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Foreword

If we look back at the last 15 years of the field of embedded systems, we will see that 
everything has changed radically. Embedded systems have become more and more powerful 
and have gained new functionalities. Today, you can find "embedded" quad-core systems 
with 1 GB of RAM and several GBs of storage, comparable to a few-years-old desktop 
computer. Nowadays, it is not unusual that the requirements of an embedded system are low 
consumption, graphic acceleration, multimedia capabilities, sufficient storage, and so on.

On the software side, if we look back again at those 15 years, we will notice that most of the 
Linux-running embedded systems at that time were in-house developments built from the 
ground up. Their main functionality was to boot the device and run the specific application 
(usually not graphical) the device was designed for. A typical system from those days 
contained a minimal Linux kernel, a small C library (uclibc), BusyBox as the base user space, 
and then the specific application or set of applications.

As the hardware became more powerful and gained more functionalities, the requirements 
of the software also increased. With embedded systems becoming powerful enough to 
run distributions that were considered mostly for desktops (such as Debian or Ubuntu), it's 
no longer as easy as building a minimal set of software packages (uclibc, BusyBox, and a 
command-line application) anymore. You now have to choose between different windowing 
systems (X11, Wayland, and so on) and different graphic libraries (Qt, GTK, and so on). Maybe 
your hardware has dedicated units for video processing (VPU) or graphics processing (GPU) 
and is running its own firmware, and so on.

All of this extra difficulty is what makes an embedded software engineer look for new tools 
that ease their work and speed up the development. This is the context where different Linux 
build systems began to appear.

The first build system to show up was Buildroot. It has its roots in the uClibc project. The 
initial goal of Buildroot was to build a root filesystem based on the uclibc library for testing 
purposes. Buildroot is based on a Makefile's structure, kconfig as the configuration tool, and 
patches that apply to the different software packages before being built. These days, Buildroot 
supports multiple architectures, and apart from root filesystem images, it also can build 
kernel and bootloader images.
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A bit later, OpenEmbedded was born. Its goal is a bit different because it is defined as a 
Linux distribution builder. OpenEmbedded is based on recipes interpreted by the BitBake 
build engine. BitBake in turn is a tool derived from portage (Gentoo's distribution package 
manager). An interesting feature about OpenEmbedded is that the recipes can specify 
dependencies between packages, and later on, BitBake parses all the recipes and creates a 
queue of tasks in the correct order to fulfill the dependencies. Two examples of distributions 
created with OpenEmbedded are Angstrom and OpenMoko.

Another OpenEmbedded-based distribution was Poky Linux. This has special importance 
because it's the way that leads to Yocto. The Yocto Project is an open source project whose 
goal is to provide the tools that help build Linux-based embedded systems. Under the 
umbrella of the Yocto Project, there are multiple software projects, such as Poky, the BitBake 
build engine, and even OpenEmbedded-Core. These are probably the main projects, but by no 
means, the only projects. In this new phase, Poky (the former Linux distribution) became the 
reference system of the Yocto Project, being the build system of the Yocto Project these days 
and using the BitBake build engine and OpenEmbedded-Core metadata (recipes, classes, and 
configuration files) underneath. This is the reason people tend to confuse the Yocto Project 
with the Poky build system.

Poky is a nearly complete solution for embedded software engineering teams. It allows you to 
create a distribution for your hardware. It also allows you to create a software development 
kit (SDK) tailored for your distribution. This SDK may be used by other engineers in a team to 
compile the user-space applications that will later run on your Linux system. The price to pay 
for the functionality Poky provides is a steep learning curve compared to other build systems.

Alex González's contribution with Embedded Linux Projects Using Yocto Project Cookbook is 
of great help to overcome that steep learning curve. The practical focus of this book and its 
structure in the form of short recipes help you resolve specific problems that you may find 
along the way when building an embedded product.

So please enjoy and learn from this book. In return for the invested time, you will get deeper 
knowledge of embedded system development with the help of the Yocto Project.

Javier Viguera
Embedded Software Engineer at Digi International
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Preface
The Linux kernel is at the heart of a large number of embedded products being designed 
today. Over the last 10 years, this operating system has developed from dominating the server 
market to being the most used operating system in embedded systems, even those with real-
time requirements. On the way, Linux has evolved, and the embedded industry has realized it 
has some key and unique characteristics:

 f Linux is quick to adapt to new technologies and it's the place where innovation 
happens first

 f It is robust, and the development community is quick to react to problems

 f It is secure, and vulnerabilities are discovered and dealt with in a much quicker way 
than in competing proprietary products

 f It is open, which means your company is able to own, modify, and understand the 
technology

 f Finally, Linux is free

All of these make it a very compelling choice for embedded development.

But at the same time, an embedded Linux product is not only the Linux kernel. Companies 
need to build an embedded system over the operating system, and that's where embedded 
Linux was finding it difficult to make its place—until Yocto arrived.

The Yocto Project brings all the benefits of Linux into the development of embedded systems. 
It provides a standard build system that allows you to develop embedded products in a quick, 
reliable, and controlled way. Just as Linux has its strong points for embedded development, 
Yocto has its own too:

 f Yocto is secure, as it uses recent sources and provides the means to quickly apply 
security vulnerabilities to your products

 f It is robust, as it is used by a large community, which is quick to react to problems
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 f It is open, so your company can own the technology, understand it, and make it fit for 
specific needs

 f It is free

With the Yocto Project's 6-month stable release process, package management updates, 
and flexibility, you will be able to focus on your embedded application, knowing that you are 
building it on top of a trusted system. You will speed up your development cycles and produce 
outstanding products.

But Yocto is a new technology, and developers need to adapt to it. This books aims to provide 
a practical guide for readers with basic knowledge of Linux and Yocto to develop a production-
ready industrial system based on the ARM architecture.

What this book covers
Chapter 1, The Build System, describes the use of the Poky build system and extends it with 
the Freescale BSP community layer. It also describes common build system configurations 
and features used to optimize the building of target images.

Chapter 2, The BSP Layer, guides you through the customization of the BSP for your own 
product. It then explains how to configure, modify, build, and debug the U-Boot bootloader, the 
Linux kernel, and its device tree.

Chapter 3, The Software Layer, describes the process of creating a new software layer to 
hold new applications, services, or modifications to existing packages, as well as discussing a 
release process for license compliance.

Chapter 4, Application Development, starts with toolchains and the Application Development 
Toolkit (ADT), and deals with application development in detail, including development 
environments such as Eclipse and Qt creator.

Chapter 5, Debugging, Tracing, and Profiling, discusses debugging tools and techniques, and 
explores the tracing functionalities offered by the Linux kernel, along with some of the user-
space-tracing and profiling tools that make use of them.

What you need for this book
This book assumes some basic working knowledge with GNU/Linux systems; applications 
such as the bash shell and derivatives; as well as standard tools such as grep, patch, diff, 
and so on. The examples have been tested with an Ubuntu 14.04 LTS system, but any Linux 
distribution supported by the Yocto Project can be used.
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This is not meant to be an introductory book to the Yocto project, and reading an introductory 
book, such as Embedded Linux Development with Yocto Project by Otavio Salvador and 
Daiane Angolini, also from Packt Publishing, is recommended.

This book is structured to follow the usual development workflow of an embedded Linux 
product, but chapters or even single recipes can be read independently.

The recipes take a practical hands-on approach using a Freescale i.MX6-based system, the 
wandboard-quad, as base hardware. However, any other piece of i.MX-based hardware can be 
used to follow the examples.

Who this book is for
This book is the ideal way for embedded developers learning about embedded Linux and 
the Yocto Project to become proficient and broaden their knowledge with examples that are 
immediately applicable to embedded developments.

Experienced embedded Yocto developers will find new insights into working methodologies 
and ARM-specific development competence.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it, 
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or 
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the  
previous section.
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There's more…
This section consists of additional information about the recipe in order to make you more 
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of 
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, 
dummy URLs, user input, and Twitter handles are shown as follows: "You can add a list of 
packages to exclude from cleaning by adding them to the RM_WORK_EXCLUDE variable."

A block of code is set as follows:

SRC_URI = "file://helloworld.c"

S = "${WORKDIR}"

When we wish to draw your attention to a particular part of a code block, the relevant lines or 
items are set in bold:

SRC_URI = "file://helloworld.c"
DEPENDS = "lttng-ust"

S = "${WORKDIR}"

Any command-line input or output is written as follows:

$ ls sources/meta-fsl*/conf/machine/*.conf
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New terms and important words are shown in bold. Words that you see on the screen,  
for example, in menus or dialog boxes, appear in the text like this: "Build the project by 
navigating to Project | Build Project."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles 
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the 
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to 
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com 
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, 
you can visit http://www.packtpub.com/support and register to have the files e-mailed 
directly to you.

The example code in the book can be accessed through several GitHub repositories at 
https://github.com/yoctocookbook. Follow the instructions on GitHub to obtain a  
copy of the source in your computer.

www.allitebooks.com
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you could report this to us. By doing so, you can save other readers from frustration 
and help us improve subsequent versions of this book. If you find any errata, please report them 
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on 
the Errata Submission Form link, and entering the details of your errata. Once your errata are 
verified, your submission will be accepted and the errata will be uploaded to our website or 
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At 
Packt, we take the protection of our copyright and licenses very seriously. If you come across 
any illegal copies of our works in any form on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you  
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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The Build System

In this chapter, we will cover the following recipes:

 f Setting up the host system

 f Installing Poky

 f Creating a build directory

 f Building your first image

 f Explaining the Freescale Yocto ecosystem

 f Installing support for Freescale hardware

 f Building Wandboard images

 f Troubleshooting your Wandboard's first boot

 f Configuring network booting for a development setup

 f Sharing downloads

 f Sharing the shared state cache

 f Setting up a package feed

 f Using build history

 f Working with build statistics

 f Debugging the build system

1
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Introduction
The Yocto project (http://www.yoctoproject.org/) is an embedded Linux distribution 
builder that makes use of several other open source projects.

The Yocto project provides a reference build system for embedded Linux, called Poky, which 
has the BitBake and OpenEmbedded-Core (OE-Core) projects at its base. The purpose of 
Poky is to build the components needed for an embedded Linux product, namely:

 f A bootloader image

 f A Linux kernel image

 f A root filesystem image

 f Toolchains and software development kits (SDKs) for application development

With these, the Yocto project covers the needs of both system and application developers. 
When the Yocto project is used as an integration environment for bootloaders, the Linux 
kernel, and user space applications, we refer to it as system development.

For application development, the Yocto project builds SDKs that enable the development of 
applications independently of the Yocto build system.

The Yocto project makes a new release every six months. The latest release at the time of this 
writing is Yocto 1.7.1 Dizzy, and all the examples in this book refer to the 1.7.1 release.

A Yocto release comprises the following components:

 f Poky, the reference build system

 f A build appliance; that is, a VMware image of a host system ready to use Yocto

 f An Application Development Toolkit (ADT) installer for your host system

 f And for the different supported platforms:

 � Prebuilt toolchains

 � Prebuilt packaged binaries

 � Prebuilt images

The Yocto 1.7.1 release is available to download from http://downloads.yoctoproject.
org/releases/yocto/yocto-1.7.1/.

http://www.yoctoproject.org/
http://downloads.yoctoproject.org/releases/yocto/yocto-1.7.1/
http://downloads.yoctoproject.org/releases/yocto/yocto-1.7.1/
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Setting up the host system
This recipe will explain how to set up a host Linux system to use the Yocto project.

Getting ready
The recommended way to develop an embedded Linux system is using a native Linux 
workstation. Development work using virtual machines is discouraged, although they may  
be used for demo and test purposes.

Yocto builds all the components mentioned before from scratch, including the cross-compilation 
toolchain and the native tools it needs, so the Yocto build process is demanding in terms of 
processing power and both hard drive space and I/O.

Although Yocto will work fine on machines with lower specifications, for professional 
developer's workstations, it is recommended to use symmetric multiprocessing (SMP) 
systems with 8 GB or more system memory and a high capacity, fast hard drive. Build servers 
can employ distributed compilation, but this is out of the scope of this book. Due to different 
bottlenecks in the build process, there does not seem to be much improvement above 8 CPUs 
or around 16 GB RAM.

The first build will also download all the sources from the Internet, so a fast Internet 
connection is also recommended.

How to do it...
Yocto supports several distributions, and each Yocto release will document a list of the 
supported ones. Although the use of a supported Linux distribution is strongly advised, Yocto 
is able to run on any Linux system if it has the following dependencies:

 f Git 1.7.8 or greater

 f Tar 1.24 or greater

 f Python 2.7.3 or greater (but not Python 3)

Yocto also provides a way to install the correct version of these tools by either downloading 
a buildtools-tarball or building one on a supported machine. This allows virtually any Linux 
distribution to be able to run Yocto, and also makes sure that it will be possible to replicate 
your Yocto build system in the future. This is important for embedded products with long-term 
availability requirements.

This book will use the Ubuntu 14.04 Long-Term Stable (LTS) Linux distribution for all 
examples. Instructions to install on other Linux distributions can be found on the Supported 
Linux Distributions section of the Yocto Project Development Manual, but the examples will 
only be tested with Ubuntu 14.04 LTS.
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To make sure you have the required package dependencies installed for Yocto and to follow 
the examples in the book, run the following command from your shell:

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-  
  multilib build-essential chrpath socat libsdl1.2-dev xterm make  
  xsltproc docbook-utils fop dblatex xmlto autoconf automake libtool  
  libglib2.0-dev python-gtk2 bsdmainutils screen

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.
The example code in the book can be accessed through several GitHub 
repositories at https://github.com/yoctocookbook. Follow the 
instructions on GitHub to obtain a copy of the source in your computer.

How it works...
The preceding command will use apt-get, the Advanced Packaging Tool (APT),  
command-line tool. It is a frontend of the dpkg package manager that is included in the 
Ubuntu distribution. It will install all the required packages and their dependencies to support 
all the features of the Yocto project.

There's more...
If build times are an important factor for you, there are certain steps you can take when 
preparing your disks to optimize them even further:

 f Place the build directories on their own disk partition or a fast external drive.

 f Use the ext4 filesystem but configure it not to use journalism on your Yocto-dedicated 
partitions. Be aware that power losses may corrupt your build data.

 f Mount the filesystem in such a way that read times are not written/recorded on 
file reads, disable write barriers, and delay committing filesystem changes with the 
following mount options:
noatime,barrier=0,commit=6000.

 f Do not build on network-mounted drives.

These changes reduce the data integrity safeguards, but with the separation of the build 
directories to their own disk, failures would only affect temporary build data, which can be 
erased and regenerated.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
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See also
 f The complete Yocto project installation instructions for Ubuntu and other supported 

distributions can be found on the Yocto Project Reference Manual at http://www.
yoctoproject.org/docs/1.7.1/ref-manual/ref-manual.html

Installing Poky
This recipe will explain how to set up your host Linux system with Poky, the Yocto project 
reference system.

Getting ready
Poky uses the OpenEmbedded build system, and as such, uses the BitBake tool, a task 
scheduler written in Python which forked from Gentoo's Portage tool. You can think of BitBake 
as the make utility in Yocto. It will parse the configuration and recipe metadata, schedule a 
task list, and run through it.

BitBake is also the command-line interface to Yocto.

Poky and BitBake are two of the open source projects used by Yocto. The Poky project 
is maintained by the Yocto community. You can download Poky from its Git repository at 
http://git.yoctoproject.org/cgit/cgit.cgi/poky/.

Development discussions can be followed and contributed to by visiting the development 
mailing list at https://lists.yoctoproject.org/listinfo/poky.

BitBake, on the other hand, is maintained by both the Yocto and OpenEmbedded 
communities, as the tool is used by both. BitBake can be downloaded from its Git repository at 
http://git.openembedded.org/bitbake/.

Development discussions can be followed and contributed to by visiting the development 
mailing list at http://lists.openembedded.org/mailman/listinfo/bitbake-devel.

The Poky build system only supports virtualized QEMU machines for the following 
architectures:

 f ARM (qemuarm)

 f x86 (qemux86)

 f x86-64 (qemux86-64)

 f PowerPC (qemuppc)

 f MIPS (qemumips, qemumips64)

http://www.yoctoproject.org/docs/1.7.1/ref-manual/ref-manual.html
http://www.yoctoproject.org/docs/1.7.1/ref-manual/ref-manual.html
http://git.yoctoproject.org/cgit/cgit.cgi/poky/
https://lists.yoctoproject.org/listinfo/poky
http://git.openembedded.org/bitbake/
http://lists.openembedded.org/mailman/listinfo/bitbake-devel
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Apart from these, it also supports some reference hardware Board Support Packages 
(BSPs), representative of the architectures just listed. These are those BSPs:

 f Texas Instruments Beaglebone (beaglebone)

 f Freescale MPC8315E-RDB (mpc8315e-rdb)

 f Intel x86 based PCs and devices (genericx86 and genericx86-64)

 f Ubiquiti Networks EdgeRouter Lite (edgerouter)

To develop on different hardware, you will need to complement Poky with hardware-specific 
Yocto layers. This will be covered later on.

How to do it...
The Poky project incorporates a stable BitBake release, so to get started with Yocto, we only 
need to install Poky in our Linux host system.

Note that you can also install BitBake independently 
through your distribution's package management system. 
This is not recommended and can be a source of problems, 
as BitBake needs to be compatible with the metadata used 
in Yocto. If you have installed BitBake from your distribution, 
please remove it.

The current Yocto release is 1.7.1, or Dizzy, so we will install that into our host system. We will 
use the /opt/yocto folder as the installation path:

$ sudo install -o $(id -u) -g $(id -g) -d /opt/yocto

$ cd /opt/yocto

$ git clone --branch dizzy git://git.yoctoproject.org/poky

How it works...
The previous instructions will use Git (the source code management system command-line 
tool) to clone the Poky repository, which includes BitBake, into a new poky directory on our 
current path, and point it to the Dizzy stable branch.
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There's more...
Poky contains three metadata directories, meta, meta-yocto, and meta-yocto-bsp, as 
well as a template metadata layer, meta-skeleton, that can be used as a base for new 
layers. Poky's three metadata directories are explained here:

 f meta: This directory contains the OpenEmbedded-Core metadata, which supports 
the ARM, x86, x86-64, PowerPC, MIPS, and MIPS64 architectures and the QEMU 
emulated hardware. You can download it from its Git repository at http://git.
openembedded.org/openembedded-core/.

Development discussions can be followed and contributed to by visiting the 
development mailing list at http://lists.openembedded.org/mailman/
listinfo/openembedded-core.

 f meta-yocto: This contains Poky's distribution-specific metadata.

 f meta-yocto-bsp: This contains metadata for the reference hardware boards.

See also
 f There is documentation about Git, the distributed version control system, at  

http://git-scm.com/doc

Creating a build directory
Before building your first Yocto image, we need to create a build directory for it.

The build process, on a host system as outlined before, can take up to one hour and need 
around 20 GB of hard drive space for a console-only image. A graphical image, like core-
image-sato, can take up to 4 hours for the build process and occupy around 50 GB of space.

How to do it...
The first thing we need to do is create a build directory for our project, where the build 
output will be generated. Sometimes, the build directory may be referred to as the project 
directory, but build directory is the appropriate Yocto term.

There is no right way to structure the build directories when you have multiple projects, but 
a good practice is to have one build directory per architecture or machine type. They can 
all share a common downloads folders, and even a shared state cache (this will be covered 
later on), so keeping them separate won't affect the build performance, but it will allow you to 
develop on multiple projects simultaneously.

http://git.openembedded.org/openembedded-core/
http://git.openembedded.org/openembedded-core/
http://lists.openembedded.org/mailman/listinfo/openembedded-core
http://lists.openembedded.org/mailman/listinfo/openembedded-core
http://git-scm.com/doc
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To create a build directory, we use the oe-init-build-env script provided by Poky. The 
script needs to be sourced into your current shell, and it will set up your environment to use 
the OpenEmbedded/Yocto build system, including adding the BitBake utility to your path.  
You can specify a build directory to use or it will use build by default. We will use qemuarm  
for this example.

$ cd /opt/yocto/poky

$ source oe-init-build-env qemuarm

The script will change to the specified directory.

As oe-init-build-env only configures the current 
shell, you will need to source it on every new shell. But, if 
you point the script to an existing build directory, it will set 
up your environment but won't change any of your existing 
configurations.

BitBake is designed with a client/server abstraction, so we can 
also start a memory resident server and connect a client to it. 
With this setup, loading cache and configuration information each 
time is avoided, which saves some overhead. To run a memory 
resident BitBake that will always be available, you can use the 
oe-init-build-env-memres script as follows:
$ source oe-init-build-env-memres 12345 qemuarm

Here 12345 is the local port to be used.
Do not use both BitBake flavors simultaneously, as this can be a 
source of problems.
You can then kill the memory resident BitBake by executing the 
following command:
$ bitbake -m

How it works...
Both scripts call the scripts/oe-setup-builddir script inside the poky directory to 
create the build directory.

On creation, the build directory contains a conf directory with the following three files:

 f bblayers.conf: This file lists the metadata layers to be considered for this project.

 f local.conf: This file contains the project-specific configuration variables. You can 
set common configuration variables to different projects with a site.conf file, but 
this is not created by default.
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 f templateconf.cfg: This file contains the directory that includes the template 
configuration files used to create the project. By default it uses the one pointed to by 
the templateconf file in your Poky installation directory, which is meta-yocto/
conf by default.

To start a build from scratch, that's all the build directory needs.
Erasing everything apart from these files will recreate your build from 
scratch.
$ cd /opt/yocto/poky/qemuarm
$ rm -Rf tmp sstate-cache

There's more...
You can specify a different template configuration file to use when you create your build 
directory using the TEMPLATECONF variable; for example:

$ TEMPLATECONF=meta-custom/config source oe-init-build-env <build-  
  dir>

The TEMPLATECONF variable needs to refer to a directory containing templates for both 
local.conf and bblayer.conf, but named local.conf.sample and bblayers.
conf.sample.

For our purposes, we can use the unmodified default project configuration files.

Building your first image
Before building our first image, we need to decide what type of image we want to build.  
This recipe will introduce some of the available Yocto images and provide instructions to  
build a simple image.

Getting ready
Poky contains a set of default target images. You can list them by executing the following 
commands:

$ cd /opt/yocto/poky

$ ls meta*/recipes*/images/*.bb

www.allitebooks.com

http://www.allitebooks.org
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A full description of the different images can be found on the Yocto Project Reference Manual. 
Typically, these default images are used as a base and customized for your own project needs. 
The most frequently used base default images are:

 f core-image-minimal: This is the smallest BusyBox-, sysvinit-, and udev-based 
console-only image

 f core-image-full-cmdline: This is the BusyBox-based console-only image with 
full hardware support and a more complete Linux system, including bash

 f core-image-lsb: This is a console-only image that is based on Linux Standard 
Base compliance

 f core-image-x11: This is the basic X11 Windows-system-based image with a 
graphical terminal

 f core-image-sato: This is the X11 Window-system-based image with a SATO theme 
and a GNOME Mobile desktop environment

 f core-image-weston: This is a Wayland protocol and Weston reference compositor-
based image

You will also find images with the following suffixes:

 f dev: These images are suitable for development work, as they contain headers and 
libraries.

 f sdk: These images include a complete SDK that can be used for development on  
the target.

 f initramfs: This is an image that can be used for a RAM-based root filesystem, 
which can optionally be embedded with the Linux kernel.

How to do it...
To build an image, we need to configure the MACHINE we are building it for and pass its name 
to BitBake. For example, for the qemuarm machine, we would run the following:

$ cd /opt/yocto/poky/qemuarm

$ MACHINE=qemuarm bitbake core-image-minimal

Or we could export the MACHINE variable to the current shell environment with the following:

$ export MACHINE=qemuarm

But the preferred and persistent way to do it is to edit the conf/local.conf configuration 
file to change the default machine to qemuarm:

- #MACHINE ?= "qemuarm"
+ MACHINE ?= "qemuarm"
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Then you can just execute the following:

$ bitbake core-image-minimal

How it works...
When you pass a target recipe to BitBake, it first parses the following configuration files:

 f conf/bblayers.conf: This file is used to find all the configured layers

 f conf/layer.conf: This file is used on each configured layer

 f meta/conf/bitbake.conf: This file is used for its own configuration

 f conf/local.conf: This file is used for any other configuration the user may have 
for the current build

 f conf/machine/<machine>.conf: This file is the machine configuration; in our 
case, this is qemuarm.conf

 f conf/distro/<distro>.conf: This file is the distribution policy; by default, this is 
the poky.conf file

And then BitBake parses the target recipe that has been provided and its dependencies.  
The outcome is a set of interdependent tasks that BitBake will then execute in order.

There's more...
Most developers won't be interested in keeping the whole build output for every package, so it 
is recommended to configure your project to remove it with the following configuration in your 
conf/local.conf file:

INHERIT += "rm_work"

But at the same time, configuring it for all packages means that you won't be able to develop 
or debug them.

You can add a list of packages to exclude from cleaning by adding them to the RM_WORK_
EXCLUDE variable. For example, if you are going to do BSP work, a good setting might be:

RM_WORK_EXCLUDE += "linux-yocto u-boot"

Remember that you can use a custom template local.conf.sample configuration file in 
your own layer to keep these configurations and apply them for all projects so that they can be 
shared across all developers.

Once the build finishes, you can find the output images on the tmp/deploy/images/
qemuarm directory inside your build directory.
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By default, images are not erased from the deploy directory, but you can configure your 
project to remove the previously built version of the same image by adding the following to 
your conf/local.conf file:

RM_OLD_IMAGE = "1"

You can test run your images on the QEMU emulator by executing this:

$ runqemu qemuarm core-image-minimal

The runqemu script included in Poky's scripts directory is a launch wrapper around the 
QEMU machine emulator to simplify its usage.

Explaining the Freescale Yocto ecosystem
As we saw, Poky metadata starts with the meta, meta-yocto, and meta-yocto-bsp layers, 
and it can be expanded by using more layers.

An index of the available OpenEmbedded layers that are compatible with the Yocto project is 
maintained at http://layers.openembedded.org/.

An embedded product's development usually starts with hardware evaluation using a 
manufacturer's reference board design. Unless you are working with one of the reference 
boards already supported by Poky, you will need to extend Poky to support your hardware.

Getting ready
The first thing to do is to select which base hardware your design is going to be based on. We 
will use a board that is based on a Freescale i.MX6 System on Chip (SoC) as a starting point 
for our embedded product design.

This recipe gives an overview of the support for Freescale hardware in the Yocto project.

How to do it...
The SoC manufacturer (in this case, Freescale) has a range of reference design boards for 
purchase, as well as official Yocto-based software releases. Similarly, other manufacturers that 
use Freescale's SoCs offer reference design boards and their own Yocto-based software releases.

Selecting the appropriate hardware to base your design on is one of the most important design 
decisions for an embedded product. Depending on your product needs, you will decide to either:

 f Use a production-ready board, like a single-board computer (SBC)

 f Use a module and build your custom carrier board around it

 f Use Freescale's SoC directly and design your own board

http://layers.openembedded.org/
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Most of the times, a production-ready board will not match the specific requirements of an 
professional embedded system, and the process of designing a complete carrier board using 
Freescale's SoC would be too time consuming. So, using an appropriate module that already 
solves the most technically challenging design aspects is a common choice.

Some of the characteristics that are important to consider are:

 f Industrial temperature ranges

 f Power management

 f Long-term availability

 f Precertified wireless and Bluetooth (if applicable)

The Yocto community layers that support Freescale-based boards are called meta-fsl-arm 
and meta-fsl-arm-extras. The selection of boards that are supported on meta-fsl-
arm is limited to Freescale reference designs, which would be the starting point if you are 
considering designing your own carrier board around Freescale's SoC. Boards from other 
vendors are maintained on the meta-fsl-arm-extras layer.

There are other embedded manufacturers that use meta-fsl-arm, but they have 
not integrated their boards in the meta-fsl-arm-extras community layer. These 
manufacturers will keep their own BSP layers, which depend on meta-fsl-arm, with specific 
support for their hardware. An example of this is Digi International and its ConnectCore 6 
module, which is based on the i.MX6 SoC.

How it works...
To understand Freescale Yocto ecosystem, we need to start with the Freescale community 
BSP, comprising the meta-fsl-arm layer with support for Freescale reference boards,  
and its companion, meta-fsl-arm-extra, with support for boards from other vendors, 
and its differences with the official Freescale Yocto releases that Freescale offers for their 
reference designs.

There are some key differences between the community and Freescale Yocto releases:

 f Freescale releases are developed internally by Freescale without community 
involvement and are used for BSP validation on Freescale reference boards.

 f Freescale releases go through an internal QA and validation test process, and they 
are maintained by Freescale support.

 f Freescale releases for a specific platform reach a maturity point, after which they  
are no longer worked on. At this point, all the development work has been integrated 
into the community layer and the platforms are further maintained by the Freescale 
BSP community.

 f Freescale Yocto releases are not Yocto compatible, while the community release is.
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Freescale's engineering works very closely with the Freescale BSP community to make sure 
that all development in their official releases is integrated in the community layer in a reliable 
and quick manner.

Usually, the best option is to use the Freescale BSP community release but stay with the 
U-Boot and Linux kernel versions that were released as part of the manufacturer's stable  
BSP release.

This effectively means that you get the latest updates to the Linux kernel and U-Boot from the 
manufacturer while simultaneously getting the latest updates to the root filesystem from the 
community, extending the lifetime of your product, and making sure you are up to date with 
applications, bug fixes, and security updates.

This takes advantage of the manufacturer's QA process for the system components that 
are closer to the hardware, and makes it possible to use the manufacturer's support 
while simultaneously getting user space updates from the community. The Freescale BSP 
community is also very responsive and active, so problems can usually be worked on with 
them to benefit all parts.

There's more...
The Freescale BSP community extends Poky with the following layers:

 f meta-fsl-arm: This is the community layer that supports Freescale reference 
designs. It has a dependency on OpenEmbedded-Core. Machines in this layer will 
be maintained even after Freescale stops active development on them. You can 
download meta-fsl-arm from its Git repository at http://git.yoctoproject.
org/cgit/cgit.cgi/meta-fsl-arm/.

Development discussions can be followed and contributed to by visiting the 
development mailing list at https://lists.yoctoproject.org/listinfo/
meta-freescale.

The meta-fsl-arm layer pulls both the Linux kernel and the U-Boot source from 
Freescale's repositories using the following links:

 � Freescale Linux kernel Git repository: http://git.freescale.com/
git/cgit.cgi/imx/linux-2.6-imx.git/

 � Freescale U-Boot Git repository: http://git.freescale.com/git/
cgit.cgi/imx/uboot-imx.git/

Other Linux kernel and U-Boot versions are available, but keeping the manufacturer's 
supported version is recommended.

http://git.yoctoproject.org/cgit/cgit.cgi/meta-fsl-arm/
http://git.yoctoproject.org/cgit/cgit.cgi/meta-fsl-arm/
https://lists.yoctoproject.org/listinfo/meta-freescale
https://lists.yoctoproject.org/listinfo/meta-freescale
http://git.freescale.com/git/cgit.cgi/imx/linux-2.6-imx.git/
http://git.freescale.com/git/cgit.cgi/imx/linux-2.6-imx.git/
http://git.freescale.com/git/cgit.cgi/imx/uboot-imx.git/
http://git.freescale.com/git/cgit.cgi/imx/uboot-imx.git/
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The meta-fsl-arm layer includes Freescale's proprietary binaries to enable some 
hardware features – most notably its hardware graphics, multimedia, and encryption 
capabilities. To make use of these capabilities, the end user needs to accept 
Freescale's End-User License Agreement (EULA), which is included in the meta-
fsl-arm layer. To accept the license, the following line needs to be added to the 
project's conf/local.conf configuration file:
ACCEPT_FSL_EULA = "1"

 f meta-fsl-arm-extra: This layer adds support for other community-maintained 
boards; for example, the Wandboard. To download the layer's content, you may visit 
https://github.com/Freescale/meta-fsl-arm-extra/.

 f meta-fsl-demos: This layer adds a metadata layer for demonstration target 
images. To download the layer's content, you may visit https://github.com/
Freescale/meta-fsl-demos.

Freescale uses another layer on top of the layers above for their official software releases: 
meta-fsl-bsp-release.

 f meta-fsl-bsp-release: This is a Freescale-maintained layer that is used in the 
official Freescale software releases. It contains modifications to both meta-fsl-arm 
and meta-fsl-demos. It is not part of the community release.

See also
 f For more information, refer to the FSL community BSP release notes available at 

http://freescale.github.io/doc/release-notes/1.7/

Installing support for Freescale hardware
In this recipe, we will install the community Freescale BSP Yocto release that adds support for 
Freescale hardware to our Yocto installation.

Getting ready
With so many layers, manually cloning each of them and adding them to your project's  
conf/bblayers.conf file is cumbersome. The community is using the repo tool developed 
by Google for their community Android to ease the installation of Yocto.

To install repo in your host system, type in the following commands:

$ sudo curl http://commondatastorage.googleapis.com/git-repo-  
  downloads/repo > /usr/local/sbin/repo

$ sudo chmod a+x /usr/local/sbin/repo

The repo tool is a Python utility that parses an XML file, called manifest, with a list of Git 
repositories. The repo tool is then used to manage those repositories as a whole.

https://github.com/Freescale/meta-fsl-arm-extra/
https://github.com/Freescale/meta-fsl-demos
https://github.com/Freescale/meta-fsl-demos
http://freescale.github.io/doc/release-notes/1.7/
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How to do it...
For example, we will use repo to download all the repositories listed in the previous recipe to 
our host system. For that, we will point it to the Freescale community BSP manifest for the 
Dizzy release:

<?xml version="1.0" encoding="UTF-8"?>
<manifest>
  <default sync-j="4" revision="master"/>
  <remote fetch="git://git.yoctoproject.org" name="yocto"/>
  <remote fetch="git://github.com/Freescale" name="freescale"/>
  <remote fetch="git://git.openembedded.org" name="oe"/>
  <project remote="yocto" revision="dizzy" name="poky"  
  path="sources/poky"/>
  <project remote="yocto" revision="dizzy" name="meta-fsl-arm"  
  path="sources/meta-fsl-arm"/>
  <project remote="oe" revision="dizzy" name="meta-openembedded"  
  path="sources/meta-openembedded"/>
  <project remote="freescale" revision="dizzy" name="fsl-  
  community-bsp-base" path="sources/base">
        <copyfile dest="README" src="README"/>
        <copyfile dest="setup-environment" src="setup-  
  environment"/>
  </project>
  <project remote="freescale" revision="dizzy" name="meta-fsl-arm-  
  extra" path="sources/meta-fsl-arm-extra"/>
  <project remote="freescale" revision="dizzy" name="meta-fsl-  
  demos" path="sources/meta-fsl-demos"/>
  <project remote="freescale" revision="dizzy"  
  name="Documentation" path="sources/Documentation"/>
</manifest>

The manifest file shows all the installation paths and repository sources for the different 
components that are going to be installed.

How it works...
The manifest file is a list of the different layers that are needed for the Freescale community 
BSP release. We can now use repo to install it. Run the following:

$ mkdir /opt/yocto/fsl-community-bsp

$ cd /opt/yocto/fsl-community-bsp

$ repo init -u https://github.com/Freescale/fsl-community-bsp-  
  platform -b dizzy

$ repo sync
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You can optionally pass a -jN argument to sync if you have a multicore machine for 
multithreaded operations; for example, you could pass repo sync -j8 in an 8-core  
host system.

There's more...
To list the hardware boards supported by the different layers, we may run:

$ ls sources/meta-fsl*/conf/machine/*.conf

And to list the newly introduced target images, use the following:

$ ls sources/meta-fsl*/recipes*/images/*.bb

The community Freescale BSP release introduces the following new target images:

 f fsl-image-mfgtool-initramfs: This is a small, RAM-based initramfs image 
used with the Freescale manufacturing tool

 f fsl-image-multimedia: This is a console-only image that includes the 
gstreamer multimedia framework over the framebuffer, if applicable

 f fsl-image-multimedia-full: This is an extension of fsl-image-multimedia, 
but extends the gstreamer multimedia framework to include all available plugins

 f fsl-image-machine-test: This is an extension on fsl-image-multimedia-
full for testing and benchmarking

 f qte-in-use-image: This is a graphical image that includes support for Qt4 over 
the framebuffer

 f qt-in-use-image: This is a graphical image that includes support for Qt4 over the 
X11 Windows system

See also
 f Instructions to use the repo tool, including using repo with proxy servers, can be 

found in the Android documentation at https://source.android.com/source/
downloading.html

Building Wandboard images
Building images for one of the supported boards (for example, Wandboard Quad) follows the 
same process we described earlier for the QEMU machines, with the exception of using the 
setup-environment script, which is a wrapper around oe-init-build-env.

https://source.android.com/source/downloading.html
https://source.android.com/source/downloading.html
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How to do it...
To build an image for the wandboard-quad machine, use the following commands:

$ cd /opt/yocto/fsl-community-bsp

$ mkdir -p wandboard-quad

$ MACHINE=wandboard-quad source setup-environment wandboard-quad

$ bitbake core-image-minimal

The current version of the setup-environment script only 
works if the build directory is under the installation folder; in 
our case, /opt/yocto/fsl-community-bsp.

How it works...
The setup-environment script will create a build directory, set up the MACHINE variable, 
and prompt you to accept the Freescale EULA as described earlier. Your conf/local.conf 
configuration file will be updated both with the specified machine and the EULA acceptance 
variable.

Remember that if you close your terminal session, you will 
need to set up the environment again before being able to 
use BitBake. You can safely rerun the setup-environment 
script as seen previously, as it will not touch an existing conf/
local.conf file. Run the following:
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad

The resulting image, core-image-minimal.sdcard, which is created inside the build 
directory, can be programmed into a microSD card, inserted into the primary slot in the 
Wandboard CPU board, and booted using the following commands:

$ cd /opt/yocto/fsl-community-bsp/wandboard-  
  quad/tmp/deploy/images/wandboard-quad/

$ sudo dd if=core-image-minimal.sdcard of=/dev/sdN bs=1M && sync

Here, /dev/sdN corresponds to the device node assigned to the microSD card in your  
host system.

Be careful when running the dd command, as it could harm 
your machine. You need to be absolutely sure that the sdN 
device corresponds to your microSD card and not a drive on 
your development machine.



Chapter 1

19

See also
 f You can find more information regarding the repo tool on Android's documentation at 

https://source.android.com/source/using-repo.html

Troubleshooting your Wandboard's first boot
If you have problems booting your image, follow this recipe to troubleshoot.

Getting ready
1. Without the microSD card inserted, plug in a microUSB-to-USB cable to the USB 

OTG interface of your Wandboard. Check the lsusb utility on your Linux host to see 
whether the Wandboard appears as follows:
Bus 002 Device 006: ID 15a2:0054 Freescale Semiconductor, Inc.  
  i.MX6Q SystemOnChip in RecoveryMode

If you don't see this, try a different power supply. It should be 5V, 10W.

2. Make sure you connect a NULL modem serial cable between the RS232 connector 
in your Wandboard target and a serial port on your Linux host. Then open a terminal 
program like minicom with the following:
$ minicom -D /dev/ttyS0 -b 115200

You will need to add your user to the dialout group, or try to run 
the command as sudo. This should open a 115200 8N1 serial 
connection. The serial device may vary in your Linux host. For 
example, a USB-to-serial adapter may be detected as /dev/
ttyUSB0. Also, make sure both hardware and software flow 
control are disabled.

How to do it...
1. Insert the microSD card image to the module slot, not the base board, as the latter 

is only used for storage and not for booting, and power it. You should see the U-Boot 
banner in the minicom session output.

2. If not, you may have a problem with the serial communication. By default, the 
Ethernet interface in the FSL community BSP image is configured to request an 
address by DHCP, so you can use that to connect to the target.

Make sure you have a DHCP server running on the test network where the target is.

www.allitebooks.com

https://source.android.com/source/using-repo.html
http://www.allitebooks.org
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You can use a packet sniffer like Wireshark to capture a network trace on your Linux 
host and filter packages like the bootp protocol. At the least, you should see some 
broadcasts from your target, and if you use an Ethernet hub, you should also see the 
DHCP replies.
Optionally, you can log in to your DHCP server and check the logs to see if a new IP 
address has been assigned. If you see an IP address being assigned, you might want 
to consider adding an SSH server, like Dropbear, to your core-image-minimal image 
so that you can establish a network connection with the target. You can do this by 
adding the following line to the conf/local.conf configuration file:
IMAGE_INSTALL_append = " dropbear"

Note the space after the initial quote.
After building and reprogramming, you can then start an SSH session to the 
Wandboard from your Linux host with:
$ ssh root@<ip_address>

The connection should automatically log in without a password prompt.

3. Try to program the default microSD card images from http://www.wandboard.
org/index.php/downloads to make sure the hardware and your setup is valid.

4. Try to reprogram your microSD card. Make sure you are using the correct images for 
your board (for example, do not mix dual and quad images). Also, try different cards 
and card readers.

These steps will have your Wandboard start booting, and you should have some output in your 
serial connection.

There's more...
If everything else fails, you can verify the position of the bootloader on your microSD card. You 
can dump the contents of the first blocks of your microSD card with:

$ sudo dd if=/dev/sdN of=/tmp/sdcard.img count=10

You should see a U-Boot header at offset 0x400. That's the offset where the i.MX6 boot ROM 
will be looking for the bootloader when bootstrapped to boot from the microSD interface. Use 
the following commands:

$ head /tmp/sdcard.img | hexdump

0000400 00d1 4020 0000 1780 0000 0000 f42c 177f

You can recognize the U-Boot header by dumping the U-Boot image from your build. Run the 
following commands:

$ head u-boot-wandboard-quad.imx | hexdump

0000000 00d1 4020 0000 1780 0000 0000 f42c 177f

http://www.wandboard.org/index.php/downloads
http://www.wandboard.org/index.php/downloads
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Configuring network booting for a 
development setup

Most professional i.MX6 boards will have an internal embedded MMC (eMMC) flash memory, 
and that would be the recommended way to boot firmware. The Wandboard is not really 
a product meant for professional use, so it does not have one. But neither the eMMC nor 
the microSD card are ideal for development work, as any system change would involve a 
reprogramming of the firmware image.

Getting ready
The ideal setup for development work is to use both TFTP and NFS servers in your host system 
and to only store the U-Boot bootloader in either the eMMC or a microSD card. With this setup, 
the bootloader will fetch the Linux kernel from the TFTP server and the kernel will mount the 
root filesystem from the NFS server. Changes to either the kernel or the root filesystem are 
available without the need to reprogram. Only bootloader development work would need you 
to reprogram the physical media.

Installing a TFTP server
If you are not already running a TFTP server, follow the next steps to install and configure a 
TFTP server on your Ubuntu 14.04 host:

$ sudo apt-get install tftpd-hpa

The tftpd-hpa configuration file is installed in /etc/default/tftpd-hpa. By default, it 
uses /var/lib/tftpboot as the root TFTP folder. Change the folder permissions to make 
it accessible to all users using the following command:

$ sudo chmod 1777 /var/lib/tftpboot

Now copy the Linux kernel and device tree from your build directory as follows:

$ cd /opt/yocto/fsl-community-bsp/wandboard-  
  quad/tmp/deploy/images/wandboard-quad/

$ cp zImage-wandboard-quad.bin zImage-imx6q-wandboard.dtb  
  /var/lib/tftpboot

Installing an NFS server
If you are not already running an NFS server, follow the next steps to install and configure one 
on your Ubuntu 14.04 host:

$ sudo apt-get install nfs-kernel-server
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We will use the /nfsroot directory as the root for the NFS server, so we will "untar" the 
target's root filesystem from our Yocto build directory in there:

$ sudo mkdir /nfsroot

$ cd /nfsroot

$ sudo tar xvf /opt/yocto/fsl-community-bsp/wandboard-  
  quad/tmp/deploy/images/wandboard-quad/core-image-minimal-wandboard-  
  quad.tar.bz2

Next, we will configure the NFS server to export the /nfsroot folder:

/etc/exports:

/nfsroot/ *(rw,no_root_squash,async,no_subtree_check)

We will then restart the NFS server for the configuration changes to take effect:

$ sudo service nfs-kernel-server restart

How to do it...
Boot the Wandboard and stop at the U-Boot prompt by pressing any key on the serial console. 
Then run through the following steps:

1. Get an IP address by DHCP:
> dhcp

Alternatively, you can configure a static IP address with:

> setenv ipaddr <static_ip>

2. Configure the IP address of your host system, where the TFTP and NFS servers have 
been set up:
> setenv serverip <host_ip>

3. Configure the root filesystem mount:
> setenv nfsroot /nfsroot

4. Configure the Linux kernel and device tree filenames:
> setenv image zImage-wandboard-quad.bin

> setenv fdt_file zImage-imx6q-wandboard.dtb

5. If you have configured a static IP address, you need to disable DHCP on boot  
by running:
> setenv ip_dyn no
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6. Save the U-Boot environment to the microSD card:
> saveenv

7. Perform a network boot:
> run netboot

The Linux kernel and device tree will be fetched from the TFTP server, and the root filesystem 
will be mounted by the kernel from the NFS share after getting a DHCP address from your 
network (unless using static IP addresses).

You should be able to log in with the root user without a password prompt.

Sharing downloads
You will usually work on several projects simultaneously, probably for different hardware 
platforms or different target images. In such cases, it is important to optimize the build times 
by sharing downloads.

Getting ready
The build system runs a search for downloaded sources in a number of places:

 f It tries the local downloads folder.

 f It looks into the configured premirrors, which are usually local to your organization.

 f It then tries to fetch from the upstream source as configured in the package recipe.

 f Finally, it checks the configured mirrors. Mirrors are public alternate locations for  
the source.

If a package source is not found in any of the these four, the package build will fail with an 
error. Build warnings are also issued when upstream fetching fails and mirrors are tried, so 
that the upstream problem can be looked at.

The Yocto project maintains a set of mirrors to isolate the build system from problems with 
the upstream servers. However, when adding external layers, you could be adding support for 
packages that are not in the Yocto project's mirror servers, or other configured mirrors, so it is 
recommended that you keep a local premirror to avoid problems with source availability.

The default Poky setting for a new project is to store the downloaded package sources on the 
current build directory. This is the first place the build system will run a search for source 
downloads. This setting can be configured in your project's conf/local.conf file with the 
DL_DIR configuration variable.
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How to do it...
To optimize the build time, it is recommended to keep a shared downloads directory 
between all your projects. The setup-environment script of the meta-fsl-arm layer 
changes the default DL_DIR to the fsl-community-bsp directory created by the repo tool. 
With this setup, the downloads folder will already be shared between all the projects in your 
host system. It is configured as:

DL_DIR ?= "${BSPDIR}/downloads/"

A more scalable setup (for instance, for teams that are remotely distributed) is to configure  
a premirror. For example, adding the following to your conf/local.conf file:

INHERIT += "own-mirrors"
SOURCE_MIRROR_URL = "http://example.com/my-source-mirror"

A usual setup is to have a build server serve its downloads directory. The build server can be 
configured to prepare tarballs of the Git directories to avoid having to perform Git operations 
from upstream servers. This setting in your conf/local.conf file will affect the build 
performance, but this is usually acceptable in a build server. Add the following:

BB_GENERATE_MIRROR_TARBALLS = "1"

An advantage of this setup is that the build server's downloads folder can also be backed up 
to guarantee source availability for your products in the future. This is especially important in 
embedded products with long-term availability requirements.

In order to test this setup, you may check to see whether a build is possible just by using the 
premirrors with the following:

BB_FETCH_PREMIRRORONLY = "1"

This setting in your conf/local.conf file can also be distributed across the team with the 
TEMPLATECONF variable during the project's creation.

Sharing the shared state cache
The Yocto project builds everything from source. When you create a new project, only the 
configuration files are created. The build process then compiles everything from scratch, 
including the cross-compilation toolchain and some native tools important for the build.

This process can take a long time, and the Yocto project implements a shared state cache 
mechanism that is used for incremental builds with the aim to build only the strictly necessary 
components for a given change.
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For this to work, the build system calculates a checksum of the given input data to a task. If 
the input data changes, the task needs to be rebuilt. In simplistic terms, the build process 
generates a run script for each task that can be checksummed and compared. It also keeps 
track of a task's output, so that it can be reused.

A package recipe can modify the shared state caching to a task; for example, to always 
force a rebuild by marking it as nostamp. A more in-depth explanation of the shared state 
cache mechanism can be found in the Yocto Project Reference Manual at http://www.
yoctoproject.org/docs/1.7.1/ref-manual/ref-manual.html.

How to do it...
By default, the build system will use a shared state cache directory called sstate-cache on 
your build directory to store the cached data. This can be changed with the SSTATE_DIR 
configuration variable in your conf/local.conf file. The cached data is stored in directories 
named with the first two characters of the hash. Inside, the filenames contain the whole task 
checksum, so the cache validity can be ascertained just by looking at the filename. The build 
process set scene tasks will evaluate the cached data and use it to accelerate the build if valid.

When you want to start a build from a clean state, you need to remove both the sstate-
cache directory and the tmp directory.

You can also instruct BitBake to ignore the shared state cache by using the --no-setscene 
argument when running it.

It's a good practice to keep backups of clean shared state caches (for example, from a build 
server), which can be used in case of shared state cache corruption.

There's more...
Sharing a shared state cache is possible; however, it needs to be approached with care. Not 
all changes are detected by the shared state cache implementation, and when this happens, 
some or all of the cache needs to be invalidated. This can cause problems when the state 
cache is being shared.

The recommendation in this case depends on the use case. Developers working on Yocto 
metadata should keep the shared state cache as default, separated per project.

However, validation and testing engineers, kernel and bootloader developers, and application 
developers would probably benefit from a well-maintained shared state cache.

To configure an NFS share drive to be shared among the development team to speed up the 
builds, you can add the following to your conf/local.conf configuration file:

SSTATE_MIRRORS ?= "\
     file://.* file:///nfs/local/mount/sstate/PATH"

http://www.yoctoproject.org/docs/1.7.1/ref-manual/ref-manual.html
http://www.yoctoproject.org/docs/1.7.1/ref-manual/ref-manual.html
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The expression PATH in this example will get substituted by the build system with a directory 
named with the hash's first two characters.

Setting up a package feed
An embedded system project seldom has the need to introduce changes to the Yocto build 
system. Most of the time and effort is spent in application development, followed by a lesser 
amount in maybe kernel and bootloader development.

As such, a whole system rebuild is probably done very few times. A new project is usually built 
from a prebuilt shared state cache, and application development work only needs to be done 
to perform full or incremental builds of a handful of packages.

