of its variations at drush topic docs-aliases. In this chapter, we will use the
following variations:

• We will define local site aliases at $HOME/.drush/aliases.drushrc.php,
which are accessible anywhere for our command-line user.

• We will define a group of site aliases to manage the development and
production environments of our sample Drupal project. These will be defined
at sites/all/drush/example.aliases.drushrc.php.

In the following example, we will use the site-alias command to generate a site
alias definition for our sample Drupal project:

$ cd /home/juampy/projects/example

$ drush --uri=example.local site-alias --alias-name=example.local @self

$aliases["example.local"] = array (

 'root' => '/home/juampy/projects/example',

 'uri' => 'example.local',

 '#name' => 'self',

);

The preceding command printed an array structure for the $aliases variable. You
can see the root and uri options here, which we saw in previous chapters when
we needed to tell Drush about the location of our Drupal project. There is also an
internal property called #name that we can ignore. Now, we will place the preceding
output at $HOME/.drush/aliases.drushrc.php so that we can invoke Drush
commands to our local Drupal project from anywhere in the command-line interface:

<?php

/**
 * @file
 * User-wide site alias definitions.
 *
 * Site aliases defined here are available everywhere for the current
user.

Chapter 5

[105]

 */

// Sample Drupal project.
$aliases["example.local"] = array (
 'root' => '/home/juampy/projects/example',
 'uri' => 'example.local',
);

Here is how we use this site alias in a command. The following example is running
the core-status command for our sample Drupal project:

$ cd /home/juampy

$ drush @example.local core-status

 Drupal version : 7.29-dev

 Site URI : example.local

 Database driver : mysql

 Database username : root

 Database name : drupal7x

 Database : Connected

 ...

 Drush alias files : /home/juampy/.drush/aliases.drushrc.
php

 Drupal root : /home/juampy/projects/example

 Site path : sites/default

 File directory path : sites/default/files

Drush loaded our site alias file and used the root and uri options defined in it to
find and bootstrap Drupal. The preceding command is equivalent to the following
one, which we saw in previous chapters:

$ drush --root=/home/juampy/projects/example \

 --uri=example.local core-status

While $HOME/.drush/aliases.drushrc.php is a good place to define site aliases in
your local environment, /etc/drush is a first class directory to place site aliases in
servers. Let's discover now how we can connect to remote environments via Drush.

Managing Local and Remote Environments

[106]

Managing remote environments
Site aliases that reference remote websites can be accessed by Drush through a
password-less SSH connection (http://en.wikipedia.org/wiki/Secure_Shell).
Before we start with these, let's make sure that we meet the requirements.

Verifying requirements
First, it is recommended to install the same version of Drush in all the servers that
host your website. Drush will fail to run a command if it is not installed in the remote
machine except for core-rsync, which runs rsync, a non-Drush command that is
available in Unix-like systems.

If you can already access the server that hosts your Drupal project through a public
key, then skip to the next section. If not, you can either use the pushkey command
from Drush extras (https://www.drupal.org/project/drush_extras), or
continue reading to set it up manually.

Accessing a remote server through a public key
The first thing that we need to do is generate a public key for our command-line user
in our local machine. Open the command-line interface and execute the following
command. We will explain the output step by step:

$ cd $HOME

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/juampy/.ssh/id_rsa):

By default, SSH keys are created at $HOME/.ssh/. It is fine to go ahead with the
suggested path in the preceding prompt; so, let's hit Enter and continue:

Created directory '/home/juampy/.ssh'.

Enter passphrase (empty for no passphrase): *********

Enter same passphrase again: *********

If the .ssh directory does not exist for the current user, the ssh-keygen command
will create it with the correct permissions. We are next prompted to enter a
passphrase. It is highly recommended to set one as it makes our private key safer.
Here is the rest of the output once we have entered a passphrase:

Your identification has been saved in /home/juampy/.ssh/id_rsa.

Your public key has been saved in /home/juampy/.ssh/id_rsa.pub.

http://en.wikipedia.org/wiki/Secure_Shell
https://www.drupal.org/project/drush_extras

Chapter 5

[107]

The key fingerprint is:

6g:bf:3j:a2:00:03:a6:00:e1:43:56:7a:a0:c7:e9:f3 juampy@juampy-box

The key's randomart image is:

+--[RSA 2048]----+

| |

| |

|.. |

|o..* |

|o + . . S |

| + * = . . |

| = O o . . |

| *.o * . . |

| .oE oo. |

+-----------------+

The result is a new hidden directory under our $HOME path named .ssh. This
directory contains a private key file (id_rsa) and a public key file (id_rsa.pub). The
former is to be kept secret by us, while the latter is the one we will copy into remote
servers where we want to gain access.

Now that we have a public key, we will announce it to the SSH agent so that it can be
used without having to enter the passphrase every time:

$ ssh-add ~/.ssh/id_rsa

Identity added: /home/juampy/.ssh/id_rsa (/home/juampy/.ssh/id_rsa)

Our key is ready to be used. Assuming that we know an SSH username and
password to access the server that hosts the development environment of our
website, we will now copy our public key into it. In the following command, replace
exampledev and dev.example.com with the username and server's URL of your
server:

$ ssh-copy-id exampledev@dev.example.com

exampledev@dev.example.com's password:

Now try logging into the machine, with "ssh

'exampledev@dev.example.com'", and check

in: ~/.ssh/authorized_keys to make sure we

haven't added extra keys that you weren't

expecting.

Managing Local and Remote Environments

[108]

Our public key has been copied to the server and now we do not need to enter a
password to identify ourselves anymore when we log in to it. We could have logged
on to the server ourselves and manually copied the key, but the benefit of using the
ssh-copy-id command is that it takes care of setting the right permissions to the
~/.ssh/authorized_keys file. Let's test it by logging in to the server:

$ ssh exampledev@dev.example.com

Welcome!

We are ready to set up remote site aliases and run commands using the credentials
that we have just configured. We will do this in the next section.

If you have any trouble setting up SSH authentication, you can find plenty of
debugging tips at https://help.github.com/articles/generating-ssh-keys
and http://git-scm.com/book/en/Git-on-the-Server-Generating-Your-SSH-
Public-Key.

Defining a group of remote site aliases for our
project
Before diving into the specifics of how to define a Drush site alias, let's assume the
following scenario: you are part of a development team working on a project that has
two environments, each one located in its own server:

• Development, which holds the bleeding edge version of the project's
codebase. It can be reached at http://dev.example.com.

• Production, which holds the latest stable release and real data. It can
be reached at http://www.example.com.

• Additionally, there might be a variable amount of local environments for
each developer in their working machines; although, these do not need a
site alias.

Given the preceding scenario and assuming that we have SSH access to the
development and production servers, we will create a group of site aliases that
identify them. We will define this group at sites/all/drush/example.aliases.
drushrc.php within our Drupal project:

<?php
/**
 * @file
 *
 * Site alias definitions for Example project.

https://help.github.com/articles/generating-ssh-keys
http://git-scm.com/book/en/Git-on-the-Server-Generating-Your-SSH-Public-Key
http://git-scm.com/book/en/Git-on-the-Server-Generating-Your-SSH-Public-Key

Chapter 5

[109]

 */

// Development environment.
$aliases['dev'] = array(
 'root' => '/var/www/exampledev/docroot',
 'uri' => 'dev.example.com',
 'remote-host' => 'dev.example.com',
 'remote-user' => 'exampledev',
);

// Production environment.
$aliases['prod'] = array(
 'root' => '/var/www/exampleprod/docroot',
 'uri' => 'www.example.com',
 'remote-host' => 'prod.example.com',
 'remote-user' => 'exampleprod',
);

The preceding file defines two arrays for the $aliases variable keyed by the
environment name. Drush will find this group of site aliases when being invoked
from the root of our Drupal project. There are many more settings available, which
you can find by reading the contents of the drush topic docs-aliases command.

These site aliases contain options known to us: root and uri refer to the remote root
path and the hostname of the remote Drupal project. There are also two new settings:
remote-host and remote-uri. The former defines the URL of the server hosting the
website, while the latter is the user to authenticate Drush when connecting via SSH.

Now that we have a group of Drush site aliases to work with, the following section
will cover some examples using them.

Managing Local and Remote Environments

[110]

Using site aliases in commands
Site aliases prepend a command name for Drush to bootstrap the site and then run
the command there. Our site aliases are @example.dev and @example.prod. The
word example comes from the filename example.aliases.drushrc.php, while dev
and prod are the two keys that we added to the $aliases array. Let's see them in
action with a few command examples:

Check the status of the Development environment:

$ cd /home/juampy/projects/example

$ drush @example.dev status

 Drupal version : 7.26

 Site URI : http://dev.example.com

 Database driver : mysql

 Database username : exampledev

 Drush temp directory : /tmp

 ...

 Drush alias files :

 /home/juampy/projects/example/sites/all/drush/example.aliases.drushrc.
php

 Drupal root : /var/www/exampledev/docroot

 ...

The preceding output shows the current status of our development environment.
Drush sent the command via SSH to our development environment and rendered
back the resulting output. Most Drush commands support site aliases. Let's see the
next example.

Log in to the development environment and copy all the files from the files directory located
at the production environment:

$ drush @example.dev site-ssh

 Welcome to example.dev server!

$ cd `drush @example.dev drupal-directory`

$ drush core-rsync @example.prod:%files @self:%files

You will destroy data from /var/www/exampledev/docroot/sites/default/
files and replace with data from exampleprod@prod.example.com:/var/www/
exampleprod/docroot/sites/default/files/

Do you really want to continue? (y/n): y

Chapter 5

[111]

Note the use of @self in the preceding command, which is a special Drush site alias
that represents the current Drupal project where we are located. We are using @self
instead of @example.dev because we are already logged inside the development
environment. Now, we will move on to the next example.

Open a connection with the Development environment's database:

$ drush @example.dev sql-cli

Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> select database();

+------------+

| database() |

+------------+

| exampledev |

+------------+

1 row in set (0.02 sec)

The preceding command will be identical to the following set of commands:

drush @example.dev site-ssh

cd /var/www/exampledev

drush sql-cli

However, Drush is so clever that it opens the connection for us. Isn't this neat? This
is one of the commands I use most frequently. Let's finish by looking at our last
example.

Log in as the administrator user in production:

$ drush @example.prod user-login

 http://www.example.com/user/reset/1/some-long-token/login

 Created new window in existing browser session.

The preceding command creates a login URL and attempts to open your default
browser with it. I love Drush!

Managing Local and Remote Environments

[112]

Special site aliases
We defined two site aliases for our project: one for the development environment
and one for the production environment. However, when we list all the available
site aliases, we see a few extra ones:

$ cd /home/juampy/projects/example

$ drush site-alias

example

example.dev

example.local

example.prod

none

self

We can see that this project has six Drush site aliases. We are aware of @example.
local, @example.dev, and @example.prod, but what about the others? Those are
site aliases defined by Drush automatically. We will explain each of them in the
following sections through examples.

