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In this book Dr. Malhotra uses her breadth of software engineering experience and 
expertise to provide the reader with coverage of many aspects of empirical software 
engineering. She covers the essential techniques and concepts needed for a researcher to 
get started on empirical software engineering research, including metrics, experimental 
design, analysis and statistical techniques, threats to the validity of any research findings, 
and methods and tools for empirical software engineering research.
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tronic resources relating to software projects). Through mining these repositories, we 
answer fundamentally empirical questions about software systems that can inform prac-
tice and software improvement.

The book provides the reader with an introduction and overview of the field and is also 
backed by references to the literature, allowing the interested reader to follow up on the 
methods, tools, and concepts described.

Mark Harman
University College London
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Preface

Empirical research has become an essential component of software engineering 
research practice. Empirical research in software engineering—including the concepts, 
analysis, and applications—is all about designing, collecting, analyzing, assessing, 
and interpreting empirical data collected from software repositories using statistical 
and machine-learning techniques. Software practitioners and researchers can use the 
results obtained from these analyses to produce high quality, low cost, and maintain-
able software. 

Empirical software engineering involves planning, designing, analyzing, assessing, 
interpreting, and reporting results of validation of empirical data. There is a lack of under-
standing and level of uncertainty on the empirical procedures and practices in software 
engineering. The aim of this book is to present the empirical research processes, proce-
dures, and practices that can be implemented in practice by the research community. My 
several years of experience in the area of empirical software engineering motivated me to 
write this book.

Universities and software industries worldwide have started realizing the importance 
of empirical software engineering. Many universities are now offering a full course on 
empirical software engineering for undergraduate, postgraduate, and doctoral students in 
the disciplines of software engineering, computer science engineering, information tech-
nology, and computer applications.

In this book, a description of the steps followed in the research process in order to carry 
out replicated and empirical research is presented. Readers will gain practical knowledge 
about how to plan and design experiments, conduct systematic reviews and case studies, 
and analyze the results produced by these empirical studies. Hence, the empirical research 
process will provide the software engineering community the knowledge for conducting 
empirical research in software engineering.

The book contains a judicious mix of empirical research concepts and real-life case 
study that makes it ideal for a course and research on empirical software engineering. 
Readers will also experience the process of developing predictive models (e.g., defect 
prediction, change prediction) on data collected from source code repositories. The pur-
pose of this book is to introduce students, academicians, teachers, software practitioners 
and researchers to the research process carried out in the empirical studies in software 
engineering. This book presents the application of machine-learning techniques and 
real-life case studies in empirical software engineering, which aims to bridge the gap 
between research and practice. The book explains the concepts with numerous examples 
of empirical studies. The main features of this book are as follows:

• Presents empirical processes, the importance of empirical-research ethics in soft-
ware engineering research, and the types of empirical studies.

• Describes the planning, conducting, and reporting phases of systematic literature 
reviews keeping in view the challenges encountered in this field.
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• Describes software metrics; the most popular metrics given to date are included 
and explained with the help of examples.

• Provides an in-depth description of experimental design, including research ques-
tions formation, literature review, variables description, hypothesis formulation, 
data collection, and selection of data analysis methods.

• Provides a full chapter on mining data from software repositories. It presents the 
procedure for extracting data from software repositories such as CVS, SVN, and 
Git and provides applications of the data extracted from these repositories in the 
software engineering area.

• Describes methods for analyzing data, hypothesis testing, model prediction, and 
interpreting results. It presents statistical tests with examples to demonstrate their 
use in the software engineering area.

• Describes performance measures and model validation techniques. The guide-
lines for using the statistical tests and performance measures are also provided. 
It also emphasizes the use of machine-learning techniques in predicting models 
along with the issues involved with these techniques.

• Summarizes the categories of threats to validity with practical examples. A sum-
mary of threats extracted from fault prediction studies is presented.

• Provides guidelines to researchers and doctorate students for publishing and 
reporting the results. Research misconduct is discussed.

• Presents the procedure for mining unstructured data using text mining tech-
niques and describes the concepts with the help of examples and case studies. It sig-
nifies the importance of text-mining procedures in extracting relevant information 
from software repositories and presents the steps in text mining.

• Presents real-life research-based case studies on software quality prediction mod-
els. The case studies are developed to demonstrate the procedures used in the 
chapters of the book.

• Presents an overview of tools that are widely used in the software industry for 
carrying out empirical studies.

I take immense pleasure in presenting to you this book and hope that it will inspire 
researchers worldwide to utilize the knowledge and knowhow contained for newer 
applications and advancement of the frontiers of software engineering. The importance 
of feedback from readers is important to continuously improve the contents of the book. 
I welcome constructive criticism and comments about anything in the book; any omission 
is due to my oversight. I will appreciatively receive suggestions, which will motivate me 
to work hard on a next improved edition of the book; as Robert Frost rightly wrote:

The woods are lovely, dark, and deep,
But I have promises to keep,
And miles to go before I sleep,
And miles to go before I sleep.

Ruchika Malhotra
Delhi Technological University



xxiii

Acknowledgments

I am most thankful to my father for constantly encouraging me and giving me time and 
unconditional support while writing this book. He has been a major source of inspiration 
to me.

This book is a result of the motivation of Yogesh Singh, Director, Netaji Subhas Institute 
of Technology, Delhi, India. It was his idea that triggered this book. He has been a constant 
source of inspiration for me throughout my research and teaching career. He has been con-
tinuously involved in evaluating and improving the chapters in this book; I will always be 
indebted to him for his extensive support and guidance.

I am extremely grateful to Mark Harman, professor of software engineering and head 
of the Software Systems Engineering Group, University College London, UK, for the sup-
port he has given to the book in his foreword. He has contributed greatly to the field of 
software engineering research and was the first to explore the use and relevance of search-
based techniques in software engineering.

I am extremely grateful to Megha Khanna, assistant professor, Acharya Narendera Dev 
College, University of Delhi, India, for constantly working with me in terms of solving 
examples, preparing case studies, and reading texts. The book would not have been in its 
current form without her support. My sincere thanks to her.

My heartfelt gratitude is due to Ankita Jain Bansal, assistant professor, Netaji Subhas 
Institute of Technology, Delhi, India, who worked closely with me during the evolution 
of the book. She was continuously involved in modifying various portions in the book, 
especially experimental design procedure and threshold analysis.

I am grateful to Abha Jain, research scholar, Delhi Technological University, Delhi, 
India, for helping me develop performance measures and text-mining examples for the 
book. My thanks are also due to Kanishk Nagpal, software engineer, Samsung India 
Electronics Limited, Delhi, India, who worked closely with me on mining repositories and 
who  developed the DCRS tool provided in Chapter 5. 

Thanks are due to all my doctoral students in the Department of Software Engineering, 
Delhi Technological University, Delhi, India, for motivating me to explore and evolve 
empirical research concepts and applications in software engineering. Thanks are also due 
to my undergraduate and postgraduate students at the Department of Computer Science 
and Software Engineering, Delhi Technological University, for motivating me to study 
more before delivering lectures and exploring and developing various tools in several 
projects. Their outlook, debates, and interest have been my main motivation for continu-
ous advancement in my academic pursuit. I also thank all researchers, scientists, practitio-
ners, software developers, and teachers whose insights, opinions, ideas, and techniques 
find a place in this book. 

Thanks also to Rajeev Raje, professor, Department of Computer & Information Science, 
Indiana University–Purdue University Indianapolis, Indianapolis, for his support and 
valuable suggestions.

Last, I am thankful to Manju Khari, assistant professor, Ambedkar Institute of 
Technology, Delhi, India, for her support in gathering some of the material for the further 
readings sections in the book.





xxv

Author

Ruchika Malhotra is an assistant professor in the Department of Software Engineering, 
Delhi Technological University (formerly Delhi College of Engineering), Delhi, India. She 
is a Raman Scholar and was awarded the prestigious UGC Raman Postdoctoral Fellowship 
by the government of India, under which she pursued postdoctoral research in the 
Department of Computer and Information Science, Indiana University–Purdue University 
Indianapolis (2014–15), Indiana. She earned her master’s and doctorate degrees in software 
engineering from the University School of Information Technology, Guru Gobind Singh 
Indraprastha University, Delhi, India. She was an assistant professor at the University 
School of Information Technology, Guru Gobind Singh Indraprastha University, Delhi, 
India.

Dr. Malhotra received the prestigious IBM Faculty Award in 2013 and has received 
the Best Presenter Award in Workshop on Search Based Software Testing, ICSE, 2014, 
Hyderabad, India. She is an executive editor of Software Engineering: An International Journal 
and is a coauthor of the book, Object Oriented Software Engineering.

Dr. Malhotra’s research interests are in empirical research in software engineering, 
improving software quality, statistical and adaptive prediction models, software metrics, 
the definition and validation of software metrics, and software testing. Her H-index as 
reported by Google Scholar is 17. She has published more than 100 research papers in 
international journals and conferences, and has been a referee for various journals of 
international repute in the areas of software engineering and allied fields. She is guid-
ing several doctoral candidates and has guided several undergraduate projects and 
graduate dissertations. She has visited foreign universities such as Imperial College, 
London, UK; Indiana University–Purdue University Indianapolis, Indiana; Ball State 
University, Muncie, Indiana; and Harare Institute of Technology, Zimbabwe. She has 
served on the technical committees of several international conferences in the area of 
software engineering (SEED, WCI, ISCON). Dr. Malhotra can be contacted via e-mail at 
 ruchikamalhotra2004@yahoo.com. 





1

1
Introduction

As the size and complexity of software is increasing, software organizations are facing 
the pressure of delivering high-quality software within a specific time, budget, and avail-
able resources. The software development life cycle consists of a series of phases, includ-
ing requirements analysis, design, implementation, testing, integration, and maintenance. 
Software  professionals want to know which tools to use at each phase in software devel-
opment and desire effective allocation of available resources. The software planning team 
attempts to  estimate the cost and duration of software development, the software testers 
want to identify the fault-prone modules, and the software managers seek to know which 
tools and techniques can be used to reduce the delivery time and best utilize the man-
power. In addition, the software managers also desire to improve the software processes 
so that the quality of the software can be enhanced. Traditionally, the software engineers 
have been making decisions based on their intuition or individual expertise without any 
scientific evidence or support on the benefits of a tool or a technique.

Empirical studies are verified by observation or experiment and can provide powerful 
evidence for testing a given hypothesis (Aggarwal et al. 2009). Like other disciplines, soft-
ware engineering has to adopt empirical methods that will help to plan, evaluate, assess, 
monitor, control, predict, manage, and improve the way in which software products are 
produced. An empirical study of real systems can help software organizations assess 
large software systems quickly, at low costs. The application of empirical techniques is 
especially beneficial for large-scale systems, where software professionals need to focus 
their attention and resources on various activities of the system under development. 
For  example, developing a model for predicting faulty modules allows software organiza-
tions to  identify faulty portions of source code so that testing activities can be planned 
more effectively. Empirical studies such as surveys, systematic reviews and experimental 
studies, help software practitioners to scientifically assess and validate the tools and tech-
niques in software development.

In this chapter, an overview and the types of empirical studies are provided, the phases 
of the experimental process are described, and the ethics involved in empirical research 
of software engineering are summarized. Further, this chapter also discusses the key con-
cepts used in the book.

1.1 What Is Empirical Software Engineering?

The initial debate on software as an engineering discipline is over now. It has been realized 
that without software as an engineering discipline survival is difficult. Engineering compels 
the development of the product in a scientific, well formed, and systematic  manner. Core 
engineering principles should be applied to produce good quality maintainable  software 
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within a specified time and budget. Fritz Bauer coined the term software  engineering in 1968 at 
the first conference on software engineering and defined it as (Naur and Randell  1969):

The establishment and use of sound engineering principles in order to obtain  economically 
developed software that is reliable and works efficiently on real machines.

Software engineering is defined by IEEE Computer Society as (Abren et al. 2004):

The application of a systematic, disciplined, quantifiable approach to the development, 
operation and maintenance of software, and the study of these approaches, that is, the 
application of engineering to software.

The software engineering discipline facilitates the completion of the objective of  delivering 
good quality software to the customer following a systematic and scientific approach. 
Empirical methods can be used in software engineering to provide scientific evidence on 
the use of tools and techniques.

Harman et al. (2012a) defined “empirical” as:

“Empirical” is typically used to define any statement about the world that is related to 
observation or experience.

Empirical software engineering (ESE) is an area of research that emphasizes the use of empir-
ical methods in the field of software engineering. It involves methods for  evaluating, assess-
ing, predicting, monitoring, and controlling the existing artifacts of software development.

ESE applies quantitative methods to the software engineering phenomenon to  understand 
software development better. ESE has been gaining importance over the past few decades 
because of the availability of vast data sets from open source repositories that contain 
 information about software requirements, bugs, and changes (Meyer et al. 2013).

1.2 Overview of Empirical Studies

Empirical study is an attempt to compare the theories and observations using real-life 
data for analysis. Empirical studies usually utilize data analysis methods and  statistical 
 techniques for exploring relationships. They play an important role in software engineer-
ing research by helping to form well-formed theories and widely accepted results. The 
 empirical studies provide the following benefits:

• Allow to explore relationships
• Allow to prove theoretical concepts
• Allow to evaluate accuracy of the models
• Allow to choose among tools and techniques
• Allow to establish quality benchmarks across software organizations
• Allow to assess and improve techniques and methods

Empirical studies are important in the area of software engineering as they allow software 
professionals to evaluate and assess the new concepts, technologies, tools, and techniques 
in scientific and proved manner. They also allow improving, managing, and controlling 
the existing processes and techniques by using evidence obtained from the empirical 
analysis. The empirical information can help software management in decision making 
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and improving software processes. The empirical studies involve the following steps 
(Figure 1.1):

• Formation of research questions
• Formation of a research hypothesis
• Gathering data
• Analyzing the data
• Developing and validating models
• Deriving conclusions from the obtained results

Empirical study allows to gather evidence that can be used to support the claims of 
 efficiency of a given technique or technology. Thus, empirical studies help in build-
ing a body of knowledge so that the processes and products are improved resulting in 
 high-quality software.

Empirical studies are of many types, including surveys, systematic reviews, experi-
ments, and case studies.

1.3 Types of Empirical Studies

The studies can be broadly classified as quantitative and qualitative. Quantitative research 
is the most widely used scientific method in software engineering that applies mathematical-
or statistical-based methods to derive conclusions. Quantitative research is used to prove 
or disprove a hypothesis (a concept that has to be tested for further investigation). The aim 
of a quantitative research is to generate results that are generalizable and unbiased and 
thus can be applied to a larger population in research. It uses statistical methods to vali-
date a hypothesis and to explore causal relationships.

Empirical
study

• Research questions
• Hypothesis formation
• Data collection
• Data analysis
• Model development and
   validation 
• Concluding results

FIGURE 1.1
Steps in empirical studies.
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In qualitative research, the researchers study human behavior, preferences, and nature. 
Qualitative research provides an in-depth analysis of the concept under investigation 
and thus uses focused data for research. Understanding a new process or technique in 
software engineering is an example of qualitative research. Qualitative research provides 
 textual descriptions or pictures related to human beliefs or behavior. It can be extended 
to other studies with similar populations but generalizations of a particular phenomenon 
may be difficult. Qualitative research involves methods such as observations, interviews, 
and group discussions. This method is widely used in case studies.

Qualitative research can be used to analyze and interpret the meaning of results  produced 
by quantitative research. Quantitative research generates numerical data for  analysis, 
whereas qualitative research generates non-numerical data (Creswell 1994). The data of 
 qualitative research is quite rich as compared to quantitative data. Table 1.1 summaries 
the key differences between quantitative and qualitative research.

The empirical studies can be further categorized as experimental, case study, systematic 
review, survey, and post-mortem analysis. These categories are explained in the next sec-
tion. Figure 1.2 presents the quantitative and qualitative types of empirical studies.

1.3.1 Experiment

An experimental study tests the established hypothesis by finding the effect of variables of 
interest (independent variables) on the outcome variable (dependent variable) using statis-
tical analysis. If the experiment is carried out correctly, the hypothesis is either accepted or 
rejected. For example, one group uses technique A and the other group uses technique B, 
which technique is more effective in detecting a larger number of defects? The researcher 
may apply statistical tests to answer such questions. According to Kitchenham et al. (1995), 
the experiments are small scale and must be controlled. The experiment must also con-
trol the confounding variables, which may affect the accuracy of the results produced by 
the experiment. The experiments are carried out in a controlled environment and often 
referred to as controlled experiments (Wohlin 2012).

The key factors involved in the experiments are independent variables, dependent vari-
ables, hypothesis, and statistical techniques. The basic steps followed in experimental 

TABLE 1.1

Comparison of Quantitative and Qualitative Research

Quantitative Research Qualitative Research

General Objective Subjective
Concept Tests theory Forms theory
Focus Testing a hypothesis Examining the depth of a phenomenon
Data type Numerical Textual or pictorial
Group Small Large and random
Purpose Predict causal relationships Describe and interpret concepts
Basis Based on hypothesis Based on concept or theory 
Method Confirmatory: established hypothesis is tested Exploratory: new hypothesis is formed
Variables Variables are defined by the researchers Variables may emerge unexpectedly
Settings Controlled Flexible
Results Generalizable Specialized
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research are shown in Figure  1.3. The same steps are followed in any empirical study 
process however the content varies according to the specific study being carried out. In 
first phase, experiment is defined. The next phase involves determining the experiment 
design. In the third phase the experiment is executed as per the experiment design. Then, 
the results are interpreted. Finally, the results are presented in the form of experiment 
report. To carry out an empirical study, a replicated study (repeating a study with similar 
settings or methods but different data sets or subjects), or to perform a survey of existing 
empirical studies, the research methodology followed in these studies needs to be formu-
lated and described.

A controlled experiment involves varying the variables (one or more) and keeping every-
thing else constant or the same and are usually conducted in small or laboratory setting 
(Conradi and Wang 2003). Comparing two methods for defect detection is an example of a 
controlled experiment in software engineering context.

1.3.2 Case Study

Case study research represents real-world scenarios and involves studying a particular 
phenomenon (Yin 2002). Case study research allows software industries to evaluate a tool, 

Empirical studies

Quantitative

Experiment

Survey research

Systematic
reviews

Postmortem
analysis

Qualitative Case studies

FIGURE 1.2
Types of empirical studies.

Experiment
definition 

Experiment
design

Experiment
conduct

and analysis

Experiment
interpretation

Experiment
reporting

FIGURE 1.3
Steps in experimental research.
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method, or process (Kitchenham et al. 1995). The effect of a change in an organization 
can be studied using case study research. Case studies increase the understanding of the 
phenomenon under study. For example, a case study can be used to examine whether a 
unified model language (UML) tool is effective for a given project or not. The initial and 
new concepts are analyzed and explored by exploratory case studies, whereas the already 
existing concepts are tested and improvised by confirmatory case studies.

The phases included in the case study are presented in Figure  1.4. The case study 
design phase involves identifying existing objectives, cases, research questions, and 
 data-collection strategies. The case may be a tool, technology, technique, process, product, 
individual, or software. Qualitative data is usually collected in a case study. The sources 
include  interviews, group discussions, or observations. The data may be directly or indi-
rectly  collected from participants. Finally, the case study is executed, the results obtained 
are analyzed, and the findings are reported. The report type may vary according to the 
target audience.

Case studies are appropriate where a phenomenon is to be studied for a longer period 
of time so that the effects of the phenomenon can be observed. The disadvantages of case 
studies include difficulty in generalization as they represent a typical situation. Since they 
are based on a particular case, the validity of the results is questionable.

1.3.3 Survey Research

Survey research identifies features or information from a large scale of a population. For 
example, surveys can be used when a researcher wants to know whether the use of a par-
ticular process has improved the view of clients toward software usability features. This 
information can be obtained by asking the selected software testers to fill questionnaires. 
Surveys are usually conducted using questionnaires and interviews. The questionnaires 
are constructed to collect research-related information.

Preparation of a questionnaire is an important activity and should take into consid-
eration the features of the research. The effective way to obtain a participant’s opinion 
is to get a questionnaire or survey filled by the participant. The participant’s feedback 
and reactions are recorded in the questionnaire (Singh 2011). The questionnaire/survey 
can be used to detect trends and may provide valuable information and feedback on a 
particular process, technique, or tool. The questionnaire/survey must include questions 
 concerning the participant’s likes and dislikes about a particular process, technique, or 
tool. The  interviewer should preferably handle the questionnaire.

Surveys are classified into three types (Babbie 1990)—descriptive, explorative, and 
explanatory. Exploratory surveys focus on the discovery of new ideas and insights and are 
usually conducted at the beginning of a research study to gather initial information. The 
descriptive survey research is more detailed and describes a concept or topic. Explanatory 
survey research tries to explain how things work in connections like cause and effect, 
meaning a researcher wants to explain how things interact or work with each other. For 
example, while exploring relationship between various independent variables and an 

Case study
design

Data
collection

Execution of
case study

Data
analysis Reporting

FIGURE 1.4
Case study phases.
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outcome variable, a researcher may want to explain why an independent variable affects 
the outcome variable. 

1.3.4 Systematic Reviews

While conducting any study, literature review is an important part that examines 
the existing position of literature in an area in which the research is being conducted. 
The  systematic reviews are methodically undertaken with a specific search strategy and 
well-defined methodology to answer a set of questions. The aim of a systematic review is 
to analyze, assess, and interpret existing results of research to answer research questions. 
Kitchenham (2007) defines systematic review as:

A form of secondary study that uses a well-defined methodology to identify, analyze 
and interpret all available evidence related to a specific research question in a way that 
is unbiased and (to a degree) repeatable.

The purpose of a systematic review is to summarize the existing research and provide 
future guidelines for research by identifying gaps in the existing literature. A systematic 
review involves:

 1. Defining research questions.
 2. Forming and documenting a search strategy.
 3. Determining inclusion and exclusion criteria.
 4. Establishing quality assessment criteria.

The systematic reviews are performed in three phases: planning the review, conducting 
the review, and reporting the results of the review. Figure 1.5 presents the summary of the 
phases involved in systematic reviews. 

In the planning stage, the review protocol is developed that includes the following 
steps: research questions identification, development of review protocol, and evaluation 
of review protocol. During the development of review protocol the basic processes in 
the review are planned. The research questions are formed that address the issues to be 

Planning

• Need for review
• Research questions
• Development of review
   protocol
• Evaluation of review
   protocol

Conducting

• Search strategy execution
• Quality assessment
• Data extraction
• Data synthesis

Reporting • Documenting
   the results

FIGURE 1.5
Phases of systematic review.
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answered in the systematic literature review. The development of review protocol involves 
planning a series of steps—search strategy design, study  selection criteria, study quality 
assessment, data extraction process, and data synthesis process. In the first step, the search 
strategy is described that includes identification of search terms and selection of sources to 
be searched to identify the primary studies. The second step determines the inclusion and 
exclusion criteria for each primary study. In the next step, the quality assessment criterion 
is identified by forming the quality assessment questionnaire to analyze and assess the 
studies. The second to last step involves the design of data extraction forms to collect the 
required information to answer the research questions, and, in the last step, data synthesis 
process is defined. The above series of steps are executed in the review in the conducting 
phase. In the final phase, the results are documented. Chapter 2 provides details of sys-
tematic review.

1.3.5 Postmortem Analysis

Postmortem analysis is carried out after an activity or a project has been completed. 
The main aim is to detect how the activities or processes can be improved in the future. 
The postmortem analysis captures knowledge from the past, after the activity has been 
 completed. Postmortem analysis can be classified into two types: general postmortem 
analysis and focused postmortem analysis. General postmortem analysis collects all avail-
able information from a completed activity, whereas focused postmortem analysis collects 
information about specific activity such as effort estimation (Birk et al. 2002).

According to Birk et al., in postmortem analysis, large software systems are analyzed 
to gain knowledge about the good and bad practices of the past. The techniques such as 
interviews and group discussions can be used for collecting data in postmortem analysis. 
In the analysis process, the feedback sessions are conducted where the participants are 
asked whether the concepts told to them have been correctly understood (Birk et al. 2002).

1.4 Empirical Study Process

Before describing the steps involved in the empirical research process, it is important to dis-
tinguish between empirical and experimental approaches as they are often used interchange-
ably but are slightly different from each other. Harman et  al. (2012a) makes a distinction 
between experimental and empirical approaches in software engineering. In experimental 
software engineering, the dependent variable is closely observed in a controlled environment. 
Empirical studies are used to define anything related to observation and experience and are 
valuable as these studies consider real-world data. In experimental studies, data is artificial 
or synthetic but is more controlled. For example, using 5000 machine-generated instances is 
an experimental study, and using 20 real-world programs in the study is an empirical study 
(Meyer et al. 2013). Hence, any experimental approach, under controlled environments, allows 
the researcher to remove the research bias and confounding effects (Harman et al. 2012a). 
Both empirical and experimental approaches can be combined in the studies.

Without a sound and proven research process, it is difficult to carry out efficient and 
effective research. Thus, a research methodology must be complete and repeatable, which, 
when followed, in a replicated or empirical study, will enable comparisons to be made 
across various studies. Figure 1.6 depicts the five phases in the empirical study process. 
These phases are discussed in the subsequent subsections.
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1.4.1 Study Definition

The first step involves the definition of the goals and objectives of the empirical study. 
The aim of the study is explained in this step. Basili et al. (1986) suggests dividing the 
defining phase into the following parts:

• Scope: What are the dimensions of the study?
• Motivation: Why is it being studied?
• Object: What entity is being studied?
• Purpose: What is the aim of the study?
• Perspective: From whose view is the study being conducted (e.g, project manager, 

customer)?
• Domain: What is the area of the study?

The scope of the empirical study defines the extent of the investigation. It involves listing 
down the specific goals and objectives of the experiment. The purpose of the study may be 
to find the effect of a set of variables on the outcome variable or to prove that technique A 
is superior to technique B. It also involves identifying the underlying hypothesis that is 
formulated at later stages. The motivation of the experiment describes the reason for con-
ducting the study. For example, the motivation of the empirical study is to analyze and 
assess the capability of a technique or method. The object of the study is the entity being 
examined in the study. The entity in the study may be the process, product, or technique. 
Perspective defines the view from which the study is conducted. For example, if the study 
is conducted from the tester’s point of view then the tester will be interested in planning 
and allocating resources to test faulty portions of the source code. Two important domains 
in the study are programmers and programs (Basili et al. 1986).

Study
definition

• Scope
• Purpose
• Motivation
• Context

Experiment
design

• Research
   questions
• Hypothesis
   formulation
• Defining
   variables
• Data
   collection
• Selection of
   data analysis
   methods
• Validity
   threats

Research
conduct and

analysis
• Descriptive
   statistics
• Attribute
   reduction
• Statistical
   analysis

• Model
   prediction and
   validation
• Hypothesis
   testing 

Results
interpretation

• Theoretical and
   practical significance
   of results
• Limitations of the
   work

Reporting

• Presenting
   the results

FIGURE 1.6
Empirical study phases.
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1.4.2 Experiment Design

This is the most important and significant phase in the empirical study process. The design of 
the experiment covers stating the research questions, formation of the hypothesis,  selection 
of variables, data-collection strategies, and selection of data analysis  methods. The context 
of the study is defined in this phase. Thus, the sources (university/academic, industrial, or 
open source) from which the data will be collected are identified. The data-collection pro-
cess must be well defined and the characteristics of the data must be stated. For example, 
nature, programming language, size, and so on must be provided. The  outcome variables 
are to be carefully selected such that the objectives of the research are justified. The aim of 
the design phase should be to select methods and techniques that promote replicability and 
reduce experiment bias (Pfleeger 1995). Hence, the techniques used must be clearly defined 
and the settings should be stated so that the results can be replicated and adopted by the 
industry. The following are the steps carried out during the design phase:

 1. Research questions: The first step is to formulate the research problem. This step states 
the problem in the form of questions and identifies the main concepts and relations 
to be explored. For example, the following questions may be addressed in empirical 
studies to find the relationship between software metrics and quality attributes:

 a. What will be the effect of software metrics on quality attributes (such as fault 
proneness/testing effort/maintenance effort) of a class?

 b. Are machine-learning methods adaptable to object-oriented systems for pre-
dicting quality attributes?

 c. What will be the effect of software metrics on fault proneness when severity of 
faults is taken into account?

 2. Independent and dependent variables: To analyze relationships, the next step is to 
define the dependent and the independent variables. The outcome variable pre-
dicted by the independent variables is called the dependent variable. For instance, 
the dependent variables of the models chosen for analysis may be fault proneness, 
testing effort, and maintenance effort. A variable used to predict or estimate a 
dependent variable is called the independent (explanatory) variable.

 3. Hypothesis formulation: The researcher should carefully state the hypothesis to 
be tested in the study. The hypothesis is tested on the sample data. On the basis 
of the result from the sample, a decision concerning the validity of the hypothesis 
(acception or rejection) is made.

  Consider an example where a hypothesis is to be formed for comparing a num-
ber of methods for predicting fault-prone classes.

  For each method, M, the hypothesis in a given study is the following (the 
relevant null hypothesis is given in parentheses), where the capital H indicates 
“hypothesis.” For example:

H–M: M outperform the compared methods for predicting fault-prone software classes 
(null hypothesis: M does not outperform the compared methods for predicting fault-
prone software classes).

 4. Empirical data collection: The researcher decides the sources from which the 
data is to be collected. It is found from literature that the data collected is either 
from university/academic systems, commercial systems, or open source software. 
The researcher should state the environment in which the study is performed, 



11Introduction

programming language in which the systems are developed, size of the systems 
to be analyzed (lines of code [LOC] and number of classes), and the duration for 
which the system is developed.

 5. Empirical methods: The data analysis techniques are selected based on the type 
of the dependent variables used. An appropriate data analysis technique should 
be selected by identifying its strengths and weaknesses. For example, a number of 
techniques have been available for developing models to predict and analyze soft-
ware quality attributes. These techniques could be statistical like linear regression 
and logistic regression or machine-learning techniques like decision trees, support 
vector machines, and so on. Apart from these techniques, there are a new set of 
techniques like particle swarm optimization, gene expression programming, and 
so on that are called the search-based techniques. The details of these  techniques 
can be found in Chapter 7.

In the empirical study, the data is analyzed corresponding to the details given in the 
experimental design. Thus, the experimental design phase must be carefully planned and 
executed so that the analysis phase is clear and unambiguous. If the design phase does not 
match the analysis part then it is most likely that the results produced are incorrect.

1.4.3 Research Conduct and Analysis

Finally, the empirical study is conducted following the steps described in the experiment 
design. The experiment analysis phase involves understanding the data by collecting 
descriptive statistics. The unrelated attributes are removed, and the best attributes (vari-
ables) are selected out of a set of attributes (e.g., software metrics) using attribute reduction 
techniques. After removing irrelevant attributes, hypothesis testing is performed using 
statistical tests and, on the basis of the result obtained, a decision regarding the accep-
tance or rebuttal of the hypothesis is made. The statistical tests are described in Chapter 6. 
Finally, for analyzing the casual relationships between the independent variables and the 
dependent variable, the model is developed and validated. The steps involved in experi-
ment conduct and analysis are briefly described below.

 1. Descriptive statistics: The data is validated for correctness before carrying out the 
analysis. The first step in the analysis is descriptive statistics. The research data 
must be suitably reduced so that the research data can be read easily and can be 
used for further analysis. Descriptive statistics concern development of certain 
indices or measures to summarize the data. The important statistics measures used 
for comparing different case studies include mean, median, and standard devia-
tion. The data analysis methods are selected based on the type of the dependent 
variable being used. Statistical tests can be applied to accept or refute a hypothesis. 
Significance tests are performed for comparing the predicted  performance of a 
method with other sets of methods. Moreover, effective data assessment should 
also yield outliers (Aggarwal et al. 2009).

 2. Attribute reduction: Feature subselection is an important step that identifies 
and removes as much of the irrelevant and redundant information as possible. 
The dimensionality of the data reduces the size of the hypothesis space and allows 
the methods to operate faster and more effectively (Hall 2000).

 3. Statistical analysis: The data collected can be analyzed using statistical analysis by 
following the steps below.
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 a. Model prediction: The multivariate analysis is used for the model prediction. 
Multivariate analysis is used to find the combined effect of each indepen-
dent variable on the dependent variable. Based on the results of performance 
 measures, the performance of models predicted is evaluated and the results 
are interpreted. Chapter 7 describes these performance measures.

 b. Model validation: In systems, where models are independently constructed from 
the training data (such as in data mining), the process of constructing the model is 
called training. The subsamples of data that are used to validate the initial analy-
sis (by acting as “blind” data) are called validation data or test data. The valida-
tion data is used for validating the model predicted in the  previous step.

 c. Hypothesis testing: It determines whether the null hypothesis can be rejected at 
a specified confidence level. The confidence level is determined by the researcher 
and is usually less than 0.01 or 0.05 (refer Section 4.7 for details).

1.4.4 Results Interpretation

In this step, the results computed in the empirical study’s analysis phase are assessed 
and discussed. The reason behind the acceptance or rejection of the hypothesis is exam-
ined. This process provides insight to the researchers about the actual reasons of the 
 decision made for hypothesis. The conclusions are derived from the results obtained in 
the study. The significance and practical relevance of the results are defined in this phase. 
The  limitations of the study are also reported in the form of threats to validity.

1.4.5 Reporting

Finally, after the empirical study has been conducted and interpreted, the study is reported 
in the desired format. The results of the study can be disseminated in the form of a confer-
ence article, a journal paper, or a technical report.

The results are to be reported from the reader’s perspective. Thus, the background, 
 motivation, analysis, design, results, and the discussion of the results must be clearly 
 documented. The audience may want to replicate or repeat the results of a study in a simi-
lar context. The experiment settings, data-collection methods, and design processes must 
be reported in significant level of detail. For example, the descriptive statistics, statistical 
tools, and parameter settings of techniques must be provided. In addition, graphical repre-
sentation should be used to represent the results. The results may be graphically presented 
using pie charts, line graphs, box plots, and scatter plots.

1.4.6 Characteristics of a Good Empirical Study

The characteristics of a good empirical study are as follows:

 1. Clear: The research goals, hypothesis, and data-collection procedure must be 
clearly stated.

 2. Descriptive: The research should provide details of the experiment so that the 
study can be repeated and replicated in similar settings.

 3. Precise: Precision helps to prove confidence in the data. It represents the degree of 
measure correctness and data exactness. High precision is necessary to specify the 
attributes in detail.
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 4. Valid: The experiment conclusions should be valid for a wide range of population.
 5. Unbiased: The researcher performing the study should not influence the results to sat-

isfy the hypothesis. The research may produce some bias because of experiment error. 
The bias may be produced when the researcher selects the participants such that they 
generate the desired results. The measurement bias may occur during data collection.

 6. Control: The experiment design should be able to control the independent variables 
so that the confounding effects (interaction effects) of variables can be reduced.

 7. Replicable: Replication involves repeating the experiment with different data 
under same experimental conditions. If the replication is successful then this indi-
cates generalizability and validity of the results.

 8. Repeatable: The experimenter should be able to reproduce the results of the study 
under similar settings.

1.5 Ethics of Empirical Research

Researchers, academicians, and sponsors should be aware of research ethics while  conducting 
and funding empirical research in software engineering. The upholding of  ethical stan-
dards helps to develop trust between the researcher and the participant, and thus smooth-
ens the research process. An unethical study can harm the reputation of the research 
conducted in software engineering area.

Some ethical issues are regulated by the standards and laws provided by the govern-
ment. In some countries like the United States, the sponsoring agency requires that the 
research involving participants must be reviewed by a third-party ethics committee to 
 verify that the research complies with the ethical principles and standards (Singer and 
Vinson 2001). Empirical research is based on the trust between the participant and the 
researcher, the ethical information must be explicitly provided to the participants to avoid 
any future conflicts. The participants must be informed about the risk and ethical issues 
involved in the research at the beginning of the study. The examples of problems related 
to ethics that are experienced in industry are given by Becker-Kornstaedt (2001) and 
 summarized in Table 1.2.

TABLE 1.2

Examples of Unethical Research

S. No Problem

1 Employees misleading the manager to protect himself or herself with the knowledge of the researcher
2 Nonconformance to a mandatory process
3 Revealing identities of the participant or organization
4 Manager unexpectedly joining a group interview or discussion with the participant
5 Experiment revealing identity of the participants of a nonperforming department in an organization
6 Experiment outcomes are used in employee ratings
7 Participants providing information off the record, that is, after interview or discussion is over

www.allitebooks.com

http://www.allitebooks.org
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The ethical threats presented in Table 1.2  can be reduced by (1) presenting data and 
results such that no information about the participant and the organization is revealed, 
(2) presenting different reports to stakeholders, (3) providing findings to the participants 
and giving them the right to withdraw any time during the research, and (4) providing 
publication to companies for review before being published. Singer and Vinson (2001) 
identified that the engineering and science ethics may not be related to empirical research 
in software engineering. They provided the following four ethical principles:

 1. Informed consent: This principle is concerned with subjects participating in the 
experiment. The subjects or participants must be provided all the relevant infor-
mation related to the experiment or study. The participants must willingly agree 
to  participate in the research process. The consent form acts as a contract between 
an individual participant and the researcher.

 2. Scientific value: This principle states that the research results must be correct and 
valid. This issue is critical if the researchers are not familiar with the technology or 
methodology they are using as it will produce results of no scientific value.

 3. Confidentiality: It refers to anonymity of data, participants, and organizations.
 4. Beneficence: The research must provide maximum benefits to the participants and 

protect the interests of the participants. The benefits of the organization must also 
be protected by not revealing the weak processes and procedures being followed 
in the departments of the organization.

1.5.1 Informed Content

Informed consent consists of five elements—disclosure, comprehension, voluntariness, 
consent, and right to withdraw. Disclosure means to provide all relevant details about 
the research to the participants. This information includes risks and benefits incurred by 
the participants. Comprehension refers to presenting information in such a manner that 
can be understood by the participant. Voluntariness specifies that the consent obtained 
must not be under any pressure or influence and actual consent must be taken. Finally, the 
 subjects must have the right to withdraw from research process at any time. The consent 
form has the following format (Vinson and Singer 2008):

 1. Research title: The title of the project must be included in the consent form.
 2. Contact details: The contact details (including ethics contact) will provide the 

 participant information about whom to contact to clarify any questions or issues 
or complaints.

 3. Consent and comprehension: The participant actually gives the consent form in 
this section stating that they have understood the requirement of the research.

 4. Withdrawal: This section states that the participants can withdraw from the 
research without any penalty.

 5. Confidentiality: It states the confidentiality related to the research study.
 6. Risks and benefits: This section states the risks and benefits of the research to the 

participants.
 7. Clarification: The participants can ask for any further clarification at any time 

 during the research.
 8. Signature: Finally, the participant signs the consent form with the date.
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1.5.2 Scientific Value

This ethical issue is concerned with two aspects—relevance of research topic and valid-
ity of research results. The research must balance between risks and benefits. In fact, the 
advantages of the research should outweigh the risks. The results of the research must also 
be valid. If they are not valid then the results are incorrect and the study has no value to 
the research community. The reason for invalid results is usually misuse of methodology, 
application, or tool. Hence, the researchers should not conduct the research for which they 
are not capable or competent.

1.5.3 Confidentiality

The information shared by the participants should be kept confidential. The researcher 
should hide the identity of the organization and participant. Vinson and Singer (2008) iden-
tified three features of confidentiality—data privacy, participant anonymity, and data ano-
nymity. The data collected must be protected by password and only the people involved 
in the research should have access to it. The data should not reveal the information about 
the participant. The researchers should not collect personal information of participant. For 
example, participant identity must be used instead of the participant name. The partici-
pant information hiding is achieved by hiding information from colleagues, professors, 
and general public. Hiding information from the manager is particularly essential as it 
may affect the career of the participants. The information must be also hidden from the 
organization’s competitors.

1.5.4 Beneficence

The participants must be benefited by the research. Hence, methods that protect the inter-
est of the participants and do not harm them must be adopted. The research must not pose 
a threat to the researcher’s job, for example, by creating an employee-ranking framework. 
The revealing of an organization’s sensitive information may also bring loss to the company 
in terms of reputation and clients. For example, if the names of companies are revealed in 
the publication, the comparison between the processes followed in the companies or poten-
tial flaws in the processes followed may affect obtaining contracts from the clients. If the 
research involves analyzing the process of the organization, the outcome of the research or 
facts revealed from the research can harm the participants to a significant level.

1.5.5 Ethics and Open Source Software

In the absence of empirical data, data and source code from open source software are 
being widely used for analysis in research. This poses concerns of ethics, as the open 
source software is not primarily developed for research purposes. El-Emam (2001) raised 
two important ethical issues while using open source software namely “informed consent 
and minimization of harm and confidentiality.” Conducting studies that rate the develop-
ers or compares two open source software may harm the developer’s reputation or the 
company’s reputation (El-Emam 2001).

1.5.6 Concluding Remarks

The researcher must maintain the ethics in the research by careful planning and, if 
required, consulting ethical bodies that have expertise for guiding them on ethical issues 
in software engineering empirical research. The main aim of the research involving 
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participants must be to protect the interests of the participants so that they are protected 
from any harm. Becker-Kornstaedt (2001) suggests that the participant interests can be 
protected by using techniques such as manipulating data, providing different reports to 
different stakeholders, and providing the right to withdraw to the participants.

Finally, feedback of the research results must be provided to the participants. The opin-
ion of the participants about the validity of the results must also be asked. This will help 
in increasing the trust between the researcher and the participant.

1.6 Importance of Empirical Research

Why should empirical studies in software engineering be carried out? The main reason of 
carrying out an empirical study is to reduce the gap between theory and practice by using 
statistical tests to test the formed hypothesis. This will help in analyzing, assessing, and 
improving the processes and procedures of software development. It may also provide 
guidelines to management for decision making. Thus, without evaluating and assessing 
new methods, tools, and techniques, their use will be random and effectiveness will be 
uncertain. The empirical study is useful to researchers, academicians, and the software 
industry from different perspectives.

1.6.1 Software Industry

The results of ESE must be adopted by the industry. ESE can be used to answer the ques-
tions related to practices in industry and can improve the processes and procedures of 
software development. To match the requirements of the industry, the researcher must ask 
the following questions while conducting research:

• How does the research aim maps to the industrial problems?
• How can the software practitioners use the research results?
• What are the important problems in the industry?

The predictive models constructed in ESE can be applied to future, similar industrial 
applications. The empirical research enables software practitioners to use the results of the 
experiment and ascertain that a set of good processes and procedures are followed dur-
ing software development. Thus, the empirical study can guide toward determining the 
quality of the resultant software products and processes. For example, a new technique or 
technology can be evaluated and assessed. The empirical study can help the software pro-
fessionals in effectively planning and allocating resources in the initial phases of software 
development life cycle.

1.6.2 Academicians

While studying or conducting research, academicians are always curious to answer ques-
tions that are foremost in their minds. As the academicians dig deeper into their subject 
or research, the questions tend to become more complex. Empirical research empowers 
them with a great tool to find an answer by asking or interviewing different  stakeholders, 
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by conducting a survey, or by conducting a scientific experiment. Academicians gener-
ally make predictions that can be stated in the form of hypotheses. These hypotheses 
need to be subjected to robust scientific verification or approval. With empirical research, 
these hypotheses can be tested, and their results can be stated as either being accepted or 
rejected. Thereafter, based on the result, the academicians can make some generalization 
or make a conclusion about a particular theory. In other words, a new theory can be gen-
erated and some old ones may be disproved. Additionally, sometimes there are practical 
questions that an academician encounters, empirical research would be highly beneficial 
in solving them. For example, an academician working in a university may want to find 
out the most efficient learning approach that yields the best performance among a group 
of students. The results of the research can be included in the course curricula.

From the academic point of view, high-quality teaching is important for future soft-
ware engineers. Empirical research can provide management with important infor-
mation about the use of tools and techniques. The students will further carry forward 
the knowledge to the software industry and thus improve the industrial practices. The 
empirical result can support one technique over the other and hence will be very useful 
in  comparing the techniques.

1.6.3 Researchers

From the researchers point of view, the results can be used to provide insight about exist-
ing trends and guidelines regarding future research. The empirical study can be repeated 
or replicated by the researcher in order to establish generalizability of the results to new 
subjects or data sets.

1.7 Basic Elements of Empirical Research

The basic elements in empirical research are purpose, participants, process, and product. 
Figure  1.7  presents the four basic elements of empirical research. The purpose defines 
the reason of the research, the relevance of the topic, specific aims in the form of research 
questions, and objectives of the research.

Purpose

Process

Participants

Product

FIGURE 1.7
Elements of empirical research.
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Process lays down the way in which the research will be conducted. It defines the 
sequence of steps taken to conduct a research. It provides details about the techniques, 
methodologies, and procedures to be used in the research. The data-collection steps, 
 variables involved, techniques applied, and limitations of the study are defined in this 
step. The process should be followed systematically to produce a successful research.

Participants are the subjects involved in the research. The participants may be inter-
viewed or closely observed to obtain the research results. While dealing with participants, 
ethical issues in ESE must be considered so that the participants are not harmed in any 
way.

Product is the outcome produced by the research. The final outcome provides the 
answer to research questions in the empirical research. The new technique developed or 
 methodology produced can also be considered as a product of the research. The journal 
paper, conference article, technical report, thesis, and book chapters are products of the 
research.

1.8 Some Terminologies

Some terminologies that are frequently used in the empirical research in software engi-
neering are discussed in this section.

1.8.1 Software Quality and Software Evolution

Software quality determines how well the software is designed (quality of design), and 
how well the software conforms to that design (quality of conformance).

In a software project, most of the cost is consumed in making changes rather than devel-
oping the software. Software evolution (maintenance) involves making changes in the 
software. Changes are required because of the following reasons:

 1. Defects reported by the customer
 2. New functionality requested by the customer
 3. Improvement in the quality of the software
 4. To adapt to new platforms

The typical evolution process is depicted in Figure 1.8. The figure shows that a change 
is requested by a stakeholder (anyone who is involved in the project) in the project. The 
second step requires analyzing the cost of implementing the change and the impact of 
the change on the related modules or components. It is the responsibility of an expert 
group known as the change control board (CCB) to determine whether the change must be 
implemented or not. On the basis of the outcome of the analysis, the CCB approves or dis-
approves a change. If the change is approved, then the developers implement the change. 
Finally, the change and the portions affected by the change are tested and a new version of 
the software is released. The process of continuously changing the software may decrease 
the quality of the software.

The main concerns during the evolution phase are maintaining the flexibility and qual-
ity of the software. Predicting defects, changes, efforts, and costs in the evolution phase 
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is an important area of software engineering research. An effective prediction can lead to 
decreasing the cost of maintenance by a large extent. This will also lead to high-quality 
software and hence increasing the modifiability aspect of the software. Change prediction 
concerns itself with predicting the portions of the software that are prone to changes and 
will thus add up to the maintenance costs of the software. Figure 1.9 shows the various 
research avenues in the area of software evolution.

After the detection of the change and nonchange portions in a software, the software 
developers can take various remedial actions that will reduce the probability of occur-
rence of changes in the later phases of software development and, consequently, the cost 
will also reduce exponentially. The remedial steps may involve redesigning or refactoring 
of modules so that fewer changes are encountered in the maintenance phase. For example, 
if high value of the coupling metric is the reason for change proneness of a given module. 
This implies that the given module in question is highly interdependent on other modules. 
Thus, the module should be redesigned to improve the quality and reduce its probability 
to be change prone. Similar design corrective actions or other measures can be easily taken 
once the software professional detects the change-prone portions in a software.

Request
change

Analyze
change

Approve/
deny

Implement
change

Test
change

FIGURE 1.8
Software evolution cycle.

Defect prediction

• What are the defect-prone portions in the maintanence phase?

Change prediction

• What are the change-prone portions in the software?
• How many change requests are expected?

Maintenance costs prediction

• What is the cost of maintaining the software over a period of time?

Maintenance effort prediction

• How much effort will be required to implement a change?

FIGURE 1.9
Prediction during evolution phase.
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1.8.2 Software Quality Attributes

Software quality can be measured in terms of attributes. The attribute domains that are 
required to define for a given software are as follows:

 1. Functionality
 2. Usability
 3. Testability
 4. Reliability
 5. Maintainability
 6. Adaptability

The attribute domains can be further divided into attributes that are related to software 
quality and are given in Figure 1.10. The details of software quality attributes are given in 
Table 1.3.

1.8.3 Measures, Measurements, and Metrics

The terms measures, measurements, and metrics are often used interchangeably. However, 
we should understand the difference among these terms. Pressman (2005) explained this 
clearly as:

A measure provides a quantitative indication of the extent, amount, dimension, capacity 
or size of some attributes of a product or process. Measurement is the act of determin-
ing a measure. The metric is a quantitative measure of the degree to which a product or 
process possesses a given attribute.

• Portability
• Interoperability

• Agility
• Modifiability
• Readability
• Flexibility

• Learnability
• Operability
• User-friendliness
• Installability
• Satisfaction

• Verifiability
• Validatable

• Robustness
• Recoverability

• Completeness
• Correctness
• Security
• Traceability
• Efficiency

Functionality

Reliability

Adaptability

6

1

2

3

4

5

Maintainability

Usability

Software
quality

attributes

Testability

FIGURE 1.10
Software quality attributes.
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For example, a measure is the number of failures experienced during testing. Measurement 
is the way of recording such failures. A software metric may be the average number of 
 failures experienced per hour during testing.

Fenton and Pfleeger (1996) has defined measurement as:

It is the process by which numbers or symbols are assigned to attributes of entities in 
the real world in such a way as to describe them according to clearly defined rules.

TABLE 1.3

Software Quality Attributes

Functionality: The degree to which the purpose of the software is satisfied
1 Completeness The degree to which the software is complete
2 Correctness The degree to which the software is correct
3 Security The degree to which the software is able to prevent unauthorized access to the 

program data
4 Traceability The degree to which requirement is traceable to software design and source code
5 Efficiency The degree to which the software requires resources to perform a software 

function

Usability: The degree to which the software is easy to use
1 Learnability The degree to which the software is easy to learn
2 Operability The degree to which the software is easy to operate
3 User-friendliness The degree to which the interfaces of the software are easy to use and understand
4 Installability The degree to which the software is easy to install
5 Satisfaction The degree to which the user’s feel satisfied with the software

Testability: The ease with which the software can be tested to demonstrate the faults
1 Verifiability The degree to which the software deliverable meets the specified standards, 

procedures, and process
2 Validatable The ease with which the software can be executed to demonstrate whether the 

established testing criteria is met

Maintainability: The ease with which the faults can be located and fixed, quality of the software can be 
improved, or software can be modified in the maintenance phase
1 Agility The degree to which the software is quick to change or modify
2 Modifiability The degree to which the software is easy to implement, modify, and test in the 

maintenance phase
3 Readability The degree to which the software documents and programs are easy to understand 

so that the faults can be easily located and fixed in the maintenance phase
4 Flexibility The ease with which changes can be made in the software in the maintenance 

phase

Adaptability: The degree to which the software is adaptable to different technologies and platforms
1 Portability The ease with which the software can be transferred from one platform to another 

platform
2 Interoperability The degree to which the system is compatible with other systems

Reliability: The degree to which the software performs failure-free functions
1 Robustness The degree to which the software performs reasonably under unexpected 

circumstances
2 Recoverability The speed with which the software recovers after the occurrence of a failure

Source: Y. Singh and R. Malhotra, Object-Oriented Software Engineering, PHI Learning, New Delhi, India, 2012.
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Software metrics can be defined as (Goodman 1993): “The continuous application of 
measurement based techniques to the software development process and its products to 
supply meaningful and timely management information, together with the use of those 
techniques to improve that process and its products.”

1.8.4 Descriptive, Correlational, and Cause–Effect Research

Descriptive research provides description of concepts. Correlational research provides 
relation between two variables. Cause–effect research is similar to experiment research in 
that the effect of one variable on another is found.

1.8.5 Classification and Prediction

Classification predicts categorical outcome variables (ordinal or nominal). The training 
data is used for model development, and the model can be used for predicting unknown 
categories of outcome variables. For example, consider a model to classify modules as 
faulty or not faulty on the basis of coupling and size of the modules. Figure 1.11 represents 
this example in the form of a decision tree. The tree shows that if the coupling of modules 
is <8 and the LOC is low then the module is not faulty.

In classification, the classification techniques take training data (comprising of the 
 independent and the dependent variables) as input and generate rules or mathemati-
cal formulas that are used by validation data to verify the model predicted. The gener-
ated rules or mathematical formulas are used by future data to predict categories of the 
 outcome variables. Figure 1.12 depicts the classification process. Prediction is similar to 
classification except that the outcome variable is continuous.

1.8.6 Quantitative and Qualitative Data

Quantitative data is numeric, whereas qualitative data is textual or pictorial. Quantitative 
data can either be discrete or continuous. Examples of quantitative data are LOC, num-
ber of faults, number of work hours, and so on. The information obtained by qualitative 

<8 >8

Low High

Lines of code

Not faulty Faulty

Faulty

Coupling?

FIGURE 1.11
Example of classification process.
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analysis can be categorized by identifying patterns from the textual information. This can 
be achieved by reading and analyzing texts and deriving logical categories. This will help 
organize data in the form of categories. For example, answers to the following questions 
are presented in the form of categories.

• What makes a good quality system?
 User-friendliness, response time, reliability, security, recovery from failure
• How was the overall experience with the software?
 Excellent, very good, good, average, poor, very poor

Text mining is another way to process qualitative data into useful form that can be used 
for further analysis.

1.8.7 Independent, Dependent, and Confounding Variables

Variables are measures that can be manipulated or varied in research. There are two types 
of variables involved in cause–effect analysis, namely, the independent and the dependent 
variables. They are also known as attributes or features in software engineering research. 
Figure  1.13  shows that the experimental process analyzes the relationship between the 
independent and the dependent variables. Independent variables (or predictor variables) 

Training
data

Classification
technique

New data

Validation
data

Predicts

Generates
rules

Outcome
variable

FIGURE 1.12
Steps in classification process.

Experiment
process Effect

(dependent variable)
Causes

(independent variables)

FIGURE 1.13
Independent and dependent variables.
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are input variables that are manipulated or controlled by the researcher to measure the 
response of the dependent variable.

The dependent variable (or response variable) is the output produced by analyzing the 
effect of the independent variables. The dependent variables are presumed to be influenced 
by the independent variables. The independent variables are the causes and the depen-
dent variable is the effect. Usually, there is only one dependent variable in the research. 
Figure 1.13 depicts that the independent variables are used to predict the outcome variable 
following a systematic experimental process.

Examples of independent variables are lines of source code, number of methods, and 
number of attributes. Dependent variables are usually measures of software quality attri-
butes. Examples of dependent variable are effort, cost, faults, and productivity. Consider 
the following research question:

Do software metrics have an effect on the change proneness of a module?
Here, software metrics are the independent variables and change proneness is the 

dependent variable.
Apart from the independent variables, unknown variables or confounding variables 

(extraneous variables) may affect the outcome (dependent) variable. Randomization can 
nullify the effect of confounding variables. In randomization, many replications of the 
experiments are executed and the results are averaged over multiple runs, which may 
cancel the effect of extraneous variables in the long course.

1.8.8 Proprietary, Open Source, and University Software

Data-based empirical studies that are capable of being verified by observation or experi-
ment are needed to provide relevant answers. In software engineering empirical research, 
obtaining empirical data is difficult and is a major concern for researchers. The data 
 collected may be from university/academic software, open source software, or proprietary 
software.

Undergraduate or graduate students at the university usually develop the university 
software. To use this type of data, the researchers must ensure that the software is devel-
oped by following industrial practices and should document the process of software 
development and empirical data collection in detail. For example, Aggarwal et al. (2009) 
document the procedure of data collection as: “All students had at least six months experi-
ence with Java language, and thus they had the basic knowledge necessary for this study. 
All the developed systems were taken of a similar level of complexity and all the develop-
ers were made sufficiently familiar with the application they were working on.” The study 
provides a list of the coding standards that were followed by students while developing 
the software and also provides details about the testing environment as given below by 
Aggarwal et al. (2009): 

The testing team was constituted under the guidance of senior faculty consisting of a 
separate group of students who had the prior knowledge of system testing. They were 
assigned the task of testing systems according to test plans and black-box testing tech-
niques. Each fault was reported back to the development team, since the development 
environment was representative of real industry environment used in these days. Thus, 
our results are likely to be generalizable to other development environments.

Open source software is usually a freely available software, developed by many develop-
ers from different places in a collaborative manner. For example, Google Chrome, Android 
operating system, and Linux operating system.
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Proprietary software is a licensed software owned by a company. For example, Microsoft 
Office, Adobe Acrobat, and IBM SPSS are proprietary software. In practice, obtaining data 
from proprietary software for research validation is difficult as the software companies are 
usually not willing to share the information about their software systems.

The software developed by the student programmers is generally small and developed 
by limited number of developers. If the decision is made for collecting and using this type 
of data in research then the guidelines similar to given above must be followed to promote 
unbiased and replicated results. These days, open source software repositories are being 
mined to obtain research data for historical analysis.

1.8.9 Within-Company and Cross-Company Analysis

In within-company analysis, the empirical study collects the data from the old versions/
releases of the same software, predicts models, and applies the predicted models to the 
future versions of the same project. However, in practice, the old data may not be avail-
able. In such cases, the data obtained from similar earlier projects developed by different 
companies are used for prediction in new projects. The process of validating the predicted 
model using data collected from different projects from which the model has been derived 
is known as cross-company analysis. For example, He et al. (2012) conducted a study to 
find the effectiveness of cross-project prediction for predicting defects. They used data col-
lected from different projects to predict models and applied those data on new projects. 
Figure 1.14  shows that the model (M1) is developed using training data collected from 
software A, release R1. The next release of software used model M1 to predict the outcome 
variable. This process is known as within-company prediction, whereas in cross-company 
prediction, data collected from another software B uses model M1 to predict the outcome 
variable.

(a) Within-company prediction

(b) Cross-company prediction

Software A,
release R1 Training data Learning

techniques 
Prediction
model, M1

Software A,
release R2 Test data Prediction

model, M1
Prediction

results

Software B,
release R1 Test data Prediction

model, M1
Prediction

results

FIGURE 1.14
(a) Within-company versus (b) cross-company prediction.
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1.8.10 Parametric and Nonparametric Tests

In hypothesis testing, statistical tests are applied to determine the validity of the hypoth-
esis. These tests can be categorized as either parametric or nonparametric. Parametric tests 
are used for data samples having normal distribution (bell-shaped curve), whereas non-
parametric tests are used when the distribution of data samples is highly skewed. If the 
assumptions of parametric tests are met, they are more powerful as they use more infor-
mation while computation. The difference between parametric and nonparametric tests is 
presented in Table 1.4.

1.8.11 Goal/Question/Metric Method

The Goal/Question/Metric (GQM) method was developed by Basili and Weiss (1984) 
and is a result of their experience, research, and practical knowledge. The GQM method 
 consists of the following three basis elements:

 1. Goal
 2. Question
 3. Metric

In GQM method, measurement is goal-oriented. Thus, first the goals need to be defined 
that can be measured during the software development. The GQM method defines goals 
that are transformed into questions and metrics. These questions are answered later to 
determine whether the goals have been satisfied or not. Hence, GQM method follows 
top-down approach for dividing goals into questions and mapping questions to metrics, 
and follows bottom-up approach by interpreting the measurement to verify whether the 
goals have been satisfied. Figure 1.15 presents the hierarchical view of GQM framework. 
The  figure shows that the same metric can be used to answer multiple questions.

For example, if the developer wants to improve the defect-correction rate during the 
maintenance phase. The goal, question, and associated metrics are given as:

• Goal: Improve the defect-correction rate in the system.
• Question: How many defects have been corrected in the maintenance phase?
• Metric: Number of defects corrected/Number of defects reported.
• Question: Is the defect-correction rate satisfactory?
• Metric: Number of defects corrected/Number of defects reported.

The goals are defined as purposes, objects, and viewpoints (Basili et al. 1994). In the above 
example, purpose is “to improve,” object is “defects,” and viewpoint is “project manager.”

TABLE 1.4

Difference between Parametric and Nonparametric Tests

Parametric Tests Nonparametric Tests

Assumed distribution Normal Any
Data type Ratio or interval Any
Measures of central tendency Mean Median
Example t-test, ANOVA Kruskal–Wallis–Wilcoxon test
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Figure 1.16 presents the phases of the GQM method. The GQM method has the following 
four phases:

• Planning: In the first phase, the project plan is produced by recognizing the basic 
requirements.

• Definition: In this phase goals, questions, and relevant metrics are defined.
• Data collection: In this phase actual measurement data is collected.
• Interpretation: In the final phase, the answers to the questions are provided and 

the goal’s attainment is verified.

Goal

Question 1

Metric 1

Question 2

Metric 2

Metric 3

Metric 4

Question 3

Metric 5

Question 4

Metric 6

FIGURE 1.15
Framework of GQM.
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• Answering
   questions
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• Goal
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• Project plan

Planning Definition 
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FIGURE 1.16
Phases of GQM.
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1.8.12 Software Archive or Repositories

The progress of the software is managed using software repositories that include source 
code, documentation, archived communications, and defect-tracking systems. The infor-
mation contained in these repositories can be used by the researchers and practitioners for 
maintaining software systems, improving software quality, and empirical validation of 
data and techniques.

Researchers can mine these repositories to understand the software development, soft-
ware evolution, and make predictions. The predictions can consist of defects and changes 
and can be used for planning of future releases. For example, defects can be predicted 
using historical data, and this information can be used to produce less defective future 
releases.

The data is kept in various types of software repositories such as CVS, Git, SVN, 
ClearCase, Perforce, Mercurial, Veracity, and Fossil. These repositories are used for man-
agement of software content and changes, including documents, programs, user proce-
dure manuals, and other related information. The details of mining software repositories 
are presented in Chapter 5.

1.9 Concluding Remarks

It is very important for a researcher, academician, practitioner, and a student to understand 
the procedures and concepts of ESE before beginning the research study. However, there is 
a lack of understanding of the empirical concepts and techniques, and the level of uncer-
tainty on the use of empirical procedures and practices in software engineering. The goal 
of the subsequent chapters is to present empirical concepts, procedures, and  practices that 
can be used by the research community in conducting effective and well-formed research 
in software engineering field.

Exercises

1.1 What is empirical software engineering? What is the purpose of empirical soft-
ware engineering?

1.2 What is the importance of empirical studies in software engineering?
1.3 Describe the characteristics of empirical studies.
1.4 What are the five types of empirical studies?
1.5 What is the importance of replicated and repeated studies in empirical software 

engineering?
1.6 Explain the difference between an experiment and a case study.
1.7 Differentiate between quantitative and qualitative research.
1.8 What are the steps involved in an experiment? What are characteristics of a good 

experiment?
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1.9 What are ethics involved in a research? Give examples of unethical research.
1.10 Discuss the following terms:

 a. Hypothesis testing
 b. Ethics
 c. Empirical research
 d. Software quality

1.11 What are systematic reviews? Explain the steps in systematic review.
1.12 What are the key issues involved in empirical research?
1.13 Compare and contrast classification and prediction process.
1.14 What is GQM method? Explain the phases of GQM method.
1.15 List the importance of empirical research from the perspective of software indus-

tries, academicians, and researchers.
1.16 Differentiate between the following:

 a. Parametric and nonparametric tests
 b. Independent, dependent and confounding variables
 c. Quantitative and qualitative data
 d. Within-company and cross-company analysis
 e. Proprietary and open source software

Further Readings

Kitchenham et  al. effectively provides guidelines for empirical research in software 
engineering:

B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. E. Emam, 
and J. Rosenberg, “Preliminary guidelines for empirical research in software 
engineering,” IEEE Transactions on Software Engineering, vol. 28, pp. 721–734, 2002.

Juristo and Moreno explain a good number of concepts of empirical software engineering:

N. Juristo, and A. N. Moreno, “Lecture notes on empirical software engineering,” 
Series on Software Engineering and Knowledge Engineering, World Scientific, vol. 12, 
2003.

The basic concept of qualitative research is presented in:

N. Mays, and C. Pope, “Qualitative research: Rigour and qualitative research,” British 
Medical Journal, vol. 311, no. 6997, pp. 109–112, 1995.

A. Strauss, and J. Corbin, Basics of Qualitative Research: Techniques and Procedures for 
Developing Grounded Theory, Sage Publications, Thousand Oaks, CA, 1998.
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A collection of research from top empirical software engineering researchers focusing on 
the practical knowledge necessary for conducting, reporting, and using empirical methods 
in software engineering can be found in:

J. Singer, and D. I. K. Sjøberg, Guide to Advanced Empirical Software Engineering, Edited 
by F. Shull, Springer, Berlin, Germany, vol. 93, 2008.

The detail about ethical issues for empirical software engineering is presented in:

J. Singer, and N. Vinson, “Ethical issues in empirical studies of software engineer-
ing,” IEEE Transactions on Software Engineering, vol. 28, pp. 1171–1180, NRC 44912, 
2002.

An overview of empirical observations and laws is provided in:

A. Endres, and D. Rombach, A Handbook of Software and Systems Engineering: Empirical 
Observations, Laws, and Theories, Addison-Wesley, New York, 2003.

Authors present detailed practical guidelines on the preparation, conduct, design, and 
reporting of case studies of software engineering in:

P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in Software 
Engineering: Guidelines and Examples, John Wiley & Sons, New York, 2012.

The following research paper provides detailed explanations about software quality 
attributes:

I. Gorton (ed.), “Software quality attributes,” In: Essential Software Architecture, 
Springer, Berlin, Germany, pp. 23–38, 2011.

An in-depth knowledge of prediction is mentioned in:

A. J. Albrecht, and J. E. Gaffney, “Software function, source lines of code, and devel-
opment effort prediction: A software science validation,” IEEE Transactions on 
Software Engineering, vol. 6, pp. 639–648, 1983.

The following research papers provide a brief knowledge of quantitative and qualitative 
data in software engineering:

A. Rainer, and T. Hall, “A quantitative and qualitative analysis of factors affecting 
software  processes,” Journal of Systems and Software, vol. 66, pp. 7–21, 2003.

C. B. Seaman, “Qualitative methods in empirical studies of software engineering,” 
IEEE Transactions on Software Engineering, vol. 25, pp. 557–572, 1999.

A useful concept of how to analyze qualitative data is presented in:

A. Bryman, and B. Burgess, Analyzing Qualitative Data, Routledge, New York, 2002.
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Basili explain the major role to controlled experiment in software engineering field in:

V. Basili, The Role of Controlled Experiments in Software Engineering Research, Empirical 
Software Engineering Issues, LNCS 4336, Springer-Verlag, Berlin, Germany, 
pp. 33–37, 2007.

The following paper presents guidelines for controlling experiments:

A. Jedlitschka, and D. Pfahl, “Reporting guidelines for controlled experiments in 
software engineering,” In Proceedings of the International Symposium on Empirical 
Software Engineering Symposium, IEEE, Noosa Heads, Australia, pp. 95–104, 2005.

A detailed explanation of within-company and cross-company concept with sample case 
studies may be obtained from:

A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross versus within-company cost 
estimation studies: A systematic review,” IEEE Transactions on Software Engineering, 
vol. 33, pp. 316–329, 2007.

The concept of proprietary, open source, and university software are well explained in the 
following research paper:

A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the structure of com-
plex software designs: An empirical study of open source and proprietary code,” 
Management Science, vol. 52, pp. 1015–1030, 2006.

The concept of parametric and nonparametric test may be obtained from:

D. G. Altman, and J. M. Bland, “Parametric v non-parametric methods for data analy-
sis,” British Medical Journal, 338, 2009.

The book by Solingen and Berghout is a classic and a very useful reference, and it gives 
detailed discussion on the GQM methods:

R. V. Solingen, and E. Berghout, The Goal/Question/Metric Method: A Practical Guide for 
Quality Improvement of Software Development, McGraw-Hill, London, vol. 40, 1999.

A classical report written by Prieto explains the concept of software repositories:

R. Prieto-Díaz, “Status report: Software reusability,” IEEE Software, vol. 10, pp. 61–66, 
1993.
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2
Systematic Literature Reviews

Review of existing literature is an essential step before beginning any new research. 
Systematic reviews (SRs) synthesize the existing research work in such a manner that can be 
analyzed, assessed, and interpreted to draw meaningful conclusions. The aim of  conducting 
an SR is to gather and interpret empirical evidence from the available research with respect 
to formed research questions. The benefit of conducting an SR is to summarize the existing 
trends in the available research, identify gaps in the current research, and provide future 
guidelines for conducting new research. The SRs also provide empirical evidence in sup-
port or opposition of a given hypothesis. Hence, the author of the SR must make all the 
efforts to provide evidence that support or does not support a given research hypothesis.

In this chapter, guidelines for conducting SRs are given for software engineering research-
ers and practitioners. The steps to be followed while conducting an SR including planning, 
conducting and reporting phases are described. The existing high-quality reviews in the 
areas of software engineering are also presented in this chapter.

2.1 Basic Concepts

SRs are better planned, more rigorous, and thoroughly analyzed as compared to surveys 
or literature reviews. In this section, we provide an overview of SRs and compare them 
with traditional surveys.

2.1.1 Survey versus SRs

Literature survey is the process of summarizing, organizing, and documenting the exist-
ing research to understand the research carried out in the field. On the other hand, an SR 
is the process of systematically and critically analyzing the information extracted from the 
existing research to answer the established research questions. The literature survey only 
provides the summary of the results of existing literature, whereas an SR opens avenues 
for new research as it provides future directions for researchers based on thorough analy-
sis of existing literature. Kitchenham (2007) defined SR as:

A systematic literature review (often referred to as a systematic review) is a means of 
identifying, evaluating and interpreting all available research relevant to a particular 
research question, or topic area, or phenomenon of interest.

Glossary of evidence-based medicine (EBM) terms defines SR as (http://ktclearinghouse.
ca/cebm/glossary/):

A summary of the medical literature that uses explicit methods to perform a comprehen-
sive literature search and critical appraisal of individual studies and that uses  appropriate 
statistical techniques to combine these valid studies.
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SRs summarize high-quality research on a specific area. They provide the best available 
evidence on a particular technique or technology and produce conclusions that can be 
used by the software practitioners and researchers to select the best available techniques 
or methodologies. The studies included in the review are known as primary studies and 
the SRs are known as secondary studies. Table 2.1 presents the summary of difference 
between SR and literature survey.

2.1.2 Characteristics of SRs

The following are the main characteristics of an SR:

 1. It selects high-quality research papers and studies that are relevant, important, 
and essential, which are summarized in the form of one review paper.

 2. It performs a systematic search by forming a search strategy to identify primary 
studies from the digital libraries. The search strategy is documented so that the 
readers can analyze the completeness of the process and repeat the same.

 3. It forms a valid review protocol and research questions that address the issues to 
be answered in the SR.

 4. It clearly summarizes the characteristics of each selected study, including aims, 
techniques, and methods used in the studies.

 5. It consists of a justified quality assessment criteria for inclusion and exclusion of 
the studies in the SR so that the effectiveness of each study can be determined.

 6. It uses a number of presentation tools for reporting the findings and results of the 
selected studies to be included in the SR.

 7. It identifies gaps in the current findings and highlights future directions.

TABLE 2.1

Comparison of Systematic Reviews and Literature Survey

S. No. Systematic Review Literature Survey

1 The goal is to identify best practices, 
strengths and weaknesses of specific 
techniques, procedures, tools, or methods 
by combining information from various 
studies.

The goal is to classify or categorize existing 
literature.

2 Focused on research questions that assess 
the techniques under investigation.

Provides an introduction of each paper in 
literature based on the identified area.

3 Provides a detailed review of existing 
literature.

Provides a brief overview of existing 
literature.

4 Extracts technical and useful metadata 
from the contents.

Extracts general research trends from the 
studies.

5 Search process is more stringent such that it 
involves searching references or 
contacting researchers in the field.

Search process is less stringent.

6 Strong assessment of quality is necessary. Strong assessment of quality is not necessary.
7 Results are based on high-quality evidence 

with the aim to answer research questions.
Results only provide summary of existing 
literature.

8 Often uses statistics to analyze the results. Does not use statistics to analyze the results.
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2.1.3 Importance of SRs

An SR is conducted using scientific methods and minimizes the bias in the studies. The 
SRs are important as:

 1. They gather important empirical evidence on the technique or method being 
focused in the SR. On the basis of the empirical evidence, the strengths and weak-
nesses of the technique may be summarized.

 2. They identify the gaps in the current research.
 3. They report the commonalities and the differences in the primary studies.
 4. They provide future guidelines and framework to researchers and practitioners to 

perform new research.

2.1.4 Stages of SRs

SR consists of a series of steps that are carried out throughout the review process and pro-
vides a summary of important issues raised in the study. The stages in the SR enable the 
researchers to conduct the review in an organized manner. The activities included in the 
SR are as follows:

 1. Planning the review
 2. Conducting the review
 3. Reporting the review results

The procedure followed in performing the SR is given by Kitchenham et al. (2007). The 
process is depicted in Figure 2.1. In the first step, the need for the SR is examined and in the 
second step the research questions are formed that address the issues to be answered in 
the review. Thereafter, the review protocol is developed that includes the following steps: 
search strategy design, study selection criteria, study quality assessment criteria, data 
extraction process, and data synthesis process.

The formation of review protocol consists of a series of stages. In the first step, the 
search strategy is formed, including identification of search terms and selection of 
sources to be searched to identify the primary studies. The next step involves deter-
mination of relevant studies by setting the inclusion and exclusion criteria for select-
ing review studies. Thereafter, quality assessment criteria are identified by forming the 
quality assessment questionnaire to analyze and assess the studies. The second to last 
stage involves the design of data extraction forms to collect the required information 
to answer the research questions, and in the final stage, methods for data synthesis are 
devised. Development of review protocol is an important step in an SR as it reduces the 
possibility and risk of research bias in the SR. Finally, in the planning stage, the review 
protocol is evaluated.

The steps planned in the first stage are actually performed in the conducting stage that 
includes actual collection of relevant studies by applying first the search strategy and then 
the inclusion and exclusion criteria. Each selected study is ranked according to the qual-
ity assessment criteria, and the data extraction and data synthesis steps are followed from 
only the selected high-quality primary studies. In the final phase, the results of the SR are 
reported. This step further involves examining, presenting, and verifying the results.
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The above stages defined in the SR are iterative and not sequential. For example, the  criteria 
for inclusion and exclusion of primary studies must be developed prior to collecting the 
studies. The criteria may be refined in the later stages.

2.2 Case Study

Software fault prediction (SFP) involves prediction of classes/modules in a software as 
faulty or nonfaulty based on the object oriented (OO) metrics for corresponding classes 
or modules. The identification of faulty or nonfaulty classes/modules enables  researchers 
and practitioners to identify faulty portions in the early phases of software development. 
These faulty portions need extra attention during software development and the prac-
titioners may focus testing resources on them. There are many techniques such as the 
 statistical and the machine learning (ML) that can be used for classifying a class as faulty 

10. Reporting the review results

4. Evaluate review protocol 

2. Identify research questions

5. Search strategy execution

6. Selection of primary studies

7. Study quality assessment

8. Data extraction

9. Data synthesis  

Planning
the review

Conducting
the review

1. Identify the need for systematic review

3. Develop review protocol

FIGURE 2.1
Systematic review process.
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or  nonfaulty. We conducted an SR of 64 in Malhotra (2015) primary studies from January 
1991 to October 2013 for SFP using the ML techniques. The aim of the study is to gather 
empirical evidence from the literature to facilitate the use of the ML techniques for SFP. 
The study analyzes and assesses the gathered evidence regarding the use and perfor-
mance of the ML techniques.

This case study is taken as an example review to explain all the steps in the SR in the 
subsequent sections and will be referred as systematic review of machine learning tech-
niques (SRML). The detailed results of the case study can be found in Malhotra (2015).

2.3 Planning the Review

Before one begins with the review, it is important and essential to recognize the need for the 
review. After identifying the need for the SR, the researcher should form the research ques-
tions. Subsequently, the researchers must develop, document, and analyze the review protocol.  
The detailed results of the case study can be found in Malhotra (2015).

2.3.1 Identify the Need for SR

The identification of need for an SR is the most essential and crucial step while performing 
an SR. For example, Singh et al. (2014) identified the need of a structured review that can 
provide similarities and differences between results of existing studies on fault proneness. 
In their study, the summary of the results of the studies that predict fault proneness were 
provided. Radjenović et al. (2013) observed that many software metrics have been proposed 
in the literature and many of these metrics have been used for fault prediction. However, 
finding an appropriate suite of metrics was found to be essential because of the differences 
in the performance of the metrics. They concluded that there should be more studies that use 
industrial data sets so that metrics that can be used in the industrial  settings can be identified.

To justify the importance of the SR, this step involves the review of all the existing SRs 
conducted in the same software engineering domain, thus recognizing the existing works 
and identifying the areas that need to be addressed in the new SR.

The following questions need to be determined before conducting the SR:

 1. How many primary studies are available in the software engineering context?
 2. What are the strength and weaknesses of the existing SR (if any) in the software 

engineering context?
 3. What is the practical relevance of the proposed SR?
 4. How will the proposed SR guide practitioners and researchers?
 5. How can the quality of the proposed SR be evaluated?

Checklist is the most common mechanism used for reviewing the quality of the existing SR 
in the same area. It may also identify the flaws in the existing SR. A checklist may  consist 
of a list of questions to determine the effectiveness of the existing SR. Table 2.2 shows an 
example of the checklist to assess the quality of an SR. The checklist consists of  questions 
pertaining to the procedures and processes followed during an SR. The existing  studies 
may be rated on a scale of 1–12  so that the quality of each study can be determined. 
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We may establish a threshold value to identify quality level of the study. If the rating of 
the existing SR goes below the established threshold value, the quality of the study may be 
considered as not acceptable and a new SR on the same topic may be conducted.

Thus, if an SR in the same domain with similar aims is located but it was conducted a 
long time ago, then a new SR adding current studies may be justified. However, if the exist-
ing SR is still relevant and is of high quality, then a new SR may not be required.

2.3.2 Formation of Research Questions

The process of formation of the research questions involves identification of relevant issues 
that need to be answered by the SR. According to Kitchenham (2007), it is the most impor-
tant activity in any SR. The structure of an SR depends on the content of the research 
 questions formed, and key decisions are based on the questions such as: Which studies 
to focus? Where to search them? How to assess the quality of these studies? Hence, the 
research questions must be well formed and constructed after a thorough analysis. The 
data for answering the identified research questions is collected from the primary studies. 
While constructing the research questions, the target audience, the tools and techniques to 
be evaluated, outcomes of the study, and the environment in which the study is conducted 
(academic or industry) must be determined. Hence, the following things must be kept in 
mind while forming the research questions:

• Which areas have already been explored in the existing reviews (if any)?
• Which areas are relevant and need to be explored/answered during the 

proposed SR?
• Are the questions important to the researchers and software practitioners?
• Will the questions assess any similarities in the trends or identify any deviation 

from the existing trends?

TABLE 2.2

Checklist for Evaluating Existing SR

S. No. Questions

1 Is the aim of the review stated?
2 Is the search strategy appropriate?
3 Are the research questions justified?
4 Is the inclusion/exclusion criteria appropriate?
5 Is the quality assessment criteria applied?
6 Are independent reviewers used for quality evaluation of primary 

studies?
7 Is the data collected from the primary sources in an appropriate 

manner?
8 Is the data synthesis process effectively carried out?
9 Are the characteristics of the primary studies described?

10 Is any empirical evidence collected from the primary studies to 
reach a conclusion?

11 Does the review identify gaps in the existing literature?
12 Is the interpretation of the results stated and the  guidelines for 

future research identified?
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The following questions address various issues related to SR on the use of the ML 
 techniques for SFP:

• Which ML techniques have been used for SFP?
• Which metrics have been used for SFP?
• What type of data sets have been used for SFP?
• What is the accuracy of the ML techniques for SFP?
• Is the performance of the ML techniques better than the traditional statistical 

techniques for SFP?

Table  2.3  presents the research questions along with the motivation for SRML. While 
 forming the research questions, the interest of the researchers must be kept in mind. 
For example, for Masters and PhD student thesis, it is necessary to identify the research 
 relevant to the proposed work so that the current body of knowledge can be formed and 
the proposed work can be established.

2.3.3 Develop Review Protocol

The development of review protocol is an important step in an SR as it reduces the 
 possibility and risk of research bias in the SR. The development of review protocol involves 
defining the basic research process and procedures that will be followed during the SR. 

TABLE 2.3

Research Questions for SRML Case Study (Malhotra 2015)

RQ# Research Questions Motivation

RQ1 Which ML techniques have been used for SFP? Identify the ML techniques commonly being used 
in SFP.

RQ2 What kind of empirical validation for 
predicting faults is found using the ML 
techniques found in RQ1?

Assess the empirical evidence obtained.

RQ2.1 Which techniques are used for subselecting 
metrics for SFP?

Identify techniques reported to be appropriate for 
selecting relevant metrics.

RQ2.2 Which metrics are found useful for SFP? Identify metrics reported to be appropriate for SFP.
RQ2.3 Which metrics are found not useful for SFP? Identify metrics reported to be inappropriate for SFP.
RQ2.4 Which data sets are used for SFP? Identify data sets reported to be appropriate for SFP.
RQ2.5 Which performance measures are used 

for SFP?
Identify the measures which can be used for 
assessing the performance of the ML techniques 
for SFP.

RQ3 What is the overall performance of the 
ML techniques for SFP? 

Investigate the performance of the ML techniques 
for SFP.

RQ4 Whether the performance of the ML 
techniques is better than statistical 
techniques?

Compare the performance of the ML techniques 
over statistical techniques for SFP.

RQ5 Are there any ML techniques that significantly 
outperform other ML techniques?

Assess the performance of the ML techniques over 
other ML techniques for SFP.

RQ6 What are the strengths and weaknesses of the 
ML techniques?

Determine the conditions that favor the use of ML 
techniques.
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In this step, the planning of the search strategy, study selection criteria, quality assessment 
criteria, data extraction, and data synthesis is carried out.

The purpose of the review must state the options researchers have when deciding which 
technique or method to adopt in practice. The review protocol is established by frequently 
holding meetings and group discussions in the group formed comprising of preferably 
senior members having experience in the area. Hence, this step is iterative and is defined 
and refined in various iterations. Figure 2.2 shows the steps involved in the development 
of review protocol.

The first step involves formation of search terms, selection of digital libraries that must 
be searched, and refinement of search terms. This step allows identification of primary 
studies that will address the research questions. The initial search terms may be identified 
by the following steps to form the best suited search string:

• Breaking down the research questions into individual units.
• Using search terms in the titles, keywords, and abstracts of relevant studies.
• Identifying alternative terms and synonyms for the main search terms.

Thereafter, the sophisticated search terms are formed by incorporating alternative terms 
and synonyms using Boolean expression “OR” and combining main search terms using 
“AND.” The following general search terms were used for identification of primary studies 
in SRML case study:

Software AND (fault OR defect OR error) AND (proneness OR prone OR prediction OR 
probability) AND (regression OR ML OR soft computing OR data  mining OR classifica-
tion OR Bayesian network OR neural network [NN] OR decision tree OR  support vector 
machine OR genetic algorithms OR random forest [RF]).

Formation of inclusion and
exclusion criteria

Construction of quality
assessment checklists

Development of data
extraction forms

Identification of study
synthesis techniques

Development of search
strategy

Digital libraries

Search terms

FIGURE 2.2
Steps involved in a review protocol.
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After identifying the search terms, the relevant and important digital portals are to be 
selected. The portals publishing the journal articles are the right place to search for the rel-
evant studies. The bibliographic databases are also common place of search as they provide 
title, abstract, and publication source of the study. The selection of digital libraries/portals 
is very essential, as the number of studies found is dependent on it. Generally, several 
libraries must be searched to find all the relevant studies that cover the research questions. 
The selection must not be restricted by the availability of digital portals at the home uni-
versities. For example, the following seven electronic digital libraries may be searched for 
the identification of primary studies:

 1. IEEE Xplore
 2. ScienceDirect
 3. ACM Digital Library
 4. Wiley Online Library
 5. Google Scholar
 6. SpringerLink
 7. Web of Science

The reference section of the relevant studies must also be examined/scanned to identify the 
other relevant studies. The external experts in the areas may also be contacted in this regard.

The next step is to establish the inclusion and exclusion criteria for the SR. The inclusion 
and exclusion criteria allow the researchers to decide whether to include or exclude the 
study in the SR. The inclusion and exclusion criteria are based on the research questions. 
For example, the studies that use data collected from university software developed by 
student programmers or experiments conducted by students may be excluded from the 
SR. Similarly, the studies that do not perform any empirical analysis on the techniques 
and technologies that are being examined in the SR may be excluded. Hence, the inclusion 
criteria may be specific to the type of tool, technique, or technology being explored in the 
SR. The data on which the study was conducted or the type of empirical data being used 
 (academia or industry/small, medium, or large sized) may also affect the inclusion criteria.

The following inclusion and exclusion criteria were formed in SRML review:

Inclusion criteria:
• Empirical studies using the ML techniques for SFP.
• Empirical studies combining the ML and non-ML techniques.
• Empirical studies comparing the ML and statistical techniques.

Exclusion criteria:
• Studies without empirical analysis or results of use of the ML techniques for SFP.
• Studies based on fault count as dependent variable.
• Studies using the ML techniques in context other than SFP.
• Similar studies, that is, studies by the same author in conference as well-

extended version in journal. However, if the results were different in both the 
studies, they were retained.

• Studies that only use statistical techniques for SFP.
• Review studies.
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The above inclusion and exclusion criteria were applied on each relevant study tested 
by two researchers independently, and they reached a common decision after detailed 
 discussion. In case of any doubt, full text of a study was reviewed and final decision 
regarding the inclusion/exclusion of the study was made. Hence, more than one reviewer 
should check the relevance of a study based on the inclusion and exclusion criteria before 
a final decision for inclusion or exclusion of a study is made.

The third step in development of a review protocol is to form the quality questionnaire 
for assessing the relevance and strength of the primary studies. The quality assessment is 
necessary to investigate and analyze the quality and determine the strength of the stud-
ies to be included in final synthesis. It is necessary to limit the bias in the SR and provide 
guidelines for interpretation of the results.

The assessment criteria must be based on the relevance of a particular study to the 
research questions and the quality of the processes and methods used in the study. 
In  addition, quality assessment questions must focus on experimental design, appli-
cability of results, and interpretation of results. Some studies may meet the inclusion 
 criteria but may not be relevant with respect to the research design, the way in which 
data is collected, or may not justify the use of various techniques analyzed. For example, 
a study on fault proneness may not perform comparative analysis of ML and  non-ML 
techniques.

The quality questionnaire must be constructed by weighing the studies with numerical val-
ues. Table 2.4 presents the quality assessment questions for any SR. The studies are rated 
according to each question and given a score of 1 (yes) if it is satisfactory, 0.5 (partly) if it is 
 moderately satisfactory, and a score of 0 (no) if it is unsatisfactory. The final score is obtained 
after adding the values assigned to each question. A study could have a maximum score of 
10 and a minimum score of 0, if ranked on the basis of quality assessment questions formed 
in Table 2.4. The studies with low-quality scores may be excluded from the SR or final list of 
primary studies.

In addition to the questions given in Table 2.4, the following four additional questions 
were formed in SRML review (see Table 2.5). Hence, a researcher may create specific qual-
ity assessment questions with respect to the SR.

The quality score along with the level assigned to the study in the example case study 
SRML taken in this chapter is given in Table 2.6. The reviewers must decide a threshold 
value for excluding a study from the SR. For example, studies with quality score >9 were 
considered for further data extraction and synthesis in SRML review.

TABLE 2.4

Quality Assessment Questions

Q# Quality Questions Yes Partly No

Q1 Are the aims of the research clearly stated?
Q2 Are the independent variables clearly defined?
Q3 Is the data set size appropriate?
Q4 Is the data-collection procedure clearly defined?
Q5 Is attributes subselection technique used?
Q6 Are the techniques clearly defined?
Q7 Are the results and findings clearly stated?
Q8 Are the limitations of the study specified?
Q9 Is the research methodology repeatable?
Q10 Does the study contribute/add to the literature?



43Systematic Literature Reviews

The next step is to construct data extraction forms that will help to summarize the infor-
mation extracted from the primary studies in view of the research questions. The details of 
which specific research questions are answered by specific primary study are also present 
in the data extraction form. Hence, one of the aim of the data extraction is to find which 
primary study addresses which research question for a given study. In many cases, the 
data extraction forms will extract the numeric data from the primary studies that will 
help to analyze the results obtained from these primary studies. The first part of the data 
extraction card summarizes the author name, title of the primary study, and publishing 
details, and the second part of the data extraction form contains answers to the research 
questions extracted from a given primary study. For example, the data set details, indepen-
dent variables (metrics), and the ML techniques are summarized for the SRML case study 
(see Figure 2.3).

A team of researchers must collect the information from the primary studies. However, 
because of the time and resource constraints at least two researchers must evaluate the 
 primary studies to obtain useful information to be included in the data extraction card. 
The results from these two researchers must then be matched and if there is any disagree-
ment between them, then other researchers may be consulted to resolve these disagree-
ments. The researchers must clearly understand the research questions and the review 
protocol before collecting the information from the primary studies. In case of Masters 
and PhD students, their supervisors may collect information from the primary studies and 
then match their results with those obtained by the students.

The last step involves identification of data synthesis tools and techniques to  summarize 
and interpret the information obtained from the primary studies. The basic objective while 
synthesizing data is to accumulate and combine facts and figures obtained from the selected 
primary studies to formulate a response to the research questions. Tables and charts may be 
used to highlight the similarities and differences between the primary studies. The following 

TABLE 2.5

Additional Quality Assessment Questions for SRML Review

Q# Quality Questions Yes Partly No 

Q11 Are the ML techniques justified?
Q12 Are the performance measures used to assess the 

SFP models clearly defined?
Q13 Is there any comparative analysis conducted 

among statistical and ML techniques?
Q14 Is there any comparative analysis conducted 

among different ML techniques?

TABLE 2.6

Quality Scores for Quality Assessment 
questions given in Table 2.4

Quality Score

9 ≤ score ≤ 10 Very high
8 ≤ score ≤ 6 High
5 ≤ score ≤ 4 Medium
0 ≤ score ≤ 3 Low

www.allitebooks.com

http://www.allitebooks.org
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steps need to be followed before deciding the tools and methods to be used for depicting the 
results of the research questions:

• Decide which studies to include for answering a particular research question.
• Summarize the information obtained by the primary studies.
• Interpret the information depicted by the answer to the research question.

The effects of the results (performance measures) obtained from the primary studies may 
be analyzed using statistical measures such as mean, median, and standard deviation (SD).

In addition, the outliers present in the results may be identified and removed using 
various methods such as box plots. We must also use various tools such as bar charts, 
scatter plots, forest plots, funnel plots, and line charts to visually present the results of 
the primary studies in the SR. The aggregation of the results from various studies will 
allow researchers to provide strong and well-acceptable conclusions and may give strong 
support in proving a point. The data obtained from these studies may be quantitative 
(expressed in the form of numerical measures) or qualitative (expressed in the form of 
descriptive information/texts). For example, the values of performance measures are 
quantitative in nature, and the strengths and weaknesses of the ML techniques are quali-
tative in nature.

A detailed description of the methods and techniques that are identified to represent 
answers to the established research questions in the SRML case study for SFP using the 
ML techniques are stated as follows:

• To summarize the number of ML techniques used in primary studies the SRML case 
study will use a visualization technique, that is, a line graph to depict the number of 
studies  pertaining to the ML techniques in each year, and presented a classification 
taxonomy of various ML techniques with their major categories and subcategories. 

Section I

Reviewer name
Author name
Title of publication
Year of publication 
Journal/conference name
Type of study

Section II

Data set used
Independent variables
Feature subselection methods
ML techniques used
Performance measures used
Values of accuracy measures
Strengths of ML techniques
Weaknesses of ML techniques

FIGURE 2.3
Data extraction form.
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The case study also presented a bar chart that shows the total number of studies 
conducted for each main category of the ML technique and pie charts that depict the 
distribution of selected studies into subcategories for each ML category.

• The case study will use counting method to find the feature subselection tech-
niques, useful and not useful metrics, and commonly used data sets for SFP. These 
subparts will be further aided by graphs and pie charts that showcase the distribu-
tion of selected primary studies for metrics usage and data set usage. Performance 
measures will be summarized with the help of a table and a graph.

• The comparison of the result of the primary studies is shown with the help of a table 
that compares six performance measures for each ML technique. The box plots will be 
constructed to identify extreme values corresponding to each performance measure.

• A bar chart will be created to depict and analyze the comparison between the 
performance of the statistical and ML techniques.

• The strengths and weaknesses of different ML techniques for SFP will be sum-
marized in tabular format.

Finally, the review protocol document may consist of the following sections:

 1. Background of the review
 2. Purpose of the review
 3. Contents
 a. Search strategy
 b. Inclusion and exclusion criteria
 c. Study quality assessment criteria
 d. Data extraction
 e. Data synthesis
 4. Review evaluation criteria
 5. References
 6. Appendix

2.3.4 Evaluate Review Protocol

For the evaluation of review protocol a team of independent reviewers must be formed. 
The team must frequently hold meetings and group discussions to evaluate the complete-
ness and consistency of the review protocol. The evaluation of review protocol involves the 
confirmation of the following:

 1. Development of appropriate search strings that are derived from research questions
 2. Adequacy of inclusion and exclusion criteria
 3. Completeness of quality assessment questionnaire
 4. Design of data extraction forms that address various research questions
 5. Appropriateness of data analysis procedures

Masters and PhD students must present the review protocol to their supervisors for the 
comments and analysis.
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2.4 Methods for Presenting Results

The data synthesis provides a summary of the knowledge gained from the existing 
 studies with respect to a specific research question. The appropriate approach for select-
ing  specific technique for qualitative and quantitative synthesis depends on the type of 
research  question being answered. The narrative synthesis and visual representation can 
be used to conclude the research results of the SR.

2.4.1 Tools and Techniques

The following tools can be used for summarizing and presenting the resultant 
infor mation:

 1. Tabulation: It is the most common approach for representing qualitative and 
quantitative data. The description of an approach can be summarized in tabular 
form. The details of study assessment, study design, outcomes of the measure, and 
the results of the study can be presented in tables. Each table must be referred and 
interpreted in the results section.

 2. Textual descriptions: They are used to highlight the main findings of the studies. 
The most important findings/outcomes and comparision results must be empha-
sized in the review and the less important issues should not be overemphasized 
in the text.

 3. Visual diagrams: There are various diagrams that can be used to present and 
summarize the findings of the study. Meta-analysis is a statistical method to 
 analyze the results of the independent studies so that generalized conclusions can 
be produced. The outcomes obtained from a given study can be either binary or 
continuous.

 a. For binary variables the following effects are of interest:
 i. Relative risk (RR, or risk ratio): Risk measures the strength of the relation-

ship between the presence of an attribute and occurrence of an outcome. RR 
is having the ratio of samples of a positive outcome in two groups included 
in a study.

  Table 2.7 shows 2 × 2 contingency table, where a11, a12, a21, and a22 represent 
the number of samples in each group with respect to each outcome.

  Table 2.7 can be used to calculate RR and the results are shown below:

	
Risk Risk1 2

11

11 12

21

21 22
=

+
=

+
a
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a

a a
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TABLE 2.7

Contingency Table for Binary Variable 

Outcome Present Outcome Absent

Group 1 a11 a12

Group 2 a21 a22



47Systematic Literature Reviews

	
RR
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 ii. Odds ratio (OR): It measures the strength of the presence or absence of an 
event. It is the ratio of odds of an outcome in two groups. It is desired that 
the value is greater than one. The OR is defined as:

	
Odds Odds1 2
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 iii. Risk difference: It is also known as measure of absolute effect. It is  calculated 
as the difference between the observed risks (ratio of number of samples 
present in an individual group with respect to outcome of interest) in the 
presence of outcome in two groups. The risk difference is given as:

	 Risk difference Risk Risk1 2= −

 iv. Area under the ROC curve (AUC): It is obtained from the receiver operat-
ing characteristics (ROC) analysis (for details refer Chapter 6) and used to 
evaluate the models’ accuracy by plotting sensitivity and 1-specificity at 
various cutoff points.

  Consider the example given in Table 2.8, it shows the contingency table for 
classes that are coupled or not coupled in a software with respect to the  
faulty or nonfaulty binary outcomes.

  The values of RR, OR, and risk difference are given below:

	
Risk Risk1 2

31
4 31

0 885
4

4 99
0 038=

+
= =

+
=. , .

	
RR = =0 885

0 038
23 289

.

.
.

	
Odds Odds1 2

31
4

7 75
4

99
0 04= == =. , .

	
OR

7.75
0.04

= = 193 75.

	 Risk difference 0 0.038= − =. .885 0 847

TABLE 2.8

Example Contingency Table for Binary 
Variable

Faulty Not Faulty  Total

Coupled 31 4 35
Not coupled 4 99 103
Total 35 103 138



48 Empirical Research in Software Engineering

 b. For continuous variables (variables that do not have any specified range), the 
following commonly used effects are of interest:

 i. Mean difference: This measure is used when a study reports the same type 
of outcome and measures them on the same scale. It is also known as “dif-
ference of means.” It represents the difference between the mean value of 
each group (Kictenham 2007). Let Xg1	and Xg2	be the mean of two groups 
(say g1 and g2), which  is defined as:

	 Mean difference X Xg1 g2= −

 ii. Standardized mean difference: It is used when a study reports the same 
type of outcome measure but measures it in different ways. For example, 
the size of a program may be measured by function points or lines of code. 
Standardized mean difference is defined as the ratio of difference between 
the means in two groups to the SD of the pooled outcome. Let SDpooled be 
the SD pooled across groups, SDg1 be the SD of one group, SDg2 be the SD of 
another group, and ng1 and ng2 be the sizes of the two groups. The formula 
for standardized mean difference is given below:

	
Standardized mean difference

X X
SD

g1 g2

pooled
= −

where

	
SD

( SD ( SD
pooled

g1 g1 g2 g2

g1 g2
=

− + −
+ −

n n
n n

1 1
2

2 2) )

For example, let Xg1  = 110, Xg2  = 100, SDg1 = 5 and SDg2 = 4, and ng1 = 20 and 
ng2 = 20 of a sample population. Then,

	
SD

(20 (20 4
2

pooled = − × + − ×
+ −

=1 5 1
0 20 2

4 527
2 2) )

.

	
Standardized mean difference

10
4.527

=
−

=
110 0

2 209.

Example 2.1 

Consider the following data (refer Table 2.9) consisting of an attribute data class that can 
have binary values true or false, where true represents that the class is data intensive 
(number of declared variables is high) and false represents that the class is not data 
intensive (number of declared variables is low). The outcome variable is change that 
contains “yes” and “no,” where “yes” represents presence of change and “no” repre-
sents absence of change.

Calculate RR, OR, and risk difference.

Solution 
The 2 × 2 contingency table is given in Table 2.10.

	
Risk Risk1 2

6
6 2

0 75
1

1 6
0 142= =

+
=

+
=. , .
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RR = =0 75

0 142
5 282

.
.

.

	
Odds Odds1 2

6
2

3
1
6

0 17= == =, .

	
OR

3
0.17

= = 17 647.

	 Risk difference 0 0.142= − =. .75 0 608

2.4.2 Forest Plots

The forest plot provides a visual assessment of estimate of the overall results of the studies. 
These overall results may be OR, RR, or AUC in each of the independent studies in the SR 
or meta-analysis. The confidence interval (CI) of each effect along with overall combined 
effect at 95% level is computed from the available data. The effects model can be either 
fixed or random. The fixed effects model assumes that there is a common effect in the 

TABLE 2.9

Sample Data

Data Class Change

False No
False No
True Yes
False Yes
True Yes
False No
False No
True Yes
True No
False No
False No
True Yes
True No
True Yes
True Yes

TABLE 2.10

Contingency Table for Example Data Given in Table 2.9

Data Class  Change Present Change Not Present  Total

True 6 2 8
False 1 6 7
Total 7 8 15
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studies, whereas in the random effects model there are varied effects in the studies. When 
heterogeneity is found in the effects, then the random effects model is preferred.

Table 2.11 presents the AUC computed from the ROC analysis, standard error, and upper 
bound and lower bound of CI. Figure 2.4 depicts the forest plot for five studies using AUC 
and standard error. Each line represents each study in the SR. The boxes (black-filled 
squares) depict the weight assigned to each study. The weight is represented as the inverse 
of the standard error. The lesser the standard error, the more weight is assigned to the 
study. Hence, in general, weights can be based on the standard error and sample size. The 
CI is represented through length of lines. The diamond represents summary of combined 
effects of all the studies, and the edges of the diamond represent the overall effect. The 
results show the presence of heterogeneity, hence, random effects models is used to ana-
lyze the overall accuracy in terms of AUC ranging from 0.69 to 0.85.