Once the packages are built, they need to be installed on the target system for testing. 
Emulated machines are fine for application development, but most hardware-related work 
needs to be done on embedded hardware.

Getting ready
An option is to manually copy the build binaries to the target's root filesystem, either copying 
it to the NFS share on the host system the target is mounting its root filesystem from (as 
explained in the Configuring network booting for a development setup recipe earlier) or using 
any other method like SCP, FTP, or even a microSD card.

This method is also used by IDEs like Eclipse when debugging an application you are working 
on. However, this method does not scale well when you need to install several packages and 
dependencies.

The next option would be to copy the packaged binaries (that is, the RPM, deb, or ipk 
packages) to the target's filesystem and then use the target's package management system 
to install them. For this to work, your target's filesystem needs to be built with package 
management tools. Doing this is as easy as adding the package-management feature  
to your root filesystem; for example, you may add the following line to your project's  
conf/local.conf file:

EXTRA_IMAGE_FEATURES += "package-management"

So for an RPM package, you will copy it to the target and use the rpm or smart utilities to 
install it. The smart package management tool is GPL licensed and can work with a variety  
of package formats.
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However, the most optimized way to do this is to convert your host system package's output 
directory into a package feed. For example, if you are using the default RPM package format, 
you may convert tmp/deploy/rpm in your build directory into a package feed that your 
target can use to update.

For this to work, you need to configure an HTTP server on your computer that serves  
the packages.

Versioning packages
You also need to make sure that the generated packages are correctly versioned, and that 
means updating the recipe revision, PR, with every change. It is possible to do this manually, but 
the recommended—and compulsory way if you want to use package feeds—is to use a PR server.

However, the PR server is not enabled by default. The packages generated without a PR  
server are consistent with each other but offer no update guarantees for a system that is 
already running.

The simplest PR server configuration is to run it locally on your host system. To do this, you 
add the following to your conf/local.conf file:

PRSERV_HOST = "localhost:0"

With this setup, update coherency is guaranteed for your feed.

If you want to share your feed with other developers, or you are configuring a build server  
or package server, you would run a single instance of the PR server by running the following 
command:

$ bitbake-prserv --host <server_ip> --port <port> --start

And you will update the project's build configuration to use the centralized PR server, editing 
conf/local.conf as follows:

PRSERV_HOST = "<server_ip>:<port>"

Also, if you are using a shared state cache as described before, all of the contributors to the 
shared state cache need to use the same PR server.

Once the feed's integrity is guaranteed, we need to configure an HTTP server to serve the feed.

How to do it...
We will use lighttpd for this example, as it is lightweight and easy to configure. Follow  
these steps:

1. Install the web server:
$ sudo apt-get install lighttpd
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2. By default, the document root specified in the /etc/lighttpd/lighttpd.conf 
configuration file is /var/www/, so we only need a symlink to our package feed:
$ sudo mkdir /var/www/wandboard-quad

$ sudo ln -s /opt/yocto/fsl-community-bsp/wandboard-  
  quad/tmp/deploy/rpm /var/www/wandboard-quad/rpm

Next, reload the configuration as follows:

$ sudo service lighttpd reload

3. Refresh the package index. This needs to be done manually to update the package 
feed after every build:
$ bitbake package-index

4. Then we need to configure our target filesystem with the new package feeds:
# smart channel --add all type=rpm-md \  
  baseurl=http://<server_ip>/wandboard-quad/rpm/all

# smart channel --add wandboard_quad type=rpm-md \  
  baseurl=http://<server_ip>/wandboard-quad/rpm/wandboard_quad

# smart channel --add cortexa9hf_vfp_neon type=rpm-md \  
  baseurl=http://<server_ip>/wandboard-  
  quad/rpm/cortexa9hf_vfp_neon

5. Once the setup is ready, we will be able to query and update packages from the 
target's root filesystem with the following:
# smart update

# smart query <package_name>

# smart install <package_name>

To make this change persistent in the target's root filesystem, we can configure the package 
feeds at compilation time by using the PACKAGE_FEED_URIS variable in conf/local.conf 
as follows:

PACKAGE_FEED_URIS = "http://<server_ip>/wandboard-quad"

See also
 f More information and a user manual for the smart utility can be found at  

https://labix.org/smart/

https://labix.org/smart/
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Using build history
When maintaining software for an embedded product, you need a way to know what has 
changed and how it is going to affect your product.

On a Yocto system, you may need to update a package revision (for instance, to fix a security 
vulnerability), and you need to make sure what the implications of this change are; for 
example, in terms of package dependencies and changes to the root filesystem.

Build history enables you to do just that, and we will explore it in this recipe.

How to do it...
To enable build history, add the following to your conf/local.conf file:

INHERIT += "buildhistory"

The following enables information gathering, including dependency graphs:

BUILDHISTORY_COMMIT = "1"

The preceding line of code enables the storage of build history in a local Git repository.

The Git repository location can be set by the BUILDHISTORY_DIR variable, which by default 
is set to a buildhistory directory on your build directory.

By default, buildhistory tracks changes to packages, images, and SDKs. This is 
configurable using the BUILDHISTORY_FEATURES variable. For example, to track only image 
changes, add the following to your conf/local.conf:

BUILDHISTORY_FEATURES = "image"

It can also track specific files and copy them to the buildhistory directory. By default, this 
includes only /etc/passwd and /etc/groups, but it can be used to track any important 
files like security certificates. The files need to be added with the BUILDHISTORY_IMAGE_
FILES variable in your conf/local.conf file as follows:

BUILDHISTORY_IMAGE_FILES += "/path/to/file"

Build history will slow down the build, increase the build size, and may also grow the Git 
directory to an unmanageable size. The recommendation is to enable it on a build server for 
software releases, or in specific cases, such as when updating production software.

www.allitebooks.com

http://www.allitebooks.org
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How it works...
When enabled, it will keep a record of the changes to each package and image in the form of 
a Git repository in a way that can be explored and analyzed.

For a package, it records the following information:

 f Package and recipe revision

 f Dependencies

 f Package size

 f Files

For an image, it records the following information:

 f Build configuration

 f Dependency graphs

 f A list of files that includes ownership and permissions

 f List of installed packages

And for an SDK, it records the following information:

 f SDK configuration

 f List of both host and target files, including ownership and permissions

 f Dependency graphs

 f A list of installed packages

Looking at the build history
Inspecting the Git directory with the build history can be done in several ways:

 f Using Git tools like gitk or git log.

 f Using the buildhistory-diff command-line tool, which displays the differences in a 
human-readable format.

 f Using a Django-1.4-based web interface. You will need to import the build history data 
to the application's database after every build. The details are available at http://
git.yoctoproject.org/cgit/cgit.cgi/buildhistory-web/tree/README.

http://git.yoctoproject.org/cgit/cgit.cgi/buildhistory-web/tree/README
http://git.yoctoproject.org/cgit/cgit.cgi/buildhistory-web/tree/README
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There's more...
To maintain the build history, it's important to optimize it and avoid it from growing over time. 
Periodic backups of the build history and clean-ups of older data are important to keep the 
build history repository at a manageable size.

Once the buildhistory directory has been backed up, the following process will trim it and 
keep only the most recent history:

1. Copy your repository to a temporary RAM filesystem (tmpfs) to speed things up. 
Check the output of the df -h command to see which directories are tmpfs 
filesystems and how much space they have available, and use one. For example, in 
Ubuntu, the /run/shm directory is available.

2. Add a graft point for a commit one month ago with no parents:
$ git rev-parse "HEAD@{1 month ago}" > .git/info/grafts

3. Make the graft point permanent:
$ git filter-branch

4. Clone a new repository to clean up the remaining Git objects:
$ git clone file://${tmpfs}/buildhistory buildhistory.new

5. Replace the old buildhistory directory with the new cleaned one:
$ rm -rf buildhistory

$ mv buildhistory.new buildhistory

Working with build statistics
The build system can collect build information per task and image. The data may be used to 
identify areas of optimization of build times and bottlenecks, especially when new recipes are 
added to the system. This recipe will explain how the build statistics work.

How to do it...
To enable the collection of statistics, your project needs to inherit the buildstats class 
by adding it to USER_CLASSES in your conf/local.conf file. By default, the fsl-
community-bsp build project is configured to enable them.

USER_CLASSES ?= "buildstats"

You can configure the location of these statistics with the BUILDSTATS_BASE variable, and 
by default it is set to the buildstats folder in the tmp directory under the build directory 
(tmp/buildstats).
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The buildstats folder contains a folder per image with the build stats under a timestamp 
folder. Under it will be a subdirectory per package in your built image, and a build_stats 
file that contains:

 f Host system information
 f Root filesystem location and size
 f Build time
 f Average CPU usage
 f Disk statistics

How it works...
The accuracy of the data depends on the download directory, DL_DIR, and the shared state 
cache directory, SSTATE_DIR, existing on the same partition or volume, so you may need to 
configure them accordingly if you are planning to use the build data.

An example build-stats file looks like the following:

Host Info: Linux agonzal 3.13.0-35-generic #62-Ubuntu SMP Fri Aug  
  15 01:58:42 UTC 2014 x86_64 x86_64
Build Started: 1411486841.52
Uncompressed Rootfs size: 6.2M  /opt/yocto/fsl-community-  
  bsp/wandboard-quad/tmp/work/wandboard_quad-poky-linux-  
  gnueabi/core-image-minimal/1.0-r0/rootfs
Elapsed time: 2878.26 seconds
CPU usage: 51.5%
EndIOinProgress: 0
EndReadsComp: 0
EndReadsMerged: 55289561
EndSectRead: 65147300
EndSectWrite: 250044353
EndTimeIO: 14415452
EndTimeReads: 10338443
EndTimeWrite: 750935284
EndWTimeIO: 816314180
EndWritesComp: 0
StartIOinProgress: 0
StartReadsComp: 0
StartReadsMerged: 52319544
StartSectRead: 59228240
StartSectWrite: 207536552
StartTimeIO: 13116200
StartTimeReads: 8831854
StartTimeWrite: 3861639688
StartWTimeIO: 3921064032
StartWritesComp: 0
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These disk statistics come from the Linux kernel disk I/O stats (https://www.kernel.org/
doc/Documentation/iostats.txt). The different elements are explained here:

 f ReadsComp: This is the total number of reads completed

 f ReadsMerged: This is the total number of adjacent reads merged

 f SectRead: This is the total number of sectors read

 f TimeReads: This is the total number of milliseconds spent reading

 f WritesComp: This is the total number of writes completed

 f SectWrite: This is the total number of sectors written

 f TimeWrite: This is the total number of milliseconds spent writing

IOinProgress: This is the total number of I/Os in progress when reading /proc/diskstats

 f TimeIO: This is the total number of milliseconds spent performing I/O

 f WTimeIO: This is the total number of weighted time while performing I/O

And inside each package, we have a list of tasks; for example, for ncurses-5.9-r15.1,  
we have the following tasks:

 f do_compile

 f do_fetch

 f do_package

 f do_package_write_rpm

 f do_populate_lic

 f do_rm_work

 f do_configure

 f do_install

 f do_packagedata

 f do_patch

 f do_populate_sysroot

 f do_unpack

Each one of them contain, in the same format as earlier, the following:

 f Build time

 f CPU usage

 f Disk stats

https://www.kernel.org/doc/Documentation/iostats.txt
https://www.kernel.org/doc/Documentation/iostats.txt
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There's more...
You can also obtain a graphical representation of the data using the pybootchartgui.
py tool included in the Poky source. From your project's build folder, you can execute the 
following command to obtain a bootchart.png graphic in /tmp:

$ ../sources/poky/scripts/pybootchartgui/pybootchartgui.py  
  tmp/buildstats/core-image-minimal-wandboard-quad/ -o /tmp

Debugging the build system
In the last recipe of this chapter, we will explore the different methods available to debug 
problems with the build system and its metadata.

Getting ready
Let's first introduce some of the usual use cases on a debugging session.

Finding recipes
A good way to check whether a specific package is supported in your current layers is to 
search for it as follows:

$ find -name "*busybox*"

This will recursively search all layers for the BusyBox pattern. You can limit the search to 
recipes and append files by executing:

$ find -name "*busybox*.bb*"

Dumping BitBake's environment
When developing or debugging package or image recipes, it is very common to ask BitBake to 
list its environment both globally and for a specific target, be it a package or image.

To dump the global environment and grep for a variable of interest (for example, DISTRO_
FEATURES), use the following command:

$ bitbake -e | grep -w DISTRO_FEATURES

Optionally, to locate the source directory for a specific package recipe like BusyBox, use the 
following command:

$ bitbake -e busybox | grep ^S=

You could also execute the following command to locate the working directory for a package or 
image recipe:

$ bitbake -e <target> | grep ^WORKDIR=
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Using the development shell
BitBake offers the devshell task to help developers. It is executed with the following 
command:

$ bitbake -c devshell <target>

It will unpack and patch the source, and open a new terminal (it will autodetect your terminal 
type or it can be set with OE_TERMINAL) in the target source directory, which has the 
environment correctly setup.

While in a graphical environment, devshell opens a new terminal 
or console window, but if we are working on a non-graphical 
environment, like telnet or SSH, you may need to specify screen 
as your terminal in your conf/local.conf configuration file 
as follows:

OE_TERMINAL = "screen"

Inside the devshell, you can run development commands like configure and make or invoke 
the cross-compiler directly (use the $CC environment variable, which has been set up already).

How to do it...
The starting point for debugging a package build error is the BitBake error message printed on 
the build process. This will usually point us to the task that failed to build.

To list all the tasks available for a given recipe, with descriptions, we execute the following:

$ bitbake -c listtasks <target>

If you need to recreate the error, you can force a build with the following:

$ bitbake -f <target>

Or you can ask BitBake to force-run only a specific task using the following command:

$ bitbake -c compile -f <target>

Task log and run files
To debug the build errors, BitBake creates two types of useful files per shell task and stores 
them in a temp folder in the working directory. Taking BusyBox as an example, we would  
look into:

 /opt/yocto/fsl-community-bsp/wandboard-quad/tmp/work/cortexa9hf-  
  vfp-neon-poky-linux-gnueabi/busybox/1.22.1-r32/temp
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And find a list of log and run files. The filename format is

log.do_<task>.<pid>

and run.do_<task>.<pid>.

But luckily, we also have symbolic links, without the pid part, that link to the latest version.

The log files will contain the output of the task, and that is usually the only information we 
need to debug the problem. The run file contains the actual code executed by BitBake to 
generate the log mentioned before. This is only needed when debugging complex build issues.

Python tasks, on the other hand, do not currently write files as described previously, although 
it is planned to do so in the future. Python tasks execute internally and log information to  
the terminal.

Adding logging to recipes
BitBake recipes accept either bash or Python code. Python logging is done through the bb 
class and uses the standard logging Python library module. It has the following components:

 f bb.plain: This uses logger.plain. It can be used for debugging, but should not 
be committed to the source.

 f bb.note: This uses logger.info.

 f bb.warn: This uses logger.warn.

 f bb.error: This uses logger.error.

 f bb.fatal: This uses logger.critical and exits BitBake.

 f bb.debug: This should be passed log level as the first argument and uses logger.
debug.

To print debug output from bash in our recipes, we need to use the logging class  
by executing:

inherit logging

The logging class is inherited by default by all recipes containing base.bbclass, so 
we don't usually have to inherit it explicitly. We will then have access to the following bash 
functions, which will output to the log files (not to the console) in the temp directory inside the 
working directory as described previously:

 f bbplain: This function outputs literally what's passed in. It can be used in debugging 
but should not be committed to a recipe source.

 f bbnote: This function prints with the NOTE prefix.

 f bbwarn: This prints a non-fatal warning with the WARNING prefix.

 f bberror: This prints a non-fatal error with the ERROR prefix.



Chapter 1

37

 f bbfatal: This function halts the build and prints an error message as with bberror.

 f bbdebug: This function prints debug messages with log level passed as the first 
argument. It is used with the following format:
bbdebug [123] "message"

The bash functions mentioned here do not log to the console 
but only to the log files.

Looking at dependencies
You can ask BitBake to print the current and provided versions of packages with the  
following command:

$ bitbake --show-versions

Another common debugging task is the removal of unwanted dependencies.

To see an overview of pulled-in dependencies, you can use BitBake's verbose output by 
running this:

$ bitbake -v <target>

To analyze what dependencies are pulled in by a package, we can ask BitBake to create DOT 
files that describe these dependencies by running the following:

$ bitbake -g <target>

The DOT format is a text description language for graphics that is understood by the GraphViz 
open source package and all the utilities that use it. DOT files can be visualized or further 
processed.

You can omit dependencies from the graph to produce more readable output. For example, to 
omit dependencies from glibc, you would run the following command:

$ bitbake -g <target> -I glibc

Once the preceding commands have been run, we get three files in the current directory:

 f package-depends.dot: This file shows the dependencies between runtime targets

 f pn-depends.dot: This file shows the dependencies between recipes

 f task-depends.dot: This file shows the dependencies between tasks

There is also a pn-buildlist file with a list of packages that would be built by the  
given target.
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To convert the .dot files to postscript files (.ps), you may execute:

$ dot -Tps filename.dot -o outfile.ps

However, the most useful way to display dependency data is to ask BitBake to display it 
graphically with the dependency explorer, as follows:

$ bitbake -g -u depexp <target>

The result may be seen in the following screenshot:

Debugging BitBake
It is not common to have to debug BitBake itself, but you may find a bug in BitBake and want 
to explore it by yourself before reporting it to the BitBake community. For such cases, you 
can ask BitBake to output the debug information at three different levels with the -D flag. To 
display all the debug information, run the following command:

$ bitbake -DDD <target>
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Error reporting tool
Sometimes, you will find a build error on a Yocto recipe that you have not modified. The first 
place to check for errors is the community itself, but before launching your mail client, head  
to http://errors.yoctoproject.org.

This is a central database of user-reported errors. Here, you may check whether someone else 
is experiencing the same problem.

You can submit your own build failure to the database to help the community debug the 
problem. To do so, you may use the report-error class. Add the following to your  
conf/local.conf file:

INHERIT += "report-error"

By default, the error information is stored under tmp/log/error-report under the build 
directory, but you can set a specific location with the ERR_REPORT_DIR variable.

When the error reporting tool is activated, a build error will be captured in a file in the error-
report folder. The build output will also print a command to send the error log to the server:

$ send-error-report ${LOG_DIR}/error-report/error-report_${TSTAMP}

When this command is executed, it will report back with a link to the upstream error.

You can set up a local error server, and use that instead by passing a server argument. The 
error server code and setting up details can be found at http://git.yoctoproject.org/
cgit/cgit.cgi/error-report-web/tree/README.

There's more...
Although you can use Linux utilities to parse Yocto's metadata and build output, BitBake lacks 
a command base UI for common tasks. One project that aims to provide it is bb, which is 
available at https://github.com/kergoth/bb.

To use it, you need to clone the repository locally by executing the following command:

$ cd /opt/yocto/fsl-community-bsp/sources

$ git clone https://github.com/kergoth/bb.git

Then run the bb/bin/bb init command, which prompts you to add a bash command to 
your ~/.bash_profile file.

You can either do that or execute it in your current shell as follows:

$ eval "$(/opt/yocto/fsl-community-bsp/sources/bb/bin/bb init -)"

www.allitebooks.com
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You will first need to set up your environment as usual:

$ cd /opt/yocto/fsl-community-bsp

$ source setup-environment wandboard-quad

Some of the commands only work with a populated work directory, 
so you may need to remove the rm_work class if you want to use 
bb.

Some of the tasks that are made easier by the bb utility are:

 f Exploring the contents of a package:
$ bb contents <target>

 f Searching for a pattern in the recipes:
$ bb search <pattern>

 f Displaying either the global BitBake environment or the environment for a specific 
package and grepping for a specific variable:
$ bb show -r <recipe> <variable>
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The BSP Layer

In this chapter, we will cover the following recipes:

 f Creating a custom BSP layer

 f Introducing system development workflows

 f Adding a custom kernel and bootloader

 f Building the U-Boot bootloader

 f Explaining Yocto's Linux kernel support

 f Describing Linux's build system

 f Configuring the Linux kernel

 f Building the Linux source

 f Building external kernel modules

 f Debugging the Linux kernel and modules

 f Debugging the Linux kernel booting process

 f Using the kernel tracing system

 f Managing the device tree

 f Debugging device tree issues

2
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Introduction
Once we have our build environment ready with the Yocto project, it's time to think about 
beginning development work on our embedded Linux project.

Most of the embedded Linux projects require both custom hardware and software. An early 
task in the development process is to test different hardware reference boards and the 
selection of one to base our design on. We have chosen the Wandboard, a Freescale i.MX6-
based platform, as it is an affordable and open board, which makes it perfect for our needs.

On an embedded project, it is usually a good idea to start working on the software as soon 
as possible, probably before the hardware prototypes are ready, so that it is possible to start 
working directly with the reference design.

But at some point, the hardware prototypes will be ready and changes will need to be 
introduced into Yocto to support the new hardware.

This chapter will explain how to create a BSP layer to contain those hardware-specific 
changes, as well as show how to work with the U-Boot bootloader and the Linux kernel, 
components which are likely to take most of the customization work.

Creating a custom BSP layer
These custom changes are kept on a separate Yocto layer, called a Board Support Package 
(BSP) layer. This separation is best for future updates and patches to the system. A BSP layer 
can support any number of new machines and any new software feature that is linked to the 
hardware itself.

How to do it...
By convention, Yocto layer names start with meta, short for metadata. A BSP layer may then 
add a bsp keyword, and finally a unique name. We will call our layer meta-bsp-custom.

There are several ways to create a new layer:

 f Manually, once you know what is required

 f By copying the meta-skeleton layer included in Poky

 f By using the yocto-layer command-line tool
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You can have a look at the meta-skeleton layer in Poky and see that it includes the 
following elements:

 f A layer.conf file, where the layer configuration variables are set

 f A COPYING.MIT license file

 f Several directories named with the recipes prefix with example recipes for BusyBox, 
the Linux kernel and an example module, an example service recipe, an example 
user management recipe, and a multilib example.

How it works...
We will cover some of the use cases that appear in the available examples in the next few 
recipes, so for our needs, we will use the yocto-layer tool, which allows us to create a 
minimal layer.

Open a new terminal and change to the fsl-community-bsp directory. Then set up the 
environment as follows:

$ source setup-environment wandboard-quad

Note that once the build directory has been created, the MACHINE 
variable has already been configured in the conf/local.conf file and 
can be omitted from the command line.

Change to the sources directory and run:

$ yocto-layer create bsp-custom

Note that the yocto-layer tool will add the meta prefix to your layer, so you don't need to. It 
will prompt a few questions:

 f The layer priority which is used to decide the layer precedence in cases where the 
same recipe (with the same name) exists in several layers simultaneously. It is also 
used to decide in what order bbappends are applied if several layers append the 
same recipe. Leave the default value of 6. This will be stored in the layer's conf/
layer.conf file as BBFILE_PRIORITY.

 f Whether to create example recipes and append files. Let's leave the default no for the 
time being.
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Our new layer has the following structure:

meta-bsp-custom/

    conf/layer.conf

    COPYING.MIT

    README

There's more...
The first thing to do is to add this new layer to your project's conf/bblayer.conf file. It is 
a good idea to add it to your template conf directory's bblayers.conf.sample file too, so 
that it is correctly appended when creating new projects. The highlighted line in the following 
code shows the addition of the layer to the conf/bblayers.conf file:

LCONF_VERSION = "6"

BBPATH = "${TOPDIR}"
BSPDIR := "${@os.path.abspath(os.path.dirname(d.getVar('FILE',  
  True)) + '/../..')}"

BBFILES ?= ""
BBLAYERS = " \
  ${BSPDIR}/sources/poky/meta \
  ${BSPDIR}/sources/poky/meta-yocto \
  \
  ${BSPDIR}/sources/meta-openembedded/meta-oe \
  ${BSPDIR}/sources/meta-openembedded/meta-multimedia \
  \
  ${BSPDIR}/sources/meta-fsl-arm \
  ${BSPDIR}/sources/meta-fsl-arm-extra \
  ${BSPDIR}/sources/meta-fsl-demos \
  ${BSPDIR}/sources/meta-bsp-custom \
"

Now, BitBake will parse the bblayers.conf file and find the conf/layers.conf file from 
your layer. In it, we find the following line:

BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \
        ${LAYERDIR}/recipes-*/*/*.bbappend"
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It tells BitBake which directories to parse for recipes and append files. You need to make sure 
your directory and file hierarchy in this new layer matches the given pattern, or you will need to 
modify it.

BitBake will also find the following:

BBPATH .= ":${LAYERDIR}"

The BBPATH variable is used to locate the bbclass files and the configuration and files 
included with the include and require directives. The search finishes with the first match, 
so it is best to keep filenames unique.

Some other variables we might consider defining in our conf/layer.conf file are:

LAYERDEPENDS_bsp-custom = "fsl-arm"
LAYERVERSION_bsp-custom = "1"

The LAYERDEPENDS literal is a space-separated list of other layers your layer depends on, and 
the LAYERVERSION literal specifies the version of your layer in case other layers want to add 
a dependency to a specific version.

The COPYING.MIT file specifies the license for the metadata contained in the layer. The Yocto 
project is licensed under the MIT license, which is also compatible with the General Public 
License (GPL). This license applies only to the metadata, as every package included in your 
build will have its own license.

The README file will need to be modified for your specific layer. It is usual to describe the layer 
and provide any other layer dependencies and usage instructions.

Adding a new machine
When customizing your BSP, it is usually a good idea to introduce a new machine for your 
hardware. These are kept under the conf/machine directory in your BSP layer. The usual 
thing to do is to base it on the reference design. For example, wandboard-quad has the 
following machine configuration file:

include include/wandboard.inc

SOC_FAMILY = "mx6:mx6q:wandboard"

UBOOT_MACHINE = "wandboard_quad_config"

KERNEL_DEVICETREE = "imx6q-wandboard.dtb"

MACHINE_FEATURES += "bluetooth wifi"

MACHINE_EXTRA_RRECOMMENDS += " \
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  bcm4329-nvram-config \
  bcm4330-nvram-config \
"

A machine based on the Wandboard design could define its own machine configuration file, 
wandboard-quad-custom.conf, as follows:

include conf/machine/include/wandboard.inc

SOC_FAMILY = "mx6:mx6q:wandboard"

UBOOT_MACHINE = "wandboard_quad_custom_config"

KERNEL_DEVICETREE = "imx6q-wandboard-custom.dtb"

MACHINE_FEATURES += "wifi"

The wandboard.inc file now resides on a different layer, so in order for BitBake to find it, 
we need to specify the full path from the BBPATH variable in the corresponding layer. This 
machine defines its own U-Boot configuration file and Linux kernel device tree in addition to 
defining its own set of machine features.

Adding a custom device tree to the Linux kernel
To add this device tree file to the Linux kernel, we need to add the device tree file to the 
arch/arm/boot/dts directory under the Linux kernel source and also modify the Linux 
build system's arch/arm/boot/dts/Makefile file to build it as follows:

dtb-$(CONFIG_ARCH_MXC) += \
+imx6q-wandboard-custom.dtb \

This code uses diff formatting, where the lines with a minus prefix are removed, the ones with 
a plus sign are added, and the ones without a prefix are left as reference.

Once the patch is prepared, it can be added to the meta-bsp-custom/recipes-kernel/
linux/linux-wandboard-3.10.17/ directory and the Linux kernel recipe appended 
adding a meta-bsp-custom/recipes-kernel/linux/linux-wandboard_3.10.17.
bbappend file with the following content:

SRC_URI_append = " file://0001-ARM-dts-Add-wandboard-custom-dts-  
  file.patch"

An example patch that adds a custom device tree to the Linux kernel can be found in the 
source code that accompanies the book.
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Adding a custom U-Boot machine
In the same way, the U-Boot source may be patched to add a new custom machine. 
Bootloader modifications are not as likely to be needed as kernel modifications though, and 
most custom platforms will leave the bootloader unchanged. The patch would be added to 
the meta-bsp-custom/recipes-bsp/u-boot/u-boot-fslc-v2014.10/ directory and 
the U-Boot recipe appended with a meta-bsp-custom/recipes-bsp/u-boot/u-boot-
fslc_2014.10.bbappend file with the following content:

SRC_URI_append = " file://0001-boards-Add-wandboard-custom.patch"

An example patch that adds a custom machine to U-Boot can be found in the source code that 
accompanies the book.

Adding a custom formfactor file
Custom platforms can also define their own formfactor file with information that the build 
system cannot obtain from other sources, such as defining whether a touchscreen is available 
or defining the screen orientation. These are defined in the recipes-bsp/formfactor/ 
directory in our meta-bsp-custom layer. For our new machine, we could define a meta-
bsp-custom/recipes-bsp/formfactor/formfactor_0.0.bbappend file to include a 
formfactor file as follows:

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

And the machine-specific meta-bsp-custom/recipes-bsp/formfactor/formfactor/
wandboard-quadcustom/machconfig file would be as follows:

HAVE_TOUCHSCREEN=1

Introducing system development workflows
When customizing the software, there are some system development workflows that are 
commonly used, and we will introduce them in this recipe.

How to do it...
We will see an overview of the following development workflows:

 f External development

 f Working directory development

 f External source development

They are all used under different scenarios.
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How it works...
Let's understand what the use of each of these development workflows is individually.

External development
In this workflow, we don't use the Yocto build system to build our packages, just a Yocto 
toolchain and the package's own build system.

The resulting source can be integrated into Yocto in the following ways:

 f With a recipe that fetches a released tarball.

 f With a recipe that fetches directly from a source-controlled repository.

External development is usually the preferred method for U-Boot and Linux kernel 
development, as they can be easily cross-compiled. Third-party packages in Yocto are also 
developed in this way.

However, third-party packages can be tricky to cross-compile, and that is just what the Yocto 
build system makes easy. So, if we are not the main developers of the package and we only 
want to introduce some fixes or modifications, we can use Yocto to help us. The two workflows 
explained in the following sections use the Yocto build system.

Working directory development
In this workflow, we use the working directory inside the build directory, tmp/work. As we 
know, when Yocto builds a package, it uses the working directory to extract, patch, configure, 
build, and package the source. We can directly modify the source in this directory and use the 
Yocto system to build it.

This methodology is commonly used when sporadically debugging third-party packages.

The workflow is as follows:

1. Remove the package's build directory to start from scratch:
$ bitbake -c cleanall <target>

2. Tell BitBake to fetch, unpack, and patch the package, but stop there:
$ bitbake -c patch <target>

3. Enter the package's source directory and modify the source. Usually, we would create 
a temporary local Git directory to help us with our development and to extract the 
patches easily.
$ bitbake -c devshell <target>

4. Build it without losing our changes:
$ bitbake -C compile <target>
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Note the capital C. This instructs BitBake to run the compile task and all the tasks 
that follow it. This is the same as running:

$ bitbake -c compile <target>

$ bitbake <target>

5. Test it by copying the package to a running system and installing it with the target's 
package management system. When you run your system from an NFS root 
filesystem, it's as easy as to copy it there and run the following command (assuming 
the default RPM package format):
$ rpm -i <package>

Optionally, you can also use a package feed as we saw in the Setting up a package 
feed recipe in Chapter 1, The Build System, in which case you would rebuild the index 
with the following:
$ bitbake package-index

And then use the smart package management utility on the target to install the 
package as previously shown.

6. Extract the patches and add them to the recipe's bbappend file.

External source development
In this workflow, we will use the Yocto build system to build an external directory containing 
the source. This external directory is usually source controlled to help us in our development.

This is the usual methodology to follow for extensive package development once the source 
has already been integrated with the Yocto build system.

The workflow is as follows:

1. We perform our development on this external-version-controlled directory and commit 
our changes locally.

2. We configure the Yocto build system to use a directory in our host system to fetch the 
source from, and optionally also to build in. This guarantees that our changes cannot 
be lost by any action of the Yocto build system. We will see some examples of this 
later on.

3. Build it using Yocto:
$ bitbake <target>

4. Test it by copying the package to a running system and installing it with the target's 
package management system.

5. Extract the patches and add them to the recipe's bbappend file.

www.allitebooks.com
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Adding a custom kernel and bootloader
Development in U-Boot and the Linux kernel is usually done externally to Yocto, as they are 
easy to build using a toolchain, like the one provided by Yocto.

The development work is then integrated into Yocto in one of two ways:

 f With patches added to the kernel and U-Boot bbappend files. This method will build 
the same source as the reference design board we are using as base, and apply our 
changes over it.

 f Using a different Git repository, forked from the Linux kernel and U-Boot Git 
repositories being used by the reference design, and using a bbappend file to point 
the recipe to it. This way, we can directly commit the changes to the repository and 
the Yocto build system will build them.

Usually a forked Git repository is only needed when the hardware changes are substantial and 
the work in the Linux kernel and bootloader is going to be extensive. The recommendation is 
to start with patches, and only use a forked repository when they become difficult  
to manage.

Getting Ready
The first question when starting work on the Linux kernel and U-Boot modifications is how do 
you find which of the several available recipes are being used for your build.

Finding the Linux kernel source
To find the Linux kernel source, we might use several methods. As we are aware we  
are building for a wandboard-quad machine, the first thing to do is find a machine 
configuration file:

$ cd /opt/yocto/fsl-community-bsp/sources

$ find -name wandboard-quad.conf

./meta-fsl-arm-extra/conf/machine/wandboard-quad.conf

The machine configuration file above in turn includes a wandboard.inc file:

include conf/machine/include/imx-base.inc
include conf/machine/include/tune-cortexa9.inc

PREFERRED_PROVIDER_virtual/kernel ?= "linux-wandboard"
PREFERRED_VERSION_linux-wandboard ?= "3.10.17"
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Here we find a Linux kernel recipe being specified as the preferred provider for virtual/kernel. 
Virtual packages like this are used when a feature or element is provided by more than one 
recipe. It allows us to choose which of all those recipes will finally be used. Virtual packages 
will be further explained in the Selecting a specific package versions and providers recipe in 
Chapter 3, The Software Layer.

We could check the actual output from our previous core-image-minimal build:

$ find tmp/work -name "*linux-wandboard*"

tmp/work/wandboard_quad-poky-linux-gnueabi/linux-wandboard

As the linux-wanboard directory exists in our work folder, we can be sure the recipe  
has been used.

We can check what the available Linux recipes are with:

$ find -name "*linux*.bb"

We have lots of options, but we can use some of our acquired knowledge to filter them out. 
Let's exclude the poky and meta-openembedded directories, as we know the BSP support is 
included in the Freescale community BSP layers:

$ find -path ./poky -prune -o -path ./meta-openembedded -prune -o -name 
"*linux*.bb"

Finally, we can also use the bitbake-layers script included in Poky:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake-layers show-recipes 'linux*'

Not all those kernels support the Wandboard machine completely, but they all support 
Freescale ARM machines, so they are useful for comparisons.

Finding the U-Boot source
If we continue to pull the include chain, we have imx-base.inc, which itself includes fsl-
default-providers.inc, where we find:

PREFERRED_PROVIDER_u-boot ??= "u-boot-fslc"
PREFERRED_PROVIDER_virtual/bootloader ??= "u-boot-fslc"

So u-boot-fslc is the U-Boot recipe we are looking for.
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Developing using a Git repository fork
We will show how to append a recipe to use a forked repository to work from it. We will use 
the Linux kernel as an example, but the concept works just as well for U-Boot or any other 
package, although the specifics will change.

We will fork or branch the repository used in the reference design and use it to specify  
SRC_URI for the recipe.

How to do it...
For this example, I have forked the repository to https://github.com/yoctocookbook/
linux, so my recipes-kernel/linux/linux-wandboard_3.10.17.bbappend file 
would have the following changes:

# Copyright Packt Publishing 2015
WANDBOARD_GITHUB_MIRROR = "git://github.com/yoctocookbook/linux.git"
SRCBRANCH = "wandboard_imx_3.10.17_1.0.2_ga-dev"
SRCREV = "${AUTOREV}"

Note how the URL needs to start with git://. This is so that 
BitBake can recognize it as a Git source. Now we can clean and 
build the Linux kernel and the source will be fetched from the forked 
repository.

How it works...
Let's have a look at the linux-wandboard_3.10.17.bb recipe:

include linux-wandboard.inc
require recipes-kernel/linux/linux-dtb.inc

DEPENDS += "lzop-native bc-native"

# Wandboard branch - based on 3.10.17_1.0.2_ga from Freescale git
SRCBRANCH = "wandboard_imx_3.10.17_1.0.2_ga"
SRCREV = "be8d6872b5eb4c94c15dac36b028ce7f60472409"
LOCALVERSION = "-1.0.2-wandboard"

COMPATIBLE_MACHINE = "(wandboard)"

https://github.com/yoctocookbook/linux
https://github.com/yoctocookbook/linux
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The first interesting thing is the inclusion of both linux-wandboard.inc and linux-dtb.
inc. We will look at the first later on, and the other is a class that allows us to compile Linux 
kernel device trees. We will discuss device trees in the Managing the device tree recipe later 
in this chapter.

Then it declares two package dependencies, lzop-native and bc-native. The native 
part tells us that these are used in the host system, so they are used during the Linux kernel 
build process. The lzop tool is used to create the cpio compressed files needed in the 
initramfs system, which is a system that boots from a memory-based root filesystem, and 
bc was introduced to avoid a Perl kernel dependency when generating certain kernel files.

Then it sets the branch and revision, and finally it sets COMPATIBLE_MACHINE to 
wandboard. We will speak about machine compatibility in the Adding new packages recipe of 
Chapter 3, The Software Layer.

Let's now have a look at the linux-wandboard.inc include file:

SUMMARY = "Linux kernel for Wandboard"
LICENSE = "GPLv2"
LIC_FILES_CHKSUM =  
  "file://COPYING;md5=d7810fab7487fb0aad327b76f1be7cd7"

require recipes-kernel/linux/linux-imx.inc

# Put a local version until we have a true SRCREV to point to
SCMVERSION ?= "y"

SRCBRANCH ??= "master"
LOCALVERSION ?= "-${SRCBRANCH}"

# Allow override of WANDBOARD_GITHUB_MIRROR to make use of
# local repository easier
WANDBOARD_GITHUB_MIRROR ?= "git://github.com/wandboard-  
  org/linux.git"

# SRC_URI for wandboard kernel
SRC_URI = "${WANDBOARD_GITHUB_MIRROR};branch=${SRCBRANCH} \
           file://defconfig \
" 

This is actually the file we were looking for. Initially, it specifies the license for the kernel 
source and points to it, sets a default branch and local version kernel string, and sets up the 
SCR_URI variable, which is the place where the source code is fetched from.
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It then offers the WANDBOARD_GITHUB_MIRROR variable, which we can modify in our 
bbappend file.

So the logical setup would be to create a GitHub account and fork the provided wandboard-
org Linux repository.

Once the fork is in place, we need to modify the WANDBOARD_GITHUB_MIRROR variable. But 
as we saw before, the recipe configures a specific revision and branch. We want to develop 
here, so we want to change this to a new development branch we have created. Let's call it 
wandboard_imx_3.10.17_1.0.2_ga-dev and set the revision to automatically fetch the 
newest point in the branch.

Building the U-Boot bootloader
In this recipe, we will go through the several development workflows described previously 
using the U-Boot bootloader as an example.

How to do it...
We will see how the following development workflows are applied to U-Boot:

 f External development

 f External source development

 f Working directory development

How it works...
Let's explain the three workflows, previously mentioned, in detail.

External development
We will use a Yocto toolchain to build the U-Boot source externally from the Yocto build system.

1. Download and install a Yocto project cross-compilation toolchain for your host by 
going to the following:
http://downloads.yoctoproject.org/releases/yocto/yocto-1.7.1/
toolchain/

Choose either the 32- or 64-bit version and execute the installation 
script, accepting the default installation location. It is recommended not 
to change the default location to avoid relocation issues.

http://downloads.yoctoproject.org/releases/yocto/yocto-1.7.1/toolchain/ 
http://downloads.yoctoproject.org/releases/yocto/yocto-1.7.1/toolchain/ 
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2. Find the upstream Git repository:
$ bitbake -e u-boot-fslc | grep ^SRC_URI=

SRC_URI="git://github.com/Freescale/u-boot-  
  imx.git;branch=patches-2014.10"

3. Clone the U-Boot's source from its upstream repository:
$ cd /opt/yocto/

$ git clone git://github.com/Freescale/u-boot-imx.git

$ cd u-boot-imx

The default branch should be patches-2014.10, but if it's not, you can change it 
with the following:

$ git checkout -b patches-2014.10 origin/patches-2014.10

4. Set up the environment using the script provided with the toolchain:
$ source /opt/poky/1.7.1/environment-setup-armv7a-vfp-neon-  
  poky-linux-gnueabi

5. Configure U-Boot for wandboard-quad:
$ make wandboard_quad_config

6. If you try to build U-Boot, it will fail. This is because the default Yocto environment 
setup does not cater to U-Boot's needs. A quick look at the U-Boot recipe shows that 
it clears some flags before building, so let's do that:
$ unset LDFLAGS CFLAGS CPPFLAGS

7. Now we are ready to build. The U-Boot recipe also passes CC to the make utility in the 
EXTRA_OEMAKE flags as U-Boot does not read it from the environment, so we also 
need to run:
$ make CC="${CC}"

You can optionally pass a -jN argument for multithreaded compilation. 
Here, N is the number of CPU cores.

How it works…
The U-Boot Makefile looks for libgcc using the following command:

PLATFORM_LIBGCC := -L $(shell dirname `$(CC) $(CFLAGS) -print-libgcc-  
  file-name`) -lgcc
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If we don't define CC, the expression does not correctly expand to the location of the libgcc 
library in the toolchain, as the sysroot option is not passed to the compiler.

Newer versions of U-Boot have already fixed this issue, but we decided to 
leave the instruction as the following:
$ make CC="${CC}"

That works for older versions of U-Boot too.

Another way to avoid the problem would be to define the USE_PRIVATE_LIBGCC U-Boot 
configuration variable, but that would use an internal libgcc library to U-Boot, which may not 
be what we want.

We would then need to copy the image to the target to test our changes, as we will see soon.

External source development
We will use the Yocto build system from a local directory by cloning a local copy of the source 
used in the reference design and configuring our project to use it as an external source.  
We will then develop from it, extract the patches, and add them to a bbappend file on our 
BSP layer.

We will use the U-Boot source cloned in the example beforehand.

To configure our conf/local.conf file to work from the cloned source, modify it as follows:

INHERIT += "externalsrc"
EXTERNALSRC_pn-u-boot-fslc = "/opt/yocto/u-boot-imx"
EXTERNALSRC_BUILD_pn-u-boot-fslc = "/opt/yocto/u-boot-imx"

The EXTERNALSRC variable defines the source location (S), while the EXTERNALSRC_BUILD 
variable defines the build location (B). This code will also build on the external source location 
as the u-boot-fslc recipe does not currently support the separation of the source and 
build directories.

Remember to remove the aforementioned configuration 
when trying the working directory development methodology 
explained next in this recipe.

Now we can build on a new shell with:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake u-boot-fslc
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When building from an external source, the expansion of SRCPV fails with an error. Recipes 
need to be temporarily modified to use static versioning while the external source compilation 
is enabled. In the case of U-Boot, we would make the following change in the meta-fsl-
arm/recipes-bsp/u-boot/u-boot-fslc_2014.10.bb file:

- PV = "v2014.10+git${SRCPV}"
+ PV = "v2014.10"

This uses diff formatting, where the lines with a minus prefix are removed and the ones with a 
plus sign are added.

An example patch to U-Boot that allows us to perform external source development can be 
found in the source code that accompanies the book.

Development work can now be committed in the local Git repository, and patches can be 
generated with git format-patch. For example, we could change the board information for 
the Wandboard with the 0001-wandboard-Change-board-info.patch file:

diff --git a/board/wandboard/wandboard.c  
  b/board/wandboard/wandboard.c
index 3c8b7a5d2d0a..a466d4c74b8f 100644
--- a/board/wandboard/wandboard.c
+++ b/board/wandboard/wandboard.c
@@ -404,7 +404,7 @@ int board_init(void)

 int checkboard(void)
 {
-       puts("Board: Wandboard\n");
+      puts("Board: Wandboard custom\n");

        return 0;
 }

To add this patch to Yocto's U-Boot recipe, we create a meta-bsp-custom/recipes-bsp/
u-boot/u-boot-fslc_2014.10.bbappend file with the  
following content:

# Copyright Packt Publishing 2015
FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}-${PV}:"
SRC_URI_append = " file://0001-wandboard-Change-board-info.patch"

The patch needs to be placed under meta-bsp-custom/recipes-bsp/u-boot/u-boot-
fslc-v2014.10/, as specified in the FILESEXTRAPATHS variable.
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Files added to the SRC_URI variable that end in the patch or diff prefixes will be applied 
in the order they are found. You can also force a file to be treated as patch by specifying an 
apply=yes property to it in SRC_URI.

Working directory development
A typical workflow when working on a small modification would be:

1. Start the U-Boot package compilation from scratch:
$ bitbake -c cleanall virtual/bootloader

This will erase the build folder, shared state cache, and downloaded package 
source.

2. Start a development shell:
$ bitbake -c devshell virtual/bootloader

This will fetch, unpack, and patch the U-Boot sources and spawn a new shell with the 
environment ready for U-Boot compilation. The new shell will change to the U-Boot 
build directory, which contains a local Git repository.

3. Perform your modifications on the local Git repository.

4. Leave the devshell open and use a different terminal to compile the source without 
erasing our modifications:
$ bitbake -C compile virtual/bootloader

Note the capital C. This invokes the compile task but also all the tasks that follow it.

The newly compiled U-Boot image is available under tmp/deploy/images/
wandboard-quad.

5. Test your changes. Typically, this means that we need to reprogram the bootloader 
into the microSD card (as is the case with the Wandboard) or the internal emmc (if 
available) at the correct offset. We can do it both from the target or from your host 
computer.

From the host computer, we would use dd to copy the new U-Boot image to an offset 
of 0x400, which is where the i.MX6 bootrom expects to find it.
sudo dd if=u-boot.imx of=/dev/sdN bs=512 seek=2 && sync

This writes with an offset of 2 blocks, which, given a 512-byte block size, is 0x400 
(1024) bytes.

Be careful when running the dd command, as it could harm 
your machine. You need to be absolutely sure that the sdN 
device corresponds to your microSD card and not a drive on your 
development machine.
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From the device itself, we can use U-Boot's mmc command as follows:

 � Load the U-Boot image to memory:
> setenv ipaddr <target_ip>

> setenv serverip <host_ip>

> tftp ${loadaddr} u-boot.imx

The hexadecimal file size of the TFTP transfer is kept in the filesize environment 
variable, which we will use later on.

 � Select the MMC device to operate on. You can use the mmc part to discover 
which is the correct device.
> mmc dev 0

> mmc part

Partition Map for MMC device 0  --   Partition Type: DOS

Part    Start Sector    Num Sectors     UUID            Type

  1     8192            16384           0003b9dd-01     0c

  2     24576           131072          0003b9dd-02     83

We can see that partition 1 starts at sector 8192, leaving enough space to program 
U-Boot.

 � With a 512-byte block size, we calculate the number of blocks as follows:
> setexpr filesizeblks $filesize / 0x200

> setexpr filesizeblks $filesizeblks + 1

 � We then write to an offset of two blocks with the numbers of blocks occupied 
by our image.

> mmc write ${loadaddr} 0x2 ${filesizeblks}

6. Go back to the devshell and commit your change to the local Git repository.
$ git add --all .

$ git commit -s -m "Well thought commit message"

7. Generate a patch into the U-Boot recipe patch directory as follows:
$ git format-patch -1 -o /opt/yocto/fsl-community-  
  bsp/sources/meta-bsp-custom/recipes-bsp/u-boot/u-boot-fslc-  
  v2014.10/

8. Finally, add the patch to the U-Boot recipe as explained before.
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Explaining Yocto's Linux kernel support
The Yocto project offers a kernel framework that allows us to work with the Linux kernel in 
different ways:

 f Fetching the source from a Git repository and applying patches to it. This is the path 
taken by the Freescale community BSP-supported kernels, as we saw previously.

 f The linux-yocto style kernels that generate the kernel source from a set of Git 
branches and leafs. Specific features are developed in branches, and a leaf is 
followed for a complete set of features.

In this recipe, we will show how to work with a linux-yocto style kernel.

How to do it...
To use a linux-yocto style kernel, the kernel recipe inherits the linux-yocto.inc file. A 
Git repository for a linux-yocto style kernel contains metadata either in the recipe or inside 
the kernel Git tree, in branches named with the meta prefix.

The linux-yocto style kernel recipes are all named linux-yocto and follow the upstream 
kernel development, rooted in the kernel.org repository. Once a new Yocto release cycle 
starts, a recent upstream kernel version is chosen, and the kernel version from the previous 
Yocto release is maintained. Older versions are updated inline with the Long Term Support 
Initiative (LTSI) releases. There is also a linux-yocto-dev package, which always follows 
the latest upstream kernel development.

Yocto kernels are maintained separately from the upstream kernel sources, and add features 
and BSPs to cater to embedded system developers.

Although the Freescale community BSP does not include linux-yocto style kernels, some 
other BSP layers do.

Metadata variables that are used to define the build include:

 f KMACHINE: This is usually the same as the MACHINE variable, but not always. It 
defines the kernel's machine type.

 f KBRANCH: This explicitly sets the kernel branch to build. It is optional.

 f KBRANCH_DEFAULT: This is the default value for KBRANCH, initially master.

 f KERNEL_FEATURES: This adds additional metadata that is used to specify 
configuration and patches. It appears above the defined KMACHINE and KBRANCH. It 
is defined in Series Configuration Control (SCC) files as described soon.
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 f LINUX_KERNEL_TYPE: This defaults to standard, but may also be tiny or 
preempt-rt. It is defined in its own SCC description files, or explicitly defined using 
the KTYPE variable in the SCC files.

How it works...
The metadata included in the Linux kernel manages the configuration and source selection to 
support multiple BSPs and kernel types. The tools that manage this metadata are built in the 
kern-tools package.

The metadata can be set either in recipes, for small changes or if you are using a kernel 
repository you do not have access to, or most usually inside the kernel Git repository in meta 
branches. The meta branch that is to be used defaults to a meta directory in the same 
repository branch as the sources, but can be specified using the KMETA variable in your  
kernel recipe. If it does not reside in the same branch as the kernel source, it is kept in an 
orphan branch; that is, a branch with its own history. To create an orphan branch, use the 
following commands:

$ git checkout --orphan meta

$ git rm -rf .