Running a command on all site aliases of
a group
The example alias is a group site alias for our example project. If you prepend a
command with it, the command will be executed on all the site aliases defined under
this group. Our example.aliases.drushrc.php file defines two aliases: dev and
prod. This can be useful for analysis tasks such as to check which version of a module
each environment has. The following example checks this for the Metatag module:

$ cd /home/juampy/projects/example

$ drush @example pm-info --fields=version metatag

You are about to execute 'pm-info metatag' non-interactively (--yes
forced) on all of the following targets:

 @example.dev

 @example.prod

Continue? (y/n): y

@example.dev >> Version : 7.x-1.0-rc2+5-dev

@example.prod >> Version : 7.x-1.0-rc2

Chapter 5

[113]

As we can see from the preceding code, after prompting for a confirmation, Drush
has logged in to each environment, executed the pm-info command, and printed
back the result. We are using a slightly more recent version of the Metatag module at
the development environment than at production. The +5-dev bit is a syntax used by
Drupal.org to inform how far a development release is ahead of a given release.

Avoiding a Drupal bootstrap with @none
The @none alias is another special Drush site alias. It forces Drush not to bootstrap
the current Drupal project. We used it in Chapter 2, Keeping Database Configuration
and Code Together, in order to download the Registry Rebuild command without
bootstrapping Drupal because at that moment it was broken. Here is an example
where we change directory to the root of our Drupal project and run the core-
status command with the @none site alias, which will make Drush ignore the
Drupal project where we are located:

$ cd /home/juampy/projects/example

$ drush @none status

 PHP executable : /usr/bin/php

 PHP configuration : /etc/php5/cli/php.ini

 PHP OS : Linux

 Drush version : 7.0.0-alpha3

 Drush temp directory : /tmp

 Drush configuration : /home/juampy/.drush/drushrc.php

 Drush alias files : sites/all/drush/example.aliases.drushrc.php

The result of the command just refers to the Drush environment and not to the
Drupal project, thanks to the use of the @none site alias. Drush did not go through
any of the Drupal bootstrap phases.

Referencing the current project with @self
Last but not least, @self is used in Drush commands that accept a site alias as an
argument when we want to reference the current project where we are located.
Commands that support this are, among others, sql-sync and core-rsync. Here is
an example where we install a copy of the development environment's database into
our local environment:

$ drush sql-sync @example.dev @self

You will destroy data in example and replace with data from server.
juampy.com/drupaldev.

Drupal.org

Managing Local and Remote Environments

[114]

Do you really want to continue? (y/n): y

Starting to dump database on Source. [ok]

Copying dump file from Source to Destination. [ok]

Starting to import dump file onto Destination database. [ok]

In the preceding command, @self is the target destination of the database dump.
This means that the database dump extracted from the development environment
will be copied into our local environment, which is where we are currently located in
the command line.

Adding site alias support to the update
path
In Chapter 2, Keeping Database Configuration and Code Together, we introduced the
update path as a list of steps to update a database so that it gets in sync with the
exported configuration in code. Then, in Chapter 4, Error Handling and Debugging, we
made the update path more flexible by wrapping it in a Drush command and taking
advantage of Drush's command hooks in order to perform steps before and after
it runs. In this chapter, we will go one step further by implementing the following
improvements:

• Make sure that the registry-rebuild and features-revert-all
commands are available.

• Add an example in the command definition using a site alias.
• Implement error handling by inspecting the returned status from each

command. If a command fails, we will stop the process immediately.

Inspecting the command implementation
and hooks
We will now go through our update path command, located at sites/all/drush/
updatepath.drush.inc, explaining the new features hook by hook. The first one at
the top of the file is the command definition:

<?php
/**
 * @file
 * Runs a set of steps to update a database to be in line with code.
 */

Chapter 5

[115]

/**
 * Implements hook_drush_command().
 */
function updatepath_drush_command() {
 $items = array();
 $items['updatepath'] = array(
 'description' => 'Runs the update path in the bootstrapped site
performing tasks such as database updates, reverting features, etc.',
 'drush dependencies' => array('registry_rebuild', 'features'),
 'examples' => array(
 'drush updatepath' => 'Runs the updatepath in the current Drupal
project.',
 'drush @example.dev updatepath' => 'Runs the updatepath in the
Drupal project referenced by @example.dev.',
),
);
 return $items;
}

We have added a couple of settings to the command definition: the first one is drush
dependencies, which tells Drush to make sure that the command files registry_
rebuild.drush.inc and features.drush.inc are found or abort otherwise. The
second one is an example of how to execute the update path using a site alias. As
you can see, all you need to do is prepend the command with the site alias name
and Drush will run each of the steps of the update path in the Drupal site referenced
by the site alias. Now, we will see the command hook that gets triggered before the
command starts:

/**
 * Implements drush_hook_pre_command().
 */
function drush_updatepath_pre_updatepath() {
 drush_log('Enabling maintenance mode and killing active sessions.',
'status');
 $return = drush_invoke_process('@self', 'variable-set',
array('maintenance_mode', 1), array(
 'yes' => TRUE,
 'always-set' => TRUE,
));

Managing Local and Remote Environments

[116]

 if ($return['error_status']) {
 return drush_set_error('UPDATEPATH_PRE_MAINTENANCE', 'Could not
enable maintenance mode.');
 }
 $return = drush_invoke_process('@self', 'sql-query', array('truncate
table sessions'));
 if ($return['error_status']) {
 return drush_set_error('UPDATEPATH_PRE_SESSIONS', 'Could not
truncate user sessions.');
 }
}

In drush_hook_pre_command(), we perform actions before updating the database.
In this case, the actions consist of enabling maintenance mode and killing all user
sessions. We have added error checks to these tasks; so if they fail, we stop the
process. The next step is our actual command implementation:

/**
 * Implements drush_hook_command().
 */
function drush_updatepath() {
 // Registry rebuild.
 $return = drush_invoke_process('@self', 'registry-rebuild', array(),
array('no-cache-clear' => TRUE));
 if ($return['error_status']) {
 return drush_set_error('UPDATEPATH_RR', 'registry-rebuild
failed.');
 }

 // Database updates.
 $return = drush_invoke_process('@self', 'updatedb', array(),
array('yes' => true));
 if ($return['error_status']) {
 return drush_set_error('UPDATEPATH_UPDB', 'updatedb failed.');
 }

 // Clear Drush cache (sometimes needed before reverting Features
components).
 $return = drush_invoke_process('@self', 'cache-clear', array('type'
=> 'drush'));

Chapter 5

[117]

 if ($return['error_status']) {
 return drush_set_error('UPDATEPATH_CC_DRUSH', 'cache-clear
failed.');
 }

 // Revert all Features components.
 $return = drush_invoke_process('@self', 'features-revert-all',
array(), array(
 'yes' => TRUE,
));
 if ($return['error_status']) {
 return drush_set_error('UPDATEPATH_FRA', 'features-revert-all
failed.');
 }

 // Clear all caches.
 $return = drush_invoke_process('@self', 'cache-clear', array('type'
=> 'all'));
 if ($return['error_status']) {
 return drush_set_error('UPDATEPATH_CC_ALL', 'cache-clear
failed.');
 }
}

We have added error checks after each step. If something goes wrong, we log an
error and terminate. Note that each command invocation being made with drush_
invoke_process() uses @self as the site alias. You might think that in order for
this command to support Drush site aliases, it should pick up the site alias from
the command line and use it. However, when using a site alias, Drush sends each
of these commands to be run at the Drupal project referenced by the site alias. This
means that @self would point our local Drupal project if we run drush updatepath
or a remote Drupal project if we run drush @example.prod updatepath. This is
the beauty of site aliases. We will now see the implementation of the post-command
actions that will run if there were no errors up to this point:

/**
 * Implements drush_hook_post_command().
 */
function drush_updatepath_post_updatepath() {
 drush_log('Disabling maintenance mode.', 'success');

Managing Local and Remote Environments

[118]

 $return = drush_invoke_process('@self', 'variable-delete',
array('maintenance_mode'), array(
 'yes' => TRUE,
 'exact' => TRUE,
));
 if ($return['error_status']) {
 return drush_set_error('UPDATEPATH_POST_MAINTENANCE', 'Could not
disable maintenance mode.');
 }
}

We are simply disabling maintenance mode in the preceding code and logging a
message. We will now see the last section of our command file that implements
rollback hooks to take action if there is an error:

/**
 * Implements drush_hook_command_rollback().
 */
function drush_updatepath_rollback() {
 drush_log('Oh no! Something went wrong. Review the above log and
disable maintenance mode when done.', 'error');
 drush_set_context('UPDATEPATH_ROLLBACK', TRUE);
}

/**
 * Implements drush_hook_pre_command_rollback().
 */
function drush_updatepath_pre_updatepath_rollback() {
 if (!drush_get_context('UPDATEPATH_ROLLBACK')) {
 drush_log('Oh no! Something went wrong prior to start the update
path. Check the status of the maintenance mode and the sessions
table.', 'error');
 }
}

Chapter 5

[119]

We have implemented two rollback hooks: one is for the pre-command actions and
the second one is for the command implementation. As you can see, we are simply
logging a sensible message with tips on how to proceed if an error happens. Note
the use of drush_set_context() and drush_get_context(), which is helping us to
avoid getting two messages if an error happens during the command execution; one
for drush_updatepath_rollback() and then a second one for drush_hook_pre_
command_rollback().

Running the update path with a site alias
Our updatepath command has a built-in site alias support. We actually did
not have to add anything special to it apart from using @self at each of the
update commands.

Assuming that we have deployed the updatepath command into the development
environment of our example project, let's now see the result of running it from our
local environment using a site alias:

$ cd /home/juampy/projects/example

$ drush @example.dev updatepath

Enabling maintenance mode and killing active sessions. [status]

maintenance_mode was set to "1". [success]

The registry has been rebuilt via registry_rebuild (A). [success]

The registry has been rebuilt via

 drush_registry_rebuild_cc_all (B). [success]

The caches have not been cleared. It is recommended you

 clear the Drupal caches as soon as possible. [warning]

All registry rebuilds have been completed. [success]

No database updates required [success]

'all' cache was cleared. [success]

Finished performing updates. [ok]

'drush' cache was cleared. [success]

Current state already matches defaults, aborting. [ok]

'all' cache was cleared. [success]

Disabling maintenance mode. [success]

maintenance_mode was deleted. [success]

Managing Local and Remote Environments

[120]

The preceding command was executed at our remote server where http://dev.
example.com runs. Drush logged in to the server via SSH and executed the sequence
of commands printing its progress in real time. If we want to run the update path
on the production environment, we would do it with drush @example.prod
updatepath or we could also do drush @example.prod ssh and then run it there
with drush updatepath. Let's now see an example when an error happens. The
rollback mechanism should start and our rollback hooks will be executed:

$ drush @example.dev updatepath

Enabling maintenance mode and killing active sessions. [status]

maintenance_mode was set to "1". [success]

The registry has been rebuilt via registry_rebuild (A). [success]

The registry has been rebuilt via

 drush_registry_rebuild_cc_all (B). [success]

The caches have not been cleared. It is recommended you

 clear the Drupal caches as soon as possible. [warning]

All registry rebuilds have been completed. [success]

No database updates required [success]

'all' cache was cleared. [success]

Finished performing updates. [ok]

ouch! [error]

Oh no! Something went wrong. Review the above log

 and disable maintenance mode when done. [error]

We can see that the command stopped its execution and the rollback mechanism
logged as message alerting us that the maintenance mode is still active. We could
now log in to the development environment with drush @example.dev ssh and
inspect what went wrong.