TABLE 2.11

Results of Five Studies

Study AUC
Standard 

Error 95% CI

Study 1 0.721 0.025 0.672–0.770
Study 2 0.851 0.021 0.810–0.892
Study 3 0.690 0.008 0.674–0.706
Study 4 0.774 0.017 0.741–0.807
Study 5 0.742 0.031 0.681–0.803
Total (fixed effects) 0.722 0.006 0.709–0.734
Total (random effects) 0.755 0.025 0.705–0.805

0.6 0.7 0.8 0.9
Area under the ROC curve

Study 1

Study 2

Study 3

Study 4

Study 5

Total (fixed effects)

Total (random effects)

FIGURE 2.4
Forest plots.
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2.4.3 Publication Bias

Publication bias means that the probability of finding studies with positive results is more 
as compared to the negative results, which are inconclusive. Dickersin et al. found that the 
possibility of publication of statistically significant results is three times greater than 
the inconclusive results. The major reason for rejection of a research paper is its inability 
to produce significant results that can be published. The funnel plot depicts a plot of effect 
on the horizontal axis and the study size measure (generally standard error) on the vertical 
axis. The funnel plot can be used to analyze the publication bias and is shown in Figure 2.5. 
Figure 2.5 presents the plot of effect size against the standard error. If the publication bias is 
not present, the funnel plot will be like a symmetrical, inverted funnel in which the studies 
are distributed symmetrically around the combined size of effect. In Figure 2.5, the funnel 
plot is shown for five studies in which the AUC curve represents the effect size. As shown 
in funnel plot, all the studies (represented by circles) cluster on the top of the plot, which 
indicates the presence of the publication bias. In this case, further analysis of the studies 
lying in the outlying part of the asymmetrical funnel plot is done.

2.5 Conducting the Review

The review protocol is actually put into practice in this phase, including conducting 
search, selecting primary studies (see Figure 2.6), filling data extraction forms, and data 
synthesis.

2.5.1 Search Strategy Execution

This step involves comprehensive search of relevant primary studies that meet the 
search criteria formed from the research questions in the review protocol. The search is 
 performed in the digital libraries identified in the review protocol. The search string may 
be refined according to the initial results of the search. The studies that are gathered from 
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Funnel plot.
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the reference section of the relevant papers must also be included. The multiple copies 
of the same  publications must be removed and the collected publications must be stored 
in a  reference management system, such as Mendeley and JabRef. The list of  journals 
and conferences in which the primary studies have been published must be created. 
Table 2.12 shows some popular journals and conferences in software engineering.

Select number of
studies based
on inclusion/

exclusion criteria by
reading title, abstracts,

or full texts. Select
number of studies

based on the
quality assessment

criteria

IEEE Xplore

ScienceDirect

ACM Digital
Library

Wiley Digital
Online

Google Scholar

SpringerLink

Web of Science

Initial studies

Basic search

Candidate studies

Primary studies

Reference

Select number of
relevant studies 

FIGURE 2.6
Search process.

TABLE 2.12

Popular Journals and Conferences on Software Engineering

Publication Name Type

IEEE Transactions on Software Engineering Journal
Journal of Systems and Software Journal
Empirical Software Engineering Journal
Information and Software Technology Journal
IEEE International Symposium on Software Reliability Conference
International Conference on Predictor Models in Software Engineering (PROMISE) Conference
International Conference on Software Engineering Conference
Software Quality Journal Journal
Automated Software Engineering Journal
SW Maintenance & Evolution—Research & Practice Journal
Expert Systems with Applications Journal
Software Verification, Validation & Testing Journal
IEEE Software Journal
Software Practice & Experience Journal 
IET Software Journal 
ACM Transactions on Software Engineering and Methodology Journal
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2.5.2 Selection of Primary Studies

The primary studies are selected based on the established inclusion and exclusion criteria. 
The selection criteria may be revised during the process of selection, as all the aspects 
are not apparent in the planning phase. It is advised that two or more researchers must 
explore the studies to determine their relevance.

The process must begin with the removal of obvious irrelevant studies. The titles, 
abstracts, or full texts of the collected studies need to be analyzed to identify the primary 
studies. In some cases, only the title or abstract may be enough to detect the relevance of the 
study, however, in other cases, the full texts need to be obtained to determine the relevance. 
Brereton et al. (2007) observed in his study, “The standard of IT and software engineering 
abstracts is too poor to rely on when selecting primary studies. You should also review the 
conclusions.”

2.5.3 Study Quality Assessment

The studies selected are assigned quality scores based on the quality questions framed in 
Section 2.3.3. On the basis of the final scores, decision of whether or not to retain the study 
in the final list of relevant studies is made.

The record of studies that were considered as candidate for selection but were removed 
after applying thorough inclusion/exclusion criteria must be maintained along with the 
reasons of rejection.

2.5.4 Data Extraction

After the selection of primary studies, the information from the primary studies is col-
lected in the data extraction forms. The data extraction form was designed during the 
planning phase and is based on the research questions. The data extraction forms consist 
of numerical values, weaknesses and strengths of techniques used in studies, CIs, and so 
on. Brereton et al. (2007) suggested that the following guidelines may be followed during 
data extraction:

• When large number of primary studies is present, two independent reviewers 
may be used, one as data collector and the other as a data checker.

• The review protocol and data extraction forms must be clearly understood by the 
reviewers.

Table 2.13 shows an example of data extraction form collected for SRML case study using 
research results given by Dejager et al. (2013). A similar form can be made for all the pri-
mary studies.

2.5.5 Data Synthesis

The tables and charts are used to summarize the results of the SR. The qualitative results 
are summarized in tabular form and quantitative results are presented in the form of 
tables and plots.

In this section, we summarize some of the results obtained by examining the results 
of SRML case study. Each research question given in Table  2.3  should be answered in 
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TABLE 2.13

Example Data Extraction Form

Section I
Reviewer name Ruchika Malhotra
Author name Karel Dejaeger, Thomas Verbraken, and Bart Baesens
Title of publication Toward Comprehensible Software Fault Prediction Models Using 

Bayesian Network Classifiers
Year of publication 2013
Journal/conference name IEEE Transactions on Software Engineering
Type of the study Research paper

Section II
Data set used NASA data sets (JM1, MC1, KC1, PC1, PC2, PC3, PC4, PC5), Eclipse 
Independent variables Static code measures (Halstead and McCabe)
Feature subselection method Markov Blanket
ML techniques used Naïve Bayes, Random Forest
Performance measures used AUC, H-measure
Values of accuracy measures (AUC) Data RF NB

JM1 0.74 0.74 0.69 0.69
KC1 0.82 0.8 0.8 0.81
MC1 0.92 0.92 0.81 0.79
PC1 0.84 0.81 0.77 0.85
PC2 0.73 0.66 0.81 0.79
PC3 0.82 0.78 0.77 0.78
PC4 0.93 0.89 0.79 0.8
PC5 0.97 0.97 0.95 0.95
Ecl 2.0a 0.82 0.82 0.8 0.79
Ecl 2.1a 0.75 0.73 0.74 0.74
Ecl 3.0a 0.77 0.77 0.76 0.86

Strengths (Naïve Bayes) It is easy to interpret and construct 
Computationally efficient 

Weaknesses (Naïve Bayes) Performance of model is dependent on attribute selection 
technique used 

Unable to discard irrelevant attributes 

TABLE 2.14

Distribution of Studies Across ML Techniques 
Based on Classification

Method # of Studies Percent 

Decision tree 31 47.7
NN 17 26.16
Support vector machine 18 27.7
Bayesian learning 31 47.7
Ensemble learning 12 18.47
Evolutionary algorithm 8 12.31
Rule-based learning 5 7.7
Misc. 16 24.62
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the results section by using visual diagrams and tables. For example, Table  2.14  pres-
ents the number of studies covering various ML techniques. There are various ML tech-
niques available in the literature such as decision tree, NNs, support vector machine, 
and bayesian learning. The table shows that 31 studies analyzed decision tree techniques, 
17  studies  analyzed NN techniques, 18 studies examined support vector machines, and 
so on. Similarly, the software metrics are divided into various categories in the SRML case 
study—OO,  procedural, hybrid, and miscellaneous. Figure 2.7 depicts the percentage of 
studies examining each category of metrics, such as 31% of studies examine OO metrics. 
The pie chart shows that the  procedural metrics are most commonly used metrics with 
47% of the total primary studies.

The results of the ML techniques that were assessed in at least 5 out of 64 selected 
primary studies are provided using frequently used performance measures in the 
64  primary studies. The results showed that accuracy, F-measure, precision, recall, 
and AUC are the most frequently used performance measures in the selected primary 
studies. Tables 2.15 and 2.16 present the minimum, maximum, mean, median, and SD 
values for the selected performance measures. The results are shown for RF and NN 
techniques.

OO 31%

Miscellaneous
15%

Hybrid
7%

Procedural 47%

FIGURE 2.7
Primary study distribution according to the metrics used.

TABLE 2.15

Results of RF Technique

RF Accuracy Precision Recall AUC Specificity

Minimum 55.00 59.00 62.00 0.66 64.3

Maximum 93.40 78.90 100.00 1.00 80.7
Mean 75.63 70.63 81.35 0.83 72.5
Median 75.94 71.515 80.25 0.82 72.5
SD 15.66 7.21 12.39 0.09 11.6
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2.6 Reporting the Review

The last step in the SR is to prepare a report consisting of the results of the review and dis-
tributing it to the target audience. The results of the SR may be reported in the following:

• Journal or conferences
• Technical report
• PhD thesis

The detailed reporting of the results of the SR is very important and critical so that academi-
cians can have an idea about the quality of the study. The detailed reporting consists of the 
review protocol, inclusion/exclusion criteria, list of primary studies, list of rejected studies, 
quality scores assigned to studies, and raw data pertaining to the primary studies, for example, 
number of research questions addressed by the primary studies and so on should be reported. 
The review results are generally longer than the normal original study. However, the journals 
may not permit publication of long SR. Hence, the details may be kept in appendix and stored 
in electronic form. The details in the form of technical report may also be published online.

Table 2.17 presents the format and contents of the SR. The table provides the contents 
along with its detailed description. The strengths and limitations of the SR must also be 
discussed along with the explanation of its effect on the findings.

TABLE 2.16

Results of NN Technique

MLP Accuracy Precision Recall ROC Specificity

Minimum 64.02 2.20 36.00 0.54 61.60
Maximum 93.44 76.55 98.00 0.95 79.06
Mean 82.23 52.36 69.11 0.78 70.29
Median 83.46 65.29 71.70 0.77 71.11
SD 9.44 27.57 12.84 0.09 5.27

(Continued)

TABLE 2.17

Format of an SR Report

Section Subsections Description Comments 

Title – The title should be short and informative.
Authors 
Details

– –

Abstract Background What is the relevance and 
importance of the SR?

It allows the researchers to gain insight about the 
importance, addressed areas, and main findings 
of the study.Method What are the tools and techniques 

used to perform the SR? 
Results What are the major findings 

obtained by the SR?
Conclusions What are the main implications 

of the results and guidelines for 
the future research?
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TABLE 2.17 (Continued)

Format of SR Report

Section Subsections Description Comments 

Introduction What is the motivation and 
need of the SR?

It will provide the justification for the need of the 
SR. It also presents the overview of an existing SR.

Method Research 
Questions

What are the areas to be 
addressed during the SR?

The review methods must be based on the 
review protocol.

This is the most important part of the SR. 
Search 
Strategy

What are the relevant studies 
found during the SR?

It identifies the initial list of relevant studies using 
the keywords and searching the digital portals.

Study 
Selection 

What is the inclusion/
exclusion criterion for 
selecting the studies?

It describes the criteria for including and 
excluding the studies in the SR.

Quality 
Assessment 
Criteria

What are the quality 
assessment questions that 
need to be evaluated?

The rejected studies along with the reason of the 
rejection need to be maintained.

How will the scores be 
assigned to the studies?

Which studies have been 
rejected?

Data 
Extraction

What should be the format of 
the data extraction forms?

The data extraction forms are used to summarize 
the information from the primary studies.

Data 
Synthesis

Which tools are used to present 
the results of the analysis? 

The tools and techniques used to summarize the 
results of the research are presented in this section. 

Results Description 
of Primary 
Studies

What are the primary sources 
of the selected primary 
studies?

It summarizes the description of the primary 
studies. 

Answers to 
Research 
Questions

What are the findings of the 
areas to be explored?

It presents the detailed findings of the SR by 
addressing the research questions.

Qualitative findings of the research are 
summarized in tabular form and quantitative 
findings are depicted through tables and plots.

Discussions What are the applications and 
meaning of the findings?

It provides the similarities and differences in the 
results of the primary studies so that the results 
can be generalized.

It discusses the risks and effects of the 
summarized studies.

The main strengths and weaknesses of the 
techniques used in the primary studies are 
summarized in this section.

Threats to 
Validity

What are the threats to the 
validity of the results?

The main limitations of the SR are presented in 
this section.

Conclusions Summary of 
Current 
Trends

What are the implications 
of the findings for the 
researchers and 
practitioners?

It summarizes the main findings and its 
implications for the practitioners.

Future 
Directions

What are the guidelines for 
future research?

References – It provides references to the primary studies, 
rejected studies, and referred studies.

Appendix – The appendix can present the quality scores 
assigned to each primary study and the number 
of research questions addressed by each study. 
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2.7 SRs in Software Engineering

There are many SRs conducted in software engineering. Table  2.18  summarizes few of 
them with author details, year and review topics, the number of studies reviewed (study 
size), whether quality assessment of the studies was performed (QA used), data synthesis 
methods, and conclusions.

TABLE 2.18

Systematic Reviews in Software Engineering

Authors Year 
Research 

Topics 
Study 
Size

QA 
Used

Data 
Synthesis 
Methods Conclusions 

Kitchenham 
et al.

2007 Cost estimation 
models, 
cross-company 
data, within-
company data

10 Yes Tables • Strict quality control on 
data collection is not 
sufficient to ensure that a 
cross-company model 
performs as well as a 
within-company model.

• Studies where within-
company predictions were 
better than cross-company 
predictions employed 
smaller within-company 
data sets, smaller number 
of projects in the cross-
company models, and 
smaller databases.

Jørgensen and 
Shepperd

2007 Cost estimation 304 No Tables • Increase the breadth of the 
search for relevant studies.

• Search manually for 
relevant papers within a 
carefully selected set of 
journals.

• Conduct more studies on 
the estimation methods 
commonly used by the 
software industry.

• Increase the awareness of 
how properties of the data 
sets impact the results 
when evaluating 
estimation methods.

Stol et al. 2009 Open source 
software 
(OSS)–related 
empirical 
research

63 No Pie charts, 
bar 
charts, 
tables

• Most research is done on 
OSS communities.

• Most studies investigate 
projects in the “system” 
and “internet” categories.

• Among research methods 
used, case study, survey, 
and quantitative analysis 
are the most popular.

(Continued)
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TABLE 2.18 (Continued)

Systematic Reviews in Software Engineering

Authors Year 
Research 

Topics 
Study 
Size

QA 
Used

Data 
Synthesis 
Methods Conclusions 

Riaz et al. 2009 Software 
maintainability 
prediction

15 Yes Tables • Maintainability prediction 
models are based on 
algorithmic techniques.

• Most commonly used 
predictors are based on 
size, complexity, and 
coupling.

• Prediction techniques, 
accuracy measures, and 
cross-validation methods 
are not much used for 
validating prediction 
models.

• Most commonly used 
maintainability metric 
employed an ordinal scale 
and is based on expert 
judgment.

Hauge et al. 2010 OSS, 
organizations

112 No Bar charts, 
tables

• Practitioners should use 
the opportunities offered 
by OSS.

• Researchers should 
conduct more empirical 
research on the topics 
important to 
organizations.

Afzal et al. 2009 Search-based 
software testing, 
meta-heuristics

35 Yes Tables, 
figures

• Meta-heuristic search 
techniques (including 
simulated annealing, tabu 
search, genetic algorithms, 
ant colony methods, 
grammatical evolution, 
genetic programming, and 
swarm intelligence 
methods) are applied for 
nonfunctional testing of 
execution time, quality of 
service, security, usability, 
and safety. 

Wen et al. 2012 Effort estimation, 
machine learning

84 Yes Narrative 
synthesis, 
tables, 
pie 
charts, 
box plots

• Models predicted using 
ML methods is close to 
acceptable level.

• Accuracy of ML models is 
better than non-ML 
models.

• Case-based reasoning and 
artificial NN methods are 
more accurate than 
decision trees.

(Continued)
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Exercises

2.1 What is an SR? Why do we really need to perform SR?
2.2 a. Discuss the advantages of SRs.

b. Differentiate between a survey and an SR.
2.3 Explain the characteristics and importance of SRs.

TABLE 2.18 (Continued)

Systematic Reviews in Software Engineering

Authors Year 
Research 

Topics 
Study 
Size

QA 
Used

Data 
Synthesis 
Methods Conclusions 

Catal 2011 Fault prediction, 
machine 
learning, and 
statistical-based 
approaches

90 No Theoretical • Most of the studies used 
method-level metrics.

• Most studies used ML 
techniques.

• Naïve Bayes is a robust 
machine-learning 
algorithm.

Radjenović et al. 2013 Fault prediction, 
software metrics

106 Yes Line chart, 
bubble 
chart

• OO metrics were used 
nearly twice as often as 
traditional source code 
metrics and process 
metrics.

• OO metrics predict better 
models as compared to 
size and complexity 
metrics.

Ding et al. 2014 Software 
documentation, 
knowledge-
based approach

60 Yes Tables, line 
graph, bar 
charts, 
bubble 
chart

• Knowledge capture and 
representation is the 
widely used approach in 
software documentation.

• Knowledge retrieval and 
knowledge recovery 
approaches are useful but 
still need to be evaluated.

Malhotra 2015 Fault prediction, 
ML technique 

64 Yes Tables, line 
charts, bar 
charts 

• ML techniques show 
acceptable prediction 
capability for estimating 
software Fault Proneness  

• ML techniques 
outperformed Logistic 
regression technique for 
software fault models 
predictions  

• Random forest was 
superior as compared to all 
the other ML techniques  
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2.4 a. What are the search strategies available for selecting primary studies? How will 
you select the digital portals for searching primary studies?
b. What is the criteria for forming a search string?

2.5 What is the criteria for determining the number of researchers for conducting the 
same steps in an SR?

2.6 What is the purpose of quality assessment criteria? How will you construct the 
quality assessment questions?

2.7 Why identification of the need for an SR is considered the most important step in 
planning the review?

2.8 How will you decide on the tools and techniques to be used during the data 
synthesis?

2.9 What is publication bias? Explain the purpose of funnel plots in detecting 
 publication bias?

2.10 Explain the steps in SRs with the help of an example case study.
2.11 Define the following terms:

a. RR
b. OR
c. Risk difference
d. Standardized mean difference
e. Mean difference

2.12 Given the contingency table for all classes that are coupled or not coupled in a 
software with respect to a dichotomous variable change proneness, calculate the 
RR, OR, and risk difference (Table 2.12.1).

Further Readings

A classic study that describes empirical results in software engineering is given by:

L. M. Pickarda, B. A. Kitchenham, and P. W. Jones, “Combining empirical results in soft-
ware engineering,” Information and Software Technology, vol. 40, no. 14, pp. 811–821, 
1998.

TABLE 2.12.1

Contingency Table from Study on change 
Prediction

Change 
Prone

Not Change 
Prone  Total

Coupled 14 12 26
Not coupled 16 22 38
Total 30 34 64



62 Empirical Research in Software Engineering

A detailed survey that summarizes approaches that mine software repositories in the 
 context of software evolution is given in:

H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy of approaches for 
mining software repositories in the context of software evolution,” Journal of Software 
Evolution and Maintenance: Research and Practice, vol. 19, no. 2, pp. 77–131, 2007.

The guidelines for preparing the review protocols are given in:

“Guidelines for preparation of review protocols,” The Campbell Corporation, http://
www.campbellcollaboration.org.

A review on the research synthesis performed in SRs is given in:

D. S. Cruzes, and T. Dybå, “Research synthesis in software engineering: A tertiary 
study,” Information and Software Technology, vol. 53, no. 5, pp. 440–455, 2011.

For details on meta-analysis, see the following publications:

M. Borenstein, L. V. Hedges, J. P. T. Higgins, and H. R. Rothstein, Introduction to Meta-
Analysis, Wiley, Chichester, 2009.

R. DerSimonian, and N. Laird, “Meta-analysis in clinical trials,” Controlled Clinical 
Trials, vol. 7, no. 3, pp. 177–188, 1986.

J. P. T. Higgins, and S. Green, Cochrane Handbook for Systematic Reviews of Interventions 
Version 5.1.0, The Cochrane Collaboration, 2011. Available from www.cochrane-
handbook.org.

J. P. Higgins, S. G. Thompson, J. J. Deeks, and D. G. Altman, “Measuring inconsis-
tency in meta-analyses,” British Medical Journal, vol. 327, no. 7414, pp. 557–560, 2003.

N. Mantel, and W. Haenszel, “Statistical aspects of the analysis of data from the ret-
rospective  analysis of disease,” Journal of the National Cancer Institute, vol. 22, no. 4, 
pp. 719–748, 1959.

A. Petrie, J. S. Bulman, and J. F. Osborn, “Further statistics in dentistry. Part 8: 
Systematic reviews and meta-analyses,” British Dental Journal, vol. 194, no. 2, 
pp. 73–78, 2003.

K. Ried, “Interpreting and understanding meta-analysis graphs: A practical guide,” 
Australian Family Physician, vol. 35, no. 8, pp. 635–638, 2006.

For further understanding on forest and funnel plots, see the following publications:

J. Anzures-Cabrera, and J. P. T. Higgins, “Graphical displays for meta-analysis: An 
overview with suggestions for practice,” Research Synthesis Methods, vol. 1, no. 1, 
pp. 66–80, 2010.

A. G. Lalkhen, and A. McCluskey, “Statistics V: Introduction to clinical trials and 
systematic reviews,” Continuing Education in Anaesthesia, Critical Case and Pain, 
vol. 18, no. 4, pp. 143–146, 2008.

R. J. Light, and D. B. Pillemer, Summing Up: The Science of Reviewing Research, Harvard 
University Press, Cambridge, 1984.
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J. L. Neyeloff, S. C. Fuchs, and L. B. Moreira, “Meta-analyses and Forest plots using 
a Microsoft excel spreadsheet: Step-by-step guide focusing on descriptive data 
analysis,” British Dental Journal Research Notes, vol. 5, no. 52, pp. 1–6, 2012.

An effective meta-analysis of a number of high-quality defect prediction studies is 
 provided in:

M. Shepperd, D. Bowes, and T. Hall, “Researcher bias: The use of machine learning 
in software defect prediction,” IEEE Transactions on Software Engineering, vol. 40, 
no. 6, pp. 603–616, 2014.
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3
Software Metrics

Software metrics are used to assess the quality of the product or process used to build it. 
The metrics allow project managers to gain insight about the progress of software and 
assess the quality of the various artifacts produced during software development. The 
software analysts can check whether the requirements are verifiable or not. The metrics 
allow management to obtain an estimate of cost and time for software development. The 
metrics can also be used to measure customer satisfaction. The software testers can mea-
sure the faults corrected in the system, and this decides when to stop testing.

Hence, the software metrics are required to capture various software attributes at differ-
ent phases of the software development. Object-oriented (OO) concepts such as coupling, 
cohesion, inheritance, and polymorphism can be measured using software metrics. In this 
chapter, we describe the measurement basics, software quality metrics, OO metrics, and 
dynamic metrics. We also provide practical applications of metrics so that good-quality 
systems can be developed.

3.1 Introduction

Software metrics can be used to adequately measure various elements of the software 
development life cycle. The metrics can be used to provide feedback on a process or tech-
nique so that better or improved strategies can be developed for future projects. The qual-
ity of the software can be improved using the measurements collected by analyzing and 
assessing the processes and techniques being used.

The metrics can be used to answer the following questions during software development:

 1. What is the size of the program?
 2. What is the estimated cost and duration of the software?
 3. Is the requirement testable?
 4. When is the right time to stop testing?
 5. What is the effort expended during maintenance phase?
 6. How many defects have been corrected that are reported during maintenance 

phase?
 7. How many defects have been detected using a given activity such as inspections?
 8. What is the complexity of a given module?
 9. What is the estimated cost of correcting a given defect?
 10. Which technique or process is more effective than the other?
 11. What is the productivity of persons working on a project?
 12. Is there any requirement to improve a given process, method, or technique?
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The above questions can be addressed by gathering information using metrics. The infor-
mation will allow software developer, project manager, or management to assess, improve, 
and control software processes and products during the software development life cycle.

3.1.1 What Are Software Metrics?

Software metrics are used for monitoring and improving various processes and products 
in software engineering. The rationale arises from the notion that “you cannot control 
what you cannot measure” (DeMarco 1982). The most essential and critical issues involved 
in monitoring and controlling various artifacts during software development can be 
addressed by using software metrics. Goodman (1993) defined software metrics as:

The continuous application of measurement based techniques to the software  development 
process and its products to supply meaningful and timely management information, 
together with the use of those techniques to improve that process and its products.

The above definition provides all the relevant details. Software metrics should be collected 
from the initial phases of software development to measure the cost, size, and effort of the 
project. Software metrics can be used to ascertain and monitor the progress of the soft-
ware throughout the software development life cycle.

3.1.2 Application Areas of Metrics

Software metrics can be used in various domains. One of the key applications of software 
metrics is estimation of cost and effort. The cost and effort estimation models can be derived 
using the historical data and can be applied in the early phases of software development.

Software metrics can be used to measure the effectiveness of various activities or pro-
cesses such as inspections and audits. For example, the project managers can use the num-
ber of defects detected by inspection technique to assess the effectiveness of the technique. 
The processes can be improved and controlled by analyzing the values of metrics. The 
graphs and reports provide indications to the software developers and they can decide in 
which direction to move.

Various software constructs such as size, coupling, cohesion, or inheritance can be mea-
sured using software metrics. The alarming values (thresholds) of the software metrics 
can be computed and based on these values and then the required corrective actions can 
be taken by the software developers to improve the quality of the software.

One of the most important areas of application of software metrics is the prediction of 
software quality attributes. There are many quality attributes proposed in the literature 
such as maintainability, testability, usability, and reliability. The benefits of developing 
the quality models is that they can be used by software developers, project managers, and 
management personnel in the early phases of software development for resource alloca-
tion and identification of problematic areas.

Testing metrics can be used to measure the effectiveness of the test suite. These metrics 
include the number of statements, percentage of statement coverage, number of paths cov-
ered in a program graph, number of independent paths in a program graph, and percent-
age of branches covered.

Software metrics can also be used to provide meaningful and timely information to 
the management. The software quality, process efficiency, and people productivity can 
be computed using the metrics. Hence, this information will help the management in 
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making effective decisions. The effective application of metrics can improve the quality 
of the  software and produce software within the budget and on time. The contributions of 
software metrics in building good-quality system are provided in Section 3.9.1.

3.1.3 Characteristics of Software Metrics

A metric is only relevant if it is easily understood, calculated, valid, and economical:

 1. Quantitative: The metrics should be expressible in values.
 2. Understandable: The way of computing the metric must be easy to understand.
 3. Validatable: The metric should capture the same attribute that it is designed for.
 4. Economical: It should be economical to measure a metric.
 5. Repeatable: The values should be same if measured repeatedly, that is, can be con-

sistently repeated.
 6. Language independent: The metrics should not depend on any language.
 7. Applicability: The metric should be applicable in the early phases of software 

development.
 8. Comparable: The metric should correlate with another metric capturing the same 

feature or concept.

3.2 Measurement Basics

Software metrics should preserve the empirical relations corresponding to numerical rela-
tions for real-life entities. For example, for “taller than” empirical relation, “>” would be an 
appropriate numeric relation. Figure 3.1 shows the steps of defining measures. In the first 
step, the characteristics for representing real-life entities should be identified. In the 
third step, the empirical relations for these characteristics are identified. The third step 

Check whether numeric relations preserve the empirical
relations

Map real-world entities to numeric numbers

Determine numerical relations for empirical relations

Identify empirical relations for characteristics

Identify characteristics for real-life entities

FIGURE 3.1
Steps in software measurement.
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determines the numerical relations corresponding to the empirical relations. In the next 
step, real-world entities are mapped to numeric numbers, and in the last step, we deter-
mine whether the numeric relations preserve the empirical relation.

3.2.1 Product and Process Metrics

The entities in software engineering can be divided into two different categories:

 1. Process: The process is defined as the way in which the product is developed.
 2. Product: The final outcome of following a given process or a set of processes is 

known as a product. The product includes documents, source codes, or artifacts 
that are produced during the software development life cycle.

The process uses the product produced by an activity, and a process produces products that 
can be used by another activity. For example, the software design document is an artifact 
produced from the design phase, and it serves as an input to the implementation phase. The 
effectiveness of the processes followed during software development is measured using the 
process metrics. The metrics related to products are known as product metrics. The effi-
ciency of the products is measured using the product metrics.

The process metrics can be used to

 1. Measure the cost and duration of an activity.
 2. Measure the effectiveness of a process.
 3. Compare the performance of various processes.
 4. Improve the processes and guide the selection of future processes.

For example, the effectiveness of the inspection activity can be measured by computing 
costs and resources spent on it and the number of defects detected during the inspection 
activity. By assessing whether the number of faults found outweighs the costs incurred 
during the inspection activity or not, the project managers can decide about the effective-
ness of the inspection activity.

The product metrics are used to measure the effectiveness of deliverables produced dur-
ing the software development life cycle. For example, size, cost, and effort of the deliver-
ables can be measured. Similarly, documents produced during the software development 
(SRS, test plans, user guides) can be assessed for readability, usability, understandability, 
and maintainability.

The process and product metrics can further be classified as internal or external attributes. 
The internal attribute concerns with the internal structure of the process or product. The com-
mon internal attributes are size, coupling, and complexity. The external attributes concern 
with the behavior aspects of the process or product. The external attributes such as testability, 
understandability, maintainability, and reliability can be measured using the process or prod-
uct metrics.

The difference between attributes and metrics is that metrics are used to measure a 
given attribute. For example, size is an attribute that can be measured through lines of 
source code (LOC) metric.

The internal attributes of a process or product can be measured without executing the 
source code. For instance, the examples of internal attributes are number of paths, number 
of branches, coupling, and cohesion. External attributes include quality attributes of the 
system. They can be measured by executing the source code such as the number of  failures, 
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response time, and navigation easiness of an item. Figure 3.2 presents the  categories of 
software metrics with examples at the lowest level in the hierarchy.

3.2.2 Measurement Scale

The data can be classified into two types—metric (continuous) and nonmetric (categorical). 
Metric data is of continuous type that represents the amount of magnitude of a given entity. 
For example, the number of faults in a class or number of LOC added or deleted during 
maintenance phase. Table 3.1 shows the LOC added and deleted for the classes A, B, and C.

Nonmetric data is of discrete or categorical type that is represented in the form of cat-
egories or classes. For example, weather is sunny, cloudy, or rainy. Metric data can be mea-
sured on interval, ratio, or absolute scale. The interval scale is used when the interpretation 
of difference between values is same. For example, difference between 40°C  and 50°C is 
same as between 70°C and 80°C. In interval scale, one value cannot be represented as a 
multiple of other value as it does not have an absolute (true) zero point. For example, if the 
temperature is 20°C, it cannot be said to be twice hotter than when the temperature was 
10°C. The reason is that on Fahrenheit scale, 10°C is 50 and 20°C is 68. Hence, ratios cannot 
be computed on measures with interval scale.

Ratio scales provide more precision as they have absolute zero points and one value 
can be expressed as a multiple of other. For example, with weight 200 pounds A is twice 

Software metrics

Process

Internal attributes

Failure rate found in
reviews, no. of issues 

External attributes

Effectiveness of a
method

Product

Internal attributes

Size, inheritance,
coupling

External attributes

Reliability,
maintainability,

usability

FIGURE 3.2
Categories of software metrics.

TABLE 3.1

Example of Metrics Having Continuous Scale

Class# LOC Added LOC Deleted

A 34 5
B 42 10
C 17 9
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heavier than B with weight 100 pounds. Simple counts are represented by absolute scale. 
The example of simple counts is number of faults, LOC, and number of methods. In abso-
lute type of scale, the descriptive statistics such as mean, median, and standard deviation 
can be applied to summarize data.

Nonmetric type of data can be measured on nominal or ordinal scales. Nominal scale 
divides metric into classes, categories, or levels without considering any order or rank 
between these classes. For example, Change is either present or not present in a class. 

	
Change

no change present

1, change present
=







0,

Another example of nominal scale is programming languages that are used as labels for dif-
ferent categories. In ordinal scale, one category can be compared with the other category in 
terms of “higher than,” “greater than,” or “lower than” relationship. For example, the overall 
navigational capability of a web page can be ranked into various categories as shown below:

	

What is the overall navigational capability of a webpage? =

11,  excellent

2, good

3, medium

4, bad

5, worst















Table 3.2 summarizes the differences between measurement scales with examples.

TABLE 3.2

Summary of Measurement Scales

Measurement 
Scale Characteristics Statistics Operations Transformation Examples

Interval • =, <, >
• Ratios not 

allowed
• Arbitrary 

zero point

Mode, mean, 
median, 
interquartile 
range, 
variance, 
standard 
deviation

Addition and 
subtraction

M = xM′ + y Temperatures, date, 
and time

Ratio • Absolute zero 
point

All arithmetic 
operations

M = xM′ Weight, height, and 
length

Absolute • Simple count 
values

All arithmetic 
operations

M = M′ LOC

Nominal • Order not 
considered

Frequencies None One-to-one 
mapping

Fault proneness 
(0—not present, 
1—present)

Ordinal • Order or rank 
considered

• Monotonic 
increasing 
function 
(=, <, >)

Mode, 
median, 
interquartile 
range

None Increasing 
function 
M(x) > M(y)

Programmer 
capability levels 
(high, medium, 
low), severity 
levels (critical, 
high, medium, low)
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Example 3.1

Consider the count of number of faults detected during inspection activity:
 1. What is the measurement scale for this definition?
 2. What is the measurement scale if number of faults is classified between 1 and 

5, where 1 means very high, 2 means high, 3 means medium, 4 means low, and 
5 means very low?

Solution:
 1. The measurement scale of the number of faults is absolute as it is a simple count 

of values.
 2. Now, the measurement scale is ordinal since the variable has been converted 

to be categorical (consists of classes), involving ranking or ordering among 
categories.

3.3 Measuring Size

The purpose of size metrics is to measure the size of the software that can be taken as 
input by the empirical models to further estimate the cost and effort during the software 
development life cycle. Hence, the measurement of size is very important and crucial to 
the success of the project. The LOC metric is the most popular size metric used in the 
literature for estimation and prediction purposes during the software development. The 
LOC metric can be counted in various ways. The source code consists of executable lines 
and unexecutable lines in the form of blank and comment lines. The comment lines are 
used to increase the understandably and readability of the source code.

The researchers may measure only the executable lines, whereas some may like to mea-
sure the LOC with comment lines to analyze the understandability of the software. Hence, 
the researcher must be careful while selecting the method for counting LOC. Consider the 
function to check greatest among three numbers given in Figure 3.3.

The function “find-maximum” in Figure 3.3 consists of 20 LOC, if we simply count the 
number of LOC.

Most researchers and programmers exclude blank lines and comment lines as these 
lines do not consume any effort and only give the illusion of high productivity of the 
staff that is measured in terms of LOC/person month (LOC/PM). The LOC count for 
the function shown in Figure 3.2 is 16 and is computed after excluding the blank and 
comment lines. The value is computed following the definition of LOC given by Conte 
et al. (1986):

A line of code is any line of program text that is not a comment or blank line, regardless 
of the number of statements or fragments of statements on the line. This specifically 
includes all lines containing program headers, declarations, and executable and non-
executable statements.

In OO software development, the size of software can be calculated in terms of classes and 
the attributes and functions included in the classes. The details of OO size metrics can be 
found in Section 3.5.6.
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3.4 Measuring Software Quality

Maintaining software quality is an essential part of the software development and thus all 
aspects of software quality should be measured. Measuring quality attributes will guide 
the software professionals about the quality of the software. Software quality must be 
measured throughout the software development life cycle phases.

3.4.1 Software Quality Metrics Based on Defects

Defect is defined by IEEE/ANSI as “an accidental condition that causes a unit of the system 
to fail to function as required” IEEE/ANSI (Standard 982.2). A failure occurs when a fault 
executes and more than one failure may be associated with a given fault. The defect-based 
metrics can be classified at product and process levels. The difference of the two terms 
fault and the defect is unclear from the definitions. In practice, the difference between the 
two terms is not significant and these terms are used interchangeably. The commonly used 
product metrics are defect density and defect rate that are used for measuring defects. In 
the subsequent chapters, we will use the terms fault and defect interchangeably.

3.4.1.1 Defect Density

Defect density metric can be defined as the ratio of the number of defects to the size of the 
software. Size of the software is usually measured in terms of thousands of lines of code 
(KLOC) and is given as:

	
Defect density = 

Number of defects
KLOC

/*This function checks greatest amongst three numbers*/
int find-maximum (int i, int j, int k)
 {
 int max;
/*compute the greatest*/
 if(i>j)
 {
 if (i<k)
 max=i;
 else
 max=k;
 }
 else if (j>k)
 max=j;
 else
 max=k;

/*return the greatest number*/
 return (max);
 }

FIGURE 3.3
Operation to find greatest among three numbers.
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The number of defects measure counts the defects detected during testing or by using any 
verification technique.

Defect rate can be measured as the defects encountered over a period of time, for instance 
per month. The defect rate may be useful in predicting the cost and resources that will be 
utilized in the maintenance phase of software development. Defect density during testing 
is another effective metric that can be used during formal testing. It measures the defect 
density during the formal testing after completion of the source code and addition of the 
source code to the software library. If the value of defect density metric during testing is 
high, then the tester should ask the following questions:

 1. Whether the software is well designed or developed?
 2. Whether the testing technique is effective in defect detection?

If the reason for high number of defects is the first one then the software should be thor-
oughly tested to detect the high number of defects. However, if the reason for high number 
of defects is the second one, it implies that the quality of the system is good because of the 
presence of fewer defects.

3.4.1.2 Phase-Based Defect Density

It is an extension of defect density metric where instead of calculating defect density at 
system level it is calculated at various phases of the software development life cycle, 
including verification techniques such as reviews, walkthroughs inspections, and audits 
before the validation testing begins. This metric provides an insight about the procedures 
and standards being used during the software development. Some organizations even set 
“alarming values” for these metrics so that the quality of the software can be assessed and 
monitored, thus appropriate remedial actions can be taken.

3.4.1.3 Defect Removal Effectiveness

Defect removal effectiveness (DRE) is defined as:

	
DRE = 

Defectsremovedinagivenlifecyclephase
Latent defects

For a given phase in the software development life cycle, latent defects are not known. 
Thus, they are calculated as the estimation of the sum of defects removed during a phase 
and defects detected later. The higher the value of the DRE, the more efficient and effec-
tive is the process followed in a particular phase. The ideal value of DRE is 1. The DRE of 
a product can also be calculated by:

	
DRE = 

D
D +D

B

B A

where:
DB depicts the defects encountered before software delivery
DA depicts the defects encountered after software delivery



74 Empirical Research in Software Engineering

3.4.2 Usability Metrics

The ease of use, user-friendliness, learnability, and user satisfaction can be measured through 
usability for a given software. Bevan (1995) used MUSIC project to measure usability attri-
butes. There are a number of performance measures proposed in this project and the metrics 
are defined on the basis of these measures. The task effectiveness is defined as follows:

	
Task effectiveness = 

1
100

quantity quality %× ×( )

where:
Quantity is defined as the amount of task completed by a user
Quality is defined as the degree to which the output produced by the user satisfies the 

targets of a given task

Quantity and quality measures are expressed in percentages. For example, consider a 
problem of proofreading an eight-page document. Quantity is defined as the percentage of 
proofread words, and quality is defined as the percentage of the correctly proofread docu-
ment. Suppose quantity is 90% and quality is 70%, then task effectiveness is 63%.

The other measures of usability defined in MUSIC project are (Bevan 1995):

	

Temporal efficiency = 
Effectiveness

Task time

Productive peroiid = 
Task time unproductive time

Task time
100

Relative user e

−
×

ffficiency =
User efficiency

Expert efficiency
100×

There are various measures that can be used to measure the usability aspect of the system 
and are defined below:

 1. Time for learning a system
 2. Productivity increase by using the system
 3. Response time

In testing web-based applications, usability can be measured by conducting a survey based 
on the questionnaire to measure the satisfaction of the customer. The expert having knowl-
edge must develop the questionnaire. The sample size should be sufficient enough to build 
the confidence level on the survey results. The results are rated on a scale. For example, the 
difficulty level is measured for the following questions in terms of very easy, easy, difficult, 
and very difficult. The following questions may be asked in the survey:

• How the user is able to easily learn the interface paths in a webpage?
• Are the interface titles understandable?
• Whether the topics can be found in the ‘help’ easily or not?

The charts, such as bar charts, pie charts, scatter plots, and line charts, can be used to 
depict and assess the satisfaction level of the customer. The satisfaction level of the cus-
tomer must be continuously monitored over time.
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3.4.3 Testing Metrics

Testing metrics are used to capture the progress and level of testing for a given software. 
The amount of testing done is measured by using the test coverage metrics. These metrics 
can be used to measure the various levels of coverage, such as statement, path, condition, 
and branch, and are given below:

 1. The percentage of statements covered while testing is defined by statement cover-
age metric.

 2. The percentage of branches covered while testing the source code is defined by 
branch coverage metric.

 3. The percentage of operations covered while testing the source code is defined by 
operation coverage metric.

 4. The percentage of conditions covered (both for true and false) is evaluated using 
condition coverage metric.

 5. The percentage of paths covered in a control flow graph is evaluated using condi-
tion coverage metric.

 6. The percentage of loops covered while testing a program is evaluated using loop 
coverage metric.

 7. All the possible combinations of conditions are covered by multiple coverage metrics.

NASA developed a test focus (TF) metric defined as the ratio of the amount of effort spent 
in finding and removing “real” faults in the software to the total number of faults reported 
in the software. The TF metric is given as (Stark et al. 1992):

	
TF = 

 Number of STRs fixed and closed
Total number of STRs

where:
STR is software trouble report

The fault coverage metric (FCM) is given as:

	
FCM = 

Number of faults addressed severity of faults
Total number

×
oof faults severity of faults×

Some of the basic process metrics used to measure testing are given below:

 1. Number of test cases designed
 2. Number of test cases executed
 3. Number of test cases passed
 4. Number of test cases failed
 5. Test case execution time
 6. Total execution time
 7. Time spent for the development of a test case
 8. Testing effort
 9. Total time spent for the development of test cases
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On the basis of above direct measures, the following additional testing-related metrics 
can be computed to derive more useful information from the basic metrics as given below.

 1. Percentage of test cases executed
 2. Percentage of test cases passed
 3. Percentage of test cases failed
 4. Actual execution time of a test case/estimated execution time of a test case
 5. Average execution time of a test case

3.5 OO Metrics

Because of growing size and complexity of software systems in the market, OO analysis 
and design principles are being used by organizations to produce better designed, high–
quality, and maintainable software. As the systems are being developed using OO soft-
ware engineering principles, the need for measuring various OO constructs is increasing.

Features of OO paradigm (programming languages, tools, methods, and processes) pro-
vide support for many quality attributes. The key concepts of OO paradigm are: classes, 
objects, attributes, methods, modularity, encapsulation, inheritance, and polymorphism 
(Malhotra 2009). An object is made up of three basic components: an identity, a state, and a 
behavior (Booch 1994). The identity distinguishes two objects with same state and behav-
ior. The state of the object represents the different possible internal conditions that the 
object may experience during its lifetime. The behavior of the object is the way the object 
will respond to a set of received messages.

A class is a template consisting of a number of attributes and methods. Every object 
is the instance of a class. The attributes in a class define the possible states in which an 
instance of that class may be. The behavior of an object depends on the class methods and 
the state of the object as methods may respond differently to input messages depending on 
the current state. Attributes and methods are said to be encapsulated into a single entity. 
Encapsulation and data hiding are key features of OO languages.

The main advantage of encapsulation is that the values of attributes remain private, 
unless the methods are written to pass that information outside of the object. The internal 
working of each object is decoupled from the other parts of the software thus achieving 
modularity. Once a class has been written and tested, it can be distributed to other pro-
grammers for reuse in their own software. This is known as reusability. The objects can 
be maintained separately leading to easier location and fixation of errors. This process is 
called maintainability.

The most powerful technique associated to OO methods is the inheritance relationship. 
If a class B is derived from class A. Class A is said to be a base (or super) class and class B is 
said to be a derived (or sub) class. A derived class inherits all the behavior of its base class 
and is allowed to add its own behavior.

Polymorphism (another useful OO concept) describes multiple possible states for a 
single property. Polymorphism allows programs to be written based only on the abstract 
interfaces of the objects, which will be manipulated. This means that future extension 
in the form of new types of objects is easy, if the new objects conform to the original 
interface.
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Nowadays, the software organizations are focusing on software process improvement. 
This demand led to new/improved approaches in software development area, with per-
haps the most promising being the OO approach. The earlier software metrics (Halstead, 
McCabe, LOCs) were aimed at procedural-oriented languages. The OO paradigm includes 
new concepts. Therefore, a number of OO metrics to capture the key concepts of OO para-
digm have been proposed in literature in the last two decades.

3.5.1 Popular OO Metric Suites

There are a number of OO metric suites proposed in the literature. These metric suites are 
summarized below. Chidamber and Kemerer (1994) defined a suite of six popular metrics. 
This suite has received widest attention for predicting quality attributes in literature. The 
metrics summary along with the construct they are capturing is provided in Table 3.3.

Li and Henry (1993) assessed the Chidamber and Kemerer metrics given in Table 3.3 and 
provided a metric suite given in Table 3.4.

Bieman and Kang (1995) proposed two cohesion metrics loose class cohesion (LCC) and 
tight class cohesion (TCC).

Lorenz and Kidd (1994) proposed a suite of 11 metrics. These metrics address size, cou-
pling, inheritance, and so on and are summarized in Table 3.5.

Briand et al. (1997) proposed a suite of 18 coupling metrics. These metrics are summa-
rized in Table 3.6. Similarly, Tegarden et al. (1995) have proposed a large suite of met-
rics based on variable, object, method and system level. The detailed list can be found in 
Henderson-Sellers (1996). Lee et al. (1995) has given four metrics, one for measuring cohe-
sion and three  metrics for measuring coupling (see Table 3.7).

The system-level polymorphism metrics are measured by Benlarbi and Melo (1999). 
These metrics are used to measure static and dynamic polymorphism and are summa-
rized in Table 3.8.

TABLE 3.3

Chidamber and Kemerer Metric Suites

Metric Definition Construct Being Measured

CBO It counts the number of other classes to which a class is linked. Coupling
WMC It counts the number of methods weighted by complexity in a class. Size
RFC It counts the number of external and internal methods in a class. Coupling
LCOM Lack of cohesion in methods Cohesion
NOC It counts the number of immediate subclasses of a given class. Inheritance
DIT It counts the number of steps from the leaf to the root node. Inheritance

TABLE 3.4

Li and Henry Metric Suites

Metric Definition Construct Being Measured

DAC It counts the number of abstract data types in a class. Coupling
MPC It counts a number of unique send statements from a class to 

another class.
Coupling

NOM It counts the number of methods in a given class. Size
SIZE1 It counts the number of semicolons. Size
SIZE2 It is the sum of number of attributes and methods in a class. Size



78 Empirical Research in Software Engineering

Yap and Henderson-Sellers (1993) have proposed a suite of metrics to measure  cohesion 
and reuse in OO systems. Aggarwal et al. (2005) defined two reusability metrics namely 
function template factor (FTF) and class template factor (CTF) that are used to mea-
sure reuse in OO systems. The relevant metrics summarized in tables are explained in 
 subsequent sections.

TABLE 3.5

Lorenz and Kidd Metric Suites for measuring Inheritance

Metric Definition

NOP It counts the number of immediate parents of a given class.
NOD It counts the number of indirect and direct subclasses of a given class. 

NMO It counts the number of methods overridden in a class.

NMI It counts the number of methods inherited in a class.

NMA It counts the number of new methods added in a class.

SIX Specialization index

TABLE 3.6

Briand et al. Metric Suites

IFCAIC These coupling metrics count the number of interactions between classes.

These metrics distinguish the relationship between the classes (friendship, inheritance, 
none), different types of interactions, and the locus of impact of the interaction.

The acronyms for the metrics indicates what interactions are counted:

• The first or first two characters indicate the type of coupling relationship between 
classes:

  A: ancestor, D: descendents, F: friend classes, IF: inverse friends (classes that declare 
a given class A as their friend), O: others, implies none of the other relationships.

• The next two characters indicate the type of interaction:

  CA: There is a class–attribute interaction if class x has an attribute of type class y.

  CM: There is a class–method interaction if class x consist of a method that has 
parameter of type class y.

  MM: There is a method–method interaction if class x calls method of another class y, 
or class x has a method of class y as a parameter.

• The last two characters indicate the locus of impact:

  IC: Import coupling, counts the number of other classes called by class x.

  EC: Export coupling, count number of other classes using class y.

ACAIC
OCAIC
FCAEC
DCAEC
OCAEC
IFCMIC
ACMIC
DCMIC
FCMEC
DCMEC
OCMEC
IFMMIC
AMMIC
OMMIC
FMMEC
DMMEC
OMMEC

TABLE 3.7

Lee et al. Metric Suites

Metric Definition Construct Being Measured

ICP Information flow-based coupling Coupling
IHICP Information flow-based inheritance coupling Coupling
NIHICP Information flow-based noninheritance coupling Coupling
ICH Information-based cohesion Cohesion
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3.5.2 Coupling Metrics

Coupling is defined as the degree of interdependence between modules or classes. It is 
 measured by counting the number of other classes called by a class, during the  software 
 analysis and design phases. It increases complexity and decreases maintainability, reus-
ability, and understandability of the system. Thus, interclass coupling must be kept 
to a minimum. Coupling also increases amount of testing effort required to test classes 
(Henderson-Sellers 1996). Thus, the aim of the developer should be to keep coupling 
between two classes as minimum as possible.

Information flow metrics represent the amount of coupling in the classes. Fan-in and 
fan-out metrics indicate the number of classes collaborating with the other classes:

 1. Fan-in: It counts the number of other classes calling class X.
 2. Fan-out: It counts the number of classes called by class X.

Figure 3.4 depicts the values for fan-in and fan-out metrics for classes A, B, C, D, E, and F of 
an example system. The values of fan-out should be as low as possible because of the fact 
that it increases  complexity and maintainability of the software.

TABLE 3.8

Benlarbi and Melo Polymorphism Metrics

Metric Definition

SPA It measures static polymorphism in ancestors.
DPA It measures dynamic polymorphism in ancestors.
SP It is the sum of SPA and SPD metrics.
DP It is the sum of DPA and DPD metrics.
NIP It measures polymorphism in noninheritance relations.
OVO It measures overloading in stand-alone classes.
SPD It measures static polymorphism in descendants.
DPD It measures dynamic polymorphism in descendants.

Class A
Fan-out = 4

Class B
Fan-in = 1

Fan-out = 1

Class C
Fan-in = 2

Fan-out = 1

Class D
Fan-in = 1

Fan-out = 1

Class E
Fan-in = 1

Fan-out = 0

Class F
Fan-in = 2

Fan-out = 0

FIGURE 3.4
Fan-in and fan-out metrics
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Chidamber and Kemerer (1994) defined coupling as:

Two classes are coupled when methods declared in one class use methods or instance 
variables of the other classes.

This definition also includes coupling based on inheritance. Chidamber and Kemerer 
(1994) defined coupling between objects (CBO) as “the count of number of other classes 
to which a class is coupled.” The CBO definition given in 1994 includes inheritance-based 
coupling. For example, consider Figure 3.5, three variables of other classes (class B, class C, 
and class D) are used in class A, hence, the value of CBO for class A is 3. Similarly, classes 
D, F, G, and H have the value of CBO metric as zero.

Li and Henry (1993) used data abstraction technique for defining coupling. Data abstrac-
tion provides the ability to create user-defined data types called abstract data types (ADTs). 
Li and Henry defined data abstraction coupling (DAC) as:

 DAC = number of ADTs defined in a class

In Figure 3.5, class A has three ADTs (i.e., three nonsimple attributes). Li and Henry defined 
another coupling metric known as message passing coupling (MPC) as “number of unique 
send statements in a class.” Hence, if three different methods in class B access the same 
method in class A, then MPC is 3 for class B, as shown in Figure 3.6.

Chidamber and Kemerer (1994) defined response for a class (RFC) metric as a set of 
methods defined in a class and called by a class. It is given by RFC = |RS|, where RS, the 
response set of the class, is given by:

	
RS = ∪ { }I all j Ei ij

where:
Ii = set of all methods in a class (total i)
Ri = {Rij} = set of methods called by Mi

A
Fan-out = 3

CBO = 3

B
Fan-out = 2

CBO = 2

F

G

C
Fan-out = 1

CBO = 1

H

D

FIGURE 3.5
Values of CBO metric for a small program.



81Software Metrics

For example, in Figure 3.7, RFC value for class A is 6, as class A has three methods of its 
own and calls 2 other methods of class B and one of class C.

A number of coupling metrics with respect to OO software have been proposed by 
Briand et al. (1997). These metrics take into account the different OO design mechanisms 
provided by the C++ language: friendship, classes, specialization, and aggregation. These 
metrics may be used to guide software developers about which type of coupling affects 
the maintenance cost and reduces reusability. Briand et al. (1997) observed that the cou-
pling between classes could be divided into different facets:

 1. Relationship: It signifies the type of relationship between classes—friendship, 
inheritance, or other.

 2. Export or import coupling (EC/IC): It determines the number of classes calling 
class A (export) and the number of classes called by class A (import).

 3. Type of interaction: There are three types of interactions between classes—class–
attribute (CA), class–method (CM), and method–method (MM).

 i. CA interaction: If there are nonsimple attributes declared in a class, the type 
of interaction is CA. For example, consider Figure 3.8, there are two nonsimple 

Class B

Class C

MethodC1()

MethodC2()

MethodB1()

MethodB2()

RFC = 6Class A 

MethodA1()

MethodA2()

MethodA3() 

FIGURE 3.7
Example of RFC metric.

Class A Class B 

FIGURE 3.6
Example of MPC metric.
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attributes in class A, B1 of type class B and C1 of type class C. Hence, any 
changes in class B or class C may affect class A.

 ii. CM interaction: If the object of class A is passed as parameter to method of 
class B, then the type of interaction is said to be CM. For example, as shown in 
Figure 3.8, object of class B, B1, is passed as parameter to method M1 of class 
A, thus the interaction is of CM type.

 iii. MM interaction: If a method Mi of class Ki calls method Mj of class Kj or if the 
reference of method Mi of class Ki is passed as an argument to method Mj of 
class Kj, then there is MM type of interaction between class Ki and class Kj. For 
example, as shown in Figure 3.8, the method M2 of class B calls method M1 of 
class A, hence, there is a MM interaction between class B and class A. Similarly, 
method B1 of class B type is passed as reference to method M3 of class C.

The metrics for CM interaction type are IFCMIC, ACMIC, OCMIC, FCMEC, DCMEC, and 
OCMEC. In these metrics, the first one/two letters denote the type of relationship (IF denotes 
inverse friendship, A denotes ancestors, D denotes descendant, F denotes friendship, and O 
denotes others). The next two letters denote the type of interaction (CA, CM, MM) between 
classes. Finally, the last two letters denote the type of coupling (IC or EC).

Lee et al. (1995) acknowledged the need to differentiate between inheritance-based and 
noninheritance-based coupling by proposing the corresponding measures: noninheritance 
information flow-based coupling (NIH-ICP) and information flow-based inheritance coupling 
(IH-ICP). Information flow-based coupling (ICP) metric is defined as the sum of NIH-ICP and 
IH-ICP metrics and is based on method invocations, taking polymorphism into account.

class A
{
B B1; // Nonsimple attributes
C C1;
public:
void M1(B B1)
{
}
};
class B
{
public:
void M2()
{
A A1;
A1.M1();// Method of class A called
}
};
class C
{
void M3(B::B1) //Method of class B passed as parameter
{
}
};

FIGURE 3.8
Example for computing type of interaction.
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3.5.3 Cohesion Metrics

Cohesion is a measure of the degree to which the elements of a module are functionally 
related to each other. The cohesion measure requires information about attribute usage 
and method invocations within a class. A class that is less cohesive is more complex and is 
likely to contain more number of faults in the software development life cycle. Chidamber 
and Kemerer (1994) proposed lack of cohesion in methods (LCOM) metric in 1994. The 
LCOM metric is used to measure the dissimilarity of methods in a class by taking into 
account the attributes commonly used by the methods.

The LCOM metric calculates the difference between the number of methods that have 
similarity zero and the number of methods that have similarly greater than zero. In LCOM, 
similarity represents whether there is common attribute usage in pair of methods or not.
The greater the similarly between methods, the more is the cohesiveness of the class. For 
example, consider a class consisting of four attributes (A1, A2, A3, and A4). The method 
usage of the class is given in Figure 3.9.

There are few problems related to LCOM metric, proposed by Chidamber and Kemerer 
(1994), which were addressed by Henderson-Sellers (1996) as given below:

 1. The value of LCOM metric was zero in a number of real examples because of the 
presence of dissimilarity among methods. Hence, although a high value of LCOM 
metric suggests low cohesion, the zero value does not essentially suggest high 
cohesion.

 2. Chidamber and Kemerer (1994) gave no guideline for interpretation of value of 
LCOM. Thus, Henderson-Sellers (1996) revised the LCOM value. Consider m 
methods accessing a set of attributes Di (i = 1,…,n). Let µ Di( ) be the number of 
methods that access each datum. The revised LCOM1 metric is given as follows:
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FIGURE 3.9
Example of LCOM metric.
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The approach by Bieman and Kang (1995) to measure cohesion was based on that of 
Chidamber and Kemerer (1994). They proposed two cohesion measures—TCC and LCC. 
TCC metric is defined as the percentage of pairs of directly connected public methods 
of the class with common attribute usage. LCC is the same as TCC, except that it also 
 considers indirectly connected methods. A method M1  is indirectly connected with 
method  M3, if  method M1  is connected to method M2  and method M2  is connected 
to method M3. Hence, transitive closure of directly connected methods is represented by 
indirectly connected methods. Consider the class stack shown in Figure 3.10.

Figure 3.11 shows the attribute usage of methods. The pair of public functions with com-
mon attribute usage is given below:

{(empty, push), (empty, pop), (empty, display), (getsize, push), (getsize, pop), (push, pop), 
(push, display), (pop, display)}

Thus, TCC for stack class is as given below:

	
TCC Stack( ) × ==

8
10

100 80%

The methods “empty” and “getsize” are indirectly connected, since “empty” is connected 
to “push” and “getsize” is also connected to “push.” Thus, by transitivity, “empty” is con-
nected to “getsize.” Similarly “getsize” is indirectly connected to “display.” 
LCC for stack class is as given below:

	
LCC Stack( ) × ==

10
10

100 100%

Stack

Top : Integer

a : Integer

Push(a, n)
Pop()
Getsize()

Class name

Attributes

Methods

Empty ()
Display ()

FIGURE 3.10
Stack class.

Push Pop Getsize Empty

Top, a, n Top, a, n n Top

Display

Top, a

FIGURE 3.11
Attribute usage of methods of class stack.
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Lee et al. (1995) proposed information flow-based cohesion (ICH) metric. ICH for a class is 
defined as the weighted sum of the number of invocations of other methods of the same 
class, weighted by the number of parameters of the invoked method.

3.5.4 Inheritance Metrics

The inheritance represents parent–child relationship and is measured in terms of num-
ber of subclasses, base classes, and depth of inheritance hierarchy by many authors in 
the literature. Inheritance represents form of reusability. Chidamber and Kemerer (1994) 
defined depth of inheritance tree (DIT) metric as maximum number of steps from class to 
root node in a tree. Thus, in case concerning multiple inheritance, the DIT will be counted 
as the maximum length from the class to the root of the tree. Consider Figure 3.12, DIT for 
class D and class F is 2.

The average inheritance depth (AID) is calculated as (Yap and Henderson-Sellers 1993):

	
AID

depth of each class

Total number of classes
= ∑

In Figure 3.11, the depth of subclass D is 2 ([2 + 2]/2).
The AID of overall inheritance structure is: 0(A)  +  1(B)  +  1(C)  +  2(D)  +  0(E)  +  1.5(F)  + 

0(G) = 5.5. Finally, dividing by total number of classes we get 5.5/6 = 0.92.
Chidamber and Kemerer (1994) yet proposed another metric, number of children (NOC), 

which counts the number of immediate subclasses of a given class in an inheritance hier-
archy. A class with more NOC requires more testing. In Figure 3.12, class B has 1 and class 
C has 2 subclasses. Lorenz and Kidd (1994) proposed number of parents (NOP) metric that 
counts the number of direct parent classes for a given class in inheritance hierarchy. For 
example, class D has NOP value of 2. Similarly, Lorenz and Kidd (1994) also developed 
number of descendants (NOD) metric. The NOD metric defines the number of direct and 
indirect subclasses of a class. In Figure 3.12, class E has NOD value of 3 (C, D, and F). 
Tegarden et al. (1992) define number of ancestors (NA) as the number of indirect and direct 
parent classes of a given class. Hence, as given in Figure 3.12, NA(D) = 4 (A, B, C, and E).

Other inheritance metrics defined by Lorenz and Kidd include the number of methods 
added (NMA), number of methods overridden (NMO), and number of methods inherited 
(NMI). NMO counts number of methods in a class with same name and signature as in its 

A

B

D

C G

F

E

FIGURE 3.12
Inheritance hierarchy.
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parent class. NMA counts the number of new methods (neither overridden nor inherited) 
added in a class. NMI counts number of methods inherited by a class from its parent class. 
Finally, Lorenz and Kidd (1994) defined specialization index (SIX) using DIT, NMO, NMA, 
and NMI metrics as given below:

	
SIX = 

NMO DIT
NMO + NMA + NMI

×

Consider the class diagram given in Figure 3.13. The class employee inherits class person. 
The class employee overrides two functions, addDetails() and display(). Thus, the value of 
NMO metric for class student is 2. Two new methods is added in this class (getSalary() and 
compSalary()). Hence, the value of NMA metric is 2.

Thus, for class Employee, the value of NMO is 2, NMA is 2, and NMI is 1 (getEmail()). 
For the class Employee, the value of SIX is:

	
SIX

2 1
2 2 1

=
×

+ +
= =

2
5

0 4.

The maximum number of levels in the inheritance hierarchy that are below the class are 
measured through class to leaf depth (CLD). The value of CLD for class Person is 1.

3.5.5 Reuse Metrics

An OO development environment supports design and code reuse, the most straight-
forward type of reuse being the use of a library class (of code), which perfectly suits the 

Person

name: char
phone: integer
addr: integer
email: char

addDetails()
display()
getEmail()

Employee

Emp_id: char
basic: integer
da: real
hra: real

addDetails()
display()
getSalary()
compSalary()

FIGURE 3.13
Example of inheritance relationship.
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requirements. Yap and Henderson-Sellers (1993) discuss two measures designed to  evaluate 
the level of reuse possible within classes. The reuse ratio (U) is defined as:

	
U

Number of superclasses
Total number of classes

=

Consider Figure 3.13, the value of U is 1 2. Another metric is specialization ratio (S), and is 
given as:

	
S

Number of subclasses
Number of superclasses

=

In Figure 3.13, Employee is the subclass and Person is the parent class. Thus, S = 1.
Aggarwal et al. (2005) proposed another set of metrics for measuring reuse by using 

generic programming in the form of templates. The metric FTF is defined as ratio of num-
ber of functions using function templates to total number of functions as shown below:

	
FTF = 

Number of functions using function templates
Total number of ffunctions

Consider a system with methods F1,…,Fn. Then,

	

FTF =
( )

−

−

∑
∑
uses FT F

F
i

n

i

i

n
1

1

_

where:

	
uses FT Fi_

,

,
( )



1

0

iff function uses function template

otherwise







In Figure 3.14, the value of metric FTF = ( / )1 3 .
The metric CTF is defined as the ratio of number of classes using class templates to total 

number of classes as shown below:

	
CTF = 

Number of classes using class templates
Total number of classees

void method1(){
.........}
template<class U>
void method2(U &a, U &b){
.........}
void method3(){
........}

FIGURE 3.14
Source code for calculation of FTF metric.
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Consider a system with classes C1,…,Cn. Then,

	

CTF =
( )

−

−

∑
∑
uses CT C

C
i

n

i

i
i

n
1

1

_

where:

	
uses CT Ci_ ( )













1

0

iff class uses class template

otherwise

In Figure 3.15, the value of metric CTF = 1
2

.

3.5.6 Size Metrics

There are various conventional metrics applicable to OO systems. The traditional LOC 
metric measures the size of a class (refer Section 3.3). However, the OO paradigm defines 
many concepts that require additional metrics that can measure them. Keeping this in 
view, many OO metrics have been proposed in the literature. Chidamber and Kemerer 
(1994) developed weighted methods per class (WMC) metric as count of number of meth-
ods weighted by complexities and is given as:

	
WMC =

=
∑Ci

i

n

1

where:
M1,…Mn are methods defined in class K1 

C1,…Cn are the complexities of the methods

Lorenz and Kidd defined number of attributes (NOA) metric given as the sum of number 
of instance variables and number of class variables. Li and Henry (1993) defined number 
of methods (NOM) as the number of local methods defined in a given class. They also 
defined two other size metrics—namely, SIZE1  and SIZE2. These metrics are defined 
below:

SIZE1 = number of semicolons in a class
SIZE2 =	sum of NOA and NOM

class X{
.....};
template<class U, int size>
class Y{
U ar1[size];
....};

FIGURE 3.15
Source code for calculating metric CTF.
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3.6 Dynamic Software Metrics

The dynamic behavior of the software is captured though dynamic metrics. The dynamic 
metrics related to coupling, cohesion, and complexity have been proposed in literature. 
The difference between static and dynamic metrics is presented in Table 3.9 (Chhabra and 
Gupta 2010).

3.6.1 Dynamic Coupling Metrics

Yacoub et al. (1999) developed a set of metrics for measuring dynamic coupling—namely, 
export object coupling (EOC) and import object coupling (IOC). These metrics are based on 
executable code. EOC metric calculates the percentage of ratio of number of messages sent 
from one object o1 to another object o2 to the total number of messages exchanged between 
o1 and o2 during the execution of a scenario. IOC metric calculates percentage of ratio of num-
ber of messages sent from object o2 to o1 to the total number of messages exchanged between 
o1 and o2 during the execution of a scenario. For example, four messages are sent from object 
o1 to object o2 and three messages are sent from object o2 to object o1, EOC(o1) = 4/7 × 100 and 
IOC(o1) = 3/7 × 100.

Arisholm et al. (2004) proposed a suite of 12 dynamic IC and EC metrics. There are six 
metrics defined at object level and six defined at class level. The first two letters of the 
metric describe the type of coupling—import or export. The EC represents the number of 
other classes calling a given class. IC represents number of other classes called by a class. 
The third letter signifies object or class, and the last letter signifies the strength of coupling 
(D—dynamic messages, M—distinct method, C—distinct classes). Mitchell and Power 
developed dynamic coupling metric suite summarized in Table 3.10.

3.6.2 Dynamic Cohesion Metrics

Mitchell and Power (2003, 2004) proposed extension of Chidamber and Kemerer’s LCOM 
metric as dynamic LCOM. They proposed two variations of LCOM metric: runtime  simple 
LCOM (RLCOM) and runtime call-weighted LCOM (RWLCOM). RLCOM considers 
instance variables accessed at runtime. RWLCOM assigns weights to each instance vari-
able by the number of times it is accessed at runtime.

TABLE 3.9

Difference between static and dynamic metrics

S. No. Static Metrics Dynamic Metrics

1 Collected without execution of the program Collected at runtime execution
2 Easy to collect Difficult to collect
3 Available in the early phases of software development Available in later phases of software 

development
4 Less accurate as compared to dynamic metrics More accurate
5 Inefficient in dealing with dead code and OO 

concepts such as polymorphism and dynamic 
binding

Efficient in dealing with all OO concepts
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3.6.3 Dynamic Complexity Metrics

Determining the complexity of a program is important to analyze its testability and main-
tainability. The complexity of the program may depend on the execution environment. 
Munson and Khoshgoftar (1993) proposed dynamic complexity metric.

3.7 System Evolution and Evolutionary Metrics

Software evolution aims at incorporating and revalidating the probable significant changes 
to the system without being able to predict a priori how user requirements will evolve. The 
current system release or version can never be said to be complete and continues to evolve. 
As it evolves, the complexity of the system will grow unless there is a better solution avail-
able to solve these issues.

The main objectives of software evolution are ensuring the reliability and flexibility 
of the system. During the past 20  years, the life span of a system could be on average 
6–10 years. However, it was recently found that a system should be evolved once every few 
months to ensure it is adapted to the real-world environment. This is because of the rapid 
growth of World Wide Web and Internet resources that make it easier for users to find 
related information.

The idea of software evolution leads to open source development as anybody could 
download the source codes and, hence, modify it. The positive impact in this case is that a 
number of new ideas would be discovered and generated that aims to improve the quality 
of system with a variety of choices. However, the negative impact is that there is no copy-
right if a software product has been published as open source.

Over time, software systems, programs as well as applications, continue to develop. 
These changes will require new laws and theories to be created and justified. Some mod-
els would also require additional aspects in developing future programs. Innovations, 

TABLE 3.10

Mitchell and Power Dynamic Coupling Metric Suite

Metric Definition

Dynamic coupling between objects This metric is same as Chidamber and Kemerer’s 
CBO metric, but defined at runtime.

Degree of dynamic coupling between two classes 
at runtime

It is the percentage of ratio of number of times a class A 
accesses the methods or instance variables of another 
class B to the total no of accesses of class A.

Degree of dynamic coupling within a given set 
of classes

The metric extends the concept given by the above 
metric to indicate the level of dynamic coupling within 
a given set of classes.

Runtime import coupling between objects Number of classes assessed by a given class at runtime.
Runtime export coupling between objects Number of classes that access a given class at runtime.
Runtime import degree of coupling Ratio of number of classes assessed by a given class at 

runtime to the total number of accesses made.
Runtime export degree of coupling Ratio of number of classes that access a given class at 

runtime to the total number of accesses made.
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improvements, and additions lead to unexpected form of software effort in maintenance 
phase. The maintenance issues also would probably change to adapt to the evolution of 
the future software.

Software process and development are an ongoing process that has a never-ending 
cycle. After going through learning and refinements, it is always an arguable issue when it 
comes to efficiency and effectiveness of the programs.

A software system may be analyzed by the following evolutionary and change metrics 
(suggested by Moser et al. 2008), which may prove helpful in understanding the evolution 
and release history of a software system.

3.7.1 Revisions, Refactorings, and Bug-Fixes

The metrics related to refactoring and bug-fixes are defined below:

• Revisions: Number of revisions of a software repository file
• Refactorings: Number of times a software repository file has been refactored
• Bug-fixes: Number of times a file has been associated with bug-fixing
• Authors: Number of distinct or different authors who have committed or checked 

in a software repository

3.7.2 LOC Based

The LOC-based evolution metrics are described as:

• LOC added: Sum total of all the lines of code added to a file for all of its revisions 
in the repository

• Max LOC added: Maximum number of lines of code added to a file for all of its 
revisions in the repository

• Average LOC added: Average number of lines of code added to a file for all of its 
revisions in the repository

• LOC deleted: Sum total of all the lines of code deleted from a file for all of its revi-
sions in the repository

• Max LOC deleted: Maximum number of lines of code deleted from a file for all of 
its revisions in the repository

• Average LOC deleted: Average number of lines of code deleted from a file for all of 
its revisions in the repository

3.7.3 Code Churn Based

• Code churn: Sum total of (difference between added lines of code and deleted lines 
of code) for a file,  considering all of its revisions in the repository

• Max code churn: Maximum code churn for all of the revisions of a file in the 
repository

• Average code churn: Average code churn for all of the revisions of a file in the 
repository
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3.7.4 Miscellaneous

The other related evolution metrics are:

• Max change set: Maximum number of files that are committed or checked in 
together in a repository

• Average change set: Average number of files that are committed or checked in 
together in a repository

• Age: Age of repository file, measured in weeks by counting backward from a given 
release of a software system

• Weighted Age: Weighted Age of a repository file is given as:

	

Age LOCadded

LOCadded

i i

i
i

N
( )× ( )

( )
=∑
∑

1

where:
i is a revision of a repository file and N is the total number of revisions for that 

file

3.8 Validation of Metrics

Several researchers recommend properties that software metrics should posses to increase 
their usefulness. For instance, Basili and Reiter suggest that metrics should be sensitive to 
externally observable differences in the development environment, and must correspond 
to notions about the differences between the software artifacts being measured (Basili and 
Reiter 1979). However, most recommended properties tend to be informal in the evaluation 
of metrics. It is always desirable to have a formal set of criteria with which the proposed 
metrics can be evaluated. Weyuker (1998) has developed a formal list of properties for soft-
ware metrics and has evaluated number of existing software metrics against these proper-
ties. Although many authors (Zuse 1991, Briand et al. 1999b) have criticized this approach, 
it is still a widely known formal, analytical approach.

Weyuker’s (1988) first four properties address how sensitive and discriminative the 
metric is. The fifth property requires that when two classes are combined their metric 
value should be greater than the metric value of each individual class. The sixth property 
addresses the interaction between two programs/classes. It implies that the interaction 
between program/class A and program/class B is different than the interaction between 
program/class C and program/class B given that the interaction between program/class A 
and program/class C. The seventh property requires that a measure be sensitive to state-
ment order within a program/class. The eighth property requires that renaming of vari-
ables does not affect the value of a measure. Last property states that the sum of the metric 
values of a program/class could be less than the metric value of the program/class when 
considered as a whole (Henderson-Sellers 1996). The applicability of only the properties for 
OO metrics are given below:

Let u be the metric of program/class P and Q
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Property 1: This property states that

	
∃( ) ∃( ) ( ) ≠ ( ) P Q u p u Q,

It ensures that no measure rates all program/class to be of same metric value.
Property 2: Let c be a nonnegative number. Then, there are finite numbers of pro-

gram/class with metric c. This property ensures that there is sufficient resolution 
in the measurement scale to be useful.

Property 3: There are distinct program/class P and Q such that u p u Q( ) = ( ) ⋅
Property 4: For OO system, two programs/classes having the same functionality 

could have different values.

	
∃( ) ∃( ) ≡ ( ) ≠ ( ) P Q P Q u P Qand

Property 5: When two programs/classes are concatenated, their metric should be 
greater than the metrics of each of the parts.

	
∀( ) ∀( ) ( ) ≤ +( ) ( ) ≤ +( ) P Q u P u P Q u Q u P Qand

Property 6: This property suggests nonequivalence of interaction. If there are two 
program/class bodies of equal metric value which, when separately concatenated 
to a same third program/class, yield program/class of different metric value.

For program/class P, Q, R

	
∃( ) ∃( ) ∃( ) ( ) = ( ) +( ) ≠ +( ) P Q R u P u Q u P R u Q Rand

Property 7: This property is not applicable for OO metrics (Chidamber and Kemerer 1994).
Property 8: It specifies that “if P is a renaming of Q, then u P u Q( ) = ( ).”
Property 9: This property is not applicable for OO metrics (Chidamber and Kemerer 

1994).

3.9 Practical Relevance

Empirical assessment of software metrics is important to ensure their practical relevance in 
the software organizations. Such analysis is of high practical relevance and especially ben-
eficial for large-scale systems, where the experts need to focus their attention and resources 
to problem areas in the system under development. In the subsequent section, we describe 
the role of metrics in research and industry. We also provide the approach for calculating 
metric thresholds.

3.9.1 Designing a Good Quality System

During the entire life cycle of a project, it is very important to maintain the quality and 
to ensure that it does not deteriorate as a project progresses through its life cycle. Thus, 
the project manager must monitor quality of the system on a continuous basis. To plan 
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and control quality, it is very important to understand how the quality can be measured. 
Software metrics are widely used for measuring, monitoring, and evaluating the quality 
of a project. Various software metrics have been proposed in the literature to assess the 
software quality attributes such as change proneness, fault proneness, maintainability of 
a class or module, and so on. A large portion of empirical research has been involved with 
the development and evaluation of the quality models for procedural and OO software.

Software metrics have found a wide range of applications in various fields of software engi-
neering. As discussed, some of the familiar and common uses of software metrics are sched-
uling the time required by a project, estimating the budget or cost of a project, estimating the 
size of the project, and so on. These parameters can be estimated at the early phases of soft-
ware development life cycle, and thus help software managers to make judicious allocation 
of resources. For example, once the schedule and budget has been decided upon, managers 
can plan in advance the amount of person-hours (effort) required. Besides this, the design of 
software can be assessed in the industry by identifying the out of range values of the software 
metrics. One way to improve the quality of the system is to relate structural attribute mea-
sures intended to quantify important concepts of a given software, such as the following:

• Encapsulation
• Coupling
• Cohesion
• Inheritance
• Polymorphism

to external quality attributes such as the following:

• Fault proneness
• Maintainability
• Testing effort
• Rework effort
• Reusability
• Development effort

The ability to assess quality of software in the early phases of the software life cycle is the 
main aim of researchers so that structural attribute measures can be used for predicting exter-
nal attribute measures. This would greatly facilitate technology assessment and comparisons.

Researchers are working hard to investigate the properties of software measures to 
understand the effectiveness and applicability of the underlying measures. Hence, we need 
to understand what these measures are really capturing, whether they are really differ-
ent, and whether they are useful indicators of quality attributes of interest? This will build 
a body of evidence, and present commonalities and differences across various studies. 
Finally, these empirical studies will contribute largely in building good quality systems.

3.9.2 Which Software Metrics to Select?

The selection of software metrics (independent variables) in the research is a crucial 
 decision. The researcher must first decide on the domain of the metrics. After deciding 
the domain, the researcher must decide the attributes to capture in the domain. Then, 
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the popular and widely used software metrics suite available to measure the constructs 
is identified from the literature. Finally, a decision on the selection must be made on soft-
ware metrics. The criterion that can be used to select software metrics is that the selected 
software metrics must capture all the constructs, be widely used in the literature, easily 
understood, fast to compute, and computationally less expensive. The choice of metric 
suite heavily depends on the goals of the research. For instance, in quality model pre-
diction, OO metrics proposed by Chidamber and Kemerer (1994) are widely used in the 
empirical studies.

In cases where multiple software metrics are used, the attribute reduction techniques 
given in Section 6.2 must be applied to reduce them, if model prediction is being conducted.

3.9.3 Computing Thresholds

As seen in previous sections, there are a number of metrics proposed and there are numer-
ous tools to measure them (see Section 5.8.3). Metrics are widely used in the field of soft-
ware engineering to identify problematic parts of the software that need focused and 
careful attention. A researcher can also keep a track of the metric values, which will allow 
to identify benchmarks across organizations. The products can be compared or rated, 
which will allow to assess their quality. In addition to this, threshold values can be defined 
for the metrics, which will allow the metrics to be used for decision making. Bender (1999) 
defined threshold as “Breakpoints that are used to identify the acceptable risk in classes.” 
In other words, a threshold can be defined as a benchmark or an upper bound such that 
the values greater than a threshold value are considered to be problematic, whereas the 
values lower are considered to be acceptable.

During the initial years, many authors have derived threshold values based on their 
experience and, thus, those values are not universally accepted. For example, McCabe 
(1976) defined a value of 10 as threshold for the cyclomatic complexity metric. Similarly, for 
the maintainability index metric, 65 and 85 are defined as thresholds (Coleman et al. 1995). 
Since these values are based on intuition or experience, it is not possible to generalize 
results using these values. Besides the thresholds based on intuition, some authors defined 
thresholds using mean (µ) and standard deviation (σ). For example, Erni and Lewerentz 
(1996) defined the minimum and maximum values of threshold as T = µ + σ and T = µ − σ, 
respectively. However, this methodology did not gain popularity as it used the assump-
tion that the metrics should be normally distributed, which is not applicable always. 
French (1999) used Chebyshev’s inequality theorem (not restricted to normal distribution) 
in addition to mean (µ) and standard deviation (σ) to derive threshold values. According 
to French, a threshold can be defined as T = µ + k × σ (k = number of standard deviations). 
However, this methodology was also not used much as it was restricted to only two-tailed 
symmetric distributions, which is not justified.

A statistical model (based on logistic regression) to calculate the threshold values was 
suggested by Ulm (1991). Benlarbi et al. (2000) and El Emam et al. (2000b) estimated the 
threshold values of a number of OO metrics using this model. However, they found that 
there was no statistical difference between the two models: the model built using the 
thresholds and the model built without using the thresholds. Bender (1999) working in the 
epidemiological field found that the proposed threshold model by Ulm (1991) has some 
drawbacks. The model assumed that the probability of fault in a class is constant when a 
metric value is below the threshold, and the fault probability increases according to the 
logistic function, otherwise. Bender (1999) redefined the threshold effects as an acceptable 
risk level. The proposed threshold methodology was recently used by Shatnawi (2010) 



96 Empirical Research in Software Engineering

to identify the threshold values of various OO metrics. Besides this, Shatnawi et al. (2010) 
also  investigated the use of receiver operating characteristics (ROCs) method to identify 
threshold values. The detailed explanation of the above two methodologies is provided 
in the below sub sections (Shatnawi 2006). Malhotra and Bansal (2014a), evaluated the 
threshold approach proposed by Bender (1999) for fault prediction.

3.9.3.1 Statistical Model to Compute Threshold

The Bender (1999) method known as value of an acceptable risk level (VARL) is used to 
compute the threshold values, where the acceptable risk level is given by a probability 
Po (e.g., Po = 0.05 or 0.01). For the classes with metrics values below VARL, the risk of 
a fault occurrence is lower than the probability (Po). In other words, Bender (1999) has 
suggested that the value of Po can be any probability, which can be considered as the 
acceptable risk level.

The detailed description of VARL is given by the formula for VARL as follows (Bender 
1999):
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where:
α is a constant
β is the estimated coefficient
Po is the acceptable risk level

In this formula, α and β are obtained using the standard logistic regression formula 
(refer Section 7.2.1). This formula will be used for each metric individually to find its 
threshold value.

For example, consider the following data set (Table A.8  in Appendix I) consisting of 
the metrics (independent variables): LOC, DIT, NOC, CBO, LCOM, WMC, and RFC. The 
dependent variable is fault proneness. We calculate the threshold values of all the metrics 
using the following steps:

Step 1: Apply univariate logistic regression to identify significant metrics.
The formula for univariate logistic regression is:

	
P =

+
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e
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where:

	 g x x( ) = +α β

where:
x is the independent variable, that is, an OO metric
α is the Y-intercept or constant
β is the slope or estimated coefficient

Table 3.11 shows the statistical significance (sig.) for each metric. The “sig.” parame-
ter provides the association between each metric and fault proneness. If the “sig.” 
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value is below or at the significance threshold of 0.05, then the metric is said to 
be significant in predicting fault proneness (shown in bold). Only for significant 
metrics, we calculate the threshold values. It can be observed from Table 3.11 that 
DIT and NOC metrics are insignificant, and thus are not considered for further 
analysis.

Step 2: Calculate the values of constant and coefficient for significant metrics.
For significant metrics, the values of constant (α) and coefficient (β) using univariate 

logistic regression are calculated. These values of constant and coefficient will be 
used in the computation of threshold values. The coefficient shows the impact of 
the independent variable, and its sign shows whether the impact is positive or 
negative. Table 3.12 shows the values of constant (α) and coefficient (β) of all the 
significant metrics.

Step 3: Computation of threshold values.
We have calculated the threshold values (VARL) for the metrics that are found to be 

significant using the formula given above. The VARL values are calculated for 
different values of Po, that is, at different levels of risks (between Po = 0.01 and 
Po = 0.1). The threshold values at different values of Po (0.01, 0.05, 0.08, and 0.1) 
for all the significant metrics are shown in Table 3.13. It can be observed that the 
threshold values of all the metrics change significantly as Po changes. This shows 
that Po plays a significant role in calculating threshold values. Table 3.13 shows 
that at risk level 0.01 and 0.05, VARL values are out of range (i.e., negative values) 
for all of the metrics. At Po = 0.1, the threshold values are within the observation 
range of all the metrics. Hence, in this example, we say that Po = 0.1 is the appro-
priate risk level and the threshold values (at Po = 0.1) of WMC, CBO, RFC, LOC, 
and LOCM are 17.99, 14.46, 52.37, 423.44, and 176.94, respectively.

TABLE 3.11

Statistical Significance of Metrics

Metric Significance

WMC 0.013
CBO 0.01
RFC 0.003
LOC 0.001
DIT 0.296
NOC 0.779
LCOM 0.026

TABLE 3.12

Constant (α) and Coefficient (β) of Significant Metrics

Metric Coefficient (β) Constant (α)

WMC 0.06 −2.034
CBO 0.114 −2.603
RFC 0.032 −2.629
LOC 0.004 −2.648
LCOM 0.004 −1.662
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3.9.3.2 Usage of ROC Curve to Calculate the Threshold Values

Shatnawi et al. (2010) calculated threshold values of OO metrics using ROC curve. To plot 
the ROC curve, we need to define two variables: one binary (i.e., 0 or 1) and another con-
tinuous. Usually, the binary variable is the actual dependent variable (e.g., fault proneness 
or change proneness) and the continuous variable is the predicted result of a test. When 
the results of a test fall into one of the two obvious categories, such as change prone or 
not change prone, then the result is a binary variable (1 if the class is change prone, 0 if 
the class is not change prone) and we have only one pair of sensitivity and specificity. But, 
in many situations, making a decision in binary is not possible and, thus, the decision or 
result is given in probability (i.e., probability of correct prediction). Thus, the result is a 
continuous variable. In this scenario, different cutoff points are selected that make each 
predicted value (probability) as 0 or 1. In other words, different cutoff points are used to 
change the continuous variable into binary. If the predicted probability is more than the 
cutoff then the probability is 1, otherwise it is 0. In other words, if the predicted probability 
is more than the cutoff then the class is classified as change prone, otherwise it is classified 
as not change prone.

The procedure of ROC curves is explained in detail in Section 7.5.6, however, we sum-
marize it here to explain the concept. This procedure is carried for various cutoff points, 
and values of sensitivity and 1-specificity is noted at each cutoff point. Thus, using the 
(sensitivity, 1-specificity) pairs, the ROC curve is constructed. In other words, ROC curves 
display the relationship between sensitivity (true-positive rate) and 1-specificity (false-
positive rate) across all possible cutoff values. We find an optimal cutoff point, the cutoff 
point where balance between sensitivity and specificity is provided. This optimal cutoff 
point is considered as the threshold value for that metric. Thus, threshold value (optimal 
cutoff point) is obtained for each metric.

For example, consider the data set shown in Table A.8 (given in Appendix I). We need 
to calculate the threshold values for all the metrics with the help of ROC curve. As dis-
cussed, to plot ROC curve, we need a continuous variable and a binary variable. In this 
example, the continuous variable will be the corresponding metric and the binary vari-
able will be “fault.” Once ROC curve is constructed, the optimal cutoff point where sen-
sitivity equals specificity is found. This cutoff point is the threshold of that metric. The 
thresholds (cutoff points) of all the metrics are given in Table 3.14. When the ROC curve, 
is constructed the optimal cutoff point is found to be 62. Thus, the threshold value of LOC 
is 62. This means that if a class has LOC value >62, it is more prone to faults (as our 
dependent variable in this example is fault proneness) as compared to other classes. 
Thus, focused attention can be laid on such classes and judicious allocation of resources 
can be planned.

TABLE 3.13

Threshold Values on the basis of Logistic Regression Method

Metrics VARL at 0.01 VARL at 0.05 VARL at 0.08 VARL at 0.1

WMC −42.69 −15.17 −6.81 17.99
CBO −17.48 −2.99 1.41 14.46
RFC −61.41 −9.83 5.86 52.37
LOC −486.78 −74.11 51.41 423.44
LCOM −733.28 −320.61 −195.09 176.94
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3.9.4 Practical Relevance and Use of Software Metrics in Research

From the research point of view, the software metrics have a wide range of applications, 
which help to design a better and much improved quality system:

 1. Using software metrics, the researcher can identify change/fault-prone classes that
 a. Enables software developers to take focused preventive actions that can reduce 

maintenance costs and improve quality.
 b. Helps software managers to allocate resources more effectively. For example, if 

we have 26% testing resources, then we can use these resources in testing top 
26% of classes predicted to be faulty/change prone.

 2. Among a large set of software metrics (independent variables), we can find a suit-
able subset of metrics using various techniques such as correlation-based feature 
selection, univariate analysis, and so on. These techniques help in reducing the 
number of independent variables (termed as “data dimensionality reduction”). 
Only the metrics that are significant in predicting the dependent variable are con-
sidered. Once the metrics found to be significant in detecting faulty/change-prone 
classes are identified, software developers can use them in the early phases of 
software development to measure the quality of the system.

 3. Another important application is that once one knows the metrics being captured 
by the models, and then such metrics can be used as quality benchmarks to assess 
and compare products.

 4. Metrics also provide an insight into the software, as well as the processes used to 
develop and maintain it.

 5. There are various metrics that calculate the complexity of the program. For exam-
ple, McCabe metric helps in assessing the code complexity, Halstead metrics helps 
in calculating different measurable properties of software (programming effort, 
program vocabulary, program length, etc.), Fan-in and Fan-out metrics estimate 
maintenance complexity, and so on. Once the complexity is known, more complex 
programs can be given focused attention.

 6. As explained in Section 3.9.3, we can calculate the threshold values of different 
software metrics. By using threshold values of the metrics, we can identify and 
focus on the classes that fall outside the acceptable risk level. Hence, during the 

TABLE 3.14

Threshold Values or the basis of 
ROC Curve Method

Metric Threshold Value

WMC 7.5
DIT 1.5
NOC 0.5
CBO 8.5
RFC 43
LCOM 20.5
LOC 304.5
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project development and progress, we can scrutinize the classes and prepare 
alternative design structures wherever necessary.

 7. Evolutionary algorithms such as genetic algorithms help in solving the optimiza-
tion problems and require the fitness function to be defined. Software metrics help 
in defining the fitness function (Harman and Clark 2004) in these algorithms.

 8. Last, but not the least, some new software metrics that help to improve the  quality 
of the system in some way can be defined in addition to the metrics proposed in 
the literature.

3.9.5 Industrial Relevance of Software Metrics

The software design measurements can be used by the software industry in multiple ways: 
(1) Software designers can use them to obtain quality benchmarks to assess and compare 
various software products (Aggarwal et al. 2009). (2) Managers can use software metrics in 
controlling and auditing the quality of the software during the software development life 
cycle. (3) Software developers can use the software metrics to identify problematic areas and 
use source code refactoring to improve the internal quality of the software. (4) Software testers 
can use the software metrics in effective planning and allocation of testing and maintenance 
resources (Aggarwal et al. 2009). In addition to this, various companies can maintain a large 
database of software metrics, which allow them to compare a specific company’s application 
software with the rest of the industry. This gives an opportunity to relatively measure that 
software against its competitors. Comparing the planned or projected resource consumption, 
code completion, defect rates, and milestone completions against the actual consumption as 
the work progresses can make an assessment of  progress of the software. If there are huge 
deviations from the expectation, then the managers can take corrective actions before it is too 
late. Also, to compare the process productivity (can be derived from size, schedule time, and 
effort [person-months]) of projects completed in a company within a given year against that 
of projects completed in previous years, the software metrics on the projects completed in a 
given year can be compared against the projects completed in the previous years. Thus, it can 
be seen that software metrics contribute in a great way to software industry.

Exercises

3.1 What are software metrics? Discuss the various applications of metrics.
3.2 Discuss categories of software metrics with the help of examples of each category.
3.3 What are categorical metric scales? Differentiate between nominal scale and  ordinal 

scale in the measurements and also discuss both the concepts with examples.
3.4 What is the role and significance of Weyuker’s properties in software metrics.
3.5 Define the role of fan-in and fan-out in information flow metrics.
3.6 What are various software quality metrics? Discuss them with examples.
3.7 Define usability. What are the various usability metrics? What is the role of cus-

tomer satisfaction?
3.8 Define the following metrics:

 a. Statement coverage metric
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 b. Defect density
 c. FCMs

3.9 Define coupling. Explain Chidamber and Kemerer metrics with examples.
3.10 Define cohesion. Explain some cohesion metrics with examples.
3.11 How do we measure inheritance? Explain inheritance metrics with examples.
3.12 Define the following metrics:

 a. CLD
 b. AID
 c. NOC
 d. DIT
 e. NOD
 f. NOA
 g. NOP
 h. SIX

3.13 What is the purpose and significance of computing the threshold of software 
metrics?

3.14 How can metrics be used to improve software quality?
3.15 Consider that the threshold value of CBO metric is 8 and WMC metric is 15. What 

does these values signify? What are the possible corrective actions according to you 
that a developer must take if the values of CBO and WMC exceed these values?

3.16 What are the practical applications of software metrics? How can the metrics be 
helpful to software organizations?

3.17 What are the five measurement scales? Explain their properties with the help of 
examples.

3.18 How are the external and internal attributes related to process and product metrics?
3.19 What is the difference between process and product metrics?
3.20 What is the relevance of software metrics in research?

Further Readings

An in-depth study of eighteen  different categories of software complexity metrics was 
provided by Zuse, where he tried to give basic definition for metrics in each category:

H. Zuse, Software Complexity: Measures and Methods, Walter De Gryter, Berlin, 
Germany, 1991.

Fenton’s book on software metrics is a classic and useful reference as it provides in-depth 
discussions on measurement and key concepts related to metrics:

N. Fenton, and S. Pfleeger, Software Metrics: A Rigorous & Practical Approach, PWS 
Publishing Company, Boston, MA, 1997.
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The traditional Software Science metrics proposed by Halstead are listed in:

H. Halstead, Elements of Software Science, Elsevier North-Holland, Amsterdam, 
the Netherlands, 1977.

Chidamber and Kemerer (1991) proposed the first significant OO design metrics. Then, 
another paper by Chidamber and Kemerer defined and validated the OO metrics suite 
in 1994. This metrics suite is widely used and has obtained widest attention in empirical 
studies:

S. Chidamber, and C. Kemerer, “A metrics suite for object-oriented design,” IEEE 
Transactions on Software Engineering, vol. 20, no. 6, pp. 476–493, 1994.

Detailed description on OO metrics can be obtained from:

B. Henderson-Sellers, Object Oriented Metrics: Measures of Complexity, Prentice Hall, 
Englewood Cliffs, NJ, 1996.

M. Lorenz, and J. Kidd, Object-Oriented Software Metrics, Prentice Hall, Englewood 
Cliffs, NJ, 1994.

The following paper explains various OO metric suites with real-life examples:

K.K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra,“Empirical study of object- 
oriented metrics,” Journal of Object Technology, vol.5, no. 8, pp. 149–173, 2006.

Other relevant publications on OO metrics can be obtained from:

www.acis.pamplin.vt.edu/faculty/tegarden/wrk-pap/ooMETBIB.PDF

Complete list of bibliography on OO metrics is provided at:

“Object-oriented metrics: An annotated bibliography,” http://dec.bournemouth.
ac.uk/ESERG/bibliography.html.
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4
Experimental Design

After the problem is defined, the experimental design process begins. The study must be 
carefully planned and designed to draw useful conclusions from it. The formation of a 
research question (RQ), selection of variables, hypothesis formation, data collection, and 
selection of data analysis techniques are important steps that must be carefully carried 
out to produce meaningful and generalized conclusions. This would also facilitate the 
 opportunities for repeated and replicated studies.

The empirical study involves creation of a hypothesis that is tested using statistical 
techniques based on the data collected. The model may be developed using multivariate 
 statistical techniques or machine learning techniques. The steps involved in the experi-
mental design are presented to ensure that proper steps are followed for conducting an 
empirical study. In the absence of a planned analysis, a researcher may not be able to draw 
well-formed and valid conclusions. All the activities involved in empirical design are 
explained in detail in this chapter.

4.1 Overview of Experimental Design

Experimental design is a very important activity, which involves laying down the back-
ground of the experiment in detail. This includes understanding the problem,  identifying 
goals, developing various RQ, and identifying the environment. The experimental design 
phase includes eight basic steps as shown in Figure 4.1. In this phase, an extensive sur-
vey is  conducted to have a complete overview of all the work done in literature till date. 
Besides this, the research is formally stated, including a null hypothesis and an alternative 
hypothesis. The next step in design phase is to determine and define the variables. The 
 variables are of two types: dependent and independent variables. In this step, the variables 
are  identified and defined. The measurement scale should also be defined. This imposes 
restrictions on the type of data analysis method to be used. The environment in which the 
experiment will be conducted is also determined, for example, whether the experiment 
will use data obtained from industry, open source, or university. The procedure for mining 
data from software repositories is given in Chapter 5. Finally, the data analysis methods to 
be used for performing the analysis are selected.

4.2 Case Study: Fault Prediction Systems

An example of empirical study is taken to illustrate the experimental process and various 
empirical concepts. The study will continue in Chapters 6 through 8, wherever required, to 
help in explaining the concepts. The empirical study is based on predicting severity levels 
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of fault and has been published in Singh et al. (2010). Hereafter, the study will be referred 
to as fault prediction system (FPS). The objective, motivation, and context of the study are 
described below.

4.2.1 Objective of the Study

The aim of the work is to find the relationship between object-oriented (OO) metrics and 
fault proneness at different severity levels of faults.

4.2.2 Motivation

The study predicts an important quality attribute, fault proneness during the early phases 
of software development. Software metrics are used for predicting fault proneness. The 
important contribution of this study is taking into account of the severity of faults dur-
ing fault prediction. The value of severity quantifies the impact of the fault on the soft-
ware operation. The IEEE standard (1044–1993, IEEE 1994) states, “Identifying the severity 
of an anomaly is a mandatory category as is identifying the project schedule, and project 
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Exhaustive literature 
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to the problem

Data analysis method
selection

Identify goals

Develop research
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papers
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formulation
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FIGURE 4.1
Steps in experimental design.
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cost impacts of any possible solution for the anomaly.” All the failures are not of the same 
type; they may vary in the impact that they may cause. For example, a failure caused by a 
fault may lead to a whole system crash or an inability to open a file (El Emam et al. 1999; 
Aggarwal et al. 2009). In this example, it can be seen that the former failure is more severe 
than the latter. Lack of determination of severity of faults is one of the main criticisms of 
the approaches to fault prediction in the study by Fenton and Neil (1999). Therefore, there 
is a need to develop prediction models that can be used to identify classes that are prone to 
have serious faults. The software practitioners can use the model predicted with respect to 
high severity of faults to focus the testing on those parts of the system that are likely to cause 
serious failures. In this study, the faults are categorized with respect to all the severity levels 
given in the NASA data set to improve the effectiveness of the categorization and provide 
meaningful, correct, and detailed analysis of fault data. Categorizing the faults according to 
different severity levels helps prioritize the fixing of faults (Afzal 2007). Thus, the software 
practitioners can deal with the faults that are at higher priority first, before dealing with the 
faults that are comparatively of lower priority. This would allow the resources to be judi-
ciously allocated based on the different severity levels of faults. In this work, the faults are 
categorized into three levels: high severity, medium severity, and low severity.

Several regression (such as linear and logistic regression [LR]) and machine learning 
techniques (such as decision tree [DT] and artificial neural network [ANN]) have been pro-
posed in the literature. There are few studies that are using machine learning techniques 
for fault prediction using OO metrics. Most of the prediction models in the literature are 
built using statistical techniques. There are many machine learning techniques, and there 
is a need to compare the results of various machine learning techniques as they give dif-
ferent results. ANN and DT methods have seen an explosion of interest over the years and 
are being successfully applied across a wide range of problem domains such as finance, 
medicine, engineering, geology, and physics. Indeed, these methods are being introduced 
to solve the problems of prediction, classification, or control (Porter 1990; Eftekhar 2005; 
Duman 2006; Marini 2008). It is natural for software practitioners and potential users to 
wonder, “Which classification technique is best?,” or more realistically, “What methods 
tend to work well for a given type of data set?” More data-based empirical studies, which 
are capable of being verified by observation, or experiments are needed. Today, the evi-
dence gathered through these empirical studies is considered to be the most powerful 
support possible for testing a given hypothesis (Aggarwal et al. 2009). Hence, conduct-
ing empirical studies to compare regression and machine learning techniques is necessary 
to build an adequate body of knowledge to draw strong conclusions leading to widely 
accepted and well-formed theories.