$ git commit --allow-empty -m "Meta branch"

Your recipe must then include SRCREV_meta to point to the revision of the meta branch  
to use.

The metadata is described in SCC files, which can include a series of commands:

 f kconf: This command applies a configuration fragment to the kernel configuration.

 f patch: This command applies the specified patch.

 f define: This introduces the variable definitions.

 f include: This includes another SCC file.

 f git merge: This merges the specified branch into the current branch.

 f branch: This creates a new branch relative to the current branch, usually KTYPE or 
as specified.

SCC files are broadly divided into the following logical groupings:

 f configuration (cfg): This contains one or more kernel configuration fragments and 
an SCC file to describe them. For example:
cfg/spidev.scc:
        define KFEATURE_DESCRIPTION "Enable SPI device  
  support"
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        kconf hardware spidev.cfg

cfg/spidev.cfg:
        CONFIG_SPI_SPIDEV=y

 f patches: This contains one or more kernel patches and an SCC file to describe them. 
For example:
patches/fix.scc:
        patch fix.patch

patches/fix.patch

 f features: This contains mix configurations and patches to define complex features. It 
can also include other description files. For example:
features/feature.scc
        define KFEATURE_DESCRIPTION "Enable feature"

        patch 0001-feature.patch
    
        include cfg/feature_dependency.scc
        kconf non-hardware feature.cfg

 f kernel types: This contains features that define a high-level kernel policy. By default, 
three kernel types are defined in SCC files:

 � standard: This is a generic kernel definition policy

 � tiny: This is a bare minimum kernel definition policy and is independent of 
the standard type

 � preempt-rt: This inherits from the standard type to define a real-time kernel 
where the PREEMTP-RT patches are applied

Other kernel types can be defined by using the KTYPE variable on an SCC file.

 f Board Support Packages (BSP): A combination of kernel types and hardware 
features. BSP types should include KMACHINE for the kernel machine and KARCH for 
the kernel architecture.

See also
 f Detailed information regarding linux-yocto style kernels can be found in the Yocto 

Project Linux Kernel Development Manual at http://www.yoctoproject.org/
docs/1.7.1/kernel-dev/kernel-dev.html

http://www.yoctoproject.org/docs/1.7.1/kernel-dev/kernel-dev.html
http://www.yoctoproject.org/docs/1.7.1/kernel-dev/kernel-dev.html
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Describing Linux's build system
The Linux kernel is a monolithic kernel and as such shares the same address space. Although 
it has the ability to load modules at runtime, the kernel must contain all the symbols the 
module uses at compilation time. Once the module is loaded, it will share the kernel's address 
space.

The kernel build system, or kbuild, uses conditional compilation to decide which parts of the 
kernel are compiled. The kernel build system is independent of the Yocto build system.

In this recipe, we will explain how the kernel's build system works.

How to do it...
The kernel configuration is stored in a .config text file in the kernel root directory. The kbuild 
system reads this configuration to build the kernel. The .config file is referred to as the 
kernel configuration file. There are multiple ways to define a kernel configuration file:

 f Manually editing the .config file, although this is not recommended.

 f Using one of the user interfaces the kernel offers (type the make help command for 
other options):

 � menuconfig: An ncurses menu-based interface (make menuconfig)

 � xconfig: A Qt-based interface (make xconfig)

 � gconfig: A GTK-based interface (make gconfig)

Note that to build and use these interfaces, your Linux host needs 
to have the appropriate dependencies.

 f Automatically via a build system such as Yocto.

Each machine also defines a default configuration in the kernel tree. For ARM platforms, 
these are stored in the arch/arm/configs directory. To configure an ARM kernel, that is, to 
produce a .config file from a default configuration, you run:

$ make ARCH=arm <platform>_defconfig

For example we can build a default configuration for Freescale i.MX6 processors by running:

$ make ARCH=arm imx_v6_v7_defconfig
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How it works...
Kbuild uses Makefile and Kconfig files to build the kernel source. Kconfig files define 
configuration symbols and attributes, and Makefile file match configuration symbols to  
source files.

The kbuild system options and targets can be seen by running:

$ make ARCH=arm help

There's more...
In recent kernels, a default configuration contains all the information needed to expand to 
a full configuration file. It is a minimal kernel configuration file where all dependencies are 
removed. To create a default configuration file from a current .config file, you run:

$ make ARCH=arm savedefconfig

This creates a defconfig file in the current kernel directory. This make target can be 
seen as the opposite of the <platform>_defconfig target explained before. The former 
creates a configuration file from a minimal configuration, and the other expands the minimal 
configuration into a full configuration file.

Configuring the Linux kernel
In this recipe, we will explain how to configure a Linux kernel using the Yocto build system.

Getting ready
Before configuring the kernel, we need to provide a default configuration for our machine, 
which is the one the Yocto project uses to configure a kernel. When defining a new machine in 
your BSP layer, you need to provide a defconfig file.

The Wandboard's defconfig file is stored under sources/meta-fsl-arm-extra/
recipes-kernel/linux/linux-wandboard-3.10.17/defconfig.

This would be the base defconfig file for our custom hardware, so we copy it to our  
BSP layer:

$ cd /opt/yocto/fsl-community-bsp/sources
$ mkdir -p meta-bsp-custom/recipes-kernel/linux/linux-wandboard-  
  3.10.17/
$ cp meta-fsl-arm-extra/recipes-kernel/linux/linux-wandboard-  
  3.10.17/defconfig meta-bsp-custom/recipes-kernel/linux/linux-  
  wandboard-3.10.17/
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We then add it to our kernel using meta-bsp-custom/recipes-kernel/linux/linux-
wandboard_3.10.17.bbappend as follows:

# Copyright Packt Publishing 2015
FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}-${PV}:"
SRC_URI_append = " file://defconfig"

Kernel configuration changes to your platform can be made directly in this defconfig file.

How to do it...
To create a .config file from the machine defconfig file, execute the following command:

$ bitbake -c configure virtual/kernel

This will also run the oldconfig kernel make target to validate the configuration against the 
Linux source.

We can then configure the Linux kernel from the BitBake command line using the following:

$ bitbake -c menuconfig virtual/kernel

The menuconfig user interface, as well as other kernel configuration user interfaces, has a 
search functionality that allows you to locate configuration variables by name. Have a look at 
the following screenshot:
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In the following chapters, we will mention specific kernel configuration 
variables, like CONFIG_PRINTK, without specifying the whole path to 
the configuration variable. The search interface of the different UIs can 
be used to locate the configuration variable path.

When you save your changes, a new .config file is created on the kernel's build directory, 
which you can find using the following command:

$ bitbake -e virtual/kernel | grep ^B=

You can also modify the configuration using a graphical UI, but not from the BitBake  
command line. This is because graphical UIs need host dependencies, which are not  
natively built by Yocto.

To make sure your Ubuntu system has the needed dependencies, execute the following 
command:

$ sudo apt-get install git-core libncurses5 libncurses5-dev libelf-  
  dev asciidoc binutils-dev qt3-dev-tools libqt3-mt-dev libncurses5  
  libncurses5-dev fakeroot build-essential crash kexec-tools  
  makedumpfile libgtk2.0-dev libglib2.0-dev libglade2-dev

Then change to the kernel build directory, which you found before, with:

$ cd /opt/yocto/fsl-community-bsp/wandboard-  
  quad/tmp/work/wandboard_quad-poky-linux-gnueabi/linux-  
  wandboard/3.10.17-r0/git

Next, run the following:

$ make ARCH=arm xconfig

If you encounter compilation errors, attempt to run from a new 
terminal that has not had the environment configured with the 
setup-environment script.

A new window will open with the graphical configuration user interface shown in the  
next screenshot:
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When you save your changes, the .config file will be updated.

To use an updated configuration, you need to take care that BitBake does not revert your 
changes when building. Refer to the Building the Linux kernel recipe in this chapter for 
additional details.

There's more...
You can make your kernel changes permanent with the following steps:

1. Create a default configuration from your .config file from the kernel source  
directory and a clean environment (not configured with the setup-environment 
script) by running:
$ make ARCH=arm savedefconfig
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2. Copy the defconfig file from your kernel build folder to your kernel recipe's 
defconfig file as follows:
$ cp defconfig /opt/yocto/fsl-community-bsp/sources/meta-bsp-  
  custom/recipes-kernel/linux/linux-wandboard-3.10.17

Alternatively, you may use BitBake from the build directory as follows:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake -c savedefconfig virtual/kernel

This also creates a defconfig file in the Linux kernel's source directory, which needs to be 
copied to your recipe.

Using configuration fragments
The linux-yocto style kernels can also apply isolated kernel configuration changes defined 
in the kernel configuration fragments; for example:

spidev.cfg:
  CONFIG_SPI_SPIDEV=y

Kernel configuration fragments are appended to SRC_URI in the same way, and are applied 
over the defconfig file.

The linux-yocto style kernels (not the one for the Wandboard though) also provide a set of 
tools to manage kernel configuration:

 f To configure the kernel from the defconfig file and the supplied configuration 
fragments, execute:
$ bitbake -f -c kernel_configme linux-yocto

 f To create a configuration fragment with your changes, execute:
$ bitbake -c diffconfig linux-yocto

 f To validate the kernel configuration, you may run:

$ bitbake -f -c kernel_configcheck linux-yocto

Building the Linux kernel
In this recipe, we will go through the development workflows described earlier using the Linux 
kernel as an example.
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How to do it...
We will see how the following development workflows are applied to the Linux kernel:

 f External development

 f Working directory development

 f External source development

How it works...
Let's explain the three methodologies listed previously in detail.

External development
When compiling outside of the Yocto build environment, we can still use the Yocto-provided 
toolchain to build. The process is as follows:

1. We will use the Yocto project cross-compilation toolchain already installed in  
your host.

2. Clone the wandboard-org linux-wandboard repository locally:
$ cd /opt/yocto

$ git clone https://github.com/wandboard-org/linux.git linux-
wandboard

$ cd linux-wandboard

3. Go to the branch specified in the linux-wandboard_3.10.17.bb recipe:
$ git checkout -b wandboard_imx_3.10.17_1.0.2_ga  
  origin/wandboard_imx_3.10.17_1.0.2_ga

4. Compile the kernel source as follows:

 � Prepare the environment as follows:
$ source /opt/poky/1.7.1/environment-setup-armv7a-vfp-neon-  
  poky-linux-gnueabi

 � Configure the kernel with the default machine configuration:
$ cp /opt/yocto/fsl-community-bsp/sources/meta-bsp-custom/
recipes-kernel/linux/linux-wandboard-3.10.17/defconfig arch/
arm/configs/wandboard-quad_defconfig

$ make wandboard-quad_defconfig

 � Compile the kernel image, modules, and the device tree file with:
$ make
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You can optionally pass a -jN argument to make to build multithreaded.

This will build the kernel's zImage, modules, and device tree files.

Older Yocto environment setup scripts set the LD variable to use gcc, 
but the Linux kernel uses ld instead. If your compilation is failing, try 
the following before running make:
$ unset LDFLAGS

To build only modules, you may run:
$ make modules

And to build only device tree files, you may run:

$ make dtbs

 � Copy the kernel image and device tree file to the TFTP root to test using 
network booting:

$ cp arch/arm/boot/zImage arch/arm/boot/dts/imx6q-  
  wandboard.dtb /var/lib/tftpboot

Some other embedded Linux targets might need to compile a uImage if the U-Boot 
bootloader is not compiled with zImage booting support:
$ make LOADADDR=0x10800000 uImage

The mkimage tool is part of the Yocto toolchain when built with the 
FSL community BSP. We will see how to build and install an SDK in the 
Preparing and using an SDK recipe in Chapter 4, Application Development.
If it is not included in your toolchain, you can install the tool in your host 
using the following command:
$ sudo apt-get install u-boot-tools

LOADADDR is the U-Boot entry point; that is, the address where U-Boot will place the 
kernel in memory. It is defined in the meta-fsl-arm imx-base.inc file:

UBOOT_ENTRYPOINT_mx6  = "0x10008000"

External source development
As we did with U-Boot before, we will use the Yocto build system, pointing it to a local directory 
with a clone of the Linux source repository. We will use the local Git repository cloned in the 
earlier section.
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We configure for external development in our conf/local.conf file using the  
following code:

INHERIT += "externalsrc"
EXTERNALSRC_pn-linux-wandboard = "/opt/yocto/linux-wandboard"
EXTERNALSRC_BUILD_pn-linux-wandboard = "/opt/yocto/linux-  
  wandboard"

Remember to remove this configuration when using the working directory 
development methodology explained next in this recipe.

But, just as before, the compilation fails with U-Boot. In this case, the linux-wandboard recipe, 
not being a linux-yocto style recipe, is not prepared for external source compilation and it 
fails in the configuration task.

Kernel developers prefer to compile the kernel externally as we saw earlier, so this scenario is 
not likely to be fixed soon.

Working directory development
Typically we work with patches and use this development workflow when we have a small 
amount of changes or we don't own the source repository.

A typical workflow when working on a modification would be:

1. Start the kernel package compilation from scratch:
$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake -c cleanall virtual/kernel

This will erase the build folder, shared state cache, and downloaded package 
source.

2. Configure the kernel as follows:
$ bitbake -c configure virtual/kernel

This will convert the machine defconfig file into a .config file and call 
oldconfig to validate the configuration with the kernel source.

You can optionally add your own configuration changes with:

$ bitbake -c menuconfig virtual/kernel
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3. Start a development shell on the kernel:
$ bitbake -c devshell virtual/kernel

This will fetch, unpack, and patch the kernel sources and spawn a new shell with the 
environment ready for kernel compilation. The new shell will change to the kernel 
build directory which contains a local Git repository.

4. Perform our modifications, including kernel configuration changes.

5. Leave the devshell open and go back to the terminal with the sourced Yocto 
environment to compile the source without erasing our modifications as follows:
$ bitbake -C compile virtual/kernel

Note the capital C. This invokes the compile task but also all the tasks that follow it.

The newly compiled kernel image is available under tmp/deploy/images/
wandboard-quad.

6. Test your changes. Typically, we would work from a network-booted system, so we 
would copy the kernel image and the device tree file to the TFTP server root and boot 
the target with them using the following command:
$ cd tmp/deploy/images/wandboard-quad/

$ cp zImage-wandboard-quad.bin zImage-imx6q-wandboard.dtb  
  /var/lib/tftpboot

Refer to the Configuring network booting for a development setup recipe in Chapter 
1, The Build System for details.

Alternatively, the U-Boot bootloader can boot a Linux zImage kernel from memory with 
its corresponding device tree using the following syntax:
> bootz <kernel_addr> - <dtb_addr>

For example, we can fetch images from TFTP and boot the Wandboard images as 
follows:
> tftp ${loadaddr} ${image}

> tftp ${fdt_addr} ${fdt_file}

> bootz ${loadaddr} - ${fdt_addr}

If we were using an initramdisk, we would pass it as the second argument. Since we 
aren't, we use a dash instead.

The command to boot a uImage Linux kernel image from memory would use bootm 
instead, as in:

> bootm <kernel_addr> - <dtb_addr>
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7. Go back to the devshell and commit your change to the local Git repository:
$ git add --all .

$ git commit -s -m "Well thought commit message"

8. Generate a patch into the kernel recipe patch directory:
$ git format-patch -1 -o /opt/yocto/fsl-community-  
  bsp/sources/meta-bsp-custom/recipes-kernel/linux/linux-  
  wandboard-3.10.17

9. Finally, add the patch to the kernel recipe as previously described.

Building external kernel modules
The Linux kernel has the ability to load modules at runtime that extend the kernel 
functionality. Kernel modules share the kernel's address space and have to be linked against 
the kernel they are going to be loaded onto. Most device drivers in the Linux kernel can either 
be compiled into the kernel itself (built-in) or as loadable kernel modules that need to be 
placed in the root filesystem under the /lib/modules directory.

The recommended approach to develop and distribute a kernel module is to do it with the 
kernel source. A module in the kernel tree uses the kernel's kbuild system to build itself, so as 
long as it is selected as module in the kernel configuration and the kernel has module support 
enabled, Yocto will build it.

However, it is not always possible to develop a module in the kernel. Common examples are 
hardware manufacturers who provide Linux drivers for a wide variety of kernel versions and 
have an internal development process separated from the kernel community. The internal 
development work is usually released first as an external out-of-tree module, although it is 
common for some or all of these internal developments to finish up in the mainstream kernel 
eventually. However, upstreaming is a slow process and hardware companies will therefore 
prefer to develop internally first.

It's worth remembering that the Linux kernel is covered under a GPLv2 license, so Linux 
kernel modules should be released with a compatible license. We will cover licenses in more 
detail in the following chapters.

Getting ready
To compile an external kernel module with Yocto, we first need to know how we would link  
the module source with the kernel itself. An external kernel module is also built using the 
kbuild system of the Linux kernel it is going to be linked against, so the first thing we  
need is a Makefile:

obj-m:= hello_world.o

SRC := $(shell pwd)
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all:
        $(MAKE) -C $(KERNEL_SRC) M=$(SRC)

modules_install:
        $(MAKE) -C $(KERNEL_SRC) M=$(SRC) modules_install

clean:
        rm -f *.o *~ core .depend .*.cmd *.ko *.mod.c
        rm -f Module.markers Module.symvers modules.order
        rm -rf .tmp_versions Modules.symvers

The Makefile file just wraps the make command used to compile a module on a  
Linux system:

make -C $(KERNEL_SRC) M=$(SRC)

Here, make is instructed to build in the location of the kernel source, and the M argument tells 
kbuild it is building a module at the specified location.

And then we code the source of the module itself (hello_world.c):

/ *
 * This program is free software; you can redistribute it and/or  
  modify
 * it under the terms of the GNU General Public License as  
  published by
 * the Free Software Foundation; either version 2 of the License,  
  or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public  
  License
 * along with this program. If not, see  
  <http://www.gnu.org/licenses/>.
 */

#include <linux/module.h>

static int hello_world_init(void)
{
        printk("Hello world\n");
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        return 0;
}

static void hello_world_exit(void)
{
        printk("Bye world\n");
}
module_init(hello_world_init);
module_exit(hello_world_exit);

MODULE_LICENSE("GPL v2");

It's worth remembering that we need to compile against a kernel source that has already been 
built. Use the following steps for compilation:

1. We prepare the environment using the Yocto toolchain environment setup script:
$ source /opt/poky/1.7.1/environment-setup-armv7a-vfp-neon-  
  poky-linux-gnueabi

2. Next we build the module. We execute the following from the module  
source directory:

$ KERNEL_SRC=/opt/yocto/linux-wandboard make

How to do it...
Once we know how to compile the module externally, we are ready to prepare a Linux kernel 
module Yocto recipe for it.

We place the module source file and Makefile in recipes-kernel/hello-world/
files/ inside our meta-bsp-custom layer. We then create a recipes-kernel/hello-
world/hello-world.bb file with the following content:

# Copyright (C) 2015 Packt Publishing.

SUMMARY = "Simplest hello world kernel module."
LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/GPL-  
  2.0;md5=801f80980d171dd6425610833a22dbe6"

inherit module

SRC_URI = " \
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    file://hello_world.c \
    file://Makefile \
"

S = "${WORKDIR}"

COMPATIBLE_MACHINE = "(wandboard)"

The recipe defines the source directory and the two module files after inheriting the module 
class, which takes care of everything. The KERNEL_SRC argument in our Makefile is set by 
the module class to STAGING_KERNEL_DIR, the location where the kernel class places the 
Linux kernel headers needed for external module compilation.

We build it with the following command:

$ bitbake hello-world

The resulting module is called hello_world.ko, with the kernel-module prefix being 
added to the package name by the module bbclass automatically.

There's more...
The previous instructions will build the module but will not install it in the root filesystem. For 
that, we need to add a dependency to the root filesystem. This is usually done in machine 
configuration files using MACHINE_ESSENTIAL (for modules that are needed to boot) or 
MACHINE_EXTRA (if they are not essential for boot but needed otherwise), variables.

 f The dependencies that are essential to boot are:

 � MACHINE_ESSENTIAL_EXTRA_RDEPENDS: The build will fail if they can't  
be found

 � MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS: The build will not fail if  
they can't be found

 f The dependencies that are not essential to boot are:

 � MACHINE_EXTRA_RDEPENDS: The build will fail if they can't be found

 � MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS: The build will not fail if they 
can't be found

Debugging the Linux kernel and modules
We will highlight some of the most common methods employed by kernel developers to debug 
kernel issues.
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How to do it...
Above all, debugging the Linux kernel remains a manual process, and the most important 
developer tool is the ability to print debug messages.

The kernel uses the printk function, which is very similar syntactically to the printf function 
call from standard C libraries, with the addition of an optional log level. The allowed formats are 
documented in the kernel source under Documentation/printk-formats.txt.

The printk functionality needs to be compiled into the kernel with the CONFIG_PRINTK 
configuration variable. You can also configure the Linux kernel to prepend a precise 
timestamp to every message with the CONFIG_PRINTK_TIME configuration variable, or 
even better, with the printk.time kernel command-line argument or through sysfs under /
sys/module/printk/parameters. Usually all kernels contain printk support, and the 
Wandboard kernel does too, although it is commonly removed on production kernels for small 
embedded systems.

The printk function can be used in any context, interrupt, non-maskable interrupt (NMI), or 
scheduler. Note that using it inside interrupt context is not recommended.

A useful debug statement to be used during development could be:

printk(KERN_INFO "[%s:%d] %pf -> var1: %d var2: %d\n",  
  __FUNCTION__, __LINE__, __builtin_return_address(0), var1,  
  var2);

The first thing to note is that there is no comma between the log level macro and the print 
format. We then print the function and line where the debug statement is placed and then the 
parent function. Finally, we print the variables we are actually interested in.

How it works...
The available log levels in printk are presented in the following table:

Type Symbol Description
Emergency KERN_EMERG System is unstable and about to crash
Alert KERN_ALERT Immediate action is needed
Critical KERN_CRIT Critical software or hardware failure
Error KERN_ERR Error condition
Warning KERN_WARNING Nothing serious, but might indicate a problem
Notice KERN_NOTICE Nothing serious, but user should take note
Information KERN_INFO System information
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Type Symbol Description
Debug KERN_DEBUG Debug messages

If no log level is specified, the default log message as configured in the kernel configuration is 
used. By default, this is KERN_WARNING.

All printk statements go to the kernel log buffer, which may wrap around, except debug 
statements, which only appear if the DEBUG symbol is defined. We will see how to enable 
kernel debug messages soon. The printk log buffer must be a power of two, and its size 
should be set in the CONFIG_LOG_BUF_SHIFT kernel configuration variable. You may modify 
it with the log_buf_len kernel command-line parameter.

We print the kernel log buffer with the dmesg command. Also, a Yocto user space will 
have a kernel log daemon running that will log kernel messages to disk under /var/log/
messages.

Messages above the current console log level will also appear on the console immediately. 
The ignore_loglevel kernel command-line argument, also available under /sys/
module/printk/parameters, may be used to print all kernel messages to the console 
independently of the log level.

You can also change the log level at runtime via the proc filesystem. The /proc/sys/
kernel/printk file contains the current, default, minimum, and boot time default log levels. 
To change the current log level to the maximum, execute:

$ echo 8 > /proc/sys/kernel/printk

You can also set the console log level with the dmesg tool as follows:

$ dmesg -n 8

To make the change persistent, you can pass a log level command-line parameter to the 
kernel, or on some Yocto root filesystem images, you could also use a /etc/sysctl.conf 
file (those that install the procps package).



Chapter 2

79

There's more...
Linux drivers do not use the printk function directly. They use, in order of preference, 
subsystem-specific messages (such as netdev or v4l) or the dev_* and pr_* family of 
functions. The latter are described in the following table:

Device message Generic message Printk symbol
dev_emerg pr_emerg KERN_EMERG

dev_alert pr_alert KERN_ALERT

dev_crit pr_crit KERN_CRIT

dev_err pr_err KERN_ERR

dev_warn pr_warn KERN_WARNING

dev_notice pr_notice KERN_NOTICE

dev_info pr_info KERN_INFO

dev_dbg pr_debug KERN_DEBUG

To enable the debug messages within a driver, you may do either of these:

 f Define DEBUG in a macro before any other header file in your driver source, as follows:
#define DEBUG

 f Use the dynamic debug kernel feature. You can then enable/disable all dev_dbg and 
pr_debug debug messages with granularity through debugfs.

Using dynamic debug
To use the dynamic debug functionality in the Linux kernel, follow these steps:

1. Make sure your kernel is compiled with dynamic debugging (CONFIG_DYNAMIC_
DEBUG).

2. Mount the debug filesystem if it hasn't already been mounted:
$ mount -t debugfs nodev /sys/kernel/debug

3. Configure the debug though the dynamic_debug/control folder. It accepts a 
whitespace-separated sequence of words:

 � func <function name>

 � file <filename>

 � module <module name>

 � format <pattern>

 � line <line or line range>
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 � + <flag>: This adds the specified flag

 � - <flag>: This one removes the specified flag

 � = <flag>: This sets the specified flag

The flags are defined as follows:

 � f: This flag includes the function name in the message

 � l: This flag includes the line number in the message

 � m: This flag includes the module name in the message

 � p: This flag enables the debug message

 � t: This flag includes the thread ID in non-interrupt context messages

4. By default all debug messages are disabled. The control file contains all the available 
debug points, and by default they have no flags enabled (marked as =_).

5. Now we will enable the debug as follows:

 � Enable all debug statements in a file:
echo -n 'file <filename> +p' >  
  /sys/kernel/debug/dynamic_debug/control

 � Optionally, you could run a specific debug statement:

$ echo -n 'file <filename> line nnnn +p' >  
  /sys/kernel/debug/dynamic_debug/control

6. To list all enabled debug statements, we use the following command:

$ awk '$3 != "=_"' /sys/kernel/debug/dynamic_debug/control

To make the debug changes persistent, we can pass dyndbg="<query>" or module.
dyndbg="<query>" to the kernel in the command-line arguments.

Note that the query string needs to be passed surrounded by quotes so that it is correctly 
parsed. You can concatenate more than one query in the command-line argument by using a 
semicolon to separate them; for example, dyndbg="file mxc_v4l2_capture.c +pfl; 
file ipu_bg_overlay_sdc.c +pfl" 

Rate-limiting debug messages
There are rate-limiting and one-shot extensions to the dev_*, pr_*, and printk family  
of functions:

 f printk_ratelimited(), pr_*_ratelimited(), and dev_*_ratelimited() 
print no more than 10 times in a 5 * HZ interval
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 f printk_once(), pr_*_once(), and dev_*_once() will print only once.

And you also have utility functions to dump a buffer in hexadecimal; for example, print_
hex_dump_bytes().

See also
 f The dynamic debug is documented in the Linux kernel source under 

Documentation/dynamic-debug-howto.txt

Debugging the Linux kernel booting process
We have seen the most general techniques for debugging the Linux kernel. However, some 
special scenarios require the use of different methods. One of the most common scenarios in 
embedded Linux development is the debugging of the booting process. This recipe will explain 
some of the techniques used to debug the kernel's booting process.

How to do it...
A kernel crashing on boot usually provides no output whatsoever on the console. As daunting 
as that may seem, there are techniques we can use to extract debug information. Early 
crashes usually happen before the serial console has been initialized, so even if there were 
log messages, we would not see them. The first thing we will show is how to enable early log 
messages that do not need the serial driver.

In case that is not enough, we will also show techniques to access the log buffer in memory.

How it works...
Debugging booting problems have two distinctive phases, before and after the serial console 
is initialized. After the serial is initialized and we can see serial output from the kernel, 
debugging can use the techniques described earlier.

Before the serial is initialized, however, there is a basic UART support in ARM kernels that 
allows you to use the serial from early boot. This support is compiled in with the CONFIG_
DEBUG_LL configuration variable.

This adds supports for a debug-only series of assembly functions that allow you to output 
data to a UART. The low-level support is platform specific, and for the i.MX6, it can be found 
under arch/arm/include/debug/imx.S. The code allows for this low-level UART to be 
configured through the CONFIG_DEBUG_IMX_UART_PORT configuration variable.
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We can use this support directly by using the printascii function as follows:

extern void printascii(const char *);
printascii("Literal string\n");

However, much more preferred would be to use the early_print function, which makes use 
of the function explained previously and accepts formatted input in printf style; for example:

early_print("%08x\t%s\n", p->nr, p->name);

Dumping the kernel's printk buffer from the bootloader
Another useful technique to debug Linux kernel crashes at boot is to analyze the kernel log 
after the crash. This is only possible if the RAM memory is persistent across reboots and does 
not get initialized by the bootloader.

As U-Boot keeps the memory intact, we can use this method to peek at the kernel login 
memory in search of clues.

Looking at the kernel source, we can see how the log ring buffer is set up in kernel/
printk/printk.c and also note that it is stored in __log_buf.

To find the location of the kernel buffer, we will use the System.map file created by the Linux 
build process, which maps symbols with virtual addresses using the following command:

$grep __log_buf System.map

80f450c0 b __log_buf

To convert the virtual address to physical address, we look at how __virt_to_phys() is 
defined for ARM:

x - PAGE_OFFSET + PHYS_OFFSET

The PAGE_OFFSET variable is defined in the kernel configuration as:

config PAGE_OFFSET
        hex
        default 0x40000000 if VMSPLIT_1G
        default 0x80000000 if VMSPLIT_2G
        default 0xC0000000

Some of the ARM platforms, like the i.MX6, will dynamically patch the __virt_to_phys() 
translation at runtime, so PHYS_OFFSET will depend on where the kernel is loaded into 
memory. As this can vary, the calculation we just saw is platform specific.

For the Wandboard, the physical address for 0x80f450c0 is 0x10f450c0.
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We can then force a reboot using a magic SysRq key, which needs to be enabled in the kernel 
configuration with CONFIG_MAGIC_SYSRQ, but is enabled in the Wandboard by default:

$ echo b > /proc/sysrq-trigger

We then dump that memory address from U-Boot as follows:

> md.l 0x10f450c0

10f450c0: 00000000 00000000 00210038 c6000000    ........8.!.....

10f450d0: 746f6f42 20676e69 756e694c 6e6f2078    Booting Linux on

10f450e0: 79687020 61636973 5043206c 78302055     physical CPU 0x

10f450f0: 00000030 00000000 00000000 00000000    0...............

10f45100: 009600a8 a6000000 756e694c 65762078    ........Linux ve

10f45110: 6f697372 2e33206e 312e3031 2e312d37    rsion 3.10.17-1.

10f45120: 2d322e30 646e6177 72616f62 62672b64    0.2-wandboard+gb

10f45130: 36643865 62323738 20626535 656c6128    e8d6872b5eb (ale

10f45140: 6f6c4078 696c2d67 2d78756e 612d7068    x@log-linux-hp-a

10f45150: 7a6e6f67 20296c61 63636728 72657620    gonzal) (gcc ver

10f45160: 6e6f6973 392e3420 2820312e 29434347    sion 4.9.1 (GCC)

10f45170: 23202920 4d532031 52502050 504d4545     ) #1 SMP PREEMP

10f45180: 75532054 6546206e 35312062 3a323120    T Sun Feb 15 12:

10f45190: 333a3733 45432037 30322054 00003531    37:37 CET 2015..

10f451a0: 00000000 00000000 00400050 82000000    ........P.@.....

10f451b0: 3a555043 4d524120 50203776 65636f72    CPU: ARMv7 Proce

There's more...
Another method is to store the kernel log messages and kernel panics or oops into persistent 
storage. The Linux kernel's persistent store support (CONFIG_PSTORE) allows you to log in to 
the persistent memory kept across reboots.

To log panic and oops messages into persistent memory, we need to configure the kernel with 
the CONFIG_PSTORE_RAM configuration variable, and to log kernel messages, we need to 
configure the kernel with CONFIG_PSTORE_CONSOLE.

We then need to configure the location of the persistent storage on an unused memory 
location, but keep the last 1 MB of memory free. For example, we could pass the following 
kernel command-line arguments to reserve a 128 KB region starting at 0x30000000:

ramoops.mem_address=0x30000000 ramoops.mem_size=0x200000
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We would then mount the persistent storage by adding it to /etc/fstab so that it is 
available on the next boot as well:

/etc/fstab:
pstore  /pstore  pstore  defaults  0  0

We then mount it as follows:

# mkdir /pstore
# mount /pstore

Next, we force a reboot with the magic SysRq key:

# echo b > /proc/sysrq-trigger

On reboot, we will see a file inside /pstore:

-r--r--r--  1 root root 4084 Sep 16 16:24 console-ramoops

This will have contents such as the following:

SysRq : Resetting

CPU3: stopping

CPU: 3 PID: 0 Comm: swapper/3 Not tainted 3.14.0-rc4-1.0.0-wandboard-
37774-g1eae

[<80014a30>] (unwind_backtrace) from [<800116cc>] (show_stack+0x10/0x14)

[<800116cc>] (show_stack) from [<806091f4>] (dump_stack+0x7c/0xbc)

[<806091f4>] (dump_stack) from [<80013990>] (handle_IPI+0x144/0x158)

[<80013990>] (handle_IPI) from [<800085c4>] (gic_handle_irq+0x58/0x5c)

[<800085c4>] (gic_handle_irq) from [<80012200>] (__irq_svc+0x40/0x70)

Exception stack(0xee4c1f50 to 0xee4c1f98)

We should move it out of /pstore or remove it completely so that it doesn't occupy memory.

Using the kernel function tracing system
Recent versions of the Linux kernel contain a set of tracers that, by instrumenting the kernel, 
allow you to analyze different areas like:

 f Interrupt latency

 f Preemption latency

 f Scheduling latency
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 f Process context switches

 f Event tracing

 f Syscalls

 f Maximum stack

 f Block layer

 f Functions

The tracers have no performance overhead when not enabled.

Getting ready...
The tracing system can be used in a wide variety of debugging scenarios, but one of the most 
common tracers used is the function tracer. It instruments every kernel function with a NOP 
call that is replaced and used to trace the kernel functions when a trace point is enabled.

To enable the function tracer in the kernel, use the CONFIG_FUNCTION_TRACER and 
CONFIG_FUNCTION_GRAPH_TRACER configuration variables.

The kernel tracing system is controlled via a tracing file in the debug filesystem, which is 
mounted by default on Yocto's default images. If not, you can mount it with:

$ mount -t debugfs nodev /sys/kernel/debug

We can list the available tracers in our kernel by executing:

$ cat /sys/kernel/debug/tracing/available_tracers

function_graph function nop

How to do it...
You can enable a tracer by echoing its name to the current_tracer file. No tracers are 
enabled by default:

$ cat /sys/kernel/debug/tracing/current_tracer

nop

You can disable all tracers by executing the following command:

$ echo -n nop > /sys/kernel/debug/tracing/current_tracer

We use echo -n to avoid the trailing newline when echoing to files in sysfs.
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To enable the function tracer, you would execute:

$ echo -n function > /sys/kernel/debug/tracing/current_tracer

A prettier graph can be obtained by using the function graph tracer as follows:

$ echo -n function_graph  > /sys/kernel/debug/tracing/current_tracer

How it works...
You can look at the captured trace in human-readable format via the trace and trace_
pipe files, with the latter blocking on read and consuming the data.

The function tracer provides the following output:

$ cat  /sys/kernel/debug/tracing/trace_pipe

root@wandboard-quad:~# cat /sys/kernel/debug/tracing/trace_pipe

              sh-394   [003] ...1    46.205203: mutex_unlock <-  
  tracing_set_tracer

              sh-394   [003] ...1    46.205215: __fsnotify_parent <- 

  vfs_write

              sh-394   [003] ...1    46.205218: fsnotify <-vfs_write

              sh-394   [003] ...1    46.205220: __srcu_read_lock <-  
  fsnotify

              sh-394   [003] ...1    46.205223: preempt_count_add <-  
  __srcu_read_lock

              sh-394   [003] ...2    46.205226: preempt_count_sub <-  
  __srcu_read_lock

              sh-394   [003] ...1    46.205229: __srcu_read_unlock <-  
  fsnotify

              sh-394   [003] ...1    46.205232: __sb_end_write <-  
  vfs_write

              sh-394   [003] ...1    46.205235: preempt_count_add <-  
  __percpu_counter_add

              sh-394   [003] ...2    46.205238: preempt_count_sub <-  
  __percpu_counter_add

              sh-394   [003] d..1    46.205247: gic_handle_irq <-  
  __irq_usr

          <idle>-0     [002] d..2    46.205247: ktime_get <-  
  cpuidle_enter_state
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The format for the function tracer output is:

task-PID [cpu-nr] irqs-off need-resched hard/softirq preempt-depth  
  delay-timestamp function

The graphical function tracer output is as follows:

$ cat /sys/kernel/debug/tracing/trace_pipe

 3)   ==========> |

 3)               |  gic_handle_irq() {

 2)   ==========> |

 2)               |  gic_handle_irq() {

 3)   0.637 us    |    irq_find_mapping();

 2)   0.712 us    |    irq_find_mapping();

 3)               |    handle_IRQ() {

 2)               |    handle_IRQ() {

 3)               |      irq_enter() {

 2)               |      irq_enter() {

 3)   0.652 us    |        rcu_irq_enter();

 2)   0.666 us    |        rcu_irq_enter();

 3)   0.591 us    |        preempt_count_add();

 2)   0.606 us    |        preempt_count_add();

The format for the grapical function tracer output is:

cpu-nr) timestamp | functions

There's more...
The kernel tracing system allows us to insert traces in the code by using the trace_printk 
function call. It has the same syntax as printk and can be used in the same scenarios, 
interrupts, NMI, or scheduler contexts.

Its advantage is that as it prints to the tracing buffer in memory and not to the console, it has 
much lower delays than printk, so it is useful to debug scenarios where printk is affecting 
the system's behavior; for example, when masking a timing bug.

Tracing is enabled once a tracer is configured, but whether the trace writes to the ring buffer 
or not can be controlled. To disable the writing to the buffer, use the following command:

$ echo 0 > /sys/kernel/debug/tracing/tracing_on
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And to re-enable it, use the following command:

$ echo 1 > /sys/kernel/debug/tracing/tracing_on

You can also enable and disable the tracing from kernel space by using the tracing_on and 
tracing_off functions.

Inserted traces will appear in any tracer, including the function tracer, in which case it will 
appear as a comment.

Filtering function traces
You can get finer granularity in the functions being traced by using the dynamic tracer, which 
can be enabled with the CONFIG_DYNAMIC_FTRACE configuration variable. This is enabled 
with the tracing functionality by default. This adds two more files, set_ftrace_filter and 
set_ftrace_notrace. Adding functions to set_ftrace_filter will trace only those 
functions, and adding them to set_ftrace_notrace will not trace them, even if they are 
also added to set_ftrace_filter.

The set of available function names that can be filtered may be obtained by executing the 
following command:

$ cat /sys/kernel/debug/tracing/available_filter_functions

Functions can be added with:

$ echo -n <function_name> >>   
  /sys/kernel/debug/tracing/set_ftrace_filter

Note that we use the concatenation operator (>>) so that the new function is appended to  
the existing ones.

And functions can also be removed with:

$ echo -n '!<function>' >>  /sys/kernel/debug/tracing/set_ftrace_filter

To remove all functions, just echo a blank line into the file:

$ echo >  /sys/kernel/debug/tracing/set_ftrace_filter

There is a special syntax that adds extra flexibility to the filtering: <function>:<command>:
[<parameter>]
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Let's explain each of the components individually:

 f function: This specifies the function name. Wildcards are allowed.

 f command: This has the following attributes:

 � mod: This enables the given function name only in the module specified in 
the parameter

 � traceon/traceoff: This enables or disables tracing when the specified 
function is hit the numbers of times given in the parameter, or always if no 
parameter is given.

 � dump: Dump the contents of the tracing buffer when the given function is hit.

Here are some examples:

$ echo -n 'ipu_*:mod:ipu' >  
  /sys/kernel/debug/tracing/set_ftrace_filter

$ echo -n 'suspend_enter:dump' >  
  /sys/kernel/debug/tracing/set_ftrace_filter

$ echo -n 'suspend_enter:traceon' >  
  /sys/kernel/debug/tracing/set_ftrace_filter

Enabling trace options
Traces have a set of options that can be individually enabled in the /sys/kernel/debug/
tracing/options directory. Some of the most useful options include:

 f print-parent: This option displays the caller function too

 f trace_printk: This option disables trace_printk writing

Using the function tracer on oops
Another alternative to log the kernel messages on oops or panic is to configure the function 
tracer to dump its buffer contents to the console so that the events leading up to the crash 
can be analyzed. Use the following command:

$ echo 1 > /proc/sys/kernel/ftrace_dump_on_oops

The sysrq-z combination will also dump the contents of the tracing buffer to the console, as 
does calling ftrace_dump() from the kernel code.
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Getting a stack trace for a given function
The tracing code can create a backtrace for every function called. However, this is a 
dangerous feature and should only be used with a filtered selection of functions. Have a look 
at the following commands:

$ echo -n <function_name> > /sys/kernel/debug/tracing/set_ftrace_filter

$ echo -n function > /sys/kernel/debug/tracing/current_tracer

$ echo 1 > /sys/kernel/debug/tracing/options/func_stack_trace

$ cat /sys/kernel/debug/tracing/trace

$ echo 0 > /sys/kernel/debug/tracing/options/func_stack_trace

$ echo > /sys/kernel/debug/tracing/set_ftrace_filter

Configuring the function tracer at boot
The function tracer can be configured in the kernel command-line arguments and started as 
early as possible in the boot process. For example, to configure the graphic function tracer 
and filter some functions, we would pass the following arguments from the U-Boot bootloader 
to the kernel:

ftrace=function_graph ftrace_filter=mxc_hdmi*,fb_show*

See also
 f More details can be found in the kernel source documentation folder at 

Documentation/trace/ftrace.txt

Managing the device tree
The device tree is a data structure that is passed to the Linux kernel to describe the physical 
devices in a system.

In this recipe, we will explain how to work with device trees.

Getting ready
Devices that cannot be discovered by the CPU are handled by the platform devices API 
on the Linux kernel. The device tree replaces the legacy platform data where hardware 
characteristics were hardcoded in the kernel source so that platform devices can be 
instantiated. Before device trees came into use, the bootloader (for example, U-Boot) had to 
tell the kernel what machine type it was booting. Moreover, it had to pass other information 
such as memory size and location, kernel command line, and more.
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The device tree should not be confused with the Linux kernel configuration. The device  
tree specifies what devices are available and how they are accessed, not whether the 
hardware is used.

The device tree was first used by the PowerPC architecture and was adopted later on by ARM 
and all others, except x86. It was defined by the Open Firmware specification, which defined 
the flattened device tree format in Power.org Standard for Embedded Power Architecture 
Platform Requirements (ePAPR), which describes an interface between a boot program and 
a client.

Platform customization changes will usually happen in the device tree without the need to 
modify the kernel source.

How to do it...
A device tree is defined in a human-readable device tree syntax (.dts) text file. Every board 
has one or several DTS files that correspond to different hardware configurations.

These DTS files are compiled into Device Tree Binary (DTB) blobs, which have the  
following properties:

 f They are relocatable, so pointers are never used internally

 f They allow for dynamic node insertion and removal

 f They are small in size

Device tree blobs can either be attached to the kernel binary (for legacy compatibility) or, as is 
more commonly done, passed to the kernel by a bootloader like U-Boot.

To compile them, we use a Device Tree Compiler (DTC), which is included in the kernel source 
inside scripts/dtc and is compiled along with the kernel itself, or we could alternatively 
install it as part of your distribution. It is recommended to use the DTC compiler included in 
the kernel tree.

The device trees can be compiled independently or with the Linux kernel kbuild system, as we 
saw previously. However, when compiling independently, modern device trees will need to be 
preprocessed by the C preprocessor first.

It's important to note that the DTC currently performs syntax checking but no binding 
checking, so invalid DTS files may be compiled, and the resulting DTB file may result in a non-
booting kernel. Invalid DTB files usually hang the Linux kernel very early on so there will be no 
serial output.

The bootloader might also modify the device tree before passing it to the kernel.
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How it works...
The DTS file for the wandboard-quad variant is under arch/arm/boot/dts/imx6q-
wandboard.dts and looks as follows:

#include "imx6q.dtsi"
#include "imx6qdl-wandboard.dtsi"

/ {
    model = "Wandboard i.MX6 Quad Board";
    compatible = "wand,imx6q-wandboard", "fsl,imx6q";

    memory {
        reg = <0x10000000 0x80000000>;
    };
};

What we see here is the device tree root node that has no parents. The rest of the nodes will 
have a parent. The structure of a node can be represented as follows:

node@0{
  an-empty-property;
  a-string-property = "a string";
  a-string-list-property = "first string", "second string";
  a-cell-property = <1>;
  a-cell-property = <0x1 0x2>;
  a-byte-data-property = [0x1 0x2 0x3 0x4];
  a-phandle-property = <&node1>;
}

The node properties can be:

 f Empty

 f Contain one or more strings

 f Contain one or more unsigned 32-bit numbers, called cells

 f Contain a binary byte stream

 f Be a reference to another node, called a phandle

The device tree is initially parsed by the C preprocessor and it can include other DTS files. 
These include files have the same syntax and are usually appended with the dtsi suffix. File 
inclusion can also be performed with the device tree /include/ operator, although #include 
is recommended, and they should not be mixed. In this case, both imx6q.dtsi and imx6qdl-
wandboard.dtsi are overlaid with the contents of imx6q-wandboard.dts.
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Device tree nodes are documented in bindings contained in the Documentation/
devicetree/bindings/ directory of the kernel source. New nodes must include the 
corresponding bindings, and these must be reviewed and accepted by the device tree 
maintainers. Theoretically, all bindings need to be maintained, although it is likely this will be 
relaxed in the future.

The compatible property
The most important property in a device tree node is the compatible property. In the root 
node, it defines the machine types the device tree is compatible with. The DTS file we just saw 
is compatible in order of precedence with the wand,imx6q-wandboard and fsl,imx6q 
machine types.

On a non-root node, it will define the driver match for the device tree node, binding a device 
with the driver. For example, a platform driver that binds with a node that defines a property 
that is compatible with fsl,imx6q-tempmon would contain the following excerpt:

static const struct of_device_id of_imx_thermal_match[] = {
    { .compatible = "fsl,imx6q-tempmon", },
    { /* end */ }
};
MODULE_DEVICE_TABLE(of, of_imx_thermal_match);

static struct platform_driver imx_thermal = {
    .driver = {
        .name   = "imx_thermal",
        .owner  = THIS_MODULE,
        .of_match_table = of_imx_thermal_match,
    },
    .probe      = imx_thermal_probe,
    .remove   = imx_thermal_remove,
};
module_platform_driver(imx_thermal);

The Wandboard device tree file
Usually, the first DTSI file to be included is skeleton.dtsi, which is the minimum device 
tree needed to boot, once a compatible property is added.

/ {
    #address-cells = <1>;
    #size-cells = <1>;
    chosen { };
    aliases { };
    memory { device_type = "memory"; reg = <0 0>; };
};
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Here are the other common top nodes:

 f chosen: This node defines fixed parameters set at boot, such as the Linux kernel 
command line or the initramfs memory location. It replaces the information 
traditionally passed in ARM tags (ATAGS).

 f memory: This node is used to define the location and size of RAM. This is usually 
filled in by the bootloader.

 f aliases: This defines shortcuts to other nodes.

 f address-cells and size-cells: These are used for memory addressability and will be 
discussed later on.

A summary representation of the imx6q-wandboard.dts file showing only the selected 
buses and devices follows:

#include "skeleton.dtsi"

/ {
    model = "Wandboard i.MX6 Quad Board";
    compatible = "wand,imx6q-wandboard", "fsl,imx6q";

    memory {};

    aliases {};

    intc: interrupt-controller@00a01000 {};

    soc {
        compatible = "simple-bus";

        dma_apbh: dma-apbh@00110000 {};

        timer@00a00600 {};

        L2: l2-cache@00a02000 {};

        pcie: pcie@0x01000000 {};

        aips-bus@02000000 { /* AIPS1 */
            compatible = "fsl,aips-bus", "simple-bus";

            spba-bus@02000000 {
                compatible = "fsl,spba-bus", "simple-bus";
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            };

            aipstz@0207c000 {};

            clks: ccm@020c4000 {};

            iomuxc: iomuxc@020e0000 {};
        };

        aips-bus@02100000 {
            compatible = "fsl,aips-bus", "simple-bus";
        };
    };
};

On this DTS, we can find several nodes defining system on chip (SoC) buses and several other 
nodes defining on-board devices.

Defining buses and memory-addressable devices
Buses are typically defined by the compatible property or the simple-bus property (to 
define a memory-mapped bus with no specific driver binding) or both. The simple-bus 
property is needed so that children nodes to the bus are registered as platform devices.

For example, the soc node is defined as follows:

soc {
    compatible = "simple-bus";
    #address-cells = <1>;
    #size-cells = <1>;
    ranges;

    aips-bus@02000000 { /* AIPS1 */
        compatible = "fsl,aips-bus", "simple-bus";
        reg = <0x02000000 0x100000>;
    }
}

The properties on the soc node are used to specify the memory addressability of the  
children nodes.

 f address-cells: This property indicates how many base address cells are needed 
in the reg property.

 f size-cells: This property indicates how many size cells are needed in the reg 
property.

 f ranges: This one describes an address translation between parent and child buses. 
In here, there is no translation and parent and child addressing is identical.
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In this case, any child of soc needs to define its memory addressing with a reg property that 
contains one cell for the address and one cell for the size. The aips-bus node does that with 
the following property:

reg = <0x02000000 0x100000>;

There's more...
When the device tree binary blob is loaded in memory by the Linux kernel, it is expanded into 
a flattened device tree that is accessed by offset. The fdt_* kernel functions are used to 
access the flattened device tree. This fdt is then parsed and transformed into a tree memory 
structure that can be efficiently accessed with the of_* family of functions (the prefix comes 
from Open Firmware).

Modifying and compiling the device tree in Yocto
To modify the device tree in the Yocto build system, we execute the following set of commands:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake -c devshell virtual/kernel

We then edit arch/arm/boot/dts/imx6q-wandboard.dts and compile the changes with:

$ make dtbs

If we want to create a device tree with extra space, let's say 1024 bytes (for example, to add 
nodes dynamically as explained in the next recipe), we need to specify it with a DTC flag  
as follows:

DTC_FLAGS="-p 1024" make dtbs

To deploy it, we exit the devshell and build the kernel from the project's build directory:

$ bitbake -c deploy -f virtual/kernel

See also
 f More information regarding device trees can be found at http://www.

devicetree.org

http://www.devicetree.org
http://www.devicetree.org
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Debugging device tree issues
This recipe will show some techniques to debug common problems with the device tree.