Copying database and files between
environments
Now that we have our site aliases configured, we can benefit from running two of
the most powerful Drush commands: sql-sync and core-rsync. The former is used
to copy the database from a Drupal project to another, while the latter copies files
between Drupal projects. In this section, we will see some suggestions to make them
safer and efficient in our projects.

Chapter 5

[121]

Previously in this chapter, we have seen examples of both these commands. They
take two site aliases as arguments. The first one is the from (also known as source)
and the second one is the to (also known as destination). I like to mentally tell it
to myself when I type these commands so that I make sure that I copy them in the
right direction. I mumble drush sql-sync from to. The reason for such thoroughness is
that when running core-rsync and sql-sync commands, the order does matter a
lot. Here is an example: while working in a development team, we would run these
commands every once in a while to update our local environment with the latest
code and database:

$ cd /home/juampy/projects/example

Gets latest version of code in the current branch.

$ git pull --rebase

$ drush sql-sync @example.prod @self # Downloads production database.

$ drush updatepath # Syncs the database with code.

However, some day, we might not pay enough attention and mistype the sql-sync
command in the following way:

$ drush sql-sync @self @example.prod

Oh no! We just copied our local database full of testing content with photos of
bunnies into production.

As you can see, the flexibility and power that Drush site aliases bring to a team
comes at a risk. In order to prevent the preceding catastrophe, we could do one or
more of the following options:

• Only give SSH access to the production environment to a few developers,
so the preceding command wouldn't work as Drush would not be able to
log in to production

• Copy production's database into development every night and ask the
team to sync with development instead of production

• Suggest the team to use a Drush shell alias when running sql-sync
• Block these commands through Drush's API when the destination

is production

The first option is probably the safest, but you still need to give the rest of the team
a chance to download a relatively fresh copy of the production environment so that
it can test its code changes locally. The second option can be achieved with the help
of a Continuous Integration tool such as Jenkins, which will be covered in Chapter
6, Setting Up a Development Workflow. The last two options are the ones that we will
implement in this chapter.

Managing Local and Remote Environments

[122]

Defining Drush shell aliases for a team
Drush shell aliases are command shortcuts. It resembles Unix's command-line
aliases, which are normally defined at $HOME/.bashrc. Here are some of the
command-line aliases I have in my local environment:

$ alias

...

alias example='cd /home/juampy/projects/example'

alias egrep='egrep --exclude=*~ --exclude-dir=.git --exclude-dir=files'

alias chmod8='sudo setfacl -R -m u:www-data:rwX -m u:`whoami`:rwX sites/
default/files'

alias killd8='rm -rf sites/default/files && rm sites/default/settings.php
&& dr...'

...

Given the preceding list, if I type example in the command line, it would be the same
as if I had run cd /home/juampy/projects/example. Likewise, Drush supports
shell aliases in configuration files for commands that we use frequently. Drush
configuration files can be placed at several places in our system for Drush to load
them, and you can find the full list at drush topics docs-configuration. In our
case, we will just create a Drush configuration file for our Drupal project at sites/
all/drush/drushrc.php with the following aliases:

<?php

/**
 * @file
 * Drush configuration for Sample project.
 */

// Shell aliases.
$options['shell-aliases']['syncdb'] = '--verbose --yes sql-sync @
example.dev @self --create-db';
$options['shell-aliases']['syncfiles'] = '--verbose --yes core-rsync @
example.dev:%files/ @self:%files/';

Chapter 5

[123]

We have defined two Drush shell aliases in the preceding code: syncdb and
syncfiles. Whenever we run drush syncdb or drush syncfiles, Drush will
execute the command that these two wrap. Before we try them, let's make sure that
Drush can load them with the shell-alias command:

$ cd /home/juampy/projects/example/

$ drush shell-alias

 wipe : cache-clear all

 unsuck : pm-disable -y overlay,dashboard

 offline : variable-set -y --always-set maintenance_mode 1

 online : variable-delete -y --exact maintenance_mode

 pm-clone : pm-download --gitusername=juampy@git.drupal.org

--package-handler=git_drupalorg

 syncdb : --verbose --yes sql-sync @example.dev @self --create-db

 syncfiles : --verbose --yes rsync @example.dev:%files/ @self:%files/

We can see our custom Drush shell aliases at the bottom of the list. The other
ones listed are some useful shortcuts that you can find at drush topics docs-
configuration. I encourage you to run drush topic docs-configuration >
$HOME/.drush/drushrc.php and then adjust the resulting file as it comes with very
useful settings for Drush that will be available for all your Drupal projects.

Let's now test our syncdb shell alias:

$ drush syncdb

Initialized Drupal 7.31 root directory at

/home/juampy/projects/example [notice]

You will destroy data in example and replace with data from

dev.example.com/drupaldev.

Do you really want to continue? (y/n): y

Starting to create database on Destination. [ok]

Creating database example. Any possible existing database

will be dropped!

Do you really want to continue? (y/n): y

Starting to dump database on Source. [ok]

Database dump saved to /home/exampledev/drush-backups/exampledev/

201409231429/exampledev_20140923_1429.sql.gz [success]

Starting to discover temporary files directory on

Managing Local and Remote Environments

[124]

Destination. [ok]

Copying dump file from Source to Destination. [ok]

Starting to import dump file onto Destination database. [ok]

Command dispatch complete [notice]

The preceding output is a simplified version. The original one is longer because
we used the --verbose option that shows how Drush bootstraps each project
(local and development), generates a database dump, downloads it, and installs it.
It's handy to leave the verbose option set, so if there are any errors or warnings, they
can be easily spotted. Now, let's try our site alias to sync files from development
into our local environment:

$ drush syncfiles

Initialized Drupal 7.31 root directory at

/home/juampy/projects/example [notice]

You will destroy data from

/home/juampy/projects/example/sites/default/files/

andreplace with data from

exampledev@dev.example.com:

 /var/www/exampledev/docroot/sites/default/files/

Do you really want to continue? (y/n): y

receiving incremental file list

...

sent 14.71M bytes received 31 bytes 1.28M bytes/sec

total size is 16.18M speedup is 1.10

Command dispatch complete [notice]

The preceding Drush site alias synced the files directory from the development
environment into our local environment. As you can see, these two aliases come in
handy for the rest of the team, so these do not need to deal with having to type the
full syntax for sql-sync and core-rsync commands.

Chapter 5

[125]

Blocking the execution of certain commands
Using Drush shell aliases instead of manually typing sql-sync and core-rsync
commands is definitely an improvement, but there is still the chance of someone
writing the command manually in the wrong way and causing a disaster. We can go
one step further in securing these commands and leverage Drush's command API to
block certain commands. Drush has a section in its documentation with a few default
policy rules. We will use this file as a template to make our own policy file for the
example project:

$ drush topic docs-policy > sites/all/drush/policy.drush.inc

After editing the resulting file, we have the following policy rules for our project:

<?php

/**
 * @file
 * Policy rules for Example project.
 */

/**
 * Implements drush_hook_COMMAND_validate().
 *
 * Prevent overriding Production's database.
 */
function drush_policy_sql_sync_validate($source = NULL, $destination =
NULL) {
 if ($destination == '@example.prod') {
 return drush_set_error('POLICY_DENY_SQL', dt('Oops, you almost
copied your database onto Production. Please use drush syncdb
instead.'));
 }
}

/**
 * Implements drush_hook_COMMAND_validate().
 *

Managing Local and Remote Environments

[126]

 * Prevent modifying Production's files directory.
 */
function drush_policy_core_rsync_validate($source = NULL, $destination
= NULL) {
 if (strpos($destination, '@example.prod') === 0) {
 return drush_set_error('POLICY_DENY_RSYNC', dt('Oops, you almost
copied files onto Production. Please use drush syncfiles instead.'));
 }
}

We have implemented a validate hook for sql-sync and core-rsync commands,
verifying that the destination site of the command being executed is not production
and throwing an error if so. Let's try copying our local database into production and
see what happens:

$ drush cache-clear drush

$ drush sql-sync @self @example.dev

You will destroy data in dev.example.com/exampledev and replace with data
from example.

Do you really want to continue? (y/n): y

Oops, you almost copied your database onto Production. Please

 use drush syncdb instead. [error]

As we added a new command file, we cleared Drush's cache so that it could discover
it. Next, we tried to copy our database into the production environment and our
policy file aborted it as we expected. Let's try now to sync our files directory into the
production environment:

$ drush rsync @self:%files @example.dev:%files

@example.dev:%files

Oops, you almost copied files onto Production. Please use

 drush syncfiles instead. [error]

It's the same case here. By using Drush shell aliases and implementing policy rules,
you can limit some of the flexibility of Drush site aliases that can damage your
project and at the same time provide shorter commands for the team to use.

Chapter 5

[127]

Ignoring tables on sql-sync
The sql-sync command accepts a list of tables whose data will be skipped and a
list of tables whose data and structure will be skipped. This feature speeds up the
command considerably, especially on large databases. Here is an example where we
manually define the list of tables to ignore when copying development's database
into our local environment:

$ drush sql-sync \

 --structure-tables-list=cache,history,sessions,watchdog \

 @example.dev @self

Now, the list of tables provided will just be created in our local database, but its
data won't be downloaded from the development environment. The --structure-
tables-list is actually an option of the sql-dump command, which sql-sync
calls in order to obtain a database dump from the development environment and
then download it. Managing this list of tables can be tedious as the list would be
changing frequently during the development stage of a project. In order to simplify
this process, we can instead use the --structure-tables-key option and define
an array of tables at our Drush configuration file. Here is our sites/all/drush/
drushrc.php file with the list of tables to ignore:

<?php

/**
 * @file
 * Drush configuration for Sample project.
 */

/**
 * List of tables whose *data* is skipped by the 'sql-dump' and 'sql-
sync'
 * commands when the "--structure-tables-key=common" option is
provided.
 */
$options['structure-tables']['common'] = array('cache', 'cache_*',
'history', 'search_*', 'sessions', 'watchdog');

// Shell aliases.