4.2.3 Study Context

This study uses the public domain data set KC1 obtained from the NASA metrics data pro-
gram (MDP) (NASA 2004; PROMISE 2007). The independent variables used in the study 
are various OO metrics proposed by Chidamber and Kemerer (1994), and the dependent 
variable is fault proneness. The performance of the predicted models is evaluated using 
receiver operating characteristic (ROC) analysis. 

4.2.4 Results

The results show that the area under the curve (measured from the ROC analysis) of mod-
els predicted using high-severity faults is low compared with the area under the curve of 
the model predicted with respect to medium- and low-severity faults.
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4.3 Research Questions

The first step in the experimental design is to formulate the RQs. This step states the 
 problem in the form of questions, and identifies the main concepts and relations to be 
explored.

4.3.1 How to Form RQ?

Most essential aspect of research is formulating an RQ that is clear, simple, and easy to 
understand. In other words, the scientific process begins after defining RQs. The first ques-
tion that comes to our mind when doing a research is “What is the need to conduct research 
(about a particular topic)?” The existing literature can provide answers to questions of 
researchers. If the questions are not yet answered, the researcher intends to answer those 
questions and carry forward the research. Thus, this fills the required “gap” by finding the 
solution to the problem.

A research problem can be defined as a condition that can be studied or investigated 
through the collection and analysis of data having theoretical or practical significance. 
Research problem is defined as a part of research for which the researcher is continuously 
thinking about and wants to find a solution for it. The RQs are extracted from the  problem, 
and the researcher may ask the following questions before framing the RQs:

• What issues need to be addressed in the study?
• Who can benefit from the analysis?
• How can the problem be mapped to realistic terms and measures?
• How can the problem be quantified?
• What measures should be taken to control the problem?
• Are there any unique scenarios for the problem?
• Any expected relationship between causes and outcomes?

Hence, the RQs must fill the gap between existing literature and current work and must 
give some new perspective to the problem. Figure 4.2 depicts the context of the RQs. The 
RQ may be formed according to the research types given below:

Research
question

What is the existing
relation to the literature?

What methods, data-collection
techniques, and data analysis

methods must be used to answer
the research questions?

What is the new
contribution in the area?

FIGURE 4.2
Context of research questions.
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 1. Causal relationships: It determines the causal relationships between entities. Does 
coupling cause increase in fault proneness?

 2. Exploratory research: This research type is used to establish new concepts and 
theories. What are the experiences of programmers using unified modeling lan-
guage (UML) tool?

 3. Explanatory research: This research type provides explanation of the given 
 theories. Why do developers fail to develop good requirement document?

 4. Descriptive research: It describes underlying mechanisms and events. How does 
inspection technique actually work?

Some examples of RQs are as follows:

• Is inspection technique more effective than the walkthrough method in detecting 
faults?

• Which software development life cycle model is more successful in the software 
industry?

• Is the new approach effective in reducing testing effort?
• Can search-based techniques be applied to software engineering problems?
• What is the best approach for testing a software?
• Which test data generation technique is effective in the industry?
• What are the important attributes that affect the maintainability of the software?
• Is effort dependent on the programming language, developer’s experience, or size 

of the software?
• Which metrics can be used to predict software faults at the early phases of soft-

ware development?

4.3.2 Characteristics of an RQ

The following are the characteristics of a good RQ:

 1. Clear: The reader who may not be an expert in the given topic should understand 
the RQs. The questions should be clearly defined.

 2. Unambiguous: The use of vague statements that can be interpreted in multiple ways 
should be avoided while framing RQs. For example, consider the following RQ:

 Are OO metrics significant in predicting various quality attributes?
 The above statement is very vague and can lead to multiple interpretations. This is 

because a number of quality attributes are present in the literature. It is not clear 
which quality attribute one wants to consider. Thus, the above vague statement 
can be redefined in the following way. In addition, the OO metrics can also be 
specified.

 Are OO metrics significant in predicting fault proneness?
 3. Empirical focus: This property requires generating data to answer the RQs.
 4. Important: This characteristic requires that answering an RQ adds significant 

 contribution to the research and that there will be beneficiaries.
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 5. Manageable: The RQ should be answerable, that is, it should be feasible to answer.
 6. Practical use: What is the practical application of answering the RQ? The RQ must 

be of practical importance to the software industry and researchers.
 7. Related to literature: The RQ should relate to the existing literature. It should fill 

gaps in the existing literature.
 8. Ethically neutral: The RQ should be ethically neutral. The problem statement 

should not contain the words “should” or “ought”. Consider the following example:
 Should the techniques, peer reviews, and walkthroughs be used for verification in 

contrast to using inspection?
 The above statement is said to be not ethically neutral, as it appears that the 

researcher is favoring the techniques, peer reviews, and walkthroughs in contrast 
to inspection. This should not be the situation and our question should appear to 
be neutral by all means.

 It could be restated scientifically as follows:
 What are the strengths and weaknesses of various techniques available for veri-

fication, that is, peer review, walkthrough, and inspection? Which technique is 
more suitable as compared to other in a given scenario?

Finally, the research problem must be stated in either a declarative or interrogative form. 
The examples of both the forms are given below:

Declarative form: The present study focuses on predicting change-prone parts of the 
software at the early stages of software development life cycle. Early prediction of 
change-prone classes will lead to saving lots of resources in terms of money, man-
power, and time. For this, consider the famous Chidamber and Kemerer metrics 
suite and determine the relationship between metrics and change proneness.

Interrogative form: What are the consequences of predicting the change-prone parts 
of the software at the early stages of software development life cycle? What is the 
relationship between Chidamber and Kemerer metrics and change proneness?

4.3.3 Example: RQs Related to FPS

The empirical study given in Section 4.2 addresses some RQs, which it intends to answer. 
The formulation of such RQs will help the authors to have a clear understanding of the 
problem and also help the readers to have a clear idea of what the study intends to dis-
cover. The RQs are stated below:

• RQ1: Which OO metrics are related to fault proneness of classes with regard to 
high-severity faults?

• RQ2: Which OO metrics are related to fault proneness of classes with regard to 
medium-severity faults?

• RQ3: Which OO metrics are related to fault proneness of classes with regard to 
 low-severity faults?

• RQ4: Is the performance of machine learning techniques better than the LR method?
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4.4 Reviewing the Literature

Once the research problem is clearly understood and stated, the next step in the initial 
phases of the experiment design is to conduct an extensive literature review. A literature 
review identifies the related and relevant research and determines the position of the work 
being carried out in the specified field.

4.4.1 What Is a Literature Review?

According to Bloomberg and Volpe (2008), literature review is defined as:

An imaginative approach to searching and reviewing the literature includes having 
a broad view of the topic; being open to new ideas, methods and arguments; “playing” 
with different ideas to see whether you can make new linkages; and following ideas to 
see where they may lead.

The main aim of the research is to contribute toward a better understanding of the con-
cerned field. A literature review analyzes a body of literature related to a research topic 
to have a clear understanding of the topic, what has already been done on the topic, and 
what are the key issues that need to be addressed. It provides a complete overview of the 
existing work in the field. Figure 4.3 depicts various questions that can be answered while 
conducting a literature review.

The literature review involves collection of research publications (articles, conference 
paper, technical reports, book chapters, journal papers) on a particular topic. The aim 
is to gather ideas, views, information, and evidence on the topic under investigation. 

What are the key theories,
concepts, and ideas?

What are the key areas where
knowledge gaps exist?

What are the major
issues and controversies

about the topic?

What have been the
various methodologies

used? What is their
quality?

What are the
academic

terminologies and
information sources?

What are the key
questions that have
been addressed till

date?

What are the areas in which
different authors have

different views?

What are the areas on which
further research can be done?

Literature search
and review on

the topic

FIGURE 4.3
Key questions while conducting a review.
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The purpose of the literature review is to effectively perform analysis and evaluation of 
literature in relation to the area being explored. The major benefit of the literature review 
is that the researcher becomes familiar with the current research before commencing his/
her own research in the same area.

The literature review can be carried out by two aspects. The research students perform 
the review to gain idea about the relevant materials related to their research so that they 
can identify the areas where more work is required. The literature review carried out as 
a part of the experimental design is related to the second aspect. The aim is to examine 
whether the research area being explored is worthwhile or not. For example, search-based 
techniques have shown the predictive capabilities in various areas where classification 
problem was of complex nature. But till date, mostly statistical techniques have been 
explored in software engineering-related problems. Thus, it may be worthwhile to explore 
the performance capability of search-based techniques in software engineering-related 
problems. The second aspect of the literature review concerns with searching and analyz-
ing the literature after selecting a research topic. The aim is to gather idea about the current 
work being carried out by the researcher, whether it has created new knowledge and adds 
value to the existing research. This type of literature review supports the following claims 
made by the researcher:

• The research topic is essential.
• The researcher has added some new knowledge to the existing literature.
• The empirical research supports or contradicts the existing results in the literature.

The goals of conducting a literature review are stated as follows:

 1. Increase in familiarity with the previous relevant research and prevention from 
duplication of the work that has already been done.

 2. Critical evaluation of the work.
 3. Facilitation of development of new ideas and thoughts.
 4. Highlighting key findings, proposed methodologies, and research techniques.
 5. Identification of inconsistencies, gaps, and contradictions in the literature.
 6. Extraction of areas where attention is required.

4.4.2 Steps in a Literature Review

There are four main steps that need to be followed in a literature review. These steps 
involve identifying digital portals for searching, conducting the search, analyzing the 
most relevant research, and using the results in the current research.

The four basic steps in the literature review are as follows:

 1. Develop search strategy: This step involves identification of digital portals, 
research journals, and formation of search string. This involves survey of scholarly 
journal articles, conference articles, proceeding articles, books, technical reports, 
and Internet resources in various research-related digital portals such as:

 a. IEEE
 b. Springer
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 c. ScienceDirect/Elsevier
 d. Wiley
 e. ACM
 f. Google Scholar

 Before searching in digital portals, the researchers need to identify the most 
credible research journals in the related areas. For example, in the area of soft-
ware engineering, some of the important journals in which search can be done 
are: Software: Practice and Experience, Software Quality Journal, IEEE Transactions on 
Software Engineering, Information and Software Technology, Journal of Computer Science 
and Technology, ACM Transactions on Software Engineering Methodology, Empirical 
Software Engineering, IEEE Software Maintenance, Journal of Systems and Software, and 
Software Maintenance and Evolution.

 Besides searching the journals and portals, various educational books, scientific 
monograms, government documents and publications, dissertations, gray litera-
ture, and so on that are relevant to the concerned topic or area of research should 
be explored. Most importantly, the bibliographies and reference lists of the materi-
als that are read need to be searched. These will give the pointers to more articles 
and can also be a good estimate about how much have been read on the selected 
topic of research.

 After the digital portals and Internet resources have been identified, the next step 
is to form the search string. The search string is formed by using the key terms 
from the selected topic in the research. The search string is used to search the 
 literature from the digital portal.

 2. Conduct the search: This step involves searching the identified sources by using 
the formed search string. The abstracts and/or full texts of the research papers 
should be obtained for reading and analysis.

 3. Analyze the literature: Once the research papers relevant to the research topic 
have been obtained, the abstract should be read, followed by the introduction 
and conclusion sections. The relevant sections can be identified and read by the 
section headings. In case of books, the index must be scanned to obtain an idea 
about the  relevant topics. The materials that are highly relevant in terms of mak-
ing the greatest  contribution in the related research or the material that seems the 
most convincing can be separated. Finally, a decision about reading the necessary 
 content must be made.

 The strengths, drawbacks, and omissions in the literature review must be iden-
tified on the basis of the evidence present in the papers. After thoroughly and 
critically analyzing the literature, the differences of the proposed work from the 
literature must be highlighted.

 4. Use the results: The results obtained from the literature review must then be 
 summarized for later comparison with the results obtained from the current 
work.

4.4.3 Guidelines for Writing a Literature Review

A literature review should have an introduction section, followed by the main body and 
the conclusion section. The “introduction” section explains and establishes the importance 
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of the subject under concern. It discusses the kind of work that is done on the  concerned 
topic of research, along with any controversies that may have been encountered by 
 different authors. The “body” contains and focuses on the main idea behind each paper in 
the review. The relevance of the papers cited should be clearly stated in this section of the 
review. It is not important to simply restate what the other authors have said, but instead 
our main aim should be to critically evaluate each paper. Then, the conclusion should be 
provided that summarizes what the literature says. The conclusion summarizes all the 
evidence presented and shows its significance. If the review is an introduction to our own 
research, it indicates how the previous research has lead to our own research focusing and 
highlighting on the gaps in the previous research (Bell 2005). The following points must be 
covered while writing a literature review:

• Identify the topics that are similar in multiple papers to compare and contrast 
 different authors’ view.

• Group authors who draw similar conclusions.
• Group authors who are in disagreement with each other on certain topics.
• Compare and contrast the methodologies proposed by different authors.
• Show how the study is related to the previous studies in terms of the similarities 

and the differences.
• Highlight exemplary studies and gaps in the research.

The above-mentioned points will help to carry out effective and meaningful literature 
review.

4.4.4 Example: Literature Review in FPS

A summary of studies in the literature is presented in Table 4.1. The studies closest to the 
FPS study are discussed below with key differences.

Zhou and Leung (2006) validated the same data set as in this study to predict fault 
proneness of models with respect to two categories of faults: high and low. They cat-
egorized faults with severity rating 1 as high-severity faults and faults with other sever-
ity levels as low-severity faults. They did not consider the faults that originated from 
design and commercial off-the-shelf (COTS)/operating system (OS). The approach in 
FPS differs from Zhou and Leung (2006) as this work categorized faults into three sever-
ity levels: high, medium, and low. The medium-severity level of faults is more severe 
than low-severity level of faults. Hence, the classes having faults of medium-severity 
level must be given more attention compared with the classes with low-severity level 
of faults. In the study conducted by Zhou and Leung, the classes were not categorized 
into medium- and low-severity level of faults. Further, the faults produced from the 
design were not taken into account. The FPS study also analyzed two different machine 
learning techniques (ANN and DT) for predicting fault proneness of models and evalu-
ated the  performance of these models using ROC analysis. Pai and Bechta Dugan (2007) 
used the same data set using a Bayesian approach to find the relationship of software 
product metrics to fault content and fault proneness. They did not categorize faults at 
 different severity levels and mentioned that a natural extension to their analysis is sever-
ity  classification using Bayesian network models. Hence, their work is not  comparable 
with the work in the FPS study.
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4.5 Research Variables

Before the detailed experiment design begins, the relevant independent and dependent 
variables have to be selected.

4.5.1 Independent and Dependent Variables

The variables used in an experiment can be divided into two types: dependent variable 
and independent variable. While conducting a research, the dependent and the indepen-
dent variables that are used in the study need to be defined.

In an empirical study, the independent variable is a variable that can be changed or 
varied to see its effect on the dependent variable. In other words, a dependent variable 
is a variable that has effect on the independent variables and can be controlled. Thus, 
the dependent variable is “dependent” on the independent variable. As the experimenter 
changes the independent variable, the change in the dependent variable is observed. The 
selection of variables also involves selecting the measurement scale. Any of these vari-
ables may be discrete or continuous. A binary variable has only two values. For example, 
whether a component is faulty or is not faulty. A continuous variable has many values 
(refer to Chapter 3 for details). In software product metric validation, continuous variables 
are usually counts. A count is characterized by being a non-negative integer, and hence 
is a continuous variable. Usually, in empirical studies in software engineering, there is 
one dependent variable. Figure 4.4 depicts the relationship between the dependent and 
 independent variable. Table 4.2 states the key differences between the independent and 
dependent variables.

TABLE 4.2

Differences between Dependent and Independent Variables

Independent Variable Dependent Variable 

Variable that is varied, changed, or manipulated. It is not manipulated. The response or outcome that is 
measured when the independent variable is varied.

It is the presumed cause. It is the presumed effect.
Independent variable is the antecedent. Dependent variable is the consequent.
Independent variable refers to the status of the 
“cause,” which leads to the changes in the status of 
the dependent variable.

Dependent variable refers to the status of the 
“outcome” in which the researcher is interested.

Also known as explanatory or predictor variable. Also known as response or predictor or target 
variable.

For example, various metrics that can be used to 
measure various software constructs.

For example, whether a module is faulty or not.

Process

Independent variable 1
Dependent variable

Independent variable N

FIGURE 4.4
Relationship between dependent and independent variables.
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4.5.2 Selection of Variables

The selection of appropriate variables is not easy and generally based on the domain knowl-
edge of the researcher. In research, the variables are identified according to the things 
being measured. When exploring new topics, for selection of variables a researcher must 
carefully analyze the research problem and identify the variables affecting the dependent 
variable. However, in case of explored topics, the literature review can also help in identi-
fication of variables. Hence, the selection is based on the researcher’s experience, informa-
tion obtained from existing published research, and judgment or advice obtained from the 
experts in the related areas. In fact, the independent variables are selected most of the time 
on the basis of information obtained from the published empirical work of a researcher’s 
own as well as from other researchers. Hence, the research problem must be thoroughly 
and carefully analyzed to identify the variables.

4.5.3 Variables Used in Software Engineering

The independent variables can be different software metrics proposed in existing studies. 
There are different types of metrics, that is, product-related metrics and process-related 
metrics. Under product-related metrics, there are class level, method level, component 
level, and file level metrics. All these metrics can be utilized as independent variables.

For example, software metrics such as volume, lines of code (LOC), cyclomatic complex-
ity, and branch count can be used as independent variables.

The variable describing the quality attributes of classes to be predicted is called depen-
dent variable. A variable used to explain a dependent variable is called independent 
variable. The binary dependent variables of the models can be fault proneness, change 
proneness, and so on, whereas, the continuous dependent variables can be testing effort, 
maintenance effort, and so on.

Fault proneness is defined as the probability of fault detection in a class. Change prone-
ness is defined as the probability of a class being changed in future. Testing effort is defined 
as LOC changed or added throughout the life cycle of the defect per class. Maintenance 
effort is defined as LOC changed per class in its maintenance history. The quality attributes 
are somewhat interrelated, for example, as the fault proneness of a class increase so will the 
testing effort required to correct the faults in the class.

4.5.4 Example: Variables Used in the FPS

The independent variables are various OO metrics proposed by Chidamber and Kemerer 
(1994). This includes coupling between object (CBO), response for a class (RFC), number of 
children (NOC), depth of inheritance (DIT), lack of cohesion in methods (LCOM), weighted 
methods per class (WMC), and LOC. The definitions of these metrics can be found in Chapter 3.

The binary dependent variable is fault proneness. Fault proneness is defined as the 
probability of fault detection in a class (Briand et al. 2000; Pai and Bechta Dugan 2007; 
Aggarwal et al. 2009). The dependent variable will be predicted based on the faults found 
 during the software development life cycle.

4.6 Terminology Used in Study Types

The choice of the empirical process depends on the type of the study. There are two types 
of processes that can be followed based on the study type:
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• Hypothesis testing without model prediction
• Hypothesis testing after model prediction

For example, if the researcher wants to find whether a UML tool is better than a traditional 
tool and the effectiveness of the tool is measured in terms of productivity of the persons 
using the tool, then hypothesis testing can be used directly using the data given in Table 4.3.

Consider another instance where the researcher wants to compare two machine learn-
ing techniques to find the effect of software metrics on probability of occurrence of faults. 
In this problem, first the model is predicted using two machine learning techniques. In the 
next step, the model is validated and performance is measured in terms of performance 
evaluation metrics (refer Chapter 7). Finally, hypothesis testing is applied on the results 
obtained in the previous step for verifying whether the performance of one technique is 
better than the other technique.

Figure 4.5  shows that the term independent and dependent variables is used in both 
experimental studies and multivariate analysis. In multivariate analysis, the independent 
and dependent variables are used in model prediction. The independent variables are used 
as predictor variables to predict the dependent variable. In experimental studies, factors 
for a statistical test are also termed as independent variables that may have one or more 

TABLE 4.3

Productivity for Tools

UML Tool Traditional Tool

14 52
67 61
13 14

Dependent and independent
variables in multivariate

analysis
Model prediction

Independent
variables: software

metrics such as fan-in,
cyclomatic complexity

Dependent variable:
quality attributes

such as
fault proneness

Dependent and independent
variables in experimental

studies
Hypothesis testing

Independent 
variables or factors:

techniques and
methods such as
machine learning

techniques

Value of factors or
treatments such as

decision tree, neural
network

Dependent variable:
accuracy

FIGURE 4.5
Terminology used in experimental studies and multivariate analysis studies.
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levels called treatments or samples as suitable for a specific statistical test. For example, a 
researcher may wish to test whether the mean of two samples is equal or not such as in the 
case when a researcher wants to explore different software attributes like coupling before 
and after a specific treatment like refactoring. Another scenario could be when a researcher 
wants to explore the performance of two or more learning algorithms or whether two treat-
ments give uniform results. Thus, the dependent variable in experimental study refers to 
the behavior measures of a treatment. In software engineering research, in some cases, 
these may be the performance measures. Similarly, one may refer to performances on dif-
ferent data sets as data instances or subjects, which are exposed to these treatments.

In software engineering research, the performance measures on data instances are 
termed as the outcome or the dependent variable in case of hypothesis testing in experi-
mental studies. For example, technique A when applied on a data set may give an accuracy 
(performance measure, defined as percentage of correct predictions) value of 80%. Here, 
technique A is the treatment and the accuracy value of 80% is the outcome or the dependent 
variable. However, in multivariate analysis or model prediction, the independent variables 
are software metrics and the dependent variable may be, for example, a quality attribute.

To avoid confusion, in this book, we use terminology related to multivariate analysis 
unless and until specifically mentioned.

4.7 Hypothesis Formulation

After the variables have been identified, the next step is to formulate the hypothesis in the 
research. This is one of the important steps in empirical research.

4.7.1 Experiment Design Types

In this section, we discuss the experimental design types used in experimental studies. 
The selection of appropriate statistical test for testing hypothesis depends on the type of 
experimental design. There are four experimental design types that can be used for design-
ing a given case study. Factor is the technique or method used in an empirical study such 
as machine learning technique or verification method. Treatment is the type of techniques 
such as DT is a machine learning technique and inspection is a verification technique. The 
types of experiment design are summarized below.

Case 1: One factor, one treatments—In this case, there is one technique under obser-
vation. For example, if the distribution of the data needs to be checked for a given 
variable, then this design type can be used. Consider a scenario where 25 students 
had developed the same program. The cyclomatic complexity values of the pro-
gram can be evaluated using chi-square test.

Case 2: One factor, two treatments—This type of design may be purely randomized 
or paired design. For example, a researcher wants to compare the performance 
of two verification techniques such as walkthroughs and inspections. Another 
instance is when a researcher wants to compare the performance of two machine 
learning techniques, naïve Bayes and DT, on a given or over multiple data sets. In 
these two examples, factor is one (verification method or machine learning tech-
nique) but treatments are two. Paired t-test or Wilcoxon test can be used in these 
cases. Chapter 6 provides examples for these tests.



121Experimental Design

Case 3: One factor, more than two treatments—In this case, the technique that is to 
be analyzed contains multiple values. For example, a researcher wants to compare 
multiple search-based techniques such as genetic algorithm, particle swarm opti-
mization, genetic programming, and so on. Friedman test can be used to solve this 
example. Section 6.4.13 provides solution for this example.

Case 4: Multiple factors and multiple treatments—In this case, more than one factor 
is considered with multiple treatments. For instance, consider an example where 
a researcher wants to compare paradigm types such as structured paradigm with 
OO paradigm. In conjunction to the paradigm type, the researcher also wants to 
check the complexity of the software being difficult or simple. This example is 
shown in Table 4.4 along with the factors and levels. ANOVA test can be used to 
solve such examples.

The examples of the above experimental design types are given in Section 6.4. After deter-
mining the appropriate experiment design type, the hypothesis needs to be formed in an 
empirical study.

4.7.2 What Is Hypothesis?

The main objective of an experiment usually is to evaluate a given relationship or hypoth-
esis formed between the cause and the effect. Many authors understand the definition of 
hypothesis differently:

A hypothesis may be precisely defined as a tentative proposition suggested as a solution 
to a problem or as an explanation of some phenomenon. (Ary et al. 1984)

Hypothesis is a formal statement that presents the expected relationship between an 
independent and dependent variable. (Creswell 1994a)

Hence, hypothesis can be defined as a mechanism to formally establish the relationship 
between variables in the research. The things that a researcher intends to investigate are for-
mulated in the form of a hypothesis. By formulating a hypothesis, the research objectives or 
the key concepts involved in the research are defined more specifically. Each hypothesis can 
be tested for its verifiability or falsifiability. Figure 4.6 shows the  process of generation of 
hypothesis in a research.  As shown in the figure research questions can either be generated 
through problem statement or from well-formed ideas extracted from literature survey. 
After the development of the research questions, the research hypothesis can be formed.

4.7.3 Purpose and Importance of Hypotheses in an Empirical Research

Aquino (1992) defined the importance of formation of hypothesis in an empirical study. 
The key advantages of hypothesis formation are given below:

• It provides the researcher with a relational statement that can be directly tested in 
a research study.

TABLE 4.4

Factors and Levels of Example

Factor Level 1 Level 2

Paradigm type Structural OO
Software complexity Difficult Simple 
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• It helps in formulation of conclusions of the research.
• It helps in forming a tentative or an educated guess about any phenomena in a 

research.
• It provides direction to the collection of data for validation of hypothesis and thus 

helps in carrying the research forward.
• Even if the hypothesis is proven to be false, it leads to a specific conclusion.

4.7.4 How to Form a Hypothesis?

Once the RQs are developed or research problem is clearly defined, hypothesis can be 
derived from the RQs or research problem by identifying key variables and identifying 
the relationship between the identified variables. The steps that are followed to form the 
hypothesis are given below:

 1. Understand the problem/situation: Clearly understanding the problem is very 
important. This can be done by breaking down the problem into smaller parts and 
understanding each part separately. The problem can be restated in words to have 
a clear understanding of the problem. The meaning of all the words used in stating 
the problem should be clear and unambiguous. The remaining steps are based on 
the problem definition. Hence, understanding the problem becomes a crucial step.

 2. Identify the key variables required to measure the problem/situation: The key 
variables used in the hypothesis testing must be selected from the independent 
and dependent variables identified in Section 4.5. The effect of independent vari-
able on the dependent variable needs to be identified and analyzed.

 3. Make an educated guess as to understand the relationship between the variables: 
An “educated guess” is a statement based on the available RQs or given problem 
and will be eventually tested. Generally, the relationship established between the 
independent and dependent variable is stated as an “educated guess.”

Primary thought
(not fully formed)

Exploring, searching
data, conducting survey

Thought-through and
well-formed idea

Problem statementPrimary observations

Research questions

Research hypothesis

FIGURE 4.6
Generation of hypothesis in a research.



123Experimental Design

 4. Write down the hypotheses in a format that is testable through scientific research: 
There are two types of hypothesis—null and alternative hypotheses. Correct for-
mation of null and alternative hypotheses is the most important step in hypoth-
esis testing. The null hypothesis is also known as hypothesis of no difference and 
denoted as H0. The null hypothesis is the proposition that implies that there is no 
statistically significant relationship within a given set of parameters. It denotes the 
reverse of what the researcher in his experiment would actually expect or predict. 
Alternative hypothesis is denoted as Ha. The alternative hypothesis reflects that a 
statistically significant relationship does exist within a given set of parameters. It 
is the opposite of null hypothesis and is only reached if H0 is rejected. The detailed 
explanation of null and alternative hypothesis is stated in the next Section 4.7.5. 
Table 4.5 presents corresponding hypothesis to given RQs.

Some of the examples to show the transition from an RQ to a hypothesis are stated below:

RQ: What is the relation of coupling between classes and maintenance effort?
Hypothesis: Coupling between classes and maintenance effort are positively related 

to each other.

RQ: Are walkthroughs effective in finding faults than inspections?
Hypothesis: Walkthroughs are more effective in finding faults than inspections.

Example 4.1:

There are various factors that may have an impact on the amount of effort required to 
maintain a software. The programming language in which the software is developed 
can be one of the factors affecting the maintenance effort. There are various program-
ming languages available such as Java, C++, C#, C, Python, and so on. There is a 
need to identify whether these languages have a positive, negative, or neutral effect 
on the maintenance effort. It is believed that programming languages have a positive 
impact on the maintenance effort. However, this needs to be tested and confirmed 
scientifically.

Solution: 
The problem and hypothesis derived from it is given below:

 1. Problem: Need to identify the relationship between the programming lan-
guage used in a software and the maintenance effort.

 2. RQ: Is there a relation between programming language and maintenance effort?
 3. Key variables: Programming language and maintenance effort

TABLE 4.5

Transition from RQ to Hypothesis

RQ Corresponding Hypothesis

Is X related to Y? If X, then Y. 
How are X and Y related to Z? If X and Y, then Z.
How is X related to Y and Z? If X, then Y and Z.
How is X related to Y under conditions Z and W? If X, then Y under conditions Z and W.
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 4. Educated guess: Programming language is related to effort and has a positive 
impact on the effort.

 5. Hypothesis: Programming language and maintenance effort are positively 
related to each other.

4.7.5 Steps in Hypothesis Testing

The hypothesis testing involves a series of steps. Figure 4.7 depicts the steps in hypoth-
esis testing. Hypothesis testing is based on the assumption that null hypothesis is correct. 
Thus, we prove that the assumption of no difference (null hypothesis) is not consistent 
with the research hypothesis. For example, if we strongly believe that technique A is bet-
ter than technique B, despite our strong belief, we begin by assuming that the belief is not 
true, and hence we want to fail the test by rejecting null hypothesis.

The various steps involved in hypothesis testing are described below.

4.7.5.1 Step 1: State the Null and Alternative Hypothesis

The null hypothesis is popular because it is expected to be rejected, that is, it can be 
shown to be false, which then implies that there is a relationship between the observed 
data. One needs to be specific about what it means if the null hypothesis is not rejected. 
It only means that there is no sufficient evidence present against null hypothesis (H0), 
which is in favor of alternative hypothesis (Ha). There might actually be a difference, but 
on the basis of the sample result such a difference has not been detected. This is analo-
gous to a legal scenario where if a person is declared “not guilty,” it does not mean that 
he is innocent.

Define hypothesis
• Define null hypothesis
• Define alternate hypothesis

Select the appropriate statistical test
• Check test assumptions

Apply test and calculate p-value

Define significance level
• Determine p-value

Derive conclusions
• Check statistical significance of results

FIGURE 4.7
Steps in hypothesis testing.
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The null hypothesis can be written in mathematical form, depending on the particular 
descriptive statistic using which the hypothesis is made. For example, if the descriptive 
statistic is used as population mean, then the general form of null hypothesis is,

	 Ho X: µ =

where:
µ is the mean
X is the predefined value

In this example, whether the population mean equals X or not is being tested.
There are two possible scenarios through which the value of X can be derived. This 

depends on two different types of RQs. In other words, the population parameter (mean in 
the above example) can be assigned a value in two different ways. First reason is that the 
predetermined value is selected for practical or proved reasons. For example, a  software 
company decides that 7 is its predetermined quality parameter for mean  coupling. Hence, 
all the departments will be informed that the modules must have a value of <7 for  coupling 
to ensure less complexity and high maintainability. Similarly, the company may decide 
that it will devote all the testing resources to those faults that have a mean rating above 3. 
The testers will therefore want to test specifically all those faults that have mean rating >3.

Another situation is where a population under investigation is compared with another 
population whose parameter value is known. For example, from the past data it is known 
that average productivity of employees is 30  for project A. We want to see whether the 
average productivity of employees is 30 or not for project B? Thus, we want to make an 
inference whether the unknown average productivity for project B is equal to the known 
average productivity for project A.

The general form of alternative hypothesis when the descriptive parameter is taken as 
mean (µ) is,

	 Ha X: µ ≠

where:
µ is the mean
X is the predefined value

The above hypothesis represents a nondirectional hypothesis as it just denotes that there 
will be a difference between the two groups, without discussing how the two groups differ. 
The example is stated in terms of two popularly used methods to measure the size of soft-
ware, that is, (1) LOC and (2) function point analysis (FPA). The nondirectional hypothesis 
can be stated as, “The size of software as measured by the two techniques is different.” 
Whereas, when the hypothesis is used to show the relationship between the two groups 
rather than simply comparing the groups, then the hypothesis is known as directional 
hypothesis. The comparison terms such as “greater than,” “less than,” and so on is used in 
the formulation of hypothesis. In other words, it specifies how the two groups differ. For 
example, “The size of software as measured by FPA is more accurate than LOC.” Thus, the 
direction of difference is mentioned. The same concept is represented by  one-tailed and 
two-tailed tests in statistical testing and is explained in Section 6.4.3.

One important point to note is that the potential outcome that a researcher is expecting 
from his/her experiment is denoted in terms of alternative hypothesis. What is believed 
to be the theoretical expectation or concept is written in terms of alternative hypothesis. 
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Thus, sometimes the alternative hypothesis is referred to as the research hypothesis. Now, 
if the alternative hypothesis represents the theoretical expectation or concept, then what 
is the reason for performing the hypothesis testing? This is done to check whether the 
formed or assumed concepts are actually significant or true. Thus, the main aim is check 
the validity of the alternative hypothesis. If null hypothesis is accepted, it signifies that the 
idea or concept of research is false.

4.7.5.2 Step 2: Choose the Test of Significance

There are a number of tests available to assess the null hypothesis. The choice among them is 
to be made to check which test is applicable in a particular situation. The four important fac-
tors that are based on assumptions of statistical tests and help in test selection are as follows:

• Type of distribution—Whether data is normally distributed or not?
• Sample size—What is the sample size of the data set?
• Type of variables—What is the measurement scale of variables?
• Number of independent variables—What is the number of factors or variables in 

the study?

There are various tests available in research for verifying hypothesis and are given as 
follows:

 1. t-test for the equality of two means
 2. ANOVA for equality of means
 3. Paired t-test
 4. Chi-square test for goodness-of-fit
 5. Friedman test
 6. Mann–Whitney test
 7. Kruskal–Wallis test
 8. Wilcoxon signed-rank test

The details of all the tests can be found in Section 6.4.

4.7.5.3 Step 3: Compute the Test Statistic and Associated p-Value

In this step, the descriptive statistic is calculated, which is specified by the null hypoth-
esis. There can be many statistical tests as discussed above that can be applied in practice. 
But the statistic that is actually calculated depends on the statistic used in hypothesis. 
For example, if the null hypothesis were defined by the statistic µ, then the statistics 
 computed on the data set would be the mean and the standard deviation. Usually, the 
calculated statistic does not conform to the value given by null hypothesis. But this is not 
a cause for concern. What is actually needed to calculate the probability of obtaining the 
test  statistic result that has the value specified in the null hypothesis? This is called as 
the  significance of the test statistic, known as the p-value. This p-value is compared with 
the certain  significance level determined in the next step. This step is carried out in result 
execution phase of an empirical study.
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4.7.5.4 Step 4: Define Significance Level

The critical value or significance value (typically known as α) is determined at this step. 
The level of significance or α-value is a threshold. When a researcher plans to perform 
a  significance test in an empirical study, a decision has to be made on what is the maxi-
mum significance that will be tolerated such that the null hypothesis can be rejected. 
Figure 4.8 depicts the critical region in a normal curve as shaded portions at two ends.

Generally, this significance value is taken as 0.05 or 0.01. The critical value signifies the 
critical region or region of rejection. The critical region or region of rejection specifies the 
range of values, which makes the null hypothesis to be rejected. Using the significance 
value, the researcher determines the region of rejection and region of acceptance for the 
null hypothesis.

4.7.5.5 Step 5: Derive Conclusions

The conclusions about the acceptance or rejection of the formed hypothesis are made in 
this step. Using the decided significance value, the region of rejection is determined. The 
significance value is used to decide whether or not to reject the null hypothesis. The lower 
the observed p-value, the more are the chances of rejecting the null hypothesis. If the 
 computed p-value is less than the defined significance threshold then the null hypothesis 
is rejected and the alternative hypothesis is accepted. In other words, if the p-value lies in 
the rejection region then the null hypothesis is rejected. Figure 4.9 shows the significance 
levels of p-value.

The meaning or inference from the results must be determined in this step rather than 
just repeating the statistics. This step is part of the execution phase of empirical study.

Consider the data set given in Table 4.6. The data consists of six data points. In this exam-
ple, the coupling aspect for faulty and nonfaulty classes is to be compared. The  coupling for 
faulty classes and coupling of nonfaulty classes for a given software is shown in Table 4.6.

Critical region or
region of rejection

FIGURE 4.8
Critical region.

Significant at 0.01

0.01 < p-value ≤ 0.05 p-value > 0.05p-value ≤ 0.01

Significant at 0.05 Not significant 

FIGURE 4.9
Significance levels.
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Step 1: RQ from problem statement
RQ: Is there a difference in coupling values for faulty classes and coupling values for 

nonfaulty classes?
Step 2: Deriving hypothesis from RQ
In the first step, the hypothesis is derived from the RQ:

H0: There is no statistical difference between the coupling for faulty classes and 
coupling for nonfaulty classes.

Ha: The coupling for faulty classes is more than the coupling for nonfaulty classes.
Mathematically,
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Step 3: Determining the appropriate test to apply
As the problem is of comparing means of two dependent samples (collected from 

same software), the paired t-test is used. In Chapter 6, the conditions for selecting 
appropriate tests are given.

Step 4: Calculating the value of test statistic
Table 4.7 shows the intermediary calculations of t-test.
The t-statistics is given as:
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where:
µ1 is the mean of first population
µ2 is the mean of second population
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TABLE 4.6

A Sample Data Set

S. No.
CBO for Faulty 

Modules
CBO for Nonfaulty 

Modules

1 45 9
2 56 9
3 34 9
4 71 7
5 23 10
6 9 15
Mean 39.6 9.83
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where:
n represents number of pairs and not total number of samples
d is the difference between values of two samples

Substituting the values of mean, variance, and sample size in the above formula, the 
t-score is obtained as:
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As the alternative hypothesis is of the form, H1: µ > X or µ < X, the tail of sampling 
distribution is nondirectional. Let us take the level of significance (α) for one-
tailed test as 0.05.

Step 5: Determine the significance value
The p-value at significance level of 0.05 (two-tailed test) is considered and df as 5. 

From the t-distribution table, it is observed that the p-value is 0.032 (refer to Section 
6.4.6 for computation of p-value).

Step 6: Deriving conclusions
Now, to decide whether to accept or reject the null hypothesis, this p-value is compared 

with the level of significance. As the p-value (0.032) is less than the level of significance 
(0.05), the H0 is rejected. In other words, the alternative hypothesis is accepted. Thus, 
it is concluded that there is statistical difference between the  average of coupling 
metrics for faulty classes and the average of coupling metrics for nonfaulty classes.

4.7.6 Example: Hypothesis Formulation in FPS

There are few RQs that the study intends to answer (stated in Section 4.3.3). Based on these 
RQs, the study built some hypotheses that are tested. There are two sets of hypothesis, 
“Hypothesis Set A” and “Hypothesis Set B.” Hypothesis set A focuses on the hypothesis 
related to the relationship between OO metrics and fault proneness; whereas hypothe-
sis set B focuses on the comparison in the performance of machine learning techniques 
and LR method. Thus, hypothesis in set A deals with the RQs 1, 2, and 3, whereas hypoth-
esis in set B deals with the RQ 4.

TABLE 4.7

T-Test Calculations

CBO for Faulty 
Modules

CBO for Nonfaulty 
Modules

Difference 
(d) D2

45 9 36 1,296
56 9 47 2,209
34 9 25 625
71 7 64 4,096
23 10 13 169
9 15 –6 36
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4.7.6.1 Hypothesis Set A

There are a number of OO metrics used as independent variables in the study. These are 
CBO, RFC, LCOM, NOC, DIT, WMC, and source LOC (SLOC). The hypotheses given below 
are tested to find the individual effect of each OO metric on fault proneness at different 
severity levels of faults:

CBO hypothesis—H0: There is no statistical difference between a class having high 
import or export coupling and a class having less import or export coupling.

Ha: A class with high import or export coupling is more likely to be fault prone than 
a class with less import or export coupling.

RFC hypothesis—H0: There is no statistical difference between a class having a high 
number of methods implemented within a class and the number of methods acces-
sible to an object class because of inheritance, and a class with a low number of 
methods implemented within a class and the number of methods accessible to an 
object class because of inheritance.

Ha: A class with a high number of methods implemented within a class and the 
number of methods accessible to an object class because of inheritance is more 
likely to be fault prone than a class with a low number of methods implemented 
within a class and the number of methods accessible to an object class because of 
inheritance.

LCOM hypothesis—H0: There is no statistical difference between a class having less 
cohesion and a class having high cohesion.

Ha: A class with less cohesion is more likely to be fault prone than a class with high 
cohesion.

NOC hypothesis—H0: There is no statistical difference between a class having greater 
number of descendants and a class having fewer descendants.

Ha: A class with a greater number of descendants is more likely to be fault prone than 
a class with fewer descendants.

DIT hypothesis—H0: There is no statistical difference between a class having large 
depth in inheritance tree and a class having small depth in inheritance tree.

Ha: A class with a large depth in inheritance tree is more likely to be fault prone than 
a class with a small depth in inheritance tree.

WMC hypothesis—H0: There is no statistical difference between a class having a large 
number of methods weighted by complexities and a class having a less number of 
methods weighted by complexities.

Ha: A class with a large number of methods weighted by complexities is more likely 
to be fault prone than a class with a fewer number of methods weighted by 
complexities.

4.7.6.2 Hypothesis Set B

The study constructs various fault proneness prediction models using a statistical tech-
nique and two machine learning techniques. The statistical technique used is the LR and 
the machine learning techniques used are DT and ANN. The hypotheses given below 
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are tested to compare the performance of regression and machine learning techniques at 
 different severity levels of faults:

 1. H0: LR models do not outperform models predicted using DT.
 Ha: LR models do outperform models predicted using DT.

 2. H0: LR models do not outperform models predicted using ANN.
 Ha: LR models do outperform models predicted using ANN.

 3. H0: ANN models do not outperform models predicted using DT.
 Ha: ANN models do outperform models predicted using DT.

4.8 Data Collection

Empirical research involves collecting and analyzing data. The data collection needs to be 
planned and the source (people or repository) from which the data is to be collected needs 
to be decided.

4.8.1 Data-Collection Strategies

The data collected for research should be accurate and reliable. There are various data-
collection techniques that can be used for collection of data. Lethbridge et al. (2005) divides 
the data-collection techniques into the following three levels:

First degree: The researcher is in direct contact or involvement with the subjects 
under concern. The researcher or software engineer may collect data in real-time. 
For example, under this category, the various methods are brainstorming, inter-
views, questionnaires, think-aloud protocols, and so on. There are various other 
methods as depicted in Figure 4.10.

Second degree: There is no direct contact of the researcher with the subjects during 
data collection. The researcher collects the raw data without any interaction with 
the subjects. For example, observations through video recording and fly on the wall 
(participants taping their work) are the two methods that come under this category.

Third degree: There is access only to the work artifacts. In this, already avail-
able and compiled data is used. For example, analysis of various documents 
produced from an organization such as the requirement specifications, fail-
ure reports, document change logs, and so on come under this category. There 
are various reports that can be generated using different repositories such 
as change report, defect report, effort data, and so on. All these reports play 
an important role while conducting a research. But the accessibility of these 
reports from the industry or any private organization is not an easy task. This 
is discussed in the next subsection, and the detailed collection methods are 
presented in Chapter 5.

The main advantage of the first and second degree methods is that the researcher has 
control over the data to a large extent. Hence, the researcher needs to formulate and decide 
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on data-collection methods in the experimental design phase. The  methods under these 
categories require effort from both the researcher and the subject. Because of this reason, 
first degree methods are most expensive than the second or third degree methods. Third 
degree methods are least expensive, but the control over data is minimum. This compro-
mises the quality of the data as the correctness of the data is not under the direct control 
of the researcher.

Under first degree category, the interviews and questionnaires are the most easy 
and straightforward methods. In interview-based data collection, the researcher pre-
pares a list of questions about the areas of interest. Then, an interview session takes 
place between the researcher and the subject(s), wherein the researcher can ask vari-
ous research-related questions. Questions can be either open, inviting multiple and 
broad range of answers, or closed, offering a limited set of answers. The drawback of 
collecting data from interviews and questionnaires is that they  produce typically an 
incomplete picture. For example, if one wants to know the number of LOC in a soft-
ware program. Conducting interviews and questionnaires will only provide us general 
opinions and evidence, but the accurate information is not provided. Methods such as 
think-aloud protocols and work diaries can be used for this strategy of data collection. 
Second degree requires access to the environment in which participants or subject(s) 
work, but without having direct contact with the participants. Finally, the third degree 
requires access only to work artifacts, such as source code or bugs database or docu-
mentation (Wohlin 2012).

4.8.2 Data Collection from Repositories

The empirical study is based on the data that is often collected from software reposito-
ries. In general, it is seen in the literature that data collected is either from academic or 

First degree
(direct involvement of

software engineers)

• Inquisitive techniques

• Observational techniques

   Brainstorming and focus groups

   Work diaries
   Think-aloud protocols
   Shadowing and observation
   synchronized shadowing
   Participant observation (join the team)
• Instrumenting systems
• Fly on the wall (participants taping their
   work)

• Analysis of electronic database of work
   performed
• Analysis of tool use logs

• Documentation analysis
• Static and dynamic analyis of a system

   Interviews
   Questionnaires
   Conceptual modeling

Second degree
(indirect involvement of

software engineers)

Third degree
(study of work artifacts

only)

FIGURE 4.10
Various data-collection strategies.
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university systems, industrial or commercial systems, and public or open source soft-
ware. The  academic data is the data that is developed by the students of some univer-
sity. Industrial data is the proprietary data belonging to some private organization or a 
 company. Public data sets are available freely to everyone for use and does not require any 
payment from the user. The differences between them are stated in Table 4.8.

It is relatively easy to obtain the academic data as it is free from confidentiality concerns 
and, hence, gaining access to such data is easier. However, the accuracy and  reliability of 
the academic data is questionable while conducting research. This is because the university 
software is developed by inexperienced, small number of programmers and is typically 
not applicable in real-life scenarios. Besides the university data sets, there is public or open 
source software that is widely used for conducting empirical research in the area of soft-
ware engineering. The use of open source software allows the researchers to access vast 
repositories of reasonable quality, large-sized software. The most important type of data is 
the proprietary/industrial data that is usually owned by a corporation/ organization and 
is not publically available.

The usage of open source software has been on the rise, with products such as Android 
and Firefox becoming household names. However, majority of the software devel-
oped across the world, especially the high-quality software, still remains proprietary 
 software. This is because of the fact that given the voluntary nature of developers for 
open source software, the attention of the developers might shift elsewhere leading to 
lack of understanding and poor quality of the end product. For the same reason, there 
are also  challenges with timeliness of the product development, rigor in testing and 
documentation, as well as characteristic lack of usage support and updates. As opposed 
to this, the proprietary software is typically developed by an organization with clearly 

TABLE 4.8

Differences between the Types of Data Sets

S. No. Academic Industrial Open Source

1 Obtained from the projects 
made by the students of 
some university

Obtained from the projects 
developed by experienced and 
qualified programmers

Obtained from the projects 
developed by experienced 
developers located at different 
geographical locations

2 Easy to obtain Difficult to obtain Easy to obtain
3 Obtained from data set that is 

not necessarily maintained 
over a long period of time

Obtained from data set 
maintained over a long period 
of time

Obtained from data set 
maintained over a long period 
of time

4 Results are not reliable and 
acceptable

Results are highly reliable and 
acceptable

Results may be reliable and 
acceptable

5 It is freely available May or may not be freely 
available

It is generally freely available

6 Uses ad hoc approach to 
develop projects

Uses very well planned 
approach

Uses well planned and mature 
approach

7 Code may be available Code is not available Code is easily available
8 Example: Any software 

developed in university such 
as LALO (Briand et al. 2001), 
UMD (Briand et al. 2000), 
USIT (Aggarwal et al. 2009)

Example: Performance Manage-
ment traffic recording (Lindvall 
1998), commercial OO system 
implemented in C++ (Bieman 
et al. 2003), UIMS (Li  and Henry 
1993), QUES (Li and Henry 1993)

Example: Android, Apache 
Tomcat, Eclipse, Firefox, and 
so on
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demarcated manpower for design, development, and testing of the software. This allows 
for  committed,  structured development of software for a well-defined end use, based on 
robust requirement gathering. Therefore, it is imperative that the empirical studies in 
software engineering be validated over data from proprietary systems, because the devel-
opers of such proprietary software would be the key users of the research. Additionally, 
industrial data is better suited for empirical research because the development follows 
a structured methodology, and each step in the development is monitored and docu-
mented along with its performance measurement. This leads to development of code that 
follows rigorous standards and robustly captures the data sets required by the academia 
for conducting their  empirical research.

At the same time, access to the proprietary software code is not easily obtained. For most 
of the software development organizations, the software constitutes their key intellectual 
asset and they undertake multiple steps to guard the privacy of the code. The world’s most 
valuable products, such as Microsoft Windows and Google search, are built around their 
closely held patented software to guard against competition and safeguard their products 
developed with an investment of billions of dollars. Even if there is appreciation of the role 
and need of the academia to access the software, the enterprises typically hesitate to share 
the data sets, leading to roadblocks in the progress of empirical research.

It is crucial for the industry to appreciate that the needs of the empirical research do not 
impinge on their considerations of software security. The data sets required by the academia 
are the metrics data or the data from the development/testing process, and does not com-
promise on security of the source code, which is the primary concern of the industry. For 
example, assume an organization uses commercial code management system/test manage-
ment system such as HP Quality Center or HP Application Lifecycle Management. Behind 
the scenes, a database would be used to store information about all modules, including all 
the code and its versions, all development activity in full detail, and the test cases and their 
results. In such a scenario, the researcher does not need access to the data/code stored in the 
database, which the organization would certainly be unwilling to share, but rather specific 
reports corresponding to the problem he wishes to address. As an illustration, for a defect 
prediction study, only a list of classes with corresponding metrics and defect count would 
be required, which would not compromise the interests of the organization. Therefore, with 
mutual dialogue and understanding, appropriate data sets could be shared by the industry, 
which would create a win-win situation and lead to betterment of the process. The key chal-
lenge, which needs to be overcome, is to address the fear of the enterprises regarding the 
type of data sets required and the potential hazards. A constructive dialogue to identify the 
right reports would go a long way towards enabling the partnership because access to the 
wider database with source code would certainly be impossible.

Once the agreement with the industry has been reached and the right data sets have been 
received, the attention can be shifted to actual conducting of the empirical research with 
the more appropriate industrial data sets. The benefits of using the industrial database 
would be apparent in the thoroughness of the data sets available and the consistency of 
the software system. This would lead to more accurate findings for the empirical research.

4.8.3 Example: Data Collection in FPS

This empirical study given in Section 4.2 makes use of the public domain data set KC1 from 
the NASA metrics date program (MDP) (NASA 2004; PROMISE 2007). The NASA data 
repository stores the data, which is collected and validated by the MDP (2006). The data 
in KC1 is collected from a storage management system for receiving/processing ground 
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data, which is implemented in the C++ programming language. Fault data for KC1  is 
collected since the beginning of the project (storage management system) but that data 
can only be associated back to five years (MDP 2006). This system consists of 145 classes 
that comprise 2,107 methods, with 40K LOC. KC1 provides both class-level and method-
level static metrics. At the method level, 21 software product metrics based on product’s 
complexity, size, and vocabulary are given. At the class level, values of ten metrics are 
computed, including six metrics given by Chidamber and Kemerer (1994). The seven OO 
metrics are taken in this study for analyses. In KC1, six files provide association between 
class/method and metric/defect data. In particular, there are four files of interest, the first 
representing the association between classes and methods, the second representing asso-
ciation between methods and defects, the third representing association between defects 
and severity of faults, and the fourth representing association between defects and specific 
reason for  closure of the error report.

First, defects are associated with each class according to their severities. The value of 
severity quantifies the impact of the defect on the overall environment with 1 being most 
severe to 5  being least severe as decided in data set KC1. The defect data from KC1  is 
collected from information contained in error reports. An error either could be from the 
source code, COTS/OS, design, or is actually not a fault. The defects produced from the 
source code, COTS/OS, and design are taken into account. The data is further processed 
by removing all the faults that had “not a fault” keyword used as the reason for closure of 
error report. This reduced the number of faults from 669 to 642. Out of 145 classes, 59 were 
faulty classes, that is, classes with at least one fault and the rest were nonfaulty.

In this study, the faults are categorized as high, medium, or low severity. Faults with 
severity rating 1 were classified as high-severity faults. Faults with severity rating 2 were 
classified as medium-severity faults and faults with severity rating 3, 4, and 5 as low-sever-
ity faults, as at severity rating 4 no class is found to be faulty and at severity rating 5 only 
one class is faulty. Faults at severity rating 1 require immediate correction for the system 
to continue to operate properly (Zhou and Leung 2006).

Table 4.9 summarizes the distribution of faults and faulty classes at high-, medium-, and 
low-severity levels in the KC1 NASA data set after preprocessing of faults in the data set. 
High-severity faults were distributed in 23 classes (15.56%). There were 48 high-severity 
faults (7.47%), 449 medium-severity faults (69.93%), and 145 low-severity faults (22.59%). As 
shown in Table 4.9, majority of the classes are faulty at severity rating medium (58 out of 
59 faulty classes). Figure 4.11a–c shows the distribution of high-severity faults, medium-
severity faults, and low-severity faults. It can be seen from Figure  4.11a that 22.92% of 
classes with high-severity faults contain one fault, 29.17% of classes contain two faults, and 
so on. In addition, the maximum number of faults (449 out of 642) is covered at medium 
severity (see Figure 4.11b).

TABLE 4.9

Distribution of Faults and Faulty Classes at High-, Medium-, and Low-Severity 
Levels

Level of 
Severity

Number of 
Faulty Classes

% of Faulty 
Classes

Number of 
Faults

% of Distribution 
of Faults

High 23 15.56 48 7.47
Medium 58 40.00 449 69.93
Low 39 26.90 145 22.59
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4.9 Selection of Data Analysis Methods

There are various data analysis methods available in the literature (such as statistical, 
machine learning) that can be used to analyze different kinds of gathered data. It is very 
essential to carefully select the methods to be used while conducting a research. But it is very 
difficult to select appropriate data analysis method for a given research. Among various 
available data analysis methods, we can select the most appropriate method by  comparing 
different parameters and properties of all the available methods. Besides this, there are very 
few sources available that provide guidance for selection of data analysis methods.

In this section, guidelines that can be used for the appropriate selection of the data anal-
ysis methods are presented. The selection of a data analysis technique can be made based 
on the following three criteria: (1) the type of dependent variable, (2) the nature of data set, 
or (3) the important aspects of different methods.

1 Faults
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4 Faults
8.33%

2 Faults
29.17%

(a) (b)

(c)
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FIGURE 4.11
Distribution of (a) high-, (b) medium-, and (c) low-severity faults.
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4.9.1 Type of Dependent Variable

The data analysis methods can be selected based on the type of the dependent variable 
being used. The dependent variable can be either discrete/binary or continuous. A  discrete 
variable is a variable that can only take a finite number of values, whereas a continuous 
variable can take infinite number of values between any two points. If the dependent vari-
able is binary (e.g., fault proneness, change proneness), then among statistical techniques, 
the researcher can use the LR and discriminant analysis. The examples of machine learning 
classifiers that support binary-dependent variable are DT, ANN, support  vector machine, 
random forest, and so on. If the dependent variable is continuous, then the  selection of 
data analysis method depends on whether the variable is a count variable (i.e., used for 
counting purpose) or not a count variable. The examples of continuous count variable are 
number of faults, lines of source code, and development effort. ANN is one of the machine 
learning techniques that can be used in this case. In addition, for noncount continuous-
dependent variable, the traditional ordinary least squares (OLS) regression model can be 
used. The diagrammatic representation of the selection of appropriate data analysis meth-
ods based on type of dependent variable is shown in Figure 4.12.

4.9.2 Nature of the Data Set

Other factors to consider when choosing and applying a learning method include the 
following:

 1. Diversity in data: The variables or attributes of the data set may belong to different 
categories such as discrete, continuous, discrete ordered, counts, and so on. If the 
attributes are of many different kinds, then some of the algorithms are preferable 
over others as they are easy to apply. For example, among machine learning tech-
niques, support vector machine, neural networks, and nearest neighbor methods 
require that the input attributes are numerical and scaled to similar ranges (e.g., to 
the [–1,1] interval). Among statistical techniques, linear regression and LR require 

Type of
dependent

variable

Binary

Statistical

Logistic
regression

Discriminant
analysis

Decision tree

Support vector
machine

Artificial neural
network

Linear
regression

Ordinary least
square

Machine
learning

Machine
learning

Statistical

Continuous

FIGURE 4.12
Selection of data analysis methods based on the type of dependent variable.
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the input attributes be numerical. The machine learning technique that can han-
dle heterogeneous data is DT. Thus, if our data is heterogeneous, then one may 
apply DT instead of other machine learning techniques (such as support vector 
machine, neural networks, and nearest neighbor methods).

 2. Redundancy in the data: There may be some independent variables that are redun-
dant, that is, they are highly correlated with other independent variables. It is advis-
able to remove such variables to reduce the number of dimensions in the data set. 
But still, sometimes it is found that the data contains the redundant information. In 
this case, the researcher should make careful selection of the data analysis methods, 
as some of the methods will give poor performance than others. For example, linear 
regression, LR, and distance-based methods, will give poor performance because of 
numerical instabilities. Thus, these methods should be avoided.

 3. Type and existence of interactions among variables: If each attribute makes an 
independent impact or contribution to the output or dependent variable, then 
the techniques based on linear functions (e.g., linear regression, LR, support vec-
tor machines, naïve Bayes) and distance functions (e.g., nearest neighbor meth-
ods,  support vector machines with Gaussian kernels) perform well. But, if the 
interactions among the attributes are complex and huge, then DT and neural net-
work should be used as these techniques are particularly composed to deal with 
these interactions.

 4. Size of the training set: Selection of appropriate method is based on the tradeoff 
between bias/variance. The main idea is to simultaneously minimize bias and 
variance. Models with high bias will result in underfitting (do not learn relation-
ship between the dependent and independent variables), whereas models with 
high variance will result in overfitting (noise in the data). Therefore, a good learn-
ing technique automatically adjusts the bias/variance trade-off based on the size 
of training data set. If the training set is small, high bias/low variance classifiers 
should be used over low bias/high variance classifiers. For example, naïve Bayes 
has a high bias/low variance (naïve Bayes is simple and assumes independence of 
variables) and k-nearest neighbor has a low bias/high variance. But as the size of 
training set increases, low bias/high variance classifiers show good performance 
(they have lower asymptotic error) as compared with high bias/low variance clas-
sifiers. High bias classifiers (linear) are not powerful enough to provide accurate 
models.

4.9.3 Aspects of Data Analysis Methods

There are various machine learning tasks available. To implement each task, there are vari-
ous learning methods that can be used. The various machine learning tasks along with the 
data analysis algorithms are listed in Table 4.10.

To implement each task, among various learning methods, it is required to select the 
appropriate method. This is based on the important aspects of these methods.

 1. Accuracy: It refers to the predictive power of the technique.
 2. Speed: It refers to the time required to train the model and the time required to 

test the model.
 3. Interpretability: The results produced by the technique are easily interpretable.
 4. Simplicity: The technique must be simple in its operation and easy to learn.
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Besides the four above-mentioned important aspects, there are some other considerations 
that help in making a decision to select the appropriate method. These considerations are 
sensitivity to outliers, ability to handle missing values, ability to handle nonvector data, 
ability to handle class imbalance, efficacy in high dimensions, and accuracy of class prob-
ability estimates. They should also be taken into account while choosing the best data 
analysis method. The procedure for selection of appropriate learning technique  is further 
described in Section 7.4.3.

The methods are classified into two categories: parametric and nonparametric. This 
 classification is made on the basis of the population under study. Parametric methods 
are those for which the population is approximately normal, or can be approximated to 
normal using a normal distribution. Parametric methods are commonly used in statistics 
to model and analyze ordinal or nominal data with small sample sizes. The methods 
are generally more interpretable, faster but less accurate, and more complex. Some of 
the parametric methods include LR, linear regression, support vector machine, principal 
component analysis, k-means, and so on. Whereas, nonparametric methods are those for 
which the data has an unknown distribution and is not normal. Nonparametric meth-
ods are commonly used in statistics to model and analyze ordinal or nominal data with 
small sample sizes. The data cannot even be approximated to normal if the sample size 
is so small that one cannot apply the central limit theorem. Nowadays, the usage of non-
parametric methods is increasing for a number of reasons. The main reason is that the 
researcher is not forced to make any assumptions about the population under study as is 
done with a parametric method. Thus, many of the nonparametric methods are easy to 
use and understand. These methods are generally simpler, less interpretable, and slower 
but more accurate. Some of the  nonparametric  methods are DT, nearest neighbor, neural 
network, random forest, and so on.

Exercises

4.1. What are the different steps that should be followed while conducting experi-
mental design?

4.2. What is the difference between null and alternative hypothesis? What is the 
importance of stating the null hypothesis?

TABLE 4.10

Data Analysis Methods Corresponding to Machine Learning Tasks

S. No. Machine Learning Tasks Data Analysis Methods

1 Multivariate querying Nearest neighbor, farthest neighbor
2 Classification Logistic regression, decision tree, nearest neighbor classifier, 

neural network, support vector machine, random forest
3 Regression Linear regression, regression tree
4 Dimension reduction Principal component analysis, nonnegative matrix 

factorization, independent component analysis
5 Clustering k-means, hierarchical clustering



140 Empirical Research in Software Engineering

4.3. Consider the claim that the average number of LOC in a large-sized software is 
at most 1,000 SLOC. Identify the null hypothesis and the alternative hypothesis 
for this claim.

4.4. Discuss various experiment design types with examples.
4.5. What is the importance of conducting an extensive literature survey?
4.6. How will you decide which studies to include in a literature survey?
4.7. What is the difference between a systematic literature review, and a more general 

literature review?
4.8. What is a research problem? What is the necessity of defining a research problem?
4.9. What are independent and dependent variables? Is there any relationship 

between them?
4.10. What are the different data-collection strategies? How do they differ from one 

another?
4.11. What are the different types of data that can be collected for empirical research? 

Why the access to industrial data is difficult?
4.12. Based on what criteria can the researcher select the appropriate data analysis 

method?

Further Readings

The book provides a thorough and comprehensive overview of the literature review 
process:

A. Fink, Conducting Research Literature Reviews: From the Internet to Paper. 2nd edn. 
Sage Publications, London, 2005.

The book provides an excellent text on mathematical statistics:

E. L. Lehmann, and J.P. Romano, Testing Statistical Hypothesis, 3rd edn., Springer, 
Berlin, Germany, 2008.

A classic paper provides techniques for collecting valid data that can be used for gathering 
more information on development process and assess software methodologies:

V. R. Basili, and D. M. Weiss, “A methodology for collecting valid software engineer-
ing data,” IEEE Transactions on Software Engineering, vol. 10, no. 6, pp. 728–737, 
1984.

The following book is a classic example of concepts on experimentation in software 
engineering:

V. R. Basili, R. W. Selby, and D. H. Hutchens, “Experimentation in software engineer-
ing,” IEEE Transactions on Software Engineering, vol. 12, no. 7, pp. 733–743, 1986.
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A taxonomy of data-collection techniques is given by:

T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software engineers: Data collec-
tion techniques for software field studies,” Empirical Software Engineering, vol. 10, 
pp. 311–341, 2005.

The following paper provides an overview of methods in empirical software engineering:

S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting empirical methods 
for software engineering research,” In: F. Shull, J. Singer, and D.I. Sjøberg (eds.), 
Guide to Advanced Empirical Software Engineering, Springer, London, 2008.
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5
Mining Data from Software Repositories

One of the problems faced by the software engineering community is scarcity of data for 
conducting empirical studies. However, the software repositories can be mined to col-
lect and gather the data that can be used for providing empirical results by validating 
various techniques or methods. The empirical evidence gathered through analyzing the 
data collected from the software repositories is considered to be the most important sup-
port for software engineering community these days. These evidences can allow software 
researchers to establish well-formed and generalized theories. The data obtained from 
software repositories can be used to answer a number of questions. Is design A better than 
design B? Is process/method A better than process/method B? What is the probability of 
occurrence of a defect or change in a module? Is the effort estimation process accurate? 
What is the time taken to correct a bug? Is testing technique A better than testing tech-
nique B? Hence, the field of extracting data from software repositories is gaining impor-
tance in organizations across the globe and has a central and essential role in aiding and 
improving the software engineering research and development practice.

As already mentioned in Chapter 1 and 4 the data can either be collected from propri-
etary software, open source software (OSS), or university software. However, obtaining 
data from proprietary software is extremely difficult as the companies are not usually 
willing to share the source code and information related to the evolution of the software. 
Another source for collecting empirical data is academic software developed by universi-
ties. However, collecting data from software developed by student programmers is not 
recommended, as the accuracy and applicability of this data cannot be determined. In 
addition, the university software is developed by inexperienced, small number of pro-
grammers and thus does not have applicability in the real-life scenarios.

The rise in the popularity of the use of OSS has made vast amount of data available for use 
in empirical research in the area of software engineering. The information from open source 
repositories can be easily extracted in a well-structured manner. Hence, now researchers have 
access to vast repositories containing large-sized software maintained over a period of time.

In this chapter, the basic techniques and procedures for extracting data from software 
repositories is provided. A detailed discussion on how change logs and bug reports are 
organized and structured is presented. An overview of existing software engineering 
repositories is also given. In this chapter, we present defect collection and reporting sys-
tem that can be used for collecting changes and defects  from maintenance phase.

5.1 Configuration Management Systems

Configuration management systems are central to almost all software projects devel-
oped by the organizations. The aim of a configuration management system is to  control 
and manage changes that occur in all the artifacts produced during the software 
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development life cycle. The artifacts (also known as deliverables) produced during the 
software development life cycle include software requirement specification, software 
design document, source code listings, user manuals, and so on (Bersoff et  al. 1980; 
Babich 1986).

A configuration management system also controls any changes incurred in these arti-
facts. Typically, configuration management consists of three activities: configuration 
identification, configuration control, and configuration accounting (IEEE/ANSI Std. 
1042–1987, IEEE 1987).

5.1.1 Configuration Identification

Each and every software project artifact produced during the software development 
life cycle is uniquely named. The following terminologies are related to configuration 
identification:

• Release: The first issue of a software artifact is called a release. This usually 
p rovides most of the functionalities of a product, but may contain a large number 
of bugs and thus is prone to issue fixing and enhancements.

• Versions: Significant changes incurred in the software project’s artifacts are called 
versions. Each version tends to enhance the functionalities of a product, or fix 
some critical bugs reported in the previous version. New functionalities may or 
may not be added.

• Editions: Minor changes or revisions incurred in the software artifacts are termed 
as editions. As opposed to a version, an edition may not introduce significant 
enhancements or fix some critical issues reported in the previous version. Rather, 
small fixes and patches are introduced.

5.1.2 Configuration Control

Configuration control is a critical process of versioning or configuration management 
activities. This process incorporates the approval, control, and implementation of changes 
to the software project artifact(s), or to the software project itself. Its primary purpose is 
to ensure that each and every change incurred to any software artifact is carried out with 
the knowledge and approval of the software project management team. A typical change 
request procedure is presented in Figure 5.1.

Figure 5.2 presents the general format of a change request form. The request consists of 
some important fields such as severity (impact of failure on software operation) and prior-
ity (speed with which the defect must be addressed).

The change control board (CCB) is responsible for the approval and tracking of changes. 
The CCB carefully and closely reviews each and every change before approval. After the 
changes are successfully implemented and documented, they must be notified so that 
they are tracked and recorded in the software repository hosted at version control systems 
(VCS). Sometimes, it is also known as the software library, archive, or repository, wherein 
the entire official artifacts (documents and source code) are maintained during the soft-
ware development life cycle.

The changes are notified through a software change notice. The general format of a 
change notice is presented in Figure 5.3.
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Change request

Analyze the impact and
plan for the change

Document the change

Deploy the change

Acceptance testing by
the customer

Implement the change

Propagate and execute
the change

Test the change

Determine technical
feasibility, costs, and

benefits

Evaluate the change

Yes

No

Change
approved?

FIGURE 5.1
Change cycle.

Change Request Form

Change Request ID

Type of Change Request □ Enhancement □ Defect Fixing □ Other (Specify)

Project

Requested By Project team member name

Brief Description of the Change 
Request

Description of the change being requested

Date Submitted  

Date Required

Priority □ Low □ Medium □ High □ Mandatory

Severity □ Trivial □ Moderate □ Serious □ Critical

Reason for Change Description of why the change is being requested

Estimated Cost of Change Estimates for the cost of incurring the change

Other Artifacts Impacted List other artifacts affected by this change

Signature

FIGURE 5.2
Change request form.
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5.1.3 Configuration Accounting

Configuration accounting is the process that is responsible for keeping track of each and 
every activity, including changes, and any action that affects the configuration of a soft-
ware product artifact, or the software product itself. Generally, the entire data correspond-
ing to each and every change is maintained in the VCS. Configuration accounting also 
incorporates recording and reporting of all the information required for versioning or 
configuration management of a software project. This information includes the status of 
software artifacts under versioning control, metadata, and other related information for 
the proposed changes, and the implementation status of the changes that were approved 
in the configuration control process.

A typical configuration status report includes 

• A list of software artifacts under versioning. These comprise a baseline.
• Version-wise date as to when the baseline of a version was established.
• Specifications that describe each artifact under versioning.
• History of changes incurred in the baseline.
• Open change requests for a given artifact.
• Deficiencies discovered by reviews and audits.
• The status of approved changes.

In the next section, we present the importance of mining information from software 
repositories, that is, information gathered from historical data such as defect and 
change logs.

Change Notice Form

Change Request ID

Type of Change Request □ Enhancement □ Defect Fixing □ Other (Specify)

Project

Module in which change is made

Change Implemented by Project team member name

Date and time of change 
implementation 

Change Approved By CCB member who approved the change

Brief Description of the Change 
Request

Description of the change incurred

Decision □ Approved □ Approved with Conditions □ Rejected □ Other

Decision Date

Conditions Conditions imposed by the CCB

Approval Signature

FIGURE 5.3
Software change notice.
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5.2 Importance of Mining Software Repositories

Software repositories usually provide a vast array of varied and valuable information 
regarding software projects. By applying the information mined from these repositories, 
software engineering researchers and practitioners do not need to depend primarily on 
their intuition and experience, but more on field and historical data (Kagdi et al. 2007).

However, past experiences, dominant methodologies, and patterns still remain the driv-
ing force for significant decision-making processes in software organizations (Hassan 
2008). For instance, software engineering practitioners mostly rely on their experience and 
gut feeling while making essential decisions. Even the managers tend to allocate their 
organization’s development and testing resources on the grounds of their experience in 
previous software projects, and their intuition regarding the complexity and criticality of 
the new project when compared with the previous projects. Developers generally employ 
their experience while adding new features or issue fixing. Testers tend to prioritize the 
testing of modules, classes, and other artifacts that are discovered to be error prone based 
on historical data and bug reports.

A major reason behind the ignorance of how valuable is the information provided in 
software engineering repositories, is perhaps the lack of effective mining techniques that 
can extract the right kind of information from these repositories in the right form.

Recognizing the need for effective mining techniques, the mining software reposi-
tories (MSR) field has been developed by software engineering practitioners. The MSR 
field analyzes and cross-links the rich and valuable data stored in the software repos-
itories to discover interesting and applicable information about various software sys-
tems as well as projects. However, software repositories are generally employed in 
practice as mere record-keeping data stores and are rarely used to facilitate decision-
making processes (Hassan 2008). Therefore, MSR researchers also aim at carrying out 
a significant transformation of these repositories from static record-keeping reposi-
tories into active ones for guiding the decision-making process of modern software 
projects.

Figure 5.4 depicts that after mining the relevant information from software repositories, 
data mining techniques can be applied and useful results can be obtained, analyzed, and 
interpreted. These results will guide the practitioners in decision making. Hence, mining 
data from software repositories will exhibit the following potential benefits:

• Enhance maintenance of the software system
• Empirical validation of techniques and methods
• Supporting software reuse
• Proper allocation of testing and maintenance resources

5.3 Common Types of Software Repositories

This section describes different types of software repositories and various artifacts pro-
vided by them that may be used to extract useful information (Hassan 2008). Figure 5.5 
presents the different types of software repositories commonly employed.



148 Empirical Research in Software Engineering

5.3.1 Historical Repositories

Historical repositories record varied information regarding the evolution and progress of a 
software project. They also capture significant historical dependencies prevalent between 
various artifacts of a project, such as functions (in the source code), documentation files, 
or configuration files (Gall et al. 1998). Developers can possibly employ the information 
extracted from these historical repositories for various purposes. A major area of applica-
tion is propagating the changes to related artifacts, instead of analyzing only static and/or 
dynamic code dependencies that may not be able to capture significant dependencies.

Software
repositories

Source code Changes Logs Bugs

Tests Effort Email Chats

FIGURE 5.5
Commonly used software repositories.

•   Mining repositories
• Source code 
• Change record

•   Timestamp
•   Author
•   Logs

•   Bug fixes
•   Defect identifier
•   Fixed-By
•   Date and time
•   Found in
     (component/
     module)
•   Description 
•   Severity 
•   Priority 

•   Web archives
•   Mails
•   Chats
•   Messages 

•   Preprocessed data
    (defects and changes)
•   Metrics 

•   Results
•   Obtain
•   Validate
•   Analyze
•   Interpret

•   Learning techniques
•   Statistical models
•   Machine learning

FIGURE 5.4
Data analysis procedure after mining software repositories.
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For example, consider an application that consists of a module (say module 1) that takes 
in some input and writes it to a data store, and another module (module 2) that reads the 
data from that data store. If there is a modification in the source code of the module that 
saves data to the data store, we may be required to perform changes to module 2 that 
retrieves data from that data store, although there are no traditional dependencies (such 
as control flow dependency) between the two modules. Such dependencies can be deter-
mined if and only if we analyze the historical data available for the software project. For 
this example, data extracted from historical repositories will reveal that the two modules, 
for saving the data to the data store and reading the data from that data store, are co-
changing, that is, a change in module 1 has resulted in a change in module 2.

Historical repositories include source control repositories, bug repositories, and archived 
communications.

• Source control repositories
 Source control repositories record and maintain the development trail of a 

project. They track each and every change incurred in any of the artifacts of 
a software system, such as the source code, documentation manuals, and so 
on. Additionally, they also maintain the metadata regarding each change, for 
instance, the developer or project member who carried out the change, the time-
stamp when the change was performed, and a short description of the change. 
These are the most readily available repositories, and also the most employed in 
software projects (Ambriola et al. 1990). Git, CVS, subversion (SVN), Perforce, 
and ClearCase are some of the popular source control repositories that are used 
in practice. Source control repositories, also known as VCS, are discussed in 
detail later in Section 5.5.

• Bug repositories
 These repositories track and maintain the resolution history of defect/bug reports, 

which provide valuable information regarding the bugs that were reported by the 
users of a large software project, as well as the developers of that project. Bugzilla 
and Jira are the commonly used bug repositories.

• Archived communications
 Discussions regarding the various aspects of a software project during its life 

cycle, such as mailing lists, emails, instant messages, and internet relay chats 
(IRCs) are recorded in the archived communications.

5.3.2 Run-Time Repositories or Deployment Logs

Run-time repositories, also known as deployment logs, record information regarding 
the execution of a single deployment, or different deployments of a software system. For 
example, run-time repositories may record the error messages reported by a software 
application at varied deployment sites. Deployment logs are now being made available at 
a rapidly increasing rate, owing to their use for remote defect fixing and issue resolution 
and because of some legal acts. For example, the Sarbanes-Oxley Act of 2002 states that it 
is mandatory to log the execution of every commercial, financial, and telecommunication 
application in these repositories.

Run-time repositories can possibly be employed to determine the execution anomalies 
by discovering dominant execution or usage patterns across various deployments, and 
recording the deviations observed from such patterns.
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5.3.3 Source Code Repositories

Source code repositories maintain the source code for a large number of OSS projects. 
Sourceforge.net and Google code are among the most commonly employed code reposito-
ries, and host the source code for a large number of OSS systems, such as Android OS, Apache 
Foundation Projects, and many more. Source code is arguably one of the most important 
artifacts of any software project, and its application is discussed in detail later in Section 5.8.

5.4 Understanding Systems

Understanding large software systems still remains a challenging process for most of the 
software organizations. This is probably because of various reasons. Most importantly, 
documentation manuals and files pertaining to large systems rarely exist and even if such 
data exists, they are often not updated. In addition, system experts are usually too preoc-
cupied to guide novice developers, or may no longer be a part of the organization (Hassan 
2008). Evaluating the system characteristics and tracing its evolution history thus have 
become important techniques to gain an understanding about the system.

5.4.1 System Characteristics

A software system may be analyzed by the following general characteristics, which may 
prove helpful in decision-making process on whether data should be collected from a soft-
ware system and used in research-centric applications or not.

 1. Programming language(s): The computer language(s) in which a software system 
has been written and developed. Java remains the most popular programming 
language for many OSS systems, such as Apache projects, Android OS, and many 
more. C, C++, Perl, and Python are also other popular programming languages.

 2. Number of source files: This attribute gives the total number of source code files 
contained in a software system. In some cases, this measure may be used to depict 
the complexity of a software system. A system with greater number of source files 
tends to be more complex than those with lesser number of source files.

 3. Number of lines of code (LOC): It is an important size metric of any software 
system that indicates the total number of LOC of the system. Many software sys-
tems are classified on the basis of their LOC as small-, medium-, and large scale 
systems. This attribute also gives an indication of the complexity of a software 
system. Generally, systems with larger size, that is, LOC, tend to be more complex 
than those with smaller size.

 4. Platform: This attribute indicates the hardware and software environment (pre-
dominantly software environment) that is required for a particular software 
 system to function. For example, some software systems are meant to work only 
on Windows OS.

 5. Company: This attribute provides information about the organization that has 
developed, or contributed to the development of a software system.

 6. Versions and editions: A software system is typically released in versions, with 
each version being rolled out to incorporate some significant changes in the 
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previous version of that software system. Even for a given version, several editions 
may be released to incorporate some minor changes in the software system.

 7. Application/domain: A software system usually serves a fundamental purpose or 
application, along with some optional or secondary features. Open source  systems 
typically belong to one of these domains: graphics/media/3D, IDE, SDK, database, 
diagram/visualization, games, middleware, parsers/generators, programming 
language, testing, and general purpose tools that combine  multiple such domains.

5.4.2 System Evolution

Software evolution primarily aims to incorporate and revalidate the probable significant 
modifications or changes to a software system without being able to predict in advance 
how the customer or user requirements will eventually evolve (Gall et al. 1997). The exist-
ing, large software system can never be entirely complete and hence continuously evolves. 
As the software system continues to evolve, its complexity will tend to increase until and 
unless we turn up with a better solution to solve or mitigate these issues.

Software system evolution also aims to ensure the reliability and flexibility of the sys-
tem. However, to adapt to the ever-changing real-world environment, a system should 
evolve once in every few months. Faster evolution is achievable and necessary too, owing 
to the rapidly increasing resources over the Internet, which makes it easier for the users to 
extract useful information.

The concept of software evolution has led to the phenomenon of OSS development. Any 
user can easily obtain the project artifacts and modify them according to his/her require-
ments. The most significant advantage of this open source movement is that it promotes 
the evolution of new ideas and methodologies that aim to improve the overall software 
process and product life cycle. This is the basic principal and agenda of software engineer-
ing. However, a negative impact is that it is difficult to keep a close and continuous check 
on the development and modification of a software project, if it has been published as open 
source (Livshits and Zimmermann et al. 2005).

It can be stated that the software development is an ongoing process, and it is truly a 
never-ending cycle. After going through various methodologies and enhancements, evo-
lutionary metrics were consequently proposed in the literature to cater to the matter of 
efficiency and effectiveness of the programs. A software system may be analyzed by vari-
ous evolutionary and change metrics (suggested by Moser et al. 2008), which may prove 
helpful in understanding the evolution and release history of a software system (Moser 
et al. 2008). The details of the evolution metrics are given in Chapter 3.

5.5 Version Control Systems

VCS, also known as source control systems or simply versioning systems, are systems that 
track and record changes incurred to a single artifact or a set of artifacts of a software  system.

5.5.1 Introduction

In this section we provide classification of VCS. Each and every change, no matter how big 
or small, is recorded over time so that we may recall specific revisions or versions of the 
system artifacts later.
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The following general terms are associated with a VCS (Ball et al. 1997):

• Revision numbers: VCS typically tend to distinguish between different version 
numbers of the software artifacts. These version numbers are usually called revi-
sion numbers and indicate various versions of an artifact.

• Release numbers: With respect to software products, revision numbers are termed 
as release numbers and these indicate different releases of the software product.

• Baseline or trunk: A baseline is the approved version or revision of a software 
artifact from which changes can be made subsequently. It is also called trunk or 
master.

• Tag: Whenever a new version of a software product is released, a symbolic name, 
called the tag, is assigned to the revision numbers of current software artifacts. 
The tag indicates the release number. In the header section of every tagged arti-
fact, the relation tag (symbolic name)—revision number is stored.

• Branch: They are very common in a VCS and a single branch indicates a self- 
maintained line of development. In other words, a developer may create a copy 
of some project artifacts for his own use, and give an appropriate identification to 
the new line of development. This new line of development created from the origi-
nally stored software artifacts is referred to as a branch. Hence, multiple copies of 
a file may be created independent of each other. Each branch is characterized by 
its branch number or identification.

• Head: It (sometimes also called “tip”) refers to the commit that has been made 
most recently, either to a branch or to the trunk. The trunk and every branch have 
their individual heads. Head is also sometimes referred to the trunk.

Figure 5.6 depicts the branches that come out of a baseline or trunk.
The major functionalities provided by a VCS include the following:

• Revert project artifacts back to a previously recorded and maintained state
• Revert the entire software project back to a previously recorded state
• Review any change made over time to any of the project artifacts
• Retrieve metadata about any change, such as the developer or project member 

who last modified any artifact that might be causing a problem, and more

Employing a VCS also means that if we accidentally modify, damage, or even lose some 
project artifacts, we can generally recover them easily by simply cloning or downloading 
those artifacts from the VCS. Generally, this can be achieved with insignificant costs and 
overheads.

Baseline (original line of development) 

Branch 1

Branch 2

Branch 3

FIGURE 5.6
Trunk and branches.
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5.5.2 Classification of VCS

VCS may be categorized as follows (http://git-scm.org).

5.5.2.1 Local VCS

Local VCS employ a simple database that records and maintains all the changes to arti-
facts of the software project under revision control. Figure 5.7 presents the concept of a 
local VCS.

A system named revision control system (RCS) was a very popular local versioning sys-
tem, which is still being used by many organizations as well as the end users. This tool 
operates by simply recording the patch sets (i.e., the differences between two artifacts) 
while moving from one revision to the other in a specific format on the user’s system. It 
can then easily recreate the image of a project artifact at any point of time by summing up 
all the maintained patches.

However, the user cannot collaborate with other users on other systems, as the database 
is local and not maintained centrally. Each user has his/her own copy of the different 
revisions of project artifacts, and thus there are consistency and data sharing problems. 
Moreover, if one user loses the versioning data, recovering it is impossible until and unless 
a backup is maintained from time to time.

5.5.2.2 Centralized VCS

Owing to the drawbacks of local versioning systems, centralized VCS (CVCS) were devel-
oped. The main aim of CVCS is to allow the user to easily collaborate with different users 
on other systems. These systems, such as CVS, Perforce, and SVN, employ a single central-
ized server that records and maintains all the versioned artifacts of a software project 
under revision control, and there are a number of clients or users that check out (obtain) 
the project artifacts from that central server. For several years, this has been the standard 
methodology followed in various organizations for version control.

Local system

Project artifacts

Versioning database

Revision 1

Revision 2

Revision 3

FIGURE 5.7
Local version control.
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However, if the central server fails or the data stored at central server is corrupted or lost, 
there are no chances of recovery unless we maintain periodic backups. Figure 5.8 presents 
the concept of a CVCS.

5.5.2.3 Distributed VCS

To overcome the limitations of CVCS, distributed VCS (DVCS) were introduced. As 
opposed to CVCS, a DVCS (such as Bazaar, Darcs, Git, and Mercurial) ensures that the 
clients or users do not just obtain or check out the latest revision or snapshot of the project 
artifacts, but clone, mirror, or download the entire software project repository to obtain 
the artifacts.

Thus, if any server of the DVCS fails or its data is corrupted or lost, any of the software 
project repositories stored at the client machine can be uploaded as back up to the server to 
restore it. Therefore, every checkout carried out by a client is essentially a complete backup 
of the entire software project data.

Nowadays, DVCS have earned the attention of various organizations across the globe, 
and these organizations are relying on them for maintaining their software project reposi-
tories. Git is the most popular DVCS employed in practice and hosts a large number of 
software project repositories. Google and Apache Software Foundation also employ Git 
to maintain the source code and change control data for their various projects, includ-
ing Android OS (https://android.googlesource.com), Chromium OS, Chrome browser 
(https://chromium.googlesource.com), Open Office, log4J, PDFBox, and Apache-Ant, 
respectively (https://apache.googlesource.com). The concept of a DVCS is presented in 
Figure 5.9. The figure shows that a copy of entire software project repository is maintained 
at each client system.

The next section discusses the information maintained by the bug tracking system.

Client system

Project
artifacts

Project
artifacts

Client system

Central server

Versioning database

Revision 1

Revision 2

Revision 3

FIGURE 5.8
Centralized version control.
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5.6 Bug Tracking Systems

A bug tracking system (also known as defect tracking system) is a software system/ 
application that is built with the intent of keeping a track record of various defects, bugs, 
or issues in software development life cycle. It is a type of issue tracking system. Bug 
tracking systems are commonly employed by a large number of OSS systems and most of 
these tracking systems allow the users to generate various types of defect reports directly. 
Typical bug tracking systems are integrated with other software project management 
tools and methodologies. Some systems are also used internally by some organizations 
(http://www.dmoz.org).

A database is a crucial component of a bug tracking system, which stores and maintains 
information regarding the bugs reported by the users and/or developers. These bugs are 

Server

Client

Versioning database Versioning database

Client

Versioning database

Revision 1

Revision 1

Revision 2

Revision 3

Revision 1

Revision 2

Revision 3

Revision 2

Revision 3

Project
artifacts

Project
artifacts

FIGURE 5.9
Distributed version control systems.
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generally referred to as known bugs. The information about a bug typically includes the 
following:

• The time when the bug was reported in the software system
• Severity of the reported bug
• Behavior of the source program/module in which the bug was encountered
• Details on how to reproduce that bug
• Information about the person who reported that bug
• Developers who are possibly working to fix that bug, or will be assigned the job 

to do so

Many bug tracking systems also support tracking through the status of a bug to deter-
mine what is known as the concept of bug life cycle. Ideally, the administrators of a bug 
tracking system are allowed to manipulate the bug information, such as determining 
the possible values of bug status, and hence the bug life cycle states, configuring the 
permissions based on bug status, changing the status of a bug, or even remove the 
bug information from the database. Many systems also update the administrators and 
developers associated with a bug through emails or other means, whenever new infor-
mation is added in the database corresponding to the bug, or when the status of the bug 
changes.

The primary advantage of a bug tracking system is that it provides a clear, concise, 
and centralized overview of the bugs reported in any phase of the software develop-
ment life cycle, and their state. The information provided is valuable for defining the 
product road map and plan of action, or even planning the next release of a software 
system (Spolsky 2000).

Bugzilla is one of the most widely used bug tracking systems. Several open source proj-
ects, including Mozilla, employ the Bugzilla repository.

5.7 Extracting Data from Software Repositories

The procedure for extracting data from software repositories is depicted in Figure 5.10. 
The example shows the data-collection process of extracting defect/change reports. The 
first step in the data-collection procedure is to extract metrics using metrics-collection tools 
such as understand and chidamber and kemerer java metrics (CKJM). The second step 
involves collection of bug information to the desired level of detail (file, method, or class) 
from the defect report and source control repositories. Finally, the report containing the 
software metrics and the defects extracted from the repositories is generated and can be 
used by the researchers for further analysis. The data is kept in software repositories in 
various types such as CVS, Git, SVN, ClearCase, Perforce, Mercurial, Veracity, and Fossil. 
These repositories are used for management of software content and changes, including 
documents, programs, user documentation, and other related information. In the next sub-
sections, we discuss the most popular VCS, namely CVS, SVN, and Git. We also describe 
Bugzilla, the most popular bug tracking system.
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5.7.1 CVS

CVS is a popular CVCS that hosts a large number of OSS systems (Cederqvist et al. 1992). 
CVS has been developed with the primary goal to handle different revisions of various 
software project artifacts by storing the changes between two subsequent revisions of 
these artifacts in the repository. Thus, CVS predominantly stores the change logs rather 
than the actual artifacts such as binary files. It does not imply that CVS cannot store binary 
files. It can, but they are not handled efficiently.

The features provided by CVS are discussed below (http://cvs.savannah.gnu.org):

Revision numbers: Each new revision or version of a project artifact stored in the CVS 
repository is assigned a unique revision number by the VCS itself. For example, 
the first version of a checked in artifact is assigned the revision number 1.1. After 
the artifacts are modified (updated) and the changes are committed (permanently 
recorded) to the CVS repository, the revision number of each modified artifact 
is incremented by one. Since some artifacts may be more affected by updation 
or changes than the others, the revision numbers of the artifacts are not unique. 
Therefore, a release of the software project, which is basically a snapshot of the 
CVS repository, comprises of all the artifacts under version control where the arti-
facts can have individual revision numbers.

Branching and merging: CVS supports almost all of the functionalities pertaining to 
branches in a VCS. The user can create his/her own branch for development, and 
view, modify, or delete a branch created by the user as well as other users, provided 
the user is authorized to access those branches in the repository. To create a new 
branch, CVS chooses the first unused even integer, starting with 2, and appends 
it to the artifacts’ revision number from where the branch is forked off, that is, 
the user who has created that branch wishes to work on those particular artifacts 
only. For example, the first branch, which is created at the revision number 1.2 of 

CBO RFC WMC … LOC Defect
12 56 4 … 567 Yes 
56 113 12 … 687 No
45 332 34 … 1,189 Yes
… … … … … …

CVS, Git, etc.

Source control
repository

Collect software metrics using
metrics calculator tools such

as understand, CKJM, etc.

Software
repositories

Defect
repositories

Collect defect/change
data using bug/change

collection tools

FIGURE 5.10
The procedure for defect/change data collection.
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an artifact, receives the branch number 1.2.2 but CVS internally stores it as 1.2.0.2. 
However, the main issue with branches is that the detection of branch merges is 
not supported by CVS. Consequently, CVS does not boast of enough mechanisms 
that support tracking of evolution of typically large-sized software systems as well 
as their particular products.

Version control data: For each artifact, which is under the repository’s version con-
trol, CVS generates detailed version control data and saves it in a change log or 
simply log files. The recorded log information can be easily retrieved by using 
the CVS log command. Moreover, we can specify some additional parameters so 
as to allow the retrieval of information regarding a particular artifact or even the 
complete project directory.

Figure 5.11 depicts a sample change log file stored by the CVS. It shows the versioning data 
for the source file “nsCSSFrameConstructor.cpp,” which is taken from the Mozilla project. 
The CVS change log file typically comprises of several sections and each section presents 
the version history of an artifact (source file in the given example). Different sections are 
always separated by a single line of “=” characters.

However, a major shortcoming of CVS that haunts most of the developers is the lack of 
functionality to provide appropriate mechanisms for linking detailed modification reports 
and classifying changes (Gall et al. 2003).

The following attributes are recorded in the above commit record:

• RCS file: This field contains the path information to identify an artifact in the 
repository.

• Locks and AccessList: These are file content access and security options set by 
the developer during the time of committing the file with the CVS. These may be 
used to prevent unauthorized modification of the file and allow the users to only 
download certain file, but does not allow them to commit protected or locked files 
with the CVS repository.

• Symbolic names: This field contains the revision numbers assigned to tag names. 
The assignment of revision numbers to the tag names is carried out individually 
for each artifact because the revision numbers might be different.

• Description: This field contains the modification reports that describe the change 
history of the artifact, beginning from the first commit until the current version. 
Apart from the changes incurred in the head or main trunk, changes in all the 
branches are also recorded there. The revisions are separated by a few number of 
“-” characters.

• Revision number: This field is used to identify the revision of source code artifact 
(main trunk, branch) that has been subject to change(s).

• Date: This field records the date and time of the check in.
• Author: This field provides the information of the person who committed the 

change.
• State: This field provides information about the state of the committed artifact and 

generally assumes one of these values: “Exp” (experimental) and “dead” (file has 
been removed).
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• Lines: This field counts the lines added and/or deleted of the newly checked in 
revision compared with the previous version of a file. If the current revision is 
also a branch point, a list of branches derived from this revision is listed in the 
branches field. In the above example, the branches field is blank, indicating that the 
current revision is not a branch point.

• Free Text: This field provides the comments entered by the author while commit-
ting the artifact.

5.7.2 SVN

SVN is a commonly employed CVCS provided by the Apache organization that hosts a 
large number of OSS systems, such as Tomcat and other Apache projects. It is also free and 
open source VCS.

RCS file: 
/cvsroot/mozilla/layout/html/style/src/nsCSSFrameConstructor.cpp,v
Working file: nsCSSFrameConstructor.cpp

head: 1.804
branch:
locks: strict
access list:

symbolic names:
 MOZILLA_1_3a_RELEASE: 1.800
 NETSCAPE_7_01_RTM_RELEASE: 1.727.2.17
 PHOENIX_0_5_RELEASE: 1.800
 ...
 RDF_19990305_BASE: 1.46
 RDF_19990305_BRANCH: 1.46.0.2

keyword substitution: kv
total revisions: 976; selected revisions: 976

description:
----------------------------
revision 1.804
date: 2002/12/13 20:13:16; author: doe@netscape.com; state: Exp; lines: +15 - 47

bug 950151: crash in mozalloc_abort(char const* const) |
mozalloc_handle_oom(unsigned int) | moz_xmalloc |
mozilla::SharedBuffer::Create(unsigned int) 

....
----------------------------
....
=============================================================

RCS file:
/cvsroot/mozilla/layout/html/style/src/nsCSSFrameConstructor.h,v

FIGURE 5.11
Example log file from Mozilla project at CVS.
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Being a CVCS, SVN has the capability to operate across various networks, because of 
which people working on different locations and devices can use SVN. Similar to other 
VCS, SVN also conceptualizes and implements a version control database or repository in 
the same manner. However, different from a working copy, a SVN repository can be con-
sidered as an abstract entity, which has the ability to be accessed and operated upon almost 
exclusively by employing the tools and libraries, such as the Tortoise-SVN.

The features provided by SVN are discussed below:

Revision numbers: Each revision of a project artifact stored in the SVN repository is 
assigned a unique natural number, which is one more than the number assigned to 
the previous revision. This functionality is similar to that of CVS. The initial revi-
sion of a newly created repository is typically assigned the number “0,” indicating 
that it consists of nothing other than an empty trunk or main directory. Unlike 
most of the VCS (including CVS), the revision numbers assigned by SVN apply 
to the entire repository tree of a project, not the individual project artifacts. Each 
revision number represents an entire tree, or a specific state of the repository after 
a change is committed. In other words, revision “i” means the state of the SVN 
repository after the “ith” commit. Since some artifacts may be more affected by 
updation or changes than the others, it implies that the two revisions of a single 
file may be the same, since even if one file is changed the revision number of each 
and every artifact is incremented by one. Therefore, every artifact has the same 
revision number for a given version of the entire project.

Branching and merging: SVN fully provides the developers with various options to 
maintain parallel branches of their project artifacts and directories. It permits them 
to create branches by simply replicating or copying their data, and remembers 
that the copies which are created are related among themselves. It also supports 
the duplication of changes from a given branch to another. SVN’s repository is 
specially calibrated to support efficient branching. When we duplicate or copy 
any directory to create a branch, we need not worry that the entire SVN repository 
will grow in size. Instead, SVN does not copy any data in reality. It simply creates 
a new directory entry, pointing to an existing tree in the repository. Owing to this 
mechanism, branches in the SVN exist as normal directories. This is opposed to 
many of the other VCS, where branches are typically identified by some specific 
“labels” or identifiers to the concerned artifacts.

SVN also supports the merging of different branches. As an advantage over CVS, SVN 
1.5 had incorporated the feature of merge tracking to SVN. In the absence of this feature, 
a great deal of manual effort and the application of external tools were required to keep 
track of merges.

Version control data: This functionality is similar to CVS. For each artifact, which is under 
version control in the repository, SVN also generates detailed version control data and stores 
it to change log or simply log files. The recorded log information can be easily retrieved 
by using a SVN client, such as Tortoise-SVN client, and also by the “svn log” command. 
Moreover, we can also specify some additional parameters so as to allow the retrieval of 
information regarding a particular artifact or even the complete project directory.

Figure 5.12 depicts a sample change log file stored by the SVN repository. It presents the 
versioning data for the source file “mbeans-descriptors.dtd” of the Apache’s Tomcat project.

Although the SVN classifies changes to the files as modified, added, or deleted, there 
are no other classification types for the incurred changes that are directly provided by it, 
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such as classifying changes for enhancement, bug-fixing, and so on. Even though we have 
a “Bugzilla-ID” field, it is still optional and the developer committing the change is not 
bound to specify it, even if he has fixed a bug already reported in the Bugzilla database.

The following attributes are recorded in the above commit record:

• Revision number: This field identifies the source code revision (main trunk, 
branch) that has been modified.

• Actions: This field specifies the type of operation(s) performed with the file(s) 
being changed in the current commit. Possible values include “Modified” (if a 
file has been changed), “Deleted” (if a file has been deleted), “Added” (if a file has 
been added), and a combination of these values is also possible, in case there are 
multiple files affected in the current commit.

• Author: This field identifies the person who did the check in.
• Date: Date and time of the check in, that is, permanently recording changes with 

the SVN, are recorded in the date field.
• Bugzilla ID (optional): This field contains the ID of a bug (if the current commit 

fixes a bug) that has also been reported in the Bugzilla database. If specified, then 
this field may be used to link the two repositories: SVN and Bugzilla, together. 

=============================================================

Revision: 1561635

Actions: Modified

Author: kkolinko

Date: Monday, January 27, 2014 4:49:44 PM

Bugzilla ID: Nil

Modified: 
/tomcat/trunk/java/org/apache/tomcat/util/modeler/mbeans-descriptors.dtd

Added:  Nil

Deleted: Nil

Message:

Followup to r1561083
Remove svn:mime-type property from *.dtd files.
The value was application/xml-dtd.

A mime-type is not needed on these source files, and it is inconvenient:
application/* mime types make SVN to treat the files as binary ones

=============================================================

FIGURE 5.12
Example log file from Apache Tomcat project at SVN.
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We may obtain change logs from the SVN (through version control data) and bug 
details from the Bugzilla.

• Modified: This field lists the source code files that were modified in the current 
commit. In the above log file, the file “mbeans-descriptors.dtd” was modified.

• Added: This field lists the source code files that were added to the project in the 
current commit. In the above log file, this field is not specified, indicating that no 
files have been added.

• Message: The following message field contains informal data entered by the author 
during the check in process.

5.7.3 Git

Git is a popular DVCS, which is being increasingly employed by a large number of soft-
ware organizations and software repositories throughout the world. For instance, Google 
hosts maintains the source control data for a large number of its software projects through 
Git, including the Android operating system, Chrome browser, Chromium OS, and many 
more (http://git-scm.com).

Git stores and accesses the data as content addressable file systems. It implies that a 
simple Hash-Map, or a key–value pair is the fundamental concept of Git’s data storage and 
access mechanism. The following terms are specific to Git and are an integral part of Git’s 
data storage mechanism:

• Git object: It is an abstraction of the key–value pair storage mechanism of Git. It is 
also called a hash–object pair, and each object stores a secure hash value (sha) and 
a corresponding pointer to the data or files stored by Git for that hash value. The 
fields of a Git object are as follows:
• SHA, a unique identifier for each object
• Type of the Git object (string), namely, tree, tag, commit, or blob
• Size of the Git object (integer)
• Content of the Git object, represented in bytes.