How to do it...
As mentioned before, problems with the syntax of device tree files usually result in the kernel 
crashing early in the boot process. Other type of problems are more subtle and usually appear 
once a driver is making use of the information provided by the device tree. For both types of 
problems, it is helpful to be able to look not only at the device tree syntax file, but also at the 
device tree blob, as it is read by both U-Boot and the Linux kernel. It may also be helpful to 
modify the device tree on the fly using the tools that U-Boot offers.

How it works...

Looking at the device tree from U-Boot
The U-Boot bootloader offers the fdt command to interact with a device tree blob. On the 
Wandboard's default environment, there are two variables related to the device tree:

 f fdt_file: This variable contains the name of the device tree file used

 f fdt_addr: This variable contains the location in memory to load the device tree

To fetch the Wandboard's device tree from the TFTP server location and place it in memory, 
we use the following command:

> tftp ${fdt_addr} ${fdt_file}

Once we have the device tree blob in memory, we tell U-Boot where it is located:

> fdt addr ${fdt_addr}

And then we can inspect nodes from the device tree using the full path to them from the 
root node. To inspect the selected levels, we use the list command, and to print complete 
subtrees, we use the print command:

> fdt list /cpus

cpus {

        #address-cells = <0x00000001>;

        #size-cells = <0x00000000>;

        cpu@0 {

        };

};
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> fdt print /cpus

cpus {

        #address-cells = <0x00000001>;

        #size-cells = <0x00000000>;

        cpu@0 {

                compatible = "arm,cortex-a9";

                device_type = "cpu";

                reg = <0x00000000>;

                next-level-cache = <0x0000001d>;

                [omitted]

        };

};

U-Boot can also attach new nodes to the tree assuming there is extra space in the device tree:

> fdt mknode / new-node

> fdt list /new-node 

new-node {

};

It can also create or remove properties:

> fdt set /new-node testprop testvalue

> fdt print /new-node                 

new-node {

        testprop = "testvalue";

};

> fdt rm /new-node testprop           

> fdt print /new-node      

new-node {

};

For example, it can be useful to modify the kernel command line through the chosen node.
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Looking at the device tree from the Linux kernel
Once the Linux kernel is booted, it can be useful to expose the device tree to user space  
so that it can be explored. You can do this by configuring the Linux kernel with the  
CONFIG_PROC_DEVICETREE configuration variable. The Wandboard Linux kernel comes 
preconfigured to expose the device tree in /proc/device-tree as follows:

# ls /proc/device-tree/cpus/

#address-cells  cpu@0           cpu@2           name

#size-cells     cpu@1           cpu@3
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3
The Software Layer

In this chapter, we will cover the following recipes:

 f Exploring an image's contents

 f Adding a new software layer

 f Selecting a specific package versions and providers

 f Adding supported packages

 f Adding new packages

 f Adding data, scripts, or configuration files

 f Managing users and groups

 f Using the sysvinit initialization system

 f Using the systemd initialization system

 f Installing package-installation scripts

 f Reducing the Linux kernel image size

 f Reducing the root filesystem image size

 f Releasing software

 f Analyzing your system for compliance

 f Working with open source and proprietary code

Introduction
With hardware-specific changes on their way, the next step is customizing the target root 
filesystem; that is, the software that runs under the Linux kernel, also called the Linux  
user space.
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The usual approach to this is to start with one of the available core images and both optimize 
and customize it as per the needs of your embedded project. Usually, the images chosen  
as a starting point are either core-image-minimal or core-image-sato, but any of  
them will do.

This chapter will show you how to add a software layer to contain those changes, and will 
explain some of the common customizations made, such as size optimization. It will also show 
you how to add new packages to your root filesystem, including licensing considerations.

Exploring an image's contents
We have already seen how to use the build history feature to obtain a list of packages and 
files included in our image. In this recipe, we will explain how the root filesystem is built so 
that we are able to track its components.

Getting ready
When packages are built, they are classified inside the working directory of your project (tmp/
work) according to their architecture. For example, on a wandboard-quad build, we find the 
following directories:

 f all-poky-linux: This is used for architecture-independent packages

 f cortexa9hf-vfp-neon-poky-linux-gnueabi: This is used for cortexa9, hard 
floating point packages

 f wandboard_quad-poky-linux-gnueabi: This is used for machine-specific 
packages; in this case, wandboard-quad

 f x86_64-linux: This is used for the packages that form the host sysroot

BitBake will build all the packages included in its dependency list inside its own directory.

How to do it...
To find the build directory for a given package, we can execute the following command:

$ bitbake -e <package> | grep ^WORKDIR=

Inside the build directory, we find some subdirectories (assuming rm_work is not used) that 
the build system uses in the packaging task. These subdirectories include the following:

 f deploy-rpms: This is the directory where the final packages are stored. We look 
here for individual packages that can be locally copied to a target and installed. 
These packages are copied to the tmp/deploy directory and are also used when 
Yocto builds the root filesystem image.
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 f image: This is the default destination directory where the do_install task installs 
components. It can be modified by the recipe with the D configuration variable.

 f package: This one contains the actual package contents.

 f package-split: This is where the contents are categorized in subdirectories 
named after their final packages. Recipes can split the package contents into several 
final packages, as specified by the PACKAGES variable. The default packages besides 
the default package name are:

 � dbg: This installs components used in debugging

 � dev: This installs components used in development, such as headers and 
libraries

 � staticdev: This installs libraries and headers used in static compilation

 � doc: This is where the documentation is placed

 � locale: This installs localization components

The components to be installed in each package are selected using the FILES variable. For 
example, to add to the default package, you could execute the following command:

FILES_${PN} += "${bindir}/file.bin"

And to add to the development package, you could use the following:

FILES_${PN}-dev += "${libdir}/lib.so"

How it works...
Once the Yocto build system has built all the individual packages in its dependency list, it runs 
the do_rootfs task, which populates the sysroot and builds the root filesystem before 
creating the final package images. You can find the location of the root filesystem by executing:

$ bitbake -e core-image-minimal | grep ^IMAGE_ROOTFS=

Note that the IMAGE_ROOTFS variable is not configurable and should not be changed.

The contents of this directory will later be prepared into an image according to what image 
types are configured in the IMAGE_FSTYPES configuration variable. If something has been 
installed in this directory, it will then be installed in the final image.

Adding a new software layer
Root filesystem customization involves adding or modifying content to the base image. 
Metadata for this content goes into one or more software layers, depending on the amount of 
customization needed.
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A typical embedded project will have just one software layer containing all non-hardware-specific 
customizations. But it is also possible to have extra layers for graphical frameworks or system-
wide elements.

Getting ready
Before starting work on a new layer, it is good practice to check whether someone else 
provides a similar layer. Also, if you are trying to integrate an open source project, check 
whether a layer for it already exists. There is an index of available layers at http://layers.
openembedded.org/.

How to do it...
We can then create a new meta-custom layer using the yocto-layer command as we 
learned in the Creating a custom BSP layer recipe in Chapter 2, The BSP Layer. From the 
sources directory, execute the following command:

$ yocto-layer create custom

Don't forget to add the layer to your project's conf/bblayers.conf file and to your 
template's conf directory to make it available for all new projects.

The default conf/layer.conf configuration file is as follows:

# We have a conf and classes directory, add to BBPATH
BBPATH .= ":${LAYERDIR}"

# We have recipes-* directories, add to BBFILES
BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \
        ${LAYERDIR}/recipes-*/*/*.bbappend"

BBFILE_COLLECTIONS += "custom"
BBFILE_PATTERN_custom = "^${LAYERDIR}/"
BBFILE_PRIORITY_custom = "6"

We have discussed all the relevant variables in this snippet in the Creating a custom BSP layer 
recipe in Chapter 2, The BSP Layer.

How it works...
When adding content to a new software layer, we need to keep in mind that our layer needs to 
play well with other layers in the Yocto project. To this end, when customizing recipes, we will 
always use append files, and will only override existing recipes if we are completely sure there 
is no way to add the customization required through an append file.

http://layers.openembedded.org/
http://layers.openembedded.org/
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To help us manage the content across several layers, we can use the following bitbake-
layers command-line utilities:

 f $ bitbake-layers show-layers: This will display the configured layers as 
BitBake sees them. It is helpful to detect errors on your conf/bblayer.conf file.

 f $ bitbake-layers show-recipes: This command will display all the available 
recipes and the layers that provide them. It can be used to verify that BitBake is 
seeing your newly created recipe. If it does not appear, verify that the filesystem 
hierarchy corresponds to the one defined in your layer's BBFILES variable in conf/
layer.conf.

 f $ bitbake-layers show-overlayed: This command will show all the recipes 
that are overlayed by another recipe with the same name but in a higher priority layer. 
It helps detect recipe clashes.

 f $ bitbake-layers show-appends: This command will list all available append 
files and the recipe files they apply to. It can be used to verify that BitBake is seeing 
your append files. Also, as before with recipes, if they don't appear, you will need to 
check the filesystem hierarchy and your layer's BBFILES variable.

 f $ bitbake-layers flatten <output_dir>: This command will create a 
directory with the contents of all configured layers without overlayed recipes and with 
all the append files applied. This is how BitBake will see the metadata. This flattened 
directory is useful to discover conflicts with your layer's metadata.

There's more...
We will sometimes add customizations that are specific to one board or machine. These are 
not always hardware-related, so they could be found both in a BSP or software layer.

When doing so, we will try to keep our customizations as specific as possible. One typical 
example is customizing for a specific machine or machine family. If you need to add a patch 
for the wandboard-quad machine, you would use the following line of code:

SRC_URI_append_wandboard-quad = " file://mypatch.patch"

And, if the patch is applicable to all i.MX6-based boards, you can use the following:

SRC_URI_append_mx6 = " file://mypatch.patch"

To be able to use machine families overrides, the machine configuration files need to include 
a SOC_FAMILY variable, such as the one for the wandboard-quad in meta-fsl-arm-
extra. Refer to the following line of code:

conf/machine/wandboard-quad.conf:SOC_FAMILY = "mx6:mx6q:wandboard"

file://mypatch.patch
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And for it to appear in the MACHINEOVERRIDES variable, the soc-family.inc file needs 
to be included, as it is in meta-fsl-arm. Here is the relevant code excerpt from the conf/
machine/include/imx-base.inc file:

include conf/machine/include/soc-family.inc
MACHINEOVERRIDES =. "${@['', '${SOC_FAMILY}:']['${SOC_FAMILY}' !=  
  '']}"

BitBake will search a predefined path, looking for files inside the package's working directory, 
defined in the FILESPATH variable as a colon-separated list. Specifically:

${PN}-${PV}/${DISTRO}
${PN}/${DISTRO}
files/${DISTRO}

${PN}-${PV}/${MACHINE}
${PN}/${MACHINE}
files/${MACHINE}

${PN}-${PV}/${SOC_FAMILY}
${PN}/${SOC_FAMILY}
files/${SOC_FAMILY}

${PN}-${PV}/${TARGET_ARCH}
${PN}/${TARGET_ARCH}
files/${TARGET_ARCH}

${PN}-${PV}/
${PN}/
files/

In the specific case of the wandboard-quad, this translates to the following:

${PN}-${PV}/poky
${PN}/poky
files/poky
${PN}-${PV}/wandboard-quad
${PN}/wandboard-quad
files/wandboard-quad
${PN}-${PV}/wandboard
${PN}/wandboard
files/wandboard
${PN}-${PV}/mx6q
${PN}/mx6q
files/mx6q
${PN}-${PV}/mx6
${PN}/mx6
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files/mx6
${PN}-${PV}/armv7a
${PN}/armv7a
files/armv7a
${PN}-${PV}/arm
${PN}/arm
files/arm
${PN}-${PV}/
${PN}/
files/

Here, PN is the package name and PV is the package version.

It is best to place patches in the most specific of these, so wandboard-quad, followed by 
wandboard, mx6q, mx6, armv7a, arm, and finally the generic PN-PV, PN, and files.

Note that the search path refers to the location of the BitBake recipe, so append files need 
to always add the path when adding content. Our append files can add extra folders to this 
search path if needed by appending or prepending to the FILESEXTRAPATHS variable  
as follows:

FILESEXTRAPATHS_prepend := "${THISDIR}/folder:"

Note the immediate operator (:=) that expands THISDIR 
immediately, and the prepend that places your added path before any 
other path so that your patches and files are found first in the search.
Also, we have seen the += and =+ style of operators in configuration 
files, but they should be avoided in recipe files and the append and 
prepend operators should be given preference, as seen in the example 
code explained previously to avoid ordering issues.

Selecting a specific package version and 
providers

Our layers can provide recipes for different versions of the same package. For example, the 
meta-fsl-arm layer contains several different types of Linux sources:

 f linux-imx: This corresponds to the Freescale BSP kernel image fetched from 
http://git.freescale.com/git/cgit.cgi/imx/linux-2.6-imx.git/

 f linux-fslc: This is the mainline Linux kernel and fetched from https://github.
com/Freescale/linux-fslc

 f linux-timesys: This is a kernel with Vybrid platform support fetched from 
https://github.com/Timesys/linux-timesys

http://git.freescale.com/git/cgit.cgi/imx/linux-2.6-imx.git/
https://github.com/Freescale/linux-fslc
https://github.com/Freescale/linux-fslc
https://github.com/Timesys/linux-timesys 
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As we mentioned before, all recipes provide the package name (for example, linux-imx 
or linux-fslc) by default, but all Linux recipes must also provide the virtual/kernel 
virtual package. The build system will resolve virtual/kernel to the most appropriate 
Linux recipe name, taking into account the requirements of the build, such as the machine it 
is building for.

And within those recipes, linux-imx, for example, has both 2.6.35.3 and 3.10.17  
recipe versions.

In this recipe, we will show how to tell the Yocto build system which specific package and 
version to build.

How to do it...
To specify the exact package we want to build, the build system allows us to specify what 
provider and version to use.

How do we select which provider to use?
We can tell BitBake which recipe to use by using the PREFERRED_PROVIDER variable. To set 
a preferred provider for the virtual/kernel virtual package on our Wandboard machine, 
we would add the following to its machine configuration file:

PREFERRED_PROVIDER_virtual/kernel = "linux-imx"

How do we select which version to use?
Within a specific provider, we can also tell BitBake which version to use with the PREFERRED_
VERSION variable. For example, to set a specific linux-imx version for all i.MX6-based 
machines, we would add the following to our conf/local.conf file:

PREFERRED_VERSION_linux-imx_mx6 = "3.10.17"

The % wildcard is accepted to match any character, as we see here:

PREFERRED_VERSION_linux-imx_mx6 = "3.10%"

It is, however, more common to see this type of configuration done in machine configuration 
files, in which case we would not use the _mx6 append.

How do we select which version not to use?
We can use the DEFAULT_PREFERENCE variable set to -1 to specify that a version is not to 
be used unless explicitly set by a PREFERRED_VERSION variable. This is commonly used in 
development versions of packages.

DEFAULT_PREFERENCE = "-1"
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Adding supported packages
It is common to want to add new packages to an image that already has an available recipe in 
one of the included Yocto layers.

When the target image desired is very different from the supplied core images, it is 
recommended to define a new image rather than to customize an existing one.

This recipe will show how to customize an existing image by adding supported packages to it, 
but also to create a completely new image recipe if needed.

Getting ready
To discover whether a package we require is included in our configured layers, and what 
specific versions are supported, we can use bitbake-layers from our build directory as  
we saw previously:

$ bitbake-layers show-recipes | grep -A 1 htop

htop:

  meta-oe              1.0.3

Alternatively, we can also use BitBake as follows:

$ bitbake -s | grep htop

htop                                                :1.0.3-r0

Or we can use the find Linux command in our sources directory:

$ find . -type f -name "htop*.bb"

./meta-openembedded/meta-oe/recipes-support/htop/htop_1.0.3.bb

Once we know what packages we want to include in our final images, let's see how we can 
add them to the image.

How to do it...
While developing, we will use our project's conf/local.conf file to add customizations.  
To add packages to all images, we can use the following line of code:

IMAGE_INSTALL_append = " htop"

Note that there is a space after the first quote to separate the new 
package from the existing ones, as the append operator does not 
add a space.
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We could also limit the addition to a specific image with:

IMAGE_INSTALL_append_pn-core-image-minimal = " htop"

Another way to easily customize is by making use of features. A feature is a logical grouping  
of packages. For example, we could create a new feature called debug-utils, which will add 
a whole set of debugging utilities. We could define our feature in a configuration file or class 
as follows:

FEATURE_PACKAGES_debug-utils = "strace perf"

We could then add this feature to our image by adding an EXTRA_IMAGE_FEATURES variable 
to our conf/local.conf file as follows:

EXTRA_IMAGE_FEATURES += "debug-utils"

If you were to add it to an image recipe, you would use the IMAGE_FEATURES variable 
instead.

Usually, features get added as a packagegroup recipe instead of being listed as packages 
individually. Let's show how to define a packagegroup recipe in the recipes-core/
packagegroups/packagegroup-debug-utils.bb file:

SUMMARY = "Debug applications packagegroup"
LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://${COREBASE}/LICENSE;md5=3f40d7994397109285e
c7b81fdeb3b58"

inherit packagegroup

RDEPENDS_${PN} = "\
    strace \
    perf \
"

And you would then add it to the FEATURE_PACKAGES variable as follows:

FEATURE_PACKAGES_debug-utils = "packagegroup-debug-utils"

We can use packagegroups to create more complex examples. Refer to the Yocto Project 
Development Manual at http://www.yoctoproject.org/docs/1.7.1/dev-manual/
dev-manual.html for details.

http://www.yoctoproject.org/docs/1.7.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.7.1/dev-manual/dev-manual.html
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How it works...
The best approach to customize images is to create our own images using an existing image 
as template. We could use core-image-minimal.bb, which contains the following code:

SUMMARY = "A small image just capable of allowing a device to  
  boot."

IMAGE_INSTALL = "packagegroup-core-boot  
  ${ROOTFS_PKGMANAGE_BOOTSTRAP} ${CORE_IMAGE_EXTRA_INSTALL}"

IMAGE_LINGUAS = " "

LICENSE = "MIT"

inherit core-image

IMAGE_ROOTFS_SIZE ?= "8192"

And extend it to your own version that allows for the customization of IMAGE_FEATURES,  
by adding the following meta-custom/recipes-core/images/custom-image.bb  
image file:

require recipes-core/images/core-image-minimal.bb
IMAGE_FEATURES += "ssh-server-dropbear package-management"

Of course, we can also define a new image from scratch using one of the available images  
as a template.

There's more...
A final way to customize images is by adding shell functions that get executed once the image 
has been created. You do this by adding the following to your image recipe or conf/local.
conf file:

ROOTFS_POSTPROCESS_COMMAND += "function1;...;functionN"

You can use the path to the root filesystem in your command with the IMAGE_ROOTFS variable.

Classes would use the IMAGE_POSTPROCESS_COMMAND variable instead of ROOTFS_
POSTPROCESS_COMMAND.

One example of usage can be found in the debug-tweaks feature in image.bbclass, when 
images are tweaked to allow passwordless root logins. This method is also commonly used to 
customize the root password of a target image.
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Configuring packages
As we saw in the Configuring the Linux kernel recipe in Chapter 2, The BSP Layer, some 
packages, like the Linux kernel, provide a configuration menu and can be configured with the 
menuconfig BitBake command.

Another package worth mentioning with a configuration interface is BusyBox. We will show 
how to configure BusyBox, for example to add pgrep, a tool that looks up process's IDs by 
name. To do so follow the next steps:

1. Configure BusyBox:
$ bitbake -c menuconfig busybox

2. In Process utilities choose pgrep.

3. Compile BusyBox:
$ bitbake -C compile busybox

4. Copy the RPM package into the target:
$ bitbake -e busybox | grep ^WORKDIR=

$ scp ${WORKDIR}/deploy-rpms/cortexa9hf_vfp_neon/busybox-  
  1.22.1-r32.cortexa9hf_vfp_neon.rpm root@<target_ip>:/tmp

5. Install the RPM package on the target:
# rpm --force -U /tmp/busybox-1.22.1-  
  r32.cortexa9hf_vfp_neon.rpm

Note that we are forcing the update as the package version has not increased with 
the configuration change.

Adding new packages
We have seen how to customize our image so that we can add supported packages to it. 
When we can't find an existing recipe or we need to integrate some new software we have 
developed, we will need to create a new Yocto recipe.

Getting ready
There are some questions we need to ask ourselves before starting to write a new recipe:

 f Where is the source code stored?

 f Is it source-controlled or released as a tarball?

 f What is the source code license?

 f What build system is it using?
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 f Does it need configuration?

 f Can we cross-compile it as is or does it need to be patched?

 f What are the files that need to be deployed to the root filesystem, and where  
do they go?

 f Are there any system changes that need to happen, such as new users or  
init scripts?

 f Are there any dependencies that need to be installed into sysroot beforehand?

Once we know the answers to these questions, we are ready to start writing our recipe.

How to do it...
It is best to start from a blank template like the one that follows than to start from a  
similar recipe and modify it, as the result will be cleaner and contain only the strictly  
needed instructions.

A good starting base for a minimal recipe addition is:

SUMMARY = "The package description for the package management  
  system"

LICENSE = "The package's licenses typically from  
  meta/files/common-licenses/"
LIC_FILES_CHKSUM = "License checksum used to track open license  
  changes"
DEPENDS = "Package list of build time dependencies"

SRC_URI = "Local or remote file or repository to fetch"
SRC_URI[md5sum] = "md5 checksums for all remote fetched files (not  
  for repositories)"
SRC_URI[sha256sum] = "sha256 checksum for all remote fetched files  
  (not for repositories)"

S = "Location of the source in the working directory, by default  
  ${WORKDIR}/${PN}-${PV}."

inherit <class needed for some functionality>

# Task overrides, like do_configure, do_compile and do_install, or  
  nothing.

# Package splitting (if needed).

# Machine selection variables (if needed).
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How it works...
We will explain each one of the recipe sections in more detail in the following sections.

Package licensing
Every recipe needs to contain a LICENSE variable. The LICENSE variable allows you to specify 
multiple, alternative, and per-package type licenses, as seen in the following examples:

 f For MIT or GPLv2 alternative licenses, we will use:
LICENSE = "GPL-2.0 | MIT"

 f For both ISC and MIT licenses, we will use:
LICENSE = "ISC & MIT"

 f For split packages, all of them GPLv2 except the documentation that is covered under 
the Creative Commons, we will use:
LICENSE_${PN} = "GPLv2"
LICENSE_${PN}-dev = "GPLv2"
LICENSE_${PN}-dbg = "GPLv2"
LICENSE_${PN}-doc = "CC-BY-2.0"

Open source packages usually have the license included with the source code in README, 
COPYING, or LICENSE files, and even the source code header files.

For open source licenses, we also need to specify LIC_FILES_CHECKSUM for all licenses so 
that the build system can notify us when the licenses change. To add it, we locate the file or 
file portion that contains the license and provide its relative path from the directory containing 
the source and a MD5 checksum for it. For example:

LIC_FILES_CHKSUM = "file://${COREBASE}/meta/files/common-  
  licenses/GPL-2.0;md5=801f80980d171dd6425610833a22dbe6"
LIC_FILES_CHKSUM =  
  "file://COPYING;md5=f7bdc0c63080175d1667091b864cb12c"
LIC_FILES_CHKSUM =  
  "file://usr/include/head.h;endline=7;md5=861ebad4adc7236f8d1905338  
  abd7eb2"
LIC_FILES_CHKSUM =  
  "file://src/file.c;beginline=5;endline=13;md5=6c7486b21a8524b1879f  
  a159578da31e"

Proprietary code should have the license set as CLOSED, and no LIC_FILES_CHECKSUM is 
needed for it.
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Fetching package contents
The SRC_URI variable lists the files to fetch. The build system will use different fetchers 
depending on the file prefix. These can be:

 f Local files included with the metadata (file://). If the local file is a patch, the  
SRC_URI variable can be extended with patch-specific arguments such as:

 � striplevel: The default patch strip level is 1 but it can be modified with 
this argument

 � patchdir: This specifies the directory location to apply the patch to, with 
the default being the source directory

 � apply: This argument controls whether to apply the patch or not, with the 
default being to apply it

 f Files stored in remote servers (typically, http(s)://, ftp://, or ssh://).

 f Files stored in remote repositories (typically, git://, svn://, hg://, or bzr://). 
These also need a SRCREV variable to specify the revision.

Files stored in remote servers (not local files or remote repositories) need to specify two 
checksums. If there are several files, they can be distinguished with a name argument;  
for example:

SRCREV = "04024dea2674861fcf13582a77b58130c67fccd8"
SRC_URI = "git://repo.com/git/ \
           file://fix.patch;name=patch \
           http://example.org/archive.data;name=archive"
SRC_URI[archive.md5sum] = "aaf32bde135cf3815aa3221726bad71e"
SRC_URI[archive.sha256sum] =  
  "65be91591546ef6fdfec93a71979b2b108eee25edbc20c53190caafc9a92d4e7"

The source directory folder, S, specifies the location of the source files. The repository will be 
checked out here, or the tarball decompressed in this location. If the tarball decompresses in 
the standard ${PN}-${PV} location, it can be omitted as it is the default. For repositories, it 
needs to always be specified; for example:

S = "${WORKDIR}/git"

Specifying task overrides
All recipes inherit the base.bbclass class, which defines the following tasks:

 f do_fetch: This method fetches the source code, selecting the fetcher using the 
SRC_URI variable.

 f do_unpack: This method unpacks the code in the working directory to a location 
specified by the S variable.

 f do_configure: This method configures the source code if needed. It does nothing  
by default.
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 f do_compile: This method compiles the source and runs the GNU make target  
by default.

 f do_install: This method copies the results of the build from the build directory  
B to the destination directory D. It does nothing by default.

 f do_package: This method splits the deliverables into several packages. It does 
nothing by default.

Usually, only the configuration, compilation, and installation tasks are overridden, and this is 
mostly done implicitly by inheriting a class like autotools.

For a custom recipe that does not use a build system, you need to provide the required 
instructions for configuration (if any), compilation, and installation in their corresponding  
do_configure, do_compile, and do_install overrides. As an example of this type of 
recipe, meta-custom/recipes-example/helloworld/helloworld_1.0.bb, may be 
seen here:

DESCRIPTION = "Simple helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM =  
  "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4 
  f302"

SRC_URI = "file://helloworld.c"

S = "${WORKDIR}"

do_compile() {
             ${CC} helloworld.c -o helloworld
}

do_install() {
             install -d ${D}${bindir}
             install -m 0755 helloworld ${D}${bindir}
}

With the meta-custom/recipes-example/helloworld/helloworld-1.0/
helloworld.c source file being the following:

#include <stdio.h>

int main(void)
{
    return printf("Hello World");
}

We will see example recipes that use the most common build systems in the next chapter.
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Configuring packages
The Yocto build system provides the PACKAGECONFIG variable to help in the configuration of 
packages by defining a number of features. Your recipe defines the individual features as follows:

PACKAGECONFIG ??= "feature"
PACKAGECONFIG[feature] = "--with-feature,--without-feature,build-  
  deps-feature,rt-deps-feature"

The PACKAGECONFIG variable contains a space-separated list of feature names, and it can 
be extended or overridden in bbappend files; have a look at the following example:

PACKAGECONFIG_append = " feature1 feature2"

To extend or override it from a distribution or local configuration file, you would use the 
following syntax:

PACKAGECONFIG_pn-<package_name> = "feature1 feature2"
PACKAGECONFIG_append_pn-<package_name> = " feature1 feature2"

Following that, we characterize each feature with four ordered arguments:

 f Extra configuration arguments (for EXTRA_OECONF) when the feature is enabled
 f Extra configuration arguments (for EXTRA_OECONF) when the feature is disabled
 f Extra build dependencies (for DEPENDS) when the feature is enabled
 f Extra runtime dependencies (for RDEPENDS) when the feature is enabled

The four arguments are optional, but the ordering needs to be maintained by leaving the 
surrounding commas.

For example, the wpa-supplicant recipe defines two features, gnutls and openssl, but 
only enables gnutls by default, as seen here:

PACKAGECONFIG ??= "gnutls"
PACKAGECONFIG[gnutls] = ",,gnutls"
PACKAGECONFIG[openssl] = ",,openssl"

Splitting into several packages
It is common to separate the recipe contents into different packages that serve different 
needs. Typical examples are to include documentation in a doc package, and header and/or 
libraries in a dev package. We can do this using the FILES variable as follows:

FILES_${PN} += "List of files to include in the main package"
FILES_${PN}-dbg += "Optional list of files to include in the debug  
  package"
FILES_${PN}-dev += "Optional list of files to include in the  
  development package"
FILES_${PN}-doc += "Optional list of files to include in the  
  documentation package"
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Setting machine-specific variables
Each recipe has a PACKAGE_ARCH variable that categorizes the recipe into a package feed, as 
we saw in the Exploring an image's contents recipe. Most of the times, they are automatically 
sorted out by the Yocto build system. For example, if the recipe is a kernel, a kernel module 
recipe, or an image recipe, or even if it is cross-compiling or building native applications, the 
Yocto build system will set the package architecture accordingly.

BitBake will also look at the SRC_URI machine overrides and adjust the package architecture, 
and if your recipe is using the allarch class, it will set the package architecture to all.

So when working on a recipe that only applies to a machine or machine family, or that 
contains changes that are specific to a machine or machine family, we need to check whether 
the package is categorized in the appropriate package feed, and if not, specify the package 
architecture explicitly in the recipe itself by using the following line of code:

PACKAGE_ARCH = "${MACHINE_ARCH}"

Also, when a recipe is only to be parsed for specific machine types, we specify it with the 
COMPATIBLE_MACHINE variable. For example, to make it compatible only with the mxs, mx5 
and mx6 SoC families, we would use the following:

COMPATIBLE_MACHINE = "(mxs|mx5|mx6)"

Adding data, scripts, or configuration files
All recipes inherit the base class with the default set of tasks to run. After inheriting the base 
class, a recipe knows how to do things like fetching and compiling.

As most recipes are meant to install some sort of executable, the base class knows how  
to build it. But sometimes all we want is to install data, scripts, or configuration files into  
the filesystem.

If the data or configuration is related to an application, the most logical thing to do is to 
package it together with the application's recipe itself, and if we think it is better to be 
installed separately, we could even split it into its own package.

But some other times, the data or configuration is unrelated to an application, maybe it 
applies to the whole system or we just want to provide a separate recipe for it. Optionally,  
we could even want to install some Perl or Python scripts that don't need to be compiled.

How to do it...
In those cases, our recipe should inherit the allarch class that is inherited by recipes that 
do not produce architecture-specific output.
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An example of this type of recipe, meta-custom/recipes-example/example-data/
example-data_1.0.bb, may be seen here:

DESCRIPTION = "Example of data or configuration recipe"
SECTION = "examples"

LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://${COREBASE}/meta/files/common-licenses/GPL-
2.0;md5=801f80980d171dd6425610833a22dbe6"

SRCREV = "${AUTOREV}"
SRC_URI = "git://github.com/yoctocookbook/examples.git \
           file://example.data"

S = "${WORKDIR}/git"

inherit allarch

do_compile() {
}

do_install() {
        install -d ${D}${sysconfdir}
        install -d ${D}${sbindir}
        install -m 0755 ${WORKDIR}/example.data ${D}/${sysconfdir}/
        install -m 0755 ${S}/python-scripts/* ${D}/${sbindir}
}

It assumes that the fictitious examples.git repository contains a python-scripts folder, 
which we want to include in our root filesystem.

A working recipe example can be found in the source that accompanies the book.

Managing users and groups
It is also common to need to add or modify users and groups to our filesystem. This recipe 
explains how it is done.

Getting ready
The user information is stored in the /etc/passwd file, a text file that is used as a database 
for the system user's information. The passwd file is human-readable.
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Each line on it corresponds to one user in the system, and it has the following format:

<username>:<password>:<uid>:<gid>:<comment>:<home  
  directory>:<login shell>

Let's see each of the parameters of this format:

 f username: A unique string that identifies the user at login

 f uid: User ID, a number that Linux uses to identify the user

 f gid: Group ID, a number that Linux uses to identify the user's primary group

 f comment: Comma-separated values that describe the account, typically the user's 
contact details

 f home directory: Path to the user's home directory

 f login shell: Shell that is started for interactive logins

The default passwd file is stored with the base-passwd package and looks as follows:

root::0:0:root:/root:/bin/sh
daemon:*:1:1:daemon:/usr/sbin:/bin/sh
bin:*:2:2:bin:/bin:/bin/sh
sys:*:3:3:sys:/dev:/bin/sh
sync:*:4:65534:sync:/bin:/bin/sync
games:*:5:60:games:/usr/games:/bin/sh
man:*:6:12:man:/var/cache/man:/bin/sh
lp:*:7:7:lp:/var/spool/lpd:/bin/sh
mail:*:8:8:mail:/var/mail:/bin/sh
news:*:9:9:news:/var/spool/news:/bin/sh
uucp:*:10:10:uucp:/var/spool/uucp:/bin/sh
proxy:*:13:13:proxy:/bin:/bin/sh
www-data:*:33:33:www-data:/var/www:/bin/sh
backup:*:34:34:backup:/var/backups:/bin/sh
list:*:38:38:Mailing List Manager:/var/list:/bin/sh
irc:*:39:39:ircd:/var/run/ircd:/bin/sh
gnats:*:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/
sh
nobody:*:65534:65534:nobody:/nonexistent:/bin/sh

All accounts have disabled direct logins, indicated by an asterisk on the password field, 
except for root, which has no password. This is because, by default, the image is built with 
the debug-tweaks feature that enables passwordless login for the root user, among other 
things. If the root password was enabled, we would see the encrypted root password.

Do not forget to remove the debug-tweaks feature from 
production images.
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There is a corresponding /etc/group file that is installed at the same time with the 
information for the system groups.

The core-image-minimal image does not include shadow password protection, but other 
images, such as core-image-full-cmdline, do. When enabled, all password fields 
contain an x, and the encrypted passwords are kept on a /etc/shadow file, which is only 
accessible to the super user.

Any user that is needed by the system but not included in the list we saw earlier needs to  
be created.

How to do it...
The standard way for a recipe to add or modify system users or groups is to use the useradd 
class, which uses the following variables:

 f USERADD_PACKAGES: This variable specifies the individual packages in the recipe 
that require users or groups to be added. For the main package, you would use  
the following:
USERADD_PACKAGES = "${PN}"

 f USERADD_PARAM: This variable corresponds to the arguments passed to the Linux 
useradd command, to add new users to the system.

 f GROUPADD_PARAM: This variable corresponds to the arguments passed to the Linux 
groupadd command, to add new groups to the system.

 f GROUPMEMS_PARAM: This variable corresponds to the arguments passed to the Linux 
groupmems command, which administers members of the user's primary group.

An example snippet of a recipe using the useradd class follows:

inherit useradd

PASSWORD ?= "miDBHFo2hJSAA"
USERADD_PACKAGES = "${PN}"
USERADD_PARAM_${PN} = "--system --create-home \
                       --groups tty \
                       --password ${PASSWORD} \
                       --user-group ${PN}"

The password can be generated on your host using the mkpasswd Linux command-line utility, 
installed with the whois Ubuntu package.



The Software Layer

122

There's more...
When generating users and groups using the useradd class, the uid and gid values are 
assigned dynamically during package installation. If this is not desired, there is a way to 
assign system-wide static uid and gid values by providing your own passwd and group files.

To do this, you need to define the USERADDEXTENSION variable in your conf/local.conf 
file as follows:

USERADDEXTENSION = "useradd-staticids"

The build system will then search the BBPATH variable for files/passwd and files/
group files to obtain the uid and gid values. The files have the standard passwd layout as 
defined previously, with the password field ignored.

The default filenames can be overridden by using the USERADD_UID_TABLES and USERADD_
GID_TABLES variables.

You also need to define the following:

USERADD_ERROR_DYNAMIC = "1"

This is done so that the build system produces an error if the required uid and gid values 
are not found in the provided files.

Note that if you use the useradd class in a project that is already 
built, you will need to remove the tmp directory and rebuild from 
the sstate-cache directory or you will get build errors.

There is also a way to add user and group information that is not tied to a specific recipe but 
to an image – by using the extrausers class. It is configured by the EXTRA_USERS_PARAMS 
variable in an image recipe and used as follows:

inherit extrausers

EXTRA_USERS_PARAMS = "\
  useradd -P password root; \
  "

This sets the root password to password.
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Using the sysvinit initialization manager
The initialization manager is an important part of the root filesystem. It is the first thing the 
kernel executes, and it has the responsibility to start the rest of the system.

This recipe will introduce the sysvinit initialization manager.

Getting ready
This is the default initialization manager in Yocto and it has been used in Linux since the 
operating system's origin. The kernel is passed an init command-line argument, typically  
/sbin/init, which is then launched. This init process has PID 1 and is the parent of all 
processes. The init process can either be implemented by BusyBox or be an independent 
program installed with the sysvinit package. Both of them work in the same way, based on 
the concept of runlevel, a machine state that defines which processes to run.

The init process will read an inittab file and look for a default runlevel. The default 
inittab file is installed with the sysvinit-inittab package and is as follows:

# /etc/inittab: init(8) configuration.
# $Id: inittab,v 1.91 2002/01/25 13:35:21 miquels Exp $

# The default runlevel.
id:5:initdefault:

# Boot-time system configuration/initialization script.
# This is run first except when booting in emergency (-b) mode.
si::sysinit:/etc/init.d/rcS

# What to do in single-user mode.
~~:S:wait:/sbin/sulogin

# /etc/init.d executes the S and K scripts upon change
# of runlevel.
#
# Runlevel 0 is halt.
# Runlevel 1 is single-user.
# Runlevels 2-5 are multi-user.
# Runlevel 6 is reboot.

l0:0:wait:/etc/init.d/rc 0
l1:1:wait:/etc/init.d/rc 1
l2:2:wait:/etc/init.d/rc 2
l3:3:wait:/etc/init.d/rc 3
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l4:4:wait:/etc/init.d/rc 4
l5:5:wait:/etc/init.d/rc 5
l6:6:wait:/etc/init.d/rc 6
# Normally not reached, but fallthrough in case of emergency.
z6:6:respawn:/sbin/sulogin

Then, init runs all scripts starting with S in the /etc/rcS.d directory, followed by all the 
scripts starting with S in the /etc/rcN.d directory, where N is the runlevel value.

So the init process just performs the initialization and forgets about the processes. If 
something goes wrong and the processes are killed, no one will care. The system watchdog 
will reboot the system if it becomes unresponsive, but applications built with more than one 
process usually need some type of process monitor that can react to the health of the system, 
but sysvinit does not offer these types of mechanisms.

However, sysvinit is a well-understood and reliable initialization manager and the 
recommendation is to keep it unless you need some extra feature.

How to do it...
When using sysvinit as the initialization manager, Yocto offers the update-rc.d class as 
a helper to install initialization scripts so that they are started and stopped when needed.

When using this class, you need to specify the INITSCRIPT_NAME variable with the name 
of the script to install and INITSCRIPT_PARAMS with the options to pass to the update-
rc.d utility. You can optionally use the INITSCRIPT_PACKAGES variable to list the packages 
to contain the initialization scripts. By default, this contains the main package only, and if 
multiple packages are provided, the INITSCRIPT_NAME and INITSCRIPT_PARAMS need to 
be specified for each using overrides. An example snippet follows:

INITSCRIPT_PACKAGES = "${PN}-httpd ${PN}-ftpd"
INITSCRIPT_NAME_${PN}-httpd = "httpd.sh"
INITSCRIPT_NAME_${PN}-ftpd = "ftpd.sh"
INITSCRIPT_PARAMS_${PN}-httpd = "defaults"
INITSCRIPT_PARAMS_${PN}-ftpd = "start 99 5 2 . stop 20 0 1 6 ."

When an initialization script is not tied to a particular recipe, we can add a specific recipe for 
it. For example, the following recipe will run a mount.sh script in the recipes-example/
sysvinit-mount/sysvinit-mount_1.0.bb file.

DESCRIPTION = "Initscripts for mounting filesystems"
LICENSE = "MIT"

LIC_FILES_CHKSUM =  
  "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4  
  f302"
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SRC_URI = "file://mount.sh"

INITSCRIPT_NAME = "mount.sh"
INITSCRIPT_PARAMS = "start 09 S ."

inherit update-rc.d

S = "${WORKDIR}"

do_install () {
    install -d ${D}${sysconfdir}/init.d/
    install -c -m 755 ${WORKDIR}/${INITSCRIPT_NAME}  
  ${D}${sysconfdir}/init.d/${INITSCRIPT_NAME}
}

Using the systemd initialization manager
As an alternative to sysvinit, you can configure your project to use systemd as an 
initialization manager, although systemd packs many more features.

Getting ready
The systemd initialization manager is replacing sysvinit and other initialization managers 
in most Linux distributions. It is based on the concepts of units, an abstraction of all elements 
that are relevant for system startup and maintenance, and targets, which group units and can 
be viewed as a runlevel equivalent. Some of the units systemd defines are:

 f Services
 f Sockets
 f Devices
 f Mount points
 f Snapshots
 f Timers
 f Paths

The default targets and their runlevel equivalents are defined in the following table:

Sysvinit Runlevel Systemd target Notes
0 runlevel0.

target
poweroff.target Halt the system.

1, s, single runlevel1.
target

rescue.target Single user mode.
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Sysvinit Runlevel Systemd target Notes
2, 4 runlevel2.

target, 
runlevel4.
target

multi-user.
target

User-defined/site-specific runlevels. 
By default, identical to 3.

3 runlevel3.
target

multi-user.
target

Multiuser, non-graphical. Users can 
usually log in via multiple consoles or 
via the network.

5 runlevel5.
target

graphical.
target

Multiuser, graphical. Usually has 
all the services of runlevel 3 plus a 
graphical login.

6 runlevel6.
target

reboot.target Reboot the system.

The systemd initialization manager is designed to be compatible with sysvinit, including 
using sysvinit init scripts.

Some of the features of systemd are:

 f Parallelization capabilities that allow for faster boot times

 f Service initialization via sockets and D-Bus so that services are only started  
when needed

 f Process monitoring that allows for process failure recovery

 f System state snapshots and restoration

 f Mount point management

 f Transactional-dependency-based unit control, where units establish dependencies 
between them

How to do it...
To configure your system to use systemd, you need to add the systemd distribution feature 
to your project by adding the following to your distribution's configuration file, under sources/
poky/meta-yocto/conf/distro/poky.conf for the default poky distribution, or locally 
on your project's conf/local.conf file:

DISTRO_FEATURES_append = " systemd"

Note the space required after the starting quote.

VIRTUAL-RUNTIME_init_manager = "systemd"
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This configuration example allows you to define a main image with systemd and a rescue 
image with sysvinit, providing it does not use the VIRTUAL-RUNTIME_init_manager 
variable. Hence, the rescue image cannot use the packagegroup-core-boot or 
packagegroup-core-full-cmdline recipes. As an example, the recipe where the image 
size has been reduced, which we will introduce in the Reducing the root filesystem image size 
recipe in this chapter, could be used as the basis for a rescue image.

To remove sysvinit completely from your system, you would do the following:

DISTRO_FEATURES_BACKFILL_CONSIDERED = "sysvinit"
VIRTUAL-RUNTIME_initscripts = ""

Feature backfilling is the automatic extension of machine and distribution features to keep 
backwards compatibility. The sysvinit distribution feature is automatically filled in, so 
to remove it, we need to blacklist it by adding it to the DISTRO_FEATURES_BACKFILL_
CONSIDERED variable as shown earlier.

Note that if you are using an existing project and you change the 
DISTRO_FEATURES variable as explained earlier, you will need 
to remove the tmp directory and build with sstate-cache or 
the build will fail.

There's more...
Not only does the root filesystem needs to be configured, but the Linux kernel also needs to be 
specifically configured with all the features required by systemd. There is an extensive list of 
kernel configuration variables in the systemd source README file. As an example, to extend 
the minimal kernel configuration that we will introduce in the Reducing the Linux kernel image 
size recipe later on this chapter, for the Wandboard to support systemd, we would need to 
add the following configuration changes in the arch/arm/configs/wandboard-quad_
minimal_defconfig file:

+CONFIG_FHANDLE=y
+CONFIG_CGROUPS=y
+CONFIG_SECCOMP=y
+CONFIG_NET=y
+CONFIG_UNIX=y
+CONFIG_INET=y
+CONFIG_AUTOFS4_FS=y
+CONFIG_TMPFS=y
+CONFIG_TMPFS_POSIX_ACL=y
+CONFIG_SCHEDSTATS=y

The default kernel configuration provided for the Wandboard will launch a core-image-
minimal image of systemd just fine.
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Installing systemd unit files
Yocto offers the systemd class as a helper to install unit files. By default, unit files are 
installed on the ${systemd_unitdir}/system path on the destination directory.

When using this class, you need to specify the SYSTEMD_SERVICE_${PN} variable with the 
name of the unit file to install. You can optionally use the SYSTEMD_PACKAGES variable to list 
the packages to contain the unit files. By default, this is the main package only, and if multiple 
packages are provided, the SYSTEMD_SERVICE variable needs to be specified using overrides.

Services are configured to launch at boot by default, but this can be changed with the 
SYSTEMD_AUTO_ENABLE variable.

An example snippet follows:

SYSTEMD_PACKAGES = "${PN}-syslog"
SYSTEMD_SERVICE_${PN}-syslog = "busybox-syslog.service"
SYSTEMD_AUTO_ENABLE = "disabled"

Installing package-installation scripts
The supported package formats, RPM, ipk, and deb, support the addition of installation 
scripts that can be run at different times during a package installation process. In this recipe, 
we will see how to install them.

Getting ready
There are different types of installation scripts:

 f Preinstallation scripts (pkg_preinst): These are called before the package  
is unpacked

 f Postinstallation scripts (pkg_postinst): These are called after the package is 
unpacked, and dependencies will be configured

 f Preremoval scripts (pkg_prerm): These are called with installed or at least partially 
installed packages

 f Postremoval scripts (pkg_postrm): These are called after the package's files have 
been removed or replaced

How to do it...
An example snippet of the installation of a preinstallation script in a recipe is as follows:

     pkg_preinst_${PN} () {
         # Shell commands
     }
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All installation scripts work in the same way, with the exception that the postinstallation 
scripts may be run either on the host at root filesystem image creation time, on the target (for 
those actions that cannot be performed on the host), or when a package is directly installed 
on the target. Have a look at the following code:

 pkg_postinst_${PN} () {
     if [ x"$D" = "x" ]; then
          # Commands to execute on device
     else
          # Commands to execute on host
     fi
 }

If the postinstallation script succeeds, the package is marked as installed. If the script fails, 
the package is marked as unpacked and the script is executed when the image boots again.

How it works...
Once the recipe defines an installation script, the class for the specific package type will 
install it while following the packaging rules of the specific format.

For postinstallation scripts, when running on the host, D is set to the destination directory, so 
the comparison test will fail. But D will be empty when running on the target.

It is recommended to perform postinstallation scripts on the 
host if possible, as we need to take into account that some root 
filesystems will be read only and hence it would not be possible 
to perform some operations on the target.

Reducing the Linux kernel image size
Before or in parallel with the root filesystem customization, embedded projects usually require 
an image size optimization that will reduce the boot time and memory usage.

Smaller images mean less storage space, less transmission time, and less programming time, 
which saves money both in manufacturing and field updates.

By default, the compressed Linux kernel image (zImage) for the wandboard-quad is around 
5.2 MB. This recipe will show how we can reduce that.
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How to do it...
An example of a minimal kernel configuration for a Wandboard that is able to boot from a 
microSD card root filesystem is the arch/arm/configs/wandboard-quad_minimal_
defconfig file that follows:

CONFIG_KERNEL_XZ=y
CONFIG_NO_HZ=y
CONFIG_HIGH_RES_TIMERS=y
CONFIG_BLK_DEV_INITRD=y
CONFIG_CC_OPTIMIZE_FOR_SIZE=y
CONFIG_EMBEDDED=y
CONFIG_SLOB=y
CONFIG_ARCH_MXC=y
CONFIG_SOC_IMX6Q=y
CONFIG_SOC_IMX6SL=y
CONFIG_SMP=y
CONFIG_VMSPLIT_2G=y
CONFIG_AEABI=y
CONFIG_CPU_FREQ=y
CONFIG_ARM_IMX6_CPUFREQ=y
CONFIG_CPU_IDLE=y
CONFIG_VFP=y
CONFIG_NEON=y
CONFIG_DEVTMPFS=y
CONFIG_DEVTMPFS_MOUNT=y
CONFIG_PROC_DEVICETREE=y
CONFIG_SERIAL_IMX=y
CONFIG_SERIAL_IMX_CONSOLE=y
CONFIG_REGULATOR=y
CONFIG_REGULATOR_ANATOP=y
CONFIG_MMC=y
CONFIG_MMC_SDHCI=y
CONFIG_MMC_SDHCI_PLTFM=y
CONFIG_MMC_SDHCI_ESDHC_IMX=y
CONFIG_DMADEVICES=y
CONFIG_IMX_SDMA=y
CONFIG_EXT3_FS=y

This configuration builds an 886 K compressed Linux kernel image (zImage).
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How it works...
Apart from hardware design considerations (such as running the Linux kernel from a NOR flash 
and execute in place (XIP) to avoid loading the image to memory), the first step in kernel size 
optimization is to review the kernel configuration and remove all superfluous features.

To analyze the sizes of kernel blocks, we may use:

$ size vmlinux */built-in.o

text    data     bss     dec     hex filename

8746205  356560  394484 9497249  90eaa1 vmlinux

117253    2418    1224  120895   1d83f block/built-in.o

243859   11158      20  255037   3e43d crypto/built-in.o

2541356  163465   34404 2739225  29cc19 drivers/built-in.o

1956       0       0    1956     7a4 firmware/built-in.o

1728762   18672   10544 1757978  1ad31a fs/built-in.o

20361   14701     100   35162    895a init/built-in.o

29628     760       8   30396    76bc ipc/built-in.o

576593   20644  285052  882289   d7671 kernel/built-in.o

106256   24847    2344  133447   20947 lib/built-in.o

291768   14901    3736  310405   4bc85 mm/built-in.o

1722683   39947   50928 1813558  1bac36 net/built-in.o

34638     848     316   35802    8bda security/built-in.o

276979   19748    1332  298059   48c4b sound/built-in.o

138       0       0     138      8a usr/built-in.o

Here, vmlinux is the Linux kernel ELF image, which can be found in the Linux build 
directory.