Managing Local and Remote Environments

[128]

$options['shell-aliases']['syncdb'] = '--verbose --yes sql-sync @
example.dev @self --create-db';
$options['shell-aliases']['syncfiles'] = '--verbose --yes rsync @
example.dev:%files/ @self:%files/';

We have defined a list of structure-tables under the common key. This list
supports wildcards, which makes it considerably shorter. Now, here is how we
can reference this list when we run sql-sync:

$ drush sql-sync --structure-tables-key=common @example.dev @self

The preceding command will ignore the data of many more tables than the previous
one, which was using --structure-tables-list. Drush loads our configuration
file at sites/all/drush/drushrc.php and is able to relate the common key
provided in the command line with the list of tables to ignore in the development
environment. We can even go one step further and move the --structure-tables-
key option into our development's site alias, so we do not even have to type this
option anymore. Here is our site alias definition after adding the --structure-
tables-key option at sites/all/drush/example.aliases.drushrc.php:

<?php
/**
 * @file
 *
 * Site alias definitions for Example project.
 */

// Development environment.
$aliases['dev'] = array(
 'root' => '/var/www/exampledev',
 'uri' => 'http://dev.example.com',
 'remote-host' => 'dev.example.com',
 'remote-user' => 'exampledev',
 'command-specific' => array (
 'sql-dump' => array (
 'structure-tables-key' => 'common',
),
),
);

Chapter 5

[129]

// Production environment.
$aliases['prod'] = array(
 'root' => '/var/www/exampleprod/docroot',
 'uri' => 'www.example.com',
 'remote-host' => 'www.example.com',
 'remote-user' => 'exampleprod',
);

We have added an option to the sql-dump command whenever @example.dev is
used. As we said before, sql-sync internally calls sql-dump to obtain a database
dump from the source site alias; hence, the option is set for sql-dump and not sql-
sync. Now, we can use sql-sync, and Drush will silently ignore the list of tables
that we defined previously:

$ drush sql-sync @example.dev @self

The preceding code will load the --structure-tables-key option from
development's site alias and the list of tables from our Drush configuration file. Our
Drush shell alias will behave in the same way so that the rest of the team can keep on
using drush syncdb and Drush will take care of ignoring unnecessary tables.

Drush site aliases offer many more options such as --source-command-specific
and --target-command-specific, which should offer enough flexibility to fit your
team's needs. Take a look at drush topic docs-aliases for further examples that
you can consider useful for your project.

Summary
Site aliases open a world of possibilities. They are one of the gems of Drush (and
perhaps Drupal as well). The community built a lot of tools that rely on them and
you can discover these at Drupal.org.

In this chapter, we covered practical examples with site aliases. We started by
defining a site alias for our local Drupal project, and then went on to write a group
of site aliases to manage remote environments for a hypothetical Drupal project
with a development and production site. Before using site aliases for our remote
environments, we covered the basics of setting up SSH in order for Drush to connect
to these servers and run commands there.

Drupal.org

Managing Local and Remote Environments

[130]

We also learned that Drush automatically defines a set of special site aliases: @self,
@none, plus one for each group of site aliases that we define. The @self alias means
Bootstrap the current project, @none means Don't bootstrap the current project, and a
group site alias such as @example means Run the command in all the sites defined
within the group.

Next, we tested a custom command with a remote site alias and took the chance
to improve it, exploring Drush's APIs even further. We showed how running the
update path in our local and in a remote site makes little difference to Drush. As
a matter of fact, when I finished writing this chapter, I published the command in
Drupal.org. You can find this at https://www.drupal.org/project/updatepath
or by running drush dl updatepath.

We finished the chapter configuring two commands that use site aliases as
arguments: core-rsync and sql-sync. The tips that we learned will help us to make
these two commands easier and safer to use within a team of developers. This setup
will be the foundation of our next and last chapter, where we will leverage all of
Drush's features to set up a development workflow for a team.

Drupal.org
https://www.drupal.org/project/updatepath

Setting Up a
Development Workflow

A few years ago, I joined a team to work on a web development project. On the first
day, I got the following e-mail from the CTO:

Hi Juampy!

Welcome to the team. Here is how you can start working:

Clone the repository git@github.com:some-company/some-project.git

Download the database from http://intranet.some-company.com/some-project/
db.sql.tar.gz

Set up your local environment and then open http://jira.some-company.com to start
working on tickets.

Thanks and good luck!

I hope that you can figure out how I felt when I read this e-mail. If you can't, let me
tell you that the project was a chaos, there was no effort to keep a certain level of
quality; there were bugs everywhere and it took me two days to reach the project's
homepage in my environment. This is definitely not a good welcome for a new
developer. Here is an alternative e-mail that I got in a different team:

Hi Juampy!

Welcome to the project, I have just given you access to the project's repository. Please open
up https://github.com/some-company/some-project and follow instructions there
to get started.

Thanks and good luck!

Setting Up a Development Workflow

[132]

The preceding URL presented the README.md file of the project with clear steps on
how to set up a local environment, how to update it, and which tools and resources
I had available. This experience was way more positive than the previous e-mail we
saw above. The team had a development workflow. They understood that their code
travelled from their local to development environment and finally the production
environment, while content would stream back in the opposite direction from
production to their local environments.

Drush can help a team to standardize many of the common tasks that they encounter
every day in a Drupal project. In this chapter, we will leverage Drush concepts that
we studied previously to implement a development workflow for a team. Here are
some of the topics that we will cover:

• Moving configuration, commands, and site aliases out of Drupal
• Configuring the development database for the team
• Running post sql-sync tasks in local environments

Moving configuration, commands, and
site aliases out of Drupal
Drupal's .htaccess file does a good job of blocking the execution of command files
because their extension is drush.inc, but configuration files have a drushrc.php
extension; hence, these will be executed by the web server if someone writes the full
path in the browser. Let's test this in the command line. Our sample Drupal project
has a few Drush commands and a configuration file at sites/all/drush:

$ curl -v http://example.local/sites/all/drush/policy.drush.inc

* Connected to example.local (127.0.0.1) port 80 (#0)

> GET /sites/all/drush/policy.drush.inc HTTP/1.1

> User-Agent: curl/7.35.0

> Host: example.local

> Accept: */*

>

< HTTP/1.1 403 Forbidden

Chapter 6

[133]

We attempted to access our policy command file from the web browser and failed
because Drupal's .htaccess file blocked access to it. Good! Now let's try this with
our main Drush configuration file:

$ curl -v http://example.local/sites/all/drush/drushrc.php

* Connected to example.local (127.0.0.1) port 80 (#0)

> GET /sites/all/drush/drushrc.php HTTP/1.1

> User-Agent: curl/7.35.0

> Host: example.local

> Accept: */*

>

< HTTP/1.1 200 OK

Gotcha! Drupal's .htaccess file allowed access to drushrc.php so the web browser
executed the code from that file. Although there is no output because drushrc.
php simply sets a few array variables, it could be dangerous if we add further logic
to it. Drush command files and configuration are not meant to be viewed in a web
browser. Therefore, why have them under our project's document root? In this
section, we will move all of our custom Drush configuration, commands, and site
aliases one level above and then tell Drush how to find them.

Installing Drupal Boilerplate
In order to move Drush files out of Drupal, there must be a parent directory within
our codebase. We need to set up a directory structure where docroot will contain
our Drupal project and everything else that does not need to be available to the
web browser is out.

Drupal Boilerplate (https://github.com/Lullabot/drupal-boilerplate) is a
GitHub project that we will use as a foundation to structure Drupal projects. It comes
with the following file structure:

• docroot: This is an empty directory where we will place our example
Drupal project.

• drush: This will host configuration, commands, and aliases for Drush.
• patches: This can be used to keep track of core and contrib patches.
• results: This stores automated test results. It is useful when you want a

third-party software to parse them.
• scripts: These are project scripts. For example, we can store shell scripts

used by Jenkins jobs here.

https://github.com/Lullabot/drupal-boilerplate

Setting Up a Development Workflow

[134]

• tests: These are automated test scripts and not SimpleTest scripts, but tests
implemented with other testing technologies such as CasperJS or Behat.

• .gitignore: These are the default set of files and patterns to be ignored
by Git.

• README.md: This is the main project's documentation and is meant to be
adjusted for your project and the starting point for everyone new to the team.

Here is how we can download Drupal Boilerplate and then place Drupal into
its docroot directory. We start by downloading Drupal Boilerplate into our
temporary directory:

$ cd /tmp

$ wget https://github.com/Lullabot/drupal-boilerplate/archive/master.zip

HTTP request sent, awaiting response... 200 OK

Length: 40891 (40K) [application/zip]

Saving to: 'master.zip'

100%[======================================>] 40.891 160KB/s in
0,2s

'master.zip' saved [40891/40891]

Drupal Boilerplate has been downloaded to /tmp/master.zip. Let's unzip
its contents:

$ unzip master.zip

Archive: master.zip

 creating: drupal-boilerplate-master/

 inflating: drupal-boilerplate-master/.gitignore

 creating: drupal-boilerplate-master/docroot/

 inflating: drupal-boilerplate-master/docroot/readme.md

 creating: drupal-boilerplate-master/drush/

 creating: drupal-boilerplate-master/drush/aliases/

...

Chapter 6

[135]

Now, we will move our Drupal example project into docroot and then move Drupal
Boilerplate to be the root of our project. Note that we are using rsync instead of mv
because the latter does not move hidden files such as .htaccess:

$ rsync -v -a /home/juampy/projects/example/
 drupal-boilerplate-master/docroot/

sending incremental file list

./

.gitignore

.htaccess

CHANGELOG.txt

COPYRIGHT.txt

INSTALL.mysql.txt

INSTALL.pgsql.txt

INSTALL.sqlite.txt

...

sent 24,016,476 bytes received 75,003 bytes 16,060,986.00 bytes/sec

total size is 23,692,782 speedup is 0.98

$ mv /tmp/drupal-boilerplate-master /home/juampy/projects/example

We need to adjust our local web server configuration, so the root of http://
example.local points now to /home/juampy/projects/example/docroot. The
same applies to the development and production environments. Furthermore, this
directory change also affects our site alias definitions, which need to be updated.
Here is what they look like after adjusting them at docroot/sites/all/drush/
drush/example.aliases.drushrc.php:

<?php
/**
 * @file
 *
 * Site alias definitions for Example project.
 */

// Development environment.
$aliases['dev'] = array(

Setting Up a Development Workflow

[136]

 'root' => '/var/www/drupal-dev/docroot',
 'uri' => 'http://dev.example.com',
 'remote-host' => 'dev.example.com',
 'remote-user' => 'juampydev',
 'command-specific' => array (
 'sql-dump' => array (
 'structure-tables-key' => 'common',
),
),
);

// Production environment.
$aliases['prod'] = array(
 'root' => '/var/www/exampleprod/docroot',
 'uri' => 'http://www.example.com',
 'remote-host' => 'prod.example.com',
 'remote-user' => 'exampleprod',
);

We are done relocating Drupal within the new directory structure. Welcome to
Drupal Boilerplate!