• Tree: It eliminates the problem of storing different file names but supports stor-
ing different files together. A tree corresponds to branches or file directories. The 
fields of a Tree object are as follows:
• Name of the Tree object (string)
• Type of the Tree object, having the fixed value as “Tree”

• Blob: It corresponds to the Inodes in a Tree object, which store the File’s informa-
tion and content. Different blobs are created for different commits of a single file, 
and each blob is associated with a unique tag value. The fields of a Blob object are 
as follows:
• Name of the Blob object (string)
• Type of the Blob object, having the fixed value as “Blob”

• Commit: It is one that connects the Tree objects together. The fields of a Commit 
object are as follows:
• Message specified while committing the changes (string)
• Type of the Commit object, having the fixed value as “Commit”
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• Tag: It contains a reference to another Git object and may also hold some metadata 
of another object. The fields of a Tag object are as follows:
• Name of the Tag object (string)
• Type of the Tag object, having the fixed value as “Tag”

Figure 5.13 depicts the data structure or data model of Git VCS. Figure 5.14 presents an 
example of how data is stored by Git.

The tree has three edges, which correspond to different file directories. The first two 
edges point to blob objects, which store the actual file content. The third edge points to 
another tree or file directory, which stores the file “simplegit.rb” in the blob object.

However, Git visualizes and stores the information much differently than the other VCS, 
such as CVS, even though it provides a similar user interface. The important differences 
between Git and CVS are highlighted below:

Revision numbers: Similar to CVS, each new version of a file stored in the Git reposi-
tory receives a unique revision number (e.g., 1.1 is assigned to the first version of 
a committed file) and after the commit operation, the revision number of each 
modified file is incremented by one. But in contrast to CVS, and many other VCS, 
that store the change-set (i.e., changes between subsequent versions), Git thinks of 
its data more like a set of snapshots of a mini file system. Every time a user per-
forms a commit and saves the state of his/her project with Git, Git simply captures 
a snapshot of what all the files look like at that particular moment of committing, 
and then reference to that snapshot is stored. For efficiency, Git simply stores the 
link to the previous file, if the files in current and previous commit are identical.

Local operations: In Git, most of the operations are done using files on client machine, 
that is, local disk. For example, if we want to know the changes between current 
version and version created few months back. Git does local calculation by looking 
up the differences between current version and previous version instead of getting 

Tag

Commit

Message: String
Type: “Commit”

Tree

Blob

Name: String Name: String
Type: “Tree”Subtrees Type: “Tag”

Name: String
Type: “Blob”

Mode: Integer

Git object

SHA: String
Type: String
Size: Integer

Content: Byte

FIGURE 5.13
Git storage structure.
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information from remote server or downloading previous version from the remote 
server. Thus, the user feels the increase in speed as the network latency overhead 
will be reduced. Further, lots of work can be done offline.

Branching and merging: Git also provides its users to exploit its branching capabili-
ties easily and efficiently. All the basic operations on a branch, such as creation, 
cloning, modification, and so on, are fully supported by Git. In CVS, the main 
issue with branches is that CVS does not support detection of branch merges. 
However, Git determines to use for its merge base, the best common ancestor. This 
is contrary to CVS, wherein the developer performing the merging has to figure 
out the best merge base himself. Thus, merging is much easier in Git.

Version control data: Similar to CVS, for each working file, Git generates version con-
trol data and saves it in log files. From here, the log file and its metadata can be 
retrieved by using the “git log” command. The specification of additional param-
eters allows the retrieval of information regarding a given file or a complete 
directory. Additionally, the log command can also be used with a “stat” flag to 
indicate the number of LOC changes incurred in each affected file after a commit 
is issued. Figure 5.15 presents an example of Git log file for Apache’s log4j applica-
tion (https://apache.googlesource.com/log4j).

In addition to the above differences, Git also maintains integrity (no change can be made 
without the knowledge of Git) and, generally, Git only adds data. The following attributes 
are recorded in the above commit record:

• Commit: Indicates the check-sum for this commit. In Git, everything is check-
summed prior to being stored and is then referenced by using that checksum. 

Tree 1

Root directory

Subdirectory
File 1 File 2

File 3

Blob 1 Blob 2

Blob 3

Tree 2

FIGURE 5.14
Example storage structure at Git.
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It implies that it is impossible to modify the contents of any artifact file or even 
directory without the knowledge of Git.

• Date: This field records the date and time of the check in.
• Author: The author field provides the information of the person who committed 

the change.

Free text: This field provides informal data or comments given by the author during the 
commit. This field is of prime importance in extracting information for areas such as 
defect prediction, wherein bug or issue IDs are required to identify a defect, and these can 
be obtained after effectively processing this field. Following the free text, we have the list 
of files that have been changed in this commit. The name of a changed file is followed by 
a number which indicates the total number of LOC changes incurred in that file, which 
in turn is followed by the number of LOC insertions (the count of occurrences of “+”) and 
LOC deletions (the count of occurrences of “–”). However, a modified LOC is treated as a 
line that is first deleted (–) and then inserted (+) after modifying. The last line summarizes 
the total number of files changed, along with total LOC changes (insertions and deletions).

Table 5.1 compares the following freely available features of the software repositories. 
These repositories can be mined to obtain useful information for analysis.

• Initial release: The date of initial release is specified.
• Development language: The programming language in which the system is developed.
• Maintained by: The name of the company that is currently responsible of the 

development and maintenance of the software.

commit 1b0331d1901d63ac65efb200b0e19d7aa4eb2b8b
Author: duho.ro <duho.ro@lge.com>
Date:   Thu Jul 11 09:32:18 2013 + 0900

Bug: 9767739

UICC: fix read EF Image Instance    
The EFs(4Fxx) path under DF Graphics are not distinguish with the EFs(4Fxx) path 
under DF Phonebook. So, getEFPath(EF_IIDF) is not able to return correct path. 
Because getEFPath(EF_IMG)is correct path, DF graphics, getEFPath(EF_IMG) is used 
instead of getEFPath(EF_IIDF), EF_IMG is a linear fixed EF. The result of loading 
EF_IMG should be processed as a LoadLinearFixedContext. So, it is needed to calculate 
the number of EF_IMG records. If those changes are added, the changes are duplicated 
with the codes of EVENT_GET_RECORD_SIZE_DONE. The codes of EVENT_GET_RECORD_SIZE_IMG_
DONE are removed and the event is treated by the logic of the EVENT_GET_RECORD_SIZE_
DONE. And then remove incorrect handler events(EVENT_READ_IMG_DONE and 
EVENT_READ_ICON_DONE) are moved to the handler events which have the procedure for 
loading same type EFs (EVENT_READ_RECORD_DONE and the EVENT_READ_BINARY_DONE).

.../internal/telephony/uicc/IccFileHandler.java    | 140 +++-------

.../internal/telephony/uicc/RuimFileHandler.java   |   8 +-

2 files changed, 38 insertions(+), 110 deletions(-)

FIGURE 5.15
Example log file for Android at Git.
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• Repository type: It describes the type of relationship that the various copies have 
with each other. In client–server model, the master copy is available on the server 
and the clients access them, and, in distributed model, users have local reposito-
ries available with them.

• License type: The license of the software.
• Platforms supported: The operating system supported by the repository.
• Revision IDs: The unique identifiers to identify releases and versions of the software.
• Speed: The speed of the software.
• Ease of deployment: How easily can the system be deployed?
• Repository replication: How easily the repository can be replicated?
• Example: Names of few popular softwares that use the specified VCS.

5.7.4 Bugzilla

Bugzilla is a popular bug tracking system, which provides access to bug reports for a large 
number of OSS systems. Bugzilla database can easily be accessed through HTTP and the 
defect reports can be retrieved from the database in the XML format. Bug reports thus 
obtained can aid managers and developers in the identification of defect-prone modules or 
files in the source code, which are candidates for redesign or reimplementation, and hence 
analyze such files more closely and carefully (http://www.bugzilla.org).

Additionally, contact information, mailing addresses, discussions, and other adminis-
trative information are also provided by Bugzilla. Some interesting patterns and infor-
mation for the evolutionary view of a software system, such as bug severity, affected 
artifacts, and/or products or component may also be obtained from this bug database. 
Figure 5.16 depicts the schema diagram of Bugzilla database (referenced from http://
bugzilla.org).

TABLE 5.1

Comparison of Characteristics of CVS, SVN, and Git Repositories

Repository

CVS SVN GITCharacteristics

Initial release July 3, 1986 October 20, 2000 April 3, 2005
Development language C C C, Perl, Shell Script
Maintained by CVS Team Apache Junio Hamano
Repository type Client server Client server Distributed 
License type GNU-GPL (open 

source)
Apache/BSD style license 
(open source)

GNU-GPL v2 (open 
source)

Platforms supported Windows, Unix, OS X Windows, Unix, OS X Windows, Unix, OS X
Revision IDs Numbers Numbers SHA-1 hashes
Speed Medium High Excellent 
Ease of deployment Good Medium Good 
Repository replication Indirect Indirect Yes (Git clone)
Example Firefox Apache, FreeBSD, 

SourceForge, Google 
Code

Chrome, Android, 
Linux, Ruby, Open 
Office
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dependencies.blocked = bugs.bug_id
dependencies.dependson = bugs.bug_id

watch.watched = profiles.userid
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duplicates.dupe_of = bugs.bug_id
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FIGURE 5.16
Bugzilla database schema.
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Figure 5.17 depicts the life cycle stages of a bug, in the context of Bugzilla (version 3.0). 
Figure  5.18 presents a sample XML report, which provides information regarding 
a defect, reported in the browser product of Mozilla project (http://www.bugzilla.
mozilla.org).

The following fields are contained in the above bug report record:

• Bug ID: This is the unique ID assigned to each bug reported in the software 
system.

• Bug status: This field contains information about the current status or state of the 
bug. Some of the possible values include unconfirmed, assigned, resolved, and so on. 
The status whiteboard can be used to add notes and tags regarding a bug.

• Product: This field implies the product of the software project that is affected by a 
bug. For Mozilla project, some products are Browser, MailNews, NSPR, Phoenix, 
Chimera, and so on.

New

Bug is confirmedBug reported by
user/developer

 

Aid

Unconfirmed

Assigned to
developer

Assigned to
developer

   
Change

ownership
 

 

Bug is
reopened,

but was
never
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Development

done, bug fixed
Development

done, bug fixed
Assigned to
developer

 

Resolved

Resolved
bug

Bug is
resolved

Bug is closed

Bug is closed

Development is
verified

 
Unsatisfactory

solution of
the bug

VerifiedReopened Bug is reopened 

Bug is reopened 

 

Closed

Assigned

FIGURE 5.17
Life cycle of a bug at Bugzilla (http://www.bugzilla.org).
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• Component: This field determines the component or constituent affected by 
a reported bug. In Mozilla, some examples of component are Java, JavaScript, 
Networking, Layout, and so on.

• Depends on: It gives information about the bugs on which the reported bug 
depends. Those bugs have to be fixed prior to this bug.

• Blocks: Gives details of the bugs that are blocked by the reported bug.
• Bug severity: This field classifies the reported bug into various severity levels. 

The  severity levels include blocker, critical, major, minor, trivial, enhancement, 
and so on.

• Target milestone: This field stores the possible target version of an artifact, that is, 
the changes should be merged into the main branch or trunk.

5.7.5 Integrating Bugzilla with Other VCS

We have described in detail the basic concepts and functioning of various VCS (Git, CVS, 
and SVN), and the most popular bug repository, the Bugzilla.

But, we may wonder that whether both of these two types of repositories (VCS and bug 
repository) are required, or only one of them is sufficient? Well, we would like to say that 

<bug_id> 950155 </bug_id>
<bug_status> NEW </bug_status> 
<product> Firefox </product> 
<priority> -- </priority> 
<version> Trunk </version> 
<rep_platform> ×86 Windows NT </rep_platform> 
<assigned_to> Nobody; OK to take and work on it </assigned_to> 
<delta_ts> 20020116205154 </delta_ts> 
<component>  Untriaged  </component> 
<reporter>  alex_mayorga  </reporter> 
<target_milestone> --- </target_milestone> 
<bug_severity> critical </bug_severity> 
<creation_ts> 2013 - 12 - 13 11:18 </creation_ts> 
<op_sys> Windows NT </op_sys> 
<short_desc> crash in mozalloc_abort(char const* const) |
mozalloc_handle_oom(unsigned int) | moz_xmalloc |
mozilla::SharedBuffer::Create(unsigned int) </short_desc> 

<keywords> crash </keywords> 
<dependson> --- </dependson> 
<blocks> --- </blocks>
<long_desc>

 <who> alex_mayorga </who>
 <bug_when> 2013 - 12 - 13 11:18 </bug_when>
 <thetext> --- </thetext>

</long_desc>

FIGURE 5.18
Sample bug report from Bugzilla.
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although both of these serve different purposes, but their capabilities are such that they  
complement one another really well.

We know that a VCS maintains its repository, the required information regarding each 
and every change incurred in the source code of a software project under versioning. 
Through the change logs maintained by the VCS, we may come across certain changes 
that had been incurred for bug fixing. So we wonder that if VCS can also provide bug 
information, then what is the need of a bug-tracking system like Bugzilla? Well, as we 
have discussed in the previous section, we can obtain detailed information about a bug 
from Bugzilla, such as the bug life cycle, the current state of a bug, and so on. All this 
 information cannot be obtained by a VCS.

Similarly, a bug repository can neither provide information regarding the changes that 
were incurred for purposes other than defect-fixing, nor does it store the different versions 
and details of a project (and its artifacts) that are maintained in the VCS.

Therefore, some organizations typically employ both a VCS and a bug-tracking system 
to serve the dual purpose of versioning and defect data management. For instance, the 
Mozilla open source project is subject to versioning under the CVS repository, while the 
bugs for that project are reported in the Bugzilla database. For such a project, we may 
obtain the bug IDs from the change logs of the VCS and then link or map these bug IDs to 
the ones stored in the Bugzilla database. We may then obtain detailed information about 
both the committed changes, and the bugs that were fixed by these changes. We have 
also stated in Section 5.7.2 related to SVN that the SVN change logs contain an optional 
Bugzilla ID field, which may be employed to link the change log information provided by 
SVN to the bug information in the Bugzilla database.

5.8 Static Source Code Analysis

Source code is one of the most important artifacts available in the software repositories. 
Generally, various versions of the source code are maintained in the repositories. This 
allows the researchers and practitioners to examine the changes made between various 
versions of the software. A number of facts and information can be extracted from the 
source code.

The source code of a software system may be easily obtained by “cloning” a source code 
software repository where that particular system is hosted. Cloning simply means to copy 
and paste the entire software repository from a server (usually a remote server) to the end 
user’s system. Source code is a very crucial artifact of any software system, which can be 
used to reveal interesting findings for that system through effective analysis.

For example, Git repositories may be easily cloned by applying the git “clone” command. 
The general syntax of the git clone command is:

‘git clone [remote repository URL] --branch [exact branch name] 
[destination path of end-user machine]’

The [remote repository URL] indicates the URL of a git repository and must be specified. 
The [exact branch name] of the main trunk needs to be specified, if we wish to clone a spe-
cific branch/version of the repository. If the branch is not specified, then the trunk (i.e., the 
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latest version) will be cloned. The [destination path of end-user machine] may be specified, 
if the user wishes to download the repository in a specific location on his machine.

For example, the following clone command will download the repository for Android 
OS “Contacts” Application, for the branch “android_2.3.2_r1” to the  destination “My 
Documents”:

‘git clone https://android.googlesource.com/platform/packages/apps/
Contacts --branch android_2.3.2_r1 C:/Users/My Documents ’

5.8.1 Level of Detail

After we have obtained the source code from a software repository, we may perform vari-
ous types of analysis. The analysis may be carried out at various levels of detail in the 
source code. The level of detail depends on the kind of information the researchers or prac-
titioners want to extract. The level of detail, in turn, determines the method of source code 
analysis. A lower or finer detail level usually requires a more robust and complex analysis 
method(s). The detail levels may be generally classified as follows:

5.8.1.1 Method Level

A method is at the lowest level of granularity or at the highest level of detail in source code. 
Method-level analysis could report various parameters and measures, such as the number 
of LOC in a method, the dependencies between different methods in the source code, the 
complexity measures of a method, and so on. For a differential analysis of the source code 
of two given versions of a software, method-level analysis could also reveal the addition 
of new dependencies or removal of previous dependencies between methods in the source 
code. This level of analysis is more complex and usually more time consuming than the 
other levels of detail.

5.8.1.2 Class Level

After the methods, we have classes present in the source code at the next level of detail. 
Class-level analysis of the source code may reveal various measures such as the number 
of methods in a class, coupling between different classes, cohesion within a class, LOC for 
a class, and many complexity measures, including the cyclomatic complexity (CC). A dif-
ferential analysis at the class level may provide information such as the number of lines 
added, deleted, and modified for a given class, changes in the number of methods in a 
class, and so on. Class-level analysis remains the most commonly exploited granularity 
level by most of the researchers and practitioners.

5.8.1.3 File Level

A file in the source code may be considered as the group of one or more classes. File level is 
therefore at a lower level of detail. File-level analysis reports measures such as the number 
of classes in a file, LOC in a file, and so on. Additionally, we generally consider file-level 
detail for a differential analysis of the source code for two versions of a software. This 
analysis reports measures such as the LOC changes (addition, deletion, and modification) 
reported for a file, the number of classes changed, and so on.
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5.8.1.4 System Level

System level is at the lowest level of detail or at the highest level of granularity.  System-level 
analysis is usually easier than the higher levels of detail and less number of parameters 
may be reported after analysis, such as the LOC, the total number of files, and so on. For a 
differential analysis, we may report the system-level measures, including changes in LOC 
(added, deleted, and modified), changes in the number of files (added, deleted, and modi-
fied), and so on.

5.8.2 Metrics

Predominantly, the source code of a software system has been employed in the past to 
gather software metrics, which are, in turn, employed in various research areas, such as 
defect prediction, change proneness, evaluating the quality of a software system, and 
many more (Hassan 2008).

For the validation of impact of OO metrics on defect and change proneness, various 
studies have been conducted in the past with varied set of OO metrics. These studies show 
that Chidamber and Kemerer (CK) metric suite remains the most popularly employed 
metric suite in literature.

Studies carried out by various researchers (Basili et al. 1996; Tang et al. 1999; Briand et al. 
2000a; El Emam et al. 2001a; Yu et al. 2002; Gyimothy et al. 2005; Olague et al. 2007; Elish 
et al. 2011; Malhotra and Jain 2012) show that OO metrics have a significant impact on 
defect proneness. Several studies have also been carried out to validate the impact of OO 
metrics on change proneness (Chaumum et al. 1999; Bieman et al. 2003; Han et al. 2010; 
Ambros et al. 2009; Zhou et al. 2009; Malhotra and Khanna 2013). These also reveal that OO 
metrics have a significant impact on change proneness.

However, most of these studies relied on metric data that was made publically available, 
or obtained the data manually, which is a time-consuming and error-prone process.

However, in the study to investigate the relationship between OO metrics and change 
proneness, Malhotra and Khanna (2013) had effectively analyzed the source code of soft-
ware repositories (Frinika, FreeMind, and OrDrumbox) to calculate software metrics in 
an automated and efficient manner. They had gathered the source code for two versions 
of each of the considered software systems and then, with the help of Understand for 
Java (http://www.scitools.com/) software, they had collected the metrics for the previ-
ous version (Frinika—0.2.0, FreeMind—0.9.0 RC1, OrDrumbox—0.8.2004) of the software 
systems. Various OO and size metrics were collected and analyzed, including CK metrics. 
The software Understand for Java gives the metrics at various levels of detail such as files, 
methods, classes, and so on. Thus, metrics were collected for all the classes in the software 
systems. They assessed and predicted changes in the classes. The Understand software 
also provides metrics for the “unknown” classes. These values must be discarded, as such 
classes cannot be accessed.

Malhotra and Jain (2012) had also carried out a study to propose a defect prediction 
model for OSS systems, wherein the focus was on the applicability of OO metrics in pre-
dicting defect-prone classes. The metrics were collected by using CKJM metrics tool for 
calculating CK metrics. It is an open source application that calculates metrics for various 
suites, including CK and quality metrics for OO design (QMOOD). It operates on the Java 
byte code files (i.e., .class files), which can be obtained from the source code of OSS systems 
hosted at various repositories.
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These studies have proven to be appropriate examples for how source code obtained 
from software repositories may be analyzed effectively and thus add to the value to soft-
ware repository mining field. Tools such as Understand and CKJM, to a certain extent, 
advocate the importance of analyzing the source code obtained from software repositories 
and its application in popular research areas.

Now, we discuss some of the tools that generate the data for OO metrics for a given 
software project.

5.8.3 Software Metrics Calculation Tools

There are various metrics tools available in the literature to calculate OO metrics. These 
tools are listed below:

 1. Understand
 It is a proprietary and paid application developed by SciTools (http://www.sci-

tools.com). It is a static code analysis software tool and is mainly employed for 
purposes such as reverse engineering, automatic documentation, and calcula-
tion of source code metrics for software projects with large size or code bases. 
Understand basically functions through an integrated development environment 
(IDE), which is designed to aid the maintenance of old code and understanding 
new code by employing detailed cross references and a wide range of graphical 
views. Understand supports a large number of programming languages, includ-
ing Ada, C, the style sheet language CSS, ANSI C, and C++, C#, Cobol, JavaScript, 
PHP, Delphi, Fortran, Java, JOVIAL, Python, HTML, and the hardware descrip-
tion language VHDL. The calculated metrics include complexity metrics (such as 
McCabe’s CC), size and volume metrics (such as LOC), and other OO metrics (such 
as depth of inheritance tree [DIT] and coupling between object classes [CBO]).

 2. CKJM Calculator
 CKJM is an open source application written in the Java programming language 

(http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metric.html). It is intended to calcu-
late a total of 19 OO metrics for systems developed using Java. It supports vari-
ous OO metrics, including coupling metrics (CBO, RFC, etc.), cohesion metrics 
(lack of cohesion in methods [LCOM] of a class, cohesion among methods of a 
class, etc.), inheritance metrics (DIT, number of children [NOC], etc.), size metrics 
(LOC), complexity metrics (McCabe’s CC, average CC, etc.), and data abstraction 
metrics. The tool operates on the compiled source code of the applications, that is, 
on the byte code or .class files and then calculates different metrics for the same. 
However, it simply pipes the output report to the command line. But, it can be 
easily embedded in another application to generate metric reports in the desired 
format.

 3. Source Monitor
 It is a freeware application written in C++ and can be used to measure metrics for 

software projects written in C++, C, C#, VB.NET, Java, Delphi, Visual Basic (VB6), 
or HTML (www.campwoodsw.com/sourcemonitor.html). This tool  collects met-
rics in a fast, single pass through the source files. The user can print the  metrics 
in tables and charts, and even export metrics to XML or CSV files for further 
 processing. Source monitor supports various OO metrics, predominantly code 



174 Empirical Research in Software Engineering

 metrics. Some of the code metrics provided by source monitor include: percent 
branch statements, methods per class, average statements per method, and maxi-
mum method or function complexity.

 4. NDepend
 It is a proprietary application developed using .NET Framework that can perform 

various tasks for systems written in .NET, including the generation of 82 code and 
quality metrics, trend monitoring for these metrics, exploring the code structure, 
detect dependencies, and many more (www.ndepend.com). Currently, it provides 
12 metrics on application (such as number of methods, LOC, etc.), 17 metrics on 
assemblies (LOC and other coupling metrics), 12 metrics on namespaces (such as 
afferent coupling and efferent coupling at the namespace level), 22 metrics on type 
(such as NOC and LCOM), 19 metrics on methods (coupling and size metrics), and 
two metrics on fields (size of instance and afferent coupling at the field level). It 
can also be integrated with Visual Studio and performs lightweight and fast analy-
sis to generate metrics. It is useful for the real-world applications.

 5. Vil
 It is a freeware application that provides different functionalities, including met-

rics, visualization, querying, and analysis of the different components of applica-
tions developed in .NET (www.1bot.com). The .NET components supported are 
assemblies, classes, and methods. It works for all of the .NET languages, including 
C# and Visual Basic.NET. It provides a large (and growing) suite of metrics per-
taining to different entities such as classes, methods, events, parameters, fields, 
try/catch blocks, and so on, reported at multiple levels. Vil also supports various 
class cohesion, complexity, inheritance, coupling dependencies, and data abstrac-
tion metrics. Few of these metrics include: CC, LCOM, CBO, instability, distance, 
afferent, and efferent couplings.

 6. Eclipse Metrics Plugin
 It is an open source Eclipse plugin that calculates various metrics for code written 

in Java language during build cycles (eclipse-metrics.sourceforge.net). Currently, 
the supported metrics include McCabe’s CC, LCOM, LOC in method, number of 
fields, number of parameters, number of levels, number of locals in scope, efferent 
couplings, number of statements, and weighted methods per class. It also warns 
the user of “range violations” for each of the calculated metric. This enables the 
developer to stay aware of the quality of the code he has written. The developer 
may also export the metrics to HTML web page or to CSV or XML file formats for 
further analysis.

 7. SonarQube
 It is an open source application written in the Java programming language (www.

sonarqube.org). Mostly employed for Java-based applications, however, it also 
supports various other languages such as C, C++, PHP, COBOL, and many more. 
It also offers the ability to add our own rules to these languages. SonarQube pro-
vides various OO metrics, including complexity metrics (class complexity, method 
complexity, etc.), design metrics (RFC, package cycles, etc.), documentation met-
rics, (comment lines, comments in procedure divisions, etc.), duplication metrics 
(duplicated lines, duplicated files, etc.), issues metrics (total issues, open issues, 
etc.), size metrics (LOC, number of classes, etc.), and test metrics (branch coverage, 
total coverage, etc.).
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 8. Code Analyzer
 It is an OSS written in the Java programming language, which is intended for 

applications developed in C, C++, Java, Assembly, and HTML languages (source-
forge.net/projects/codeanalyze-gpl). It calculates the OO metrics across multiple 
source trees of a software project. It offers flexible report capabilities and a nice 
tree-like view of software projects being analyzed. The metrics calculated include 
Total Files (for multiple file metrics), Code Lines/File (for multiple file metrics), 
Comment Lines/File (for multiple file metrics), Comment Lines, Whitespace Lines, 
Total Lines, LOC, Average Line Length, Code/Comments ratio, Code/Whitespace 
ratio, and Code/(Comments + Whitespace) ratio. In addition to the predefined 
metrics, it also supports user-defined software source metrics.

 9. Pylint
 It is an open source application developed using Python programming language, 

which is intended for analyzing the source code of applications written in the 
Python language, and looks for defects or bugs and reveals possibly signs of poor 
quality (www.pylint.org). Pylint displays to the user a number of messages as it 
analyzes the Python source code, as well as some statistics regarding the warn-
ings and errors found in different files. The messages displayed are generally 
classified into different categories such as errors and warnings. Different metrics 
are generated on the basis of these statistics. The metrics report displays summa-
ries gathered from the source code analysis. The details include: a list of external 
dependencies found in the code; where they appear; number of processed mod-
ules; the total number of errors and warnings for each module; the percentage 
of errors and warnings; percentage of classes, functions, and modules with doc-
strings; and so on.

 10. phpUnderControl and PHPUnit
 phpUnderControl is an add-on tool for the well-known continuous integration 

tool named the CruiseControl (http://phpUnderControl.org). It is an open source 
application written in Java and PHP languages, which aims at integrating some 
of the best PHP development tools available, including testing and software met-
rics calculator tools. PHPUnit is a tool that provides a framework for automated 
software tests and generation of various software metrics (http://phpunit.de). The 
software predominantly generates a list of various code, coverage, and test met-
rics, such as unit coverage, LOC, test to code ratio, and so on. The reports are gen-
erated in XML format, but phpUnderControl comes with a set of XSL style sheets 
that can format the output for further analysis.

Table 5.2 summarizes the features of the above-stated source code analysis tools.

5.9 Software Historical Analysis

As described in Section 5.3.1, software historical repositories record several kinds of 
information regarding the evolution and progress of a software project. Historical reposi-
tories may be mined to extract useful information for future trend analysis and other 
research areas. Here, we discuss in detail various approaches and applications of historical 
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repository analysis for any software system. Figure 5.19 gives an overview of the various 
applications of software historical analysis. The applications are explained in the subsec-
tions presented below.

5.9.1 Understanding Dependencies in a System

As stated earlier, information recorded in historical software repositories, such as 
archived communications and bug reports, is very valuable for the team members of 
any software project. This information can be used effectively for understanding various 
dependencies in a software system, which the traditional methods may not be able to do 
(Hassan 2008).

Existing methods for understanding and resolving dependencies in a software system 
include dependency graphs and also the source code documentation. However, these offer 
merely a static view of a software system and generally fail to reveal any kind of infor-
mation regarding the history of a system or even the rationale and agenda behind the 
 system’s current state or design.

Hassan and Holt (2004b) have proposed mining source control repositories, a type of 
historical repositories, and attaching historical sticky notes corresponding to each code 
dependency in a software system. These notes record various information pertaining to a 
dependency such as the timestamp when it was introduced in the system, the developer 
who introduced it, and the motive behind adding it. For instance, by employing the his-
torical sticky notes on a large open source operating system, the NetBSD system, many 
unexpected dependencies could be easily explained and analyzed.

TABLE 5.2

Summary of Source Code Analysis Tools

Tool Availability
Source 

Language

Programming 
Language(s) 
Supported Metrics Provided

Understand Proprietary (paid) IDE C, C++, Ada, 
Java, C#, etc.

Complexity, size, volume, 
and a few other OO 
metrics

CKJM calculator Open source Java Java byte code OO design metrics
Source monitor Proprietary (freeware) C++ C, C++, C#, 

.NET, Java, etc.
Code metrics

NDepend Proprietary (paid) .NET .NET languages Various quality and code 
metrics

Vil Proprietary (freeware) .NET .NET languages OO design metrics
Eclipse metrics 
plugin

Open source Java Java (Eclipse 
IDE)

Code metrics

SonarQube Open source Java Java, C, C++, 
PHP, Cobol, etc.

OO design, documentation 
size and test metrics

Code analyzer Open source Java C, C++, Java, 
Assembly, 
HTML

Code metrics and allows 
user defined metrics

Pylint Open source Python Python Code and dependency 
metrics

phpUnderControl Open source PHP, Java PHP Code, coverage, and test 
metrics
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Thus, using the historical data, many unexpected dependencies can be easily revealed, 
explained, and rationalized.

5.9.2 Change Impact Analysis

In software configuration management, one of the important issues is to predict the impact 
of the requested change on the system, so that the decision related to implementation of 
change can be made. It can also increase program understanding and estimate the cost of 
implementing the change.

The software repositories maintain the information about short and long descriptions 
of bugs, the associated components with the bug, the details of the person who submitted 
the bug, and the details of the person who was assigned the bug. These details can be used 
to predict the modules/classes that will be affected by the change, and the developers that 
can handle these modules/classes (Canfora and Cerulo 2005).

5.9.3 Change Propagation

Change propagation is defined as the process of ensuring that the changes incurred in 
one module of a software system are propagated to the other modules to ensure that the 
assumptions and dependencies in the system are consistent, after the particular module 
has changed. As in the case of understanding dependencies, instead of employing tradi-
tional dependency graphs for propagating changes, we may use historical co-changes. 
Here, the intuition is that entities or modules that were co-changing frequently in the past 
are also likely to be co-changing in the future (Zimmermann et al. 2005). Change propaga-
tion is applied after change impact analysis is completed.

Hassan and Holt (2004a) also depicted that historical dependencies tend to outper-
form the traditional information when we carry out change propagation for various open 
source projects. Kagdi et al. (2007) presented the applicability of historical data in change 
propagation from code to documentation entities, where no structural code dependencies 
are present.
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Change
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FIGURE 5.19
Applications of data mined from software repositories.
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5.9.4 Defect Proneness

Defect proneness (or defect prediction), that is, predicting the occurrence of defects or 
bugs truly remains one of the most active areas of software engineering research. Defect-
prediction results may be employed by the software practitioners of large software projects 
effectively. For instance, managers may allocate testing resources appropriately, develop-
ers may review and verify defect-prone code more closely, and testers may prioritize their 
testing efforts and resources on the basis of defect-proneness data (Aggarwal et al. 2005; 
Malhotra and Singh 2012).

The repositories maintain defect information that can be used for analysis. The available 
information contains the bug details such as fixed or not, bug fixed by, and the affected 
components. This information is extracted from the repositories for creation of  defect pre-
diction models. The information about number of bugs must be related to either a module 
or a class.

The defects may be predicted based on the severity levels. The testing profession-
als can select from the list of prioritized defects, according to the available testing 
resources using models predicted at various severity levels of defects. Zhou and Leung 
(2006) validated the NASA data set to predict defect-proneness models with respect to 
two categories of defects: high and low. They categorized defects with severity rating 1 
as high-severity defects and defects with other severity levels as low-severity defects. 
Singh et  al. (2010) categorized defects into three severity levels: high, medium, and 
low severity of defects. They also analyzed two different ML methods (artificial neural 
network and decision tree) for predicting defect-proneness models and evaluated the 
performance of these models using receiver operating characteristic (ROC) analysis.

5.9.5 User and Team Dynamics Understanding

Archived communications, such as mailing lists, IRC channels, and instant messaging, 
are commonly employed by the users as well as team members of many large projects for 
communications and various discussions. Various significant and intricate details such as 
project policies, design details, future plans, source code, and patch reviews are covered 
under these discussions (Rigby and Hassan 2007). Consequently, these discussions main-
tain a rich source of historical information about the internal operations and workings of 
large software projects. Mining these discussions and communications can aid us to better 
analyze and understand large software development teams’ dynamics.

In the case of bug repositories, the users and developers are continually recording bugs 
for large software projects. However, each bug report must be prioritized to determine 
whether the report should be considered for addressing, and which developer should 
be assigned that report. Prioritizing defects is a time-consuming process and generally 
requires extensive knowledge regarding a project and the expertise of its developer team. 
Therefore, past bug reports may be employed to aid the bug-prioritization process. In a 
study carried out by Anvik et al. (2006), they were able to speed up the bug-prioritization 
process by employing prior or past bug reports so as to determine the most suitable devel-
opers to whom a bug should be assigned.

5.9.6 Change Prediction

Change proneness may be defined as the probability that a given component of the soft-
ware will change. Along with defect prediction or defect proneness, change proneness is 
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also very crucial and needs to be evaluated accurately. Prediction of change-prone classes 
may aid in maintenance and testing. A class that is highly probable to change in the later 
releases of a software needs to be tested rigorously, and proper tracking is required for that 
class, while modifying and maintaining the software (Malhotra and Khanna 2013).

Therefore, various studies have also been carried out in the past for predicting effective 
change-proneness models, and to validate the impact of OO metrics on change proneness. 
Historical analysis may be effectively employed for change-proneness studies. Similar to 
defect prediction studies, researchers have also adopted various novel techniques that 
analyze vast and varied data regarding a software system, which is available through 
historical repositories to discover probable changes in a software system.

5.9.7 Mining Textual Descriptions

The defect-tracking systems of OSS keep track of day-to-day defect reports that can be 
used for making strategic decisions. An example could be like “Which technique is more 
effective than the other for finding defects?” These repositories can be used to maintain 
unstructured data on defects that are encountered during a project’s life cycle. While 
extensive testing can minimize these defects, it is not possible to completely remove 
these defects. After extracting textual descriptions from defect reports in software 
repositories, we can apply text mining techniques to extract relevant attributes from 
each report. Text mining involves processing of thousands of words extracted from the 
textual descriptions.

The bug-tracking systems contain information about defect description (in short and 
long form) along with bug severity. Menzies and Marcus (2008) mined defect descrip-
tion using text mining and used rule-based learning to establish relationship between 
information extracted from defect descriptions and severity. The results in the study were 
validated using defect reports obtained from NASA projects.

Harman et  al. (2012b) mined textual descriptions from mobile apps to extract rela-
tionships from technical (features offered), business (price), and customer (ratings and 
downloads) perspective. The study used 32,108 apps that were priced non-zero from the 
Blackberry app store.

5.9.8 Social Network Analysis

In social and behavioral sciences, social network analysis (Wasserman et  al. 1994) is 
a widely used technique that can be used to derive and measure unseen relationships 
between people, that is, the social entities. In the context of MSR, social network analysis 
may be effectively applied for discovering information related to software development, 
such as developer roles, contributions, and associations.

Huang and Liu (2005) had proposed an approach for social network analysis that was 
based on the analysis of CVS logs (deltas) to group the developers. The developers’ contri-
butions at a directory (module) level were also determined by the analysis of these logs.

Ohira et al. (2005) devised a visualization tool, named Graphmania, whose goal was to 
provide support for cross-project or cross-company knowledge sharing as well as collabo-
ration. Over 90,000 projects hosted on SourceForge were analyzed by the authors. It was 
observed that small projects typically consisted of relatively less number of developers. 
The tool was targeted for supporting the developers involved in a small project, so as to 
perform tasks by utilization of both the knowledge of the developers assigned to other 
 different projects and also the relevant information extracted from other projects.
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5.9.9 Change Smells and Refactoring

Over the years, researchers and practitioners have employed software historical data for 
refactoring source code based on change smells. Ratzinger et al. (2005) devised a graph 
visualization technique to identify change smells, wherein the nodes represent the classes 
and edges represent logical couplings.

Fowler (1999) introduced another notion of change smells that was based on the strength 
of logical couplings present between different entities. This notion was presented with an 
analogy to bad smell. Change smells may be treated as the indicators of structural defi-
ciencies. These are the candidates for reengineering or refactoring based on the software’s 
change history. Fowler discussed two change smells: man-in-the-middle and data con-
tainers, and refactorings based on these two. To remove the man-in-the-middle difficulty, 
he suggested standard refactoring methods such as move method and move field. For 
improving the code that exhibits data-container smell, move method and extract method 
refactoring techniques were suggested.

5.9.10 Effort Estimation

Accurate estimation of resources, costs, manpower, and so on is critical to be able to 
monitor and control the project completion within the time schedule. Software effort 
estimation can provide a key input to planning processes. The overestimation of soft-
ware development effort may lead to the risk of too many resources being allocated to 
the project. On the other hand, the underestimation of the software development effort 
may lead to tight schedules. The importance of software development effort estima-
tion has motivated the construction of models to predict software development effort 
in recent years. In Malhotra and Jain (2011), various ML techniques have been used for 
predicting effort using date collected from 499 projects.

5.10 Software Engineering Repositories and Open Research Data Sets

Table 5.3 summarizes the characteristics of various software repositories and data sets that 
are discussed in detail in this section.

5.10.1 FLOSSmole

Its former name was OSS mole. FLOSSmole is a project that has been collaboratively 
designed to gather, share, and store comparable data and is used for the analysis of 
free and OSS development for the purpose of academic research (http://flossmole.org). 
FLOSSmole maintains data and results about FLOSS projects that have not been  developed 
in a  centralized manner.

The FLOSSmole repository provides data that includes source code, project meta-
data and characteristics (e.g., programming languages, platform, target audience, etc.), 
 developer-oriented information, and issue-tracking data for various software systems.

The purpose of FLOSSmole is to provide widely used data sets of high quality, and shar-
ing of standard analyses for validation, replication, and extension. The project contains the 
results of collective efforts of many research groups.
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5.10.2 FLOSSMetrics

FLOSSMetrics is a research project funded by the European Commission Sixth Framework 
Program. The primary goal of FLOSSMetrics is to build, publish, and analyze a large scale 
of projects, and also to retrieve information and metrics regarding the libre software devel-
opment using pre-existing methodologies and tools that have already been developed. 
The project also provides its users with a public platform for validating and industrially 
exploiting the obtained results.

As of now, four types of repository metrics are offered: source code management infor-
mation, code metrics (only for files written in C), mailing lists (archived communications), 
and bug-tracking system details. The project, while focusing on the software project 

Table 5.3

Summary of Software Repositories and Data Sets

Repository Web Link Source Data Format Sources Public

FLOSSmole http://flossmole.org OSS DB dumps, 
text, DB 
access

Multiple Yes

FLOSSMetrics http://flossmetrics.org OSS DB dumps, 
web service, 
web

Multiple Yes

PROMISE http://promisedata.org Mostly 
proprietary

Mostly ARFF Multiple Yes

Qualitas 
Corpus 

http://qualitascorpus.
com

OSS CSV, source 
code, JAR

Multiple Yes

Sourcerer 
project

http://sourcerer.ics.uci.
edu

OSS DB dumps Multiple Yes

UDB http://udd.debian.org OSS DB dump Single 
(Debian)

Yes

Bug prediction 
data set

http://bug.inf.usi.ch OSS CSV Multiple Yes

ISBSG http://www.isbsg.org Proprietary Spreadsheet Multiple No

Eclipse bug 
data 

http://www.st.cs.
uni-saarland.de/
softevo/bug-data/
eclipse

OSS ARFF, CSV Single 
(Eclipse)

Yes

SIR http://sir.unl.edu OSS C/Java/C# Multiple Needs 
registration

Ohloh http://www.ohloh.net OSS Web service 
(limited)

Multiple Yes

SRDA http://zerlot.cse.nd.edu OSS BD dumps Multiple Needs 
registration

Helix data set http://www.ict.swin.
edu.au/research/
projects/helix

OSS CSV Multiple Yes

Tukutuku http://www.metriq.
biz/tukutuku 

OSS N/A Multiple No

SECOLD http://www.secold.org OSS Web service, 
dumps

Multiple Yes
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development itself, also provides valuable information regarding the actors or developers, 
the project artifacts and source code, and the software processes.

The FLOSSMetrics is currently in its final stage, and some of the results and databases/
data sets are already available. To be specific, the FLOSS community has proven to be a 
great opportunity for enhancing and stimulating empirical research in the scope of soft-
ware engineering. Additionally, there are thousands of projects available in that commu-
nity, and a majority of them provide their source code and artifact repositories to everyone 
for any application.

5.10.3 PRedictOr Models In Software Engineering

PRedictOr Models In Software Engineering (PROMISE) software management decisions 
are recommended to be based on well-understood and well-supported prediction models. 
It is problematic to collect data from real-world software projects. Because such data is not 
easy to attain, we must appropriately employ whatever data is available. This is the main 
goal of PROMISE repository (http://promisedata.org).

PROMISE repository hosts abundant data for a large number of applications and soft-
ware systems, including Eclipse, Mozilla, and some popular Apache Software Foundation’s 
Projects such as log-4j, ivy, ant, and many more.

Typical data provided by the PROMISE repository includes issue-tracking data and 
effort-related data for estimation models, including COnstructive COst MOdel (COCOMO), 
project metadata, general characteristics, and much more.

5.10.4 Qualitas Corpus

The qualitas corpus (QC) repository is a collection of software systems and projects devel-
oped using the Java programming language (http://qualitascorpus.com). The repository is 
intended to be employed for empirical studies of source code artifacts of Java-based appli-
cations. The primary goal of this project is to provide researchers and practitioners with 
resources that enable them to conduct reproducible or replicated studies of software sys-
tems and their properties. The repository data reduces the overall cost of conducting large 
empirical studies of source code and also supports the comparison of various  measures of 
the same artifacts.

The collection of systems hosted at the repository is such that each of the systems  consists 
of a set of versions. Each version comprises of the original application distribution (in com-
pressed form) and two unpacked or uncompressed forms, bin (Java byte code or .class 
files, usually in .jar format) and src (Java source code or .java files).

The current release is version 20130901. It has 112 systems, 15 systems with 10 or more 
 versions, and 754 versions total. Various domains represented in the corpus include 
3D/media/graphics, IDE, SDK, database, tool, testing, games, middleware, program-
ming  languages, database, and so on.

5.10.5 Sourcerer Project

Sourcerer is an ongoing research project at the University of California, Irvine (http://
sourcerer.ics.uci.edu). It is primarily meant for exploring the open source benefits and fea-
tures through the application of code analysis. As we all know, the open source movement 
that has garnered tremendous support over the years has resulted in the generation of 
an extremely large body of code. This provides a tremendous opportunity to software 
 engineering practitioners and researchers.
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Sourcerer’s managed repository stores and maintains the local copies of software 
 projects that have been garnered from numerous open source repositories. As of now, the 
repository hosts as many as 18,000 Java-based projects obtained from Apache, Java.net, 
Google Code, and SourceForge.

Additionally, the project provides Sourcerer DB, which is a relational database whose 
structure and reference information are extracted from the projects’ source code. Moreover, 
a code search engine has also been developed using the Sourcerer infrastructure.

5.10.6 Ultimate Debian Database

Ultimate Debian Database (UDD) project gathers a lot of data about various aspects of 
the Debian project (a free, Linux kernel-based OS) in the same SQL database where the 
 project’s data is stored (http://udd.debian.org). It allows the users to easily access and 
 combine all these data.

Data that is currently subject to import includes bugs from the Debian bug-tracking sys-
tem, packages, and sources files from Debian and Ubuntu, popularity contest, history of 
migrations to testing, history of uploads, and so on. UDD-based services include:

• Bugs search, that is, multicriteria search engine for information related to bugs.
• Debian maintainer dashboard that provides information regarding the Debian 

project and its development.
• Bugs usertags, which allow the users to search for user-specified tag on bugs.
• Sponsors stats, which provides some statistics regarding who is sponsoring 

uploads to Debian.
• Bapase, which allows the users to look for different packages using various criteria.

5.10.7 Bug Prediction Data Set

The bug prediction repository data set is a collection of metrics and models of software 
projects and as well as their historical data (http://bug.inf.usi.ch). The goal of such kind 
of data set is to allow practitioners and researchers to compare various defect prediction 
methodologies and to evaluate whether a new prediction technique is better than the 
existing ones. In particular, the repository contains the data required to:

• Apply a prediction or modeling technique based on the source code metrics, his-
torical measures, or software process information (obtained from the CVS log 
data, etc.)

• Evaluate the performance of the prediction technique by comparing the results 
obtained with the actual number of postrelease bugs reported in a bug-tracking 
system

The repository has been designed to perform bug prediction in a given software system 
at the class level. However, we can also derive the package or subsystem information by 
aggregating the data for each class, because with each class, the package that contains it 
is specified. For each system hosted at the repository, the data set includes the following 
information:
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• Biweekly versions of the software projects that are converted to OO models
• Historical information obtained from the CVS change log
• Fifteen metric values calculated from the CVS change log data, for each class or 

source code file of the systems
• Seventeen source code metrics (CKJM suite and eleven more OO metrics), for each 

version or revision of each class file in the source code
• Postrelease defects for each class file, categorized by severity and priority

5.10.8 International Software Benchmarking Standards Group

The International Software Benchmarking Standards Group (ISBSG) keeps a record of a 
repository of data from numerous organizations’ software projects that have been com-
pleted (http://www.isbsg.org). The ISBSG data repository has many uses, including best-
practice networking, project benchmarking, and summary analyses.

The goal of ISBSG is to improve IT performance through estimation, benchmarking, 
project planning and management, and IT infrastructure planning, and enhance manage-
ment performance of software portfolio maintenance and support.

ISBSG repository data is truly a valuable asset for the software industry, practitioners 
and researchers, and for all the organizations that develop and produce software. The 
repository, which is open to the general public, has provided different research data sets 
on various topics, including project duration, function points structure, software cost 
 estimation, and so on.

5.10.9 Eclipse Bug Data

Eclipse bug data (EBD) repository has been populated by mining the Eclipse’s bug and 
versioning or version control databases (http://www.st.cs.uni-saarland.de/softevo/ 
bug-data/eclipse). The primary goal of this repository is to map failures to Eclipse com-
ponents. The data set obtained as a result provides information regarding the defect 
density for all the Eclipse components. The bug data set can be easily used for mapping 
and relating the source code, software processes, and developers to reported defects.

As of now, the repository has been populated from the analysis of three versions of 
Eclipse, namely 2.0, 2.1, and 3.0. All the three versions are open source and can be down-
loaded readily. The defect data reports are provided in the XML file format for each ver-
sion, and the source code files and packages are structured hierarchically.

The data set populated in EBD is publicly available for download and use by anyone. A typi-
cal application of this data set is in defect prediction research and to validate various hypoth-
eses on the nature and cause of defects as they occur in a software system during its life cycle.

5.10.10 Software-Artifact Infrastructure Repository

Software-artifact infrastructure repository (SIR) is a repository of software projects’ 
artifacts that are meant to aid practitioners and researchers in performing rigorous and 
controlled experimentation with the project’s source code analysis and software testing 
techniques (http://sir.unl.edu).

The repository contains data sets for many Java, C, C++, and C#-based software sys-
tems, in multiple versions, together with their supporting artifacts such as user manuals, 
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test suites, defect data, and so on. The repository also maintains documentation on how 
to employ these artifacts for experimentation purposes, supporting tools, and method-
ologies that facilitate experimentation and gathering of useful information regarding the 
processes used to maintain and enhance the artifacts, and supporting tools that aid these 
processes.

The SIR repository data is freely made available to the users after they register with the 
project community and agree to the terms specified in SIR license.

5.10.11 Ohloh

Ohloh is a free, public directory of FOSS (Free and/or OSS), and also contains the infor-
mation about the members and contributors who develop and maintain it (http://www 
.ohloh.net). Ohloh source code and repository is publicly available. Basically, it provides a 
free code search location or site that keeps an indexing for most of the projects hosted at 
Ohloh. Ohloh can be edited or modified by everyone, just like a wiki. Anyone can join and 
add new projects, and even make modifications to the existing project pages. Such public 
reviews have helped to make Ohloh one of the biggest, most accurate, and up-to-date FOSS 
directories available.

Ohloh does not host software projects and source code. Instead, it is a community, a 
directory, and analytics and search service. Ohloh can generate reports regarding the com-
position and activity of software project source code by connecting to the corresponding 
source code repositories, analyzing the source code’s history updates being made cur-
rently, and attributing the updates to their respective contributors. It also aggregates this 
data to track the changing nature of the FOSS world. 

Additionally, Ohloh provides various tools and methodologies for comparing projects, 
languages, repositories, and analyzing language statistics. Popular projects accessible 
from Ohloh include Google Chrome, Mozilla, WebKit, MySQL, Python, OpenGL, and 
many more. Ohloh is owned and operated by Black Duck software.

5.10.12 SourceForge Research Data Archive

SourceForge research data archive (SRDA) is a repository of FLOSS research project’s data 
set. The data that is made available from the FLOSS research repository has been derived 
from the NSF funded project: “Understanding Open Source Software Development” 
(http://zerlot.cse.nd.edu). The SRDA research project aims to spread an awareness regard-
ing the understanding of FOSS phenomenon and for predicting the pattern of growth that 
has been exhibited by FOSS projects over time.

The FOSS project community over the years has been able to develop a substantial 
amount of the Internet infrastructure, and has the support of several organizations and 
communities that develop OSS, including Apache, Perl, and Linux.

The following are various types of data that can be extracted from the SourceForge.net 
research data archive:

• Variation in project development team size over time, that is, the number of devel-
opers as a function of time.

• Participation of developers on projects, that is, number of projects in which 
 individual developers participate.
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• The above two measures are used to form what is known as a “collaboration social-
network.” This is used to obtain scale-free distributions among project activity 
and developer activity.

• The extended-community size for each project, which includes the number of 
project developers along with the registered members who have participated in 
any way in the development life cycle of a project, such as discussions on forums, 
bug reporting, patch submission, and so on.

• Date of creation at SourceForge.net for each software project.
• Date of the first release for each software project.
• Ranking of the projects as per SourceForge.net.
• Category-wise distribution of projects, for example, databases, games, communi-

cations, security, and so on.

5.10.13 Helix Data Set

The Helix data set is a collection of historical releases of many nontrivial Java OSS sys-
tems (http://www.ict.swin.edu.au/research/projects/helix). To aid researchers in empiri-
cal software engineering, Helix data set has been developed with a focus on software 
evolution.

Currently, there are over forty open source Java software systems with approximately 
1,000 releases with more than 65,000 classes. Each and every system has at least 100 classes, 
with majority of them being far larger, that is, nontrivial. Also, each system has at least 
fifteen releases with more than 18 months of release history.

The data set (available as a ZIP file) provides an evolution history, with consistent meta-
data that also includes license information and a classification of software type. Also, more 
than fifty different metrics have been extracted for each release and have been made avail-
able in a simple CSV file format.

5.10.14 Tukutuku

The objectives of the Tukutuku benchmarking project are: first, data gathering on web 
projects that will be used to build company-specific or generic cost estimation models that 
will enable a web company to enhance its current cost estimation practices; and second, to 
enable a web company to benchmark its productivity within and across web companies 
(http://www.metriq.biz/tukutuku).

Till date the Tukutuku benchmarking project has gathered data on 169 web projects 
worldwide, and this data has been used to help several web companies.

5.10.15 Source Code ECO System Linked Data

The first ever online Linked Data repository containing source code facts is the Source 
code ECO system Linked Data (SECOLD). SECOLD V. 001 was the first version released, 
which was published on January 20, 2011. This version was an Ambient Software Evolution 
Group’s (Concordia University) research project (http://www.secold.org).

SECOLD provides both implicit and explicit fact of any type that can be found in soft-
ware repositories, for example, source code file, tokens, ast nodes, authors, licenses, bugs, 
commits, code clones, and so on. The SECOLD is independent of programming language. 
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Factual information from any source code or version control can be published by it. 
Nevertheless, the first release only contains Java code and SVN. The second release is 
expected to cover C#, C++, CVS, and Git.

The information contained in it has been extracted from source code, versioning, and 
bug/issue systems. The information pieces have been interconnected explicitly. The data 
has been extracted from approximately 18,000 open source projects with as much as 
1,500,000 files and nearly 400,000,000 LOC. It is a multipurpose project. Its applications 
include mostly software research, software documentation/traceability, and enhancing 
the future of software development.

5.11  Case Study: Defect Collection and Reporting 
System for Git Repository

5.11.1 Introduction

Defect collection and reporting system (DCRS) is a software developed by undergradu-
ate students of Delhi Technological University, Delhi, India (see Figure 5.20). The tool is 
intended for mining or extracting useful data from a certain subset of open source reposi-
tories (Malhotra et al. 2014).

OSS repositories provide rich data that can be extracted and employed in various 
empirical studies. Primary focus is on defect and change data that can be obtained from 
version control repositories of OSS systems. An important question here is that what 

FIGURE 5.20
Defect collection and reporting system.
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kind of software repositories are suitable for extracting such kind of data. After a rigor-
ous study and analysis, we have chosen those software repositories that employ “Git” as 
the VCS (http://git-scm.com). The reasons for selecting Git-based software systems are 
as follows:

 1. Git is the most popular VCS and the defect and change data can be extracted in 
relatively easier ways through the change logs maintained by Git.

 2. A large number of OSS systems are maintained through Git, including Google’s 
Android OS.

Thus, by employing DCRS, we can easily obtain defect and change data for a large number 
of OSS repositories that are based on Git VCS.

5.11.2 Motivation

Previous studies have shown that bug or defect data collected from open source proj-
ects may be employed in research areas such as defect prediction (defect proneness) 
(Malhotra and Singh 2012). For instance, some commonly traversed topics in defect 
prediction include analysis and validation of the effect of a given metric suite (such 
as CKJM and QMOOD) on defect-proneness in a system (Aggarwal et  al. 2009); and 
evaluating the performance of pre-existing defect proneness models, such as machine 
learning methods (Gondra 2008). But, unfortunately, there exists no mechanism that can 
collect the defect data for Git-based OSS such as Android, and provide useful informa-
tion for the above-stated areas.

Thus, a system is required that can efficiently collect defect data for a Git-based OSS, 
which in turn, to say the least, might be used in the above mentioned research areas. Such 
a system is expected to perform the following operations: First, obtain the defect logs of 
the software’s source code and filter them to obtain the defects that were present in a 
given version of that software and have been fixed in the subsequent version. Then, the 
system should process the filtered defect logs to extract useful defect information such as 
unique defect identifier and defect description, if any. The next task that the system should 
perform is the association of defects to their corresponding source files (Java code files, 
or simply class files in the source code). In the next step, it should perform the computa-
tion of total number of fixed defects for each class, that is, the number of defects that have 
been associated with that class. Finally, the corresponding values of different metric suites 
should be obtained by the system for each class file in the source code of previous version 
of the OSS.

The DCRS incorporates each and every functionality stated above and, consequently, 
generates various reports that contain the collected defect data in a more processed, mean-
ingful, and useful form.

5.11.3 Working Mechanism

The DCRS performs a series of well-defined operations to collect and process the defect 
data of OSS hosted at Git repository, and then finally generate various types of defect 
reports of the same. These operations are described as follows:

First, the DCRS processes an OSS’s source code (for two of the predetermined con-
secutive versions) to retrieve what are known as change logs. A change log provides 
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information regarding the modifications that have been made from time to time in the 
source code. These modifications could be for various purposes, such as defect fixing, 
refactoring, enhancements, and so on. Each and every change incurred in the source 
code, no matter how big or small, is recorded in the change log and thus forms an indi-
vidual change or modification record. An individual change record provides information 
such as:

• The Timestamp of commit (i.e., recording the changes with Git repository)
• Unique change identifier
• Unique defect identifier, if the change has fixed any bug(s)
• An optional change description
• List of the modified source code files, along with the changes in LOC for each 

changed file

Figure 5.21 presents the generation of change logs by the DCRS for the Android applica-
tion of “Mms.”

Processing of both the version’s source code is necessary, because a change log contains 
change information from the beginning of time (i.e., when the software was released for 
the first time), but we are interested only in the changes that have been incurred during 
the transition from previous version to the next one (e.g., from Android v4.0 to v4.2, for our 
demonstration of DCRS on Android OS).

Figure  5.22 depicts a change log record for an Android application package named 
“Mms”:

In the next operation, these change logs are further processed, one record at a time, 
to get defect records (i.e., changes that have been made for defect fixes, not for other 
reasons like refactoring, enhancement, etc.). Defect IDs and the defect description, if 
any, are retrieved from the defect logs. Thus, a defect record differs from a change 
record only in one aspect that a defect record has at least one defect identifier. In other 
words, a defect log must contain the defect identifier(s) of the defect(s) that was/were 
fixed in the corresponding change. A description of the defect(s) may or may not be 
provided. In the latter case, a predefined value of description is stored for such defect 
records.

These defect IDs are finally mapped to classes in the source code. Only Java source code 
or class files are considered and other file formats are ignored. The defect data collected is 
thus used to accordingly generate various reports in .csv format, which are described later 
in this chapter.

Figure  5.23 presents the screen that generates various defect reports for the Android 
“Mms” Application.

The change logs required for the above process can only be obtained through the 
usage of appropriate Git Bash commands. Hence, Git Bash becomes a dependency for 
the DCRS, and if not installed and configured correctly in the system, DCRS will not 
work at all.

The entire DCRS system has been implemented in Java programming language 
(Java SE 1.7), using Eclipse RCP-Juno IDE. The data for required metrics for the class 
files of previous version of an OSS has been obtained using CKJM tool that covers 
a wide range of metrics (McCabe 1976; Chidamber and Kemerer 1994; Henderson 
1996; Martin 2002). The procedure for defect collection and reporting is presented in 
Figure 5.24.
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5.11.4 Data Source and Dependencies

For our demonstration, we’ve selected Android OS, with Git as its VCS. The two versions of 
Android OS, namely, Ice Cream Sandwich and Jelly Bean, have been considered for defect 
collection. The source code for both these versions has been obtained from Google’s own 
Git repository, which is hosted at the URL: https://android.googlesource.com.

It was observed that the source code for android was not available as a single package. 
Instead, the code was distributed in as many as 379 application packages of Android OS. 
These include the packages for kernel, build libraries, compilation headers, and the native 
applications that are included in the OS, such as gallery, email, contacts, photo viewer, 
calendar, telephony, music player, and so on.

FIGURE 5.21
Generation of change logs by DCRS.
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As we are interested only in the Java source code or class files, we have analyzed a few 
of the available Android application packages to determine the fraction of Java source 
code files in each of these packages. It was noted that there are significantly fewer number 
of Java source code files as compared to other files types, such as layout files, media files, 
string value files, and so on, in every application package that has been analyzed.

The Android application packages were “cloned” (downloaded) by the DCRS itself. This 
functionality is discussed in detail in Section 5.8.

5.11.5 Defect Reports

From the defect data collected as stated in the above section, the tool generates the follow-
ing primary reports.

5.11.5.1 Defect Details Report

This report provides useful information about each defect: The defect ID, description 
(if any), and the source file(s) (specifically Java source code files) that had been changed for 
fixing that defect.

The report also provides LOC changes source file-wise, corresponding to the defect that 
was fixed by modifying that particular file.

The fields that are contained in this report, corresponding to each defect, are the 
following:

• Java source file name or simply the class name
• Unique defect identifier
• Defect description, if any
• LOC inserted to fix the defect

TIMESTAMP 1386010429 

BEGINNING OF THE COMMIT RECORD
ClassZeroActivity: Queue messages instead of displaying them all at once

Making every AlertDialog immediately visible can lead to exhaustion
of graphics-related resources, typically memory, resulting in a
broken bufferqueue/hw renderer, and subsequent system crash.

Make ClassZeroActivity a singleTop activity, and queue incoming
messages if one is already being displayed.

Change-Id: Id7a2faa6997036507acad38f43fe17bf1f6a42cd
 
ENDING OF THE COMMIT RECORD BODY

AndroidManifest.xml                           |  1 +
src/com/android/mms/ui/ClassZeroActivity.java | 77 +++++++++++++++++++++------

2 files changed, 63 insertions(+), 15 deletions(-) 

FIGURE 5.22
Change record from the change log file of Android “Mms” application.
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• LOC deleted to fix the defect
• Total LOC changes to fix the defect (modification data was not available in the 

change logs)

Figure 5.25 presents the partial defect details report for Android “Mms” application.

FIGURE 5.23
Generation of defect reports by DCRS.
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5.11.5.2 Defect Count and Metrics Report

This report provides the total number of defects fixed source file-wise (i.e., total number of 
times a source file was modified to fix defects), along with total LOC changes, with CKJM 
and some additional metrics data. The metrics studied and incorporated are as follows 
(McCabe 1976; Chidamber and Kemerer 1994; Henderson 1996; Martin 2002):

Change logs and source
code for Git-based

software system

Retrieve LOC
changes class-wise
for every change

Processing to
obtain defect

logs

Get defect-
description,

if any

Obtain LOC
changes for
each defect
class-wise

Get defect/bug
count for each

source file

Obtain metrics
and total LOC

changes

Defect reports generation

Defect reports

Map/associate
defect-IDs with

source files

FIGURE 5.24
Flowchart for defect collection and reporting process.



194 Empirical Research in Software Engineering

• CK suite: WMC, NOC, DIT, LCOM, CBO, and RFC
• QMOOD suite: DAM, MOA, MFA, CAM, and NPM
• Martin’s metrics: Ca and Ce
• Miscellaneous: AMC, LCOM3, LOC, IC, and CBM

To summarize, the fields that are contained in this report are as follows:

• Java source file name
• Total number of defects for which the above source file has been modified
• Total LOC inserted for all the defects mapped to this class
• Total LOC deleted for all the defects mapped to this class
• Total LOC changes for all the defects mapped to this class
• List of metric values, corresponding to the above class, for each and every metric 

listed above

Figure 5.26 presents the partial defect count report for Android “Mms” application.

5.11.5.3 LOC Changes Report

This report gives the total number of LOC changes source file-wise, corresponding to each 
change (irrespective of the purpose of that change, i.e., defect fixing, refactoring, etc.).

To summarize, the fields that are contained in this report are as follows:

• Java source file name
• Total LOC inserted for all the changes (including defect fixes, enhancement, etc.) 

mapped to this class
• Total LOC deleted for all the changes mapped to this class
• Total LOC changes for all the changes mapped to this class

FIGURE 5.25
Example of defect details report records.
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Figure 5.27 presents the partial LOC changes report for Android “Mms” application.
In addition to these, the following auxiliary reports are also generated by the DCRS, 

which might be useful for a statistical comparison of the two versions of Android OS 
application we have considered:

5.11.5.4 Newly Added Source Files

This report gives the list of source files that were not present in the previous version of 
Android OS, but have been added in the subsequent version. The total number of defects 
for each class file and LOC changes are also included in the report.

FIGURE 5.26
Example of defect count report records.
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To summarize, the fields that are contained in this report are as follows:

• Java source file name
• Total number of defects for which the above source file has been modified
• Total LOC inserted for all the defects mapped to this class file
• Total LOC deleted for all the defects mapped to this class file
• Total LOC changes for all the defects mapped to this class file

Figure 5.28 presents the newly added source files report for Android “Mms” application.

5.11.5.5 Deleted Source Files

This report gives the list of source files that were present in the previous version of Android 
OS, but have been removed from the subsequent version. The total number of defects and 
LOC changes are also included in the report (considering the probability of removing a 
source file in the latest version after fixing some defects).

To summarize, the fields that are contained in this report are as follows:

• Java source file name
• Total number of defects for which the above source file has been modified
• Total LOC inserted for all the defects mapped to this class
• Total LOC deleted for all the defects mapped to this class
• Total LOC changes for all the defects mapped to this class

FIGURE 5.27
Example of LOC changes report records.
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Figure 5.29 presents the deleted source files report for Android “Mms” application.

5.11.5.6 Consolidated Defect and Change Report

This report is similar to the defect or bug count report described in Section 5.11.5.2, but 
the only difference here is that instead of reporting the LOC changes corresponding to all 
the defects mapped to a particular class, we report total LOC changes that are incurred 
in that class. These changes may not only be incurred for issue, defect, or bug fixing, but 

FIGURE 5.28
Example of newly added files report records.

FIGURE 5.29
Example of deleted files report records.
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for any other purpose, such as enhancement, refactoring, and so on. In other words, this 
report can be considered as the combination of bug count report and LOC changes report 
(described in Section 5.11.5.3), where we report the bug data from bug count report, but 
LOC changes incurred for each class are reported from the LOC changes report.

Figure  5.30 presents the partial consolidated defect and change report for Android 
“Mms” application.

5.11.5.7 Descriptive Statistics Report for the Incorporated Metrics

This report gives various statistical measures for each and every metric incorporated in 
the tool. The various statistical measures for a metric include the following:

• The minimum value
• The maximum value
• The arithmetic mean

FIGURE 5.30
Example of consolidated defect and change report records.
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• Standard deviation
• Median (or 50 percentile)
• 25 and 75 percentile

Figure 5.31 presents the descriptive statistics report for Android “Mms” application.

5.11.6 Additional Features

Apart from the core functionalities of defect collection and report generation, the DCRS 
also provides some additional features or functionalities that might be helpful for the end 
user. We have placed these functionalities under two broad categories given below.

5.11.6.1 Cloning of Git-Based Software Repositories

The system provides full support for “cloning” software repositories that employ Git as the 
VCS. “Cloning” simply means copying and pasting the entire software repository from a 
local or remote hosting server to the end user machine.

Different types of artifacts may be obtained from a software repository depending on 
the type of that repository. For example, source control repositories provide change logs. 
Source code may be obtained through code repositories. In our case, the DCRS supports 
cloning of code repositories that employ Git as the source control repository or VCS. The 
user can thus obtain the source code as well as Git change logs, which were described 
earlier. These two artifacts may be then employed for various purposes. For instance, the 
DCRS employs these artifacts for generating various types of defect reports we have stated 
earlier. Figure 5.32 presents the cloning operation of DCRS.

FIGURE 5.31
Example of descriptive statistics report records.
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FIGURE 5.32

Cloning operation of DCRS.
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5.11.6.2 Self-Logging

Self-logging or simply logging may be defined as a process of automatically recording 
events, data, and/or data structures about a tool’s execution to provide an audit trail. The 
recorded information can be employed by developers, testers, and support personal for 
identifying software problems, monitoring live systems, and for other purposes such as 
auditing and postdeployment debugging. Logging process generally involves the transfer 
of recorded data to monitoring applications and/or writing the recorded information and 
appropriate messages, if any, to files.

The tool also provided the user with the functionality to view the operational logs of the 
tool. These self-logs are stored as text file(s), indicating the different events, and/or oper-
ations that have occurred during the tool’s working along with their timestamp. These 
are ordered by the sequence and hence, the timestamp. Figure 5.33 presents an example 
 self-log file for DCRS.

The self-log file follows a daily rolling append policy, that is, the logs for a given day 
are appended to the same file, and a new file is created after every 24 hours. The previ-
ous day’s file is stored with a name that indicates the time of creation. Java Libraries of 
LogBack and SLF4J have been employed to implement self-logging in the DCRS. They can 
be  downloaded from http://www.slf4j.org/download.html.

FIGURE 5.32 (Continued)
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5.11.7 Potential Applications of DCRS

As stated in Section 5.11.5, we have demonstrated the working of DCRS on a sample Android 
OS application (Mms), and analyzed the data and results obtained from the  various gener-
ated reports. On the basis of the reports we obtained, we can state that the data collected 
using the DCRS can be potentially employed in the following applications.

5.11.7.1 Defect Prediction Studies

Defect proneness or defect prediction is a useful technique for predicting the defect-prone 
classes in a given software. Simply, it can be stated as the method of predicting the occur-
rence and/or number of defects in the software under consideration. For the past many 
years, defect prediction has been recognized as an important research field so as to orga-
nize a software project’s testing resources and facilities. For example, consider a scenario 
wherein we have limited time and/or resources available for software testing procedure 
and activities. In such a situation, appropriate defect prediction models can aid the testing 
personnel to focus more attentively on those classes that are highly probable to be defec-
tive in the later releases of the software. Various studies have been carried out in the past 
for predicting effective defect-proneness models, and also for  validating the effect of OO 
metrics on defect proneness (Aggarwal et al. 2009; Gondra 2008; Malhotra and Jain 2012).

We can thus state that the defect reports (defect count and metrics report, and consoli-
dated defect and change report) generated by the DCRS can be effectively employed for 
such studies.

FIGURE 5.33
Example self-log file of DCRS.
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5.11.7.2 Change-Proneness Studies

Change proneness may be defined as the likelihood that a given component of a  software 
would change in future. Along with defect prediction or defect proneness, change  proneness 
is also a crucial area and needs to be evaluated accurately. Prediction of  change-prone 
classes may aid in maintenance and testing. A class that is highly probable to change in the 
later releases of a software needs to be tested rigorously, and proper tracking is required for 
that class while modifying and maintaining the software. Therefore, various studies have 
also been carried out in the past for predicting effective change-proneness models, and to 
validate the impact of OO metrics on change proneness (Liang and Li 2007; Malhotra and 
Khanna 2013s).

The consolidated defect and change report generated by the DCRS can also be used for 
change analysis, and therefore for change-proneness studies as well.

5.11.7.3 Statistical Comparison

From the newly added and deleted files reports of the DCRS, a statistical comparison of 
the two versions of the Git-based OSS being considered (in this case, the Android OS) can 
be performed. Such kind of comparison can also be extended or generalized for a large 
number of Git-based OSS systems and applications. We may also identify some additional 
parameters for the comparison through defect and change data analysis, such as the total 
number of defects reported and total number of changes incurred in the previous version 
of the considered software.

5.11.8 Concluding Remarks

DCRS can be potentially employed in collection of defect data pertaining to OSS (which 
employs Git as the VCS) and generating useful reports for the same.

The gathered information can be effectively used for various purposes, including the 
following two applications:

• Defect prediction and related research work or studies, including analysis and 
validation of the effect of a given metric suite on defect proneness and the eval-
uation and comparison of various techniques in developing defect-proneness 
models, such as statistical and machine learning methods.

• Statistical comparison of two given versions of an OSS (which is based on Git 
VCS), in terms of the source files that have been added in the newer version, the 
source files that were present in the previous version but have been deleted in the 
newer version, and the defects that have been fixed by the newer version.

Exercises

5.1 Briefly describe the importance of mining software repositories.
5.2 How will you integrate repositories and bug tracking systems?
5.3 What are VCS? Compare and contrast different VCS.
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5.4 Differentiate between CVS, SVN, and Git repositories.
5.5 Consider an open source software. Select bug analysis and describe how to collect 

the project data using extraction techniques.
5.6 What is configuration management system? Explain various categories in con-

figuration management.
5.7 Clearly explain the applications of mining software repositories.
5.8 What are the various levels at which a researcher can collect data?
5.9 Explain with the help of the diagram the life cycle of a bug.
5.10 Describe various attributes of Git repository. Explain the procedure for collecting 

defects from open source repositories.
5.11 List out the attributes of a defect. Give the importance of each attribute.
5.12 What is the importance of mining email servers and chat boards?
5.13 Why is data mining on a Git repository faster than on a CVS repository?
5.14 Define the following terms:

 a. Baseline
 b. Tag
 c. Revision
 d. Release
 e. Version
 f. Edition
 g. Branch
 h. Head

5.15 What are the shortcomings of a CVCS? How does a DVCS overcome these 
shortcomings?

5.16 What is a commit record? Explain any five attributes present in a commit record 
of a CVS repository.

5.17 Illustrate the concept of branching and merging in the SVN repository.
5.18 How can the Bugzilla system be integrated with software repositories such as 

CVS and SVN?
5.19 What is a Git object? Explain all the fields of a Git object.
5.20 Explain the working of DCRS in detail.

Further Readings

An in-depth description the “Git” VCS may be obtained from:

S. Charon, and B. Straut, Pro Git, Apress, 2nd edition, 2014, https://git-scm.com/book.
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The documentation (user guide, mailing lists, etc.) of the “CVS” client—“TortoiseCVS”—
covers the basics and working of the CVS:

https://www.tortoisecvs.org/support.shtml.

Malhotra and Agrawal present a unique defect and change data-collection mechanism by 
mining CVS repositories:

R. Malhotra, and A. Agrawal, “CMS tool: Calculating defect and change data from 
software project repositories,” ACM Software Engineering Notes, vol. 39, no. 1, pp. 
1–5, 2014.

The following book documents and describes the detailed of Apache Subversion™ VCS:

B. Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato, Version Control with 
Subversion for Subversion 1.7, TBA, California, 2007, http://svnbook.red-bean.com/.

The following is an excellent tutorial at SVN repository:

SVN Tutorial, http://www.tutorialspoint.com/svn/svn_pdf_version.htm.

A detailed analysis software development history for change propagation in the source 
code has been carried out by Hassan and Holt:

A.E. Hassan, and R.C. Holt, “Predicting change propagation in software systems,” 
Proceedings of the 20th IEEE International Conference on Software Maintenance, IEEE 
Computer Society Press, Los Alamitos, CA, pp. 284–293, 2004.

Ohira et al. present a case study of FLOSS projects at SourceForge for supporting cross-
project knowledge collaboration:

M. Ohira, N. Ohsugi, T. Ohoka, and K. Matsumoto, “Accelerating cross-project knowl-
edge collaboration using collaborative filtering and social networks,” Proceedings 
of the 2nd International Workshop on Mining Software Repositories. ACM Press, New 
York, pp. 111–115, 2005.

An extensive comparison on software repositories can be obtained from:

http://en.wikipedia.org/wiki/Comparison_of_revision_control_software.
Version Control System Comparison. http://better-scm.shlomifish.org/comparison/

comparison.html.
D.J. Worth, and C. Greenough, “Comparison of CVS and Subversion,” RAL-TR-2006-001.

The details on Mercurial and Perforce repositories can be found in:

B. O’Sullivan, “Distributed revision control with Mercurial,” Mercurial Project, 2007.
L. Wingerd, Practical Perforce. O’Reilly, Sebastopol, CA, 2005.
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6
Data Analysis and Statistical Testing

The research data can be analyzed using various statistical measures and inferring 
 conclusions from these measures. Figure 6.1 presents the steps involved in analyzing and 
interpreting the research data. The research data should be reduced in a suitable form 
before it can be used for further analysis. The statistical techniques can be used to prepro-
cess the attributes (software metrics) so that they can be analyzed and meaningful conclu-
sions can be drawn out of them. After preprocessing of the data, the attributes need to be 
reduced so that dimensionality can be reduced and better results can be obtained. Then, 
the model is predicted and validated using statistical and/or machine learning techniques. 
The results obtained are analyzed and interpreted from each and every aspect. Finally, 
hypotheses are tested and decision about the accuracy of model is made.

This chapter provides a description of data preprocessing techniques, feature reduction 
methods, and tests for statistical testing. As discussed in Chapter 4, hypothesis testing can be 
done either without model prediction or can be used for model comparison after the models 
have been developed. In this chapter, we present the various statistical tests that can be applied 
for testing a given hypothesis. The techniques for model development, methods for model vali-
dation, and ways of interpreting the results are presented in Chapter 7. We explain these tests 
with software engineering-related examples so that the reader gets an idea about the practical 
use of the statistical tests. The examples of model comparison tests are given in Chapter 7.

6.1 Analyzing the Metric Data

After data collection, descriptive statistics can be used to summarize and analyze the nature 
of the data. The descriptive statistics are used to describe the data, for example, extracting 
attributes with very few data points or determining the spread of the data. In this section, 
we  present various statistical measures for summarizing data and graphical techniques for 
identifying outliers. We also present correlation analysis used to find the relation between 
attributes.

6.1.1 Measures of Central Tendency

Measures of central tendency are used to summarize the average values of the attributes. 
These measures include mean, median, and mode. They are known as measures of central 
tendency as they provide idea about the central values of the data around which all the 
other values tend to gather.

6.1.1.1 Mean

Mean can be computed by taking the average values of the data set. Mean is defined as the 
ratio of sum of values of the data points to the total number of data points and is given as,
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Mean µ( ) =

=
∑ x

N
i

i

N

1

where:
xi (i = 1, . . . N) are the data points
N is the number of data points

For example, consider 28, 29, 30, 14, and 67 as values of data points.
The mean is ( ) . .28 29 30 14 67 5 33 6+ + + + =

6.1.1.2 Median

The median is that value which divides the data into two halves. Half of the number of 
data points are below the median values and half number of the data points are above the 
median values. For odd number of data points, median is the central value, and for even 
number of data points, median is the mean of the two central values. Hence, exactly 50% 
of the data points lie above the median values and 50% of data points lie below the median 
values. Consider the following data points:

	 8 15 5 20 6 35 10, , , , , ,

First, we need to arrange data in ascending order,

	 5 6 8 10 15 20 35, , , , , ,

The median is at 4th value, that is, 10. If one more additional data point 40 is added to the 
above distribution then,

	 5 6 8 10 15 20 35 40, , , , , , ,

Research data

Analysis and interpretation

Metric data analysis

Attribute reduction

Hypothesis testing

Performance evaluation
measures

Model development

Model validation

• Descriptive statistics
• Outlier analysis
• Correlation analysis
• Attribute selection
• Attribute extraction
• Parametric tests
• Nonparametric
   tests

• Recall, precision,
  accuracy, etc.
• MARE, MRE 

• Statistical analysis
• Machine learning 

• Leave-one-out
• Hold-out
• k-cross

Interpretation of
results

Model comparison tests
• Friedman
• Paired t-test
• Post hoc
   analysis

FIGURE 6.1
Steps for analyzing and interpreting data.
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Median = + =10 15

2
12 5.

Median is not useful, if number of categories in the ordinal type of scale are very low. 
In such cases, mode is the preferred measure of central tendency.

6.1.1.3 Mode

Mode gives the value that has the highest frequency in the distribution. For example, 
 consider Table 6.1, the second category of fault severity has the highest frequency of 50. 
Hence, 2 can be reported as the mode for Table 6.1 as it has the highest frequency.

Unlike the mean and median, the same distribution may have multiple values of mode. 
Consider Table 6.2, there are two categories of maintenance effort with same frequency: 
very high and medium. This is known as bimodal distribution.

The major disadvantage of mode is that it does not produce useful results when applied 
to interval/ratio scales having many values. For example, the following data points 
 represent the number of failures occurred per second, while testing a given software and 
are arranged in ascending order:

	 15 17 18 18 45 63 64 65 71 75 79, , , , , , , , , ,

It can be seen that the data is centered around 60–80 number of failures. But the mode 
of the distribution is 18, since it occurs twice in the distribution whereas the rest of the 
 values only occur once. Clearly, the mode does not represent the central values in this case. 
Hence, either other measures of central tendency will be useful in this case or the data 
should be organized in suitable class intervals before mode is computed.

6.1.1.4 Choice of Measures of Central Tendency

The choice of selecting a measure of central tendency depends on

 1. The scale type of data at which it is measured.
 2. The distribution of data (left skewed, symmetrical, right skewed).

TABLE 6.1

Faults at Severity Levels

Fault Severity Frequency 

0 23
1 19
2 50
3 17

TABLE 6.2

Maintenance Effort

Maintenance Effort Frequency 

Very high 15
High 10
Medium 15
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Table 6.3 depicts the relevant scale type of data for each statistical measure.
Consider the following data set:

	 18 23 23 25 35 40 42, , , , , ,

The mean, median, and mode are shown in Table 6.4, as each measure has different ways 
for computing “average” values. In fact, if the data is symmetrical, all the three measures 
(mean, median, and mode) have the same values. But, if the data is skewed, there will 
always be difference between these measures. Figure  6.2  shows the symmetrical and 
skewed distributions. The symmetrical curve is a bell-shaped curve, where all the data 
points are equally distributed.

Usually, when the data is skewed, the mean is a misleading measure for determining 
 central values. For example, if we calculate average lines of code (LOC) of 10 modules 
given in Table 6.5, it can be seen that most of the values of the LOC are between 200 and 400, 
but one module has 3,000 LOC. In this case, the mean will be 531. Only one value has influ-
enced the mean and caused the distribution to skew to the right. However, the median will 
be 265, since the median is based on the midpoint and is not affected by the extreme values 

TABLE 6.4

Descriptive Statistics

Measure Value

Mean 29.43
Median 25
Mode 23

Mode

(a) (b) (c)

Mean
median
mode Mode

Median

Mean

X X X

Median

MeanFr
eq

ue
nc

y

FIGURE 6.2
Graphs representing skewed and symmetrical distributions: (a) left skewed, (b) normal (no skew), and (c) right 
skewed.

TABLE 6.3

Statistical Measures with Corresponding Relevant Scale Types

Measures Relevant Scale Type

Mean Interval and ratio data that are not skewed.
Median Ordinal, interval, and ratio, but not useful for 

ordinal scales having few values.
Mode All scale types, but not useful for scales having 

multiple values.
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in the data distribution. Hence, the median better reflects the average LOC in  modules as 
compared to the mean and is the best measure when the data is skewed.

6.1.2 Measures of Dispersion

The measures of dispersion indicate the spread or the range of the distributions in the data 
set. Measures of dispersion include range, standard deviation, variance, and  quartiles. 
The  range is defined as the difference between the highest value and the lowest value 
in the  distribution. It is the easiest measure that can be quickly computed. Thus, for the 
 distribution of faults given in Table 6.5, the range of LOC will be

	 Range = − =3000 200 2800

The range of the two distributions may be different even if they have the same mean. 
The advantage of using range measure is that it is a simple to compute, and the disadvan-
tage is that it only takes into account the extreme values in the distribution and, hence, 
does not represent actual spread in the distribution. The interquartile range (IQR) can be 
used to overcome the disadvantage of the simple range measure.

The quartiles are used to compute the IQR of the distribution. The quartile divides 
the metric data into four equal parts. Figure 6.3 depicts the division of the data set into 
four equal parts. For the purpose of calculation of quartiles, the data is first required to 
be arranged in ascending order. The 25% of the metric data is below the lower quartile 
(25 percentile), 50% of the metric data is below the median value, and 75% of the metric data 
is below the upper quartile (75 percentile).

The lower quartile (Q1) is computed by the following methods:

 1. Computing the median of the data set
 2. Computing the median of the lower half of the data set

The upper quartile (Q3) is computed by the following methods:

 1. Computing the median of the data set
 2. Computing the median of the upper half of the data set

TABLE 6.5

Sample Data of LOC for 10 Modules

Module# LOC Module# LOC

1 200 6 270
2 202 7 290
3 240 8 300
4 250 9 301
5 260 10 3,000

Median Upper quartileLower quartile

1st part 2nd part 3rd part 4th part

FIGURE 6.3
Quartiles.
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The IQR is defined as the difference between upper quartile and lower quartile and is given as,

	 IQR = −Q Q3 1

For example, for Table 6.5, the quartiles are shown in Figure 6.4.

	 IQR = − = − =Q Q3 1 300 240 60

The standard deviation is used to measure the average distance a data point has from the 
mean. The standard deviation assesses the spread by calculating the distance of the data 
point from the mean. The standard deviation is large, if most of the data points are near to 
the mean. The standard deviation (σx) for the population is given as:

	
σ

µ
x

x

N
=

−( )∑ 2

where:
x is the given value
N is the number of values 
µ is the mean of all the values

Variance is a measure of variability and is the square of standard deviation.

6.1.3 Data Distributions

The shape of the distribution of the data is used to describe and understand the met-
rics data. Shape exhibits the patterns of distribution of data points in a given data set. 
A distribution can either be symmetrical (half of the data points lie to the left of the 
median and other half of the data points lie to the right of the median) or skewed (low 
and/or high data values are imbalanced). A bell-shaped curve is known as normal curve 
and is defined as, “The normal curve is a smooth, unimodel curve that is perfectly sym-
metrical. It has 68.3  percent of the area under the curve within one standard deviation of 
the mean” (Argyrous 2011). For example, for variable LOC the mean is 250 and standard 
deviation is 50 for the given 500 samples. For LOC to be normally distributed, 342 data 
points must be between 200 (250 − 50) and 300 (250 + 50). For normal curve to be sym-
metrical, 171 data points must lie between 200 and 250, and the same number of data 
points must lie between 250 and 300 (Figure 6.5).

Consider the mean and standard deviation of LOC for four different data sets with 500 data 
points shown in Table 6.6. Given the mean and standard deviation in Table 6.6, for data set 
1 to be normal, the range of LOC consisting 342 (68.3% of 500) data points should be between 
200 and 300. Similarly, in data set 2, 342 data points should have LOC ranges between 160 and 
280, and in data set 3, 342 data points should have ranges between 170 and 230.

Median

200 202 240 250 260 270 290 300 301 3,000

Q3Q1

FIGURE 6.4
Example of quartile.
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6.1.4 Histogram Analysis

The normal curves can be used to understand data descriptions. There are a number of 
methods that can be applied to analyze the normality of the data set. One of the methods 
is histogram analysis. Histogram is a graphical representation that depicts frequency of 
occurrence of range of values. For example, consider fault count given for three software 
systems in Table 6.7. The histograms for all the three data sets are shown in Figure 6.6. 
The normal curve is superimposed on the histogram to check the normality of the data. 
Figure 6.6 shows that the data set Data1 is normal. Figure 6.6 also shows that the data set 
Data2 is left skewed and data set Data3 is right skewed.

6.1.5 Outlier Analysis

Data points that lie away from the rest of the data values are known as outliers. These  values 
are located in an empty space and are extreme or unusual values. The presence of these outliers 
may adversely affect the results in data analysis. This is because of the following three reasons:

 1. The mean no longer remains a true representative to capture central tendency.
 2. In regression analysis, the values are squared hence the outliers may overinflu-

ence the results.
 3. The outlier may affect the data analysis.

200 250 300 

68.3%

34.15 34.15

FIGURE 6.5
Normal curve.

TABLE 6.6

Range of Distribution for Normal Data Sets

S. No. Mean Standard Deviation Ranges 

1 250 50 200–300
2 220 60 160–280
3 200 30 170–230
4 200 10 190–210

TABLE 6.7

Sample Fault Count Data

Fault Count Data1 35, 45, 45, 55, 55, 55, 65, 65, 65, 65, 75, 75, 75, 75, 75, 85, 85, 85, 85, 95, 95, 95, 
105, 105, 115

Data2 0, 2, 72, 75, 78, 80, 80, 85, 85, 87, 87, 87, 87, 88, 89, 90, 90, 92, 92, 95, 95, 98, 98, 
99, 102

Data3 20, 37, 40, 43, 45, 52, 55, 57, 63, 65, 74, 75, 77, 82, 86, 86, 87, 89, 89, 90, 95, 107, 
165, 700, 705
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For example, suppose that one calculates the average of LOC, where most values are 
between 1,000 and 2,000, but the LOC for one module is 15,000. Thus, the data point with 
the value 15,000 is located far away from the other values in the data set and is an outlier. 
Outlier analysis is carried out to detect the data points that are overinfluential and must be 
considered for removal from the data sets.

The outliers can be divided into three types: univariate, bivariate, and multivariate. 
Univariate outliers are influential data points that occur within a single variable. Bivariate 
outliers occur when two variables are considered in combination, whereas multivariate 
outliers occur when more than two variables are considered in combination. Once the out-
liers are detected, the researcher must make the decision of inclusion or exclusion of the 
identified outlier. The outliers generally signal the presence of anomalies, but they may 
sometimes provide interesting patterns to the researchers. The decision is based on the 
reason of the occurrence of the outlier.

Box plots, z-scores, and scatter plots can be used for detecting univariate and bivariate 
outliers.

6.1.5.1 Box Plots

Box plots are based on median and quartiles. Box plots are constructed using upper and 
lower quartiles. An example box plot is shown in Figure  6.7. The two boundary lines 
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FIGURE 6.6
Histogram analysis for fault count data given in Table 6.7: (a) Data1, (b) Data2, and (c) Data3.
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signify the start and end of the tail. These two boundary lines correspond to ±1.5  IQR. 
Thus, once the value of IQR is known, it is multiplied by 1.5. The values shown inside of 
the box plots are known to be within the boundaries, and hence are not considered to be 
extreme. The data points beyond the start and end of the boundaries or tail are considered 
to be outliers. The distance between the lower and the upper quartile is often known as 
box length.

The start of the tail is calculated as Q3 − 1.5 ×  IQR and end of the tail is calculated 
as Q3  +  1.5  ×  IQR. To avoid negative values, the values are truncated to the nearest 
values of the actual data points. Thus, actual start of the tail is the lowest value in the 
variable above (Q3 −  1.5 ×  IQR), and actual end of the tail is the highest value below 
(Q3 − 1.5 × IQR).

The box plots also provide information on the skewness of the data. The median lies in 
the middle of the box if the data is not skewed. The median lies away from the middle if 
the data is left or right skewed. For example, consider the LOC values given below for a 
software:

	 200 202 240 250 260 270 290 300 301 3000, , , , , , , , ,

The median of the data set is 265, lower quartile is 240, and upper quartile is 300. The IQR 
is 60. The start of the tail is 240 − 1.5 × 60 = 150 and end of the tail is 300 + 1.5 × 60 = 390. 
The actual start of the tail is the lowest value above 150,  that is, 200, and actual end of 
the tail is the highest value below 390, that is, 301. Thus, the case number 10 with value 
30,000 is above the end of the tail and, hence, is an outlier. The box plot for the given data 
set is shown in Figure 6.8 with one outlier 3,000.

A decision regarding inclusion or exclusion of the outliers must be made by the research-
ers during data analysis considering the following reasons:

 1. Data entry errors
 2. Extraordinary or unusual events
 3. Unexplained reasons

Outlier values may be present because of combination of data values present across more 
than one variable. These outliers are called multivariate outliers. Scatter plot is another 
visualization method to detect outliers. In scatter plots, we simply represent all the data 
points graphically. The scatter plot allows us to examine more than one metric variable at 
a given time.

Upper quartileLower quartileStart of
the tail

End of the
tail

Median 

FIGURE 6.7
Example box plot.
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6.1.5.2 Z-Score

Z-score is another method to identify outliers and is used to depict the relationship of a 
value to its mean, and is given as follows:

	
z-score =

−x µ
σ

where:
x is the score or value
µ is the mean
σ is the standard deviation

The z-score gives the information about the value as to whether it is above or below 
the mean, and by how many standard deviations. It may be positive or negative. The 
z-score values of data samples exceeding the threshold of ±2.5  are considered to be 
outliers. 

Example 6.1:

Consider the data set given in Table 6.7. Calculate univariate outliers for each variable 
using box plots and z-scores.

Solution:
The box plots for Data1, Data2, and Data3 are shown in Figure 6.9. The z-scores for 
data sets given in Table 6.7 are shown in Table 6.8.

To identify multivariate outliers, for each data point, the Mahalanobis Jackknife  distance 
D measure can be calculated. Mahalanobis Jackknife is a measure of the distance in 
 multidimensional space of each observation from the multivariate mean center of the 
observations (Hair et al. 2006). Each data point is evaluated using chi-square distribution 
with 0.001 significance value.
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FIGURE 6.8
Box plot for LOC values.
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TABLE 6.8

Z-Score for Data Sets

Case No. Data1 Data2 Data3 Z-scoredata1 Z-scoredata2 Z-scoredata3

1 35 0 20 −1.959 −3.214 −0.585
2 45 2 37 −1.469 −3.135 −0.488
3 45 72 40 −0.979 −0.052 −0.404
4 55 75 43 −0.489 −0.052 −0.387
5 55 78 45 −0.489 0.145 −0.375
6 55 80 52 −0.489 0.145 −0.341
7 65 80 55 −0.489 0.224 −0.330
8 65 85 57 0 0.224 −0.279
9 65 85 63 0 0.224 −0.273

10 65 87 65 0 0.224 −0.262
11 75 87 74 0 0.264 −0.234
12 75 87 75 0 0.303 −0.211
13 75 87 77 0.489 0.343 −0.211
15 75 89 86 0.489 0.422 −0.194
16 85 90 86 0.489 0.422 −0.194

120

100

80

60

40

20

120

100

80

60

40

20

800

600

400

200

0

0

Data1(a) (b)

(c)

Data2

Data3

25
24

23

∗1
∗2

∗∗

FIGURE 6.9
(a)–(c) Box plots for data given in Table 6.7.

(Continued)
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6.1.6 Correlation Analysis

This is an optional step followed in empirical studies. Correlation analysis studies the 
variation of two or more independent variables for determining the amount of cor-
relation between them. For example, if the relationship of design metrics to the size 
of the class is to be analyzed. This is to determine empirically whether the coupling, 
cohesion, or inheritance metric is essentially measuring size such as LOC. The model 
that predicts larger classes as more fault prone is not much useful such as these classes 
cover large part of the  system, and thus testing cannot be done very well (Briand et al. 
2000; Aggarwal et al. 2009). A nonparametric technique (Spearman’s Rho) for measur-
ing relationship between object-oriented (OO) metrics and size can be used, if skewed 
distribution of the design measures is observed. Hopkins calls a correlation coefficient 
value between 0.5 and 0.7 as large, 0.7 and 0.9 as very large, and 0.9 and 1.0 as almost 
perfect (Hopkins 2003).

6.1.7 Example—Descriptive Statistics of Fault Prediction System

Univariate and multivariate outliers are found in FPS study. To identify multivariate 
 outliers, for each data point, the Mahalanobis Jackknife distance is calculated. The input 
 metrics were normalized using min–max normalization. Min–max normalization performs 
a linear transformation on the original data (Han and Kamber 2001). Suppose that min A 
and max A are the minimum and maximum values of an attribute A. It maps the value v of 
A to v′ in the range 0–1 using the formula:

	
′ =

−
−

v
v A

A A
min

max min

Table 6.9 shows “min,” “max,” “mean,” “median,” “standard deviation,” “25% quartile,” 
and “75% quartile” for all metrics considered in FPS study. The following observations are 
made from Table 6.9:

• The size of a class measured in terms of lines of source code ranges from 0 to 2,313.
• The values of depth of inheritance tree (DIT) and number of children (NOC) 

are low in the system, which shows that inheritance is not much used in all the 

TABLE 6.8 (Continued )

Z-Score for Data Sets

Case No. Data1 Data2 Data3 Z-scoredata1 Z-scoredata2 Z-scoredata3

17 85 90 87 0.489 0.343 −0.205
18 85 92 89 0.489 0.422 −0.194
19 85 92 89 −1.463 −1.530 −0.652
20 95 95 90 0.979 0.540 −0.188
21 95 95 95 −0.956 −1.354 −0.813
22 95 98 107 0.979 0.659 −0.092
23 105 98 165 1.469 0.659 0.235
24 105 99 700 1.469 0.698 3.264
25 115 102 705 1.959 0.817 3.292
Mean 75 81.35 123.26
SD 20.41 25.29 176.63
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systems; similar results have also been shown by others (Chidamber et al. 1998; 
Cartwright and Shepperd 2000; Briand et al. 2000a).

• The lack of cohesion in methods (LCOM) measure, which counts the  number of classes 
with no attribute usage in common, has high values (upto 100) in KC1 data set.

The correlation among metrics is calculated, which is an important static quantity. As 
shown in Table 6.10, Gyimothy et al. (2005) and Basili et al. (1996) also calculated the cor-
relation among metrics. The values of correlation coefficient are interpreted using the 
threshold given by Hopkins (2003). Thus, in Table  6.10, the correlated values with cor-
relation coefficient >0.5 are shown in bold. The correlation coefficients shown in bold are 
significant at 0.01  level. In this data set, weighted methods per class (WMC), LOC, and 
DIT metrics are correlated with response for a class (RFC) metric. Similarly, the WMC and 
coupling between object (CBO) metrics are correlated with LOC metric. Therefore, it shows 
that these metrics are not totally independent and represent redundant information.

6.2 Attribute Reduction Methods

Sometimes the presence of a large number of attributes in an empirical study reduces the 
efficiency of the prediction results produced by the statistical and machine learning tech-
niques. Reducing the dimensionality of the data reduces the size of the hypothesis space and 
allows the methods to operate faster and more effectively. The attribute reduction methods 

TABLE 6.9

Descriptive Statistics for Metrics

Metric Min. Max. Mean Median
Std. 
Dev.

Percentile 
(25%)

Percentile 
(75%)

CBO 0 24 8.32 8 6.38 3 14
LCOM 0 100 68.72 84 36.89 56.5 96
NOC 0 5 0.21 0 0.7 0 0
RFC 0 222 34.38 28 36.2 10 44.5
WMC 0 100 17.42 12 17.45 8 22
LOC 0 2313 211.25 108 345.55 8 235.5
DIT 0 6 1 1 1.26 0 1.5

TABLE 6.10

Correlation Analysis Results

Metric CBO LCOM NOC RFC WMC LOC DIT

CBO 1
LCOM 0.256 1
NOC −0.03 −0.028 1
RFC 0.386 0.334 −0.049 1
WMC 0.245 0.318 0.035 0.628 1
LOC 0.572 0.238 −0.039 0.508 0.624 1
DIT 0.4692 0.256 −0.031 0.654 0.136 0.345 1
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involve either selection of subset of attributes (independent variables) by eliminating the 
attributes that have little or no predictive information (known as attribute selection), or 
 combining the relevant attributes into a new set of attributes (known as attribute extraction). 
Figure 6.10 graphically depicts the procedures of attribute selection and extraction methods.

For example, a researcher may collect a large amount of data that captures various constructs 
of the design to predict the probability of occurrence of fault in a module. However, much of 
the collected information may not have any relation or impact on the occurrence of faults. It is 
also possible that more than one attribute captures the same concept and hence is redundant. 
The irrelevant and redundant attributes only add noise to the data, increase computational 
time and may reduce the accuracy of the predicted models. To remove the noise and correla-
tion in the attributes, it is desirable to reduce data dimensionality as a preprocessing step of 
data analysis. The advantages of applying attribute reduction  methods are as follows:

 1. Improved model interpretability
 2. Faster training time
 3. Reduction in overfitting of the models
 4. Reduced noise

Hence, attribute reduction leads to improved computational efficiency, lower cost, increased 
problem understanding, and improved accuracy. Figure 6.11 shows the categories of attri-
bute reduction methods.
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FIGURE 6.10
Attribute reduction procedure.
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6.2.1 Attribute Selection

Attribute selection involves selecting a subset of attributes from a given set of attributes. 
For example, univariate analysis and correlation-based feature selection (CFS) techniques 
can be used for attribute subselection. Different methods, as discussed below, are available 
for metric selection. These methods can be categorized as wrapper and filter. Wrapper 
methods  use learning techniques to find subset of attributes whereas filter methods are 
independent of the learning technique. Wrapper methods use learning algorithm for select-
ing subsets of attributes, hence they are slower in execution as compared to filter methods 
that compute attribute ranking on the basis of correlation-based and information-centric 
measures. But at the same time filter methods may produce a subset that does not work 
very well with the learning technique as attributes are not tuned to specific prediction 
model. Figure 6.12 depicts the procedure of filter methods, and Figure 6.13 shows the pro-
cedure of wrapper methods. Examples of learning techniques used in Wrapper methods 
include Hill climbing, genetic algorithms, simulated annealing , *Tabu* search. Examples 
of techniques used in filter methods include correlation coefficient, mutual information, 
information gain. Two widely used methods for feature selection are explained in sections 
below.
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FIGURE 6.13
Procedure of wrapper method.
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6.2.1.1 Univariate Analysis

The univariate analysis is done to find the individual effect of each independent variable 
on the dependent variable. One of the purposes of univariate analysis is to screen out 
the independent variables that are not significantly related to the dependent variables. 
For example, in regression analysis, only the independent variables that are significant at 
0.05 significance level may be considered in subsequent model prediction using multivari-
ate analysis. The primary goal is to preselect the independent variables for multivariate 
analysis that seems to be useful predictors. The choice of methods in the univariate analy-
sis depends on the type of dependent variables being used.