Some of the usual things to exclude are:

 f Remove IPv6 (CONFIG_IPV6) and other superfluous networking features

 f Remove block devices (CONFIG_BLOCK) if not needed

 f Remove cryptographic features (CONFIG_CRYPTO) if unused

 f Review the supported filesystem types and remove the unneeded ones, such as flash 
filesystems on flashless devices

 f Avoid modules and remove the module support (CONFIG_MODULES) from the kernel 
if possible
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A good strategy is to start with a minimal kernel and add the essential stuff until you get a 
working system. Start with the allnoconfig GNU make target and review the configuration 
items under CONFIG_EXPERT and CONFIG_EMBEDDED as they are not included in the 
allnoconfig setting.

Some configuration changes that might not be obvious but reduce the image size 
considerably without feature removal are listed here:

 f Change the default compression method from Lempel–Ziv–Oberhumer (LZO) to XZ 
(CONFIG_KERNEL_XZ). The decompression speed will be a bit lower though.

 f Change the allocator from SLUB to Simple List Of Blocks (SLOB) (CONFIG_SLOB) for 
small embedded systems with little memory.

 f Use no high memory (CONFIG_HIGHMEM) unless you have 4 GB or more memory.

You may also want to have a different configuration for production and development systems, 
so you may remove the following from your production images:

 f printk support (CONFIG_PRINTK)

 f tracing support (CONFIG_FTRACE)

In the compilation side of things, optimize for size using CONFIG_CC_OPTIMIZE_FOR_SIZE.

Once the basics are covered, we would need to analyze the kernel functions to identify further 
reduction areas. You can print a sorted list of kernel symbols with the following:

$ nm --size-sort --print-size -r vmlinux | head

          808bde04 00040000 B __log_buf

          8060f1c0 00004f15 r kernel_config_data

          80454190 000041f0 T hidinput_connect

          80642510 00003d40 r drm_dmt_modes

          8065cbbc 00003414 R v4l2_dv_timings_presets

          800fbe44 000032c0 T __blockdev_direct_IO

          80646290 00003100 r edid_cea_modes

          80835970 00003058 t imx6q_clocks_init

          8016458c 00002e74 t ext4_fill_super

          8056a814 00002aa4 T hci_event_packet

You would then need to look into the kernel source to find optimizations.
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The actual space used by the uncompressed kernel in memory can be obtained from a 
running Wandboard kernel log as follows:

$ dmesg | grep -A 3 "text"

      .text : 0x80008000 - 0x80a20538   (10338 kB)

      .init : 0x80a21000 - 0x80aae240   ( 565 kB)

      .data : 0x80ab0000 - 0x80b13644   ( 398 kB)

      .bss  : 0x80b13644 - 0x80b973fc   ( 528 kB)

From here, the .text section contains code and constant data, the .data section contains 
the initialization data for variables, and the .bss sections contains all uninitialized data. The 
.init section contains global variables used during Linux initialization only, which are freed 
afterwards as can be seen from the following Linux kernel boot message:

Freeing unused kernel memory: 564K (80a21000 - 80aae000)

There are ongoing efforts to reduce the size of the Linux kernel, so it is expected that newer 
kernel versions will be smaller and will allow for better customization for use in embedded 
systems.

Reducing the root filesystem image size
By default, the core-image-minimal size for the wandboard-quad unpacked tarball is 
around 45 MB, and core-image-sato is around 150 MB. This recipe will explore methods 
to reduce their size.

How to do it...
An example of a small image, core-image-small, that does not include the packagegroup-
core-boot recipe and can be used as the base for a root filesystem image with reduced size, 
recipes-core/images/core-image-small.bb, is shown next:

DESCRIPTION = "Minimal console image."

IMAGE_INSTALL= "\
        base-files \
        base-passwd \
        busybox \
        sysvinit \
        initscripts \
        ${ROOTFS_PKGMANAGE_BOOTSTRAP} \
        ${CORE_IMAGE_EXTRA_INSTALL} \
"
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IMAGE_LINGUAS = " "

LICENSE = "MIT"

inherit core-image

IMAGE_ROOTFS_SIZE ?= "8192"

This recipe produces an image of about 6.4 MB. You can go even smaller if you use the  
poky-tiny distribution by adding the following to your conf/local.conf file:

DISTRO = "poky-tiny"

The poky-tiny distribution makes a series of size optimizations that may restrict the set of 
packages you can include in your image. To successfully build this image, you have to skip one 
of the sanity checks that the Yocto build system performs, by adding the following:

INSANE_SKIP_glibc-locale = "installed-vs-shipped"

With poky-tiny, the size of the image is further reduced to around 4 MB.

There are further reductions that can be done to the image; for example, we could replace 
sysvinit with tiny-init, but that is left as an exercise for the reader.

Images with reduced sizes are also used alongside production images for tasks such 
as rescue systems and manufacturing test processes. They are also ideal to be built as 
initramfs images; that is, images that the Linux kernel mounts from memory, and can  
even be bundled into a single Linux kernel image binary.

How it works...
Start with an appropriate image like core-image-minimal and analyze the dependencies 
as shown in the Debugging the build system recipe in Chapter 1, The Build System, and 
decide which of them are not needed. You could also use the file sizes listed in the image's 
build history, as seen in the Using build history recipe, also in Chapter 1, The Build System, to 
detect the biggest files in the filesystem and review them. To sort the file sizes, which appear 
in the fourth column of the files-in-image.txt file, in reverse order, we could execute:

$ sort -r -g  -k 4,4 files-in-image.txt -o sorted-files-in-image.txt

sorted-files-in-image.txt:

-rwxr-xr-x root       root          1238640 ./lib/libc-2.19.so

-rwxr-xr-x root       root           613804 ./sbin/ldconfig

-rwxr-xr-x root       root           539860 ./bin/busybox.nosuid

-rwxr-xr-x root       root           427556 ./lib/libm-2.19.so



Chapter 3

135

-rwxr-xr-x root       root           130304 ./lib/ld-2.19.so

-rwxr-xr-x root       root            88548 ./lib/libpthread-2.19.so

-rwxr-xr-x root       root            71572 ./lib/libnsl-2.19.so

-rwxr-xr-x root       root            71488 ./lib/libresolv-2.19.so

-rwsr-xr-x root       root            51944 ./bin/busybox.suid

-rwxr-xr-x root       root            42668 ./lib/libnss_files-  
  2.19.so

-rwxr-xr-x root       root            30536 ./lib/libnss_compat-  
  2.19.so

-rwxr-xr-x root       root            30244 ./lib/libcrypt-2.19.so

-rwxr-xr-x root       root            28664 ./sbin/init.sysvinit

-rwxr-xr-x root       root            26624 ./lib/librt-2.19.so

From this, we observe that glic is the biggest contributor to the filesystem size. Some other 
places where some space on a console-only system can be saved are:

 f Use the IPK package manager, as it is the lightest, or better yet, remove the 
package-management feature from your production root filesystem altogether.

 f Use BusyBox's mdev device manager instead of udev by specifying it in your conf/
local.conf file as follows:
VIRTUAL-RUNTIME_dev_manager = "mdev"

Note that this will only work with core images that include packagegroup-core-
boot.

 f If we are running the root filesystem on a block device, use ext2 instead of ext3 or 
ext4 without the journal.

 f Configure BusyBox with only the essential applets by providing your own configuration 
file in bbappend.

 f Review the glibc configuration, which can be changed via the DISTRO_FEATURES_
LIBC distribution configuration variable. An example of its usage can be found in 
the poky-tiny distribution, which is included in the poky source. The poky-tiny 
distribution can be used as a template for the distribution customization of  
small systems.

 f Consider switching to a lighter C library than the default glibc. For a while, uclibc 
was being used as an alternative, but the library seems to be unmaintained for the 
last couple of years, and the core-image-minimal image for the Wandboard does 
not currently build using it.
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Recently, there has been some activity with musl (http://
www.musl-libc.org/), a new MIT-licensed C library. To 
enable it, you would add the following to your conf/local.
conf file:
TCLIBC = "musl"
And you would need to add the meta-musl layer 
(https://github.com/kraj/meta-musl) to your 
conf/bblayers.conf file.
It currently builds core-image-minimal for QEMU 
targets, but there is still work to be done to use it on real 
hardware like the Wandboard.

 f Compile your applications with -Os to optimize for size.

Releasing software
When releasing a product based on the Yocto project, we have to consider that we are 
building on top of a multitude of different open source projects, each with different licensing 
requirements.

At the minimum, your embedded product will contain a bootloader (probably U-Boot), the Linux 
kernel, and a root filesystem with one or more applications. Both U-Boot and the Linux kernel 
are licensed under the General Public License version 2 (GPLv2). And the root filesystem 
could contain a variety of programs with different licenses.

All open source licenses allow you to sell a commercial product with a mixture of proprietary 
and open licenses as long as they are independent and the product complies with all the open 
source licenses. We will discuss open source and proprietary cohabiting in the Working with 
open source and proprietary code recipe later on.

It is important to understand all the licensing implications before releasing your product to the 
public. The Yocto project provides tools to make handling licensing requirements an easier job.

Getting ready
We first need to specify what requirements we need to comply with to distribute a product 
built with the Yocto project. For the most restrictive open source licenses, this usually means:

 f Source code distribution, including modifications

 f License texts distributions

 f Distribution of the tools used to build and run the software

http://www.musl-libc.org/
http://www.musl-libc.org/
https://github.com/kraj/meta-musl
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How to do it...
We can use the archiver class to provide the deliverables that need to be distributed to 
comply with the licenses. We can configure it to:

 f Provide the original unpatched source as tarballs

 f Provide the patches to apply to the original source

 f Provide the recipes used to build the source

 f Provide the license text that must sometimes accompany the binary (according to 
some licenses)

To use the archiver class as specified earlier, we add the following to our  
conf/local.conf file:

INHERIT += "archiver"
ARCHIVER_MODE[src] = "original"
ARCHIVER_MODE[diff] = "1"
ARCHIVER_MODE[recipe] = "1"
COPY_LIC_MANIFEST = "1"
COPY_LIC_DIRS = "1"

The sources will be provided in the tmp/deploy/sources directory under a license 
subdirectory hierarchy.

For the wandboard-quad, we find the following directories under tmp/deploy/sources:

 f allarch-poky-linux

 f arm-poky-linux-gnueabi

And looking for what's distributed for the Linux kernel source, a GPLv2 package, we find under 
tmp/deploy/sources/arm-poky-linux-gnueabi/linux-wandboard-3.10.17-r0:

 f defconfig

 f github.com.wandboard-org.linux.git.tar.gz

 f linux-wandboard-3.10.17-r0-recipe.tar.gz

So we have the kernel configuration, the source tarball, and the recipes used to build it,  
which include:

 f linux-wandboard_3.10.17.bb

 f linux-dtb.inc

 f linux-wandboard.inc



The Software Layer

138

And the license text for the root filesystem packages will also be included in the root filesystem 
under /usr/share/common-licenses, in a package directory hierarchy.

This configuration will provide deliverables for all build packages, but what we really want to 
do is provide them only for those whose licenses require us to.

For sure, we don't want to blindly distribute all the contents of the sources directory as is, as 
it will also contain our proprietary source, which we most likely don't want to distribute.

We can configure the archiver class only to provide the source for GPL and LGPL packages 
with the following:

COPYLEFT_LICENSE_INCLUDE = "GPL* LGPL*"
COPYLEFT_LICENSE_EXCLUDE = "CLOSED Proprietary"

And also, for an embedded product, we are usually only concerned with the software that 
ships in the product itself, so we can limit the recipe type to be archived to target images with 
the following:

COPYLEFT_RECIPE_TYPES = "target"

We should obtain legal advice to decide which packages have licenses that make source 
distribution a requirement.

Other configuration options exist, such as providing the patched or configured source instead 
of the separated original source and patches, or source rpms instead of source tarballs. See 
the archiver class for more details.

There's more…
We can also choose to distribute the whole of our build environment. The best way to do this 
is usually to publish our BSP and software layers on a public Git repository. Our software layer 
can then provide bblayers.conf.sample and local.conf.sample, which can be used 
to set up ready-to-use build directories.

See also
 f There are other requirements that haven't been discussed here, such as the 

mechanism chosen for distribution. It is recommended to get legal advice before 
releasing a product to ensure all the license obligations have been met.
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Analyzing your system for compliance
The Yocto build system makes it easy to provide auditing information to our legal advisers. 
This recipe will explain how.

How to do it...
Under tmp/deploy/licenses, we find a directory list of packages (including their 
corresponding licenses) and an image folder with a package and license manifest.

For the example image provided before, core-image-small, we have the following:

tmp/deploy/licenses/core-image-small-wandboard-quad-<timestamp>/
package.manifest
base-files
base-passwd
busybox
busybox-syslog
busybox-udhcpc
initscripts
initscripts-functions
libc6
run-postinsts
sysvinit
sysvinit-inittab
sysvinit-pidof
update-alternatives-opkg
update-rc.d

And the corresponding tmp/deploy/licenses/core-image-small-wandboard-quad-
<timestamp>/license.manifest file excerpt is as follows:

PACKAGE NAME: base-files
PACKAGE VERSION: 3.0.14
RECIPE NAME: base-files
LICENSE: GPLv2

PACKAGE NAME: base-passwd
PACKAGE VERSION: 3.5.29
RECIPE NAME: base-passwd
LICENSE: GPLv2+
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These files can be used to analyze all the different packages that form our root filesystem. We 
can also audit them to make sure we comply with the licenses when releasing our product to 
the public.

There's more
You can instruct the Yocto build system to specifically avoid certain licenses by using the 
INCOMPATIBLE_LICENSE configuration variable. The usual way to use it is to avoid GPLv3-
type licenses by adding the following to your conf/local.conf file:

INCOMPATIBLE_LICENSE = "GPL-3.0 LGPL-3.0 AGPL-3.0"

This will build core-image-minimal and core-image-base images as long as no extra 
image features are included.

Working with open source and proprietary 
code

It is common for an embedded product to be built upon an open source system like the one 
built by Yocto, and to include proprietary software that adds value and specializes the product. 
This proprietary part usually is intellectual property and needs to be protected, and it's 
important to understand how it can coexist with open source.

This recipe will discuss some examples of open source packages commonly found on 
embedded products and will briefly explain how to use proprietary software with them.

How to do it...
Open source licenses can be broadly divided into two categories based on whether they are:

 f Permissive: These are similar to Internet Software Consortium (ISC), MIT, and 
BSD licenses. They have few requirements attached to them and just require us to 
preserve copyright notices.

 f Restrictive: These are similar to the GPL, which bind us to not only distribute the 
source code and modifications, either with the binary itself or at a later date, but also 
to distribute tools to build, install, and run the source.

However, some licenses might "pollute" modifications and derivative work with their own 
conditions, commonly referred to as viral licenses, while others will not. For example, if you 
link your application to GPL-licensed code, your application will be bound by the GPL too.
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The virulent nature of the GPL has made some people wary of using GPL-licensed software, 
but it's important to note that proprietary software can run alongside GPL software as long as 
the license terms are understood and respected.

For example, violating the GPLv2 license would mean losing the right to distribute the GPLv2 
code in the future, even if further distribution is GPLv2 compliant. In this case, the only way to 
be able to distribute the code again would be to ask the copyright holder for permission.

How it works...
Next, we will provide guidance regarding licensing requirements for some open source 
packages commonly used in embedded products. It does not constitute legal advice, and as 
stated before, proper legal auditing of your product should be done before public release.

The U-Boot bootloader
U-Boot is licensed under the GPLv2, but any program launched by it does not inherit its 
license. So you are free to use U-Boot to launch a proprietary operating system, for example. 
However, your final product must comply with the GPLv2 with regards to U-Boot, so U-Boot 
source code and modifications must be provided.

The Linux kernel
The Linux kernel is also licensed under the GPLv2. Any application that runs in the Linux 
kernel user space does not inherit its license, so you can run your proprietary software in 
Linux freely. However, Linux kernel modules are part of the Linux kernel and as such must 
comply with the GPLv2. Also, your final product must release the Linux kernel source and 
modifications, including external modules that run in your product.

Glibc
The GNU C library is licensed under the Lesser General Public License (LGPL), which allows 
dynamic linking without license inheritance. So your proprietary code can dynamically link 
with glibc, but of course you still have to comply with the LGPL with regards to glibc. Note, 
however, that statically linking your application would pollute it with the LGPL.

BusyBox
BusyBox is also licensed under the GPLv2. The license allows for non-related software to run 
alongside it, so your proprietary software can run alongside BusyBox freely. As before, you have 
to comply with the GPLv2 with regards to BusyBox and distribute its source and modifications.
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The Qt framework
Qt is licensed under three different licenses, which is common for open source projects. 
You can choose whether you want a commercial license (in which case, your proprietary 
application is protected), a LGPL license (which, as discussed before, would also protect 
your proprietary software by allowing the dynamic linking of your application as long as you 
complied with the LGPL for the Qt framework itself), or the GPLv3 (which would be inherited by 
your application).

The X Windows system
The X.Org source is licensed under permissive MIT-style licenses. As such, your proprietary 
software is free to make any use of it as long as its use is stated and copyright notices  
are preserved.

There's more...
Let's see how to integrate our proprietary-licensed code into the Yocto build system. When 
preparing the recipe for our application, we can take several approaches to licensing:

 f Mark LICENSE as closed. This is the usual case for a proprietary application. We use 
the following:
LICENSE = "CLOSED"

 f Mark LICENSE as proprietary and include some type of license agreement. This is 
commonly done when releasing binaries with some sort of end user agreement that 
is referenced in the recipe. For example, meta-fsl-arm uses this type of license to 
comply with Freescale's End User License Agreement. An example follows:
LICENSE = "Proprietary"

LIC_FILES_CHKSUM = "file://EULA.txt;md5=93b784b1c11b3fffb1638498
a8dde3f6"

 f Provide multiple licensing options, such as an open source license and a commercial 
license. In this case, the LICENSE variable is used to specify the open licenses, and 
the LICENSE_FLAGS variable is used for the commercial licenses. A typical example 
is the gst-plugins-ugly package in Poky:
LICENSE = "GPLv2+ & LGPLv2.1+ & LGPLv2+"
LICENSE_FLAGS = "commercial"
LIC_FILES_CHKSUM =  
  "file://COPYING;md5=a6f89e2100d9b6cdffcea4f398e37343 \  
  file://gst/synaesthesia/synaescope.h;beginline=1;endline=20  
  ;md5=99f301df7b80490c6ff8305fcc712838 \   
  file://tests/check/elements/xingmux.c;beginline=1;endline=2  
  1;md5=4c771b8af188724855cb99cadd390068 \   
  file://gst/mpegstream/gstmpegparse.h;beginline=1;endline=18  
  ;md5=ff65467b0c53cdfa98d0684c1bc240a9"

file://EULA.txt;md5=93b784b1c11b3fffb1638498a8dde3f6
file://EULA.txt;md5=93b784b1c11b3fffb1638498a8dde3f6
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When the LICENSE_FLAGS variable is set on a recipe, the package will not be built unless 
the license appears on the LICENSE_FLAGS_WHITELIST variable too, typically defined in 
your conf/local.conf file. For the earlier example, we would add:

LICENSE_FLAGS_WHITELIST = "commercial"

The LICENSE and LICENSE_FLAGS_WHITELIST variables can match exactly for a very 
narrow match or broadly, as in the preceding example, which matches all licenses that begin 
with the word commercial. For narrow matches, the package name must be appended 
to the license name; for instance, if we only wanted to whitelist the gst-plugins-ugly 
package from the earlier example but nothing else, we could use the following:

LICENSE_FLAGS_WHITELIST = "commercial_gst-plugins-ugly"

See also
 f You should refer to the specific licenses for a complete understanding of the 

requirements imposed by them. You can find a complete list of open source licenses 
and their documentation at http://spdx.org/licenses/.

http://spdx.org/licenses/
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4
Application 

Development

In this chapter, we will cover the following recipes:

 f Introducing toolchains
 f Preparing and using an SDK
 f Using the Application Development Toolkit
 f Using the Eclipse IDE
 f Developing GTK+ applications
 f Using the Qt Creator IDE
 f Developing Qt applications
 f Describing workflows for application development
 f Working with GNU make
 f Working with the GNU build system
 f Working with the CMake build system
 f Working with the SCons builder
 f Developing with libraries
 f Working with the Linux framebuffer
 f Using the X Windows system
 f Using Wayland
 f Adding Python applications
 f Integrating the Oracle Java Runtime Environment
 f Integrating the Open Java Development Kit
 f Integrating Java applications
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Introduction
Dedicated applications are what define an embedded product, and Yocto offers helpful 
application development tools as well as the functionality to integrate with popular Integrated 
Development Environments (IDE) like Eclipse and Qt Creator. It also provides a wide range of 
utility classes to help in the integration of finished applications into the build system and the 
target images.

This chapter will introduce the IDEs and show us how they are used to build and debug  
C and C++ applications on real hardware, and will explore application development, including 
graphical frameworks and Yocto integration, not only for C and C++ but also Python and  
Java applications.

Introducing toolchains
A toolchain is a set of tools, binaries, and libraries used to build applications to run on a 
computer platform. In Yocto, the toolchains are based on GNU components.

Getting ready
A GNU toolchain contains the following components:

 f Assembler (GNU as): This is part of the binutils package

 f Linker (GNU ld): This is also part of the binutils package

 f Compiler (GNU gcc): This has support for C, C++, Java, Ada, Fortran, and Objective C

 f Debugger (GNU gdb): This is the GNU debugger

 f Binary file tools (objdump, nm, objcopy, readelf, strip, and so on): These are part of 
the binutils package.

These components are enough to build bare metal applications, bootloaders like U-Boot, or 
operating systems like the Linux kernel, as they don't need a C library and they implement the 
C library functions they need. However, for Linux user space applications, a POSIX-compliant C 
library is needed.

The GNU C library, glibc, is the default C library used in the Yocto project. Yocto is 
introducing support for musl, a smaller C library, but as we have mentioned before, there is 
still work to be done until it is ready to be used with the hardware platforms supported by the 
FSL community layer.
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But on embedded systems, it is not just a toolchain we need, but a cross-compilation 
toolchain. This is because we build in a host computer but run the resulting binaries on the 
target, which is usually a different architecture. In reality, there are several types of toolchains, 
based on the architecture of the machine building the toolchain (build machine), running the 
toolchain (host machine), and running the binaries built by the toolchain (target machine). The 
most common combinations are:

 f Native: An example of this is an x86 machine running a toolchain that has also 
been built on an x86 machine producing binaries to run on an x86 machine. This is 
common in desktop computers.

 f Cross-compilation: This is the most common on embedded systems; for example, 
an x86 machine running a toolchain that has also been built on an x86 machine but 
producing binaries to run on a different architecture, like ARM.

 f Cross-native: This is typically the toolchain running on targets. An example of this is 
where a toolchain has been built on an x86 machine but runs on ARM and produces 
binaries for ARM.

 f Canadian: Rarely seen, this is where the build, host, and target machines are all 
different.

The process of building a cross-compilation toolchain is complex and fault prone, so 
automated tools for toolchain building have emerged, like buildroot and crosstool-NG. The 
Yocto build system also compiles its own toolchain on every build, and as we will see, you can 
use this toolchain for application development too.

But the cross-compilation toolchain and C library are not the only things we need in order to 
build applications; we also need a sysroot; that is, a root filesystem on the host with the 
libraries and header files that can be found on the target root filesystem.

The combination of the cross-compilation toolchain, the sysroot, and sometimes other 
development tools such as an IDE is referred to as an SDK, or Software Development Kit.

How to do it...
There are several ways to obtain an SDK with the Yocto project:

 f Using the Application Development Toolkit (ADT).

If you are using a hardware platform supported by Poky (that is, a virtualized QEMU 
machine or one of the reference boards), the recommendation is to use ADT, which 
will install all the required SDK components for you.
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 f Downloading a precompiled toolchain.

The easiest way to obtain a cross-compilation toolchain for a supported platform is 
to download a precompiled one; for example from the Yocto project downloads site, 
http://downloads.yoctoproject.org/releases/yocto/yocto-1.7.1/
toolchain/. The Yocto project provides prebuilt toolchains for both 32- and 64-
bit i686 host machines, and prebuilt ARM toolchains both for armv5 and armv7 
architectures. These contain sysroot that match the core-image-sato target 
image. However, the prebuilt sysroot is soft floating point, so it can't be used with 
the target images built by the FSL community layer for i.MX6-based platforms, which 
are hard floating point. To install the prebuilt armv7 toolchain for an x86_64 host, run 
the following:

$ wget http://downloads.yoctoproject.org/releases/yocto/yocto-  
  1.7.1/toolchain/x86_64/poky-glibc-x86_64-core-image-sato-  
  armv7a-vfp-neon-toolchain-1.7.1.sh

$ chmod a+x poky-glibc-x86_64-core-image-sato-armv7a-vfp-neon-  
  toolchain-1.7.1.sh

$ ./poky-glibc-x86_64-core-image-sato-armv7a-vfp-neon-  
  toolchain-1.7.1.sh

 f Building your own toolchain installer.

On most embedded Linux projects, your machine will be supported by an external 
layer, and you will have a customized root filesystem that your sysroot will need 
to match. So building your own toolchain installer is recommended when you have 
a customized root filesystem. For example, the ideal toolchain to work with the 
Wandboard would be Cortex-A9-specific and targeted to produce hard floating  
point binaries.

 f Using the Yocto project build system.

Finally, if you already have a Yocto build system installation on your host, you can also 
use it for application development. Usually, application developers do not need the 
complexity of a Yocto build system installation, so a toolchain installer for the target 
system will be enough.

Preparing and using an SDK
The Yocto build system can be used to generate a cross-compilation toolchain and matching 
sysroot for a target system.

http://downloads.yoctoproject.org/releases/yocto/yocto-1.7.1/toolchain/
http://downloads.yoctoproject.org/releases/yocto/yocto-1.7.1/toolchain/
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Getting ready
We will use the previously used wandboard-quad build directory and source the setup-
environment script as follows:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

How to do it...
There are several ways to build an SDK with the Yocto build system:

 f The meta-toolchain target.

This method will build a toolchain that matches your target platform, and a basic 
sysroot that will not match your target root filesystem. However, this toolchain can 
be used to build bare metal software like the U-Boot bootloader or the Linux kernel, 
which do not need a sysroot. The Yocto project offers downloadable sysroot for 
the supported hardware platforms. You can also build this toolchain yourself with:
$ bitbake meta-toolchain

Once built, it can be installed with:

$ cd tmp/deploy/sdk

$ ./poky-glibc-x86_64-meta-toolchain-cortexa9hf-vfp-neon-  
  toolchain-1.7.1.sh

 f The populate_sdk task.

This is the recommended way to build a toolchain matching your target platform with 
a sysroot matching your target root filesystem. You build it with:
$ bitbake core-image-sato -c populate_sdk

You should replace core-image-sato for the target root filesystem image you want 
the sysroot to match. The resulting toolchain can be installed with:
$ cd tmp/deploy/sdk

$ ./poky-glibc-x86_64-core-image-sato-cortexa9hf-vfp-neon-  
  toolchain-1.7.1.sh

Also, if you want your toolchain to be able to build static applications, you need to add 
static libraries to it. You can do this by adding specific static libraries to your target 
image, which could also be used for native compilation. For example, to add the static 
glibc libraries, add the following to your conf/local.conf file:
IMAGE_INSTALL_append =  " glibc-staticdev"
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And then build the toolchain to match your root filesystem as explained previously.

You usually won't want the static libraries added to your image, but do you want to be 
able to cross-compile static applications, so you can also add all the static libraries to 
the toolchain by adding:

SDKIMAGE_FEATURES_append = " staticdev-pkgs"

 f The meta-toolchain-qt target.

This method will extend meta-toolchain to build Qt applications. We will see 
how to build Qt applications later on. To build this toolchain, execute the following 
command:
$ bitbake meta-toolchain-qt

Once built, it can be installed with:
$ cd tmp/deploy/sdk

$ ./poky-glibc-x86_64-meta-toolchain-qt-cortexa9hf-vfp-neon-  
  toolchain-qt-1.7.1.sh

The resulting toolchain installers will be located under tmp/deploy/sdk for all the 
cases mentioned here.

 f The meta-ide-support target.

This method does not generate a toolchain installer, but it prepares the current build 
project to use its own toolchain. It will generate an environment-setup script 
inside the tmp directory.
$ bitbake meta-ide-support

To use the bundled toolchain, you can now source that script as follows:
$ source tmp/environment-setup-cortexa9hf-vfp-neon-poky-linux-  
  gnueabi

Using the Application Development  
Toolkit

The ADT is an SDK installation script that installs the following for Poky-supported  
hardware platforms:

 f A prebuilt cross-compilation toolchain, as explained previously

 f A sysroot that matches the core-image-sato target image

 f The QEMU emulator

 f Other development user space tools used for system profiling (these will be discussed 
in the following chapters)
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Getting ready
To install the ADT, you can choose either of the following options:

 f Download a precompiled tarball from the Yocto project downloads site with the 
following command:
$ wget http://downloads.yoctoproject.org/releases/yocto/yocto-  
  1.7.1/adt-installer/adt_installer.tar.bz2

 f Build one using your Yocto build directory.

The ADT installer is an automated script to install precompiled Yocto SDK components, so it 
will be the same whether you download the prebuilt version or you build one yourself.

You can then configure it before running it to customize the installation.

Note that it only makes sense to use the ADT for the Poky-supported platforms. For instance,  
it is not that useful for external hardware like wandboard-quad unless you provide your own 
components.

How to do it...
To build the ADT from your Yocto build directory, open a new shell and execute the following:

$ cd /opt/yocto/poky

$ source oe-init-build-env qemuarm

$ bitbake adt-installer

The ADT tarball will be located in the tmp/deploy/sdk directory.

How it works...
To install it, follow these steps:

1. Extract the tarball on a location of your choice:
$ cd /opt/yocto

$ cp  
  /opt/yocto/poky/qemuarm/tmp/deploy/sdk/adt_installer.tar.bz2  
  /opt/yocto

$ tar xvf adt_installer.tar.bz2

$ cd /opt/yocto/adt-installer
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2. Configure the installation by editing the adt_installer.conf file. Some of  
the options are:

 � YOCTOADT_REPO: This is a repository with the packages and root filesystem 
to be used. By default, it uses the one on the Yocto project web site, 
http://adtrepo.yoctoproject.org/1.7.1/, but you could set one 
up yourself with your customized packages and root filesystem.

 � YOCTOADT_TARGETS: This defines the machine targets the SDK is for. By 
default, this is ARM and x86.

 � YOCTOADT_QEMU: This option controls whether to install the QEMU emulator. 
The default is to install it.

 � YOCTOADT_NFS_UTIL: This option controls whether to install user mode 
NFS. It is recommended if you are going to use the Eclipse IDE with QEMU-
based machines. The default is to install it.

And then for the specific target architectures (only shown for ARM):

 � YOCTOADT_ROOTFS_arm: This defines the specific root filesystem images 
to download from the ADT repository. By default it installs the minimal and 
sato-sdk images.

 � YOCTOADT_TARGET_SYSROOT_IMAGE_arm: This is the root filesystem 
used to create the sysroot. This must also be included in the YOCTOADT_
ROOTFS_arm selection that was explained earlier. By default this is the 
sato-sdk image.

 � YOCTOADT_TARGET_MACHINE_arm: This is the machine that the images 
are downloaded for. By default this is qemuarm.

 � YOCTOADT_TARGET_SYSROOT_LOC_arm: This is the path on the host to 
install the target's sysroot. By default this is $HOME/test-yocto/.

3. Run the ADT installer as follows:
$ ./adt_installer

It will ask for an installation location (by default /opt/poky/1.7.1) and whether 
you want to run it in interactive or silent mode.

Using the Eclipse IDE
Eclipse is an open source IDE that is written mostly in Java and released under the Eclipse 
Public License (EPL). It can be extended using plugins, and the Yocto project releases a Yocto 
plugin that allows us to use Eclipse for application development.

http://adtrepo.yoctoproject.org/1.7.1/
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Getting ready
Yocto 1.7 provides Eclipse Yocto plugins for two different Eclipse versions, Juno and Kepler. 
They can be downloaded at http://downloads.yoctoproject.org/releases/
yocto/yocto-1.7.1/eclipse-plugin/. We will use Kepler 4.3, as it is the newest. We 
will start with the Eclipse Kepler standard edition and install all the required plugins we need.

It is recommended to run Eclipse under Oracle Java 1.7, although other Java providers 
are supported. You can install Oracle Java 1.7 from Oracle's web site, https://
www.java.com/en/, or using a Ubuntu Java Installer PPA, https://launchpad.
net/~webupd8team/+archive/ubuntu/java. The latter will integrate Java with your 
package management system, so it's preferred. To install it, follow these steps:

$ sudo add-apt-repository ppa:webupd8team/java

$ sudo apt-get update

$ sudo apt-get install oracle-java7-set-default

To download and install Eclipse Kepler standard edition for an x86_64 host, follow  
these steps:

1. Fetch the tarball from the Eclipse download site, http://eclipse.org/
downloads/packages/release/Kepler/SR2. For example:
 $ wget http://download.eclipse.org/technology/epp/downloads/
release/kepler/SR2/eclipse-standard-kepler-SR2-linux-gtk-x86_64.
tar.gz

2. Unpack it on a location of your choice as follows:
$ tar xvf eclipse-standard-kepler-SR2-linux-gtk-x86_64.tar.gz

3. Start the Eclipse IDE with the following:
$ nohup eclipse/eclipse &

4. Select Install New Software from the Help pull-down menu. Then select the Kepler - 
http://download.eclipse.org/releases/kepler source.

5. Install the following Eclipse components:

 � Linux tools:

LTTng - Linux Tracing Toolkit

 � Mobile and device development:

C/C++ Remote Launch

Remote System Explorer End-user Runtime

Remote System Explorer User Actions

http://downloads.yoctoproject.org/releases/yocto/yocto-1.7.1/eclipse-plugin/
http://downloads.yoctoproject.org/releases/yocto/yocto-1.7.1/eclipse-plugin/
https://www.java.com/en/
https://www.java.com/en/
https://launchpad.net/~webupd8team/+archive/ubuntu/java
https://launchpad.net/~webupd8team/+archive/ubuntu/java
http://eclipse.org/downloads/packages/release/Kepler/SR2
http://eclipse.org/downloads/packages/release/Kepler/SR2
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Target Management Terminal

TCF Remote System Explorer add-in

TCF Target Explorer

 � Programming languages:

C/C++ Autotools Support

C/C++ Development Tools

6. Install the Eclipse Yocto plugin by adding this repository source: http://
downloads.yoctoproject.org/releases/eclipse-plugin/1.7.1/
kepler, as shown in the following screenshot:

7. Choose Yocto Project ADT plug-in and ignore the unsigned content warning. We 
won't be covering other plugin extensions.

How to do it...
To configure Eclipse to use a Yocto toolchain, go to Window | Preferences | Yocto  
Project ADT.

The ADT configuration offers two cross-compiler options:

1. Standalone pre-built toolchain: Choose this when you have installed a toolchain 
either from a toolchain installer or the ADT installer.

2. Build system derived toolchain: Choose this when using a Yocto build directory 
prepared with meta-ide-support as explained previously.

http://downloads.yoctoproject.org/releases/eclipse-plugin/1.7.1/kepler
http://downloads.yoctoproject.org/releases/eclipse-plugin/1.7.1/kepler
http://downloads.yoctoproject.org/releases/eclipse-plugin/1.7.1/kepler


Chapter 4

155

It also offers two target options:

1. The QEMU emulator: Choose this if you are using Poky with a virtualized machine 
and you have used the ADT installer to install a qemuarm Linux kernel and root 
filesystem.

2. External hardware: Choose this if you are using real hardware like the wandboard-
quad hardware. This option is the most useful for embedded development.

An example configuration when using the ADT installer with its default configuration would be 
to choose the standalone prebuilt toolchain option along with the QEMU emulator as follows:

 f Cross-compiler options:

 � Standalone pre-built toolchain:

Toolchain root location: /opt/poky/1.7.1

Sysroot location: ${HOME}/test-yocto/qemuarm

Target architecture: armv5te-poky-linux-gnueabi

 � Target options:

QEMU kernel: /tmp/adt-installer/download_image/zImage-
qemuarm.bin
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And for a build system derived toolchain using the wandboard-quad reference board, this is 
what you will need:

 f Cross-compiler options:

 � Build system derived toolchain:

Toolchain root location: /opt/yocto/fsl-community-bsp/
wandboard-quad

Sysroot location: /opt/yocto/fsl-community-bsp/wandboard-
quad/tmp/sysroots/wandboard-quad

There's more...
In order to perform debugging on a remote target, it needs to be running the tcf-agent 
daemon. It is included by default on the SDK images, but you can also include it in any other 
image by adding the following to your conf/local.conf file:

EXTRA_IMAGE_FEATURES += "eclipse-debug"
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See also
 f For more information, refer to the Yocto Project Application Developer's Guide at 

http://www.yoctoproject.org/docs/1.7.1/adt-manual/adt-manual.
html

Developing GTK+ applications
This recipe will show how to build, run, and debug a graphical GTK+ application using the 
Eclipse IDE.

Getting ready
1. Add the eclipse-debug feature to your project's conf/local.conf file as follows:

EXTRA_IMAGE_FEATURES += "eclipse-debug"

2. Build a core-image-sato target image as follows:
$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake core-image-sato

3. Build a core-image-sato toolchain as follows:
$ bitbake -c populate_sdk core-image-sato

4. Install the toolchain as follows:

$ cd tmp/deploy/sdk

$ ./poky-glibc-x86_64-core-image-sato-cortexa9hf-vfp-neon-  
  toolchain-1.7.1.sh

Before launching the Eclipse IDE, we can check whether we are able to build and launch a 
GTK application manually. We will build the following GTK+ hello world application:

The following is a code for gtk_hello_world.c:

#include <gtk/gtk.h>

int main(int argc, char *argv[])
{
  GtkWidget *window;
  gtk_init (&argc, &argv);
  window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
  gtk_widget_show (window);

http://www.yoctoproject.org/docs/1.7.1/adt-manual/adt-manual.html
http://www.yoctoproject.org/docs/1.7.1/adt-manual/adt-manual.html
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  gtk_main ();
  return 0;
}

To build it, we use the core-image-sato toolchain installed as described previously:

$ source /opt/poky/1.7.1/environment-setup-cortexa9hf-vfp-neon-poky-  
  linux-gnueabi

$ ${CC} gtk_hello_world.c -o helloworld `pkg-config --cflags --libs  
  gtk+-2.0`

This command uses the pkg-config helper tool to read the .pc files that are installed 
with the GTK libraries in the sysroot to determine which compiler switches (--cflags 
for include directories and --libs for the libraries to link with) are needed to compile 
programs that use GTK.

We can manually copy the resulting binary to our Wandboard while booting core-image-
sato over NFS and run it from the target's console with:

# DISPLAY=:0 helloworld

This will open a GTK+ window over the SATO desktop.

How to do it...
We can now configure the Eclipse ADT plugin using the standalone toolchain as described 
before, or we could decide to use the build system derived toolchain instead.
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Follow the next steps to build and run an example hello world application:

1. Create a new hello world GTK autotools project. Accept all the defaults in the project 
creation wizard. Browse to File | New | Project | C/C++ | C Project | Yocto Project 
ADT Autotools Project | Hello World GTK C Autotools Project.

When choosing a name for your project, avoid using special 
characters like dashes, as they could cause problems with 
the build tools.
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2. Build the project by going to Project | Build Project.

3. Even though the project builds successfully, you may see errors both marked in the 
source and in the Problems tab. This is because the Eclipse's code analysis feature 
cannot resolve all the project's symbols. To resolve it, add the needed include 
header files to your project's properties by going to Project | Properties | C/C++ 
General | Paths and Symbols | Includes.
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4. Under Run | Run Configurations, you should have C/C++ Remote Application with 
a TCF target called <project_name>_gdb_arm-poky-linux-gnueabi. If you 
don't, create one.
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5. Create a new TCF connection to the target's IP address using the New... button in  
the Main tab.

6. Fill in the Remote Absolute File Path for C/C++ Application field with the path to 
the binary and include the binary name; for example, /gtk_hello_world.

7. In the Commands to execute before application field, enter export DISPLAY=:0.
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8. Run the application and log in as root with an empty password. You should see the 
GTK application on your SATO desktop, and the following output in the Console tab:

If you have problems connecting to the target, verify that it is running 
tcf-agent by typing in the following on the target's console:
# ps w | grep tcf

735 root     11428 S    /usr/sbin/tcf-agent -d -L- 
-l0

If you have login problems, you can use Eclipse's Remote System 
Explorer (RSE) perspective to clear passwords and debug the 
connection to the target. Once the connection can be established 
and you are able to browse the target's filesystem through RSE, you 
can come back to the run configuration.
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There's more...
To debug the application, follow these steps:

1. Go to Run | Debug Configuration.

2. Under the Debugger tab, verify the GDB debugger path is the correct toolchain 
debugger location.
/opt/poky/1.7.1/sysroots/x86_64-pokysdk-linux/usr/bin/arm-  
  poky-linux-gnueabi/arm-poky-linux-gnueabi-gdb

If it isn't, point it to the correct location.

3. Double-click on the main function in the source file to add a breakpoint. A blue dot 
will appear on the side bar.

4. Click on the Debug button. The debug perspective appears with the application 
executing on the remote Wandboard hardware.
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If you get Text file busy error, remember to close the 
application we ran on the previous point.

Using the Qt Creator IDE
Qt Creator is a multiplatform IDE part of the Qt Application Development Framework SDK. It 
is the IDE of choice for Qt application development and is available with multiple licenses, 
including GPLv3, LGPLv2, and commercial licenses as well.

Getting ready
1. Download and install the Qt Creator 3.3.0 for your host from the Qt project downloads 

website. For downloading and installing an x86_64 Linux host, you can use the 
following commands:
$ wget  
  http://download.qt.io/official_releases/qtcreator/3.3/3.3.0/qt  
  -creator-opensource-linux-x86_64-3.3.0.run
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$ chmod u+x qt-creator-opensource-linux-x86_64-3.3.0.run

$ ./qt-creator-opensource-linux-x86_64-3.3.0.run

2. Build a toolchain that is ready to develop Qt applications with the following:
$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake meta-toolchain-qt

3. Install it as follows:

$ cd tmp/deploy/sdk

$ ./poky-glibc-x86_64-meta-toolchain-qt-cortexa9hf-vfp-neon-  
  toolchain-qt-1.7.1.sh

How to do it...
Before launching Qt Creator, we need to set up the development environment. To make this 
happen automatically when we launch Qt Creator, we can patch its initialization script by 
adding the following line right at the beginning of the bin/qtcreator.sh file:

source /opt/poky/1.7.1/environment-setup-cortexa9hf-vfp-neon-poky-  
  linux-gnueabi

#! /bin/sh

Note that the environment initialization script is placed before 
the hash bang.

Now we can run Qt Creator  as follows:

$ ./bin/qtcreator.sh &
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And configure it by going to Tools | Options and using the following steps:

1. First we configure a new device for our Wandboard. Under Devices | Add, we select 
Generic Linux Device.

Set the root password in the target by using the passwd command from the target's 
root console and type it in the password field.

2. Under Build & Run, we configure a new compiler pointing to the Yocto meta-
toolchain-qt compiler path we just installed. Here's the path as shown in the 
following screenshot:
/opt/poky/1.7.1/sysroots/x86_64-pokysdk-linux/usr/bin/arm-  
  poky-linux-gnueabi/arm-poky-linux-gnueabi-g++
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3. Similarly for a cross-debugger, the following is the path which is also mentioned in the 
following screenshot:
/opt/poky/1.7.1/sysroots/x86_64-pokysdk-linux/usr/bin/arm-  
  poky-linux-gnueabi/arm-poky-linux-gnueabi-gdb

4. And then we configure Qt by selecting the qmake builder from the toolchain. Here's 
the path which is also mentioned in the following screenshot:
/opt/poky/1.7.1/sysroots/x86_64-pokysdk-linux/usr/bin/qmake
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5. Finally we configure a new kit as follows:

1. Select Generic Linux Device and configure its sysroot to:
/opt/poky/1.7.1/sysroots/cortexa9hf-vfp-neon-poky-linux-  
  gnueabi/

2. Select the compiler, debugger, and Qt version we just defined.

In Ubuntu, Qt Creator stores its configuration on the user's home 
directory under .config/QtProject/.

Developing Qt applications
This recipe will show how to build, run, and debug a graphical Qt application using Qt Creator.

Getting ready
Before launching Qt Creator, we check whether we are able to build and launch a Qt 
application manually. We will build a Qt hello world application.
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Here is the code for qt_hello_world.cpp:

#include <QApplication>
#include <QPushButton>

 int main(int argc, char *argv[])
 {
     QApplication app(argc, argv);

     QPushButton hello("Hello world!");

     hello.show();
     return app.exec();
 }

To build it, we use the meta-toolchain-qt installed as described previously:

$ source /opt/poky/1.7.1/environment-setup-cortexa9hf-vfp-neon-poky-  
  linux-gnueabi

$ qmake -project

$ qmake

$ make

This uses qmake to create a project file and a Makefile file with all the relevant code files in 
the folder.

To run it, we first need to build a filesystem with Qt support. We first prepare the environment 
as follows:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

And configure our project with the qt4-pkgs extra feature by adding the following to conf/
local.conf:

EXTRA_IMAGE_FEATURES += "qt4-pkgs"

And for Qt applications, we also need the International Component for Unicode (ICU) library, 
as the Qt libraries are compiled with support for it.

IMAGE_INSTALL_append = " icu"

And build it with:

$ bitbake core-image-sato
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Once finished, we can program the microSD card image and boot the Wandboard. Copy the 
qt_hello_world binary to the target and run:

# DISPLAY=:0 qt_hello_world

You should see the Qt hello world window on the X11 desktop.

How to do it...
Follow these steps to build and run an example hello world application:

1. Create a new empty project by going to File | New File or Project | Other project | 
Empty qmake project.

2. Select only the wandboard-quad kit we just created.

3. Add a new C++ file, qt_hello_world.cpp, by going to File | New File or Project | 
C++ | C++ Source File.
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4. Paste the contents of the qt_hello_world.cpp file into Qt Creator, as shown in the 
following screenshot:

5. Configure your project with the target installation details by adding the following to 
your hw.pro file:
SOURCES += \
   qt_hello_world.cpp

TARGET =  qt_hello_world
   target.files =  qt_hello_world
   target.path = /

INSTALLS += target

Replace qt_hello_world with the name of your project.

6. Build the project. If you have build errors, verify that the Yocto build environment has 
been correctly set up.
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You can try to manually run the toolchain environment-setup 
script before launching Qt Creator.

7. Go to Projects | Run and check your project settings.

8. As can be seen in this screenshot, Qt Creator will use the SFTP protocol to transfer 
the files to the target. By default, the dropbear SSH server running on core-image-
sato does not have SFTP support. We need to add it to our image to allow Qt Creator 
to work by adding the openssh-sftp-server package to the project's conf/
local.conf file.
IMAGE_INSTALL_append =  " openssh-sftp-server"

However, there are other tools we will need, like the gdbserver if we want to debug 
our application, so it's easier to add the eclipse-debug feature, which will add all 
of the needed applications to the target image.

EXTRA_IMAGE_FEATURES += "eclipse-debug"
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9. You can now run the project.

If the application fails to be deployed with a login error, verify that you have 
set a root password in the target as explained in the recipe previously, or that 
you are using SSH key authentication.

You should now see the example Qt hello world application running on your SATO desktop.
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There's more...
To debug the application, toggle a breakpoint on the source and click on the Debug button.

Describing workflows for application 
development

The workflows for application development are similar to the ones we already saw for U-Boot 
and the Linux kernel back in Chapter 2, The BSP Layer.

How to do it...
We will see how the following development workflows are applied to application development:

 f External development

 f Working directory development

 f External source development
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How it works...

External development
This is what we have been using on the recipes we saw before when building from the 
command line using a standalone toolchain, and also when using both the Eclipse and Qt 
Creator IDEs. This workflow produces binaries that have to be individually copied to the 
hardware to run and debug. It can be used in conjunction with the other workflows.

Working directory development
When the application is being built by the Yocto build system, we use this workflow to debug 
sporadic problems. However, it is not the recommended workflow for long developments. Note, 
though, that it is usually the first step when debugging third-party packages.

We will use the helloworld_1.0.bb custom recipe we saw back in the Adding new 
packages recipe in Chapter 3, The Software Layer, meta-custom/recipes-example/
helloworld/helloworld_1.0.bb, as an example.

DESCRIPTION = "Simple helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM =  
  "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4  
  f302"

SRC_URI = "file://helloworld.c"

S = "${WORKDIR}"

do_compile() {
             ${CC} helloworld.c -o helloworld
}

do_install() {
             install -d ${D}${bindir}
             install -m 0755 helloworld ${D}${bindir}
}
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Here, the helloworld.c source file is the following:

#include <stdio.h>

int main(void)
{
   return printf("Hello World");
}

The workflow steps are:

1. Start the package compilation from scratch.
$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake -c cleanall helloworld

This will erase the package's build folder, shared state cache, and downloaded  
package source.

2. Start a development shell:
$ bitbake -c devshell helloworld

This will fetch, unpack, and patch the helloworld sources and spawn a new 
shell with the environment ready for compilation. The new shell will change to the 
package's build directory.

3. Depending on the SRC_URI variable, the package's build directory can be revision 
controlled already. If not, as is the case in this example, we will create a local Git 
repository as follows:
$ git init

$ git add helloworld.c

$ git commit -s -m "Original revision"

4. Perform the modifications we need; for example, change helloworld.c to print 
Howdy world as follows:
#include <stdio.h>

int main(void)
{
   return printf("Howdy World");
}
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5. Exit devshell and build the package without erasing our modifications.
$ bitbake -C compile helloworld

Note the capital C (which invokes the compile task) and also all 
the tasks that follow it.

6. Test your changes on the hardware by copying the generated package and installing 
it. Because you have only modified one package, the rest of the dependencies should 
be already installed in the running root filesystem. Run the following:
$ bitbake -e helloworld | grep ^WORKDIR=

WORKDIR="/opt/yocto/fsl-community-bsp/wandboard-  
  quad/tmp/work/cortexa9hf-vfp-neon-poky-linux-  
  gnueabi/helloworld/1.0-r0"

$ scp ${WORKDIR_PATH}/deploy-rpms/deploy-  
  rpms/cortexa9hf_vfp_neon/helloworld-1.0-  
  r0.cortexa9hf_vfp_neon.rpm root@<target_ip_address>:/

$ rpm -i /helloworld-1.0-r0.cortexa9hf_vfp_neon.rpm

This assumes the target's root filesystem has been built with the package-
management feature and the helloworld package is added to the RM_WORK_
EXCLUDE variable when using the rm_work class.