Relocating Drush files
Now that we have our new directory structure in place, we can move Drush
configuration, commands, and site aliases from sites/all/drush to drush. Let's
take a look at the contents of this directory for our sample Drupal project:

$ ls docroot/sites/all/drush/

drushrc.php

example.aliases.drushrc.php

policy.drush.inc

registry_rebuild

updatepath.drush.inc

Chapter 6

[137]

We have a mix of configuration files (drushrc.php), custom command files
(policy.drush.inc and updatepath.drush.inc), site aliases files (example.
aliases.drushrc.php), and a contributed project with a command file in it
(registry_rebuild). We will reorganize them with the following commands:

Our Drush configuration file drushrc.php goes to drush:

$ mv docroot/sites/all/drush/drushrc.php drush/

Custom command files go to drush/commands:

$ mv docroot/sites/all/drush/*.drush.inc drush/commands/

Site aliases go to drush/aliases:

$ mv docroot/sites/all/drush/example.aliases.drushrc.php drush/aliases/

Let's remove Registry Rebuild from docroot/sites/all/drush because Drupal
Boilerplate already has it at drush/commands:

$ rm -rf docroot/sites/all/drush/registry_rebuild

Now that we have relocated Drush files, how will they be discovered? Drush, while
bootstrapping, is able to find resources at several locations in the system and the
current Drupal project. On top of that, it can be provided with additional resources.
We will add the following file at docroot/sites/all/drush/drushrc.php, which
does a sanity check and then tells Drush where our configuration, commands, and
site aliases are:

<?php

/**
 * @file
 * Drush configuration for Sample project.
 *
 * Loads configuration files located out of the document root.
 */

// Safety check. Only run in the command line.
if (php_sapi_name() != 'cli') {
 return;

Setting Up a Development Workflow

[138]

}

// Load Drush configuration, commands and site alias files from
docroot/../drush.
$drupal_dir = drush_get_context('DRUSH_SELECTED_DRUPAL_ROOT');
if ($drupal_dir) {
 include_once $drupal_dir . '/../drush/drushrc.php';
 $options['include'][] = $drupal_dir . '/../drush/commands';
 $options['alias-path'][] = $drupal_dir . '/../drush/aliases';
}

We have added a safety measure at the top of the file; so, if someone opens
http://example.local/sites/all/drush/drushrc.php in a web browser, then
no code will be executed. Next, we obtained Drupal's root directory through Drush's
context system and we used it to add configuration, commands, and aliases located
in the parent directory.

There are many ways to structure and load external configuration, commands, and
site aliases in Drush. The drush topic docs-configuration command suggests
a neat way of doing it through the project's Git repository. In this book, we did not
choose this strategy because Git might not be available in the development and
production environments.

Testing the new setup
Let's test that our new Drush setup works as expected. We will now run Drush's
core-status command from the root of our Drupal project using the --verbose
option to check where the configuration is being loaded from. We will analyze the
command output as it goes:

$ cd /home/juampy/projects/example/docroot

$ drush --verbose core-status

Include /home/juampy/projects/example/docroot/../drush/commands

 [notice]

Initialized Drupal 7.31 root directory at

/home/juampy/projects/example/docroot [notice]

Chapter 6

[139]

Gotcha! Very early in Drush's bootstrap, our new directory containing Drush
commands has been included. Let's see the next chunk of the command's output:

Initialized Drupal site default at sites/default [notice]

 Drupal version : 7.31

 Site URI : http://default

 Database driver : mysql

 Database hostname : localhost

 Database port :

 Drush configuration : /home/juampy/projects/example/
docroot/sites/all/drush/drushrc.php /home/juampy/.drush/drushrc.php

Drush loaded two configuration files: one from our the $HOME path (which we
defined in Chapter 5, Managing Local and Remote Environments) and another one that
is inside our project at sites/all/drush/drushrc.php. Although, we do not see
drush/drushrc.php listed here, we know that it has been loaded by sites/all/
drush/drushrc.php through an include_once statement. Let's inspect the rest of
the command's output:

 Drush alias files : /home/juampy/.drush/aliases.drushrc.
php

/home/juampy/projects/example/docroot/../drush/aliases/example.aliases.
drushrc.php

 Drupal root : /home/juampy/projects/example/docroot

 Site path : sites/default

 File directory path : sites/default/files

 Temporary file directory path : /tmp

Command dispatch complete [notice]

Our project's site aliases were loaded from their new location. Note the /../,
which we used at sites/all/drush/drushrc.php to access the parent directory
of docroot. What about our custom shell aliases, which are now defined at drush/
drushrc.php? Are they being loaded? Let's list the available shell aliases to verify it:

$ cd /home/juampy/projects/example/docroot

$ drush shell-alias

 wipe : cache-clear all

 unsuck : pm-disable -y overlay,dashboard

 offline : variable-set -y --always-set maintenance_mode 1

Setting Up a Development Workflow

[140]

 online : variable-delete -y --exact maintenance_mode

 pm-clone : pm-download --gitusername=juampy@git.drupal.org
--package-handler=git_drupalorg

 syncdb : --verbose --yes sql-sync @example.dev @self --create-db

 syncfiles : --verbose --yes rsync @example.dev:%files/ @self:%files/

That's perfect. We can still use these shell aliases to download the database and files
from the development environment. We are done! We have successfully moved our
Drush configuration and commands out of Drupal.

Configuring the development database
for the team
The development environment's database is the one that everyone in the team
should download to work with. The production's database can be downloaded to
our local environment in very specific occasions when we need bleeding edge fresh
data and when we are aware of the security implications of using it.

By working with the development environment's database, we gain the
following benefits:

• The development environment's database might not need tables that are
present in production, such as old migration tables.

• Compromising data in the development environment can be sanitized after
the database has been copied from production. Therefore, when developers
download the development's database into their local environments, they get
a safe database to work with.

• Large tables containing data that is not needed for development can be
trimmed down, thus reducing the size of the database, which helps for faster
performance of the sql-sync command.

• E-mail submission can be short circuited or forwarded to a logfile or
dummy address.

In the previous chapter, we added a few adjustments to the sql-sync command
for the team to download a copy of the development environment to their local
environment. We will now work to fine tune the other side of the coin: the job that
periodically copies the production environment's database and files into development.
You can set this up in many ways: a crontab in development, a shell script in your local
environment that logs in to the development environment, a Jenkins job that has SSH
access to the development environment to open a connection, and so on. In this book,
we will use Jenkins to set up a job that runs periodically.

Chapter 6

[141]

Configuring Jenkins to sync production to
development
Our example project has two remote site aliases referencing the development and
production environments. We will now add the development server as a Jenkins
node and then create a job where Jenkins will log in to development and run the
sql-sync and core-rsync commands.

First of all, we need to create a jenkins user in development and give Jenkins
SSH access to it. You can find instructions to accomplish this at http://www.
caktusgroup.com/blog/2012/01/10/configuring-jenkins-slave.

Once we have configured the jenkins user and SSH access, we can proceed to add
the node by clicking on New Node at the Jenkins administration interface. We are
then presented with the following screenshot:

http://www.caktusgroup.com/blog/2012/01/10/configuring-jenkins-slave
http://www.caktusgroup.com/blog/2012/01/10/configuring-jenkins-slave

Setting Up a Development Workflow

[142]

At Node name, we will give a name to the Jenkins node. For this case, we will type
in ExampleDev as this node references the server that hosts http://dev.example.
com. We will then choose Dumb Slave and click on OK. On the next page, we can
configure the new node:

Here, we are specifying how to reach and access the server. We have set the Host
field to dev.example.com and the Credentials field to use the default jenkins
credentials (Go to Manage Jenkins | Manage Credentials if you need to change
this). This setup will then translate to Jenkins running ssh jenkins@dev.example.
com in order to run jobs at the development server.

Now that we added the development environment as a Jenkins node, we can create
a job that uses it. Let's click on New Item at the Jenkins administration homepage to
add the job. Name it Sync Production to Development, select Freestyle Project,
and click on Next. In the following screenshot, we can configure our new job. Here
are the form fields that we should set up: The first one defines in which server this
job should run, where we will choose the ExampleDev node that we added in the
previous step:

Chapter 6

[143]

Next, at Build Triggers, we will make this job to run nightly at 3 AM. The following
screenshot shows how we define this by typing H 3 * * *. This is a common way to
define periods of time used by crontab, Jenkins, and other systems. The question icon
next to the text area contains useful examples for you to define a different period
of time. Furthermore, Jenkins will interpret what you type in and explain it in a
sentence, as you can see at the text right below the text area:

Setting Up a Development Workflow

[144]

The following step is to add a Build step of type Execute shell. This will show a text
area for us to type in the commands that we want Jenkins to run. We will enter the
following statements to run a shell script within the scripts directory of our project,
which we will implement in the next step:

The preceding step simply runs a shell script located at the scripts/sync_prod_to_
dev.sh directory. Here are the contents of the shell script:

#!/usr/bin/env bash

Jenkins script to sync database and files from Production to
Development.
cd /var/www/drupal-dev/docroot

Sync database and files.
drush --verbose --yes sql-sync @example.prod @self
drush --verbose --yes core-rsync @example.prod:%files @self:%files

We could have pasted the preceding Drush commands in the Jenkins user interface,
but what if the Jenkins server crashes and we lose all our jobs? By keeping shell
scripts inside our project's repository, we benefit by keeping track of changes so that
they evolve as the rest of the Drupal codebase does.

Read and adjust the rest of the settings for this job to suit your needs and click on
Save. You can test it by clicking on the Build Now link on the left navigation menu
and then inspecting the Jenkins console output.

Congratulations! You have automated a job to run periodically. Now, Jenkins will
take care of keeping the development environment's database and files up to date
with production.

Chapter 6

[145]

Fine-tuning the development database
Now that we have set up a job to periodically obtain a fresh database copy from
production, it's time to add a few enhancements to it. There are a few things that
the production environment's database contains, which we do not need in the
development environment:

• It has personal information such as names, usernames, and passwords
• It might contain extra tables that do not need to be downloaded
• It might use modules that send e-mail notifications
• It has development and data modeling modules in disabled status

The following sections will do a few iterations on the commands which are executed
by the Jenkins job in order to fine tune the database of the development environment
so that the team can work with it more comfortably.

Recreating the database on sql-sync
The sql-sync command has an option called --create-db. When used, Drush
recreates the destination database prior to installing the database dump extracted
from the source site (in this case, production). This option will save you more than
one headache. The reason is that if you do not recreate the database, you won't
be dropping tables that are not used anymore in the project. Here are a couple of
scenarios where not using --create-db can cause trouble:

• If a field is removed in production, its data and revision tables won't be
dropped from development when you run sql-sync. Now, if the field is
added back again and exported to code through the Features module when
you run the updatepath command in the development environment, you
will get a SQL error saying that Features attempted to create a field table
that already existed in your database.

• If a module was uninstalled but not all of its tables were removed, the next
time you install the module, the installation process will fail because it will
try to create a table that already exists.

Long story short: use this setting every time you use the sql-sync command.
Here is what our shell script at scripts/sync_prod_to_dev.sh looks like after
adding this setting:

#!/usr/bin/env bash

Jenkins script to sync database and files from Production to
Development.