In the univariate regression analysis, the independent variables are chosen based on the 
results of the significance value (see Section 6.3.2), whereas, in the case of other methods, 
the independent variables are ranked based on the values of the performance measures 
(see Chapter 7).

6.2.1.2 Correlation-Based Feature Selection

This is a commonly used method for preselecting attributes in machine learning methods. 
To incorporate the correlation of independent variables, a CFS method is applied to select the 
best predictors out of the independent variables in the data sets (Hall 2000). The best combina-
tions of independent variables are searched through all possible combinations of variables. CFS 
evaluates the best of a subset of independent variables, such as software metrics, by  considering 
the individual predictive ability of each attribute along with the degree of redundancy between 
them. Hall (2000) showed that CFS can be used in drastically reducing the dimensionality of 
data sets, while maintaining the performance of the machine learning methods.

6.2.2 Attribute Extraction

Unlike attribute selection, which selects the existing attributes with respect to their sig-
nificance values or importance, attribute extraction transforms the existing attributes 
and produces new attributes by combining or aggregating the original attributes so that 
useful information for model building can be extracted from the attributes. Principal 
component analysis is the most widely used attribute extraction technique in the 
literature.

6.2.2.1 Principal Component Method

Principal component method (or P.C. method) is a standard technique used to find the 
interdependence among a set of variables. The factors summarize the commonality of 
the variables, and factor loadings represent the correlation between the variables and the 
 factor. P.C. method maximizes the sum of squared loadings of each factor extracted in turn. 
The P.C. method aims at constructing new variable (Pi), called principal component (P.C.) 
out of a given set of variables X′js (j = 1, 2, …, k).
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All bij’s called loadings are worked out in such a way that the extracted P.C. satisfies the 
following two conditions:

 1. P.C.s are uncorrelated (orthogonal).
 2. The first P.C. (P1) has the highest variance, the second P.C. has the next highest 

variance, and so on.

The variables with high loadings help identify the dimension the P.C. is capturing, but this 
usually requires some degree of interpretation. To identify these variables, and interpret 
the P.C.s, the rotated components are used. As the dimensions are independent, orthogo-
nal rotation is used, in which the axes are maintained at 90  degrees. There are  various 
 strategies to perform such rotation. This includes quartimax, varimax, and equimax 
orthogonal  rotation. For detailed description refer Hair et al. (2006) and Kothari (2004).

Varimax method maximizes the sum of variances of required loadings of the factor matrix 
(a table displaying the factor loadings of all variables on each factor).Varimax rotation is 
the most frequently used strategy in literature. Eigenvalue (or latent root) is associated 
with each P.C. It refers to the sum of squared values of loadings relating to a dimension. 
Eigenvalue indicates the relative importance of each dimension for the  particular set of vari-
ables being analyzed. The P.C. with eigenvalue >1 is taken for interpretation (Kothari 2004).

6.2.3 Discussion

It is useful to interpret the results of regression analysis in the light of results obtained from 
P.C. analysis. P.C. analysis shows the main dimensions, including independent variables 
as the main drivers for predicting the dependent variable. It would also be interesting to 
observe the metrics included in dimensions across various replicated studies; this will help 
in finding differences across various studies. From such observations, the recommendations 
regarding which independent variable appears to be redundant and need not be  collected 
can be derived, without losing a significant amount of design information (Briand and Wust 
2002). P.C. analysis is a widely used method for removing redundant variables in neural 
networks.

The univariate analysis is used in preselecting the metrics with respect to their signifi-
cance, whereas CFS is the widely used method for preselecting independent variables in 
machine learning methods (Hall 2000). In Hall (2003), the results showed that CFS chooses 
few attributes, is faster, and overall good performer.

6.3 Hypothesis Testing

As discussed in Section 4.7, hypothesis testing is an important part of empirical research. 
Hypothesis testing allows a researcher to reach to a conclusion on the basis of the statistical 
tests. Generally, a hypothesis is an assumption that the researcher wants to accept or reject. For 
example, an experimenter observes that birds can fly and wants to show that an animal is not 
a bird. In this example, the null hypothesis can be “the observed animal is a bird.” A critical 
area c is given to test a particular unit x. The test can be formulated as given below:

 1. If x ∈ c, then null hypothesis is rejected
 2. If x ∉ c, then null hypothesis is accepted
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In the given example, the x is attributes of animals with critical area c =  run, walk, sit, 
and so on. These are the values that will cause null hypothesis to be rejected. The test is 
“whether x ≠ fly”; if yes, reject null hypothesis, otherwise accept it. Hence, if x=fly that 
means that null hypothesis is accepted.

In real-life, a software practitioner may want to prove that the decision tree algorithms 
are better than the logistic regression (LR) technique. This is known as assumption of the 
researcher. Hence, the null hypothesis can be formulated as “there is no difference between 
the performance of the decision tree technique and the LR technique.” The assumption 
needs to be evaluated using statistical tests on the basis of data to reach to a conclusion. 
In  empirical research, hypothesis formulation and evaluation are the bottom line of research.

This section will highlight the concept of hypothesis testing, and the steps followed in 
hypothesis testing.

6.3.1 Introduction

Consider a setup where the researcher is interested in whether some learning technique 
“Technique X” performs better than “Technique Y” in predicting the change proneness of 
a class. To reach a conclusion, both technique X and technique Y are used to build change 
prediction models. These prediction models are then used to predict the change proneness 
of a sample data set (for details on training and testing of models refer Chapter 7) and 
based on the outcome observed over the sample data set, it is determined which technique 
is the better predictor out of the two. However, concluding which technique is better is a 
challenging task because of the following issues:

 1. The number of data points in the sample could be very large, making data analysis 
and synthesis difficult.

 2. The researcher might be biased towards one of the techniques and could overlook 
minute differences that have the potential of impacting the final result greatly.

 3. The conclusions drawn can be assumed to happen by chance because of bias in the 
sample data itself.

To neutralize the impact of researcher bias and ensure that all the data points contribute 
to the results, it is essential that a standard procedure be adopted for the analysis and 
synthesis of sample data. Statistical tests allow the researcher to test the research questions 
(hypotheses) in a generalized manner. There are various statistical tests like the student 
t-test, chi-squared test, and so on. Each of these tests is applicable to a specific type of data 
and allows for comparison in such a way that using the data collected from a small sample, 
conclusions can be drawn for the entire population.

6.3.2 Steps in Hypothesis Testing

In hypothesis testing, a series of steps are followed to verify a given hypothesis. Section 
4.7.5 summarizes the following steps; however, we restate them as these steps are  followed 
in each statistical test described in coming sections. The first two steps, however, are part of 
experimental design process and carried out while the design phase progresses.

Step 1: Define hypothesis—In the first step, the hypothesis is defined corresponding 
to the outcomes. The statistical tests are used to verify the hypothesis formed in 
the experimental design phase.
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Step 2: Select the appropriate statistical test—The appropriate statistical test is 
determined in experiment design on the basis of assumptions of a given statisti-
cal test.

Step 3: Apply test and calculate p-value—The next step involves applying the appro-
priate statistical test and calculating the significance value, also known as p-value. 
There are a series of parametric and nonparametric tests available. These tests are 
illustrated with example in the coming sections.

Step 4: Define significance level—The threshold level or critical value (also known as 
α-value) that is used to check the significance of the test statistic is defined.

Step 5: Derive conclusions—Finally, the conclusions on the hypothesis are derived 
using the results of the statistical test carried out in step 3.

6.4 Statistical Testing

The hypothesis formed in an empirical study is verified using statistical tests. In the 
 following subsections, the overview of statistical tests, the difference between one-tailed 
and two-tailed tests, and the interpretation of statistical tests are discussed.

6.4.1 Overview of Statistical Tests

The validity of the hypothesis is evaluated using the test statistic obtained by statistical 
tests. The rejection region is the region within which if a test value falls, then the null 
hypothesis is rejected. The statistical tests are applied on independent and dependent 
 variables and test value is computed using test statistic. After applying the statistical tests, 
the actual or test value is compared with the predetermined critical or p-value. Finally, a 
decision on acceptance or rejection of hypothesis is made (Figure 6.14).

6.4.2 Categories of Statistical Tests

Statistical tests can be classified according to the relationship between the samples, that 
is, whether they are independent or dependent (Figure 6.15). The decision on the sta-
tistical tests can be made based on the number of data samples to be compared. Some 
tests work on two data samples, such as t-test or Wilcoxon signed-rank, whereas oth-
ers work on  multiple data sets, such as Friedman or Kruskal–Wallis. Further, the tests 
can be categorized as parametric and nonparametric. Parametric tests are statistical tests 
that can be applied to a given data set, if it satisfies the underlying assumptions of the 
test. Nonparametric tests are used when certain assumptions are not satisfied by the data 
sample. The categorization is depicted in Figure 6.15. Univariate LR can also be applied 
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Compare test
value and
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validity of
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FIGURE 6.14
Steps in statistical tests.
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for testing the hypothesis for binary dependent variable. Table 6.11 depicts the summary 
of assumptions, data scale, and normality requirement for each statistical test discussed 
in this chapter.

6.4.3 One-Tailed and Two-Tailed Tests

In two-tailed test, the deviation of the parameter in each direction from the specified 
value is considered. When the hypothesis is specified in one direction, then one-tailed 
test is used. For example, consider the following null and alternative hypotheses for one-
tailed test:

	 H0 0: µ µ=

	 Ha : µ > µ0

where:
µ is the population mean
µ0 is the sample mean
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TABLE 6.11

Summary of Statistical Tests

Test Assumptions Data Scale Normality 

One sample t-test The data should not have any 
significant outliers.

Interval or ratio. Required

The observations should be 
independent. 

Two sample t-test Standard deviations of the two 
populations must be equal.

Interval or ratio. Required

Samples must be independent of 
each other.

Interval or ratio.

The samples are randomly drawn 
from respective populations.

Interval or ratio.

Paired t-test Samples must be related with each 
other.

Interval or ratio. Required

The data should not have any 
significant outliers.

Chi-squared test Samples must be independent of 
each other.

Nominal or ordinal. Not required

The samples are randomly drawn 
from respective populations.

F-test All the observations should be 
independent.

Interval or ratio. Required

The samples are randomly drawn 
from respective populations and 
there is no measurement error.

One-way ANOVA One-way ANOVA should be used 
when you have three or more 
independent samples.

Interval or ratio. Required

The data should not have any 
significant outliers.

The data should have homogeneity 
of variances.

Two-way ANOVA The data should not have any 
significant outliers.

Interval or ratio. Required

The data should have homogeneity 
of variances.

Wilcoxon signed test The data should consist of two 
“related groups” or “matched 
pairs.”

Ordinal or continuous. Not required

Wilcoxon–Mann–
Whitney test

The samples must be independent. Ordinal or continuous. Not required

Kruskal–Wallis test The test should validate three or 
more independent sample 
distributions.

Ordinal or continuous. Not required

The samples are drawn randomly 
from respective populations.

Friedman test The samples should be drawn 
randomly from respective 
populations.

Ordinal or continuous. Not required
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Here, the alternative hypothesis specifies that the population mean is strictly “greater than” 
sample mean. The below hypothesis is an example of two-tailed test:

	 H0 0: µ µ=

	 Ha or: µ µ µ µ< >0 0

Figure  6.16  shows the probability curve for a two-tailed test with rejection (or critical 
region) on both sides of the curve. Thus, the null hypothesis is rejected if sample mean lies 
in either of the rejection region. Two-tailed test is also called nondirectional test.

Figure 6.17 shows the probability curve for one-tailed test with rejection region on one 
side of the curve. One-tailed test is also referred as directional test.

6.4.4 Type I and Type II Errors

There can be two types of errors that occur in hypothesis testing. They are distinguished 
as type I and type II errors. Type I or type II error depends directly on the null hypoth-
esis. The goal of the test is to reject the null hypothesis. A statistical test can either reject 
(prove false) or fail to reject (fail to prove false) a null hypothesis, but can never prove it 
to be true.

Type I error is the probability of wrongly rejecting the null hypothesis when the null 
hypothesis is true. In other words, a type I error occurs when the null hypothesis of no 
difference is rejected, even when there is no difference. A type I error can also be called as 
“false positive”; a result when an actual “hit” is erroneously seen as a “miss.” Type I error 
is denoted by the Greek letter alpha (α). This means that it usually equals the significance 

FIGURE 6.16
Probability curve for two-tailed test.

FIGURE 6.17
Probability curve for one-tailed test.



229Data Analysis and Statistical Testing

level of a test. Type II error is defined as the probability of wrongly not rejecting the null 
hypothesis when the null hypothesis is false. In other words, a type II error occurs when 
the null hypothesis is actually false, but somehow, it fails to get rejected. It is also known 
as “false negative”; a result when an actual “miss” is erroneously seen as a “hit.” The rate 
of the type II error is denoted by the Greek letter beta (β) and related to the power of a test 
(which equals 1 − β). The definitions of these errors can also be tabularized as shown in 
Table 6.12.

6.4.5 Interpreting Significance Results

If the calculated value of a test statistic is greater than the critical value for the test then the 
alternative hypothesis is accepted, else the null hypothesis is accepted and the alternative 
hypothesis is rejected.

The test results provide calculated p-value. This p-value is the exact level of significance 
for the outcome. For example, if the p-value reported by the test is 0.01, then the confidence 
level of the test is (1 − 0.01) × 100 = 99% confidence. The obtained p-value is compared 
with the significance value or critical value, and decision about acceptance or rejection 
of the hypothesis is made. If the p-value is less than or equal to the significance value, 
the null hypothesis is rejected. The various tables for obtaining p-values and various test 
 statistic values are presented in Appendix I. The appendix lists t-table test values, chi-
square test values, Wilcoxon–Mann–Whitney test values, area under the normal distribu-
tion table, F-test table at 0.05 significance level, critical values for two-tailed Nemenyi test 
at 0.05  significance level, and critical values for two-tailed Bonferroni test at 0.05 signifi-
cance level.

6.4.6 t-Test

W. Gossett designed the student t-test (Student 1908). The purpose of the t-test is to 
determine whether two data sets are different from each other or not. It is based on the 
assumption that both the data sets are normally distributed. There are three variants of 
t-tests:

 1. One sample t-test, which is used to compare mean with a given value.
 2. Independent sample t-test, which is used to compare means of two independent 

samples.
 3. Paired t-test, which is used to compare means of two dependent samples.

6.4.6.1 One Sample t-Test

This is the simplest type of t-test that determines the difference between the mean of a 
data set from a hypothesized value. In this test, the mean from a single sample is collected 

TABLE 6.12

Types of Errors

H0 True H0 False

Reject H0 Type I error (false positive) Correct result (true positive)
Fail to reject H0 Correct result (true negative) Type II error (false negative)
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and is compared with a given value of interest. The aim of one sample t-test is to find 
whether there is sufficient evidence to conclude that there is difference between mean 
of a given sample from a specified value. For example, one sample t-test can be used to 
 determine whether the average increase in number of comment lines per method is more 
than five after improving the readability of the source code.

The assumption in the one sample t-test is that the population from which the sample is 
derived must have normal distribution. The following null and alternative hypotheses are 
formed for applying one sample t-test on a given problem:

H0: µ = µ0 (Mean of the sample is equal to the hypothesized value.)
Ha: µ ≠ µ0 (Mean of the sample is not equal to the hypothesized value.)

The t statistic is given below:

 t
n

=
−µ µ

σ
0

where:
µ represents mean of a given sample
σ represents standard deviation
n represents sample size

The above hypothesis is based on two tailed t-test. The degrees of freedom (DOFs) is 
n − 1 as t-test is based on the assumption that the standard deviation of the population 
is equal to the standard deviation of the sample. The next step is to obtain significance 
values (p-value) and compare it with the established threshold value (α). To obtain p-value 
for the given t-statistic, the t-distribution table needs to be referred. The table can only be 
used given the DOF.

Example 6.2:

Consider Table 6.13 where the number of modules for 15 software systems are shown. 
We want to conclude that whether the population from which sample is derived is on 
average different than the 12 modules.

TABLE 6.13

Number of Modules 

Module No. Module#
Module 

No. Module#
Module 

No. Module#

S1 10 S6 35 S11 24
S2 15 S7 26 S12 23
S3 24 S8 29 S13 14
S4 29 S9 19 S14 12
S5 16 S10 18 S15 5
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Solution:
The following steps are carried out to solve the example:

Step 1: Formation of hypothesis.
 In this step, null (H0) and alternative (Ha) hypotheses are formed. The hypoth-

eses for the example are given below:
H0: µ = 12 (Mean of the sample is equal to 12.)
Ha: µ ≠ 12 (Mean of the sample is not equal to 12.)

Step 2: Select the appropriate statistical test.
 The sample that belongs to a normally distributed population does not con-

tain any significant outliers and has independent observations. The mean 
of the number of modules can be tested using one sample t-test, as standard 
 deviation for the population is not known.

Step 3: Apply test and calculate p-value.
 It can be seen that the mean is 19.933 and standard deviation is 8.172. For one 

sample t-test, the value of t is,

	
t

n
=

−
=

−
=

µ µ
σ

0 19 93 12
8 17 15

3 76
.

.
.

 The DOF is 14 (15 − 1) in this example.
 To obtain the p-value for a specific t-statistic, we perform the following steps, 

referring to Table 6.14:
 1. For corresponding DOF, named df, identify the row with the desired DOF. 

In this example, the desired DOF is 14.
 2. Now, in the desired row, mark out the t-score values between which the 

computed t-score falls. In this example, the calculated t-statistic is 3.76. 
This t-statistic falls beyond the t-score of 2.977.

 3. Now, move upward to find the corresponding p-value for the selected t-score 
for either one-tail or two-tail significance test. In this example, the signifi-
cance value for one-tail test would be <0.005, and for two-tail test it would 
be <0.01.

 Given 14 DOF and referring the t-distribution table, the obtained p-value is 0.002.

TABLE 6.14

Critical Values of t-Distributions

Level of significance for one-tailed test
0.10 0.05 0.02 0.01 0.005

Level of significance for two-tailed test
df 0.20 0.10 0.05 0.02 0.01
1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
⋯ ⋯ ⋯ ⋯ ⋯ ⋯
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
⋯ ⋯ ⋯ ⋯ ⋯ ⋯
120 1.289 1.658 1.980 2.358 2.617
∞ 1.282 1.645 1.960 2.326 2.576
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Step 4: Define significance level.
 After obtaining p-value, we need to decide the threshold or α value. Hence, it 

can be seen that the results are statistically significant at 0.01 significance value 
for two-tailed test and 0.005 for one-tailed test.

 It is important to note that we will apply two-tail significance in all other 
examples of the chapter.

Step 5: Derive conclusions.
 As computed in Step 4, the results are statistically significant at 0.01  α value. 

Hence, we reject the null hypothesis and conclude that the average modules in a 
given software are statistically significantly different than 12 (t = 3.76, p = 0.002).

6.4.6.2 Two Sample t-Test

The two sample (independent sample) t-test determines the difference between the unknown 
means of two populations based on the independent samples drawn from the two popula-
tions. If the means of two samples are different from each other, then we conclude that the 
population are different from each other. The samples are either derived from two different 
populations or the population is divided into two random subgroups and the samples are 
derived from these subgroups, where each group is subjected to a different treatment (or tech-
nique). In both the cases, it is necessary that the two samples are independent to each other. 
The hypothesis for the application of this variant of t-test can be formulated as given below:

H0: µ1 = µ2 (There is no difference in the mean values of both the samples.)
Ha: µ1 ≠ µ2 (There is difference in the mean values of both the samples.)

The t-statistic for two sample t-test is given as,

	

t
n n

=
−

( ) + ( )
µ µ

σ σ

1 2

1
2

1 2
2

2

where:
µ1 and µ2 are the means of both the samples, respectively 
σ1 and σ2 are the standard deviations of both the samples, respectively 

The DOF is n1 + n2 − 1, where n1 and n2 are the sample sizes of both the samples. Now, 
obtain the significance value (p-value) and compare it with the established threshold value 
(α) for the computed t-statistic using the t-distribution.

Example 6.3:

Consider an example for comparing the properties of industrial and open source soft-
ware in terms of the average amount of coupling between modules (the other modules 
to which a module is coupled). The purpose of both the software is to serve as text 
 editors developed in Java language. In this example, we believe that the type of software 
affects the amount of coupling between modules.

Industrial: 150, 140, 172, 192, 186, 180, 144, 160, 188, 145, 150, 141
Open source: 138, 111, 155, 169, 100, 151, 158, 130, 160, 156, 167, 132

Solution:
Step 1: Formation of hypothesis.
 In this step, null (H0) and alternative (Ha) hypotheses are formed. The hypoth-

eses for the example are given below:



233Data Analysis and Statistical Testing

 H0:  µ1= µ2 (There is no difference in the mean amount of coupling between 
modules depicted by industrial and open source data sets.)

 Ha:  µ1 ≠ µ2 (There is difference in the mean amount of coupling between 
modules depicted by industrial and open source data sets.)

Step 2: Select the appropriate statistical test.
 As we are using two samples derived from different populations: one sample 

from industrial software and other from open source software, the samples are 
independent. Also the test variable, amount of coupling between modules, is 
measured at the continuous/interval measurement level. Hence, we need to 
use two sample t-test comparing the difference between average amount of 
coupling between modules derived from two independent samples.

Step 3: Apply test and calculate p-value.
 The summary of descriptive statistic of each sample is given in Table 6.15.
 The t-statistic is given below:

	

t
n n

=
−

( ) + ( )
=

−

( ) +

92µ µ

σ σ

1 2

1
2

1 2
2

2
2 2

162 33 143

20 01 12 21 99

. .

. . 112
2

( )
= 146.

 The DOF is 22 (12 + 12 − 2) in this example. Given 22 DOF and referring the 
t-distribution table, the obtained p-value is 0.043.

Step 4: Define significance level.
 As computed in Step 3, the p-value is 0.043. It can be seen that the results are 

 statistically significant at 0.05 significance value.
Step 5: Derive conclusions.
 The results are significant at 0.05 significance level. Hence, we reject the null 

hypothesis, and the results show that the mean amount of coupling between 
modules depicted by the industrial software is statistically significantly differ-
ent than the mean amount of coupling between modules depicted by the open 
source software (t = 2.146, p = 0.043).

6.4.6.3 Paired t-Test

The paired t-test can be used if the two samples are related or paired in some manner. The 
samples are same but subject to different treatments (or technique), or the pairs must  consist 
of before and after measurements on the same sample. We can formulate the  following null 
and alternative hypotheses for application of paired t-test on a given problem:

H0: µ1 − µ2 = 0 (There is no difference between the mean values of the two samples.)
Ha: µ1 − µ2 ≠ 0 (There exists difference between the mean values of the two samples.)

The measure of paired t-test is given as,

 t
nd

=
−µ µ

σ
1 2

TABLE 6.15

Descriptive Statistics

Descriptive Statistic Industrial Software Open Source Software

No. of observations 12 12
Mean 162.33 143.92
Standard deviation 20.01 21.99
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σd
d d n

n
=

− ( ) 
−

∑ ∑2 2

1

where:
n represents number of pairs and not total number of samples
d is difference between values of two samples

The DOF is n − 1. The p-value is obtained and compared with the established threshold 
value (α) for the computed t-statistic using the t-distribution.

Example 6.4:

Consider an example where values of the CBO (number of other classes to which a class 
is coupled to) metric is given before and after applying refactoring technique to improve 
the quality of the source code. The data is given in Table 6.16.

Solution:
Step 1: Formation of hypothesis.
 In this step, null (H0) and alternative (Ha) hypotheses are formed. The hypoth-

eses for the example are given below:
 H0:  µCBO1 = µCBO2 (Mean of CBO metric before and after applying  refactoring 

are equal.)
 Ha:  µCBO1 ≠ µCBO2 (Mean of CBO metric before and after applying  refactoring 

are not equal.)
Step 2: Select the appropriate statistical test.
 The samples are extracted from populations with normal distribution. As 

we are using samples derived from the same populations and analyzing the 
before and after effect of refactoring on CBO, these are related samples. We 
need to use paired t-test for comparing the difference between values of CBO 
derived from two dependent samples.

Step 3: Apply test and calculate p-value.
 We first calculate the mean values of both the samples and also calculate the 

 difference (d) among the paired values of both the samples as shown in Table 6.17.
 The t-statistic is given below:

	
σd

d d n

n
=

− ( )





−
=

− ( )



 =

∑ ∑2
2

2

1

12 8 15

14
0 743.

	
t

nd

= − = − =µ µ
σ
1 2 67 6 67 07

0 743 15
2 779

. .
.

.

 The DOF is 14 (15  −  1) in this example. Given 14  DOF and referring the 
t- distribution table, the obtained p-value is 0.015.

TABLE 6.16

CBO Values

CBO before refactoring 45 48 49 52 56 58 66 67 74 75 81 82 83 88 90

CBO after refactoring 43 47 49 52 56 57 66 67 74 73 80 82 83 87 90
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Step 4: Define significance level.
 As the computed p-value is 0.015, which is less than α = 0.05. Thus, the result is 

significant at α = 0.05.
Step 5: Derive conclusions.
 Fifteen classes were selected and CBO metric is calculated for these classes. 

The mean CBO is found to be 67.6. With the aim to improve the quality of these 
classes, the software developer applied refactoring technique on these classes. 
The mean of CBO metrics after applying refactoring is found to be 67.06. The 
reduction in the mean is found to be statistically significant at 0.05 significance 
level (p-value < 0.05). Hence, the software developer can reject the null hypoth-
esis and conclude that there is a statistically significant improvement in the 
mean value of CBO metric after refactoring technique is applied.

6.4.7 Chi-Squared Test

It is a nonparametric test, symbolically denoted as χ
2
 (pronounced as Ki-square). This test 

is used when the attributes are categorical (nominal or ordinal). It measures the distance of 
the observed values from the null expectations. The purpose of this test is to 

• Test the interdependence between attributes.
• Test the goodness-of-fit of models.
• Test the significance of attributes for attribute selection or attribute ranking.
• Test whether the data follows normal distribution or not.

The χ
2
 calculates the difference between the observed and expected frequencies and is 

given as 

 
χ2

2

=
−( )∑ Oij ij

ij

E

E

TABLE 6.17

CBO Values

CBO before Refactoring CBO after Refactoring Differences (d) 

45 43 2
48 47 1
49 49 0
52 52 0
56 56 0
58 57 1
66 66 0
67 67 0
74 74 0
75 73 2
81 80 1
82 82 0
83 83 0
88 87 1
90 90 0
µCBO1 = 67.6 µCBO2 = 67.07
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where:
Oij	is the observed frequency of the cell in the ith row and jth column
Eij is the expected frequency of the cell in the ith row and jth column

The expected frequency is calculated as below:

	
E

N N
N

row,column
row column= ×

where:
N is the total number of observations
Nrow is the total of all observations in a specific row
Ncolumn is the total of all observations in a specific column
Erow,column is the grand total of a row or column

The larger the difference of the observed and the expected values, the more is the deviation 
from the stated null hypothesis. The DOF is (row − 1) × (column − 1) for any given table. 
The expected values are calculated for each category of the categorical variable at each factor 
of the other categorical variable. Then, calculate the χ

2
 value for each cell. After  calculating 

individual χ
2
 value, add the individual χ

2
 values of each cell to obtain an  overall χ

2
 value. The 

overall χ
2
 value is compared with the tabulated value for (row − 1) ×		(column − 1) DOF. If the 

calculated χ
2
 value is greater than the tabulated χ

2
 value at critical value α, we reject the null 

hypothesis.

Example 6.5:

Consider Table 6.18 that consists of data for a particular software. It states the catego-
rization of modules according to three maintenance levels (high, medium, and low) 
and according to the number of LOC (high and low). A researcher wants to investigate 
whether LOC and maintenance level are independent of each other or not.

Step 1: Formation of hypothesis.
 In this step, null (Ho) and alternative (Ha) hypotheses are formed. The hypoth-

eses for the example are given below:
 H0: LOC and maintenance level are independent of each other.
 Ha: LOC and maintenance level are not independent of each other.

Step 2: Select the appropriate statistical test.
 The attributes explored in the example “maintenance level” and “LOC” 

are  ordinal. The data can be arranged in a bivariate table to investigate the 

TABLE 6.18

Categorization of Modules

Maintenance Level

TotalHigh Low Medium

LOC High 23 40 22 85

Low 17 30 20 67
Total 40 70 42 152
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 relationship between the two attributes. Thus, chi-square test is an appropriate 
test for checking the independence of the two attributes.

Step 3: Apply test and calculate p-value.
 Calculate the expected frequency of each cell according to the following formula:

	
E

N N
N

row,column
row column=

×

 Table 6.19 shows the calculated expected frequency of each cell.
 Now, calculate the chi-square value for each cell according to the following 

 formula as shown in Table 6.20:

	
χ2

2

=
−( )∑ Oij ij

ij

E

E

 Finally, calculate the overall χ2  value by adding all corresponding χ
2
 values of 

each cell.

	 χ2 0 017 0 018 0 093 0 022 0 023 0 118 0 291= + + + + + =. . . . . . .

Step 4: Define significance level.
 The DOF = (rows − 1) × (columns − 1) = (2 − 1) × (3 − 1) = 2. Given 2 DOF 

and referring the χ2-distribution table, the obtained p-value is 0.862  and χ2 
value is 5.991. It can be seen that the results are not statistically significant at 
0.05  significance value.

Step 5: Derive conclusions.
 The results are not statistically significant at 0.05 significance level. Hence, we 

accept the null hypothesis, and the results show that the two attributes “main-
tenance level” and “LOC” are independent (χ2 = 0.291, p = 0.862).

TABLE 6.19

Calculation of Expected Frequency

 

Maintenance Level

High  Low Medium

LOC High 85 ×
=

40
152

22 36.
85 70

152
39 14

×
= .

85 42
152

23 48
×

= .

Low 67 40
152

17 63
×

= .
67 70

152
30 85

×
= .

67 42
152

18 52
×
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TABLE 6.20

Calculation of χ2 Values

 

Maintenance Level

High Low Medium

LOC High ( . )
.

23 22 36
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=
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17 63
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=
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Example 6.6

Analyze the performance of four algorithms when applied on a single data set as given 
in Table 6.21. Evaluate whether there is any significant difference in the performance of 
the four algorithms at 5% significance level.

Solution:
Step 1: Formation of hypothesis.
 The hypotheses for the example are given below:

 H0: There is no significant difference in the performance of the algorithms.
 Ha: There is significant difference in the performance of the algorithms.

Step 2: Select the appropriate statistical test.
 To explore the “goodness-of-fit” of different algorithms when applied on a 

 specific data set, we can effectively use chi-square test.
Step 3: Apply test and calculate p-value.
 Calculate the expected frequency of each cell according to the following 

formula:

 E
O

n

i
i

n

= =∑ 1

where:
Oi is the observed value of ith observation
n is the total number of observations

 E=
+ + +

=
81 61 92 43

4
69 25.

 Next, we calculate individual χ2 values as shown in Table 6.22.

TABLE 6.21

Performance Values of Algorithms

Algorithm Performance

A1 81

A2 61
A3 92
A4 43

TABLE 6.22

Calculation of χ2 Values

Algorithm

Observed 
Frequency

Expected 
Frequency

O Eij ij−−( ) O Eij ij
2

−−( )
O E

E
ij ij

2

ij

−−( )
Oij Eij

A1 81 69.25 11.75 138.06 1.99
A2 61 69.25 −8.25 68.06 0.98
A3 92 69.25 22.75 517.56 7.47
A4 43 69.25 −26.25 689.06 9.95



239Data Analysis and Statistical Testing

 Now

	
χ2

2

20 393=
−( )

=∑ O E

E
ij ij

ij
.

 The DOF would be n −  1,  that is, (4 −  1) =  3. Given 3 DOF and referring 
the χ2-distribution table, we get χ2 value as 7.815 at α = 0.05, and the obtained 
p-value is 0.0001.

Step 4: Define significance level.
 It can be seen that the results are statistically significant at 0.05 significance 

value as the obtained p-value in Step 3 is less than 0.05.
Step 5: Derive conclusions.
 The results are significant at 0.05 significance level. Hence, we reject the null 

hypothesis, and the results show that there is significant difference in the per-
formance of four algorithms ( χ2  = 20.393, p = 0.0001).

Example 6.7:

Consider a scenario where a researcher wants to find the importance of SLOC metric, 
in deciding whether a particular class having more than 50 source LOC (SLOC) will 
be defective or not. The details of defective and not defective classes are provided in 
Table 6.23. Test the result at 0.05 significance value.

Solution:
Step 1: Formation of hypothesis.
 The null and alternate hypotheses are formed as follows:

 H0: Classes having more than 50  SLOC will not be defective.
 Ha: Classes having more than 50 SLOC will be defective.

Step 2: Select the appropriate statistical test.
 To investigate the importance of SLOC attribute in detection of defective and 

not defective classes, we can appropriately use chi-square test to find an attri-
bute’s importance.

Step 3: Apply test and calculate p-value.
 Calculate the expected frequency of each cell according to the following formula:

	
E

N N
N

row,column
row column= ×

 Table 6.24 shows the observed and the calculated expected frequency of each 
cell. We also then calculate the individual χ2  value of each cell.

 Now

	
χ2

2

=
−( )

=∑ O E

E
ij ij

ij
716.66

 The DOF = (rows − 1) × (columns − 1) = (2 − 1) × (2 − 1) = 1. Given 1 DOF and 
referring the χ2-distribution table, the obtained p-value is 0.00001.

TABLE 6.23

SLOC Values for Defective and Not Defective Classes

Defective (D) Not Defective (ND) Total

Number of classes having SLOC ≥ 50 200 200 400
Number of classes having SLOC < 50 100 700 800
Total 300 900 1,200
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Step 4: Define significance level.
 The tabulated χ2 value is 3.841. It can be seen that the results are statistically 

 significant at α = 0.05 significance value as the computed p-value is 0.00001.
Step 5: Derive conclusions.
 The results are significant at 0.05 significance level. Hence, we reject the null 

hypothesis, and the results show that classes having more than 50 SLOC value 
would be defective (χ2 = 716.66, p = 0.00001).

Example 6.8:

Consider a scenario where 40 students had developed the same program. The size of the pro-
gram is measured in terms of LOC and is provided in Table 6.25. Evaluate whether the size 
values of the program developed by 40 students individually  follows normal distribution.

Solution:
Step 1: Formation of hypothesis.
 The null and alternative hypotheses are as follows:

 H0: The data follows a normal distribution.
 Ha: The data does not follow a normal distribution.

Step 2: Select the appropriate statistical test.
 In the case of the normal distribution, there are two parameters, the mean (µ) 

and the standard deviation (σ) that can be estimated from the data. Based on 
the data, µ = 793.125 and σ = 64.81. To test the normality of data, we can use 
chi-square test.

Step 3: Apply test and calculate p-value.
 We first need to divide data into segments in such a way that the segments 

have the same probability of including a value, if the data actually is normally 

TABLE 6.24

Calculation of Expected Frequency

Observed Frequency Expected Frequency

O Eij ij−−( ) O Eij ij−−( )2
O E

E
ij ij

ij

−−( )2

Oij Eij

200 400 300×
=

1200
100

100 10,000 100

200 400 900×
=

1200
300

 
−100 10,000 33.33

100 800 300×
=

1200
200

 
−100 10,000 50

700 400 900
1200

300
×

=
 

400 160,000 533.33

TABLE 6.25

LOC Values

641 672 811 770 741 854 891 792 753 876
801 851 744 948 777 808 758 773 734 810
833 704 846 800 799 724 821 757 865 813
721 710 749 932 815 784 812 837 843 755
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distributed with mean µ and standard deviation σ. We divide the data into 
10 segments. We find the upper and lower limits of all the segments. To find 
upper limit (xi) of ith segment, the following equation is used:

P X x
i

i<( )=
10

where:
i = 1–9
X is N(µ, σ2)

 which in terms of the standard normal distribution corresponds to

	
P X z

i
s i<( )=

10

where:
i = 1–9
Xs is N(0,1)

z
x

i
i=
−µ
σ

 Using standard normal table, we can calculate the values of zi. We can then 
calculate the value of xi using the following equation:

x zi i= +σ µ

 The calculated values zi and xi are given in Table  6.26. Since, a normally 
 distributed variable theoretically ranges from  −∞ to +∞, the lower limit of 
 segment 1 is taken as –∞ and the upper limit of segment 10 is taken as +∞. The 
number of values that fall in each segment are also shown in the table. They 
represent the observed frequency (Oi). The expected number of values (Ei) in 
each segment can be calculated as 40/10 = 4.

 Now, 

	
χ2

2

=
−( )

=∑ O E

E
ij ij

ij
5

TABLE 6.26

Segments and χ2 Calculation

Segment 
No. zi

Lower 
Limit

Upper 
Limit Oi Ei (Oi−Ei)2

1 −1.28 −∞ 710.17 4 4 0
2 −0.84 710.17 738.68 3 4 1
3 −0.525 738.68 759.10 7 4 9
4 −0.255 759.10 776.60 2 4 4
5 0 776.60 793.13 3 4 1
6 0.255 793.13 809.65 4 4 0
7 0.525 809.65 827.15 6 4 4
8 0.84 827.15 847.56 4 4 0
9 1.28 847.56 876.08 4 4 0
10 – 876.08 +∞ 3 4 1
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 DOF = n − e − 1, where e is the number of parameters that must be estimated 
(mean [µ] and standard deviation [σ]) and n is the number of segments.

 In our example, DOF = 10 − 2 − 1 = 7. The computed p-value is 0.0499.
Step 4: Define significance level.
 At significance value (0.05), χ2 value from distribution table is 14.07. Since, the 

tabulated value of χ2  is greater than the calculated value, the results are not 
significant. The obtained p-value is also almost equal to α = 0.05.

Step 5: Derive conclusions.
 The results are not significant at 0.05 significance level. Hence, we accept the null 

hypothesis, which means that the data follows a normal distribution (χ2 = 5).

6.4.8 F-Test

F-test is used to investigate the equality of variance for two populations. A number 
of assumptions need to be checked for application of F-test, which includes the follow-
ing (Kothari 2004):

 1. The samples should be drawn from normally distributed populations.
 2. All the observations should be independent.
 3. The samples are randomly drawn from respective populations and there is no 

measurement error.

We can formulate the following null and alternative hypotheses for the application of 
F-test on a given problem with two populations:

H0: σ1
2 = σ2

2 (Variances of two populations are equal.)
Ha: σ1

2 ≠ σ2
2 (Variances of two populations are not equal.)

To test the above stated hypothesis, we compute the F-statistic as follows:

 F =
( )
( )
σ

σ

sample1

sample2

2

2

The variance of a sample can be computed by the following formula:

 σ
µ

sample =
−( )

−
=∑ x

n

i
i

n 2

1

1

where:
n represents the number of observations in a sample
xi represents the ith observation of the sample
µ represents the mean of the sample observations

We also designate v1 as the DOF in the sample having greater variance and v2 as the DOF in the 
other sample. The DOF is designated as one less than the number of observations in the cor-
responding sample. For example, if there are 5 observations in a sample, then the DOF is des-
ignated as 4 (5 − 1). The calculated value of F is compared with tabulated Fα (v1, v2) value at the 
desired α value. If the calculated F-value is greater than Fα, we reject the null hypothesis (H0).
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Example 6.9:

Consider Table 6.27 that shows the runtime performance (in seconds) of two learning 
techniques (A1 and A2) on several data sets. We want to test whether the populations 
have the same variances.

Solution:
Step 1: Formation of hypothesis.
 In this step, null (H0) and alternative (Ha) hypothesis are formed. The hypoth-

eses for the example are given below:
 H0: σ1

2 = σ2
2 (Variances of two populations are equal.)

 Ha: σ1
2 ≠ σ2

2 (Variances of two populations are not equal.)
Step 2: Select the appropriate statistical test.
 The samples belong to normal populations and are independent in nature. 

Thus, to investigate the equality of variances of two populations, we use F-test.
Step 3: Apply test and calculate p-value.
 In this example, n1 = 9 and n2 = 9. The calculation of two sample variances is as 

follows:
 We first compute the means of the two samples,

 µ1 = 11.33 and µ2 = 11.89

	
σ

µ
1
2

2

1

9

1

2 2

1
11 11 33 5 11 33

9 1
26=

−( )
−

=
−( ) + + −

−
==∑ x

n

i
i . ( . )

	
σ

µ
2
2

2

1

9

2

2 2

1
14 11 89 4 11 89

9 1
38 36=

−( )
−

=
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==∑ x

n

i
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.


 Now, compute the F-statistic,

	
F = = =

σ
σ

2
2

1
2

38 36
26

1 47
.

.  (because σ2
2 > σ1

2)

 DOF in Sample 1 (v2) = 8.
 DOF in Sample 2 (v1) = 8.
 The computed p-value is 0.299.
Step 4: Define significance level.
 We look up the tabulated value of F-distribution with v1  =  8  and v2  =  8  at 

α = 0.05, which is 3.44. The calculated value of F (F = 1.47) is lesser than the 
tabulated value and, as obtained in Step 3, the computed p-value is 0.299. The 
results are not significant at α = 0.05.

Step 5: Derive conclusions.
 Because the calculated value of F is less than the tabulated value, we accept the 

null hypothesis. Thus, we conclude that the variance in runtime performance 
of both the techniques do not differ significantly (F = 1.47, p = 0.299).

TABLE 6.27

Runtime Performance of Learning Techniques

A1 11 16 10 4 8 13 17 18 5

A2 14 17 9 5 7 11 19 21 4
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6.4.9 Analysis of Variance Test

Analysis of variance (ANOVA) test is a method used to determine the equality of sample 
means for three or more populations. The variation in data can be attributed to two 
reasons: chance or just specific causes (Harnett and Murphy 1980). ANOVA test helps 
in determining whether the cause of variance is “specific” or just by chance. It splits up 
the variance into “within samples” and “between samples.” A “within sample”  variance 
is attributed to just random effects and other influences that cannot be explained. 
However, a “between samples” variance is attributed to a “specific factor,” which can 
also be termed as the “treatment effect” (Kothari 2004). This helps a researcher in draw-
ing conclusions about different factors that can affect the dependent variable outcome. 
However, the ANOVA test only indicates that there is difference among different groups, 
but not which specific group is different. The various assumptions required for use of 
ANOVA test is as follows:

 1. The populations from which samples (observations) are extracted should be 
 normally distributed.

 2. The variance of the outcome variable should be equal for all the populations.
 3. The observations should be independent.

We also assume that all the other factors except the ones that are being investigated 
are adequately controlled, so that the conclusions can be appropriately drawn. One-
way ANOVA, also called the single factor ANOVA, considers only one factor for analy-
sis  in  the outcome of the dependent variable. It is used for a completely randomized 
design.

In general, we calculate two variance estimates, one “within samples” and the other 
“between samples.” Finally, we compute the F-value with these two variance estimates as 
follows:

 F =
Variance between samples
Variance within samples

The computed F-value is then compared with the F-limit for specific DOF. If the computed 
F-value is greater than the F-limit value, then we can conclude that the sample means 
 differ significantly.

6.4.9.1 One-Way ANOVA

This test is used to determine whether various sample means are equal for a quan-
titative outcome variable and a single categorical factor (Seltman 2012). The factor 
may have two or more number of levels. These levels are called “treatments.” All the 
subjects are exposed to only one level of treatment at a time. For example, one-way 
ANOVA can be used to determine whether the performance of different techniques 
(factors) vary significantly from each other when applied on a number of data sets. It is 
analogous to two independent samples t-test and is applied when we want to investi-
gate the equality of means of more than two samples; otherwise independent samples 
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t-test is sufficient. We can formulate the following null and alternative hypotheses for 
application of one-way ANOVA on a given problem:

H0: µ1 = µ2 = µ3 = ……. µk (Means of all the samples are equal.)
Ha: µ1 ≠ µ2 ≠ µ3 ≠ ….. µk (Means of all the samples are not equal, i.e., at least mean 

value of one sample is different than the others.)

The steps for computing F-statistic is as follows. Here, we assume k is the number of sam-
ples and n is the number of levels:

Step a: Calculate the means of each of the samples: µ1, µ2, µ3 … µk.
Step b: Calculate the mean of sample means.

 µ
µ µ µ µ

=
+ + +

Number of samples ( )
1 2 3 + k

k

Step c: Calculate the sum of squares of variance between the samples (SSBS).

 SSBS = − + − + − + + −( ) ( ) ( ) ( )n n n nk k1 1
2

2 2
2

3 3
2 2µ µ µ µ µ µ µ µ

Step d: Calculate the sum of squares of variance within samples (SSWS). To obtain 
SSWS, we find the deviation of each sample observation with their corresponding 
mean and square the obtained deviations. We then sum all the squared deviations 
values to obtain SSWS.

 SSWS for = ∑ − + ∑ − + ∑ − + + ∑ − =( ) ( ) ( ) ( )x x x x ii i i ki k1 1
2

2 2
2

3 3
2 2µ µ µ µ� 11 2 3, , …

Step e: Calculate the sum of squares for total variance (SSTV).

 SSTV SSBS SSWS= +

Step f: Calculate the mean square between samples (MSBS) and mean square 
within samples (MSWS), and setup an ANOVA summary as shown in Table 6.28.

The calculated value of F is compared with tabulated Fα (k − 1, n − k) value at the 
desired α value. If the calculated F-value is greater than Fα, we reject the null 
hypothesis (H0).

TABLE 6.28

Computation of Mean Square and F-Statistic

Source of Variation Sum of Squares (SS) DOF Mean Square (MS) F-Ratio

Between sample SSBS k − 1 MSBS=
SSBS

1K −
F−ratio=

MSBS
MSWS

Within sample SSWS n − k
MSWS=

SSWS
n k−

Total SSTV n − 1
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Example 6.10:

Consider Table 6.29 that shows the performance values (accuracy) of three techniques 
(A1, A2, and A3), which are applied on four data sets (D1, D2, D3, and D4) each. We want 
to investigate whether the performance of all the techniques calculated in terms of accu-
racy (refer to Section 7.5.3 for definition of accuracy) are equivalent.

Solution:
The following steps are carried out to solve the example.

Step 1: Formation of hypothesis.
 In this step, null (H0) and alternative (Ha) hypotheses are formed. The hypoth-

eses are given below:
 H0:  µ1 = µ2 = µ3 (Means of all the samples are equal, i.e., all techniques work 

equally well.)
 Ha:  µ1 ≠ µ2 ≠ µ3 (Means of all the samples are not equal, i.e., at least mean 

value of one technique is different than the others.)
Step 2: Select the appropriate statistical test.
 The given hypothesis checks the means of more than two sample populations. 

The data is normally distributed, and the homogeneity of variance of outcome 
variables is checked. The observations are independent, that is, at a time only 
one treatment is applied on a specific data set. Thus, we use one-way ANOVA 
to test the hypothesis as only one factor (technique) is used to determine the 
outcome (performance).

Step 3: Apply test and calculate p-value.
Step a: Calculate the means of each of the samples.

µ1 =
+ + +

=
60 40 70 80

4
62 5. ; µ2

4
=

+ + +
=

50 50 0 70
4

52 5. ; µ1 =
+ + +

=
40 40 50 30

4
40

Step b: Calculate the mean of sample means.

	
µ

µ µ µ µ
= 1 2 3+ + ...+

Number of samples ( )
k

k

	
µ =

+ +62 5 52 5 40
3

51 67
. .

.=

Step c: Calculate the SSBS.

	
SSBS = − + − + − + + −( ) ( ) ( ) ( )n n n nk k1 1

2
2 2

2
3 3

2 2µ µ µ µ µ µ µ µ

	
SSBS = + + =( ) ( ) ( )4 62 5 51 67 4 52 5 51 67 4 40 51 67 1016 68

2 2 2
. . . . . .− − −

TABLE 6.29

Accuracy Values of Techniques

Data Sets

Techniques

A1 A2 A3

D1 60 (x11) 50 (x12) 40 (x13)
D2 40 (x21) 50 (x22) 40 (x23)
D3 70 (x31) 40 (x32) 50 (x33)
D4 80 (x41) 70 (x42) 30 (x43)
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Step d: Calculate the SSWS.

	
SSWS for = ∑ + ∑ − + ∑ − + + ∑ − =( ) ( ) ( ) ( )x x x x ii i i ki k1 1

2
2 2

2
3 3

2 2
1− µ µ µ µ� , 22 3, …

	

SSWS = + +



 + + +

( ) ( ) ( ) ( )60 62 5 80 62 5 50 52 5 70 52 5
2 2 2 2− − − −. . . . 




+ + + −



 =( ) ( )40 40 30 40 1550

2 2− 

Step e: Calculate the SSTV.

	 SSTV SSBS SSWS= + = + =1016 68 1550 2566 68. .

Step f: Calculate MSBS and MSWS, and setup an ANOVA summary as shown 
in Table 6.30.

 The DOF for between sample variance is 2 and that for within sample vari-
ance is 9. For the corresponding DOF, we compute the F-value using the 
F-distribution table and obtain the p-value as 0.103.

Step 4: Define significance level.
 After obtaining the p-value in Step 3, we need to decide the threshold or α 

value. The calculated value of F at Step 3 is 2.95, which is less than the tabu-
lated value of F (4.26) with DOF being v1 = 2 and v2 = 9 at 5% level. Thus, the 
results are not statistically significant at 0.05 significance value.

Step 5: Derive conclusions.
 As the results are not statistically significant at 0.05  significance value, we 

accept the null hypothesis, which states that there is no difference in sample 
means and all the three techniques perform equally well. The difference in 
observed values of the techniques is only because of sampling fluctuations 
(F = 2.95, p = 0.103).

6.4.10 Wilcoxon Signed Test

Wilcoxon signed-ranks test is a nonparametric test that is used to perform pairwise 
 comparisons among different treatments (Wilcoxon 1945). It is also called Wilcoxon 
matched pairs test and is used in the scenario of two related samples (Kothari 2004). 
The Wilcoxon signed-ranks test is based on the following hypotheses:

H0: There is no statistical difference between the two treatments.
Ha: There exists a statistical difference between the two treatments.

TABLE 6.30

Computation of Mean Square and F-Statistic

Source of 
Variation

Sum of 
Squares 

(SS) DOF Mean Square (MS) F-Ratio
F-Limit 
(0.05)

Between sample 1016.68 3 − 1 = 2
MSBS =

1016.68
2

= 508.34 F =
508.34
172.22

= 2.95
F(2,9) = 4.26

Within sample 1550 12 − 3 = 9
MSWS =

1550
9

172 22= .

Total 2566.68 11
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To perform the test, we compute the differences among the related pair of values of both 
the treatments. The differences are then ranked based on their absolute values. We  perform 
the following steps while assigning ranks to the differences:

 1. Exclude the pairs where the absolute difference is 0. Let nr be the reduced number 
of pairs.

 2. Assign rank to the remaining nr pairs based on the absolute difference. The 
 smallest absolute difference is assigned a rank 1.

 3. In case of ties among differences (more than one difference having the same 
value), each tied difference is assigned an average of tied ranks. For example, 
if there are two differences of data value 5 each occupying 7th and 8th ranks, 
we would assign the mean rank, that is, 7.5 ([7  +  8]/2  =  7.5) to each of the 
difference.

We now compute two variables R+ and R−. R+ represents the sum of ranks assigned to dif-
ferences, where the data instance in the first treatment outperforms the second treatment. 
However, R− represents the sum of ranks assigned to differences, where the second treat-
ment outperforms the first treatment. They can be calculated by the following formula 
(Demšar 2006):

 

R = d

R = d

+
i

d >0

i

d <0

i

i

rank

rank

( )

( )

∑

∑−

where:
di is the difference between performance measures of first treatment from the second 

treatment when applied on n different data instances

Finally, we calculate the Z-statistic as follows, where Q = minimum (R+, R−).

 Z
Q n n

n n n
r r

r r r

=
− ( ) +( )

( ) +( ) +( )
1 4 1

1 24 1 2 1

If the Z-statistic is in the critical region with specific level of significance, then the null 
hypothesis is rejected and it is concluded that there is significant difference between two 
treatments, otherwise null hypothesis is accepted.

Example 6.11:

For example, consider an example where a researcher wants to compare the perfor-
mance of two techniques (T1 and T2) on multiple data sets using a performance measure 
as given in Table 6.31. Investigate whether the performance of two techniques measured 
in terms of AUC (refer to Section 7.5.6 for details on AUC) differs significantly.

Solution:
Step 1: Formation of hypothesis.
 The hypotheses for the example are given below:

 H0: The performance of the two techniques does not differ significantly.
 Ha: The performance of the two techniques differs significantly.
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Step 2: Select the appropriate statistical test.
 The two techniques have matched pairs as they are evaluated on the same 

data sets. Moreover, the performance measurement scale is continuous. As we 
need to investigate the comparative performance of the two techniques, we use 
Wilcoxon signed test.

Step 3: Apply test and calculate p-value.
 We assign ranks based on the basis of absolute difference between the per-

formances of two techniques. Here, n = 5. For each pair, ranks are given in 
Table 6.32.

 According to Table 6.32, we can see that nr = 4. We now compute R+ and R− as 
follows:

	

R d

R d

i

d

i

d

i

i

+

−

( ) = + =

( ) = + =

∑

∑

= rank

= rank

>0

< 0

1 2 5 3 5

2 5 4 6 5

. .

. .

 Thus, Q = minimum (R+, R−) = 3.5. The Z-statistic can be computed as follows:

	

Z
Q n n

n n n

r r

r r r

=
− ( ) +( )

( ) +( ) +( )
=

− ( ) +( )
( )

1 4 1

1 24 1 2 1

3 5 1 4 4 4 1

1 24 4 4

.

++( ) × +( )
= −

1 2 4 1
0 549.

 The obtained p-value is 0.581 with Z-distribution table, when DOF is (n − 1), 
that is, 1.

Step 4: Define significance level.
 The chi-square value is χ2

0.05 = 3.841. As the test statistic value (Z = −0.549) is 
less than χ2 value, we accept the null hypothesis. The obtained p-value in Step 
3 is greater than α = 0.05. Thus, the results are not significant at critical value 
α = 0.05.

TABLE 6.31

Performance Values of Techniques

Data Sets

Techniques

T1 T2

D1 0.75 0.65
D2 0.87 0.73
D3 0.58 0.64
D4 0.72 0.72
D5 0.60 0.70

TABLE 6.32

Computing R+ and R−

Data Set T1 T2 di |di| Rank(di)

D1 0.75 0.65 −0.10 0.10 2.5
D2 0.87 0.73 −0.14 0.14 4
D3 0.58 0.64 0.06 0.06 1
D4 0.72 0.72 0 0 –
D5 0.60 0.70 0.10 0.10 2.5
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Step 5: Derive conclusions
 As shown in Step 4, we accept the null hypothesis. Thus, we conclude that 

the performance of both the techniques do not differ significantly (Z = −0.549, 
p = 0.581).

6.4.11 Wilcoxon–Mann–Whitney Test (U-Test)

This test is used to ascertain the difference among two independent samples when the 
outcome variable is continuous or ordinal (Anderson et al. 2002). It is the nonparametric 
equivalent of the independent samples t-test. However, the underlying data does not need 
to be normal for the application of Wilcoxon–Mann–Whitney test. It is also commonly 
known as Wilcoxon rank-sum test or Mann–Whitney U-test. The test investigates whether 
the two samples drawn independently belong to the same population by checking the 
equality of the two sample means. It can be used when sample sizes are unequal. We can 
formulate the following null and alternative hypotheses for application of Wilcoxon–Mann–
Whitney test on a given problem:

H0: µ1 − µ2 =  0 (The two sample means belong to the same population and are 
identical.)

Ha: µ1  −  µ2  ≠  0 (The two sample means are not equal and belong to different 
populations.)

To perform the test, we need to compute the rank-sum statistics for all the observations in 
the following manner. We assume that the number of observations in sample 1 is n1 and 
the number of observations in sample 2 is n2. The total number of observations is denoted 
by N (N = n1 + n2):

 1. Arrange the data values of all the observations (both the samples) in ascending 
(low to high) order.

 2. Assign ranks to all the observations. The lowest value observation is provided 
rank 1, the next to lowest observation is provided rank 2,  and so on, with the 
 highest observation given the rank N.

 3. In case of ties (more than one observation having the same value), each tied obser-
vation is assigned an average of tied ranks. For example: if there are three observa-
tions of data value 20 each occupying 7th, 8th, and 9th ranks, we would assign the 
mean rank, that is, 8 ([7 + 8 + 9]/3 =	8) to each of the observation.

 4. We then find the sum of all the ranks allotted to observations in sample 1 and 
denote it with T1. Similarly, find the sum of all the ranks allotted to observations in 
sample 2 and denote it as T2.

 5. Finally, we compute the U-statistic by the following formula:

	 	
U = n .n +

n n +
T1 2

1 1
1

1
2

( )
−

 or

	 	
U = n .n +

n n +
T1 2

2 2
2

1
2

( )
−

It can be observed that the sum of the U-values obtained by the above two formulas is 
always equal to the product of the two sample sizes (n1.n2; Hooda 2003). It should be noted 
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that we should use the lower computed U-value as obtained by the two equations described 
above. Wilcoxon–Mann–Whitney test has two specific cases (Anderson et al. 2002; Hooda 
2003): (1) when the sample sizes are small (n1 < 7, n2 < 8) or (2) when the sample sizes 
are large (n1 ≥  10, n2 ≥  10). The p-values for the corresponding computed U-values are 
 interpreted as follows:

Case 1: When the sample sizes are small (n1 < 7, n2 < 8)
 To decide whether we should accept or reject the null hypothesis, we should derive 

the p-value from the tables shown in Appendix I. For the given values of n1 and n2, 
we find a p-value that is less than or equal to the computed U-value. For example, 
if the value of n1 and n2 is 4 and 5, respectively, and the computed U-value is 3, then 
the p-value would be 0.056. For a two-tailed test, the U-value should be computed 
for the lesser of the two computed U-values.

Case 2: When the sample sizes are large (n1 ≥ 10, n2 ≥ 10)
 For sample sizes, where each sample contains 10 or more data values, the  sampling 

U-distribution can be approximated by the normal distribution. In this case, we can 
calculate the mean (µU) and standard deviation (σU) of the normal population as 
follows:

	
µ σU

1 2
U

1 2 1 2=
.
2

=
. + +1

12
n n n n n n

;
( )

 Thus, the Z-statistic can be defined as,

Z =
U u

u

− µ
σ

 If the tabulated Z-value at a significance level α is greater than the computed 
Z-value, we reject the null hypothesis. Otherwise, we accept the alternate 
hypothesis.

Example 6.12:

Consider an example for comparing the coupling values of two different software (one 
open source and other academic software), to ascertain whether the two samples are 
identical with respect to coupling values (coupling of a module corresponds to the 
 number of other modules to which a module is coupled).

Academic: 89, 93, 35, 43
Open source: 52, 38, 5, 23, 32

Solution:
Step 1: Formation of hypothesis.
 In this step, null (H0) and alternative (Ha) hypotheses are formed. The hypoth-

eses for the example are given below:
 H0: µ1 − µ2 = 0 (The two samples are identical in terms of coupling values.)
 Ha: µ1 − µ2 ≠ 0 (The two sample are not identical in terms of coupling values.)

Step 2: Select the appropriate statistical test.
 The two samples of our study are independent in nature, as they are collected 

from two different software. Also, the outcome variable (amount of coupling) 
is continuous or ordinal in nature. The data may not be normal. Hence, we 
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use the Wilcoxon–Mann–Whitney test for comparing the differences among 
coupling values of an academic and open source software.

Step 3: Apply test and calculate p-value.
 In this example, n1 = 4, n2 = 5, and N = 9. Table 6.33 shows the arrangement of 

all the observations in ascending order, and the ranks allocated to them.
Sum of ranks assigned to observations in Academic software (T1) = 4 + 6 + 8 + 9 = 27.
Sum of ranks assigned to observations in open source software 

(T2) = 1 + 2 + 3 + 5 + 7 = 18.
 The U-statistic is given below:

 
U = n .n +

n n +
T1 2

1 1
1

1
2

+
+1

2

( )
−

=
( )

− =4 5
4 4

27 3.

 
U = n .n +

n n +
T1 2

2 2
2

1
2

= +
+1

2

( )
−

( )
− =4 5

5 5
18 17.

 We compute the p-value to be 0.056 at α = 0.05 for the values of n1 and n2 as 
4 and 5, respectively, and the U-value as 3.

Step 4: Define significance level.
 As the derived p-value of 0.056, in Step 3, is greater than 2α = 0.10, we accept 

the null hypothesis at α = 0.05. Thus, the results are not significant at α = 0.05.
Step 5: Derive conclusions.
 As shown in Step 4, we accept the null hypothesis. Thus, we conclude that 

the coupling values of the academic and open source software do not differ 
 significantly (U = 3, p = 0.056).

Example 6.13:

Let us consider another example for large sample size, where we want to ascertain 
whether the two sets of observations (sample 1 and sample 2) are extracted from identi-
cal populations by observing the cohesion values of the two samples.

Sample 1: 55, 40, 71, 59, 48, 40, 75, 46, 71, 72, 58, 76
Sample 2: 46, 42, 63, 54, 34, 46, 72, 43, 65, 70, 51, 70

TABLE 6.33

Computation of Rank Statistics for 
Coupling Values of Two Software

Observations Rank Sample Name

5 1 Open source
23 2 Open source
32 3 Open source
35 4 Academic
38 5 Open source
43 6 Academic
52 7 Open source
89 8 Academic
93 9 Academic
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Solution:
Step 1: Formation of hypothesis.
 In this step, null (H0) and alternative (Ha) hypotheses are formed. The hypoth-

esis for the example is given below:
 H0: µ1 − µ2 = 0 (The two samples are identical in terms of cohesion values.)
 Ha:  µ1  −  µ2  ≠  0 (The two sample are not identical in terms of cohesion 

values.)
Step 2: Select the appropriate statistical test.
 The two samples of our study are independent in nature as they are collected 

from two different software. Also, the outcome variable (amount of cohesion) is 
continuous or ordinal in nature. The data may not be normal. Hence, we use the 
Wilcoxon–Mann–Whitney test for comparing the differences among cohesion 
values of the two software.

Step 3: Apply test and calculate p-value.
 In this example, n1 = 12, n2 = 12, and N = 24. Table 6.34 shows the arrangement 

of all the observations in ascending order, and the ranks allocated to them.
 Sum of ranks assigned to observations in sample 1 (T1) = 2.5 + 2.5 + 7 + 9 

+ 12 + 13 + 14 + 19.5 + 19.5 + 21.5 + 23 + 24 = 167.5.
 Sum of ranks assigned to observations in sample 2 (T2) = 1 + 4 + 5 + 7 + 7 

+ 10 + 11 + 15 + 16 + 17.5 + 17.5 + 21.5 = 132.5.

TABLE 6.34

Computation of Rank Statistics for 
Cohesion Values of Two Samples

Observations Rank Sample Name

34 1 Sample 2
40 2.5 Sample 1
40 2.5 Sample 1
42 4 Sample 2
43 5 Sample 2
46 7 Sample 1
46 7 Sample 2
46 7 Sample 2
48 9 Sample 1
51 10 Sample 2
54 11 Sample 2
55 12 Sample 1
58 13 Sample 1
59 14 Sample 1
63 15 Sample 2
65 16 Sample 2
70 17.5 Sample 2
70 17.5 Sample 2
71 19.5 Sample 1
71 19.5 Sample 1
72 21.5 Sample 1
72 21.5 Sample 2
75 23 Sample 1
76 24 Sample 1
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 The U-statistic is given below:

 
U = n .n +

n n +
T1 2

1 1
1

1
2

= +
+1

2
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⋅
( )

− =12 12
12 12

167 5 54 5. .
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T1 2
2 2

2
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2
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132 5 89 5. .

 As the sample size is large, we can calculate the mean (µU) and standard devia-
tion (σU) of the normal population as follows:

 µ σU
1 2

U
1 2 1 2=

.
2

=
12 12

2
=72; =

. + +1

12
=

12 12 12+12+1

12
= 1

n n n n n n⋅ ( ) ⋅ ( )
77.32

 Thus, the Z-statistic can be computed as,

	
Z

U u

u
=

−
=

−
=−

µ
σ

54 5 72
17 32

1 012
.

.
.

 The obtained p-value from the normal table is 0.311.
Step 4: Define significance level.
 As computed in Step 3, the obtained p-value is 0.311. This means that the 

results are not significant at α = 0.05. Thus, we accept the null hypothesis.
Step 5: Derive conclusions.
 As shown in Step 4, we accept the null hypothesis. Thus, we conclude that the 

cohesion values of two software samples do not differ significantly (U = 54.5, 
p = 0.311).

6.4.12 Kruskal–Wallis Test

This test is used to investigate whether there is any significant difference among three or more 
independent sample distributions (Anderson et al. 2002). It is a nonparametric test that extends 
the Wilcoxon–Mann–Whitney test on k sample distributions. We can formulate the following 
null and alternative hypothesis for application of Kruskal–Wallis test on a given problem:

H0: µ1 = µ2 = … µk (All samples have identical distributions and belong to the same 
population.)

Ha: µ1 ≠ µ2 ≠ … µk (All samples do not have identical populations and may belong to 
different populations.)

The steps to compute the Kruskal–Wallis test statistic H are very similar to that of 
Wilcoxon–Mann–Whitney test statistic U. Assuming there are k samples of size n1, n2, … nk, 
 respectively, and the total number of observations N (N = n1 + n2 + … nk), we perform the 
following steps:

 1. Organize and sort the data values of all the observations (belonging to all the 
samples) in an ascending (low to high) order.
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 2. Next, allocate ranks to all the observations from 1 to N. The observation with the 
lowest data value is assigned a rank of 1, and the observation with the highest data 
value is assigned rank N.

 3. In case of two or more observations of equal values, assign the average of the 
ranks that would have been assigned to the observations. For example, if there 
are two observations of data value 40  each occupying 3rd and 4th ranks, we 
would assign the mean rank, that is, 3.5 ( 3 4 2 3 5+  = . ) to each of the 3rd and 4th 
observations.

 4. We then compute the sum of ranks allocated to observations in each sample and 
denote it as T1, T2… Tk.

 5. Finally, the H-statistic is computed by the following formula:

	 	
H

N N
T
n

Ni

ii

k

=
+( )

− +( )
=

∑12
1

3 1
2

1

The calculated H-value is compared with the tabulated χα
2

	value at (k − 1) DOF at the 
desired α value. If the calculated H-value is greater than χα

2

	value, we reject the null 
hypothesis (H0).

Example 6.14:

Consider an example (Table 6.35) where three research tools were evaluated by 17 dif-
ferent researchers and were given a performance score out of 100. Investigate whether 
there is a significant difference in the performance rating of the tools.

Solution:
Step 1: Formation of hypothesis.
 In this step, null (H0) and alternative (Ha) hypotheses are formed. The hypoth-

eses for the example are given below:
 H0:  µ1  =  µ2  =  µ3 (The performance rating of all tools does not differ 

significantly.)
 Ha: µ1 ≠ µ2 ≠ µ3 (The performance rating of all tools differ significantly.)

Step 2: Select the appropriate statistical test.
 The three samples are independent in nature as they are rated by 17 different 

researchers. The outcome variable is continuous. As we need to compare more 
than two samples, we use Kruskal–Wallis test to investigate whether there is a 
significant difference in the performance rating of the tools.

TABLE 6.35

Performance Score of Tools

Tools

Tool 1 Tool 2 Tool 3

30 65 55
75 25 75
65 35 65
90 20 85
100 45 95
95 75
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Step 3: Apply test and calculate p-value.
 In this example, n1 = 6, n2 = 5, n3 = 6, and N = 17. The arrangement of all the 

performance rating observations in ascending order and their corresponding 
ranks are shown in Table 6.36.
 Sum of ranks assigned to performance rating observations of Tool 1 (T1) = 

3 + 8 + 11 + 14 + 15.5 + 17 = 68.5.
 Sum of ranks assigned to performance rating observations of Tool 2 (T2) = 

1 + 2 + 4 + 5 + 8 = 20.
 Sum of ranks assigned to performance rating observations of Tool 3 (T3) = 

6 + 8 + 11 + 11 + 13 + 15.5 = 64.5.
 The H-statistic can be computed as follows:
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 The p-value obtained at 2 DOF is 0.029.
Step 4: Define significance level.
 We compute chi-square distribution with 2  (k  −  1) DOF at α  =  0.05. The 

 chi-square value is χ2
0.05 = 5.99. As the test statistic value (H = 7) is greater 

than χ2 value, we reject the null hypothesis. Thus, the results are significant 
with a p-value of 0.029.

Step 5: Derive conclusions.
 As shown in Step 4, we reject the null hypothesis. Thus, we conclude that the 

 performance rating of all tools differ significantly (H = 7, p = 0.029).

TABLE 6.36

Computation of Rank Kruskal–Wallis Test 
for Performance Score of Research Tools

Observations Rank
Sample 
Name

20 1 Tool 2
25 2 Tool 2
30 3 Tool 1
35 4 Tool 2
45 5 Tool 2
55 6 Tool 3
65 8 Tool 1
65 8 Tool 2
65 8 Tool 3
75 11 Tool 1
75 11 Tool 3
75 11 Tool 3
85 13 Tool 3
90 14 Tool 1
95 15.5 Tool 1
95 15.5 Tool 3
100 17 Tool 1
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6.4.13 Friedman Test

Friedman test is a nonparametric test, which can be used to rank a set of k treatments over 
multiple data instances or subjects (Friedman 1940). The test can be used to investigate 
the existence of any statistical difference between various treatments. It is generally used 
in a scenario where same set of treatments (techniques/methods) are repeatedly applied 
over n independent data instances or subjects. A uniform measure is required to com-
pute the performance of different treatments on n data instances. However, Friedman 
test does not require that the samples should be drawn from normal populations. To 
proceed with the test, we must compute the ranks based on the performance of differ-
ent treatments on n data instances. The Friedman test is based on the assumption that 
the measures over data instances are independent of each other. The hypotheses can be 
formulated as follows:

H0: There is no statistical difference between the performances of various treatments.
Ha: There is statistical significant difference between the performances of various 

treatments.

The steps to compute the Friedman test statistic χ
2

 are as follows. Assuming there are k 
treatments that are applied on n independent data instances each.

 1. Organize and sort the data values of all the treatments for a specific data instance or 
data set in descending (high to low) order. Allocate ranks to all the observations from 
1 to k, where rank 1 is assigned to the best performing treatment value and rank k to 
the worst performing treatment. In case of two or more observations of equal values, 
assign the average of the ranks that would have been assigned to the observations.

 2. We then compute the total of ranks allocated to a specific treatment on all the data 
instances. This is done for all the treatments and the rank total for k treatments is 
denoted by R1, R2, … Rk.

 3. Finally, the χ2-statistic is computed by the following formula:

 χ2 2

1

12
1

3 1=
+( )

− +( )
=

∑nk k
R n ki

i

k

where:
Ri is the individual rank total of the ith treatment
n is the number of data instances

The value of Friedman measure χ2 is distributed over k − 1 DOF. If the value of Friedman 
measure is in the critical region (obtained from chi-squared table with specific level of 
significance, i.e., 0.01 or 0.05 and k − 1 DOF), then the null hypothesis is rejected and it is 
concluded that there is difference among performance of different treatments, otherwise 
the null hypothesis is accepted.

Example 6.15:

Consider Table 6.37, where the performance values of six different classification  methods 
are stated when they are evaluated on six data sets. Investigate whether the performance 
of different methods differ significantly.
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Solution:
Step 1: Formation of hypothesis.
 In this step, null (H0) and alternative (Ha) hypotheses are formed. The hypoth-

eses for the example are given below:
 H0:  There is no statistical difference between the performances of various 

methods.
 Ha:  There is statistical significant difference between the performances of 

 various methods.
Step 2: Select the appropriate statistical test.
 As we need to evaluate the difference between the performances of  different 

 methods when they are evaluated using six data sets, we are evaluating 
 different treatments on different data instances. Moreover, there is no specific 
assumption for data normality. Thus, we can use Friedman test.

Step 3: Apply test and calculate p-value.
 We compute the rank total allocated to each method on the basis of perfor-

mance ranking of each method on different data sets as shown in Table 6.38.
 Now, compute the Friedman statistic,

	 	 	

χ2

2 2 2 2 212
6 6 6 1

13 5 13 5 18 19 29

= ( ) ( )

=
× × +( ) + + + +

∑12
+1

3 +12

nk k
R n k−

. . ++( ) − +( ) =33 3 6 6 1 16 112 . .

 DOF = k − 1 = 5

TABLE 6.37

Performance Values of Different Methods

Data Sets

Methods

M1 M2 M3 M4 M5 M6

D1 83.07 75.38 73.84 72.30 56.92 52.30
D2 66.66 75.72 73.73 71.71 70.20 45.45
D3 83.00 54.00 54.00 77.00 46.00 59.00
D4 61.93 62.53 62.53 64.04 56.79 53.47
D5 74.56 74.56 73.98 73.41 68.78 43.35
D6 72.16 68.86 63.20 58.49 60.37 48.11

TABLE 6.38

Computation of Rank Totals for Friedman Test

Data Sets

Methods

M1 M2 M3 M4 M5 M6

D1 1 2 3 4 5 6
D2 5 1 2 3 4 6
D3 1 4.5 4.5 2 6 3
D4 4 2.5 2.5 1 5 6
D5 1.5 1.5 3 4 5 6
D6 1 2 3 5 4 6
Rank total 13.5 13.5 18 19 29 33
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 We look up the tabulated value of χ2-distribution with 5  DOF, and find the 
 tabulated value as 15.086 at α = 0.01. The p-value is computed as 0.007.

Step 4: Define significance level.
 The calculated value of χ2 (χ2 = 16.11) is greater than the tabulated value. As the 

computed p-value in Step 3 is <0.01, the results are significant at α = 0.01.
Step 5: Derive conclusions.
 Since the calculated value of χ2 is greater than the tabulated value, we reject the 

null hypothesis. Thus, we conclude that the performance of six methods differ 
significantly (χ2 = 16.11, p = 0.007).

6.4.14 Nemenyi Test

Nemenyi test is a post hoc test that is used to compare multiple subjects (techniques/
tools/other experimental design settings) when the sample sizes are equal. It can be used 
after the application of a Kruskal–Wallis test or a Friedman test, if the null hypothesis of 
the corresponding test is rejected. Nemenyi test is applicable when we compare all the 
subjects with each other and want to investigate whether the performance of two  subjects 
differ significantly (Demšar 2006). We compute the critical distance (CD) value as follows:

 CD q
k k

n
=

+( )
α

1

6

Here k corresponds to the number of subjects and n corresponds to the number of obser-
vations for a subject. The critical values (qα) are studentized range statistic divided by √2. 
The computed CD value is compared with the difference between average ranks allocated 
to two subjects. If the difference is at least equal to or greater than the CD value, the two 
subjects differ significantly at the chosen significance level α.

Example 6.16:

Consider an example where we compare four techniques by analyzing the performance 
of the models predicted using these four techniques on six data sets each. We first apply 
Friedman test to obtain the average ranks of all the methods. The computed average 
ranks are shown in Table 6.39. The result of the Friedman test indicated the rejection 
of null hypothesis. Evaluate whether there are significant differences among different 
methods using pairwise comparisons.

Solution:
Step 1: Formation of hypothesis.
 In this step, null (H0) and alternative (Ha) hypotheses are formed. The hypoth-

eses for the example are given below:
 H01: The performance of T1 and T2 techniques do not differ significantly.
 Ha1: The performance of T1 and T2 techniques differ significantly.
 H02: The performance of T1 and T3 techniques do not differ significantly.
 Ha2: The performance of T1 and T3 techniques differ significantly.
 H03: The performance of T1 and T4 techniques do not differ significantly.

TABLE 6.39

Average Ranks of Techniques after 
Applying Friedman Test

T1 T2 T3 T4

Average rank 3.67 2.67 1.92 1.75
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 Ha3: The performance of T1 and T4 techniques differ significantly.
 H04: The performance of T2 and T3 techniques do not differ significantly.
 Ha4: The performance of T2 and T3 techniques differ significantly.
 H05: The performance of T2 and T4 techniques do not differ significantly.
 Ha5: The performance of T2 and T4 techniques differ significantly.
 H06: The performance of T3 and T4 techniques do not differ significantly.
 Ha6: The performance of T3 and T4 techniques differ significantly.

Step 2: Select the appropriate statistical test.
 The evaluation of different techniques is performed using Friedman test, and 

the result led to rejection of the null hypothesis. To analyze whether there are 
any significant differences among pairwise comparisons of all the techniques, 
we need to apply a post hoc test. The number of data sets for evaluating each 
technique is same (six each, i.e., equal sample sizes), thus we use Nemenyi test.

Step 3: Apply test and calculate CD.
 In this example, k = 4 and n = 6. The value of qα for four subjects at α = 0.05 is 

2.569. The CD can be calculated by the following formula:
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 We now find the differences among ranks of each pair of techniques as shown 
in Table 6.40.

Step 4: Define significance level.
 Table 6.41 shows the comparison results of critical difference and actual rank 

 differences among different techniques. The rank difference of only T1–T4 pair 
is higher than the computed critical difference. The rank differences of all other 

TABLE 6.40

Computation of Pairwise Rank 
Differences among Techniques 
for Nemenyi Test

Pair Difference

T1–T2 3.67 − 2.67 = 1.00
T1–T3 3.67 − 1.92 = 1.75
T1–T4 3.67 − 1.75 = 1.92
T2–T3 2.67 − 1.92 = 0.75
T2–T4 2.67 − 1.75 = 0.92
T3–T4 1.92 − 1.75 = 0.17

TABLE 6.41

Comparison of Differences 
for Nemenyi Test

Pair Difference

T1–T2 1.00 < 1.91
T1–T3 1.75 < 1.91
T1–T4 1.92 > 1.91
T2–T3 0.75 < 1.91
T2–T4 0.92 < 1.91
T3–T4 0.17 < 1.91
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technique pairs is not significant at α = 0.05. The rank difference of only T1–T4 
pair (shown in bold) is higher than the computed critical difference.

Step 5: Derive conclusions.
 As the rank difference of only T1–T4 pair is higher than the computed critical dif-

ference, we conclude that the T4 technique significantly outperforms T1 technique 
at significance level α = 0.05. The difference in performance of all other techniques 
is not significant. We accept all the null hypotheses H01–H06, except H03.

6.4.15 Bonferroni–Dunn Test

Bonferroni–Dunn test is a post hoc test that is similar to Nemenyi test. It can be used 
to compare multiple subjects, even if the sample sizes are unequal. It is generally used 
when all subjects are compared with a control subject (Demšar 2006). For example, all 
techniques are compared with a specific control technique A for evaluating the compara-
tive pairwise performance of all techniques with technique A. Bonferroni–Dunn test is also 
called Bonferroni correction and is used to control family-wise error rate. A family-wise 
error may occur when we are testing a number of hypotheses referred to as family of 
hypotheses, which are performed on a single set of data or samples. The probability that 
at least one hypothesis may be significant just because of chance (Type I error) needs to 
be controlled in such a case (Garcia et al. 2007). Bonferroni–Dunn test is mostly used after 
a Friedman test, if the null hypothesis is rejected. To control family-wise error, the criti-
cal value α is divided by the number of comparisons. For example, if we are comparing 
k − 1 subjects with a control subject then the number of comparisons is k − 1. The formula 
for new critical value is as follows:

 α α
New

Numberof comparisons
=

There is another method for performing the Bonferroni–Dunn’s test by computing the CD 
(same as Nemenyi test). However, the α values used are adjusted to control family-wise 
error. We compute the CD value as follows:

 CD q
k k

n
=

+( )
α

1
6

Here k corresponds to the number of subjects and n corresponds to the number of obser-
vations for a subject. The critical values (qα) are studentized range statistic divided by √2. 
Note that the number of comparisons in the Appendix table includes the control subject. 
We compare the computed CD with difference between average ranks. If the difference is 
less than CD, we conclude that the two subjects do not differ significantly at the chosen 
significance level α.

Example 6.17:

Consider an example where we compare four techniques by analyzing the performance 
of the models predicted using these four techniques on six data sets each. We first apply 
Friedman test to obtain the average ranks of all the methods. The computed average 
ranks are shown in Table 6.42. The result of the Friedman test indicated the rejection of 
the null hypothesis. Evaluate whether there are significant difference among M1 and all 
the other methods.
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Solution:
Step 1: Formation of hypothesis.
 In this step, null (H0) and alternative (Ha) hypotheses are formed. The hypoth-

eses for the example are given below:
 H01: The performance of T1 and T2 techniques do not differ significantly.
 Ha1: The performance of T1 and T2 techniques differ significantly.
 H02: The performance of T1 and T3 techniques do not differ significantly.
 Ha2: The performance of T1 and T3 techniques differ significantly.
 H03: The performance of T1 and T4 techniques do not differ significantly.
 Ha3: The performance of T1 and T4 techniques differ significantly.

Step 2: Select the appropriate statistical test.
 The example needs to evaluate the comparison of T1 technique with all other 

techniques. Thus, T1 is the control technique. The evaluation of different tech-
niques is performed using Friedman test, and the result led to rejection of 
the null hypothesis. To analyze whether there are any significant differences 
among the performance of the control technique and other techniques, we need 
to apply a post hoc test. Thus, we use Bonferroni–Dunn’s test.

Step 3: Apply test and calculate CD.
 In this example, k = 4 and n = 6. The value of qα for four subjects at α = 0.05 is 

2.394. The CD can be calculated by the following formula:
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 We now find the differences among ranks of each pair of techniques, as shown 
in Table 6.43.

Step 4: Define significance level.
 Table 6.44 shows the comparison results of critical difference and actual rank 

 differences among different techniques. The rank difference of only T1–T4 pair 
is higher than the computed critical difference. However, the rank difference 
of T1–T3 is quite close to the critical difference. The difference in performance 
of T1–T2 is not significant.

Step 5: Derive conclusions.
 As the rank difference of only T1–T4 pair is higher than the computed  critical 

difference. We conclude that the T4  technique significantly outperforms 
T1   technique at significance level α  =  0.05. We accept the null hypothesis 

TABLE 6.42

Average Ranks of Techniques

T1 T2 T3 T4

Average rank 3.67 2.67 1.92 1.75

TABLE 6.43

Computation of Pairwise Rank 
Differences among Techniques for 
Bonferroni–Dunn Test

Pair Difference

T1–T2 3.67 − 2.67 = 1.00
T1–T3 3.67 − 1.92 = 1.75
T1–T4 3.67 − 1.75 = 1.92
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H03 and reject hypotheses H01 and H02. As the rank difference of only T1–T4 pair 
(shown in bold) is higher than the computed critical difference.

6.4.16 Univariate Analysis

Univariate LR may be defined as a statistical method that works by formulating a mathemati-
cal model to depict the relationship between dependent variable and each of the independent 
variables, taken one at a time. As discussed in 6.2, one of the purposes of the univariate analy-
sis is to screen out the independent variables that are not significantly related to the dependent 
variables. The other goal is to test the hypothesis about the relationship of independent vari-
ables with the dependent variable. The choice of methods in the  univariate analysis depends 
on the type of dependent variables being used. The formula for univariate LR is given below:

 prob
e

e
X

A A X

A A X1

0 1 1

0 1 11
( )=

+
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+( )

where:
X1 is an independent variable
A1 is the weight
Ao is a constant

The sign of the weight indicates the direction of effect of the independent variable on the 
dependent variable. The positive sign indicates that independent variable has positive effect on 
the dependent variable, and negative sign indicates that the independent variable has negative 
effect on the dependent variable. The significance statistic is employed to test the hypothesis.

In linear regression, t-test is used to find the significant independent variables and, in 
LR, Wald test is used for the same purpose.

6.5 Example—Univariate Analysis Results for Fault Prediction System

We treat a class as faulty, if it contained at least one fault. Tables 6.45 through 6.48 provide 
the coefficient (B), standard error (SE), statistical significance (sig), odds ratio [exp (B)], and 
R2  statistic for each measure. The statistical significance estimates the importance or the sig-
nificance level for each independent variable. Odd ratio represents the probability of occur-
rence of an event divided by the probability of nonoccurrence of an event. The R2 statistic 
depicts the variance in the independent variable caused by the variance in the independent 
variable. A higher value of R2 means high accuracy. The metrics with a significant relationship 
to fault proneness, that is, below or at the significance (named as Sig. in Tables 6.45 through 
6.48) threshold of 0.01 are shown in bold (see Tables 6.45 through 6.48). Table 6.45 presents the 

TABLE 6.44

Comparison of Differences 
for Bonferroni–Dunn Test

Pair Difference

T1–T2 1.00 < 1.79
T1–T3 1.75 < 1.79
T1–T4 1.92 > 1.79
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TABLE 6.45

Univariate Analysis Using LR Method for HSF

Metric B SE Sig. Exp(B) R2

CBO 0.145 0.028 0.0001 1.156 0.263
WMC 0.037 0.011 0.0001 1.038 0.180
RFC 0.016 0.004 0.0001 1.016 0.160
SLOC 0.003 0.001 0.0001 1.003 0.268
LCOM 0.015 0.006 0.0170 1.015 0.100
NOC −18.256 5903.250 0.9980 0.000 0.060
DIT 0.036 0.134 0.7840 1.037 0.001

TABLE 6.46

Univariate Analysis Using LR Method for MSF

Metric B SE Sig. Exp(B) R2

CBO 0.276 0.030 0.0001 1.318 0.375
WMC 0.065 0.011 0.0001 1.067 0.215
RFC 0.025 0.004 0.0001 1.026 0.196
SLOC 0.010 0.001 0.0001 1.110 0.392
LCOM 0.009 0.003 0.0050 1.009 0.116
NOC −1.589 0.393 0.0001 0.204 0.090
DIT 0.058 0.092 0.5280 1.060 0.001

TABLE 6.47

Univariate Analysis Using LR Method for LSF

Metric B SE Sig. Exp(B) R2

CBO 0.175 0.025 0.0001 1.191 0.290
WMC 0.050 0.011 0.0001 1.052 0.205
RFC 0.015 0.004 0.0001 1.015 0.140
SLOC 0.004 0.001 0.0001 1.004 0.338
LCOM 0.004 0.003 0.2720 1.004 0.001
NOC −0.235 0.192 0.2200 0.790 0.002
DIT 0.148 0.099 0.1340 1.160 0.005

TABLE 6.48

Univariate Analysis Using LR Method for USF

Metric B SE Sig. Exp(B) R2

CBO 0.274 0.029 0.0001 1.315 0.336
WMC 0.068 0.019 0.0001 1.065 0.186
RFC 0.023 0.004 0.0001 1.024 0.127
SLOC 0.011 0.002 0.0001 1.011 0.389
LCOM 0.008 0.003 0.0100 1.008 0.013
NOC −0.674 0.185 0.0001 0.510 0.104
DIT 0.086 0.091 0.3450 1.089 0.001
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results of  univariate analysis for predicting fault proneness with respect to high-severity faults 
(HSF). From Table 6.45, we can see that five out of seven metrics were found to be very signifi-
cant (Sig. < 0.01). However, NOC and DIT metrics are not found to be significant. The LCOM 
metric is significant at 0.05 significance level. The value of R2 statistic is highest for SLOC and 
CBO metrics.

Table 6.46  summarizes the results of univariate analysis for predicting fault proneness 
with respect to medium-severity faults (MSF). Table 6.46 shows that the values of R2 statistic 
is the highest for SLOC metric. All the metrics except DIT are found to be significant. NOC 
has a negative coefficient, which implies that classes with higher NOC value are less fault 
prone.

Table 6.47 summarizes the results of univariate analysis for predicting fault proneness 
with respect to low-severity faults (LSF). Again, it can be seen from Table 6.47  that the 
value of R2 statistic is highest for SLOC metric. The results show that four out of seven 
metrics are found to be very significant. LCOM, NOC, and DIT metrics are not found to 
be significant.

Table 6.48 summarizes the results of univariate analysis for predicting fault proneness. The 
results show that six out of seven metrics were found to be very significant when the faults 
were not categorized according to their severity, that is, ungraded severity faults (USF). The 
DIT metric is not found to be significant and the NOC metric has a negative coefficient. This 
shows that the NOC metric is related to fault proneness but in an inverse manner.

Thus, the SLOC metric has the highest R2 value at all the severity of faults, which shows 
that it is the best predictor. The CBO metric has the second highest R2 value. The values of 
R2 statistic are more important as compared to the value of sig. as they show the strength 
of the correlation.

Exercises

6.1 Describe the measures of central tendency? Discuss the concepts with 
examples.

6.2 Consider the following data set on faults found by inspection technique for a 
given project. Calculate mean, median, and mode.

 100, 160, 166, 197, 216, 219, 225, 260, 275, 290, 315, 319, 361, 354, 365, 410, 416, 440, 450, 
478, 523

6.3 Describe the measures of dispersion. Explain the concepts with examples.
6.4 What is the purpose of collecting descriptive statistics? Explain the importance 

of outlier analysis.
6.5 What is the difference between attribute selection and attribute extraction 

techniques?
6.6 What are the advantages of attribute reduction in research?
6.7 What is CFS technique? State its application with advantages.
6.8 Consider the data set consisting of lines of source code given in exercise 6.2. 

Calculate the standard deviation, variance, and quartile.
6.9 Consider the following table presenting three variables. Determine the normality 

of these variables.
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Fault Count
Cyclomatic 
Complexity

Branch 
Count

332 25 612
274 24 567
212 23 342
106 12 245
102 10 105
93 09 94
63 05 89
23 04 56
09 03 45
04 01 32

6.10 What is outlier analysis? Discuss its importance in data analysis. Explain uni-
variate, bivariate, and multivariate.

6.11 Consider the table given in exercise 6.7. Construct box plots and identify univari-
ate outliers for all the variables given in the data set.

6.12 Consider the data set given in exercise 6.7. Identify bivariate outliers between 
dependent variable fault count and other variables.

6.13 Consider the following data with the performance accuracy values for different 
techniques on a number of data sets. Check whether the conditions of ANOVA are 
met. Also apply ANOVA test to check whether there is significant difference in the 
performance of techniques.

Data Sets

Techniques

Technique 1 Technique 2 Technique 3

D1 84 71 59
D2 76 73 66
D3 82 75 63
D4 75 76 70
D5 72 68 74
D6 85 82 67

6.14 Evaluate whether there is significant difference between different algorithms 
evaluated on three data sets on the runtime performance (in seconds) of the 
model using appropriate statistical test.

Algorithms

Data Sets #

1 2 3

Algorithm 1 9 7 9
Algorithm 2 19 20 20
Algorithm 3 18 15 14
Algorithm 4 13 7 6
Algorithm 5 10 9 8



267Data Analysis and Statistical Testing

6.15 A software company plans to adopt a new programming paradigm, that will 
ease the task of software developers. To assess its effectiveness, 50 software devel-
opers used the traditional programming paradigm and 50 others used the new 
one. The productivity values per hour are stated as follows. Perform a t-test to 
assess the effectiveness of the new programming paradigm.

Statistic

Old 
Programming 

Paradigm

New 
Programming 

Paradigm

Mean 1.5 2.21
Standard Deviation 0.4 0.36

6.16 A company deals with development of certain customized software products. 
The following data lists the proposed cost and the actual cost of 10 different soft-
ware products. Evaluate whether the company makes a good estimate of the 
 proposed cost using a paired sample t-test.

Software 
Product

Proposed 
Cost

Actual 
Cost

P1 1,739 1,690
P2 2,090 2,090
P3 979 992
P4 997 960
P5 2,750 2,650
P6 799 799
P7 980 1,000
P8 1,099 1,050
P9 1,225 1,198
P10 900 943

6.17 The software team needs to determine average number of methods in a class 
for a particular software product. Twenty-two  classes were chosen at random 
and the number of methods in these classes were analyzed. Evaluate whether the 
 hypothesized mean of the chosen sample is different from 11 methods per class for 
the whole population.

Class No. No. of Methods Class No. No. of Methods Class No. No. of Methods

C1 11.5 C9 9 C17 11.5
C2 12 C10 14 C18 12.5
C3 10 C11 11.5 C19 14
C4 13 C12 7.5 C20 8.5
C5 9.5 C13 11 C21 12
C6 14 C14 6 C22 9.5
C7 11.5 C15 12
C8 12 C16 12.5

6.18 A software organization develops software tools using five categories of pro-
gramming languages. Evaluate a goodness-of-fit test on the data given below to 
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test whether the organization develops equal proportion of software tools using 
the five different categories of programming languages.

Programming 
Language 
Category

Number of 
Software 

Tools

Category 1 35
Category 2 30
Category 3 45
Category 4 44
Category 5 28

6.19 Twenty-five students developed the same program and the cyclomatic 
 complexity values of these 25  programs are stated. Evaluate whether the 
 cyclomatic complexity values of the program developed by the 25 students fol-
lows normal distribution.

6, 11, 9, 14, 16, 10, 13, 9, 15, 12, 10, 14, 15, 10, 8, 11, 7, 12, 13, 17, 17, 19, 9, 20, 26, 6, 11, 9, 14, 16,

6.20 A software organization uses either OO methodology or procedural method-
ology for developing software. It also uses effective verification techniques at 
different stages to obtain errors. Given the following data, evaluate whether the 
two attributes, software development stage for verification and methodology, are 
independent. 

Methodology

TotalOO Procedural

Software 
Development 
Stage

Requirements 80 100 180
Initial design 50 110 160
Detailed design 75 65 140

Total 205 275 480

6.21 The coupling values of a number of classes are provided below for two different 
samples. Test the hypothesis using F-test whether the two samples belong to the 
same population. 

Sample 1 32 42 33 40 42 44 42 38 32

Sample 2 31 31 31 35 35 32 30 36

6.22 Two training programmes were conducted for software professionals by an 
organization. Nine participants were asked to rate the training programmes on a 
scale of 1 to 100. Using Wilcoxon signed-rank test, evaluate whether one program 
is favorable over the other. 
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Participant No. Program A Program B

1 25 45
2 15 55
3 25 65
4 15 65
5 5 35
6 35 15
7 45 45
8 5 75
9 55 85

6.23 A researcher wants to compare the performance of two learning algorithms 
across multiple data sets using receiver operating characteristic (ROC) values as 
shown below. Investigate whether there is a statistical difference among the per-
formance of two learning algorithms. 

Data Sets

Algorithms

A1 A2

D1 0.65 0.55
D2 0.78 0.85
D3 0.55 0.70
D4 0.60 0.60
D5 0.89 0.70

6.24 Two attribute selection techniques were analyzed to check whether they have 
any effect on model’s performance. Seven models were developed using attribute 
selection technique X and nine models were developed using attribute selection 
technique Y. Use Wilcoxon–Mann–Whitney test to evaluate whether there is any 
significant difference in the model’s performance using the two different attribute 
selection techniques.

Attribute Selection 
Technique X

Attribute Selection 
Technique Y

57.5 58.9
58.6 58.0
59.3 61.5
56.9 61.2
58.4 62.3
58.8 58.9
57.7 60.0

60.9
60.4

6.25 A researcher wants to find the effect of the same learning algorithm on 
three data sets. For every data set, a model is predicted using the same learn-
ing  algorithm with a specific performance measure area under the ROC curve. 
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Evaluate whether there is statistical difference in the performance of learning 
algorithm on different data sets.

Data Set ROC Values

1 0.76
2 0.85
3 0.66

6.26 A market survey is conducted to evaluate the effectiveness of three text editors 
by 20 probable customers. The customers assessed the text editors on various 
criteria and provided a score out of 300. Test the hypothesis whether there is any 
significant differences among the three text editors using Kruskal–Wallis test.

Text Editor A Text Editor B Text Editor C

200 110 260
60 200 290
150 60 240
190 70 150
150 140 250
270 30 280

210 230

6.27 A researcher wants to compare the performance of four learning techniques 
on multiple data sets (five) using the performance measure, area under the ROC 
curve. The data for the scenario is given below. Determine whether there is any 
statistical difference in the performance of different learning techniques.

Data Sets

Methods

A1 A2 A3 A4

D1 0.65 0.56 0.72 0.55
D2 0.79 0.69 0.69 0.59
D3 0.65 0.65 0.62 0.60
D4 0.85 0.79 0.66 0.76
D5 0.71 0.61 0.61 0.78

6.28 What is the purpose of Bonferroni–Dunn correction? Consider data given 
in Exercise 6.27. Evaluate the pairwise differences using Wilcoxon test with 
Bonferroni–Dunn correction.

6.29 A researcher wants to evaluate the effectiveness of four tools by analyzing the 
performances of different models as given below. Evaluate using Friedman test 
whether the performance of tools is significantly different. If the difference is 
 significant, evaluate the pairwise differences using Nemenyi test.
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Data Sets

Tools

T1 T2 T3 T4

Model 1 69 60 83 73
Model 2 70 68 81 69
Model 3 73 54 75 67
Model 4 71 61 91 79
Model 5 77 59 85 69
Model 6 73 56 89 77

6.30 Explain a scenario where application of Nemenyi test is advisable?
6.31 Which test is used to control family-wise error?
6.32 What is type-I and type-II errors? Why are they important to be identified?
6.33 Compare and contrast various statistical tests with respect to their assumptions 

and normality conditions of the underlying data. 
6.34 Differentiate between:

 (a) Wrapper and filter methods
 (b) Nemenyi and Bonferroni–Dunn 
 (c) One-tailed and two-tailed tests
 (d) Independent sample and Wilcoxon–Mann–Whitney tests

6.35 Discuss two applications of univariate analysis. 

Further Readings

The following books provide details on summarizing data:

D. D. Boos, and C. Brownie, “Comparing variances and other measures of disper-
sion,” Statistical Science, vol. 19, pp. 571–578, 2004.

J. I. Marden, Analysing and Modeling Rank Data, Chapman and Hall, London, 
1995.

H. Mulholland, and C. R. Jones, “Measures of dispersion,” In: Fundamentals of 
Statistics, Springer, New York, chapter 6, pp. 93–110, 1968.

R. R. Wilcox, and H. J. Keselman, “Modern robust data analysis methods: Measures 
of central tendency,” Psychological Methods, vol. 8, no. 3, pp. 254–274, 2003.

There are several books on research methodology and statistics in which various concepts 
and statistical tests are explained:

W. G. Hopkins, A New View of Statistics, Sportscience, 2003. http://sportsci.org/
resource/stats
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C. R. Kothari, Research Methodology: Methods and Techniques, New Age International 
Limited, New Delhi, India, 2004.

The details on outlier analysis can be obtained from:

V. Barnett, and T. Price, Outliers in Statistical Data, John Wiley & Sons, New York, 1995.

The concept of principal component analysis is explained in the following:

H. Abdi, and L. J. Williams, “Principal component analysis,” Wiley Interdisciplinary 
Reviews: Computational Statistics, vol. 2, no. 4, pp. 433–459, 2010.

The basic concept of univariate analysis are presented in:

F. Hartwig, and B. E. Dearing, Exploratory Data Analysis, Sage Publications, Beverly 
Hills, CA, 1979.

H. M. Park, “Univariate analysis and normality test using SAS, Stata, and SPSS,” The 
University Information Technology Services, Indiana University, Bloomington, IA, 
2008.

The details about the CFS technique are provided in:

M. A. Hall, “Correlation-based feature selection for machine learning,” PhD disserta-
tion, The University of Waikato, Hamilton, New Zealand, 1999.

M. A. Hall, and L. A. Smith, “Feature subset selection: A correlation based filter 
approach,” In proceedings of International Conference of Neural Information 
Processing and Intelligent Information Systems, pp. 855–858, 1997.

A detailed description of various wrapper and filter methods can be found in:

A. L. Blum, and P. Langley, “Selection of relevant features and examples in machine 
learning,” Artificial Intelligence, vol. 97, pp. 245–271, 1997.

N. Sánchez-Maroño, A. Alonso-Betanzos, and M. Tombilla-Sanromán, “Filter meth-
ods for feature selection, a comparative study,” In: Proceedings of the 8th International 
Conference on Intelligent Data Engineering and Automated Learning, H. Yin, P. Tino, 
W. Byrne, X. Yao, E. Corchado (eds.), Springer-Verlag, Berlin,  Germany, pp. 178–187. 

Some of the useful facts and concepts of significance tests are presented in:

P. M. Bentler, and D. G. Bonett, “Significance tests and goodness of fit in the analysis 
of covariance structures,” Psychological Bulletin, vol. 88, no. 3, pp. 588–606, 1980.

J. M. Bland, and D. G. Altman, “Multiple significance tests: The Bonferroni method,” 
BMJ, vol. 310, no. 6973, pp. 170, 1995.