7. Go back to devshell and commit your change to the local Git repository as follows:
$ bitbake -c devshell helloworld

$ git add  helloworld.c

$ git commit -s -m "Change greeting message"

8. Generate a patch into the recipe's patch directory:
$ git format-patch -1 -o /opt/yocto/fsl-community-  
  bsp/sources/meta-custom/recipes-  
  example/helloworld/helloworld-1.0

9. Finally, add the patch to the recipe's SRC_URI variable, as shown here:

SRC_URI  =  "file://helloworld.c \
           file://0001-Change-greeting-message.patch"
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External source development
This workflow is recommended for development work once the application has been 
integrated into the Yocto build system. It can be used in conjunction with external 
development using an IDE, for example.

In the example recipe we saw earlier, the source file was placed on the meta-custom layer 
along with the metadata.

It is more common to have the recipe fetch directly from a revision control system 
like Git, so we will change the meta-custom/recipes-example/helloworld/
helloworld_1.0.bb file to source from a Git directory as follows:

DESCRIPTION = "Simple helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM =  
  "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4  
  f302"

SRC_URI = "git://github.com/yoctocookbook/helloworld"

S = "${WORKDIR}/git"

do_compile() {
             ${CC} helloworld.c -o helloworld
}

do_install() {
             install -d ${D}${bindir}
             install -m 0755 helloworld ${D}${bindir}
}

We can then clone it into a local directory as follows:

$ cd /opt/yocto/

$ git clone git://github.com/yoctocookbook/helloworld

An alternative to using a remote revision controlled repository it to use a local one. To do so, 
follow these steps:

1. Create a local Git repository that will hold the source:
$ mkdir -p /opt/yocto/helloworld

$ cd /opt/yocto/helloworld

$ git init
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2. Copy our helloworld.c file over here, and add it to the repository:
$ git add helloworld.c

3. Finally, commit it with a signature and a message:

$ git commit -s -m "Original revision"

In any case, we have the version-controlled source in a local directory. We will then configure 
our conf/local.conf file to work from it as follows:

INHERIT += "externalsrc"
EXTERNALSRC_pn-helloworld = "/opt/yocto/helloworld"
EXTERNALSRC_BUILD_pn-helloworld = "/opt/yocto/helloworld"

And build it with:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake helloworld

We can then work directly in the local folder without the risk of accidentally having BitBake 
erase our code. Once development is complete, the modifications to conf/local.conf are 
removed and the recipe will fetch the source from its original SRC_URI location.

Working with GNU make
GNU make is a make implementation for Linux systems. It is used by a wide variety of open 
source projects, including the Linux kernel. The build is managed by a Makefile, which tells 
make how to build the source code.

How to do it...
Yocto recipes inherit base.bbclass and hence their default behavior is to look for a 
Makefile, makefile, or GNU Makefile and use GNU make to build the package.

If your package already contains a Makefile, then all you need to worry about are the 
arguments that need to be passed to make. Make arguments can be passed using the 
EXTRA_OEMAKE variable, and a do_install override that calls the oe_runmake install 
needs to be provided, otherwise an empty install is run.

For example, the logrotate recipe is based on a Makefile and looks as follows:

SUMMARY = "Rotates, compresses, removes and mails system log  
  files"
SECTION = "console/utils"
HOMEPAGE = "https://fedorahosted.org/logrotate/"
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LICENSE = "GPLv2"

DEPENDS="coreutils popt"

LIC_FILES_CHKSUM =  
  "file://COPYING;md5=18810669f13b87348459e611d31ab760"

SRC_URI =  
  "https://fedorahosted.org/releases/l/o/logrotate/logrotate-  
  ${PV}.tar.gz \"
SRC_URI[md5sum] = "99e08503ef24c3e2e3ff74cc5f3be213"
SRC_URI[sha256sum] =  
  "f6ba691f40e30e640efa2752c1f9499a3f9738257660994de70a45fe00d12b64"

EXTRA_OEMAKE = ""

do_install(){
    oe_runmake install DESTDIR=${D} PREFIX=${D} MANDIR=${mandir}
    mkdir -p ${D}${sysconfdir}/logrotate.d
    mkdir -p ${D}${sysconfdir}/cron.daily
    mkdir -p ${D}${localstatedir}/lib
    install -p -m 644 examples/logrotate-default  
  ${D}${sysconfdir}/logrotate.conf
    install -p -m 755 examples/logrotate.cron  
  ${D}${sysconfdir}/cron.daily/logrotate
    touch ${D}${localstatedir}/lib/logrotate.status
}

See also
 f For more information about GNU make, visit https://www.gnu.org/software/

make/manual/

Working with the GNU build system
A Makefile is a good solution when you are always going to build and run your software on 
the same system, and things like glibc and gcc versions and the available library versions 
are known. However, most software need to be built and run in a variety of systems.

https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/
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Getting ready
The GNU build system, or autotools, is a set of tools whose aim is to create a Makefile for 
your software in a variety of systems. It's made up of three main tools:

 f autoconf: This parses the contents of a configure.ac file that describes the 
source code to be built and creates a configure script. This script will then be used 
to generate the final Makefile.

 f automake: This parses the contents of a Makefile.am file and converts it into a 
Makefile.in file. This is then used by the configure script generated earlier to 
obtain a config.status script that gets automatically executed to obtain the final 
Makefile.

 f libtools: This manages the creation of both static and dynamic libraries.

How to do it...
The Yocto build system contains classes with the required knowledge to build autotools 
packages. All your recipe needs to do is to inherit the autotools class and configure the 
arguments to be passed to the configure script in the EXTRA_OECONF variable. Usually, 
the autotools system understands how to install the software, so you do not need a do_
install override.

There is a wide variety of open source projects that use autotools as the build system.

An example, meta-custom/recipes-example/hello/hello_2.9.bb, that does not 
need any extra configure options, follows:

DESCRIPTION = "GNU helloworld autotools recipe"
SECTION = "examples"

LICENSE = "GPLv3"
LIC_FILES_CHKSUM = "file://${COREBASE}/meta/files/common-  
  licenses/GPL-3.0;md5=c79ff39f19dfec6d293b95dea7b07891"

SRC_URI = "${GNU_MIRROR}/hello/hello-${PV}.tar.gz"
SRC_URI[md5sum] = "67607d2616a0faaf5bc94c59dca7c3cb"
SRC_URI[sha256sum] = 
"ecbb7a2214196c57ff9340aa71458e1559abd38f6d8d169666846935df191ea7"

inherit autotools gettext
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See also
 f For more information about the GNU build system, visit http://www.gnu.org/

software/automake/manual/html_node/GNU-Build-System.html

Working with the CMake build system
The GNU make system is a great tool when you build exclusively for Linux systems. However, 
some packages are multiplatform and need a way to manage Makefile files on different 
operating systems. CMake is a cross-platform build system that can work not only with GNU 
make, but also Microsoft Visual Studio and Apple's Xcode.

Getting ready
The CMake tool parses the CMakeLists.txt files in every directory to control the build 
process. An example CMakeLists.txt file to compile the hello world example follows:

cmake_minimum_required(VERSION 2.8.10)
project(helloworld)
add_executable(helloworld helloworld.c)
install(TARGETS helloworld RUNTIME DESTINATION bin)

How to do it...
The Yocto build system also contains classes with the required knowledge to build CMake 
packages. All your recipe needs to do is to inherit the cmake class and configure the 
arguments to be passed to the configure script in the EXTRA_OECMAKE variable. Usually, 
the CMake system understands how to install the software, so you do not need a do_
install override.

A recipe to build the helloworld.C example application, meta-custom/recipes-
example/helloworld-cmake/helloworld-cmake_1.0.bb, follows:

DESCRIPTION = "Simple helloworld cmake application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b
cf8506ecda2f7b4  
  f302"

SRC_URI = "file://CMakeLists.txt \
           file://helloworld.c"

http://www.gnu.org/software/automake/manual/html_node/GNU-Build-System.html
http://www.gnu.org/software/automake/manual/html_node/GNU-Build-System.html
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S = "${WORKDIR}"

inherit cmake

EXTRA_OECMAKE = ""

See also
 f For more information about CMake, visit http://www.cmake.org/

documentation/

Working with the SCons builder
SCons is also a multiplatform build system written in Python, with its configuration files  
also written in the same language. It also includes support for Microsoft Visual Studio  
among other features.

Getting ready
SCons parses the SConstruct files, and by default it does not propagate the environment 
into the build system. This is to avoid build issues caused by environment differences.  
This is a complication for Yocto, as it configures the environment with the cross-compilation 
toolchain settings.

SCons does not define a standard way to support cross-compilation, so every project will 
implement it differently. For a simple example as the hello world program, we can just initialize 
the CC and PATH variables from the external environment as follows:

import os
env = Environment(CC = os.environ['CC'],
                  ENV = {'PATH': os.environ['PATH']})
env.Program("helloworld", "helloworld.c")

How to do it...
The Yocto build system also contains classes with the required knowledge to build SCons 
packages. All your recipe needs to do is to inherit the SCons class and configure the 
arguments to be passed to the configure script in the EXTRA_OESCONS variable. Although 
some packages using SCons might deal with installation through an install alias as required 
by the SCons class, your recipe will mostly need to provide a do_install task override.

http://www.cmake.org/documentation/
http://www.cmake.org/documentation/
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An example recipe to build the helloworld.c example application, meta-custom/
recipes-example/helloworld-scons/helloworld-scons_1.0.bb, follows:

DESCRIPTION = "Simple helloworld scons application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b
cf8506ecda2f7b4  
  f302"

SRC_URI = "file://SConstruct \
           file://helloworld.c"

S = "${WORKDIR}"

inherit scons

EXTRA_OESCONS = ""

do_install() {
    install -d ${D}/${bindir}
    install -m 0755 helloworld ${D}${bindir}
}

See also
 f For more information about SCons, visit http://www.scons.org/doc/HTML/

scons-user/

Developing with libraries
Most applications make use of shared libraries, which saves system memory and disk space, 
as they are shared between different applications. Modularizing code into libraries also allows 
for easier versioning and code management.

This recipe will explain how to work with both static and shared libraries in Linux and Yocto.

Getting ready
By convention, library files start with the lib prefix.

http://www.scons.org/doc/HTML/scons-user/
http://www.scons.org/doc/HTML/scons-user/
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There are basically two library types:

 f Static libraries (.a): When the object code is linked and becomes part of the 
application

 f Dynamic libraries (.so): Linked at compile time but not included in the application, 
so they need to be available at runtime. Multiple applications can share a dynamic 
library so they need less disk space.

Libraries are placed in the following standard root filesystem locations:

 f /lib: Libraries required for startup

 f /usr/lib: Most system libraries

 f /usr/local/lib: Non-system libraries

Dynamic libraries follow certain naming conventions on running systems so that multiple 
versions can co-exist, so a library can be referenced by different names. Some of them are 
explained as follows:

 f The linker name with the .so suffix; for example, libexample.so.

 f The fully qualified name or soname, a symbolic link to the library name. For example, 
libexample.so.x, where x is the version number. Increasing the version number 
means the library is not compatible with previous versions.

 f The real name. For example, libexample.so.x.y[.z], where x is the major 
version number, y is the minor version number, and the optional z is a release 
number. Increasing minor or release numbers retains compatibility.

In GNU glibc, starting an ELF binary calls a program loader, /lib/ld-linux-X. Here, X is 
the version number, which finds all the needed shared libraries. This process uses a couple of 
interesting files:

 f /etc/ld.so.conf: This stores the directories searched by the loader

 f /etc/ld.so.preload: This is used to override libraries

The ldconfig tool reads the ld.so.conf file and creates a cache file (/etc/ld.so.
cache) to increase access speed.

The following environment variables can also be helpful:

 f LD_LIBRARY_PATH: This is a colon-separated directory list to search libraries in. It is 
used when debugging or using non-standard library locations.

 f LD_PRELOAD: This is used to override shared libraries.



Chapter 4

187

Building a static library
We will build a static library, libhelloworld, from two source files, hello.c and world.c, 
and use it to build a hello world application. The source files for the library are presented here.

The following is the code for the hello.c file:

char * hello (void)
{
  return "Hello";
}

This is the code for world.c file:

char * world (void)
{
  return "World";
}

To build the library, follow these steps:

1. Configure the build environment:
$ source /opt/poky/1.7.1/environment-setup-cortexa9hf-vfp-  
  neon-poky-linux-gnueabi

2. Compile and link the library:
${CC} -c hello.c world.c

${AR} -cvq libhelloworld.a hello.o world.o

3. Verify the contents of the library:
${AR} -t libhelloworld.a

The application source code is presented next.

 f For the helloworld.c file the following is the code:
#include <stdio.h>
int main (void)
{
  return printf("%s %s\n",hello(),world());
}

 f To build it we run:
${CC} -o helloworld helloworld.c libhelloworld.a
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 f We can check which libraries it links with using readelf:

$ readelf -d helloworld

Dynamic section at offset 0x534 contains 24 entries:

  Tag        Type                         Name/Value

 0x00000001 (NEEDED)                     Shared library:  
  [libc.so.6]

Building a shared dynamic library
To build a dynamic library from the same sources, we would run:

${CC} -fPIC -g -c hello.c world.c

${CC} -shared -Wl,-soname,libhelloworld.so.1 -o libhelloworld.so.1.0  
  hello.o world.o

We can then use it to build our helloworld C application, as follows:

${CC} helloworld.c libhelloworld.so.1.0 -o helloworld

And again, we can check the dynamic libraries using readelf, as follows:

$ readelf -d helloworld

Dynamic section at offset 0x6ec contains 25 entries:

  Tag        Type                         Name/Value

 0x00000001 (NEEDED)                     Shared library:  
  [libhelloworld.so.1]

 0x00000001 (NEEDED)                     Shared library: [libc.so.6]

How to do it...
An example recipe for the static library example we just saw follows, meta-custom/
recipes-example/libhelloworld-static/libhelloworldstatic_1.0.bb:

DESCRIPTION = "Simple helloworld example static library"
SECTION = "libs"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b
cf8506ecda2f7b4  
  f302"

SRC_URI = "file://hello.c \
           file://world.c \
           file://helloworld.pc"
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S = "${WORKDIR}"

do_compile() {
        ${CC} -c hello.c world.c
        ${AR} -cvq libhelloworld.a hello.o world.o
}

do_install() {
        install -d ${D}${libdir}
        install -m 0755 libhelloworld.a ${D}${libdir}
}

By default, the configuration in meta/conf/bitbake.conf places all static libraries in a 
-staticdev package. It is also placed in the sysroot so that it can be used.

For a dynamic library, we would use the following recipe, meta-custom/recipes-
example/libhelloworld-dyn/libhelloworlddyn_1.0.bb:

meta-custom/recipes-example/libhelloworld-dyn/libhelloworlddyn_1.0.bb
DESCRIPTION = "Simple helloworld example dynamic library"
SECTION = "libs"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b
cf8506ecda2f7b4  
  f302"

SRC_URI = "file://hello.c \
           file://world.c \
           file://helloworld.pc"

S = "${WORKDIR}"

do_compile() {
       ${CC} -fPIC -g -c hello.c world.c
       ${CC} -shared -Wl,-soname,libhelloworld.so.1 -o  
  libhelloworld.so.1.0 hello.o world.o
}

do_install() {
       install -d ${D}${libdir}
       install -m 0755 libhelloworld.so.1.0 ${D}${libdir}
       ln -s libhelloworld.so.1.0  
  ${D}/${libdir}/libhelloworld.so.1
       ln -s libhelloworld.so.1 ${D}/${libdir}/libhelloworld.so
}
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Usually we would list the library dependencies (if any) in the RDEPENDS variable, but this is 
not always needed as the build system performs some automatic dependency checking by 
inspecting both the library file and the pkg-config file and adding the dependencies it finds 
to RDEPENDS automatically.

Multiple versions of the same library can co-exist on the running system. For that, you need 
to provide different recipes with the same package name but different package revision. For 
example, we would have libhelloworld-1.0.bb and libhelloworld-1.1.bb.

And to build an application using the static library, we would create a recipe in meta-custom/
recipes-example/helloworld-static/helloworldstatic_1.0.bb, as follows:

DESCRIPTION = "Simple helloworld example"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b
cf8506ecda2f7b4  
  f302"

DEPENDS = "libhelloworld-static"

SRC_URI = "file://helloworld.c"

S = "${WORKDIR}"

do_compile() {
        ${CC} -o helloworld helloworld.c  
  ${STAGING_LIBDIR}/libhelloworld.a
}

do_install() {
        install -d ${D}${bindir}
        install -m 0755 helloworld ${D}${bindir}
}

To build using the dynamic library, we would just need to change the recipe in meta-custom/
recipes-example/helloworld-shared/helloworldshared_1.0.bb to meta-
custom/recipes-example/helloworld-shared/helloworldshared_1.0.bb:

meta-custom/recipes-example/helloworld-shared/helloworldshared_1.0.bb
DESCRIPTION = "Simple helloworld example"
SECTION = "examples"
LICENSE = "MIT"
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LIC_FILES_CHKSUM =  
  "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4  
  f302"

DEPENDS = "libhelloworld-dyn"

SRC_URI = "file://helloworld.c"

S = "${WORKDIR}"

do_compile() {
        ${CC} -o helloworld helloworld.c -lhelloworld
}

do_install() {
        install -d ${D}${bindir}
        install -m 0755 helloworld ${D}${bindir}
}

How it works...
Libraries should provide the information required to use them, such as include headers  
and library dependencies. The Yocto Project provides two ways for libraries to provide  
build settings:

 f The binconfig class. This is a legacy class used for libraries that provide a 
-config script to provide build settings.

 f The pkgconfig class. This is the recommended method for libraries to provide build 
settings.

A pkg-config build settings file has the .pc suffix, is distributed with the library, and is 
installed in a common location known to the pkg-config tool.

The helloworld.pc file for the dynamic library looks as follows:

prefix=/usr/local
exec_prefix=${prefix}
includedir=${prefix}/include
libdir=${exec_prefix}/lib

Name: helloworld
Description: The helloworld library
Version: 1.0.0
Cflags: -I${includedir}/helloworld
Libs: -L${libdir} -lhelloworld
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However, for the static library, we would change the last line to:

Libs: -L${libdir} libhelloworld.a

A package wanting to use this .pc file would inherit the pkgconfig class.

There's more...
There's a provision for packages that build both a library and an executable but do not want 
both of them installed together. By inheriting the lib_package class, the package will create 
a separate -bin package with the executables.

See also
 f More details regarding pkg-config can be found at http://www.freedesktop.

org/wiki/Software/pkg-config/

Working with the Linux framebuffer
The Linux kernel provides an abstraction for the graphical hardware in the form of framebuffer 
devices. These allow applications to access the graphics hardware through a well-defined API. 
The framebuffer is also used to provide a graphical console to the Linux kernel, so that it can, 
for example, display colors and a logo.

In this recipe, we will explore how applications can use the Linux framebuffer to display 
graphics and video.

Getting ready
Some applications, especially in embedded devices, are able to access the framebuffer by 
mapping the memory and accessing it directly. For example, the gstreamer framework is 
able to work directly over the framebuffer, as is the Qt graphical framework.

Qt is a cross-platform application framework written in C++ and developed both by Digia, 
under the Qt company name, and the open source Qt project community.

For Qt applications, Poky provides a qt4e-demo-image and the FSL community BSP 
provides a qte-in-use-image, both of which include support for Qt4 Extended over the 
framebuffer. The provided framework also includes support for hardware acceleration – not 
only video but also 2D and 3D graphical acceleration provided through the OpenGL and 
OpenVG APIs.

http://www.freedesktop.org/wiki/Software/pkg-config/
http://www.freedesktop.org/wiki/Software/pkg-config/
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How to do it...
To compile the Qt hello world application we saw in the Developing Qt applications recipe 
earlier, we could use the following meta-custom/recipes-qt/qt-helloworld/qt-
helloworld_1.0.bb Yocto recipe:

DESCRIPTION = "Simple QT helloworld example"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM =  
  "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4  
  f302"

RDEPENDS_${PN} += "icu"

SRC_URI = "file://qt_hello_world.cpp \
           file://qt_hello_world.pro"

S = "${WORKDIR}"

inherit qt4e

do_install() {
         install -d ${D}${bindir}
         install -m 0755 qt_hello_world ${D}${bindir}
}

Here the meta-custom/recipes-qt/qt-helloworld/qt-helloworld-1.0/qt_
hello_world.cpp source file is as follows:

#include <QApplication>
#include <QPushButton>

 int main(int argc, char *argv[])
 {
     QApplication app(argc, argv);

     QPushButton hello("Hello world!");

     hello.show();
     return app.exec();
 }
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And the meta-custom/recipes-qt/qt-helloworld/qt-helloworld-1.0/qt_
hello_world.pro project file is as follows:

SOURCES += \
   qt_hello_world.cpp

Then we add it to the image by using the following in your project's conf/local.conf file:

IMAGE_INSTALL_append = " qt-helloworld"

And we build the image with:

$ bitbake qt4e-demo-image

We can then program the SD card image, boot it, log in to the Wandboard, and launch the 
application by running:

# qt_hello_world -qws

The -qws command-line option is needed to run the server application.

How it works...
The framebuffer devices are located under /dev. The default framebuffer device is  
/dev/fb0, and if the graphics hardware provides more than one, they will be  
sequentially numbered.

By default, the Wandboard boots with two framebuffer devices, fb0 and fb1. The first is the 
default video display, and the second one is an overlay plane that can be used to combine 
content on the display.

However, the i.MX6 SoC supports up to four displays, so it could have up to four framebuffer 
devices in addition to two overlay framebuffers.

You can change the default framebuffer used by applications with the FRAMEBUFFER 
environment variable. For example, if your hardware supports several framebuffers, you could 
use the second one by running:

# export FRAMEBUFFER=/dev/fb1

The framebuffer devices are memory mapped and you can perform file operations on them. 
For example, you can clear the contents of the screen by running:

# cat /dev/zero > /dev/fb0
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Or copy it with:

# cat /dev/fb0 > fb.raw

You may even restore the contents with:

# cat fb.raw > /dev/fb0

User space programs can also interrogate the framebuffers or modify their configuration 
programmatically using ioctls, or from the console by using the fbset application, which is 
included in Yocto's core images as a BusyBox applet.

# fbset -fb /dev/fb0

mode "1920x1080-60"

        # D: 148.500 MHz, H: 67.500 kHz, V: 60.000 Hz

        geometry 1920 1080 1920 1080 24

        timings 6734 148 88 36 4 44 5

        accel false

        rgba 8/16,8/8,8/0,0/0

endmode

You can configure the framebuffer HDMI device with a specific resolution, bits per pixel, 
and refresh rate by passing the video command-line option from the U-Boot bootloader to 
the Linux kernel. The specific format depends on the device framebuffer driver, and for the 
Wandboard it is as follows:

video=mxcfbn:dev=hdmi,<xres>x<yres>M[@rate]

Where:

 f n is the framebuffer number

 f xres is the horizontal resolution

 f yres is the vertical resolution

 f M specifies that the timings are to be calculated using the VESA coordinated video 
timings instead of from a look-up table

 f rate is the refresh rate

For example, for the fb0 framebuffer, you could use:

video=mxcfb0:dev=hdmi,1920x1080M@60

Note that after some time of inactivity, the virtual console will blank out. 
To unblank the display, use:

# echo 0 > /sys/class/graphics/fb0/blank
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There's more...
The FSL community BSP layer also provides a fsl-image-multimedia target image 
that includes the gstreamer framework, including plugins that make use of the hardware 
acceleration features within the i.MX6 SoC. A fsl-image-multimedia-full image is also 
provided, which extends the supported gstreamer plugins.

To build the fsl-image-multimedia image with framebuffer support, you need to remove 
the graphical distribution features by adding the following to your conf/local.conf file:

DISTRO_FEATURES_remove = "x11 directfb wayland"

And build the image with:

$ bitbake fsl-image-multimedia

The resulting fsl-image-multimedia-wandboard-quad.sdcard image at tmp/
deploy/images can be programmed into a microSD card and booted.

The default Wandboard device tree defines an mxcfb1 node as follows:

       mxcfb1: fb@0 {
                compatible = "fsl,mxc_sdc_fb";
                disp_dev = "hdmi";
                interface_pix_fmt = "RGB24";
                mode_str ="1920x1080M@60";
                default_bpp = <24>;
                int_clk = <0>;
                late_init = <0>;
        };

So, connecting a 1920x1080 HDMI monitor should show a virtual terminal with the  
Poky login prompt.

We can then use the gstreamer command-line tool, gst-launch, to construct gstreamer 
pipelines. For example, to view a hardware-accelerated video over the framebuffer, you can 
download the Big Bunny teaser full HD video file and play it over the framebuffer using the 
gstreamer framework's gst-launch command-line tool as follows:

# cd /home/root

# wget  
  http://video.blendertestbuilds.de/download.blender.org/peach/trailer_  
  1080p.mov

# gst-launch playbin2 uri=file:///home/root/trailer_1080p.mov
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The video will use Freescale's h.264 video decoder plugin, vpudec, which makes use of the 
hardware video processing unit inside the i.MX6 SoC to decode the h.264 video.

You can see a list of the available i.MX6-specific plugins by running:

# gst-inspect | grep imx

h264.imx:  mfw_h264decoder: h264 video decoder

audiopeq.imx:  mfw_audio_pp: audio post equalizer

aiur.imx: webm: webm

aiur.imx:  aiurdemux: aiur universal demuxer

mpeg2dec.imx:  mfw_mpeg2decoder: mpeg2 video decoder

tvsrc.imx:  tvsrc: v4l2 based tv src

ipucsc.imx:  mfw_ipucsc: IPU-based video converter

mpeg4dec.imx:  mfw_mpeg4aspdecoder: mpeg4 video decoder

vpu.imx:  vpudec: VPU-based video decoder

vpu.imx:  vpuenc: VPU-based video encoder

mp3enc.imx:  mfw_mp3encoder: mp3 audio encoder

beep.imx: ac3: ac3

beep.imx: 3ca: ac3

beep.imx:  beepdec: beep audio decoder

beep.imx:  beepdec.vorbis: Vorbis decoder

beep.imx:  beepdec.mp3: MP3 decoder

beep.imx:  beepdec.aac: AAC LC decoder

isink.imx:  mfw_isink: IPU-based video sink

v4lsink.imx:  mfw_v4lsink: v4l2 video sink

v4lsrc.imx:  mfw_v4lsrc: v4l2 based camera src

amrdec.imx:  mfw_amrdecoder: amr audio decoder

See also
 f The framebuffer API is documented in the Linux kernel documentation at https://

www.kernel.org/doc/Documentation/fb/api.txt

 f For more information regarding Qt for Embedded Linux, refer to http://qt-
project.org/doc/qt-4.8/qt-embedded-linux.html

 f Documentation for the gstreamer 0.10 framework can be found at http://
www.freedesktop.org/software/gstreamer-sdk/data/docs/2012.5/
gstreamer-0.10/

https://www.kernel.org/doc/Documentation/fb/api.txt
https://www.kernel.org/doc/Documentation/fb/api.txt
http://qt-project.org/doc/qt-4.8/qt-embedded-linux.html
http://qt-project.org/doc/qt-4.8/qt-embedded-linux.html
http://www.freedesktop.org/software/gstreamer-sdk/data/docs/2012.5/gstreamer-0.10/ 
http://www.freedesktop.org/software/gstreamer-sdk/data/docs/2012.5/gstreamer-0.10/ 
http://www.freedesktop.org/software/gstreamer-sdk/data/docs/2012.5/gstreamer-0.10/ 
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Using the X Windows system
The X Windows system provides the framework for a GUI environment – things like drawing 
and moving windows on the display and interacting with input devices like the mouse, the 
keyboard, and touchscreens. The protocol version has been X11 for over two decades, so it 
also known as X11.

Getting ready
The reference implementation for the X Windows system is the X.Org server, which is 
released under permissive licenses such as MIT. It uses a client/server model, with the server 
communicating with several client programs, serving user input, and accepting graphical 
output. The X11 protocol is network transparent so that the clients and the server may run on 
different machines, with different architectures and operating systems. However, mostly, they 
both run on the same machine and communicate using local sockets.

User interface specifications, such as buttons or menu styles, are not defined in X11, which 
leaves it to other window manager applications that are usually part of desktop environments, 
such as Gnome or KDE.

X11 has input and video drivers to handle the hardware. For example, it has a framebuffer 
driver, fbdev, that can output to a non-accelerated Linux framebuffer, and evdev, a generic 
Linux input device driver with support for mice, keyboards, tablets, and touchscreens.

The design of the X11 Windows systems makes it heavy for embedded devices, and although 
a powerful device like the quad-core i.MX6 has no trouble using it, many embedded devices 
choose other graphical alternatives. However, there are many graphical applications, mostly 
from the desktop environment, that run over the X11 Windows system.

The FSL community BSP layer provides a hardware-accelerated X video driver for the i.MX6 
SoC, xf86-video-imxfb-vivante, which is included in the X11-based core-image-
sato target image and other graphical images.

The X server is configured by an /etc/X11/xorg.conf file that configures the accelerated 
device as follows:

Section "Device"
    Identifier  "i.MX Accelerated Framebuffer Device"
    Driver      "vivante"
    Option      "fbdev"     "/dev/fb0"
    Option      "vivante_fbdev" "/dev/fb0"
    Option      "HWcursor"  "false"
EndSection

The graphical acceleration is provided by the Vivante GPUs included in the i.MX6 SoC.
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Low-level X11 development is not recommended, and toolkits such as GTK+ and Qt are 
preferred. We will see how to integrate both types of graphical applications into our Yocto 
target image.

How to do it...
SATO is the default visual style for the Poky distribution based on Gnome Mobile and 
Embedded (GMAE). It is a desktop environment based on GTK+ that uses the matchbox-
window-manager. It has the peculiarity of showing one single fullscreen window at a time.

To build the GTK hello world application, meta-custom/recipes-graphics/gtk-
helloworld/gtk-helloworld-1.0/gtk_hello_world.c, that we introduced earlier,  
as follows:

#include <gtk/gtk.h>

int main(int argc, char *argv[])
{
    GtkWidget *window;
    gtk_init (&argc, &argv);
    window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
    gtk_widget_show (window);
    gtk_main ();
    return 0;
}

We can use the following meta-custom/recipes-graphics/gtk-helloworld/gtk-
helloworld_1.0.bb recipe:

DESCRIPTION = "Simple GTK helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b
cf8506ecda2f7b4  
  f302"

SRC_URI = "file://gtk_hello_world.c"

S = "${WORKDIR}"

DEPENDS = "gtk+"

inherit pkgconfig

do_compile() {
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    ${CC} gtk_hello_world.c -o helloworld `pkg-config --cflags --  
  libs gtk+-2.0`
}

do_install() {
    install -d ${D}${bindir}
    install -m 0755 helloworld ${D}${bindir}
}

We can then add the package to the core-image-sato image by using:

IMAGE_INSTALL_append = " gtk-helloworld"

And we can build it, program it, and run the application from the serial terminal with:

# export DISPLAY=:0

# helloworld

There's more...
Accelerated graphical output is also supported on the Qt framework, either directly on the 
framebuffer (like in the qt4e-demo-image target we saw before) or using the X11 server 
available in core-image-sato.

To build the Qt hello world source we introduced in the previous recipe but over X11, we  
can use the meta-custom/recipes-qt/qtx11-helloworld/qtx11-
helloworld_1.0.bb Yocto recipe shown as follows::

DESCRIPTION = "Simple QT over X11 helloworld example"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b
cf8506ecda2f7b4  
  f302"

RDEPENDS_${PN} += "icu"

SRC_URI = "file://qt_hello_world.cpp \
           file://qt_hello_world.pro"

S = "${WORKDIR}"

inherit qt4x11

do_install() {
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         install -d ${D}${bindir}
         install -m 0755 qt_hello_world ${D}${bindir}
}

We then need to add the Qt4 framework to the target image as well as the application.

EXTRA_IMAGE_FEATURES += "qt4-pkgs"
IMAGE_INSTALL_append = " qtx11-helloworld"

We can then build core-image-sato using the following command:

$ bitbake core-image-sato

Program and boot our target. Then run the application with:

# export DISPLAY=:0

# qt_hello_world

See also
 f More information on the X.Org server can be found at http://www.x.org

 f The Qt application framework documentation can be found at https://qt-
project.org/

 f More information and documentation about GTK+ can be found at http://www.
gtk.org/

Using Wayland
Wayland is a display server protocol that is intended to replace the X Window system, and it is 
licensed under the MIT license.

This recipe will provide an overview of Wayland, including some key differences with the X 
Window system, and will show how to make use of it in Yocto.

Getting ready
The Wayland protocol follows a client/server model in which clients are the graphical 
applications requesting the display of pixel buffers on the screen, and the server, or 
compositor, is the service provider that controls the display of these buffers.

The Wayland compositor can be a Linux display server, an X application, or a special Wayland 
client. Weston is the reference Wayland compositor in the Wayland project. It is written in C 
and works with the Linux kernel APIs. It relies on evdev for the handling of input events.

http://www.x.org
https://qt-project.org/
https://qt-project.org/
http://www.gtk.org/
http://www.gtk.org/
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Wayland uses Direct Rendering Manager (DRM) in the Linux kernel and does not need 
something like an X server. The client renders the window contents to a buffer shared with the 
compositor by itself, using a rendering library, or an engine like Qt or GTK+.

Wayland lacks the network transparency features of X, but it is likely that similar functionality 
will be added in the future.

It also has better security features than X and is designed to provide confidentiality and 
integrity. Wayland does not allow applications to look at the input of other programs, capture 
other input events, or generate fake input events. It also makes a better job out of protecting 
the Window outputs. However, this also means that it currently offers no way to provide 
some of the features we are used to in desktop X systems like screen capturing, or features 
common in accessibility programs.

Being lighter than X.Org and more secure, Wayland is better suited to use with embedded 
systems. If needed, X.Org can run as a client of Wayland for backwards compatibility.

However, Wayland is not as established as X11, and the Wayland-based images in Poky do not 
receive as much community attention as the X11-based ones.

How to do it...
Poky offers a core-image-weston image that includes the Weston compositor.

Modifying our GTK hello world example from the Using the X Windows system recipe to use 
GTK3 and run it with Weston is straightforward.

DESCRIPTION = "Simple GTK3 helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b
cf8506ecda2f7b4  
  f302"

SRC_URI = "file://gtk_hello_world.c"

S = "${WORKDIR}"

DEPENDS = "gtk+3"

inherit pkgconfig

do_compile() {
    ${CC} gtk_hello_world.c -o helloworld `pkg-config --cflags --  
  libs gtk+-3.0`
}



Chapter 4

203

do_install() {
    install -d ${D}${bindir}
    install -m 0755 helloworld ${D}${bindir}
}

To build it, configure your conf/local.conf file by removing the x11 distribution feature  
as follows:

DISTRO_FEATURES_remove = "x11"

You will need to build from scratch by removing both the tmp 
and sstate-cache directories when changing the DISTRO_
FEATURES variable.

Add the application to the image with:

IMAGE_INSTALL_append = " gtk3-helloworld"

And build the image with:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake core-image-weston

Once the build finishes, you will find the microSD card image ready to be programmed under 
tmp/deploy/images/wandboard-quad.

You can then launch the application by running:

# export XDG_RUNTIME_DIR=/var/run/user/root

# helloworld

There's more...
The FSL community BSP release supports hardware-accelerated graphics in Wayland using 
the Vivante GPU included in the i.MX6 SoC.

This means that applications like gstreamer will be able to offer hardware-accelerated 
output when running with the Weston compositor.

Wayland support can also be found in graphical toolkits like Clutter and GTK3+.
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See also
 f You can find more information about Wayland on the project's web page at http://

wayland.freedesktop.org/

Adding Python applications
In Yocto 1.7, Poky has support for building both Python 2 and Python 3 applications,  
and includes a small set of Python development tools in the meta/recipes-devtools/
python directory.

A wider variety of Python applications are available in the meta-python layer included as 
part of meta-openembedded, which you can add to your conf/bblayers.conf file if  
you want to.

Getting ready
The standard tool for packaging Python modules is distutils, which is included for both 
Python 2 and Python 3. Poky includes the distutils class (distutils3 in Python 3), 
which is used to build Python packages that use distutils. An example recipe in meta-
python that uses the distutils class is meta-python/recipes-devtools/python/
python-pyusb_1.0.0a2.bb. 

SUMMARY = "PyUSB provides USB access on the Python language"
HOMEPAGE = "http://pyusb.sourceforge.net/"
SECTION = "devel/python"
LICENSE = "BSD"
LIC_FILES_CHKSUM =  
  "file://LICENSE;md5=a53a9c39efcfb812e2464af14afab013"
DEPENDS = "libusb1"
PR = "r1"

SRC_URI = "\
    ${SOURCEFORGE_MIRROR}/pyusb/${SRCNAME}-${PV}.tar.gz \
"
SRC_URI[md5sum] = "9136b3dc019272c62a5b6d4eb624f89f"
SRC_URI[sha256sum] =  
  "dacbf7d568c0bb09a974d56da66d165351f1ba3c4d5169ab5b734266623e1736"

SRCNAME = "pyusb"
S = "${WORKDIR}/${SRCNAME}-${PV}"

inherit distutils

http://wayland.freedesktop.org/
http://wayland.freedesktop.org/
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However, distutils does not install package dependencies, allow package uninstallation, 
or allow us to install several versions of the same package, so it is only recommended 
for simple requirements. Hence, setuptools was developed to extend on distutils. 
It is not included in the standard Python libraries, but it is available in Poky. There is also 
a setuptools class in Poky (setuptools3 for Python 3) that is used to build Python 
packages distributed with setuptools.

How to do it...
To build a Python hello world example application with setuptools, we would use a Yocto 
meta-custom/recipes-python/python-helloworld/pythonhelloworld_1.0.bb 
recipe as follows:

DESCRIPTION = "Simple Python setuptools hello world application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM =  
  "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4  
  f302"

SRC_URI = "file://setup.py \
      file://python-helloworld.py \
      file://helloworld/__init__.py \
              file://helloworld/main.py"

S = "${WORKDIR}"

inherit setuptools

do_install_append () {
    install -d ${D}${bindir}
    install -m 0755 python-helloworld.py ${D}${bindir}
}
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To create an example hello world package, we create the directory structure shown in the 
following screenshot:

Here is the code for the same directory structure:

$ mkdir -p meta-custom/recipes-python/python-helloworld/python-  
  helloworld-1.0/helloworld/

$ touch meta-custom/recipes-python/python-helloworld/python-  
  helloworld-1.0/helloworld/__init__.py

And create the following meta-custom/recipes-python/python-helloworld/
python-helloworld-1.0/setup.py Python setup file:

import sys
from setuptools import setup

setup(
    name = "helloworld",
    version = "0.1",
    packages=["helloworld"],
    author="Alex Gonzalez",
    author_email = "alex@example.com",
    description = "Hello World packaging example",
    license = "MIT",
    keywords= "example",
    url = "",
)

As well as the meta-custom/recipes-python/python-helloworld/python-
helloworld-1.0/helloworld/main.py python file:

import sys

def main(argv=None):
    if argv is None:
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        argv = sys.argv
    print "Hello world!"
    return 0

And a meta-custom/recipes-python/python-helloworld/python-
helloworld-1.0/python-helloworld.py test script that makes use of the module:

#!/usr/bin/env python
import sys
import helloworld.main

if __name__ == '__main__':
       sys.exit(helloworld.main.main())

We can then add it to our image with:

IMAGE_INSTALL_append = " python-helloworld"

And build it using:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake core-image-minimal

Once programmed and booted, we can test the module by running the example script:

# /usr/bin/python-helloworld.py

Hello world!

There's more...
In meta-python, you can also find the python-pip recipe that will add the pip utility to 
your target image. It can be used to install packages from the Python Package Index (PyPI).

You can add it to your image with:

IMAGE_INSTALL_append  = " python-pip python-distribute"

You will need to add the meta-openembedded/meta-python layer to your conf/
bblayers.conf file in order to build your image, and also the python-distribute 
dependency, which is needed by python-pip. Then you can build for the core-image-
minimal image with:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake core-image-minimal
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Once installed, you can use it from the target as follows:

# pip search <package_name>

# pip install <package_name>

Integrating the Oracle Java Runtime 
Environment

Oracle provides two specialized Java editions for embedded development:

 f Java SE embedded: This is a large subset of the desktop version of the standard 
Java SE. It contains optimizations with respect to the standard edition, like size and 
memory usage, to adapt it to the needs of mid-sized embedded devices.

 f Java Micro Edition (ME): This is targeted at headless low- and mid-range devices, 
and is a subset of Java SE complying with the Connected Limited Device 
Configuration (CLDC), and including some extra features and tools for the embedded 
market. Oracle offers a couple of reference implementations, but Java ME will have to 
be individually integrated from source into specific platforms.

We will focus on Java SE embedded, which can be downloaded in binary format from the 
Oracle download site.

Java SE embedded is commercially licensed and requires royalty payments for embedded 
deployments.

Getting ready
Yocto has a meta-oracle-java layer that is meant to help in the integration of the  
official Oracle Java Runtime Environment (JRE) Version 7. However, installation without  
user intervention is not possible, as the Oracle's web page requires login and the acceptance 
of its license.

In Java SE embedded Version 7, Oracle offered both soft and hard floating point versions of 
headless and headful JREs for ARMv6/v7, and a headless version JRE for soft floating point 
user spaces for ARMv5. Java SE embedded version 7 provides two different Java Virtual 
Machines (JVMs) for ARM Linux:

 f A client JVM optimized for responsiveness

 f A server JVM identical to the client JVM but optimized for long-running applications
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At the time of writing, the meta-oracle-java layer only has a recipe for the headless 
hard floating-point version with the client JVM. We will add recipes for the latest Java 7 SE 
embedded, which is update 75, for both headless and headful hard floating point JREs, which 
are appropriate to run on an i.MX6-based board like wandboard-quad.

How to do it...
To install the Java SE embedded runtime environment, first we need to clone the meta-
oracle-java layer into our sources directory and add it to our conf/bblayers.conf  
file as follows:

$ cd /opt/yocto/fsl-community-bsp/sources

$ git clone git://git.yoctoproject.org/meta-oracle-java

Then we need to explicitly accept the Oracle Java license by adding the following to our conf/
local.conf file:

LICENSE_FLAGS_WHITELIST += "oracle_java"

We want to build the newest update available, so we add the following meta-custom/
recipes-devtools/oracle-java/oracle-jse-ejre-arm-vfphflt-client-
headless_1.7.0.bb recipe to our meta-custom layer:

SUMMARY = "Oracle Java SE runtime environment binaries"

JDK_JRE = "ejre"
require recipes-devtools/oracle-java/oracle-jse.inc

PV_UPDATE = "75"
BUILD_NUMBER = "13"

LIC_FILES_CHKSUM = "\
       file://${WORKDIR}/${JDK_JRE}${PV}_${PV_UPDATE}/
COPYRIGHT;md5=0b204  
  bd2921accd6ef4a02f9c0001823 \
       file://${WORKDIR}/${JDK_JRE}${PV}_${PV_UPDATE}/
THIRDPARTYLICENSERE  
  ADME.txt;md5=f3a388961d24b8b72d412a079a878cdb \
       "

SRC_URI =  
  "http://download.oracle.com/otn/java/ejre/7u${PV_UPDATE}-  
  b${BUILD_NUMBER}/ejre-7u${PV_UPDATE}-fcs-b${BUILD_NUMBER}-linux-  
  arm-vfp-hflt-client_headless-18_dec_2014.tar.gz"
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SRC_URI[md5sum] = "759ca6735d77778a573465b1e84b16ec"
SRC_URI[sha256sum] = 
"ebb6499c62fc12e1471cff7431fec5407ace59477abd0f48347bf6e89c6bff3b"

RPROVIDES_${PN} += "java2-runtime"

Try to build the recipe with the following:

$ bitbake oracle-jse-ejre-arm-vfp-hflt-client-headless

You will see that we get a checksum mismatch. This is caused by the license acceptance step 
in Oracle's website. To get around this, we will need to manually download the file into the 
downloads directory as specified in our project's DL_DIR configuration variable.

Then we can add the JRE to our target image:

IMAGE_INSTALL_append = " oracle-jse-ejre-arm-vfp-hflt-client-  
  headless"

And build it with:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake core-image-minimal

We can now log in to the target and run it with:

# /usr/bin/java -version

java version "1.7.0_75"

Java(TM) SE Embedded Runtime Environment (build 1.7.0_75-b13,  
  headless)

Java HotSpot(TM) Embedded Client VM (build 24.75-b04, mixed mode)

We can also build the headful version using the following meta-custom/recipes-
devtools/oracle-java/oracle-jse-ejre-arm-vfphflt-client-
headful_1.7.0.bb recipe:

SUMMARY = "Oracle Java SE runtime environment binaries"

JDK_JRE = "ejre"
require recipes-devtools/oracle-java/oracle-jse.inc

PV_UPDATE = "75"
BUILD_NUMBER = "13"

LIC_FILES_CHKSUM = "\
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       file://${WORKDIR}/${JDK_JRE}${PV}_${PV_UPDATE}/
COPYRIGHT;md5=0b204  
  bd2921accd6ef4a02f9c0001823 \
       file://${WORKDIR}/${JDK_JRE}${PV}_${PV_UPDATE}/
THIRDPARTYLICENSERE  
  ADME.txt;md5=f3a388961d24b8b72d412a079a878cdb \
       "

SRC_URI =  
  "http://download.oracle.com/otn/java/ejre/7u${PV_UPDATE}-  
  b${BUILD_NUMBER}/ejre-7u${PV_UPDATE}-fcs-b${BUILD_NUMBER}-linux-  
  arm-vfp-hflt-client_headful-18_dec_2014.tar.gz"

SRC_URI[md5sum] = "84dba4ffb47285b18e6382de2991edfc"
SRC_URI[sha256sum] = 
"5738ffb8ce2582b6d7b39a3cbe16137d205961224899f8380eebe3922bae5c61"

RPROVIDES_${PN} += "java2-runtime"

And add it to the target image with:

IMAGE_INSTALL_append =  " oracle-jse-ejre-arm-vfp-hflt-client-  
  headful"

And build core-image-sato with:

$ cd cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake core-image-sato

In this case, the reported Java version is:

# /usr/bin/java -version

java version "1.7.0_75"

Java(TM) SE Embedded Runtime Environment (build 1.7.0_75-b13)

Java HotSpot(TM) Embedded Client VM (build 24.75-b04, mixed mode)

There's more...
The latest release at the time of this writing is Java SE embedded Version 8 update 33 (8u33).

Oracle offers the download of the JDK only, and a host tool, jrecreate, needs to be used to 
configure and create an appropriate JRE from the JDK. The tool allows us to choose between 
different JVMs (minimal, client, and server) as well as soft or hard floating point ABIs, 
extensions like JavaFX, locales, and several other tweakings to the JVM.
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Oracle Java SE embedded Version 8 provides support for headful X11 development using 
Swing, AWT, and JavaFX only for ARMv7 hard floating point user spaces, and includes  
support for JavaFX (the graphical framework aimed to replace Swing and AWT) on the 
Freescale i.MX6 processor.

There is no Yocto recipe to integrate Java Version 8 at the time of this writing.

Integrating the Open Java Development Kit
The open source alternative to the Oracle Java SE embedded is the Open Java Development 
Kit (OpenJDK), an open source implementation of Java SE licensed under the GPLv2, with the 
classpath exception, which means that applications are allowed to link without being bound 
by the GPL license.

This recipe will show how to build OpenJDK with Yocto and integrate the JRE into our  
target images.

Getting ready
The main components of OpenJDK are:

 f The HotSpot Java Virtual Machine

 f The Java Class Library (JCL)

 f The Java compiler, javac

Initially, OpenJDK needed to be built using a proprietary JDK. However, the IcedTea project 
allowed us to build OpenJDK using the GNU classpath, the GNU compiler for Java (GCJ), 
and bootstrap a JDK to build OpenJDK. It also complements OpenJDK with some missing 
components available on Java SE like a web browser plugin and web start implementations.

Yocto can build meta-java using the meta-java layer, which includes recipes for cross-
compiling OpenJDK using IcedTea.

You can download OpenJDK from its Git repository at http://git.yoctoproject.org/
cgit/cgit.cgi/meta-java/.

Development discussions can be followed and contributed to by visiting the development 
mailing list at http://lists.openembedded.org/mailman/listinfo/
openembedded-devel.

The meta-java layer also includes recipes for a wide variety of Java libraries and VMs, and 
tools for application development like ant and fastjar.

http://git.yoctoproject.org/cgit/cgit.cgi/meta-java/
http://git.yoctoproject.org/cgit/cgit.cgi/meta-java/
http://lists.openembedded.org/mailman/listinfo/openembedded-devel
http://lists.openembedded.org/mailman/listinfo/openembedded-devel
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How to do it...
To build OpenJDK 7, you need to clone the meta-java layer as follows:

$ cd /opt/yocto/fsl-community-bsp/sources/

$ git clone http://git.yoctoproject.org/cgit/cgit.cgi/meta-java/

At the time of this writing, there is no 1.7 Dizzy branch yet, so we will work directly from the 
master branch.

Add the layer to your conf/bblayers.conf file:

+ ${BSPDIR}/sources/meta-java \
 "

And configure the project by adding the following to your conf/local.conf file:

PREFERRED_PROVIDER_virtual/java-initial = "cacao-initial"
PREFERRED_PROVIDER_virtual/java-native = "jamvm-native"
PREFERRED_PROVIDER_virtual/javac-native = "ecj-bootstrap-native"
PREFERRED_VERSION_openjdk-7-jre = "25b30-2.3.12"
PREFERRED_VERSION_icedtea7-native = "2.1.3"

You can then add the OpenJDK package to your image with:

IMAGE_INSTALL_append = " openjdk-7-jre"

And build the image of your choice:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake core-image-sato

When you run the target image, you will get the following Java version:

# java -version

java version "1.7.0_25"

OpenJDK Runtime Environment (IcedTea 2.3.12) (25b30-2.3.12)

OpenJDK Zero VM (build 23.7-b01, mixed mode)
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How it works...
To test the JVM, we can byte-compile a Java class on our host and copy it to the target to 
execute it. For instance, we can use the following simple HelloWorld.java example:

class HelloWorld {
  public static void main(String[] args) {
    System.out.println("Hello World!");
  }
}

To byte-compile it in the host, we need to have a Java SDK installed. To install a Java SDK in 
Ubuntu, just run:

$ sudo apt-get install openjdk-7-jdk

To byte-compile the example, we execute:

$ javac HelloWorld.java

To run it, we copy the HelloWorld.class to the target, and from the same folder we run:

# java HelloWorld

There's more...
When using OpenJDK on a production system, it is recommended to always use the latest 
available release, which contains bug and security fixes. At the time of this writing, the latest 
OpenJDK 7 release is update 71 (jdk7u71b14), buildable with IcedTea 2.5.3, so the meta-
java recipes should be updated.