Setting Up a Development Workflow

[146]

cd /var/www/drupal-dev/docroot

Sync database and files.
drush --verbose --yes sql-sync @example.prod @self --create-db
drush --verbose --yes core-rsync @example.prod:%files @self:%files

Excluding table data from production
Just as we defined in the previous chapter, a list of tables whose data was to
be ignored by sql-sync when copying development's database into our local
environment, we want to do the same when we copy the production environment's
database into development. We already have the array of tables to exclude at drush/
drushrc.php as $options['structure-tables']['common']. This array excludes
cache tables, the search index, and other tables that contain data that we do not need
to download. We can exclude the data of these tables easily by adjusting production's
Drush site alias. Here is what it looks like after adjusting it at drush/aliases/
example.aliases.drushrc.php:

// Production environment.
$aliases['prod'] = array(
 'root' => '/var/www/exampleprod/docroot',
 'uri' => 'http://www.example.com',
 'remote-host' => www.example.com',
 'remote-user' => 'exampleprod',
 'command-specific' => array (
 'sql-dump' => array (
 'structure-tables-key' => 'common',
),
),
);

That's it. Now, when Jenkins runs sql-sync, it will load production's site alias and
therefore load the list of tables to exclude.

Ignoring tables from production
Let's suppose now that production has a few tables that we don't want to be created
in the development environment. This scenario usually happens after you have run
a data migration using the Migrate module (https://www.drupal.org/project/
migrate) from a legacy site to Drupal.

https://www.drupal.org/project/migrate
https://www.drupal.org/project/migrate

Chapter 6

[147]

The Migrate module uses a set of custom tables to track the status of the migration
process. Once it has completed, these tables will stay in the production environment.
We do not need to download these tables from production to development. This is
why we will use the skip-tables option to completely ignore them when running the
sql-sync command. The Migrate module table names look like the following code:

migrate_log

migrate_map_source_a

migrate_map_source_b

migrate_message_source_a

migrate_message_source_b

migrate_status

These tables might contain a considerable amount of data depending on how much
content was imported from the legacy website. We definitely do not need them in
the development environment. Therefore, we will first add the $options['skip-
tables']['common'] option to our Drush configuration file in order to match
these table names and then reference it at the site alias definition of the production
environment. Here is our Drush configuration file at drush/drushrc.php after
adding the list of tables to skip:

<?php

/**
 * @file
 * Drush configuration for Sample project.
 */

/**
 * List of tables whose *data* is skipped by the 'sql-dump' and 'sql-
sync'
 * commands when the "--structure-tables-key=common" option is
provided.
 */
$options['structure-tables']['common'] = array('cache', 'cache_*',
'history', 'search_*', 'sessions', 'watchdog');

/**
 * List of tables to be omitted entirely from SQL dumps made by the
'sql-dump'

Setting Up a Development Workflow

[148]

 * and 'sql-sync' commands when the "--skip-tables-key=common" option
is
 * provided on the command line. This is useful if your database
contains
 * non-Drupal tables used by some other application or during a
migration for
 * example. You may add new tables to the existing array or add a new
element.
 */
$options['skip-tables']['common'] = array('migrate_*');

// Shell aliases.
$options['shell-aliases']['syncdb'] = '--verbose --yes sql-sync @
example.dev @self --create-db';
$options['shell-aliases']['syncfiles'] = '--verbose --yes rsync @
example.dev:%files/ @self:%files/';

The $options['skip-tables']['common'] setting accepts wildcards, so just with a
pattern like migrate_*, we will exclude all the migration tables when running sql-
sync. The last step is to reference this array at our production's site alias at drush/
aliases/example.aliases.drushrc.inc:

// Production environment.
$aliases['prod'] = array(
 'root' => '/var/www/exampleprod/docroot',
 'uri' => 'http://www.example.com',
 'remote-host' => 'www.example.com',
 'remote-user' => 'exampleprod',
 'command-specific' => array (
 'sql-dump' => array (
 'structure-tables-key' => 'common',
 'skip-tables-key' => 'common',
),
),
);

Chapter 6

[149]

Note that the setting is for the sql-dump command instead of the sql-sync
command. The reason for this is that Drush uses sql-dump as a subcommand while
running sql-sync in order to obtain a database dump. From now on, our Jenkins
job will exclude migration tables in the resulting database dump to be installed in
development. The sql-sync command will take less time to complete because the
database dump to download will be smaller. As a consequence, when your team
runs the Drush shell alias syncdb, it will download a smaller database from the
development environment, thus making everyone happy.

Sanitizing data
So, now we have a Jenkins job that downloads the production environment's
database into development, excluding the data of some tables and ignoring
migration tables. However, we are not doing any sanitization of compromising data.
I found a very good definition of data sanitization at Wikipedia:

"Sanitization is the process of removing sensitive information from a document or
other medium, so that it may be distributed to a broader audience. "

In our particular scenario, what we want to do is to reset usernames, passwords,
personal data, and privileged data in the development database so that when the
team downloads it, they get safe data to work with. Fortunately, the sql-sync
command has a --sanitize option that resets all user e-mails to user+%uid@
localhost and passwords to the literal password;. Additionally, it offers hook for
us to add extra sanitizations.

Let's suppose that our project's users have a Full Name field that we also want to
sanitize. We will now implement hook_drush_sql_sync_sanitize() at the bottom
of our policy file located at drush/commands/policy.drush.inc with the following
SQL statements, which will sanitize the field tables:

<?php

/**
 * @file
 * Policy rules for Example project.
 */

// ... some other Drush hooks that we implemented before go here.

/**
 * Implements hook_drush_sql_sync_sanitize().

Setting Up a Development Workflow

[150]

 *
 * Custom sql-sync sanitization to alter user's Full name. It is used
by Drush
 * when sql-sync is run with the --sanitize option.
 *
 * @see sql_drush_sql_sync_sanitize().
 */
function policy_drush_sql_sync_sanitize($source) {
 drush_sql_register_post_sync_op('policy-sanitize-full-name',
dt('Reset the full name of all users.'),
 "UPDATE field_data_field_full_name
 SET field_full_name_value = CONCAT('user+', entity_id);");
 drush_sql_register_post_sync_op('policy-sanitize-full-name-
revisions', dt('Reset the full name revisions of all users.'),
 "UPDATE field_revision_field_full_name
 SET field_full_name_value = CONCAT('user+', entity_id);");
}

The preceding hook resets the value of the Full Name field in the field_data_
field_full_name and field_revision_field_full_name tables to something
like user+1, 1 being the user's ID. The first table contains the actual data for each
user's full name, and the second table is used by Drupal to keep track of the different
revisions of this field (when you change a user's full name and click on Save, a new
revision is created). Let's now add the sanitize option to our shell script that syncs
production with development at scripts/sync_prod_to_dev.sh so that Drush will
run sanitization tasks after completing sql-sync:

#!/usr/bin/env bash

Jenkins script to sync database and files from Production to
Development.
cd /var/www/drupal-dev/docroot

Sync database and files.
drush --verbose --yes sql-sync @example.prod @self --create-db
--sanitize
drush --verbose --yes core-rsync @example.prod:%files @self:%files

Chapter 6

[151]

Now, let's force the Jenkins job to run immediately by clicking on Build Now at
the Jenkins' administration interface. Here is an excerpt of the output while
sql-sync is running:

Starting to import dump file onto Destination database. [ok]

...

Starting to sanitize target database on Destination. [ok]

/usr/bin/php /usr/share/drush-head/drush.php --php=/usr/bin/php
--backend=2 --verbose --strict=0 [notice]

--root=/home/juampy/projects/example/docroot --uri=http://default sql-
sanitize --create-db --sanitize 2>&1

Drush's sql-sync command internally dispatches the sql-sanitize command
in the destination database (in this case, the development environment) to run
sanitization queries. The sql-sanitize command will invoke the hook that we
implemented at drush/commands/policy.drush.inc, so our custom sanitization
queries will run as well. Here is the last bit of the command's output:

Initialized Drupal site example.prod at sites/default [notice]

The following post-sync operations will be done on the destination:

 * Reset the full name of all users.

 * Reset the full name revisions of all users.

 * Reset passwords and email addresses in users table

 * Truncate Drupal's sessions table

Do you really want to sanitize the current database? (y/n): y

Command dispatch complete [notice]

Here is our confirmation: e-mails, passwords, and full names were sanitized.
Additionally, the sessions table was truncated, which is not needed because we are
not downloading the data of that table, but this is how the sql-sanitize command
behaves by default. Ta-da! Now, you and your team can work safely with a database
which does not have compromising data.

Preventing e-mails from being sent
The development database is now lean and safe, thanks to the optimizations that
we did in previous sections. It's now time to run some extra tasks to reconfigure the
development environment's database after it has synced with production. We will
start by disabling e-mail submission.

Setting Up a Development Workflow

[152]

By sanitizing user e-mails as we did in the previous section, we know that our users
won't get any test e-mails. However, who knows? There might be some custom
code that sends an e-mail manually, which Drupal won't catch. Here are some of the
options that we have to avoid this from happening:

• If we know our codebase, we can just ignore it and let e-mails be sent to
dummy e-mail addresses. Not my preference, but still an option.

• There are a few modules in Drupal.org to alter e-mail submission such as
Reroute Email (https://www.drupal.org/project/reroute_email),
which redirects e-mails to a given address or Devel (https://www.drupal.
org/project/devel), which writes them to a file.

• You can also reroute all e-mail being sent to be written to a log at the server
level by following the instructions at this article from the Lullabot blog:
https://www.lullabot.com/blog/article/oh-no-my-laptop-just-
sent-notifications-10000-users.

If e-mail is important for your project, then you might want to log it to a file so
that it can be debugged. If it is not, then redirecting it to a dummy account such as
dummy@example.com should be enough. For our example project, we will go for the
simplest solution, which consists of installing Reroute Email (http://drupal.org/
project/reroute_email) and redirecting all mail to dummy@example.com.

Here is our Jenkins script to sync production with development after we add a few
commands to reroute e-mail submission at scripts/sync_prod_to_dev.sh:

#!/usr/bin/env bash

Jenkins script to sync database and files from Production to
Development.
cd /var/www/drupal-dev/docroot

Sync database and files.
drush --verbose --yes sql-sync @example.prod @self --create-db
--sanitize
drush --verbose --yes core-rsync @example.prod:%files @self:%files

Disable email submission.
drush --verbose --yes pm-enable reroute_email
drush --verbose --yes variable-set reroute_email_enable 1
drush --verbose --yes variable-set reroute_email_address 'dummy@
example.com'
drush --verbose --yes variable-set reroute_email_enable_message 1

Drupal.org
https://www.drupal.org/project/reroute_email
https://www.drupal.org/project/devel
https://www.drupal.org/project/devel
https://www.lullabot.com/blog/article/oh-no-my-laptop-just-sent-notifications-10000-users
https://www.lullabot.com/blog/article/oh-no-my-laptop-just-sent-notifications-10000-users

Chapter 6

[153]

In the preceding script, we installed the Reroute Email module and then set a few
variables that the module uses:

• reroute_email_enable: This is a flag to activate e-mail rerouting
• reroute_email_address: This is the address designated to receive e-mails
• reroute_email_enable_message: This is a flag that, when active, adds a

piece of text to the body informing that the e-mail was rerouted and where it
should have been sent instead

E-mail submission won't be a problem anymore in our development environment
and in the local environments of our team. Here is a chance for you to take a look at
the project where you are currently working. Log in to your production environment
and run drush pm-list --status=enabled. Inspect this list and ask yourself, do
you need to disable any of those modules in development? Do you need to tweak
any of their settings? If you do, then simply add your commands at the bottom of
scripts/sync_prod_to_dev.sh.