L. L. Harlow, S. A. Mulaik, and J. H. Steiger, What If There Were No Significance Tests, 
Psychology Press, New York, 2013.
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The one-tailed and two-tailed tests are described in:

J. Hine, and G. B. Wetherill (eds.), “One-and Two-Tailed Tests,” In: A Programmed 
Text in Statistics Book 4: Tests on Variance and Regression, Springer, Amsterdam, the 
Netherlands, pp. 6–11, 1975.

D. B. Pillemer, “One-versus two-tailed hypothesis tests in contemporary educational 
research,” Educational Researcher, vol. 20, no. 9, pp. 13–17, 1991.

Frick provides an excellent use of hypothesis testing based on null hypothesis:

R. W. Frick, “The appropriate use of null hypothesis testing,” Psychological Methods, 
vol. 1, no. 4, 379–390, 1996.

The following books provide details on parametric and nonparametric tests:

D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, CRC 
Press, Boca Raton, FL, 2003.

D. J. Sheskin (ed.), “Parametric versus nonparametric tests,” In: International 
Encyclopedia of Statistical Science, Springer, Berlin, Germany, pp. 1051–1052, 2011.

The following is an excellent and widely used book on hypothesis testing:

E. L. Lehmann, and J. P. Romano, Testing Statistical Hypotheses: Springer Texts in 
Statistics, Springer, New York, 2008.
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7
Model Development and Interpretation

In Chapter 6, we presented data preprocessing techniques, feature reduction methods, and 
statistical tests for hypothesis testing. In software engineering research, the researcher 
may relate the software metrics (independent variables) with quality attributes (dependent 
variable) such as fault proneness, maintainability, reliability, or testability. The relation-
ship between software metrics and quality attributes can be analyzed using statistical or 
machine learning (ML) techniques. The models are created to predict the quality attributes 
using performance measures or analyzers. After obtaining the values of performance 
measures, the hypothesis may be applied to analyze the difference between the techniques 
over multiple data sets. The results are then interpreted and assessed, and final conclu-
sions are derived.

In this chapter, we present various statistical and ML techniques for model develop-
ment. The performance measures for measuring the accuracy of the developed models are 
described, and the guidelines for interpreting the obtained results are presented.

7.1 Model Development

Models are constructed using historical data for development of prediction systems. These 
prediction systems can be used in the early phases of software development by developers 
and managers to obtain insight about the quality of the systems.

Software quality prediction helps in identification of weak portions of a software. Thus, 
it aids in efficient utilization of limited resources like cost, time, and effort by focusing 
these resources on the identified weak parts to improve the quality of the system. For 
example, if we can determine the classes that are more prone to faults, we can focus our 
resources on these classes so that minimum faults propagate to later phases of software 
development life cycle.

Model prediction involves the following three main elements:

 1. Independent variables
 2. Dependent variables
 3. Learning technique

Before development of models, the experiment design is constructed, data is processed, 
and the attributes are reduced.

The data is divided into two parts: training and validation. The training data is used for 
model development where the model is trained by learning from the relationship between 
the independent variables and dependent variable. The model development process con-
sists of the following steps (Figure 7.1):
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 1. Dividing data set into two parts (training and testing)
 2. Selecting relevant attributes (independent variables)
 3. Developing model using learning technique
 4. Validating the predicted model 
 5. Applying hypothesis testing using statistical tests, if required
 6. Interpreting the results

7.1.1 Data Partition

There can be serious problems, if the model is tested using the same data set from which 
it is trained. In other words, a learning technique might perform well on the training 
data but poorly on future unseen test data. To overcome this problem, cross-validation 
techniques explained in Section 7.7 should be used for evaluating and comparing the 

Data set
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Predicted output
variable

Apply
performance

measures

Predicted
model

Hypothesis
testing

1
2

40

...

41

50
... ...

...
...
......

...

...
...
...

...
...

Testing

Apply model validation

methods

Apply attribute reduction techniques

1
S.no.

S.no. S.no.Attr1 Attr1 Dependent...Dependent

Attr1 Attr2 ... ... ... Dependent

2

50

... ...

... ...

... ...
...

...

...

...

...

...

...

...

...

...

...

...

...

...

FIGURE 7.1
Steps in model prediction.
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techniques. Figure  7.2  shows that the original data can be divided into training and 
testing data samples. The model is developed using training data and validated on the 
unseen test data. In cross-validation, the data is split into two independent parts, one 
for training and the other for testing. The study may also divide the data into training, 
validation, and testing samples in empirical studies where the data set available is very 
large. The validation data can be used to choose the correct architecture as an optional 
step. However, in this book, we describe the concepts in terms of training and testing 
samples.

During model development, the data must be randomly divided into training and test-
ing data samples.

7.1.2 Attribute Reduction

The independent variables, also known as attributes, are reduced using the attribute sub-
selection techniques explained in Section 6.2. The purpose is to extract the best and rel-
evant attributes, and these attributes are provided as input to the algorithm or technique 
in the next step.

7.1.3 Model Construction using Learning Algorithms/Techniques

After the data has been partitioned, the next step is to train the model using the training 
data. In this step, the learning technique(s) selected in experimental design must be used 
for creation of the model. The independent variables such as software metrics are used to 
predict the dependent variable. In software engineering research, the dependent variables 
are generally software quality attributes. The techniques may be statistical or ML and are 
briefly explained in Sections 7.2 and 7.3.

7.1.4 Validating the Model Predicted

The model created in the previous step is validated using testing data by computing the 
values of various performance analyzers. The performance analyzers are selected on the 
basis of the following:

 1. Type of dependent variable
 2. Nature of dependent variable

Training data Testing data

Original data

FIGURE 7.2
Data partition.



278 Empirical Research in Software Engineering

Figure 7.3 shows the performance measures that may be used depending on the type of 
dependent variable. The type of dependent variable can be either categorical or continu-
ous and the nature of dependent variable is determined by the distribution of the outcome 
variable (ratio of positive and negative samples). The guidelines on the selection of perfor-
mance measures on the basis of nature of dependent variables are given in Section 7.5.7. The 
cross-validation method is applied for model validation. Depending on the size of data, the 
appropriate cross- validation method is selected. 

7.1.5 Hypothesis Testing

On the basis of performance measures, the prediction capability of the models predicted 
using various learning techniques could be compared using the statistical tests given in 
Section 6.4. The performance of more than two models can be compared using Friedman 
or Kruskal and Wallis tests, and further post hoc analysis is also recommended to com-
pare the pairwise performance of learning techniques. The model comparison tests are 
summarized in Section 7.8.

7.1.6 Interpretation of Results

Finally, the results of model prediction are interpreted and discussed. The interpretation 
of results of hypothesis testing is also done. The answers to research questions, practical 
application of the work, and limitations of the work are summarized. The commonalities 
and differences of the results produced by the current study in view of the current litera-
ture work are also presented.

7.1.7 Example—Software Quality Prediction System

Figure 7.4 presents the general framework for software quality prediction. The inputs to 
the classification algorithm can be either process or product metrics, and the outputs are 

Dependent variable

Categorical
• Sensitivity or recall
• Specificity
• Accuracy
• Precision
• G-measure
• Area under the curve

Continuous
• Mean relative error
• Mean absolute relative error
• Correlation coefficient

FIGURE 7.3
Performance measures for dependent variable.
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the various observables such as maintainability, fault proneness, and reliability that can be 
used to provide information about the software quality.

A software quality prediction system takes as an input the various product-oriented 
metrics that define various characteristics of a software. The focus of this study is object-
oriented (OO) software. Thus, OO metrics are used, throughout the software process, to 
determine and quantify various aspects of an OO application. A single metric alone is 
not sufficient to uncover all characteristics of an application under development. Several 
metrics must be used together to gauge a software product. The metrics used in this 
study are the ones that are most commonly used by various researchers to account for 
software characteristics like size, coupling, cohesion, inheritance, and so on. Along with 
metrics, the collection of fault/change-prone data of a class is also an essential input 
to create an efficient and intelligent classifier prediction system. The prediction  system 
learns to distinguish and identify fault/change-prone classes of the software data set 
under study.

Development of a software quality prediction system helps in ascertaining software 
quality attributes and focused use of constraint resources. It also guides researchers and 
practitioners to perform preventive actions in the early phases of software development 
and commit themselves for creation of better quality software. Once a software quality 
prediction system is trained, it can be used for quality assessment and for predictions 
on future unseen data. These predictions are then utilized for assessing software quality 
processes and procedures as we evaluate the software products, which are a result of these 
processes.

Training set

Input Input

Product metrics
(object-oriented

metrics)
Process
metrics

Bug/change
data

Bug/change
data

Test set

Software
quality

Observables
(sensitivity, specificity,
precision, area under
the curve, accuracy,

F-measure, G-measure)

Classification techniquesClassification techniques

Predicts
(output)

Informs
about

Predicts
(output)

Training set Test set

FIGURE 7.4
Software quality assessment framework.
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7.2 Statistical Multiple Regression Techniques

In the present scenario, we have a variety of learning techniques that can be used for devel-
opment of models for predicting software quality attributes. A learning technique could 
be statistical or ML. Unlike univariate analysis, multiple regression works with combina-
tion of variables to predict a model. The multiple regression techniques are very popular 
techniques for model prediction where the combined effect of the independent variables is 
found on the dependent variable.

7.2.1 Multivariate Analysis

There are various techniques used in multivariate analysis depending on the type of 
dependent variable. If the dependent variable is continuous, linear regression is used; 
whereas, if the dependent variable is categorical then logistic regression (LR) is used.

In multiple linear regression, the weighted linear combination of independent variables 
is identified to optimally predict the dependent variable. Each predictor is assigned a 
weight, and the result of the product is summed up together with the constant to predict 
the outcome. The equation is given below:

	 y a b x b x b xn n= + + + +1 1 2 2 

where:
a is constant
b1…bn are weights
x1…xn are independent variables

The weights are generated in such a way that the predicted values are closest to the actual 
value. Closeness of predicted values to the actual value can be measured using ordinary 
linear squares where the sum squared difference between predicted and actual value is 
kept to a minimum. The difference between the actual and observed predicted values is 
known as prediction errors. Thus, the linear regression model that best fits the data for 
predicting dependent variable is such that the sum of squared errors are minimum.

LR is used to predict the dependent variable from a set of independent variables to deter-
mine the percentage of variance in the dependent variable explained by the independent vari-
able (a detailed description is given by Basili et al. [1996], Hosmer and Lemeshow [1989], and 
Aggarwal et al. [2009]). The multivariate LR formula can be defined as (Aggarwal et al. 2009):
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where:
X i ni , , , ,= 1 2   are the independent variables
“Prob” is the probability of occurrence of an event

7.2.2 Coefficients and Selection of Variables

The coefficients are assigned weights to the independent variables in the multivariate anal-
ysis. The importance of the predictive capability of the independent variables is specified 
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using the coefficient. The higher the value of the coefficients, more is the impact of the 
independent variables.

In multivariate analysis two stepwise selection methods—forward selection and 
backward elimination—are used (Hosmer and Lemeshow 1989). The forward stepwise 
procedure examines the variables that are selected one at a time for entry at each step. 
The backward elimination method includes all the independent variables in the model. 
Variables are deleted one at a time from the model, until a stopping criteria is fulfilled.

The statistical significance defines the significance level of a coefficient. Larger the value 
of statistical significance, lesser is the estimated impact of an independent variable on the 
dependent variable. Usually, the value of 0.01 or 0.05 is used as threshold cutoff value.

7.3 Machine Learning Techniques

The goal of ML is to develop programs that learn from experience, automatically improve 
the performance, and adapt to new environment over time. ML techniques are well suited 
for real-life problems that use methods to extract useful information from complex and 
intractable problems in less time. They can be tolerant to data that is inaccurate, partially 
incorrect, or uncertain. These methods can be used to construct models and make predic-
tions. Thus, ML techniques have the following benefits:

• Complex relationships can be modeled
• Easily adaptable to changing environment as new knowledge is discovered

ML techniques can be divided into two categories—supervised and unsupervised learn-
ing. Supervised learning makes predictions when the outcome variable is available while 
training models, whereas unsupervised learning attempts to search for relevant patterns 
when the outcome variable is unknown. Examples of use of supervised learning in soft-
ware engineering are fault prediction, prediction of change-prone modules, and reliability 
prediction. In supervised learning, classification techniques such as decision tree (DT), 
neural networks (NN), and support vector machines (SVM) are used. In unsupervised 
learning, clustering methods are used to identify patterns from unlabeled samples.

7.3.1 Categories of ML Techniques

The ML is categorized by Malhotra (2015) into eight broad categories as given below. The 
classification taxonomy of ML techniques is presented in Figure 7.5. A brief summary of 
ML broad categories is provided in sections below.

• DT
• Bayesian learners (BL)
• Ensemble learners (EL)
• NN
• SVM
• Rule-based learning (RBL)
• Search-based techniques (SBT)
• Miscellaneous
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7.3.2 Decision Trees

The DT technique begins at the root node, and at each step the best variable is found to 
split the given node into two child nodes. The best variable is found by checking the possi-
bilities of all the variables while making the decision of split at each node. To select the best 
variable at each node, the algorithm used (such as classification and regression tree) works 
with the aim to decrease the average impurity at a given split (Quinlan 1993; Breiman 
et al. 1994). Figure 7.6 shows the basic steps in DT algorithm. The attribute selection can be 
made using information gain, gini index, or gain ratio measures.

7.3.3 Bayesian Learners

BL are used to predict probabilities of data sample belonging to a given class or category. 
Bayesian learning is based on Bayes theorem. A Bayesian network (BN) is an interconnected 
network of nodes, where each node represents a random variable and all directed edges con-
necting these nodes represent probabilistic dependencies among nodes (Witten and Frank 
2005). BN helps in computing joint probability distribution among a set of random variables. 
BN can easily handle incomplete data sets and also allows to investigate casual relationships. 
Bayesian belief networks and naïve Bayes are two popularly used BL techniques.

7.3.4 Ensemble Learners

In ensemble learning, multiple training sets are created and multiple ML techniques are 
applied to these sets. The individual predictions of the ML techniques are combined to 
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FIGURE 7.5
Classification of ML techniques. CHAID: chi-squared automatic interaction detection, CART: classification and 
regression trees, ADT: alternating decision tree, RF: random forest, NB: naïve Bayes, BN: Bayesian networks, ABN: aug-
mented Bayesian networks, WNB: weighted Bayesian networks, TNB: transfer Bayesian networks, MLP: multilayer 
perceptron, PNN: probabilistic neural network, RBF: radial basis function, LB: Logit boost, AB: AdaBoost, NNge: 
neighbor with generalization, GP: genetic programming, ACO: ant colony optimization, SVM: support vector 
machines, RP: recursive partitioning, AIRS: artificial immune system, KNN: K-nearest neighbor, VFI: Voting Feature 
Intervals, EDER-SD: evolutionary decision rules for subgroup discovery, SA-PNN: simulated annealing probabilis-
tic neural network, VP: voted perceptron, DTNB: decision tree naive bayes, LMT: logistic model trees. (Data from 
Malhotra, 2015.)
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obtain the final outcome by taking a vote. Rather than using a single ML technique, this 
approach aims to improve the accuracy of model by combining the results obtained by 
multiple ML techniques. It is proved that the multiple ML techniques give more accurate 
results, rather than using individual ML technique. Figure 7.7 depicts the concept of EL. 
There are various techniques based on EL such as boosting, bagging, and RF. Table 7.1 
summarizes the widely used EL techniques.

7.3.5 Neural Networks

The NN repetitively adjusts different weights so that the difference between desired out-
put from the network and actual output from the NN is minimized. The network learns 
by finding a vector of connection weights that minimizes the sum of squared errors on 
the training data set. The NN is trained by standard error back propagation algorithm at a 
given learning rate (e.g., 0.005), having the minimum square error as the training stopping 
criterion.

The input layer has one unit for each input variable. Each input value in the data set is 
normalized within the interval [0, 1] using min–max normalization. Min–max normal-
ization performs a linear transformation on the original data (Han and Kamber 2001). 
Suppose that minA and maxA are the minimum and maximum values of an attribute A. It 
maps value v of A to v′ in the range 0–1 using the formula:

	
′ = −

−
v

v A

A A

min
max min

In NN, first random weights are assigned to the nodes and then back propagation algo-
rithm is applied to update the weights using multiple epochs (iterations) through the 

DT (records, outcome_variable, list_of_attributes)
Create Head node for the tree
if the records in the data set belong to the positive class then
  return Node Head as leaf node and label it with the positive class
if the records in the data set belong to the negative class then
  return Node Head as leaf node and label it with the negative class
if list_of_attributes is empty then
   return Node Head as leaf node and label it with most common value of outcome_

variable in records
otherwise call attribute_selection_method(list_of_attributes)

  select best attribute using the splitting criteria and initialise A  splitting_attribute

  list_of_attributes  list_of_attributes   A
  for each value i for attribute A
   Add new tree branch below Head node
   if recordsi is empty then 
     Add leaf node and label it with most common value of outcome_variable 

in records
  else add new subtree 
    call DT (recordsi, outcome_variable, list_of_attributes)
return Head

FIGURE 7.6
DT algorithm.
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 training sets. During this process, the architecture is determined, such as the number of 
hidden layers and number of nodes in the hidden layer (Figure 7.8). Usually, one hidden 
layer is used in research as what can be achieved in function approximation, with more 
than one hidden layer also achieved by one hidden layer (Khoshgaftaar 1997).

The weights between the jth hidden node and input nodes are represented by Wji, while 
the weights between the jth hidden node and output node are represented by αj. The thresh-
old of the jth hidden node is represented by βj, while the threshold of the output layer is 
represented by β. If x represents the input vector to the network, the net input to the hid-
den node j is given by (Haykin 1994):

	 net j ji i j

i

M

W x B j N= + =
=

∑ ; , ,
1

1 2 

TABLE 7.1

Ensemble Learning Techniques

Technique Description

RF RF was proposed by Breiman (2001) and constructs a forest of multiple trees and each tree 
depends on the value of a random vector. For each of the tree in the forest, this random vector 
is sampled with the same distribution and independently. Hence, RF is a classifier that 
consists of a number of decision trees.

Boosting Boosting uses DT algorithm for creating new models. Boosting assigns weights to models 
based on their performance. There are many variants of boosting algorithms available in the 
literature. There are two variants of boosting technique—AdaBoost (Freund and Schapire 
1996) and LogitBoost (Friedman et al. 2000).

Bagging Bagging or bootstrap aggregating improves the performance of classification models by 
creating various sets of the training sets.

 

Training
data

ML-1 ML-2 ML-n

Combine

Output

FIGURE 7.7
Ensemble learning.
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The output from the jth hidden node is:

	
σ σj j= ( )net

The output from the network is given by:
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7.3.6 Support Vector Machines

SVM are useful tools for performing data classification, and have been successfully used in 
various applications such as face identification, medical diagnosis, text classification, and 
pattern recognition. SVM constructs an N-dimensional hyperplane that optimally sepa-
rates the data set into two categories. The purpose of SVM modeling is to find the optimal 
hyperplane that separates clusters of vector in such a way that cases with one category 
of the dependent variable on one side of the plane and the cases with the other category 
on the other side of the plane (Sherrod 2003). The support vectors are the vectors near the 
hyperplane. The SVM modeling finds the hyperplane that is oriented so that the margin 
between the support vectors is maximized. When a nonlinear region separates the points, 
SVM handles this by using a kernel function to map the data into a different space when a 
hyperplane can be used to do the separation. Details on SVM can be found in Cortes and 
Vapnik (1995) and Cristianini and Shawe-Taylor (2000).

The most commonly used functions in the literature are: linear, polynomial, radial basis 
function (RBF), and sigmoid. The recommended kernel function is the RBF (Sherrod 2003). 
The RBF kernel nonlinearly maps data into a higher dimensional space, so it can handle 
nonlinear relationships between dependent and independent variables. Figure 7.9 shows 
the RBF kernel. One category of dependent variable is shown as rectangles and the other 
as circles. The shaded circles and rectangles are support vectors.
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FIGURE 7.8
Architecture of NN.
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Given a set of (xi, yi),…, (xm, ym) and yi ε {−1, +1} training samples. αi = (i = 1,…, m) is a 
lagrangian multiplier. K(xi,yi) is called a kernel function and b is a bias. The discriminant 
function D of two class SVM is given below (Zhao and Takagi 2007):

	
D x y K x x bi i i

i

m

( ) = ( ) +
=

∑ α ,
1

Then, an input pattern x is classified as (Zhao and Takagi 2007):

	
x

D x
D x

=
+ ( ) >
− ( ) <







1 0
1 0
,
,

if
if

7.3.7 Rule-Based Learning

RBL is a ML technique that creates if–then rules. To illustrate RBL, a simple covering algo-
rithm is shown in Figure 7.10. Let d be the total data samples for a value v of a given attri-
bute A of which p are positive samples that classifies a given category C. For example, 
consider the case where we want to predict classes as faulty and not faulty.

If ? then faulty
The above rule consists an empty (?) left-hand side, and the rule for predicting faulty cat-
egory of dependent variable is extracted. The new attribute–value pair is extracted based 
on the maximum correct predictions for category C of dependent variable. 

There are various rule-based techniques such as RIPPER, OneR, and NNge.

For each value of category C
 Initialize I to the data samples
 While I contains data samples in category C

 Create a rule R with an empty left-hand side that predicts category C
 Until R is complete do

 For each attribute A not mentioned in R, and each value v,
 Consider adding the condition A = v to the left-hand side of R
 Select A and v to maximize the accuracy p/d

 Add A = v to rule R
 Remove the data samples covered by R from I

FIGURE 7.10
Basic algorithm for rule-based learning

FIGURE 7.9
Radial basis function.
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7.3.8 Search-Based Techniques

Search-based techniques (SBT) are inspired from the process of biological evolution (Eiben 
and Smith 2003). SBT are metaheuristic procedures that are capable of searching for an 
optimized solution in a large search space of potential solutions. These techniques are 
modeled on the basis of a fitness function, which is evaluated to ascertain the goodness of 
a specific solution, thus guiding the search process (Harman et al. 2012d). The usefulness 
of these techniques in the field of software test data generation, requirement analysis, and 
so on has been well established (Harman et al. 2012c). 

SBT are population-based algorithms that undergo a series of iterations to find candi-
dates with the desired characteristics. The working of SBT starts from a set of candidates 
that is called the initial population. These candidates are actually competitors, which 
compete against one another to achieve the tag of “best” candidates among the solution. 
The ranking among candidates is based on fitness function. The “best” candidates are 
used in future generations to produce new candidate solutions. These new candidate 
solutions may replace the candidates displaying the worst performance in the initial 
population, and the whole iteration process starts again (Grosan and Abraham 2007). 
The whole process of iteration stops either if maximum number of iterations has been 
performed or the candidates produced are the ones with the desired quality and fitness 
parameters. Figure 7.11 shows a diagrammatic representation of the process followed 
by SBT.

The process of production of new candidates may involve a series of operators like selec-
tion, mutation, crossover, and replacement. A brief explanation of these operators is stated 
below:

• Selection: It refers to the process of determination of those candidates that can be 
included in the next generation based on their fitness parameters. Before incorpo-
ration in the next generation, the selected candidates may undergo mutation and 
crossover.

• Mutation: It is an operator to incorporate a degree of alteration in the population 
from the previous generation to the next. It diversifies or changes one or more val-
ues of the parent candidate. In SBT, the probability of mutation basically refers to 
the degree of randomness, while traversing the solution space.

• Crossover: This operator couples two parent candidates to formulate a child with 
the assumption that the child candidate would be superior to both the parent can-
didates, as it would involve the good attributes of both the parents.

• Replacement: This operator involves identification of those candidates that may be 
replaced from the current population by some better candidates. The most popu-
larly used strategy is to replace “worst” candidates and to replace the “most simi-
lar” candidates.

Harman and Jones (2001) advocated the application of the SBT for predictive model-
ing work, as SBT will allow software engineers to balance constraints and conflicts in 
search space because of noisy, partially inaccurate, and incomplete data sets. A system-
atic review of studies was performed on software quality prediction which reported that 
there are few studies that assess the predictive performance of SBT for defect prediction 
and change prediction (Malhotra 2014a; Malhotra and Khanna 2015). Thus, future stud-
ies should employ SBT to evaluate their capability in the area of defect and change model 
prediction. An important factor while developing a prediction model is its runtime 
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(speed). The systematic review also revealed that the SBT require higher running time 
for model development as compared to the ML techniques, but parallel or cloud search-
based software engineering (SBSE) can lead to promising results and significant time 
reduction (Di Geronimo 2012; White 2013).

A summary of characteristics of ML techniques is given in Table 7.2.

Initial
population 

Assess the
performance using

fitness function

Crossover

Reproduction

Se
lec

tio
n

M
ut

ati
on

Updated
population

No

Yes
Terminate

Stopping
criteria?

FIGURE 7.11
Process of search-based techniques.



289Model Development and Interpretation

TABLE 7.2

Characteristics of ML Techniques

Technique Name Characteristics

DT The model developed is cost-effective and simple.
Easy to build and apply.
Comprehensive capability.
May overfit data.
Fast and are not based on any assumption.
Can handle missing values.
No effect of outliers.

RF It can handle large data and are consistent performers.
The technique is robust to noisy and missing data.
Fast to train, robust toward parameter setting.
Provide understandable model.
Comprehensive capability.
Runs efficiently on large data sets.
Helps in identifying most important independent variables.

Bagging Uses an ensemble of independently trained classifiers.
Reduce the variance associated with prediction.
Helps to avoid overfitting.
Improved stability and accuracy. 
Improve the performance of weak learners.

Boosting Uses a weighted average of results obtained from applying a prediction 
technique to various samples.

Used to improve the accuracy of classification or regression techniques.
Reduces bias primarily and also variance.

NB It is robust in nature.
It is easy to interpret and construct.
Computationally efficient.
Does not consider attribute correlation.
Performance of model dependent on attribute selection technique used.
Assumes normal distribution of numeric attributes.
Unable to discard irrelevant attributes.

SVM Good tolerance for high-dimension space and redundant features.
Robust in nature specifically to outliers.
It can handle complex functions.
It can handle nonlinear problems.
Less overfitting.

NN It can infer complex nonlinear I/O transformation.
Simple to implement.

RBL Computation based on specified minimum coverage.
SBT Provides optimal solution.

Consumes more memory.
High running time. 
Handles noisy data.
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7.4 Concerns in Model Prediction

The prediction models must be carefully developed. Before and during model prediction, 
there are many issues and concerns that must be addressed.

• Data must be preprocessed using outlier analysis, normality tests and so on. It 
may help in increasing the accuracy of the models. Section 6.1 presents the pre-
processing techniques.

• The model must be checked for multicollinearity effects (see Section 7.4.2).
• Dealing with imbalanced data (see Section 7.4.3).
• A suitable learning technique must be selected for model development (see 

Section 7.4.4).
• The training and test data must be as independent as possible, as new data is 

expected to be applied for model validation.
• The parameter setting of ML techniques may be adjusted (not over adjusted) and 

should be carefully documented so that repeatable studies can be conducted (see 
Section 7.4.5).

7.4.1 Problems with Model Prediction

Overfitting: In learning, overfitting occurs when the model learns noise rather than depict-
ing the relationship. When the training error is much lower than the generalization or test-
ing error, the model predicted is said to be overfitted. Generally, overfitting occurs when 
the model has too many parameters as compared to number of data samples. Increasing 
the number of data samples may reduce overfitting.

Model error rates: Empirical error occurs when the actual values do not match the predicted 
values. In some cases, although the empirical error is low but the testing or generalization 
error are high. Generalization error represents the degree to which the model estimates new 
or unseen data.

Bias versus variance: In supervised learning, creating a model that learns the relevant 
patterns or relationships and do not overfit the training data is very difficult. High bias 
means underfitting, that is, model predicted is too simple to capture the relationships, 
and high variance signifies that the model is too complex and captures noise along with 
relevant patterns or relationships. Thus, obtaining balance between bias and variance (or 
reducing them both simultaneously) is difficult.

Table 7.3 summarizes the possible remedies for issues or problems encountered during 
model prediction.

7.4.2 Multicollinearity Analysis

Multicollinearity refers to the degree to which any variable effect can be predicted by the 
other variables in the analysis. As multicollinearity rises, the ability to define any variable’s 
effect is diminished. Thus, the interpretation of the model becomes difficult, as the impact 
of individual variables on the dependent variable can no longer be judged independently 
from the other variables (Belsley et al. 1980; Aggarwal et al. 2009). Thus, a test of multicol-
linearity can be performed on the model predicted. Let X X Xn1 2, , ,  be the covariates of the 
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model predicted. Principal component method (or P.C. method) is a standard technique 
used to find the interdependence among a set of variables. The factors summarize the 
commonality of these variables, and factor loadings represent the correlation between the 
variables and the factor. P.C. method maximizes the sum of squared loadings of each factor 
extracted in turn (Aggarwal et al. 2009). The P.C. method is applied to these variables to 
find the maximum eigenvalue, emax, and minimum eigenvalue, emin. The conditional num-
ber is defined as λ = e emin max . If the value of the conditional number exceeds 30  then 
multicollinearity is not tolerable (Belsley et al. 1980).

Variance inflation factor (VIF) is used to estimate the degree of multicollinearity in pre-
dicted models. R2s are calculated using ordinary least square regression method and VIF 
is defined below:

	
VIF =

−
1

1 2R

According to literature, VIF value less than 10 is tolerable. 

7.4.3 Guidelines for Selecting Learning Techniques

In binary model prediction, the data set that has skewed values of either positive or negative 
instances is known as imbalanced data. For example, given a data set with 100 instances, 
if 85 instances (majority class) are of faulty classes and only 15 instances (minority class) 
are of non-faulty classes, then the data is highly imbalanced or skewed. When a model is 
developed with imbalanced data it tends to be strongly biased toward the majority class 
as the learning technique tries to maximize the prediction accuracy of the model. There 
are several methods available to deal with the imbalancing learning issue. One method is 
to use an appropriate performance measure to estimate the model’s prediction accuracy 
(refer Section 7.5.7). Another method uses a sampling technique such as undersampling or 
oversampling. In undersampling method, the samples of the majority class are removed to 
balance the distribution of classes. In oversampling method, the samples of the minority 
class are duplicated to increase the proportion of the minority class.

7.4.4 Dealing with Imbalanced Data

As explained in Section 4.9, the data analysis techniques are selected in experiment design 
phase. Figure 7.12 provides the factors that must be considered for selection of learning 
techniques. Accuracy is a desirable feature of any technique, but apart from that the tech-
nique should be easily understandable and simple. The technique should be fast in train-
ing and testing. The reason behind the good performance of a given technique must also 
be interpretable. The technique should also be scalable to large data sets.

TABLE 7.3

Recommended Solution to Learning Problems

Issue Remedy

High bias Increase attributes or independent variables
High variance Increase training data samples
High variance Reduce attributes
High bias Decrease regularization parameter (lamda)
High variance Increase regularization parameter
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7.4.5 Parameter Tuning

While applying a technique, researchers require to select an optimum set of parameters 
among a large number of possible parameters for achieving effective and high quality 
results. A researcher may use his knowledge, experience, certain rules of thumb, or brute 
force search for optimum parameter selection (Snoek et al. 2012). Manual search of effec-
tive parameters is a very time-consuming process. Although, use of “default” parameter 
settings gives quite effective results, they are not close to optimum parameter settings 
on specific problem instances (Arcuri and Fraser 2013). However, care should be taken as 
overtuning the parameters of a technique leads to biased results as the technique overfits 
a specific training and testing data. Such models are discouraged in practice.

7.5 Performance Measures for Categorical Dependent Variable

The measures for evaluating the performance of the models are different for categorical 
and continuous dependent variable. This section presents the various performance mea-
sures used to evaluate the performance of the prediction models when the dependent 
variable is of categorical type.

7.5.1 Confusion Matrix

Confusion matrix is used to depict the accuracy of the predictions made by the model. 
In other words, it is used to evaluate the performance of the predicted model. Confusion 
matrix is a table consisting of two rows and two columns. The rows correspond to the 
actual (known) outputs and columns correspond to the output predicted by the model. 

Understandable

Simple

Learning
algorithm

Accurate

Interpretable

Scalable

Fast

FIGURE 7.12
Properties of learning algorithms.
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The predictions made by the model are with respect to the classes of the outcome vari-
able (also referred as dependent variable) of a problem, which is under consideration. 
For example, if the outcome variable of the problem has two classes, then that problem is 
referred to as a binary problem. Similarly, if the outcome variable has three classes, then 
that problem is known as a three-class problem, and so on.

Consider the confusion matrix given in Table 7.4 for a two-class problem, where the out-
come variable consists of positive and negative values.

The following measures are used in the confusion matrix:

• True positive (TP): Refers to the number of correctly predicted positive instances
• False negative (FN): Refers to the number of incorrectly predicted positive instances
• False positive (FP): Refers to number of incorrectly predicted negative instances
• True negative (TN): Refers to number of correctly predicted negative instances

Now, consider a three-class problem where an outcome variable consists of three classes, 
C1, C2, and C3,, as shown in Table 7.5.

From the above confusion matrix, we will get the values of TP, FN, FP, and TN corre-
sponding to each of the three classes, C1, C2, and C3, as shown in Figures 7.6 through 7.8.

Table 7.6 depicts the confusion matrix corresponding to class C1. This table is derived 
from Table 7.5, which shows the confusion matrix for all the three classes C1, C2, and C3. In 
Table 7.6, the number of TP instances are “a,” where “a” are the class C1 instances that are 
correctly classified as belonging to class C1. The “b” and “c” are the class C1 instances that 
are incorrectly labeled as belonging to class C2 and class C3, respectively. Therefore, these 
instances come under the category of FN. On the other hand, d and g are the instances 
belonging to class C2 and class C3, respectively, and they have been incorrectly marked 
as belonging to class C1 by the prediction model. Hence, they are FP instances. The e, f, h, 
and i are all the remaining samples that are correctly classified as nonclass C1  instances. 

TABLE 7.4

Confusion Matrix for Two-Class 
Outcome Variables

Predicted

Positive Negative 

Actual Positive TP FN
Negative FP TN

TABLE 7.5

Confusion Matrix for Three-Class 
Outcome Variables

Predicted

C1 C2 C3

Actual C1 a b c
C2 d e f
C3 g h i
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Therefore, they are referred to as TN instances. Similarly, Tables 7.7 and 7.8 depict the con-
fusion matrix for classes C2 and C3.

7.5.2 Sensitivity and Specificity

Sensitivity is defined as the ratio of correctly classified positive instances to the total num-
ber of actual positive instances. It is also referred to as recall or true positive rate (TPR). 
If we get a sensitivity value of 1.0 for a particular class C, then this means that all the 
instances that belong to class C are correctly classified as belonging to class C. Sensitivity 
is given by the following formula:

	
Sensitivity or recall(Rec) =

TP
TP+FN

×100

But, the important point to note here is that this value comments nothing about the other 
instances, which do not belong to class C, but are still incorrectly classified as belonging 
to class C.

Specificity is defined as the ratio of correctly classified negative instances to the total 
number of actual negative instances. It is given by the following formula:

	
Specificity =

TN
FP+TN

×100

TABLE 7.7

Confusion Matrix for Class “C2”

Predicted

C2 Not C2

Actual C2 TP = e FN = d + f

Not C2 FP = b + h TN = a + c + g + i

TABLE 7.8

Confusion Matrix for Class “C3”

Predicted

C3 Not C3

Actual C3 TP = i FN = g + h
Not C3 FP = c + f TN = a + b + d + e

TABLE 7.6

Confusion Matrix for Class “C1”

Predicted

C1 Not C1

Actual C1 TP = a FN = b + c
Not C1 FP = d + g TN = e + f +h + i
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Ideally, the value of both sensitivity and specificity should be as high as possible. Low 
value of sensitivity specifies that there are many high-risk classes (positive classes) 
that are incorrectly classified as low-risk classes. Low value of specificity specifies 
that there are many low-risk classes (negative classes) that are incorrectly classified as 
high-risk classes (Aggarwal et al. 2009). For example, consider a two-class problem in 
a software organization where a module may be faulty or not faulty. In this case, low 
sensitivity would result in delivery of software with faulty modules to the customer, 
and low specificity would result in the wastage of the organization’s resources in test-
ing the software.

7.5.3 Accuracy and Precision

Accuracy is used to measure the correctness of the predicted model and is defined as the 
ratio of the number of correctly classified classes to the total number of classes. It is given 
by the following formula:

	
Accuracy =

TP+TN
TP+FN FP+TN+

×100

Precision measures how many positive predictions are correct. It is defined as the ratio of 
actual correctly predicted positives instances to the total predicted positive instances. In a 
classification task, a precision of 100% for a class C means that all the instances that belong 
to class C are correctly classified as belonging to class C. But, the value comments nothing 
about the other instances that belong to class C and are not correctly predicted.

	
Precision(Pre)=

TP
TP+FP

×100

7.5.4 Kappa Coefficient

Kappa coefficient is used to measure the degree of agreement between two given vari-
ables. Its values lie in the range of −1 to 1 (Briand et al. 2000). The higher the value of kappa 
coefficient, the better is the agreement between two variables. A kappa of zero indicates 
that the agreement is no better than what can be expected from chance.

7.5.5 F-measure, G-measure, and G-mean

F-measure is defined as the weighted harmonic mean of precision and recall. Therefore, 
the value of F-measure is dependent on the value of precision and recall. The F-measure 
value is less if the value of either precision or recall is less. This is the most important prop-
erty of F-measure. It is defined as follows:

	
F-measure=

2× ×
×

Pre Rec
Pre Rec

G-measure represents the harmonic mean of recall and (100-false positive rate [FPR]) 
and is defined as given below:

	
G-measure=

FPR
FPR

2 100
100

× × −( )
+ −( )

Recall
Recall
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where:
FPR is defined as the ratio of incorrectly predicted positive instances that are actually  

negative instances to the total actually negative instances and is given below 

FPR
FP

FP TN
100=

+
×

G-mean is popularly used in an imbalanced data set, where the effect of negative cases 
prevails. It is the combination of two evaluations, namely, the accuracy of positives (a+) 
and the accuracy of negatives (a–) (Shatnawi 2010). Therefore, it keeps a balance between 
both these accuracies and is high if both the accuracies are high. It is defined as follows:

	
a

TP
TP FP

; a
TN

TN FN
; g a a+ =

+
− =

+
= +( )× −( )

Example 7.1: 

Let us consider an example system consisting of 1,276 instances. The independent vari-
ables of this data set are the OO metrics belonging to the popularly used Chidamber 
and Kemerer (C&K) metric suite. The dependent variable has two values, namely, faulty 
or not faulty. In other words, this data set depicts whether a particular module of soft-
ware contains a fault or not. If a module is containing a fault, then the value of the 
outcome variable corresponding to that module is 1. On the other hand, if a module is 
not faulty, then the value of the outcome variable for that module is 0. Now, this data 
set is used to predict the model. The observed and the predicted values of the outcome 
variable thus obtained are then used to construct the confusion matrix to evaluate the 
performance of the model. Confusion matrix obtained from the results is thus given 
in Table 7.9. Compute values of performance measures sensitivity, specificity, accuracy, 
precision, F-measure, G-measure, and G-mean based on Table 7.9.

Solution:
The values of different measures to evaluate the performance of the prediction model 
when the dependent variable is of categorical type are shown below in Table 7.10.

Example 7.2: An Example for a Three-Class Problem

Consider an example where dependent variable has three classes, namely, high, medium, 
and low. These three categories high, medium, and low are the type of severity levels of 
a fault associated with a module. If a module is containing a fault of high severity, then 
the value of the outcome variable corresponding to that class is 1. On the other hand, if 
a particular module is containing a fault having medium severity, then the value of the 
outcome variable corresponding to that class is 2. Finally, if a module is containing a low-
severity fault (LSF), then the value of the outcome variable corresponding to that class is 
3. So, we have rated high, medium, and low-severity faults in terms of 1, 2, and 3, respec-
tively. There are in total sixty instances depicted in this example. The confusion matrix is 
shown in Table 7.11. Compute all the values of performance measures based on Table 7.11.

TABLE 7.9

Confusion Matrix for Binary Categorical Variable

Predicted

 Faulty (1) Not Faulty (0) 

Actual Faulty (1) TP = 516 FN = 25
Not faulty (0) FP = 10 TN = 725
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Solution:
From the confusion matrix given in Table  7.11, the values of TP, FN, FP, and TN are 
derived and corresponding to each of the three classes high (1), medium (2), and low (3), 
and are shown in Tables 7.12 through 7.14.

The value of different performance measures at each severity level, namely, high, medium, 
and low on the basis of Tables 7.12 through 7.14 are given in Table 7.15.

TABLE 7.11

Confusion Matrix for Three-Class Outcome Variable

 

Predicted

High (1) Medium (2) Low (3)

Actual High (1) 3 9 0
Medium (2) 3 34 1
Low (3) 1 4 5

TABLE 7.10

Performance Measures for Confusion Matrix given in Table 7.7

Performance Measures Formula Values Obtained Results

Sensititvity or recall (Rec) TP
TP FN+

×100
516

516 25
100

+
× 95.37

Specificity TN
FP TN+

×100
725

10 725
100

+
×

98.63

Accuracy TP TN
TP FN FP TN

+
+ + +

×100
516 725

516 25 10 725
100

+
+ + +

×
97.25

Precision (Pre) TP
TP FP+

516
516 10+

0.981

F-measure 2× ×
+

Pre Rec
Pre Rec

2 0 981 0 954
0 981 0 954
× ×

+
. .

. .
0.967

a+ TP
TP FP+

516
516 10+

0.981

a− TN
TN FN+

725
725 25+

0.967

FPR FP
FP TN+

×100
10

10 5 6
100

+ +
× 1.90

G-measure 2 100
100

× × −( )
+ −( )

Recall
Recall

FP
FP

R
R

2 95 4 100 1 0
95 4 100 1 0

.9
.9

× × −( )
+ −( )
.

.
96.73

G-mean a a+( ) × −( ) 0 981 0 967. .× 0.973

TABLE 7.12

Confusion Matrix for Class “High”

Predicted

High Not High

Actual High TP = 3 FN = 9
Not high FP = 4 TN = 44
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7.5.6 Receiver Operating Characteristics Analysis

Receiver operating characteristic (ROC) analysis is one of the most popular techniques 
used to measure the accuracy of the prediction model. It determines how well the model 
has worked on the test data. It is used in situations where a decision between two possible 
outcomes is to be made. For example, whether a sample belongs to change-prone or not 
change-prone class.

ROC analysis is well suited for problems with binary outcome variable, that is, when 
the outcome variable has two possible outcome values. In case of multinomial outcome 
variable, that is, when the outcome variable has three or more possible groups of outcome 
values, then separate prediction functions are generated for each of the groups, and then 
ROC analysis is done for each of the group individually.

Often the values of outcome variables are referred as target and reference group (Meyers 
et al. 2013). Now, the question arises as to what should be considered as the target group. 
For example, if the outcome variable has two classes A and B. Then, which outcome class 
should be considered as target group and reference group? Usually, the target group is 
the one that would satisfy the condition that we need to identify or predict. Therefore, it is 
referred to as the group of positive outcomes. The remaining instances correspond to the 
alterative group referred to as the “reference group.” These instances are referred to as the 
negative outcomes, as shown in Table 7.4.

7.5.6.1 ROC Curve

One of the most important characteristics of the ROC analysis is the curve. ROC curve 
is the visual representation that is used to picture the overall accuracy of the prediction 
model. The ROC curve is defined as a plot between sensitivity on the y-coordinate and 
1-specificity on the x-coordinate (Hanley and McNeil 1982; El Emam et al. 1999). So, we 
can say that ROC curve is a plot of the TP rate against the FP rate at different possible 
threshold values (cutoff points). It is represented by a graph together with a diagonal line, 
as shown in Figure 7.13. This diagonal line represents a random model that has no pre-
dictive power. We can also interpret the curve by saying that there is a tradeoff between 
sensitivity and specificity in the sense that any increase in the value of sensitivity will 

TABLE 7.13

Confusion Matrix for Class “Medium”

Predicted

Medium Not Medium

Actual Medium TP = 34 FN = 4
Not medium FP = 13 TN = 9

TABLE 7.14

Confusion Matrix for Class “Low”

Predicted

Low Not Low

Actual Low TP = 5 FN = 5
Not low FP = 1 TN = 49
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lead to a decrease in the value of specificity. ROC curve starts from the origin and moves 
toward the upper-right portion of the graph, as can be seen from Figure 7.13. The ends 
of the curve meet the end points of the diagonal line. The closer the curve is toward the 
left-hand border and the top border of the ROC graph, the more accurate is the prediction 
capability of the model. In contrast, the closer the curve comes to the 45-degree diagonal 
of the ROC graph, the less accurate is the model prediction.

7.5.6.2 Area Under the ROC Curve

The prediction capability of the model depends on the degree to which the ROC curve 
bends away from the random model projection. In other words, we can say that the accu-
racy of the model depends on how well it is able to separate the instances being tested 
as positives and negatives. The area under the ROC curve (AUC) measures this accuracy 
of the predicted model. An AUC value of 1 represents that the model prediction is 100% 
accurate and an area of 0.5 represents that the performance of the model is worthless in 
predicting the unknown instances. An AUC value in the range of 0.5 will arise in the case 
where the ROC curve lies very close to the diagonal line. In other words, the AUC provides 
a measure of how much better, than the random model, a given prediction model is able to 
differentiate between positive and negative outcomes (target and reference group).

7.5.6.3 Cutoff Point and Co-Ordinates of the ROC Curve

We should not select arbitrary cutoff points in the analysis to calculate sensitivity and 
specificity. Another important use of ROC analysis is to provide optimal threshold value. 
The optimal threshold value provides balance between sensitivity and specificity val-
ues and can be obtained by ROC analysis. The ROC curve depicts the overall accuracy 
of the model, but the success of correctly predicting group membership depends on the 
location of a particular decision threshold value on the ROC curve. This threshold value 
is also known as the cutoff point. Determining the threshold value is very important in 
model prediction because the basis of our classification is a quantitative measure, that is, 
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FIGURE 7.13
Example of an ROC curve.
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the predicted probability of an instance as being a positive or negative outcome. In other 
words, we can say that based on the decision criterion selected, we can identify whether 
a particular instance of the test data will belong to the positive or negative outcome on 
the basis of its predicted probability. An instance whose predicted probability falls below 
the selected cutoff point would be classified as negative outcome, and an instance whose 
predicted probability falls at or above the selected threshold value would be classified as 
positive outcome.

This crucial decision regarding the selection of the threshold point can be made based on 
the results of the ROC analysis. In addition to obtaining the AUC value and the ROC curve, 
a range of co-ordinates that define the ROC curve are also obtained and shown in Table 7.16. 
This range of co-ordinates is a combination of TP (sensitivity) and FP (1-specificity).

Along with each set of sensitivity and 1-specificity, we have the predicted probability of 
an instance as being classified as positive outcome. Now, based on this predicted probabil-
ity, the value of an instance can be decided. The remaining two columns of Table 7.16 rep-
resent the TP rate (sensitivity) and FP rate (1-specificity) that are plotted as the data points 
for the ROC curve on y- and x-axes, respectively. For example, consider the second row 
in Table 7.16, where the predicted probability of an instance being in the target group is 
0.500 as the threshold value (cutoff point). The TP rate is 0.800 and FP rate is 0.400 cor-
responding to 0.500 cutoff value. This means that 80% of the positive values are correctly 
classified, and 60% of the negative values are correctly classified. When we plot these data 
points together, then the ROC curve is depicted as shown in Figure 7.13.

Example 7.2:

Consider an example to compute AUC using ROC analysis. In this example, OO metrics 
are taken as independent variables and fault proneness is taken as the dependent vari-
able. The model is predicted by applying an ML technique. Table 7.17 depicts actual and 
predicted dependent variable. Use ROC analysis for the following:

 1. Identify AUC.
 2. Based on the AUC, determine the predicted capability of the model.

Solution:
The value of the dependent variable is 0  if the module does not contain any fault, 
and its value is 1 if the module contains a fault. On the basis of this input, the ROC 
curve obtained using Statistical Package for the Social Sciences (SPSS) tool is shown 
in Figure 7.14, the value of AUC is 0.642 and the coordinates of the curve are depicted 
in Table 7.18. Table 7.18 shows the values of sensitivity and 1-specificity along with 
their corresponding cutoff points. The results show that AUC is 0.642. Hence, the 
model performance is not good (for interpretation of performance measures refer 
Section 7.9.1).

TABLE 7.16

Co-Ordinates of the ROC Curve

Cutoff Point Sensitivity 1-Specificity

0.450 0.890 0.600
0.500 0.800 0.400
0.550 0.740 0.220
0.900 0.100 0.020
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7.5.7 Guidelines for Using Performance Measures

There are a number of different measures that are used to evaluate the performance of the 
prediction model. These measures have already been explained in the previous sections. 
Each performance measure has its own advantages and, therefore, is applicable only in 
selected situations. In this section, we will discuss the suitability of performance measures 
and provide the guidelines that can be followed in selecting a suitable performance measure.

Accuracy and error rate (1-accuarcy) are the simplest of the measures that are used to 
evaluate the performance of the prediction model. However, these measures are highly 

TABLE 7.17

Example for ROC Analysis

Actual 
Predicted 

Probability Actual 
Predicted 

Probability

1 0.055 0 0.061
1 0.124 0 0.254
1 0.124 0 0.191
1 0.964 0 0.024
1 0.124 0 0.003
1 0.016 0 0.123
0 0.052 1 0.123
0 0.015 1 0.024
0 0.125 1 0.169
0 0.123 1 0.169
1 0.052 1 0.169

1.0

0.8

0.6

Se
ns

iti
vi

ty

0.4

0.2

0.0
0.0 0.2 0.4

1-specificity
0.6 0.8 1.0

FIGURE 7.14
The obtained ROC curve.
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sensitive to the distributions in the data. In other words, accuracy is very sensitive to the 
imbalances in a given data set. Any data set that exhibits unequal distribution of positive 
and negative instances is considered as an imbalanced data (Malhotra 2015). Therefore, 
as the class distribution will vary, the performance of the measure will also change even 
though the performance of the learning technique remains the same. As a result, the accu-
racy measure will not be a true representative of the model performance. For example, if 
data set contains maximum negative samples and all the samples are predicted as nega-
tive, the accuracy will be very high but the predicted model is useless. Hence, this measure 
is not recommended to be used when there is a need to compare the performance of two 
learning techniques over different data sets.

Therefore, other measures popularly used in learning are precision, recall, F-measure, 
and G-measure. We will first discuss precision and recall and see their behavior with 
respect to imbalanced data. As we know, precision is a measure of exactness that deter-
mines the number of instances which are labeled correctly out of the total number of 
instances labeled as positive. In contrast, recall is a measure of completeness that deter-
mines the number of positive class instances, which are labeled correctly. By these defi-
nitions, it is clear that both precision and recall have an inverse relationship with each 
other and precision is sensitive to data distributions, whereas recall is not. But recall 
is not able to give any information regarding the number of instances that are incor-
rectly labeled as positive. Similarly, precision does not tell anything about the number of 
positive instances that are labeled incorrectly. Therefore, precision and recall are often 
combined together to form a measure referred to as F-measure. F-measure is considered 
as an effective measure of classification that provides an insight into the functionality 
of a classifier, unlike the accuracy metric. However, F-measure is also sensitive to data 
distributions. Another metric, the G-measure is also one of the popularly used evalua-
tion measure that is used to evaluate the degree of inductive bias, in terms of a ratio of 
positive accuracy and negative accuracy. Although F-measure and G-measure are much 
better than the accuracy measure, they are still not suitable to compare the performance 
of different classifiers over a range of sample distributions.

TABLE 7.18

Co-Ordinates of the ROC Curve

Cutoff Point Sensitivity 1-Specificity

0 1 1
0.009 1 0.9
0.015 1 0.8
0.020 0.917 0.8
0.038 0.833 0.7
0.056 0.750 0.6
0.092 0.750 0.5
0.123 0.667 0.3
0.124 0.417 0.3
0.147 0.417 0.2
0.180 0.083 0.2
0.222 0.083 0.1
0.609 0.083 0
1 0 0
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To overcome the above issues, AUC curve generated by the ROC analysis is widely used as 
the performance measure specifically for imbalanced data. AUC computed from ROC analy-
sis is widely used in medical diagnosis for the past many years, and its use is increasing in the 
field of data mining research. Carvalho et al. (2010) advocated AUC to be the relevant criterion 
for dealing with unbalanced and noisy data, as AUC is insensitive to the changes in distribu-
tion of class. He and Garcia (2009) have recommended the use of AUC for dealing the issues 
of imbalanced data with regard to class distributions, it provides a visual representation of the 
relative tradeoffs between the advantages (represented by TP) and costs (represented by FP) 
of classification. In addition to, ROC curves for data sets that are highly skewed, a researcher 
may use precision–recall (PR) curves. The PR curve is expressed as a plot of precision rate and 
the recall rate (He and Garcia 2009). The ROC curves achieve maximum model accuracy in the 
upper left-hand of the ROC space. However, a PR curve achieves maximum model accuracy 
in the upper right-hand of the PR space. Hence, PR space can be used as an effective mecha-
nism for predicted model’s accuracy assessment when the data is highly skewed.

Another shortcoming of ROC curves is that they are not able to deduce the statistical 
significance of different model performance over varying class probabilities or misclas-
sification costs. To address these problems, another solution suggested by He and Garcia 
(2009) is to use cost curves. A cost curve is an evaluation method that, like ROC curve, 
visually depicts the model’s performance over varying misclassification of costs and class 
distributions (He and Garcia 2009).

In general, given the limitations of each performance measures, the researcher may use 
multiple measures to increase the conclusion validity of the empirical study.

7.6 Performance Measures for Continuous Dependent Variable

This section highlights on the various performance measures used to evaluate the perfor-
mance of the prediction models when the dependent variable is of continuous type.

7.6.1 Mean Relative Error

The mean relative error (MRE) is a measure that is used to find out how far are the estimated 
values from actual values of the instances in a given data set. It is applicable to any two sets 
of values. Here, by two sets we mean that one set consists of the actual values and the other 
set consists of the estimated (predicted) values. It is defined by the following formula:

	
MRE

P= −

=
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1
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A
A

i
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where:
N is the total number of instances in a given data set
Pi is the predicted value of an instance i 
Ai is the actual value of an instance i 

7.6.2 Mean Absolute Relative Error

The mean absolute relative error (MARE) is the most frequently used measure to  evaluate 
the performance of the model when the dependent variable is continuous. It is given by the 
following formula:
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where:
N refers to the total number of instances in a given data set
Pi refers to the predicted value of an instance i
Ai refers to the actual value of an instance i

7.6.3 PRED (A)

It is calculated from the relative error. It is defined as the ratio of the instances that have 
an error value (absolute relative error [ARE]) less than or equal to “A” error divided by the 
total number of instances in the data set. Given the lowest value of A, the higher the value 
of Pred (A), the better it is as the prediction model. Generally, the value of “A” that is used 
by most of the studies is 25%, 50%, or 75%. PRED (A) is given by the following formula:

	
PRED A( ) = d

N

where:
N refers to the total number of instances in a given data set
d is the number of instances having value of error less than or equal to “A” error

Example 7.3:

Consider an example to assess the performance of model predicted with lines of code 
(LOC) as outcome. Table 7.19 presents a data set consisting of ten instances that depict 
the LOC of a given software. The table shows the actual values of LOC and values of 
LOC that are predicted once the model has been trained. Calculate all the performance 
measures for the data given in Table 7.19.

Solution:
The difference between the predicted and the actual values has been shown in Table 7.20.

Table 7.21 shows the values of the performance measures MRE, MARE, and Pred (A). 
MRE is the average of the values obtained after dividing the difference of the predicted 
and the actual values with the actual values. Similarly, MARE is the average of the values 
obtained after dividing the absolute difference of the predicted and the actual values with 

TABLE 7.19

Actual and Predicted Values of Model Predicted

Module # Actual (Ai) Predicted (Pi)

1 100 90
2 76 35
3 45 60
4 278 300
5 360 90
6 240 250
7 520 500
8 390 800
9 50 45
10 110 52
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the actual values. Pred (A) is obtained by dividing the instances that have an error value 
(MRE) less than or equal to “A” error by the total number of instances in the data set. The 
Pred value is calculated at 25%, 50%, and 75% levels, and the results are shown in Table 7.21. 
The results show that 50% of instances have error less than 25%, 60% of instances have error 
less than 50% and 90% of instances have error less than 75%. 

7.7 Cross-Validation

The accuracy obtained by using the data set from which the model is build is quite 
 optimistic. Cross-validation is a model evaluation technique that divides the given data set 
into training and testing data in a given ratio and proportion. The training data is used to 
train the model using any of the learning techniques available in the literature. This trained 
model is then used to make new predictions for data it has not already seen, that is, the 
testing data. The division of the data set into two parts is essential, as it will provide infor-
mation about how well the learner performs on the new data. The ratio by which the data 
set is divided is decided on the basis of the cross-validation method used.

TABLE 7.20

Actual and Predicted Values of Model Predicted

Module # Actual (Ai) Predicted (Pi) Pi – Ai (Pi – Ai)/Ai |(Pi – Ai)|/Ai

1 100 90 −10 −0.1 0.100
2 76 35 −41 −0.539 0.539 
3 45 60 15 0.333 0.333
4 278 300 22 0.079 0.079 
5 360 90 −270 −0.75 0.750
6 240 250 10 0.047 0.042
7 520 500 −20 −0.038 0.038 
8 390 800 410 1.051 1.051 
9 50 45 −5 −0.1 0.100
10 110 52 −58 −0.527 0.527 

TABLE 7.21

Performance Measures

Performance Measure Values Obtained Result
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7.7.1 Hold-Out Validation

Hold-out validation is the simplest kind of cross-validation in which the given data set 
is randomly partitioned into two independent data sets. Generally, two-third of the data 
is used as the training set and remaining one-third of the data is used as the testing set. 
Figure 7.15 shows the concept of hold-out validation. Training set is used for model con-
struction, and testing set is used for the estimation of model accuracy. In other words, test-
ing set is used to determine how well the model is trained to make new predictions. The 
advantage of this method is that it takes less time to compute. However, its evaluation can 
have a high variance. This is so because here the evaluation depends greatly on which data 
points end up in the training set and which end up in the testing set. Thus, the evaluation 
may be quite different depending on how the division is made, and we may get a mislead-
ing estimate of error rate if we happen to get an “unfortunate” split. This problem can be 
overcome by using multiple runs of hold-out validation and then averaging the result or 
using majority voting. Hold-out method is applicable for problems with large data set and 
is not suitable for small data sets as, in this case, a portion of the data set for testing cannot 
be set aside.

7.7.2 K-Fold Cross-Validation

In k cross-validation, the data set is divided into k parts where k − 1 parts are used for train-
ing the model and one part is used for validation purpose. Thus, this procedure is repeated 
k-times and the results of each run are combined together. This validation method is widely 
used in empirical studies and mostly the value of k is ten. Figure 7.16 depicts the ten cross-
validation procedure.

7.7.3 Leave-One-Out Validation

Leave-one-out (LOO) cross-validation is a K-fold cross-validation with K equal to 1. This 
means that for a data set with N instances, N separate experiments are conducted. For 
each experiment, N − 1 instances are used for training and the remaining 1 instance is 
used for testing. Thus, the prediction is made for that one particular data point. In this 
validation method, the average error is also computed, which is used to evaluate the 
model. The evaluation given by LOO cross-validation error is good, but at first glance it 
seems very expensive to compute. We also have the concept of locally weighted learn-
ers that can make LOO predictions just as easily as they make regular predictions. This 
means that computing the LOO cross-validation error is a much better way to evaluate 
models. However, when the available number of data samples is severely limited, one 
may use this form of cross-validation. The procedure is presented in Figure 7.17. Given the 
stochastic nature of learning techniques, specifically SBT, multiple runs maybe combined 
with cross-validation method being used by a researcher to increase the generalizability 
of results.

Training setTesting set

Total number of instances

FIGURE 7.15
Hold-out validation.
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Tenfold cross-validation.
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FIGURE 7.17
Leave-one-out validation.
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7.8 Model Comparison Tests

The performance of the models predicted using various techniques and on multiple data 
sets can be compared using statistical tests. These tests have been explained in Chapter 6. 
The models predicted using various techniques over multiple data sets can be compared 
using one of the performance measures. The paired t-test, Friedman test, or Kruskal–Wallis 
test can be used for comparing the performance of models predicted. The selection of the 
appropriate test depends on the assumptions of the test. Figure 7.18 depicts the procedure 
of comparing predicted models. The figure shows that each ML technique is applied to 
multiple data sets resulting in predicted models. The statistical tests such as paired t-test, 
Friedman test, or Kruskal–Wallis test are applied on the outcome produced (such as recall, 
AUC, accuracy) by these predicted models.

Consider an example given in Table 7.22, where the researcher intends to compare the 
predictive performance of two models predicted using Bagging and LR technique. We can 
apply paired t-test to compare the performance of these two techniques with the following 
hypothesis.

Data-1

Data-2

Data-n

ML-1

ML-2

ML-n

Model-1

Model-n

Statistical
tests

Model-1

Model-n

Model-1

Model-n

FIGURE 7.18
Model comparison using statistical tests.

TABLE 7.22

AUC of Models Predicted 

Data Set Bagging LR

Data-1 0.74 0.69
Data-2 0.72 0.67
Data-3 0.75 0.65
Data-4 0.77 0.61
Data-5 0.71 0.69



310 Empirical Research in Software Engineering

Null hypothesis: There is no significant difference between the performance of model 
predicted using Bagging technique and the model predicted using LR technique.

Alternative hypothesis: There is a significant difference between the performance 
of model predicted using Bagging technique and the model predicted using LR 
technique.

After applying paired t-test using the procedure given in Section 6.4.6.3, the t-statistic 
is 3.087 (p-value = 0.037) and the test is significant at 0.05 significance level. Hence, null 
hypothesis is rejected and the alternative hypothesis is accepted. The example above dem-
onstrates how statistical tests can be used for model comparison. The empirical study in 
Section 7.11 describes the practical example of comparison of models using statistical tests.

7.9 Interpreting the Results

The results are merely the facts and findings of the statistical analysis and hypothesis test-
ing. The results are generally presented using tables and figures. For example, specifying 
that the two OO metrics are related to each other is a finding. However, discussing why 
the variables are related to each other is part of discussion of results or results interpreta-
tion portion. Thus, the meaning of the results is presented in the results interpretation sec-
tion of the study. The following issues should be addressed while interpreting the results:

 1. Answers to research questions or issues identified in the experimental design.
 2. Determination of reasons related to findings.
 3. Discussing the reasons of acceptance or rejection of hypothesis.
 4. Identification of generalized findings in view of findings in the literature.
 5. Acknowledging the weaknesses or limitations of the empirical study.
 6. Determination of new lessons learned from the findings.
 7. Identification of target audience of the study.

Figure 7.19 depicts the list of questions that must be addressed while interpreting the results.

7.9.1 Analyzing Performance Measures

The high values of recall represents whether the samples are correctly predicted as posi-
tive or not. Ideally, both the sensitivity and specificity should be high. For example, for 
predicting fault-prone classes, a low specificity means that there are many low-risk classes 
that are classified as faulty. Therefore, the organization would waste resources in focusing 
additional testing efforts on these classes. A low sensitivity means that there are many 
high-risk classes that are classified as not faulty. Therefore, the organization would be 
passing high-risk classes to customers.

The performance measures can be evaluated and analyzed as follows in different cases:

Case 1: Consider a scenario where the number of samples is 1,000 with 10 positive 
samples and rest negative samples, if all the samples are predicted as negative 
then the accuracy is 99% and specificity is 100%. However, the model is useless as 
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sensitivity or recall is computed its value is 0%. Hence, in this case, recall is the 
most appropriate performance measure that represents the model accuracy.

Case 2: Consider a scenario where the number of instances is 1,000  with 10  posi-
tive samples and rest negative instances, if all the samples are predicted as posi-
tive then precision is 1%, accuracy is 1%, specificity is 0%, and sensitivity is 100%. 
Hence, in this case, sensitivity is the most inappropriate performance measure 
that represents the model accuracy.

Case 3: Another situation is if most of the instances are positive. Consider a scenario 
where the number of instances is 1,000 with 990 positive instances and rest negative 
instances, if all the instances are predicted as positive then precision is 99%, accu-
racy is 99%, specificity is 0%, and sensitivity is 100%. Hence, in this case, specificity 
is the most appropriate performance measure that represents the model accuracy.

Case 4: Consider a scenario where the number of instances is 1,000 with 990 positive 
instances and rest negative instances, if all the instances are predicted as nega-
tive then precision is 0%, accuracy is 1%, specificity is 100%, and sensitivity is 0%. 
Hence, in this case, sensitivity, precision, and accuracy are the most appropriate 
performance measures that represent the model accuracy.

Case 5: Consider 1,000 samples with 60 positive instances and 940 negative instances, 
where 50 instances are predicted correctly as positive, 40 are incorrectly predicted 
as positive, and 900 are correctly predicted as negative. For this example, sensitiv-
ity is 83.33%, specificity is 95.74%, precision is 55.56%, and accuracy is 95%. Hence, 
in this case, precision is the most appropriate performance measure that represents 
the model accuracy.
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FIGURE 7.19
Issues to be addressed while result interpretation.
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Hence, the problem domain has major influence on the values of performance measures, 
and the models can be interpreted in the light of more than one performance measures. 
AUC is another measure that provides a complete view of the accuracy of the model. 
Guidelines for interpreting the accuracy of the prediction model based on the AUC are 
given in Table 7.23.

7.9.2 Presenting Qualitative and Quantitative Results

The quantitative results are presented using tables and charts. The readability of the tables 
should be high. The readers would want to know the precise values of the results. There 
are many graphs such as box plots, line charts, scatter plots, and pie charts that can be 
used to present the quantitative results. The significance of the numerical results must be 
interpreted.

Qualitative research involves presenting the data that is non-numerical in nature. 
It presents people’s reactions. The researcher must present the quotes, reactions, or texts 
that represent most significant results of the study.

7.9.3 Drawing Conclusions from Hypothesis Testing

The statistical test begins with the assumption that the null hypothesis is true, however, the 
researcher wants to reject the null hypothesis. When the null hypothesis is not rejected, it 
does not necessarily means that there is no difference. It means there might be a difference, 
but it is not detected by the sample data used in the hypothesis testing. Thus, a difference 
might exist but the result does not detect it.

When the null hypothesis is rejected, it means that a statistical significance has been 
obtained. However, the researcher has to decide whether this result is of any practical 
significance.

7.9.4  Example—Discussion of Results in Hypothesis Testing Using 
Univariate Analysis for Fault Prediction System

In this section, we validate the hypothesis set A stated in Section 4.7.6 and the results of 
univariate analysis presented in Section 6.6. In addition to the results of univariate analysis 
using LR technique provided in Section 6.6, the FPS study also conducts univariate analy-
sis using two ML techniques: ANN and DT. In the FPS study, the values of performance 
measures (sensitivity, specificity, accuracy) are calculated for each individual metric using 
ANN and DT techniques. Thus, while reporting the results of hypothesis testing, the uni-
variate results obtained using LR, ANN, and DT techniques are shown. While providing 
the results of the hypothesis formed in this work, we will also compare the results with 
those of previous studies till date shown in Table 7.24.

TABLE 7.23

AUC Values

AUC Range Guideline

0.50–0.60 No discrimination
0.60–0.70 Poor
0.70–0.80 Acceptable/good
0.80–0.90 Very good
0.90 and higher Excellent
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 Coupling between objects (CBO) hypothesis is found to be significant in the LR analysis 
for all severities of faults. Sensitivity of both the LR and artificial NN (ANN) models are 
same. The ML techniques confirmed the findings of the regression analysis, as the values 
of sensitivity, accuracy, and correctness for the CBO metric is high. It is also found to be 
the significant predictor in all studies except Tang et al. (1999) and El Emam et al. (2001a).

All of the models found the CBO metric to be the significant predictor of fault proneness. 
Hence, the null hypothesis is rejected and the alternative hypothesis is accepted.

Response for a class (RFC) hypothesis is found to be significant in the LR analysis for all 
severities of faults. Sensitivity of the ANN and DT models is also high. Similar results are 
shown by Basili et al. (1996), Briand et al. (2000), El Emam et al. (2001a), Zhou and Leung 
(2006), Olague et al. (2007), and Gyimothy et al. (2005). Tang et al. (1999) found it significant 
at 0.05. Yu et al. (2002) also found the RFC metric as the significant predictor, but their 
method of calculating the RFC metric was different. Hence, the null hypothesis is rejected 
and the alternative hypothesis for the RFC metric is accepted.

Lack of cohesion in methods (LCOM) hypothesis is found to be significant in the LR 
analysis of this study (except for faults predicted with respect to low severity), contra-
dicting the results of Basili et al. (1996), where the LCOM was shown to be insignificant. 
Zhou and Leung (2006), Olague et al. (2007), and Gyimothy et al. (2005) also found the 
LCOM metric to be a very significant predictor of fault proneness. Yu et al. (2002) calcu-
lated the LCOM in a totally different way; therefore, the study could not compare the 
results with theirs. Hence, the null hypothesis is rejected and the alternative hypothesis 
is accepted.

In the number of children (NOC) hypothesis, it was found that the NOC metric was 
not significant with respect to the LSF and high-severity fault (HSF) in the LR analysis. 
However, the NOC metric is found inversely related to fault proneness with respect to 
medium-severity fault (MSF) and ungraded severity fault (USF), that is, larger the value 
of the NOC, the lesser is the probability of fault detection. The results of the DT and ANN 
also predict all classes to be nonfaulty for all severity levels of faults. Braind et al. (2001), 
Gyimothy et al. (2005), and Tang et al. (1999) found the NOC not to be a significant predic-
tor of fault proneness. Basili et al. (1996), Briand et al. (2000), and Zhou and Leung (2006) 
found the NOC metric to be significant, but they found that the larger the value of NOC, 
the lower the probability of fault proneness. According to Yu et al. (2002), NOC metric is a 
significant predictor of fault proneness, and they found that more the NOC in a class, the 
more fault prone it is.

The null hypothes is accepted for the NOC metric and alternative hypothesis. Most of 
the studies that examined this metric found either the NOC metric to be not related to 
fault proneness or negatively related to fault proneness. The conclusion is that the NOC 
metric is a bad predictor of fault proneness. Hence, perhaps more attention (e.g., through 
walkthroughs and inspections) is given during development to the classes on which other 
classes depend (Briand et al. 2000).

Depth of inheritance tree (DIT) hypothesis is not found to be significant in the univariate 
LR analysis. On the other hand, Briand et al. (2001) found it to be significant but in inverse 
manner. This finding is similar to those given by Yu et  al. (2002), Tang et  al. (1999), El 
Emam et al. (2001a), and Zhou and Leung (2006). Basili et al. (1996) and Briand et al. (2000) 
found DIT metric to be a significant predictor of fault proneness. Gyimothy et al. (2005) 
found the DIT metric to be a less significant predictor of fault proneness. The DT results 
show very less values of sensitivity and accuracy for medium, low, and ungraded severi-
ties of faults. For high severity of faults, the DT and ANN techniques predicted all classes 
as nonfaulty. The ANN technique shows low values of sensitivity for medium, low, and 
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ungraded severities of faults. The completeness value of the DIT is worse with respect to 
all the severities of faults. Table 7.24 shows that most of the studies found that the DIT met-
ric is not related to fault proneness. The class may have less number of ancestors in most of 
the studies and is one of the reasons for nonrelation of the DIT metric with fault proneness, 
and further investigation is needed. The null hypothesis for the DIT metric is accepted and 
the alternative hypothesis is rejected.

Weighted methods per class (WMC) hypothesis is found to be significant in the LR and 
ANN analysis. On the other hand, Basili et al. (1996) found it to be less significant. In the 
study conducted by Yu et al. (2002), WMC metric was found to be a significant predictor 
of fault proneness. Similar to the regression and DT and ANN results in this study, Briand 
et al. (2000), Gyimothy et al. (2005), Olague et al. (2007), and Zhou and Leung (2006) also 
found the WMC metric as one of the best predictors of fault proneness. Rest of the studies 
found it to be a significant predictor, but at 0.05 significance level.

All of the three models found the WMC metric to be significant predictor of fault prone-
ness. Hence, the null hypothesis is rejected and the alternative hypothesis is accepted.

LOC hypothesis is found to be significant in the LR analysis. It was also found signifi-
cant in all the studies that examined them. Hence, the null hypothesis is rejected and the 
alternative hypothesis is accepted.

In Table 7.25, summary of the results of the hypothesis stated in Section 4.7.6 with respect 
to each severity of faults. The LCOM metric was found significant at 0.05 level in the study 
conducted by Zhou and Leung (2006) with regard to low and ungraded severity levels 
of faults. However, in this study, the LCOM metric is found significant at 0.01 level with 
respect to the HSF, MSF, and USF and is not found to be significant with respect to LSF.

7.10 Example—Comparing ML Techniques for Fault Prediction

In this study, the performance of 18 ML techniques on six releases of “MMS” application 
package of Android operating system (OS) is compared. This enables the investigation 
whether one technique outperforms others, and also provides insights on the selection of a 
particular ML technique. The 18 ML techniques are a subset of the 22 ML techniques used 
by Lessmann et al. (2008) to assess relationship between static code metrics (traditional, 
procedural, and module-based metrics [Malhotra 2014b]) and fault proneness. However, in 

TABLE 7.25

Summary of Hypothesis

Metric Hypothesis Accepted/Rejected

Severity of Faults HSF MSF LSF USF

RFC √ √ √ √
CBO √ √ √ √
LCOM √ √ × √
DIT × × × ×
NOC × × × ×
WMC √ √ √ √
LOC √ √ √ √

√ means the hypothesis is accepted, × means that the hypothesis is rejected.
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this work, we predict the fault-prone classes using the OO metrics design suite given by 
Bansiya and Davis (2002) and Chidamber and Kemerer (1994), instead of static code met-
rics. The results are evaluated using AUC obtained from ROC analysis. Figure 7.20 pres-
ents the basic elements of the study (for details refer [Malhotra and Raje 2014]).

This section presents the evaluation results of the various ML techniques for fault pre-
diction using selected OO metrics given in Table 7.26.

The results are validated using six releases of the “MMS” application package of the 
Android OS. The six releases of Android OS have been selected with three code names, 

Independent
variables:

Dependent
variable:

Defect
proneness

OO metrics
• Bansiya and Davis
   metrics

• Probability of
   occurrence of
   defect in a class

Learner:
18 ML

techniques

• Chidamber and
    Kemerer metrics

FIGURE 7.20
Elements of empirical study.

TABLE 7.26

Description of OO Metrics Used in the Study

Abb. Metric Definition

WMC Weighted methods per class Count of sum of complexities of the number of 
methods in a class. 

NOC Number of children Number of subclasses of a given class.
DIT Depth of inheritance tree Provides the maximum steps from the root to 

the leaf node. 
LCOM Lack of cohesion in methods Null pairs not having common attributes.
CBO Coupling between objects Number of classes to which a class is coupled.
RFC Response for a class Number of external and internal methods in a 

class.
DAM Data access metric Ratio of the number of private (and/or 

protected) attributes to the total number of 
attributes in a class.

MOA Measure of aggression Percentage of data declarations (user defined) 
in a class.

MFA Method of functional abstraction Ratio of total number of inherited methods to 
the number of methods in a class.

CAM Cohesion among the methods of a class Computes method similarity based on their 
signatures.

AMC Average method complexity Computed using McCabe’s cyclomatic 
complexity method.

LCOM3 Lack of cohesion in methods Revision of LCOM metric given by 
Henderson-Sellers 

LOC Line of code Number of lines of source code of a given class.

(Continued)
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namely—Ginger Bread, Ice Cream Sandwich, and Jelly Bean. The source code of these 
releases has been obtained from Google’s Git repository (https://android.googlesource.
com). The source code of Android OS is available in various application packages.

The results of the ML techniques are compared by first applying the Friedman test, followed 
by post hoc Wilcoxon signed-rank test if the results in the Friedman test are significant. The 
predicted models are validated using tenfold cross-validation. Further, the predictive capa-
bilities of the ML techniques are evaluated using the across-release validation. To answer the 
research questions given below, an empirical validation is done using various techniques on 
the six releases of the Android OS using the following steps:

 1. Preprocessing of collected data sets
 2. Selection of various ML techniques for fault prediction
 3. Selection of performance measures and model validation techniques (for analyz-

ing the performance of the models developed using Android data sets
 4. Selection of relevant OO metrics using correlation-based feature subselection 

(CFS) method
 5. Model development for fault prediction using ML techniques in step 2.
 6. Model validation using two validations methods: tenfold cross-validation and 

across-release validation
 7. Testing whether the difference between the performances of ML techniques is 

statistically significant using Friedman test and post hoc analysis

The models are generated using all the independent variables selected using the CFS tech-
nique. The results obtained using the reduced set of variables are slightly better as compared 
to the results obtained using all the independent variables. Table 7.27 presents the relevant 
metrics found in each release of Android data set after applying the CFS technique. The 
results show that Ce, LOC, LCOM3, cohesion among methods (CAM), and data access metric 
(DAM) are the most commonly selected OO metrics over the six releases of the Android data 
sets.

After this, the ML techniques are empirically compared, and the results are evaluated 
in terms of the AUC. The AUC has been advocated as a primary indicator of comparative 
performance of the predicted models (Lessmann et al. 2008). The AUC measure can deal 
with noisy and unbalanced data and is insensitive to the changes in the class distributions 
(De Carvalho et al. 2008). Table 7.28 reports the tenfold cross-validation results of 18 ML 
techniques on six releases of Android OS. The ML technique yielding best AUC for a given 

TABLE 7.26 (Continued)

Description of OO Metrics Used in the Study

Abb. Metric Definition

NPM Number of public methods Number of public methods in a given class.
Ca Afferent couplings Number of classes calling a given class.
Ce Efferent couplings Number of other classes called by a class.
IC Inheritance coupling Number of parent classes to which a class is 

coupled.
Faults Fault count Binary variable indicating the presence or 

absence of the faults.

Source: S. R. Chidamber and C. F. Kemerer, IEEE Trans. Softw. Eng., 20, 476–493, 1994.
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release is depicted in bold. The results show that the model predicted using the NB, AB, 
RBF, Bag, ADT, MLP, LB, and RF techniques have AUC greater than 0.7 corresponding to 
most of the releases of the Android data set.

RQ1: What is the overall predictive capability of various ML techniques on Android 
“MMS” data set?

A1: The AUC of most of the models predicted using the ML techniques is 0.7, which 
highlights the predictive capability of the ML techniques.

To confirm that the performance difference among the ML models is not random,  
Friedman test is used to evaluate the superiority of one ML technique over the other 

TABLE 7.28

Tenfold Cross-Validation Results of 18 ML Techniques with Respect to AUC

Android Data Set Release 

ML Tech. 2.3.7 4.0.2 4.0.4 4.1.2 4.2.2 4.3.1 Avg.

LR 0.81 0.66 0.85 0.73 0.56 0.68 0.72
NB 0.81 0.73 0.84 0.76 0.62 0.80 0.76
BN 0.79 0.46 0.84 0.73 0.43 0.52 0.63
MLP 0.79 0.71 0.85 0.71 0.61 0.76 0.74
RBF 0.77 0.76 0.80 0.74 0.76 0.74 0.77
SVM 0.64 0.50 0.76 0.50 0.50 0.50 0.57
VP 0.66 0.59 0.67 0.56 0.50 0.50 0.58
CART 0.77 0.45 0.75 0.74 0.43 0.45 0.60
J48 0.71 0.48 0.78 0.67 0.43 0.52 0.60
ADT 0.81 0.72 0.83 0.72 0.62 0.74 0.74
Bag 0.81 0.68 0.84 0.74 0.68 0.72 0.75
RF 0.79 0.65 0.82 0.67 0.70 0.73 0.73
LMT 0.77 0.66 0.83 0.75 0.56 0.73 0.72
LB 0.83 0.75 0.82 0.71 0.70 0.65 0.75
AB 0.81 0.70 0.81 0.69 0.70 0.65 0.73
NNge 0.69 0.53 0.75 0.66 0.65 0.51 0.64
DTNB 0.76 0.46 0.81 0.71 0.43 0.68 0.65
VFI 0.77 0.72 0.70 0.62 0.75 0.74 0.72

TABLE 7.27

Relevant OO Metrics

Release Relevant Features

Android 2.3.7 Ce, LCOM3, LOC, DAM, MOA, CAM, AMC
Android 4.0.2 WMC, RFC, LCOM, LCOM3, DAM
Android 4.0.4 Ce, NPM, LOC, LCOM3, DAM, CAM
Android 4.1.2 Ce, CAM
Android 4.2.2 DAM
Android 4.3.1 Ce, LOC, DAM, MOA
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ML techniques. The Friedman test resulted in significant value of zero. The results are 
significant at the 0.05  level of significance over 17 degrees of freedom. Thus, the null 
hypothesis that all the ML techniques have similar performance in terms of AUC is 
rejected. The results given in Table 7.29 show that NB technique is the best for predict-
ing fault proneness of a class using OO metrics. The result supports the finding of 
Menzies et al. (2007) that NB is the best technique for building fault prediction models. 
It can be also seen that the models predicted using SVM-based techniques, SVM and 
VP, performed worst.

RQ2: Which is the best ML technique for fault prediction using OO metrics?
A2: The outcome of the Friedman test indicates that the performance of the NB tech-

nique for fault prediction is the best. The performance of the Bagging and RBF 
techniques for fault prediction are the second best among the 18 ML techniques 
that were compared.

After obtaining significant results using the Friedman test, post hoc analysis was per-
formed using the Wilcoxon test. The Wilcoxon test is used to examine the statistical dif-
ference between the pairs of different ML techniques (see Section 6.4.10). The results of the 
pairwise comparisons of the ML techniques are shown in Table 7.30.

The results of Wilcoxon test show that out of the 18 ML techniques, the NB model is 
significantly better than the models predicted using 17 ML techniques such as LMT, BN, 
DTNB, NNge, CART, J48, SVM, and VP. Similarly, the VP model is significantly worse 
than models developed using NB, Bag, RBF, ADT, LB, MLP, LR, LMT, AB, RF, and VFI 
techniques, worse than the BN, DTNB, NNge, CART, and J48 techniques, and better than 
the SVM model.

Figure  7.21  shows the number of ML techniques from which the performance of a 
given ML technique is either superior, significantly superior, inferior, or significantly 
inferior. For example, from the bar chart shown in Figure 7.21, it can be seen that the 
performance of the NB technique is significantly superior to eight other ML techniques 
and nonsignificantly superior to nine  other techniques. Similarly, the performance of 
the Bagging technique is significantly superior to seven other ML techniques, nonsig-
nificantly superior to eight other techniques, and nonsignificantly inferior to two other 
ML techniques.

TABLE 7.29

Friedman Test Results

ML Tech. Mean Rank ML Tech. Mean Rank

NB 3.58 RF 8.58
Bag 5.67 VFI 9.08
RBF 5.67 BN 10.83
ADT 5.92 DTNB 12.83
LB 7.17 NNge 13.58
MLP 7.25 CART 13.92
LR 7.08 J48 14.42
LMT 7.92 SVM 15.67
AB 8.17 VP 15.67
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The AUC values of the NB model are between 0.73 and 0.85  in five releases of the 
Android data sets. The results in this study confirm the previous findings that the NB 
technique is effective in fault prediction and may be used by researchers and practitioners 
in future applications. The NB technique is based on the assumption that the attributes 
are independent and unrelated. One of the reasons that the NB technique showed the best 
performance is that the features are reduced using the CFS method before applying the 
model prediction techniques in this work. The CFS method removes the features that are 
correlated with each other and retains the features that are correlated with the dependent 
variable. Hence, OO metrics selected by the CFS method for each data set are less corre-
lated with each other and more correlated with the fault variable. The NB technique is easy 
to understand and interpret (linear model can be obtained as a sum of logs) and is also 
computationally efficient (Friedman 1940; Zhou and Leung 2006). The NB technique is not 
able to retain the results in one release of the Android data set (Android 4.2.2). This may 
be because of the reason that the NB technique is not able to make accurate predictions of 
faults on the basis of only one OO metric (DAM).

RQ3: Which pairs of ML techniques are significantly different from each other for 
fault prediction?

A3: There are 112  pairs of ML techniques that yield significantly different perfor-
mance results in terms of AUC. The results show that the performance of the NB 
model is significantly better than BN, LMT, BN, DTNB, NNge, CRT, J48, SVM, 
and VP. Similarly, significant pairs of performance of the other ML techniques are 
given in Table 7.30.

To evaluate the accuracy of the predicted models, across-release cross-validation is also 
performed. The performance of the model derived from each release on the immediate 
subsequent release is validated. For example, the model trained using Android 2.3.7 data 
set is validated on the Android 4.0.2 data set, and so on. The results of the across-release 
cross-validation in terms of AUC are shown in Table 7.31. The results of across-release 
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validation show that the AUC of NB, RBF, ADT, Bagging, LMT, and AB are greater than 
0.7 in most of the releases of Android.

Figure 7.22 depicts the comparison of overall results of 18 ML techniques in terms of 
the average AUC using both tenfold and across-release validation over all the Android 
releases. The chart shows that the overall performance results obtained from the across-
release validation are better or comparable than the results obtained from the tenfold 
cross-validation, except when Android 4.0.4 is validated using Android 4.0.2. One possible 
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Comparison between AUC results of tenfold and across-release validation for five releases of android data set.

TABLE 7.31

Across-Release Validation Results of 18 ML Techniques with Respect to AUC

Android

ML Tech. 2.3.7 on 4.0.2 4.0.2 on 4.0.4 4.0.4 on 4.1.2 4.1.2 on 4.2.2 4.2.2 on 4.3.1 Avg.

LR 0.81 0.80 0.80 0.66 0.58 0.73
NB 0.82 0.80 0.79 0.68 0.70 0.76
BN 0.85 0.50 0.79 0.63 0.50 0.66
MLP 0.84 0.82 0.81 0.66 0.60 0.75
RBF 0.82 0.76 0.78 0.72 0.80 0.78
SVM 0.68 0.50 0.71 0.50 0.50 0.58
VP 0.72 0.50 0.58 0.50 0.50 0.56
CART 0.80 0.50 0.70 0.63 0.50 0.63
J48 0.84 0.50 0.77 0.63 0.50 0.65
ADT 0.83 0.69 0.81 0.74 0.74 0.77
Bag 0.85 0.73 0.79 0.72 0.81 0.78
RF 0.84 0.57 0.80 0.71 0.65 0.72
LMT 0.81 0.77 0.80 0.74 0.58 0.74
LB 0.85 0.69 0.81 0.69 0.80 0.77
AB 0.82 0.78 0.78 0.66 0.80 0.77
NNge 0.78 0.54 0.71 0.65 0.56 0.65
DTNB 0.80 0.51 0.77 0.63 0.50 0.65
VFI 0.85 0.79 0.73 0.59 0.78 0.75
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explanation to this is that the values of OO metrics in the Android releases are informative 
enough to predict faults in the subsequent releases. The reason for the low AUC values for 
across-release validation as compared to the AUC values for tenfold cross-validation in 
case of Android 4.0.4 could be that the faulty class percentage in Android 4.0.2 is very less 
(5.47%) as compared to the faulty class percentage in Android 4.0.4 (33.01%).

RQ4: What is the performance of ML techniques when  across-release validation is 
used for predicting postrelease faults?

A4: The performance of the ML techniques when  across-release validation is used 
is comparable (and even better) to the performance of the ML techniques when 
tenfold cross-validation is used for fault prediction. 

Exercises

7.1 Briefly outline the steps of model prediction.
7.2 What is multicollinearity? How can it be removed?
7.3 What is ML? Define various categories of ML technique?
7.4 Discuss the guidelines for selecting ML techniques.
7.5 It is difficult to assess the accuracy of a model where most of the outcomes are nega-

tives. In such cases, what criteria will you use to determine the accuracy of the model?
7.6 Consider two models predicted using tenfold cross-validation. The error rate pro-

duced by model1 is 32, 15, 14, 20, 35, 45, 48, 52, 27, and 29, and model2 is 20, 14, 10, 8, 
15, 20, 25, 17, 19, and 7. We want to determine which model performance is signifi-
cantly better than the other at 0.01 significance level. Apply appropriate statistical 
test and provide interpretation of the results.

7.7 How can bias and variance be reduced for a given model?
7.8 What is the difference between underfitting and overfitting?
7.9 Which measures are useful in predicting model performance when data is 

imbalanced?
7.10 How will a researcher decide on the selection of learning technique?
7.11 Consider the model with following predicted values. Given the actual values, 

comment on the performance of the model.

Actual Predicted Actual Predicted 

0 0.34 1 0.34
1 0.78 1 0.82
0 0.23 0 0.21
0 0.46 1 0.56
0 0.52 0 0.61
1 0.86 0 0.21
1 0.92 1 0.76
1 0.68 1 0.56
0 0.87 0 0.10
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7.12 How can the results of hypothesis testing be interpreted?
7.13 What is the purpose of confusion matrix? How can confusion matrix for a three-

class problem derived?
7.14 Explain steps in search-based techniques. What are the advantages and disad-

vantages of these techniques?
7.15 Define multivariate analysis. Multivariate analysis plays a vital role in software 

engineering research. Justify.
7.16 List the steps involved in conducting research by applying search-based tech-

niques in software quality prediction. Take your research problem for illustration.
7.17 What is the significance of constructing ROC curves? What is the use of area 

under the curve metric?
7.18 Explain the K-fold , hold-out and leave-one-out cross-validation methods.
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The concept of radial basis function is proposed in:

M. J. D. Powell, “The theory of radial basis function approximation in 1990,” 
Department of Applied Mathematics and Theoretical Physics, University of 
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This research paper presents the most powerful nonparametric statistical tests to carry out 
multiple comparisons using accuracy and interpretability:

S. García, A. Fernández, J. Luengo, and F. Herrera, “A study of statistical techniques 
and performance measures for genetics-based machine learning: accuracy and 
interpretability,” Soft Computing, vol. 13, no. 10, pp. 959–977, 2009.

The concept of kappa coefficient is efficiently addressed in:

R. Hernández-Nieto, Contributions to Statistical Analysis: The Coefficients of Proportional 
Variance, Content Validity and Kappa, Universidade de Los Andes, Mérida, Venezuela, 
2002.
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8
Validity Threats

The validity of the results is an important concern for any empirical study. The results 
of any empirical research must be valid for the population from which the samples are 
drawn. The samples are derived and generalized to the population that the researcher 
decides. Threats reduce the applicability of the research results. Hence, the researcher must 
identify the extent of validity of results in design stage and must also provide a list of 
threats to the validity of results after the results have been analyzed. This will provide the 
readers complete information about the limitations of the study.

In this chapter, we present categories of threat to validity, explain the threats with 
 examples, and also list various threats identified from fault prediction studies. We also 
provide possible mitigation of these threats.

8.1 Categories of Threats to Validity

According to Campbell and Stanley (1963), the threats to validity of an experimental design 
can be broadly classified as internal or external. The internal validity concerns are related to all 
the issues that could introduce errors in research design and may threaten the  conclusions of 
the study. Internal validity issues would explore the confidence in the  conclusions of the study 
or may assess extraneous variables that could be responsible for the relationship between 
dependent and independent variables. However, the issues of external validity are related to 
the “generalization” and “representation” of the subjects and results of the study. To achieve 
high external validity, the researcher should make sure that the subjects and results of the 
study should be accurately represented and the results should also generalize to the subjects, 
which may not be investigated in the study. Cook and Campbell (1979) revised the categories 
of threats and extended the list to four types of threats namely: conclusion, internal, construct, 
and external. As shown in Figure 8.1, these threat categories can be considered as subcatego-
ries of internal and external validity threats and are described in Sections 8.1.1 through 8.1.4 
with instances. It may be noted that a threat may belong to more than one category.

8.1.1 Conclusion Validity

Conclusion validity takes into account all the concerns that could affect the capability of 
concluding an accurate and legitimate association between the treatment (independent 
variables) provided by the experiment and the outcome (dependent variable) generated 
by it. All those concerns, which relate to the validity of the conclusion, should be verified 
to demonstrate this validity. For example, if the researcher has demonstrated the rela-
tionship between the dependent and the independent variable but has not assessed this 
relationship statistically with a specific confidence, then the threat to conclusion validity 
exists in the study. Similarly, if a researcher is statistically exploring the relationship of 
the  independent and dependent variable, he should be very sure that the conditions of 
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the chosen statistical test (like the size of the sample, normality of the data, etc.) should 
be  fulfilled. Researchers should apply nonparametric tests in cases where they are not 
completely sure that their data fulfills all the conditions of a parametric statistical test to 
eliminate conclusion validity. It may be noted that some researchers address this threat as 
“statistical  conclusion validity.” The various possible threats to conclusion validity are as 
follows (Cook and Campbell 1979; Wohlin et al. 2012):

• Inaccurate data: If data consists of erroneous observations, outliers, or noise, then 
it may lead to incorrect conclusions.

• Assumptions of statistical tests not satisfied: The statistical tests (specifically para-
metric tests) are based on primary assumptions, for example, t-test is based on 
the assumption that the samples should be normally distributed. These assump-
tions are required to be fulfilled before applying the test, and violating them may 
 produce incorrect conclusions (see Section 6.4 for details on statistical tests).

• Lack of hypothesis formulation and analysis: If the researcher does not form 
appropriate hypothesis to analyze the research questions of the study and does 
not statistically analyze the results, the conclusions will not be valid.

• Biased results: If a researcher is looking for a particular outcome and influences 
the results to obtain that outcome it will produce biased results, as the results are 
no longer independent. Sometimes the researcher may intentionally or uninten-
tionally produce results that satisfy the established research hypothesis.

• Low statistical test ability: The ability of statistical tests to reveal the pattern of 
underlying data is low because of inappropriate selection of significance level, 
which could lead to erroneous judgment.

• Validation bias: The results of the predicted models should be validated on data 
sets that are different than from which they are derived. The researcher may 
use cross-validation methods described in Section 7.7  to reduce this threat. The 
researcher may include multiple runs to validate the results.

• Inadequate number of samples: If the sample size is inadequate or very less, then 
the validity of the results is not assured.

• Inappropriate use of performance measures: The imbalanced nature of dependent 
variable requires the appropriate use of performance measures for evaluating the 
predictive ability of developed models.

Threats

Internal

Conclusion

Internal

External

Construct

External

FIGURE 8.1
Categorization of threats.
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• Use of immature subjects: If the experimental data is collected from groups that 
are not true representatives of industrial settings. For example, if the results 
are based on the samples collected from software developed by undergraduate 
 students, then this may pose a serious threat to conclusion validity.

• Reliability of techniques applied: The settings of the algorithms or techniques should 
be standard and not be overtuned according to the data as this may  produce overfit-
ted results.

• Heterogeneity of validation samples or case studies: The samples should not be 
 heterogeneous as then the variation in the results will be more influenced by the envi-
ronment and nature of the samples rather than the techniques applied. However, this 
will pose a threat to generalizability and hence decrease external validity of results.

• Lack of expert evaluation: The conclusions or results should be evaluated by an 
expert to understand and interpret their true meaning and significance. Lack of 
expert judgment may lead to erroneous conclusions.

• Variety of data preprocessing or engineering activities not taken into account: An 
experiment involves a wide range of data preprocessing or other activities such as 
scaling, discretization, and so on. These activities can significantly influence the 
results if not properly taken into account.

8.1.2 Internal Validity

Internal validity is also known as causal validity, that is, showing that the changes made 
in the independent variable A cause changes in the dependent variable B. The researcher 
can conclude that variable A causes changes in variable B, if the following conditions hold:

 1. Direction of relationship is known.
 2. Variable A is related to variable B.
 3. The relationship between variable A and variable B is not caused by some extraneous 

or “other” variable. For example, there is a correlation between coupling and defects. 
Size is related to both coupling and defects. Hence, the researchers should control for 
“size” to determine whether the relationship between coupling and defects hold.

Internal validity is the degree to which we can strongly conclude that the causes/changes 
in dependent variable B are because of only the independent variable A.

Internal validity concerns itself with all the possible factors except the independent 
variables of the study, which can cause the observed outcome (Neto and Conte 2013). 
Apart from the independent variables of a study, there could be other (“confound-
ing”) factors, which cannot be controlled by the researcher. Such extraneous variables 
are confounding variables, which may be correlated with the independent and/or the 
dependent variable. Therefore, such variables pose a threat to the results of the study 
as they could be responsible for the “causal” effect of the independent variables on the 
dependent  variable (Wohlin et al. 2012). For example, a researcher who would like to 
investigate the relationship between object-oriented (OO) metrics and the probability 
that a particular class would be faulty or not should consider the confounding effect 
of class size on these associations. This is important, as a researcher cannot control the 
size of a class. Moreover, class size is correlated with the probability of faults, as larger 
classes tend to have more number of faults because of their size. Thus, size may affect 
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the actual relationship between other OO metrics like coupling, cohesion, and so on and 
could be responsible for their “causal” relationship with the fault-prone nature of a class. 
Internal validity thus accounts for factors that are not controlled by the researcher and 
may falsely contribute to a relationship. The threats related to experimental settings also 
are part of the internal validity. The various possible internal validity threats that com-
monly occur in empirical studies are as follows:

• Confounding effects of variables: If the relationship between an independent 
 variable and a dependent variable is affected/influenced by some other variable 
without the researcher’s knowledge, then this may pose a threat to internal validity.

• Response of samples for a given technique: If the experiment is repeated, the 
response may be different at different times. For example, genetic algorithms may 
produce different results each time they are applied for predicting defects.

• Influence of human factors: If because of their own preferences or lack of capa-
bility of applying a given technique, the software group does not adapt to new 
techniques. For example, the software group may not prefer to adapt to inspec-
tion method of verification and would rather want to use walkthroughs as the 
preferred method of verification technique because of the more familiarity with 
this technique. Also, a programmer’s capability, domain knowledge, and so on are 
certain human factors that can significantly influence the results and may have an 
effect on the relationship of dependent and independent variable.

• Use of poorly designed experimental artifacts: This threat is caused because of badly 
designed documents produced at various phases of software development. For exam-
ple, in conducting systematic review, if the data extraction forms are not  properly 
designed then the study may be affected negatively. Similarly, if a survey form does not 
contain clear queries, then the response given by the respondents may not be accurate.

• Selection of samples from different groups: The samples must be collected from 
different participants in order to reduce internal validity threat.

• Nondetermination of direction of relationship among variables: This threat is caused 
because of nondetermination of direction of correlation between two variables. For 
example, if there is a positive correlation between complexity and defect proneness, 
the question is that whether high complexity causes higher defect proneness in a 
class or whether high defect proneness causes higher complexity in a class.

• Ignoring relevant factors in experimental settings: If important factors are over 
looked in an empirical study, then the threat to internal validity may increase. 
For example, severity level of defects may not be taken into account in a study with 
intent to predict defect proneness in a module.

• Inappropriate experimental settings: The experimental settings may be improper 
while performing an experiment, which could lead to result bias.

Proper experimental design can lead to reduction in internal validity threats.

8.1.3 Construct Validity

Construct validity concerns itself with the gap, if any, between the theoretical  concepts 
and the actual representation of the concepts (Barros and Neto 2011). It can be verified if 
the variables  collected in an empirical study are correct and convey the same concept they 
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intend to measure. Hence, this validity poses a threat if the researcher has not  accurately 
and  correctly represented the variables (independent and dependent) of the study. 
For  example, the coupling attribute of a class (theoretical concept) in an OO  software 
may be represented by a measure that correctly and precisely counts the number of other 
classes to which a particular class is interrelated. Similarly, a researcher who wishes to 
investigate the relationship between OO metrics and fault-prone nature of a class should 
primarily evaluate that all the selected metrics of the study are correct and effective 
indicators of concepts like coupling, cohesion, and so on. The bugs collected from a bug 
repository can represent the theoretical concept “fault.” However, this bug data should be 
collected carefully and exhaustively with correct mapping to remove any unbiased repre-
sentation of the faults in the classes. If the bugs are not properly  collected, it may lead to 
an incorrect dependent variable. Thus, both the independent and the dependent variables 
should be carefully verified for use in experiments to eliminate the threats to construct 
validity. The  various possible threats to construct validity are as follows:

• Misinterpretation of concepts and measures: If the concepts are misunderstood or 
are unclear, then it may lead to incorrect measurements. For example, if the basic 
concept of coupling is not well understood, then the metric that captures coupling 
may be inaccurate or incorrect.

• Reliability of measurement tools: The tools used to collect measures may be 
incorrect.

• Improper data-collection methods: This threat occurs if the data-collection methods 
are inappropriate. For example, where only fixed defects were to be taken into 
account, unfixed defects are also related to classes.

• Measurement bias: The classes of the variable may be subjective or based on 
human judgment. For example, fault severity is classified as high, medium, and 
low, and this involves subjective classification; hence, the experiment may pro-
duce biased results.