See also
 f Up-to-date information regarding openJDK can be obtained at http://openjdk.

java.net/

Integrating Java applications
The meta-java layer also offers helper classes to ease the integration of Java libraries and 
applications into Yocto. In this recipe, we will see an example of building a Java library using 
the provided classes.

http://openjdk.java.net/
http://openjdk.java.net/
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Getting ready
The meta-java layer provides two main classes to help with the integration of Java 
applications and libraries:

 f The Java bbclass: This provides the default target directories and some auxiliary 
functions, namely:

 � oe_jarinstall: This installs and symlinks a JAR file

 � oe_makeclasspath: This generates a classpath string from JAR filenames

 � oe_java_simple_wrapper: This wraps your Java application in a shell 
script

 f The java-library bbclass: This inherits the Java bbclass and extends it to create and 
install JAR files.

How to do it...
We will use the following meta-custom/recipes-java/java-helloworld/java-
helloworld-1.0/HelloWorldSwing.java graphical Swing hello world as an example:

import javax.swing.JFrame;
import javax.swing.JLabel;

public class HelloWorldSwing {
    private static void createAndShowGUI() {
        JFrame frame = new JFrame("Hello World!");
        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

        JLabel label = new JLabel("Hello World!");
        frame.getContentPane().add(label);

        frame.pack();
        frame.setVisible(true);
    }

    public static void main(String[] args) {
        javax.swing.SwingUtilities.invokeLater(new Runnable() {
            public void run() {
                createAndShowGUI();
            }
        });
    }
}
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To integrate this HelloWorldSwing application, we can use a Yocto meta-custom/
recipes-java/java-helloworld/java-helloworld_1.0.bb recipe as follows:

DESCRIPTION = "Simple Java Swing hello world application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b
cf8506ecda2f7b4  
  f302"

RDEPENDS_${PN} = "java2-runtime"

SRC_URI = "file://HelloWorldSwing.java"

S = "${WORKDIR}"

inherit java-library

do_compile() {
        mkdir -p build
        javac -d build `find . -name "*.java"`
        fastjar cf ${JARFILENAME} -C build .
}

BBCLASSEXTEND = "native"

The recipe is also buildable for the host native architecture. We can do this either by providing 
a separate java-helloworld-native recipe that inherits the native class or by using 
the BBCLASSEXTEND variable as we did earlier. In both cases, we could then use the _
class-native and _class-target overrides to differentiate between native and target 
functionality.

Even though Java is byte-compiled and the compiled class will be the same for both, it still 
makes sense to add the native support explicitly.

How it works...
The java-library class will create a library package with the name lib<package>-java.

To add it to a target image, we would use:

IMAGE_INSTALL_append = " libjava-helloworld-java"
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We can then decide whether we want to run the application with the Oracle JRE or OpenJDK. 
For OpenJDK, we will add the following packages to our image:

IMAGE_INSTALL_append = " openjdk-7-jre openjdk-7-common"

And for the Oracle JRE, we will use the following:

IMAGE_INSTALL_append = " oracle-jse-ejre-arm-vfp-hflt-client-  
  headful"

The available JREs do not currently run over the framebuffer or Wayland, so we will use an 
X11-based graphical image like core-image-sato:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake core-image-sato

We can then boot it, log in to the target, and execute the example with OpenJDK by running:

# export DISPLAY=:0

# java -cp /usr/share/java/java-helloworld.jar HelloWorldSwing

There's more...
At the time of this writing, OpenJDK as built from the meta-java layer master branch is not 
able to run X11 applications and will fail with this exception:

Exception in thread "main" java.awt.AWTError: Toolkit not found:  
  sun.awt.X11.XToolkit
        at java.awt.Toolkit$2.run(Toolkit.java:875)
        at java.security.AccessController.doPrivileged(Native  
  Method)
        at java.awt.Toolkit.getDefaultToolkit(Toolkit.java:860)
        at java.awt.Toolkit.getEventQueue(Toolkit.java:1730)
        at java.awt.EventQueue.invokeLater(EventQueue.java:1217)
        at javax.swing.SwingUtilities.invokeLater(SwingUtilities.
java:1287)
        at HelloWorldSwing.main(HelloWorldSwing.java:17)
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However, the precompiled Oracle JRE runs the application without issues with:

# export DISPLAY=:0

# /usr/bin/java -cp /usr/share/java/java-helloworld.jar  
  HelloWorldSwing

If you see build errors when building packages with the Oracle JRE, try using 
a different package format, for example, IPK, by adding the following to your 
conf/local.conf configuration file:
PACKAGE_CLASSES = "package_ipk"

This is due to dependency problems in the meta-oracle-java layer with 
the RPM package manager, as explained in the layer's README file.
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5
Debugging, Tracing,  

and Profiling

In this chapter, we will cover the following recipes:

 f Analyzing core dumps

 f Native GDB debugging

 f Cross GDB debugging

 f Using strace for application debugging

 f Using the kernel's performance counters

 f Using static kernel tracing

 f Using dynamic kernel tracing

 f Using dynamic kernel events

 f Exploring Yocto's tracing and profiling tools

 f Tracing and profiling with perf

 f Using SystemTap

 f Using OProfile

 f Using LTTng

 f Using blktrace
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Introduction
Debugging an embedded Linux product is a common task not only during development, but 
also in deployed production systems.

Application debugging in embedded Linux is different from debugging in a traditional 
embedded device in that we don't have a flat memory model with an operating system and 
applications sharing the same address space. Instead, we have a virtual memory model with 
the Linux operating system, sharing the address space and assigning virtual memory areas to 
running processes.

With this model, the mechanisms used for kernel and user space debugging differ. For 
example, the traditional model of using a JTAG-based hardware debugger is useful for kernel 
debugging, but unless it knows about the user space processes memory mapping, it will not 
be able to debug user space applications.

Application debugging is approached with the use of a user space debugger service. We have 
seen an example of this methodology in action with the TCF agent used in the Eclipse GDB. 
The other commonly used agent is the gdbserver, which we will use in this chapter.

Finally we will explore the area of tracing and profiling. Tracing is a low-level logging of 
frequent system events, and the statistical analysis of these captured traces is called profiling.

We will use some of the tools embedded Linux and Yocto offer to trace and profile our systems 
so that they run to their maximum potential.

Analyzing core dumps
Even after extensive quality assurance testing, embedded systems in-field also fail and need 
to be debugged. Moreover, often the failure is not something that can be easily reproduced in 
a laboratory environment, so we are left with production, often hardened system, to debug.

Assuming we have designed our system with the aforementioned scenario in mind, our first 
debugging choice is usually to extract as much information about the failing system—for 
example, by obtaining and analyzing a core dump of the misbehaving processes.

Getting ready
In the process of debugging embedded Linux systems, we can use the same toolbox as 
standard Linux systems. One of the tools enables applications to generate into the disk a 
memory core dump upon crashing. This assumes that we have enough disk space to store the 
application's entire memory map, and that writing to disk is quick enough that it will not drag 
the system to a halt.
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Once the memory core dump is generated, we use the host's GDB to analyze the core dump. 
GDB needs to have debug information available. Debug information can be in the executable 
itself—for example, when we install the -dbg version of a package, or we configure our 
project to not strip binaries—or can be kept in a separate file. To install debug information 
separately from the executable, we use the dbg-pkgs feature. By default, this installs the 
debug information of a package in a .debug directory in the same location as the executable 
itself. To add debug information for all packages in a target image, we add the following to our 
conf/local.conf configuration file:

EXTRA_IMAGE_FEATURES += "dbg-pkgs"

We can then build an appropriate toolchain generated to match our filesystem, as we saw 
in the Preparing and using an SDK recipe in Chapter 4, Application Development. The core 
dump contains build IDs for the executables and libraries in use at the time of the crash, so 
it's important to match the toolchain and the target image.

How to do it...
We can display the limits of the system-wide resources with the ulimit tool. We are 
interested in the core file size, which by default is set to zero to avoid the creation of 
application core dumps. In our failing system, preferably in a test environment, make your 
application dump a memory core upon crashing with:

$ ulimit -c unlimited

You can then verify the change with:

$ ulimit -a

-f: file size (blocks)             unlimited

-t: cpu time (seconds)             unlimited

-d: data seg size (kb)             unlimited

-s: stack size (kb)                8192

-c: core file size (blocks)        unlimited

-m: resident set size (kb)         unlimited

-l: locked memory (kb)             64

-p: processes                      5489

-n: file descriptors               1024

-v: address space (kb)             unlimited

-w: locks                          unlimited

-e: scheduling priority            0

-r: real-time priority             0
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For this example, we will be using the wvdial application in a real segmentation fault 
scenario. The purpose is not to debug the application itself but to showcase the methodology 
used for core dump analysis; so, details regarding the application-specific configuration and 
system setup are not provided. However, being a real crash, the example is more illustrative.

To run wvdial on the target, use the following code:

# wvdial
--> WvDial: Internet dialer version 1.61
--> Initializing modem.
--> Sending: ATZ
ATZ
OK
--> Sending: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
OK
--> Sending: AT+CGDCONT=1,"IP","internet"
AT+CGDCONT=1,"IP","internet"
OK
--> Modem initialized.
--> Idle Seconds = 3000, disabling automatic reconnect.
Segmentation fault (core dumped)

The application will create a core file in the same folder, which you can then copy to your host 
system to analyze.

You can also simulate a core dump by sending a SIGQUIT signal to a 
running process. For example, you could force the sleep command to 
core dump with a  SIGQUIT signal as follows:
 $ ulimit -c unlimited

 $ sleep 30 &

 $ kill -QUIT <sleep-pid>

How it works...
Once in possession of the core dump, use the cross GDB in the host to load it and get some 
useful information, such as the backtrace, using the following steps:

1. First set up the environment in the host:
$ cd /opt/poky/1.7.1/

$ source environment-setup-cortexa9hf-vfp-neon-poky-linux-  
  gnueabi
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2. You can then start the cross GDB debugger, passing it a debug version of the 
application. Debug versions are stored in the sysroot file in the same location as 
the unstripped binary, but under a .debug directory.

The whole GDB banner is showed below but will be omitted in future examples.

$ arm-poky-linux-gnueabi-gdb /opt/yocto/fsl-community-  
  bsp/wandboard-quad/tmp/work/cortexa9hf-vfp-neon-poky-linux-  
  gnueabi/wvdial/1.61-r0/packages-split/wvdial-  
  dbg/usr/bin/.debug/wvdial core
GNU gdb (GDB) 7.7.1
Copyright (C) 2014 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/
licenses/gpl.html>
This is free software: you are free to change and redistribute  
  it.
There is NO WARRANTY, to the extent permitted by law.  Type  
  "show copying"
and "show warranty" for details.
This GDB was configured as "--host=x86_64-pokysdk-linux --  
  target=arm-poky-linux-gnueabi".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online  
  at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to  
  "word"...
Reading symbols from /opt/yocto/fsl-community-bsp/wandboard-  
  quad/tmp/work/cortexa9hf-vfp-neon-poky-linux-  
  gnueabi/wvdial/1.61-r0/packages-split/wvdial-  
  dbg/usr/bin/.debug/wvdial...done.
[New LWP 1050]

warning: Could not load shared library symbols for 14  
  libraries, e.g. /usr/lib/libwvstreams.so.4.6.
Use the "info sharedlibrary" command to see the complete  
  listing.
Do you need "set solib-search-path" or "set sysroot"?
Core was generated by `wvdial'.
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Program terminated with signal SIGSEGV, Segmentation fault.
#0  0x76d524c4 in ?? ()

3. Now point GDB to the location of the toolchain's sysroot:
(gdb) set sysroot /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi/
Reading symbols from /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi/usr/lib/libwvstreams.so.4.6...Reading 
symbols from  
  /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-neon-poky-linux-  
  gnueabi/usr/lib/.debug/libwvstreams.so.4.6...done.
done.
Loaded symbols for /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi/usr/lib/libwvstreams.so.4.6
Reading symbols from /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi/usr/lib/libwvutils.so.4.6...Reading  
  symbols from /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-neon-  
  poky-linux-gnueabi/usr/lib/.debug/libwvutils.so.4.6...done.
done.
[...]
Loaded symbols for /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi/lib/libdl.so.2

4. You can now inquire GDB for the application's backtrace as follows:

(gdb) bt
#0  0x76d524c4 in WvTaskMan::_stackmaster () at  
  utils/wvtask.cc:416
#1  0x00000000 in ?? ()

See also
 f The usage documentation for GDB found at http://www.gnu.org/software/

gdb/documentation/

Native GDB debugging
On devices as powerful as the Wandboard, native debugging is also an option to debug 
sporadic failures. This recipe will explore the native debugging method.

http://www.gnu.org/software/gdb/documentation/
http://www.gnu.org/software/gdb/documentation/
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Getting ready
For native development and debugging, Yocto offers the -dev and -sdk target images. To 
add developing tools to the -dev images, we can use the tools-sdk feature. We also want 
to install debug information and debug tools, and we do this by adding the dbg-pkgs and 
tools-debug features to our image. For example, for core-image-minimal-dev, we 
would add the following to our conf/local.conf file:

EXTRA_IMAGE_FEATURES += "tools-sdk dbg-pkgs tools-debug"

To prepare a development-ready version of the core-image-minimal-dev target image, we 
would execute the following commands:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake core-image-minimal-dev

We will then program the development image to our target.

How to do it...
Once the target has booted, you can start the wvdial application through the native GDB 
using the following steps:

1. In the target command prompt, start the GDB debugger with the application as 
argument:
$ gdb wvdial

2. Now instruct GDB to run the application:
(gdb) run
Starting program: /usr/bin/wvdial
Cannot access memory at address 0x0
Cannot access memory at address 0x0

Program received signal SIGILL, Illegal instruction.
0x7698afe8 in ?? () from /lib/libcrypto.so.1.0.0
(gdb) sharedlibrary libcrypto
Symbols already loaded for /lib/libcrypto.so.1.0.0
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3. Then request to print a backtrace:
(gdb) bt
#0  0x7698afe8 in ?? () from /lib/libcrypto.so.1.0.0
#1  0x769878e8 in OPENSSL_cpuid_setup () from /lib/libcrypto.
so.1.0.0
#2  0x76fe715c in ?? () from /lib/ld-linux-armhf.so.3
Cannot access memory at address 0x48535540

This is not the same backtrace you got when analyzing the core dump. What is going 
on here? The clue is on libcrypto, part of the OpenSSL library. OpenSSL probes the 
capabilities of the system by trying each capability and trapping the illegal instruction 
errors. So the SIGILL signal you are seeing during startup is normal and you should 
instruct GDB to continue.

4. Instruct GDB to continue:

(gdb) c
Continuing.
--> WvDial: Internet dialer version 1.61
--> Initializing modem.
--> Sending: ATZ
ATZ
OK
--> Sending: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
OK
--> Sending: AT+CGDCONT=1,"IP","internet"
AT+CGDCONT=1,"IP","internet"
OK
--> Modem initialized.
--> Idle Seconds = 3000, disabling automatic reconnect.

Program received signal SIGSEGV, Segmentation fault.
0x76db74c4 in WvTaskMan::_stackmaster() () from /usr/lib/
libwvbase.so.4.6

This result is now compatible with the core dump you saw in the previous recipe.
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There's more...
When debugging applications, it is sometimes useful to reduce the level of optimization used 
by the compiler. This will reduce the application's performance but will facilitate debugging 
by improving the accuracy of the debug information. You can configure the build system to 
reduce optimization and add debug information by adding the following line of code to your 
conf/local.conf file:

DEBUG_BUILD = "1"

By using this configuration, the optimization is reduced from FULL_OPTIMIZATION (-O2) 
to DEBUG_OPTIMIZATION (-O -fno-omit-frame-pointer). But sometimes this is not 
enough, and you may like to build with no optimization. You can achieve this by overriding the 
DEBUG_OPTIMIZATION variable either globally or for a specific recipe.

See also
 f The example on using a debug-optimized build in the upcoming recipe on  

Cross GDB debugging

Cross GDB debugging
When we run a cross compiled GDB in the host, which connects to a native gdbserver running 
on the target, it is referred to as cross debugging. This is the same scenario we saw in the 
Using the Eclipse IDE recipe earlier, except that Eclipse uses the Target Communications 
Framework (TCF). Cross debugging has the advantage of not needing debug information on 
target images, as they are already available in the host.

This recipe will show how to use a cross GDB and gdbserver.

Getting ready
To include gdbserver in your target image, you can use an -sdk image, or you can add the 
tools-debug feature to your image by adding the following to your conf/local.conf 
configuration file:

EXTRA_IMAGE_FEATURES += "tools-debug"

So that GDB can access debug information of the shared libraries and executables, add the 
following to the conf/local.conf file:

EXTRA_IMAGE_FEATURES += "dbg-pkgs"
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The images running on the target and the toolchain's sysroot need to match. For example, if 
you are using core-image-minimal images, the toolchain needs to have been generated in 
the same project with:

$ bitbake -c populate_sdk core-image-minimal

This will generate a sysroot containing debug information for binaries and libraries.

How to do it...
Once the toolchain is installed, you can run the application to be debugged on the target using 
gdbserver—in this case, wvdial—in the following steps:

1. Launch gdbserver with the application to run as argument:
# gdbserver localhost:1234 /usr/bin/wvdial

Process wvdial created; pid = 879

Listening on port 1234

The gdbserver is launched listening on localhost on a random 1234 port and is 
waiting for a connection from the remote GDB.

2. In the host, you can now set up the environment using the recently installed 
toolchain:
$ cd /opt/poky/1.7.1/

$ source environment-setup-cortexa9hf-vfp-neon-poky-linux-  
  gnueabi

You can then launch the cross GDB, passing to it the absolute path to the debug 
version of the application to debug, which is located in a .debug directory on the 
sysroot:

$ arm-poky-linux-gnueabi-gdb  
  /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-neon-poky-linux-  
  gnueabi/usr/bin/.debug/wvdial

Reading symbols from /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi/usr/bin/.debug/wvdial...done.

(gdb)

3. Next configure GDB to consider all files as trusted so that it auto loads whatever it 
needs:
(gdb) set auto-load safe-path /
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4. Also as you know, wvdial will generate a SIGILL signal that will interrupt our 
debugging session, instruct GDB not to stop when that signal is seen:
(gdb) handle SIGILL nostop

5. You can then connect to the remote target on the 1234 port with:
(gdb) target remote <target_ip>:1234
Remote debugging using 192.168.128.6:1234
Cannot access memory at address 0x0
0x76fd7b00 in ?? ()

6. The first thing to do is to set sysroot so that GDB is able to find dynamically loaded 
libraries:
(gdb) set sysroot /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi
Reading symbols from /opt/poky/1.7.1/sysroots/cortexa9hf-  
  vfp-neon-poky-linux-gnueabi/lib/ld-linux-  
  armhf.so.3...done.
Loaded symbols for /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi/lib/ld-linux-armhf.so.3

7. Type c to continue with the program's execution. You will see wvdial continuing on 
the target:
--> WvDial: Internet dialer version 1.61

--> Initializing modem.

--> Sending: ATZ

ATZ

OK

--> Sending: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0

ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0

OK

--> Sending: AT+CGDCONT=1,"IP","internet"

AT+CGDCONT=1,"IP","internet"

OK

--> Modem initialized.

--> Idle Seconds = 3000, disabling automatic reconnect.
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8. You will then see GDB intercepting a SIGILL and SEGSEGV signal on the host:
Program received signal SIGILL, Illegal instruction.

Program received signal SIGSEGV, Segmentation fault.
0x76dc14c4 in WvTaskMan::_stackmaster () at  
  utils/wvtask.cc:416
416     utils/wvtask.cc: No such file or directory.

9. You can now ask to see a backtrace:

(gdb) bt
#0  0x76dc14c4 in WvTaskMan::_stackmaster () at  
  utils/wvtask.cc:416
#1  0x00000000 in ?? ()

Although limited, this backtrace could still be useful to debug the application.

How it works...
We see a limited backtrace because the compiled binaries are not suitable for debugging, as 
they omit stack frames. To keep information on stack frames, add the following to the conf/
local.conf configuration file:

DEBUG_BUILD = "1"

This changes the compilation flags to debug optimization as follows:

DEBUG_OPTIMIZATION = "-O -fno-omit-frame-pointer ${DEBUG_FLAGS} -  
  pipe"

The -fno-omit-frame-pointer flag will tell gcc to keep stack frames. The compiler will 
also reduce the optimization level to provide a better debugging experience.

A debug build will also make it possible to trace variables and set breakpoints and 
watchpoints, as well as other common debugging features.

After building and installing the target images and toolchain again, you can now follow the 
same process as in the preceding recipe:

1. Use the following code for connecting to the remote target:
(gdb) target remote <target_ip>:1234
Remote debugging using 192.168.128.6:1234
warning: Unable to find dynamic linker breakpoint function.
GDB will be unable to debug shared library initializers
and track explicitly loaded dynamic code.
Cannot access memory at address 0x0
0x76fdd800 in ?? ()
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Set the sysroot as follows:
(gdb) set sysroot /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi
Reading symbols from /opt/poky/1.7.1/sysroots/cortexa9hf-  
  vfp-neon-poky-linux-gnueabi/lib/ld-linux-  
  armhf.so.3...done.
Loaded symbols for /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi/lib/ld-linux-armhf.so.3

2. Once you are done with the setup, instruct the program to continue as follows:

(gdb) c
Continuing.

Program received signal SIGILL, Illegal instruction.

Program received signal SIGABRT, Aborted.
0x76b28bb4 in __GI_raise (sig=sig@entry=6) at  
  ../sysdeps/unix/sysv/linux/raise.c:55
55      ../sysdeps/unix/sysv/linux/raise.c: No such file or  
  directory.
(gdb) bt
#0  0x76b28bb4 in __GI_raise (sig=sig@entry=6) at  
  ../sysdeps/unix/sysv/linux/raise.c:55
#1  0x76b2cabc in __GI_abort () at abort.c:89
#2  0x76decfa8 in __assert_fail (__assertion=0x76df4600  
  "magic_number == -0x123678",
    __file=0x1 <error: Cannot access memory at address  
  0x1>, __line=427,
    __function=0x76df4584  
  <WvTaskMan::_stackmaster()::__PRETTY_FUNCTION__> "static  
  void WvTaskMan::_stackmaster()")
    at utils/wvcrashbase.cc:98
#3  0x76dc58c8 in WvTaskMan::_stackmaster () at  
  utils/wvtask.cc:427
Cannot access memory at address 0x123678
#4  0x00033690 in ?? ()
Cannot access memory at address 0x123678
Backtrace stopped: previous frame identical to this frame  
  (corrupt stack?)

You can now see a complete backtrace.
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Using strace for application debugging
Debugging does not always involve working with source code. Sometimes it is a change in an 
external factor that is causing the problem.

Strace is a tool that is useful for scenarios where we are looking for problems outside of the 
binary itself; for example configuration files, input data, and kernel interfaces. This recipe will 
explain how to use it.

Getting ready
To include strace in your system, add the following to your conf/local.conf file:

IMAGE_INSTALL_append = " strace"

Strace is also part of the tools-debug image feature, so you can also add it with:

EXTRA_IMAGE_FEATURES += "tools-debug"

Strace is also included in the -sdk images.

Before starting, we will also include pgrep, a process utility that will make our debugging 
easier by looking up process IDs by name. To do so, add the following to your conf/local.
conf configuration file:

IMAGE_INSTALL_append = " procps"

How to do it...
When printing a system call, strace prints the values passed to the kernel or returned from the 
kernel. The verbose option prints more details for some system calls.

For example, filtering just the sendto() system calls from a single ping looks as follows:

# strace -f -t -e sendto /bin/bash -c "ping -c 1 127.0.0.1"

5240  17:18:04 sendto(0,  
  "\10\0;\220x\24\0\0\225m\256\355\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\  
  0\0"..., 64, 0, {sa_family=AF_INET, sin_port=htons(0),  
  sin_addr=inet_addr("127.0.0.1")}, 28) = 64

How it works...
Strace allows the monitoring of system calls of running processes into the Linux kernel. It uses 
the ptrace() system call to do so. This means that other programs that use ptrace(), 
such as gdb, will not run simultaneously.
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Strace is a disruptive monitoring tool, and the process being monitored will slow down and 
create many more context switches. A generic way of running strace on a given program is:

strace -f -e <filter> -t -s<num> -o <log file>.strace <program>

The arguments are explained below:

 f f: Tells strace to trace all child processes.

 f e: Filters the output to a selection of comma separated system calls.

 f t: Prints absolute timestamps. Use r for timestamps relative to the last syscall, and T 
to add the time spent in the syscall.

 f s: Increases the maximum length of strings from the default of 32.

 f o: Redirects the output to a file that can then be analyzed offline.

It can also attach to running processes using the following command:

$ strace -p $( pgrep <program> )

Or several instances of a process using the following command:

$ strace $( pgrep <program> | sed 's/^/-p' )

To detach, just press Ctrl + C.

See also
 f The corresponding man pages for more information about strace at http://man7.

org/linux/man-pages/man1/strace.1.html

Using the kernel's performance counters
Hardware performance counters are perfect for code optimization, especially in embedded 
systems with a single workload. They are actively used by a wide range of tracing and  
profiling tools. This recipe will introduce the Linux performance counters subsystem and  
show how to use it.

Getting ready
The Linux Kernel Performance Counters Subsystem (LPC), commonly known as linux_
perf, is an abstraction interface to different CPU-specific performance measurements. The 
perf_events subsystem not only exposes hardware performance counters from the CPU, 
but also kernel software events using the same API. It also allows the mapping of events to 
processes, although this has a performance overhead. Further, it provides generalized events 
which are common across architectures.
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Events can be categorized into three main groups:

 f Software events: Based on kernel counters, these events are used for things such as 
context switches and minor faults tracking.

 f Hardware events: These come from the processor's CPU Performance Monitoring 
Unit (PMU) and are used to track architecture-specific items, such as the number of 
cycles, cache misses, and so on. They vary with each processor type.

 f Hardware cache events: These are common hardware events that will only be 
available if they actually map to a CPU hardware event.

To know whether perf_event support is available for your platform, you can check for the 
existence of the /proc/sys/kernel/perf_event_paranoid file. This file is also used to 
restrict access to the performance counters, which by default are set to allow both user and 
kernel measurement. It can have the following values:

 f 2: Only allows user-space measurements

 f 1: Allows both kernel and user measurements (default)

 f 0: Allows access to CPU-specific data but not raw tracepoint samples

 f -1: No restrictions

The i.MX6 SoC has a Cortex-A9 CPU which includes a PMU, providing six counters to gather 
statistics on the operation of the processor and memory, each one of them able to monitor 
any of 58 available events.

You can find a description of the available events in the Cortex-A9 Technical  
Reference Manual.

The i.MX6 performance counters do not allow exclusive access to just user or just kernel 
measurements. Also, i.MX6 SoC designers have unfortunately joined the PMU interrupts 
from all CPU cores, when ideally they should only be handled by the same CPU that raises 
them. You can start the i.MX6 with just one core, using the maxcpus=1 kernel command-line 
argument, so that you can still use the perf_events interface. 

To configure the Linux kernel to boot with one core, stop at the U-Boot prompt and change the 
mmcargs environment variable as follows:

> setenv mmcargs 'setenv bootargs console=${console},${baudrate} 
root=${mmcroot} ${extra_bootargs}; run videoargs'

> setenv extra_bootargs maxcpus=1
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The mmcargs environmental variable is only used when booting from an 
MMC device like the microSD card. If the target is booting from another 
source, such as a network, the corresponding environmental variable will 
have to be changed. You can dump the whole U-Boot environment with the 
printenv U-Boot command, and change the required variable with setenv.

How to do it...
The interface introduces a sys_perf_event_open() syscall, with the counters being 
started and stopped using ioctls, and read either with read() calls or mmapping samples 
into circular buffers. The perf_event_open() syscall is defined as follows:

#include <linux/perf_event.h>
#include <linux/hw_breakpoint.h>

int perf_event_open(struct perf_event_attr *attr,
                    pid_t pid, int cpu, int group_fd,
                    unsigned long flags);

There is no C library wrapper for it, so it needs to be called using syscall().

How it works...
Following is an example, perf_example.c, program modified from the perf_event_open 
man page to measure instruction count for a printf call:

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>
#include <linux/perf_event.h>
#include <asm/unistd.h>
 
static long
perf_event_open(struct perf_event_attr *hw_event, pid_t pid,
                int cpu, int group_fd, unsigned long flags)
{
    int ret;

    ret = syscall(__NR_perf_event_open, hw_event, pid, cpu,
                   group_fd, flags);
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    return ret;
}

int
main(int argc, char **argv)
{
    struct perf_event_attr pe;
    long long count;
    int fd;

    memset(&pe, 0, sizeof(struct perf_event_attr));
    pe.type = PERF_TYPE_HARDWARE;
    pe.size = sizeof(struct perf_event_attr);
    pe.config = PERF_COUNT_HW_INSTRUCTIONS;
    pe.disabled = 1;
   
    fd = perf_event_open(&pe, 0, -1, -1, 0);
    if (fd == -1) {
       fprintf(stderr, "Error opening leader %llx\n", pe.config);
       exit(EXIT_FAILURE);
    }

    ioctl(fd, PERF_EVENT_IOC_RESET, 0);
    ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);

    printf("Measuring instruction count for this printf\n");

    ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
    read(fd, &count, sizeof(long long));

    printf("Used %lld instructions\n", count);

    close(fd);

    return 0;
}

For compiling this program externally, we can use the following commands:

$ source /opt/poky/1.7.1/environment-setup-cortexa9hf-vfp-neon-poky-  
  linux-gnueabi

$ ${CC} perf_example.c -o perf_example
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After copying the binary to your target, you can then execute it with the help of the following 
code:

# ./perf_example

Measuring instruction count for this printf

Used 0 instructions

Obviously, using zero instructions for the printf() call can't be correct. Looking into possible 
causes, we find a documented erratum (ERR006259) on i.MX6 processors that states that 
in order for the PMU to be used, the SoC needs to receive at least 4 JTAG clock cycles after 
power on reset.

Rerun the example with the JTAG connected:

# ./perf_example

Measuring instruction count for this printf

Used 3977 instructions

There's more...
Even though you can access the perf_events interface directly as in the preceding 
example, the recommended way to use it is through a user space application, such as perf, 
which we will see in the Tracing and profiling with perf recipe in this chapter.

See also
 f The Technical Reference Manual at http://infocenter.arm.com/help/

index.jsp?topic=/com.arm.doc.ddi0388f/BEHGGDJC.html for more 
information about the Cortex-A9 PMU

Using static kernel tracing
The Linux kernel is continuously being instrumented with static probe points called 
tracepoints, which when disabled have a very small overhead. They allow us to record more 
information than the function tracer we saw in Chapter 2, The BSP Layer. Tracepoints are 
used by multiple tracing and profiling tools in Yocto.

This recipe will explain how to use and define static tracepoints independently of user  
space tools.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388f/BEHGGDJC.html 
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388f/BEHGGDJC.html 
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Getting ready
Static tracepoints can be instrumented using custom kernel modules, and also through the 
event tracing infrastructure. Enabling any of the tracing features in the kernel will create a 
/sys/kernel/debug/tracing/ directory; for example, the function tracing feature as 
explained in the Using the kernel function tracing system in Chapter 2, The BSP Layer.

So before continuing with this recipe, you need to configure the function tracing feature in the 
Linux kernel as explained before.

How to do it...
The static tracing functionality is exposed via the debugfs filesystem. The functionality 
offered by the interface includes:

 f Listing events:

You can see a list of available tracepoints exposed via sysfs and ordered in 
subsystem directories with:
# ls /sys/kernel/debug/tracing/events/

asoc          ftrace        migrate       rcu           spi

block         gpio          module        regmap        sunrpc

cfg80211      header_event  napi          regulator     task

compaction    header_page   net           rpm           timer

drm           irq           oom           sched         udp

enable        jbd           power         scsi          vmscan

ext3          jbd2          printk        signal        workqueue

ext4          kmem          random        skb           writeback

filemap       mac80211      raw_syscalls  sock

Or in the available_events file with the <subsystem>:<event> format using 
the following commands:

#  grep 'net'  /sys/kernel/debug/tracing/available_events 

net:netif_rx

net:netif_receive_skb

net:net_dev_queue

net:net_dev_xmit
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 f Describing events:

Each event has a specific printing format that describes the information included in 
the log event, as follows:

#cat /sys/kernel/debug/tracing/events/net/netif_receive_skb/format

name: netif_receive_skb

ID: 378

format:

  field:unsigned short common_type;  offset:0;  size:2;  
  signed:0;

  field:unsigned char common_flags;  offset:2;  size:1;  
  signed:0;

  field:unsigned char common_preempt_count;  offset:3;  
  size:1;  signed:0;

  field:int common_pid;  offset:4;  size:4;  signed:1;

  field:void * skbaddr;  offset:8;  size:4;  signed:0;

  field:unsigned int len; offset:12;  size:4;  signed:0;

  field:__data_loc char[] name; offset:16;  size:4;  signed:0;

print fmt: "dev=%s skbaddr=%p len=%u", __get_str(name), REC-  
  >skbaddr, REC->len

 f Enabling and disabling events:

You can enable or disable events in the following ways:

 � By echoing 0 or 1 to the event enable file:
# echo 1 >  
  /sys/kernel/debug/tracing/events/net/netif_receive_skb/
enable

 � By subsystem directory, which will enable or disable all the tracepoints in the 
directory/subsystem:
# echo 1 > /sys/kernel/debug/tracing/events/net/enable

 � By echoing the unique tracepoint name into the set_event file:
# echo netif_receive_skb >>  
  /sys/kernel/debug/tracing/set_event
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Note the append operation >> is used not to clear events.

 � Events can be disabled by appending an exclamation mark to their names:
# echo '!netif_receive_skb' >>  
  /sys/kernel/debug/tracing/set_event

 � Events can also be enabled/disabled by subsystem:
# echo 'net:*' > /sys/kernel/debug/tracing/set_event

 � To disable all events:

# echo > /sys/kernel/debug/tracing/set_event

You can also enable tracepoints from boot by passing a trace_event=<comma 
separated event list> kernel command line-argument.

 f Adding events to the tracing buffer:

To see the tracepoints appear on the tracing buffer, turn tracing on:
# echo 1 > /sys/kernel/debug/tracing/tracing_on

Tracepoint events are integrated into the ftrace subsystem so that if you enable a 
tracepoint, when a tracer is running, it will show up in the trace. Take a look at the 
following commands:

# cd /sys/kernel/debug/tracing

# echo 1 > events/net/netif_receive_skb/enable

# echo netif_receive_skb > set_ftrace_filter

# echo function > current_tracer

# cat trace

          <idle>-0     [000] ..s2  1858.542206:  
  netif_receive_skb <-napi_gro_receive

          <idle>-0     [000] ..s2  1858.542214:  
  netif_receive_skb: dev=eth0 skbaddr=dcb5bd80 len=168

How it works...
A tracepoint is inserted using the TRACE_EVENT macro. It inserts a callback in the kernel 
source that gets called with the tracepoint parameters as arguments. Tracepoints added with 
the TRACE_EVENT macro allow ftrace or any other tracer to use them. The callback inserts 
the trace at the calling tracer's ring buffer.

To insert a new tracepoint into the Linux kernel, define a new header file with a special format. 
By default, tracepoint kernel files are located in include/trace/events, but the kernel 
has functionality so that the header files can be located in a different path. This is useful 
when defining a tracepoint in a kernel module.
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To use the tracepoint, the header file must be included in any file that inserts the tracepoint, 
and a single C file must define CREATE_TRACE_POINT. For example, to extend the hello 
world Linux kernel module we saw in a previous chapter with a tracepoint, add the following 
code to meta-bsp-custom/recipes-kernel/hello-world-tracepoint/files/
hello_world.c:

#include <linux/module.h>
#include "linux/timer.h"
#define CREATE_TRACE_POINTS
#include "trace.h"

static struct timer_list hello_timer;

void hello_timer_callback(unsigned long data)
{
        char a[] = "Hello";
        char b[] = "World";
        printk("%s %s\n",a,b);
      /* Insert the static tracepoint */
        trace_log_dbg(a, b);
      /* Trigger the timer again in 8 seconds */
        mod_timer(&hello_timer, jiffies + msecs_to_jiffies(8000));
}

static int hello_world_init(void)
{
      /* Setup a timer to fire in 2 seconds */
        setup_timer(&hello_timer, hello_timer_callback, 0);
        mod_timer(&hello_timer, jiffies + msecs_to_jiffies(2000));
        return 0;
}

static void hello_world_exit(void)
{
      /* Delete the timer */
        del_timer(&hello_timer);
}

module_init(hello_world_init);
module_exit(hello_world_exit);

MODULE_LICENSE("GPL v2");
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The tracepoint header file in meta-bsp-custom/recipes-kernel/hello-world-
tracepoint/files/trace.h would be:

#undef TRACE_SYSTEM
#define TRACE_SYSTEM log_dbg

#if !defined(_HELLOWORLD_TRACE) || defined(TRACE_HEADER_MULTI_READ)
#define _HELLOWORLD_TRACE

#include <linux/tracepoint.h>

TRACE_EVENT(log_dbg,
            TP_PROTO(char *a, char *b),
            TP_ARGS(a, b),
            TP_STRUCT__entry(
                    __string(a, a)
                    __string(b, b)),
            TP_fast_assign(
                    __assign_str(a, a);
                    __assign_str(b, b);),
            TP_printk("log_dbg: a %s b %s",
                      __get_str(a), __get_str(b))
        );
#endif

/* This part must be outside protection */
#undef TRACE_INCLUDE_PATH
#undef TRACE_INCLUDE_FILE
#define TRACE_INCLUDE_PATH .
#define TRACE_INCLUDE_FILE trace
#include <trace/define_trace.h>

And the module's Makefile file in meta-bsp-custom/recipes-kernel/hello-world-
tracepoint/files/Makefile would look as follows:

obj-m   := hello_world.o
CFLAGS_hello_world.o    += -I$(src)

SRC := $(shell pwd)

all:
        $(MAKE) -C "$(KERNEL_SRC)" M="$(SRC)"

modules_install:
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        $(MAKE) -C "$(KERNEL_SRC)" M="$(SRC)" modules_install

clean:
        rm -f *.o *~ core .depend .*.cmd *.ko *.mod.c
        rm -f Module.markers Module.symvers modules.order
        rm -rf .tmp_versions Modules.symvers

Note the highlighted line that includes the current folder in the search path for include files.

We can now build the module externally, as we saw in the Building external kernel modules 
recipe in Chapter 2, The BSP Layer. The corresponding Yocto recipe is included in the source 
that accompanies the book. Here is the code for the same:

$ cd /opt/yocto/fsl-community-bsp/sources/meta-bsp-custom/recipes-  
  kernel/hello-world-tracepoint/files/

$ source /opt/poky/1.7.1/environment-setup-cortexa9hf-vfp-neon-poky-  
  linux-gnueabi

$ KERNEL_SRC=/opt/yocto/linux-wandboard make

After copying the resulting hello_world.ko module to the Wandboard's root filesystem, you 
can load it with:

# insmod hello_world.ko

Hello World

You can now see a new log_dbg directory inside /sys/kernel/debug/tracing/events, 
which contains a log_dbg event tracepoint with the following format:

# cat /sys/kernel/debug/tracing/events/log_dbg/log_dbg/format

name: log_dbg

ID: 622

format:

        field:unsigned short common_type;       offset:0;        
  size:2; signed:0;

        field:unsigned char common_flags;       offset:2;        
  size:1; signed:0;

        field:unsigned char common_preempt_count;       offset:3;     
  size:1; signed:0;

        field:int common_pid;   offset:4;       size:4; signed:1;

        field:__data_loc char[] a;      offset:8;       size:4;  
  signed:0;
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        field:__data_loc char[] b;      offset:12;      size:4;  
  signed:0;

print fmt: "log_dbg: a %s b %s", __get_str(a), __get_str(b)

You can then enable the function tracer on the hello_timer_callback function:

# cd /sys/kernel/debug/tracing

# echo 1 > events/log_dbg/log_dbg/enable

# echo 1 > /sys/kernel/debug/tracing/tracing_on

# cat trace

          <idle>-0     [000] ..s2    57.425040: log_dbg: log_dbg: a  
  Hello b World

There's more...
Static tracepoints can also be filtered. When an event matches a filter set, it is kept, otherwise 
it is discarded. Events without filters are always kept.

For example, to set a matching filter for the log_dbg event inserted in the preceding code,  
you could match either the a or b variables:

# echo "a == \"Hello\"" >  
  /sys/kernel/debug/tracing/events/log_dbg/log_dbg/filter

See also
 f The Linux kernel documentation at https://git.kernel.org/cgit/linux/

kernel/git/torvalds/linux.git/plain/Documentation/trace/events.
txt for more information regarding static tracepoints events

 f The Using the TRACE_EVENT() macro article series by Steven Rostedt at http://
lwn.net/Articles/379903/

Using dynamic kernel tracing
kprobes is a kernel debugging facility that allows us to dynamically break into almost any 
kernel function (except kprobe itself) to collect debugging and profiling information non-
disruptively. Some architectures keep an array of blacklisted functions, which cannot be 
probed using kprobe, but on ARM the list is empty.

Because kprobes can be used to change a function's data and registers, it should only be 
used in development environments.

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/trace/events.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/trace/events.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/trace/events.txt
http://lwn.net/Articles/379903/
http://lwn.net/Articles/379903/
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There are three types of probes:

 f kprobes: This is the kernel probe which can be inserted into any location with more 
than one kprobe added at a single location, if needed.

 f jprobe: This is the jumper probe inserted at the entry point of a kernel function to 
provide access to its arguments. Only one jprobe may be added at a given location.

 f kretprobe: This is the return probe which triggers on a function return. Also, only 
one kretprobe may be added to the same location.

They are packaged into a kernel module, with the init function registering the probes and 
the exit function unregistering them.

This recipe will explain how to use all types of dynamic probes.

Getting ready
To configure the Linux kernel with kprobes support, you need to:

 f Define the CONFIG_KPROBES configuration variable

 f Define CONFIG_MODULES and CONFIG_MODULE_UNLOAD so that modules can be 
used to register probes

 f Define CONFIG_KALLSYMS and CONFIG_KALLSYMS_ALL (recommended) so that 
kernel symbols can be looked up

 f Optionally, define the CONFIG_DEBUG_INFO configuration variable so that probes 
can be inserted in the middle of functions as offsets from the entry point. To find the 
insertion point, you can use objdump, as seen in the following excerpt for the do_
sys_open function:

arm-poky-linux-gnueabi-objdump -d -l vmlinux | grep  
  do_sys_open
8010bfa8 <do_sys_open>:
do_sys_open():
8010c034:       0a000036        beq     8010c114  
  <do_sys_open+0x16c>
8010c044:       1a000031        bne     8010c110  
  <do_sys_open+0x168>

The kprobes API is defined in the kprobes.h file and includes registration/
unregistration and enabling/disabling functions for the three types of probes as 
follows:
#include <linux/kprobes.h>
int register_kprobe(struct kprobe *kp);
int register_jprobe(struct jprobe *jp)
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int register_kretprobe(struct kretprobe *rp);

void unregister_kprobe(struct kprobe *kp);
void unregister_jprobe(struct jprobe *jp);
void unregister_kretprobe(struct kretprobe *rp);

By default, a kprobe probe is enabled when registering, except when the KPROBE_
FLAG_DISABLED flag is passed. The following function definitions enable or  
disable the probe:
int disable_kprobe(struct kprobe *kp);
int disable_kretprobe(struct kretprobe *rp);
int disable_jprobe(struct jprobe *jp);

int enable_kprobe(struct kprobe *kp);
int enable_kretprobe(struct kretprobe *rp);
int enable_jprobe(struct jprobe *jp);

The registered kprobe probes can be listed through debugfs:
$ cat /sys/kernel/debug/kprobes/list

They can globally be enabled or disabled with:

$ echo 0/1 > /sys/kernel/debug/kprobes/enabled

How to do it...
On registration, the kprobe probe places a breakpoint (or jump, if optimized) instruction at 
the start of the probed instruction. When the breakpoint is hit, a trap occurs, the registers are 
saved, and control passes to kprobes, which calls the pre-handler. It then single steps the 
breakpoint and calls the post-handler. If a fault occurs, the fault handler is called. Handlers 
can be NULL if desired.

A kprobe probe can be inserted either in a function symbol or into an address, using the 
offset field, but not in both.

On occasions, kprobe will still be too intrusive to debug certain 
problems, as it slows the functions and may affect scheduling and be 
problematic when called from interrupt context.
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For example, to place a kprobe probe in the open syscall, we would use the meta-bsp-
custom/recipes-kernel/open-kprobe/files/kprobe_open.c custom module:

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>

static struct kprobe kp = {
  .symbol_name  = "do_sys_open",
};

static int handler_pre(struct kprobe *p, struct pt_regs *regs)
{
  pr_info("pre_handler: p->addr = 0x%p, lr = 0x%lx,"
    " sp = 0x%lx\n",
  p->addr, regs->ARM_lr, regs->ARM_sp);

  /* A dump_stack() here will give a stack backtrace */
  return 0;
}

static void handler_post(struct kprobe *p, struct pt_regs *regs,
      unsigned long flags)
{
  pr_info("post_handler: p->addr = 0x%p, status = 0x%lx\n",
    p->addr, regs->ARM_cpsr);
}

static int handler_fault(struct kprobe *p, struct pt_regs *regs,  
  int trapnr)
{
  pr_info("fault_handler: p->addr = 0x%p, trap #%dn",
    p->addr, trapnr);
  /* Return 0 because we don't handle the fault. */
  return 0;
}

static int kprobe_init(void)
{
  int ret;
  kp.pre_handler = handler_pre;
  kp.post_handler = handler_post;
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  kp.fault_handler = handler_fault;

  ret = register_kprobe(&kp);
  if (ret < 0) {
    pr_err("register_kprobe failed, returned %d\n", ret);
    return ret;
  }
  pr_info("Planted kprobe at %p\n", kp.addr);
  return 0;
}

static void kprobe_exit(void)
{
  unregister_kprobe(&kp);
  pr_info("kprobe at %p unregistered\n", kp.addr);
}
 
module_init(kprobe_init)
module_exit(kprobe_exit)
MODULE_LICENSE("GPL");

We compile it with a Yocto recipe, as explained in the Building external kernel modules 
recipe in Chapter 2, The BSP Layer. Here is the code for the meta-bsp-custom/recipes-
kernel/open-kprobe/open-kprobe.bb Yocto recipe file:

SUMMARY = "kprobe on do_sys_open kernel module."
LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/GPL-  
  2.0;md5=801f80980d171dd6425610833a22dbe6"

inherit module

PV = "0.1"

SRC_URI = " \
    file://kprobe_open.c \
    file://Makefile \
"

S = "${WORKDIR}"
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With the Makefile file in meta-bsp-custom/recipes-kernel/open-kprobe/files/
Makefile being:

obj-m  := kprobe_open.o

SRC := $(shell pwd)

all:
  $(MAKE) -C "$(KERNEL_SRC)" M="$(SRC)"

modules_install:
  $(MAKE) -C "$(KERNEL_SRC)" M="$(SRC)" modules_install

clean:
  rm -f *.o *~ core .depend .*.cmd *.ko *.mod.c
  rm -f Module.markers Module.symvers modules.order
  rm -rf .tmp_versions Modules.symvers

Copy it to a target running the same kernel it has been linked against, and load it with  
the following:

$ insmod kprobe_open.ko

Planted kprobe at 8010da84

We can now see the handlers printing in the console when a file is opened:

pre_handler: p->addr = 0x8010da84, lr = 0x8010dc34, sp = 0xdca75f98

post_handler: p->addr = 0x8010da84, status = 0x80070013

There's more...
A jprobe probe is implemented with a kprobe. It sets a breakpoint at the given symbol or 
address (but it must be the first instruction of a function), and makes a copy of a portion of 
the stack. When hit, it then jumps to the handler with the same registers and stack as the 
probed function. The handler must have the same argument list and return type as the probed 
function, and call jprobe_return() before returning to pass the control back to kprobes. 
Then the original stack and CPU state are restored and the probed function is called.

Following is an example of a jprobe in the open syscall in the meta-bsp-custom/
recipes-kernel/open-jprobe/files/jprobe_open.c file:

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>
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static long jdo_sys_open(int dfd, const char __user *filename, int  
  flags, umode_t mode)
{
  pr_info("jprobe: dfd = 0x%x, filename = 0xs "
    "flags = 0x%x mode umode %x\n", dfd, filename, flags, mode);

  /* Always end with a call to jprobe_return(). */
  jprobe_return();
  return 0;
}

static struct jprobe my_jprobe = {
  .entry        = jdo_sys_open,
  .kp = {
    .symbol_name  = "do_sys_open",
  },
};

static int jprobe_init(void)
{
  int ret;

  ret = register_jprobe(&my_jprobe);
  if (ret < 0) {
    pr_err("register_jprobe failed, returned %d\n", ret);
    return -1;
  }
  pr_info("Planted jprobe at %p, handler addr %p\n",
        my_jprobe.kp.addr, my_jprobe.entry);
  return 0;
}

static void jprobe_exit(void)
{
  unregister_jprobe(&my_jprobe);
  pr_info("jprobe at %p unregistered\n", my_jprobe.kp.addr);
}

module_init(jprobe_init)
module_exit(jprobe_exit)
MODULE_LICENSE("GPL");
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A kretprobe probe sets a kprobe at the given symbol or function address which when hit, 
replaces the return address with a trampoline, usually a nop instruction, where kprobe is 
registered. When the probed function returns, the kprobe probe on the trampoline is hit, calling 
the return handler and setting back the original return address before resuming execution.