The settings.php file is also a good place to overwrite configuration variables as
per environment. If you have specific settings.php files for each environment or
a way to identify the current environment at settings.php (for example, Acquia
environments have a variable called $_ENV['AH_SITE_ENVIRONMENT']), then you
can overwrite the configuration variables there.

Running post sql-sync tasks in local
environments
We have come a long way to here. So far, we built together a workflow from
production to development and provided the team with two simple commands:

• syncdb: This is a command to download a copy of the development
environment's database

• syncfiles: This is a command to download files from the files directory
into the development environment

This is the same as when we added extra tasks after syncing production to
development; we would like to automatically adjust the database configuration of a
local environment once sql-sync completes. Here are some of the things we will do:

• Enable user interface modules that are disabled in production and
development, such as Views UI and Field UI

• Enable development modules such as Devel, Database Logging, and Stage
File Proxy

Setting Up a Development Workflow

[154]

• Disable production modules such as Update, Purge, or Memcache
• Adjust environment variables to fine tune installed modules and

disable caches

The preceding list is what I consider the most common list of things that a developer
would need. Depending on your background and the nature of the project, you
might like to adjust it even further and add new items.

There are several ways to implement the requirements of the preceding list. Here are
some of the alternatives:

• We could write a custom command and append it to the Drush shell alias
syncdb so that it runs automatically

• We could implement drush_hook_post_sql_sync() in a command file and
run Drush statements when the source alias is @dev.example.com and the
target alias is @self

• We could install the Rebuild project (https://www.drupal.org/project/
rebuild) and define the preceding list in a YAML file for the command
to process it

• We could use the devify command, which ships with Drupal Boilerplate
and is available for us at drush/commands

In our case, we will use the devify command due to its simplicity. Drupal
Boilerplate now hosts our example project so that the devify command can be found
at drush/commands/build.drush.inc. Let's jump to the command line and inspect
its documentation:

$ cd /home/juampy/projects/example/docroot

$ drush help devify

Configures the current database for development.

Examples:

 drush devify Uses command default values to set up a

 database for development.

 drush devify --enable-modules=xhprof,devel Enables XHProf and Devel

 modules

 drush devify --reset-variables=site_mail=local@local.com,file_temporary_
path=/tmp

https://www.drupal.org/project/rebuild
https://www.drupal.org/project/rebuild

Chapter 6

[155]

Resets site_mail and file_temporary_path variables.

Options:

 --delete-variables A comma separated list of

 variables to delete.

 --reset-variables A comma separated list of

 variables to reset with the

 format foo=var,hey=ho.

 --disable-modules A comma separated list of

 modules to disable.

 --enable-modules A comma separated list of

 modules to enable.

As we can see from the preceding output, the command accepts a list of variables
to delete, a list of variables to reset, a list of modules to enable, and a list of modules
to disable. Our command invocation would be very long in order to make all the
adjustments that we mentioned at the start of this section; so, we will instead define
these options at our Drush configuration file at drush/drushrc.php. Here is the
bottom of the file after we add the list of options for the devify command to use:

<?php

/**
 * @file
 * Drush configuration for Sample project.
 */

/**
 * List of tables whose *data* is skipped by the 'sql-dump' and 'sql-
sync'
 * commands when the "--structure-tables-key=common" option is
provided.
 */
$options['structure-tables']['common'] = array('cache', 'cache_*',
'history', 'search_*', 'sessions', 'watchdog');

/**

Setting Up a Development Workflow

[156]

 * List of tables to be omitted entirely from SQL dumps made by the
'sql-dump'
 * and 'sql-sync' commands when the "--skip-tables-key=common" option
is
 * provided on the command line. This is useful if your database
contains
 * non-Drupal tables used by some other application or during a
migration for
 * example. You may add new tables to the existing array or add a new
element.
 */
$options['skip-tables']['common'] = array('migrate_*');

// Shell aliases.
$options['shell-aliases']['syncdb'] = '!drush --verbose --yes sql-sync
@example.dev @self --create-db && drush devify';
$options['shell-aliases']['syncfiles'] = '--verbose --yes rsync @
example.dev:%files/ @self:%files/';

/**
 * Command options for devify command.
 * @see build.drush.inc
 */
$command_specific['devify'] = array(
 'enable-modules' => array(
 'dblog',
 'devel',
 'field_ui',
 'reroute_email',
 'stage_file_proxy',
 'views_ui',
),
 'disable-modules' => array(
 'update',
 'purge',
),
 'reset-variables' => array(
 // File management settings.

Chapter 6

[157]

 'file_temporary_path' => '/tmp/',

 // Cache settings.

 'cache' => FALSE,

 'block_cache' => FALSE,

 'preprocess_css' => FALSE,

 'preprocess_js' => FALSE,

 // Stage file proxy settings.

 'stage_file_proxy_origin' => 'http://dev.example.com',

 'stage_file_proxy_origin_dir' => 'sites/default/files',

 'stage_file_proxy_hotlink' => TRUE,

),

);

The above array of settings name $command_specific['devify'] will be used by
the devify command when we run it. It will enable the given list of modules,
disable a couple of ones, and reset some variables.

Within the list of modules to enable, there is a Stage File Proxy module
(https://www.drupal.org/project/stage_file_proxy). I found this module
extremely helpful while working locally on large projects with a huge amount of
media files at the files directory. The module uses what it calls a proxy origin to
fetch files from it when Drupal can't find a file at your local files directory. This
frees you from having to download files from the development environment to your
local environment in order to obtain, for example, images from the latest content in
the website. It is a great tool because it saves you both time and hard disk space.

The Stage File Proxy module needs a few variables to be defined after being
installed for it to work. Here, they are along with the values we have given to them:

• 'stage_file_proxy_origin' => 'http://dev.example.com': This is the
source to fetch images from. We are using the development environment as
the proxy because its files are in sync with our local database.

• 'stage_file_proxy_origin_dir' => 'sites/default/files': This is
the directory where files are served in the development environment.

• 'stage_file_proxy_hotlink' => TRUE: This setting tells Stage File
Proxy not to download files to our local environment, but instead serve them
directly from the development environment through a 301 response code.
This will make pages in your local environment to load faster.

https://www.drupal.org/project/stage_file_proxy

Setting Up a Development Workflow

[158]

We have also altered the Drush shell alias syncdb, which now looks like the
following code:

// Shell aliases.
$options['shell-aliases']['syncdb'] = '!drush --verbose --yes sql-sync
@example.dev @self --create-db && drush devify';
$options['shell-aliases']['syncfiles'] = '--verbose --yes rsync @
example.dev:%files/ @self:%files/';

The shell alias now starts with !drush. This tells Drush not to prepend drush when
running the shell alias, which gives us the chance to append additional commands
with &&. Now our team, after running drush syncdb, will not only get a lean
and safe database to work with, but also will have everything they need to work
comfortably. If any customizations have to be made, they can enter them at their
settings.php file or even define their own Drush shell aliases at $HOME/.drush/
drushrc.php.

Summary
First of all, thanks! I am so glad that you made it up to this point. This chapter was
a hands-on training in defining a development workflow. We used a good amount
of what is available in Drush core: configuration, shell aliases, commands, and site
aliases. Each feature served as a piece of the final puzzle.

We started the chapter by moving our example Drupal project into Drupal
Boilerplate, a default directory structure for Drupal projects. We moved all our
custom Drush code (configuration, commands, and site aliases) out of Drupal and
then added a small piece of code for Drush to discover the new location.

We created a Jenkins job to periodically copy the database and files from the
production environment into the development environment. Then, we optimized
this process as much as possible by reducing the amount of data that gets
downloaded, sanitizing compromising data, and rerouting email submission.

We closed the chapter by offering a way to automate extra tasks to run in local
environments after obtaining a copy of the development environment's database.
Things such as enabling development modules and disabling caches can be
accomplished easily with the devify command.

Thank you again for reading this book. I hope that you enjoyed reading it as much as
I did writing it. My head is empty now. This was all I could share with you to help
you master Drupal development with Drush. See you in the issue queues!

Index
Symbols
.htaccess file 132
@none alias

Drupal bootstrap, avoiding with 113
@self alias

current project, referencing with 113, 114

A
arguments

providing, to command 14
allow-additional-options setting 82

B
background

command, running in 74-76
Batch API

about 57
operations 59-61
sample Drush command 58, 59
URL 57

batches
long tasks, running in 57

bootstrapping process
inspecting 94-96

bootstrap steps, Drush
DRUSH_BOOTSTRAP_DRUPAL_

CONFIGURATION 94
DRUSH_BOOTSTRAP_DRUPAL_

DATABASE 94
DRUSH_BOOTSTRAP_DRUPAL_

FULL 94

DRUSH_BOOTSTRAP_DRUPAL_
LOGIN 94

DRUSH_BOOTSTRAP_DRUPAL_
ROOT 94

DRUSH_BOOTSTRAP_DRUPAL_SITE 94
DRUSH_BOOTSTRAP_DRUSH 94
DRUSH_BOOTSTRAP_MAX 94

C
challenges, Drupal

URL, for articles 21
code

evaluating 63
Feeds importer, exporting into 54, 55

Code section, hook_update_N()
reference link 30

command aliases 16
command implementation

inspecting 114-119
command invocations

structuring 15
commands

arguments, providing to 14
behavior, altering through options 14
custom validation, adding to 83-85
executing 13
execution, blocking of 125, 126
moving, out of Drupal 132, 133
running, in background 74-76
running, on site aliases of group 112
site aliases, using in 110, 111

[160]

commands, returned to process
identifier (PID)

& 75
&> /tmp/solr_reindex.log 75
nohup 75

Composer
installing 10
URL 9
URL, for official installation instructions 10

composer self-update
reference link, for running 10

configuration
moving, out of Drupal 132, 133

content revisioning 58
context

setting, manually 18
context system 16, 17
core-status command 14
cron

about 44
running, with Drush 48
used, for running periodic tasks 44

cron, Drupal
cron frequency, overriding 46-48
current cron frequency, verifying 45, 46
displaying 44
URL 44

cron runs
monitoring 52
scheduling, with Jenkins 48, 49

crontab, Linux
URL 48

custom validation
adding, to command 83-85

D
database, and files

copying, between environments 120, 121
database update, hook_update_N()

reference link 29
debugging tips, SSH generation

reference link 108
Devel module

about 97
URL 97, 152

development database
configuring, for team 140
data, sanitizing 149-151
e-mails, preventing from being

sent 151-153
fine tuning 145
recreating, on sql-sync command 145
table data, excluding from production 146
tables, ignoring from production 146-149