• Intentional misrepresentation of measures: The software professional may try to 
hide facts because of his/her personal benefits. For example, the software devel-
oper may not want to reveal actual number of defects encountered in the module 
developed by him/her.

• Unaccountability of related constructs: For example, if because of use of a new tech-
nique A, although maintainability increases, however, the testing effort may decrease. 
But as testing effort was not taken into account this important attribute is ignored.

• Guessing hypothesis: The people involved in the empirical study might try to 
prove the hypothesis and base their behavior on the hypothesis formed.

• Errors while combining data: During the process of data collection, there could be 
various errors. For example, there may be errors while collecting fault data such as 
erroneous mapping of faults to classes.

8.1.4 External Validity

A practitioner or researcher may wonder whether the results of the empirical study will 
be applicable to software systems with different purpose, programming language, or size? 
External validity concerns itself with the generalization of the results obtained by a study to 
the conditions and scenarios not accounted for in the study. Hence, it deals with effectiveness 
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of results in those situations that are different from the subjects and settings of the study. 
For example, a study which evaluates the effectiveness of machine learning methods to iden-
tify fault-prone classes using data mined from open source software would have external 
validity concerns regarding whether the results computed using machine learning algo-
rithms on a given data set hold true for industrial software data sets or for other open-source 
data sets. A study with high external validity is favorable as its conclusions can be broadly 
applied in different scenarios, which are valid across the study domain (Wright et al. 2010). 
Thus, the results obtained from a study with more number of data sets of different size and 
nature and recomputation of results using varied algorithms will help in establishing well-
formed theories and generalized results. Such results will form widely acceptable and 
well-formed conclusions. The various  possible threats to external validity are as follows:

• Inappropriate selection of subjects: The subjects may be incorrectly selected. For 
example, software programmers are given the questionnaire, where software tes-
ters could have more appropriately answered the questions in the questionnaire.

• Applicability of results across languages: The results of the study may not be gen-
eralized to the samples collected from software developed with different program-
ming languages.

• Inadequate size and number of samples: The results of the study may not be 
 generalized if they are evaluated on low number of data sets. The number of eval-
uated data sets should be high to increase the external validity. Moreover, the size 
of the evaluated software systems should be appropriate to allow generalizability 
of results across various industrial software data sets.

• Applicability of results across different variables: The results of the study may not 
be applicable with different and related outcome and independent variables.

• Applicability of results across different samples: The results obtained from a soft-
ware developed in specific environment, with specific purpose, size, and other 
characteristics may not be applicable to the software developed in a different 
 environment with dissimilar purpose, size, and other characteristics.

• Applicability of results across different environment: The results based on  samples 
collected from open source software may not be generalizable to software  developed 
in industrial environment or vice versa.

• Applicability of results when technique is varied: If the technique is slightly 
 varied, will the obtained results be similar? This is important, as it is unlikely that 
the researchers apply the technique exactly as was applied in the original study.

• Results bias because of techniques or subjective classification of a variable: 
If  there is result biasness because of use of specific technique, then the results 
 produced may not be generalized. For example, if random forest technique is 
randomly selected, then it may not produce best results as compared to some 
other carefully selected technique. Similarly subjective classification of a variable 
such as severity of faults may result in specific and biased results.

• Nonspecification of experimental setting and relevant details: If the experimen-
tal setting or other important details are not clearly stated, then this may pose a 
threat to repeatability and replicability of the study.

• Data set not representative of industrial settings: If the software from which the data 
set is collected does not represent true industrial practices, this is a threat to external 
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validity as the results cannot be generalized in real-world scenarios. For example, 
the software may be developed in the academic environment but the principles, 
standards, and practices for development should match the industrial practices. 
If this is not the case, it poses a serious threat to external validity of results.

The threats to external validity can be reduced by clearly describing the experimental 
settings and techniques used. The study must be carried out with the intent to enable 
researchers to repeat and replicate the study being carried out.

8.1.5 Essential Validity Threats

The threats to validity exhibit the practical importance of the produced results. The inter-
nal threats are the strongest form of validity threats as high internal validity proves that 
strong evidence regarding the causal relationship between variables is present. In soft-
ware engineering-based empirical studies, the main aim is to show the generalizability of 
the results. Rather than showing a result based on data collected from software company 
X, it is more important to show that the results can be applied in practice to which software 
companies given the size and domain. The construct validity is on third priority followed 
by the conclusion validity.

8.2 Example—Threats to Validity in Fault Prediction System

Table 8.1 presents the summary of the case study characteristics discussed in Section 4.2, 
which assesses the relationship between OO metrics and different severity level of faults. 
We then present all the possible threats to the study, and how they can be reduced.

8.2.1 Conclusion Validity

The conclusion validity threats identified from example study presented in Table 8.1 are 
given below:

• The study uses public domain NASA data set KC1. Thus, the data set is verified 
and trustworthy, and does not contain erroneous observations as it is developed 
following best industrial practices in NASA.

• The study uses well-formed hypothesis to ascertain the relationship between OO 
metrics and fault proneness. Moreover, the values of statistical significance  levels 
(0.01 and 0.05) used during correlation analysis as well as univariate and multi-
variate analysis increases the confidence in the conclusions of the study.

• The study uses tenfold cross-validation results that are widely acceptable  methods 
in research (Pai and Bechta Dugan 2007; De Carvalho et al. 2010) for yielding con-
clusive results. Thus, reducing threat to conclusion validity.

• A data set is said to be imbalanced, if the class distribution of faulty and  nonfaulty 
classes is nonuniform. A number of literature studies (Lessmann et  al. 2008; 
Menzies et al. 2010) advocate the use of receiver operating characteristic (ROC) 
analysis as a competent measure for assessing unbalanced data sets. Thus, the use 
of ROC analysis avoids threats to conclusion validity.
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TABLE 8.1

Details of Example Study

Data used Description NASA data set KC1 (public domain)
Size 145 classes, 40K lines of code
Language C++
Distribution Faulty classes: 59

Nonfaulty classes: 86
Descriptive statistics stated Min, max, mean, median, standard deviation, 25% 

quartile, and 75% quartile for each input metric
Independent 
variables

OO metrics Chidamber and Kemerer metrics and LOC

Dependent variable Fault proneness Faults categorized into three severity levels: high, 
medium, and low. A model was also created with 
ungraded fault severity

Distribution according to 
fault severity

High severity 23 classes
Medium severity 58 classes
Low severity 39 classes

Preprocessing 
performed

Outlier detection Detected univariate and multivariate outliers (using 
Mahalanobis Jackknife distance)

Input metrics normalization Using min–max normalization
Correlation analysis Correlation coefficient values among different metrics 

analyzed. Significance level: 0.01 
Multicollinearity analysis Conditional number using principal component 

method is <30
Algorithms used LR Univariate LR

Multivariate LR
Machine learning DT

ANN
Algorithm settings DT Chi-square automatic interaction detection (CHAID) 

algorithm
ANN Architecture 3 layers

7 input units
15 hidden units
1 output unit

Training Tansig transfer function
Back propagation algorithm
TrainBR function
Learning rate 0.005

Model evaluation Performance metrics Sensitivity
Specificity
Completeness
Precision
ROC analysis

Statistics reported for 
univariate LR and 
multivariate LR analyses

Coefficient (B), standard error (SE), statistical 
significance (Sig.), odds ratio (Exp [B]), R2 statistic. 
Significance level: 0.01 and 0.05 

Model development Feature reduction Univariate analysis
Validation method Tenfold cross-validation
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• Outliers are unusual data points that may pose a threat to the conclusions of the 
study by producing bias. The study reduces this threat by performing outlier 
detection using univariate and multivariate analysis.

8.2.2 Internal Validity

The internal validity threats identified from example study presented in Table 8.1  are 
given below:

• The researchers do not have control over class size, and thus class size can act as a 
confounding variable in the relationship between OO metrics and fault proneness 
of a class. However, the study included the lines of code (LOC) metric (a measure 
of class size) as an independent variable in the analysis. But, evaluating the con-
founding effect of class was beyond the scope of the study. Thus, this threat to 
internal validity exists in the study.

• The study also examined correlation among different metrics, and it is seen that 
some independent variables are correlated among themselves. However, this 
threat to internal validity was reduced by performing multicollinearity analysis, 
where the conditional number was found to be <30 indicating effective interpreta-
tion of the predicted models as the individual effect of independent variables can 
be effectively assessed.

• A number of studies, which evaluate fault proneness of a class, do not take into 
account the severity of the faults. This is a possible threat to internal validity. 
However, this study accounts for three severity levels of faults.

• The study does not take into account and control the effect of programmer’s capa-
bility/training and experience in model prediction at various severity levels of 
faults. Thus, this threat exists in the study.

8.2.3 Construct Validity

The construct validity threats identified from example study presented in Table 8.1 are 
given below:

• The association of defects with each class according to their severity was done 
very carefully to provide an accurate representation of fault-prone nature and fault 
severity. Moreover, the faults were divided into three severity levels: high, medium, 
and low, so that medium-severity level of faults can be given more attention and 
resources than a low-level fault. An earlier study by Zhou and Leung (2006) divided 
faults only into two severity levels: high and low. They combined both medium- 
and low-severity faults in the low category. This was a possible threat to construct 
validity, as medium-severity faults are more critical and should be prioritized over 
low-severity faults. However, this threat was removed in this study.

• The metrics used in the study are widely used and established metrics in the literature. 
Thus, they accurately represent the concepts they propose to measure. Moreover, the 
selected metrics are representative of all OO concepts like depth of inheritance tree 
(DIT) and number of children (NOC) metrics for inheritance, lack of cohesion in 
methods (LCOM) metric for cohesion, coupling between object (CBO) metric for cou-
pling, weighted methods per class (WMC) metric for complexity, and response for 
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a class (RFC) and LOC metrics for size. Thus, the selected metric suite reduces the 
threat to construct validity by accurately and properly representing all OO concepts.

• The mapping of faults to their corresponding classes is done carefully. However, 
there could be an error in this mapping, which poses a threat to construct validity.

• The metrics and severity of faults for NASA data set KC1 are publically available. 
However, we are not aware as to how they were calculated. Thus, the accuracy of 
the metrics and severity levels of faults cannot be confirmed. This is a possible 
threat to construct validity.

8.2.4 External Validity

The external validity threats identified from example study presented in Table 8.1  are 
given below:

• The data set used is publically available KC1 data from NASA metrics data pro-
gram. Since the data set is publically available, repeated and replicated studies are 
easy to perform increasing the generalizability of results. As discussed by Menzies 
et al. (2007), NASA uses contractors that are obliged by contract (ISO-9001) to dem-
onstrate the understanding and use of current best industrial practices.

• The results of the study are limited to the investigated complexity metrics (Chidamber 
and Kemerer [CK] metrics and LOC) and modeling techniques (logistic regression 
[LR], decision tree [DT], and artificial neural network [ANN]). However, the selected 
metrics and techniques are widely used in literature and well established. Thus, the 
choice of such metrics and techniques does not limit the generalizability of the results.

• Fault severity rating in KC1 data set may be subjective. Thus, may limit the gener-
alizability of study results.

• Data sets developed using other programming languages (e.g., Java) have not been 
explored. Thus, replicated and repeated studies with different data sets are impor-
tant to establish widely acceptable results.

• The conclusions of the study are only specific to fault-proneness attribute of a class 
and the results of the study do not claim anything about the maintainability or 
effort attributes.

• The researchers have completely specified the parameter setting for each algorithm 
used in the study. This increases the generalizability of the results as researchers 
can easily perform replicated studies.

• The study uses ten fold cross-validation technique that uses ten iterations (the whole 
data set is partitioned into ten subsets, each iteration uses nine  partitions for training 
and the tenth partition for validating the model and this process is repeated 10 times). 
Thus, the use of tenfold cross-validation increases the  generalizability of our results.

• The study states the descriptive statistics of the data set used in the study. These 
descriptive statistics gives other researchers an insight into the properties of data 
sets. Researchers can thus effectively use the results of the study on similar types 
of data sets effectively.

• There is only one data set used in the study. This poses a threat to the generaliz-
ability of results. However, the data set used is an industrial data set developed by 
experienced developers. Thus, the results obtained may be applied for software 
industrial practices.
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8.3 Threats and Their Countermeasures

Identification of threats is important to assess their impact on the study outcomes and 
conclusions. However, to increase the validity of the study, threats to the study should 
be mitigated. It is important to not only identify the threats to a study, but a researcher 
should perform a number of actions to address these threats and reduce their effect on the 
outcomes of the study. To give an overview of threats to fault prediction primary studies, 
we analyzed 56 fault prediction studies from the year 1999 to 2013. The aim of the study 
is to identify the threats to validity corresponding to each category of validity threats. 
The mitigation related to each threat is identified and reported. This study will guide the 
researchers and practitioners in identifying threats related to prediction  studies and also 
will provide a possible solution to remove or minimize the identified threat.

Table 8.2 states all the fault prediction studies along with their unique study identifier. 
The systematic review was conducted by following the procedure given in Chapter  2. 
The “Threats to Validity” or “Limitations” section of all these studies was thoroughly ana-
lyzed. We examined and categorized all the threats in these studies into the four major 
threat categories, namely, conclusion, internal, construct, and external. The threats explic-
itly stated and dealt in these studies only are reported in this section. Thus, there may 
have been additional threats in these studies, however, not reported or addressed by the 
authors, and hence not included in this systematic review. Tables 8.3 through 8.6  state 
major threats encountered in fault prediction studies along with possible threat mitigation 
actions to address a specific threat. All the studies, which deal with a specific threat, are 

TABLE 8.2

Fault Prediction Studies

Study 
No. Reference

Study 
No. Reference

Study 
No. Reference

S1 El Emam et al. 1999 S20 Aggarwal et al. 2009 S40 Al Dallal 2012a
S2 Briand et al. 2000 S21 Catal and Deri 2009 S41 Al Dallal 2012b
S3 Glasberg et al. 2000 S22 Tosun et al. 2009 S42 Nair and Selverani 2012
S4 Briand et al. 2001 S23 Turhan and Bener 2009 S43 He et al. 2012
S5 El Emam et al. 2001 S24 Turhan et al. 2009 S44 Li et al. 2012
S6 El Emam et al. 2001a S25 Zimmermann et al. 2009 S45 Ma et al. 2012
S7

S8
S9
S10
S11
S12
S13
S14
S15
S16
S17
S18
S19

Subramanyam and 
Krishnan 2003

Zhou and Leung 2006
Aggarwal et al. 2007
Kanmani et al. 2007
Menzies et al. 2007
Oral and Bener 2007
Pai and Becthaduran 2007
Lian Shatnawi et al. 2007
Lessmann et al. 2008
Marcus et al. 2008
Moser et al. 2008
Shatnawi and Li 2008
Turhan et al. 2008

S26 Afzal 2010 S46 Mausa et al. 2012
S27 Ambros et al. 2010 S47 Okutan Vildiz 2012
S28 Arisholm et al. 2010 S48 Pelayo and Dick 2012
S29 De Carvalho et al. 2010 S49 Rahman et al. 2012
S30 Liu et al. 2010 S50 Rodriguez et al. 2012
S31 Menzies et al. 2010 S51 Canfora et al. 2013
S32 Singh et al. 2010 S52 Chen et al. 2013
S33 Zhou et al. 2010 S53 Herbold 2013
S34 Al Dallal 2011 S54 Menzies et al. 2013
S35 Elish et al. 2011 S55 Nam et al. 2013
S36 Kpodjedo et al. 2011 S56 Peters et al. 2013
S37 De Martino et al. 2011
S38 Misirh et al. 2011
S39 Ambros et al. 2012
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categorized into three divisions, namely, N (not addressed the threat at all), P (partially 
addressed the threat), and C (completely addressed the threat). Thus, all the studies that 
encounter a particular threat and do not take any actions to mitigate its effect are catego-
rized in N category. Similarly, all the studies that try to address a specific threat but have 
not been successful in completely removing its effect are categorized as P. Finally, all the 
studies that take appropriate actions to mitigate the existence of threat as effectively as 
possible are grouped into C.

Exercises

8.1 Identify the categories to which the following threats belong:
• Threat caused by not taking into account the effect of developer experience on 

the relationship between software metrics and fault proneness.
• Threat caused by only exploring systems developed using Java language.
• Threat caused by using the same data for testing and training.
• Threat caused by investigating a not publically available data set.
• Threat caused by exploring only open source systems.
• Threat caused by considering inappropriate level of significance.
• Threat caused by incomplete or imprecise data sets.

8.2 Consider a study where the lines of code is mapped to various levels of com-
plexity such as high, medium, and low. What kinds of threats the mapping will 
impose?

8.3 Consider a systematic review where only journal papers are considered in the 
review. The review also uses an exclusion and inclusion protocol based on sub-
jective judgment to select papers to be included. Identify the potential threats to 
validity.

8.4 Compare and contrast conclusion and external threats to validity.
8.5 What are validity threats? Why it is important to consider and report threats to 

validity in an empirical study?
8.6 Consider the systematic review given in Section 8.3, identify the threats of valid-

ity that exist in this study.

Further Readings

The concept of threats to validity is presented in:

C. Yu, and B. Ohlund, “Threats to validity of research design,” 2010. http://www.
creative-wisdom.com/teaching/WBI/threat.shtml.
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This following research paper address external validity and raises the bar for empirical 
software engineering research that analyzes software artifacts:

H. K. Wright, M. Kim, and D. E. Perry, “Validity concerns in software engineering 
research,” Proceedings of the FSE/SDP Workshop on Future of Software Engineering 
Research, ACM, New York, pp. 411–414, 2010.

This following research paper provides a tradeoff between internal and external validity:

J. Siegmund, N. Siegmund, and S. Apel, “Views on internal and external validity in 
empirical software engineering,” 2014. http://www.infosun.fim.uni-passau.de/cl/
publications/docs/SiSiAp15.pdf.

The impact of the assumptions made by an empirical study on the experimental design is 
given in:

J. Carver, J. V. Voorhis, and V. Basili, “Understanding the impact of assumptions on 
experimental validity,” IEEE Proceedings of the International Symposium on Empirical 
Software Engineering, pp. 251–260, Redondo Beach, CA, 2004.
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9
Reporting Results

The goal of the research is not just to discover or analyze something but the results of the 
study must be properly written in the form of research report or publication to enable 
the results to be available to the intended audience—software engineers, researchers, 
 academicians, scientists, and sponsors. After the experiment has finished, the results 
of the experiment can be summarized for the intended audience. While reporting the 
results, the research misconduct, especially plagiarism, must be taken care of.

This chapter presents when and where to report the research results, provides guidelines 
for reporting research, and summarizes the principles of research ethics and misconduct.

9.1 Reporting and Presenting Results

When one decides to report the findings, the important questions to be considered are, 
To whom the results of the research should be addressed? How the results of the research 
should be presented? How to present the results of the research without being biased and 
influenced? The research report or publication will present the findings and their interpre-
tation that reflects the goals and objectives of the research. It enables the intended audience 
to learn from the findings and also allow them to judge or assess the results of the find-
ings. The content of the research report depends on the type of the report. Research report 
type may vary among the student theses, conference papers, technical reports, magazine 
articles, and journal papers. For example, in case of a doctoral student, initial findings of 
the study are presented in a conference, detailed findings are published in the journal for 
academic and research community, and finally, the research is organized in the form of 
doctoral degree thesis for external examination.

For a masters or doctoral student, reporting the results of the research is in the form 
of thesis that has to be examined as an essential part of the completion of degree. For a 
 professional researcher, the quality of the publication in the form of research paper is most 
important as it may influence or build up his/her reputation or at least career growth. 
The technical report is produced as an outcome of the study carried out, which is a part 
of a grant funded by a body. The findings of the research may be produced in more than 
one form. Hence, several published forms may be produced of the same work. Despite 
 different motives while reporting results, the published work has the  following benefits:

• Allows presenting the methodology and the results to the outside world 
• Allows software engineering organizations to apply the findings of the research 

in the industrial environment
• If the study is a systematic literature review, it will allow the researcher to have 

an idea of the current position of the research in the specific software engineer-
ing area 
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• Allows the researchers to replicate and repeat the study 
• Provides guidelines to students and researchers for future work 
• Allows the sponsor of the study to verify whether desired findings have been 

produced or not 

9.1.1 When to Disseminate or Report Results?

The decision of reporting results of the research findings in the form of publication or 
research reports depends on many factors, including status of the research work, confi-
dentiality, or ethical issues. For instance, when sufficient preliminary work has been done, 
it is a good idea to present the results in a conference or produce interim report to obtain 
feedback from the outside world, including sponsors. The researchers can then publish the 
detailed results. Consider an instance where research work is confidential, hence, decision 
about disclosing the work should be made at a right time. Another instance is when the 
researcher needs to obtain formal approval from the funding or professional body as an 
ethical policy before beginning to report the results. No matter what, the preparation of 
writing result reports should be started as early as possible.

9.1.2 Where to Disseminate or Report Results?

Publishing the results on the right platform and at a right time is a very important decision 
that needs to be made by a researcher. In the software engineering community, two most 
popular venues for publishing the findings of the research are journal papers or confer-
ence articles. Whether to publish in conference proceedings or as a journal paper depends 
on various factors:

 1. Type of research work: The work carried out by the research may be survey/review, 
original work, or case study. The survey or systematic reviews are mostly consid-
ered by journals, as they mostly do not depict any new and innovative research 
or new findings. Hence, relevant journals may be considered for publishing them. 
The new or empirical work may be considered for publication in conference or 
journal depending on the status of the work.

 2. Status of the work: As discussed in previous section, the status of the work is an 
important criterion for selection of the place for publication of the research. The 
new or initial idea or research may be considered for publication in a conference 
to obtain the initial feedback about the work. The detailed findings of the research 
may be considered to be published in journals.

 3. Type of audience: The selection of publication venue also depends on the type 
of audience. The study can be considered for publication in journal, when the 
researcher wants to present the work to academic and research community. 
To make the work visible to software industry, the findings may be communicated 
to industry conferences, practitioners’ magazines, or journals. The work may also 
be presented to sponsors or funders in the form of technical reports.

Thus, the initial findings of the scholarly articles may be communicated to the conferences 
and the detailed findings can be published as journal papers or a book chapter with atleast 
30% of new material added. Some researchers also like to publish the results of the work 
on their website or home page.
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9.1.3 Report Structure

The research findings can be organized in the form of a journal paper, technical report, 
conference article, or book chapter. The readers not only want to understand the find-
ings of the research, but they also want to be able to repeat the analysis or replicate 
the study. Hence, in an empirical research, while writing the results, not only enough 
details of the techniques and methods used must be provided, the access to the original 
data must also be given. This will allow the readers and professionals to verify and 
replicate the results obtained from the existing study. Table 9.1 presents the structure of 
a journal paper.

The sections of the report format given in Table 9.1 are described below:

TABLE 9.1

Structure of Journal Paper

Title Author details with affiliation
Abstract What is the background of the study?

What are the methods used in the study?
What are the results and primary conclusions of the study?

Introduction
Motivation What is the purpose of the study? How does the proposed work relate to the 

previous work in the literature?
Research questions What issues are to be addressed in the study?
Problem statement What is the problem?
Study context What are the experimental factors in the study?
Related work How is the empirical study linked with literature?

Experimental design
Variables description What are the variables involved in the study?
Hypothesis formation What are the assumptions of the study?
Empirical data collection How is the data collected in the study?

What are the details of data being used in the study?
Data analysis techniques What are the data analysis techniques being used in the study?

What are the reasons for selecting the specified data analysis techniques?
Analysis process What are the steps to be followed during research analysis?

Research methodology
Analysis techniques What are the details related with the selected techniques identified in 

experimental design?
Performance measures How will the performance of the models developed in the study 

analyzed?
Validation methods Which validation methods will be used in the study?

Research results
Descriptive statistics What is the summary statistics of data?
Attribute selection Which attributes (independent variables) are relevant in the study?
Model prediction What is the accuracy of the predicted models? What are the model validation 

results?
Hypothesis testing What are the results of hypothesis testing?

Is the hypothesis accepted or rejected?
(Continued)
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9.1.3.1 Abstract

The abstract provides a short summary of the study, including the following components 
of the research:

 1. Background
 2. Methods used
 3. Major findings/key results
 4. Conclusion

The length of the abstract should vary between 200 and 300 words. The abstract should not 
provide long descriptions, abbreviations, figures, tables (or reference to figures and tables), 
and references.

The example abstract is shown below:

Background: Software fault prediction is the process of developing models that 
can be used by the software practitioners in the early phases of software devel-
opment life cycle for detecting faulty constructs such as modules or classes. 
There are various machine learning techniques used in the past for predicting 
faults. 

Method: In this study, we assess the predictive ability of 18 machine learning tech-
niques for software fault prediction. We use object-oriented (OO) metrics to pre-
dict faulty or nonfaulty classes. The results are validated using data collected from 
two open source software. The results are obtained using area under the curve 
obtained from receiver operating characteristic curves.

Results: The results show the prediction capability of the machine learning  techniques 
for predicting classes as fault prone or not fault prone. The naïve Bayes technique 
is best as compared to other 17 machine learning techniques.

Conclusion: Based on the results obtained, we conclude that the machine learning 
techniques can be efficiently used by researchers and software practitioners for 
predicting faulty classes. 

TABLE 9.1 (Continued)

Structure of Journal Paper

Discussion and interpretation What are the interpretations of the findings?
What are the answers to the research questions?
What is the applications/practical significance of the results?
Do the results support the findings in the literature?
What are the differences between current findings and the related studies?
How can the results be generalized?

Threats to validity What are the limitations of the study?
Conclusion and future work What are the main findings of the study?

What are the future avenues in the area?
Acknowledgment Who all contribute to the research?
References What are the related citations to the work?
Appendix What is the additional material that can help the readers?
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9.1.3.2 Introduction

This section must answer the questions such as: What is the purpose of the study? Why 
the study is important? What is the context of the study? How the study enhances or adds 
to the current literature? Hence, the introduction section must include motivation behind 
the study, research aims or questions, and the problem statement. The motivation of the 
work provides the information about the need of the study to the readers. The purpose of 
the study is described in the form of research question, aim, or hypothesis. The relevant 
 primary studies from the literature (with citations) are provided in this section to provide 
the summary of current work to the readers. The introduction section should also pres-
ent the brief details about the approach of the empirical research or study being carried 
out. For example, this section should briefly state the techniques, data sets, and validation 
methods used in the study.

The introduction section should be organized in the following steps:

 1. Stating the motivation of the work.
 2. Establishment of the context by providing citation to the relevant research.
 3. Stating the research purpose in the form of research questions.
 4. Stating the approach of the research, including techniques and methods.

The extract from the introduction section describing the research aims is shown in Figure 9.1.

9.1.3.3 Related Work

It provides the relationship of current work with literature. This section must mention the 
related studies in the literature. The brief description of methods used in the work along with 
results may be specified for each related study (refer Chapter 4). If the current work is a repli-
cation or repetition of an existing work, then the past study that is being repeated or replicated 
must be described in detail. This section should also provide a brief description about the 
difference between the current study from the closest studies already carried out in the past.

9.1.3.4 Experimental Design

In this section, the details of experimental design phase given in Chapter 4 are reported. 
The purpose of this section is to provide details to the readers so that repeated and 
 replicated studies can be carried out. It provides details about independent and dependent 

In this work, the fault-prone classes are predicted using the object-oriented (OO) 
metrics design suite given by Chidamber and Kemerer (1994). The results are 
validated using latest version of Android data set containing 200 Java classes. 
Thus, this work addresses the following research questions:

RQ1: What is the overall predictive performance of the machine learning 
techniques on open source software?

RQ2: Which is the best machine learning technique for finding effect of OO 
metrics on fault prediction? 

RQ3: Which machine learning techniques are significantly better than other 
techniques for fault prediction?

FIGURE 9.1
Portion from introduction section.
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variable being used, data-collection procedure, and hypothesis for research. The size, nature, 
 description about subjects, and the source of data should be provided here. The tools 
(if any) used to collect the data must also be provided in this section. The analysis process 
to be followed while conducting the research is presented. For detailed procedure of exper-
imental design refer Chapter 4. The data-collection procedure is explained in Chapter 5. 
For example, the experimental process depicted in Figure 9.2 is followed for conducting 
research to find the answers to questions given in Figure 9.1.

9.1.3.5 Research Methods

This section provides insight about the procedures and methods used in the empirical 
work. The section describes the basic methods used to perform the study. The way in 
which the data is analyzed, including data preprocessing methods, performance mea-
sures, validation methods, statistical techniques, or any other techniques are included 
in this section. For example, if t-test is used in the study then a brief description of t-test 
along with significance levels should be stated. The methods used and the experimen-
tal settings with respect to techniques used to obtain the results must be clearly stated 
so that the researchers can repeat the work. For example, the number of hidden layers, 
number of neurons in the hidden layer, transfer function, learning rate, and so on must be 
specified if the study uses neural network technique for exploring relationships. Similarly 
data transformations and cleaning methods, techniques used for outlier analysis, feature 
 subselection methods, and software packages must be described.

9.1.3.6 Research Results

The descriptive statistics summarizing the characteristics, the relevant attributes that are 
derived, and the results of the hypothesis are presented in this section. The model pre-
diction and validation results are summarized using performance measures. In software 
engineering research, quantitative research is carried out more often as compared to quali-
tative research. For quantitative analysis, statistical analysis is usually done and then the 
hypotheses are accepted or rejected based on the statistical test results. The test statistic 
and significance level must be reported. For detailed information on hypothesis testing, 
refer Chapter 6.

Preprocessing of
collected data sets

Selection of various
machine learning (ML)
techniques for defect

prediction

Testing whether the difference between
the performances of ML techniques is

statistically significant

Model validation using
validations methods

Model development for
defect prediction

Selection of performance
measures and model
validation techniques

Selection of relevant
metrics using feature

selection method

FIGURE 9.2
Example experimental process.
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9.1.3.7 Discussion and Interpretation

The results obtained to answer the established research questions or research hypothesis 
should be presented in this section. The results should be interpreted in light of the findings 
of the relevant studies from the literature. Questions such as What is the meaning of the 
findings of the study? and How do the results relate to the research questions formed in the 
study? must be addressed. The evidences that confirm any claims should be provided. The 
theoretical and practical implication of the study must also be provided (refer Chapter 7).

9.1.3.8 Threats to Validity

Threats to validity must be addressed throughout the experimental design and result 
analysis phase, but the complete threats can be stated only after result analysis and dis-
cussion phase. The limitations in terms of generalizations or biasness of the study must be 
reported in this section. For details on categories of validity threats, refer Chapter 8.

9.1.3.9 Conclusions

This section presents the main findings and contributions of the empirical study. The future 
directions are also presented in this section. It is important to focus on the  commonalities 
and differences of the study from previous studies.

9.1.3.10 Acknowledgment

The persons involved in the research that do not satisfy authorship criterion should be 
acknowledged. These include funding or sponsoring agencies, data collectors, and reviewers.

9.1.3.11 References

References acknowledge the background work in the area and provide the readers a list 
of existing work in the literature. The references are presented at the end of the paper and 
should be cited in the text. There are software packages such as Mendeley available for 
 maintaining the references.

9.1.3.12 Appendix

The appendix section presents the raw data or any related material that can help the reader 
or targeted audience to better understand the study.

The claims of contributions, novelty in the work, and difference of the work from the 
 literature work are the main concerns that need to be addressed while writing a research 
paper.

9.2 Guidelines for Masters and Doctoral Students

The masters and doctoral students must conduct a research that makes original contribu-
tion to the existing state of the art of the software engineering discipline. Doctoral thesis 
is an essential outcome of the PhD work carried out by a student for completion of the 
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degree. It ensures that the student is capable of carrying out independent research at a 
later stage. The masters or doctoral work may involve conducting new research, carrying 
an empirical study, development of new tool, exploring an area, development of new tech-
nique or method, and so on.

The selection of right area and supervisor are the first and most important steps for 
the masters and doctoral students. Each thesis has common structure, although different 
topics. The general format of masters or doctoral thesis is presented in Figure 9.3, and the 
description of each section is given below. The thesis begins with abstract that provides 
a summary of the problem statement, purpose, data sources, research methods, and key 
findings of the work.

 1. Chapter 1—Introduction
 The first chapter should clearly state the purpose, motivation, goals, and  sig-

nificance of the study by describing how the work adds to the existing body 
of knowledge in the specified area. This chapter should also describe the prac-
tical significance of the work to the researchers and software practitioners. 
The doctoral students should describe the original contribution of their work. 
This chapter provides the organization of the rest of the thesis. This part of the 
 thesis is most critical and, hence, should be well written with strong theoretical 
background.

 2. Chapter 2—Literature Review
 This chapter should not merely provide the summary of the literature, but rather 

should analyze and discuss the findings in the literature. It must also describe 
what is not found in the literature. This chapter provides the basis of the research 
questions and hypothesis of the study.

 3. Chapter 3—Research Methodology
 The third chapter describes the research context. It describes the data-collection 

procedure, data analysis steps, and techniques description. The research settings 
and details of tools used are also provided.

 4. Chapter 4—Research Findings
 The results of the tests of model prediction and/or hypothesis testing are presented 

in this section. The positive as well as the negative results should be reported. The 
results are summarized and presented in the form of tables and figures, respec-
tively. This chapter can be divided into logical subsections.
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 5. Chapter 5—Results Interpretation
 This chapter provides an in-depth discussion and interpretation of results. The 

aim of the chapter is to identify the emerging patterns, generalizations from the 
findings, and exception from these generalizations. The results should be dis-
cussed in light of the research questions formed in the introduction chapter.

 6. Chapter 6—Conclusions and Future Work
 This chapter provides the concluding remarks on the findings of the research area, 

and guidelines for future work are also proposed in this chapter.

9.3 Research Ethics and Misconduct

Empirical research in software engineering involves analyses of data obtained through 
software organizations or open source software. The data is required to perform empirical 
validations. However, there are a number of ethical issues involved while analyzing the 
data. These issues deal with data confidentiality, content disclosure, and dissemination of 
findings. For instance, whether the name of the organization should be revealed or not? 
How to obtain unbiased information from subjects/participants in the software organiza-
tion? Whether it is ethical to use data from open source software? The researcher, while 
conducting the study, must consider these ethical issues. Section 1.5  provides the summary 
of ethics in research. The following ethical issues must be well thought out while reporting 
results:

 1. The consent obtained from the participants must be honored.
 2. The identification of the participants or the organization must not be revealed 

 during the research.
 3. The report should include description of any research bias that may have influ-

enced the results of the research.
 4. The empirical study must be written in such a way that the results can be reproduced.
 5. The sponsoring agency must be acknowledged in the publication.

Research misconduct means fabrication, falsification, and plagiarism in conducting research 
or reporting results. According to the Federal Policy on Research Misconduct (www.aps.
org/policy/statements/federa lpolicy.cfm), these three terms are defined as follows:

• Fabrication: Constructing up research data to produce results or making up false 
results.

• Falsification: Modifying or manipulating or omitting research data to produce 
results.

• Plagiarism: Copying or reusing someone else work without proper acknowledgment.

The research misconduct must be carefully examined to assess the validity of the sus-
pected or reported incident. Plagiarism is a serious offence, and the issues involved in it 
are described in next subsection.
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9.3.1 Plagiarism

IEEE  defines plagiarism as “the reuse of someone else’s prior ideas, processes, results, 
or words without explicitly acknowledging the original author and source.” Plagiarism 
involves paraphrasing (rearranging the original sentence) or copying someone else’s 
words without acknowledging the source. Reusing or copying one’s own work is called 
self-plagiarism. IEEE/ACM guidelines define serious actions against authors committing 
plagiarism (ACM 2015). The institutions (universities and colleges) also define their indi-
vidual policies to deal with plagiarism issues. The faculty and students should be well 
informed about the ethics and misconduct issues by providing them guidelines and poli-
cies, and imposing these guidelines on them. Figure 9.3 depicts guidelines for researchers 
and practitioners to avoid plagiarism. The researchers, publishers, employers, and agen-
cies may use the plagiarism software for scanning the research paper. There are various 
open source softwares such as Viper and proprietary software such as Turnitin available 
for checking the  documents for plagiarism.

Finally, it is the primary responsibility of research institutions to ensure, monitor, detect, 
and investigate research misconduct. Serious actions must be taken against individuals 
caught with plagiarism or misconduct.

Exercises

9.1 What is the importance of documenting the empirical study?
9.2 What is the importance of related work in an empirical study?
9.3 What is the importance of interpreting the results rather than simply stating 

them?
9.4 When reporting a replicated study, what are the most important things that a 

researcher must keep in mind?

Guidelines for avoiding plagiarism

1.  Provide proper citations and references to resources from where 
 content or ideas are taken.

2.  Any text/sentence copied from another source must be stated in 
q uotations marks. For example, Emam et al. said “…”

3.  Any paraphrased sentence should be properly cited.
4.  Reference to the author’s previous similar work must always be 

 provided in the current work.
5.  Author must always doubly check the citations.
6.  If a figure or table is reproduced, the reference to the original work 

must be provided in the heading. 
7.  Plagiarism checking tools must be used to avoid honest or accidental 

mistakes.

FIGURE 9.4
Guidelines to researchers regarding plagiarism.
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9.5 What is research misconduct? Why plagiarism is considered a serious offence in 
research? How plagiarism can be avoided?

9.6 How can a researcher decide where to publish the research?

Further Readings

An excellent study that provides guidelines on empirical research in software engineering 
is given below:

B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin, K. El Emam, and 
J.  Rosenberg, “Preliminary guidelines for empirical research in software engi-
neering,” IEEE Transactions on  Software Engineering, vol. 28, no. 8, pp. 721–734, 2002.

The following paper provides a minitutorial on writing research in software engineering:

M. Shaw, “Writing good software engineering research papers,” Proceedings of the 25th 
International Conference on Software Engineering, IEEE Computer Society, Portland, 
OR, pp. 726–736, 2003.

An article on reporting research results is presented in:

A. Jedlitschka, M. Ciolkowski, and D. Pfahl, “Reporting experiments in software engi-
neering,” In: F. Shull, J. Singer, and D. Sjøberg (eds.), Guide to Advanced Empirical 
Software Engineering, chapter 8. Springer, Berlin, Germany, pp 201–228, 2008.

Perry et  al. provided a summary of various phases of empirical studies in software 
 engineering in their article:

E. Perry, A. Porter, and L. Votta, “Empirical studies of software engineering: A road-
map,” Proceedings of the Conference on the Future of Software Engineering, Limerick, 
Ireland, pp. 345–355, 2000.

The advisory notes on checking plagiarism are provided in:

C. Kaner, and R. Fiedler, “A cautionary note on checking software engineering 
papers for  plagiarism,” IEEE Transactions on Education, vol. 51, no. 2, pp. 184–188, 
2008. doi:10.1109/TE.2007.909351.

ACM plagiarism policy is defined in:

R. F. Boisvert, and M. J. Irwin, “ACM plagiarism policy: Plagiarism on the rise,” 
Communications of the ACM, vol. 49, no. 6, pp. 23–24, 2006.
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10
Mining Unstructured Data

As seen in Chapter 5, software repositories can be mined to assess the data stored over 
a long period of time. Most of the previous chapters focused on techniques that can be 
applied on structured data. However, in addition to structured data, these repositories 
contain large amount of data present in unstructured form such as the natural language 
text in the form of bug reports, mailing list archives, requirements documents, source code 
comments, and a number of identifier names. Manually analyzing such large amount of 
data is very time consuming and practically impossible. Hence, text mining techniques are 
required to facilitate the automated assessment of these documents.

Mining unstructured data from software repositories allows analyzing the data related 
to software development and improving the software evolutionary processes. Text min-
ing involves processing of thousands of words extracted from the textual descriptions. To 
obtain the data in usable form, a series of preprocessing tasks like tokenization, removal of 
stop words, and stemming must be applied to remove the irrelevant words from the docu-
ment. Thereafter, a suitable feature selection method is applied to reduce the size of initial 
feature set leading to more accuracy and efficiency in classification.

There are various artifacts produced during the software development life cycle. 
The numerical and structured data mined using text mining could be effectively used 
to  predict quality attributes such as fault severity. For example, consider the fault track-
ing systems of many open source software systems containing day-to-day fault-related 
reports that can be used for making strategic decisions such as properly allocating 
 available testing resources. These repositories also contain unstructured data on vulner-
abilities, which records all faults that are encountered during a project’s life cycle. The 
Mozilla Firefox is one such instance of open source software that maintains fault records 
of vulnerabilities. While extensive testing can minimize these faults, it is not possible to 
completely remove these faults. Hence, it is essential to classify faults according to their 
severity and then address the faults that are more severe as compared to others. Text 
mining can be used to mine relevant attributes from the unstructured fault descriptions 
to predict fault severity.

In this chapter, we define unstructured data, describe techniques for text mining, and 
present an empirical study for predicting fault severity using fault description extracted 
from bug reports.

10.1 Introduction

According to the researchers, it has been reported that nearly 80%–85% of the data is 
unstructured in contrast to structured data like source code, execution traces, change logs, 
and so on (Thomas et al. 2014). The software library consists of fault descriptions, soft-
ware requirement documents, and other related documents. For example, the software 
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requirement document contains the requirement descriptions of the following type: 
“The software product must be able to distinguish between authorized and  non-authorized 
access of a user. The software product must ensure that only authorized users access the 
product.”

The researcher must be able to analyze the above requirement and predict its category 
such as security, usability, availability, and maintainability. Usually, it is difficult to analyze 
and assess the software documents, as they may be present in an unorganized manner. 
The document may also simply be a collection of words with no relationship between the 
words and with no semantic meaning. Further, the long text descriptions may contain 
data of almost all types, that is, it may be a linked data, a semistructured data, a numeri-
cal information, and so on. Thus, it is very essential to bring the data into a form, which is 
understandable and/or can be analyzed by the computer-aided tools.

Hence, a typical text mining problem is to extract relevant information from the software 
documents such as fault descriptions or software requirements specification document 
that are maintained in the software repositories, and thereby analyze these descriptions 
using suitable measures, tools, and techniques.

10.1.1 What Is Unstructured Data?

Structured data is organized and represented in a known format. For, example, bug repos-
itory metadata consists of bug severity, LOC added, LOC deleted, and priority. The LOC 
added and deleted are used to correct the bug.

Unstructured data can be defined as the data that does not have a clear semantics, 
that is, it is a natural language text that has no explicit data model. In other words, such 
kind of data is simply a collection of characters with no structure or format and there is 
no  relationship between these words. This data cannot be assessed because of the size 
and nature of the data. It would be very expensive and time consuming to analyze and 
interpret vast number of documents and find relationship between them. This requires 
text mining algorithms and natural language processing techniques to transform into a 
 structured form. 

Unstructured data usually consists of data that is unlabeled, vague, noisy, and ambigu-
ous. The data may be noisy because of misspellings, typographical errors, unconventional 
acronyms, and so on used in the document. Apart from this, there may be multiple phrases 
used for the same concept, thus resulting in presenting vague information. Unstructured 
data is difficult to mine and poses many challenges for software engineers, professionals, 
and practitioners to mine such data. Mining such kind of data requires the use of system-
atic and specialized text mining techniques along with the use of information retrieval 
modules.

10.1.2 Multiple Classifications

There are a number of different classification tasks used for classifying a given set of objects 
into some fixed categories. These classification tasks fall under the category of binary clas-
sifications or multiple classifications.

Binary classification is the term used when a set of objects could be categorized as either 
belonging to category “A” or category “Not A.” In other words, each of the objects could 
associate themselves into one of the two categories available.

Multiple classifications in text mining problems differ from classification tasks  previously 
explained in this book. In multiple classifications, there is a pool of a number of  categories 
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available and the task is to associate each of the objects to any one of the categories. 
There are multiple categories that a document may belong to, out of N categories avail-
able an object can belong to any of the categories. For example, in a requirement specifica-
tion document, the requirement may belong to various quality attributes such as security, 
availability, usability, maintainability, and so on. There may be the case that a particular 
object does not fit into any of the available N categories, or an object is suitable to be fit into 
more than one category. Any kind of such combination is permissible in case of multiple 
classifications. The need to perform N separate classification tasks is time consuming and 
generally computationally expensive.

10.1.3 Importance of Text Mining

The amount of printed material is increasing at an incredible rate and a lot of such mate-
rial is stored in libraries, stores, and so on in an unorganized manner. The printed mate-
rial could be in any of the forms like textbooks, magazines, newspapers, articles, journals, 
research papers, and so on. The list is endless and it has been observed that with days 
passing by, the information in the form of printed material is only increasing. Apart from 
these printed materials, there are volumes of electronic text in the form of documents 
available in software libraries, open source repositories, social networking sites,  medicines, 
educational institutes, and so on. As a result of this, users have to spend hours searching 
for a relevant material before they could find bits of desired information. This leads to 
unnecessary wastage of time and effort. In view of this, it has now become very essential 
to devise some mechanism that can categorize large amount of text present in online soft-
ware libraries and repositories. In such a way, the information available can be organized, 
making it easier for both the users and the organization to use the material, thus leading 
to an effective utilization of the available resources.

After applying text mining techniques, the relevant information will be obtained from 
the vast set of unstructured data that can now be used by human experts. Automated 
tasks will also allow the practitioners to obtain answers to various queries in less time, and 
thus save a lot of resources and costs.

The field of text mining is gaining huge popularity in today’s scenario, wherein the 
amount of information available online is increasing at an exponential rate.

10.1.4 Characteristics of Text Mining

Text mining involves a series of steps that can transform the unstructured data into a struc-
tured one. Text mining encapsulates the natural language processing techniques used by infor-
mation retrieval modules. As the literal meaning of this term, text mining means the mining 
of relevant information from the text, which could be either semistructured or unstructured, 
to make it understandable by computer-aided machines, softwares, and tools. For example, 
text mining can be effectively used in predicting cost and effort by analyzing the maintenance 
requests. The information obtained can easily be classified to answer various queries.

Mining the data follows a series of steps, by which classification of the text into one of 
the predefined categories is done. This is referred to as text classification. In other words, 
a given document is categorized into one of the categories available by employing text 
 mining techniques and using machine learning methods. The aim is to use a set of pre-
classified documents to classify those that have not yet been done.

There are two approaches for text classification: global dictionary and local dictionary. 
For the global dictionary approach, all the words that occur at least once in the documents 
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are included. Then, the classification is done for N categories. This approach works faster 
but the accuracy can be less. In the local dictionary approach, a separate dictionary consid-
ering the terms only related to a given category is created. Thus, the dictionary is small but 
the cost of computing N models to predict N categories is more than the global dictionary 
approach (Bramer 2007).

10.2 Steps in Text Mining

There are various methods that can be used to extract fixed number of attributes from the 
document. Text mining involves the processing of thousands of words that are extracted 
from the textual descriptions. The processing of the words is carried out by following a 
series of text mining steps, which are shown in Figure 10.1. The aim of text mining is to 
extract a set of potentially relevant attributes that could contribute to an efficient model pre-
diction. These techniques include document representation, preprocessing, feature selec-
tion, and weighting. All these techniques are explained in the subsequent sections below.

10.2.1 Representation of Text Documents

The given documents need to be represented in a particular form so that they can be 
 further explored and analyzed. The most common representation approach is referred to 
as the bag-of-words approach, in which the entire document is considered as a collection 
of words. The words in a textual document may refer to any kind punctuations, articles, 
nouns, or verbs. Thus, a document is assumed to be a collection of thousands and  thousands 
of infinite words. It is very normal to visualize that all these words are not  significant, and 
rather their usage can degrade the performance of the model so predicted. It is therefore 
necessary to eliminate the irrelevant words that add no meaning to the  document, thus 
reducing the size of the total number of words. The words in the document are referred to 
as features in the context of text mining. The total number of features in a document make 
up a feature space or feature set. The aim is to reduce the size of the feature set so that the 
accuracy of the model predicted can be improved.

10.2.2 Preprocessing Techniques

Performing a series of preprocessing tasks can reduce an initial size of the feature space. 
These tasks remove all the types of punctuation characters and stop words. Also, the 
words are stemmed up to their original stem. The preprocessing includes tokenization, 
stop words removal, and stemming, as shown in Figure 10.2. Tokenization is concerned 
with the task of replacing the punctuation characters with blank spaces, removing all the 
nonprintable escape characters, and converting all the words to lowercases. Thereafter, 

Document
representation Preprocessing Feature

selection 
TFIDF

calculation
Model

prediction

FIGURE 10.1
Steps in text mining.
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all the stop words like prepositions, articles, conjunctions, verbs, pronouns, nouns, 
 adjectives, and adverbs are removed from the document. Finally, the most important 
step of  preprocessing is performed, which is referred to as stemming. It is defined as the 
 process of removing the words that have the same stem, thereby retaining the stem as the 
selected  feature. For instance, words like “move,” “moves,” “moved,” and “moving” can 
be replaced with a single word as “move.” After preprocessing steps, a set of features are 
obtained by  reducing the initial size of the feature space.

Example 10.1:

Consider an example of software requirements given in Table  10.1. This example 
 demonstrates the description of the various software requirements, which describe the 
nonfunctional requirement (NFR; quality attributes). Generally, it has been observed 
that these requirements are not properly defined in the software requirement  document 
and are scattered throughout the document in an ad hoc fashion. As we know, these 
 qualities play an important role for the development and behavior of the software 

TABLE 10.1

Original Data Consisting of Twelve Requirements and Their Description

Req. No. Requirement Description NFR Type

RQ1 the product shall be available during normal business hours. As long as the user has 
access to the client pc the system will be available 99% of the time during the first 
six months of operation.

1

RQ2 the product shall have a consistent color scheme and fonts. 2
RQ3 the system shall be intuitive and self-explanatory. 3
RQ4 the user interface shall have standard menus buttons for navigation. 2
RQ5 out of 1000 accesses to the system, the system is available 999 times. 1
RQ6 the product shall be available for use 24 hours per day 365 days per year. 1
RQ7 the look and feel of the system shall conform to the user interface standards of the 

smart device.
2

RQ8 the system shall be available for use between the hours of 8 am and 6 pm. 1
RQ9 the system shall achieve 95% up time. 1
RQ10 the product shall be easy for a realtor to learn. 3
RQ11 the system shall have a professional appearance. 2
RQ12 the system shall be used by realtors with no training. 3

• Tokenization

• Removal of stop words

• Stemming

FIGURE 10.2
Preprocessing techniques.
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system and, therefore, these qualities should be incorporated in the architectural design 
as early as possible, which is not the case. Hence, in this example, we intend to employ 
text mining techniques to mine these requirements and convert them into a structured 
form that can then be used for the prediction of the unknown requirements into their 
respective nonfunctional qualities. The data presents few requirements extracted from 
promise data repository. Here, we categorize the requirements into three different type 
of NFRs, namely, availability (A), look-and-feel (LF), and usability (U). These three 
NFRs have been labeled as type 1, 2, and 3, respectively. The original data in its raw 
form containing the description of the NFRs along with the type of NFR is given in 
Table 10.1.

10.2.2.1 Tokenization

The main aim of text mining is to extract all the relevant words in a given set of documents. 
Tokenization is the first step in preprocessing. In tokenization, a document consisting of 
various characters is divided into a well-defined collection of tokens. The process involves 
removal of irrelevant numbers, punctuation marks, and replacement of special and non-
text characters with blank spaces. After removing all the unwanted characters, the entire 
document is converted into lowercase. This tokenized representation forms the founda-
tion of extracting words for sentences. Table 10.2 represents the tokenized data obtained 
after tokenizing the original data shown in Table 10.1.

10.2.2.2 Removal of Stop Words

Stop words are commonly used terms that contain no important information and, hence, 
are of no relevance in the text mining process. The English stop words include articles, 
nouns, punctuations, verbs, adjectives, adverbs, and so on. These are common words that 
are not useful for classification. For example, “a,” “an,” “is,” “the,” “for,” and “of.” The com-
plete list of 724 stop words was obtained from the University of Glasgow and is shown in 
Table 10.3 (http://ir.dcs.gla.ac.uk/resources/linguistic_utils/).

TABLE 10.2

Tokenized Data Obtained after Tokenizing the Original Data

Req. No. Requirement Description

RQ1 the product shall be available during normal business hours as long as the user has access to the 
client pc the system will be available of the time during the first six months of operation

RQ2 the product shall have a consistent color scheme and fonts
RQ3 the system shall be intuitive and self-explanatory
RQ4 the user interface shall have standard menus buttons for navigation
RQ5 out of accesses to the system the system is available times
RQ6 the product shall be available for use hours per day days per year
RQ7 the look and feel of the system shall conform to the user interface standards of the smart device
RQ8 the system shall be available for use between the hours of 8 am and 6 pm
RQ9 the system shall achieve up time
RQ10 the product shall be easy for a realtor to learn
RQ11 the system shall have a professional appearance
RQ12 the system shall be used by realtors with no training
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Table 10.4 represents the data obtained after removing the stop words from the tokenized 
data shown in Table 10.2.

10.2.2.3 Stemming Algorithm

Stemming recognizes a set of words and treats them equivalently. For example, “apply,” 
“applies,” and “applying” are treated as equivalent. Hence, by using stemming algorithm, 
the derived words are reduced. Porter’s Stemming Algorithm (Porter 1980), developed 

TABLE 10.3

Top-100 Stop Words

a Ah Anybody aside be
able Aint Anyhow ask became
about all anymore asking because
above allow anyone associated become
abst allows anything at becomes
accordance almost anyway auth becoming
according alone anyways available been
accordingly along anywhere away before
across already apart awfully beforehand
act also apparently back begin
actually although appear beginning better
added always appreciate beginnings between
adj am appropriate begins beyond
affected among approximately behind biol
affecting amongst are being both
affects an aren believe brief
after and arent below briefly
afterwards announce arise beside but
again another around besides by
against any as best cmon

TABLE 10.4

Data Obtained after Removing the Stop Words from the Tokenized Data

Req. No. Requirement Description

RQ1 product normal business hours long user access client pc system time months operation
RQ2 product consistent color scheme fonts
RQ3 system intuitive explanatory
RQ4 user interface standard menus buttons navigation
RQ5 accesses system times
RQ6 product hours day days year
RQ7 feel system conform user interface standards smart device
RQ8 system hours 8 am–6 pm
RQ9 system achieve time
RQ10 product easy realtor learn
RQ11 system professional appearance
RQ12 system realtors training
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in  1980, is the most widely used. The algorithm is imported from NuGet Package 
Manager for .NET Framework (www.nuget.org). Porter’s Stemming Algorithm provides 
a set of rules that iteratively reduce English words by replacing them with their stems. 
Table 10.5 represents the stemmed data obtained after performing stemming on data 
given in Table 10.4.

10.2.3 Feature Selection

After removing the stop words and replacing them by stems, the number of words in the 
document is still very large. Hence, feature-selection method is applied to further reduce 
the dimensionality of the feature set.

The aim of feature-selection methods is to reduce the size of the feature set by removing 
the words that are considered irrelevant for the classification. This will result in smaller 
size of the data set, thereby leading to lesser amount of computation requirement. Such 
kind of data set is highly beneficial for the classification algorithms that do not scale well 
with the large-size feature space. One of the major advantages of feature selection is the 
reduction of the curse of dimensionality, thereby leading to better classification accuracy.

The feature-selection methods are based on the concept of using an evaluation function 
being applied to a single word. There are a number of such methods that are being used 
in the literature, for instance, document frequency, term frequency, mutual information, 
information gain, odds ratio, χ2 statistic, and term strength. All of these feature-scoring 
methods rank the features (selected after the preprocessing step) by their independently 
determined scores, and then select the top scoring features. There is another approach that 
is used to reduce the size of the initial feature set. This approach is known as feature trans-
formation. This approach does not weigh terms to discard the lower weighted terms, but 
compacts the vocabulary based on feature concurrencies. Principal component analysis is 
a well-known method for feature transformation.

Infogain measure is the most commonly used feature-selection method. This method is 
used to rank all the features obtained after preprocessing, and then the top N scoring fea-
tures are selected based on the rank. Infogain measure aims to identify those words from 
the document that aim to simplify the target concept.

TABLE 10.5

Data Obtained after Performing Stemming

Req. No. Requirement Description

RQ1 product normal busi hour long user access client pc system time month oper
RQ2 product consist color scheme font
RQ3 system intuit explanatori
RQ4 user interfac standard menus button navig
RQ5 access system system time
RQ6 product hour day day year
RQ7 feel system conform user interfac standard smart devic
RQ8 system hour 8 am 6 pm
RQ9 system achiev time
RQ10 product easi realtor learn
RQ11 system profession appear
RQ12 system realtor train
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Now, the total number of bits required to code any particular class distribution C is 
H(C0). It is given by the following formula:

 N n c
c C

= ( )
∈
∑

	
p c

n c
N

( ) =
( )

	
H C p c p c

c C

( ) = − ( ) ( )
∈

∑ log2

Now, suppose A is a group of attributes, then the total number of bits needed to code a 
class once an attribute has been observed is given by the following formula:

 H C A p a p c a p c a
a A c C

| |( ) = − ( ) ( ) 
∈ ∈

∑ ∑ ( | )log2

Now, the attribute that obtains the highest information gain is considered to be the highest 
ranked attribute, which is denoted by the symbol Ai. 

 Infogain A H C H C Ai i( ) = ( ) − ( | )

Table 10.6 shows the list of words that are sorted on the basis of Infogain measure. These 
words are the unique words that are obtained after stemming the data. As we can see 
from the stemmed data, there are a total of 39 unique words. The Infogain of all these 
words was calculated and then they were given the rank, which is shown in Table 10.6. 
On the basis of this table, top-5 words, top-25 words, and so on can also be obtained by 
using Infogain measure.

To understand the concept of Infogain measure, the calculation of Infogain correspond-
ing to two words “realtor” and “system” has been shown below. As presented in Table 10.6, 
the word “realtor” has been ranked 1 and the word “system” has been given the rank 
38. This will become clear from their respective Infogain values. Table 10.7  represents the 
matrix of 0’s and 1’s corresponding to the two words, namely, “system” and “realtor.” This 

TABLE 10.6

List of Words Sorted on the Basis of Infogain Measure

Rank Words Rank Words Rank Words Rank Words

1 realtor 11 train 21 conform 31 month 
2 hour 12 user 22 smart 32 oper 
3 time 13 consist 23 devic 33 day 
4 interfac 14 color 24 profession 34 year 
5 standard 15 scheme 25 appear 35 8am 
6 access 16 font 26 normal 36 6pm 
7 intuit 17 menus 27 busi 37 achiev 
8 selfexplanatori 18 button 28 long 38 system 
9 easi 19 navig 29 client 39 product 
10 learn 20 feel 30 pc 
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table represents whether a particular word is present in a document or not. If a word is 
present in a document, then it is assigned a value of “1,” otherwise it is assigned a value 
of “0.”

Now, first the entropy of the entire data set is found out. In our example 10.1, the data set 
consists of 12 documents, out of which five documents belong to type 1 NFR, four docu-
ments belong to type 2 NFR, and the remaining three documents belong to type 3 NFR. 
Thus, the entropy of the data set is as below:
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The Infogain measure of the word “realtor” is as below:
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TABLE 10.7

Matrix Representing Occurrence of a Word in 
a Document

Doc# System Realtor NFRType

1 1 0 1
2 0 0 2
3 1 0 3
4 0 0 2
5 1 0 1
6 0 0 1
7 1 0 2
8 1 0 1
9 1 0 1
10 0 1 3
11 1 0 2
12 1 1 3
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Similarly, the Infogain measure of the word “system” is as below:
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Thus, we can see, the Infogain value of the two words, namely, “realtor” and “system” is 
0.424 and 0.053, respectively, which is calculated by using the above formulae. Similarly, 
the Infogain measure of all the words obtained after stemming was calculated, and then 
these words were ranked based on their value. The top few words were then used for the 
developing the prediction model.

10.2.4 Constructing a Vector Space Model

Once a series of preprocessing tasks have been completed (removal of stop words, stem-
ming) and relevant features have been extracted using a particular feature-selection 
method (Infogain), we will have the total number of attributes or terms as N, which can be 
represented as t1, t2, . . . , tN. The ith document is then represented as a N-dimensional vector 
consisting of n values, which are written as (Xi1, Xi2, . . . XiN). Here, Xij is a weight  measuring 
the importance of the jth term tj in the ith document. The complete set of vectors for all docu-
ments under consideration is called a vector space model.

Term frequency (TF) is the count of total occurrences of a term in a given document. 
There are various methods that can be used for weighting the terms. Term frequency 
inverse document frequency (TFIDF) is the most popularly used method for calculating 
the weights. The term frequency can be represented in many ways as listed below:

 1. Simple count of frequency of occurrences of terms.
 2. Binary indication for the presence or absence of a term.
 3. Normalizing the term frequency counts.

The weighted frequency count is 0 if the term is not present in the document, and a  nonzero 
value otherwise. There are many ways to represent the normalized or weighted term frequency 
in a document. The following formula can be used to compute the normalized frequency count:
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Apart from term frequency, it is important to define inverse document frequency that 
 represents the importance of a term. The importance value is decreased if the term is 
 present in many documents as it reduces the discriminative power (Bramer 2007).

 IDF
n
nj

= log2

where:
nj is the total number of documents containing jth term
n is the total number of documents

This value is a combination of the terms that occur frequently in a particular document 
with the terms, which occur rarely among a group of documents.

TFIDF method is considered to be the most efficient method for weighting the terms. 
The  TFIDF value of a term given in a document (Xij) is defined as the product of two 
 values, which correspond to the term frequency and the inverse document frequency, 
respectively. It is given as:

 TFIDF X tj ji i
j

n
n

( )= ×








log2

where:
tij is the frequency of the jth term in document i
nj is the total number of documents containing jth term
n is the total number of documents

Term frequency takes the terms that are frequent in the given document to be more impor-
tant than the others. Inverse document frequency takes the terms that are rare across a 
group of documents to be more important than the others.

Example 10.2

Consider Table  10.8, the number of occurrences of each term in the corresponding 
 document is shown. The row represents occurrence of each term in a document and 

TABLE 10.8

Term Frequency Matrix Depicting the Frequency Count 
of Each Term in the Corresponding Document

Document/Term t1 t2 t3 t4 t5

d1 0 2 8 0 0
d2 5 20 8 15 0
d3 14 0 0 5 0
d4 20 4 13 0 5
d5 0 0 9 7 4
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column represent occurrences of a given term in each document. Based on the table, the 
TFIDF value can be calculated. For example, TFIDF value of term t4 in document d2 is 
 calculated as below:
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Now, before using the set of N-dimensional vectors, we first need to normalize the values 
of the weights. It has been observed that “normalizing” the feature vectors before sub-
mitting them to the learning technique is the most necessary and important condition.

Table 10.9 shows the TFIDF matrix corresponding to the top-5 words. Now, this matrix 
 represents the structured form of the original raw data that can now be used for the 
 development of the prediction model.

10.2.5 Predicting and Validating the Text Classifier

Once the training documents have been converted into numerical form, we can use the 
techniques described in Chapter 7 for model prediction, and the accuracy of the model 
can be measured using performance measures such as recall, precision, F-measure, and 
receiver operating characteristics (ROC) analysis given in Section 7.5. 

The data can be collected from software repositories (e.g., SVN, CVS, GIT), and the details 
are presented in Chapter 5.

TABLE 10.9

TFIDF Matrix of Top-5 Words of NFR Example

Doc Realtor Hour Time Interfac Standard NFR Type

1 0 2.115477 2.115477 0 0 1
2 0 0 0 0 0 2
3 0 0 0 0 0 3
4 0 0 0 2.70044 2.70044 2
5 0 0 2.115477 0 0 1
6 0 2.115477 0 0 0 1
7 0 0 0 2.70044 2.70044 2
8 0 2.115477 0 0 0 1
9 0 0 2.115477 0 0 1
10 2.70044 0 0 0 0 3
11 0 0 0 0 0 2
12 2.70044 0 0 0 0 3
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10.3 Applications of Text Mining in Software Engineering

Text mining is being widely used in software engineering, where the large amount of infor-
mation available in the form of texts or online is of unstructured form. Thus, it becomes 
very difficult to interpret the data and make suitable analysis resulting in inappropriate 
conclusions. In the field of software engineering, there are various artifacts produced dur-
ing the software development life cycle such as software requirements specification (SRS) 
document, fault reports, and design documents. Text mining is gaining a huge attention 
that is being a great help to engineers, practitioners, and researchers working in this field. 
Some of the widely applicable areas of software engineering where text mining techniques 
are employed are given below.

10.3.1 Mining the Fault Reports to Predict the Severity of the Faults

One of the most popular applications of text mining is to mine the fault descriptions 
available in software repositories and extract relevant information from the description, 
which is in the form of some relevant words extracted by employing text mining tech-
niques. Thus, the data is reduced to a structured format, which can now be applied for the 
development of prediction models. With the help of this structured data, the severities of 
the document could be predicted, which is one of the most important aspect of the fault 
reports. The prediction of fault severity is very important as the faults with higher severity 
could be dealt first on a priority basis, thus leading to an efficient utilization of the avail-
able resources and manpower. Menzies and Marcus (2008) mined fault description using 
text mining and machine learning techniques using rule-based learning.

10.3.2 Mining the Change Logs to Predict the Effort

Another very important application of text mining could be in the analysis of change logs 
of the different versions of the software and mining the fault reports. These fault reports 
contain the fault description, which could be mined in a similar way, and the amount of 
effort and time required to correct the fault could be predicted. On the basis of predicted 
effort, the change management board can take the required action as to whether the fault 
should be corrected or not. This appropriate decision by the change management board 
could lead to an effective utilization of the resources and the staff required in correcting 
the fault.

10.3.3  Analyzing the SRS Document to Classify Requirements into NFRs

Yet another very popular application of text mining is to classify the requirements stated 
in the SRS into their respective NFRs (quality attributes). We are familiar with the fact that 
the stakeholders are not able to state the NFRs as clearly as it is required, and these require-
ments are scattered throughout the document in an ad hoc and unorganized form. This 
can prove to be very harmful as NFRs contribute to the overall development of the soft-
ware. Thus, these requirements should be incorporated at an early stage of design archi-
tecture. Hence, there is a need to mine the description of the requirements that are stated 
improperly in the SRS. These requirements could then be analyzed and thereby classified 
into their respective nonfunctional qualities like availability, usability, look-and-feel, main-
tainability, security, performance, and so on. As a result of this, critical quality constraints 
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could be taken into account and development of an efficient software product meeting the 
stakeholder’s real needs could be achieved.

Apart from these, there are various other applications of text mining that are restricted 
not only to the area of software engineering, but also to other fields of the literature like 
medicine, networking, chemicals, and so on.

10.4  Example—Automated Severity Assessment 
of Software Defect Reports

An example study is presented in this section to illustrate the techniques of text min-
ing and to demonstrate their applicability in solving real-world fault severity prediction 
problems. As already specified, there are a number of areas wherein the concept of text 
mining can be put into use and the unstructured data can be converted into an organized 
and structured data. The intent of this example study is to highlight one of these applica-
tions and the use of model prediction in predicting the unknown instances in text mining 
problem.

10.4.1 Introduction

As the complexity and size of the software is increasing, the introduction of faults into the 
software has become an implicit part of the development, which cannot be avoided whatso-
ever the circumstances may be. This causes the faults to enter the software, thereby leading 
to functional failures. There are a number of bug tracking systems such as Bugzilla and CVS 
that are widely used to track the faults present in various open source software repositories. 
The faults, which are introduced in the software, are of varying severity levels. As a result, 
these bug tracking systems contain the fault reports that include detailed information about 
the faults along with their IDs and associated severity level. A severity level is used by 
many organizations to measure the effect of fault on the software. This impact may range 
from mild to catastrophic, wherein catastrophic faults are most severe faults that may lead 
the entire system to go to a crash state. The faults that have a severe impact on the func-
tioning of the software and may adversely affect the software development are required 
to be handled on priority basis. Faults having high-severity level must be dealt with on a 
priority basis as their presence may lead to a major loss like human life loss, crash of an 
airplane, and so on. However, the data present in such systems is generally in unstructured 
form. Hence, text mining techniques in combination with machine learning techniques are 
required to analyze the data present in the defect tracking system.

In this study the information from the NASA’s database called project and issue tracking 
system (PITS) is mined, by developing a tool that will first extract the relevant informa-
tion from PITS-A using text mining techniques. After extraction, the tool will then predict 
the fault severities using machine learning techniques. The faults are classified into five 
categories of severity by NASA’s engineers as very high, high, medium, low, and very low.

In this study multilayer perceptron technique is used to predict the faults at various 
levels of severity. The prediction of fault severity will help the researchers and software 
practitioners to allocate their testing resources on more severe areas of the software. The 
performance of the predicted model will be analyzed using area under the ROC curve 
(AUC) obtained from ROC analysis.
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Testing is an expensive activity that consumes maximum resources and cost in the 
 software development life cycle. This study is particularly useful for the testing profes-
sionals for quickly predicting severe faults under time and resource constraints. For exam-
ple, if only 25% of testing resources are available, the knowledge of the severe faults will 
help the testers to focus the available resources on fixing the severe faults. The faults with 
higher severity level should be tested and fixed before the faults with lower severity level 
are tested and fixed (Menzies and Marcus 2008). The testing professionals can select from 
the list of prioritized faults according to the available testing resources using models pre-
dicted at various severity levels of faults. The models developed in this study will also 
guide the testing professional in deciding when to stop testing—when an acceptable num-
ber (perhaps decided using past experiences) of faults have been corrected and fixed, then 
the testing team may decide to stop testing and allow the release of the software.

10.4.2 Data Source

The PITS-A data set supplied by NASA’s software Independent Verification and 
Validation (IV & V) Program was used to validate the results. The data in this data 
set include issues related to robotic satellite missions and human rated systems, which 
have been collected for more than 10 years. The data sets comprise of the fault reports, 
wherein each fault report contains the description of that corresponding fault, ID of the 
fault, and associated severity level of the fault. According to NASA’s engineers, each 
fault can be categorized into one of the five severity levels, which are very high, high, 
medium, low, and very low.

Faults, which fall into the category of very high severity level are the faults that may 
threaten the safety and security. The recovery from such faults is impossible and failures, 
which happen because of the occurrence of such faults, may result in cascading system 
failures. Because of these reasons, such faults are extremely rare in nature. PITS-B does not 
have any fault at very high severity level. Hence, in the empirical study, the severity level 
1 is not taken into account and only the last four severity levels, namely, severity 2 (high), 
severity 3 (medium), severity 4 (low), and severity 5 (very low) are considered.

10.4.3 Experimental Design

The focus here is to elaborate on the design that will be used for the overall model predic-
tion. Initially, the fault reports were analyzed and the textual description corresponding 
to each fault was extracted. The textual descriptions were then analyzed using a tool that 
is named as “Text Analyzer and Miner.” This tool was developed at Delhi Technological 
University. This tool has been developed using C# Language in the Windows Form 
Template on Visual Studio 2012 with Windows 7 as the operating platform. The tool has 
been developed using the .NET Framework.

This tool incorporates a series of text mining techniques—tokenization, stop words 
removal, stemming, feature selection using Infogain measure, and finally TFIDF weight-
ing, as explained in the sections above. The objective of these techniques was to remove 
irrelevant words from the document and retain only those words that contribute to an 
effective model prediction.

Multilayer perceptron (MLP) has been used as the machine learning technique for the 
development of the prediction model. The evaluation measures used, depict how well the 
model has performed in predicting the dependent variable, which is “severity” in this 
case. The independent variables were the top few words that were found out on the basis 
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of Infogain measure. In this study, top-5, 25, 50, and 100 words were considered and the 
performance of the model was evaluated with respect to these words corresponding to 
each of the severity level, namely, high, medium, low, and very low. Table 10.10 demon-
strates the top-100 words obtained after the ranking done by Infogain measure. From this 
table, top-5, 25, and 50 words can also be obtained.

MLP is one of the most popular algorithm that is used for supervised classification. It is 
responsible for mapping a set of input values onto a set of appropriate output values. 
MLP technique is based on the concept of back propagation. Back propagation is a type 
of learning procedure that is used to train the network. It comprises of two passes—for-
ward pass and backward pass. In the forward pass, the inputs are fed to the network and 
then the effect is propagated layer by layer by keeping all the weights of the network 
fixed. In the backward pass, the updation of weights takes place according to the error 
computed. The process is repeated over and over again until the desired performance is 
achieved.

To evaluate the performance of the predicted model, there were different performance 
measures that were used. These were sensitivity, AUC, and the cutoff point. All these 
measures determine how well the model has predicted what it was intended to predict. 
The explanation for these measures has been provided in Chapter 7. The validation method 

TABLE 10.10

Top-100 Terms in PITS-A Data Set, Sorted by Infogain

Rank Words Rank Words Rank Words Rank Words

1 requir 26 rvm 51 includ 76 trace
2 command 27 obc 52 specifi 77 symbol
3 softwar 28 lsrobc 53 set 78 differ
4 srs 29 system 54 projecta 79 ground
5 lsfs 30 telemetri 55 text 80 interrupt
6 test 31 code 56 time 81 reset
7 flight 32 execut 57 task 82 design
8 line 33 number 58 column 83 document
9 referenc 34 variabl 59 access 84 question
10 engcntrl 35 initi 60 refer 85 safe
11 mode 36 issu 61 uplink 86 sourc
12 file 37 provid 62 monitor 87 attitud
13 messag 38 locat 63 perform 88 door
14 script 39 section 64 paramet 89 lead
15 error 40 control 65 fp 90 contain
16 data 41 memori 66 note 91 event
17 oper 42 verifi 67 capabl 92 appear
18 spacecraft 43 indic 68 fsw 93 process
19 link 44 address 69 ivv 94 current
20 ac 45 sequenc 70 vm 95 lsrvml
21 defin 46 lsrup 71 rate 96 checksum
22 function 47 point 72 list 97 engin
23 state 48 cdh 73 case 98 load
24 valu 49 fault 74 check 99 support
25 tabl 50 specif 75 flexelint 100 transit
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used in the study is holdout validation (70:30 ratio) in which the entire data set is divided 
into 70% training data and the remaining 30% as test data. A partitioning variable is used 
that splits the given data set into training and testing samples in 70:30 ratio. This variable 
can have the value either 1 or 0. All the cases with the value of 1 for the variable are assigned 
to the training samples, and all the other cases are assigned to the testing samples. To get more 
generalized and accurate results, validation has been performed using 10 separate  partitioning 
variables. Each time, MLP method is used for training, and the testing samples are used to 
validate the results.

10.4.4 Result Analysis

The results of applying preprocessing steps such as tokenization, removal of stop words, 
and stemming is shown Figure 10.3. Figure 10.3 depicts that initially 156,499 words were 
found for the PITS-A data set. However, after applying a set of preprocessing steps, these 
words were reduced to 89,119. Further, after calculating Infogain, we validated the results 
on top-100 words. The list of top-100 words for PITS-A data set is given in Table 10.10. A few 
words, in this table, may not be understandable as these are stemmed. For example, requir 
in Table 10.10 is the stemmed form of the original word requirement.

The words can be used to predict severity at different level. Each document is a vector 
with 100 values with corresponding TFIDF scores for each word. The model prediction 
results were obtained using MLP method corresponding to top-5, 25, 50, and 100 words. 
All the four severity levels are taken into consideration with regard to high, medium, 
low, and very low. The results are depicted in Tables  10.11 through 10.18. The AUC 
 values for 10 runs for top-5, 25, 50, and 100 words are shown in these tables. The use 
of multiple runs will reduce the threats to conclusion validity and produce generalized 
results.

As it is clear from Tables 10.11 and 10.12, MLP has performed very well in predicting 
high-severity faults as compared to medium, low, and very low severity faults. This is 
because the average value of AUC for high-severity defects is 0.86 approximately. On 
the other hand, the performance of the MLP model with respect to medium, low, and 
very low severity defects can be considered as nominal because the average AUC values 
are 0.78, 0.72, and 0.74, respectively. Thus, it can be concluded that MLP has performed 
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FIGURE 10.3
Results of applying preprocessing to the PITS-A data set.
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exceptionally well in predicting high-severity faults than in predicting medium, low, and 
very low severity faults when top-5 words were considered for classification.

On such similar lines, conclusion can be drawn regarding the performance of MLP 
when taking into account top-25 words. It can be seen from Tables 10.13 and 10.14 that MLP 
has predicted high-severity faults with much correctness, as the maximum value of AUC 
is 0.903 with approximately 83% value of sensitivity. The performance of MLP is also good 
in predicting faults at other severity levels, namely, medium, low, and very low. This is 
because the average values of AUC at these severity levels are 0.80, 0.77, and 0.76 approxi-
mately. Thus, it can be said that MLP model is recommended for predicting the faults as 
the number of words considered for classification increases.

TABLE 10.11

Results for Top-5 Words Corresponding to High and Medium 
Severity Faults

High Severity Defects Medium Severity Defects

Runs AUC Sensitivity Cutoff AUC Sensitivity Cutoff

1 0.873 0.778 0.1818 0.785 0.545 0.4159
2 0.824 0.689 0.1632 0.786 0.519 0.4363
3 0.853 0.781 0.1655 0.759 0.553 0.432
4 0.852 0.733 0.2107 0.785 0.581 0.3892
5 0.862 0.78 0.1698 0.798 0.848 0.4652
6 0.872 0.772 0.1095 0.727 0.52 0.5539
7 0.83 0.2 0.1561 0.778 0.543 0.4477
8 0.84 0.753 0.1784 0.777 0.557 0.4361
9 0.897 0.833 0.1775 0.829 0.81 0.4311
10 0.868 0.765 0.1811 0.782 0.514 0.438
Average 0.857 0.708 – 0.781 0.599 –

TABLE 10.12

Results for Top-5 Words Corresponding to Low and Very Low 
Severity Faults

Low Severity Defects Very Low Severity Defects

Runs AUC Sensitivity Cutoff AUC Sensitivity Cutoff

1 0.744 0.683 0.3562 0.726 0.6 0.0481
2 0.706 0.685 0.3402 0.733 0.714 0.0625
3 0.719 0.654 0.3049 0.701 0.571 0.0309
4 0.718 0.635 0.2837 0.783 0.714 0.0546
5 0.751 0.708 0.3277 0.789 1 0.0443
6 0.673 0.583 0.2995 0.599 0.75 0.0325
7 0.742 0.657 0.3316 0.732 0.667 0.0482
8 0.62 0.57 0.3058 0.844 0.857 0.0617
9 0.753 0.754 0.3175 0.794 0.6 0.0343
10 0.743 0.69 0.3363 0.732 0.667 0.0506
Average 0.716 0.662 – 0.743 0.714 –
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From Tables 10.15 and 10.16, it can be seen that the performance of MLP with respect to 
to top-50 words is exceptionally good for all types of faults with the average value of AUC 
being 0.91, 0.82, 0.80, and 0.81 at high, medium, low, and very low severities, respectively. 
So, from the discussion, it can be concluded that MLP method has worked very well for 
predicting the faults when taking into account top-50 words for classification.

Even when top-100 words are considered for classification (Tables 10.17 and 10.18), it is 
seen that the performance of MLP is exceptionally good in predicting high-severity faults 
as the maximum value of AUC is 0.928 with 85.3% sensitivity value. The performance of 
MLP model is nominal for other severity faults.

TABLE 10.13

Results for Top-25 Words Corresponding to High and Medium 
Severity Faults

High Severity Defects Medium Severity Defects

Runs AUC Sensitivity Cutoff AUC Sensitivity Cutoff

1 0.891 0.804 0.2413 0.838 0.786 0.5085
2 0.856 0.781 0.2427 0.785 0.705 0.4721
3 0.903 0.829 0.2463 0.81 0.726 0.4763
4 0.87 0.793 0.2432 0.769 0.714 0.4796
5 0.902 0.833 0.2361 0.822 0.756 0.3956
6 0.898 0.804 0.2402 0.808 0.713 0.4209
7 0.863 0.812 0.2838 0.778 0.685 0.4291
8 0.855 0.789 0.2951 0.756 0.703 0.3382
9 0.859 0.787 0.2316 0.768 0.688 0.4621
10 0.873 0.783 0.2121 0.822 0.754 0.4023
Average 0.877 0.801 – 0.795 0.723 –

TABLE 10.14

Results for Top-25 Words Corresponding to Low and Very Low 
Severity Faults

Low Severity Defects Very Low Severity Defects

Runs AUC Sensitivity Cutoff AUC Sensitivity Cutoff

1 0.813 0.741 0.2058 0.697 0.667 0.0216
2 0.754 0.627 0.2063 0.841 0.75 0.0262
3 0.794 0.690 0.2218 0.811 0.714 0.0343
4 0.753 0.636 0.3234 0.717 0.600 0.0244
5 0.800 0.735 0.3027 0.696 0.667 0.0343
6 0.774 0.672 0.2168 0.81 0.800 0.0384
7 0.706 0.652 0.2834 0.804 0.778 0.0367
8 0.71 0.627 0.297 0.515 0.500 0.0213
9 0.745 0.671 0.2568 0.855 0.800 0.0373
10 0.845 0.742 0.3051 0.807 0.625 0.019
Average 0.769 0.679 – 0.755 0.690 –
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10.4.5 Discussion of Results

Although we have used few words to predict models, the AUC in many cases is high (see 
Tables 10.13 and 10.15). The AUC values of models predicted using the PITS-A data set 
are very high. The best results obtained for predicting faults at various severity levels are 
shown below:

• For severity = high, average AUC = 0.824–0.943
• For severity = medium, average AUC = 0.727–0.846

TABLE 10.16

Results for Top-50 Words Corresponding to Low and Very Low 
Severity Faults

Low Severity Defects Very Low Severity Defects

Runs AUC Sensitivity Cutoff AUC Sensitivity Cutoff

1 0.801 0.692 0.224 0.754 0.667 0.026
2 0.848 0.743 0.273 0.848 0.6 0.020
3 0.808 0.704 0.246 0.816 0.75 0.032
4 0.773 0.703 0.185 0.896 0.75 0.028
5 0.806 0.712 0.191 0.848 0.778 0.027
6 0.812 0.721 0.226 0.673 0.6 0.017
7 0.795 0.681 0.230 0.799 0.714 0.040
8 0.792 0.708 0.256 0.846 0.833 0.056
9 0.823 0.768 0.240 0.801 0.6 0.022
10 0.755 0.653 0.260 0.820 0.778 0.031
Average 0.801 0.708 – 0.810 0.707 –

TABLE 10.15

Results for Top-50 Words Corresponding to High and Medium 
Severity Faults

High Severity Defects Medium Severity Defects

Runs AUC Sensitivity Cutoff AUC Sensitivity Cutoff

1 0.916 0.865 0.2292 0.812 0.733 0.4776
2 0.905 0.817 0.1824 0.83 0.742 0.402
3 0.919 0.841 0.2642 0.831 0.739 0.4214
4 0.915 0.84 0.2209 0.83 0.736 0.5072
5 0.937 0.885 0.3282 0.829 0.75 0.4168
6 0.943 0.876 0.3365 0.846 0.757 0.4338
7 0.892 0.81 0.1858 0.824 0.748 0.4764
8 0.906 0.826 0.1963 0.824 0.748 0.4531
9 0.906 0.828 0.2702 0.792 0.71 0.43
10 0.875 0.793 0.3138 0.771 0.704 0.3972
Average 0.911 0.838 – 0.819 0.736 –
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• For severity = low, average AUC = 0.62–0.848
• For severity = very low, average AUC = 0.515–0.896

The results show that there is marginal difference between the AUC of models predicted 
using top-50 words and the AUC of models predicted using only top-5 words in most of 
the cases. Hence, it is notable that using only very few words (only 5) the models perform 
nearly as well as the models predicted in most of the cases using large number of words. 
For example, individual results of model using PITS-A data set for top-50 words at high-
severity level are 0.943. However, after reducing the words by 90% (i.e., from 50 words to 5 
words), the maximum value of AUC obtained for top-5 words at high-severity level is 0.897.

TABLE 10.17

Results for Top-100 Words Corresponding to High and Medium 
Severity Faults

High Severity Defects Medium Severity Defects

Runs AUC Sensitivity Cutoff AUC Sensitivity Cutoff

1 0.923 0.863 0.2566 0.782 0.689 0.3952
2 0.912 0.82 0.3002 0.754 0.687 0.3787
3 0.918 0.833 0.2244 0.78 0.732 0.3807
4 0.928 0.853 0.2777 0.802 0.725 0.4713
5 0.899 0.816 0.2476 0.792 0.694 0.4344
6 0.904 0.816 0.2944 0.827 0.735 0.4387
7 0.918 0.848 0.2967 0.83 0.752 0.3464
8 0.889 0.809 0.2033 0.811 0.73 0.528
9 0.917 0.821 0.2636 0.803 0.708 0.4026
10 0.901 0.819 0.1994 0.807 0.742 0.4584
Average 0.910 0.829 – 0.798 0.719 –

TABLE 10.18

Results for Top-100 Words Corresponding to Low and Very Low 
Severity Faults

Low Severity Defects Very Low Severity Defects

Runs AUC Sensitivity Cutoff AUC Sensitivity Cutoff

1 0.756 0.693 0.306 0.758 0.6 0.0231
2 0.785 0.711 0.3199 0.837 0.778 0.0215
3 0.826 0.741 0.2844 0.881 0.75 0.0421
4 0.823 0.753 0.2327 0.807 0.75 0.0197
5 0.766 0.688 0.2922 0.85 0.8 0.0502
6 0.819 0.75 0.233 0.687 0.5 0.0209
7 0.835 0.743 0.2711 0.642 0.6 0.0212
8 0.809 0.719 0.2061 0.663 0.571 0.0142
9 0.819 0.69 0.2195 0.659 0.571 0.021
10 0.805 0.729 0.2982 0.669 0.571 0.0261
Average 0.804 0.722 – 0.745 0.649 –
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10.4.6 Threats to Validity

In the PITS-A data set, the severity rating assigned to various faults are subjective and may 
be inaccurate. Thus, the generalizability of the results is possibly limited. Using holdout 
method at 10 runs for each model predicted reduces the threat to conclusion validity.

The conclusions are pertinent to only dependent variable, fault severity, as it seems to 
be most popular dependent variable in empirical studies. The validity of the models pre-
dicted in this study is not claimed when the dependent variable changes, like maintain-
ability or effort.

While these results provide guidance for future research on the attributes extracted 
from fault descriptions at different severity levels, further validations are needed with dif-
ferent systems to draw stronger conclusions.

10.4.7 Conclusion

In today’s scenario, there is an emerging need for the development of the defect prediction 
models, which are capable of detecting the fault introduced in the software. Not only this, 
the most important faults to consider in terms of the faults introduced in the software is 
its severity level that may range from mild to catastrophic. Catastrophic faults are the most 
severe faults that must be identified and then dealt with as early as possible to prevent any 
kind of damage to the software much further. With this intent, development of the fault 
prediction model has been carried out using MLP as the classification method. The data 
set employed for validation is the PITS data set, which is being popularly used by NASA’s 
engineers. The data set was mined using text mining steps and the relevant information 
was extracted in terms of top few words (top-5, 25, 50, and 100 words). These words were 
used to predict the model. The predicted model was then used to assign a severity level to 
each of the fault found during testing.

It was observed from the results that MLP model has performed exceptionally well in 
predicting the faults at high-severity level irrespective of the number of words considered 
for classification. This observation is evident from the values of AUC lying in the range of 
0.824–0.943. The performance of the model is even good for predicting medium severity 
faults as the maximum value of AUC is as high as 0.846. On the other hand, with respect to 
the faults at low and very low severity levels, the performance of the model is considered 
to be nominal. Thus, it can be concluded that the performance of the model is best when 
top-50 words are taken into account. Also, with very few words (only 5), the model has 
performed nearly as well as the models predicted in most of the cases using large number 
of words. From this analysis, it can be said that the model is suitable for predicting the 
severity levels of the faults even with very few words. This would be highly beneficial 
for an overall development of the organization in terms of proper allocation of testing 
resources and the available manpower.

Exercises

10.1 What is text mining? What are the applications of text mining in software 
engineering?

10.2 Explain the steps in text mining. Why mining relevant attributes is important 
before applying data analysis techniques?
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10.3 Differentiate between unstructured and structured data.
10.4 Explain the different preprocessing steps in text mining.
10.5 What is the process and purpose of stemming in text mining?
10.6 How can important attributes be selected in text mining?
10.7 Explain information gain measure.
10.8 What is the purpose of weighting the terms in a document? What are the steps 

followed to compute TFIDF.
10.9 Consider the following data collected from a list of 500 documents, the top-5 

words are given in the table, calculate the TDIDF value for each record.

Term
Number of Documents 
Containing the Term

Train 200
User 100
Learn 4
Display 50
System 20

10.10 Consider the following example given below, calculate the Infogain for each 
term.

Document/Term T1 T2 T3 T4

D1 1 0 1 0
D2 0 0 0 1
D3 1 1 0 1
D4 0 0 1 1
D5 1 1 0 0

Further Readings

The following books provides techniques and procedures for information retrieval:

W. B. Frakes, and R. Baeza-Yates, Information Retrieval: Data Structures & Algorithms, 
Prentice Hall, Upper Saddle River, NJ, 1992.

G. Salton, and M. J. McGill, Introduction to Modern Information Retrieval, McGraw-Hill, 
New York, 1983.

The following papers provides term weighting approaches in text mining:

G. Salton, and C. Buckley, “Term weighting approaches in automatic text retrieval,” 
Information Processing and Management, vol. 24, no. 5, pp. 513–523, 1998.



389Mining Unstructured Data

The information gain method is presented in:

D. McSherry, and C. Stretch, “Information Gain,” Technical Notes, University of 
Ulster, Coleraine, 2003.

An excellent survey of text mining techniques is presented in:

M. W. Berry, Survey of Text Mining: Clustering, Classification, and Retrieval, Springer, 
New York, 2003.

In the following paper a novel approach that applies frequent item for text clustering is 
presented:

F. Beil, M. Ester, and X. Xu, “Frequent term-based text clustering,” Proceedings of 
the ACM SIGKDD International Conference on Knowledge Discovery in Databases, 
pp. 436–442, Edmonton, Canada, July 2002.

The application of machine learning techniques in machine learning is given in:

M. Ikonomakis, S. Kotsiantis, and V. Tampakas, “Text classification using machine 
learning  techniques,” WSEAS Transactions on Computers, vol. 4, no. 8, pp. 966–974, 
2005.

F. Sebastiani, “Machine learning in automated text categorization,” ACM Computing 
Surveys, vol. 34, no. 1, pp. 1–47, 2002.
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11
Demonstrating Empirical Procedures

The objective of this chapter is to demonstrate and present the practical application of 
the empirical concepts and procedures presented in previous chapters. This chapter also 
 follows the report structure given in Chapter 9. The work presented in this chapter is 
based on change prediction.

The three important criteria for comparing results across various studies are (1) the 
study size, (2) the way in which the performance of the developed models is measured, 
and (3) statistical tests used. Also, the availability of data sets has always been a constraint 
in the software engineering research. The use of stable performance measures is another 
factor to be considered. The statistical tests for comparing the actual significance of results 
are not much used in change prediction models. Moreover, the models should be validated 
on the different data from which they are actually derived to increase the confidence in 
the conclusions of the study. To resolve these issues, in this chapter, we compare one sta-
tistical technique and 17 machine learning (ML) techniques for investigating the effect of 
object-oriented (OO) metrics on change-prone classes. The hypothesis is based on the fact 
that there is a statistical difference between the performance of the compared techniques.

11.1 Abstract

Software maintenance is a predominant and crucial phase in the life cycle of a soft-
ware product as evolution of a software is important to keep it functional and profitable. 
Planning of the maintenance activities and distribution of resources is a significant step 
towards developing a software within the specified budget and time. Change prediction 
models help in identification of classes/modules that are prone to change in the future 
releases of a software product. These classes represent the weak parts of a software. Thus, 
change prediction models help software industry in proper planning of maintenance 
activities as change-prone classes should be allocated greater attention and resources for 
developing a good quality software.

11.1.1 Basic

Change proneness is an important software quality attribute as it signifies the probability 
that a specific class of a software would change in the forthcoming release of a software. 
A number of techniques are available in literature for development of change prediction 
models. This study aims to compare and assess one statistical and 17 ML techniques for 
effective development of change prediction models. The issues addressed are (1) comparing 
of the ML techniques and the statistical technique over popular data sets, (2) use of vari-
ous performance measures for evaluating the performance of change prediction models, 
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(3) use of statistical tests for comparing and assessing the performance of ML techniques, 
and (4) validation of models from different data sets from which they are trained.

11.1.2 Method

To perform comparative analysis of one statistical and 17 ML techniques, the study devel-
oped change prediction models on six open source data sets. The data sets are application 
packages of the widely used Android OS. The developed models are statistically assessed 
using statistical tests on a number of performance measures.

11.1.3 Results

The results of the study indicate logistic regression (LR), multilayer perceptron (MLP), and 
 bagging (BG) techniques as good techniques for developing change prediction models. 
The results of the study can be effectively used by software practitioners and researchers 
in choosing an appropriate technique for developing change prediction models.

11.2 Introduction

11.2.1 Motivation

Recently, there has been a surge in the number of studies that develop models for pre-
dicting various software quality attributes such as fault proneness, change proneness, 
and maintainability. These studies help researchers and software practitioners in effi-
cient resource usage and developing cost-effective, highly maintainable good quality 
software products. Change proneness is a critical software quality attribute that can 
be assessed by developing change prediction models. Identification of change-prone 
classes is crucial for software developers as it helps in better planning of constraint 
project resources like time, cost, and effort. It would also help developers in taking pre-
ventive measures such as better designs and restructuring for these classes in the earlier 
phases of software development life cycle so that minimum defects and changes are 
introduced in such classes. Moreover, such classes should be meticulously tested with 
stringent verification processes like inspections and reviews. This would help in early 
detection of errors in the classes so that developers can take timely corrective actions. 
Although a number of techniques have been exploited and assessed to develop mod-
els for ascertaining change-proneness attribute, the search for the best technique still 
continues. The academia as well as the industry is tirelessly exploring the capabilities 
of different techniques to evaluate their effectiveness in developing efficient prediction 
models. Thus, there is an urgent need for comparative assessment of various techniques 
that can help the industry and researchers in choosing a practical and useful technique 
for model development.

11.2.2 Objectives

To develop software quality prediction models, various software metrics are used as the 
independent variables and a particular software quality attribute as the dependent vari-
able. The model is basically a set of classification rules that can predict the dependent 
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 variable on the basis of the independent variables. The classification model can be  created 
by a number of techniques such as the statistical technique (LR) or ML techniques. 
The   capability of a technique can be assessed by evaluating the model developed by 
the particular technique. The various performance evaluators that are used in the study 
are classification accuracy, precision, specificity, sensitivity, F-measure, and area under 
the receiver operating characteristic (ROC) curve (AUC). According to Afzal and Torkar 
(2008), the use of a number of performance measures strengthens the conclusions of the 
study. This empirical study ascertains the comparative performance of statistical and ML 
techniques for the prediction of change-proneness attribute of a class in an OO software. 
Moreover, this study assesses models developed using tenfold cross-validation that are 
widely acceptable models in research (Pai and Bechta Dugan 2007; De Carvalho et  al. 
2010). Use of tenfold cross-validation reduces validation bias and increases the conclusion 
validity of the study. The study also strengthens its conclusions by statistically compar-
ing the models developed by various techniques using Friedman and Nemenyi post hoc 
test. Furthermore, this study analyzes the application packages of a widely used mobile 
operating system named Android, which is open source in nature. Selection of such sub-
jects for developing model increases the generalizability of the study and increases the 
applicability of the study’s results.

11.2.3 Method

This study empirically validates six open source data sets to evaluate the performance of 
18 different techniques for change-proneness prediction. The comparative assessment of 
various techniques is evaluated with the help of Friedman statistical test and Nemenyi 
post hoc test. The Friedman test assigns a mean rank to all the techniques on the basis 
of a specific performance measure and tests whether the predictive performance of all 
the techniques is equivalent. In case the predictive performance of various techniques is 
found to be statistically significantly different, there is a need to perform Nemenyi post 
hoc test. The Nemenyi test compares the results of each pair of techniques to ascertain 
the better performing technique among the two compared techniques. It computes the 
critical distance for the performance of two techniques and checks whether a pair of 
techniques are significantly different from each other or not. The study evaluates the 
change prediction models using six performance measures. The data sets used in the 
study are collected from the GIT repository using the defect collection and reporting 
system (DCRS) tool.

11.2.4 Technique Selection

LR, a statistical technique, is well-established for developing prediction models for ascer-
taining various software quality attributes. A number of studies in literature have used it 
for predicting fault proneness (Briand et al. 2000; El Emam et al. 2001; Aggarwal et al. 2009), 
maintainability (Li and Henry 1993; Alshayeb and Li 2003; Bandi et al. 2003), or change 
proneness (Zhou et al. 2009; Lu et al. 2012; Elish and Al-Khiaty 2013) attribute of a class in 
an OO software.

ML techniques have recently gained importance in the domain of software quality pre-
diction as they can easily learn from data and past examples, and then efficiently clas-
sify new instances. ML techniques generalize based on examples and help in establishing 
cost- effective models. They have been extensively used for classification tasks in the last 
decade (Koru and Liu 2005; Thwin and Quah 2005; Koten and Gray 2006; Singh et al. 2009; 
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Dejager et al. 2013; Malhotra and Khanna 2013). This study evaluates the capabilities of 
17 ML  techniques for developing change prediction models and compares their predic-
tive capability with LR. The ML techniques explored in this case study include adaptive 
 boosting (AB), alternating decision tree (ADT), BG, Bayesian network (BN), decision 
table (DTab), J48 decision tree, repeated incremental pruning to produce error reduction 
(RIPPER), LogitBoost (LB), MLP, naïve Bayes (NB), non-nested generalized exemplars 
(NNge),  random forests (RF), radial basis function (RBF) network, REP tree (REP), support 
vector using sequential minimal optimization (SVM-SMO), voted perceptron (VP), and 
ZeroR techniques implemented in the WEKA tool.

11.2.5 Subject Selection

The study analyzes a widely used mobile operating system named Android, which was 
developed by Google and is based on Linux kernel. It is dominating the mobile market with 
around 70% of smartphones using it as a preloaded OS. The Android OS uses GIT as the 
version control system. The source code of Android OS is available under the open source 
license. This study analyzes six application packages of the Android OS and the data is col-
lected by comparing two Android versions, namely, Ice Cream Sandwich and Jelly Beans.

11.3 Related Work

Evaluation of change-proneness attribute of a class in an OO software helps software 
practitioners in proper allocation of resources to the identified change-prone classes. As 
change-prone classes are source of defects and changes, these classes require more atten-
tion and resources than a class that is not change-prone. Such a practice helps in efficient 
management of time, cost, and effort, and helps in producing a good quality software 
product within rigid deadlines and limited budgets.

Few researchers (Zhou et al. 2009; Lu et al. 2012) evaluated the change-proneness attri-
bute in OO software data sets and established a relationship between OO metrics and 
change-prone nature of a class. A study by Elish and Al-Khiaty (2013) also investigated the 
use of evolution metrics along with Chidamber and Kemerer (1994) metrics suite for deter-
mination of change-prone classes. Malhotra and Khanna (2014a) devised a new metrics 
using gene expression programming for identifying change prone classes. Certain other 
researchers (Malhotra and Khanna 2013; Malhotra and Bansal 2014) explored the effec-
tiveness of a few ML algorithms for developing change prediction models. Koru and Liu 
(2007) suggest tree-based models for ascertaining change-prone classes. Koru and Tian 
(2005) investigate the relationship between modules exhibiting high structural values and 
modules exhibiting high change values. A study by Han et al. (2010) advocates behavioral 
dependency measure as an important indicator for change-prone classes.

This study extensively compares the performance of 17 ML techniques with a traditional 
technique, LR, for developing an effective change prediction model. It will provide guide-
lines to researchers and practitioners for efficient selection of a classification technique. 
Furthermore, the use of Android data set for performing such comparisons favors wide 
applicability of the results of the study considering the popularity of Android applications.
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11.4 Experimental Design

11.4.1 Problem Definition

The study investigates the effectiveness of OO metrics for predicting change-prone 
classes, and compares the performance of statistical and ML techniques for develop-
ing models to ascertain change-prone classes using various performance measures. The 
objective of the study is to statistically assess the performance of a number of techniques 
to provide future guidance for effective use of these techniques. The study also investi-
gates the relationship of various techniques with various data sets. This study is quite 
effective as it is designed to minimize a number of validity threats and to increase the 
generalizability of its results. The main design considerations of the study are discussed 
as follows:

• Use of tenfold cross-validation method to build models using various techniques 
reduces validation bias and increases the conclusion validity of the study.

• Use of a number of performance measures (accuracy, sensitivity, specificity, preci-
sion, F-measure, and AUC) to analyze the predicted models strengthens the con-
clusions of the study.