Following is an example of a kretprobe probe in the open syscall in the meta-bsp-
custom/recipes-kernel/open-kretprobe/files/kretprobe_open.c file:

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>
#include <linux/ktime.h>
#include <linux/limits.h>
#include <linux/sched.h>

/* per-instance private data */
struct my_data {
  ktime_t entry_stamp;
};

static int entry_handler(struct kretprobe_instance *ri, struct  
  pt_regs *regs)
{
  struct my_data *data;

  if (!current->mm)
    return 1;  /* Skip kernel threads */

  data = (struct my_data *)ri->data;
  data->entry_stamp = ktime_get();
  return 0;
}

static int ret_handler(struct kretprobe_instance *ri, struct  
  pt_regs *regs)
{
  int retval = regs_return_value(regs);
  struct my_data *data = (struct my_data *)ri->data;
  s64 delta;
  ktime_t now;

  now = ktime_get();
  delta = ktime_to_ns(ktime_sub(now, data->entry_stamp));
  pr_info("returned %d and took %lld ns to execute\n",
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        retval, (long long)delta);
  return 0;
}

static struct kretprobe my_kretprobe = {
  .handler    = ret_handler,
  .entry_handler    = entry_handler,
  .data_size    = sizeof(struct my_data),
  .maxactive    = 20,
};

static int kretprobe_init(void)
{
  int ret;

  my_kretprobe.kp.symbol_name = "do_sys_open";
  ret = register_kretprobe(&my_kretprobe);
  if (ret < 0) {
    pr_err("register_kretprobe failed, returned %d\n",
        ret);
    return -1;
}
  pr_info("Planted return probe at %s: %p\n",
  my_kretprobe.kp.symbol_name,            my_kretprobe.kp.addr);
  return 0;
}

static void kretprobe_exit(void)
{
  unregister_kretprobe(&my_kretprobe);
  pr_info("kretprobe at %p unregistered\n",
      my_kretprobe.kp.addr);

  /* nmissed > 0 suggests that maxactive was set too low. */
  pr_info("Missed probing %d instances of %s\n",
    my_kretprobe.nmissed, my_kretprobe.kp.symbol_name);
}

module_init(kretprobe_init)
module_exit(kretprobe_exit)
MODULE_LICENSE("GPL");
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The highlighted maxactive variable is the number of reserved storage for return addresses 
in the kretprobe probe, and by default, it is the number of CPUs (or twice the number of 
CPUs in preemptive systems with a maximum of 10). If maxactive is too low, some probes 
will be missed.

The complete examples, including Yocto recipes, can be found in the source that accompanies 
the book.

See also
 f The kprobes documentation on the Linux kernel at https://git.kernel.org/

cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/
kprobes.txt

Using dynamic kernel events
Although dynamic tracing is a very useful feature, custom kernel modules is not a user-friendly 
interface. Fortunately, the Linux kernel has been extended with the support of kprobe events, 
which allow us to set kprobes probes using a debugfs interface.

Getting ready
To make use of this feature, we need to configure our kernel with the CONFIG_KPROBE_
EVENT configuration variable.

How to do it...
The debugfs interface adds probes via the /sys/kernel/debug/tracing/kprobe_
events file. For example, to add a kprobe called example_probe to the do_sys_open 
function, you can execute the following command:

# echo 'p:example_probe do_sys_open dfd=%r0 filename=%r1 flags=%r2  
  mode=%r3' > /sys/kernel/debug/tracing/kprobe_events

The probe will print the function's argument list, according to the function's declaration 
arguments as seen in the funcion's definition below:

long do_sys_open(int dfd, const char __user *filename, int flags,  
  umode_t mode);

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/kprobes.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/kprobes.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/kprobes.txt
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You can then manage kprobes through the sysfs as follows:

 f To see all the registered probes:
# cat /sys/kernel/debug/tracing/kprobe_events

p:kprobes/example_probe do_sys_open dfd=%r0 filename=%r1  
  flags=%r2 mode=%r3

 f To print the probe format:
# cat  
  /sys/kernel/debug/tracing/events/kprobes/example_probe/format

name: example_probe

ID: 1235

format:

        field:unsigned short common_type;       offset:0;       
  size:2; signed:0;

        field:unsigned char common_flags;       offset:2;       
  size:1; signed:0;

        field:unsigned char common_preempt_count;        
  offset:3;       size:1; signed:0;

        field:int common_pid;   offset:4;       size:4;  
  signed:1;

        field:unsigned long __probe_ip; offset:8;        
  size:4; signed:0;

        field:u32 dfd;  offset:12;      size:4; signed:0;

        field:u32 filename;     offset:16;      size:4;  
  signed:0;

        field:u32 flags;        offset:20;      size:4;  
  signed:0;

        field:u32 mode; offset:24;      size:4; signed:0;

print fmt: "(%lx) dfd=%lx filename=%lx flags=%lx mode=%lx",  
  REC->__probe_ip, REC->dfd, REC->filename, REC->flags, REC-  
  >mode

 f To enable the probe use the following command:
# echo 1 >  
  /sys/kernel/debug/tracing/events/kprobes/example_probe/enable

 f To see the probe output on either the trace or trace_pipe files:
# cat /sys/kernel/debug/tracing/trace

# tracer: nop

#
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# entries-in-buffer/entries-written: 59/59   #P:4

#

#                              _-----=> irqs-off

#                             / _----=> need-resched

#                            | / _---=> hardirq/softirq

#                            || / _--=> preempt-depth

#                            ||| /     delay

#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION

#              | |       |   ||||       |         |

              sh-737   [000] d...  1610.378856: example_probe:  
  (do_sys_open+0x0/0x184) dfd=ffffff9c filename=f88488  
  flags=20241 mode=16

              sh-737   [000] d...  1660.888921: example_probe:  
  (do_sys_open+0x0/0x184) dfd=ffffff9c filename=f88a88  
  flags=20241 mode=16

 f To clear the probe (after disabling it):
# echo '-:example_probe' >>  
  /sys/kernel/debug/tracing/kprobe_events

 f To clear all probes:
# echo > /sys/kernel/debug/tracing/kprobe_events

 f To check the number of hit and missed events:

# cat /sys/kernel/debug/tracing/kprobe_profile

example_probe                             78               0

With the format being as follows:

<event name> <hits> <miss-hits>

How it works...
To set a probe we use the following syntax:

<type>:<event name> <symbol> <fetch arguments>
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Let's explain each of the mentioned parameters:

 f type: This is either p for kprobe or r for a return probe.

 f event name: This is optional and has the format <group/event>. If the group 
name is omitted, it defaults to kprobes, and if the event name is omitted, it is 
autogenerated based on the symbol. When an event name is given, it adds a 
directory under /sys/kernel/debug/tracing/events/kprobes/ with the 
following content:

 � id: This is the ID of the probe event

 � filter: This specifies user filtering rules

 � format: This is the format of the probe event

 � enabled: This is used to enable or disable the probe event

 f symbol: This is either the symbol name plus an optional offset or the memory 
address where the probe is to be inserted.

 f fetch arguments: These are optional and represent the information to extract with 
a maximum of 128 arguments. They have the following format:

<name>=<offset>(<argument>):<type>

Lets explain each of the mentioned parameters:

 � name: This sets the argument name

 � offset: This adds an offset to the address argument

 � argument: This can be of the following format:

%<register>: This fetches the specified register. For ARM these are:

r0 to r10

fp

ip

sp

lr

pc

cpsr

ORIG_r0

@<address>: This fetches the memory at the specified kernel address

@<symbol><offset>: This fetches the memory at the specified symbol and optional 
offset

$stack: This fetches the stack address
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$stack<N>: This fetches the nth entry of the stack

And for return probes we have:

$retval: This fetches the return value

 � type: This one sets the argument type used by kprobe to access the 
memory from the following options:

u8,u16,u32,u64, for unsigned types

s8,s16,s32,s64, for signed types

string, for null terminated strings

bitfield, with the following format:

b<bit-width>@<bit-offset>/<container-size>

There's more...
Current versions of the Linux kernel (from v3.14 onwards) also have support for user space 
probe events (uprobes), with a similar interface to the one for the kprobes events.

Exploring Yocto's tracing and profiling tools
Tracing and profiling tools are used to increase the performance, efficiency, and quality 
of both, applications and systems. User space tracing and profiling tools make use of 
performance counters and static and dynamic tracing functionality that the Linux kernel 
offers, as we have seen in the previous recipes.

Getting ready
Tracing enables us to log an application's activity so that its behavior can be analyzed, 
optimized, and corrected.

Yocto offers several tracing tools including:

 f trace-cmd: This is a command line interface to the ftrace kernel subsystem, and 
kernelshark, a graphical interface to trace-cmd.

 f perf: This is a tool that originated in the Linux kernel as a command line interface to 
its performance counter events subsystem. It has since then expanded and added 
several other tracing mechanisms.
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 f blktrace: This is a tool that provides information about the block layer input/output.

 f Linux Trace Toolkit Next Generation (LTTng): This is a tool that allows for correlated 
tracing of the Linux kernel, applications, and libraries. Yocto also includes babeltrace, 
a tool to translate the traces into human readable logs.

 f SystemTap: This is a tool to dynamically instrument the Linux kernel.

Profiling refers to a group of techniques used to measure an application's consumed 
resources and the time taken to execute an application. The data is then used to improve the 
application's performance and optimize it. Some of the aforementioned tools such as perf and 
SystemTap have evolved to become powerful tracing and profiling tools.

Apart from the enlisted tracing tools, which can also be used for profiling, Yocto offers several 
other profiling tools:

 f OProfile: This is a statistical profiler for Linux that profiles all running code with  
low overhead.

 f Powertop: This is a tool used to analyze the system's power consumption and  
power management.

 f Latencytop: This is a tool used to analyze system latencies.

 f Sysprof: This tool is included for Intel architectures on X11 graphical images. It does 
not work on ARM architectures.

How to do it...
These tools can be added to your target image either individually or with the tools-profile 
feature. To use the tools, we also need to include debug information in our applications. To 
this extent we should use the -dbg version of the packages, or better, configure Yocto so that 
debug information is generated with the dbg-pkgs image feature. To add both features to 
your images, add the following to your project's conf/local.conf file:

EXTRA_IMAGE_FEATURES = "tools-profile dbg-pkgs"

The -sdk version of target images already adds these features.

There's more...
Apart from these tools, Yocto also offers the standard monitoring tools available on a Linux 
system. Some examples are:

 f htop: This tool is available in the meta-oe layer and provides process monitoring.

 f iotop: This tool is also included in the meta-oe layer and provides block device I/O 
statistics by process.
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 f procps: This one is available in Poky and includes the following tools:

 � ps: This tool is used to list and provide process statuses.

 � vmstat: This is used for virtual memory statistics.

 � uptime: This is useful for load averages monitoring.

 � free: This is used for memory usage monitoring. Remember to take  
kernel caches into account.

 � slabtop: This one provides memory usage statistics for the kernel  
slab allocator.

 f sysstat: This is available in Poky and contains, among others, the following tools:

 � pidstat: This is another option for process statistics.

 � iostat: This one provides block I/O statistics.

 � mpstat: This tool provides multi-processor statistics.

And Yocto also offers the following network tools:

 f tcpdump: This networking tool is included in the meta-networking layer in  
meta-openembedded. It captures and analyzes network traffic.

 f netstat: This is part of the net-tools package in Poky. It provides network protocol 
statistics.

 f ss: This tool is included in the iproute2 package in Poky. It provides  
sockets statistics.

Tracing and profiling with perf
The perf Linux tool can instrument the Linux kernel with both hardware and software 
performance counter events as well as static and dynamic kernel trace points. For this, it uses 
the kernel functionality we have seen in previous recipes, providing a common interface to all 
of them.

This tool can be used to debug, troubleshoot, optimize, and measure applications, workloads, 
or the full system, which covers the processor, kernel, and applications. Perf is probably the 
most complete of the tracing and profiling tools available for a Linux system.

Getting ready
The perf source is part of the Linux kernel. To include perf in your system, add the following to 
your conf/local.conf file:

IMAGE_INSTALL_append = " perf"
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Perf is also part of the tools-profile image feature, so you can also add it with the 
following:

EXTRA_IMAGE_FEATURES += "tools-profile"

Perf is also included in the -sdk images.

To take the maximum advantage of this tool, we need to have symbols both in user space 
applications and libraries, as well as the Linux kernel. For this, we need to avoid stripping 
binaries by adding the following to the conf/local.conf configuration file:

INHIBIT_PACKAGE_STRIP = "1"

Also, adding the debug information of the applications by adding the following is 
recommended:

EXTRA_IMAGE_FEATURES += "dbg-pkgs"

By default, the debug information is placed in a .debug directory in the same location as the 
binary it corresponds to. But perf needs a central location to look for all debug information. 
So, to configure our debug information with a structure that perf understands, we also need 
the following in our conf/local.conf configuration file:

PACKAGE_DEBUG_SPLIT_STYLE = 'debug-file-directory'

Finally, configure the Linux kernel with the CONFIG_DEBUG_INFO configuration variable to 
include debug information, CONFIG_KALLSYMS to add debug symbols into the kernel, and 
CONFIG_FRAME_POINTER to be able to see complete stack traces.

As we saw in the Using the kernel's performance counters recipe, we will 
also need to pass maxcpus=1 (or maxcpus=0 to disable SMP) to the Linux 
kernel in order to use the i.MX6 PMU, due to the sharing of the PMU interrupt 
between all cores. Also, in order to use the PMU on i.MX6 processors, the 
SoC needs to receive at least 4 JTAG clock cycles after power on reset. This is 
documented in the errata number ERR006259.

At the time of writing, the meta-fsl-arm layer for Yocto 1.7 disables some of perf features. 
To be able to follow the upcoming examples, remove the following line from the meta-fsl-
arm layer's /opt/yocto/fsl-community-bsp/sources/meta-fsl-arm/conf/
machine/include/imx-base.inc file:

-PERF_FEATURES_ENABLE = ""

Newer Yocto releases will include this by default.
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How to do it...
Perf can be used to provide a default set of event statistics for a particular workload with:

# perf stat <command>

For example, a single ping will provide the following output:

# perf stat ping -c 1 192.168.1.1

PING 192.168.1.1 (192.168.1.1): 56 data bytes

64 bytes from 192.168.1.1: seq=0 ttl=64 time=6.489 ms

--- 192.168.1.1 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 6.489/6.489/6.489 ms

 Performance counter stats for 'ping -c 1 192.168.1.1':

 

          8.984333 task-clock                #    0.360 CPUs utilized

                15 context-switches          #    0.002 M/sec

                 0 cpu-migrations            #    0.000 K/sec

               140 page-faults               #    0.016 M/sec

           3433188 cycles                    #    0.382 GHz

            123948 stalled-cycles-frontend   #    3.61% frontend  
  cycles idle   

            418329 stalled-cycles-backend    #   12.18% backend   
  cycles idle   

            234497 instructions              #    0.07  insns per  
  cycle        

                                             #    1.78  stalled  
  cycles per insn

             22649 branches                  #    2.521 M/sec

              8123 branch-misses             #   35.86% of all  
  branches        

       0.024962333 seconds time elapsed

If we are only interested in a particular set of events, we can specify the events we want to 
output information from using the -e option.
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We can also sample data and store it so that it can be later analyzed:

# perf record <command>

Better still, we can add stack backtraces with the -g option:

# perf record -g -- ping -c 1 192.168.1.1

The result will be stored on a perf.data file which we would then analyze with:

# perf report

Its output can be seen in the following screenshot:

The functions order may be customized with the --sort option.

We can see how perf has resolved both user space and kernel symbols. Perf will read kernel 
symbols from the Linux kernel ELF file under /boot. If it is stored in a non-standard location, 
we can optionally pass its location with a -k option. If it does not find it, it will fall back to 
using /proc/kallsyms, where the Linux kernel exports the kernel symbols to user space 
when built with the CONFIG_KALLSYMS configuration variable.

If a perf report is not showing kernel symbols, it may be because the ELF file 
does not match the running kernel. You can try to rename it and see if using /
proc/kallsyms works.
Also, to obtain complete backtraces, applications need to be compiled with 
debug optimization by using the DEBUG_BUILD configuration variable, as we 
saw earlier in this chapter.
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By default, Perf uses a newt interface (TUI) that needs the expand utility, part of coreutils. If 
coreutils is not included in your root filesystem, you can ask for a text-only output with:

# perf report –stdio

After executing the preceding command we get the following output:

We can see all the functions called with the following columns:

 f Overhead: This represents the percentage of the sampling data corresponding to  
that function.

 f Command: This refers to the name of the command passed to the perf record.

 f Shared Object: This represents the ELF image name (kernel.kallsyms will  
appear for the kernel).

 f Privilege Level: It has the following modes:

 � for user mode

 � k for kernel mode

 � g for virtualized guest kernel

 � u for virtualized host user space

 � H for hypervisor

 f Symbol: This is the resolved symbol name.
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In the TUI interface, we can press enter on a function name to access a sub-menu, which will 
give us the following output:

From this we can, for example, annotate the code as shown in the following screenshot:

If using text mode, we can also get annotated output with:

# perf annotate -d <command>

Perf can also do system-wide profiling instead of focusing on a specific workload. For example, 
to monitor the system for five seconds, we would execute the following command:

# perf stat -a sleep 5

Performance counter stats for 'sleep 5':
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       5006.660002 task-clock                #    1.000 CPUs  
  utilized[100.00%]

               324 context-switches          #    0.065 K/sec  
  [100.00%]

                 0 cpu-migrations            #    0.000 K/sec  
  [100.00%]

               126 page-faults               #    0.025 K/sec

          12200175 cycles                    #    0.002 GHz [100.00%]

           2844703 stalled-cycles-frontend   #   23.32% frontend  
  cycles idle    [100.00%]

           9152564 stalled-cycles-backend    #   75.02% backend   
  cycles idle    [100.00%]

           4645466 instructions              #    0.38  insns per  
  cycle        

                                             #    1.97  stalled  
  cycles per insn [100.00%]

            479051 branches                  #    0.096 M/sec  
  [100.00%]

            222903 branch-misses             #   46.53% of all  
  branches        

       5.006115001 seconds time elapsed

Or to sample the system for five seconds, we will execute the following command:

# perf record -a -g -- sleep 5

When using system-wide measurements the command is just used as measurement duration. 
For this, the sleep command will not consume extra cycles.

How it works...
The perf tool provides statistics for both user and kernel events occurring in the system. It can 
instrument in two modes:

 f Event counting (perf stat): This counts events in kernel context and prints 
statistics at the end. It has the least overhead.

 f Event sampling (perf record): This writes the gathered data to a file at a given 
sampling period. The data can then be read as profiling (perf report) or trace data 
(perf script). Gathering data to a file can be resource intensive and the file can 
quickly grow in size.
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By default, perf counts events for all the threads in the given command, including child 
processes, until the command finishes or is interrupted.

A generic way to run perf is as follows:

perf stat|record [-e <comma separated event list> --filter '<expr>']  
  [-o <filename>] [--] <command> [<arguments>]

Let's explain the preceding code in detail:

 f e: This specifies an event list to use instead of the default set of events. An event 
filter can also be specified, with its syntax explained in the Linux kernel source 
documentation at Documentation/trace/events.txt.

 f o: This specifies the output file name, by default perf.data.

 f --: This is used as a separator when the command needs arguments.

It can also start or sample a running process by passing the -p <pid> option.

We can obtain a list of all available events by executing the following command:

# perf list

Or on a specific subsystem with the following command:

# perf list '<subsystem>:*'

You can also access raw PMU events directly by using the r<event> event, for example, to 
read the data cache misses on an ARM core:

# perf stat -e r3 sleep 5

Unless specified, the perf record will sample hardware events at an average rate of 1000 Hz, 
but the rate can be modified with the -F <freq> argument. Tracepoints will be counted on 
each occurrence.

Reading tracing data
Perf records samples and stores tracing data in a file. The raw timestamped trace data can  
be seen with:

# perf script
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After executing the command we get the following output:

As we have seen, we can use a perf report to look at the sampled data formatted for profiling 
analysis, but we can also generate python scripts that we can then modify to change the way 
the data is presented, by running the following line of code:

# perf script -g python

This will generate a perf-script.py script that looks as follows:
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To run the script, use the following command:

# perf script -s perf-script.py

You need to install the perf-python package in our target image. You can add this to your 
image with:

IMAGE_INSTALL_append = " perf-python"

Now you will get a similar output as with the perf script earlier. But now you can modify the 
print statements in the python code to post process the sampled data to your specific needs.

There's more...
Perf can use dynamic events to extend the event list to any location where kprobe can be 
placed. For this, configure the kernel for kprobe and uprobe support (if available), as seen in 
the Using dynamic kernel events recipe earlier.

To add a probe point in a specific function execute the following command:

# perf probe --add "tcp_sendmsg"

Added new event:

  probe:tcp_sendmsg    (on tcp_sendmsg)

You can now use it in all perf tools, such as profiling the download of a file:

# perf record -e probe:tcp_sendmsg -a -g -- wget  
  http://downloads.yoctoproject.org/releases/yocto/yocto-  
  1.7.1/RELEASENOTES

Connecting to downloads.yoctoproject.org (198.145.29.10:80)

RELEASENOTES         100% |**********************************************
****************************************| 11924   0:00:00 ETA

[ perf record: Woken up 1 times to write data ]

[ perf record: Captured and wrote 0.025 MB perf.data (~1074 samples)  
  ]

And you can view the profiling data executing the following command:

# perf report
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And then you get the following output:

You may need to configure DNS servers in your target for the wget 
command as seen in the preceding code to work. To use Google's public 
DNS servers, you can add the following to your /etc/resolv.conf file:
nameserver 8.8.8.8

nameserver 8.8.4.4

You can then delete the probe with:

# perf probe --del tcp_sendmsg

/sys/kernel/debug//tracing/uprobe_events file does not exist - please  
  rebuild kernel with CONFIG_UPROBE_EVENT.

Removed event: probe:tcp_sendmsg

Profile charts
System behavior can be visualized using a perf timechart. To gather data, run:

# perf timechart record -- <command> <arguments>

And to turn it into an svg file use the following command:

# perf timechart
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Using perf as strace substitute
Perf can be used as an alternative to strace but with much less overhead with the following 
syntax:

# perf trace record <command>

However, the Yocto recipe for perf does not currently build this support. We can see the 
missing library in the compilation log:

Makefile:681: No libaudit.h found, disables 'trace' tool, please  
  install audit-libs-devel or libaudit-dev

See also
 f A list of the available ARM i.MX6 PMU events at http://infocenter.arm.com/

help/index.jsp?topic=/com.arm.doc.ddi0388f/BEHGGDJC.html

 f An extended tutorial in the use of perf at https://perf.wiki.kernel.org/
index.php/Tutorial

 f Some advanced examples at Brendan Gregg's perf site http://www.
brendangregg.com/perf.html

Using SystemTap
SystemTap is a GPLv2 licensed system wide tool that allows you to gather tracing and  
profiling data from a running Linux system. The user writes a systemtap script, which is  
then compiled into a Linux kernel module linked against the same kernel source it is going  
to run under.

The script sets events and handlers, which are called by the kernel module on the specified 
events triggering. For this, it uses the kprobes and uprobes (if available) interfaces in the 
kernel, as we saw in the Using dynamic kernel events recipe before.

Getting ready
To use SystemTap, we need to add it to our target image either by adding it specifically, as in:

IMAGE_INSTALL_append = " systemtap"

We can also add it by using the tools-profile image feature, or an -sdk image.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388f/BEHGGDJC.html 
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388f/BEHGGDJC.html 
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
http://www.brendangregg.com/perf.html
http://www.brendangregg.com/perf.html
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We will also need an SSH server running on the target. This is already available on the -sdk 
image; otherwise we can add one to our image with the following:

EXTRA_IMAGE_FEATURES += "ssh-server-openssh"

We will also need to compile the kernel with the CONFIG_DEBUG_INFO configuration variable 
to include debug information, as well as performance events counters and kprobes as 
explained in previous recipes.

How to do it...
To use systemtap on a Yocto system, we need to run the crosstap utility in the host, passing it 
the systemtap script to run. For example, to run the sys_open.stp sample script, we can 
run the following code:

probe begin
{
        print("Monitoring starts\n")
        printf("%6s %6s %16s\n", "UID", "PID", "NAME");
}

probe kernel.function("sys_open")
{
          printf("%6d %6d %16s\n", uid(), pid(), execname());
}

probe timer.s(60)
{
        print("Monitoring ends\n")
        exit()
}

We would run the following commands:

$ source setup-environment wandboard-quad

$ crosstap root@<target_ip> sys_open.stp

Yocto does not support running scripts on the target, as that would require building modules 
on the target, and that is untested.
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How it works...
SystemTap scripts are written with its own C/awk like language. They enable us to trace 
events by instrumenting the kernel code at different locations, such as:

 f Beginning and end of SystemTap sessions

 f Entry, return, or specific offset of kernel and user space functions

 f Timer events

 f Performance hardware counter events

They also enable us to extract data, such as:

 f Thread, process, or user ID

 f Current CPU

 f Process name

 f Time

 f Local variables

 f Kernel and user space backtraces

Additionally, SystemTap also offers the ability to analyze the gathered data, and for different 
probes to work together. SystemTap includes a wide selection of example scripts and a 
framework for creating script libraries that can be shared. These tapsets are installed by 
default and can be extended by the user's own scripts. When a symbol is not defined in a 
script, SystemTap will search the tapset library for it.

See also
 f The tapset reference at https://sourceware.org/systemtap/tapsets/

 f All examples included in the source at https://sourceware.org/systemtap/
examples/

 f A reference to the systemtap scripting language at https://sourceware.org/
systemtap/langref/

https://sourceware.org/systemtap/tapsets/
https://sourceware.org/systemtap/examples/
https://sourceware.org/systemtap/examples/
https://sourceware.org/systemtap/langref/ 
https://sourceware.org/systemtap/langref/ 


Chapter 5

273

Using OProfile
OProfile is a statistical profiler released under the GNU GPL license. The version included in 
the Yocto 1.7 release is a system-wide profiler, which uses the legacy profiling mode with a 
kernel module to sample hardware performance counters data and a user space daemon to 
write them to a file. More recent Yocto releases use newer versions that use the performance 
events subsystem, which we introduced in the Using the kernel's performance counters 
recipe, so they are able to profile processes and workloads as well.

The version included in Yocto 1.7 consists of a kernel module, a user space daemon to collect 
sample data, and several profiling tools to analyze captured data.

This recipe will focus on the OProfile version included in the 1.7 Yocto release.

Getting ready
To include OProfile in your system, add the following to your conf/local.conf file:

 IMAGE_INSTALL_append += " oprofile"

OProfile is also part of the tools-profile image feature, so you can also add it with:

EXTRA_IMAGE_FEATURES += "tools-profile"

OProfile is also included in the -sdk images.

OProfile does not need debugging symbols in applications unless annotated results are 
needed. For callgraph analysis, the binaries must have stack frames information so they 
should be build with debug optimization by setting the DEBUG_BUILD variable in the conf/
local.conf file:

DEBUG_BUILD = "1"

To build the kernel driver, configure the Linux kernel with profiling support, CONFIG_
PROFILING, and the CONFIG_OPROFILE configuration variable to build the OProfile module.

OProfile uses the hardware counters support in the SoC, but it can also work on a timer-based 
mode. To work with the timer-based model, you need to pass the oprofile.timer=1 kernel 
argument to the Linux kernel, or load the OProfile module with:

# modprobe oprofile timer=1
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Because OProfile relies on the i.MX6 performance counters, we still 
need to boot with maxcpus=1 for it to work. This restricts the profiling 
in i.MX6 SoCs to one core.

How to do it...
To profile a single ping, start a profiling session as follows:

# opcontrol --start --vmlinux=/boot/vmlinux --callgraph 5

Using 2.6+ OProfile kernel interface.

Reading module info.

Using log file /var/lib/oprofile/samples/oprofiled.log

Daemon started.

Profiler running.

Then run the workload to profile, for example, a single ping:

# ping -c 1 192.168.1.1

PING 192.168.1.1 (192.168.1.1): 56 data bytes

64 bytes from 192.168.1.1: seq=0 ttl=64 time=5.421 ms

--- 192.168.1.1 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 5.421/5.421/5.421 ms

And stop collecting data with:

 # opcontrol --stop

We will get a parsing error if the kernel image name contains special 
characters. To avoid it, we can use a symbolic link as follows:
# ln -s /boot/vmlinux-3.10.17-1.0.2-  
  wandboard+gbe8d6872b5eb /boot/vmlinux

Also, if you see the following error:
Count 100000 for event CPU_CYCLES is below the minimum 
1500000

You will need to change the reset count of the CPU_CYCLES event to that 
minimum, with:
# opcontrol --setup --event=CPU_CYCLES:1500000
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You can then view the collected data with:

# opreport -f

Using /var/lib/oprofile/samples/ for samples directory.

CPU: ARM Cortex-A9, speed 996000 MHz (estimated)

Counted CPU_CYCLES events (CPU cycle) with a unit mask of 0x00 (No  
  unit mask) count 1500000

CPU_CYCLES:150...|

  samples|      %|

------------------

      401 83.0228 /boot/vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb

       31  6.4182 /bin/bash

       28  5.7971 /lib/libc-2.20.so

       18  3.7267 /lib/ld-2.20.so

        3  0.6211 /usr/bin/oprofiled

        1  0.2070 /usr/bin/ophelp

        1  0.2070 /usr/sbin/sshd

And an excerpt for output with callgraph and symbols is as follows:

# opreport -cl

Using /var/lib/oprofile/samples/ for samples directory.

warning: [heap] (tgid:790 range:0x3db000-0x4bc000) could not be  
  found.

warning: [stack] (tgid:785 range:0x7ee11000-0x7ee32000) could not be  
  found.

CPU: ARM Cortex-A9, speed 996000 MHz (estimated)

Counted CPU_CYCLES events (CPU cycle) with a unit mask of 0x00 (No  
  unit mask) count 1500000

samples  %        app name                 symbol name

-------------------------------------------------------------------------
------

  102      48.8038  vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb  
  __do_softirq

  107      51.1962  vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb  
  do_softirq

102      21.1180  vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb  
  __do_softirq

  102      47.4419  vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb  
  __do_softirq
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  102      47.4419  vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb  
  __do_softirq [self]

  7         3.2558  vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb  
  net_rx_action

  4         1.8605  vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb  
  run_timer_softirq

---------------------------------------------------------------------  
  ----------

31        6.4182  bash                     /bin/bash

How it works...
The OProfile daemon records data continuously, accumulating data from multiple runs. Use 
the --start and --stop options to start and stop accumulating new data. If you want to 
start collecting data from scratch, use the --reset option first.

Before running a profiling session, you need to configure the OProfile daemon to run with 
or without kernel profiling. Specifying the kernel profiling option is the only compulsory 
configuration variable.

In order to configure the OProfile daemon, stop it first (if running) with the --shutdown 
option. The --stop option will only stop data collection, but will not kill the daemon.

To configure OProfile without kernel profiling you execute the following command:

opcontrol --no-vmlinux <options>

And to configure the kernel profiling, we can run the following command:

opcontrol --vmlinux=/boot/path/to/vmlinux <options>

Both of these will configure the daemon and load the OProfile kernel module, if needed. Some 
common options are:

 f --separate=<type>: This controls how the profiled data is separated into different 
files, with type being:

 � none: This does not separate profiles.

 � library: This separates shared libraries profiles per application. The sample 
file name will include the name of library and the executable.

 � kernel: This adds kernel profiling.

 � thread: This adds per thread profiles.

 � cpu: This adds per CPU profiles.

 � all: This does all of the above.
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 f --callgrah=<depth>: This logs called and calling functions as well as the time 
spent in functions.

Once the daemon is configured, you can start a profiling session.

To check the current configuration, you execute:

# opcontrol --status

Daemon not running

Session-dir: /var/lib/oprofile

Separate options: library kernel

vmlinux file: /boot/vmlinux

Image filter: none

Call-graph depth: 5

The sampled data is stored in the /var/lib/oprofile/samples/ directory.

We can then analyze the collected data with:

opreport <options>

Some useful options include:

 f -c: This shows callgraph information, if available.

 f -g: This shows the source file and line number for each symbol.

 f -f: This shows full object paths.

 f -o: This provides the output to the specified file instead of stdout.

OProfile mounts a pseudo filesystem in /dev/oprofile which is used to report and receive 
configuration from user space. It also contains a character device node used to pass sampled 
data from the kernel module to the user space daemon.

There's more...
Yocto includes a graphical user interface for OProfile that can be run in the host. However, it is 
not part of Poky and needs to be downloaded and installed separately.

Refer to the oprofileui repository at https://git.yoctoproject.org/cgit/cgit.
cgi/oprofileui/ for a README with instructions, or to the Yocto Project's Profiling and 
Tracing Manual at http://www.yoctoproject.org/docs/1.7.1/profile-manual/
profile-manual.html.

https://git.yoctoproject.org/cgit/cgit.cgi/oprofileui/
https://git.yoctoproject.org/cgit/cgit.cgi/oprofileui/
http://www.yoctoproject.org/docs/1.7.1/profile-manual/profile-manual.html
http://www.yoctoproject.org/docs/1.7.1/profile-manual/profile-manual.html
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See also
 f The project's home page for more information about OProfile at http://oprofile.

sourceforge.net/news/

Using LTTng
LTTng is a set of dual licensed GPLv2 and LGPL tracing and profiling tools for both applications 
and kernel. It produces binary trace files in the production optimized Compact Trace Format 
(CTF), which can then be analyzed by tools, such as babeltrace.

Getting ready
To include the different LTTng tools in your system, add the following to your conf/local.
conf file:

IMAGE_INSTALL_append = " lttng-tools lttng-modules lttng-ust"

They are also part of the tools-profile image feature, so you can also add them with:

EXTRA_IMAGE_FEATURES += "tools-profile"

These are also included in the -sdk images.

At the time of writing, Yocto 1.7 excludes lttng-modules from 
the tools-profile feature and sdk images for ARM; so they 
have to be added manually.

The LTTng command-line tool is the main user interface to LTTng. It can be used to trace both 
the Linux kernel—using the kernel tracing interfaces we have seen in previous recipes—as well 
as instrumented user space applications.

How to do it...
A kernel profiling session workflow is as follows:

1. Create a profiling session with:
# lttng create test-session

Session test-session created.

Traces will be written in /home/root/lttng-traces/test-  
  session-20150117-174945

http://oprofile.sourceforge.net/news/
http://oprofile.sourceforge.net/news/
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2. Enable the events you want to trace with:
# lttng enable-event --kernel sched_switch,sched_process_fork

Warning: No tracing group detected

Kernel event sched_switch created in channel channel0

Kernel event sched_process_fork created in channel channel0

You can get a list of the available kernel events with:
# lttng list --kernel

This corresponds to the static tracepoint events available in the Linux kernel.

3. Now, you are ready to start sampling profiling data:
# lttng start

Tracing started for session test-session

4. Run the workload you want to profile:
# ping -c 1 192.168.1.1

5. When the command finishes or is interrupted, stop the gathering of profiling data:
# lttng stop

Waiting for data availability.

Tracing stopped for session test-session

6. Finally, destroy the profiling session using the following command. Note that this 
keeps the tracing data and only destroys the session.
# lttng destroy

Session test-session destroyed

7. To view the profiling data so that it is readable by humans, start babeltrace with:

# babeltrace /home/root/lttng-traces/test-session-20150117-  
  174945

The profiling data can also be copied to the host to be analyzed.

User space applications and libraries need to be instrumented so that they can be profiled. 
This is done by linking them with the liblttng-ust library.
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Applications can then make use of the tracef function call, which has the same format 
as printf(), to output traces. For example, to instrument the example helloworld.c 
application we saw in previous chapters, modify the source in meta-custom/recipes-
example/helloworld/helloworld-1.0/helloworld.c as follows:

#include <stdio.h>
#include <lttng/tracef.h>

main(void)
{
    printf("Hello World");
    tracef("I said: %s", "Hello World");
}

Modify its Yocto recipe in meta-custom/recipes-example/helloworld/
helloworld_1.0.bb as follows:

DESCRIPTION = "Simple helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM =  
  "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4  
  f302"

SRC_URI = "file://helloworld.c"
DEPENDS = "lttng-ust"

S = "${WORKDIR}"
 
do_compile() {
             ${CC} helloworld.c -llttng-ust -o helloworld
}

do_install() {
             install -d ${D}${bindir}
             install -m 0755 helloworld ${D}${bindir}
}
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Then build the package, copy it to the target, and start a profiling session as follows:

1. Create a profiling session by executing the following command:
# lttng create test-user-session

Session test-user-session created.

Traces will be written in /home/root/lttng-traces/test-user-  
  session-20150117-185731

2. Enable the events you want to profile—in this case, all the user space events:
# lttng enable-event -u -a

Warning: No tracing group detected

All UST events are enabled in channel channel0

3. Start to gather profiling data:
# lttng start

Tracing started for session test-user-session

4. Run the workload—in this case, the instrumented hello world example program:
# helloworld

Hello World

5. Once it finishes, stop gathering data:
# lttng stop

Waiting for data availability.

Tracing stopped for session test-user-session

6. Without destroying the session, you can start babeltrace executing:
# lttng view

[18:58:22.625557512] (+0.001278334) wandboard-quad  
  lttng_ust_tracef:event: { cpu_id = 0 }, { _msg_length = 19,  
  msg = "I said: Hello World" }

7. Finally, you can destroy the profiling session:

# lttng destroy test-user-session

Session test-user-session destroyed
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How it works...
Kernel tracing is done using the tracing functionalities available in the Linux kernel, as we 
have seen in previous recipes. For the following examples to work, the Linux kernel must be 
configured appropriately as seen in the corresponding recipes earlier.

LTTng provides a common user interface to control some of the kernel tracing features we saw 
previously, such as the following:

 f Static tracepoint events:

You can enable specific static tracepoint events with:
# lttng enable-event <comma separated event list> -k

You can enable all tracepoints with:
# lttng enable-event -a -k --tracepoint

You can also enable all syscalls with:
# lttng enable-event -a -k --syscall

You can enable all tracepoints and syscalls with:

# lttng enable-event -a -k

 f Dynamic tracepoint events:

You can also add dynamic tracepoints with:
# lttng enable-event <probe_name> -k --probe <symbol>+<offset>

You can also add them with:

# lttng enable-event <probe_name> -k --probe <address>

 f Function tracing:

You can also use the function tracing kernel functionality with:

# lttng enable-event <probe_name> -k --function <symbol>

 f Performance counter events:

And the hardware performance counters, for example for the CPU cycles, with the 
following command:
# lttng add-context -t perf:cpu:cpu-cycles -k

Use the add-context --help option to list further context options and perf 
counters.
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Extending application profiling
Further applications tracing flexibility can be achieved with the tracepoint() call by writing 
a template file (.tp), and using the lttng-gen-tp script along with the source file. This 
generates an object file that can then be linked to your application.

At the time of writing, Yocto has no standard way to cross-instrument user space applications, 
but it can be done natively using an -sdk image, or adding the following image features to the 
conf/local.conf file:

EXTRA_IMAGE_FEATURES += "tools-sdk dev-pkgs"

For example, define a tracepoint hw.tp file as follows:

TRACEPOINT_EVENT(
    hello_world_trace_provider,
    hw_tracepoint,
    TP_ARGS(
        int, my_integer_arg,
        char*, my_string_arg
    ),
    TP_FIELDS(
        ctf_string(my_string_field, my_string_arg)
        ctf_integer(int, my_integer_field, my_integer_arg)
    )
)

Pass this through the lttng-gen-tp tool to obtain hw.c, hw.h, and hw.o files:

# lttng-gen-tp hw.tp

Note that the lttng-gen-tp tool is not installed with the lttng-ust 
package, but with the lttng-ust-bin package. This has to be added to  
be the target image, for example, by adding the following in your conf/
local.conf file:
IMAGE_INSTALL_append = " lttng-ust-bin"

You can now add the hw.h header file to your helloworld application that is in the 
helloworld.c file and use the tracepoint() call as follows:

#include <stdio.h>
#include "hw.h"
 
main(void)
{
    printf("Hello World");
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    tracepoint(hello_world_trace_provider,  hw_tracepoint, 1, "I  
  said: Hello World");
}

Now link your application with the native gcc as follows:

# gcc -o hw helloworld.c hw.o -llttng-ust -ldl

Note that in order to use gcc on the target, we need to build one of the 
-sdk images, or add some extra features to our image, such as:
EXTRA_IMAGE_FEATURES = "tools-sdk dev-pkgs"

To profile your application, do the following:

1. Create a profiling session:
# lttng create test-session

Spawning a session daemon

Warning: No tracing group detected

Session test-session created.

Traces will be written in /home/root/lttng-traces/test-  
  session-20150117-195930

2. Enable the specific event you want to profile:
# lttng enable-event --userspace  
  hello_world_trace_provider:hw_tracepoint

Warning: No tracing group detected

UST event hello_world_trace_provider:hw_tracepoint created in  
  channel channel0

3. Start gathering profiling data:
# lttng start

Tracing started for session test-session

4. Run the workload to profile—in this case the helloworld application:
#./hw

Hello World

5. Stop gathering data:
# lttng stop
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6. Now start babeltrace with:
# lttng view

[20:00:43.537630037] (+?.?????????) wandboard-quad  
  hello_world_trace_provider:hw_tracepoint: { cpu_id = 0 }, {  
  my_string_field = "I said: Hello World", my_integer_field =  
  1 }

7. Finally, destroy the profiling session:
# lttng destroy test-session

There's more...
You can also use the Trace Compass application or Eclipse plugin to analyze the traces in the 
host by visiting http://projects.eclipse.org/projects/tools.tracecompass/
downloads. A stable release was not yet available at the time of writing.

See also
 f Details on using LTTng at http://lttng.org/docs/

 f Details about the instrumenting of C applications at http://lttng.org/
docs/#doc-c-application

 f A tracepoint() example in the lttng-ust source at http://git.lttng.
org/?p=lttng-ust.git;a=tree;f=tests/hello;h=4ae310caf62a8321a25
3fa84a04982edab52829c;hb=HEAD

Using blktrace
There are a few tools available to perform block devices I/O monitoring and profiling.

Starting with iotop which we mentioned in the Exploring Yocto's tracing and profiling tools 
recipe, which gives a general idea of the throughput on a system and a particular process. 
Or iostat, which provides many more statistics regarding CPU usage and device utilization, 
but does not provide per process details. And finally blktrace that is a GPLv2 licensed tool 
which monitors specific block devices I/O at a low level, and can also compute I/O operations 
per second (IOPS).

This recipe will explain how to use blktrace to trace block devices and blkparse, to 
convert the traces into human readable format.

http://projects.eclipse.org/projects/tools.tracecompass/downloads
http://projects.eclipse.org/projects/tools.tracecompass/downloads
http://lttng.org/docs/
http://lttng.org/docs/#doc-c-application
http://lttng.org/docs/#doc-c-application
http://git.lttng.org/?p=lttng-ust.git;a=tree;f=tests/hello;h=4ae310caf62a8321a253fa84a04982edab52829c;hb=HEAD
http://git.lttng.org/?p=lttng-ust.git;a=tree;f=tests/hello;h=4ae310caf62a8321a253fa84a04982edab52829c;hb=HEAD
http://git.lttng.org/?p=lttng-ust.git;a=tree;f=tests/hello;h=4ae310caf62a8321a253fa84a04982edab52829c;hb=HEAD
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Getting ready
To use blktrace and blkparse, you can add them to the target image by adding it 
specifically, as in:

IMAGE_INSTALL_append = " blktrace"

Alternately, you can also use  the tools-profile image feature, or an -sdk image.

You will also need to configure the Linux kernel with CONFIG_FTRACE and CONFIG_BLK_
DEV_IO_TRACE to be able to trace block I/O actions.

When profiling a block device, it is important to minimize the effect of the tracing on the 
results; for example, not storing the tracing data on the block device being profiled.

There are several ways to achieve this:

 f Running the trace from a different block device.

 f Running the trace from a RAM-based tmpfs device (such as /var/volatile). 
Running from a memory-based device will limit the amount of tracing data that can 
be stored though.

 f Running the trace from a network-mounted filesystem.

 f Running the trace over the network.

Also, the filesystem being used in the block device to profile is an important factor, as 
filesystem features such as journalism will distort the I/O statistics. Flash filesystems, even if 
they are presented to user space as block devices, cannot be profiled with blktrace.

How to do it...
Let's imagine you want to profile the I/O for the microSD card device on the Wandboard. 
By booting the system from the network, as seen in the Configuring network booting for a 
development setup recipe from Chapter 1, The Build System, you can avoid unnecessary 
access to the device by the system.

For this example, we will mount as an ext2 partition to avoid journalism, but other tweaks may 
be needed for effective profiling of a specific workload:

# mount -t ext2 /dev/mmcblk0p2 /mnt

EXT2-fs (mmcblk0p2): warning: mounting ext3 filesystem as ext2

EXT2-fs (mmcblk0p2): warning: mounting unchecked fs, running e2fsck  
  is recommended
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The workflow to profile a specific workload is as follows:

1. Start blktrace to gather tracing data on the /dev/mmcblk0 device with:
# blktrace /dev/mmcblk0

2. Start the workload to profile, for example, the creation of a 10 KB file. Open an SSH 
connection to the target and execute:
# dd if=/dev/urandom of=/mnt/home/root/random-10k-file bs=1k  
  count=10 conv=fsync

10+0 records in

10+0 records out

10240 bytes (10 kB) copied, 0.00585167 s, 1.7 MB/s

3. Stop the profiling on the console with Ctrl + C. This will create a file in the same 
directory called mmcblk0.blktrace.0 . You will see the following output:
^C=== mmcblk0 ===
  CPU  0:                   30 events,        2 KiB data
  Total:                    30 events (dropped 0),        2  
  KiB data

Some useful options for blktrace are:

 f -w: This is used to run only for the specified number of seconds

 f -a: This adds a mask to the current file, where the masks can be:

 � barrier: This refers to the barrier attribute

 � complete: This refers to an operation completed by the driver

 � fs: These are the FS requests

 � issue: This option refers to operations issued to the driver

 � pc: This refers to packet command events

 � queue: This option represents queue operations

 � read: This refers to read traces

 � requeue: This is used for requeue operations

 � sync: This represents synchronous attributes

 � write: This refers to write traces
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How it works...
Once you have gathered the tracing data, you can process it with blkparse as follows:

# blkparse mmcblk0

This provides an stdout output for all the gathered data, and a final summary, as follows:

Input file mmcblk0.blktrace.0 added
179,0    0        1     0.000000000   521  A   W 1138688 + 8 <-  
  (179,2) 1114112
179,0    0        2     0.000003666   521  Q   W 1138688 + 8  
  [kworker/u8:0]
179,0    0        3     0.000025333   521  G   W 1138688 + 8  
  [kworker/u8:0]
179,0    0        4     0.000031000   521  P   N [kworker/u8:0]
179,0    0        5     0.000044666   521  I   W 1138688 + 8  
  [kworker/u8:0]
179,0    0        0     0.000056666     0  m   N cfq519A   
  insert_request
179,0    0        0     0.000063000     0  m   N cfq519A   
  add_to_rr
179,0    0        6     0.000081000   521  U   N [kworker/u8:0] 1
179,0    0        0     0.000121000     0  m   N cfq workload  
  slice:6
179,0    0        0     0.000132666     0  m   N cfq519A   
  set_active wl_class:0 wl_type:0
179,0    0        0     0.000141333     0  m   N cfq519A  Not  
  idling. st->count:1
179,0    0        0     0.000150000     0  m   N cfq519A  fifo=   
  (null)
179,0    0        0     0.000156000     0  m   N cfq519A   
  dispatch_insert
179,0    0        0     0.000167666     0  m   N cfq519A   
  dispatched a request
179,0    0        0     0.000175000     0  m   N cfq519A  activate  
  rq, drv=1
179,0    0        7     0.000181333    83  D   W 1138688 + 8  
  [mmcqd/2]
179,0    0        8     0.735417000    83  C   W 1138688 + 8 [0]
179,0    0        0     0.739904333     0  m   N cfq519A  complete  
  rqnoidle 0
179,0    0        0     0.739910000     0  m   N cfq519A   
  set_slice=4
179,0    0        0     0.739912000     0  m   N cfq schedule  
  dispatch
CPU0 (mmcblk0):
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 Reads Queued:           0,        0KiB  Writes Queued:1,4KiB
 Read Dispatches:        0,        0KiB  Write Dispatches:1,4KiB
 Reads Requeued:         0               Writes Requeued:0
 Reads Completed:        0,        0KiB  Writes Completed:1,4KiB
 Read Merges:            0,        0KiB  Write Merges:0,0KiB
 Read depth:             0               Write depth:1
 IO unplugs:             1               Timer unplugs:0

Throughput (R/W): 0KiB/s / 5KiB/s
Events (mmcblk0): 20 entries
Skips: 0 forward (0 -   0.0%)

The output format from blkparse is:

179,0    0        7     0.000181333    83  D   W 1138688 + 8  
  [mmcqd/2]

This corresponds to:

<mayor,minor> <cpu> <seq_nr> <timestamp> <pid> <actions> <rwbs>  
  <start block> + <nr of blocks> <command>

The columns correspond to:

 f A: I/O remapped to a different device

 f B: I/O bounced

 f C: I/O completed

 f D: I/O issued to driver

 f F: I/O front merged with request on queue

 f G: Get request

 f I: I/O inserted into request queue

 f M: I/O back merged with request on queue

 f P: Plug request

 f Q: I/O handled by request queue code

 f S: Sleep request

 f T: Unplug due to timeout

 f U: Unplug request

 f X: Split
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The RWBS field corresponds to:

 f R: Read

 f W: Write

 f B: Barrier

 f S: Synchronous

Another way of tracing non-disruptively is using live monitoring, that is, piping the output of 
blktrace to blkparse directly without writing anything to disk, as follows:

# blktrace /dev/mmcblk0 -o - | blkparse -i -

This can also be done in just one line:

# btrace /dev/mmcblk0

There's more...
The blktrace command can also send the tracing data over the network so that it is stored 
on a different device.

For this, start blktrace on the target system as follows:

# blktrace -l /dev/mmcblk0

And on another device, run another instance as follows:

$ blktrace -d /dev/mmcblk0 -h <target_ip>

Back to the target, you can now execute the specific workload you want to trace:

# dd if=/dev/urandom of=/mnt/home/root/random-10k-file bs=1k count=10  
  conv=fsync

10+0 records in

10+0 records out

10240 bytes (10 kB) copied, 0.00585167 s, 1.7 MB/s

Once it finishes, interrupt the remote blktrace with Ctrl + C. A summary will be printed at 
both the target and the host.

You can now run blkparse to process the gathered data.
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