Drupal
commands, moving out of 132, 133
configuration, moving out of 132, 133
site aliases, moving out of 132, 133

Drupal Boilerplate
about 133
installing 133-135
URL 133

Drupal bootstrap
avoiding, with @none alias 113

Drupal's registry
rebuilding 28, 29

Drush
about 7, 8
bootstrap steps 94
cron, running with 48
installation requisites 8
installing, manually 11, 12
installing, on Linux 10, 11
installing, on OSX 10, 11
messages, logging in 67, 68

Drush command
writing, for triggering Feeds

importer 55, 56
Drush command structure

about 13
arguments, providing to commands 14
command aliases 16
command, executing 13
command invocations, structuring 15
command's behavior, altering through

options 14
Drush files

relocating 136-138
drushify command

about 57
URL 57

[161]

drush_log() function
about 70
levels 68

Drush on Windows, installer
URL 9

Drush output
redirecting, into file 70, 71

drush_set_error() function
arguments 85

Drush setup
testing 138, 139

Drush shell aliases
defining, for team 122-124

E
Entity collection module, Drupal

reference link 24

F
feature components

reverting, programmatically 38-40
features-export command 32
features, managing

about 32
configuration, exporting into code 32-35

Features module
about 31
processes, for working with 32

features-revert command 32
Feeds importer

Drush command writing,
for triggering 55, 56

exporting, into code 54, 55
moving, from Drupal's cron to Drush 53

Feeds module
URL 53

Field collection module, Drupal
reference link 24

file
Drush output, redirecting into 70, 71

file structure, Drupal projects
.gitignore 134
docroot 133
drush 133

patches 133
results 133
scripts 133
tests 134

fn-hook command 97
function

source code, viewing of 99, 100
function implementations

inspecting 97

G
Git 21
group, of remote site aliases

defining, for project 108, 109

H
hook_cron() module

URL 44
hook implementations

browsing 90-98
inspecting 97, 114-119
navigating 97, 98

I
input

validating 77
input arguments

validating 78-80
installation, Composer 9
installation, Drupal Boilerplate 133-135
installation, Drush

manually 11, 12
on Linux 10, 11
on OSX 10, 11

installation, Jenkins
URL, for process 49

installation requisites, Drush
about 8
Composer 9
operating system 9
PHP 9

interactive shell, PHP
URL 63

[162]

J
Jenkins

configuring, for syncing production
to development 141-144

cron runs, scheduling with 48, 49
installing 49
URL 48

job
creating, through web interface 49-51

L
levels, drush_log() function

error 68
info 68
success 68
warning 68

Linux
Drush, installing on 10, 11

local environments
managing 104, 105
post sql-sync tasks, running in 153-157

logging mechanism
implementing 72-74

long process
common errors 57

long tasks
running, in batches 57

Lullabot blog
URL 152

M
messages

logging, in Drush 67, 68
Migrate module

URL 146
MySQL server

URL 57

N
newsfetcher module 55
Node Revision Delete module

URL 58

O
options

ignoring, after command name 81
validating 81

OSX
Drush, installing on 10, 11

P
periodic tasks

running, with cron 44
PHP 9
php-eval command

about 63, 64
URL 63

php-script command 63-65
POST-INSTALL tasks, Drush repository

URL 13
post sql-sync tasks

running, in local environments 153-157
process identifier (PID) 75
public key

remote server, accessing through 106, 107
pushkey command, Drush extras

reference link 106

Q
Queue API

URL 58
quiet mode, Drush 69

R
Rebuild project

URL 154
redirect output, into file

reference link, for examples 71
registry

breaking 27
rebuilding 24

remote environments
group of remote site aliases, defining for

project 108, 109
managing 106

[163]

requisites, verifying 106
site aliases, using in commands 110, 111

remote server
accessing, through public key 106, 107

Reroute Email module
reroute_email_address 153
reroute_email_enable flag 153
reroute_email_enable_message flag 153
URL 152

rollback mechanism 85
RSS feed

URL 53

S
sample Drush command, Batch API

about 58, 59
output, verifying 61, 62
running 61, 62

sanitization 149
scripts

running 63
scripts, for nodes creation 66, 67
scripts, for revisions creation 66, 67
Secure Shell

URL, for wiki 106
single command

update path, turning into 86-90
site alias

about 104
moving, out of Drupal 132, 133
update path, running with 119, 120
using, in commands 110, 111

site alias, of group
command, running on 112

site alias support
adding, to update path 114

source code
viewing, of function 99, 100

special site aliases
about 112
command, running on all site aliases

of group 112
current project, referencing with @self

alias 113, 114
Drupal bootstrap, avoiding with @none

alias 113

sql-sync command
about 127, 145
development database, recreating on 145
tables, ignoring on 127-129

SSH
URL 49

Stage File Proxy module
URL 157
variables, with values 157

standard streams
STDERR 70
STDIN 70
STDOUT 70
URL 70

streams
references 71

strict-option-handling command 81
Strongarm module

URL 46
syncdb command 153
syncfiles command 153

T
tables

ignoring, on sql-sync command 127-129
task

on demand 43
one-off 43
periodic 43
running, outside cron 52
URL, for Wikipedia definition 43

team
development database, configuring for 140
Drush shell aliases, defining for 122-124

trap, for breaking Drupal's registry
preparing 24, 25

U
Ubuntu

URL 9
update path

about 22, 23
results, analyzing 37, 38
running, on different environment 36, 37
running, with site alias 119, 120

[164]

site alias support, adding to 114
turning, into single command 86-90

update path, running in Drupal project
database updates, running 29-31
features, managing 31
registry, rebuilding 24
steps 22

V
verbose mode, Drush 69
version 7.0.0-alpha5, Drush

URL 8
VirtualBox

URL 9

W
web interface

job, creating through 49-51

Thank you for buying
Drush for Developers

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Drush User's Guide
ISBN: 978-1-84951-798-0 Paperback: 140 pages

A practical guide to Drush, Drupal's command line
interface, helping you work with your Drupal sites
more effectively

1. Stop clicking around administration pages
and start issuing commands straight to your
Drupal sites.

2. Write your own commands, hook in to alter
existing ones, and extend the toolkit with
a long list of contributed modules.

3. A practical guide full of examples and
step-by-step instructions to start using
Drush right from chapter 1.

Drupal 7 Development by Example
Beginner's Guide
ISBN: 978-1-84951-680-8 Paperback: 366 pages

Follow the creation of a Drupal website to learn,
by example, the key concepts of Drupal 7
development and HTML5

1. A hands-on, example-driven guide to
programming Drupal websites.

2. Discover a number of new features for
Drupal 7 through practical and interesting
examples while building a fully functional
recipe sharing website.

3. Learn about web content management,
multimedia integration, and e-commerce
in Drupal 7.

Please check www.PacktPub.com for information on our titles

Drupal 7 Cookbook
ISBN: 978-1-84951-796-6 Paperback: 324 pages

Over 70 recipes that will advance your Drupal skills
from novice to pro

1. Install, set up, and manage a Drupal site, and
discover how to get the most out of creating
and displaying content.

2. Become familiar with creating new content
types and use them to create and publish
content using views, blocks, and panels.

3. Learn how to work with images, documents,
and videos and how to integrate them with
Facebook, Twitter, and AddThis.

Building E-commerce Sites with
Drupal Commerce Cookbook
ISBN: 978-1-78216-122-6 Paperback: 206 pages

Over 50 recipes to help you build engaging,
responsive E-commerce sites with Drupal Commerce

1. Learn how to build attractive e-commerce
sites with Drupal Commerce.

2. Customize your Drupal Commerce store
for maximum impact.

3. Reviewed by the creators of Drupal
Commerce – The Commerce Guys.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction, Installation, and Basic Usage
	Installation requirements
	Operating system
	PHP
	Installing Composer
	Drush installation on Linux and OSX
	Manual installation

	The Drush command structure
	Executing a command
	Providing arguments to a command
	Altering a command's behavior through options
	Structuring command invocations
	Command aliases

	Understanding Drush's context system
	Setting the context manually
	Summary

	Chapter 2: Keeping Database Configuration and
Code Together
	Meeting the update path
	Rebuilding the registry
	Breaking the registry
	Rebuilding Drupal's registry

	Running database updates
	Managing features
	Exporting configuration into code

	Running the update path on a different environment
	Analyzing results
	Reverting the feature components programmatically

	Summary

	Chapter 3: Running and Monitoring Tasks in Drupal Projects
	Running periodic tasks with cron
	Disabling Drupal's cron
	Verifying the current cron frequency
	Overriding cron frequency and exporting it to code

	Running cron with Drush
	Scheduling cron runs with Jenkins
	Installing Jenkins

	Creating a job through the web interface
	Monitoring cron runs

	Running a task outside cron
	Example – moving a Feeds importer from Drupal's cron to Drush
	Exporting the Feeds importer into code
	Writing a Drush command to trigger the Feeds importer

	Running long tasks in batches
	Sample Drush command using the Batch API
	Batch API operations
	Running the command and verifying the output

	Evaluating code on the fly and running scripts
	The php-eval command
	The php-script command
	Script to create nodes and revisions

	Logging messages in Drush
	The verbose and quiet modes

	Redirecting Drush output into a file
	Implementing your own logging mechanism

	Running a command in the background
	Summary

	Chapter 4: Error Handling and Debugging
	Validating input
	Validating an argument
	Validating options
	Ignoring options after the command name
	Allowing additional options

	Adding custom validation to a command

	Rolling back when an error happens
	Turning the update path into a single command

	Browsing hook implementations
	Inspecting the bootstrapping process
	Inspecting hook and function implementations
	Browsing and navigating hook implementations
	Viewing source code of a function or method

	Summary

	Chapter 5: Managing Local and
Remote Environments
	Managing local environments
	Managing remote environments
	Verifying requirements
	Accessing a remote server through a public key

	Defining a group of remote site aliases for our project
	Using site aliases in commands

	Special site aliases
	Running a command on all site aliases of
a group
	Avoiding a Drupal bootstrap with @none
	Referencing the current project with @self

	Adding site alias support to the update path
	Inspecting the command implementation
and hooks
	Running the update path with a site alias

	Copying database and files between environments
	Defining Drush shell aliases for a team
	Blocking the execution of certain commands
	Ignoring tables on sql-sync

	Summary

	Chapter 6: Setting Up a
Development Workflow
	Moving configuration, commands, and site aliases out of Drupal
	Installing Drupal Boilerplate
	Relocating Drush files
	Testing the new setup

	Configuring the development database for the team
	Configuring Jenkins to sync production to development
	Fine tuning the development database
	Recreating the database on sql-sync
	Excluding table data from production
	Ignoring tables from production
	Sanitizing data
	Preventing e-mails from being sent

	Running post sql-sync tasks in local environments
	Summary

	Index