• Assessment of results statistically using Friedman and Nemenyi test substantiates 
the effectiveness of the results.

• Use of widely prevalent open source software Android OS increases the gen-
eralizability of the results of the study. Thus, reducing external validity of the 
study.

• Finally, a comprehensive comparison of a number of techniques provides a strong 
research evidence on the applicability and use of these techniques for change 
 prediction tasks.

11.4.2 Research Questions

The study explores the following research questions:

RQ1: Are OO metrics related to change?
 It is important to ascertain the relationship between various metrics that are rep-

resentative of different OO attributes like size, abstraction, inheritance,  coupling, 
and so on and change-prone nature of a class. A change prediction model can only 
be developed using this relationship, where different OO metrics are independent 
variables and the change-prone attribute of a class is the  dependent variable of the 
class.

RQ2: What is the capability of various techniques on data sets with varying 
characteristics?

 There are a number of techniques available that can be used for developing change 
prediction models. Different techniques may show contrasting results on different 
data sets. Thus, it is important to evaluate the capability of different techniques 
using varied data sets as they may have varying characteristics.
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RQ3: What is the comparative performance of different techniques when we take 
into account different performance measures?

 A number of performance measures are available in literature to assess a predic-
tion model. It is important to analyze the capability of a technique by evaluating 
the change prediction model developed by the technique using various perfor-
mance measures. The comparative performance of techniques could be differ-
ent when we take into account different performance measures. For example, 
model developed by technique A may give good accuracy values but very low 
F-measure values.

RQ4: Which pairs of techniques are statistically significantly different from each 
other for developing change prediction models?

 Apart from evaluating all the techniques together, the study compares the per-
formance of pairs of techniques using different performance measures. Pairwise 
comparisons gives us an insight into actual comparative performance of the two 
techniques forming the pair, and whether the techniques are significantly  different 
in their performance from each other.

RQ5: What is the comparative performance of ML techniques with the statistical 
technique LR?

 The basic functioning of statistical technique involves strict data assumptions and 
formulation of hypothesis. However, ML techniques do not require any initial 
hypothesis and the model developed using these techniques is flexible and adapt-
able to changing data (Malhotra and Khanna 2014b). Thus, there is a need to ascer-
tain the comparative performance of the traditional statistical technique LR with 
ML techniques to evaluate which category of techniques is better for development 
of change prediction model.

RQ6: Which ML technique gives the best performance for developing change predic-
tion models?

 Different ML techniques work differently and have different characteristics 
such as speed, model accuracy, interpretability, and simplicity. This study eval-
uates the best ML technique for developing an effective and efficient change 
prediction model by evaluating change prediction models developed by 17 ML 
techniques.

11.4.3 Variables Selection

Over the years, a number of researchers have successfully used OO metrics for devel-
oping models that efficiently predict various software quality attributes. Continuous 
measurement of various attributes of a software like its size, cohesive capabilities, use 
of inheritance, and so on is important to gain an understanding of the project. Metrics 
can help in effectively managing the software project and developing a high-quality 
product.

This study uses a set of 18 commonly used OO metrics for developing change predic-
tion models that include all the metrics proposed by Chidamber and Kemerer (1994), 
namely, weighted methods of a class (WMC), depth of inheritance tree (DIT), number 
of children (NOC), coupling between objects (CBO), response for a class (RFC), and lack 
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of cohesion among methods (LCOM). The study also analyzed the quality model for 
 object-oriented design metric suite that consists of data access metric (DAM), measure 
of aggression (MOA), method of functional abstraction (MFA), cohesion among meth-
ods of a class (CAM), and number of public methods (NPM). Afferent coupling (Ca) and 
efferent coupling (Ce) metrics proposed by Martin (2002) were also included. Some other 
miscellaneous metrics included in the study were inheritance coupling (IC) metric, cou-
pling between methods of a class (CBM), average method complexity (AMC), lines of code 
(LOC), and LCOM3 (Henderson version of LCOM) metric. The detailed definition of each 
metric can be referred from Chapter 3. These metrics are the independent variables of the 
study and measure various OO properties of a software like cohesion, size, coupling, reus-
ability, and so on.

The objective of the study is to ascertain change-prone classes. Thus, change proneness, 
that is, the likelihood of change in a class after the software goes into operation phase is the 
dependent variable of the study. To comprehend change in a class, LOC inserted or deleted 
from a class is taken into account. 

11.4.4 Hypothesis Formulation

To answer RQ3, we developed the following set of hypothesis. The hypothesis evaluates 
the change prediction models developed using various techniques on different perfor-
mance measures. Each hypothesis is based on a different performance measure.

11.4.4.1 Hypothesis Set

• Hypothesis for accuracy measure
• H0 null hypothesis: Change prediction models developed using all the techniques 

(LR, AB, ADT, BG, BN, DTab, J48, RIPPER, LB, MLP, NB, NNge, RF, RBF, REP, 
SVM-SMO, VP, and ZeroR) do not show significant differences when evaluated 
using accuracy measure.

• Ha alternate hypothesis: Change prediction models developed using all the tech-
niques (LR, AB, ADT, BG, BN, DTab, J48, RIPPER, LB, MLP, NB, NNge, RF, 
RBF, REP, SVM-SMO, VP, and ZeroR) show significant differences when evalu-
ated using accuracy measure.

• Hypothesis for sensitivity measure
• H0 null hypothesis: Change prediction models developed using all the tech-

niques (LR, AB, ADT, BG, BN, DTab, J48, RIPPER, LB, MLP, NB, NNge, RF, 
RBF, REP, SVM-SMO, VP, and ZeroR) do not show significant differences when 
evaluated using sensitivity measure.

• Ha alternate hypothesis: Change prediction models developed using all the tech-
niques (LR, AB, ADT, BG, BN, DTab, J48, RIPPER, LB, MLP, NB, NNge, RF, 
RBF, REP, SVM-SMO, VP, and ZeroR) show significant differences when evalu-
ated using sensitivity measure.

• Hypothesis for specificity measure
• H0 null hypothesis: Change prediction models developed using all the tech-

niques (LR, AB, ADT, BG, BN, DTab, J48, RIPPER, LB, MLP, NB, NNge, RF, 
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RBF, REP, SVM-SMO, VP, and ZeroR) do not show significant differences when 
evaluated using specificity measure.

• Ha alternate hypothesis: Change prediction models developed using all the tech-
niques (LR, AB, ADT, BG, BN, DTab, J48, RIPPER, LB, MLP, NB, NNge, RF, 
RBF, REP, SVM-SMO, VP, and ZeroR) show significant differences when evalu-
ated using specificity measure.

• Hypothesis for precision measure
• H0 null hypothesis: Change prediction models developed using all the techniques 

(LR, AB, ADT, BG, BN, DTab, J48, RIPPER, LB, MLP, NB, NNge, RF, RBF, REP, 
SVM-SMO, VP, and ZeroR) do not show significant differences when evaluated 
using precision measure.

• Ha alternate hypothesis: Change prediction models developed using all the tech-
niques (LR, AB, ADT, BG, BN, DTab, J48, RIPPER, LB, MLP, NB, NNge, RF, 
RBF, REP, SVM-SMO, VP, and ZeroR) show significant differences when evalu-
ated using precision measure.

• Hypothesis for F-measure
• H0 null hypothesis: Change prediction models developed using all the techniques 

(LR, AB, ADT, BG, BN, DTab, J48, RIPPER, LB, MLP, NB, NNge, RF, RBF, REP, 
SVM-SMO, VP, and ZeroR) do not show significant differences when evaluated 
using F-measure.

• Ha alternate hypothesis: Change prediction models developed using all the tech-
niques (LR, AB, ADT, BG, BN, DTab, J48, RIPPER, LB, MLP, NB, NNge, RF, 
RBF, REP, SVM-SMO, VP, and ZeroR) show significant differences when evalu-
ated using F-measure.

• Hypothesis for AUC measure
• H0 null hypothesis: Change prediction models developed using all the techniques 

(LR, AB, ADT, BG, BN, DTab, J48, RIPPER, LB, MLP, NB, NNge, RF, RBF, REP, 
SVM-SMO, VP, and ZeroR) do not show significant differences when evaluated 
using AUC performance measure.

• Ha alternate hypothesis: Change prediction models developed using all the tech-
niques (LR, AB, ADT, BG, BN, DTab, J48, RIPPER, LB, MLP, NB, NNge, RF, 
RBF, REP, SVM-SMO, VP, and ZeroR) show significant differences when evalu-
ated using AUC performance measure.

11.4.5 Statistical Tests

To statistically compare the performance of different techniques for developing change 
prediction models, the study performs Friedman’s statistical test, which is followed by 
a post hoc test named Nemenyi test. If the null hypothesis of Friedman test is rejected, 
we will perform post hoc analysis using Nemenyi test. These nonparametric tests sug-
gested by Demšar (2006) are used for comparison of various techniques. Lessmann et al. 
(2008) also used these tests to compare a number of fault prediction models, which were 
developed using 22 classification techniques. The tests are nonparametric and hence are 
not based on data normality assumptions. The details on these tests can be found in 
Chapter 6.
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11.4.6 Empirical Data Collection

This study uses the DCRS tool for data collection. The tool was developed by undergradu-
ate students of Delhi Technological University and is used for collecting data from open 
source repositories that use GIT as the version control system. The tool is developed in Java 
language (Malhotra et al. 2014).

To collect change data, the DCRS tool analyzes the source code of an open source soft-
ware from two specific consecutive versions to extract change logs. A change log records 
all the changes made in the source code of a file. Changes could be because of defect cor-
rection, change in requirements, technological upgrade, or any other reason. The change 
record stores information such as timestamp of the commit, a change identifier, a defect 
identifier if the change is because of defect correction, change description, and a listing of 
all modified files of source code along with all changed LOC.

Each data point consists of OO metrics and change statistics. All the metrics generated 
by the tool are obtained with the aid of another open source tool Chidamber and Kemerer 
Java Metrics (http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metric.html). The change statis-
tics account for the LOC changes in a source code file. The tool generates a change report 
that states the name of the Java source code file along with total LOC added for all the 
changes, total LOC deleted for all the changes, and the total LOC changes in a class. Each 
data point also states a binary variable named ALTER. The variable is given a value of 
“yes” if the total LOC changes of a particular class is greater than zero, otherwise it is 
assigned a “no.”

This study analyzes the source code of Android OS, which uses Git for version con-
trol management. To collect change data, the two versions of Android OS selected are Ice 
Cream Sandwich and Jelly Bean, whose source code can be obtained from Git repository 
hosted by Google (https://android.googlesource.com). The code for Android OS was dis-
tributed in a number of application packages, namely, Contacts, Calendar, Bluetooth, and 
so on. Only Java source code or class files were analyzed in these packages ignoring all 
the other files like media files, layout files, and so on. This study analyzes six packages of 
Android OS: Bluetooth, Contacts, Calendar, Gallery2, MMS, and Telephony. The details of 
classes in each of the packages are given in Table 11.1. The table also shows the percentage 
of classes that changed from one version to the next and the number of data points, that is, 
common classes in each package. Data collection was done by the DCRS tool by “Cloning,” 
that is, copying and transferring the entire repository from a server (local or remote) to an 
end user machine. A detailed description of the DCRS tool can be referred from Chapter 5. 
Figure 11.1 shows the change statistics of each data set. For example, Telephony data set 
has 19,313 inserted LOC; 22,228 deleted LOC; and 41,541 total changed lines.

TABLE 11.1

Software Data Set Details

Software Name Versions Analyzed No. of Data Points % of Changed Classes

Bluetooth 4.3.1–4.4.2 72 19%
Contacts 4.3.1–4.4.2 210 48%
Calendar 4.3.1–4.4.2 106 19%
Gallery2 4.3.1–4.4.2 374 41%
MMS 2.3.7–4.0.2 195 30%
Telephony 4.2.2–4.3.1 249 63%
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11.4.7 Technique Selection

The study compares and analyzes the capability of 18 different techniques for developing 
change prediction models. The various techniques are selected on the basis of  various 
aspects, which are discussed as follows:

• LR: The technique is a traditional technique which is widely used in literature 
(Li and Henry 1993; Briand et al. 2000; El Emam et al. 2001a; Alshayeb and Li 2003; 
Bandi et al. 2003; Aggarwal et al. 2009; Zhou et al. 2009; Lu et al. 2012; Elish and 
Al-Khiaty 2013) for developing a number of software quality models. It is a well-
recognized technique that can be easily used in a probabilistic framework.

• AB: The technique works well even with noisy data or outliers. It is fast, simple, 
and flexible.

• ADT: The technique is easy to interpret and combines the simplicity of decision 
trees and good performance of a boosting algorithm (Freund and Mason 1999; 
De Comite et al. 2003).

• BG: This technique is quite effective in terms of classification accuracy over a num-
ber of regression techniques. Moreover, it reduces variance and avoids overfitting 
to training data (Malhotra and Khanna 2013).

• BN: This technique is simple and easy to understand.
• J48: This technique builds models that are easy to interpret, are accurate, and are 

efficient in terms of speed (Zhao and Zhang 2008).
• RIPPER: This technique is a rule-based classifier, which is easy to interpret and 

generate. It is a fast algorithm (Uzun and Tezel 2012).
• LB: This technique produces prediction models with high accuracy.
• MLP: This technique is adaptive in nature and supports parallel architecture. It 

can easily handle nonlinear data (Malhotra and Khanna 2015; Malhotra 2014).
• RF: This technique is robust to noise and performs well even with outliers. It is 

simple and fast (Malhotra and Khanna 2015).
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FIGURE 11.1
Change statistics of all data sets.
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• REP Tree: It is a fast decision tree technique that reduces variance (Mohamed et al. 
2012).

• SVM: This technique effectively handles high dimensionality, redundant features, 
and complex functions. It is robust in nature (Malhotra 2014).

• VP: This technique is comparable in terms of accuracy to SVM. However, lit-
erature claims that the technique has better learning and prediction speed as 
compared to the traditional SVM technique (Freund and Schapire 1999; Sassano 
2008).

Some other techniques such as DTab, NNge, RBF, and ZeroR were also selected for analyz-
ing their performances.

11.4.8 Analysis Process

The various steps performed for analysis are as follows:

• The descriptive statistics of all the data sets are collected and analyzed.
• Next, identify all the outliers in a particular data set and remove them. The 

change prediction models were developed with the remaining data points using 
18 techniques.

• Next, to reduce the dimensionality of the input data set, use correlation-based 
feature selection (CFS) method and identify the important metrics for each corre-
sponding data set. This step eliminates the noisy and redundant features of each 
data set.

• Now develop models using all the 18 techniques on the six selected data sets using 
tenfold cross-validation method. The change prediction models developed by all 
the techniques are evaluated using six performance measures.

• Analyze the developed models using Friedman statistical test and evaluate the 
developed hypothesis.

• Finally, perform Nemenyi post hoc test to find the pairs of techniques that are 
statistically significantly different from each other.

11.5 Research Methodology

This section briefly states the description of the techniques and the various performance 
measures used in the study. It also briefly describes the validation method.

11.5.1 Description of Techniques

This case study evaluates the performance of 18 techniques. Out of these 18 techniques, 
LR is a statistical technique and all other techniques are ML techniques. A brief descrip-
tion of each technique is given below. To develop effective change prediction models, we 
first need to reduce the dimensionality of our input features. This is done by applying CFS 
method proposed by Hall (2000). The method identifies a set of all noisy and unwanted 
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features and eliminates them before model development. This helps in improving the 
results of the model.

• LR: It is a technique to predict a dependent variable such as change proneness 
from a set of independent variables, that is, various OO metrics to ascertain the 
variance in the dependent variable caused by the independent variables (Hosmer 
and Lemeshow 1989).

• AB: It is an important algorithm for boosting methods. The technique develops an 
efficient classifier by combining a number of weak performing classifiers (Witten 
and Frank 2005). The technique allots weights to weak learners according to their 
performance. It gains knowledge by analyzing the incorrect predictions of the pre-
vious models. The default settings for this technique in WEKA tool are 10 itera-
tions and 100% of weight mass percentage.

• ADT: It is a generalized version of decision tree and works with a combination 
of boosting technique. It has two types of nodes: decision nodes and prediction 
nodes. The decision nodes represent a predicate decision and the prediction 
nodes contain a number (Freund and Mason 1999). To classify an instance, a 
path is  followed in which all decision nodes evaluate to true and all prediction 
nodes occurring in between are summed up. The technique uses 10  boosting 
iterations and no saving of instance data as its parameter settings in the WEKA 
tool.

• BG: It is based on the concept of constant improvization by using a number of 
similar training sets (Breiman 1996). Training sets are produced by creating boot-
strap duplicates of the original training set. A minor disturbance in the training 
set might cause significant changes in the predictor. Each training set is used to 
train a function and the output class of BG is the result output by the majority of 
functions. The parameter setting for BG in WEKA tool were a bag size percent of 
100, REP tree classifier, and 10 iterations.

• BN: It is a network with a set of nodes that are connected by directed edges. It helps 
in ascertaining relationship between probabilistic values of relationship depen-
dency and random variables. The strength of connections between the  random 
variables is assessed quantitatively and the end result is a joint probability dis-
tribution from the network. WEKA uses a simple estimator and K2  algorithm as 
default settings for this algorithm.

• DTab: It represents a data structure that contains complex data entries in the upper 
levels of the table (Witten and Frank 2005). It is a hierarchical representation where 
the complex entries are simplified with the aid of additional attributes. The tech-
nique selects various attributes for simplifying the table structure by analyzing all 
possible combinations of the existent attributes. The technique selects the combina-
tion of attributes that gives the best result. The parameter settings were accuracy as 
evaluation measure and best first technique for searching in WEKA tool.

• J48: It is an implementation of the C4.5 algorithm in Java for the WEKA tool. The 
parameter settings for the technique in WEKA tool were 0.25 as the confidence 
interval for pruning and a minimum number of two instances in the leaf.

• RIPPER: It is a rule-based learner which formulates a set of rules that minimize 
the error in output predictions (Cohen 1995). The technique has four stages: build, 
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grow, prune, and optimize. The parameter settings for the technique in the WEKA 
tool were three folds, two optimizations, seed as one, and use of pruning as true.

• LB: It is a boosting technique that uses additive LR (Friedman et al. 2000). The 
technique uses a likelihood threshold of −1.79, weight threshold of 100, 10 itera-
tions, a shrinkage parameter of 1, and reweighing as the parameter settings in the 
WEKA tool.

• MLP: It is based on the functioning of nervous system and is capable of modeling 
complex relationships with ease. Apart from an input and an output layer, they 
have a number of intermediate hidden layers. Synaptic weights are assigned and 
adjusted in these intermediate layers with back propagation training algorithm. 
The technique comprises of two passes: forward as well backward. The backward 
pass produces an error signal that helps in reducing the difference between actual 
and desired output (Haykin 1998). WEKA uses a learning rate of 0.005 and sig-
moid function for transfer. The number of hidden layers was set as 1.

• NB: This ML algorithm is based on Bayes theorem and creates a probabilistic 
model for prediction. All the features of the technique are treated independently, 
and it uses only a small training set for developing classification models. The 
default settings of WEKA uses kernel estimator and supervised discretization as 
false for NB.

• NNge: This technique uses NNge that are hyperrectangles. These can be viewed as 
if rules. The parameter settings were five attempts for generalization and five fold-
ers for mutual information in WEKA tool.

• RF: It is composed of a number of tree predictors. The tree predictors are based 
on a random vector, which is sampled independently with the same distribu-
tion. The output class of RF is the mode of all the individual trees in the for-
est (Breiman 2001). RF is advantageous because of its noise robustness, parallel 
nature, and fast learning. The RF were used with 10 trees as parameter settings 
in the WEKA tool.

• RBF network: This technique is an implementation of normalized Gaussian RBF 
network. To derive the centers and widths of the hidden layer, the algorithm uses 
m-means. The LR technique is used to combine the outputs from the hidden units. 
The technique uses a parameter settings of two clusters and one clustering seed in 
the WEKA tool.

• REP: It is a fast decision tree learning technique that uses information gain or 
variance reduction to build a decision tree. The technique performs reduced 
error pruning with backfitting. The default parameter settings for this technique 
in WEKA tool were as seed of 1, maximum depth of −1, minimum variance of 
0.001, and 3 number of folds.

• Support vector machine (SVM): It aims to construct an optimal hyperplane that 
can efficiently separate the new instances into two separate categories (Cortes and 
Vapnik 1995). WEKA uses sequential minimal optimization algorithm to train the 
SVM. The parameter settings used by the technique in WEKA tool were random 
seed of 1, tolerance parameter of 0.01, a c value of 1.0, and an epsilon value of 1.0E-
12 and a polykernel.

• VP: It is a technique that is based on the Rosenblatt Frank’s (Frank 1958) perceptron 
technique. The technique can be effectively used in high-dimensional spaces with 
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the use of kernel functions. The parameter settings for the technique in WEKA 
tool were an exponent value of 1 and a seed of 1.

• ZeroR: It is a technique that uses 0-R classifier. The technique predicts the mean if 
the class is numeric or the mode if the class is nominal.

11.5.2 Performance Measures and Validation Method

The performance measures used for analyzing the change prediction models were accu-
racy, sensitivity, specificity, precision, F-measure, and AUC. A brief description of the 
performance measures are as follows (for detailed description, refer to Chapter 7):

• Accuracy: It represents the percentage of correct predictions. It takes into account 
both correctly classified change-prone classes as well as correctly  classified 
 non-change-prone classes. The higher the accuracy of the model, the better is the 
model.

• Sensitivity: It represents the percentage of correctly classified change-prone classes.
• Specificity: It represents the percentage of correctly classified non-change-prone 

classes.
• Precision: It represents the percentage of predicted change-prone classes that were 

correct, that is, it depicts how many predicted change-prone classes are actually 
change prone.

• F-measure: This measure couples both precision and sensitivity, and represents 
the harmonic mean of precision and sensitivity.

• AUC: It is a plot of sensitivity on the vertical axis and a measure of 1-specificity on 
the horizontal axis. It is a cumulative measure of both sensitivity and specificity. 
The higher the AUC value, the better is the model.

The change prediction models were developed using tenfold cross-validation method. 
The tenfold cross-validation method involves division of data points into 10 partitions, 
where nine subsets are used for training the model while the tenth partition is used for 
model validation. A total of 10 iterations are performed, each time using a different set as 
the validation set (Stone 1974).

11.6 Analysis Results

This section describes the various steps performed for analyzing the models. It presents 
the results of the study.

11.6.1 Descriptive Statistics

This section gives a brief description of descriptive statistics of each data set and also per-
forms correlation analysis. Tables  11.2 through 11.7  state the descriptive statistics, that 
is, the minimum (Min.), maximum (Max.), mean (Mean), standard deviation (SD), 25% 
 percentile, and 75% percentile for all the metrics used in the study for each data set.

After analyzing Tables 11.2 through 11.7, we present a brief description of various char-
acteristics of all the data sets.
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TABLE 11.2

Descriptive Statistics for Android Bluetooth Data Set

Metric Name Min. Max. Mean SD Percentile (25%) Percentile (75%)

WMC 1 118 15 20.24 4 17.25
DIT 1 1 1 0 1 1

NOC 0 0 0 0 0 0

CBO 0 10 1.94 2.32 0 3

RFC 2 119 16 20.24 5 18.25

LCOM 0 6903 307 1042.07 6 140.25

Ca 0 5 0.76 1.15 0 1

Ce 0 10 1.40 2.09 0 2

NPM 0 16 4.51 3.89 1.75 7

LCOM3 1.01 2 1.28 0.34 1.06 1.33

LOC 9 718 104.86 127.65 31 116.5

DAM 0 1 0.67 0.39 0.36 1

MOA 0 6 0.72 1.26 0 1

MFA 0 0 0 0 0 0

CAM 0.13 1 0.42 0.24 0.25 0.542

IC 0 0 0 0 0 0

CBM 0 0 0 0 0 0

AMC 1 5 4.93 0.47 5 5

TABLE 11.3

Descriptive Statistics for Android Contacts Data Set

Metric Name Min. Max. Mean SD Percentile (25%) Percentile (75%)

WMC 0 60 10.86 10.13 4 14
DIT 0 4 0.9 0.42 1 1

NOC 0 15 0.11 1.06 0 0

CBO 0 15 1.27 2.07 0 2

RFC 0 61 11.86 10.14 5 15

LCOM 0 1770 104.74 229.76 6 91

Ca 0 15 0.43 1.44 0 0.75

Ce 0 12 0.83 1.49 0 1

NPM 0 43 7.10 6.85 2.25 9

LCOM3 0 2 1.39 0.40 1.07 2

LOC 0 422 70.50 69.02 24 91.75

DAM 0 1 0.65 0.45 0 1

MOA 0 5 0.19 0.59 0 0

MFA 0 0.96 0.01 0.08 0 0

CAM 0 1 0.39 0.22 0.21 0.5

IC 0 1 0 0.06 0 0

CBM 0 1 0 0.06 0 0

AMC 0 5 4.15 1.78 5 5
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TABLE 11.4

Descriptive Statistics for Android Calendar Data Set

Metric Name Min. Max. Mean SD Percentile (25%) Percentile (75%)

WMC 1 110 14.47 17.20 5 17.75
DIT 0 1 0.95 0.21 1 1
NOC 0 1 0.37 0.19 0 0
CBO 0 12 1.70 2.12 0 2
RFC 2 111 15.47 17.20 6 18.75
LCOM 0 5995 244.12 755.04 10 148.75
Ca 0 4 0.56 0.89 0 1
Ce 0 11 1.19 1.84 0 2
NPM 1 65 9.39 10.43 3 11.75
LCOM3 1 2 1.26 0.32 1.05 1.31
LOC 7 936 107.43 134.61 31 133.5
DAM 0 1 0.70 0.37 0.44 1
MOA 0 10 0.55 1.29 0 1
MFA 0 0 0 0 0 0
CAM 0.05 1 0.38 0.24 0.20 0.5
IC 0 1 0.01 0.09 0 0
CBM 0 1 0.01 0.09 0 0
AMC 0 5 4.65 1.19 5 5

TABLE 11.5

Descriptive Statistics for Android Gallery2 Data Set

Metric Name Min. Max. Mean SD Percentile (25%) Percentile (75%)

WMC 0 251 11.55 16.74 4 14
DIT 0 3 0.64 0.54 0 1
NOC 0 23 0.35 1.70 0 0
CBO 0 42 3.06 4.66 1 4
RFC 0 252 12.55 16.74 5 15
LCOM 0 31,375 200.85 1,646.30 6 91
Ca 0 42 1.35 4.13 0 1
Ce 0 16 1.76 2.17 0 3
NPM 0 251 8.62 14.94 3 10
LCOM3 0 2 1.36 0.38 1.07 1.5
LOC 8 1,507 75.46 106.99 24 93
DAM 0 1 0.70 0.42 0.15 1
MOA 0 8 0.49 1.08 0 1
MFA 0 1 0.01 0.07 0 0
CAM 0 1 0.41 0.23 0.25 0.5
IC 0 2 0.01 0.14 0 0
CBM 0 4 0.02 0.23 0 0
AMC 0 5 2.87 2.42 0 5
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TABLE 11.6

Descriptive Statistics for Android MMS Data Set

Metric Name Min. Max. Mean SD Percentile (25%) Percentile (75%)

WMC 0 128 10.87 14.14 3 14
DIT 0 4 0.85 0.54 1 1
NOC 0 5 0.19 0.72 0 0

CBO 0 12 2.00 2.09 0 3

RFC 0 129 11.84 14.17 4 15

LCOM 0 8128 153.33 612.94 3 91

Ca 0 11 0.89 1.65 0 1

Ce 0 10 1.65 1.39 0 2

NPM 0 53 7.70 9.63 2 8.25

LCOM3 1 2 1.45 0.40 1.08 2

LOC 0 882 66.58 94.75 13 83

DAM 0 1 0.57 0.45 0 1

MOA 0 6 0.23 0.73 0 0

MFA 0 1 0.01 0.12 0 0

CAM 0 1 0.47 0.27 0.25 0.66

IC 0 3 0.01 0.21 0 0

CBM 0 5 0.02 0.34 0 0

AMC 0 5 3.15 2.23 0.35 5

TABLE 11.7

Descriptive Statistics for Android Telephony Data Set

Metric Name Min. Max. Mean SD Percentile (25%) Percentile (75%)

WMC 1 213 20.00 32.28 4 20
DIT 0 4 0.97 0.47 1 1
NOC 0 4 0.05 0.33 0 0
CBO 0 20 2.84 3.5 1 4
RFC 2 214 21.00 32.28 5 21
LCOM 0 22,578 709.05 2,569.41 6 190
Ca 0 16 1.29 2.10 0 2
Ce 0 17 1.81 2.72 0 3
NPM 0 212 14.43 28.91 2 14
LCOM3 1 2 1.33 0.37 1.05 1.5
LOC 6 1,100 121.78 175.41 26 129
DAM 6 1 0.41 0.43 0 0.95
MOA 0 37 1.22 3.63 0 1
MFA 0 1 0.04 0.20 0 0
CAM 0 1 0.45 0.28 0.21 0.58
IC 0 1 0.01 0.06 0 0
CBM 0 1 0.01 0.06 0 0
AMC 0 5 4.28 1.61 5 5
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11.6.2 Outlier Analysis

A critical step in data preprocessing involves outlier analysis. All data points that vary 
significantly from other data points are considered as outliers (Barnett and Lewis 1994). 
All outliers in a data set should be removed before data analysis so that the results are not 
biased by the values of the outliers. This study identified outliers with the help of inter-
quartile range filter of the WEKA tool. Table 11.8 shows the number of outliers identified 
in each data set. All the identified outliers were removed before analyzing data and using 
it for model development.

11.6.3 CFS Results

This study uses 18 metrics as independent variables. It is essential to remove noisy and redun-
dant features, and reduce the feature set. CFS method, proposed by Hall (2000), was used to 
extract appropriate features from each data set to get a reduced feature set that can efficiently 
predict change. The features extracted after application of CFS on each data set are shown in 
Table 11.9. According to the table, the LOC metric and the CAM metric are highly correlated 
with change as they are selected by five and four data sets, respectively. The WMC, MOA, 
CBO, and Ce are also good indicators of change as they are selected by two data sets each for 
model development. Other selected features include RFC, DIT, NPM, AMC, and MFA.

11.6.4 Tenfold Cross-Validation Results

This section states the results of change prediction models developed using all the 18 tech-
niques using different performance measures. Tables 11.10 through 11.15 present the results 
specific to accuracy, sensitivity, specificity, precision, F-measure, and AUC performance 
measures for change prediction models developed using the 18 techniques analyzed in the 
study. Each row of the tables represent the change prediction models developed by a spe-
cific technique on all the data sets, whereas each column of the table represents the change 
prediction models developed on a particular data set. To highlight the best performing 
results of a given technique for all the data sets, specific values in the table are shown with 
superscript ‘a’ in each row. The table that are shown in bold formatting depict the best 
performing technique of a particular data set. All the cells with values ND represent that 
the specific measure is not defined for that particular technique in that particular data set.

 1. Validation results using accuracy measure
 Table 11.10 represents the accuracy measure of change prediction models devel-

oped using all the 18 techniques on all the six Android data sets used in the 
study. According to the table, the most number of best accuracy values of  various 

TABLE 11.8

Outlier Details

Data Set Name Number of Outliers

Bluetooth 7
Contacts 12
Calendar 6
Gallery2 43
MMS 22
Telephony 37
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techniques were achieved over the Android Contacts data set. However, the tech-
nique that developed the model exhibiting best accuracy values differed in all 
the data sets. The change prediction model developed using the SVM technique 
achieved the best accuracy value of 83.07% on Android Bluetooth data set and 
83.00% on Android Calendar data set. The MLP technique gave the best accuracy 
value (75.25%) on Android Contacts data set and the LB technique (accuracy value: 
75.72%) on the Android MMS data set. The best accuracy measures on Gallery2 and 
Telephony data sets were given by NNge and LR technique with an accuracy value 
of 64.04% and 68.86%, respectively.

 2. Validation results using sensitivity measure
 Table 11.11  is a representation of sensitivity values of change prediction models 

developed by all the techniques of the study on six Android data sets. We can 

TABLE 11.9

Metrics Selected by CFS Method 

Data Set Name Metrics Selected

Bluetooth WMC, RFC, LOC, CAM
Contacts DIT, CBO, NPM, LOC
Calendar CBO, Ce
Gallery2 Ce, LCOM3, LOC, MOA, CAM
MMS LCOM3, LOC, DAM, MOA, CAM, AMC
Telephony WMC, LCOM3, LOC, MFA, CAM

TABLE 11.10

Validation Results Using Accuracy Performance Measure

Technique Bluetooth Contacts Calendar Gallery2 MMS Telephony

AB 66.15 73.23a 43.00 63.14 72.25 64.62
ADT 66.15 72.22a 44.00 61.93 69.94 63.67
BG 73.84 73.73 54.00 62.53 73.98a 63.20
BN 69.23 74.24a 66.00 61.93 72.25 63.20
DTab 56.92 74.74a 48.00 59.81 72.25 65.09
J48 56.92 70.20a 46.00 56.79 68.78 60.37
RIPPER 69.23 71.71a 41.00 57.70 56.06 57.07
LR 75.38a 72.72 54.00 62.53 74.56 68.86
LB 66.15 74.24 46.00 63.44 75.72 67.45
MLP 75.38a 75.25 55.00 59.81 73.98 66.03
NB 75.38a 70.20 53.00 60.42 72.83 66.98
NNge 72.30 71.71 77.00a 64.04 73.41 58.49
RF 64.61 72.72a 52.00 59.51 68.78 58.01
RBF 80.00a 70.20 36.00 61.63 72.83 66.98
REP 58.46 74.74a 36.00 59.81 67.05 64.15
SVM 83.07a 66.66 83.00 61.93 74.56 72.16
VP 56.92 45.45 82.00a 57.40 67.63 40.09
ZeroR 52.30 45.45 59.00a 53.47 43.35 48.11
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again see that the most number of best sensitivity values of different techniques 
are achieved over Android Contacts data set. The RBF technique (81.81%) and 
the VP technique (100%) achieved the best sensitivity values on Bluetooth and 
Contacts data sets, respectively. The REP technique and the RF technique gave 
best sensitivity values over the Calendar and Gallery2 data sets with sensitivity 
values of 70.58% and 64.84%, respectively. The LR technique and the AB technique 
both gave a sensitivity value of 76.59% on MMS data set. The best performing 
 sensitivity value on Telephony data set was given by the SVM technique (88.18%).

 3. Validation results using specificity measure
 The specificity values of all the change prediction models of all the six android 

data sets is depicted in Table 11.12. The Bluetooth and Contacts data set showed the 
most number of techniques with best performing change prediction models when 
evaluated using specificity measure. The SVM model gave the best specificity 
 values in all the data sets except Telephony data set. The VP technique gave the 
best specificity value on Telephony data set.

 4. Validation results using precision measure
 Table 11.13 shows the precision values of all the change prediction models devel-

oped on six Android data sets using 18 techniques. According to the table, the 
Telephony data set showed the best precision values on majority of techniques. 
The best precision value was exhibited by the RBF, SVM, NNge, VP, SVM, and 
LR techniques on Android Bluetooth, Contacts, Calendar, Gallery2, MMS, and 
Telephony data sets, respectively (precision measures—Bluetooth: 45%, Contacts: 
71.69%, Calendar: 33.33%, Gallery2: 71.77%, MMS: 63.63%, Telephony: 76.99%).

TABLE 11.11

Validation Results Using Sensitivity Performance Measure

Technique Bluetooth Contacts Calendar Gallery2 MMS Telephony

AB 63.63 75.28 41.17 61.71 76.59a 63.77
ADT 72.72 74.15a 47.05 60.15 70.21 64.56
BG 72.72 75.28a 58.82 60.15 74.46 62.20
BN 63.63 75.28a 11.76 60.93 72.34 64.56
DTab 63.63 75.28a 47.05 59.37 74.46 63.77
J48 63.63 69.66 52.94 60.15 74.46a 62.20
RIPPER 63.63 69.66a 52.94 60.15 51.06 54.33
LR 72.72 73.03 52.94 64.06 76.59a 68.50
LB 63.63 75.28a 47.05 61.71 74.46 67.71
MLP 72.72 76.40a 52.94 60.93 74.46 64.56
NB 72.72a 71.91 52.94 62.50 72.34 66.92
NNge 18.18 69.66a 35.29 50.00 42.55 65.35
RF 63.63 74.15a 52.94 64.84 65.95 58.26
RBF 81.81a 69.66 35.29 59.37 74.46 66.92
REP 27.27a 73.03a 70.58 54.68 61.70 65.35
SVM 0.00 42.69 0.00 10.15 14.89 88.18a

VP 36.36 100.00a 0.00 25.78 19.14 0.00
ZeroR 36.36 89.88a 17.64 28.90 57.44 48.81
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TABLE 11.12

Validation Results Using Specificity Performance Measure

Technique Bluetooth Contacts Calendar Gallery2 MMS Telephony

AB 66.66 71.55a 43.37 64.03 70.63 65.88
ADT 64.81 70.64 43.37 63.05 69.84a 62.35
BG 74.07a 72.47 53.01 64.03 73.80 64.70
BN 70.37 73.39 77.10a 62.56 72.22 61.17
DTab 55.55 74.31a 48.19 60.09 71.42 67.05
J48 55.55 70.64a 44.57 54.67 66.66 57.64
RIPPER 70.37 73.39a 38.55 56.15 57.93 61.17
LR 75.92a 72.47 54.21 61.57 73.80 69.41
LB 66.66 73.39 45.78 64.53 76.19a 67.05
MLP 75.92a 74.31 55.42 59.11 73.80 68.23
NB 75.92a 68.88 53.01 59.11 73.01 67.05
NNge 83.33 73.39 85.54a 72.90 84.92 48.23
RF 64.81 71.55a 51.80 56.15 69.84 57.64
RBF 79.62a 70.64 36.14 63.05 72.22 67.05
REP 64.81 76.14a 28.91 63.05 69.04 62.35
SVM 100.00a 86.23 100.00a 94.58 96.82 48.23
VP 61.11 0.91 98.79 77.33 85.71 100.00a

ZeroR 55.55 9.17 67.46 68.96 38.09 47.05

TABLE 11.13

Validation Results Using Precision Performance Measure

Technique Bluetooth Contacts Calendar Gallery2 MMS Telephony

AB 28.00 68.36 12.96 51.97 49.31 73.63a

ADT 29.62 67.34 14.54 50.65 46.47 71.92a

BG 36.36 69.07 20.40 51.33 51.47 72.47a

BN 30.43 69.79 9.52 50.64 49.27 71.30a

DTab 22.58 70.52 15.68 48.40 49.29 74.31a

J48 22.58 65.95 16.36 45.56 45.45 68.69a

RIPPER 30.34 68.13a 15.00 46.38 31.16 67.64
LR 38.09 68.42 19.41 51.25 52.17 76.99a

LB 28.00 69.79 15.09 52.31 53.84 75.43a 

MLP 38.09 70.83 19.56 48.44 51.47 75.22a 

NB 38.09 65.30 18.75 49.07 50.00 75.22a 

NNge 18.18 68.13a 33.33 53.78 51.28 65.35
RF 26.92 68.04a 18.36 48.25 44.92 67.27
RBF 45.00 65.95 10.16 50.33 50.00 75.22a

REP 13.63 71.42 16.90 48.27 42.64 72.17a

SVM ND 71.69 ND 54.16 63.63 71.79a

VP 16.00 45.17 0.00 71.77a 33.33 ND
ZeroR 14.28 44.69 10.00 37.00 25.71 57.94a 
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 5. Validation results using F-measure
 The F-measure values of all the change prediction models developed using 

18 techniques on six Android data sets are presented in Table 11.14. The data 
set with the most number of best performing technique results when evaluated 
using F-measure values is Android Contacts data set. The RBF technique and 
the MLP technique showed the best F-measure value of 58.06% and 73.51%, 
respectively, on Android Bluetooth and Android Contacts data set. The best 
performing technique on Calendar and Gallery2 data sets were NNge and LR 
techniques, respectively, with an F-measure value of 34.28% and 56.94%. The 
LB technique and the SVM technique showed an F-measure value of 62.50% 
and 79.15%, respectively, on MMS and Telephony data sets. These values were 
the best F-measure values for change prediction models on corresponding 
data sets.

 6. Validation results using AUC measure
 Table  11.15  displays the AUC values of all the change prediction models on 

each data set using all the 18 techniques of the study. The Android MMS data 
set showed the most number of best performing AUC results for various tech-
niques. However, the best performing technique on Gallery2  and Telephony 
data set was LB with AUC values of 0.685 and 0.744, respectively. The NB tech-
nique, the MLP technique, the NNge technique, and the LR technique showed 
best AUC results on Bluetooth, Contacts, Calendar, and MMS data sets, respec-
tively (AUC results—Bluetooth: 0.829, Contacts: 0809, Calendar: 0.604  and 
0.811).

TABLE 11.14

Validation Results Using F-Measure Performance Measure

Technique Bluetooth Contacts Calendar Gallery2 MMS Telephony

AB 38.88 71.65a 19.71 56.42 60.00 68.33
ADT 42.10 70.58a 22.22 55.00 55.93 68.04
BG 48.48 72.04a 30.30 55.39 60.86 66.94
BN 41.17 72.43a 10.52 55.31 58.62 67.76
DTab 33.33 72.82a 23.52 53.33 59.32 68.64
J48 33.33 67.75a 25.00 51.85 56.45 65.28
RIPPER 41.17 68.88a 23.37 52.38 38.70 60.26
LR 50.00 70.65 28.12 56.94 62.06 72.50a

LB 38.88 72.43a 22.85 56.63 62.50 71.36
MLP 50.00 73.51a 28.57 53.97 60.86 69.49
NB 50.00 68.44 27.69 54.98 59.13 70.83a

NNge 18.18 68.88a 34.28 51.82 46.51 65.35
RF 37.83 70.96a 27.27 55.33 53.44 62.44
RBF 58.06 67.75 15.78 54.48 59.82 70.83a 

REP 18.18 72.22a 27.27 51.28 50.43 68.59
SVM ND 53.52 ND 17.10 24.13 79.15a 

VP 22.22 62.23a ND 31.88 24.32 ND
ZeroR 20.51 59.70a 12.76 32.45 35.52 52.99
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 7. Performance of various techniques on different data sets
 Different techniques perform differently on various data sets. This study uses six 

Android data sets. Figures 11.2 through 11.7 depict graphs of the top six perform-
ing techniques on each data set. A technique is a good performer if the change 
prediction model developed by the model gives high accuracy values, high preci-
sion values, high F-measure values, and high AUC values. Since AUC is defined 
as a plot between specificity and sensitivity, we are not taking individual  values 

TABLE 11.15

Validation Results Using AUC Performance Measure

Technique Bluetooth Contacts Calendar Gallery2 MMS Telephony

AB 0.660 0.749 0.428 0.672 0.765a 0.719
ADT 0.649 0.76 0.486 0.676 0.768a 0.704
BG 0.764 0.803a 0.602 0.655 0.797a 0.709
BN 0.664 0.754 0.463 0.648 0.772a 0.673
DTab 0.637 0.729 0.483 0.630 0.789a 0.713
J48 0.628 0.721 0.522 0.618 0.740a 0.634
RIPPER 0.627 0.695a 0.504 0.614 0.601 0.623
LR 0.800 0.768 0.514 0.667 0.811a 0.733
LB 0.668 0.79 0.493 0.685 0.795a 0.744 
MLP 0.786 0.809a 0.535 0.652 0.805 0.719
NB 0.829a 0.769 0.577 0.644 0.797 0.732
NNge 0.507 0.715a 0.604 0.614 0.637 0.567
RF 0.680 0.768a 0.551 0.654 0.746 0.644
RBF 0.760 0.766 0.363 0.629 0.796a 0.716
REP 0.441 0.738a 0.452 0.618 0.696 0.667
SVM 0.500 0.644 0.500 0.523 0.558 0.682a 

VP 0.489 0.504 0.487 0.515 0.522a 0.500
ZeroR 0.438 0.490a 0.425 0.488 0.467 0.476
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FIGURE 11.2
Top six performing techniques on Android Bluetooth data set.
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of specificity and sensitivity for ranking the performance of the techniques. 
Figure 11.2 shows that RBF, NB, LR, MLP, BG, and BN are best performing tech-
niques in that order on Android Bluetooth data set. According to the figure, 
the RBF technique showed an accuracy of 80%, a precision value of 45%, and a 
F-measure of 58%. These  measures are represented by the bars under RBF tech-
nique in Figure 11.2. The line with marker show the AUC in percentage. The RBF 
technique showed an AUC value of 78%.

Figure 11.3 shows that MLP, LB, BG, REP, DTab, and BN techniques develop the top six 
performing models on Android Contacts data set. The AUC value of the model developed 
by the MLP technique was as high as 80.9%. The accuracy, precision, and F-measure values 
for the MLP model were 75%, 73%, and 70%, respectively.
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FIGURE 11.3
Top six performing techniques on Android Contacts data set.
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Top six performing techniques on Android Calendar data set.
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According to Figure  11.4, the techniques developing the best performing change 
 prediction models on the Android Calendar data set were NNge, BG, NB, MLP, LR, and RF. 
The highest accuracy value was shown by the NNge model as 77%, while all other models 
showed accuracy values between 52% and 55%. The AUC % of all the models ranged from 
51% to 60%.

Figure 11.5 depicts the top six techniques that gave the best change prediction models 
on the Android Gallery2 data set as LB, AB, LR, ADT, BG, and BN. However, as shown in 
the figure, there was not much difference in the values of different techniques. While the 
accuracy values ranged from 61% to 63%, the precision values ranged from 50% to 52%, the 
F-measure values ranged from 55% to 57%, and the AUC % values ranged from 62% to 69%. 
Similar results were shown by Android MMS data set, as shown in Figure 11.6. The top 
six best ranking techniques were LB, LR, MLP, BG, RBF, and NB. The AUC values for the 

0

10

20

30

40

50

60

70

80

LB AB LR ADT BG BN

Pe
rf

or
m

an
ce

 m
ea

su
re

s (
%

)

Techniques
Accuracy Precision F-measure AUC

FIGURE 11.5
Top six performing techniques on Android Gallery2 data set.
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MMS data set ranged from 72% to 76%, the precision values from 50% to 54%, the F-measure 
values from 59% to 61%, and the AUC % values from 79% to 81%.

Figure 11.7 shows the top six performing models on Android Telephony data set. The 
techniques used for developing these models were LR, SVM, LB, NB, RBF, and MLP. The 
change prediction model developed by the LR technique gave the best results with an 
accuracy value of 69%, a precision value of 77%, a F-measure value of 72%, and an AUC % 
of 73%.

11.6.5 Hypothesis Testing and Evaluation

This section states the results of Friedman statistical test using different performance mea-
sure. The Friedman statistic is based on chi square distribution with N  −  1  degrees of 
freedom. Here, N represents the number of techniques used in the study. Thus, this study 
has 17 degrees of freedom as 18 techniques are used in the study. A detailed description 
of Friedman test can be referred from Chapter 6. While testing the hypothesis, we state 
the Friedman statistic value and p-value. The hypothesis was checked at α =  0.05. The 
Friedman test is applied by evaluating a specific performance measure of all the  techniques 
on all the six data sets used in the study.

 1. Testing hypothesis for accuracy measure
 Table 11.16 represents the Friedman mean ranks of all the data sets using accuracy 

measure. According to the table, the best technique was SVM as it achieved the 
lowest rank of 4.75. The performance of the SVM technique was closely followed 
by the LR technique. The worst performing techniques were VP and ZeroR. The 
results of Friedman test was significant at α = 0.05 as the p-value obtained is <0.05. 
The Friedman statistic value was 44.683. A low p-value indicates that we reject the 
null hypothesis H0. Thus, change prediction models of different techniques when 
evaluated using accuracy measure show significant differences, which means that 
the performance of all the techniques is behaviorally different when evaluated 
using accuracy measure.
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Top six performing techniques on Android Telephony data set.
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 2. Testing hypothesis for sensitivity measure
 The Friedman mean ranks obtained using the sensitivity measure are depicted in 

Table 11.17. As shown in the table, the best performing technique was the LR tech-
nique with a mean rank of 4.42. The second rank was given to the MLP technique. 
The Friedman test results were significant at α = 0.05 as the p-value obtained was 
0.005. The Friedman statistic was computed as 35.68. These results show that we 
accept the alternate hypothesis. The models developed using sensitivity  measure 
show significantly different results.

 3. Testing hypothesis for specificity measure
 The Friedman mean ranks using the specificity measure are not shown, as specific-

ity is not a good measure for ranking different techniques. However, the p-value 
was computed as 0.005, which means that we reject the null hypothesis. Thus, the 
change prediction models developed using specificity measure are statistically dif-
ferent when evaluated using the specificity measure. The Friedman statistic value 
using specificity measure was computed as 36.01.

 4. Testing hypothesis for precision measure
 Table 11.18 shows the Friedman mean ranks of various techniques when evalu-

ated using the precision measure. According to the table, the top two performing 

TABLE 11.16

Friedman Mean Ranks Using Accuracy Measure

Technique Mean Rank Technique Mean Rank

SVM 4.75 RBF 9.08
LR 4.83 DTab 9.75
MLP 5.58 ADT 10.67
LB 5.67 REP 11.83
BG 6.67 RF 12.33
NNge 7.08 RIPPER 14.00
BN 7.58 J48 14.33
NB 8.17 VP 14.08
AB 9.00 ZeroR 15.58

TABLE 11.17

Friedman Mean Ranks Using Sensitivity Measure

Technique Mean Rank Technique Mean Rank

LR 4.42 DTab 9.25
MLP 5.58 BN 9.50
LB 6.50 J48 9.92
NB 6.58 REP 10.33
BG 6.75 RIPPER 11.92
AB 7.58 ZeroR 12.92
RBF 8.75 VP 14.00
ADT 8.83 NNge 14.42
RF 8.83 SVM 14.92
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techniques were LR and MLP. The worst performing techniques were VP and 
ZeroR. The p-value of 0.001 is much less than 0.05, so we reject the null hypoth-
esis. The Friedman statistic was computed as 41.41. Hence, the precision values 
of change prediction models developed using different techniques differ signifi-
cantly. Thus, the results of all the techniques are behaviorally different when eval-
uated using precision measure.

 5. Testing hypothesis for F-measure
 To evaluate null hypothesis, we performed Friedman test using F-measure  values. 

Table 11.19 presents the mean ranks obtained by all the techniques when we used 
F-measure for evaluating the various techniques. The LR technique and the MLP 
technique gave the best results with mean ranks of 3.50  and 4.42,  respectively. 
The least effective techniques in terms of F-measure values were ZeroR and VP 
techniques. The p-value for the Friedman test was <0.05,  indicating acceptance 
of alternate hypothesis. The Friedman statistic value was obtained as 53.661. The 
results show that change prediction models developed using all the techniques 
show significant differences when evaluated using F-measure values.

 6. Testing hypothesis for AUC measure
 Table 11.20 presents the mean ranks of all the techniques when the change predic-

tion models developed by them on all the six data sets are evaluated using the 

TABLE 11.18

Friedman Mean Ranks Using Precision Measure

Technique Mean Rank Technique Mean Rank

LR 4.33 DTab 9.08
MLP 4.92 BN 9.92
BG 5.42 ADT 10.50
LB 5.50 REP 10.67
NB 7.75 RF 12.17
NNge 8.42 RIPPER 12.58
SVM 8.42 J48 13.00
RBF 8.50 VP 14.08
AB 8.75 ZeroR 17.00

TABLE 11.19

Friedman Mean Ranks Using F-Measure

Technique Mean Rank Technique Mean Rank

LR 3.50 ADT 9.33
MLP 4.42 RF 9.58
LB 5.00 REP 10.67
BG 5.42 NNge 11.67
NB 6.92 J48 11.92
AB 7.75 RIPPER 12.00
RBF 8.17 SVM 15.08
DTab 8.17 ZeroR 16.00
BN 8.83 VP 16.58
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AUC measure. The LR and the MLP techniques again achieved the top two ranks, 
while the VP and the ZeroR technique gave the worst results. The Friedman sta-
tistic value was calculated as 69.115 with a p-value much less than 0.05. Thus, 
we accept the alternate hypothesis, which indicates statistically significant dif-
ferences in the performance of change prediction models developed by all the 
techniques.

11.6.6 Nemenyi Results

After performing Friedman tests using various performance measures, we need to ascertain 
the pair of techniques that differ significantly from each other in terms of performance of 
change prediction models using various measures. To find such pairs, we applied Nemenyi 
post hoc test on each pair of techniques using five performance measures  (accuracy, 
 sensitivity, precision, F-measure, and AUC). We do not include specificity as a performance 
measure for evaluating the pairwise performance of different techniques. The hypothesis 
for Nemenyi test is as follows:

• Null hypothesis: The performance of change prediction models developed using 
a specific pair of techniques (technique A and technique B) do not differ signifi-
cantly when analyzed over multiple performance measures (accuracy, sensitivity, 
precision, F-measure, and AUC).

• Alternate hypothesis: The performance of change prediction models developed 
using a specific pair of techniques (technique A and technique B) differs signifi-
cantly when analyzed over multiple performance measures (accuracy, sensitivity, 
precision, F-measure, and AUC).

The critical distance computed for Nemenyi test is as follows (Demšar 2006):

 CD q
k k

n
= +

α
( )1
6

Here, k corresponds to the number of techniques, which is 18 in this study, and n cor-
responds to the number of data sets, which is six. The critical values (qα) are studentized 

TABLE 11.20

Friedman Mean Ranks Using AUC Measure

Technique Mean Rank Technique Mean Rank

LR 3.58 BN 9.67
MLP 3.75 DTab 10.00
NB 3.92 J48 11.58
BG 4.08 NNge 12.25
LB 4.67 RIPPER 13.42
RF 7.58 REP 13.42
ADT 8.33 SVM 13.67
RBF 8.67 VP 15.83
AB 8.75 ZeroR 17.83
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range statistic divided by √2. We evaluate the significance at α = 0.05. The computed 
critical distance value is 10.75. The computed critical distance value is compared with 
the difference between average ranks allocated to two techniques. If the difference is at 
least equal to or greater than the critical distance value, the two techniques differ sig-
nificantly at the chosen significance level α = 0.05. Table 11A.1 in Appendix shows the 
critical distances after application of Nemenyi test on all the 153 possible pairs of tech-
niques using the five specified performance measures. All pairs with significant criti-
cal difference, that is, the difference between individual ranks greater than the critical 
distance are bold formatted. There are two technique pairs (LR–ZeroR and SVM–ZeroR) 
that are significantly different from each other when accuracy is used as a performance 
measure. However, there is no pair with statistically significant difference when sen-
sitivity is used as a performance measure. When precision, F-measure, and AUC are 
used as performance measures, four, eight, and ten technique pairs, respectively, are 
found to have statistically significant difference. On analyzing the results, it can be seen 
that ZeroR and VP techniques are different from a number of other techniques when 
using different performance measures. Only LR–ZeroR technique pair is statistically 
significant using four performance measures, namely, accuracy, precision, F-measure, 
and AUC.

11.7 Discussion and Interpretation of Results

This section analyzes the results of the study with respect to each research question.

RQ1: Are OO metrics related to change?
 The study analyzes 18 techniques for their capability to develop efficient change 

prediction models. The developed models in the study use 18 OO metrics, which 
represent various OO characteristics like abstraction, coupling, inheritance, and 
so on. These metrics have been effective in developing change prediction models 
that have been evaluated using various performance measures. The metrics are 
used to ascertain the dependent variable change proneness (ALTER variable) 
and have yielded good results with accuracy up to 83%, sensitivity and speci-
ficity up to 100%, precision value up to 77%, F-measure value up to 73%, and 
AUC value up to 0.8. This indicates a relationship between  various OO metrics 
and change proneness. Moreover, Table  11.9  shows highly   correlated metrics 
with change on each data set using the CFS technique.  Thus, we can  sum-
marize that OO metrics are related with change in a software data set. These 
 metrics can be used to develop quality benchmarks that can be used by soft-
ware practitioners for developing good quality products.

RQ2: What is the capability of various techniques on data sets with varying 
characteristics?

 The capability of different techniques varies on different data sets, while devel-
oping change prediction models. Tables  11.10 through 11.15  show that vari-
ous techniques work differently on different data sets as the best performance 
using a specific measure is given by a different technique for each data set. 
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For example, the RBF technique gave the best F-measure value for change pre-
diction model on Android Bluetooth data set, and the MLP technique gave the 
best F-measure value for change prediction model on Android Contacts data set. 
However, the NNge technique, the LR technique, the MLP technique, and the 
SVM technique gave the best F-measure values for Android Calendar, Gallery2, 
MMS, and Telephony data sets, respectively. Moreover, Figures  11.2 through 
11.7 clearly show that the top-performing techniques on each data set differ if 
we take into account their cumulative performance. An analysis of Figures 11.2 
through 11.7 indicate that LR, MLP, and BG are high-performing techniques as 
they rank among top six techniques in five of the six data sets used in the study. 
Other good performing techniques include NB and LB, which rank among top 
six technique in four out of the six data sets of the study. Certain techniques 
(SVM, ADT, AB, RF, DTab, REP, NNge) gave good results in only one of the 
data sets. These techniques may be influenced by certain characteristics of a 
 particular data set. However, we need to perform more such studies to actu-
ally evaluate which type of techniques get influenced by the characteristics of a 
data set.

RQ3: What is the comparative performance of different techniques when we take 
into account different performance measures?

 To answer this question, we formulated research hypotheses given in Section 11.4.4.1. 
The hypothesis testing was done with the help of Friedman test. The results of the 
study indicate that we reject the null hypothesis for all the selected performance 
measures. Thus, the results of change prediction models developed using different 
techniques were significantly different from each other when evaluated using accu-
racy, sensitivity, specificity, precision, F-measure, and AUC performance measures. 
Tables 11.16 through 11.20 show Friedman mean ranks of various techniques using 
different performance measures. As can be seen, the LR technique gave the best 
results using all the performance measure except accuracy. Thus, we conclude that 
the LR technique is an effective technique for developing high-performing change 
prediction models. Also, the MLP technique is a good ML technique for developing 
models that predict change-prone classes as it achieves good Friedman ranks in all 
performance measures.

 The results show that the best performing ML technique for the development of 
change prediction models is MLP. As can be seen from Tables 11.16 through 11.20, 
the MLP technique received the best ranks after LR technique except in the case of 
accuracy measure. The results show that although the accuracy measure has pre-
dicted all outcome classes for model predicted using SVM technique as not change 
prone (no predictive ability), but the Friedman test ranks the SVM technique as the 
best in terms of measuring accuracy. This is because of the presence of imbalance 
values of the outcome variable in the data sets. In imbalanced data sets, there are 
less change-prone classes as compared to non-change-prone classes. For example, 
for Bluetooth and Calendar data sets the change-prone classes are only 19%, and 
for MMS data set, the change-prone classes are 30%. The SVM technique predicted 
all classes as not change prone, hence, the specificity and accuracy values were 
very high specifically for Bluetooth and Calendar data sets (more than 80%) and 
thus contributed toward high ranking of SVM in terms of accuracy. The accu-
racy measure gives false results when the data is imbalanced and the technique 
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classifies the classes into one single outcome category. Hence, this study does not 
base the results interpretation in light of accuracy measure.

RQ4: Which pairs of techniques are statistically significantly different  from each 
other for developing change prediction models?

 To answer this research question, we performed Nemenyi post hoc test among 
all possible pairs of techniques in the study. The test was performed using 
accuracy, sensitivity, precision, F-measure, and AUC values among 153  pairs 
of techniques. Figure  11.8  depicts the number of pairs of techniques that 
showed significantly different results using different performance measures. 
According  to the figure, two  pairs of techniques showed significant results 
using  accuracy  measure, but no pair of technique showed significant results 
using the sensitivity measure. On evaluation of precision, F-measure, and AUC 
measures, four, eight,  and ten  pairs of techniques, respectively, were signifi-
cantly different from each other. Only one pair of technique showed significant 
Nemenyi results on four performance measures, namely, accuracy, precision, 
F-measure, and AUC, which was LR–ZeroR. On analyzing the pairs with sig-
nificant differences, it can be seen that ZeroR and VP techniques are statistically 
significantly different from a number of other techniques like LR, BG, LB, MLP, 
and NB.

RQ5: What is the comparative performance of ML techniques with the statistical 
technique LR?

 The LR technique has been ranked higher in most of the performance measures 
followed by MLP. The performance of model predicted using the ML techniques 
was comparable to the model predicted using the LR technique.

RQ6: Which ML technique gives the best performance for developing change predic-
tion models?
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Summary of Nemenyi test.
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 The MLP technique has showed high performance capability in predicting 
change-prone classes. The MLP technique has the ability to model complex rela-
tionships and works well with reduced set of input variables. We applied CFS 
before using the MLP technique.

11.8 Validity Evaluation

This section presents the threats to validity.

11.8.1 Conclusion Validity

The statistical tests have been carefully selected and we have applied post hoc analysis 
using Nemenyi test to further validate the results. The significance values have also been 
carefully selected, thus reducing the conclusion validity threats. The results have been 
validated using tenfold cross-validation method, increasing the confidence on results. 
Moreover, the study analyzes change prediction models using six performance measures 
(Afzal and Torkar 2008). Thus, strengthening the conclusions of the study.

11.8.2 Internal Validity

The internal validity explores the “causal effect” of the independent variables on the 
dependent variable (Zhou et al. 2009). The causal effect can be validated by performing 
controlled experiments that keep a particular characteristic like coupling varying and the 
other characteristics like cohesion, inheritance, and so on constant (Briand et al. 2001). The 
focus of the study was not to study the causal effect of the metrics. Thus, the threat to inter-
nal validity exists in the study.

11.8.3 Construct Validity

Construct validity ensures correct representation of the various concepts depicted by the 
dependent and independent variables of the study (Zhou et  al. 2009). Few researchers 
(Briand et al. 1998, 1999a, 2000) have already investigated OO metrics (independent vari-
ables) to ascertain their accuracy. Thus, this threat is reduced. The dependent variable, that 
is, change proneness is counted by analyzing the number of lines inserted or deleted in 
a class. The DCRS tool helps in efficient calculation of change by analyzing change logs. 
Thus, the dependent variable is measured accurately.

11.8.4 External Validity

The threat to external validity represents the generalizability of the results of the study 
(Malhotra and Khanna 2013). This threat explores whether the results of the study 
are universally applicable or not. Threat to external validity can only be minimized 
by  performing replicated and repeated studies on a number of data sets and then by 
comparing the results. The threat to external validity is minimized in this study by ana-
lyzing six open source data sets, which are related to Android applications. However, 
all the data sets were developed in Java language. In future, researchers may perform 
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similar studies to explore different programming languages and other project character-
istics to yield generalizable conclusions.

11.9 Conclusions and Future Work

This study analyzes the performance of 18 different techniques (both statistical and ML) 
to develop effective change prediction models on the widely used Android data set. The 
metrics and change information from Android data set was collected using DCRS tool. 
The performance of various techniques was assessed using six different performance 
measures, namely, accuracy, sensitivity, specificity, precision, F-measure, and AUC. The 
aim of the study is to compare the capability of various techniques to rank them according 
to their effectiveness based on different performance measures. The study also explores 
pairs of techniques that are statistically different from each other using Nemenyi post hoc 
test. The results of the study can be summarized as below:

• The study uses 18 OO metrics to ascertain change proneness of classes in a soft-
ware. The change prediction models developed using these metrics were effective 
and yielded good results. Thus, various OO metrics are related to change in a class. 
The results of the study after application of the CFS technique indicate that LOC 
and CAM metrics are good indicators for change followed by WMC, MOA, CBO, 
and Ce metrics.

• Various techniques perform differently on different data sets. The results of the 
study indicate different top-performing techniques on each data set. Three tech-
niques that gave good results on almost all the data sets were LR, MLP, and BG. 
Apart from these techniques, NB and LB techniques also performed well on a 
majority of data sets. The top-performing techniques were evaluated using the 
cumulative values of accuracy, precision, F-measure, and AUC performance 
measures.

• The performance of different techniques evaluated in the study varies when we 
assess them using different performance measures. The results of the study show that 
the performance of change prediction models was significantly different from each 
other when evaluated using accuracy, sensitivity, specificity, precision, F-measure, 
and AUC values. Also, the LR technique was ranked as a top technique when change 
prediction models were evaluated using sensitivity, precision, F-measure, and AUC 
values. Another well-performing technique was MLP technique.

• The study compared the performance of all the techniques pairwise using Nemenyi 
test. The pairwise comparison was performed using accuracy, sensitivity, preci-
sion, F-measure, and AUC values among 153 pairs of techniques. There was only 
one technique pair (LR–ZeroR) that showed significant difference on four perfor-
mance measures, namely, accuracy, precision, F-measure, and AUC.

More studies in the future should be conducted to evaluate different statistical and ML 
algorithms using other performance measures such as H-measure, G-measure, and so on. 
Also, future studies can incorporate evolutionary computation techniques such as artifi-
cial immune systems and genetic algorithms for developing change prediction models.
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Appendix

TABLE 11A.1

Nemenyi Test Results

Pair No. Algorithm Pair Accuracy Sensitivity Precision F-Measure AUC

1. AB–ADT 1.67 1.25 1.75 1.58 0.42
2. AB–BG 2.33 0.83 3.33 2.33 4.67
3. AB–BN 1.42 1.92 1.17 1.08 0.92
4. AB–DTab 0.75 1.67 0.33 0.42 1.25
5. AB–J48 5.33 2.34 4.25 4.17 2.83
6. AB–RIPER 5.00 4.34 3.83 4.25 4.67
7. AB–LR 4.17 3.16 4.42 4.25 5.17
8. AB–LB 3.33 1.08 3.25 2.75 4.08
9. AB–MLP 3.42 2.00 3.83 3.33 5.00
10. AB–NB 0.83 1.00 1.00 0.83 4.83
11. AB–Nnge 1.92 6.84 0.33 3.92 3.50
12. AB–RF 3.33 1.25 3.42 1.83 1.17
13. AB–RBF 0.08 1.17 0.25 0.42 0.08
14. AB–REP 2.83 2.75 1.92 2.92 4.67
15. AB–SVM 4.25 7.34 0.33 7.33 4.92
16. AB–VP 5.08 6.42 5.33 8.83 7.08
17. AB–ZeroR 6.58 5.34 8.25 8.25 9.08
18. ADT–BG 4.00 2.08 5.08 3.91 4.25
19. ADT–BN 3.09 0.67 0.58 0.50 1.34
20. ADT–DTab 0.92 0.42 1.42 1.16 1.67
21. ADT–J48 3.66 1.09 2.50 2.59 3.25
22. ADT–RIPER 3.33 3.09 2.08 2.67 5.09
23. ADT–LR 5.84 4.41 6.17 5.83 4.75
24. ADT–LB 5.00 2.33 5.00 4.33 3.66
25. ADT–MLP 5.09 3.25 5.58 4.91 4.58
26. ADT–NB 2.50 2.25 2.75 2.41 4.41
27. ADT–Nnge 3.59 5.59 2.08 2.34 3.92
28. ADT–RF 1.66 0.00 1.67 0.25 0.75
29. ADT–RBF 1.59 0.08 2.00 1.16 0.34
30. ADT–REP 1.16 1.50 0.17 1.34 5.09
31. ADT–SVM 5.92 6.09 2.08 5.75 5.34
32. ADT–VP 3.41 5.17 3.58 7.25 7.50
33. ADT–ZeroR 4.91 4.09 6.50 6.67 9.50
34. BG–BN 0.91 2.75 4.50 3.41 5.59
35. BG–DTab 3.08 2.5 3.66 2.75 5.92
36. BG–J48 7.66 3.17 7.58 6.50 7.50
37. BG–RIPER 7.33 5.17 7.16 6.58 9.34
38. BG–LR 1.84 2.33 1.09 1.92 0.50
39. BG–LB 1.00 0.25 0.08 0.42 0.59
40. BG–MLP 1.09 1.17 0.50 1.00 0.33
41. BG–NB 1.50 0.17 2.33 1.50 0.16

(Continued)
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(Continued)

TABLE 11A.1 (Continued)

Nemenyi Test Results

Pair No. Algorithm Pair Accuracy Sensitivity Precision F-Measure AUC

42. BG–Nnge 0.41 7.67 3.00 6.25 8.17
43. BG–RF 5.66 2.08 6.75 4.16 3.50
44. BG–RBF 2.41 2.00 3.08 2.75 4.59
45. BG–REP 5.16 3.58 5.25 5.25 9.34
46. BG–SVM 1.92 8.17 3.00 9.66 9.59
47. BG–VP 7.41 7.25 8.66 11.16 11.75
48. BG–ZeroR 8.91 6.17 11.58 10.58 13.75
49. BN–DTab 2.17 0.25 0.84 0.66 0.33
50. BN–J48 6.75 0.42 3.08 3.09 1.91
51. BN–RIPER 6.42 2.42 2.66 3.17 3.75
52. BN–LR 2.75 5.08 5.59 5.33 6.09
53. BN–LB 1.91 3.00 4.42 3.83 5.00
54. BN–MLP 2.00 3.92 5.00 4.41 5.92
55. BN–NB 0.59 2.92 2.17 1.91 5.75
56. BN–Nnge 0.50 4.92 1.50 2.84 2.58
57. BN–RF 4.75 0.67 2.25 0.75 2.09
58. BN–RBF 1.50 0.75 1.42 0.66 1.00
59. BN–REP 4.25 0.83 0.75 1.84 3.75
60. BN–SVM 2.83 5.42 1.50 6.25 4.00
61. BN–VP 6.50 4.50 4.16 7.75 6.16
62. BN–ZeroR 8.00 3.42 7.08 7.17 8.16
63. DTab–J48 4.58 0.67 3.92 3.75 1.58
64. DTab–RIPER 4.25 2.67 3.50 3.83 3.42
65. DTab–LR 4.92 4.83 4.75 4.67 6.42
66. DTab–LB 4.08 2.75 3.58 3.17 5.33
67. DTab–MLP 4.17 3.67 4.16 3.75 6.25
68. DTab–NB 1.58 2.67 1.33 1.25 6.08
69. DTab–Nnge 2.67 5.17 0.66 3.50 2.25
70. DTab–RF 2.58 0.42 3.09 1.41 2.42
71. DTab–RBF 0.67 0.50 0.58 0.00 1.33
72. DTab–REP 2.08 1.08 1.59 2.50 3.42
73. DTab–SVM 5.00 5.67 0.66 6.91 3.67
74. DTab–VP 4.33 4.75 5.00 8.41 5.83
75. DTab–ZeroR 5.83 3.67 7.92 7.83 7.83
76. J48–RIPER 0.33 2.00 0.42 0.08 1.84
77. J48–LR 9.50 5.50 8.67 8.42 8.00
78. J48–LB 8.66 3.42 7.50 6.92 6.91
79. J48–MLP 8.75 4.34 8.08 7.50 7.83
80. J48–NB 6.16 3.34 5.25 5.00 7.66
81. J48–Nnge 7.25 4.50 4.58 0.25 0.67
82. J48–RF 2.00 1.09 0.83 2.34 4.00
83. J48–RBF 5.25 1.17 4.50 3.75 2.91
84. J48–REP 2.50 0.41 2.33 1.25 1.84
85. J48–SVM 9.58 5.00 4.58 3.16 2.09
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TABLE 11A.1 (Continued)

Nemenyi Test Results

Pair No. Algorithm Pair Accuracy Sensitivity Precision F-Measure AUC

86. J48–VP 0.25 4.08 1.08 4.66 4.25
87. J48–ZeroR 1.25 3.00 4.00 4.08 6.25
88. RIPPER–LR 9.17 7.50 8.25 8.50 9.84
89. RIPPER–LB 8.33 5.42 7.08 7.00 8.75
90. RIPPER–MLP 8.42 6.34 7.66 7.58 9.67
91. RIPPER–NB 5.83 5.34 4.83 5.08 9.50
92. RIPPER–Nnge 6.92 2.50 4.16 0.33 1.17
93. RIPPER–RF 1.67 3.09 0.41 2.42 5.84
94. RIPPER–RBF 4.92 3.17 4.08 3.83 4.75
95. RIPPER–REP 2.17 1.59 1.91 1.33 0.00
96. RIPPER–SVM 9.25 3.00 4.16 3.08 0.25
97. RIPPER–VP 0.08 2.08 1.50 4.58 2.41
98. RIPPER–ZeroR 1.58 1.00 4.42 4.00 4.41
99. LR–LB 0.84 2.08 1.17 1.50 1.09
100. LR–MLP 0.75 1.16 0.59 0.92 0.17
101. LR–NB 3.34 2.16 3.42 3.42 0.34
102. LR–Nnge 2.25 10.00 4.09 8.17 8.67
103. LR–RF 7.50 4.41 7.84 6.08 4.00
104. LR–RBF 4.25 4.33 4.17 4.67 5.09
105. LR–REP 7.00 5.91 6.34 7.17 9.84
106. LR–SVM 0.08 10.5 4.09 11.58 10.09
107. LR–VP 9.25 9.58 9.75 13.08 12.25
108. LR–ZeroR 10.75 8.50 12.67 12.50 14.25
109. LB–MLP 0.09 0.92 0.58 0.58 0.92
110. LB–NB 2.50 0.08 2.25 1.92 0.75
111. LB–Nnge 1.41 7.92 2.92 6.67 7.58
112. LB–RF 6.66 2.33 6.67 4.58 2.91
113. LB–RBF 3.41 2.25 3.00 3.17 4.00
114. LB–REP 6.16 3.83 5.17 5.67 8.75
115. LB–SVM 0.92 8.42 2.92 10.08 9.00
116. LB–VP 8.41 7.50 8.58 11.58 11.16
117. LB–ZeroR 9.91 6.42 11.50 11.00 13.16
118. MLP–NB 2.59 1.00 2.83 2.50 0.17
119. MLP–Nnge 1.50 8.84 3.50 7.25 8.50
120. MLP–RF 6.75 3.25 7.25 5.16 3.83
121. MLP–RBF 3.50 3.17 3.58 3.75 4.92
122. MLP–REP 6.25 4.75 5.75 6.25 9.67
123. MLP–SVM 0.83 9.34 3.50 10.66 9.92
124. MLP–VP 8.50 8.42 9.16 12.16 12.08
125. MLP–ZeroR 10.00 7.34 12.08 11.58 14.08
126. NB–Nnge 1.09 7.84 0.67 4.75 8.33
127. NB–RF 4.16 2.25 4.42 2.66 3.66
128. NB–RBF 0.91 2.17 0.75 1.25 4.75
129. NB–REP 3.66 3.75 2.92 3.75 9.50

(Continued)
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TABLE 11A.1 (Continued)

Nemenyi Test Results

Pair No. Algorithm Pair Accuracy Sensitivity Precision F-Measure AUC

130. NB–SVM 3.42 8.34 0.67 8.16 9.75
131. NB–VP 5.91 7.42 6.33 9.66 11.91
132. NB–ZeroR 7.41 6.34 9.25 9.08 13.91
133. NNge–RF 5.25 5.59 3.75 2.09 4.67
134. NNge–RBF 2.00 5.67 0.08 3.50 3.58
135. NNge–REP 4.75 4.09 2.25 1.00 1.17
136. NNge–SVM 2.33 0.50 0.00 3.41 1.42
137. NNge–VP 7.00 0.42 5.66 4.91 3.58
138. NNge–ZeroR 8.50 1.50 8.58 4.33 5.58
139. RF–RBF 3.25 0.08 3.67 1.41 1.09
140. RF–REP 0.50 1.50 1.50 1.09 5.84
141. RF–SVM 7.58 6.09 3.75 5.50 6.09
142. RF–VP 1.75 5.17 1.91 7.00 8.25
143. RF–ZeroR 3.25 4.09 4.83 6.42 10.25
144. RBF–REP 2.75 1.58 2.17 2.50 4.75
145. RBF–SVM 4.33 6.17 0.08 6.91 5.00
146. RBF–VP 5.00 5.25 5.58 8.41 7.16
147. RBF–ZeroR 6.50 4.17 8.50 7.83 9.16
148. REP–SVM 7.08 4.59 2.25 4.41 0.25
149. REP–VP 2.25 3.67 3.41 5.91 2.41
150. REP–ZeroR 3.75 2.59 6.33 5.33 4.41
151. SVM–VP 9.33 0.92 5.66 1.50 2.16
152. SVM–ZeroR 10.83 2.00 8.58 0.92 4.16
153. VP–ZeroR 1.50 1.08 2.92 0.58 2.00
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12
Tools for Analyzing Data

There are many statistical packages available to implement the concepts given in  previous 
chapters. These statistical packages or tools can assist researchers and practitioners to 
 perform operations such as summarizing data, preselecting attributes, hypothesis testing, 
model creation, and validation. There are various statistical tools available in the market 
such as SAS, R, Matrix Laboratory (MATLAB®*), SPSS, Stata, and Waikato Environment 
for Knowledge Analysis (WEKA). An overview and comparison of these tools will help 
in making decision about selection of an appropriate tool in assisting the research  process. 
In this chapter, we provide an overview of five tools, namely, WEKA, Knowledge Extraction 
based on Evolutionary Learning (KEEL), SPSS, MATLAB, and R, and summarize their 
characteristics and available statistical procedures.

12.1 WEKA

WEKA tool was developed at the University of Waikato in New Zealand (http://www 
.cs.waikato.ac.nz/ml/weka/) and is distributed under GNU public license. The tool was 
developed in Java  language and runs on a number of platforms, be it Linux, Macintosh, 
or Windows. It provides an easy-to-use interface for using a number of different learning 
techniques. Moreover, it also  provides various methods for preprocessing or postprocess-
ing data. Research has seen wide application of WEKA tool for analyzing the results of 
different techniques on  different data sets. WEKA can be used for multiple purposes, be it 
analyzing the results of a classification method on data or developing models to obtain pre-
dictions on new data or comparing the performances of several classification techniques.

12.2 KEEL

KEEL is a software tool which was developed using the Java language. The tool is open 
source in nature and aids the user for easy assessment of a number of evolutionary 
and other soft computing techniques. The tool provides a framework for designing a 

* MATLAB® is a registered trademark of The MathWorks, Inc. For product information, please contact:

 The MathWorks, Inc.
 3 Apple Hill Drive
 Natick, MA 01760-2098 USA
 Tel: +1 508 647 7000
 Fax: +1 508 647 7001
 E-mail: info@mathworks.com
 Web: www.mathworks.com
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number of experiments for various data mining tasks such as classification, regression, 
and pattern mining.

KEEL software tool consists of an extensive number of features that can help  researchers 
and students to perform various data mining tasks in an easy and  effective manner. 
The tool provides a convenient and user-friendly interface to conduct and design  various 
experiments. It also incorporates a library of in-built data sets. KEEL specializes in the use 
of evolutionary algorithms that can be effectively used for model prediction,  preprocessing 
tasks, and certain postprocessing tasks. The tool also incorporates a number of data pre-
processing algorithms for various tasks like noisy data filtering, selection of training sets, 
discretization, and data transformation among others. It also enables effective analysis and 
comparisons of results with the help of statistical library. The experiments designed using 
KEEL can be run both in an offline mode on other or same machine at a later time or an 
online mode. The tool is designed for two specific types of users: a researcher or a student. 
It facilitates the researcher by easy automation of experiments and effective result analysis 
using statistical library. It is a useful learning tool for students as a student can have real-
time view of an technique’s evolving process with visual feedback (Alcala et al. 2011).

12.3 SPSS

SPSS statistics is a software package that is used for statistical analysis. It was acquired 
by IBM in 2009 and the current versions (2014) are officially named IBM SPSS Statistics. 
The software name stands for Statistical Package for Social Sciences, which reflects the 
original market.

SPSS is one of the most powerful tools that can be used for carrying out almost any 
type of data analysis. This data analysis could be either in the field of social sciences, 
natural sciences, or in the world of business and management. This tool is widely used 
for research and interpretation of the data. It performs four major functions: creates and 
maintains a data set, analyzes data, produces results after analysis, and graphs them. This 
tutorial focuses on the main functions and utilities that can be used by a researcher for 
performing various empirical studies.

12.4 MATLAB®

MATLAB is a high-performance interactive software system that integrates computation 
and visualization for technical computations and graphics. MATLAB was primarily devel-
oped by Cleve Moler in the 1970s. The tool is derived from two FORTRON’s subroutine, 
namely, EISPACK and LINPACK. EISPACK is an eigenvalue system and LINPACK is a 
linear system. The package was rewritten in 1980s in C. This rewritten package had larger 
functionality and a number of plotting routines. To commercialize MATLAB and further 
develop it, the MathWorks Inc. was created in 1984.
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MATLAB is specially designed for matrix computations to solve linear equations,  factor 
matrices, and compute eigenvalues and eigenvectors. In addition, it has sophisticated 
graphical features that are extendable. MATLAB also provides a good programming 
 language environment as it offers many facilities like editing and debugging tools, data 
structures, and supports object-oriented paradigms.

MATLAB provides a number of built-in routines that aid extensive computations. 
Also, the results are immediately visualized with the help of easy graphical commands. 
A MATLAB toolbox consists of a collection of specific applications. There are a number 
of toolboxes for various tasks such as simulation, symbolic computation, signal process-
ing, and many other related tasks in the field of science and engineering. These factors 
make MATLAB an excellent tool and it is used at most universities and industries world-
wide for teaching and research. However, MATLAB has some weaknesses as it is designed 
for scientific computing, commands are specific for its usage and is not suitable for other 
applications like a general purpose programming language C or C++. It is an interpreted 
language and is therefore slower than compiled language. Mathematica, Scilab, and GNU 
Octave are some of the competitors of MATLAB.

12.5 R

R was developed by  Ross Ihaka  and  Robert Gentleman  at the  University of Auckland, 
New Zealand. It is freely available under the GNU General Public License and can be used 
with various operating systems.

R is a well-developed, simple, and effective programming language extensively used by 
the statisticians for statistical computing and data analysis. In addition to this, R includes 
facilities for data calculation and manipulation, various operators for working with arrays 
(or matrices), tools and graphical facilities for data analysis, input and output facilities, 
and so on.

12.6 Comparison of Tools

Table 12.1 summarizes the comparison of WEKA, KEEL, SPSS, MATLAB, and R. Further the 
table lists the operating system that supports the tool, tool licenses, its interfaces, whether 
the tool is menu driven or syntax driven, whether the tool is open source in nature, the 
ease of graphical user interface, its help availability, link of the tool, and its specialty.

Table  12.2  summarizes the comparison of different tools on the basis of number of 
parameters such as correlation test capability, normality test capability, whether the tool 
analyzes and provides various descriptive statistics, feature selection techniques used by 
the tool, various regression, machine learning, and evolutionary algorithms supported by 
the tool, various cross-validation methods, and the capability to generate receiver operat-
ing characteristic (ROC) curves.
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TABLE 12.2

Parameter Comparison

Parameters WEKA MATLAB KEEL SPSS R

Correlation Y Y N Y Y

Normality tests N Y N Y Y

Descriptive Statistics
Minimum Y Y Y Y Y
Maximum Y Y Y Y Y
Variance N Y Y Y Y
Standard deviation Y Y N Y Y
Skewness N Y N Y Y
Kurtosis N Y N Y Y
Mean Y Y Y Y Y
Median N Y N Y Y
Mode N Y N Y Y
Quartiles N Y N Y Y

Feature Selection  
Correlation-based feature selection Y N N N Y
Principal component analysis Y Y Y Y Y

Statistical and post hoc Tests  
t-Test Y Y Y Y Y
Chi-squared test N Y N Y Y
f-Test N Y Y N Y
ANOVA N Y N Y Y
Wilcoxon signed N Y Y Y Y
Mann–Whitney N Y Y Y Y
Friedman N Y Y Y Y
Kruskal–Wallis N Y N Y Y
Nemenyi N N Y N Y
Bonferroni–Dunn N Y Y Y Y

Regression        
 

Binary logistic regression Y Y Y Y Y
Linear regression Y Y Y Y Y
Ordinal regression N Y N Y Y
Multinominal logistic regression N Y N Y Y
Linear discriminant analysis N Y Y Y Y

Machine Learning Techniques  
Classification and regression trees Y Y Y Y Y
NNge Y N N N N
Boosting Y Y Y N Y
Radial basis function Y Y Y Y Y
Multilayer perceptron Y Y Y Y Y
Support vector machine Y Y Y N Y
Naïve Bayes Y N Y N Y
Bayesian networks Y Y N Y N

(Continued)
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Further Readings

The basic use of WEKA tool is described in:
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, 

“The WEKA data  mining software: An update,” ACM SIGKDD Explorations 
Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

I. H. Witten, and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 
Morgan Kaufmann, Boston, MA, 2005. 

TABLE 12.2 (Continued)

Parameter Comparison

Parameters WEKA MATLAB KEEL SPSS R

J48 Y N N N Y
Alternating decision trees Y N N N Y
Voted perceptron  Y N N N N
Fuzzy logic Y Y Y N Y
Convolutional neural network N Y N N Y
Probabilistic neural network N Y N N Y
Random forest Y N N N Y
C4.5 Y N Y N Y
Chi-squared automatic interaction 
detection

N N N Y Y

K-Nearest neighbor Y Y Y Y Y
Bagging Y Y Y N Y

Evolutionary Algorithms  
Genetic algorithm Y Y Y N Y
Genetic programming Y Y N N Y
Ant colony optimization N Y Y N Y
Ant miner N N Y N N
Multi-objective particle swarm 
optimization

Y Y N N Y

Artificial immune system Y N N N N
Particle swarm optimization linear 
discriminant analysis

N N Y N N

Constricted particle swarm 
optimization

N N Y N N

Hierarchical decision rules N N Y N N
Decision trees with genetic 
algorithms 

N N Y N N

Neural net evolutionary 
programming 

N N Y N N

Genetic algorithms with neural 
networks 

N N Y N N

Genetic fuzzy system logitboost N N Y N N
Cross-validation Y Y Y Y Y
ROC curve Y Y N Y Y
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The illustrations on KEEL tool are presented in:

J. Alcalá, A. Fernández, J. Luengo, J. Derrac, S. García, L. Sánchez, and F. Herrera, 
 “Keel  data-mining software tool: Data set repository, integration of algorithms 
and experimental analysis  framework,”  Journal of Multiple-Valued Logic and Soft 
Computing, vol. 17, no. 11, pp. 255–287, 2010.

J. Alcala-Fdez, L. Sanchez, S. Garcia, M. J. D. Jesus, S. Ventura, J. M. Garrell, J. Otero 
et al., “KEEL: A software tool to assess  evolutionary algorithms for data mining 
problems,” Soft Computing, vol. 13, no. 3, pp. 307–318, 2009.

J. Alcalá-Fdez, F. Herrera, S. García, M. J. del Jesus, L. Sánchez, E. Bernadó-Mansilla, 
A. Peregrín, and S. Ventura, “Introduction to the Experimental Design in the 
Data Mining Tool KEEL,” Intelligent Soft Computation and Evolving Data Mining: 
Integrating Advanced Technologies, vol. 1, pp. 1–25, 2010.

J. Derrac, J. Luengo, J. Alcalá-Fdez, A. Fernández, and S. Garcia, “Using KEEL software 
as  educational tool: A case of study teaching data mining,” 7th International Conference 
on IEEE Next Generation Web Services Practices, pp. 464–469, Hospender, Spain, 2011.

The classic applications and working of SPSS tool are described in:

S. J. Coakes, and L. Steed, SPSS: Analysis without Anguish Using SPSS Version 14.0 for 
Windows, John Wiley & Sons, Chichester, 2009.

D. George, SPSS for Windows Step by Step: A Simple Study Guide and Reference, 
17.0 Update, 10/e, Pearson Education, New Delhi, India, 2003.

S. B. Green, N. J. Salkind, and T. M. Jones, Using SPSS for Windows: Analyzing and 
Understanding Data, Prentice Hall, Upper Saddle River, NJ, 1996.

S. Landau, and B. Everitt, A Handbook of Statistical Analyses Using SPSS, Chapman & 
Hall, Boca Raton, FL, vol. 1, 2004.

M. P. Marchant, N. M. Smith, and K. H. Stirling, SPSS as a Library Research Tool, School 
of Library and Information Sciences, Brigham Young University, Provo, UT, 1977.

M. J. Norušis, SPSS Advanced Statistics: Student Guide, SPSS, Chicago, IL, 1990.
M. J. Norusis, SPSS 15.0 Guide to Data Analysis, Prentice Hall, Englewood Cliffs, NJ, 2007.
J. Pallant, SPSS Survival Manual, McGraw-Hill, Maidenhead, 2013.
S. Sarantakos, A Toolkit for Quantitative Data Analysis: Using SPSS, Palgrave Macmillan, 

New York, 2007.

An introduction to the use of commands and interface on MATLAB is provided in:

D. M. Etter, and D. C. Kuncicky, Introduction to MATLAB, Prentice Hall, Upper Saddle 
River, NJ, 2011.

L.N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, PA, vol. 10, 2000.

MATLAB demos and tutorials are present at the following links:

http://math.ucsd.edu/~bdriver/21d -s99/matlab-primer.html.
http://www.mathworks.com/products/demos/.

The basics of R tools are mentioned in:

J. M. Crawley, Statistics: An Introduction Using R, John Wiley & Sons, England, 2014.
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Appendix: Statistical Tables

This appendix contains statistical tables that are required for examples in Chapter 6. We 
replicated only a part of the statistical tables used in Chapter 6. To find detailed tables, 
readers can refer to any statistical book such as Anderson et al. (2002). The various statisti-
cal tables included in this appendix are as follows:

• t-Test
• Chi-square test
• Wilcoxon–Mann–Whitney test
• Area under the normal distribution
• F-Test table at 0.05 significance level
• Critical values for two-tailed Nemenyi test at 0.05 significance level
• Critical values for two-tailed Bonferroni test at 0.05 significance level

TABLE A.1

t-Test Table

Level of significance for one-tailed test
0.10 0.05 0.02 0.01 0.005

Level of significance for two-tailed test
Df 0.20 0.10 0.05 0.02 0.01
1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
. . . . . .
. . . . . .
. . . . . .
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
. . . . . .
. . . . . .
. . . . . .
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.014 2.508 2.819
. . . . . .
. . . . . .
. . . . . .
120 1.289 1.658 1.980 2.358 2.617
∞ 1.282 1.645 1.960 2.326 2.576
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TABLE A.2

Chi-Square Table

Df 0.99 0.95 0.50 0.10 0.05 0.02 0.01

1 0.000 0.000 0.455 2.706 3.841 5.412 6.635
2 0.020 0.103 1.386 4.605 5.991 7.824 9.210
3 0.115 0.35 2.366 6.251 7.815 9.837 11.341
4 0.297 0.711 3.357 7.779 9.488 11.668 13.277
5 0.554 0.114 4.351 9.236 11.070 13.388 15.081
6 0.872 1.635 5.348 10.645 12.592 15.033 16.812
7 1.239 2.167 6.346 12.014 14.067 16.622 18.475
. . . . . . . .
. . . . . . . .
. . . . . . . .
17 6.408 8.672 16.338 24.769 27.587 30.995 33.409
18 7.015 9.390 17.338 25.989 28.869 32.346 34.805
. . . . . . . .
. . . . . . . .
. . . . . . . .
29 14.256 17.708 28.336 39.087 42.557 46.693 49.588
30 14.953 18.493 29.336 40.256 43.773 47.962 50.892

TABLE A.3

Wilcoxon–Mann–Whitney Table for N2 = 5 

n2 = 5

N1 1 2 3 4 5

0 0.167 0.047 0.018 0.008 0.004
1 0.333 0.095 0.036 0.016 0.008
2 0.500 0.190 0.071 0.032 0.016
3 0.667 0.286 0.125 0.056 0.028
4 0.429 0.196 0.095 0.048

5 0.571 0.286 0.143 0.075

6 0.393 0.206 0.111

7 0.500 0.278 0.155

8 0.607 0.365 0.210

9 0.452 0.274

10 0.548 0.345

11 0.421

12 0.500

13 0.579
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TABLE A.4

Area Under the Normal Distribution

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

−3.9 0.00005 0.00005 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00003 0.00003
−3.8 0.00007 0.00007 0.00007 0.00006 0.00006 0.00006 0.00006 0.00005 0.00005 0.00005
−3.7 0.00011 0.00010 0.00010 0.00010 0.00009 0.00009 0.00008 0.00008 0.00008 0.00008
−3.6 0.00016 0.00015 0.00015 0.00014 0.00014 0.00013 0.00013 0.00012 0.00012 0.00011
−3.5 0.00023 .00022 0.00022 0.00021 0.00020 0.00019 0.00019 0.00018 0.00017 0.00017
−3.4 0.00034 0.00032 0.00031 0.00030 0.00029 0.00028 0.00027 0.00026 0.00025 0.00024
−3.3 0.00048 0.00047 0.00045 0.00043 0.00042 0.00040 0.00039 0.00038 0.00036 0.00035
−3.2 0.00069 0.00066 0.00064 0.00062 0.00060 0.00058 0.00056 0.00054 0.00052 0.00050
−3.1 0.00097 0.00094 0.00090 0.00087 0.00084 0.00082 0.00079 0.00076 0.00074 0.00071
−3.0 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00104 0.00100
−2.9 0.00187 0.00181 0.00175 0.00169 0.00164 0.00159 0.00154 0.00149 0.00144 0.00139
−2.8 0.00256 0.00248 0.00240 0.00233 0.00226 0.00219 0.00212 0.00205 0.00199 0.00193
−2.7 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.00280 0.00272 0.00264
−2.6 0.00466 0.00453 0.00440 0.00427 0.00415 0.00402 0.00391 0.00379 0.00368 0.00357
−2.5 0.00621 0.00604 0.00587 0.00570 0.00554 0.00539 0.00523 0.00508 0.00494 0.00480
−2.4 0.00820 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639
−2.3 0.01072 0.01044 0.01017 0.00990 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842
−2.2 0.01390 0.01355 0.01321 0.01287 0.01255 0.01222 0.01191 0.01160 0.01130 0.01101
−2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426
−2.0 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.01970 0.01923 0.01876 0.01831
−1.9 0.02872 0.02807 0.02743 0.02680 0.02619 0.02559 0.02500 0.02442 0.02385 0.02330
−1.8 0.03593 0.03515 0.03438 0.03362 0.03288 0.03216 0.03144 0.03074 0.03005 0.02938
−1.7 0.04457 0.04363 0.04272 0.04182 0.04093 0.04006 0.03920 0.03836 0.03754 0.03673
−1.6 0.05480 0.05370 0.05262 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04551
−1.5 0.06681 0.06552 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592
−1.4 0.08076 0.07927 0.07780 0.07636 0.07493 0.07353 0.07215 0.07078 0.06944 0.06811
−1.3 0.09680 0.09510 0.09342 0.09176 0.09012 0.08851 0.08691 0.08534 0.08379 0.08226
−1.2 0.11507 0.11314 0.11123 0.10935 0.10749 0.10565 0.10383 0.10204 0.10027 0.09853
−1.1 0.13567 0.13350 0.13136 0.12924 0.12714 0.12507 0.12302 0.12100 0.11900 0.11702
−1.0 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 0.14457 0.14231 0.14007 0.13786
−0.9 0.18406 0.18141 0.17879 0.17619 0.17361 0.17106 0.16853 0.16602 0.16354 0.16109
−0.8 0.21186 0.20897 0.20611 0.20327 0.20045 0.19766 0.19489 0.19215 0.18943 0.18673
−0.7 0.24196 0.23885 0.23576 0.23270 0.22965 0.22663 0.22363 0.22065 0.21770 0.21476
−0.6 0.27425 0.27093 0.26763 0.26435 0.26109 0.25785 0.25463 0.25143 0.24825 0.24510
−0.5 0.30854 0.30503 0.30153 0.29806 0.29460 0.29116 0.28774 0.28434 0.28096 0.27760
−0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 0.32276 0.31918 0.31561 0.31207
−0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.35942 0.35569 0.35197 0.34827
−0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.39743 0.39358 0.38974 0.38591
−0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.43644 0.43251 0.42858 0.42465
−0.0 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.47608 0.47210 0.46812 0.46414

0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586

(Continued)
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TABLE A.4 (Continued )

Area Under the Normal Distribution

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55962 0.56356 0.56749 0.57142 0.57535
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409
0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173
0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793
0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490
0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524
0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891
1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
1.1 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298
1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91309 0.91466 0.91621 0.91774
1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189
1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408
1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327
1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062
1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670
2.0 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169
2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574
2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899
2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158
2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361
2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520
2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643
2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736
2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807
2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861
3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99896 0.99900
3.1 0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929
3.2 0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99950
3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965
3.4 0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976
3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983
3.6 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989
3.7 0.99989 0.99990 0.99990 0.99990 0.99991 0.99991 0.99992 0.99992 0.99992 0.99992
3.8 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995
3.9 0.99995 0.99995 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99997 0.99997
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TABLE A.5

F-Test Table at 0.05 Significance Level

νν
νν

1

2 1 2 3 4 5 6 7 8 9

1 161.44 199.50 215.70 224.58 230.16 233.98 236.76 238.88 240.54
2 18.51 19.00 19.16 19.24 19.29 19.33 19.35 19.37 19.38
3 . 9.55 9.27 9.11 . . . 8.84 .
4 . 6.94 6.59 6.38 . . . 6.04 .
5 . 5.78 5.40 5.19 . . . 4.81 .
6 . 5.14 4.75 4.53 . . . 4.14 .
7 . 4.73 4.34 4.12 . . . 3.73 .
8 . 4.46 4.06 3.83 . . . 3.44 .
9 . 4.26 3.86 3.63 . . . 3.23 .

TABLE A.6

Critical Values for Two-Tailed Nemenyi Test at 0.05 Significance Level

Number of Subjects 2 3 4 5 … ... 9 10

q0.10 1.645 2.052 2.291 2.459 . . 2.855 2.920
q0.05 1.960 2.344 2.569 2.728 . . 3.102 3.164
q0.01 2.576 2.913 3.113 3.255 . . 3.590 3.646

TABLE A.7

Critical Values for Two-Tailed Bonferroni Test at 0.05 Significance Level

Number of Subjects 2 3 4 5 … ... 9 10

q0.10 1.645 1.960 2.128 2.241 . . 2.498 2.539
q0.05 1.960 2.241 2.394 2.498 . . 2.724 2.773

TABLE A.8

Data Set Example

WMC DIT NOC CBO RFC LCOM LOC Fault

28 1 0 32 82 374 926 1
6 1 2 3 7 3 36 0
4 2 0 5 6 4 21 0
4 1 0 9 4 6 4 0
1 1 0 8 1 0 1 0

(Continued)
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TABLE A.8 (Continued )

Data Set Example

WMC DIT NOC CBO RFC LCOM LOC Fault

23 2 0 150 67 235 653 1
5 1 0 8 26 0 127 0

25 4 0 18 73 200 666 1
7 1 0 2 13 0 86 0

21 1 0 7 22 154 141 0
2 2 0 2 4 1 11 0
8 1 0 10 21 28 130 0

32 4 0 16 81 406 504 0
13 1 2 4 44 70 208 0
19 1 0 8 42 99 329 1
2 1 0 6 21 1 144 0
1 1 0 4 1 0 1 0

37 6 0 26 120 570 1,123 1
8 1 5 6 22 6 145 0
5 2 2 6 14 2 60 0
7 1 0 10 63 21 1,034 0
2 1 0 15 34 0 326 0
5 2 0 10 44 0 305 1
4 4 2 5 8 6 20 0
5 1 0 6 17 10 112 0
8 1 0 3 35 20 303 1
8 1 0 2 13 14 69 0

47 4 0 15 108 865 896 0
22 2 0 16 59 0 354 0
10 1 0 17 62 11 491 1
2 2 0 3 3 0 14 0
5 1 4 7 8 8 34 0
2 5 3 6 5 1 12 0

11 1 0 4 21 13 68 0
59 1 0 31 148 0 895 0
25 4 0 10 49 224 304 0
6 2 0 6 36 0 165 0
5 1 0 1 22 10 103 0

3 1 0 13 22 0 201 0
57 2 1 56 242 1504 2,550 1
5 1 0 2 6 2 36 1

13 1 0 14 49 24 298 0
2 3 0 3 5 0 15 0

29 2 0 21 104 236 733 1
12 2 0 6 31 20 360 0
3 1 0 16 3 3 3 0

38 4 4 21 104 613 839 1
19 1 0 8 19 171 19 0
2 1 0 9 2 1 4 0

(Continued)
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TABLE A.8 (Continued )

Data Set Example

WMC DIT NOC CBO RFC LCOM LOC Fault

8 2 0 9 61 28 544 1
13 6 0 25 69 78 420 0
3 2 0 5 5 3 18 0
2 2 0 1 4 1 10 0
4 1 0 7 17 0 58 0
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